kmemleak: add config to select auto scan
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
ca79b0c2 19#include <linux/highmem.h>
1da177e4
LT
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
10ed273f 23#include <linux/jiffies.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
a6cccdc3 42#include <linux/vmstat.h>
4be38e35 43#include <linux/mempolicy.h>
4b94ffdc 44#include <linux/memremap.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
d379f01d 56#include <trace/events/oom.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
5b3cc15a 62#include <linux/sched/mm.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
4949148a 65#include <linux/memcontrol.h>
42c269c8 66#include <linux/ftrace.h>
d92a8cfc 67#include <linux/lockdep.h>
556b969a 68#include <linux/nmi.h>
eb414681 69#include <linux/psi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53
MG
99/* work_structs for global per-cpu drains */
100DEFINE_MUTEX(pcpu_drain_mutex);
101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
38addce8 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 104volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
105EXPORT_SYMBOL(latent_entropy);
106#endif
107
1da177e4 108/*
13808910 109 * Array of node states.
1da177e4 110 */
13808910
CL
111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114#ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116#ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 118#endif
20b2f52b 119 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
120 [N_CPU] = { { [0] = 1UL } },
121#endif /* NUMA */
122};
123EXPORT_SYMBOL(node_states);
124
ca79b0c2
AK
125atomic_long_t _totalram_pages __read_mostly;
126EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 127unsigned long totalreserve_pages __read_mostly;
e48322ab 128unsigned long totalcma_pages __read_mostly;
ab8fabd4 129
1b76b02f 130int percpu_pagelist_fraction;
dcce284a 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 132
bb14c2c7
VB
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
452aa699
RW
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
156 * they should always be called with system_transition_mutex held
157 * (gfp_allowed_mask also should only be modified with system_transition_mutex
158 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
159 * with that modification).
452aa699 160 */
c9e664f1
RW
161
162static gfp_t saved_gfp_mask;
163
164void pm_restore_gfp_mask(void)
452aa699 165{
55f2503c 166 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
452aa699
RW
171}
172
c9e664f1 173void pm_restrict_gfp_mask(void)
452aa699 174{
55f2503c 175 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
d0164adc 178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 179}
f90ac398
MG
180
181bool pm_suspended_storage(void)
182{
d0164adc 183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
184 return false;
185 return true;
186}
452aa699
RW
187#endif /* CONFIG_PM_SLEEP */
188
d9c23400 189#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 190unsigned int pageblock_order __read_mostly;
d9c23400
MG
191#endif
192
d98c7a09 193static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 194
1da177e4
LT
195/*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
1da177e4 205 */
d3cda233 206int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 207#ifdef CONFIG_ZONE_DMA
d3cda233 208 [ZONE_DMA] = 256,
4b51d669 209#endif
fb0e7942 210#ifdef CONFIG_ZONE_DMA32
d3cda233 211 [ZONE_DMA32] = 256,
fb0e7942 212#endif
d3cda233 213 [ZONE_NORMAL] = 32,
e53ef38d 214#ifdef CONFIG_HIGHMEM
d3cda233 215 [ZONE_HIGHMEM] = 0,
e53ef38d 216#endif
d3cda233 217 [ZONE_MOVABLE] = 0,
2f1b6248 218};
1da177e4
LT
219
220EXPORT_SYMBOL(totalram_pages);
1da177e4 221
15ad7cdc 222static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 223#ifdef CONFIG_ZONE_DMA
2f1b6248 224 "DMA",
4b51d669 225#endif
fb0e7942 226#ifdef CONFIG_ZONE_DMA32
2f1b6248 227 "DMA32",
fb0e7942 228#endif
2f1b6248 229 "Normal",
e53ef38d 230#ifdef CONFIG_HIGHMEM
2a1e274a 231 "HighMem",
e53ef38d 232#endif
2a1e274a 233 "Movable",
033fbae9
DW
234#ifdef CONFIG_ZONE_DEVICE
235 "Device",
236#endif
2f1b6248
CL
237};
238
c999fbd3 239const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
240 "Unmovable",
241 "Movable",
242 "Reclaimable",
243 "HighAtomic",
244#ifdef CONFIG_CMA
245 "CMA",
246#endif
247#ifdef CONFIG_MEMORY_ISOLATION
248 "Isolate",
249#endif
250};
251
f1e61557
KS
252compound_page_dtor * const compound_page_dtors[] = {
253 NULL,
254 free_compound_page,
255#ifdef CONFIG_HUGETLB_PAGE
256 free_huge_page,
257#endif
9a982250
KS
258#ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 free_transhuge_page,
260#endif
f1e61557
KS
261};
262
1da177e4 263int min_free_kbytes = 1024;
42aa83cb 264int user_min_free_kbytes = -1;
1c30844d 265int watermark_boost_factor __read_mostly = 15000;
795ae7a0 266int watermark_scale_factor = 10;
1da177e4 267
bbe5d993
OS
268static unsigned long nr_kernel_pages __initdata;
269static unsigned long nr_all_pages __initdata;
270static unsigned long dma_reserve __initdata;
1da177e4 271
0ee332c1 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 275static unsigned long required_kernelcore __initdata;
a5c6d650 276static unsigned long required_kernelcore_percent __initdata;
7f16f91f 277static unsigned long required_movablecore __initdata;
a5c6d650 278static unsigned long required_movablecore_percent __initdata;
bbe5d993 279static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 280static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
281
282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283int movable_zone;
284EXPORT_SYMBOL(movable_zone);
285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 286
418508c1
MS
287#if MAX_NUMNODES > 1
288int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 289int nr_online_nodes __read_mostly = 1;
418508c1 290EXPORT_SYMBOL(nr_node_ids);
62bc62a8 291EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
292#endif
293
9ef9acb0
MG
294int page_group_by_mobility_disabled __read_mostly;
295
3a80a7fa 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
297/*
298 * During boot we initialize deferred pages on-demand, as needed, but once
299 * page_alloc_init_late() has finished, the deferred pages are all initialized,
300 * and we can permanently disable that path.
301 */
302static DEFINE_STATIC_KEY_TRUE(deferred_pages);
303
304/*
305 * Calling kasan_free_pages() only after deferred memory initialization
306 * has completed. Poisoning pages during deferred memory init will greatly
307 * lengthen the process and cause problem in large memory systems as the
308 * deferred pages initialization is done with interrupt disabled.
309 *
310 * Assuming that there will be no reference to those newly initialized
311 * pages before they are ever allocated, this should have no effect on
312 * KASAN memory tracking as the poison will be properly inserted at page
313 * allocation time. The only corner case is when pages are allocated by
314 * on-demand allocation and then freed again before the deferred pages
315 * initialization is done, but this is not likely to happen.
316 */
317static inline void kasan_free_nondeferred_pages(struct page *page, int order)
318{
319 if (!static_branch_unlikely(&deferred_pages))
320 kasan_free_pages(page, order);
321}
322
3a80a7fa 323/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 324static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 325{
ef70b6f4
MG
326 int nid = early_pfn_to_nid(pfn);
327
328 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
329 return true;
330
331 return false;
332}
333
334/*
d3035be4 335 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
336 * later in the boot cycle when it can be parallelised.
337 */
d3035be4
PT
338static bool __meminit
339defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 340{
d3035be4
PT
341 static unsigned long prev_end_pfn, nr_initialised;
342
343 /*
344 * prev_end_pfn static that contains the end of previous zone
345 * No need to protect because called very early in boot before smp_init.
346 */
347 if (prev_end_pfn != end_pfn) {
348 prev_end_pfn = end_pfn;
349 nr_initialised = 0;
350 }
351
3c2c6488 352 /* Always populate low zones for address-constrained allocations */
d3035be4 353 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 354 return false;
23b68cfa
WY
355
356 /*
357 * We start only with one section of pages, more pages are added as
358 * needed until the rest of deferred pages are initialized.
359 */
d3035be4 360 nr_initialised++;
23b68cfa 361 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
362 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
363 NODE_DATA(nid)->first_deferred_pfn = pfn;
364 return true;
3a80a7fa 365 }
d3035be4 366 return false;
3a80a7fa
MG
367}
368#else
3c0c12cc
WL
369#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
370
3a80a7fa
MG
371static inline bool early_page_uninitialised(unsigned long pfn)
372{
373 return false;
374}
375
d3035be4 376static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 377{
d3035be4 378 return false;
3a80a7fa
MG
379}
380#endif
381
0b423ca2
MG
382/* Return a pointer to the bitmap storing bits affecting a block of pages */
383static inline unsigned long *get_pageblock_bitmap(struct page *page,
384 unsigned long pfn)
385{
386#ifdef CONFIG_SPARSEMEM
387 return __pfn_to_section(pfn)->pageblock_flags;
388#else
389 return page_zone(page)->pageblock_flags;
390#endif /* CONFIG_SPARSEMEM */
391}
392
393static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
394{
395#ifdef CONFIG_SPARSEMEM
396 pfn &= (PAGES_PER_SECTION-1);
397 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
398#else
399 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
400 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
401#endif /* CONFIG_SPARSEMEM */
402}
403
404/**
405 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
406 * @page: The page within the block of interest
407 * @pfn: The target page frame number
408 * @end_bitidx: The last bit of interest to retrieve
409 * @mask: mask of bits that the caller is interested in
410 *
411 * Return: pageblock_bits flags
412 */
413static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
414 unsigned long pfn,
415 unsigned long end_bitidx,
416 unsigned long mask)
417{
418 unsigned long *bitmap;
419 unsigned long bitidx, word_bitidx;
420 unsigned long word;
421
422 bitmap = get_pageblock_bitmap(page, pfn);
423 bitidx = pfn_to_bitidx(page, pfn);
424 word_bitidx = bitidx / BITS_PER_LONG;
425 bitidx &= (BITS_PER_LONG-1);
426
427 word = bitmap[word_bitidx];
428 bitidx += end_bitidx;
429 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
430}
431
432unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
433 unsigned long end_bitidx,
434 unsigned long mask)
435{
436 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
437}
438
439static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
440{
441 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
442}
443
444/**
445 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
446 * @page: The page within the block of interest
447 * @flags: The flags to set
448 * @pfn: The target page frame number
449 * @end_bitidx: The last bit of interest
450 * @mask: mask of bits that the caller is interested in
451 */
452void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
453 unsigned long pfn,
454 unsigned long end_bitidx,
455 unsigned long mask)
456{
457 unsigned long *bitmap;
458 unsigned long bitidx, word_bitidx;
459 unsigned long old_word, word;
460
461 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 462 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
463
464 bitmap = get_pageblock_bitmap(page, pfn);
465 bitidx = pfn_to_bitidx(page, pfn);
466 word_bitidx = bitidx / BITS_PER_LONG;
467 bitidx &= (BITS_PER_LONG-1);
468
469 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
470
471 bitidx += end_bitidx;
472 mask <<= (BITS_PER_LONG - bitidx - 1);
473 flags <<= (BITS_PER_LONG - bitidx - 1);
474
475 word = READ_ONCE(bitmap[word_bitidx]);
476 for (;;) {
477 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
478 if (word == old_word)
479 break;
480 word = old_word;
481 }
482}
3a80a7fa 483
ee6f509c 484void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 485{
5d0f3f72
KM
486 if (unlikely(page_group_by_mobility_disabled &&
487 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
488 migratetype = MIGRATE_UNMOVABLE;
489
b2a0ac88
MG
490 set_pageblock_flags_group(page, (unsigned long)migratetype,
491 PB_migrate, PB_migrate_end);
492}
493
13e7444b 494#ifdef CONFIG_DEBUG_VM
c6a57e19 495static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 496{
bdc8cb98
DH
497 int ret = 0;
498 unsigned seq;
499 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 500 unsigned long sp, start_pfn;
c6a57e19 501
bdc8cb98
DH
502 do {
503 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
504 start_pfn = zone->zone_start_pfn;
505 sp = zone->spanned_pages;
108bcc96 506 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
507 ret = 1;
508 } while (zone_span_seqretry(zone, seq));
509
b5e6a5a2 510 if (ret)
613813e8
DH
511 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
512 pfn, zone_to_nid(zone), zone->name,
513 start_pfn, start_pfn + sp);
b5e6a5a2 514
bdc8cb98 515 return ret;
c6a57e19
DH
516}
517
518static int page_is_consistent(struct zone *zone, struct page *page)
519{
14e07298 520 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 521 return 0;
1da177e4 522 if (zone != page_zone(page))
c6a57e19
DH
523 return 0;
524
525 return 1;
526}
527/*
528 * Temporary debugging check for pages not lying within a given zone.
529 */
d73d3c9f 530static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
531{
532 if (page_outside_zone_boundaries(zone, page))
1da177e4 533 return 1;
c6a57e19
DH
534 if (!page_is_consistent(zone, page))
535 return 1;
536
1da177e4
LT
537 return 0;
538}
13e7444b 539#else
d73d3c9f 540static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
541{
542 return 0;
543}
544#endif
545
d230dec1
KS
546static void bad_page(struct page *page, const char *reason,
547 unsigned long bad_flags)
1da177e4 548{
d936cf9b
HD
549 static unsigned long resume;
550 static unsigned long nr_shown;
551 static unsigned long nr_unshown;
552
553 /*
554 * Allow a burst of 60 reports, then keep quiet for that minute;
555 * or allow a steady drip of one report per second.
556 */
557 if (nr_shown == 60) {
558 if (time_before(jiffies, resume)) {
559 nr_unshown++;
560 goto out;
561 }
562 if (nr_unshown) {
ff8e8116 563 pr_alert(
1e9e6365 564 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
565 nr_unshown);
566 nr_unshown = 0;
567 }
568 nr_shown = 0;
569 }
570 if (nr_shown++ == 0)
571 resume = jiffies + 60 * HZ;
572
ff8e8116 573 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 574 current->comm, page_to_pfn(page));
ff8e8116
VB
575 __dump_page(page, reason);
576 bad_flags &= page->flags;
577 if (bad_flags)
578 pr_alert("bad because of flags: %#lx(%pGp)\n",
579 bad_flags, &bad_flags);
4e462112 580 dump_page_owner(page);
3dc14741 581
4f31888c 582 print_modules();
1da177e4 583 dump_stack();
d936cf9b 584out:
8cc3b392 585 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 586 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 587 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
588}
589
1da177e4
LT
590/*
591 * Higher-order pages are called "compound pages". They are structured thusly:
592 *
1d798ca3 593 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 594 *
1d798ca3
KS
595 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
596 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 597 *
1d798ca3
KS
598 * The first tail page's ->compound_dtor holds the offset in array of compound
599 * page destructors. See compound_page_dtors.
1da177e4 600 *
1d798ca3 601 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 602 * This usage means that zero-order pages may not be compound.
1da177e4 603 */
d98c7a09 604
9a982250 605void free_compound_page(struct page *page)
d98c7a09 606{
d85f3385 607 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
608}
609
d00181b9 610void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
611{
612 int i;
613 int nr_pages = 1 << order;
614
f1e61557 615 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
616 set_compound_order(page, order);
617 __SetPageHead(page);
618 for (i = 1; i < nr_pages; i++) {
619 struct page *p = page + i;
58a84aa9 620 set_page_count(p, 0);
1c290f64 621 p->mapping = TAIL_MAPPING;
1d798ca3 622 set_compound_head(p, page);
18229df5 623 }
53f9263b 624 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
625}
626
c0a32fc5
SG
627#ifdef CONFIG_DEBUG_PAGEALLOC
628unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
629bool _debug_pagealloc_enabled __read_mostly
630 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 631EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
632bool _debug_guardpage_enabled __read_mostly;
633
031bc574
JK
634static int __init early_debug_pagealloc(char *buf)
635{
636 if (!buf)
637 return -EINVAL;
2a138dc7 638 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
639}
640early_param("debug_pagealloc", early_debug_pagealloc);
641
e30825f1
JK
642static bool need_debug_guardpage(void)
643{
031bc574
JK
644 /* If we don't use debug_pagealloc, we don't need guard page */
645 if (!debug_pagealloc_enabled())
646 return false;
647
f1c1e9f7
JK
648 if (!debug_guardpage_minorder())
649 return false;
650
e30825f1
JK
651 return true;
652}
653
654static void init_debug_guardpage(void)
655{
031bc574
JK
656 if (!debug_pagealloc_enabled())
657 return;
658
f1c1e9f7
JK
659 if (!debug_guardpage_minorder())
660 return;
661
e30825f1
JK
662 _debug_guardpage_enabled = true;
663}
664
665struct page_ext_operations debug_guardpage_ops = {
666 .need = need_debug_guardpage,
667 .init = init_debug_guardpage,
668};
c0a32fc5
SG
669
670static int __init debug_guardpage_minorder_setup(char *buf)
671{
672 unsigned long res;
673
674 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 675 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
676 return 0;
677 }
678 _debug_guardpage_minorder = res;
1170532b 679 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
680 return 0;
681}
f1c1e9f7 682early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 683
acbc15a4 684static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 685 unsigned int order, int migratetype)
c0a32fc5 686{
e30825f1
JK
687 struct page_ext *page_ext;
688
689 if (!debug_guardpage_enabled())
acbc15a4
JK
690 return false;
691
692 if (order >= debug_guardpage_minorder())
693 return false;
e30825f1
JK
694
695 page_ext = lookup_page_ext(page);
f86e4271 696 if (unlikely(!page_ext))
acbc15a4 697 return false;
f86e4271 698
e30825f1
JK
699 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
700
2847cf95
JK
701 INIT_LIST_HEAD(&page->lru);
702 set_page_private(page, order);
703 /* Guard pages are not available for any usage */
704 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
705
706 return true;
c0a32fc5
SG
707}
708
2847cf95
JK
709static inline void clear_page_guard(struct zone *zone, struct page *page,
710 unsigned int order, int migratetype)
c0a32fc5 711{
e30825f1
JK
712 struct page_ext *page_ext;
713
714 if (!debug_guardpage_enabled())
715 return;
716
717 page_ext = lookup_page_ext(page);
f86e4271
YS
718 if (unlikely(!page_ext))
719 return;
720
e30825f1
JK
721 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
722
2847cf95
JK
723 set_page_private(page, 0);
724 if (!is_migrate_isolate(migratetype))
725 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
726}
727#else
980ac167 728struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
729static inline bool set_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype) { return false; }
2847cf95
JK
731static inline void clear_page_guard(struct zone *zone, struct page *page,
732 unsigned int order, int migratetype) {}
c0a32fc5
SG
733#endif
734
7aeb09f9 735static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 736{
4c21e2f2 737 set_page_private(page, order);
676165a8 738 __SetPageBuddy(page);
1da177e4
LT
739}
740
741static inline void rmv_page_order(struct page *page)
742{
676165a8 743 __ClearPageBuddy(page);
4c21e2f2 744 set_page_private(page, 0);
1da177e4
LT
745}
746
1da177e4
LT
747/*
748 * This function checks whether a page is free && is the buddy
6e292b9b 749 * we can coalesce a page and its buddy if
13ad59df 750 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 751 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
752 * (c) a page and its buddy have the same order &&
753 * (d) a page and its buddy are in the same zone.
676165a8 754 *
6e292b9b
MW
755 * For recording whether a page is in the buddy system, we set PageBuddy.
756 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 757 *
676165a8 758 * For recording page's order, we use page_private(page).
1da177e4 759 */
cb2b95e1 760static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 761 unsigned int order)
1da177e4 762{
c0a32fc5 763 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
4c5018ce
WY
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
c0a32fc5
SG
769 return 1;
770 }
771
cb2b95e1 772 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
773 /*
774 * zone check is done late to avoid uselessly
775 * calculating zone/node ids for pages that could
776 * never merge.
777 */
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
780
4c5018ce
WY
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782
6aa3001b 783 return 1;
676165a8 784 }
6aa3001b 785 return 0;
1da177e4
LT
786}
787
788/*
789 * Freeing function for a buddy system allocator.
790 *
791 * The concept of a buddy system is to maintain direct-mapped table
792 * (containing bit values) for memory blocks of various "orders".
793 * The bottom level table contains the map for the smallest allocatable
794 * units of memory (here, pages), and each level above it describes
795 * pairs of units from the levels below, hence, "buddies".
796 * At a high level, all that happens here is marking the table entry
797 * at the bottom level available, and propagating the changes upward
798 * as necessary, plus some accounting needed to play nicely with other
799 * parts of the VM system.
800 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
801 * free pages of length of (1 << order) and marked with PageBuddy.
802 * Page's order is recorded in page_private(page) field.
1da177e4 803 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
804 * other. That is, if we allocate a small block, and both were
805 * free, the remainder of the region must be split into blocks.
1da177e4 806 * If a block is freed, and its buddy is also free, then this
5f63b720 807 * triggers coalescing into a block of larger size.
1da177e4 808 *
6d49e352 809 * -- nyc
1da177e4
LT
810 */
811
48db57f8 812static inline void __free_one_page(struct page *page,
dc4b0caf 813 unsigned long pfn,
ed0ae21d
MG
814 struct zone *zone, unsigned int order,
815 int migratetype)
1da177e4 816{
76741e77
VB
817 unsigned long combined_pfn;
818 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 819 struct page *buddy;
d9dddbf5
VB
820 unsigned int max_order;
821
822 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 823
d29bb978 824 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 825 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 826
ed0ae21d 827 VM_BUG_ON(migratetype == -1);
d9dddbf5 828 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 829 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 830
76741e77 831 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 832 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 833
d9dddbf5 834continue_merging:
3c605096 835 while (order < max_order - 1) {
76741e77
VB
836 buddy_pfn = __find_buddy_pfn(pfn, order);
837 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
838
839 if (!pfn_valid_within(buddy_pfn))
840 goto done_merging;
cb2b95e1 841 if (!page_is_buddy(page, buddy, order))
d9dddbf5 842 goto done_merging;
c0a32fc5
SG
843 /*
844 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
845 * merge with it and move up one order.
846 */
847 if (page_is_guard(buddy)) {
2847cf95 848 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
849 } else {
850 list_del(&buddy->lru);
851 zone->free_area[order].nr_free--;
852 rmv_page_order(buddy);
853 }
76741e77
VB
854 combined_pfn = buddy_pfn & pfn;
855 page = page + (combined_pfn - pfn);
856 pfn = combined_pfn;
1da177e4
LT
857 order++;
858 }
d9dddbf5
VB
859 if (max_order < MAX_ORDER) {
860 /* If we are here, it means order is >= pageblock_order.
861 * We want to prevent merge between freepages on isolate
862 * pageblock and normal pageblock. Without this, pageblock
863 * isolation could cause incorrect freepage or CMA accounting.
864 *
865 * We don't want to hit this code for the more frequent
866 * low-order merging.
867 */
868 if (unlikely(has_isolate_pageblock(zone))) {
869 int buddy_mt;
870
76741e77
VB
871 buddy_pfn = __find_buddy_pfn(pfn, order);
872 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
873 buddy_mt = get_pageblock_migratetype(buddy);
874
875 if (migratetype != buddy_mt
876 && (is_migrate_isolate(migratetype) ||
877 is_migrate_isolate(buddy_mt)))
878 goto done_merging;
879 }
880 max_order++;
881 goto continue_merging;
882 }
883
884done_merging:
1da177e4 885 set_page_order(page, order);
6dda9d55
CZ
886
887 /*
888 * If this is not the largest possible page, check if the buddy
889 * of the next-highest order is free. If it is, it's possible
890 * that pages are being freed that will coalesce soon. In case,
891 * that is happening, add the free page to the tail of the list
892 * so it's less likely to be used soon and more likely to be merged
893 * as a higher order page
894 */
13ad59df 895 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 896 struct page *higher_page, *higher_buddy;
76741e77
VB
897 combined_pfn = buddy_pfn & pfn;
898 higher_page = page + (combined_pfn - pfn);
899 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
900 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
901 if (pfn_valid_within(buddy_pfn) &&
902 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
903 list_add_tail(&page->lru,
904 &zone->free_area[order].free_list[migratetype]);
905 goto out;
906 }
907 }
908
909 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
910out:
1da177e4
LT
911 zone->free_area[order].nr_free++;
912}
913
7bfec6f4
MG
914/*
915 * A bad page could be due to a number of fields. Instead of multiple branches,
916 * try and check multiple fields with one check. The caller must do a detailed
917 * check if necessary.
918 */
919static inline bool page_expected_state(struct page *page,
920 unsigned long check_flags)
921{
922 if (unlikely(atomic_read(&page->_mapcount) != -1))
923 return false;
924
925 if (unlikely((unsigned long)page->mapping |
926 page_ref_count(page) |
927#ifdef CONFIG_MEMCG
928 (unsigned long)page->mem_cgroup |
929#endif
930 (page->flags & check_flags)))
931 return false;
932
933 return true;
934}
935
bb552ac6 936static void free_pages_check_bad(struct page *page)
1da177e4 937{
7bfec6f4
MG
938 const char *bad_reason;
939 unsigned long bad_flags;
940
7bfec6f4
MG
941 bad_reason = NULL;
942 bad_flags = 0;
f0b791a3 943
53f9263b 944 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
945 bad_reason = "nonzero mapcount";
946 if (unlikely(page->mapping != NULL))
947 bad_reason = "non-NULL mapping";
fe896d18 948 if (unlikely(page_ref_count(page) != 0))
0139aa7b 949 bad_reason = "nonzero _refcount";
f0b791a3
DH
950 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
951 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
952 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
953 }
9edad6ea
JW
954#ifdef CONFIG_MEMCG
955 if (unlikely(page->mem_cgroup))
956 bad_reason = "page still charged to cgroup";
957#endif
7bfec6f4 958 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
959}
960
961static inline int free_pages_check(struct page *page)
962{
da838d4f 963 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 964 return 0;
bb552ac6
MG
965
966 /* Something has gone sideways, find it */
967 free_pages_check_bad(page);
7bfec6f4 968 return 1;
1da177e4
LT
969}
970
4db7548c
MG
971static int free_tail_pages_check(struct page *head_page, struct page *page)
972{
973 int ret = 1;
974
975 /*
976 * We rely page->lru.next never has bit 0 set, unless the page
977 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
978 */
979 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
980
981 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
982 ret = 0;
983 goto out;
984 }
985 switch (page - head_page) {
986 case 1:
4da1984e 987 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
988 if (unlikely(compound_mapcount(page))) {
989 bad_page(page, "nonzero compound_mapcount", 0);
990 goto out;
991 }
992 break;
993 case 2:
994 /*
995 * the second tail page: ->mapping is
fa3015b7 996 * deferred_list.next -- ignore value.
4db7548c
MG
997 */
998 break;
999 default:
1000 if (page->mapping != TAIL_MAPPING) {
1001 bad_page(page, "corrupted mapping in tail page", 0);
1002 goto out;
1003 }
1004 break;
1005 }
1006 if (unlikely(!PageTail(page))) {
1007 bad_page(page, "PageTail not set", 0);
1008 goto out;
1009 }
1010 if (unlikely(compound_head(page) != head_page)) {
1011 bad_page(page, "compound_head not consistent", 0);
1012 goto out;
1013 }
1014 ret = 0;
1015out:
1016 page->mapping = NULL;
1017 clear_compound_head(page);
1018 return ret;
1019}
1020
e2769dbd
MG
1021static __always_inline bool free_pages_prepare(struct page *page,
1022 unsigned int order, bool check_free)
4db7548c 1023{
e2769dbd 1024 int bad = 0;
4db7548c 1025
4db7548c
MG
1026 VM_BUG_ON_PAGE(PageTail(page), page);
1027
e2769dbd 1028 trace_mm_page_free(page, order);
e2769dbd
MG
1029
1030 /*
1031 * Check tail pages before head page information is cleared to
1032 * avoid checking PageCompound for order-0 pages.
1033 */
1034 if (unlikely(order)) {
1035 bool compound = PageCompound(page);
1036 int i;
1037
1038 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1039
9a73f61b
KS
1040 if (compound)
1041 ClearPageDoubleMap(page);
e2769dbd
MG
1042 for (i = 1; i < (1 << order); i++) {
1043 if (compound)
1044 bad += free_tail_pages_check(page, page + i);
1045 if (unlikely(free_pages_check(page + i))) {
1046 bad++;
1047 continue;
1048 }
1049 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1050 }
1051 }
bda807d4 1052 if (PageMappingFlags(page))
4db7548c 1053 page->mapping = NULL;
c4159a75 1054 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1055 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1056 if (check_free)
1057 bad += free_pages_check(page);
1058 if (bad)
1059 return false;
4db7548c 1060
e2769dbd
MG
1061 page_cpupid_reset_last(page);
1062 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1063 reset_page_owner(page, order);
4db7548c
MG
1064
1065 if (!PageHighMem(page)) {
1066 debug_check_no_locks_freed(page_address(page),
e2769dbd 1067 PAGE_SIZE << order);
4db7548c 1068 debug_check_no_obj_freed(page_address(page),
e2769dbd 1069 PAGE_SIZE << order);
4db7548c 1070 }
e2769dbd
MG
1071 arch_free_page(page, order);
1072 kernel_poison_pages(page, 1 << order, 0);
1073 kernel_map_pages(page, 1 << order, 0);
3c0c12cc 1074 kasan_free_nondeferred_pages(page, order);
4db7548c 1075
4db7548c
MG
1076 return true;
1077}
1078
e2769dbd
MG
1079#ifdef CONFIG_DEBUG_VM
1080static inline bool free_pcp_prepare(struct page *page)
1081{
1082 return free_pages_prepare(page, 0, true);
1083}
1084
1085static inline bool bulkfree_pcp_prepare(struct page *page)
1086{
1087 return false;
1088}
1089#else
1090static bool free_pcp_prepare(struct page *page)
1091{
1092 return free_pages_prepare(page, 0, false);
1093}
1094
4db7548c
MG
1095static bool bulkfree_pcp_prepare(struct page *page)
1096{
1097 return free_pages_check(page);
1098}
1099#endif /* CONFIG_DEBUG_VM */
1100
97334162
AL
1101static inline void prefetch_buddy(struct page *page)
1102{
1103 unsigned long pfn = page_to_pfn(page);
1104 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1105 struct page *buddy = page + (buddy_pfn - pfn);
1106
1107 prefetch(buddy);
1108}
1109
1da177e4 1110/*
5f8dcc21 1111 * Frees a number of pages from the PCP lists
1da177e4 1112 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1113 * count is the number of pages to free.
1da177e4
LT
1114 *
1115 * If the zone was previously in an "all pages pinned" state then look to
1116 * see if this freeing clears that state.
1117 *
1118 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1119 * pinned" detection logic.
1120 */
5f8dcc21
MG
1121static void free_pcppages_bulk(struct zone *zone, int count,
1122 struct per_cpu_pages *pcp)
1da177e4 1123{
5f8dcc21 1124 int migratetype = 0;
a6f9edd6 1125 int batch_free = 0;
97334162 1126 int prefetch_nr = 0;
3777999d 1127 bool isolated_pageblocks;
0a5f4e5b
AL
1128 struct page *page, *tmp;
1129 LIST_HEAD(head);
f2260e6b 1130
e5b31ac2 1131 while (count) {
5f8dcc21
MG
1132 struct list_head *list;
1133
1134 /*
a6f9edd6
MG
1135 * Remove pages from lists in a round-robin fashion. A
1136 * batch_free count is maintained that is incremented when an
1137 * empty list is encountered. This is so more pages are freed
1138 * off fuller lists instead of spinning excessively around empty
1139 * lists
5f8dcc21
MG
1140 */
1141 do {
a6f9edd6 1142 batch_free++;
5f8dcc21
MG
1143 if (++migratetype == MIGRATE_PCPTYPES)
1144 migratetype = 0;
1145 list = &pcp->lists[migratetype];
1146 } while (list_empty(list));
48db57f8 1147
1d16871d
NK
1148 /* This is the only non-empty list. Free them all. */
1149 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1150 batch_free = count;
1d16871d 1151
a6f9edd6 1152 do {
a16601c5 1153 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1154 /* must delete to avoid corrupting pcp list */
a6f9edd6 1155 list_del(&page->lru);
77ba9062 1156 pcp->count--;
aa016d14 1157
4db7548c
MG
1158 if (bulkfree_pcp_prepare(page))
1159 continue;
1160
0a5f4e5b 1161 list_add_tail(&page->lru, &head);
97334162
AL
1162
1163 /*
1164 * We are going to put the page back to the global
1165 * pool, prefetch its buddy to speed up later access
1166 * under zone->lock. It is believed the overhead of
1167 * an additional test and calculating buddy_pfn here
1168 * can be offset by reduced memory latency later. To
1169 * avoid excessive prefetching due to large count, only
1170 * prefetch buddy for the first pcp->batch nr of pages.
1171 */
1172 if (prefetch_nr++ < pcp->batch)
1173 prefetch_buddy(page);
e5b31ac2 1174 } while (--count && --batch_free && !list_empty(list));
1da177e4 1175 }
0a5f4e5b
AL
1176
1177 spin_lock(&zone->lock);
1178 isolated_pageblocks = has_isolate_pageblock(zone);
1179
1180 /*
1181 * Use safe version since after __free_one_page(),
1182 * page->lru.next will not point to original list.
1183 */
1184 list_for_each_entry_safe(page, tmp, &head, lru) {
1185 int mt = get_pcppage_migratetype(page);
1186 /* MIGRATE_ISOLATE page should not go to pcplists */
1187 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1188 /* Pageblock could have been isolated meanwhile */
1189 if (unlikely(isolated_pageblocks))
1190 mt = get_pageblock_migratetype(page);
1191
1192 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1193 trace_mm_page_pcpu_drain(page, 0, mt);
1194 }
d34b0733 1195 spin_unlock(&zone->lock);
1da177e4
LT
1196}
1197
dc4b0caf
MG
1198static void free_one_page(struct zone *zone,
1199 struct page *page, unsigned long pfn,
7aeb09f9 1200 unsigned int order,
ed0ae21d 1201 int migratetype)
1da177e4 1202{
d34b0733 1203 spin_lock(&zone->lock);
ad53f92e
JK
1204 if (unlikely(has_isolate_pageblock(zone) ||
1205 is_migrate_isolate(migratetype))) {
1206 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1207 }
dc4b0caf 1208 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1209 spin_unlock(&zone->lock);
48db57f8
NP
1210}
1211
1e8ce83c 1212static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1213 unsigned long zone, int nid)
1e8ce83c 1214{
d0dc12e8 1215 mm_zero_struct_page(page);
1e8ce83c 1216 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1217 init_page_count(page);
1218 page_mapcount_reset(page);
1219 page_cpupid_reset_last(page);
2813b9c0 1220 page_kasan_tag_reset(page);
1e8ce83c 1221
1e8ce83c
RH
1222 INIT_LIST_HEAD(&page->lru);
1223#ifdef WANT_PAGE_VIRTUAL
1224 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1225 if (!is_highmem_idx(zone))
1226 set_page_address(page, __va(pfn << PAGE_SHIFT));
1227#endif
1228}
1229
7e18adb4 1230#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1231static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1232{
1233 pg_data_t *pgdat;
1234 int nid, zid;
1235
1236 if (!early_page_uninitialised(pfn))
1237 return;
1238
1239 nid = early_pfn_to_nid(pfn);
1240 pgdat = NODE_DATA(nid);
1241
1242 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1243 struct zone *zone = &pgdat->node_zones[zid];
1244
1245 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1246 break;
1247 }
d0dc12e8 1248 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1249}
1250#else
1251static inline void init_reserved_page(unsigned long pfn)
1252{
1253}
1254#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1255
92923ca3
NZ
1256/*
1257 * Initialised pages do not have PageReserved set. This function is
1258 * called for each range allocated by the bootmem allocator and
1259 * marks the pages PageReserved. The remaining valid pages are later
1260 * sent to the buddy page allocator.
1261 */
4b50bcc7 1262void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1263{
1264 unsigned long start_pfn = PFN_DOWN(start);
1265 unsigned long end_pfn = PFN_UP(end);
1266
7e18adb4
MG
1267 for (; start_pfn < end_pfn; start_pfn++) {
1268 if (pfn_valid(start_pfn)) {
1269 struct page *page = pfn_to_page(start_pfn);
1270
1271 init_reserved_page(start_pfn);
1d798ca3
KS
1272
1273 /* Avoid false-positive PageTail() */
1274 INIT_LIST_HEAD(&page->lru);
1275
d483da5b
AD
1276 /*
1277 * no need for atomic set_bit because the struct
1278 * page is not visible yet so nobody should
1279 * access it yet.
1280 */
1281 __SetPageReserved(page);
7e18adb4
MG
1282 }
1283 }
92923ca3
NZ
1284}
1285
ec95f53a
KM
1286static void __free_pages_ok(struct page *page, unsigned int order)
1287{
d34b0733 1288 unsigned long flags;
95e34412 1289 int migratetype;
dc4b0caf 1290 unsigned long pfn = page_to_pfn(page);
ec95f53a 1291
e2769dbd 1292 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1293 return;
1294
cfc47a28 1295 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1296 local_irq_save(flags);
1297 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1298 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1299 local_irq_restore(flags);
1da177e4
LT
1300}
1301
949698a3 1302static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1303{
c3993076 1304 unsigned int nr_pages = 1 << order;
e2d0bd2b 1305 struct page *p = page;
c3993076 1306 unsigned int loop;
a226f6c8 1307
e2d0bd2b
YL
1308 prefetchw(p);
1309 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1310 prefetchw(p + 1);
c3993076
JW
1311 __ClearPageReserved(p);
1312 set_page_count(p, 0);
a226f6c8 1313 }
e2d0bd2b
YL
1314 __ClearPageReserved(p);
1315 set_page_count(p, 0);
c3993076 1316
9705bea5 1317 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1318 set_page_refcounted(page);
1319 __free_pages(page, order);
a226f6c8
DH
1320}
1321
75a592a4
MG
1322#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1323 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1324
75a592a4
MG
1325static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1326
1327int __meminit early_pfn_to_nid(unsigned long pfn)
1328{
7ace9917 1329 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1330 int nid;
1331
7ace9917 1332 spin_lock(&early_pfn_lock);
75a592a4 1333 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1334 if (nid < 0)
e4568d38 1335 nid = first_online_node;
7ace9917
MG
1336 spin_unlock(&early_pfn_lock);
1337
1338 return nid;
75a592a4
MG
1339}
1340#endif
1341
1342#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1343static inline bool __meminit __maybe_unused
1344meminit_pfn_in_nid(unsigned long pfn, int node,
1345 struct mminit_pfnnid_cache *state)
75a592a4
MG
1346{
1347 int nid;
1348
1349 nid = __early_pfn_to_nid(pfn, state);
1350 if (nid >= 0 && nid != node)
1351 return false;
1352 return true;
1353}
1354
1355/* Only safe to use early in boot when initialisation is single-threaded */
1356static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1357{
1358 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1359}
1360
1361#else
1362
1363static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1364{
1365 return true;
1366}
d73d3c9f
MK
1367static inline bool __meminit __maybe_unused
1368meminit_pfn_in_nid(unsigned long pfn, int node,
1369 struct mminit_pfnnid_cache *state)
75a592a4
MG
1370{
1371 return true;
1372}
1373#endif
1374
1375
7c2ee349 1376void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1377 unsigned int order)
1378{
1379 if (early_page_uninitialised(pfn))
1380 return;
949698a3 1381 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1382}
1383
7cf91a98
JK
1384/*
1385 * Check that the whole (or subset of) a pageblock given by the interval of
1386 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1387 * with the migration of free compaction scanner. The scanners then need to
1388 * use only pfn_valid_within() check for arches that allow holes within
1389 * pageblocks.
1390 *
1391 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1392 *
1393 * It's possible on some configurations to have a setup like node0 node1 node0
1394 * i.e. it's possible that all pages within a zones range of pages do not
1395 * belong to a single zone. We assume that a border between node0 and node1
1396 * can occur within a single pageblock, but not a node0 node1 node0
1397 * interleaving within a single pageblock. It is therefore sufficient to check
1398 * the first and last page of a pageblock and avoid checking each individual
1399 * page in a pageblock.
1400 */
1401struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1402 unsigned long end_pfn, struct zone *zone)
1403{
1404 struct page *start_page;
1405 struct page *end_page;
1406
1407 /* end_pfn is one past the range we are checking */
1408 end_pfn--;
1409
1410 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1411 return NULL;
1412
2d070eab
MH
1413 start_page = pfn_to_online_page(start_pfn);
1414 if (!start_page)
1415 return NULL;
7cf91a98
JK
1416
1417 if (page_zone(start_page) != zone)
1418 return NULL;
1419
1420 end_page = pfn_to_page(end_pfn);
1421
1422 /* This gives a shorter code than deriving page_zone(end_page) */
1423 if (page_zone_id(start_page) != page_zone_id(end_page))
1424 return NULL;
1425
1426 return start_page;
1427}
1428
1429void set_zone_contiguous(struct zone *zone)
1430{
1431 unsigned long block_start_pfn = zone->zone_start_pfn;
1432 unsigned long block_end_pfn;
1433
1434 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1435 for (; block_start_pfn < zone_end_pfn(zone);
1436 block_start_pfn = block_end_pfn,
1437 block_end_pfn += pageblock_nr_pages) {
1438
1439 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1440
1441 if (!__pageblock_pfn_to_page(block_start_pfn,
1442 block_end_pfn, zone))
1443 return;
1444 }
1445
1446 /* We confirm that there is no hole */
1447 zone->contiguous = true;
1448}
1449
1450void clear_zone_contiguous(struct zone *zone)
1451{
1452 zone->contiguous = false;
1453}
1454
7e18adb4 1455#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1456static void __init deferred_free_range(unsigned long pfn,
1457 unsigned long nr_pages)
a4de83dd 1458{
2f47a91f
PT
1459 struct page *page;
1460 unsigned long i;
a4de83dd 1461
2f47a91f 1462 if (!nr_pages)
a4de83dd
MG
1463 return;
1464
2f47a91f
PT
1465 page = pfn_to_page(pfn);
1466
a4de83dd 1467 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1468 if (nr_pages == pageblock_nr_pages &&
1469 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1470 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1471 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1472 return;
1473 }
1474
e780149b
XQ
1475 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1476 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1477 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1478 __free_pages_boot_core(page, 0);
e780149b 1479 }
a4de83dd
MG
1480}
1481
d3cd131d
NS
1482/* Completion tracking for deferred_init_memmap() threads */
1483static atomic_t pgdat_init_n_undone __initdata;
1484static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1485
1486static inline void __init pgdat_init_report_one_done(void)
1487{
1488 if (atomic_dec_and_test(&pgdat_init_n_undone))
1489 complete(&pgdat_init_all_done_comp);
1490}
0e1cc95b 1491
2f47a91f 1492/*
80b1f41c
PT
1493 * Returns true if page needs to be initialized or freed to buddy allocator.
1494 *
1495 * First we check if pfn is valid on architectures where it is possible to have
1496 * holes within pageblock_nr_pages. On systems where it is not possible, this
1497 * function is optimized out.
1498 *
1499 * Then, we check if a current large page is valid by only checking the validity
1500 * of the head pfn.
1501 *
1502 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1503 * within a node: a pfn is between start and end of a node, but does not belong
1504 * to this memory node.
2f47a91f 1505 */
80b1f41c
PT
1506static inline bool __init
1507deferred_pfn_valid(int nid, unsigned long pfn,
1508 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1509{
80b1f41c
PT
1510 if (!pfn_valid_within(pfn))
1511 return false;
1512 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1513 return false;
1514 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1515 return false;
1516 return true;
1517}
2f47a91f 1518
80b1f41c
PT
1519/*
1520 * Free pages to buddy allocator. Try to free aligned pages in
1521 * pageblock_nr_pages sizes.
1522 */
1523static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1524 unsigned long end_pfn)
1525{
1526 struct mminit_pfnnid_cache nid_init_state = { };
1527 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1528 unsigned long nr_free = 0;
2f47a91f 1529
80b1f41c
PT
1530 for (; pfn < end_pfn; pfn++) {
1531 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1532 deferred_free_range(pfn - nr_free, nr_free);
1533 nr_free = 0;
1534 } else if (!(pfn & nr_pgmask)) {
1535 deferred_free_range(pfn - nr_free, nr_free);
1536 nr_free = 1;
3a2d7fa8 1537 touch_nmi_watchdog();
80b1f41c
PT
1538 } else {
1539 nr_free++;
1540 }
1541 }
1542 /* Free the last block of pages to allocator */
1543 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1544}
1545
80b1f41c
PT
1546/*
1547 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1548 * by performing it only once every pageblock_nr_pages.
1549 * Return number of pages initialized.
1550 */
1551static unsigned long __init deferred_init_pages(int nid, int zid,
1552 unsigned long pfn,
1553 unsigned long end_pfn)
2f47a91f
PT
1554{
1555 struct mminit_pfnnid_cache nid_init_state = { };
1556 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1557 unsigned long nr_pages = 0;
2f47a91f 1558 struct page *page = NULL;
2f47a91f 1559
80b1f41c
PT
1560 for (; pfn < end_pfn; pfn++) {
1561 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1562 page = NULL;
2f47a91f 1563 continue;
80b1f41c 1564 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1565 page = pfn_to_page(pfn);
3a2d7fa8 1566 touch_nmi_watchdog();
80b1f41c
PT
1567 } else {
1568 page++;
2f47a91f 1569 }
d0dc12e8 1570 __init_single_page(page, pfn, zid, nid);
80b1f41c 1571 nr_pages++;
2f47a91f 1572 }
80b1f41c 1573 return (nr_pages);
2f47a91f
PT
1574}
1575
7e18adb4 1576/* Initialise remaining memory on a node */
0e1cc95b 1577static int __init deferred_init_memmap(void *data)
7e18adb4 1578{
0e1cc95b
MG
1579 pg_data_t *pgdat = data;
1580 int nid = pgdat->node_id;
7e18adb4
MG
1581 unsigned long start = jiffies;
1582 unsigned long nr_pages = 0;
3a2d7fa8 1583 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1584 phys_addr_t spa, epa;
1585 int zid;
7e18adb4 1586 struct zone *zone;
0e1cc95b 1587 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1588 u64 i;
7e18adb4 1589
3a2d7fa8
PT
1590 /* Bind memory initialisation thread to a local node if possible */
1591 if (!cpumask_empty(cpumask))
1592 set_cpus_allowed_ptr(current, cpumask);
1593
1594 pgdat_resize_lock(pgdat, &flags);
1595 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1596 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1597 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1598 pgdat_init_report_one_done();
0e1cc95b
MG
1599 return 0;
1600 }
1601
7e18adb4
MG
1602 /* Sanity check boundaries */
1603 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1604 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1605 pgdat->first_deferred_pfn = ULONG_MAX;
1606
1607 /* Only the highest zone is deferred so find it */
1608 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1609 zone = pgdat->node_zones + zid;
1610 if (first_init_pfn < zone_end_pfn(zone))
1611 break;
1612 }
2f47a91f 1613 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1614
80b1f41c
PT
1615 /*
1616 * Initialize and free pages. We do it in two loops: first we initialize
1617 * struct page, than free to buddy allocator, because while we are
1618 * freeing pages we can access pages that are ahead (computing buddy
1619 * page in __free_one_page()).
1620 */
1621 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1622 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1623 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1624 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1625 }
2f47a91f
PT
1626 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1627 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1628 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1629 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1630 }
3a2d7fa8 1631 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1632
1633 /* Sanity check that the next zone really is unpopulated */
1634 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1635
0e1cc95b 1636 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1637 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1638
1639 pgdat_init_report_one_done();
0e1cc95b
MG
1640 return 0;
1641}
c9e97a19 1642
c9e97a19
PT
1643/*
1644 * If this zone has deferred pages, try to grow it by initializing enough
1645 * deferred pages to satisfy the allocation specified by order, rounded up to
1646 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1647 * of SECTION_SIZE bytes by initializing struct pages in increments of
1648 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1649 *
1650 * Return true when zone was grown, otherwise return false. We return true even
1651 * when we grow less than requested, to let the caller decide if there are
1652 * enough pages to satisfy the allocation.
1653 *
1654 * Note: We use noinline because this function is needed only during boot, and
1655 * it is called from a __ref function _deferred_grow_zone. This way we are
1656 * making sure that it is not inlined into permanent text section.
1657 */
1658static noinline bool __init
1659deferred_grow_zone(struct zone *zone, unsigned int order)
1660{
1661 int zid = zone_idx(zone);
1662 int nid = zone_to_nid(zone);
1663 pg_data_t *pgdat = NODE_DATA(nid);
1664 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1665 unsigned long nr_pages = 0;
1666 unsigned long first_init_pfn, spfn, epfn, t, flags;
1667 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1668 phys_addr_t spa, epa;
1669 u64 i;
1670
1671 /* Only the last zone may have deferred pages */
1672 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1673 return false;
1674
1675 pgdat_resize_lock(pgdat, &flags);
1676
1677 /*
1678 * If deferred pages have been initialized while we were waiting for
1679 * the lock, return true, as the zone was grown. The caller will retry
1680 * this zone. We won't return to this function since the caller also
1681 * has this static branch.
1682 */
1683 if (!static_branch_unlikely(&deferred_pages)) {
1684 pgdat_resize_unlock(pgdat, &flags);
1685 return true;
1686 }
1687
1688 /*
1689 * If someone grew this zone while we were waiting for spinlock, return
1690 * true, as there might be enough pages already.
1691 */
1692 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1693 pgdat_resize_unlock(pgdat, &flags);
1694 return true;
1695 }
1696
1697 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1698
1699 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1700 pgdat_resize_unlock(pgdat, &flags);
1701 return false;
1702 }
1703
1704 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1705 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1706 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1707
1708 while (spfn < epfn && nr_pages < nr_pages_needed) {
1709 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1710 first_deferred_pfn = min(t, epfn);
1711 nr_pages += deferred_init_pages(nid, zid, spfn,
1712 first_deferred_pfn);
1713 spfn = first_deferred_pfn;
1714 }
1715
1716 if (nr_pages >= nr_pages_needed)
1717 break;
1718 }
1719
1720 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1721 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1722 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1723 deferred_free_pages(nid, zid, spfn, epfn);
1724
1725 if (first_deferred_pfn == epfn)
1726 break;
1727 }
1728 pgdat->first_deferred_pfn = first_deferred_pfn;
1729 pgdat_resize_unlock(pgdat, &flags);
1730
1731 return nr_pages > 0;
1732}
1733
1734/*
1735 * deferred_grow_zone() is __init, but it is called from
1736 * get_page_from_freelist() during early boot until deferred_pages permanently
1737 * disables this call. This is why we have refdata wrapper to avoid warning,
1738 * and to ensure that the function body gets unloaded.
1739 */
1740static bool __ref
1741_deferred_grow_zone(struct zone *zone, unsigned int order)
1742{
1743 return deferred_grow_zone(zone, order);
1744}
1745
7cf91a98 1746#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1747
1748void __init page_alloc_init_late(void)
1749{
7cf91a98
JK
1750 struct zone *zone;
1751
1752#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1753 int nid;
1754
d3cd131d
NS
1755 /* There will be num_node_state(N_MEMORY) threads */
1756 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1757 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1758 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1759 }
1760
1761 /* Block until all are initialised */
d3cd131d 1762 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1763
c9e97a19
PT
1764 /*
1765 * We initialized the rest of the deferred pages. Permanently disable
1766 * on-demand struct page initialization.
1767 */
1768 static_branch_disable(&deferred_pages);
1769
4248b0da
MG
1770 /* Reinit limits that are based on free pages after the kernel is up */
1771 files_maxfiles_init();
7cf91a98 1772#endif
3010f876
PT
1773#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1774 /* Discard memblock private memory */
1775 memblock_discard();
1776#endif
7cf91a98
JK
1777
1778 for_each_populated_zone(zone)
1779 set_zone_contiguous(zone);
7e18adb4 1780}
7e18adb4 1781
47118af0 1782#ifdef CONFIG_CMA
9cf510a5 1783/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1784void __init init_cma_reserved_pageblock(struct page *page)
1785{
1786 unsigned i = pageblock_nr_pages;
1787 struct page *p = page;
1788
1789 do {
1790 __ClearPageReserved(p);
1791 set_page_count(p, 0);
d883c6cf 1792 } while (++p, --i);
47118af0 1793
47118af0 1794 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1795
1796 if (pageblock_order >= MAX_ORDER) {
1797 i = pageblock_nr_pages;
1798 p = page;
1799 do {
1800 set_page_refcounted(p);
1801 __free_pages(p, MAX_ORDER - 1);
1802 p += MAX_ORDER_NR_PAGES;
1803 } while (i -= MAX_ORDER_NR_PAGES);
1804 } else {
1805 set_page_refcounted(page);
1806 __free_pages(page, pageblock_order);
1807 }
1808
3dcc0571 1809 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1810}
1811#endif
1da177e4
LT
1812
1813/*
1814 * The order of subdivision here is critical for the IO subsystem.
1815 * Please do not alter this order without good reasons and regression
1816 * testing. Specifically, as large blocks of memory are subdivided,
1817 * the order in which smaller blocks are delivered depends on the order
1818 * they're subdivided in this function. This is the primary factor
1819 * influencing the order in which pages are delivered to the IO
1820 * subsystem according to empirical testing, and this is also justified
1821 * by considering the behavior of a buddy system containing a single
1822 * large block of memory acted on by a series of small allocations.
1823 * This behavior is a critical factor in sglist merging's success.
1824 *
6d49e352 1825 * -- nyc
1da177e4 1826 */
085cc7d5 1827static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1828 int low, int high, struct free_area *area,
1829 int migratetype)
1da177e4
LT
1830{
1831 unsigned long size = 1 << high;
1832
1833 while (high > low) {
1834 area--;
1835 high--;
1836 size >>= 1;
309381fe 1837 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1838
acbc15a4
JK
1839 /*
1840 * Mark as guard pages (or page), that will allow to
1841 * merge back to allocator when buddy will be freed.
1842 * Corresponding page table entries will not be touched,
1843 * pages will stay not present in virtual address space
1844 */
1845 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1846 continue;
acbc15a4 1847
b2a0ac88 1848 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1849 area->nr_free++;
1850 set_page_order(&page[size], high);
1851 }
1da177e4
LT
1852}
1853
4e611801 1854static void check_new_page_bad(struct page *page)
1da177e4 1855{
4e611801
VB
1856 const char *bad_reason = NULL;
1857 unsigned long bad_flags = 0;
7bfec6f4 1858
53f9263b 1859 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1860 bad_reason = "nonzero mapcount";
1861 if (unlikely(page->mapping != NULL))
1862 bad_reason = "non-NULL mapping";
fe896d18 1863 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1864 bad_reason = "nonzero _count";
f4c18e6f
NH
1865 if (unlikely(page->flags & __PG_HWPOISON)) {
1866 bad_reason = "HWPoisoned (hardware-corrupted)";
1867 bad_flags = __PG_HWPOISON;
e570f56c
NH
1868 /* Don't complain about hwpoisoned pages */
1869 page_mapcount_reset(page); /* remove PageBuddy */
1870 return;
f4c18e6f 1871 }
f0b791a3
DH
1872 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1873 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1874 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1875 }
9edad6ea
JW
1876#ifdef CONFIG_MEMCG
1877 if (unlikely(page->mem_cgroup))
1878 bad_reason = "page still charged to cgroup";
1879#endif
4e611801
VB
1880 bad_page(page, bad_reason, bad_flags);
1881}
1882
1883/*
1884 * This page is about to be returned from the page allocator
1885 */
1886static inline int check_new_page(struct page *page)
1887{
1888 if (likely(page_expected_state(page,
1889 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1890 return 0;
1891
1892 check_new_page_bad(page);
1893 return 1;
2a7684a2
WF
1894}
1895
bd33ef36 1896static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1897{
1898 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1899 page_poisoning_enabled();
1414c7f4
LA
1900}
1901
479f854a
MG
1902#ifdef CONFIG_DEBUG_VM
1903static bool check_pcp_refill(struct page *page)
1904{
1905 return false;
1906}
1907
1908static bool check_new_pcp(struct page *page)
1909{
1910 return check_new_page(page);
1911}
1912#else
1913static bool check_pcp_refill(struct page *page)
1914{
1915 return check_new_page(page);
1916}
1917static bool check_new_pcp(struct page *page)
1918{
1919 return false;
1920}
1921#endif /* CONFIG_DEBUG_VM */
1922
1923static bool check_new_pages(struct page *page, unsigned int order)
1924{
1925 int i;
1926 for (i = 0; i < (1 << order); i++) {
1927 struct page *p = page + i;
1928
1929 if (unlikely(check_new_page(p)))
1930 return true;
1931 }
1932
1933 return false;
1934}
1935
46f24fd8
JK
1936inline void post_alloc_hook(struct page *page, unsigned int order,
1937 gfp_t gfp_flags)
1938{
1939 set_page_private(page, 0);
1940 set_page_refcounted(page);
1941
1942 arch_alloc_page(page, order);
1943 kernel_map_pages(page, 1 << order, 1);
1944 kernel_poison_pages(page, 1 << order, 1);
1945 kasan_alloc_pages(page, order);
1946 set_page_owner(page, order, gfp_flags);
1947}
1948
479f854a 1949static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1950 unsigned int alloc_flags)
2a7684a2
WF
1951{
1952 int i;
689bcebf 1953
46f24fd8 1954 post_alloc_hook(page, order, gfp_flags);
17cf4406 1955
bd33ef36 1956 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1957 for (i = 0; i < (1 << order); i++)
1958 clear_highpage(page + i);
17cf4406
NP
1959
1960 if (order && (gfp_flags & __GFP_COMP))
1961 prep_compound_page(page, order);
1962
75379191 1963 /*
2f064f34 1964 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1965 * allocate the page. The expectation is that the caller is taking
1966 * steps that will free more memory. The caller should avoid the page
1967 * being used for !PFMEMALLOC purposes.
1968 */
2f064f34
MH
1969 if (alloc_flags & ALLOC_NO_WATERMARKS)
1970 set_page_pfmemalloc(page);
1971 else
1972 clear_page_pfmemalloc(page);
1da177e4
LT
1973}
1974
56fd56b8
MG
1975/*
1976 * Go through the free lists for the given migratetype and remove
1977 * the smallest available page from the freelists
1978 */
85ccc8fa 1979static __always_inline
728ec980 1980struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1981 int migratetype)
1982{
1983 unsigned int current_order;
b8af2941 1984 struct free_area *area;
56fd56b8
MG
1985 struct page *page;
1986
1987 /* Find a page of the appropriate size in the preferred list */
1988 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1989 area = &(zone->free_area[current_order]);
a16601c5 1990 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1991 struct page, lru);
a16601c5
GT
1992 if (!page)
1993 continue;
56fd56b8
MG
1994 list_del(&page->lru);
1995 rmv_page_order(page);
1996 area->nr_free--;
56fd56b8 1997 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1998 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1999 return page;
2000 }
2001
2002 return NULL;
2003}
2004
2005
b2a0ac88
MG
2006/*
2007 * This array describes the order lists are fallen back to when
2008 * the free lists for the desirable migrate type are depleted
2009 */
47118af0 2010static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2011 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2012 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2013 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2014#ifdef CONFIG_CMA
974a786e 2015 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2016#endif
194159fb 2017#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2018 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2019#endif
b2a0ac88
MG
2020};
2021
dc67647b 2022#ifdef CONFIG_CMA
85ccc8fa 2023static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2024 unsigned int order)
2025{
2026 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2027}
2028#else
2029static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2030 unsigned int order) { return NULL; }
2031#endif
2032
c361be55
MG
2033/*
2034 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2035 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2036 * boundary. If alignment is required, use move_freepages_block()
2037 */
02aa0cdd 2038static int move_freepages(struct zone *zone,
b69a7288 2039 struct page *start_page, struct page *end_page,
02aa0cdd 2040 int migratetype, int *num_movable)
c361be55
MG
2041{
2042 struct page *page;
d00181b9 2043 unsigned int order;
d100313f 2044 int pages_moved = 0;
c361be55
MG
2045
2046#ifndef CONFIG_HOLES_IN_ZONE
2047 /*
2048 * page_zone is not safe to call in this context when
2049 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2050 * anyway as we check zone boundaries in move_freepages_block().
2051 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2052 * grouping pages by mobility
c361be55 2053 */
3e04040d
AB
2054 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2055 pfn_valid(page_to_pfn(end_page)) &&
2056 page_zone(start_page) != page_zone(end_page));
c361be55 2057#endif
c361be55
MG
2058 for (page = start_page; page <= end_page;) {
2059 if (!pfn_valid_within(page_to_pfn(page))) {
2060 page++;
2061 continue;
2062 }
2063
f073bdc5
AB
2064 /* Make sure we are not inadvertently changing nodes */
2065 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2066
c361be55 2067 if (!PageBuddy(page)) {
02aa0cdd
VB
2068 /*
2069 * We assume that pages that could be isolated for
2070 * migration are movable. But we don't actually try
2071 * isolating, as that would be expensive.
2072 */
2073 if (num_movable &&
2074 (PageLRU(page) || __PageMovable(page)))
2075 (*num_movable)++;
2076
c361be55
MG
2077 page++;
2078 continue;
2079 }
2080
2081 order = page_order(page);
84be48d8
KS
2082 list_move(&page->lru,
2083 &zone->free_area[order].free_list[migratetype]);
c361be55 2084 page += 1 << order;
d100313f 2085 pages_moved += 1 << order;
c361be55
MG
2086 }
2087
d100313f 2088 return pages_moved;
c361be55
MG
2089}
2090
ee6f509c 2091int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2092 int migratetype, int *num_movable)
c361be55
MG
2093{
2094 unsigned long start_pfn, end_pfn;
2095 struct page *start_page, *end_page;
2096
4a222127
DR
2097 if (num_movable)
2098 *num_movable = 0;
2099
c361be55 2100 start_pfn = page_to_pfn(page);
d9c23400 2101 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2102 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2103 end_page = start_page + pageblock_nr_pages - 1;
2104 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2105
2106 /* Do not cross zone boundaries */
108bcc96 2107 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2108 start_page = page;
108bcc96 2109 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2110 return 0;
2111
02aa0cdd
VB
2112 return move_freepages(zone, start_page, end_page, migratetype,
2113 num_movable);
c361be55
MG
2114}
2115
2f66a68f
MG
2116static void change_pageblock_range(struct page *pageblock_page,
2117 int start_order, int migratetype)
2118{
2119 int nr_pageblocks = 1 << (start_order - pageblock_order);
2120
2121 while (nr_pageblocks--) {
2122 set_pageblock_migratetype(pageblock_page, migratetype);
2123 pageblock_page += pageblock_nr_pages;
2124 }
2125}
2126
fef903ef 2127/*
9c0415eb
VB
2128 * When we are falling back to another migratetype during allocation, try to
2129 * steal extra free pages from the same pageblocks to satisfy further
2130 * allocations, instead of polluting multiple pageblocks.
2131 *
2132 * If we are stealing a relatively large buddy page, it is likely there will
2133 * be more free pages in the pageblock, so try to steal them all. For
2134 * reclaimable and unmovable allocations, we steal regardless of page size,
2135 * as fragmentation caused by those allocations polluting movable pageblocks
2136 * is worse than movable allocations stealing from unmovable and reclaimable
2137 * pageblocks.
fef903ef 2138 */
4eb7dce6
JK
2139static bool can_steal_fallback(unsigned int order, int start_mt)
2140{
2141 /*
2142 * Leaving this order check is intended, although there is
2143 * relaxed order check in next check. The reason is that
2144 * we can actually steal whole pageblock if this condition met,
2145 * but, below check doesn't guarantee it and that is just heuristic
2146 * so could be changed anytime.
2147 */
2148 if (order >= pageblock_order)
2149 return true;
2150
2151 if (order >= pageblock_order / 2 ||
2152 start_mt == MIGRATE_RECLAIMABLE ||
2153 start_mt == MIGRATE_UNMOVABLE ||
2154 page_group_by_mobility_disabled)
2155 return true;
2156
2157 return false;
2158}
2159
1c30844d
MG
2160static inline void boost_watermark(struct zone *zone)
2161{
2162 unsigned long max_boost;
2163
2164 if (!watermark_boost_factor)
2165 return;
2166
2167 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2168 watermark_boost_factor, 10000);
2169 max_boost = max(pageblock_nr_pages, max_boost);
2170
2171 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2172 max_boost);
2173}
2174
4eb7dce6
JK
2175/*
2176 * This function implements actual steal behaviour. If order is large enough,
2177 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2178 * pageblock to our migratetype and determine how many already-allocated pages
2179 * are there in the pageblock with a compatible migratetype. If at least half
2180 * of pages are free or compatible, we can change migratetype of the pageblock
2181 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2182 */
2183static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2184 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2185{
d00181b9 2186 unsigned int current_order = page_order(page);
3bc48f96 2187 struct free_area *area;
02aa0cdd
VB
2188 int free_pages, movable_pages, alike_pages;
2189 int old_block_type;
2190
2191 old_block_type = get_pageblock_migratetype(page);
fef903ef 2192
3bc48f96
VB
2193 /*
2194 * This can happen due to races and we want to prevent broken
2195 * highatomic accounting.
2196 */
02aa0cdd 2197 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2198 goto single_page;
2199
fef903ef
SB
2200 /* Take ownership for orders >= pageblock_order */
2201 if (current_order >= pageblock_order) {
2202 change_pageblock_range(page, current_order, start_type);
3bc48f96 2203 goto single_page;
fef903ef
SB
2204 }
2205
1c30844d
MG
2206 /*
2207 * Boost watermarks to increase reclaim pressure to reduce the
2208 * likelihood of future fallbacks. Wake kswapd now as the node
2209 * may be balanced overall and kswapd will not wake naturally.
2210 */
2211 boost_watermark(zone);
2212 if (alloc_flags & ALLOC_KSWAPD)
2213 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2214
3bc48f96
VB
2215 /* We are not allowed to try stealing from the whole block */
2216 if (!whole_block)
2217 goto single_page;
2218
02aa0cdd
VB
2219 free_pages = move_freepages_block(zone, page, start_type,
2220 &movable_pages);
2221 /*
2222 * Determine how many pages are compatible with our allocation.
2223 * For movable allocation, it's the number of movable pages which
2224 * we just obtained. For other types it's a bit more tricky.
2225 */
2226 if (start_type == MIGRATE_MOVABLE) {
2227 alike_pages = movable_pages;
2228 } else {
2229 /*
2230 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2231 * to MOVABLE pageblock, consider all non-movable pages as
2232 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2233 * vice versa, be conservative since we can't distinguish the
2234 * exact migratetype of non-movable pages.
2235 */
2236 if (old_block_type == MIGRATE_MOVABLE)
2237 alike_pages = pageblock_nr_pages
2238 - (free_pages + movable_pages);
2239 else
2240 alike_pages = 0;
2241 }
2242
3bc48f96 2243 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2244 if (!free_pages)
3bc48f96 2245 goto single_page;
fef903ef 2246
02aa0cdd
VB
2247 /*
2248 * If a sufficient number of pages in the block are either free or of
2249 * comparable migratability as our allocation, claim the whole block.
2250 */
2251 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2252 page_group_by_mobility_disabled)
2253 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2254
2255 return;
2256
2257single_page:
2258 area = &zone->free_area[current_order];
2259 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2260}
2261
2149cdae
JK
2262/*
2263 * Check whether there is a suitable fallback freepage with requested order.
2264 * If only_stealable is true, this function returns fallback_mt only if
2265 * we can steal other freepages all together. This would help to reduce
2266 * fragmentation due to mixed migratetype pages in one pageblock.
2267 */
2268int find_suitable_fallback(struct free_area *area, unsigned int order,
2269 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2270{
2271 int i;
2272 int fallback_mt;
2273
2274 if (area->nr_free == 0)
2275 return -1;
2276
2277 *can_steal = false;
2278 for (i = 0;; i++) {
2279 fallback_mt = fallbacks[migratetype][i];
974a786e 2280 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2281 break;
2282
2283 if (list_empty(&area->free_list[fallback_mt]))
2284 continue;
fef903ef 2285
4eb7dce6
JK
2286 if (can_steal_fallback(order, migratetype))
2287 *can_steal = true;
2288
2149cdae
JK
2289 if (!only_stealable)
2290 return fallback_mt;
2291
2292 if (*can_steal)
2293 return fallback_mt;
fef903ef 2294 }
4eb7dce6
JK
2295
2296 return -1;
fef903ef
SB
2297}
2298
0aaa29a5
MG
2299/*
2300 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2301 * there are no empty page blocks that contain a page with a suitable order
2302 */
2303static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2304 unsigned int alloc_order)
2305{
2306 int mt;
2307 unsigned long max_managed, flags;
2308
2309 /*
2310 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2311 * Check is race-prone but harmless.
2312 */
9705bea5 2313 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2314 if (zone->nr_reserved_highatomic >= max_managed)
2315 return;
2316
2317 spin_lock_irqsave(&zone->lock, flags);
2318
2319 /* Recheck the nr_reserved_highatomic limit under the lock */
2320 if (zone->nr_reserved_highatomic >= max_managed)
2321 goto out_unlock;
2322
2323 /* Yoink! */
2324 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2325 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2326 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2327 zone->nr_reserved_highatomic += pageblock_nr_pages;
2328 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2329 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2330 }
2331
2332out_unlock:
2333 spin_unlock_irqrestore(&zone->lock, flags);
2334}
2335
2336/*
2337 * Used when an allocation is about to fail under memory pressure. This
2338 * potentially hurts the reliability of high-order allocations when under
2339 * intense memory pressure but failed atomic allocations should be easier
2340 * to recover from than an OOM.
29fac03b
MK
2341 *
2342 * If @force is true, try to unreserve a pageblock even though highatomic
2343 * pageblock is exhausted.
0aaa29a5 2344 */
29fac03b
MK
2345static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2346 bool force)
0aaa29a5
MG
2347{
2348 struct zonelist *zonelist = ac->zonelist;
2349 unsigned long flags;
2350 struct zoneref *z;
2351 struct zone *zone;
2352 struct page *page;
2353 int order;
04c8716f 2354 bool ret;
0aaa29a5
MG
2355
2356 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2357 ac->nodemask) {
29fac03b
MK
2358 /*
2359 * Preserve at least one pageblock unless memory pressure
2360 * is really high.
2361 */
2362 if (!force && zone->nr_reserved_highatomic <=
2363 pageblock_nr_pages)
0aaa29a5
MG
2364 continue;
2365
2366 spin_lock_irqsave(&zone->lock, flags);
2367 for (order = 0; order < MAX_ORDER; order++) {
2368 struct free_area *area = &(zone->free_area[order]);
2369
a16601c5
GT
2370 page = list_first_entry_or_null(
2371 &area->free_list[MIGRATE_HIGHATOMIC],
2372 struct page, lru);
2373 if (!page)
0aaa29a5
MG
2374 continue;
2375
0aaa29a5 2376 /*
4855e4a7
MK
2377 * In page freeing path, migratetype change is racy so
2378 * we can counter several free pages in a pageblock
2379 * in this loop althoug we changed the pageblock type
2380 * from highatomic to ac->migratetype. So we should
2381 * adjust the count once.
0aaa29a5 2382 */
a6ffdc07 2383 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2384 /*
2385 * It should never happen but changes to
2386 * locking could inadvertently allow a per-cpu
2387 * drain to add pages to MIGRATE_HIGHATOMIC
2388 * while unreserving so be safe and watch for
2389 * underflows.
2390 */
2391 zone->nr_reserved_highatomic -= min(
2392 pageblock_nr_pages,
2393 zone->nr_reserved_highatomic);
2394 }
0aaa29a5
MG
2395
2396 /*
2397 * Convert to ac->migratetype and avoid the normal
2398 * pageblock stealing heuristics. Minimally, the caller
2399 * is doing the work and needs the pages. More
2400 * importantly, if the block was always converted to
2401 * MIGRATE_UNMOVABLE or another type then the number
2402 * of pageblocks that cannot be completely freed
2403 * may increase.
2404 */
2405 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2406 ret = move_freepages_block(zone, page, ac->migratetype,
2407 NULL);
29fac03b
MK
2408 if (ret) {
2409 spin_unlock_irqrestore(&zone->lock, flags);
2410 return ret;
2411 }
0aaa29a5
MG
2412 }
2413 spin_unlock_irqrestore(&zone->lock, flags);
2414 }
04c8716f
MK
2415
2416 return false;
0aaa29a5
MG
2417}
2418
3bc48f96
VB
2419/*
2420 * Try finding a free buddy page on the fallback list and put it on the free
2421 * list of requested migratetype, possibly along with other pages from the same
2422 * block, depending on fragmentation avoidance heuristics. Returns true if
2423 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2424 *
2425 * The use of signed ints for order and current_order is a deliberate
2426 * deviation from the rest of this file, to make the for loop
2427 * condition simpler.
3bc48f96 2428 */
85ccc8fa 2429static __always_inline bool
6bb15450
MG
2430__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2431 unsigned int alloc_flags)
b2a0ac88 2432{
b8af2941 2433 struct free_area *area;
b002529d 2434 int current_order;
6bb15450 2435 int min_order = order;
b2a0ac88 2436 struct page *page;
4eb7dce6
JK
2437 int fallback_mt;
2438 bool can_steal;
b2a0ac88 2439
6bb15450
MG
2440 /*
2441 * Do not steal pages from freelists belonging to other pageblocks
2442 * i.e. orders < pageblock_order. If there are no local zones free,
2443 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2444 */
2445 if (alloc_flags & ALLOC_NOFRAGMENT)
2446 min_order = pageblock_order;
2447
7a8f58f3
VB
2448 /*
2449 * Find the largest available free page in the other list. This roughly
2450 * approximates finding the pageblock with the most free pages, which
2451 * would be too costly to do exactly.
2452 */
6bb15450 2453 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2454 --current_order) {
4eb7dce6
JK
2455 area = &(zone->free_area[current_order]);
2456 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2457 start_migratetype, false, &can_steal);
4eb7dce6
JK
2458 if (fallback_mt == -1)
2459 continue;
b2a0ac88 2460
7a8f58f3
VB
2461 /*
2462 * We cannot steal all free pages from the pageblock and the
2463 * requested migratetype is movable. In that case it's better to
2464 * steal and split the smallest available page instead of the
2465 * largest available page, because even if the next movable
2466 * allocation falls back into a different pageblock than this
2467 * one, it won't cause permanent fragmentation.
2468 */
2469 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2470 && current_order > order)
2471 goto find_smallest;
b2a0ac88 2472
7a8f58f3
VB
2473 goto do_steal;
2474 }
e0fff1bd 2475
7a8f58f3 2476 return false;
e0fff1bd 2477
7a8f58f3
VB
2478find_smallest:
2479 for (current_order = order; current_order < MAX_ORDER;
2480 current_order++) {
2481 area = &(zone->free_area[current_order]);
2482 fallback_mt = find_suitable_fallback(area, current_order,
2483 start_migratetype, false, &can_steal);
2484 if (fallback_mt != -1)
2485 break;
b2a0ac88
MG
2486 }
2487
7a8f58f3
VB
2488 /*
2489 * This should not happen - we already found a suitable fallback
2490 * when looking for the largest page.
2491 */
2492 VM_BUG_ON(current_order == MAX_ORDER);
2493
2494do_steal:
2495 page = list_first_entry(&area->free_list[fallback_mt],
2496 struct page, lru);
2497
1c30844d
MG
2498 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2499 can_steal);
7a8f58f3
VB
2500
2501 trace_mm_page_alloc_extfrag(page, order, current_order,
2502 start_migratetype, fallback_mt);
2503
2504 return true;
2505
b2a0ac88
MG
2506}
2507
56fd56b8 2508/*
1da177e4
LT
2509 * Do the hard work of removing an element from the buddy allocator.
2510 * Call me with the zone->lock already held.
2511 */
85ccc8fa 2512static __always_inline struct page *
6bb15450
MG
2513__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2514 unsigned int alloc_flags)
1da177e4 2515{
1da177e4
LT
2516 struct page *page;
2517
3bc48f96 2518retry:
56fd56b8 2519 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2520 if (unlikely(!page)) {
dc67647b
JK
2521 if (migratetype == MIGRATE_MOVABLE)
2522 page = __rmqueue_cma_fallback(zone, order);
2523
6bb15450
MG
2524 if (!page && __rmqueue_fallback(zone, order, migratetype,
2525 alloc_flags))
3bc48f96 2526 goto retry;
728ec980
MG
2527 }
2528
0d3d062a 2529 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2530 return page;
1da177e4
LT
2531}
2532
5f63b720 2533/*
1da177e4
LT
2534 * Obtain a specified number of elements from the buddy allocator, all under
2535 * a single hold of the lock, for efficiency. Add them to the supplied list.
2536 * Returns the number of new pages which were placed at *list.
2537 */
5f63b720 2538static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2539 unsigned long count, struct list_head *list,
6bb15450 2540 int migratetype, unsigned int alloc_flags)
1da177e4 2541{
a6de734b 2542 int i, alloced = 0;
5f63b720 2543
d34b0733 2544 spin_lock(&zone->lock);
1da177e4 2545 for (i = 0; i < count; ++i) {
6bb15450
MG
2546 struct page *page = __rmqueue(zone, order, migratetype,
2547 alloc_flags);
085cc7d5 2548 if (unlikely(page == NULL))
1da177e4 2549 break;
81eabcbe 2550
479f854a
MG
2551 if (unlikely(check_pcp_refill(page)))
2552 continue;
2553
81eabcbe 2554 /*
0fac3ba5
VB
2555 * Split buddy pages returned by expand() are received here in
2556 * physical page order. The page is added to the tail of
2557 * caller's list. From the callers perspective, the linked list
2558 * is ordered by page number under some conditions. This is
2559 * useful for IO devices that can forward direction from the
2560 * head, thus also in the physical page order. This is useful
2561 * for IO devices that can merge IO requests if the physical
2562 * pages are ordered properly.
81eabcbe 2563 */
0fac3ba5 2564 list_add_tail(&page->lru, list);
a6de734b 2565 alloced++;
bb14c2c7 2566 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2567 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2568 -(1 << order));
1da177e4 2569 }
a6de734b
MG
2570
2571 /*
2572 * i pages were removed from the buddy list even if some leak due
2573 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2574 * on i. Do not confuse with 'alloced' which is the number of
2575 * pages added to the pcp list.
2576 */
f2260e6b 2577 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2578 spin_unlock(&zone->lock);
a6de734b 2579 return alloced;
1da177e4
LT
2580}
2581
4ae7c039 2582#ifdef CONFIG_NUMA
8fce4d8e 2583/*
4037d452
CL
2584 * Called from the vmstat counter updater to drain pagesets of this
2585 * currently executing processor on remote nodes after they have
2586 * expired.
2587 *
879336c3
CL
2588 * Note that this function must be called with the thread pinned to
2589 * a single processor.
8fce4d8e 2590 */
4037d452 2591void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2592{
4ae7c039 2593 unsigned long flags;
7be12fc9 2594 int to_drain, batch;
4ae7c039 2595
4037d452 2596 local_irq_save(flags);
4db0c3c2 2597 batch = READ_ONCE(pcp->batch);
7be12fc9 2598 to_drain = min(pcp->count, batch);
77ba9062 2599 if (to_drain > 0)
2a13515c 2600 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2601 local_irq_restore(flags);
4ae7c039
CL
2602}
2603#endif
2604
9f8f2172 2605/*
93481ff0 2606 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2607 *
2608 * The processor must either be the current processor and the
2609 * thread pinned to the current processor or a processor that
2610 * is not online.
2611 */
93481ff0 2612static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2613{
c54ad30c 2614 unsigned long flags;
93481ff0
VB
2615 struct per_cpu_pageset *pset;
2616 struct per_cpu_pages *pcp;
1da177e4 2617
93481ff0
VB
2618 local_irq_save(flags);
2619 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2620
93481ff0 2621 pcp = &pset->pcp;
77ba9062 2622 if (pcp->count)
93481ff0 2623 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2624 local_irq_restore(flags);
2625}
3dfa5721 2626
93481ff0
VB
2627/*
2628 * Drain pcplists of all zones on the indicated processor.
2629 *
2630 * The processor must either be the current processor and the
2631 * thread pinned to the current processor or a processor that
2632 * is not online.
2633 */
2634static void drain_pages(unsigned int cpu)
2635{
2636 struct zone *zone;
2637
2638 for_each_populated_zone(zone) {
2639 drain_pages_zone(cpu, zone);
1da177e4
LT
2640 }
2641}
1da177e4 2642
9f8f2172
CL
2643/*
2644 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2645 *
2646 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2647 * the single zone's pages.
9f8f2172 2648 */
93481ff0 2649void drain_local_pages(struct zone *zone)
9f8f2172 2650{
93481ff0
VB
2651 int cpu = smp_processor_id();
2652
2653 if (zone)
2654 drain_pages_zone(cpu, zone);
2655 else
2656 drain_pages(cpu);
9f8f2172
CL
2657}
2658
0ccce3b9
MG
2659static void drain_local_pages_wq(struct work_struct *work)
2660{
a459eeb7
MH
2661 /*
2662 * drain_all_pages doesn't use proper cpu hotplug protection so
2663 * we can race with cpu offline when the WQ can move this from
2664 * a cpu pinned worker to an unbound one. We can operate on a different
2665 * cpu which is allright but we also have to make sure to not move to
2666 * a different one.
2667 */
2668 preempt_disable();
0ccce3b9 2669 drain_local_pages(NULL);
a459eeb7 2670 preempt_enable();
0ccce3b9
MG
2671}
2672
9f8f2172 2673/*
74046494
GBY
2674 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2675 *
93481ff0
VB
2676 * When zone parameter is non-NULL, spill just the single zone's pages.
2677 *
0ccce3b9 2678 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2679 */
93481ff0 2680void drain_all_pages(struct zone *zone)
9f8f2172 2681{
74046494 2682 int cpu;
74046494
GBY
2683
2684 /*
2685 * Allocate in the BSS so we wont require allocation in
2686 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2687 */
2688 static cpumask_t cpus_with_pcps;
2689
ce612879
MH
2690 /*
2691 * Make sure nobody triggers this path before mm_percpu_wq is fully
2692 * initialized.
2693 */
2694 if (WARN_ON_ONCE(!mm_percpu_wq))
2695 return;
2696
bd233f53
MG
2697 /*
2698 * Do not drain if one is already in progress unless it's specific to
2699 * a zone. Such callers are primarily CMA and memory hotplug and need
2700 * the drain to be complete when the call returns.
2701 */
2702 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2703 if (!zone)
2704 return;
2705 mutex_lock(&pcpu_drain_mutex);
2706 }
0ccce3b9 2707
74046494
GBY
2708 /*
2709 * We don't care about racing with CPU hotplug event
2710 * as offline notification will cause the notified
2711 * cpu to drain that CPU pcps and on_each_cpu_mask
2712 * disables preemption as part of its processing
2713 */
2714 for_each_online_cpu(cpu) {
93481ff0
VB
2715 struct per_cpu_pageset *pcp;
2716 struct zone *z;
74046494 2717 bool has_pcps = false;
93481ff0
VB
2718
2719 if (zone) {
74046494 2720 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2721 if (pcp->pcp.count)
74046494 2722 has_pcps = true;
93481ff0
VB
2723 } else {
2724 for_each_populated_zone(z) {
2725 pcp = per_cpu_ptr(z->pageset, cpu);
2726 if (pcp->pcp.count) {
2727 has_pcps = true;
2728 break;
2729 }
74046494
GBY
2730 }
2731 }
93481ff0 2732
74046494
GBY
2733 if (has_pcps)
2734 cpumask_set_cpu(cpu, &cpus_with_pcps);
2735 else
2736 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2737 }
0ccce3b9 2738
bd233f53
MG
2739 for_each_cpu(cpu, &cpus_with_pcps) {
2740 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2741 INIT_WORK(work, drain_local_pages_wq);
ce612879 2742 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2743 }
bd233f53
MG
2744 for_each_cpu(cpu, &cpus_with_pcps)
2745 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2746
2747 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2748}
2749
296699de 2750#ifdef CONFIG_HIBERNATION
1da177e4 2751
556b969a
CY
2752/*
2753 * Touch the watchdog for every WD_PAGE_COUNT pages.
2754 */
2755#define WD_PAGE_COUNT (128*1024)
2756
1da177e4
LT
2757void mark_free_pages(struct zone *zone)
2758{
556b969a 2759 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2760 unsigned long flags;
7aeb09f9 2761 unsigned int order, t;
86760a2c 2762 struct page *page;
1da177e4 2763
8080fc03 2764 if (zone_is_empty(zone))
1da177e4
LT
2765 return;
2766
2767 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2768
108bcc96 2769 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2770 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2771 if (pfn_valid(pfn)) {
86760a2c 2772 page = pfn_to_page(pfn);
ba6b0979 2773
556b969a
CY
2774 if (!--page_count) {
2775 touch_nmi_watchdog();
2776 page_count = WD_PAGE_COUNT;
2777 }
2778
ba6b0979
JK
2779 if (page_zone(page) != zone)
2780 continue;
2781
7be98234
RW
2782 if (!swsusp_page_is_forbidden(page))
2783 swsusp_unset_page_free(page);
f623f0db 2784 }
1da177e4 2785
b2a0ac88 2786 for_each_migratetype_order(order, t) {
86760a2c
GT
2787 list_for_each_entry(page,
2788 &zone->free_area[order].free_list[t], lru) {
f623f0db 2789 unsigned long i;
1da177e4 2790
86760a2c 2791 pfn = page_to_pfn(page);
556b969a
CY
2792 for (i = 0; i < (1UL << order); i++) {
2793 if (!--page_count) {
2794 touch_nmi_watchdog();
2795 page_count = WD_PAGE_COUNT;
2796 }
7be98234 2797 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2798 }
f623f0db 2799 }
b2a0ac88 2800 }
1da177e4
LT
2801 spin_unlock_irqrestore(&zone->lock, flags);
2802}
e2c55dc8 2803#endif /* CONFIG_PM */
1da177e4 2804
2d4894b5 2805static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2806{
5f8dcc21 2807 int migratetype;
1da177e4 2808
4db7548c 2809 if (!free_pcp_prepare(page))
9cca35d4 2810 return false;
689bcebf 2811
dc4b0caf 2812 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2813 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2814 return true;
2815}
2816
2d4894b5 2817static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2818{
2819 struct zone *zone = page_zone(page);
2820 struct per_cpu_pages *pcp;
2821 int migratetype;
2822
2823 migratetype = get_pcppage_migratetype(page);
d34b0733 2824 __count_vm_event(PGFREE);
da456f14 2825
5f8dcc21
MG
2826 /*
2827 * We only track unmovable, reclaimable and movable on pcp lists.
2828 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2829 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2830 * areas back if necessary. Otherwise, we may have to free
2831 * excessively into the page allocator
2832 */
2833 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2834 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2835 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2836 return;
5f8dcc21
MG
2837 }
2838 migratetype = MIGRATE_MOVABLE;
2839 }
2840
99dcc3e5 2841 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2842 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2843 pcp->count++;
48db57f8 2844 if (pcp->count >= pcp->high) {
4db0c3c2 2845 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2846 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2847 }
9cca35d4 2848}
5f8dcc21 2849
9cca35d4
MG
2850/*
2851 * Free a 0-order page
9cca35d4 2852 */
2d4894b5 2853void free_unref_page(struct page *page)
9cca35d4
MG
2854{
2855 unsigned long flags;
2856 unsigned long pfn = page_to_pfn(page);
2857
2d4894b5 2858 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2859 return;
2860
2861 local_irq_save(flags);
2d4894b5 2862 free_unref_page_commit(page, pfn);
d34b0733 2863 local_irq_restore(flags);
1da177e4
LT
2864}
2865
cc59850e
KK
2866/*
2867 * Free a list of 0-order pages
2868 */
2d4894b5 2869void free_unref_page_list(struct list_head *list)
cc59850e
KK
2870{
2871 struct page *page, *next;
9cca35d4 2872 unsigned long flags, pfn;
c24ad77d 2873 int batch_count = 0;
9cca35d4
MG
2874
2875 /* Prepare pages for freeing */
2876 list_for_each_entry_safe(page, next, list, lru) {
2877 pfn = page_to_pfn(page);
2d4894b5 2878 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2879 list_del(&page->lru);
2880 set_page_private(page, pfn);
2881 }
cc59850e 2882
9cca35d4 2883 local_irq_save(flags);
cc59850e 2884 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2885 unsigned long pfn = page_private(page);
2886
2887 set_page_private(page, 0);
2d4894b5
MG
2888 trace_mm_page_free_batched(page);
2889 free_unref_page_commit(page, pfn);
c24ad77d
LS
2890
2891 /*
2892 * Guard against excessive IRQ disabled times when we get
2893 * a large list of pages to free.
2894 */
2895 if (++batch_count == SWAP_CLUSTER_MAX) {
2896 local_irq_restore(flags);
2897 batch_count = 0;
2898 local_irq_save(flags);
2899 }
cc59850e 2900 }
9cca35d4 2901 local_irq_restore(flags);
cc59850e
KK
2902}
2903
8dfcc9ba
NP
2904/*
2905 * split_page takes a non-compound higher-order page, and splits it into
2906 * n (1<<order) sub-pages: page[0..n]
2907 * Each sub-page must be freed individually.
2908 *
2909 * Note: this is probably too low level an operation for use in drivers.
2910 * Please consult with lkml before using this in your driver.
2911 */
2912void split_page(struct page *page, unsigned int order)
2913{
2914 int i;
2915
309381fe
SL
2916 VM_BUG_ON_PAGE(PageCompound(page), page);
2917 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2918
a9627bc5 2919 for (i = 1; i < (1 << order); i++)
7835e98b 2920 set_page_refcounted(page + i);
a9627bc5 2921 split_page_owner(page, order);
8dfcc9ba 2922}
5853ff23 2923EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2924
3c605096 2925int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2926{
748446bb
MG
2927 unsigned long watermark;
2928 struct zone *zone;
2139cbe6 2929 int mt;
748446bb
MG
2930
2931 BUG_ON(!PageBuddy(page));
2932
2933 zone = page_zone(page);
2e30abd1 2934 mt = get_pageblock_migratetype(page);
748446bb 2935
194159fb 2936 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2937 /*
2938 * Obey watermarks as if the page was being allocated. We can
2939 * emulate a high-order watermark check with a raised order-0
2940 * watermark, because we already know our high-order page
2941 * exists.
2942 */
2943 watermark = min_wmark_pages(zone) + (1UL << order);
d883c6cf 2944 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2945 return 0;
2946
8fb74b9f 2947 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2948 }
748446bb
MG
2949
2950 /* Remove page from free list */
2951 list_del(&page->lru);
2952 zone->free_area[order].nr_free--;
2953 rmv_page_order(page);
2139cbe6 2954
400bc7fd 2955 /*
2956 * Set the pageblock if the isolated page is at least half of a
2957 * pageblock
2958 */
748446bb
MG
2959 if (order >= pageblock_order - 1) {
2960 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2961 for (; page < endpage; page += pageblock_nr_pages) {
2962 int mt = get_pageblock_migratetype(page);
88ed365e 2963 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2964 && !is_migrate_highatomic(mt))
47118af0
MN
2965 set_pageblock_migratetype(page,
2966 MIGRATE_MOVABLE);
2967 }
748446bb
MG
2968 }
2969
f3a14ced 2970
8fb74b9f 2971 return 1UL << order;
1fb3f8ca
MG
2972}
2973
060e7417
MG
2974/*
2975 * Update NUMA hit/miss statistics
2976 *
2977 * Must be called with interrupts disabled.
060e7417 2978 */
41b6167e 2979static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2980{
2981#ifdef CONFIG_NUMA
3a321d2a 2982 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2983
4518085e
KW
2984 /* skip numa counters update if numa stats is disabled */
2985 if (!static_branch_likely(&vm_numa_stat_key))
2986 return;
2987
c1093b74 2988 if (zone_to_nid(z) != numa_node_id())
060e7417 2989 local_stat = NUMA_OTHER;
060e7417 2990
c1093b74 2991 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 2992 __inc_numa_state(z, NUMA_HIT);
2df26639 2993 else {
3a321d2a
KW
2994 __inc_numa_state(z, NUMA_MISS);
2995 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2996 }
3a321d2a 2997 __inc_numa_state(z, local_stat);
060e7417
MG
2998#endif
2999}
3000
066b2393
MG
3001/* Remove page from the per-cpu list, caller must protect the list */
3002static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3003 unsigned int alloc_flags,
453f85d4 3004 struct per_cpu_pages *pcp,
066b2393
MG
3005 struct list_head *list)
3006{
3007 struct page *page;
3008
3009 do {
3010 if (list_empty(list)) {
3011 pcp->count += rmqueue_bulk(zone, 0,
3012 pcp->batch, list,
6bb15450 3013 migratetype, alloc_flags);
066b2393
MG
3014 if (unlikely(list_empty(list)))
3015 return NULL;
3016 }
3017
453f85d4 3018 page = list_first_entry(list, struct page, lru);
066b2393
MG
3019 list_del(&page->lru);
3020 pcp->count--;
3021 } while (check_new_pcp(page));
3022
3023 return page;
3024}
3025
3026/* Lock and remove page from the per-cpu list */
3027static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3028 struct zone *zone, unsigned int order,
6bb15450
MG
3029 gfp_t gfp_flags, int migratetype,
3030 unsigned int alloc_flags)
066b2393
MG
3031{
3032 struct per_cpu_pages *pcp;
3033 struct list_head *list;
066b2393 3034 struct page *page;
d34b0733 3035 unsigned long flags;
066b2393 3036
d34b0733 3037 local_irq_save(flags);
066b2393
MG
3038 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3039 list = &pcp->lists[migratetype];
6bb15450 3040 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393
MG
3041 if (page) {
3042 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3043 zone_statistics(preferred_zone, zone);
3044 }
d34b0733 3045 local_irq_restore(flags);
066b2393
MG
3046 return page;
3047}
3048
1da177e4 3049/*
75379191 3050 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3051 */
0a15c3e9 3052static inline
066b2393 3053struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3054 struct zone *zone, unsigned int order,
c603844b
MG
3055 gfp_t gfp_flags, unsigned int alloc_flags,
3056 int migratetype)
1da177e4
LT
3057{
3058 unsigned long flags;
689bcebf 3059 struct page *page;
1da177e4 3060
d34b0733 3061 if (likely(order == 0)) {
066b2393 3062 page = rmqueue_pcplist(preferred_zone, zone, order,
6bb15450 3063 gfp_flags, migratetype, alloc_flags);
066b2393
MG
3064 goto out;
3065 }
83b9355b 3066
066b2393
MG
3067 /*
3068 * We most definitely don't want callers attempting to
3069 * allocate greater than order-1 page units with __GFP_NOFAIL.
3070 */
3071 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3072 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3073
066b2393
MG
3074 do {
3075 page = NULL;
3076 if (alloc_flags & ALLOC_HARDER) {
3077 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3078 if (page)
3079 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3080 }
a74609fa 3081 if (!page)
6bb15450 3082 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3083 } while (page && check_new_pages(page, order));
3084 spin_unlock(&zone->lock);
3085 if (!page)
3086 goto failed;
3087 __mod_zone_freepage_state(zone, -(1 << order),
3088 get_pcppage_migratetype(page));
1da177e4 3089
16709d1d 3090 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3091 zone_statistics(preferred_zone, zone);
a74609fa 3092 local_irq_restore(flags);
1da177e4 3093
066b2393
MG
3094out:
3095 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3096 return page;
a74609fa
NP
3097
3098failed:
3099 local_irq_restore(flags);
a74609fa 3100 return NULL;
1da177e4
LT
3101}
3102
933e312e
AM
3103#ifdef CONFIG_FAIL_PAGE_ALLOC
3104
b2588c4b 3105static struct {
933e312e
AM
3106 struct fault_attr attr;
3107
621a5f7a 3108 bool ignore_gfp_highmem;
71baba4b 3109 bool ignore_gfp_reclaim;
54114994 3110 u32 min_order;
933e312e
AM
3111} fail_page_alloc = {
3112 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3113 .ignore_gfp_reclaim = true,
621a5f7a 3114 .ignore_gfp_highmem = true,
54114994 3115 .min_order = 1,
933e312e
AM
3116};
3117
3118static int __init setup_fail_page_alloc(char *str)
3119{
3120 return setup_fault_attr(&fail_page_alloc.attr, str);
3121}
3122__setup("fail_page_alloc=", setup_fail_page_alloc);
3123
deaf386e 3124static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3125{
54114994 3126 if (order < fail_page_alloc.min_order)
deaf386e 3127 return false;
933e312e 3128 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3129 return false;
933e312e 3130 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3131 return false;
71baba4b
MG
3132 if (fail_page_alloc.ignore_gfp_reclaim &&
3133 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3134 return false;
933e312e
AM
3135
3136 return should_fail(&fail_page_alloc.attr, 1 << order);
3137}
3138
3139#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3140
3141static int __init fail_page_alloc_debugfs(void)
3142{
0825a6f9 3143 umode_t mode = S_IFREG | 0600;
933e312e 3144 struct dentry *dir;
933e312e 3145
dd48c085
AM
3146 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3147 &fail_page_alloc.attr);
3148 if (IS_ERR(dir))
3149 return PTR_ERR(dir);
933e312e 3150
b2588c4b 3151 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 3152 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
3153 goto fail;
3154 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3155 &fail_page_alloc.ignore_gfp_highmem))
3156 goto fail;
3157 if (!debugfs_create_u32("min-order", mode, dir,
3158 &fail_page_alloc.min_order))
3159 goto fail;
3160
3161 return 0;
3162fail:
dd48c085 3163 debugfs_remove_recursive(dir);
933e312e 3164
b2588c4b 3165 return -ENOMEM;
933e312e
AM
3166}
3167
3168late_initcall(fail_page_alloc_debugfs);
3169
3170#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3171
3172#else /* CONFIG_FAIL_PAGE_ALLOC */
3173
deaf386e 3174static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3175{
deaf386e 3176 return false;
933e312e
AM
3177}
3178
3179#endif /* CONFIG_FAIL_PAGE_ALLOC */
3180
1da177e4 3181/*
97a16fc8
MG
3182 * Return true if free base pages are above 'mark'. For high-order checks it
3183 * will return true of the order-0 watermark is reached and there is at least
3184 * one free page of a suitable size. Checking now avoids taking the zone lock
3185 * to check in the allocation paths if no pages are free.
1da177e4 3186 */
86a294a8
MH
3187bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3188 int classzone_idx, unsigned int alloc_flags,
3189 long free_pages)
1da177e4 3190{
d23ad423 3191 long min = mark;
1da177e4 3192 int o;
cd04ae1e 3193 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3194
0aaa29a5 3195 /* free_pages may go negative - that's OK */
df0a6daa 3196 free_pages -= (1 << order) - 1;
0aaa29a5 3197
7fb1d9fc 3198 if (alloc_flags & ALLOC_HIGH)
1da177e4 3199 min -= min / 2;
0aaa29a5
MG
3200
3201 /*
3202 * If the caller does not have rights to ALLOC_HARDER then subtract
3203 * the high-atomic reserves. This will over-estimate the size of the
3204 * atomic reserve but it avoids a search.
3205 */
cd04ae1e 3206 if (likely(!alloc_harder)) {
0aaa29a5 3207 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3208 } else {
3209 /*
3210 * OOM victims can try even harder than normal ALLOC_HARDER
3211 * users on the grounds that it's definitely going to be in
3212 * the exit path shortly and free memory. Any allocation it
3213 * makes during the free path will be small and short-lived.
3214 */
3215 if (alloc_flags & ALLOC_OOM)
3216 min -= min / 2;
3217 else
3218 min -= min / 4;
3219 }
3220
e2b19197 3221
d883c6cf
JK
3222#ifdef CONFIG_CMA
3223 /* If allocation can't use CMA areas don't use free CMA pages */
3224 if (!(alloc_flags & ALLOC_CMA))
3225 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3226#endif
3227
97a16fc8
MG
3228 /*
3229 * Check watermarks for an order-0 allocation request. If these
3230 * are not met, then a high-order request also cannot go ahead
3231 * even if a suitable page happened to be free.
3232 */
3233 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3234 return false;
1da177e4 3235
97a16fc8
MG
3236 /* If this is an order-0 request then the watermark is fine */
3237 if (!order)
3238 return true;
3239
3240 /* For a high-order request, check at least one suitable page is free */
3241 for (o = order; o < MAX_ORDER; o++) {
3242 struct free_area *area = &z->free_area[o];
3243 int mt;
3244
3245 if (!area->nr_free)
3246 continue;
3247
97a16fc8
MG
3248 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3249 if (!list_empty(&area->free_list[mt]))
3250 return true;
3251 }
3252
3253#ifdef CONFIG_CMA
d883c6cf
JK
3254 if ((alloc_flags & ALLOC_CMA) &&
3255 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3256 return true;
d883c6cf 3257 }
97a16fc8 3258#endif
b050e376
VB
3259 if (alloc_harder &&
3260 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3261 return true;
1da177e4 3262 }
97a16fc8 3263 return false;
88f5acf8
MG
3264}
3265
7aeb09f9 3266bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3267 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3268{
3269 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3270 zone_page_state(z, NR_FREE_PAGES));
3271}
3272
48ee5f36
MG
3273static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3274 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3275{
3276 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3277 long cma_pages = 0;
3278
3279#ifdef CONFIG_CMA
3280 /* If allocation can't use CMA areas don't use free CMA pages */
3281 if (!(alloc_flags & ALLOC_CMA))
3282 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3283#endif
48ee5f36
MG
3284
3285 /*
3286 * Fast check for order-0 only. If this fails then the reserves
3287 * need to be calculated. There is a corner case where the check
3288 * passes but only the high-order atomic reserve are free. If
3289 * the caller is !atomic then it'll uselessly search the free
3290 * list. That corner case is then slower but it is harmless.
3291 */
d883c6cf 3292 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3293 return true;
3294
3295 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3296 free_pages);
3297}
3298
7aeb09f9 3299bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3300 unsigned long mark, int classzone_idx)
88f5acf8
MG
3301{
3302 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3303
3304 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3305 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3306
e2b19197 3307 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3308 free_pages);
1da177e4
LT
3309}
3310
9276b1bc 3311#ifdef CONFIG_NUMA
957f822a
DR
3312static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3313{
e02dc017 3314 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3315 RECLAIM_DISTANCE;
957f822a 3316}
9276b1bc 3317#else /* CONFIG_NUMA */
957f822a
DR
3318static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3319{
3320 return true;
3321}
9276b1bc
PJ
3322#endif /* CONFIG_NUMA */
3323
6bb15450
MG
3324/*
3325 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3326 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3327 * premature use of a lower zone may cause lowmem pressure problems that
3328 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3329 * probably too small. It only makes sense to spread allocations to avoid
3330 * fragmentation between the Normal and DMA32 zones.
3331 */
3332static inline unsigned int
0a79cdad 3333alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3334{
0a79cdad
MG
3335 unsigned int alloc_flags = 0;
3336
3337 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3338 alloc_flags |= ALLOC_KSWAPD;
3339
3340#ifdef CONFIG_ZONE_DMA32
6bb15450 3341 if (zone_idx(zone) != ZONE_NORMAL)
0a79cdad 3342 goto out;
6bb15450
MG
3343
3344 /*
3345 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3346 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3347 * on UMA that if Normal is populated then so is DMA32.
3348 */
3349 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3350 if (nr_online_nodes > 1 && !populated_zone(--zone))
0a79cdad 3351 goto out;
6bb15450 3352
0a79cdad
MG
3353out:
3354#endif /* CONFIG_ZONE_DMA32 */
3355 return alloc_flags;
6bb15450 3356}
6bb15450 3357
7fb1d9fc 3358/*
0798e519 3359 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3360 * a page.
3361 */
3362static struct page *
a9263751
VB
3363get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3364 const struct alloc_context *ac)
753ee728 3365{
6bb15450 3366 struct zoneref *z;
5117f45d 3367 struct zone *zone;
3b8c0be4 3368 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3369 bool no_fallback;
3b8c0be4 3370
6bb15450 3371retry:
7fb1d9fc 3372 /*
9276b1bc 3373 * Scan zonelist, looking for a zone with enough free.
344736f2 3374 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3375 */
6bb15450
MG
3376 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3377 z = ac->preferred_zoneref;
c33d6c06 3378 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3379 ac->nodemask) {
be06af00 3380 struct page *page;
e085dbc5
JW
3381 unsigned long mark;
3382
664eedde
MG
3383 if (cpusets_enabled() &&
3384 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3385 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3386 continue;
a756cf59
JW
3387 /*
3388 * When allocating a page cache page for writing, we
281e3726
MG
3389 * want to get it from a node that is within its dirty
3390 * limit, such that no single node holds more than its
a756cf59 3391 * proportional share of globally allowed dirty pages.
281e3726 3392 * The dirty limits take into account the node's
a756cf59
JW
3393 * lowmem reserves and high watermark so that kswapd
3394 * should be able to balance it without having to
3395 * write pages from its LRU list.
3396 *
a756cf59 3397 * XXX: For now, allow allocations to potentially
281e3726 3398 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3399 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3400 * which is important when on a NUMA setup the allowed
281e3726 3401 * nodes are together not big enough to reach the
a756cf59 3402 * global limit. The proper fix for these situations
281e3726 3403 * will require awareness of nodes in the
a756cf59
JW
3404 * dirty-throttling and the flusher threads.
3405 */
3b8c0be4
MG
3406 if (ac->spread_dirty_pages) {
3407 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3408 continue;
3409
3410 if (!node_dirty_ok(zone->zone_pgdat)) {
3411 last_pgdat_dirty_limit = zone->zone_pgdat;
3412 continue;
3413 }
3414 }
7fb1d9fc 3415
6bb15450
MG
3416 if (no_fallback && nr_online_nodes > 1 &&
3417 zone != ac->preferred_zoneref->zone) {
3418 int local_nid;
3419
3420 /*
3421 * If moving to a remote node, retry but allow
3422 * fragmenting fallbacks. Locality is more important
3423 * than fragmentation avoidance.
3424 */
3425 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3426 if (zone_to_nid(zone) != local_nid) {
3427 alloc_flags &= ~ALLOC_NOFRAGMENT;
3428 goto retry;
3429 }
3430 }
3431
a9214443 3432 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3433 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3434 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3435 int ret;
3436
c9e97a19
PT
3437#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3438 /*
3439 * Watermark failed for this zone, but see if we can
3440 * grow this zone if it contains deferred pages.
3441 */
3442 if (static_branch_unlikely(&deferred_pages)) {
3443 if (_deferred_grow_zone(zone, order))
3444 goto try_this_zone;
3445 }
3446#endif
5dab2911
MG
3447 /* Checked here to keep the fast path fast */
3448 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3449 if (alloc_flags & ALLOC_NO_WATERMARKS)
3450 goto try_this_zone;
3451
a5f5f91d 3452 if (node_reclaim_mode == 0 ||
c33d6c06 3453 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3454 continue;
3455
a5f5f91d 3456 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3457 switch (ret) {
a5f5f91d 3458 case NODE_RECLAIM_NOSCAN:
fa5e084e 3459 /* did not scan */
cd38b115 3460 continue;
a5f5f91d 3461 case NODE_RECLAIM_FULL:
fa5e084e 3462 /* scanned but unreclaimable */
cd38b115 3463 continue;
fa5e084e
MG
3464 default:
3465 /* did we reclaim enough */
fed2719e 3466 if (zone_watermark_ok(zone, order, mark,
93ea9964 3467 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3468 goto try_this_zone;
3469
fed2719e 3470 continue;
0798e519 3471 }
7fb1d9fc
RS
3472 }
3473
fa5e084e 3474try_this_zone:
066b2393 3475 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3476 gfp_mask, alloc_flags, ac->migratetype);
75379191 3477 if (page) {
479f854a 3478 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3479
3480 /*
3481 * If this is a high-order atomic allocation then check
3482 * if the pageblock should be reserved for the future
3483 */
3484 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3485 reserve_highatomic_pageblock(page, zone, order);
3486
75379191 3487 return page;
c9e97a19
PT
3488 } else {
3489#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3490 /* Try again if zone has deferred pages */
3491 if (static_branch_unlikely(&deferred_pages)) {
3492 if (_deferred_grow_zone(zone, order))
3493 goto try_this_zone;
3494 }
3495#endif
75379191 3496 }
54a6eb5c 3497 }
9276b1bc 3498
6bb15450
MG
3499 /*
3500 * It's possible on a UMA machine to get through all zones that are
3501 * fragmented. If avoiding fragmentation, reset and try again.
3502 */
3503 if (no_fallback) {
3504 alloc_flags &= ~ALLOC_NOFRAGMENT;
3505 goto retry;
3506 }
3507
4ffeaf35 3508 return NULL;
753ee728
MH
3509}
3510
9af744d7 3511static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3512{
a238ab5b 3513 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3514 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3515
2c029a1e 3516 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3517 return;
3518
3519 /*
3520 * This documents exceptions given to allocations in certain
3521 * contexts that are allowed to allocate outside current's set
3522 * of allowed nodes.
3523 */
3524 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3525 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3526 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3527 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3528 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3529 filter &= ~SHOW_MEM_FILTER_NODES;
3530
9af744d7 3531 show_mem(filter, nodemask);
aa187507
MH
3532}
3533
a8e99259 3534void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3535{
3536 struct va_format vaf;
3537 va_list args;
3538 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3539 DEFAULT_RATELIMIT_BURST);
3540
0f7896f1 3541 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3542 return;
3543
7877cdcc
MH
3544 va_start(args, fmt);
3545 vaf.fmt = fmt;
3546 vaf.va = &args;
ef8444ea 3547 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3548 current->comm, &vaf, gfp_mask, &gfp_mask,
3549 nodemask_pr_args(nodemask));
7877cdcc 3550 va_end(args);
3ee9a4f0 3551
a8e99259 3552 cpuset_print_current_mems_allowed();
ef8444ea 3553 pr_cont("\n");
a238ab5b 3554 dump_stack();
685dbf6f 3555 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3556}
3557
6c18ba7a
MH
3558static inline struct page *
3559__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3560 unsigned int alloc_flags,
3561 const struct alloc_context *ac)
3562{
3563 struct page *page;
3564
3565 page = get_page_from_freelist(gfp_mask, order,
3566 alloc_flags|ALLOC_CPUSET, ac);
3567 /*
3568 * fallback to ignore cpuset restriction if our nodes
3569 * are depleted
3570 */
3571 if (!page)
3572 page = get_page_from_freelist(gfp_mask, order,
3573 alloc_flags, ac);
3574
3575 return page;
3576}
3577
11e33f6a
MG
3578static inline struct page *
3579__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3580 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3581{
6e0fc46d
DR
3582 struct oom_control oc = {
3583 .zonelist = ac->zonelist,
3584 .nodemask = ac->nodemask,
2a966b77 3585 .memcg = NULL,
6e0fc46d
DR
3586 .gfp_mask = gfp_mask,
3587 .order = order,
6e0fc46d 3588 };
11e33f6a
MG
3589 struct page *page;
3590
9879de73
JW
3591 *did_some_progress = 0;
3592
9879de73 3593 /*
dc56401f
JW
3594 * Acquire the oom lock. If that fails, somebody else is
3595 * making progress for us.
9879de73 3596 */
dc56401f 3597 if (!mutex_trylock(&oom_lock)) {
9879de73 3598 *did_some_progress = 1;
11e33f6a 3599 schedule_timeout_uninterruptible(1);
1da177e4
LT
3600 return NULL;
3601 }
6b1de916 3602
11e33f6a
MG
3603 /*
3604 * Go through the zonelist yet one more time, keep very high watermark
3605 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3606 * we're still under heavy pressure. But make sure that this reclaim
3607 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3608 * allocation which will never fail due to oom_lock already held.
11e33f6a 3609 */
e746bf73
TH
3610 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3611 ~__GFP_DIRECT_RECLAIM, order,
3612 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3613 if (page)
11e33f6a
MG
3614 goto out;
3615
06ad276a
MH
3616 /* Coredumps can quickly deplete all memory reserves */
3617 if (current->flags & PF_DUMPCORE)
3618 goto out;
3619 /* The OOM killer will not help higher order allocs */
3620 if (order > PAGE_ALLOC_COSTLY_ORDER)
3621 goto out;
dcda9b04
MH
3622 /*
3623 * We have already exhausted all our reclaim opportunities without any
3624 * success so it is time to admit defeat. We will skip the OOM killer
3625 * because it is very likely that the caller has a more reasonable
3626 * fallback than shooting a random task.
3627 */
3628 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3629 goto out;
06ad276a
MH
3630 /* The OOM killer does not needlessly kill tasks for lowmem */
3631 if (ac->high_zoneidx < ZONE_NORMAL)
3632 goto out;
3633 if (pm_suspended_storage())
3634 goto out;
3635 /*
3636 * XXX: GFP_NOFS allocations should rather fail than rely on
3637 * other request to make a forward progress.
3638 * We are in an unfortunate situation where out_of_memory cannot
3639 * do much for this context but let's try it to at least get
3640 * access to memory reserved if the current task is killed (see
3641 * out_of_memory). Once filesystems are ready to handle allocation
3642 * failures more gracefully we should just bail out here.
3643 */
3644
3645 /* The OOM killer may not free memory on a specific node */
3646 if (gfp_mask & __GFP_THISNODE)
3647 goto out;
3da88fb3 3648
3c2c6488 3649 /* Exhausted what can be done so it's blame time */
5020e285 3650 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3651 *did_some_progress = 1;
5020e285 3652
6c18ba7a
MH
3653 /*
3654 * Help non-failing allocations by giving them access to memory
3655 * reserves
3656 */
3657 if (gfp_mask & __GFP_NOFAIL)
3658 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3659 ALLOC_NO_WATERMARKS, ac);
5020e285 3660 }
11e33f6a 3661out:
dc56401f 3662 mutex_unlock(&oom_lock);
11e33f6a
MG
3663 return page;
3664}
3665
33c2d214
MH
3666/*
3667 * Maximum number of compaction retries wit a progress before OOM
3668 * killer is consider as the only way to move forward.
3669 */
3670#define MAX_COMPACT_RETRIES 16
3671
56de7263
MG
3672#ifdef CONFIG_COMPACTION
3673/* Try memory compaction for high-order allocations before reclaim */
3674static struct page *
3675__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3676 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3677 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3678{
98dd3b48 3679 struct page *page;
eb414681 3680 unsigned long pflags;
499118e9 3681 unsigned int noreclaim_flag;
53853e2d
VB
3682
3683 if (!order)
66199712 3684 return NULL;
66199712 3685
eb414681 3686 psi_memstall_enter(&pflags);
499118e9 3687 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3688
c5d01d0d 3689 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3690 prio);
eb414681 3691
499118e9 3692 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3693 psi_memstall_leave(&pflags);
56de7263 3694
c5d01d0d 3695 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3696 return NULL;
53853e2d 3697
98dd3b48
VB
3698 /*
3699 * At least in one zone compaction wasn't deferred or skipped, so let's
3700 * count a compaction stall
3701 */
3702 count_vm_event(COMPACTSTALL);
8fb74b9f 3703
31a6c190 3704 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3705
98dd3b48
VB
3706 if (page) {
3707 struct zone *zone = page_zone(page);
53853e2d 3708
98dd3b48
VB
3709 zone->compact_blockskip_flush = false;
3710 compaction_defer_reset(zone, order, true);
3711 count_vm_event(COMPACTSUCCESS);
3712 return page;
3713 }
56de7263 3714
98dd3b48
VB
3715 /*
3716 * It's bad if compaction run occurs and fails. The most likely reason
3717 * is that pages exist, but not enough to satisfy watermarks.
3718 */
3719 count_vm_event(COMPACTFAIL);
66199712 3720
98dd3b48 3721 cond_resched();
56de7263
MG
3722
3723 return NULL;
3724}
33c2d214 3725
3250845d
VB
3726static inline bool
3727should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3728 enum compact_result compact_result,
3729 enum compact_priority *compact_priority,
d9436498 3730 int *compaction_retries)
3250845d
VB
3731{
3732 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3733 int min_priority;
65190cff
MH
3734 bool ret = false;
3735 int retries = *compaction_retries;
3736 enum compact_priority priority = *compact_priority;
3250845d
VB
3737
3738 if (!order)
3739 return false;
3740
d9436498
VB
3741 if (compaction_made_progress(compact_result))
3742 (*compaction_retries)++;
3743
3250845d
VB
3744 /*
3745 * compaction considers all the zone as desperately out of memory
3746 * so it doesn't really make much sense to retry except when the
3747 * failure could be caused by insufficient priority
3748 */
d9436498
VB
3749 if (compaction_failed(compact_result))
3750 goto check_priority;
3250845d
VB
3751
3752 /*
3753 * make sure the compaction wasn't deferred or didn't bail out early
3754 * due to locks contention before we declare that we should give up.
3755 * But do not retry if the given zonelist is not suitable for
3756 * compaction.
3757 */
65190cff
MH
3758 if (compaction_withdrawn(compact_result)) {
3759 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3760 goto out;
3761 }
3250845d
VB
3762
3763 /*
dcda9b04 3764 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3765 * costly ones because they are de facto nofail and invoke OOM
3766 * killer to move on while costly can fail and users are ready
3767 * to cope with that. 1/4 retries is rather arbitrary but we
3768 * would need much more detailed feedback from compaction to
3769 * make a better decision.
3770 */
3771 if (order > PAGE_ALLOC_COSTLY_ORDER)
3772 max_retries /= 4;
65190cff
MH
3773 if (*compaction_retries <= max_retries) {
3774 ret = true;
3775 goto out;
3776 }
3250845d 3777
d9436498
VB
3778 /*
3779 * Make sure there are attempts at the highest priority if we exhausted
3780 * all retries or failed at the lower priorities.
3781 */
3782check_priority:
c2033b00
VB
3783 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3784 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3785
c2033b00 3786 if (*compact_priority > min_priority) {
d9436498
VB
3787 (*compact_priority)--;
3788 *compaction_retries = 0;
65190cff 3789 ret = true;
d9436498 3790 }
65190cff
MH
3791out:
3792 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3793 return ret;
3250845d 3794}
56de7263
MG
3795#else
3796static inline struct page *
3797__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3798 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3799 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3800{
33c2d214 3801 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3802 return NULL;
3803}
33c2d214
MH
3804
3805static inline bool
86a294a8
MH
3806should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3807 enum compact_result compact_result,
a5508cd8 3808 enum compact_priority *compact_priority,
d9436498 3809 int *compaction_retries)
33c2d214 3810{
31e49bfd
MH
3811 struct zone *zone;
3812 struct zoneref *z;
3813
3814 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3815 return false;
3816
3817 /*
3818 * There are setups with compaction disabled which would prefer to loop
3819 * inside the allocator rather than hit the oom killer prematurely.
3820 * Let's give them a good hope and keep retrying while the order-0
3821 * watermarks are OK.
3822 */
3823 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3824 ac->nodemask) {
3825 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3826 ac_classzone_idx(ac), alloc_flags))
3827 return true;
3828 }
33c2d214
MH
3829 return false;
3830}
3250845d 3831#endif /* CONFIG_COMPACTION */
56de7263 3832
d92a8cfc 3833#ifdef CONFIG_LOCKDEP
93781325 3834static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3835 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3836
3837static bool __need_fs_reclaim(gfp_t gfp_mask)
3838{
3839 gfp_mask = current_gfp_context(gfp_mask);
3840
3841 /* no reclaim without waiting on it */
3842 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3843 return false;
3844
3845 /* this guy won't enter reclaim */
2e517d68 3846 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3847 return false;
3848
3849 /* We're only interested __GFP_FS allocations for now */
3850 if (!(gfp_mask & __GFP_FS))
3851 return false;
3852
3853 if (gfp_mask & __GFP_NOLOCKDEP)
3854 return false;
3855
3856 return true;
3857}
3858
93781325
OS
3859void __fs_reclaim_acquire(void)
3860{
3861 lock_map_acquire(&__fs_reclaim_map);
3862}
3863
3864void __fs_reclaim_release(void)
3865{
3866 lock_map_release(&__fs_reclaim_map);
3867}
3868
d92a8cfc
PZ
3869void fs_reclaim_acquire(gfp_t gfp_mask)
3870{
3871 if (__need_fs_reclaim(gfp_mask))
93781325 3872 __fs_reclaim_acquire();
d92a8cfc
PZ
3873}
3874EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3875
3876void fs_reclaim_release(gfp_t gfp_mask)
3877{
3878 if (__need_fs_reclaim(gfp_mask))
93781325 3879 __fs_reclaim_release();
d92a8cfc
PZ
3880}
3881EXPORT_SYMBOL_GPL(fs_reclaim_release);
3882#endif
3883
bba90710
MS
3884/* Perform direct synchronous page reclaim */
3885static int
a9263751
VB
3886__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3887 const struct alloc_context *ac)
11e33f6a 3888{
11e33f6a 3889 struct reclaim_state reclaim_state;
bba90710 3890 int progress;
499118e9 3891 unsigned int noreclaim_flag;
eb414681 3892 unsigned long pflags;
11e33f6a
MG
3893
3894 cond_resched();
3895
3896 /* We now go into synchronous reclaim */
3897 cpuset_memory_pressure_bump();
eb414681 3898 psi_memstall_enter(&pflags);
d92a8cfc 3899 fs_reclaim_acquire(gfp_mask);
93781325 3900 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3901 reclaim_state.reclaimed_slab = 0;
c06b1fca 3902 current->reclaim_state = &reclaim_state;
11e33f6a 3903
a9263751
VB
3904 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3905 ac->nodemask);
11e33f6a 3906
c06b1fca 3907 current->reclaim_state = NULL;
499118e9 3908 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3909 fs_reclaim_release(gfp_mask);
eb414681 3910 psi_memstall_leave(&pflags);
11e33f6a
MG
3911
3912 cond_resched();
3913
bba90710
MS
3914 return progress;
3915}
3916
3917/* The really slow allocator path where we enter direct reclaim */
3918static inline struct page *
3919__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3920 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3921 unsigned long *did_some_progress)
bba90710
MS
3922{
3923 struct page *page = NULL;
3924 bool drained = false;
3925
a9263751 3926 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3927 if (unlikely(!(*did_some_progress)))
3928 return NULL;
11e33f6a 3929
9ee493ce 3930retry:
31a6c190 3931 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3932
3933 /*
3934 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3935 * pages are pinned on the per-cpu lists or in high alloc reserves.
3936 * Shrink them them and try again
9ee493ce
MG
3937 */
3938 if (!page && !drained) {
29fac03b 3939 unreserve_highatomic_pageblock(ac, false);
93481ff0 3940 drain_all_pages(NULL);
9ee493ce
MG
3941 drained = true;
3942 goto retry;
3943 }
3944
11e33f6a
MG
3945 return page;
3946}
3947
5ecd9d40
DR
3948static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3949 const struct alloc_context *ac)
3a025760
JW
3950{
3951 struct zoneref *z;
3952 struct zone *zone;
e1a55637 3953 pg_data_t *last_pgdat = NULL;
5ecd9d40 3954 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 3955
5ecd9d40
DR
3956 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3957 ac->nodemask) {
e1a55637 3958 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 3959 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
3960 last_pgdat = zone->zone_pgdat;
3961 }
3a025760
JW
3962}
3963
c603844b 3964static inline unsigned int
341ce06f
PZ
3965gfp_to_alloc_flags(gfp_t gfp_mask)
3966{
c603844b 3967 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3968
a56f57ff 3969 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3970 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3971
341ce06f
PZ
3972 /*
3973 * The caller may dip into page reserves a bit more if the caller
3974 * cannot run direct reclaim, or if the caller has realtime scheduling
3975 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3976 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3977 */
e6223a3b 3978 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3979
d0164adc 3980 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3981 /*
b104a35d
DR
3982 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3983 * if it can't schedule.
5c3240d9 3984 */
b104a35d 3985 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3986 alloc_flags |= ALLOC_HARDER;
523b9458 3987 /*
b104a35d 3988 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3989 * comment for __cpuset_node_allowed().
523b9458 3990 */
341ce06f 3991 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3992 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3993 alloc_flags |= ALLOC_HARDER;
3994
0a79cdad
MG
3995 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3996 alloc_flags |= ALLOC_KSWAPD;
3997
d883c6cf
JK
3998#ifdef CONFIG_CMA
3999 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4000 alloc_flags |= ALLOC_CMA;
4001#endif
341ce06f
PZ
4002 return alloc_flags;
4003}
4004
cd04ae1e 4005static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4006{
cd04ae1e
MH
4007 if (!tsk_is_oom_victim(tsk))
4008 return false;
4009
4010 /*
4011 * !MMU doesn't have oom reaper so give access to memory reserves
4012 * only to the thread with TIF_MEMDIE set
4013 */
4014 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4015 return false;
4016
cd04ae1e
MH
4017 return true;
4018}
4019
4020/*
4021 * Distinguish requests which really need access to full memory
4022 * reserves from oom victims which can live with a portion of it
4023 */
4024static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4025{
4026 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4027 return 0;
31a6c190 4028 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4029 return ALLOC_NO_WATERMARKS;
31a6c190 4030 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4031 return ALLOC_NO_WATERMARKS;
4032 if (!in_interrupt()) {
4033 if (current->flags & PF_MEMALLOC)
4034 return ALLOC_NO_WATERMARKS;
4035 else if (oom_reserves_allowed(current))
4036 return ALLOC_OOM;
4037 }
31a6c190 4038
cd04ae1e
MH
4039 return 0;
4040}
4041
4042bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4043{
4044 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4045}
4046
0a0337e0
MH
4047/*
4048 * Checks whether it makes sense to retry the reclaim to make a forward progress
4049 * for the given allocation request.
491d79ae
JW
4050 *
4051 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4052 * without success, or when we couldn't even meet the watermark if we
4053 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4054 *
4055 * Returns true if a retry is viable or false to enter the oom path.
4056 */
4057static inline bool
4058should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4059 struct alloc_context *ac, int alloc_flags,
423b452e 4060 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4061{
4062 struct zone *zone;
4063 struct zoneref *z;
15f570bf 4064 bool ret = false;
0a0337e0 4065
423b452e
VB
4066 /*
4067 * Costly allocations might have made a progress but this doesn't mean
4068 * their order will become available due to high fragmentation so
4069 * always increment the no progress counter for them
4070 */
4071 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4072 *no_progress_loops = 0;
4073 else
4074 (*no_progress_loops)++;
4075
0a0337e0
MH
4076 /*
4077 * Make sure we converge to OOM if we cannot make any progress
4078 * several times in the row.
4079 */
04c8716f
MK
4080 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4081 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4082 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4083 }
0a0337e0 4084
bca67592
MG
4085 /*
4086 * Keep reclaiming pages while there is a chance this will lead
4087 * somewhere. If none of the target zones can satisfy our allocation
4088 * request even if all reclaimable pages are considered then we are
4089 * screwed and have to go OOM.
0a0337e0
MH
4090 */
4091 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4092 ac->nodemask) {
4093 unsigned long available;
ede37713 4094 unsigned long reclaimable;
d379f01d
MH
4095 unsigned long min_wmark = min_wmark_pages(zone);
4096 bool wmark;
0a0337e0 4097
5a1c84b4 4098 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4099 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4100
4101 /*
491d79ae
JW
4102 * Would the allocation succeed if we reclaimed all
4103 * reclaimable pages?
0a0337e0 4104 */
d379f01d
MH
4105 wmark = __zone_watermark_ok(zone, order, min_wmark,
4106 ac_classzone_idx(ac), alloc_flags, available);
4107 trace_reclaim_retry_zone(z, order, reclaimable,
4108 available, min_wmark, *no_progress_loops, wmark);
4109 if (wmark) {
ede37713
MH
4110 /*
4111 * If we didn't make any progress and have a lot of
4112 * dirty + writeback pages then we should wait for
4113 * an IO to complete to slow down the reclaim and
4114 * prevent from pre mature OOM
4115 */
4116 if (!did_some_progress) {
11fb9989 4117 unsigned long write_pending;
ede37713 4118
5a1c84b4
MG
4119 write_pending = zone_page_state_snapshot(zone,
4120 NR_ZONE_WRITE_PENDING);
ede37713 4121
11fb9989 4122 if (2 * write_pending > reclaimable) {
ede37713
MH
4123 congestion_wait(BLK_RW_ASYNC, HZ/10);
4124 return true;
4125 }
4126 }
5a1c84b4 4127
15f570bf
MH
4128 ret = true;
4129 goto out;
0a0337e0
MH
4130 }
4131 }
4132
15f570bf
MH
4133out:
4134 /*
4135 * Memory allocation/reclaim might be called from a WQ context and the
4136 * current implementation of the WQ concurrency control doesn't
4137 * recognize that a particular WQ is congested if the worker thread is
4138 * looping without ever sleeping. Therefore we have to do a short sleep
4139 * here rather than calling cond_resched().
4140 */
4141 if (current->flags & PF_WQ_WORKER)
4142 schedule_timeout_uninterruptible(1);
4143 else
4144 cond_resched();
4145 return ret;
0a0337e0
MH
4146}
4147
902b6281
VB
4148static inline bool
4149check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4150{
4151 /*
4152 * It's possible that cpuset's mems_allowed and the nodemask from
4153 * mempolicy don't intersect. This should be normally dealt with by
4154 * policy_nodemask(), but it's possible to race with cpuset update in
4155 * such a way the check therein was true, and then it became false
4156 * before we got our cpuset_mems_cookie here.
4157 * This assumes that for all allocations, ac->nodemask can come only
4158 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4159 * when it does not intersect with the cpuset restrictions) or the
4160 * caller can deal with a violated nodemask.
4161 */
4162 if (cpusets_enabled() && ac->nodemask &&
4163 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4164 ac->nodemask = NULL;
4165 return true;
4166 }
4167
4168 /*
4169 * When updating a task's mems_allowed or mempolicy nodemask, it is
4170 * possible to race with parallel threads in such a way that our
4171 * allocation can fail while the mask is being updated. If we are about
4172 * to fail, check if the cpuset changed during allocation and if so,
4173 * retry.
4174 */
4175 if (read_mems_allowed_retry(cpuset_mems_cookie))
4176 return true;
4177
4178 return false;
4179}
4180
11e33f6a
MG
4181static inline struct page *
4182__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4183 struct alloc_context *ac)
11e33f6a 4184{
d0164adc 4185 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4186 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4187 struct page *page = NULL;
c603844b 4188 unsigned int alloc_flags;
11e33f6a 4189 unsigned long did_some_progress;
5ce9bfef 4190 enum compact_priority compact_priority;
c5d01d0d 4191 enum compact_result compact_result;
5ce9bfef
VB
4192 int compaction_retries;
4193 int no_progress_loops;
5ce9bfef 4194 unsigned int cpuset_mems_cookie;
cd04ae1e 4195 int reserve_flags;
1da177e4 4196
d0164adc
MG
4197 /*
4198 * We also sanity check to catch abuse of atomic reserves being used by
4199 * callers that are not in atomic context.
4200 */
4201 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4202 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4203 gfp_mask &= ~__GFP_ATOMIC;
4204
5ce9bfef
VB
4205retry_cpuset:
4206 compaction_retries = 0;
4207 no_progress_loops = 0;
4208 compact_priority = DEF_COMPACT_PRIORITY;
4209 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4210
4211 /*
4212 * The fast path uses conservative alloc_flags to succeed only until
4213 * kswapd needs to be woken up, and to avoid the cost of setting up
4214 * alloc_flags precisely. So we do that now.
4215 */
4216 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4217
e47483bc
VB
4218 /*
4219 * We need to recalculate the starting point for the zonelist iterator
4220 * because we might have used different nodemask in the fast path, or
4221 * there was a cpuset modification and we are retrying - otherwise we
4222 * could end up iterating over non-eligible zones endlessly.
4223 */
4224 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4225 ac->high_zoneidx, ac->nodemask);
4226 if (!ac->preferred_zoneref->zone)
4227 goto nopage;
4228
0a79cdad 4229 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4230 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4231
4232 /*
4233 * The adjusted alloc_flags might result in immediate success, so try
4234 * that first
4235 */
4236 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4237 if (page)
4238 goto got_pg;
4239
a8161d1e
VB
4240 /*
4241 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4242 * that we have enough base pages and don't need to reclaim. For non-
4243 * movable high-order allocations, do that as well, as compaction will
4244 * try prevent permanent fragmentation by migrating from blocks of the
4245 * same migratetype.
4246 * Don't try this for allocations that are allowed to ignore
4247 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4248 */
282722b0
VB
4249 if (can_direct_reclaim &&
4250 (costly_order ||
4251 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4252 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4253 page = __alloc_pages_direct_compact(gfp_mask, order,
4254 alloc_flags, ac,
a5508cd8 4255 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4256 &compact_result);
4257 if (page)
4258 goto got_pg;
4259
3eb2771b
VB
4260 /*
4261 * Checks for costly allocations with __GFP_NORETRY, which
4262 * includes THP page fault allocations
4263 */
282722b0 4264 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4265 /*
4266 * If compaction is deferred for high-order allocations,
4267 * it is because sync compaction recently failed. If
4268 * this is the case and the caller requested a THP
4269 * allocation, we do not want to heavily disrupt the
4270 * system, so we fail the allocation instead of entering
4271 * direct reclaim.
4272 */
4273 if (compact_result == COMPACT_DEFERRED)
4274 goto nopage;
4275
a8161d1e 4276 /*
3eb2771b
VB
4277 * Looks like reclaim/compaction is worth trying, but
4278 * sync compaction could be very expensive, so keep
25160354 4279 * using async compaction.
a8161d1e 4280 */
a5508cd8 4281 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4282 }
4283 }
23771235 4284
31a6c190 4285retry:
23771235 4286 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4287 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4288 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4289
cd04ae1e
MH
4290 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4291 if (reserve_flags)
4292 alloc_flags = reserve_flags;
23771235 4293
e46e7b77 4294 /*
d6a24df0
VB
4295 * Reset the nodemask and zonelist iterators if memory policies can be
4296 * ignored. These allocations are high priority and system rather than
4297 * user oriented.
e46e7b77 4298 */
cd04ae1e 4299 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4300 ac->nodemask = NULL;
e46e7b77
MG
4301 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4302 ac->high_zoneidx, ac->nodemask);
4303 }
4304
23771235 4305 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4306 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4307 if (page)
4308 goto got_pg;
1da177e4 4309
d0164adc 4310 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4311 if (!can_direct_reclaim)
1da177e4
LT
4312 goto nopage;
4313
9a67f648
MH
4314 /* Avoid recursion of direct reclaim */
4315 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4316 goto nopage;
4317
a8161d1e
VB
4318 /* Try direct reclaim and then allocating */
4319 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4320 &did_some_progress);
4321 if (page)
4322 goto got_pg;
4323
4324 /* Try direct compaction and then allocating */
a9263751 4325 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4326 compact_priority, &compact_result);
56de7263
MG
4327 if (page)
4328 goto got_pg;
75f30861 4329
9083905a
JW
4330 /* Do not loop if specifically requested */
4331 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4332 goto nopage;
9083905a 4333
0a0337e0
MH
4334 /*
4335 * Do not retry costly high order allocations unless they are
dcda9b04 4336 * __GFP_RETRY_MAYFAIL
0a0337e0 4337 */
dcda9b04 4338 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4339 goto nopage;
0a0337e0 4340
0a0337e0 4341 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4342 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4343 goto retry;
4344
33c2d214
MH
4345 /*
4346 * It doesn't make any sense to retry for the compaction if the order-0
4347 * reclaim is not able to make any progress because the current
4348 * implementation of the compaction depends on the sufficient amount
4349 * of free memory (see __compaction_suitable)
4350 */
4351 if (did_some_progress > 0 &&
86a294a8 4352 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4353 compact_result, &compact_priority,
d9436498 4354 &compaction_retries))
33c2d214
MH
4355 goto retry;
4356
902b6281
VB
4357
4358 /* Deal with possible cpuset update races before we start OOM killing */
4359 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4360 goto retry_cpuset;
4361
9083905a
JW
4362 /* Reclaim has failed us, start killing things */
4363 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4364 if (page)
4365 goto got_pg;
4366
9a67f648 4367 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4368 if (tsk_is_oom_victim(current) &&
4369 (alloc_flags == ALLOC_OOM ||
c288983d 4370 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4371 goto nopage;
4372
9083905a 4373 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4374 if (did_some_progress) {
4375 no_progress_loops = 0;
9083905a 4376 goto retry;
0a0337e0 4377 }
9083905a 4378
1da177e4 4379nopage:
902b6281
VB
4380 /* Deal with possible cpuset update races before we fail */
4381 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4382 goto retry_cpuset;
4383
9a67f648
MH
4384 /*
4385 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4386 * we always retry
4387 */
4388 if (gfp_mask & __GFP_NOFAIL) {
4389 /*
4390 * All existing users of the __GFP_NOFAIL are blockable, so warn
4391 * of any new users that actually require GFP_NOWAIT
4392 */
4393 if (WARN_ON_ONCE(!can_direct_reclaim))
4394 goto fail;
4395
4396 /*
4397 * PF_MEMALLOC request from this context is rather bizarre
4398 * because we cannot reclaim anything and only can loop waiting
4399 * for somebody to do a work for us
4400 */
4401 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4402
4403 /*
4404 * non failing costly orders are a hard requirement which we
4405 * are not prepared for much so let's warn about these users
4406 * so that we can identify them and convert them to something
4407 * else.
4408 */
4409 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4410
6c18ba7a
MH
4411 /*
4412 * Help non-failing allocations by giving them access to memory
4413 * reserves but do not use ALLOC_NO_WATERMARKS because this
4414 * could deplete whole memory reserves which would just make
4415 * the situation worse
4416 */
4417 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4418 if (page)
4419 goto got_pg;
4420
9a67f648
MH
4421 cond_resched();
4422 goto retry;
4423 }
4424fail:
a8e99259 4425 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4426 "page allocation failure: order:%u", order);
1da177e4 4427got_pg:
072bb0aa 4428 return page;
1da177e4 4429}
11e33f6a 4430
9cd75558 4431static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4432 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4433 struct alloc_context *ac, gfp_t *alloc_mask,
4434 unsigned int *alloc_flags)
11e33f6a 4435{
9cd75558 4436 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4437 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4438 ac->nodemask = nodemask;
4439 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4440
682a3385 4441 if (cpusets_enabled()) {
9cd75558 4442 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4443 if (!ac->nodemask)
4444 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4445 else
4446 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4447 }
4448
d92a8cfc
PZ
4449 fs_reclaim_acquire(gfp_mask);
4450 fs_reclaim_release(gfp_mask);
11e33f6a 4451
d0164adc 4452 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4453
4454 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4455 return false;
11e33f6a 4456
d883c6cf
JK
4457 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4458 *alloc_flags |= ALLOC_CMA;
4459
9cd75558
MG
4460 return true;
4461}
21bb9bd1 4462
9cd75558 4463/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4464static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4465{
c9ab0c4f 4466 /* Dirty zone balancing only done in the fast path */
9cd75558 4467 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4468
e46e7b77
MG
4469 /*
4470 * The preferred zone is used for statistics but crucially it is
4471 * also used as the starting point for the zonelist iterator. It
4472 * may get reset for allocations that ignore memory policies.
4473 */
9cd75558
MG
4474 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4475 ac->high_zoneidx, ac->nodemask);
4476}
4477
4478/*
4479 * This is the 'heart' of the zoned buddy allocator.
4480 */
4481struct page *
04ec6264
VB
4482__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4483 nodemask_t *nodemask)
9cd75558
MG
4484{
4485 struct page *page;
4486 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4487 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4488 struct alloc_context ac = { };
4489
c63ae43b
MH
4490 /*
4491 * There are several places where we assume that the order value is sane
4492 * so bail out early if the request is out of bound.
4493 */
4494 if (unlikely(order >= MAX_ORDER)) {
4495 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4496 return NULL;
4497 }
4498
9cd75558 4499 gfp_mask &= gfp_allowed_mask;
f19360f0 4500 alloc_mask = gfp_mask;
04ec6264 4501 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4502 return NULL;
4503
a380b40a 4504 finalise_ac(gfp_mask, &ac);
5bb1b169 4505
6bb15450
MG
4506 /*
4507 * Forbid the first pass from falling back to types that fragment
4508 * memory until all local zones are considered.
4509 */
0a79cdad 4510 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4511
5117f45d 4512 /* First allocation attempt */
a9263751 4513 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4514 if (likely(page))
4515 goto out;
11e33f6a 4516
4fcb0971 4517 /*
7dea19f9
MH
4518 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4519 * resp. GFP_NOIO which has to be inherited for all allocation requests
4520 * from a particular context which has been marked by
4521 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4522 */
7dea19f9 4523 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4524 ac.spread_dirty_pages = false;
23f086f9 4525
4741526b
MG
4526 /*
4527 * Restore the original nodemask if it was potentially replaced with
4528 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4529 */
e47483bc 4530 if (unlikely(ac.nodemask != nodemask))
4741526b 4531 ac.nodemask = nodemask;
16096c25 4532
4fcb0971 4533 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4534
4fcb0971 4535out:
c4159a75
VD
4536 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4537 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4538 __free_pages(page, order);
4539 page = NULL;
4949148a
VD
4540 }
4541
4fcb0971
MG
4542 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4543
11e33f6a 4544 return page;
1da177e4 4545}
d239171e 4546EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4547
4548/*
9ea9a680
MH
4549 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4550 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4551 * you need to access high mem.
1da177e4 4552 */
920c7a5d 4553unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4554{
945a1113
AM
4555 struct page *page;
4556
9ea9a680 4557 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4558 if (!page)
4559 return 0;
4560 return (unsigned long) page_address(page);
4561}
1da177e4
LT
4562EXPORT_SYMBOL(__get_free_pages);
4563
920c7a5d 4564unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4565{
945a1113 4566 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4567}
1da177e4
LT
4568EXPORT_SYMBOL(get_zeroed_page);
4569
742aa7fb 4570static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4571{
742aa7fb
AL
4572 if (order == 0) /* Via pcp? */
4573 free_unref_page(page);
4574 else
4575 __free_pages_ok(page, order);
1da177e4
LT
4576}
4577
742aa7fb
AL
4578void __free_pages(struct page *page, unsigned int order)
4579{
4580 if (put_page_testzero(page))
4581 free_the_page(page, order);
4582}
1da177e4
LT
4583EXPORT_SYMBOL(__free_pages);
4584
920c7a5d 4585void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4586{
4587 if (addr != 0) {
725d704e 4588 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4589 __free_pages(virt_to_page((void *)addr), order);
4590 }
4591}
4592
4593EXPORT_SYMBOL(free_pages);
4594
b63ae8ca
AD
4595/*
4596 * Page Fragment:
4597 * An arbitrary-length arbitrary-offset area of memory which resides
4598 * within a 0 or higher order page. Multiple fragments within that page
4599 * are individually refcounted, in the page's reference counter.
4600 *
4601 * The page_frag functions below provide a simple allocation framework for
4602 * page fragments. This is used by the network stack and network device
4603 * drivers to provide a backing region of memory for use as either an
4604 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4605 */
2976db80
AD
4606static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4607 gfp_t gfp_mask)
b63ae8ca
AD
4608{
4609 struct page *page = NULL;
4610 gfp_t gfp = gfp_mask;
4611
4612#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4613 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4614 __GFP_NOMEMALLOC;
4615 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4616 PAGE_FRAG_CACHE_MAX_ORDER);
4617 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4618#endif
4619 if (unlikely(!page))
4620 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4621
4622 nc->va = page ? page_address(page) : NULL;
4623
4624 return page;
4625}
4626
2976db80 4627void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4628{
4629 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4630
742aa7fb
AL
4631 if (page_ref_sub_and_test(page, count))
4632 free_the_page(page, compound_order(page));
44fdffd7 4633}
2976db80 4634EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4635
8c2dd3e4
AD
4636void *page_frag_alloc(struct page_frag_cache *nc,
4637 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4638{
4639 unsigned int size = PAGE_SIZE;
4640 struct page *page;
4641 int offset;
4642
4643 if (unlikely(!nc->va)) {
4644refill:
2976db80 4645 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4646 if (!page)
4647 return NULL;
4648
4649#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4650 /* if size can vary use size else just use PAGE_SIZE */
4651 size = nc->size;
4652#endif
4653 /* Even if we own the page, we do not use atomic_set().
4654 * This would break get_page_unless_zero() users.
4655 */
fe896d18 4656 page_ref_add(page, size - 1);
b63ae8ca
AD
4657
4658 /* reset page count bias and offset to start of new frag */
2f064f34 4659 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4660 nc->pagecnt_bias = size;
4661 nc->offset = size;
4662 }
4663
4664 offset = nc->offset - fragsz;
4665 if (unlikely(offset < 0)) {
4666 page = virt_to_page(nc->va);
4667
fe896d18 4668 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4669 goto refill;
4670
4671#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4672 /* if size can vary use size else just use PAGE_SIZE */
4673 size = nc->size;
4674#endif
4675 /* OK, page count is 0, we can safely set it */
fe896d18 4676 set_page_count(page, size);
b63ae8ca
AD
4677
4678 /* reset page count bias and offset to start of new frag */
4679 nc->pagecnt_bias = size;
4680 offset = size - fragsz;
4681 }
4682
4683 nc->pagecnt_bias--;
4684 nc->offset = offset;
4685
4686 return nc->va + offset;
4687}
8c2dd3e4 4688EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4689
4690/*
4691 * Frees a page fragment allocated out of either a compound or order 0 page.
4692 */
8c2dd3e4 4693void page_frag_free(void *addr)
b63ae8ca
AD
4694{
4695 struct page *page = virt_to_head_page(addr);
4696
742aa7fb
AL
4697 if (unlikely(put_page_testzero(page)))
4698 free_the_page(page, compound_order(page));
b63ae8ca 4699}
8c2dd3e4 4700EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4701
d00181b9
KS
4702static void *make_alloc_exact(unsigned long addr, unsigned int order,
4703 size_t size)
ee85c2e1
AK
4704{
4705 if (addr) {
4706 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4707 unsigned long used = addr + PAGE_ALIGN(size);
4708
4709 split_page(virt_to_page((void *)addr), order);
4710 while (used < alloc_end) {
4711 free_page(used);
4712 used += PAGE_SIZE;
4713 }
4714 }
4715 return (void *)addr;
4716}
4717
2be0ffe2
TT
4718/**
4719 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4720 * @size: the number of bytes to allocate
4721 * @gfp_mask: GFP flags for the allocation
4722 *
4723 * This function is similar to alloc_pages(), except that it allocates the
4724 * minimum number of pages to satisfy the request. alloc_pages() can only
4725 * allocate memory in power-of-two pages.
4726 *
4727 * This function is also limited by MAX_ORDER.
4728 *
4729 * Memory allocated by this function must be released by free_pages_exact().
4730 */
4731void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4732{
4733 unsigned int order = get_order(size);
4734 unsigned long addr;
4735
4736 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4737 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4738}
4739EXPORT_SYMBOL(alloc_pages_exact);
4740
ee85c2e1
AK
4741/**
4742 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4743 * pages on a node.
b5e6ab58 4744 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4745 * @size: the number of bytes to allocate
4746 * @gfp_mask: GFP flags for the allocation
4747 *
4748 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4749 * back.
ee85c2e1 4750 */
e1931811 4751void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4752{
d00181b9 4753 unsigned int order = get_order(size);
ee85c2e1
AK
4754 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4755 if (!p)
4756 return NULL;
4757 return make_alloc_exact((unsigned long)page_address(p), order, size);
4758}
ee85c2e1 4759
2be0ffe2
TT
4760/**
4761 * free_pages_exact - release memory allocated via alloc_pages_exact()
4762 * @virt: the value returned by alloc_pages_exact.
4763 * @size: size of allocation, same value as passed to alloc_pages_exact().
4764 *
4765 * Release the memory allocated by a previous call to alloc_pages_exact.
4766 */
4767void free_pages_exact(void *virt, size_t size)
4768{
4769 unsigned long addr = (unsigned long)virt;
4770 unsigned long end = addr + PAGE_ALIGN(size);
4771
4772 while (addr < end) {
4773 free_page(addr);
4774 addr += PAGE_SIZE;
4775 }
4776}
4777EXPORT_SYMBOL(free_pages_exact);
4778
e0fb5815
ZY
4779/**
4780 * nr_free_zone_pages - count number of pages beyond high watermark
4781 * @offset: The zone index of the highest zone
4782 *
4783 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4784 * high watermark within all zones at or below a given zone index. For each
4785 * zone, the number of pages is calculated as:
0e056eb5 4786 *
4787 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4788 */
ebec3862 4789static unsigned long nr_free_zone_pages(int offset)
1da177e4 4790{
dd1a239f 4791 struct zoneref *z;
54a6eb5c
MG
4792 struct zone *zone;
4793
e310fd43 4794 /* Just pick one node, since fallback list is circular */
ebec3862 4795 unsigned long sum = 0;
1da177e4 4796
0e88460d 4797 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4798
54a6eb5c 4799 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4800 unsigned long size = zone_managed_pages(zone);
41858966 4801 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4802 if (size > high)
4803 sum += size - high;
1da177e4
LT
4804 }
4805
4806 return sum;
4807}
4808
e0fb5815
ZY
4809/**
4810 * nr_free_buffer_pages - count number of pages beyond high watermark
4811 *
4812 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4813 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4814 */
ebec3862 4815unsigned long nr_free_buffer_pages(void)
1da177e4 4816{
af4ca457 4817 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4818}
c2f1a551 4819EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4820
e0fb5815
ZY
4821/**
4822 * nr_free_pagecache_pages - count number of pages beyond high watermark
4823 *
4824 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4825 * high watermark within all zones.
1da177e4 4826 */
ebec3862 4827unsigned long nr_free_pagecache_pages(void)
1da177e4 4828{
2a1e274a 4829 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4830}
08e0f6a9
CL
4831
4832static inline void show_node(struct zone *zone)
1da177e4 4833{
e5adfffc 4834 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4835 printk("Node %d ", zone_to_nid(zone));
1da177e4 4836}
1da177e4 4837
d02bd27b
IR
4838long si_mem_available(void)
4839{
4840 long available;
4841 unsigned long pagecache;
4842 unsigned long wmark_low = 0;
4843 unsigned long pages[NR_LRU_LISTS];
b29940c1 4844 unsigned long reclaimable;
d02bd27b
IR
4845 struct zone *zone;
4846 int lru;
4847
4848 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4849 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4850
4851 for_each_zone(zone)
a9214443 4852 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
4853
4854 /*
4855 * Estimate the amount of memory available for userspace allocations,
4856 * without causing swapping.
4857 */
c41f012a 4858 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4859
4860 /*
4861 * Not all the page cache can be freed, otherwise the system will
4862 * start swapping. Assume at least half of the page cache, or the
4863 * low watermark worth of cache, needs to stay.
4864 */
4865 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4866 pagecache -= min(pagecache / 2, wmark_low);
4867 available += pagecache;
4868
4869 /*
b29940c1
VB
4870 * Part of the reclaimable slab and other kernel memory consists of
4871 * items that are in use, and cannot be freed. Cap this estimate at the
4872 * low watermark.
d02bd27b 4873 */
b29940c1
VB
4874 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4875 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4876 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4877
d02bd27b
IR
4878 if (available < 0)
4879 available = 0;
4880 return available;
4881}
4882EXPORT_SYMBOL_GPL(si_mem_available);
4883
1da177e4
LT
4884void si_meminfo(struct sysinfo *val)
4885{
ca79b0c2 4886 val->totalram = totalram_pages();
11fb9989 4887 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4888 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4889 val->bufferram = nr_blockdev_pages();
ca79b0c2 4890 val->totalhigh = totalhigh_pages();
1da177e4 4891 val->freehigh = nr_free_highpages();
1da177e4
LT
4892 val->mem_unit = PAGE_SIZE;
4893}
4894
4895EXPORT_SYMBOL(si_meminfo);
4896
4897#ifdef CONFIG_NUMA
4898void si_meminfo_node(struct sysinfo *val, int nid)
4899{
cdd91a77
JL
4900 int zone_type; /* needs to be signed */
4901 unsigned long managed_pages = 0;
fc2bd799
JK
4902 unsigned long managed_highpages = 0;
4903 unsigned long free_highpages = 0;
1da177e4
LT
4904 pg_data_t *pgdat = NODE_DATA(nid);
4905
cdd91a77 4906 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 4907 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 4908 val->totalram = managed_pages;
11fb9989 4909 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4910 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4911#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4912 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4913 struct zone *zone = &pgdat->node_zones[zone_type];
4914
4915 if (is_highmem(zone)) {
9705bea5 4916 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
4917 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4918 }
4919 }
4920 val->totalhigh = managed_highpages;
4921 val->freehigh = free_highpages;
98d2b0eb 4922#else
fc2bd799
JK
4923 val->totalhigh = managed_highpages;
4924 val->freehigh = free_highpages;
98d2b0eb 4925#endif
1da177e4
LT
4926 val->mem_unit = PAGE_SIZE;
4927}
4928#endif
4929
ddd588b5 4930/*
7bf02ea2
DR
4931 * Determine whether the node should be displayed or not, depending on whether
4932 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4933 */
9af744d7 4934static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4935{
ddd588b5 4936 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4937 return false;
ddd588b5 4938
9af744d7
MH
4939 /*
4940 * no node mask - aka implicit memory numa policy. Do not bother with
4941 * the synchronization - read_mems_allowed_begin - because we do not
4942 * have to be precise here.
4943 */
4944 if (!nodemask)
4945 nodemask = &cpuset_current_mems_allowed;
4946
4947 return !node_isset(nid, *nodemask);
ddd588b5
DR
4948}
4949
1da177e4
LT
4950#define K(x) ((x) << (PAGE_SHIFT-10))
4951
377e4f16
RV
4952static void show_migration_types(unsigned char type)
4953{
4954 static const char types[MIGRATE_TYPES] = {
4955 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4956 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4957 [MIGRATE_RECLAIMABLE] = 'E',
4958 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4959#ifdef CONFIG_CMA
4960 [MIGRATE_CMA] = 'C',
4961#endif
194159fb 4962#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4963 [MIGRATE_ISOLATE] = 'I',
194159fb 4964#endif
377e4f16
RV
4965 };
4966 char tmp[MIGRATE_TYPES + 1];
4967 char *p = tmp;
4968 int i;
4969
4970 for (i = 0; i < MIGRATE_TYPES; i++) {
4971 if (type & (1 << i))
4972 *p++ = types[i];
4973 }
4974
4975 *p = '\0';
1f84a18f 4976 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4977}
4978
1da177e4
LT
4979/*
4980 * Show free area list (used inside shift_scroll-lock stuff)
4981 * We also calculate the percentage fragmentation. We do this by counting the
4982 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4983 *
4984 * Bits in @filter:
4985 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4986 * cpuset.
1da177e4 4987 */
9af744d7 4988void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4989{
d1bfcdb8 4990 unsigned long free_pcp = 0;
c7241913 4991 int cpu;
1da177e4 4992 struct zone *zone;
599d0c95 4993 pg_data_t *pgdat;
1da177e4 4994
ee99c71c 4995 for_each_populated_zone(zone) {
9af744d7 4996 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4997 continue;
d1bfcdb8 4998
761b0677
KK
4999 for_each_online_cpu(cpu)
5000 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5001 }
5002
a731286d
KM
5003 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5004 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5005 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5006 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5007 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5008 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5009 global_node_page_state(NR_ACTIVE_ANON),
5010 global_node_page_state(NR_INACTIVE_ANON),
5011 global_node_page_state(NR_ISOLATED_ANON),
5012 global_node_page_state(NR_ACTIVE_FILE),
5013 global_node_page_state(NR_INACTIVE_FILE),
5014 global_node_page_state(NR_ISOLATED_FILE),
5015 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5016 global_node_page_state(NR_FILE_DIRTY),
5017 global_node_page_state(NR_WRITEBACK),
5018 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5019 global_node_page_state(NR_SLAB_RECLAIMABLE),
5020 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5021 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5022 global_node_page_state(NR_SHMEM),
c41f012a
MH
5023 global_zone_page_state(NR_PAGETABLE),
5024 global_zone_page_state(NR_BOUNCE),
5025 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5026 free_pcp,
c41f012a 5027 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5028
599d0c95 5029 for_each_online_pgdat(pgdat) {
9af744d7 5030 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5031 continue;
5032
599d0c95
MG
5033 printk("Node %d"
5034 " active_anon:%lukB"
5035 " inactive_anon:%lukB"
5036 " active_file:%lukB"
5037 " inactive_file:%lukB"
5038 " unevictable:%lukB"
5039 " isolated(anon):%lukB"
5040 " isolated(file):%lukB"
50658e2e 5041 " mapped:%lukB"
11fb9989
MG
5042 " dirty:%lukB"
5043 " writeback:%lukB"
5044 " shmem:%lukB"
5045#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5046 " shmem_thp: %lukB"
5047 " shmem_pmdmapped: %lukB"
5048 " anon_thp: %lukB"
5049#endif
5050 " writeback_tmp:%lukB"
5051 " unstable:%lukB"
599d0c95
MG
5052 " all_unreclaimable? %s"
5053 "\n",
5054 pgdat->node_id,
5055 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5056 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5057 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5058 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5059 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5060 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5061 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5062 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5063 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5064 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5065 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5066#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5067 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5068 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5069 * HPAGE_PMD_NR),
5070 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5071#endif
11fb9989
MG
5072 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5073 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5074 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5075 "yes" : "no");
599d0c95
MG
5076 }
5077
ee99c71c 5078 for_each_populated_zone(zone) {
1da177e4
LT
5079 int i;
5080
9af744d7 5081 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5082 continue;
d1bfcdb8
KK
5083
5084 free_pcp = 0;
5085 for_each_online_cpu(cpu)
5086 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5087
1da177e4 5088 show_node(zone);
1f84a18f
JP
5089 printk(KERN_CONT
5090 "%s"
1da177e4
LT
5091 " free:%lukB"
5092 " min:%lukB"
5093 " low:%lukB"
5094 " high:%lukB"
71c799f4
MK
5095 " active_anon:%lukB"
5096 " inactive_anon:%lukB"
5097 " active_file:%lukB"
5098 " inactive_file:%lukB"
5099 " unevictable:%lukB"
5a1c84b4 5100 " writepending:%lukB"
1da177e4 5101 " present:%lukB"
9feedc9d 5102 " managed:%lukB"
4a0aa73f 5103 " mlocked:%lukB"
c6a7f572 5104 " kernel_stack:%lukB"
4a0aa73f 5105 " pagetables:%lukB"
4a0aa73f 5106 " bounce:%lukB"
d1bfcdb8
KK
5107 " free_pcp:%lukB"
5108 " local_pcp:%ukB"
d1ce749a 5109 " free_cma:%lukB"
1da177e4
LT
5110 "\n",
5111 zone->name,
88f5acf8 5112 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5113 K(min_wmark_pages(zone)),
5114 K(low_wmark_pages(zone)),
5115 K(high_wmark_pages(zone)),
71c799f4
MK
5116 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5117 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5118 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5119 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5120 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5121 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5122 K(zone->present_pages),
9705bea5 5123 K(zone_managed_pages(zone)),
4a0aa73f 5124 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5125 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5126 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5127 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5128 K(free_pcp),
5129 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5130 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5131 printk("lowmem_reserve[]:");
5132 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5133 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5134 printk(KERN_CONT "\n");
1da177e4
LT
5135 }
5136
ee99c71c 5137 for_each_populated_zone(zone) {
d00181b9
KS
5138 unsigned int order;
5139 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5140 unsigned char types[MAX_ORDER];
1da177e4 5141
9af744d7 5142 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5143 continue;
1da177e4 5144 show_node(zone);
1f84a18f 5145 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5146
5147 spin_lock_irqsave(&zone->lock, flags);
5148 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5149 struct free_area *area = &zone->free_area[order];
5150 int type;
5151
5152 nr[order] = area->nr_free;
8f9de51a 5153 total += nr[order] << order;
377e4f16
RV
5154
5155 types[order] = 0;
5156 for (type = 0; type < MIGRATE_TYPES; type++) {
5157 if (!list_empty(&area->free_list[type]))
5158 types[order] |= 1 << type;
5159 }
1da177e4
LT
5160 }
5161 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5162 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5163 printk(KERN_CONT "%lu*%lukB ",
5164 nr[order], K(1UL) << order);
377e4f16
RV
5165 if (nr[order])
5166 show_migration_types(types[order]);
5167 }
1f84a18f 5168 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5169 }
5170
949f7ec5
DR
5171 hugetlb_show_meminfo();
5172
11fb9989 5173 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5174
1da177e4
LT
5175 show_swap_cache_info();
5176}
5177
19770b32
MG
5178static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5179{
5180 zoneref->zone = zone;
5181 zoneref->zone_idx = zone_idx(zone);
5182}
5183
1da177e4
LT
5184/*
5185 * Builds allocation fallback zone lists.
1a93205b
CL
5186 *
5187 * Add all populated zones of a node to the zonelist.
1da177e4 5188 */
9d3be21b 5189static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5190{
1a93205b 5191 struct zone *zone;
bc732f1d 5192 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5193 int nr_zones = 0;
02a68a5e
CL
5194
5195 do {
2f6726e5 5196 zone_type--;
070f8032 5197 zone = pgdat->node_zones + zone_type;
6aa303de 5198 if (managed_zone(zone)) {
9d3be21b 5199 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5200 check_highest_zone(zone_type);
1da177e4 5201 }
2f6726e5 5202 } while (zone_type);
bc732f1d 5203
070f8032 5204 return nr_zones;
1da177e4
LT
5205}
5206
5207#ifdef CONFIG_NUMA
f0c0b2b8
KH
5208
5209static int __parse_numa_zonelist_order(char *s)
5210{
c9bff3ee
MH
5211 /*
5212 * We used to support different zonlists modes but they turned
5213 * out to be just not useful. Let's keep the warning in place
5214 * if somebody still use the cmd line parameter so that we do
5215 * not fail it silently
5216 */
5217 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5218 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5219 return -EINVAL;
5220 }
5221 return 0;
5222}
5223
5224static __init int setup_numa_zonelist_order(char *s)
5225{
ecb256f8
VL
5226 if (!s)
5227 return 0;
5228
c9bff3ee 5229 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5230}
5231early_param("numa_zonelist_order", setup_numa_zonelist_order);
5232
c9bff3ee
MH
5233char numa_zonelist_order[] = "Node";
5234
f0c0b2b8
KH
5235/*
5236 * sysctl handler for numa_zonelist_order
5237 */
cccad5b9 5238int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5239 void __user *buffer, size_t *length,
f0c0b2b8
KH
5240 loff_t *ppos)
5241{
c9bff3ee 5242 char *str;
f0c0b2b8
KH
5243 int ret;
5244
c9bff3ee
MH
5245 if (!write)
5246 return proc_dostring(table, write, buffer, length, ppos);
5247 str = memdup_user_nul(buffer, 16);
5248 if (IS_ERR(str))
5249 return PTR_ERR(str);
dacbde09 5250
c9bff3ee
MH
5251 ret = __parse_numa_zonelist_order(str);
5252 kfree(str);
443c6f14 5253 return ret;
f0c0b2b8
KH
5254}
5255
5256
62bc62a8 5257#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5258static int node_load[MAX_NUMNODES];
5259
1da177e4 5260/**
4dc3b16b 5261 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5262 * @node: node whose fallback list we're appending
5263 * @used_node_mask: nodemask_t of already used nodes
5264 *
5265 * We use a number of factors to determine which is the next node that should
5266 * appear on a given node's fallback list. The node should not have appeared
5267 * already in @node's fallback list, and it should be the next closest node
5268 * according to the distance array (which contains arbitrary distance values
5269 * from each node to each node in the system), and should also prefer nodes
5270 * with no CPUs, since presumably they'll have very little allocation pressure
5271 * on them otherwise.
5272 * It returns -1 if no node is found.
5273 */
f0c0b2b8 5274static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5275{
4cf808eb 5276 int n, val;
1da177e4 5277 int min_val = INT_MAX;
00ef2d2f 5278 int best_node = NUMA_NO_NODE;
a70f7302 5279 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5280
4cf808eb
LT
5281 /* Use the local node if we haven't already */
5282 if (!node_isset(node, *used_node_mask)) {
5283 node_set(node, *used_node_mask);
5284 return node;
5285 }
1da177e4 5286
4b0ef1fe 5287 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5288
5289 /* Don't want a node to appear more than once */
5290 if (node_isset(n, *used_node_mask))
5291 continue;
5292
1da177e4
LT
5293 /* Use the distance array to find the distance */
5294 val = node_distance(node, n);
5295
4cf808eb
LT
5296 /* Penalize nodes under us ("prefer the next node") */
5297 val += (n < node);
5298
1da177e4 5299 /* Give preference to headless and unused nodes */
a70f7302
RR
5300 tmp = cpumask_of_node(n);
5301 if (!cpumask_empty(tmp))
1da177e4
LT
5302 val += PENALTY_FOR_NODE_WITH_CPUS;
5303
5304 /* Slight preference for less loaded node */
5305 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5306 val += node_load[n];
5307
5308 if (val < min_val) {
5309 min_val = val;
5310 best_node = n;
5311 }
5312 }
5313
5314 if (best_node >= 0)
5315 node_set(best_node, *used_node_mask);
5316
5317 return best_node;
5318}
5319
f0c0b2b8
KH
5320
5321/*
5322 * Build zonelists ordered by node and zones within node.
5323 * This results in maximum locality--normal zone overflows into local
5324 * DMA zone, if any--but risks exhausting DMA zone.
5325 */
9d3be21b
MH
5326static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5327 unsigned nr_nodes)
1da177e4 5328{
9d3be21b
MH
5329 struct zoneref *zonerefs;
5330 int i;
5331
5332 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5333
5334 for (i = 0; i < nr_nodes; i++) {
5335 int nr_zones;
5336
5337 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5338
9d3be21b
MH
5339 nr_zones = build_zonerefs_node(node, zonerefs);
5340 zonerefs += nr_zones;
5341 }
5342 zonerefs->zone = NULL;
5343 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5344}
5345
523b9458
CL
5346/*
5347 * Build gfp_thisnode zonelists
5348 */
5349static void build_thisnode_zonelists(pg_data_t *pgdat)
5350{
9d3be21b
MH
5351 struct zoneref *zonerefs;
5352 int nr_zones;
523b9458 5353
9d3be21b
MH
5354 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5355 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5356 zonerefs += nr_zones;
5357 zonerefs->zone = NULL;
5358 zonerefs->zone_idx = 0;
523b9458
CL
5359}
5360
f0c0b2b8
KH
5361/*
5362 * Build zonelists ordered by zone and nodes within zones.
5363 * This results in conserving DMA zone[s] until all Normal memory is
5364 * exhausted, but results in overflowing to remote node while memory
5365 * may still exist in local DMA zone.
5366 */
f0c0b2b8 5367
f0c0b2b8
KH
5368static void build_zonelists(pg_data_t *pgdat)
5369{
9d3be21b
MH
5370 static int node_order[MAX_NUMNODES];
5371 int node, load, nr_nodes = 0;
1da177e4 5372 nodemask_t used_mask;
f0c0b2b8 5373 int local_node, prev_node;
1da177e4
LT
5374
5375 /* NUMA-aware ordering of nodes */
5376 local_node = pgdat->node_id;
62bc62a8 5377 load = nr_online_nodes;
1da177e4
LT
5378 prev_node = local_node;
5379 nodes_clear(used_mask);
f0c0b2b8 5380
f0c0b2b8 5381 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5382 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5383 /*
5384 * We don't want to pressure a particular node.
5385 * So adding penalty to the first node in same
5386 * distance group to make it round-robin.
5387 */
957f822a
DR
5388 if (node_distance(local_node, node) !=
5389 node_distance(local_node, prev_node))
f0c0b2b8
KH
5390 node_load[node] = load;
5391
9d3be21b 5392 node_order[nr_nodes++] = node;
1da177e4
LT
5393 prev_node = node;
5394 load--;
1da177e4 5395 }
523b9458 5396
9d3be21b 5397 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5398 build_thisnode_zonelists(pgdat);
1da177e4
LT
5399}
5400
7aac7898
LS
5401#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5402/*
5403 * Return node id of node used for "local" allocations.
5404 * I.e., first node id of first zone in arg node's generic zonelist.
5405 * Used for initializing percpu 'numa_mem', which is used primarily
5406 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5407 */
5408int local_memory_node(int node)
5409{
c33d6c06 5410 struct zoneref *z;
7aac7898 5411
c33d6c06 5412 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5413 gfp_zone(GFP_KERNEL),
c33d6c06 5414 NULL);
c1093b74 5415 return zone_to_nid(z->zone);
7aac7898
LS
5416}
5417#endif
f0c0b2b8 5418
6423aa81
JK
5419static void setup_min_unmapped_ratio(void);
5420static void setup_min_slab_ratio(void);
1da177e4
LT
5421#else /* CONFIG_NUMA */
5422
f0c0b2b8 5423static void build_zonelists(pg_data_t *pgdat)
1da177e4 5424{
19655d34 5425 int node, local_node;
9d3be21b
MH
5426 struct zoneref *zonerefs;
5427 int nr_zones;
1da177e4
LT
5428
5429 local_node = pgdat->node_id;
1da177e4 5430
9d3be21b
MH
5431 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5432 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5433 zonerefs += nr_zones;
1da177e4 5434
54a6eb5c
MG
5435 /*
5436 * Now we build the zonelist so that it contains the zones
5437 * of all the other nodes.
5438 * We don't want to pressure a particular node, so when
5439 * building the zones for node N, we make sure that the
5440 * zones coming right after the local ones are those from
5441 * node N+1 (modulo N)
5442 */
5443 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5444 if (!node_online(node))
5445 continue;
9d3be21b
MH
5446 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5447 zonerefs += nr_zones;
1da177e4 5448 }
54a6eb5c
MG
5449 for (node = 0; node < local_node; node++) {
5450 if (!node_online(node))
5451 continue;
9d3be21b
MH
5452 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5453 zonerefs += nr_zones;
54a6eb5c
MG
5454 }
5455
9d3be21b
MH
5456 zonerefs->zone = NULL;
5457 zonerefs->zone_idx = 0;
1da177e4
LT
5458}
5459
5460#endif /* CONFIG_NUMA */
5461
99dcc3e5
CL
5462/*
5463 * Boot pageset table. One per cpu which is going to be used for all
5464 * zones and all nodes. The parameters will be set in such a way
5465 * that an item put on a list will immediately be handed over to
5466 * the buddy list. This is safe since pageset manipulation is done
5467 * with interrupts disabled.
5468 *
5469 * The boot_pagesets must be kept even after bootup is complete for
5470 * unused processors and/or zones. They do play a role for bootstrapping
5471 * hotplugged processors.
5472 *
5473 * zoneinfo_show() and maybe other functions do
5474 * not check if the processor is online before following the pageset pointer.
5475 * Other parts of the kernel may not check if the zone is available.
5476 */
5477static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5478static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5479static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5480
11cd8638 5481static void __build_all_zonelists(void *data)
1da177e4 5482{
6811378e 5483 int nid;
afb6ebb3 5484 int __maybe_unused cpu;
9adb62a5 5485 pg_data_t *self = data;
b93e0f32
MH
5486 static DEFINE_SPINLOCK(lock);
5487
5488 spin_lock(&lock);
9276b1bc 5489
7f9cfb31
BL
5490#ifdef CONFIG_NUMA
5491 memset(node_load, 0, sizeof(node_load));
5492#endif
9adb62a5 5493
c1152583
WY
5494 /*
5495 * This node is hotadded and no memory is yet present. So just
5496 * building zonelists is fine - no need to touch other nodes.
5497 */
9adb62a5
JL
5498 if (self && !node_online(self->node_id)) {
5499 build_zonelists(self);
c1152583
WY
5500 } else {
5501 for_each_online_node(nid) {
5502 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5503
c1152583
WY
5504 build_zonelists(pgdat);
5505 }
99dcc3e5 5506
7aac7898
LS
5507#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5508 /*
5509 * We now know the "local memory node" for each node--
5510 * i.e., the node of the first zone in the generic zonelist.
5511 * Set up numa_mem percpu variable for on-line cpus. During
5512 * boot, only the boot cpu should be on-line; we'll init the
5513 * secondary cpus' numa_mem as they come on-line. During
5514 * node/memory hotplug, we'll fixup all on-line cpus.
5515 */
d9c9a0b9 5516 for_each_online_cpu(cpu)
7aac7898 5517 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5518#endif
d9c9a0b9 5519 }
b93e0f32
MH
5520
5521 spin_unlock(&lock);
6811378e
YG
5522}
5523
061f67bc
RV
5524static noinline void __init
5525build_all_zonelists_init(void)
5526{
afb6ebb3
MH
5527 int cpu;
5528
061f67bc 5529 __build_all_zonelists(NULL);
afb6ebb3
MH
5530
5531 /*
5532 * Initialize the boot_pagesets that are going to be used
5533 * for bootstrapping processors. The real pagesets for
5534 * each zone will be allocated later when the per cpu
5535 * allocator is available.
5536 *
5537 * boot_pagesets are used also for bootstrapping offline
5538 * cpus if the system is already booted because the pagesets
5539 * are needed to initialize allocators on a specific cpu too.
5540 * F.e. the percpu allocator needs the page allocator which
5541 * needs the percpu allocator in order to allocate its pagesets
5542 * (a chicken-egg dilemma).
5543 */
5544 for_each_possible_cpu(cpu)
5545 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5546
061f67bc
RV
5547 mminit_verify_zonelist();
5548 cpuset_init_current_mems_allowed();
5549}
5550
4eaf3f64 5551/*
4eaf3f64 5552 * unless system_state == SYSTEM_BOOTING.
061f67bc 5553 *
72675e13 5554 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5555 * [protected by SYSTEM_BOOTING].
4eaf3f64 5556 */
72675e13 5557void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5558{
5559 if (system_state == SYSTEM_BOOTING) {
061f67bc 5560 build_all_zonelists_init();
6811378e 5561 } else {
11cd8638 5562 __build_all_zonelists(pgdat);
6811378e
YG
5563 /* cpuset refresh routine should be here */
5564 }
bd1e22b8 5565 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5566 /*
5567 * Disable grouping by mobility if the number of pages in the
5568 * system is too low to allow the mechanism to work. It would be
5569 * more accurate, but expensive to check per-zone. This check is
5570 * made on memory-hotadd so a system can start with mobility
5571 * disabled and enable it later
5572 */
d9c23400 5573 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5574 page_group_by_mobility_disabled = 1;
5575 else
5576 page_group_by_mobility_disabled = 0;
5577
c9bff3ee 5578 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5579 nr_online_nodes,
756a025f
JP
5580 page_group_by_mobility_disabled ? "off" : "on",
5581 vm_total_pages);
f0c0b2b8 5582#ifdef CONFIG_NUMA
f88dfff5 5583 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5584#endif
1da177e4
LT
5585}
5586
a9a9e77f
PT
5587/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5588static bool __meminit
5589overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5590{
5591#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5592 static struct memblock_region *r;
5593
5594 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5595 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5596 for_each_memblock(memory, r) {
5597 if (*pfn < memblock_region_memory_end_pfn(r))
5598 break;
5599 }
5600 }
5601 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5602 memblock_is_mirror(r)) {
5603 *pfn = memblock_region_memory_end_pfn(r);
5604 return true;
5605 }
5606 }
5607#endif
5608 return false;
5609}
5610
1da177e4
LT
5611/*
5612 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5613 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5614 * done. Non-atomic initialization, single-pass.
5615 */
c09b4240 5616void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5617 unsigned long start_pfn, enum memmap_context context,
5618 struct vmem_altmap *altmap)
1da177e4 5619{
a9a9e77f 5620 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5621 struct page *page;
1da177e4 5622
22b31eec
HD
5623 if (highest_memmap_pfn < end_pfn - 1)
5624 highest_memmap_pfn = end_pfn - 1;
5625
966cf44f 5626#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5627 /*
5628 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5629 * memory. We limit the total number of pages to initialize to just
5630 * those that might contain the memory mapping. We will defer the
5631 * ZONE_DEVICE page initialization until after we have released
5632 * the hotplug lock.
4b94ffdc 5633 */
966cf44f
AD
5634 if (zone == ZONE_DEVICE) {
5635 if (!altmap)
5636 return;
5637
5638 if (start_pfn == altmap->base_pfn)
5639 start_pfn += altmap->reserve;
5640 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5641 }
5642#endif
4b94ffdc 5643
cbe8dd4a 5644 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5645 /*
b72d0ffb
AM
5646 * There can be holes in boot-time mem_map[]s handed to this
5647 * function. They do not exist on hotplugged memory.
a2f3aa02 5648 */
a9a9e77f
PT
5649 if (context == MEMMAP_EARLY) {
5650 if (!early_pfn_valid(pfn))
b72d0ffb 5651 continue;
a9a9e77f
PT
5652 if (!early_pfn_in_nid(pfn, nid))
5653 continue;
5654 if (overlap_memmap_init(zone, &pfn))
5655 continue;
5656 if (defer_init(nid, pfn, end_pfn))
5657 break;
a2f3aa02 5658 }
ac5d2539 5659
d0dc12e8
PT
5660 page = pfn_to_page(pfn);
5661 __init_single_page(page, pfn, zone, nid);
5662 if (context == MEMMAP_HOTPLUG)
d483da5b 5663 __SetPageReserved(page);
d0dc12e8 5664
ac5d2539
MG
5665 /*
5666 * Mark the block movable so that blocks are reserved for
5667 * movable at startup. This will force kernel allocations
5668 * to reserve their blocks rather than leaking throughout
5669 * the address space during boot when many long-lived
974a786e 5670 * kernel allocations are made.
ac5d2539
MG
5671 *
5672 * bitmap is created for zone's valid pfn range. but memmap
5673 * can be created for invalid pages (for alignment)
5674 * check here not to call set_pageblock_migratetype() against
5675 * pfn out of zone.
5676 */
5677 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5678 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5679 cond_resched();
ac5d2539 5680 }
1da177e4 5681 }
2830bf6f
MZ
5682#ifdef CONFIG_SPARSEMEM
5683 /*
5684 * If the zone does not span the rest of the section then
5685 * we should at least initialize those pages. Otherwise we
5686 * could blow up on a poisoned page in some paths which depend
5687 * on full sections being initialized (e.g. memory hotplug).
5688 */
5689 while (end_pfn % PAGES_PER_SECTION) {
5690 __init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
5691 end_pfn++;
5692 }
5693#endif
1da177e4
LT
5694}
5695
966cf44f
AD
5696#ifdef CONFIG_ZONE_DEVICE
5697void __ref memmap_init_zone_device(struct zone *zone,
5698 unsigned long start_pfn,
5699 unsigned long size,
5700 struct dev_pagemap *pgmap)
5701{
5702 unsigned long pfn, end_pfn = start_pfn + size;
5703 struct pglist_data *pgdat = zone->zone_pgdat;
5704 unsigned long zone_idx = zone_idx(zone);
5705 unsigned long start = jiffies;
5706 int nid = pgdat->node_id;
5707
5708 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5709 return;
5710
5711 /*
5712 * The call to memmap_init_zone should have already taken care
5713 * of the pages reserved for the memmap, so we can just jump to
5714 * the end of that region and start processing the device pages.
5715 */
5716 if (pgmap->altmap_valid) {
5717 struct vmem_altmap *altmap = &pgmap->altmap;
5718
5719 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5720 size = end_pfn - start_pfn;
5721 }
5722
5723 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5724 struct page *page = pfn_to_page(pfn);
5725
5726 __init_single_page(page, pfn, zone_idx, nid);
5727
5728 /*
5729 * Mark page reserved as it will need to wait for onlining
5730 * phase for it to be fully associated with a zone.
5731 *
5732 * We can use the non-atomic __set_bit operation for setting
5733 * the flag as we are still initializing the pages.
5734 */
5735 __SetPageReserved(page);
5736
5737 /*
5738 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5739 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5740 * page is ever freed or placed on a driver-private list.
5741 */
5742 page->pgmap = pgmap;
5743 page->hmm_data = 0;
5744
5745 /*
5746 * Mark the block movable so that blocks are reserved for
5747 * movable at startup. This will force kernel allocations
5748 * to reserve their blocks rather than leaking throughout
5749 * the address space during boot when many long-lived
5750 * kernel allocations are made.
5751 *
5752 * bitmap is created for zone's valid pfn range. but memmap
5753 * can be created for invalid pages (for alignment)
5754 * check here not to call set_pageblock_migratetype() against
5755 * pfn out of zone.
5756 *
5757 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5758 * because this is done early in sparse_add_one_section
5759 */
5760 if (!(pfn & (pageblock_nr_pages - 1))) {
5761 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5762 cond_resched();
5763 }
5764 }
5765
5766 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5767 size, jiffies_to_msecs(jiffies - start));
5768}
5769
5770#endif
1e548deb 5771static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5772{
7aeb09f9 5773 unsigned int order, t;
b2a0ac88
MG
5774 for_each_migratetype_order(order, t) {
5775 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5776 zone->free_area[order].nr_free = 0;
5777 }
5778}
5779
dfb3ccd0
PT
5780void __meminit __weak memmap_init(unsigned long size, int nid,
5781 unsigned long zone, unsigned long start_pfn)
5782{
5783 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5784}
1da177e4 5785
7cd2b0a3 5786static int zone_batchsize(struct zone *zone)
e7c8d5c9 5787{
3a6be87f 5788#ifdef CONFIG_MMU
e7c8d5c9
CL
5789 int batch;
5790
5791 /*
5792 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5793 * size of the zone.
e7c8d5c9 5794 */
9705bea5 5795 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
5796 /* But no more than a meg. */
5797 if (batch * PAGE_SIZE > 1024 * 1024)
5798 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5799 batch /= 4; /* We effectively *= 4 below */
5800 if (batch < 1)
5801 batch = 1;
5802
5803 /*
0ceaacc9
NP
5804 * Clamp the batch to a 2^n - 1 value. Having a power
5805 * of 2 value was found to be more likely to have
5806 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5807 *
0ceaacc9
NP
5808 * For example if 2 tasks are alternately allocating
5809 * batches of pages, one task can end up with a lot
5810 * of pages of one half of the possible page colors
5811 * and the other with pages of the other colors.
e7c8d5c9 5812 */
9155203a 5813 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5814
e7c8d5c9 5815 return batch;
3a6be87f
DH
5816
5817#else
5818 /* The deferral and batching of frees should be suppressed under NOMMU
5819 * conditions.
5820 *
5821 * The problem is that NOMMU needs to be able to allocate large chunks
5822 * of contiguous memory as there's no hardware page translation to
5823 * assemble apparent contiguous memory from discontiguous pages.
5824 *
5825 * Queueing large contiguous runs of pages for batching, however,
5826 * causes the pages to actually be freed in smaller chunks. As there
5827 * can be a significant delay between the individual batches being
5828 * recycled, this leads to the once large chunks of space being
5829 * fragmented and becoming unavailable for high-order allocations.
5830 */
5831 return 0;
5832#endif
e7c8d5c9
CL
5833}
5834
8d7a8fa9
CS
5835/*
5836 * pcp->high and pcp->batch values are related and dependent on one another:
5837 * ->batch must never be higher then ->high.
5838 * The following function updates them in a safe manner without read side
5839 * locking.
5840 *
5841 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5842 * those fields changing asynchronously (acording the the above rule).
5843 *
5844 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5845 * outside of boot time (or some other assurance that no concurrent updaters
5846 * exist).
5847 */
5848static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5849 unsigned long batch)
5850{
5851 /* start with a fail safe value for batch */
5852 pcp->batch = 1;
5853 smp_wmb();
5854
5855 /* Update high, then batch, in order */
5856 pcp->high = high;
5857 smp_wmb();
5858
5859 pcp->batch = batch;
5860}
5861
3664033c 5862/* a companion to pageset_set_high() */
4008bab7
CS
5863static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5864{
8d7a8fa9 5865 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5866}
5867
88c90dbc 5868static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5869{
5870 struct per_cpu_pages *pcp;
5f8dcc21 5871 int migratetype;
2caaad41 5872
1c6fe946
MD
5873 memset(p, 0, sizeof(*p));
5874
3dfa5721 5875 pcp = &p->pcp;
5f8dcc21
MG
5876 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5877 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5878}
5879
88c90dbc
CS
5880static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5881{
5882 pageset_init(p);
5883 pageset_set_batch(p, batch);
5884}
5885
8ad4b1fb 5886/*
3664033c 5887 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5888 * to the value high for the pageset p.
5889 */
3664033c 5890static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5891 unsigned long high)
5892{
8d7a8fa9
CS
5893 unsigned long batch = max(1UL, high / 4);
5894 if ((high / 4) > (PAGE_SHIFT * 8))
5895 batch = PAGE_SHIFT * 8;
8ad4b1fb 5896
8d7a8fa9 5897 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5898}
5899
7cd2b0a3
DR
5900static void pageset_set_high_and_batch(struct zone *zone,
5901 struct per_cpu_pageset *pcp)
56cef2b8 5902{
56cef2b8 5903 if (percpu_pagelist_fraction)
3664033c 5904 pageset_set_high(pcp,
9705bea5 5905 (zone_managed_pages(zone) /
56cef2b8
CS
5906 percpu_pagelist_fraction));
5907 else
5908 pageset_set_batch(pcp, zone_batchsize(zone));
5909}
5910
169f6c19
CS
5911static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5912{
5913 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5914
5915 pageset_init(pcp);
5916 pageset_set_high_and_batch(zone, pcp);
5917}
5918
72675e13 5919void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5920{
5921 int cpu;
319774e2 5922 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5923 for_each_possible_cpu(cpu)
5924 zone_pageset_init(zone, cpu);
319774e2
WF
5925}
5926
2caaad41 5927/*
99dcc3e5
CL
5928 * Allocate per cpu pagesets and initialize them.
5929 * Before this call only boot pagesets were available.
e7c8d5c9 5930 */
99dcc3e5 5931void __init setup_per_cpu_pageset(void)
e7c8d5c9 5932{
b4911ea2 5933 struct pglist_data *pgdat;
99dcc3e5 5934 struct zone *zone;
e7c8d5c9 5935
319774e2
WF
5936 for_each_populated_zone(zone)
5937 setup_zone_pageset(zone);
b4911ea2
MG
5938
5939 for_each_online_pgdat(pgdat)
5940 pgdat->per_cpu_nodestats =
5941 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5942}
5943
c09b4240 5944static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5945{
99dcc3e5
CL
5946 /*
5947 * per cpu subsystem is not up at this point. The following code
5948 * relies on the ability of the linker to provide the
5949 * offset of a (static) per cpu variable into the per cpu area.
5950 */
5951 zone->pageset = &boot_pageset;
ed8ece2e 5952
b38a8725 5953 if (populated_zone(zone))
99dcc3e5
CL
5954 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5955 zone->name, zone->present_pages,
5956 zone_batchsize(zone));
ed8ece2e
DH
5957}
5958
dc0bbf3b 5959void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5960 unsigned long zone_start_pfn,
b171e409 5961 unsigned long size)
ed8ece2e
DH
5962{
5963 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 5964 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 5965
8f416836
WY
5966 if (zone_idx > pgdat->nr_zones)
5967 pgdat->nr_zones = zone_idx;
ed8ece2e 5968
ed8ece2e
DH
5969 zone->zone_start_pfn = zone_start_pfn;
5970
708614e6
MG
5971 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5972 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5973 pgdat->node_id,
5974 (unsigned long)zone_idx(zone),
5975 zone_start_pfn, (zone_start_pfn + size));
5976
1e548deb 5977 zone_init_free_lists(zone);
9dcb8b68 5978 zone->initialized = 1;
ed8ece2e
DH
5979}
5980
0ee332c1 5981#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5982#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5983
c713216d
MG
5984/*
5985 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5986 */
8a942fde
MG
5987int __meminit __early_pfn_to_nid(unsigned long pfn,
5988 struct mminit_pfnnid_cache *state)
c713216d 5989{
c13291a5 5990 unsigned long start_pfn, end_pfn;
e76b63f8 5991 int nid;
7c243c71 5992
8a942fde
MG
5993 if (state->last_start <= pfn && pfn < state->last_end)
5994 return state->last_nid;
c713216d 5995
e76b63f8
YL
5996 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5997 if (nid != -1) {
8a942fde
MG
5998 state->last_start = start_pfn;
5999 state->last_end = end_pfn;
6000 state->last_nid = nid;
e76b63f8
YL
6001 }
6002
6003 return nid;
c713216d
MG
6004}
6005#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6006
c713216d 6007/**
6782832e 6008 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6009 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6010 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6011 *
7d018176
ZZ
6012 * If an architecture guarantees that all ranges registered contain no holes
6013 * and may be freed, this this function may be used instead of calling
6014 * memblock_free_early_nid() manually.
c713216d 6015 */
c13291a5 6016void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6017{
c13291a5
TH
6018 unsigned long start_pfn, end_pfn;
6019 int i, this_nid;
edbe7d23 6020
c13291a5
TH
6021 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6022 start_pfn = min(start_pfn, max_low_pfn);
6023 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6024
c13291a5 6025 if (start_pfn < end_pfn)
6782832e
SS
6026 memblock_free_early_nid(PFN_PHYS(start_pfn),
6027 (end_pfn - start_pfn) << PAGE_SHIFT,
6028 this_nid);
edbe7d23 6029 }
edbe7d23 6030}
edbe7d23 6031
c713216d
MG
6032/**
6033 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6034 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6035 *
7d018176
ZZ
6036 * If an architecture guarantees that all ranges registered contain no holes and may
6037 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6038 */
6039void __init sparse_memory_present_with_active_regions(int nid)
6040{
c13291a5
TH
6041 unsigned long start_pfn, end_pfn;
6042 int i, this_nid;
c713216d 6043
c13291a5
TH
6044 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6045 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6046}
6047
6048/**
6049 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6050 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6051 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6052 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6053 *
6054 * It returns the start and end page frame of a node based on information
7d018176 6055 * provided by memblock_set_node(). If called for a node
c713216d 6056 * with no available memory, a warning is printed and the start and end
88ca3b94 6057 * PFNs will be 0.
c713216d 6058 */
bbe5d993 6059void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6060 unsigned long *start_pfn, unsigned long *end_pfn)
6061{
c13291a5 6062 unsigned long this_start_pfn, this_end_pfn;
c713216d 6063 int i;
c13291a5 6064
c713216d
MG
6065 *start_pfn = -1UL;
6066 *end_pfn = 0;
6067
c13291a5
TH
6068 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6069 *start_pfn = min(*start_pfn, this_start_pfn);
6070 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6071 }
6072
633c0666 6073 if (*start_pfn == -1UL)
c713216d 6074 *start_pfn = 0;
c713216d
MG
6075}
6076
2a1e274a
MG
6077/*
6078 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6079 * assumption is made that zones within a node are ordered in monotonic
6080 * increasing memory addresses so that the "highest" populated zone is used
6081 */
b69a7288 6082static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6083{
6084 int zone_index;
6085 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6086 if (zone_index == ZONE_MOVABLE)
6087 continue;
6088
6089 if (arch_zone_highest_possible_pfn[zone_index] >
6090 arch_zone_lowest_possible_pfn[zone_index])
6091 break;
6092 }
6093
6094 VM_BUG_ON(zone_index == -1);
6095 movable_zone = zone_index;
6096}
6097
6098/*
6099 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6100 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6101 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6102 * in each node depending on the size of each node and how evenly kernelcore
6103 * is distributed. This helper function adjusts the zone ranges
6104 * provided by the architecture for a given node by using the end of the
6105 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6106 * zones within a node are in order of monotonic increases memory addresses
6107 */
bbe5d993 6108static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6109 unsigned long zone_type,
6110 unsigned long node_start_pfn,
6111 unsigned long node_end_pfn,
6112 unsigned long *zone_start_pfn,
6113 unsigned long *zone_end_pfn)
6114{
6115 /* Only adjust if ZONE_MOVABLE is on this node */
6116 if (zone_movable_pfn[nid]) {
6117 /* Size ZONE_MOVABLE */
6118 if (zone_type == ZONE_MOVABLE) {
6119 *zone_start_pfn = zone_movable_pfn[nid];
6120 *zone_end_pfn = min(node_end_pfn,
6121 arch_zone_highest_possible_pfn[movable_zone]);
6122
e506b996
XQ
6123 /* Adjust for ZONE_MOVABLE starting within this range */
6124 } else if (!mirrored_kernelcore &&
6125 *zone_start_pfn < zone_movable_pfn[nid] &&
6126 *zone_end_pfn > zone_movable_pfn[nid]) {
6127 *zone_end_pfn = zone_movable_pfn[nid];
6128
2a1e274a
MG
6129 /* Check if this whole range is within ZONE_MOVABLE */
6130 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6131 *zone_start_pfn = *zone_end_pfn;
6132 }
6133}
6134
c713216d
MG
6135/*
6136 * Return the number of pages a zone spans in a node, including holes
6137 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6138 */
bbe5d993 6139static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6140 unsigned long zone_type,
7960aedd
ZY
6141 unsigned long node_start_pfn,
6142 unsigned long node_end_pfn,
d91749c1
TI
6143 unsigned long *zone_start_pfn,
6144 unsigned long *zone_end_pfn,
c713216d
MG
6145 unsigned long *ignored)
6146{
b5685e92 6147 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6148 if (!node_start_pfn && !node_end_pfn)
6149 return 0;
6150
7960aedd 6151 /* Get the start and end of the zone */
d91749c1
TI
6152 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6153 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
6154 adjust_zone_range_for_zone_movable(nid, zone_type,
6155 node_start_pfn, node_end_pfn,
d91749c1 6156 zone_start_pfn, zone_end_pfn);
c713216d
MG
6157
6158 /* Check that this node has pages within the zone's required range */
d91749c1 6159 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6160 return 0;
6161
6162 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6163 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6164 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6165
6166 /* Return the spanned pages */
d91749c1 6167 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6168}
6169
6170/*
6171 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6172 * then all holes in the requested range will be accounted for.
c713216d 6173 */
bbe5d993 6174unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6175 unsigned long range_start_pfn,
6176 unsigned long range_end_pfn)
6177{
96e907d1
TH
6178 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6179 unsigned long start_pfn, end_pfn;
6180 int i;
c713216d 6181
96e907d1
TH
6182 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6183 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6184 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6185 nr_absent -= end_pfn - start_pfn;
c713216d 6186 }
96e907d1 6187 return nr_absent;
c713216d
MG
6188}
6189
6190/**
6191 * absent_pages_in_range - Return number of page frames in holes within a range
6192 * @start_pfn: The start PFN to start searching for holes
6193 * @end_pfn: The end PFN to stop searching for holes
6194 *
88ca3b94 6195 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
6196 */
6197unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6198 unsigned long end_pfn)
6199{
6200 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6201}
6202
6203/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6204static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6205 unsigned long zone_type,
7960aedd
ZY
6206 unsigned long node_start_pfn,
6207 unsigned long node_end_pfn,
c713216d
MG
6208 unsigned long *ignored)
6209{
96e907d1
TH
6210 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6211 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6212 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6213 unsigned long nr_absent;
9c7cd687 6214
b5685e92 6215 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6216 if (!node_start_pfn && !node_end_pfn)
6217 return 0;
6218
96e907d1
TH
6219 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6220 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6221
2a1e274a
MG
6222 adjust_zone_range_for_zone_movable(nid, zone_type,
6223 node_start_pfn, node_end_pfn,
6224 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6225 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6226
6227 /*
6228 * ZONE_MOVABLE handling.
6229 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6230 * and vice versa.
6231 */
e506b996
XQ
6232 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6233 unsigned long start_pfn, end_pfn;
6234 struct memblock_region *r;
6235
6236 for_each_memblock(memory, r) {
6237 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6238 zone_start_pfn, zone_end_pfn);
6239 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6240 zone_start_pfn, zone_end_pfn);
6241
6242 if (zone_type == ZONE_MOVABLE &&
6243 memblock_is_mirror(r))
6244 nr_absent += end_pfn - start_pfn;
6245
6246 if (zone_type == ZONE_NORMAL &&
6247 !memblock_is_mirror(r))
6248 nr_absent += end_pfn - start_pfn;
342332e6
TI
6249 }
6250 }
6251
6252 return nr_absent;
c713216d 6253}
0e0b864e 6254
0ee332c1 6255#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6256static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6257 unsigned long zone_type,
7960aedd
ZY
6258 unsigned long node_start_pfn,
6259 unsigned long node_end_pfn,
d91749c1
TI
6260 unsigned long *zone_start_pfn,
6261 unsigned long *zone_end_pfn,
c713216d
MG
6262 unsigned long *zones_size)
6263{
d91749c1
TI
6264 unsigned int zone;
6265
6266 *zone_start_pfn = node_start_pfn;
6267 for (zone = 0; zone < zone_type; zone++)
6268 *zone_start_pfn += zones_size[zone];
6269
6270 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6271
c713216d
MG
6272 return zones_size[zone_type];
6273}
6274
bbe5d993 6275static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6276 unsigned long zone_type,
7960aedd
ZY
6277 unsigned long node_start_pfn,
6278 unsigned long node_end_pfn,
c713216d
MG
6279 unsigned long *zholes_size)
6280{
6281 if (!zholes_size)
6282 return 0;
6283
6284 return zholes_size[zone_type];
6285}
20e6926d 6286
0ee332c1 6287#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6288
bbe5d993 6289static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6290 unsigned long node_start_pfn,
6291 unsigned long node_end_pfn,
6292 unsigned long *zones_size,
6293 unsigned long *zholes_size)
c713216d 6294{
febd5949 6295 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6296 enum zone_type i;
6297
febd5949
GZ
6298 for (i = 0; i < MAX_NR_ZONES; i++) {
6299 struct zone *zone = pgdat->node_zones + i;
d91749c1 6300 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6301 unsigned long size, real_size;
c713216d 6302
febd5949
GZ
6303 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6304 node_start_pfn,
6305 node_end_pfn,
d91749c1
TI
6306 &zone_start_pfn,
6307 &zone_end_pfn,
febd5949
GZ
6308 zones_size);
6309 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6310 node_start_pfn, node_end_pfn,
6311 zholes_size);
d91749c1
TI
6312 if (size)
6313 zone->zone_start_pfn = zone_start_pfn;
6314 else
6315 zone->zone_start_pfn = 0;
febd5949
GZ
6316 zone->spanned_pages = size;
6317 zone->present_pages = real_size;
6318
6319 totalpages += size;
6320 realtotalpages += real_size;
6321 }
6322
6323 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6324 pgdat->node_present_pages = realtotalpages;
6325 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6326 realtotalpages);
6327}
6328
835c134e
MG
6329#ifndef CONFIG_SPARSEMEM
6330/*
6331 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6332 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6333 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6334 * round what is now in bits to nearest long in bits, then return it in
6335 * bytes.
6336 */
7c45512d 6337static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6338{
6339 unsigned long usemapsize;
6340
7c45512d 6341 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6342 usemapsize = roundup(zonesize, pageblock_nr_pages);
6343 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6344 usemapsize *= NR_PAGEBLOCK_BITS;
6345 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6346
6347 return usemapsize / 8;
6348}
6349
7cc2a959 6350static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6351 struct zone *zone,
6352 unsigned long zone_start_pfn,
6353 unsigned long zonesize)
835c134e 6354{
7c45512d 6355 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6356 zone->pageblock_flags = NULL;
58a01a45 6357 if (usemapsize)
6782832e 6358 zone->pageblock_flags =
eb31d559 6359 memblock_alloc_node_nopanic(usemapsize,
6782832e 6360 pgdat->node_id);
835c134e
MG
6361}
6362#else
7c45512d
LT
6363static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6364 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6365#endif /* CONFIG_SPARSEMEM */
6366
d9c23400 6367#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6368
d9c23400 6369/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6370void __init set_pageblock_order(void)
d9c23400 6371{
955c1cd7
AM
6372 unsigned int order;
6373
d9c23400
MG
6374 /* Check that pageblock_nr_pages has not already been setup */
6375 if (pageblock_order)
6376 return;
6377
955c1cd7
AM
6378 if (HPAGE_SHIFT > PAGE_SHIFT)
6379 order = HUGETLB_PAGE_ORDER;
6380 else
6381 order = MAX_ORDER - 1;
6382
d9c23400
MG
6383 /*
6384 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6385 * This value may be variable depending on boot parameters on IA64 and
6386 * powerpc.
d9c23400
MG
6387 */
6388 pageblock_order = order;
6389}
6390#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6391
ba72cb8c
MG
6392/*
6393 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6394 * is unused as pageblock_order is set at compile-time. See
6395 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6396 * the kernel config
ba72cb8c 6397 */
03e85f9d 6398void __init set_pageblock_order(void)
ba72cb8c 6399{
ba72cb8c 6400}
d9c23400
MG
6401
6402#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6403
03e85f9d 6404static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6405 unsigned long present_pages)
01cefaef
JL
6406{
6407 unsigned long pages = spanned_pages;
6408
6409 /*
6410 * Provide a more accurate estimation if there are holes within
6411 * the zone and SPARSEMEM is in use. If there are holes within the
6412 * zone, each populated memory region may cost us one or two extra
6413 * memmap pages due to alignment because memmap pages for each
89d790ab 6414 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6415 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6416 */
6417 if (spanned_pages > present_pages + (present_pages >> 4) &&
6418 IS_ENABLED(CONFIG_SPARSEMEM))
6419 pages = present_pages;
6420
6421 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6422}
6423
ace1db39
OS
6424#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6425static void pgdat_init_split_queue(struct pglist_data *pgdat)
6426{
6427 spin_lock_init(&pgdat->split_queue_lock);
6428 INIT_LIST_HEAD(&pgdat->split_queue);
6429 pgdat->split_queue_len = 0;
6430}
6431#else
6432static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6433#endif
6434
6435#ifdef CONFIG_COMPACTION
6436static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6437{
6438 init_waitqueue_head(&pgdat->kcompactd_wait);
6439}
6440#else
6441static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6442#endif
6443
03e85f9d 6444static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6445{
208d54e5 6446 pgdat_resize_init(pgdat);
ace1db39 6447
ace1db39
OS
6448 pgdat_init_split_queue(pgdat);
6449 pgdat_init_kcompactd(pgdat);
6450
1da177e4 6451 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6452 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6453
eefa864b 6454 pgdat_page_ext_init(pgdat);
a52633d8 6455 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6456 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6457}
6458
6459static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6460 unsigned long remaining_pages)
6461{
9705bea5 6462 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6463 zone_set_nid(zone, nid);
6464 zone->name = zone_names[idx];
6465 zone->zone_pgdat = NODE_DATA(nid);
6466 spin_lock_init(&zone->lock);
6467 zone_seqlock_init(zone);
6468 zone_pcp_init(zone);
6469}
6470
6471/*
6472 * Set up the zone data structures
6473 * - init pgdat internals
6474 * - init all zones belonging to this node
6475 *
6476 * NOTE: this function is only called during memory hotplug
6477 */
6478#ifdef CONFIG_MEMORY_HOTPLUG
6479void __ref free_area_init_core_hotplug(int nid)
6480{
6481 enum zone_type z;
6482 pg_data_t *pgdat = NODE_DATA(nid);
6483
6484 pgdat_init_internals(pgdat);
6485 for (z = 0; z < MAX_NR_ZONES; z++)
6486 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6487}
6488#endif
6489
6490/*
6491 * Set up the zone data structures:
6492 * - mark all pages reserved
6493 * - mark all memory queues empty
6494 * - clear the memory bitmaps
6495 *
6496 * NOTE: pgdat should get zeroed by caller.
6497 * NOTE: this function is only called during early init.
6498 */
6499static void __init free_area_init_core(struct pglist_data *pgdat)
6500{
6501 enum zone_type j;
6502 int nid = pgdat->node_id;
5f63b720 6503
03e85f9d 6504 pgdat_init_internals(pgdat);
385386cf
JW
6505 pgdat->per_cpu_nodestats = &boot_nodestats;
6506
1da177e4
LT
6507 for (j = 0; j < MAX_NR_ZONES; j++) {
6508 struct zone *zone = pgdat->node_zones + j;
e6943859 6509 unsigned long size, freesize, memmap_pages;
d91749c1 6510 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6511
febd5949 6512 size = zone->spanned_pages;
e6943859 6513 freesize = zone->present_pages;
1da177e4 6514
0e0b864e 6515 /*
9feedc9d 6516 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6517 * is used by this zone for memmap. This affects the watermark
6518 * and per-cpu initialisations
6519 */
e6943859 6520 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6521 if (!is_highmem_idx(j)) {
6522 if (freesize >= memmap_pages) {
6523 freesize -= memmap_pages;
6524 if (memmap_pages)
6525 printk(KERN_DEBUG
6526 " %s zone: %lu pages used for memmap\n",
6527 zone_names[j], memmap_pages);
6528 } else
1170532b 6529 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6530 zone_names[j], memmap_pages, freesize);
6531 }
0e0b864e 6532
6267276f 6533 /* Account for reserved pages */
9feedc9d
JL
6534 if (j == 0 && freesize > dma_reserve) {
6535 freesize -= dma_reserve;
d903ef9f 6536 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6537 zone_names[0], dma_reserve);
0e0b864e
MG
6538 }
6539
98d2b0eb 6540 if (!is_highmem_idx(j))
9feedc9d 6541 nr_kernel_pages += freesize;
01cefaef
JL
6542 /* Charge for highmem memmap if there are enough kernel pages */
6543 else if (nr_kernel_pages > memmap_pages * 2)
6544 nr_kernel_pages -= memmap_pages;
9feedc9d 6545 nr_all_pages += freesize;
1da177e4 6546
9feedc9d
JL
6547 /*
6548 * Set an approximate value for lowmem here, it will be adjusted
6549 * when the bootmem allocator frees pages into the buddy system.
6550 * And all highmem pages will be managed by the buddy system.
6551 */
03e85f9d 6552 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6553
d883c6cf 6554 if (!size)
1da177e4
LT
6555 continue;
6556
955c1cd7 6557 set_pageblock_order();
d883c6cf
JK
6558 setup_usemap(pgdat, zone, zone_start_pfn, size);
6559 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6560 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6561 }
6562}
6563
0cd842f9 6564#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6565static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6566{
b0aeba74 6567 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6568 unsigned long __maybe_unused offset = 0;
6569
1da177e4
LT
6570 /* Skip empty nodes */
6571 if (!pgdat->node_spanned_pages)
6572 return;
6573
b0aeba74
TL
6574 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6575 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6576 /* ia64 gets its own node_mem_map, before this, without bootmem */
6577 if (!pgdat->node_mem_map) {
b0aeba74 6578 unsigned long size, end;
d41dee36
AW
6579 struct page *map;
6580
e984bb43
BP
6581 /*
6582 * The zone's endpoints aren't required to be MAX_ORDER
6583 * aligned but the node_mem_map endpoints must be in order
6584 * for the buddy allocator to function correctly.
6585 */
108bcc96 6586 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6587 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6588 size = (end - start) * sizeof(struct page);
eb31d559 6589 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6590 pgdat->node_mem_map = map + offset;
1da177e4 6591 }
0cd842f9
OS
6592 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6593 __func__, pgdat->node_id, (unsigned long)pgdat,
6594 (unsigned long)pgdat->node_mem_map);
12d810c1 6595#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6596 /*
6597 * With no DISCONTIG, the global mem_map is just set as node 0's
6598 */
c713216d 6599 if (pgdat == NODE_DATA(0)) {
1da177e4 6600 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6601#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6602 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6603 mem_map -= offset;
0ee332c1 6604#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6605 }
1da177e4
LT
6606#endif
6607}
0cd842f9
OS
6608#else
6609static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6610#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6611
0188dc98
OS
6612#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6613static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6614{
0188dc98
OS
6615 pgdat->first_deferred_pfn = ULONG_MAX;
6616}
6617#else
6618static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6619#endif
6620
03e85f9d 6621void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6622 unsigned long node_start_pfn,
6623 unsigned long *zholes_size)
1da177e4 6624{
9109fb7b 6625 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6626 unsigned long start_pfn = 0;
6627 unsigned long end_pfn = 0;
9109fb7b 6628
88fdf75d 6629 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6630 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6631
1da177e4
LT
6632 pgdat->node_id = nid;
6633 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6634 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6635#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6636 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6637 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6638 (u64)start_pfn << PAGE_SHIFT,
6639 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6640#else
6641 start_pfn = node_start_pfn;
7960aedd
ZY
6642#endif
6643 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6644 zones_size, zholes_size);
1da177e4
LT
6645
6646 alloc_node_mem_map(pgdat);
0188dc98 6647 pgdat_set_deferred_range(pgdat);
1da177e4 6648
7f3eb55b 6649 free_area_init_core(pgdat);
1da177e4
LT
6650}
6651
aca52c39 6652#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6653/*
6654 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6655 * pages zeroed
6656 */
6657static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6658{
6659 unsigned long pfn;
6660 u64 pgcnt = 0;
6661
6662 for (pfn = spfn; pfn < epfn; pfn++) {
6663 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6664 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6665 + pageblock_nr_pages - 1;
6666 continue;
6667 }
6668 mm_zero_struct_page(pfn_to_page(pfn));
6669 pgcnt++;
6670 }
6671
6672 return pgcnt;
6673}
6674
a4a3ede2
PT
6675/*
6676 * Only struct pages that are backed by physical memory are zeroed and
6677 * initialized by going through __init_single_page(). But, there are some
6678 * struct pages which are reserved in memblock allocator and their fields
6679 * may be accessed (for example page_to_pfn() on some configuration accesses
6680 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6681 *
6682 * This function also addresses a similar issue where struct pages are left
6683 * uninitialized because the physical address range is not covered by
6684 * memblock.memory or memblock.reserved. That could happen when memblock
6685 * layout is manually configured via memmap=.
a4a3ede2 6686 */
03e85f9d 6687void __init zero_resv_unavail(void)
a4a3ede2
PT
6688{
6689 phys_addr_t start, end;
a4a3ede2 6690 u64 i, pgcnt;
907ec5fc 6691 phys_addr_t next = 0;
a4a3ede2
PT
6692
6693 /*
907ec5fc 6694 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6695 */
6696 pgcnt = 0;
907ec5fc
NH
6697 for_each_mem_range(i, &memblock.memory, NULL,
6698 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6699 if (next < start)
6700 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6701 next = end;
6702 }
ec393a0f 6703 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6704
a4a3ede2
PT
6705 /*
6706 * Struct pages that do not have backing memory. This could be because
6707 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6708 */
6709 if (pgcnt)
907ec5fc 6710 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6711}
aca52c39 6712#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6713
0ee332c1 6714#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6715
6716#if MAX_NUMNODES > 1
6717/*
6718 * Figure out the number of possible node ids.
6719 */
f9872caf 6720void __init setup_nr_node_ids(void)
418508c1 6721{
904a9553 6722 unsigned int highest;
418508c1 6723
904a9553 6724 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6725 nr_node_ids = highest + 1;
6726}
418508c1
MS
6727#endif
6728
1e01979c
TH
6729/**
6730 * node_map_pfn_alignment - determine the maximum internode alignment
6731 *
6732 * This function should be called after node map is populated and sorted.
6733 * It calculates the maximum power of two alignment which can distinguish
6734 * all the nodes.
6735 *
6736 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6737 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6738 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6739 * shifted, 1GiB is enough and this function will indicate so.
6740 *
6741 * This is used to test whether pfn -> nid mapping of the chosen memory
6742 * model has fine enough granularity to avoid incorrect mapping for the
6743 * populated node map.
6744 *
6745 * Returns the determined alignment in pfn's. 0 if there is no alignment
6746 * requirement (single node).
6747 */
6748unsigned long __init node_map_pfn_alignment(void)
6749{
6750 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6751 unsigned long start, end, mask;
1e01979c 6752 int last_nid = -1;
c13291a5 6753 int i, nid;
1e01979c 6754
c13291a5 6755 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6756 if (!start || last_nid < 0 || last_nid == nid) {
6757 last_nid = nid;
6758 last_end = end;
6759 continue;
6760 }
6761
6762 /*
6763 * Start with a mask granular enough to pin-point to the
6764 * start pfn and tick off bits one-by-one until it becomes
6765 * too coarse to separate the current node from the last.
6766 */
6767 mask = ~((1 << __ffs(start)) - 1);
6768 while (mask && last_end <= (start & (mask << 1)))
6769 mask <<= 1;
6770
6771 /* accumulate all internode masks */
6772 accl_mask |= mask;
6773 }
6774
6775 /* convert mask to number of pages */
6776 return ~accl_mask + 1;
6777}
6778
a6af2bc3 6779/* Find the lowest pfn for a node */
b69a7288 6780static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6781{
a6af2bc3 6782 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6783 unsigned long start_pfn;
6784 int i;
1abbfb41 6785
c13291a5
TH
6786 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6787 min_pfn = min(min_pfn, start_pfn);
c713216d 6788
a6af2bc3 6789 if (min_pfn == ULONG_MAX) {
1170532b 6790 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6791 return 0;
6792 }
6793
6794 return min_pfn;
c713216d
MG
6795}
6796
6797/**
6798 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6799 *
6800 * It returns the minimum PFN based on information provided via
7d018176 6801 * memblock_set_node().
c713216d
MG
6802 */
6803unsigned long __init find_min_pfn_with_active_regions(void)
6804{
6805 return find_min_pfn_for_node(MAX_NUMNODES);
6806}
6807
37b07e41
LS
6808/*
6809 * early_calculate_totalpages()
6810 * Sum pages in active regions for movable zone.
4b0ef1fe 6811 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6812 */
484f51f8 6813static unsigned long __init early_calculate_totalpages(void)
7e63efef 6814{
7e63efef 6815 unsigned long totalpages = 0;
c13291a5
TH
6816 unsigned long start_pfn, end_pfn;
6817 int i, nid;
6818
6819 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6820 unsigned long pages = end_pfn - start_pfn;
7e63efef 6821
37b07e41
LS
6822 totalpages += pages;
6823 if (pages)
4b0ef1fe 6824 node_set_state(nid, N_MEMORY);
37b07e41 6825 }
b8af2941 6826 return totalpages;
7e63efef
MG
6827}
6828
2a1e274a
MG
6829/*
6830 * Find the PFN the Movable zone begins in each node. Kernel memory
6831 * is spread evenly between nodes as long as the nodes have enough
6832 * memory. When they don't, some nodes will have more kernelcore than
6833 * others
6834 */
b224ef85 6835static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6836{
6837 int i, nid;
6838 unsigned long usable_startpfn;
6839 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6840 /* save the state before borrow the nodemask */
4b0ef1fe 6841 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6842 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6843 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6844 struct memblock_region *r;
b2f3eebe
TC
6845
6846 /* Need to find movable_zone earlier when movable_node is specified. */
6847 find_usable_zone_for_movable();
6848
6849 /*
6850 * If movable_node is specified, ignore kernelcore and movablecore
6851 * options.
6852 */
6853 if (movable_node_is_enabled()) {
136199f0
EM
6854 for_each_memblock(memory, r) {
6855 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6856 continue;
6857
136199f0 6858 nid = r->nid;
b2f3eebe 6859
136199f0 6860 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6861 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6862 min(usable_startpfn, zone_movable_pfn[nid]) :
6863 usable_startpfn;
6864 }
6865
6866 goto out2;
6867 }
2a1e274a 6868
342332e6
TI
6869 /*
6870 * If kernelcore=mirror is specified, ignore movablecore option
6871 */
6872 if (mirrored_kernelcore) {
6873 bool mem_below_4gb_not_mirrored = false;
6874
6875 for_each_memblock(memory, r) {
6876 if (memblock_is_mirror(r))
6877 continue;
6878
6879 nid = r->nid;
6880
6881 usable_startpfn = memblock_region_memory_base_pfn(r);
6882
6883 if (usable_startpfn < 0x100000) {
6884 mem_below_4gb_not_mirrored = true;
6885 continue;
6886 }
6887
6888 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6889 min(usable_startpfn, zone_movable_pfn[nid]) :
6890 usable_startpfn;
6891 }
6892
6893 if (mem_below_4gb_not_mirrored)
6894 pr_warn("This configuration results in unmirrored kernel memory.");
6895
6896 goto out2;
6897 }
6898
7e63efef 6899 /*
a5c6d650
DR
6900 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6901 * amount of necessary memory.
6902 */
6903 if (required_kernelcore_percent)
6904 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6905 10000UL;
6906 if (required_movablecore_percent)
6907 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6908 10000UL;
6909
6910 /*
6911 * If movablecore= was specified, calculate what size of
7e63efef
MG
6912 * kernelcore that corresponds so that memory usable for
6913 * any allocation type is evenly spread. If both kernelcore
6914 * and movablecore are specified, then the value of kernelcore
6915 * will be used for required_kernelcore if it's greater than
6916 * what movablecore would have allowed.
6917 */
6918 if (required_movablecore) {
7e63efef
MG
6919 unsigned long corepages;
6920
6921 /*
6922 * Round-up so that ZONE_MOVABLE is at least as large as what
6923 * was requested by the user
6924 */
6925 required_movablecore =
6926 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6927 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6928 corepages = totalpages - required_movablecore;
6929
6930 required_kernelcore = max(required_kernelcore, corepages);
6931 }
6932
bde304bd
XQ
6933 /*
6934 * If kernelcore was not specified or kernelcore size is larger
6935 * than totalpages, there is no ZONE_MOVABLE.
6936 */
6937 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6938 goto out;
2a1e274a
MG
6939
6940 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6941 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6942
6943restart:
6944 /* Spread kernelcore memory as evenly as possible throughout nodes */
6945 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6946 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6947 unsigned long start_pfn, end_pfn;
6948
2a1e274a
MG
6949 /*
6950 * Recalculate kernelcore_node if the division per node
6951 * now exceeds what is necessary to satisfy the requested
6952 * amount of memory for the kernel
6953 */
6954 if (required_kernelcore < kernelcore_node)
6955 kernelcore_node = required_kernelcore / usable_nodes;
6956
6957 /*
6958 * As the map is walked, we track how much memory is usable
6959 * by the kernel using kernelcore_remaining. When it is
6960 * 0, the rest of the node is usable by ZONE_MOVABLE
6961 */
6962 kernelcore_remaining = kernelcore_node;
6963
6964 /* Go through each range of PFNs within this node */
c13291a5 6965 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6966 unsigned long size_pages;
6967
c13291a5 6968 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6969 if (start_pfn >= end_pfn)
6970 continue;
6971
6972 /* Account for what is only usable for kernelcore */
6973 if (start_pfn < usable_startpfn) {
6974 unsigned long kernel_pages;
6975 kernel_pages = min(end_pfn, usable_startpfn)
6976 - start_pfn;
6977
6978 kernelcore_remaining -= min(kernel_pages,
6979 kernelcore_remaining);
6980 required_kernelcore -= min(kernel_pages,
6981 required_kernelcore);
6982
6983 /* Continue if range is now fully accounted */
6984 if (end_pfn <= usable_startpfn) {
6985
6986 /*
6987 * Push zone_movable_pfn to the end so
6988 * that if we have to rebalance
6989 * kernelcore across nodes, we will
6990 * not double account here
6991 */
6992 zone_movable_pfn[nid] = end_pfn;
6993 continue;
6994 }
6995 start_pfn = usable_startpfn;
6996 }
6997
6998 /*
6999 * The usable PFN range for ZONE_MOVABLE is from
7000 * start_pfn->end_pfn. Calculate size_pages as the
7001 * number of pages used as kernelcore
7002 */
7003 size_pages = end_pfn - start_pfn;
7004 if (size_pages > kernelcore_remaining)
7005 size_pages = kernelcore_remaining;
7006 zone_movable_pfn[nid] = start_pfn + size_pages;
7007
7008 /*
7009 * Some kernelcore has been met, update counts and
7010 * break if the kernelcore for this node has been
b8af2941 7011 * satisfied
2a1e274a
MG
7012 */
7013 required_kernelcore -= min(required_kernelcore,
7014 size_pages);
7015 kernelcore_remaining -= size_pages;
7016 if (!kernelcore_remaining)
7017 break;
7018 }
7019 }
7020
7021 /*
7022 * If there is still required_kernelcore, we do another pass with one
7023 * less node in the count. This will push zone_movable_pfn[nid] further
7024 * along on the nodes that still have memory until kernelcore is
b8af2941 7025 * satisfied
2a1e274a
MG
7026 */
7027 usable_nodes--;
7028 if (usable_nodes && required_kernelcore > usable_nodes)
7029 goto restart;
7030
b2f3eebe 7031out2:
2a1e274a
MG
7032 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7033 for (nid = 0; nid < MAX_NUMNODES; nid++)
7034 zone_movable_pfn[nid] =
7035 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7036
20e6926d 7037out:
66918dcd 7038 /* restore the node_state */
4b0ef1fe 7039 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7040}
7041
4b0ef1fe
LJ
7042/* Any regular or high memory on that node ? */
7043static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7044{
37b07e41
LS
7045 enum zone_type zone_type;
7046
4b0ef1fe 7047 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7048 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7049 if (populated_zone(zone)) {
7b0e0c0e
OS
7050 if (IS_ENABLED(CONFIG_HIGHMEM))
7051 node_set_state(nid, N_HIGH_MEMORY);
7052 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7053 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7054 break;
7055 }
37b07e41 7056 }
37b07e41
LS
7057}
7058
c713216d
MG
7059/**
7060 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7061 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7062 *
7063 * This will call free_area_init_node() for each active node in the system.
7d018176 7064 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7065 * zone in each node and their holes is calculated. If the maximum PFN
7066 * between two adjacent zones match, it is assumed that the zone is empty.
7067 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7068 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7069 * starts where the previous one ended. For example, ZONE_DMA32 starts
7070 * at arch_max_dma_pfn.
7071 */
7072void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7073{
c13291a5
TH
7074 unsigned long start_pfn, end_pfn;
7075 int i, nid;
a6af2bc3 7076
c713216d
MG
7077 /* Record where the zone boundaries are */
7078 memset(arch_zone_lowest_possible_pfn, 0,
7079 sizeof(arch_zone_lowest_possible_pfn));
7080 memset(arch_zone_highest_possible_pfn, 0,
7081 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7082
7083 start_pfn = find_min_pfn_with_active_regions();
7084
7085 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7086 if (i == ZONE_MOVABLE)
7087 continue;
90cae1fe
OH
7088
7089 end_pfn = max(max_zone_pfn[i], start_pfn);
7090 arch_zone_lowest_possible_pfn[i] = start_pfn;
7091 arch_zone_highest_possible_pfn[i] = end_pfn;
7092
7093 start_pfn = end_pfn;
c713216d 7094 }
2a1e274a
MG
7095
7096 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7097 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7098 find_zone_movable_pfns_for_nodes();
c713216d 7099
c713216d 7100 /* Print out the zone ranges */
f88dfff5 7101 pr_info("Zone ranges:\n");
2a1e274a
MG
7102 for (i = 0; i < MAX_NR_ZONES; i++) {
7103 if (i == ZONE_MOVABLE)
7104 continue;
f88dfff5 7105 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7106 if (arch_zone_lowest_possible_pfn[i] ==
7107 arch_zone_highest_possible_pfn[i])
f88dfff5 7108 pr_cont("empty\n");
72f0ba02 7109 else
8d29e18a
JG
7110 pr_cont("[mem %#018Lx-%#018Lx]\n",
7111 (u64)arch_zone_lowest_possible_pfn[i]
7112 << PAGE_SHIFT,
7113 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7114 << PAGE_SHIFT) - 1);
2a1e274a
MG
7115 }
7116
7117 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7118 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7119 for (i = 0; i < MAX_NUMNODES; i++) {
7120 if (zone_movable_pfn[i])
8d29e18a
JG
7121 pr_info(" Node %d: %#018Lx\n", i,
7122 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7123 }
c713216d 7124
f2d52fe5 7125 /* Print out the early node map */
f88dfff5 7126 pr_info("Early memory node ranges\n");
c13291a5 7127 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
7128 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7129 (u64)start_pfn << PAGE_SHIFT,
7130 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7131
7132 /* Initialise every node */
708614e6 7133 mminit_verify_pageflags_layout();
8ef82866 7134 setup_nr_node_ids();
e181ae0c 7135 zero_resv_unavail();
c713216d
MG
7136 for_each_online_node(nid) {
7137 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7138 free_area_init_node(nid, NULL,
c713216d 7139 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7140
7141 /* Any memory on that node */
7142 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7143 node_set_state(nid, N_MEMORY);
7144 check_for_memory(pgdat, nid);
c713216d
MG
7145 }
7146}
2a1e274a 7147
a5c6d650
DR
7148static int __init cmdline_parse_core(char *p, unsigned long *core,
7149 unsigned long *percent)
2a1e274a
MG
7150{
7151 unsigned long long coremem;
a5c6d650
DR
7152 char *endptr;
7153
2a1e274a
MG
7154 if (!p)
7155 return -EINVAL;
7156
a5c6d650
DR
7157 /* Value may be a percentage of total memory, otherwise bytes */
7158 coremem = simple_strtoull(p, &endptr, 0);
7159 if (*endptr == '%') {
7160 /* Paranoid check for percent values greater than 100 */
7161 WARN_ON(coremem > 100);
2a1e274a 7162
a5c6d650
DR
7163 *percent = coremem;
7164 } else {
7165 coremem = memparse(p, &p);
7166 /* Paranoid check that UL is enough for the coremem value */
7167 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7168
a5c6d650
DR
7169 *core = coremem >> PAGE_SHIFT;
7170 *percent = 0UL;
7171 }
2a1e274a
MG
7172 return 0;
7173}
ed7ed365 7174
7e63efef
MG
7175/*
7176 * kernelcore=size sets the amount of memory for use for allocations that
7177 * cannot be reclaimed or migrated.
7178 */
7179static int __init cmdline_parse_kernelcore(char *p)
7180{
342332e6
TI
7181 /* parse kernelcore=mirror */
7182 if (parse_option_str(p, "mirror")) {
7183 mirrored_kernelcore = true;
7184 return 0;
7185 }
7186
a5c6d650
DR
7187 return cmdline_parse_core(p, &required_kernelcore,
7188 &required_kernelcore_percent);
7e63efef
MG
7189}
7190
7191/*
7192 * movablecore=size sets the amount of memory for use for allocations that
7193 * can be reclaimed or migrated.
7194 */
7195static int __init cmdline_parse_movablecore(char *p)
7196{
a5c6d650
DR
7197 return cmdline_parse_core(p, &required_movablecore,
7198 &required_movablecore_percent);
7e63efef
MG
7199}
7200
ed7ed365 7201early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7202early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7203
0ee332c1 7204#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7205
c3d5f5f0
JL
7206void adjust_managed_page_count(struct page *page, long count)
7207{
9705bea5 7208 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7209 totalram_pages_add(count);
3dcc0571
JL
7210#ifdef CONFIG_HIGHMEM
7211 if (PageHighMem(page))
ca79b0c2 7212 totalhigh_pages_add(count);
3dcc0571 7213#endif
c3d5f5f0 7214}
3dcc0571 7215EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7216
e5cb113f 7217unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7218{
11199692
JL
7219 void *pos;
7220 unsigned long pages = 0;
69afade7 7221
11199692
JL
7222 start = (void *)PAGE_ALIGN((unsigned long)start);
7223 end = (void *)((unsigned long)end & PAGE_MASK);
7224 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7225 struct page *page = virt_to_page(pos);
7226 void *direct_map_addr;
7227
7228 /*
7229 * 'direct_map_addr' might be different from 'pos'
7230 * because some architectures' virt_to_page()
7231 * work with aliases. Getting the direct map
7232 * address ensures that we get a _writeable_
7233 * alias for the memset().
7234 */
7235 direct_map_addr = page_address(page);
dbe67df4 7236 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7237 memset(direct_map_addr, poison, PAGE_SIZE);
7238
7239 free_reserved_page(page);
69afade7
JL
7240 }
7241
7242 if (pages && s)
adb1fe9a
JP
7243 pr_info("Freeing %s memory: %ldK\n",
7244 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7245
7246 return pages;
7247}
11199692 7248EXPORT_SYMBOL(free_reserved_area);
69afade7 7249
cfa11e08
JL
7250#ifdef CONFIG_HIGHMEM
7251void free_highmem_page(struct page *page)
7252{
7253 __free_reserved_page(page);
ca79b0c2 7254 totalram_pages_inc();
9705bea5 7255 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7256 totalhigh_pages_inc();
cfa11e08
JL
7257}
7258#endif
7259
7ee3d4e8
JL
7260
7261void __init mem_init_print_info(const char *str)
7262{
7263 unsigned long physpages, codesize, datasize, rosize, bss_size;
7264 unsigned long init_code_size, init_data_size;
7265
7266 physpages = get_num_physpages();
7267 codesize = _etext - _stext;
7268 datasize = _edata - _sdata;
7269 rosize = __end_rodata - __start_rodata;
7270 bss_size = __bss_stop - __bss_start;
7271 init_data_size = __init_end - __init_begin;
7272 init_code_size = _einittext - _sinittext;
7273
7274 /*
7275 * Detect special cases and adjust section sizes accordingly:
7276 * 1) .init.* may be embedded into .data sections
7277 * 2) .init.text.* may be out of [__init_begin, __init_end],
7278 * please refer to arch/tile/kernel/vmlinux.lds.S.
7279 * 3) .rodata.* may be embedded into .text or .data sections.
7280 */
7281#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7282 do { \
7283 if (start <= pos && pos < end && size > adj) \
7284 size -= adj; \
7285 } while (0)
7ee3d4e8
JL
7286
7287 adj_init_size(__init_begin, __init_end, init_data_size,
7288 _sinittext, init_code_size);
7289 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7290 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7291 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7292 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7293
7294#undef adj_init_size
7295
756a025f 7296 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7297#ifdef CONFIG_HIGHMEM
756a025f 7298 ", %luK highmem"
7ee3d4e8 7299#endif
756a025f
JP
7300 "%s%s)\n",
7301 nr_free_pages() << (PAGE_SHIFT - 10),
7302 physpages << (PAGE_SHIFT - 10),
7303 codesize >> 10, datasize >> 10, rosize >> 10,
7304 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7305 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7306 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7307#ifdef CONFIG_HIGHMEM
ca79b0c2 7308 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7309#endif
756a025f 7310 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7311}
7312
0e0b864e 7313/**
88ca3b94
RD
7314 * set_dma_reserve - set the specified number of pages reserved in the first zone
7315 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7316 *
013110a7 7317 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7318 * In the DMA zone, a significant percentage may be consumed by kernel image
7319 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7320 * function may optionally be used to account for unfreeable pages in the
7321 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7322 * smaller per-cpu batchsize.
0e0b864e
MG
7323 */
7324void __init set_dma_reserve(unsigned long new_dma_reserve)
7325{
7326 dma_reserve = new_dma_reserve;
7327}
7328
1da177e4
LT
7329void __init free_area_init(unsigned long *zones_size)
7330{
e181ae0c 7331 zero_resv_unavail();
9109fb7b 7332 free_area_init_node(0, zones_size,
1da177e4
LT
7333 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7334}
1da177e4 7335
005fd4bb 7336static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7337{
1da177e4 7338
005fd4bb
SAS
7339 lru_add_drain_cpu(cpu);
7340 drain_pages(cpu);
9f8f2172 7341
005fd4bb
SAS
7342 /*
7343 * Spill the event counters of the dead processor
7344 * into the current processors event counters.
7345 * This artificially elevates the count of the current
7346 * processor.
7347 */
7348 vm_events_fold_cpu(cpu);
9f8f2172 7349
005fd4bb
SAS
7350 /*
7351 * Zero the differential counters of the dead processor
7352 * so that the vm statistics are consistent.
7353 *
7354 * This is only okay since the processor is dead and cannot
7355 * race with what we are doing.
7356 */
7357 cpu_vm_stats_fold(cpu);
7358 return 0;
1da177e4 7359}
1da177e4
LT
7360
7361void __init page_alloc_init(void)
7362{
005fd4bb
SAS
7363 int ret;
7364
7365 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7366 "mm/page_alloc:dead", NULL,
7367 page_alloc_cpu_dead);
7368 WARN_ON(ret < 0);
1da177e4
LT
7369}
7370
cb45b0e9 7371/*
34b10060 7372 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7373 * or min_free_kbytes changes.
7374 */
7375static void calculate_totalreserve_pages(void)
7376{
7377 struct pglist_data *pgdat;
7378 unsigned long reserve_pages = 0;
2f6726e5 7379 enum zone_type i, j;
cb45b0e9
HA
7380
7381 for_each_online_pgdat(pgdat) {
281e3726
MG
7382
7383 pgdat->totalreserve_pages = 0;
7384
cb45b0e9
HA
7385 for (i = 0; i < MAX_NR_ZONES; i++) {
7386 struct zone *zone = pgdat->node_zones + i;
3484b2de 7387 long max = 0;
9705bea5 7388 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7389
7390 /* Find valid and maximum lowmem_reserve in the zone */
7391 for (j = i; j < MAX_NR_ZONES; j++) {
7392 if (zone->lowmem_reserve[j] > max)
7393 max = zone->lowmem_reserve[j];
7394 }
7395
41858966
MG
7396 /* we treat the high watermark as reserved pages. */
7397 max += high_wmark_pages(zone);
cb45b0e9 7398
3d6357de
AK
7399 if (max > managed_pages)
7400 max = managed_pages;
a8d01437 7401
281e3726 7402 pgdat->totalreserve_pages += max;
a8d01437 7403
cb45b0e9
HA
7404 reserve_pages += max;
7405 }
7406 }
7407 totalreserve_pages = reserve_pages;
7408}
7409
1da177e4
LT
7410/*
7411 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7412 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7413 * has a correct pages reserved value, so an adequate number of
7414 * pages are left in the zone after a successful __alloc_pages().
7415 */
7416static void setup_per_zone_lowmem_reserve(void)
7417{
7418 struct pglist_data *pgdat;
2f6726e5 7419 enum zone_type j, idx;
1da177e4 7420
ec936fc5 7421 for_each_online_pgdat(pgdat) {
1da177e4
LT
7422 for (j = 0; j < MAX_NR_ZONES; j++) {
7423 struct zone *zone = pgdat->node_zones + j;
9705bea5 7424 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7425
7426 zone->lowmem_reserve[j] = 0;
7427
2f6726e5
CL
7428 idx = j;
7429 while (idx) {
1da177e4
LT
7430 struct zone *lower_zone;
7431
2f6726e5 7432 idx--;
1da177e4 7433 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7434
7435 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7436 sysctl_lowmem_reserve_ratio[idx] = 0;
7437 lower_zone->lowmem_reserve[j] = 0;
7438 } else {
7439 lower_zone->lowmem_reserve[j] =
7440 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7441 }
9705bea5 7442 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7443 }
7444 }
7445 }
cb45b0e9
HA
7446
7447 /* update totalreserve_pages */
7448 calculate_totalreserve_pages();
1da177e4
LT
7449}
7450
cfd3da1e 7451static void __setup_per_zone_wmarks(void)
1da177e4
LT
7452{
7453 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7454 unsigned long lowmem_pages = 0;
7455 struct zone *zone;
7456 unsigned long flags;
7457
7458 /* Calculate total number of !ZONE_HIGHMEM pages */
7459 for_each_zone(zone) {
7460 if (!is_highmem(zone))
9705bea5 7461 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7462 }
7463
7464 for_each_zone(zone) {
ac924c60
AM
7465 u64 tmp;
7466
1125b4e3 7467 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7468 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7469 do_div(tmp, lowmem_pages);
1da177e4
LT
7470 if (is_highmem(zone)) {
7471 /*
669ed175
NP
7472 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7473 * need highmem pages, so cap pages_min to a small
7474 * value here.
7475 *
41858966 7476 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7477 * deltas control asynch page reclaim, and so should
669ed175 7478 * not be capped for highmem.
1da177e4 7479 */
90ae8d67 7480 unsigned long min_pages;
1da177e4 7481
9705bea5 7482 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7483 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7484 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7485 } else {
669ed175
NP
7486 /*
7487 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7488 * proportionate to the zone's size.
7489 */
a9214443 7490 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7491 }
7492
795ae7a0
JW
7493 /*
7494 * Set the kswapd watermarks distance according to the
7495 * scale factor in proportion to available memory, but
7496 * ensure a minimum size on small systems.
7497 */
7498 tmp = max_t(u64, tmp >> 2,
9705bea5 7499 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7500 watermark_scale_factor, 10000));
7501
a9214443
MG
7502 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7503 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7504 zone->watermark_boost = 0;
49f223a9 7505
1125b4e3 7506 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7507 }
cb45b0e9
HA
7508
7509 /* update totalreserve_pages */
7510 calculate_totalreserve_pages();
1da177e4
LT
7511}
7512
cfd3da1e
MG
7513/**
7514 * setup_per_zone_wmarks - called when min_free_kbytes changes
7515 * or when memory is hot-{added|removed}
7516 *
7517 * Ensures that the watermark[min,low,high] values for each zone are set
7518 * correctly with respect to min_free_kbytes.
7519 */
7520void setup_per_zone_wmarks(void)
7521{
b93e0f32
MH
7522 static DEFINE_SPINLOCK(lock);
7523
7524 spin_lock(&lock);
cfd3da1e 7525 __setup_per_zone_wmarks();
b93e0f32 7526 spin_unlock(&lock);
cfd3da1e
MG
7527}
7528
1da177e4
LT
7529/*
7530 * Initialise min_free_kbytes.
7531 *
7532 * For small machines we want it small (128k min). For large machines
7533 * we want it large (64MB max). But it is not linear, because network
7534 * bandwidth does not increase linearly with machine size. We use
7535 *
b8af2941 7536 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7537 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7538 *
7539 * which yields
7540 *
7541 * 16MB: 512k
7542 * 32MB: 724k
7543 * 64MB: 1024k
7544 * 128MB: 1448k
7545 * 256MB: 2048k
7546 * 512MB: 2896k
7547 * 1024MB: 4096k
7548 * 2048MB: 5792k
7549 * 4096MB: 8192k
7550 * 8192MB: 11584k
7551 * 16384MB: 16384k
7552 */
1b79acc9 7553int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7554{
7555 unsigned long lowmem_kbytes;
5f12733e 7556 int new_min_free_kbytes;
1da177e4
LT
7557
7558 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7559 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7560
7561 if (new_min_free_kbytes > user_min_free_kbytes) {
7562 min_free_kbytes = new_min_free_kbytes;
7563 if (min_free_kbytes < 128)
7564 min_free_kbytes = 128;
7565 if (min_free_kbytes > 65536)
7566 min_free_kbytes = 65536;
7567 } else {
7568 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7569 new_min_free_kbytes, user_min_free_kbytes);
7570 }
bc75d33f 7571 setup_per_zone_wmarks();
a6cccdc3 7572 refresh_zone_stat_thresholds();
1da177e4 7573 setup_per_zone_lowmem_reserve();
6423aa81
JK
7574
7575#ifdef CONFIG_NUMA
7576 setup_min_unmapped_ratio();
7577 setup_min_slab_ratio();
7578#endif
7579
1da177e4
LT
7580 return 0;
7581}
bc22af74 7582core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7583
7584/*
b8af2941 7585 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7586 * that we can call two helper functions whenever min_free_kbytes
7587 * changes.
7588 */
cccad5b9 7589int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7590 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7591{
da8c757b
HP
7592 int rc;
7593
7594 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7595 if (rc)
7596 return rc;
7597
5f12733e
MH
7598 if (write) {
7599 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7600 setup_per_zone_wmarks();
5f12733e 7601 }
1da177e4
LT
7602 return 0;
7603}
7604
1c30844d
MG
7605int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7606 void __user *buffer, size_t *length, loff_t *ppos)
7607{
7608 int rc;
7609
7610 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7611 if (rc)
7612 return rc;
7613
7614 return 0;
7615}
7616
795ae7a0
JW
7617int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7618 void __user *buffer, size_t *length, loff_t *ppos)
7619{
7620 int rc;
7621
7622 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7623 if (rc)
7624 return rc;
7625
7626 if (write)
7627 setup_per_zone_wmarks();
7628
7629 return 0;
7630}
7631
9614634f 7632#ifdef CONFIG_NUMA
6423aa81 7633static void setup_min_unmapped_ratio(void)
9614634f 7634{
6423aa81 7635 pg_data_t *pgdat;
9614634f 7636 struct zone *zone;
9614634f 7637
a5f5f91d 7638 for_each_online_pgdat(pgdat)
81cbcbc2 7639 pgdat->min_unmapped_pages = 0;
a5f5f91d 7640
9614634f 7641 for_each_zone(zone)
9705bea5
AK
7642 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7643 sysctl_min_unmapped_ratio) / 100;
9614634f 7644}
0ff38490 7645
6423aa81
JK
7646
7647int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7648 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7649{
0ff38490
CL
7650 int rc;
7651
8d65af78 7652 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7653 if (rc)
7654 return rc;
7655
6423aa81
JK
7656 setup_min_unmapped_ratio();
7657
7658 return 0;
7659}
7660
7661static void setup_min_slab_ratio(void)
7662{
7663 pg_data_t *pgdat;
7664 struct zone *zone;
7665
a5f5f91d
MG
7666 for_each_online_pgdat(pgdat)
7667 pgdat->min_slab_pages = 0;
7668
0ff38490 7669 for_each_zone(zone)
9705bea5
AK
7670 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7671 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7672}
7673
7674int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7675 void __user *buffer, size_t *length, loff_t *ppos)
7676{
7677 int rc;
7678
7679 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7680 if (rc)
7681 return rc;
7682
7683 setup_min_slab_ratio();
7684
0ff38490
CL
7685 return 0;
7686}
9614634f
CL
7687#endif
7688
1da177e4
LT
7689/*
7690 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7691 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7692 * whenever sysctl_lowmem_reserve_ratio changes.
7693 *
7694 * The reserve ratio obviously has absolutely no relation with the
41858966 7695 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7696 * if in function of the boot time zone sizes.
7697 */
cccad5b9 7698int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7699 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7700{
8d65af78 7701 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7702 setup_per_zone_lowmem_reserve();
7703 return 0;
7704}
7705
8ad4b1fb
RS
7706/*
7707 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7708 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7709 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7710 */
cccad5b9 7711int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7712 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7713{
7714 struct zone *zone;
7cd2b0a3 7715 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7716 int ret;
7717
7cd2b0a3
DR
7718 mutex_lock(&pcp_batch_high_lock);
7719 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7720
8d65af78 7721 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7722 if (!write || ret < 0)
7723 goto out;
7724
7725 /* Sanity checking to avoid pcp imbalance */
7726 if (percpu_pagelist_fraction &&
7727 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7728 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7729 ret = -EINVAL;
7730 goto out;
7731 }
7732
7733 /* No change? */
7734 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7735 goto out;
c8e251fa 7736
364df0eb 7737 for_each_populated_zone(zone) {
7cd2b0a3
DR
7738 unsigned int cpu;
7739
22a7f12b 7740 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7741 pageset_set_high_and_batch(zone,
7742 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7743 }
7cd2b0a3 7744out:
c8e251fa 7745 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7746 return ret;
8ad4b1fb
RS
7747}
7748
a9919c79 7749#ifdef CONFIG_NUMA
f034b5d4 7750int hashdist = HASHDIST_DEFAULT;
1da177e4 7751
1da177e4
LT
7752static int __init set_hashdist(char *str)
7753{
7754 if (!str)
7755 return 0;
7756 hashdist = simple_strtoul(str, &str, 0);
7757 return 1;
7758}
7759__setup("hashdist=", set_hashdist);
7760#endif
7761
f6f34b43
SD
7762#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7763/*
7764 * Returns the number of pages that arch has reserved but
7765 * is not known to alloc_large_system_hash().
7766 */
7767static unsigned long __init arch_reserved_kernel_pages(void)
7768{
7769 return 0;
7770}
7771#endif
7772
9017217b
PT
7773/*
7774 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7775 * machines. As memory size is increased the scale is also increased but at
7776 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7777 * quadruples the scale is increased by one, which means the size of hash table
7778 * only doubles, instead of quadrupling as well.
7779 * Because 32-bit systems cannot have large physical memory, where this scaling
7780 * makes sense, it is disabled on such platforms.
7781 */
7782#if __BITS_PER_LONG > 32
7783#define ADAPT_SCALE_BASE (64ul << 30)
7784#define ADAPT_SCALE_SHIFT 2
7785#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7786#endif
7787
1da177e4
LT
7788/*
7789 * allocate a large system hash table from bootmem
7790 * - it is assumed that the hash table must contain an exact power-of-2
7791 * quantity of entries
7792 * - limit is the number of hash buckets, not the total allocation size
7793 */
7794void *__init alloc_large_system_hash(const char *tablename,
7795 unsigned long bucketsize,
7796 unsigned long numentries,
7797 int scale,
7798 int flags,
7799 unsigned int *_hash_shift,
7800 unsigned int *_hash_mask,
31fe62b9
TB
7801 unsigned long low_limit,
7802 unsigned long high_limit)
1da177e4 7803{
31fe62b9 7804 unsigned long long max = high_limit;
1da177e4
LT
7805 unsigned long log2qty, size;
7806 void *table = NULL;
3749a8f0 7807 gfp_t gfp_flags;
1da177e4
LT
7808
7809 /* allow the kernel cmdline to have a say */
7810 if (!numentries) {
7811 /* round applicable memory size up to nearest megabyte */
04903664 7812 numentries = nr_kernel_pages;
f6f34b43 7813 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7814
7815 /* It isn't necessary when PAGE_SIZE >= 1MB */
7816 if (PAGE_SHIFT < 20)
7817 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7818
9017217b
PT
7819#if __BITS_PER_LONG > 32
7820 if (!high_limit) {
7821 unsigned long adapt;
7822
7823 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7824 adapt <<= ADAPT_SCALE_SHIFT)
7825 scale++;
7826 }
7827#endif
7828
1da177e4
LT
7829 /* limit to 1 bucket per 2^scale bytes of low memory */
7830 if (scale > PAGE_SHIFT)
7831 numentries >>= (scale - PAGE_SHIFT);
7832 else
7833 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7834
7835 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7836 if (unlikely(flags & HASH_SMALL)) {
7837 /* Makes no sense without HASH_EARLY */
7838 WARN_ON(!(flags & HASH_EARLY));
7839 if (!(numentries >> *_hash_shift)) {
7840 numentries = 1UL << *_hash_shift;
7841 BUG_ON(!numentries);
7842 }
7843 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7844 numentries = PAGE_SIZE / bucketsize;
1da177e4 7845 }
6e692ed3 7846 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7847
7848 /* limit allocation size to 1/16 total memory by default */
7849 if (max == 0) {
7850 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7851 do_div(max, bucketsize);
7852 }
074b8517 7853 max = min(max, 0x80000000ULL);
1da177e4 7854
31fe62b9
TB
7855 if (numentries < low_limit)
7856 numentries = low_limit;
1da177e4
LT
7857 if (numentries > max)
7858 numentries = max;
7859
f0d1b0b3 7860 log2qty = ilog2(numentries);
1da177e4 7861
3749a8f0 7862 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7863 do {
7864 size = bucketsize << log2qty;
ea1f5f37
PT
7865 if (flags & HASH_EARLY) {
7866 if (flags & HASH_ZERO)
7e1c4e27
MR
7867 table = memblock_alloc_nopanic(size,
7868 SMP_CACHE_BYTES);
ea1f5f37 7869 else
7e1c4e27
MR
7870 table = memblock_alloc_raw(size,
7871 SMP_CACHE_BYTES);
ea1f5f37 7872 } else if (hashdist) {
3749a8f0 7873 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7874 } else {
1037b83b
ED
7875 /*
7876 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7877 * some pages at the end of hash table which
7878 * alloc_pages_exact() automatically does
1037b83b 7879 */
264ef8a9 7880 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7881 table = alloc_pages_exact(size, gfp_flags);
7882 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7883 }
1da177e4
LT
7884 }
7885 } while (!table && size > PAGE_SIZE && --log2qty);
7886
7887 if (!table)
7888 panic("Failed to allocate %s hash table\n", tablename);
7889
1170532b
JP
7890 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7891 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7892
7893 if (_hash_shift)
7894 *_hash_shift = log2qty;
7895 if (_hash_mask)
7896 *_hash_mask = (1 << log2qty) - 1;
7897
7898 return table;
7899}
a117e66e 7900
a5d76b54 7901/*
80934513
MK
7902 * This function checks whether pageblock includes unmovable pages or not.
7903 * If @count is not zero, it is okay to include less @count unmovable pages
7904 *
b8af2941 7905 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7906 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7907 * check without lock_page also may miss some movable non-lru pages at
7908 * race condition. So you can't expect this function should be exact.
a5d76b54 7909 */
b023f468 7910bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 7911 int migratetype, int flags)
49ac8255
KH
7912{
7913 unsigned long pfn, iter, found;
47118af0 7914
49ac8255 7915 /*
15c30bc0
MH
7916 * TODO we could make this much more efficient by not checking every
7917 * page in the range if we know all of them are in MOVABLE_ZONE and
7918 * that the movable zone guarantees that pages are migratable but
7919 * the later is not the case right now unfortunatelly. E.g. movablecore
7920 * can still lead to having bootmem allocations in zone_movable.
49ac8255 7921 */
49ac8255 7922
4da2ce25
MH
7923 /*
7924 * CMA allocations (alloc_contig_range) really need to mark isolate
7925 * CMA pageblocks even when they are not movable in fact so consider
7926 * them movable here.
7927 */
7928 if (is_migrate_cma(migratetype) &&
7929 is_migrate_cma(get_pageblock_migratetype(page)))
7930 return false;
7931
49ac8255
KH
7932 pfn = page_to_pfn(page);
7933 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7934 unsigned long check = pfn + iter;
7935
29723fcc 7936 if (!pfn_valid_within(check))
49ac8255 7937 continue;
29723fcc 7938
49ac8255 7939 page = pfn_to_page(check);
c8721bbb 7940
d7ab3672 7941 if (PageReserved(page))
15c30bc0 7942 goto unmovable;
d7ab3672 7943
9d789999
MH
7944 /*
7945 * If the zone is movable and we have ruled out all reserved
7946 * pages then it should be reasonably safe to assume the rest
7947 * is movable.
7948 */
7949 if (zone_idx(zone) == ZONE_MOVABLE)
7950 continue;
7951
c8721bbb
NH
7952 /*
7953 * Hugepages are not in LRU lists, but they're movable.
7954 * We need not scan over tail pages bacause we don't
7955 * handle each tail page individually in migration.
7956 */
7957 if (PageHuge(page)) {
17e2e7d7
OS
7958 struct page *head = compound_head(page);
7959 unsigned int skip_pages;
464c7ffb 7960
17e2e7d7 7961 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
7962 goto unmovable;
7963
17e2e7d7
OS
7964 skip_pages = (1 << compound_order(head)) - (page - head);
7965 iter += skip_pages - 1;
c8721bbb
NH
7966 continue;
7967 }
7968
97d255c8
MK
7969 /*
7970 * We can't use page_count without pin a page
7971 * because another CPU can free compound page.
7972 * This check already skips compound tails of THP
0139aa7b 7973 * because their page->_refcount is zero at all time.
97d255c8 7974 */
fe896d18 7975 if (!page_ref_count(page)) {
49ac8255
KH
7976 if (PageBuddy(page))
7977 iter += (1 << page_order(page)) - 1;
7978 continue;
7979 }
97d255c8 7980
b023f468
WC
7981 /*
7982 * The HWPoisoned page may be not in buddy system, and
7983 * page_count() is not 0.
7984 */
d381c547 7985 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
7986 continue;
7987
0efadf48
YX
7988 if (__PageMovable(page))
7989 continue;
7990
49ac8255
KH
7991 if (!PageLRU(page))
7992 found++;
7993 /*
6b4f7799
JW
7994 * If there are RECLAIMABLE pages, we need to check
7995 * it. But now, memory offline itself doesn't call
7996 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7997 */
7998 /*
7999 * If the page is not RAM, page_count()should be 0.
8000 * we don't need more check. This is an _used_ not-movable page.
8001 *
8002 * The problematic thing here is PG_reserved pages. PG_reserved
8003 * is set to both of a memory hole page and a _used_ kernel
8004 * page at boot.
8005 */
8006 if (found > count)
15c30bc0 8007 goto unmovable;
49ac8255 8008 }
80934513 8009 return false;
15c30bc0
MH
8010unmovable:
8011 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547
MH
8012 if (flags & REPORT_FAILURE)
8013 dump_page(pfn_to_page(pfn+iter), "unmovable page");
15c30bc0 8014 return true;
49ac8255
KH
8015}
8016
080fe206 8017#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
8018
8019static unsigned long pfn_max_align_down(unsigned long pfn)
8020{
8021 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8022 pageblock_nr_pages) - 1);
8023}
8024
8025static unsigned long pfn_max_align_up(unsigned long pfn)
8026{
8027 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8028 pageblock_nr_pages));
8029}
8030
041d3a8c 8031/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8032static int __alloc_contig_migrate_range(struct compact_control *cc,
8033 unsigned long start, unsigned long end)
041d3a8c
MN
8034{
8035 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8036 unsigned long nr_reclaimed;
041d3a8c
MN
8037 unsigned long pfn = start;
8038 unsigned int tries = 0;
8039 int ret = 0;
8040
be49a6e1 8041 migrate_prep();
041d3a8c 8042
bb13ffeb 8043 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8044 if (fatal_signal_pending(current)) {
8045 ret = -EINTR;
8046 break;
8047 }
8048
bb13ffeb
MG
8049 if (list_empty(&cc->migratepages)) {
8050 cc->nr_migratepages = 0;
edc2ca61 8051 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8052 if (!pfn) {
8053 ret = -EINTR;
8054 break;
8055 }
8056 tries = 0;
8057 } else if (++tries == 5) {
8058 ret = ret < 0 ? ret : -EBUSY;
8059 break;
8060 }
8061
beb51eaa
MK
8062 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8063 &cc->migratepages);
8064 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8065
9c620e2b 8066 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8067 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8068 }
2a6f5124
SP
8069 if (ret < 0) {
8070 putback_movable_pages(&cc->migratepages);
8071 return ret;
8072 }
8073 return 0;
041d3a8c
MN
8074}
8075
8076/**
8077 * alloc_contig_range() -- tries to allocate given range of pages
8078 * @start: start PFN to allocate
8079 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8080 * @migratetype: migratetype of the underlaying pageblocks (either
8081 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8082 * in range must have the same migratetype and it must
8083 * be either of the two.
ca96b625 8084 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8085 *
8086 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8087 * aligned. The PFN range must belong to a single zone.
041d3a8c 8088 *
2c7452a0
MK
8089 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8090 * pageblocks in the range. Once isolated, the pageblocks should not
8091 * be modified by others.
041d3a8c
MN
8092 *
8093 * Returns zero on success or negative error code. On success all
8094 * pages which PFN is in [start, end) are allocated for the caller and
8095 * need to be freed with free_contig_range().
8096 */
0815f3d8 8097int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8098 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8099{
041d3a8c 8100 unsigned long outer_start, outer_end;
d00181b9
KS
8101 unsigned int order;
8102 int ret = 0;
041d3a8c 8103
bb13ffeb
MG
8104 struct compact_control cc = {
8105 .nr_migratepages = 0,
8106 .order = -1,
8107 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8108 .mode = MIGRATE_SYNC,
bb13ffeb 8109 .ignore_skip_hint = true,
2583d671 8110 .no_set_skip_hint = true,
7dea19f9 8111 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8112 };
8113 INIT_LIST_HEAD(&cc.migratepages);
8114
041d3a8c
MN
8115 /*
8116 * What we do here is we mark all pageblocks in range as
8117 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8118 * have different sizes, and due to the way page allocator
8119 * work, we align the range to biggest of the two pages so
8120 * that page allocator won't try to merge buddies from
8121 * different pageblocks and change MIGRATE_ISOLATE to some
8122 * other migration type.
8123 *
8124 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8125 * migrate the pages from an unaligned range (ie. pages that
8126 * we are interested in). This will put all the pages in
8127 * range back to page allocator as MIGRATE_ISOLATE.
8128 *
8129 * When this is done, we take the pages in range from page
8130 * allocator removing them from the buddy system. This way
8131 * page allocator will never consider using them.
8132 *
8133 * This lets us mark the pageblocks back as
8134 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8135 * aligned range but not in the unaligned, original range are
8136 * put back to page allocator so that buddy can use them.
8137 */
8138
8139 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8140 pfn_max_align_up(end), migratetype, 0);
041d3a8c 8141 if (ret)
86a595f9 8142 return ret;
041d3a8c 8143
8ef5849f
JK
8144 /*
8145 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8146 * So, just fall through. test_pages_isolated() has a tracepoint
8147 * which will report the busy page.
8148 *
8149 * It is possible that busy pages could become available before
8150 * the call to test_pages_isolated, and the range will actually be
8151 * allocated. So, if we fall through be sure to clear ret so that
8152 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8153 */
bb13ffeb 8154 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8155 if (ret && ret != -EBUSY)
041d3a8c 8156 goto done;
63cd4489 8157 ret =0;
041d3a8c
MN
8158
8159 /*
8160 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8161 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8162 * more, all pages in [start, end) are free in page allocator.
8163 * What we are going to do is to allocate all pages from
8164 * [start, end) (that is remove them from page allocator).
8165 *
8166 * The only problem is that pages at the beginning and at the
8167 * end of interesting range may be not aligned with pages that
8168 * page allocator holds, ie. they can be part of higher order
8169 * pages. Because of this, we reserve the bigger range and
8170 * once this is done free the pages we are not interested in.
8171 *
8172 * We don't have to hold zone->lock here because the pages are
8173 * isolated thus they won't get removed from buddy.
8174 */
8175
8176 lru_add_drain_all();
510f5507 8177 drain_all_pages(cc.zone);
041d3a8c
MN
8178
8179 order = 0;
8180 outer_start = start;
8181 while (!PageBuddy(pfn_to_page(outer_start))) {
8182 if (++order >= MAX_ORDER) {
8ef5849f
JK
8183 outer_start = start;
8184 break;
041d3a8c
MN
8185 }
8186 outer_start &= ~0UL << order;
8187 }
8188
8ef5849f
JK
8189 if (outer_start != start) {
8190 order = page_order(pfn_to_page(outer_start));
8191
8192 /*
8193 * outer_start page could be small order buddy page and
8194 * it doesn't include start page. Adjust outer_start
8195 * in this case to report failed page properly
8196 * on tracepoint in test_pages_isolated()
8197 */
8198 if (outer_start + (1UL << order) <= start)
8199 outer_start = start;
8200 }
8201
041d3a8c 8202 /* Make sure the range is really isolated. */
b023f468 8203 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8204 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8205 __func__, outer_start, end);
041d3a8c
MN
8206 ret = -EBUSY;
8207 goto done;
8208 }
8209
49f223a9 8210 /* Grab isolated pages from freelists. */
bb13ffeb 8211 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8212 if (!outer_end) {
8213 ret = -EBUSY;
8214 goto done;
8215 }
8216
8217 /* Free head and tail (if any) */
8218 if (start != outer_start)
8219 free_contig_range(outer_start, start - outer_start);
8220 if (end != outer_end)
8221 free_contig_range(end, outer_end - end);
8222
8223done:
8224 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8225 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8226 return ret;
8227}
8228
8229void free_contig_range(unsigned long pfn, unsigned nr_pages)
8230{
bcc2b02f
MS
8231 unsigned int count = 0;
8232
8233 for (; nr_pages--; pfn++) {
8234 struct page *page = pfn_to_page(pfn);
8235
8236 count += page_count(page) != 1;
8237 __free_page(page);
8238 }
8239 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
8240}
8241#endif
8242
d883c6cf 8243#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8244/*
8245 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8246 * page high values need to be recalulated.
8247 */
4ed7e022
JL
8248void __meminit zone_pcp_update(struct zone *zone)
8249{
0a647f38 8250 unsigned cpu;
c8e251fa 8251 mutex_lock(&pcp_batch_high_lock);
0a647f38 8252 for_each_possible_cpu(cpu)
169f6c19
CS
8253 pageset_set_high_and_batch(zone,
8254 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8255 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8256}
8257#endif
8258
340175b7
JL
8259void zone_pcp_reset(struct zone *zone)
8260{
8261 unsigned long flags;
5a883813
MK
8262 int cpu;
8263 struct per_cpu_pageset *pset;
340175b7
JL
8264
8265 /* avoid races with drain_pages() */
8266 local_irq_save(flags);
8267 if (zone->pageset != &boot_pageset) {
5a883813
MK
8268 for_each_online_cpu(cpu) {
8269 pset = per_cpu_ptr(zone->pageset, cpu);
8270 drain_zonestat(zone, pset);
8271 }
340175b7
JL
8272 free_percpu(zone->pageset);
8273 zone->pageset = &boot_pageset;
8274 }
8275 local_irq_restore(flags);
8276}
8277
6dcd73d7 8278#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8279/*
b9eb6319
JK
8280 * All pages in the range must be in a single zone and isolated
8281 * before calling this.
0c0e6195
KH
8282 */
8283void
8284__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8285{
8286 struct page *page;
8287 struct zone *zone;
7aeb09f9 8288 unsigned int order, i;
0c0e6195
KH
8289 unsigned long pfn;
8290 unsigned long flags;
8291 /* find the first valid pfn */
8292 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8293 if (pfn_valid(pfn))
8294 break;
8295 if (pfn == end_pfn)
8296 return;
2d070eab 8297 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8298 zone = page_zone(pfn_to_page(pfn));
8299 spin_lock_irqsave(&zone->lock, flags);
8300 pfn = start_pfn;
8301 while (pfn < end_pfn) {
8302 if (!pfn_valid(pfn)) {
8303 pfn++;
8304 continue;
8305 }
8306 page = pfn_to_page(pfn);
b023f468
WC
8307 /*
8308 * The HWPoisoned page may be not in buddy system, and
8309 * page_count() is not 0.
8310 */
8311 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8312 pfn++;
8313 SetPageReserved(page);
8314 continue;
8315 }
8316
0c0e6195
KH
8317 BUG_ON(page_count(page));
8318 BUG_ON(!PageBuddy(page));
8319 order = page_order(page);
8320#ifdef CONFIG_DEBUG_VM
1170532b
JP
8321 pr_info("remove from free list %lx %d %lx\n",
8322 pfn, 1 << order, end_pfn);
0c0e6195
KH
8323#endif
8324 list_del(&page->lru);
8325 rmv_page_order(page);
8326 zone->free_area[order].nr_free--;
0c0e6195
KH
8327 for (i = 0; i < (1 << order); i++)
8328 SetPageReserved((page+i));
8329 pfn += (1 << order);
8330 }
8331 spin_unlock_irqrestore(&zone->lock, flags);
8332}
8333#endif
8d22ba1b 8334
8d22ba1b
WF
8335bool is_free_buddy_page(struct page *page)
8336{
8337 struct zone *zone = page_zone(page);
8338 unsigned long pfn = page_to_pfn(page);
8339 unsigned long flags;
7aeb09f9 8340 unsigned int order;
8d22ba1b
WF
8341
8342 spin_lock_irqsave(&zone->lock, flags);
8343 for (order = 0; order < MAX_ORDER; order++) {
8344 struct page *page_head = page - (pfn & ((1 << order) - 1));
8345
8346 if (PageBuddy(page_head) && page_order(page_head) >= order)
8347 break;
8348 }
8349 spin_unlock_irqrestore(&zone->lock, flags);
8350
8351 return order < MAX_ORDER;
8352}
d4ae9916
NH
8353
8354#ifdef CONFIG_MEMORY_FAILURE
8355/*
8356 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8357 * test is performed under the zone lock to prevent a race against page
8358 * allocation.
8359 */
8360bool set_hwpoison_free_buddy_page(struct page *page)
8361{
8362 struct zone *zone = page_zone(page);
8363 unsigned long pfn = page_to_pfn(page);
8364 unsigned long flags;
8365 unsigned int order;
8366 bool hwpoisoned = false;
8367
8368 spin_lock_irqsave(&zone->lock, flags);
8369 for (order = 0; order < MAX_ORDER; order++) {
8370 struct page *page_head = page - (pfn & ((1 << order) - 1));
8371
8372 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8373 if (!TestSetPageHWPoison(page))
8374 hwpoisoned = true;
8375 break;
8376 }
8377 }
8378 spin_unlock_irqrestore(&zone->lock, flags);
8379
8380 return hwpoisoned;
8381}
8382#endif