mm/vmscan.c: fix -Wunused-but-set-variable warning
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
7ee3d4e8 75#include <asm/sections.h>
1da177e4 76#include <asm/tlbflush.h>
ac924c60 77#include <asm/div64.h>
1da177e4 78#include "internal.h"
e900a918 79#include "shuffle.h"
36e66c55 80#include "page_reporting.h"
1da177e4 81
f04a5d5d
DH
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
47b6a24a
DH
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
2c335680
AK
110/*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
c8e251fa
CS
121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 124
dbbee9d5
MG
125struct pagesets {
126 local_lock_t lock;
dbbee9d5
MG
127};
128static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130};
c8e251fa 131
72812019
LS
132#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133DEFINE_PER_CPU(int, numa_node);
134EXPORT_PER_CPU_SYMBOL(numa_node);
135#endif
136
4518085e
KW
137DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
7aac7898
LS
139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
140/*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148#endif
149
bd233f53 150/* work_structs for global per-cpu drains */
d9367bd0
WY
151struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154};
8b885f53
JY
155static DEFINE_MUTEX(pcpu_drain_mutex);
156static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 157
38addce8 158#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 159volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
160EXPORT_SYMBOL(latent_entropy);
161#endif
162
1da177e4 163/*
13808910 164 * Array of node states.
1da177e4 165 */
13808910
CL
166nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169#ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171#ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 173#endif
20b2f52b 174 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
175 [N_CPU] = { { [0] = 1UL } },
176#endif /* NUMA */
177};
178EXPORT_SYMBOL(node_states);
179
ca79b0c2
AK
180atomic_long_t _totalram_pages __read_mostly;
181EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 182unsigned long totalreserve_pages __read_mostly;
e48322ab 183unsigned long totalcma_pages __read_mostly;
ab8fabd4 184
74f44822 185int percpu_pagelist_high_fraction;
dcce284a 186gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 187DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
188EXPORT_SYMBOL(init_on_alloc);
189
51cba1eb 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
191EXPORT_SYMBOL(init_on_free);
192
04013513
VB
193static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
195static int __init early_init_on_alloc(char *buf)
196{
6471384a 197
04013513 198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
199}
200early_param("init_on_alloc", early_init_on_alloc);
201
04013513
VB
202static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
204static int __init early_init_on_free(char *buf)
205{
04013513 206 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
207}
208early_param("init_on_free", early_init_on_free);
1da177e4 209
bb14c2c7
VB
210/*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218static inline int get_pcppage_migratetype(struct page *page)
219{
220 return page->index;
221}
222
223static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224{
225 page->index = migratetype;
226}
227
452aa699
RW
228#ifdef CONFIG_PM_SLEEP
229/*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
452aa699 237 */
c9e664f1
RW
238
239static gfp_t saved_gfp_mask;
240
241void pm_restore_gfp_mask(void)
452aa699 242{
55f2503c 243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
452aa699
RW
248}
249
c9e664f1 250void pm_restrict_gfp_mask(void)
452aa699 251{
55f2503c 252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
d0164adc 255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 256}
f90ac398
MG
257
258bool pm_suspended_storage(void)
259{
d0164adc 260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
261 return false;
262 return true;
263}
452aa699
RW
264#endif /* CONFIG_PM_SLEEP */
265
d9c23400 266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 267unsigned int pageblock_order __read_mostly;
d9c23400
MG
268#endif
269
7fef431b
DH
270static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
a226f6c8 272
1da177e4
LT
273/*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
1da177e4 283 */
d3cda233 284int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 285#ifdef CONFIG_ZONE_DMA
d3cda233 286 [ZONE_DMA] = 256,
4b51d669 287#endif
fb0e7942 288#ifdef CONFIG_ZONE_DMA32
d3cda233 289 [ZONE_DMA32] = 256,
fb0e7942 290#endif
d3cda233 291 [ZONE_NORMAL] = 32,
e53ef38d 292#ifdef CONFIG_HIGHMEM
d3cda233 293 [ZONE_HIGHMEM] = 0,
e53ef38d 294#endif
d3cda233 295 [ZONE_MOVABLE] = 0,
2f1b6248 296};
1da177e4 297
15ad7cdc 298static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 299#ifdef CONFIG_ZONE_DMA
2f1b6248 300 "DMA",
4b51d669 301#endif
fb0e7942 302#ifdef CONFIG_ZONE_DMA32
2f1b6248 303 "DMA32",
fb0e7942 304#endif
2f1b6248 305 "Normal",
e53ef38d 306#ifdef CONFIG_HIGHMEM
2a1e274a 307 "HighMem",
e53ef38d 308#endif
2a1e274a 309 "Movable",
033fbae9
DW
310#ifdef CONFIG_ZONE_DEVICE
311 "Device",
312#endif
2f1b6248
CL
313};
314
c999fbd3 315const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320#ifdef CONFIG_CMA
321 "CMA",
322#endif
323#ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325#endif
326};
327
ae70eddd
AK
328compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 331#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 332 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 333#endif
9a982250 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 336#endif
f1e61557
KS
337};
338
1da177e4 339int min_free_kbytes = 1024;
42aa83cb 340int user_min_free_kbytes = -1;
1c30844d 341int watermark_boost_factor __read_mostly = 15000;
795ae7a0 342int watermark_scale_factor = 10;
1da177e4 343
bbe5d993
OS
344static unsigned long nr_kernel_pages __initdata;
345static unsigned long nr_all_pages __initdata;
346static unsigned long dma_reserve __initdata;
1da177e4 347
bbe5d993
OS
348static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 350static unsigned long required_kernelcore __initdata;
a5c6d650 351static unsigned long required_kernelcore_percent __initdata;
7f16f91f 352static unsigned long required_movablecore __initdata;
a5c6d650 353static unsigned long required_movablecore_percent __initdata;
bbe5d993 354static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 355static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
356
357/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358int movable_zone;
359EXPORT_SYMBOL(movable_zone);
c713216d 360
418508c1 361#if MAX_NUMNODES > 1
b9726c26 362unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 363unsigned int nr_online_nodes __read_mostly = 1;
418508c1 364EXPORT_SYMBOL(nr_node_ids);
62bc62a8 365EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
366#endif
367
9ef9acb0
MG
368int page_group_by_mobility_disabled __read_mostly;
369
3a80a7fa 370#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
371/*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378/*
7a3b8353 379 * Calling kasan_poison_pages() only after deferred memory initialization
3c0c12cc
WL
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
c275c5c6 391static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
3c0c12cc 392{
7a3b8353
PC
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
c275c5c6
PC
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
3c0c12cc
WL
397}
398
3a80a7fa 399/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 400static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 401{
ef70b6f4
MG
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
405 return true;
406
407 return false;
408}
409
410/*
d3035be4 411 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
412 * later in the boot cycle when it can be parallelised.
413 */
d3035be4
PT
414static bool __meminit
415defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 416{
d3035be4
PT
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
3c2c6488 428 /* Always populate low zones for address-constrained allocations */
d3035be4 429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 430 return false;
23b68cfa 431
dc2da7b4
BH
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
23b68cfa
WY
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
d3035be4 438 nr_initialised++;
23b68cfa 439 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
3a80a7fa 443 }
d3035be4 444 return false;
3a80a7fa
MG
445}
446#else
c275c5c6 447static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
2c335680 448{
7a3b8353 449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
c275c5c6
PC
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
2c335680 452}
3c0c12cc 453
3a80a7fa
MG
454static inline bool early_page_uninitialised(unsigned long pfn)
455{
456 return false;
457}
458
d3035be4 459static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 460{
d3035be4 461 return false;
3a80a7fa
MG
462}
463#endif
464
0b423ca2 465/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 466static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
467 unsigned long pfn)
468{
469#ifdef CONFIG_SPARSEMEM
f1eca35a 470 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
471#else
472 return page_zone(page)->pageblock_flags;
473#endif /* CONFIG_SPARSEMEM */
474}
475
ca891f41 476static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
477{
478#ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
480#else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 482#endif /* CONFIG_SPARSEMEM */
399b795b 483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
484}
485
535b81e2 486static __always_inline
ca891f41 487unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 488 unsigned long pfn,
0b423ca2
MG
489 unsigned long mask)
490{
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
d93d5ab9 501 return (word >> bitidx) & mask;
0b423ca2
MG
502}
503
a00cda3f
MCC
504/**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
ca891f41
MWO
512unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
0b423ca2 514{
535b81e2 515 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
516}
517
ca891f41
MWO
518static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
0b423ca2 520{
535b81e2 521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
522}
523
524/**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
0b423ca2
MG
529 * @mask: mask of bits that the caller is interested in
530 */
531void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
0b423ca2
MG
533 unsigned long mask)
534{
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
d93d5ab9
WY
549 mask <<= bitidx;
550 flags <<= bitidx;
0b423ca2
MG
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559}
3a80a7fa 560
ee6f509c 561void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 562{
5d0f3f72
KM
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
565 migratetype = MIGRATE_UNMOVABLE;
566
d93d5ab9 567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 568 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
569}
570
13e7444b 571#ifdef CONFIG_DEBUG_VM
c6a57e19 572static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 573{
bdc8cb98
DH
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 577 unsigned long sp, start_pfn;
c6a57e19 578
bdc8cb98
DH
579 do {
580 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
108bcc96 583 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
b5e6a5a2 587 if (ret)
613813e8
DH
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
b5e6a5a2 591
bdc8cb98 592 return ret;
c6a57e19
DH
593}
594
595static int page_is_consistent(struct zone *zone, struct page *page)
596{
1da177e4 597 if (zone != page_zone(page))
c6a57e19
DH
598 return 0;
599
600 return 1;
601}
602/*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
d73d3c9f 605static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
606{
607 if (page_outside_zone_boundaries(zone, page))
1da177e4 608 return 1;
c6a57e19
DH
609 if (!page_is_consistent(zone, page))
610 return 1;
611
1da177e4
LT
612 return 0;
613}
13e7444b 614#else
d73d3c9f 615static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
616{
617 return 0;
618}
619#endif
620
82a3241a 621static void bad_page(struct page *page, const char *reason)
1da177e4 622{
d936cf9b
HD
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
ff8e8116 637 pr_alert(
1e9e6365 638 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
ff8e8116 647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 648 current->comm, page_to_pfn(page));
d2f07ec0 649 dump_page(page, reason);
3dc14741 650
4f31888c 651 print_modules();
1da177e4 652 dump_stack();
d936cf9b 653out:
8cc3b392 654 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 655 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
657}
658
44042b44
MG
659static inline unsigned int order_to_pindex(int migratetype, int order)
660{
661 int base = order;
662
663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668#else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670#endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673}
674
675static inline int pindex_to_order(unsigned int pindex)
676{
677 int order = pindex / MIGRATE_PCPTYPES;
678
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ea808b4e 680 if (order > PAGE_ALLOC_COSTLY_ORDER)
44042b44 681 order = pageblock_order;
44042b44
MG
682#else
683 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
684#endif
685
686 return order;
687}
688
689static inline bool pcp_allowed_order(unsigned int order)
690{
691 if (order <= PAGE_ALLOC_COSTLY_ORDER)
692 return true;
693#ifdef CONFIG_TRANSPARENT_HUGEPAGE
694 if (order == pageblock_order)
695 return true;
696#endif
697 return false;
698}
699
21d02f8f
MG
700static inline void free_the_page(struct page *page, unsigned int order)
701{
44042b44
MG
702 if (pcp_allowed_order(order)) /* Via pcp? */
703 free_unref_page(page, order);
21d02f8f
MG
704 else
705 __free_pages_ok(page, order, FPI_NONE);
706}
707
1da177e4
LT
708/*
709 * Higher-order pages are called "compound pages". They are structured thusly:
710 *
1d798ca3 711 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 712 *
1d798ca3
KS
713 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
714 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 715 *
1d798ca3
KS
716 * The first tail page's ->compound_dtor holds the offset in array of compound
717 * page destructors. See compound_page_dtors.
1da177e4 718 *
1d798ca3 719 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 720 * This usage means that zero-order pages may not be compound.
1da177e4 721 */
d98c7a09 722
9a982250 723void free_compound_page(struct page *page)
d98c7a09 724{
7ae88534 725 mem_cgroup_uncharge(page);
44042b44 726 free_the_page(page, compound_order(page));
d98c7a09
HD
727}
728
d00181b9 729void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
730{
731 int i;
732 int nr_pages = 1 << order;
733
18229df5
AW
734 __SetPageHead(page);
735 for (i = 1; i < nr_pages; i++) {
736 struct page *p = page + i;
1c290f64 737 p->mapping = TAIL_MAPPING;
1d798ca3 738 set_compound_head(p, page);
18229df5 739 }
1378a5ee
MWO
740
741 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
742 set_compound_order(page, order);
53f9263b 743 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
744 if (hpage_pincount_available(page))
745 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
746}
747
c0a32fc5
SG
748#ifdef CONFIG_DEBUG_PAGEALLOC
749unsigned int _debug_guardpage_minorder;
96a2b03f 750
8e57f8ac
VB
751bool _debug_pagealloc_enabled_early __read_mostly
752 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
753EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 754DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 755EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
756
757DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 758
031bc574
JK
759static int __init early_debug_pagealloc(char *buf)
760{
8e57f8ac 761 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
762}
763early_param("debug_pagealloc", early_debug_pagealloc);
764
c0a32fc5
SG
765static int __init debug_guardpage_minorder_setup(char *buf)
766{
767 unsigned long res;
768
769 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 770 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
771 return 0;
772 }
773 _debug_guardpage_minorder = res;
1170532b 774 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
775 return 0;
776}
f1c1e9f7 777early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 778
acbc15a4 779static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 780 unsigned int order, int migratetype)
c0a32fc5 781{
e30825f1 782 if (!debug_guardpage_enabled())
acbc15a4
JK
783 return false;
784
785 if (order >= debug_guardpage_minorder())
786 return false;
e30825f1 787
3972f6bb 788 __SetPageGuard(page);
2847cf95
JK
789 INIT_LIST_HEAD(&page->lru);
790 set_page_private(page, order);
791 /* Guard pages are not available for any usage */
792 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
793
794 return true;
c0a32fc5
SG
795}
796
2847cf95
JK
797static inline void clear_page_guard(struct zone *zone, struct page *page,
798 unsigned int order, int migratetype)
c0a32fc5 799{
e30825f1
JK
800 if (!debug_guardpage_enabled())
801 return;
802
3972f6bb 803 __ClearPageGuard(page);
e30825f1 804
2847cf95
JK
805 set_page_private(page, 0);
806 if (!is_migrate_isolate(migratetype))
807 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
808}
809#else
acbc15a4
JK
810static inline bool set_page_guard(struct zone *zone, struct page *page,
811 unsigned int order, int migratetype) { return false; }
2847cf95
JK
812static inline void clear_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) {}
c0a32fc5
SG
814#endif
815
04013513
VB
816/*
817 * Enable static keys related to various memory debugging and hardening options.
818 * Some override others, and depend on early params that are evaluated in the
819 * order of appearance. So we need to first gather the full picture of what was
820 * enabled, and then make decisions.
821 */
822void init_mem_debugging_and_hardening(void)
823{
9df65f52
ST
824 bool page_poisoning_requested = false;
825
826#ifdef CONFIG_PAGE_POISONING
827 /*
828 * Page poisoning is debug page alloc for some arches. If
829 * either of those options are enabled, enable poisoning.
830 */
831 if (page_poisoning_enabled() ||
832 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
833 debug_pagealloc_enabled())) {
834 static_branch_enable(&_page_poisoning_enabled);
835 page_poisoning_requested = true;
836 }
837#endif
838
69e5d322
ST
839 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
840 page_poisoning_requested) {
841 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
842 "will take precedence over init_on_alloc and init_on_free\n");
843 _init_on_alloc_enabled_early = false;
844 _init_on_free_enabled_early = false;
04013513
VB
845 }
846
69e5d322
ST
847 if (_init_on_alloc_enabled_early)
848 static_branch_enable(&init_on_alloc);
849 else
850 static_branch_disable(&init_on_alloc);
851
852 if (_init_on_free_enabled_early)
853 static_branch_enable(&init_on_free);
854 else
855 static_branch_disable(&init_on_free);
856
04013513
VB
857#ifdef CONFIG_DEBUG_PAGEALLOC
858 if (!debug_pagealloc_enabled())
859 return;
860
861 static_branch_enable(&_debug_pagealloc_enabled);
862
863 if (!debug_guardpage_minorder())
864 return;
865
866 static_branch_enable(&_debug_guardpage_enabled);
867#endif
868}
869
ab130f91 870static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 871{
4c21e2f2 872 set_page_private(page, order);
676165a8 873 __SetPageBuddy(page);
1da177e4
LT
874}
875
1da177e4
LT
876/*
877 * This function checks whether a page is free && is the buddy
6e292b9b 878 * we can coalesce a page and its buddy if
13ad59df 879 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 880 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
881 * (c) a page and its buddy have the same order &&
882 * (d) a page and its buddy are in the same zone.
676165a8 883 *
6e292b9b
MW
884 * For recording whether a page is in the buddy system, we set PageBuddy.
885 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 886 *
676165a8 887 * For recording page's order, we use page_private(page).
1da177e4 888 */
fe925c0c 889static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 890 unsigned int order)
1da177e4 891{
fe925c0c 892 if (!page_is_guard(buddy) && !PageBuddy(buddy))
893 return false;
4c5018ce 894
ab130f91 895 if (buddy_order(buddy) != order)
fe925c0c 896 return false;
c0a32fc5 897
fe925c0c 898 /*
899 * zone check is done late to avoid uselessly calculating
900 * zone/node ids for pages that could never merge.
901 */
902 if (page_zone_id(page) != page_zone_id(buddy))
903 return false;
d34c5fa0 904
fe925c0c 905 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 906
fe925c0c 907 return true;
1da177e4
LT
908}
909
5e1f0f09
MG
910#ifdef CONFIG_COMPACTION
911static inline struct capture_control *task_capc(struct zone *zone)
912{
913 struct capture_control *capc = current->capture_control;
914
deba0487 915 return unlikely(capc) &&
5e1f0f09
MG
916 !(current->flags & PF_KTHREAD) &&
917 !capc->page &&
deba0487 918 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
919}
920
921static inline bool
922compaction_capture(struct capture_control *capc, struct page *page,
923 int order, int migratetype)
924{
925 if (!capc || order != capc->cc->order)
926 return false;
927
928 /* Do not accidentally pollute CMA or isolated regions*/
929 if (is_migrate_cma(migratetype) ||
930 is_migrate_isolate(migratetype))
931 return false;
932
933 /*
f0953a1b 934 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
935 * This might let an unmovable request use a reclaimable pageblock
936 * and vice-versa but no more than normal fallback logic which can
937 * have trouble finding a high-order free page.
938 */
939 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
940 return false;
941
942 capc->page = page;
943 return true;
944}
945
946#else
947static inline struct capture_control *task_capc(struct zone *zone)
948{
949 return NULL;
950}
951
952static inline bool
953compaction_capture(struct capture_control *capc, struct page *page,
954 int order, int migratetype)
955{
956 return false;
957}
958#endif /* CONFIG_COMPACTION */
959
6ab01363
AD
960/* Used for pages not on another list */
961static inline void add_to_free_list(struct page *page, struct zone *zone,
962 unsigned int order, int migratetype)
963{
964 struct free_area *area = &zone->free_area[order];
965
966 list_add(&page->lru, &area->free_list[migratetype]);
967 area->nr_free++;
968}
969
970/* Used for pages not on another list */
971static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
972 unsigned int order, int migratetype)
973{
974 struct free_area *area = &zone->free_area[order];
975
976 list_add_tail(&page->lru, &area->free_list[migratetype]);
977 area->nr_free++;
978}
979
293ffa5e
DH
980/*
981 * Used for pages which are on another list. Move the pages to the tail
982 * of the list - so the moved pages won't immediately be considered for
983 * allocation again (e.g., optimization for memory onlining).
984 */
6ab01363
AD
985static inline void move_to_free_list(struct page *page, struct zone *zone,
986 unsigned int order, int migratetype)
987{
988 struct free_area *area = &zone->free_area[order];
989
293ffa5e 990 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
991}
992
993static inline void del_page_from_free_list(struct page *page, struct zone *zone,
994 unsigned int order)
995{
36e66c55
AD
996 /* clear reported state and update reported page count */
997 if (page_reported(page))
998 __ClearPageReported(page);
999
6ab01363
AD
1000 list_del(&page->lru);
1001 __ClearPageBuddy(page);
1002 set_page_private(page, 0);
1003 zone->free_area[order].nr_free--;
1004}
1005
a2129f24
AD
1006/*
1007 * If this is not the largest possible page, check if the buddy
1008 * of the next-highest order is free. If it is, it's possible
1009 * that pages are being freed that will coalesce soon. In case,
1010 * that is happening, add the free page to the tail of the list
1011 * so it's less likely to be used soon and more likely to be merged
1012 * as a higher order page
1013 */
1014static inline bool
1015buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1016 struct page *page, unsigned int order)
1017{
1018 struct page *higher_page, *higher_buddy;
1019 unsigned long combined_pfn;
1020
1021 if (order >= MAX_ORDER - 2)
1022 return false;
1023
a2129f24
AD
1024 combined_pfn = buddy_pfn & pfn;
1025 higher_page = page + (combined_pfn - pfn);
1026 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1027 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1028
859a85dd 1029 return page_is_buddy(higher_page, higher_buddy, order + 1);
a2129f24
AD
1030}
1031
1da177e4
LT
1032/*
1033 * Freeing function for a buddy system allocator.
1034 *
1035 * The concept of a buddy system is to maintain direct-mapped table
1036 * (containing bit values) for memory blocks of various "orders".
1037 * The bottom level table contains the map for the smallest allocatable
1038 * units of memory (here, pages), and each level above it describes
1039 * pairs of units from the levels below, hence, "buddies".
1040 * At a high level, all that happens here is marking the table entry
1041 * at the bottom level available, and propagating the changes upward
1042 * as necessary, plus some accounting needed to play nicely with other
1043 * parts of the VM system.
1044 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1045 * free pages of length of (1 << order) and marked with PageBuddy.
1046 * Page's order is recorded in page_private(page) field.
1da177e4 1047 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1048 * other. That is, if we allocate a small block, and both were
1049 * free, the remainder of the region must be split into blocks.
1da177e4 1050 * If a block is freed, and its buddy is also free, then this
5f63b720 1051 * triggers coalescing into a block of larger size.
1da177e4 1052 *
6d49e352 1053 * -- nyc
1da177e4
LT
1054 */
1055
48db57f8 1056static inline void __free_one_page(struct page *page,
dc4b0caf 1057 unsigned long pfn,
ed0ae21d 1058 struct zone *zone, unsigned int order,
f04a5d5d 1059 int migratetype, fpi_t fpi_flags)
1da177e4 1060{
a2129f24 1061 struct capture_control *capc = task_capc(zone);
3f649ab7 1062 unsigned long buddy_pfn;
a2129f24 1063 unsigned long combined_pfn;
d9dddbf5 1064 unsigned int max_order;
a2129f24
AD
1065 struct page *buddy;
1066 bool to_tail;
d9dddbf5 1067
7ad69832 1068 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1069
d29bb978 1070 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1071 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1072
ed0ae21d 1073 VM_BUG_ON(migratetype == -1);
d9dddbf5 1074 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1075 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1076
76741e77 1077 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1078 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1079
d9dddbf5 1080continue_merging:
7ad69832 1081 while (order < max_order) {
5e1f0f09
MG
1082 if (compaction_capture(capc, page, order, migratetype)) {
1083 __mod_zone_freepage_state(zone, -(1 << order),
1084 migratetype);
1085 return;
1086 }
76741e77
VB
1087 buddy_pfn = __find_buddy_pfn(pfn, order);
1088 buddy = page + (buddy_pfn - pfn);
13ad59df 1089
cb2b95e1 1090 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1091 goto done_merging;
c0a32fc5
SG
1092 /*
1093 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1094 * merge with it and move up one order.
1095 */
b03641af 1096 if (page_is_guard(buddy))
2847cf95 1097 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1098 else
6ab01363 1099 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1100 combined_pfn = buddy_pfn & pfn;
1101 page = page + (combined_pfn - pfn);
1102 pfn = combined_pfn;
1da177e4
LT
1103 order++;
1104 }
7ad69832 1105 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1106 /* If we are here, it means order is >= pageblock_order.
1107 * We want to prevent merge between freepages on isolate
1108 * pageblock and normal pageblock. Without this, pageblock
1109 * isolation could cause incorrect freepage or CMA accounting.
1110 *
1111 * We don't want to hit this code for the more frequent
1112 * low-order merging.
1113 */
1114 if (unlikely(has_isolate_pageblock(zone))) {
1115 int buddy_mt;
1116
76741e77
VB
1117 buddy_pfn = __find_buddy_pfn(pfn, order);
1118 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1119 buddy_mt = get_pageblock_migratetype(buddy);
1120
1121 if (migratetype != buddy_mt
1122 && (is_migrate_isolate(migratetype) ||
1123 is_migrate_isolate(buddy_mt)))
1124 goto done_merging;
1125 }
7ad69832 1126 max_order = order + 1;
d9dddbf5
VB
1127 goto continue_merging;
1128 }
1129
1130done_merging:
ab130f91 1131 set_buddy_order(page, order);
6dda9d55 1132
47b6a24a
DH
1133 if (fpi_flags & FPI_TO_TAIL)
1134 to_tail = true;
1135 else if (is_shuffle_order(order))
a2129f24 1136 to_tail = shuffle_pick_tail();
97500a4a 1137 else
a2129f24 1138 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1139
a2129f24 1140 if (to_tail)
6ab01363 1141 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1142 else
6ab01363 1143 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1144
1145 /* Notify page reporting subsystem of freed page */
f04a5d5d 1146 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1147 page_reporting_notify_free(order);
1da177e4
LT
1148}
1149
7bfec6f4
MG
1150/*
1151 * A bad page could be due to a number of fields. Instead of multiple branches,
1152 * try and check multiple fields with one check. The caller must do a detailed
1153 * check if necessary.
1154 */
1155static inline bool page_expected_state(struct page *page,
1156 unsigned long check_flags)
1157{
1158 if (unlikely(atomic_read(&page->_mapcount) != -1))
1159 return false;
1160
1161 if (unlikely((unsigned long)page->mapping |
1162 page_ref_count(page) |
1163#ifdef CONFIG_MEMCG
48060834 1164 page->memcg_data |
7bfec6f4
MG
1165#endif
1166 (page->flags & check_flags)))
1167 return false;
1168
1169 return true;
1170}
1171
58b7f119 1172static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1173{
82a3241a 1174 const char *bad_reason = NULL;
f0b791a3 1175
53f9263b 1176 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1177 bad_reason = "nonzero mapcount";
1178 if (unlikely(page->mapping != NULL))
1179 bad_reason = "non-NULL mapping";
fe896d18 1180 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1181 bad_reason = "nonzero _refcount";
58b7f119
WY
1182 if (unlikely(page->flags & flags)) {
1183 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1184 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1185 else
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1187 }
9edad6ea 1188#ifdef CONFIG_MEMCG
48060834 1189 if (unlikely(page->memcg_data))
9edad6ea
JW
1190 bad_reason = "page still charged to cgroup";
1191#endif
58b7f119
WY
1192 return bad_reason;
1193}
1194
1195static void check_free_page_bad(struct page *page)
1196{
1197 bad_page(page,
1198 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1199}
1200
534fe5e3 1201static inline int check_free_page(struct page *page)
bb552ac6 1202{
da838d4f 1203 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1204 return 0;
bb552ac6
MG
1205
1206 /* Something has gone sideways, find it */
0d0c48a2 1207 check_free_page_bad(page);
7bfec6f4 1208 return 1;
1da177e4
LT
1209}
1210
4db7548c
MG
1211static int free_tail_pages_check(struct page *head_page, struct page *page)
1212{
1213 int ret = 1;
1214
1215 /*
1216 * We rely page->lru.next never has bit 0 set, unless the page
1217 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1218 */
1219 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1220
1221 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1222 ret = 0;
1223 goto out;
1224 }
1225 switch (page - head_page) {
1226 case 1:
4da1984e 1227 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1228 if (unlikely(compound_mapcount(page))) {
82a3241a 1229 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1230 goto out;
1231 }
1232 break;
1233 case 2:
1234 /*
1235 * the second tail page: ->mapping is
fa3015b7 1236 * deferred_list.next -- ignore value.
4db7548c
MG
1237 */
1238 break;
1239 default:
1240 if (page->mapping != TAIL_MAPPING) {
82a3241a 1241 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1242 goto out;
1243 }
1244 break;
1245 }
1246 if (unlikely(!PageTail(page))) {
82a3241a 1247 bad_page(page, "PageTail not set");
4db7548c
MG
1248 goto out;
1249 }
1250 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1251 bad_page(page, "compound_head not consistent");
4db7548c
MG
1252 goto out;
1253 }
1254 ret = 0;
1255out:
1256 page->mapping = NULL;
1257 clear_compound_head(page);
1258 return ret;
1259}
1260
013bb59d 1261static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
6471384a
AP
1262{
1263 int i;
1264
013bb59d
PC
1265 if (zero_tags) {
1266 for (i = 0; i < numpages; i++)
1267 tag_clear_highpage(page + i);
1268 return;
1269 }
1270
9e15afa5
QC
1271 /* s390's use of memset() could override KASAN redzones. */
1272 kasan_disable_current();
aa1ef4d7 1273 for (i = 0; i < numpages; i++) {
acb35b17 1274 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1275 page_kasan_tag_reset(page + i);
6471384a 1276 clear_highpage(page + i);
acb35b17 1277 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1278 }
9e15afa5 1279 kasan_enable_current();
6471384a
AP
1280}
1281
e2769dbd 1282static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1283 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1284{
e2769dbd 1285 int bad = 0;
c275c5c6 1286 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
4db7548c 1287
4db7548c
MG
1288 VM_BUG_ON_PAGE(PageTail(page), page);
1289
e2769dbd 1290 trace_mm_page_free(page, order);
e2769dbd 1291
79f5f8fa
OS
1292 if (unlikely(PageHWPoison(page)) && !order) {
1293 /*
1294 * Do not let hwpoison pages hit pcplists/buddy
1295 * Untie memcg state and reset page's owner
1296 */
18b2db3b 1297 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1298 __memcg_kmem_uncharge_page(page, order);
1299 reset_page_owner(page, order);
1300 return false;
1301 }
1302
e2769dbd
MG
1303 /*
1304 * Check tail pages before head page information is cleared to
1305 * avoid checking PageCompound for order-0 pages.
1306 */
1307 if (unlikely(order)) {
1308 bool compound = PageCompound(page);
1309 int i;
1310
1311 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1312
eac96c3e 1313 if (compound) {
9a73f61b 1314 ClearPageDoubleMap(page);
eac96c3e
YS
1315 ClearPageHasHWPoisoned(page);
1316 }
e2769dbd
MG
1317 for (i = 1; i < (1 << order); i++) {
1318 if (compound)
1319 bad += free_tail_pages_check(page, page + i);
534fe5e3 1320 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1321 bad++;
1322 continue;
1323 }
1324 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1325 }
1326 }
bda807d4 1327 if (PageMappingFlags(page))
4db7548c 1328 page->mapping = NULL;
18b2db3b 1329 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1330 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1331 if (check_free)
534fe5e3 1332 bad += check_free_page(page);
e2769dbd
MG
1333 if (bad)
1334 return false;
4db7548c 1335
e2769dbd
MG
1336 page_cpupid_reset_last(page);
1337 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 reset_page_owner(page, order);
4db7548c
MG
1339
1340 if (!PageHighMem(page)) {
1341 debug_check_no_locks_freed(page_address(page),
e2769dbd 1342 PAGE_SIZE << order);
4db7548c 1343 debug_check_no_obj_freed(page_address(page),
e2769dbd 1344 PAGE_SIZE << order);
4db7548c 1345 }
6471384a 1346
8db26a3d
VB
1347 kernel_poison_pages(page, 1 << order);
1348
f9d79e8d 1349 /*
1bb5eab3
AK
1350 * As memory initialization might be integrated into KASAN,
1351 * kasan_free_pages and kernel_init_free_pages must be
1352 * kept together to avoid discrepancies in behavior.
1353 *
f9d79e8d
AK
1354 * With hardware tag-based KASAN, memory tags must be set before the
1355 * page becomes unavailable via debug_pagealloc or arch_free_page.
1356 */
7a3b8353
PC
1357 if (kasan_has_integrated_init()) {
1358 if (!skip_kasan_poison)
1359 kasan_free_pages(page, order);
1360 } else {
1361 bool init = want_init_on_free();
1362
1363 if (init)
013bb59d 1364 kernel_init_free_pages(page, 1 << order, false);
7a3b8353
PC
1365 if (!skip_kasan_poison)
1366 kasan_poison_pages(page, order, init);
1367 }
f9d79e8d 1368
234fdce8
QC
1369 /*
1370 * arch_free_page() can make the page's contents inaccessible. s390
1371 * does this. So nothing which can access the page's contents should
1372 * happen after this.
1373 */
1374 arch_free_page(page, order);
1375
77bc7fd6 1376 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1377
4db7548c
MG
1378 return true;
1379}
1380
e2769dbd 1381#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1382/*
1383 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1384 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1385 * moved from pcp lists to free lists.
1386 */
44042b44 1387static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1388{
44042b44 1389 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1390}
1391
4462b32c 1392static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1393{
8e57f8ac 1394 if (debug_pagealloc_enabled_static())
534fe5e3 1395 return check_free_page(page);
4462b32c
VB
1396 else
1397 return false;
e2769dbd
MG
1398}
1399#else
4462b32c
VB
1400/*
1401 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1402 * moving from pcp lists to free list in order to reduce overhead. With
1403 * debug_pagealloc enabled, they are checked also immediately when being freed
1404 * to the pcp lists.
1405 */
44042b44 1406static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1407{
8e57f8ac 1408 if (debug_pagealloc_enabled_static())
44042b44 1409 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1410 else
44042b44 1411 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1412}
1413
4db7548c
MG
1414static bool bulkfree_pcp_prepare(struct page *page)
1415{
534fe5e3 1416 return check_free_page(page);
4db7548c
MG
1417}
1418#endif /* CONFIG_DEBUG_VM */
1419
97334162
AL
1420static inline void prefetch_buddy(struct page *page)
1421{
1422 unsigned long pfn = page_to_pfn(page);
1423 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1424 struct page *buddy = page + (buddy_pfn - pfn);
1425
1426 prefetch(buddy);
1427}
1428
1da177e4 1429/*
5f8dcc21 1430 * Frees a number of pages from the PCP lists
7cba630b 1431 * Assumes all pages on list are in same zone.
207f36ee 1432 * count is the number of pages to free.
1da177e4 1433 */
5f8dcc21
MG
1434static void free_pcppages_bulk(struct zone *zone, int count,
1435 struct per_cpu_pages *pcp)
1da177e4 1436{
44042b44 1437 int pindex = 0;
a6f9edd6 1438 int batch_free = 0;
44042b44
MG
1439 int nr_freed = 0;
1440 unsigned int order;
5c3ad2eb 1441 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1442 bool isolated_pageblocks;
0a5f4e5b
AL
1443 struct page *page, *tmp;
1444 LIST_HEAD(head);
f2260e6b 1445
88e8ac11
CTR
1446 /*
1447 * Ensure proper count is passed which otherwise would stuck in the
1448 * below while (list_empty(list)) loop.
1449 */
1450 count = min(pcp->count, count);
44042b44 1451 while (count > 0) {
5f8dcc21
MG
1452 struct list_head *list;
1453
1454 /*
a6f9edd6
MG
1455 * Remove pages from lists in a round-robin fashion. A
1456 * batch_free count is maintained that is incremented when an
1457 * empty list is encountered. This is so more pages are freed
1458 * off fuller lists instead of spinning excessively around empty
1459 * lists
5f8dcc21
MG
1460 */
1461 do {
a6f9edd6 1462 batch_free++;
44042b44
MG
1463 if (++pindex == NR_PCP_LISTS)
1464 pindex = 0;
1465 list = &pcp->lists[pindex];
5f8dcc21 1466 } while (list_empty(list));
48db57f8 1467
1d16871d 1468 /* This is the only non-empty list. Free them all. */
44042b44 1469 if (batch_free == NR_PCP_LISTS)
e5b31ac2 1470 batch_free = count;
1d16871d 1471
44042b44
MG
1472 order = pindex_to_order(pindex);
1473 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
a6f9edd6 1474 do {
a16601c5 1475 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1476 /* must delete to avoid corrupting pcp list */
a6f9edd6 1477 list_del(&page->lru);
44042b44
MG
1478 nr_freed += 1 << order;
1479 count -= 1 << order;
aa016d14 1480
4db7548c
MG
1481 if (bulkfree_pcp_prepare(page))
1482 continue;
1483
44042b44
MG
1484 /* Encode order with the migratetype */
1485 page->index <<= NR_PCP_ORDER_WIDTH;
1486 page->index |= order;
1487
0a5f4e5b 1488 list_add_tail(&page->lru, &head);
97334162
AL
1489
1490 /*
1491 * We are going to put the page back to the global
1492 * pool, prefetch its buddy to speed up later access
1493 * under zone->lock. It is believed the overhead of
1494 * an additional test and calculating buddy_pfn here
1495 * can be offset by reduced memory latency later. To
1496 * avoid excessive prefetching due to large count, only
1497 * prefetch buddy for the first pcp->batch nr of pages.
1498 */
5c3ad2eb 1499 if (prefetch_nr) {
97334162 1500 prefetch_buddy(page);
5c3ad2eb
VB
1501 prefetch_nr--;
1502 }
44042b44 1503 } while (count > 0 && --batch_free && !list_empty(list));
1da177e4 1504 }
44042b44 1505 pcp->count -= nr_freed;
0a5f4e5b 1506
dbbee9d5
MG
1507 /*
1508 * local_lock_irq held so equivalent to spin_lock_irqsave for
1509 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1510 */
0a5f4e5b
AL
1511 spin_lock(&zone->lock);
1512 isolated_pageblocks = has_isolate_pageblock(zone);
1513
1514 /*
1515 * Use safe version since after __free_one_page(),
1516 * page->lru.next will not point to original list.
1517 */
1518 list_for_each_entry_safe(page, tmp, &head, lru) {
1519 int mt = get_pcppage_migratetype(page);
44042b44
MG
1520
1521 /* mt has been encoded with the order (see above) */
1522 order = mt & NR_PCP_ORDER_MASK;
1523 mt >>= NR_PCP_ORDER_WIDTH;
1524
0a5f4e5b
AL
1525 /* MIGRATE_ISOLATE page should not go to pcplists */
1526 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1527 /* Pageblock could have been isolated meanwhile */
1528 if (unlikely(isolated_pageblocks))
1529 mt = get_pageblock_migratetype(page);
1530
44042b44
MG
1531 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1532 trace_mm_page_pcpu_drain(page, order, mt);
0a5f4e5b 1533 }
d34b0733 1534 spin_unlock(&zone->lock);
1da177e4
LT
1535}
1536
dc4b0caf
MG
1537static void free_one_page(struct zone *zone,
1538 struct page *page, unsigned long pfn,
7aeb09f9 1539 unsigned int order,
7fef431b 1540 int migratetype, fpi_t fpi_flags)
1da177e4 1541{
df1acc85
MG
1542 unsigned long flags;
1543
1544 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1545 if (unlikely(has_isolate_pageblock(zone) ||
1546 is_migrate_isolate(migratetype))) {
1547 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1548 }
7fef431b 1549 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1550 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1551}
1552
1e8ce83c 1553static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1554 unsigned long zone, int nid)
1e8ce83c 1555{
d0dc12e8 1556 mm_zero_struct_page(page);
1e8ce83c 1557 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1558 init_page_count(page);
1559 page_mapcount_reset(page);
1560 page_cpupid_reset_last(page);
2813b9c0 1561 page_kasan_tag_reset(page);
1e8ce83c 1562
1e8ce83c
RH
1563 INIT_LIST_HEAD(&page->lru);
1564#ifdef WANT_PAGE_VIRTUAL
1565 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1566 if (!is_highmem_idx(zone))
1567 set_page_address(page, __va(pfn << PAGE_SHIFT));
1568#endif
1569}
1570
7e18adb4 1571#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1572static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1573{
1574 pg_data_t *pgdat;
1575 int nid, zid;
1576
1577 if (!early_page_uninitialised(pfn))
1578 return;
1579
1580 nid = early_pfn_to_nid(pfn);
1581 pgdat = NODE_DATA(nid);
1582
1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 struct zone *zone = &pgdat->node_zones[zid];
1585
86fb05b9 1586 if (zone_spans_pfn(zone, pfn))
7e18adb4
MG
1587 break;
1588 }
d0dc12e8 1589 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1590}
1591#else
1592static inline void init_reserved_page(unsigned long pfn)
1593{
1594}
1595#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1596
92923ca3
NZ
1597/*
1598 * Initialised pages do not have PageReserved set. This function is
1599 * called for each range allocated by the bootmem allocator and
1600 * marks the pages PageReserved. The remaining valid pages are later
1601 * sent to the buddy page allocator.
1602 */
4b50bcc7 1603void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1604{
1605 unsigned long start_pfn = PFN_DOWN(start);
1606 unsigned long end_pfn = PFN_UP(end);
1607
7e18adb4
MG
1608 for (; start_pfn < end_pfn; start_pfn++) {
1609 if (pfn_valid(start_pfn)) {
1610 struct page *page = pfn_to_page(start_pfn);
1611
1612 init_reserved_page(start_pfn);
1d798ca3
KS
1613
1614 /* Avoid false-positive PageTail() */
1615 INIT_LIST_HEAD(&page->lru);
1616
d483da5b
AD
1617 /*
1618 * no need for atomic set_bit because the struct
1619 * page is not visible yet so nobody should
1620 * access it yet.
1621 */
1622 __SetPageReserved(page);
7e18adb4
MG
1623 }
1624 }
92923ca3
NZ
1625}
1626
7fef431b
DH
1627static void __free_pages_ok(struct page *page, unsigned int order,
1628 fpi_t fpi_flags)
ec95f53a 1629{
d34b0733 1630 unsigned long flags;
95e34412 1631 int migratetype;
dc4b0caf 1632 unsigned long pfn = page_to_pfn(page);
56f0e661 1633 struct zone *zone = page_zone(page);
ec95f53a 1634
2c335680 1635 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1636 return;
1637
cfc47a28 1638 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1639
56f0e661 1640 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1641 if (unlikely(has_isolate_pageblock(zone) ||
1642 is_migrate_isolate(migratetype))) {
1643 migratetype = get_pfnblock_migratetype(page, pfn);
1644 }
1645 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1646 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1647
d34b0733 1648 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1649}
1650
a9cd410a 1651void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1652{
c3993076 1653 unsigned int nr_pages = 1 << order;
e2d0bd2b 1654 struct page *p = page;
c3993076 1655 unsigned int loop;
a226f6c8 1656
7fef431b
DH
1657 /*
1658 * When initializing the memmap, __init_single_page() sets the refcount
1659 * of all pages to 1 ("allocated"/"not free"). We have to set the
1660 * refcount of all involved pages to 0.
1661 */
e2d0bd2b
YL
1662 prefetchw(p);
1663 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1664 prefetchw(p + 1);
c3993076
JW
1665 __ClearPageReserved(p);
1666 set_page_count(p, 0);
a226f6c8 1667 }
e2d0bd2b
YL
1668 __ClearPageReserved(p);
1669 set_page_count(p, 0);
c3993076 1670
9705bea5 1671 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1672
1673 /*
1674 * Bypass PCP and place fresh pages right to the tail, primarily
1675 * relevant for memory onlining.
1676 */
2c335680 1677 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1678}
1679
a9ee6cf5 1680#ifdef CONFIG_NUMA
7ace9917 1681
03e92a5e
MR
1682/*
1683 * During memory init memblocks map pfns to nids. The search is expensive and
1684 * this caches recent lookups. The implementation of __early_pfn_to_nid
1685 * treats start/end as pfns.
1686 */
1687struct mminit_pfnnid_cache {
1688 unsigned long last_start;
1689 unsigned long last_end;
1690 int last_nid;
1691};
75a592a4 1692
03e92a5e 1693static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1694
1695/*
1696 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1697 */
03e92a5e 1698static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1699 struct mminit_pfnnid_cache *state)
75a592a4 1700{
6f24fbd3 1701 unsigned long start_pfn, end_pfn;
75a592a4
MG
1702 int nid;
1703
6f24fbd3
MR
1704 if (state->last_start <= pfn && pfn < state->last_end)
1705 return state->last_nid;
1706
1707 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1708 if (nid != NUMA_NO_NODE) {
1709 state->last_start = start_pfn;
1710 state->last_end = end_pfn;
1711 state->last_nid = nid;
1712 }
7ace9917
MG
1713
1714 return nid;
75a592a4 1715}
75a592a4 1716
75a592a4 1717int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1718{
7ace9917 1719 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1720 int nid;
1721
7ace9917 1722 spin_lock(&early_pfn_lock);
56ec43d8 1723 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1724 if (nid < 0)
e4568d38 1725 nid = first_online_node;
7ace9917 1726 spin_unlock(&early_pfn_lock);
75a592a4 1727
7ace9917 1728 return nid;
75a592a4 1729}
a9ee6cf5 1730#endif /* CONFIG_NUMA */
75a592a4 1731
7c2ee349 1732void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1733 unsigned int order)
1734{
1735 if (early_page_uninitialised(pfn))
1736 return;
a9cd410a 1737 __free_pages_core(page, order);
3a80a7fa
MG
1738}
1739
7cf91a98
JK
1740/*
1741 * Check that the whole (or subset of) a pageblock given by the interval of
1742 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1743 * with the migration of free compaction scanner.
7cf91a98
JK
1744 *
1745 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1746 *
1747 * It's possible on some configurations to have a setup like node0 node1 node0
1748 * i.e. it's possible that all pages within a zones range of pages do not
1749 * belong to a single zone. We assume that a border between node0 and node1
1750 * can occur within a single pageblock, but not a node0 node1 node0
1751 * interleaving within a single pageblock. It is therefore sufficient to check
1752 * the first and last page of a pageblock and avoid checking each individual
1753 * page in a pageblock.
1754 */
1755struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1756 unsigned long end_pfn, struct zone *zone)
1757{
1758 struct page *start_page;
1759 struct page *end_page;
1760
1761 /* end_pfn is one past the range we are checking */
1762 end_pfn--;
1763
1764 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1765 return NULL;
1766
2d070eab
MH
1767 start_page = pfn_to_online_page(start_pfn);
1768 if (!start_page)
1769 return NULL;
7cf91a98
JK
1770
1771 if (page_zone(start_page) != zone)
1772 return NULL;
1773
1774 end_page = pfn_to_page(end_pfn);
1775
1776 /* This gives a shorter code than deriving page_zone(end_page) */
1777 if (page_zone_id(start_page) != page_zone_id(end_page))
1778 return NULL;
1779
1780 return start_page;
1781}
1782
1783void set_zone_contiguous(struct zone *zone)
1784{
1785 unsigned long block_start_pfn = zone->zone_start_pfn;
1786 unsigned long block_end_pfn;
1787
1788 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1789 for (; block_start_pfn < zone_end_pfn(zone);
1790 block_start_pfn = block_end_pfn,
1791 block_end_pfn += pageblock_nr_pages) {
1792
1793 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1794
1795 if (!__pageblock_pfn_to_page(block_start_pfn,
1796 block_end_pfn, zone))
1797 return;
e84fe99b 1798 cond_resched();
7cf91a98
JK
1799 }
1800
1801 /* We confirm that there is no hole */
1802 zone->contiguous = true;
1803}
1804
1805void clear_zone_contiguous(struct zone *zone)
1806{
1807 zone->contiguous = false;
1808}
1809
7e18adb4 1810#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1811static void __init deferred_free_range(unsigned long pfn,
1812 unsigned long nr_pages)
a4de83dd 1813{
2f47a91f
PT
1814 struct page *page;
1815 unsigned long i;
a4de83dd 1816
2f47a91f 1817 if (!nr_pages)
a4de83dd
MG
1818 return;
1819
2f47a91f
PT
1820 page = pfn_to_page(pfn);
1821
a4de83dd 1822 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1823 if (nr_pages == pageblock_nr_pages &&
1824 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1825 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1826 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1827 return;
1828 }
1829
e780149b
XQ
1830 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1831 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1832 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1833 __free_pages_core(page, 0);
e780149b 1834 }
a4de83dd
MG
1835}
1836
d3cd131d
NS
1837/* Completion tracking for deferred_init_memmap() threads */
1838static atomic_t pgdat_init_n_undone __initdata;
1839static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1840
1841static inline void __init pgdat_init_report_one_done(void)
1842{
1843 if (atomic_dec_and_test(&pgdat_init_n_undone))
1844 complete(&pgdat_init_all_done_comp);
1845}
0e1cc95b 1846
2f47a91f 1847/*
80b1f41c
PT
1848 * Returns true if page needs to be initialized or freed to buddy allocator.
1849 *
1850 * First we check if pfn is valid on architectures where it is possible to have
1851 * holes within pageblock_nr_pages. On systems where it is not possible, this
1852 * function is optimized out.
1853 *
1854 * Then, we check if a current large page is valid by only checking the validity
1855 * of the head pfn.
2f47a91f 1856 */
56ec43d8 1857static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1858{
80b1f41c
PT
1859 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1860 return false;
80b1f41c
PT
1861 return true;
1862}
2f47a91f 1863
80b1f41c
PT
1864/*
1865 * Free pages to buddy allocator. Try to free aligned pages in
1866 * pageblock_nr_pages sizes.
1867 */
56ec43d8 1868static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1869 unsigned long end_pfn)
1870{
80b1f41c
PT
1871 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1872 unsigned long nr_free = 0;
2f47a91f 1873
80b1f41c 1874 for (; pfn < end_pfn; pfn++) {
56ec43d8 1875 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1876 deferred_free_range(pfn - nr_free, nr_free);
1877 nr_free = 0;
1878 } else if (!(pfn & nr_pgmask)) {
1879 deferred_free_range(pfn - nr_free, nr_free);
1880 nr_free = 1;
80b1f41c
PT
1881 } else {
1882 nr_free++;
1883 }
1884 }
1885 /* Free the last block of pages to allocator */
1886 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1887}
1888
80b1f41c
PT
1889/*
1890 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1891 * by performing it only once every pageblock_nr_pages.
1892 * Return number of pages initialized.
1893 */
56ec43d8 1894static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1895 unsigned long pfn,
1896 unsigned long end_pfn)
2f47a91f 1897{
2f47a91f 1898 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1899 int nid = zone_to_nid(zone);
2f47a91f 1900 unsigned long nr_pages = 0;
56ec43d8 1901 int zid = zone_idx(zone);
2f47a91f 1902 struct page *page = NULL;
2f47a91f 1903
80b1f41c 1904 for (; pfn < end_pfn; pfn++) {
56ec43d8 1905 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1906 page = NULL;
2f47a91f 1907 continue;
80b1f41c 1908 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1909 page = pfn_to_page(pfn);
80b1f41c
PT
1910 } else {
1911 page++;
2f47a91f 1912 }
d0dc12e8 1913 __init_single_page(page, pfn, zid, nid);
80b1f41c 1914 nr_pages++;
2f47a91f 1915 }
80b1f41c 1916 return (nr_pages);
2f47a91f
PT
1917}
1918
0e56acae
AD
1919/*
1920 * This function is meant to pre-load the iterator for the zone init.
1921 * Specifically it walks through the ranges until we are caught up to the
1922 * first_init_pfn value and exits there. If we never encounter the value we
1923 * return false indicating there are no valid ranges left.
1924 */
1925static bool __init
1926deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1927 unsigned long *spfn, unsigned long *epfn,
1928 unsigned long first_init_pfn)
1929{
1930 u64 j;
1931
1932 /*
1933 * Start out by walking through the ranges in this zone that have
1934 * already been initialized. We don't need to do anything with them
1935 * so we just need to flush them out of the system.
1936 */
1937 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1938 if (*epfn <= first_init_pfn)
1939 continue;
1940 if (*spfn < first_init_pfn)
1941 *spfn = first_init_pfn;
1942 *i = j;
1943 return true;
1944 }
1945
1946 return false;
1947}
1948
1949/*
1950 * Initialize and free pages. We do it in two loops: first we initialize
1951 * struct page, then free to buddy allocator, because while we are
1952 * freeing pages we can access pages that are ahead (computing buddy
1953 * page in __free_one_page()).
1954 *
1955 * In order to try and keep some memory in the cache we have the loop
1956 * broken along max page order boundaries. This way we will not cause
1957 * any issues with the buddy page computation.
1958 */
1959static unsigned long __init
1960deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1961 unsigned long *end_pfn)
1962{
1963 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1964 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1965 unsigned long nr_pages = 0;
1966 u64 j = *i;
1967
1968 /* First we loop through and initialize the page values */
1969 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1970 unsigned long t;
1971
1972 if (mo_pfn <= *start_pfn)
1973 break;
1974
1975 t = min(mo_pfn, *end_pfn);
1976 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1977
1978 if (mo_pfn < *end_pfn) {
1979 *start_pfn = mo_pfn;
1980 break;
1981 }
1982 }
1983
1984 /* Reset values and now loop through freeing pages as needed */
1985 swap(j, *i);
1986
1987 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1988 unsigned long t;
1989
1990 if (mo_pfn <= spfn)
1991 break;
1992
1993 t = min(mo_pfn, epfn);
1994 deferred_free_pages(spfn, t);
1995
1996 if (mo_pfn <= epfn)
1997 break;
1998 }
1999
2000 return nr_pages;
2001}
2002
e4443149
DJ
2003static void __init
2004deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2005 void *arg)
2006{
2007 unsigned long spfn, epfn;
2008 struct zone *zone = arg;
2009 u64 i;
2010
2011 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2012
2013 /*
2014 * Initialize and free pages in MAX_ORDER sized increments so that we
2015 * can avoid introducing any issues with the buddy allocator.
2016 */
2017 while (spfn < end_pfn) {
2018 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2019 cond_resched();
2020 }
2021}
2022
ecd09650
DJ
2023/* An arch may override for more concurrency. */
2024__weak int __init
2025deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2026{
2027 return 1;
2028}
2029
7e18adb4 2030/* Initialise remaining memory on a node */
0e1cc95b 2031static int __init deferred_init_memmap(void *data)
7e18adb4 2032{
0e1cc95b 2033 pg_data_t *pgdat = data;
0e56acae 2034 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2035 unsigned long spfn = 0, epfn = 0;
0e56acae 2036 unsigned long first_init_pfn, flags;
7e18adb4 2037 unsigned long start = jiffies;
7e18adb4 2038 struct zone *zone;
e4443149 2039 int zid, max_threads;
2f47a91f 2040 u64 i;
7e18adb4 2041
3a2d7fa8
PT
2042 /* Bind memory initialisation thread to a local node if possible */
2043 if (!cpumask_empty(cpumask))
2044 set_cpus_allowed_ptr(current, cpumask);
2045
2046 pgdat_resize_lock(pgdat, &flags);
2047 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2048 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2049 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2050 pgdat_init_report_one_done();
0e1cc95b
MG
2051 return 0;
2052 }
2053
7e18adb4
MG
2054 /* Sanity check boundaries */
2055 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2056 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2057 pgdat->first_deferred_pfn = ULONG_MAX;
2058
3d060856
PT
2059 /*
2060 * Once we unlock here, the zone cannot be grown anymore, thus if an
2061 * interrupt thread must allocate this early in boot, zone must be
2062 * pre-grown prior to start of deferred page initialization.
2063 */
2064 pgdat_resize_unlock(pgdat, &flags);
2065
7e18adb4
MG
2066 /* Only the highest zone is deferred so find it */
2067 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2068 zone = pgdat->node_zones + zid;
2069 if (first_init_pfn < zone_end_pfn(zone))
2070 break;
2071 }
0e56acae
AD
2072
2073 /* If the zone is empty somebody else may have cleared out the zone */
2074 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2075 first_init_pfn))
2076 goto zone_empty;
7e18adb4 2077
ecd09650 2078 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2079
117003c3 2080 while (spfn < epfn) {
e4443149
DJ
2081 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2082 struct padata_mt_job job = {
2083 .thread_fn = deferred_init_memmap_chunk,
2084 .fn_arg = zone,
2085 .start = spfn,
2086 .size = epfn_align - spfn,
2087 .align = PAGES_PER_SECTION,
2088 .min_chunk = PAGES_PER_SECTION,
2089 .max_threads = max_threads,
2090 };
2091
2092 padata_do_multithreaded(&job);
2093 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2094 epfn_align);
117003c3 2095 }
0e56acae 2096zone_empty:
7e18adb4
MG
2097 /* Sanity check that the next zone really is unpopulated */
2098 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2099
89c7c402
DJ
2100 pr_info("node %d deferred pages initialised in %ums\n",
2101 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2102
2103 pgdat_init_report_one_done();
0e1cc95b
MG
2104 return 0;
2105}
c9e97a19 2106
c9e97a19
PT
2107/*
2108 * If this zone has deferred pages, try to grow it by initializing enough
2109 * deferred pages to satisfy the allocation specified by order, rounded up to
2110 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2111 * of SECTION_SIZE bytes by initializing struct pages in increments of
2112 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2113 *
2114 * Return true when zone was grown, otherwise return false. We return true even
2115 * when we grow less than requested, to let the caller decide if there are
2116 * enough pages to satisfy the allocation.
2117 *
2118 * Note: We use noinline because this function is needed only during boot, and
2119 * it is called from a __ref function _deferred_grow_zone. This way we are
2120 * making sure that it is not inlined into permanent text section.
2121 */
2122static noinline bool __init
2123deferred_grow_zone(struct zone *zone, unsigned int order)
2124{
c9e97a19 2125 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2126 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2127 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2128 unsigned long spfn, epfn, flags;
2129 unsigned long nr_pages = 0;
c9e97a19
PT
2130 u64 i;
2131
2132 /* Only the last zone may have deferred pages */
2133 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2134 return false;
2135
2136 pgdat_resize_lock(pgdat, &flags);
2137
c9e97a19
PT
2138 /*
2139 * If someone grew this zone while we were waiting for spinlock, return
2140 * true, as there might be enough pages already.
2141 */
2142 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2143 pgdat_resize_unlock(pgdat, &flags);
2144 return true;
2145 }
2146
0e56acae
AD
2147 /* If the zone is empty somebody else may have cleared out the zone */
2148 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2149 first_deferred_pfn)) {
2150 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2151 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2152 /* Retry only once. */
2153 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2154 }
2155
0e56acae
AD
2156 /*
2157 * Initialize and free pages in MAX_ORDER sized increments so
2158 * that we can avoid introducing any issues with the buddy
2159 * allocator.
2160 */
2161 while (spfn < epfn) {
2162 /* update our first deferred PFN for this section */
2163 first_deferred_pfn = spfn;
2164
2165 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2166 touch_nmi_watchdog();
c9e97a19 2167
0e56acae
AD
2168 /* We should only stop along section boundaries */
2169 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2170 continue;
c9e97a19 2171
0e56acae 2172 /* If our quota has been met we can stop here */
c9e97a19
PT
2173 if (nr_pages >= nr_pages_needed)
2174 break;
2175 }
2176
0e56acae 2177 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2178 pgdat_resize_unlock(pgdat, &flags);
2179
2180 return nr_pages > 0;
2181}
2182
2183/*
2184 * deferred_grow_zone() is __init, but it is called from
2185 * get_page_from_freelist() during early boot until deferred_pages permanently
2186 * disables this call. This is why we have refdata wrapper to avoid warning,
2187 * and to ensure that the function body gets unloaded.
2188 */
2189static bool __ref
2190_deferred_grow_zone(struct zone *zone, unsigned int order)
2191{
2192 return deferred_grow_zone(zone, order);
2193}
2194
7cf91a98 2195#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2196
2197void __init page_alloc_init_late(void)
2198{
7cf91a98 2199 struct zone *zone;
e900a918 2200 int nid;
7cf91a98
JK
2201
2202#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2203
d3cd131d
NS
2204 /* There will be num_node_state(N_MEMORY) threads */
2205 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2206 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2207 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2208 }
2209
2210 /* Block until all are initialised */
d3cd131d 2211 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2212
c9e97a19
PT
2213 /*
2214 * We initialized the rest of the deferred pages. Permanently disable
2215 * on-demand struct page initialization.
2216 */
2217 static_branch_disable(&deferred_pages);
2218
4248b0da
MG
2219 /* Reinit limits that are based on free pages after the kernel is up */
2220 files_maxfiles_init();
7cf91a98 2221#endif
350e88ba 2222
ba8f3587
LF
2223 buffer_init();
2224
3010f876
PT
2225 /* Discard memblock private memory */
2226 memblock_discard();
7cf91a98 2227
e900a918
DW
2228 for_each_node_state(nid, N_MEMORY)
2229 shuffle_free_memory(NODE_DATA(nid));
2230
7cf91a98
JK
2231 for_each_populated_zone(zone)
2232 set_zone_contiguous(zone);
7e18adb4 2233}
7e18adb4 2234
47118af0 2235#ifdef CONFIG_CMA
9cf510a5 2236/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2237void __init init_cma_reserved_pageblock(struct page *page)
2238{
2239 unsigned i = pageblock_nr_pages;
2240 struct page *p = page;
2241
2242 do {
2243 __ClearPageReserved(p);
2244 set_page_count(p, 0);
d883c6cf 2245 } while (++p, --i);
47118af0 2246
47118af0 2247 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2248
2249 if (pageblock_order >= MAX_ORDER) {
2250 i = pageblock_nr_pages;
2251 p = page;
2252 do {
2253 set_page_refcounted(p);
2254 __free_pages(p, MAX_ORDER - 1);
2255 p += MAX_ORDER_NR_PAGES;
2256 } while (i -= MAX_ORDER_NR_PAGES);
2257 } else {
2258 set_page_refcounted(page);
2259 __free_pages(page, pageblock_order);
2260 }
2261
3dcc0571 2262 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2263 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2264}
2265#endif
1da177e4
LT
2266
2267/*
2268 * The order of subdivision here is critical for the IO subsystem.
2269 * Please do not alter this order without good reasons and regression
2270 * testing. Specifically, as large blocks of memory are subdivided,
2271 * the order in which smaller blocks are delivered depends on the order
2272 * they're subdivided in this function. This is the primary factor
2273 * influencing the order in which pages are delivered to the IO
2274 * subsystem according to empirical testing, and this is also justified
2275 * by considering the behavior of a buddy system containing a single
2276 * large block of memory acted on by a series of small allocations.
2277 * This behavior is a critical factor in sglist merging's success.
2278 *
6d49e352 2279 * -- nyc
1da177e4 2280 */
085cc7d5 2281static inline void expand(struct zone *zone, struct page *page,
6ab01363 2282 int low, int high, int migratetype)
1da177e4
LT
2283{
2284 unsigned long size = 1 << high;
2285
2286 while (high > low) {
1da177e4
LT
2287 high--;
2288 size >>= 1;
309381fe 2289 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2290
acbc15a4
JK
2291 /*
2292 * Mark as guard pages (or page), that will allow to
2293 * merge back to allocator when buddy will be freed.
2294 * Corresponding page table entries will not be touched,
2295 * pages will stay not present in virtual address space
2296 */
2297 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2298 continue;
acbc15a4 2299
6ab01363 2300 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2301 set_buddy_order(&page[size], high);
1da177e4 2302 }
1da177e4
LT
2303}
2304
4e611801 2305static void check_new_page_bad(struct page *page)
1da177e4 2306{
f4c18e6f 2307 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2308 /* Don't complain about hwpoisoned pages */
2309 page_mapcount_reset(page); /* remove PageBuddy */
2310 return;
f4c18e6f 2311 }
58b7f119
WY
2312
2313 bad_page(page,
2314 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2315}
2316
2317/*
2318 * This page is about to be returned from the page allocator
2319 */
2320static inline int check_new_page(struct page *page)
2321{
2322 if (likely(page_expected_state(page,
2323 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2324 return 0;
2325
2326 check_new_page_bad(page);
2327 return 1;
2a7684a2
WF
2328}
2329
479f854a 2330#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2331/*
2332 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2333 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2334 * also checked when pcp lists are refilled from the free lists.
2335 */
2336static inline bool check_pcp_refill(struct page *page)
479f854a 2337{
8e57f8ac 2338 if (debug_pagealloc_enabled_static())
4462b32c
VB
2339 return check_new_page(page);
2340 else
2341 return false;
479f854a
MG
2342}
2343
4462b32c 2344static inline bool check_new_pcp(struct page *page)
479f854a
MG
2345{
2346 return check_new_page(page);
2347}
2348#else
4462b32c
VB
2349/*
2350 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2351 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2352 * enabled, they are also checked when being allocated from the pcp lists.
2353 */
2354static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2355{
2356 return check_new_page(page);
2357}
4462b32c 2358static inline bool check_new_pcp(struct page *page)
479f854a 2359{
8e57f8ac 2360 if (debug_pagealloc_enabled_static())
4462b32c
VB
2361 return check_new_page(page);
2362 else
2363 return false;
479f854a
MG
2364}
2365#endif /* CONFIG_DEBUG_VM */
2366
2367static bool check_new_pages(struct page *page, unsigned int order)
2368{
2369 int i;
2370 for (i = 0; i < (1 << order); i++) {
2371 struct page *p = page + i;
2372
2373 if (unlikely(check_new_page(p)))
2374 return true;
2375 }
2376
2377 return false;
2378}
2379
46f24fd8
JK
2380inline void post_alloc_hook(struct page *page, unsigned int order,
2381 gfp_t gfp_flags)
2382{
2383 set_page_private(page, 0);
2384 set_page_refcounted(page);
2385
2386 arch_alloc_page(page, order);
77bc7fd6 2387 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2388
2389 /*
2390 * Page unpoisoning must happen before memory initialization.
2391 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2392 * allocations and the page unpoisoning code will complain.
2393 */
8db26a3d 2394 kernel_unpoison_pages(page, 1 << order);
862b6dee 2395
1bb5eab3
AK
2396 /*
2397 * As memory initialization might be integrated into KASAN,
2398 * kasan_alloc_pages and kernel_init_free_pages must be
2399 * kept together to avoid discrepancies in behavior.
2400 */
7a3b8353
PC
2401 if (kasan_has_integrated_init()) {
2402 kasan_alloc_pages(page, order, gfp_flags);
2403 } else {
2404 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2405
2406 kasan_unpoison_pages(page, order, init);
2407 if (init)
013bb59d
PC
2408 kernel_init_free_pages(page, 1 << order,
2409 gfp_flags & __GFP_ZEROTAGS);
7a3b8353 2410 }
1bb5eab3
AK
2411
2412 set_page_owner(page, order, gfp_flags);
46f24fd8
JK
2413}
2414
479f854a 2415static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2416 unsigned int alloc_flags)
2a7684a2 2417{
46f24fd8 2418 post_alloc_hook(page, order, gfp_flags);
17cf4406 2419
17cf4406
NP
2420 if (order && (gfp_flags & __GFP_COMP))
2421 prep_compound_page(page, order);
2422
75379191 2423 /*
2f064f34 2424 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2425 * allocate the page. The expectation is that the caller is taking
2426 * steps that will free more memory. The caller should avoid the page
2427 * being used for !PFMEMALLOC purposes.
2428 */
2f064f34
MH
2429 if (alloc_flags & ALLOC_NO_WATERMARKS)
2430 set_page_pfmemalloc(page);
2431 else
2432 clear_page_pfmemalloc(page);
1da177e4
LT
2433}
2434
56fd56b8
MG
2435/*
2436 * Go through the free lists for the given migratetype and remove
2437 * the smallest available page from the freelists
2438 */
85ccc8fa 2439static __always_inline
728ec980 2440struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2441 int migratetype)
2442{
2443 unsigned int current_order;
b8af2941 2444 struct free_area *area;
56fd56b8
MG
2445 struct page *page;
2446
2447 /* Find a page of the appropriate size in the preferred list */
2448 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2449 area = &(zone->free_area[current_order]);
b03641af 2450 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2451 if (!page)
2452 continue;
6ab01363
AD
2453 del_page_from_free_list(page, zone, current_order);
2454 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2455 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2456 return page;
2457 }
2458
2459 return NULL;
2460}
2461
2462
b2a0ac88
MG
2463/*
2464 * This array describes the order lists are fallen back to when
2465 * the free lists for the desirable migrate type are depleted
2466 */
da415663 2467static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2468 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2469 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2470 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2471#ifdef CONFIG_CMA
974a786e 2472 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2473#endif
194159fb 2474#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2475 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2476#endif
b2a0ac88
MG
2477};
2478
dc67647b 2479#ifdef CONFIG_CMA
85ccc8fa 2480static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2481 unsigned int order)
2482{
2483 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2484}
2485#else
2486static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2487 unsigned int order) { return NULL; }
2488#endif
2489
c361be55 2490/*
293ffa5e 2491 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2492 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2493 * boundary. If alignment is required, use move_freepages_block()
2494 */
02aa0cdd 2495static int move_freepages(struct zone *zone,
39ddb991 2496 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2497 int migratetype, int *num_movable)
c361be55
MG
2498{
2499 struct page *page;
39ddb991 2500 unsigned long pfn;
d00181b9 2501 unsigned int order;
d100313f 2502 int pages_moved = 0;
c361be55 2503
39ddb991 2504 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2505 page = pfn_to_page(pfn);
c361be55 2506 if (!PageBuddy(page)) {
02aa0cdd
VB
2507 /*
2508 * We assume that pages that could be isolated for
2509 * migration are movable. But we don't actually try
2510 * isolating, as that would be expensive.
2511 */
2512 if (num_movable &&
2513 (PageLRU(page) || __PageMovable(page)))
2514 (*num_movable)++;
39ddb991 2515 pfn++;
c361be55
MG
2516 continue;
2517 }
2518
cd961038
DR
2519 /* Make sure we are not inadvertently changing nodes */
2520 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2521 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2522
ab130f91 2523 order = buddy_order(page);
6ab01363 2524 move_to_free_list(page, zone, order, migratetype);
39ddb991 2525 pfn += 1 << order;
d100313f 2526 pages_moved += 1 << order;
c361be55
MG
2527 }
2528
d100313f 2529 return pages_moved;
c361be55
MG
2530}
2531
ee6f509c 2532int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2533 int migratetype, int *num_movable)
c361be55 2534{
39ddb991 2535 unsigned long start_pfn, end_pfn, pfn;
c361be55 2536
4a222127
DR
2537 if (num_movable)
2538 *num_movable = 0;
2539
39ddb991
KW
2540 pfn = page_to_pfn(page);
2541 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2542 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2543
2544 /* Do not cross zone boundaries */
108bcc96 2545 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2546 start_pfn = pfn;
108bcc96 2547 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2548 return 0;
2549
39ddb991 2550 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2551 num_movable);
c361be55
MG
2552}
2553
2f66a68f
MG
2554static void change_pageblock_range(struct page *pageblock_page,
2555 int start_order, int migratetype)
2556{
2557 int nr_pageblocks = 1 << (start_order - pageblock_order);
2558
2559 while (nr_pageblocks--) {
2560 set_pageblock_migratetype(pageblock_page, migratetype);
2561 pageblock_page += pageblock_nr_pages;
2562 }
2563}
2564
fef903ef 2565/*
9c0415eb
VB
2566 * When we are falling back to another migratetype during allocation, try to
2567 * steal extra free pages from the same pageblocks to satisfy further
2568 * allocations, instead of polluting multiple pageblocks.
2569 *
2570 * If we are stealing a relatively large buddy page, it is likely there will
2571 * be more free pages in the pageblock, so try to steal them all. For
2572 * reclaimable and unmovable allocations, we steal regardless of page size,
2573 * as fragmentation caused by those allocations polluting movable pageblocks
2574 * is worse than movable allocations stealing from unmovable and reclaimable
2575 * pageblocks.
fef903ef 2576 */
4eb7dce6
JK
2577static bool can_steal_fallback(unsigned int order, int start_mt)
2578{
2579 /*
2580 * Leaving this order check is intended, although there is
2581 * relaxed order check in next check. The reason is that
2582 * we can actually steal whole pageblock if this condition met,
2583 * but, below check doesn't guarantee it and that is just heuristic
2584 * so could be changed anytime.
2585 */
2586 if (order >= pageblock_order)
2587 return true;
2588
2589 if (order >= pageblock_order / 2 ||
2590 start_mt == MIGRATE_RECLAIMABLE ||
2591 start_mt == MIGRATE_UNMOVABLE ||
2592 page_group_by_mobility_disabled)
2593 return true;
2594
2595 return false;
2596}
2597
597c8920 2598static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2599{
2600 unsigned long max_boost;
2601
2602 if (!watermark_boost_factor)
597c8920 2603 return false;
14f69140
HW
2604 /*
2605 * Don't bother in zones that are unlikely to produce results.
2606 * On small machines, including kdump capture kernels running
2607 * in a small area, boosting the watermark can cause an out of
2608 * memory situation immediately.
2609 */
2610 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2611 return false;
1c30844d
MG
2612
2613 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2614 watermark_boost_factor, 10000);
94b3334c
MG
2615
2616 /*
2617 * high watermark may be uninitialised if fragmentation occurs
2618 * very early in boot so do not boost. We do not fall
2619 * through and boost by pageblock_nr_pages as failing
2620 * allocations that early means that reclaim is not going
2621 * to help and it may even be impossible to reclaim the
2622 * boosted watermark resulting in a hang.
2623 */
2624 if (!max_boost)
597c8920 2625 return false;
94b3334c 2626
1c30844d
MG
2627 max_boost = max(pageblock_nr_pages, max_boost);
2628
2629 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2630 max_boost);
597c8920
JW
2631
2632 return true;
1c30844d
MG
2633}
2634
4eb7dce6
JK
2635/*
2636 * This function implements actual steal behaviour. If order is large enough,
2637 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2638 * pageblock to our migratetype and determine how many already-allocated pages
2639 * are there in the pageblock with a compatible migratetype. If at least half
2640 * of pages are free or compatible, we can change migratetype of the pageblock
2641 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2642 */
2643static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2644 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2645{
ab130f91 2646 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2647 int free_pages, movable_pages, alike_pages;
2648 int old_block_type;
2649
2650 old_block_type = get_pageblock_migratetype(page);
fef903ef 2651
3bc48f96
VB
2652 /*
2653 * This can happen due to races and we want to prevent broken
2654 * highatomic accounting.
2655 */
02aa0cdd 2656 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2657 goto single_page;
2658
fef903ef
SB
2659 /* Take ownership for orders >= pageblock_order */
2660 if (current_order >= pageblock_order) {
2661 change_pageblock_range(page, current_order, start_type);
3bc48f96 2662 goto single_page;
fef903ef
SB
2663 }
2664
1c30844d
MG
2665 /*
2666 * Boost watermarks to increase reclaim pressure to reduce the
2667 * likelihood of future fallbacks. Wake kswapd now as the node
2668 * may be balanced overall and kswapd will not wake naturally.
2669 */
597c8920 2670 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2671 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2672
3bc48f96
VB
2673 /* We are not allowed to try stealing from the whole block */
2674 if (!whole_block)
2675 goto single_page;
2676
02aa0cdd
VB
2677 free_pages = move_freepages_block(zone, page, start_type,
2678 &movable_pages);
2679 /*
2680 * Determine how many pages are compatible with our allocation.
2681 * For movable allocation, it's the number of movable pages which
2682 * we just obtained. For other types it's a bit more tricky.
2683 */
2684 if (start_type == MIGRATE_MOVABLE) {
2685 alike_pages = movable_pages;
2686 } else {
2687 /*
2688 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2689 * to MOVABLE pageblock, consider all non-movable pages as
2690 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2691 * vice versa, be conservative since we can't distinguish the
2692 * exact migratetype of non-movable pages.
2693 */
2694 if (old_block_type == MIGRATE_MOVABLE)
2695 alike_pages = pageblock_nr_pages
2696 - (free_pages + movable_pages);
2697 else
2698 alike_pages = 0;
2699 }
2700
3bc48f96 2701 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2702 if (!free_pages)
3bc48f96 2703 goto single_page;
fef903ef 2704
02aa0cdd
VB
2705 /*
2706 * If a sufficient number of pages in the block are either free or of
2707 * comparable migratability as our allocation, claim the whole block.
2708 */
2709 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2710 page_group_by_mobility_disabled)
2711 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2712
2713 return;
2714
2715single_page:
6ab01363 2716 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2717}
2718
2149cdae
JK
2719/*
2720 * Check whether there is a suitable fallback freepage with requested order.
2721 * If only_stealable is true, this function returns fallback_mt only if
2722 * we can steal other freepages all together. This would help to reduce
2723 * fragmentation due to mixed migratetype pages in one pageblock.
2724 */
2725int find_suitable_fallback(struct free_area *area, unsigned int order,
2726 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2727{
2728 int i;
2729 int fallback_mt;
2730
2731 if (area->nr_free == 0)
2732 return -1;
2733
2734 *can_steal = false;
2735 for (i = 0;; i++) {
2736 fallback_mt = fallbacks[migratetype][i];
974a786e 2737 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2738 break;
2739
b03641af 2740 if (free_area_empty(area, fallback_mt))
4eb7dce6 2741 continue;
fef903ef 2742
4eb7dce6
JK
2743 if (can_steal_fallback(order, migratetype))
2744 *can_steal = true;
2745
2149cdae
JK
2746 if (!only_stealable)
2747 return fallback_mt;
2748
2749 if (*can_steal)
2750 return fallback_mt;
fef903ef 2751 }
4eb7dce6
JK
2752
2753 return -1;
fef903ef
SB
2754}
2755
0aaa29a5
MG
2756/*
2757 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2758 * there are no empty page blocks that contain a page with a suitable order
2759 */
2760static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2761 unsigned int alloc_order)
2762{
2763 int mt;
2764 unsigned long max_managed, flags;
2765
2766 /*
2767 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2768 * Check is race-prone but harmless.
2769 */
9705bea5 2770 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2771 if (zone->nr_reserved_highatomic >= max_managed)
2772 return;
2773
2774 spin_lock_irqsave(&zone->lock, flags);
2775
2776 /* Recheck the nr_reserved_highatomic limit under the lock */
2777 if (zone->nr_reserved_highatomic >= max_managed)
2778 goto out_unlock;
2779
2780 /* Yoink! */
2781 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2782 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2783 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2784 zone->nr_reserved_highatomic += pageblock_nr_pages;
2785 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2786 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2787 }
2788
2789out_unlock:
2790 spin_unlock_irqrestore(&zone->lock, flags);
2791}
2792
2793/*
2794 * Used when an allocation is about to fail under memory pressure. This
2795 * potentially hurts the reliability of high-order allocations when under
2796 * intense memory pressure but failed atomic allocations should be easier
2797 * to recover from than an OOM.
29fac03b
MK
2798 *
2799 * If @force is true, try to unreserve a pageblock even though highatomic
2800 * pageblock is exhausted.
0aaa29a5 2801 */
29fac03b
MK
2802static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2803 bool force)
0aaa29a5
MG
2804{
2805 struct zonelist *zonelist = ac->zonelist;
2806 unsigned long flags;
2807 struct zoneref *z;
2808 struct zone *zone;
2809 struct page *page;
2810 int order;
04c8716f 2811 bool ret;
0aaa29a5 2812
97a225e6 2813 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2814 ac->nodemask) {
29fac03b
MK
2815 /*
2816 * Preserve at least one pageblock unless memory pressure
2817 * is really high.
2818 */
2819 if (!force && zone->nr_reserved_highatomic <=
2820 pageblock_nr_pages)
0aaa29a5
MG
2821 continue;
2822
2823 spin_lock_irqsave(&zone->lock, flags);
2824 for (order = 0; order < MAX_ORDER; order++) {
2825 struct free_area *area = &(zone->free_area[order]);
2826
b03641af 2827 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2828 if (!page)
0aaa29a5
MG
2829 continue;
2830
0aaa29a5 2831 /*
4855e4a7
MK
2832 * In page freeing path, migratetype change is racy so
2833 * we can counter several free pages in a pageblock
f0953a1b 2834 * in this loop although we changed the pageblock type
4855e4a7
MK
2835 * from highatomic to ac->migratetype. So we should
2836 * adjust the count once.
0aaa29a5 2837 */
a6ffdc07 2838 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2839 /*
2840 * It should never happen but changes to
2841 * locking could inadvertently allow a per-cpu
2842 * drain to add pages to MIGRATE_HIGHATOMIC
2843 * while unreserving so be safe and watch for
2844 * underflows.
2845 */
2846 zone->nr_reserved_highatomic -= min(
2847 pageblock_nr_pages,
2848 zone->nr_reserved_highatomic);
2849 }
0aaa29a5
MG
2850
2851 /*
2852 * Convert to ac->migratetype and avoid the normal
2853 * pageblock stealing heuristics. Minimally, the caller
2854 * is doing the work and needs the pages. More
2855 * importantly, if the block was always converted to
2856 * MIGRATE_UNMOVABLE or another type then the number
2857 * of pageblocks that cannot be completely freed
2858 * may increase.
2859 */
2860 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2861 ret = move_freepages_block(zone, page, ac->migratetype,
2862 NULL);
29fac03b
MK
2863 if (ret) {
2864 spin_unlock_irqrestore(&zone->lock, flags);
2865 return ret;
2866 }
0aaa29a5
MG
2867 }
2868 spin_unlock_irqrestore(&zone->lock, flags);
2869 }
04c8716f
MK
2870
2871 return false;
0aaa29a5
MG
2872}
2873
3bc48f96
VB
2874/*
2875 * Try finding a free buddy page on the fallback list and put it on the free
2876 * list of requested migratetype, possibly along with other pages from the same
2877 * block, depending on fragmentation avoidance heuristics. Returns true if
2878 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2879 *
2880 * The use of signed ints for order and current_order is a deliberate
2881 * deviation from the rest of this file, to make the for loop
2882 * condition simpler.
3bc48f96 2883 */
85ccc8fa 2884static __always_inline bool
6bb15450
MG
2885__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2886 unsigned int alloc_flags)
b2a0ac88 2887{
b8af2941 2888 struct free_area *area;
b002529d 2889 int current_order;
6bb15450 2890 int min_order = order;
b2a0ac88 2891 struct page *page;
4eb7dce6
JK
2892 int fallback_mt;
2893 bool can_steal;
b2a0ac88 2894
6bb15450
MG
2895 /*
2896 * Do not steal pages from freelists belonging to other pageblocks
2897 * i.e. orders < pageblock_order. If there are no local zones free,
2898 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2899 */
2900 if (alloc_flags & ALLOC_NOFRAGMENT)
2901 min_order = pageblock_order;
2902
7a8f58f3
VB
2903 /*
2904 * Find the largest available free page in the other list. This roughly
2905 * approximates finding the pageblock with the most free pages, which
2906 * would be too costly to do exactly.
2907 */
6bb15450 2908 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2909 --current_order) {
4eb7dce6
JK
2910 area = &(zone->free_area[current_order]);
2911 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2912 start_migratetype, false, &can_steal);
4eb7dce6
JK
2913 if (fallback_mt == -1)
2914 continue;
b2a0ac88 2915
7a8f58f3
VB
2916 /*
2917 * We cannot steal all free pages from the pageblock and the
2918 * requested migratetype is movable. In that case it's better to
2919 * steal and split the smallest available page instead of the
2920 * largest available page, because even if the next movable
2921 * allocation falls back into a different pageblock than this
2922 * one, it won't cause permanent fragmentation.
2923 */
2924 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2925 && current_order > order)
2926 goto find_smallest;
b2a0ac88 2927
7a8f58f3
VB
2928 goto do_steal;
2929 }
e0fff1bd 2930
7a8f58f3 2931 return false;
e0fff1bd 2932
7a8f58f3
VB
2933find_smallest:
2934 for (current_order = order; current_order < MAX_ORDER;
2935 current_order++) {
2936 area = &(zone->free_area[current_order]);
2937 fallback_mt = find_suitable_fallback(area, current_order,
2938 start_migratetype, false, &can_steal);
2939 if (fallback_mt != -1)
2940 break;
b2a0ac88
MG
2941 }
2942
7a8f58f3
VB
2943 /*
2944 * This should not happen - we already found a suitable fallback
2945 * when looking for the largest page.
2946 */
2947 VM_BUG_ON(current_order == MAX_ORDER);
2948
2949do_steal:
b03641af 2950 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2951
1c30844d
MG
2952 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2953 can_steal);
7a8f58f3
VB
2954
2955 trace_mm_page_alloc_extfrag(page, order, current_order,
2956 start_migratetype, fallback_mt);
2957
2958 return true;
2959
b2a0ac88
MG
2960}
2961
56fd56b8 2962/*
1da177e4
LT
2963 * Do the hard work of removing an element from the buddy allocator.
2964 * Call me with the zone->lock already held.
2965 */
85ccc8fa 2966static __always_inline struct page *
6bb15450
MG
2967__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2968 unsigned int alloc_flags)
1da177e4 2969{
1da177e4
LT
2970 struct page *page;
2971
ce8f86ee
H
2972 if (IS_ENABLED(CONFIG_CMA)) {
2973 /*
2974 * Balance movable allocations between regular and CMA areas by
2975 * allocating from CMA when over half of the zone's free memory
2976 * is in the CMA area.
2977 */
2978 if (alloc_flags & ALLOC_CMA &&
2979 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2980 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2981 page = __rmqueue_cma_fallback(zone, order);
2982 if (page)
2983 goto out;
2984 }
16867664 2985 }
3bc48f96 2986retry:
56fd56b8 2987 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2988 if (unlikely(!page)) {
8510e69c 2989 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2990 page = __rmqueue_cma_fallback(zone, order);
2991
6bb15450
MG
2992 if (!page && __rmqueue_fallback(zone, order, migratetype,
2993 alloc_flags))
3bc48f96 2994 goto retry;
728ec980 2995 }
ce8f86ee
H
2996out:
2997 if (page)
2998 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2999 return page;
1da177e4
LT
3000}
3001
5f63b720 3002/*
1da177e4
LT
3003 * Obtain a specified number of elements from the buddy allocator, all under
3004 * a single hold of the lock, for efficiency. Add them to the supplied list.
3005 * Returns the number of new pages which were placed at *list.
3006 */
5f63b720 3007static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3008 unsigned long count, struct list_head *list,
6bb15450 3009 int migratetype, unsigned int alloc_flags)
1da177e4 3010{
cb66bede 3011 int i, allocated = 0;
5f63b720 3012
dbbee9d5
MG
3013 /*
3014 * local_lock_irq held so equivalent to spin_lock_irqsave for
3015 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3016 */
d34b0733 3017 spin_lock(&zone->lock);
1da177e4 3018 for (i = 0; i < count; ++i) {
6bb15450
MG
3019 struct page *page = __rmqueue(zone, order, migratetype,
3020 alloc_flags);
085cc7d5 3021 if (unlikely(page == NULL))
1da177e4 3022 break;
81eabcbe 3023
479f854a
MG
3024 if (unlikely(check_pcp_refill(page)))
3025 continue;
3026
81eabcbe 3027 /*
0fac3ba5
VB
3028 * Split buddy pages returned by expand() are received here in
3029 * physical page order. The page is added to the tail of
3030 * caller's list. From the callers perspective, the linked list
3031 * is ordered by page number under some conditions. This is
3032 * useful for IO devices that can forward direction from the
3033 * head, thus also in the physical page order. This is useful
3034 * for IO devices that can merge IO requests if the physical
3035 * pages are ordered properly.
81eabcbe 3036 */
0fac3ba5 3037 list_add_tail(&page->lru, list);
cb66bede 3038 allocated++;
bb14c2c7 3039 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3040 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3041 -(1 << order));
1da177e4 3042 }
a6de734b
MG
3043
3044 /*
3045 * i pages were removed from the buddy list even if some leak due
3046 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3047 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3048 * pages added to the pcp list.
3049 */
f2260e6b 3050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3051 spin_unlock(&zone->lock);
cb66bede 3052 return allocated;
1da177e4
LT
3053}
3054
4ae7c039 3055#ifdef CONFIG_NUMA
8fce4d8e 3056/*
4037d452
CL
3057 * Called from the vmstat counter updater to drain pagesets of this
3058 * currently executing processor on remote nodes after they have
3059 * expired.
3060 *
879336c3
CL
3061 * Note that this function must be called with the thread pinned to
3062 * a single processor.
8fce4d8e 3063 */
4037d452 3064void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3065{
4ae7c039 3066 unsigned long flags;
7be12fc9 3067 int to_drain, batch;
4ae7c039 3068
dbbee9d5 3069 local_lock_irqsave(&pagesets.lock, flags);
4db0c3c2 3070 batch = READ_ONCE(pcp->batch);
7be12fc9 3071 to_drain = min(pcp->count, batch);
77ba9062 3072 if (to_drain > 0)
2a13515c 3073 free_pcppages_bulk(zone, to_drain, pcp);
dbbee9d5 3074 local_unlock_irqrestore(&pagesets.lock, flags);
4ae7c039
CL
3075}
3076#endif
3077
9f8f2172 3078/*
93481ff0 3079 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3080 *
3081 * The processor must either be the current processor and the
3082 * thread pinned to the current processor or a processor that
3083 * is not online.
3084 */
93481ff0 3085static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3086{
c54ad30c 3087 unsigned long flags;
93481ff0 3088 struct per_cpu_pages *pcp;
1da177e4 3089
dbbee9d5 3090 local_lock_irqsave(&pagesets.lock, flags);
1da177e4 3091
28f836b6 3092 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
77ba9062 3093 if (pcp->count)
93481ff0 3094 free_pcppages_bulk(zone, pcp->count, pcp);
28f836b6 3095
dbbee9d5 3096 local_unlock_irqrestore(&pagesets.lock, flags);
93481ff0 3097}
3dfa5721 3098
93481ff0
VB
3099/*
3100 * Drain pcplists of all zones on the indicated processor.
3101 *
3102 * The processor must either be the current processor and the
3103 * thread pinned to the current processor or a processor that
3104 * is not online.
3105 */
3106static void drain_pages(unsigned int cpu)
3107{
3108 struct zone *zone;
3109
3110 for_each_populated_zone(zone) {
3111 drain_pages_zone(cpu, zone);
1da177e4
LT
3112 }
3113}
1da177e4 3114
9f8f2172
CL
3115/*
3116 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3117 *
3118 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3119 * the single zone's pages.
9f8f2172 3120 */
93481ff0 3121void drain_local_pages(struct zone *zone)
9f8f2172 3122{
93481ff0
VB
3123 int cpu = smp_processor_id();
3124
3125 if (zone)
3126 drain_pages_zone(cpu, zone);
3127 else
3128 drain_pages(cpu);
9f8f2172
CL
3129}
3130
0ccce3b9
MG
3131static void drain_local_pages_wq(struct work_struct *work)
3132{
d9367bd0
WY
3133 struct pcpu_drain *drain;
3134
3135 drain = container_of(work, struct pcpu_drain, work);
3136
a459eeb7
MH
3137 /*
3138 * drain_all_pages doesn't use proper cpu hotplug protection so
3139 * we can race with cpu offline when the WQ can move this from
3140 * a cpu pinned worker to an unbound one. We can operate on a different
f0953a1b 3141 * cpu which is alright but we also have to make sure to not move to
a459eeb7
MH
3142 * a different one.
3143 */
9c25cbfc 3144 migrate_disable();
d9367bd0 3145 drain_local_pages(drain->zone);
9c25cbfc 3146 migrate_enable();
0ccce3b9
MG
3147}
3148
9f8f2172 3149/*
ec6e8c7e
VB
3150 * The implementation of drain_all_pages(), exposing an extra parameter to
3151 * drain on all cpus.
93481ff0 3152 *
ec6e8c7e
VB
3153 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3154 * not empty. The check for non-emptiness can however race with a free to
3155 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3156 * that need the guarantee that every CPU has drained can disable the
3157 * optimizing racy check.
9f8f2172 3158 */
3b1f3658 3159static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3160{
74046494 3161 int cpu;
74046494
GBY
3162
3163 /*
041711ce 3164 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3165 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3166 */
3167 static cpumask_t cpus_with_pcps;
3168
ce612879
MH
3169 /*
3170 * Make sure nobody triggers this path before mm_percpu_wq is fully
3171 * initialized.
3172 */
3173 if (WARN_ON_ONCE(!mm_percpu_wq))
3174 return;
3175
bd233f53
MG
3176 /*
3177 * Do not drain if one is already in progress unless it's specific to
3178 * a zone. Such callers are primarily CMA and memory hotplug and need
3179 * the drain to be complete when the call returns.
3180 */
3181 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3182 if (!zone)
3183 return;
3184 mutex_lock(&pcpu_drain_mutex);
3185 }
0ccce3b9 3186
74046494
GBY
3187 /*
3188 * We don't care about racing with CPU hotplug event
3189 * as offline notification will cause the notified
3190 * cpu to drain that CPU pcps and on_each_cpu_mask
3191 * disables preemption as part of its processing
3192 */
3193 for_each_online_cpu(cpu) {
28f836b6 3194 struct per_cpu_pages *pcp;
93481ff0 3195 struct zone *z;
74046494 3196 bool has_pcps = false;
93481ff0 3197
ec6e8c7e
VB
3198 if (force_all_cpus) {
3199 /*
3200 * The pcp.count check is racy, some callers need a
3201 * guarantee that no cpu is missed.
3202 */
3203 has_pcps = true;
3204 } else if (zone) {
28f836b6
MG
3205 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3206 if (pcp->count)
74046494 3207 has_pcps = true;
93481ff0
VB
3208 } else {
3209 for_each_populated_zone(z) {
28f836b6
MG
3210 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3211 if (pcp->count) {
93481ff0
VB
3212 has_pcps = true;
3213 break;
3214 }
74046494
GBY
3215 }
3216 }
93481ff0 3217
74046494
GBY
3218 if (has_pcps)
3219 cpumask_set_cpu(cpu, &cpus_with_pcps);
3220 else
3221 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3222 }
0ccce3b9 3223
bd233f53 3224 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3225 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3226
3227 drain->zone = zone;
3228 INIT_WORK(&drain->work, drain_local_pages_wq);
3229 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3230 }
bd233f53 3231 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3232 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3233
3234 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3235}
3236
ec6e8c7e
VB
3237/*
3238 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3239 *
3240 * When zone parameter is non-NULL, spill just the single zone's pages.
3241 *
3242 * Note that this can be extremely slow as the draining happens in a workqueue.
3243 */
3244void drain_all_pages(struct zone *zone)
3245{
3246 __drain_all_pages(zone, false);
3247}
3248
296699de 3249#ifdef CONFIG_HIBERNATION
1da177e4 3250
556b969a
CY
3251/*
3252 * Touch the watchdog for every WD_PAGE_COUNT pages.
3253 */
3254#define WD_PAGE_COUNT (128*1024)
3255
1da177e4
LT
3256void mark_free_pages(struct zone *zone)
3257{
556b969a 3258 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3259 unsigned long flags;
7aeb09f9 3260 unsigned int order, t;
86760a2c 3261 struct page *page;
1da177e4 3262
8080fc03 3263 if (zone_is_empty(zone))
1da177e4
LT
3264 return;
3265
3266 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3267
108bcc96 3268 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3269 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3270 if (pfn_valid(pfn)) {
86760a2c 3271 page = pfn_to_page(pfn);
ba6b0979 3272
556b969a
CY
3273 if (!--page_count) {
3274 touch_nmi_watchdog();
3275 page_count = WD_PAGE_COUNT;
3276 }
3277
ba6b0979
JK
3278 if (page_zone(page) != zone)
3279 continue;
3280
7be98234
RW
3281 if (!swsusp_page_is_forbidden(page))
3282 swsusp_unset_page_free(page);
f623f0db 3283 }
1da177e4 3284
b2a0ac88 3285 for_each_migratetype_order(order, t) {
86760a2c
GT
3286 list_for_each_entry(page,
3287 &zone->free_area[order].free_list[t], lru) {
f623f0db 3288 unsigned long i;
1da177e4 3289
86760a2c 3290 pfn = page_to_pfn(page);
556b969a
CY
3291 for (i = 0; i < (1UL << order); i++) {
3292 if (!--page_count) {
3293 touch_nmi_watchdog();
3294 page_count = WD_PAGE_COUNT;
3295 }
7be98234 3296 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3297 }
f623f0db 3298 }
b2a0ac88 3299 }
1da177e4
LT
3300 spin_unlock_irqrestore(&zone->lock, flags);
3301}
e2c55dc8 3302#endif /* CONFIG_PM */
1da177e4 3303
44042b44
MG
3304static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3305 unsigned int order)
1da177e4 3306{
5f8dcc21 3307 int migratetype;
1da177e4 3308
44042b44 3309 if (!free_pcp_prepare(page, order))
9cca35d4 3310 return false;
689bcebf 3311
dc4b0caf 3312 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3313 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3314 return true;
3315}
3316
3b12e7e9
MG
3317static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3318{
3319 int min_nr_free, max_nr_free;
3320
3321 /* Check for PCP disabled or boot pageset */
3322 if (unlikely(high < batch))
3323 return 1;
3324
3325 /* Leave at least pcp->batch pages on the list */
3326 min_nr_free = batch;
3327 max_nr_free = high - batch;
3328
3329 /*
3330 * Double the number of pages freed each time there is subsequent
3331 * freeing of pages without any allocation.
3332 */
3333 batch <<= pcp->free_factor;
3334 if (batch < max_nr_free)
3335 pcp->free_factor++;
3336 batch = clamp(batch, min_nr_free, max_nr_free);
3337
3338 return batch;
3339}
3340
c49c2c47
MG
3341static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3342{
3343 int high = READ_ONCE(pcp->high);
3344
3345 if (unlikely(!high))
3346 return 0;
3347
3348 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3349 return high;
3350
3351 /*
3352 * If reclaim is active, limit the number of pages that can be
3353 * stored on pcp lists
3354 */
3355 return min(READ_ONCE(pcp->batch) << 2, high);
3356}
3357
df1acc85 3358static void free_unref_page_commit(struct page *page, unsigned long pfn,
44042b44 3359 int migratetype, unsigned int order)
9cca35d4
MG
3360{
3361 struct zone *zone = page_zone(page);
3362 struct per_cpu_pages *pcp;
3b12e7e9 3363 int high;
44042b44 3364 int pindex;
9cca35d4 3365
d34b0733 3366 __count_vm_event(PGFREE);
28f836b6 3367 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44
MG
3368 pindex = order_to_pindex(migratetype, order);
3369 list_add(&page->lru, &pcp->lists[pindex]);
3370 pcp->count += 1 << order;
c49c2c47 3371 high = nr_pcp_high(pcp, zone);
3b12e7e9
MG
3372 if (pcp->count >= high) {
3373 int batch = READ_ONCE(pcp->batch);
3374
3375 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3376 }
9cca35d4 3377}
5f8dcc21 3378
9cca35d4 3379/*
44042b44 3380 * Free a pcp page
9cca35d4 3381 */
44042b44 3382void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3383{
3384 unsigned long flags;
3385 unsigned long pfn = page_to_pfn(page);
df1acc85 3386 int migratetype;
9cca35d4 3387
44042b44 3388 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3389 return;
da456f14 3390
5f8dcc21
MG
3391 /*
3392 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3393 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3394 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3395 * areas back if necessary. Otherwise, we may have to free
3396 * excessively into the page allocator
3397 */
df1acc85
MG
3398 migratetype = get_pcppage_migratetype(page);
3399 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3400 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3401 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3402 return;
5f8dcc21
MG
3403 }
3404 migratetype = MIGRATE_MOVABLE;
3405 }
3406
dbbee9d5 3407 local_lock_irqsave(&pagesets.lock, flags);
44042b44 3408 free_unref_page_commit(page, pfn, migratetype, order);
dbbee9d5 3409 local_unlock_irqrestore(&pagesets.lock, flags);
1da177e4
LT
3410}
3411
cc59850e
KK
3412/*
3413 * Free a list of 0-order pages
3414 */
2d4894b5 3415void free_unref_page_list(struct list_head *list)
cc59850e
KK
3416{
3417 struct page *page, *next;
9cca35d4 3418 unsigned long flags, pfn;
c24ad77d 3419 int batch_count = 0;
df1acc85 3420 int migratetype;
9cca35d4
MG
3421
3422 /* Prepare pages for freeing */
3423 list_for_each_entry_safe(page, next, list, lru) {
3424 pfn = page_to_pfn(page);
053cfda1 3425 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3426 list_del(&page->lru);
053cfda1
ML
3427 continue;
3428 }
df1acc85
MG
3429
3430 /*
3431 * Free isolated pages directly to the allocator, see
3432 * comment in free_unref_page.
3433 */
3434 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3435 if (unlikely(is_migrate_isolate(migratetype))) {
3436 list_del(&page->lru);
3437 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3438 continue;
df1acc85
MG
3439 }
3440
9cca35d4
MG
3441 set_page_private(page, pfn);
3442 }
cc59850e 3443
dbbee9d5 3444 local_lock_irqsave(&pagesets.lock, flags);
cc59850e 3445 list_for_each_entry_safe(page, next, list, lru) {
df1acc85 3446 pfn = page_private(page);
9cca35d4 3447 set_page_private(page, 0);
47aef601
DB
3448
3449 /*
3450 * Non-isolated types over MIGRATE_PCPTYPES get added
3451 * to the MIGRATE_MOVABLE pcp list.
3452 */
df1acc85 3453 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3454 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3455 migratetype = MIGRATE_MOVABLE;
3456
2d4894b5 3457 trace_mm_page_free_batched(page);
44042b44 3458 free_unref_page_commit(page, pfn, migratetype, 0);
c24ad77d
LS
3459
3460 /*
3461 * Guard against excessive IRQ disabled times when we get
3462 * a large list of pages to free.
3463 */
3464 if (++batch_count == SWAP_CLUSTER_MAX) {
dbbee9d5 3465 local_unlock_irqrestore(&pagesets.lock, flags);
c24ad77d 3466 batch_count = 0;
dbbee9d5 3467 local_lock_irqsave(&pagesets.lock, flags);
c24ad77d 3468 }
cc59850e 3469 }
dbbee9d5 3470 local_unlock_irqrestore(&pagesets.lock, flags);
cc59850e
KK
3471}
3472
8dfcc9ba
NP
3473/*
3474 * split_page takes a non-compound higher-order page, and splits it into
3475 * n (1<<order) sub-pages: page[0..n]
3476 * Each sub-page must be freed individually.
3477 *
3478 * Note: this is probably too low level an operation for use in drivers.
3479 * Please consult with lkml before using this in your driver.
3480 */
3481void split_page(struct page *page, unsigned int order)
3482{
3483 int i;
3484
309381fe
SL
3485 VM_BUG_ON_PAGE(PageCompound(page), page);
3486 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3487
a9627bc5 3488 for (i = 1; i < (1 << order); i++)
7835e98b 3489 set_page_refcounted(page + i);
8fb156c9 3490 split_page_owner(page, 1 << order);
e1baddf8 3491 split_page_memcg(page, 1 << order);
8dfcc9ba 3492}
5853ff23 3493EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3494
3c605096 3495int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3496{
748446bb
MG
3497 unsigned long watermark;
3498 struct zone *zone;
2139cbe6 3499 int mt;
748446bb
MG
3500
3501 BUG_ON(!PageBuddy(page));
3502
3503 zone = page_zone(page);
2e30abd1 3504 mt = get_pageblock_migratetype(page);
748446bb 3505
194159fb 3506 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3507 /*
3508 * Obey watermarks as if the page was being allocated. We can
3509 * emulate a high-order watermark check with a raised order-0
3510 * watermark, because we already know our high-order page
3511 * exists.
3512 */
fd1444b2 3513 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3514 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3515 return 0;
3516
8fb74b9f 3517 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3518 }
748446bb
MG
3519
3520 /* Remove page from free list */
b03641af 3521
6ab01363 3522 del_page_from_free_list(page, zone, order);
2139cbe6 3523
400bc7fd 3524 /*
3525 * Set the pageblock if the isolated page is at least half of a
3526 * pageblock
3527 */
748446bb
MG
3528 if (order >= pageblock_order - 1) {
3529 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3530 for (; page < endpage; page += pageblock_nr_pages) {
3531 int mt = get_pageblock_migratetype(page);
88ed365e 3532 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3533 && !is_migrate_highatomic(mt))
47118af0
MN
3534 set_pageblock_migratetype(page,
3535 MIGRATE_MOVABLE);
3536 }
748446bb
MG
3537 }
3538
f3a14ced 3539
8fb74b9f 3540 return 1UL << order;
1fb3f8ca
MG
3541}
3542
624f58d8
AD
3543/**
3544 * __putback_isolated_page - Return a now-isolated page back where we got it
3545 * @page: Page that was isolated
3546 * @order: Order of the isolated page
e6a0a7ad 3547 * @mt: The page's pageblock's migratetype
624f58d8
AD
3548 *
3549 * This function is meant to return a page pulled from the free lists via
3550 * __isolate_free_page back to the free lists they were pulled from.
3551 */
3552void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3553{
3554 struct zone *zone = page_zone(page);
3555
3556 /* zone lock should be held when this function is called */
3557 lockdep_assert_held(&zone->lock);
3558
3559 /* Return isolated page to tail of freelist. */
f04a5d5d 3560 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3561 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3562}
3563
060e7417
MG
3564/*
3565 * Update NUMA hit/miss statistics
3566 *
3567 * Must be called with interrupts disabled.
060e7417 3568 */
3e23060b
MG
3569static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3570 long nr_account)
060e7417
MG
3571{
3572#ifdef CONFIG_NUMA
3a321d2a 3573 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3574
4518085e
KW
3575 /* skip numa counters update if numa stats is disabled */
3576 if (!static_branch_likely(&vm_numa_stat_key))
3577 return;
3578
c1093b74 3579 if (zone_to_nid(z) != numa_node_id())
060e7417 3580 local_stat = NUMA_OTHER;
060e7417 3581
c1093b74 3582 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3583 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3584 else {
3e23060b
MG
3585 __count_numa_events(z, NUMA_MISS, nr_account);
3586 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3587 }
3e23060b 3588 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3589#endif
3590}
3591
066b2393 3592/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3593static inline
44042b44
MG
3594struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3595 int migratetype,
6bb15450 3596 unsigned int alloc_flags,
453f85d4 3597 struct per_cpu_pages *pcp,
066b2393
MG
3598 struct list_head *list)
3599{
3600 struct page *page;
3601
3602 do {
3603 if (list_empty(list)) {
44042b44
MG
3604 int batch = READ_ONCE(pcp->batch);
3605 int alloced;
3606
3607 /*
3608 * Scale batch relative to order if batch implies
3609 * free pages can be stored on the PCP. Batch can
3610 * be 1 for small zones or for boot pagesets which
3611 * should never store free pages as the pages may
3612 * belong to arbitrary zones.
3613 */
3614 if (batch > 1)
3615 batch = max(batch >> order, 2);
3616 alloced = rmqueue_bulk(zone, order,
3617 batch, list,
6bb15450 3618 migratetype, alloc_flags);
44042b44
MG
3619
3620 pcp->count += alloced << order;
066b2393
MG
3621 if (unlikely(list_empty(list)))
3622 return NULL;
3623 }
3624
453f85d4 3625 page = list_first_entry(list, struct page, lru);
066b2393 3626 list_del(&page->lru);
44042b44 3627 pcp->count -= 1 << order;
066b2393
MG
3628 } while (check_new_pcp(page));
3629
3630 return page;
3631}
3632
3633/* Lock and remove page from the per-cpu list */
3634static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44
MG
3635 struct zone *zone, unsigned int order,
3636 gfp_t gfp_flags, int migratetype,
3637 unsigned int alloc_flags)
066b2393
MG
3638{
3639 struct per_cpu_pages *pcp;
3640 struct list_head *list;
066b2393 3641 struct page *page;
d34b0733 3642 unsigned long flags;
066b2393 3643
dbbee9d5 3644 local_lock_irqsave(&pagesets.lock, flags);
3b12e7e9
MG
3645
3646 /*
3647 * On allocation, reduce the number of pages that are batch freed.
3648 * See nr_pcp_free() where free_factor is increased for subsequent
3649 * frees.
3650 */
28f836b6 3651 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3b12e7e9 3652 pcp->free_factor >>= 1;
44042b44
MG
3653 list = &pcp->lists[order_to_pindex(migratetype, order)];
3654 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
43c95bcc 3655 local_unlock_irqrestore(&pagesets.lock, flags);
066b2393 3656 if (page) {
1c52e6d0 3657 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3658 zone_statistics(preferred_zone, zone, 1);
066b2393 3659 }
066b2393
MG
3660 return page;
3661}
3662
1da177e4 3663/*
75379191 3664 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3665 */
0a15c3e9 3666static inline
066b2393 3667struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3668 struct zone *zone, unsigned int order,
c603844b
MG
3669 gfp_t gfp_flags, unsigned int alloc_flags,
3670 int migratetype)
1da177e4
LT
3671{
3672 unsigned long flags;
689bcebf 3673 struct page *page;
1da177e4 3674
44042b44 3675 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3676 /*
3677 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3678 * we need to skip it when CMA area isn't allowed.
3679 */
3680 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3681 migratetype != MIGRATE_MOVABLE) {
44042b44
MG
3682 page = rmqueue_pcplist(preferred_zone, zone, order,
3683 gfp_flags, migratetype, alloc_flags);
1d91df85
JK
3684 goto out;
3685 }
066b2393 3686 }
83b9355b 3687
066b2393
MG
3688 /*
3689 * We most definitely don't want callers attempting to
3690 * allocate greater than order-1 page units with __GFP_NOFAIL.
3691 */
3692 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3693 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3694
066b2393
MG
3695 do {
3696 page = NULL;
1d91df85
JK
3697 /*
3698 * order-0 request can reach here when the pcplist is skipped
3699 * due to non-CMA allocation context. HIGHATOMIC area is
3700 * reserved for high-order atomic allocation, so order-0
3701 * request should skip it.
3702 */
3703 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3704 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3705 if (page)
3706 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3707 }
a74609fa 3708 if (!page)
6bb15450 3709 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393 3710 } while (page && check_new_pages(page, order));
066b2393
MG
3711 if (!page)
3712 goto failed;
43c95bcc 3713
066b2393
MG
3714 __mod_zone_freepage_state(zone, -(1 << order),
3715 get_pcppage_migratetype(page));
43c95bcc 3716 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 3717
16709d1d 3718 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3719 zone_statistics(preferred_zone, zone, 1);
1da177e4 3720
066b2393 3721out:
73444bc4
MG
3722 /* Separate test+clear to avoid unnecessary atomics */
3723 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3724 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3725 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3726 }
3727
066b2393 3728 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3729 return page;
a74609fa
NP
3730
3731failed:
43c95bcc 3732 spin_unlock_irqrestore(&zone->lock, flags);
a74609fa 3733 return NULL;
1da177e4
LT
3734}
3735
933e312e
AM
3736#ifdef CONFIG_FAIL_PAGE_ALLOC
3737
b2588c4b 3738static struct {
933e312e
AM
3739 struct fault_attr attr;
3740
621a5f7a 3741 bool ignore_gfp_highmem;
71baba4b 3742 bool ignore_gfp_reclaim;
54114994 3743 u32 min_order;
933e312e
AM
3744} fail_page_alloc = {
3745 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3746 .ignore_gfp_reclaim = true,
621a5f7a 3747 .ignore_gfp_highmem = true,
54114994 3748 .min_order = 1,
933e312e
AM
3749};
3750
3751static int __init setup_fail_page_alloc(char *str)
3752{
3753 return setup_fault_attr(&fail_page_alloc.attr, str);
3754}
3755__setup("fail_page_alloc=", setup_fail_page_alloc);
3756
af3b8544 3757static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3758{
54114994 3759 if (order < fail_page_alloc.min_order)
deaf386e 3760 return false;
933e312e 3761 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3762 return false;
933e312e 3763 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3764 return false;
71baba4b
MG
3765 if (fail_page_alloc.ignore_gfp_reclaim &&
3766 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3767 return false;
933e312e
AM
3768
3769 return should_fail(&fail_page_alloc.attr, 1 << order);
3770}
3771
3772#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3773
3774static int __init fail_page_alloc_debugfs(void)
3775{
0825a6f9 3776 umode_t mode = S_IFREG | 0600;
933e312e 3777 struct dentry *dir;
933e312e 3778
dd48c085
AM
3779 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3780 &fail_page_alloc.attr);
b2588c4b 3781
d9f7979c
GKH
3782 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3783 &fail_page_alloc.ignore_gfp_reclaim);
3784 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3785 &fail_page_alloc.ignore_gfp_highmem);
3786 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3787
d9f7979c 3788 return 0;
933e312e
AM
3789}
3790
3791late_initcall(fail_page_alloc_debugfs);
3792
3793#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3794
3795#else /* CONFIG_FAIL_PAGE_ALLOC */
3796
af3b8544 3797static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3798{
deaf386e 3799 return false;
933e312e
AM
3800}
3801
3802#endif /* CONFIG_FAIL_PAGE_ALLOC */
3803
54aa3866 3804noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3805{
3806 return __should_fail_alloc_page(gfp_mask, order);
3807}
3808ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3809
f27ce0e1
JK
3810static inline long __zone_watermark_unusable_free(struct zone *z,
3811 unsigned int order, unsigned int alloc_flags)
3812{
3813 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3814 long unusable_free = (1 << order) - 1;
3815
3816 /*
3817 * If the caller does not have rights to ALLOC_HARDER then subtract
3818 * the high-atomic reserves. This will over-estimate the size of the
3819 * atomic reserve but it avoids a search.
3820 */
3821 if (likely(!alloc_harder))
3822 unusable_free += z->nr_reserved_highatomic;
3823
3824#ifdef CONFIG_CMA
3825 /* If allocation can't use CMA areas don't use free CMA pages */
3826 if (!(alloc_flags & ALLOC_CMA))
3827 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3828#endif
3829
3830 return unusable_free;
3831}
3832
1da177e4 3833/*
97a16fc8
MG
3834 * Return true if free base pages are above 'mark'. For high-order checks it
3835 * will return true of the order-0 watermark is reached and there is at least
3836 * one free page of a suitable size. Checking now avoids taking the zone lock
3837 * to check in the allocation paths if no pages are free.
1da177e4 3838 */
86a294a8 3839bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3840 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3841 long free_pages)
1da177e4 3842{
d23ad423 3843 long min = mark;
1da177e4 3844 int o;
cd04ae1e 3845 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3846
0aaa29a5 3847 /* free_pages may go negative - that's OK */
f27ce0e1 3848 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3849
7fb1d9fc 3850 if (alloc_flags & ALLOC_HIGH)
1da177e4 3851 min -= min / 2;
0aaa29a5 3852
f27ce0e1 3853 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3854 /*
3855 * OOM victims can try even harder than normal ALLOC_HARDER
3856 * users on the grounds that it's definitely going to be in
3857 * the exit path shortly and free memory. Any allocation it
3858 * makes during the free path will be small and short-lived.
3859 */
3860 if (alloc_flags & ALLOC_OOM)
3861 min -= min / 2;
3862 else
3863 min -= min / 4;
3864 }
3865
97a16fc8
MG
3866 /*
3867 * Check watermarks for an order-0 allocation request. If these
3868 * are not met, then a high-order request also cannot go ahead
3869 * even if a suitable page happened to be free.
3870 */
97a225e6 3871 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3872 return false;
1da177e4 3873
97a16fc8
MG
3874 /* If this is an order-0 request then the watermark is fine */
3875 if (!order)
3876 return true;
3877
3878 /* For a high-order request, check at least one suitable page is free */
3879 for (o = order; o < MAX_ORDER; o++) {
3880 struct free_area *area = &z->free_area[o];
3881 int mt;
3882
3883 if (!area->nr_free)
3884 continue;
3885
97a16fc8 3886 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3887 if (!free_area_empty(area, mt))
97a16fc8
MG
3888 return true;
3889 }
3890
3891#ifdef CONFIG_CMA
d883c6cf 3892 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3893 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3894 return true;
d883c6cf 3895 }
97a16fc8 3896#endif
76089d00 3897 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3898 return true;
1da177e4 3899 }
97a16fc8 3900 return false;
88f5acf8
MG
3901}
3902
7aeb09f9 3903bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3904 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3905{
97a225e6 3906 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3907 zone_page_state(z, NR_FREE_PAGES));
3908}
3909
48ee5f36 3910static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3911 unsigned long mark, int highest_zoneidx,
f80b08fc 3912 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3913{
f27ce0e1 3914 long free_pages;
d883c6cf 3915
f27ce0e1 3916 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3917
3918 /*
3919 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3920 * need to be calculated.
48ee5f36 3921 */
f27ce0e1
JK
3922 if (!order) {
3923 long fast_free;
3924
3925 fast_free = free_pages;
3926 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3927 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3928 return true;
3929 }
48ee5f36 3930
f80b08fc
CTR
3931 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3932 free_pages))
3933 return true;
3934 /*
3935 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3936 * when checking the min watermark. The min watermark is the
3937 * point where boosting is ignored so that kswapd is woken up
3938 * when below the low watermark.
3939 */
3940 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3941 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3942 mark = z->_watermark[WMARK_MIN];
3943 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3944 alloc_flags, free_pages);
3945 }
3946
3947 return false;
48ee5f36
MG
3948}
3949
7aeb09f9 3950bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3951 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3952{
3953 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3954
3955 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3956 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3957
97a225e6 3958 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3959 free_pages);
1da177e4
LT
3960}
3961
9276b1bc 3962#ifdef CONFIG_NUMA
61bb6cd2
GU
3963int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3964
957f822a
DR
3965static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3966{
e02dc017 3967 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3968 node_reclaim_distance;
957f822a 3969}
9276b1bc 3970#else /* CONFIG_NUMA */
957f822a
DR
3971static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3972{
3973 return true;
3974}
9276b1bc
PJ
3975#endif /* CONFIG_NUMA */
3976
6bb15450
MG
3977/*
3978 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3979 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3980 * premature use of a lower zone may cause lowmem pressure problems that
3981 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3982 * probably too small. It only makes sense to spread allocations to avoid
3983 * fragmentation between the Normal and DMA32 zones.
3984 */
3985static inline unsigned int
0a79cdad 3986alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3987{
736838e9 3988 unsigned int alloc_flags;
0a79cdad 3989
736838e9
MN
3990 /*
3991 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3992 * to save a branch.
3993 */
3994 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3995
3996#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3997 if (!zone)
3998 return alloc_flags;
3999
6bb15450 4000 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4001 return alloc_flags;
6bb15450
MG
4002
4003 /*
4004 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4005 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4006 * on UMA that if Normal is populated then so is DMA32.
4007 */
4008 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4009 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4010 return alloc_flags;
6bb15450 4011
8118b82e 4012 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4013#endif /* CONFIG_ZONE_DMA32 */
4014 return alloc_flags;
6bb15450 4015}
6bb15450 4016
8e3560d9
PT
4017/* Must be called after current_gfp_context() which can change gfp_mask */
4018static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4019 unsigned int alloc_flags)
8510e69c
JK
4020{
4021#ifdef CONFIG_CMA
8e3560d9 4022 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4023 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4024#endif
4025 return alloc_flags;
4026}
4027
7fb1d9fc 4028/*
0798e519 4029 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4030 * a page.
4031 */
4032static struct page *
a9263751
VB
4033get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4034 const struct alloc_context *ac)
753ee728 4035{
6bb15450 4036 struct zoneref *z;
5117f45d 4037 struct zone *zone;
3b8c0be4 4038 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 4039 bool no_fallback;
3b8c0be4 4040
6bb15450 4041retry:
7fb1d9fc 4042 /*
9276b1bc 4043 * Scan zonelist, looking for a zone with enough free.
344736f2 4044 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 4045 */
6bb15450
MG
4046 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4047 z = ac->preferred_zoneref;
30d8ec73
MN
4048 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4049 ac->nodemask) {
be06af00 4050 struct page *page;
e085dbc5
JW
4051 unsigned long mark;
4052
664eedde
MG
4053 if (cpusets_enabled() &&
4054 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4055 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4056 continue;
a756cf59
JW
4057 /*
4058 * When allocating a page cache page for writing, we
281e3726
MG
4059 * want to get it from a node that is within its dirty
4060 * limit, such that no single node holds more than its
a756cf59 4061 * proportional share of globally allowed dirty pages.
281e3726 4062 * The dirty limits take into account the node's
a756cf59
JW
4063 * lowmem reserves and high watermark so that kswapd
4064 * should be able to balance it without having to
4065 * write pages from its LRU list.
4066 *
a756cf59 4067 * XXX: For now, allow allocations to potentially
281e3726 4068 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4069 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4070 * which is important when on a NUMA setup the allowed
281e3726 4071 * nodes are together not big enough to reach the
a756cf59 4072 * global limit. The proper fix for these situations
281e3726 4073 * will require awareness of nodes in the
a756cf59
JW
4074 * dirty-throttling and the flusher threads.
4075 */
3b8c0be4
MG
4076 if (ac->spread_dirty_pages) {
4077 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4078 continue;
4079
4080 if (!node_dirty_ok(zone->zone_pgdat)) {
4081 last_pgdat_dirty_limit = zone->zone_pgdat;
4082 continue;
4083 }
4084 }
7fb1d9fc 4085
6bb15450
MG
4086 if (no_fallback && nr_online_nodes > 1 &&
4087 zone != ac->preferred_zoneref->zone) {
4088 int local_nid;
4089
4090 /*
4091 * If moving to a remote node, retry but allow
4092 * fragmenting fallbacks. Locality is more important
4093 * than fragmentation avoidance.
4094 */
4095 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4096 if (zone_to_nid(zone) != local_nid) {
4097 alloc_flags &= ~ALLOC_NOFRAGMENT;
4098 goto retry;
4099 }
4100 }
4101
a9214443 4102 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4103 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4104 ac->highest_zoneidx, alloc_flags,
4105 gfp_mask)) {
fa5e084e
MG
4106 int ret;
4107
c9e97a19
PT
4108#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4109 /*
4110 * Watermark failed for this zone, but see if we can
4111 * grow this zone if it contains deferred pages.
4112 */
4113 if (static_branch_unlikely(&deferred_pages)) {
4114 if (_deferred_grow_zone(zone, order))
4115 goto try_this_zone;
4116 }
4117#endif
5dab2911
MG
4118 /* Checked here to keep the fast path fast */
4119 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4120 if (alloc_flags & ALLOC_NO_WATERMARKS)
4121 goto try_this_zone;
4122
202e35db 4123 if (!node_reclaim_enabled() ||
c33d6c06 4124 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4125 continue;
4126
a5f5f91d 4127 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4128 switch (ret) {
a5f5f91d 4129 case NODE_RECLAIM_NOSCAN:
fa5e084e 4130 /* did not scan */
cd38b115 4131 continue;
a5f5f91d 4132 case NODE_RECLAIM_FULL:
fa5e084e 4133 /* scanned but unreclaimable */
cd38b115 4134 continue;
fa5e084e
MG
4135 default:
4136 /* did we reclaim enough */
fed2719e 4137 if (zone_watermark_ok(zone, order, mark,
97a225e6 4138 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4139 goto try_this_zone;
4140
fed2719e 4141 continue;
0798e519 4142 }
7fb1d9fc
RS
4143 }
4144
fa5e084e 4145try_this_zone:
066b2393 4146 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4147 gfp_mask, alloc_flags, ac->migratetype);
75379191 4148 if (page) {
479f854a 4149 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4150
4151 /*
4152 * If this is a high-order atomic allocation then check
4153 * if the pageblock should be reserved for the future
4154 */
4155 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4156 reserve_highatomic_pageblock(page, zone, order);
4157
75379191 4158 return page;
c9e97a19
PT
4159 } else {
4160#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4161 /* Try again if zone has deferred pages */
4162 if (static_branch_unlikely(&deferred_pages)) {
4163 if (_deferred_grow_zone(zone, order))
4164 goto try_this_zone;
4165 }
4166#endif
75379191 4167 }
54a6eb5c 4168 }
9276b1bc 4169
6bb15450
MG
4170 /*
4171 * It's possible on a UMA machine to get through all zones that are
4172 * fragmented. If avoiding fragmentation, reset and try again.
4173 */
4174 if (no_fallback) {
4175 alloc_flags &= ~ALLOC_NOFRAGMENT;
4176 goto retry;
4177 }
4178
4ffeaf35 4179 return NULL;
753ee728
MH
4180}
4181
9af744d7 4182static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4183{
a238ab5b 4184 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4185
4186 /*
4187 * This documents exceptions given to allocations in certain
4188 * contexts that are allowed to allocate outside current's set
4189 * of allowed nodes.
4190 */
4191 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4192 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4193 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4194 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4195 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4196 filter &= ~SHOW_MEM_FILTER_NODES;
4197
9af744d7 4198 show_mem(filter, nodemask);
aa187507
MH
4199}
4200
a8e99259 4201void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4202{
4203 struct va_format vaf;
4204 va_list args;
1be334e5 4205 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4206
0f7896f1 4207 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
4208 return;
4209
7877cdcc
MH
4210 va_start(args, fmt);
4211 vaf.fmt = fmt;
4212 vaf.va = &args;
ef8444ea 4213 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4214 current->comm, &vaf, gfp_mask, &gfp_mask,
4215 nodemask_pr_args(nodemask));
7877cdcc 4216 va_end(args);
3ee9a4f0 4217
a8e99259 4218 cpuset_print_current_mems_allowed();
ef8444ea 4219 pr_cont("\n");
a238ab5b 4220 dump_stack();
685dbf6f 4221 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4222}
4223
6c18ba7a
MH
4224static inline struct page *
4225__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4226 unsigned int alloc_flags,
4227 const struct alloc_context *ac)
4228{
4229 struct page *page;
4230
4231 page = get_page_from_freelist(gfp_mask, order,
4232 alloc_flags|ALLOC_CPUSET, ac);
4233 /*
4234 * fallback to ignore cpuset restriction if our nodes
4235 * are depleted
4236 */
4237 if (!page)
4238 page = get_page_from_freelist(gfp_mask, order,
4239 alloc_flags, ac);
4240
4241 return page;
4242}
4243
11e33f6a
MG
4244static inline struct page *
4245__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4246 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4247{
6e0fc46d
DR
4248 struct oom_control oc = {
4249 .zonelist = ac->zonelist,
4250 .nodemask = ac->nodemask,
2a966b77 4251 .memcg = NULL,
6e0fc46d
DR
4252 .gfp_mask = gfp_mask,
4253 .order = order,
6e0fc46d 4254 };
11e33f6a
MG
4255 struct page *page;
4256
9879de73
JW
4257 *did_some_progress = 0;
4258
9879de73 4259 /*
dc56401f
JW
4260 * Acquire the oom lock. If that fails, somebody else is
4261 * making progress for us.
9879de73 4262 */
dc56401f 4263 if (!mutex_trylock(&oom_lock)) {
9879de73 4264 *did_some_progress = 1;
11e33f6a 4265 schedule_timeout_uninterruptible(1);
1da177e4
LT
4266 return NULL;
4267 }
6b1de916 4268
11e33f6a
MG
4269 /*
4270 * Go through the zonelist yet one more time, keep very high watermark
4271 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4272 * we're still under heavy pressure. But make sure that this reclaim
4273 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4274 * allocation which will never fail due to oom_lock already held.
11e33f6a 4275 */
e746bf73
TH
4276 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4277 ~__GFP_DIRECT_RECLAIM, order,
4278 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4279 if (page)
11e33f6a
MG
4280 goto out;
4281
06ad276a
MH
4282 /* Coredumps can quickly deplete all memory reserves */
4283 if (current->flags & PF_DUMPCORE)
4284 goto out;
4285 /* The OOM killer will not help higher order allocs */
4286 if (order > PAGE_ALLOC_COSTLY_ORDER)
4287 goto out;
dcda9b04
MH
4288 /*
4289 * We have already exhausted all our reclaim opportunities without any
4290 * success so it is time to admit defeat. We will skip the OOM killer
4291 * because it is very likely that the caller has a more reasonable
4292 * fallback than shooting a random task.
cfb4a541
MN
4293 *
4294 * The OOM killer may not free memory on a specific node.
dcda9b04 4295 */
cfb4a541 4296 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4297 goto out;
06ad276a 4298 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4299 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4300 goto out;
4301 if (pm_suspended_storage())
4302 goto out;
4303 /*
4304 * XXX: GFP_NOFS allocations should rather fail than rely on
4305 * other request to make a forward progress.
4306 * We are in an unfortunate situation where out_of_memory cannot
4307 * do much for this context but let's try it to at least get
4308 * access to memory reserved if the current task is killed (see
4309 * out_of_memory). Once filesystems are ready to handle allocation
4310 * failures more gracefully we should just bail out here.
4311 */
4312
3c2c6488 4313 /* Exhausted what can be done so it's blame time */
5020e285 4314 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4315 *did_some_progress = 1;
5020e285 4316
6c18ba7a
MH
4317 /*
4318 * Help non-failing allocations by giving them access to memory
4319 * reserves
4320 */
4321 if (gfp_mask & __GFP_NOFAIL)
4322 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4323 ALLOC_NO_WATERMARKS, ac);
5020e285 4324 }
11e33f6a 4325out:
dc56401f 4326 mutex_unlock(&oom_lock);
11e33f6a
MG
4327 return page;
4328}
4329
33c2d214 4330/*
baf2f90b 4331 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4332 * killer is consider as the only way to move forward.
4333 */
4334#define MAX_COMPACT_RETRIES 16
4335
56de7263
MG
4336#ifdef CONFIG_COMPACTION
4337/* Try memory compaction for high-order allocations before reclaim */
4338static struct page *
4339__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4340 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4341 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4342{
5e1f0f09 4343 struct page *page = NULL;
eb414681 4344 unsigned long pflags;
499118e9 4345 unsigned int noreclaim_flag;
53853e2d
VB
4346
4347 if (!order)
66199712 4348 return NULL;
66199712 4349
eb414681 4350 psi_memstall_enter(&pflags);
499118e9 4351 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4352
c5d01d0d 4353 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4354 prio, &page);
eb414681 4355
499118e9 4356 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4357 psi_memstall_leave(&pflags);
56de7263 4358
06dac2f4
CTR
4359 if (*compact_result == COMPACT_SKIPPED)
4360 return NULL;
98dd3b48
VB
4361 /*
4362 * At least in one zone compaction wasn't deferred or skipped, so let's
4363 * count a compaction stall
4364 */
4365 count_vm_event(COMPACTSTALL);
8fb74b9f 4366
5e1f0f09
MG
4367 /* Prep a captured page if available */
4368 if (page)
4369 prep_new_page(page, order, gfp_mask, alloc_flags);
4370
4371 /* Try get a page from the freelist if available */
4372 if (!page)
4373 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4374
98dd3b48
VB
4375 if (page) {
4376 struct zone *zone = page_zone(page);
53853e2d 4377
98dd3b48
VB
4378 zone->compact_blockskip_flush = false;
4379 compaction_defer_reset(zone, order, true);
4380 count_vm_event(COMPACTSUCCESS);
4381 return page;
4382 }
56de7263 4383
98dd3b48
VB
4384 /*
4385 * It's bad if compaction run occurs and fails. The most likely reason
4386 * is that pages exist, but not enough to satisfy watermarks.
4387 */
4388 count_vm_event(COMPACTFAIL);
66199712 4389
98dd3b48 4390 cond_resched();
56de7263
MG
4391
4392 return NULL;
4393}
33c2d214 4394
3250845d
VB
4395static inline bool
4396should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4397 enum compact_result compact_result,
4398 enum compact_priority *compact_priority,
d9436498 4399 int *compaction_retries)
3250845d
VB
4400{
4401 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4402 int min_priority;
65190cff
MH
4403 bool ret = false;
4404 int retries = *compaction_retries;
4405 enum compact_priority priority = *compact_priority;
3250845d
VB
4406
4407 if (!order)
4408 return false;
4409
691d9497
AT
4410 if (fatal_signal_pending(current))
4411 return false;
4412
d9436498
VB
4413 if (compaction_made_progress(compact_result))
4414 (*compaction_retries)++;
4415
3250845d
VB
4416 /*
4417 * compaction considers all the zone as desperately out of memory
4418 * so it doesn't really make much sense to retry except when the
4419 * failure could be caused by insufficient priority
4420 */
d9436498
VB
4421 if (compaction_failed(compact_result))
4422 goto check_priority;
3250845d 4423
49433085
VB
4424 /*
4425 * compaction was skipped because there are not enough order-0 pages
4426 * to work with, so we retry only if it looks like reclaim can help.
4427 */
4428 if (compaction_needs_reclaim(compact_result)) {
4429 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4430 goto out;
4431 }
4432
3250845d
VB
4433 /*
4434 * make sure the compaction wasn't deferred or didn't bail out early
4435 * due to locks contention before we declare that we should give up.
49433085
VB
4436 * But the next retry should use a higher priority if allowed, so
4437 * we don't just keep bailing out endlessly.
3250845d 4438 */
65190cff 4439 if (compaction_withdrawn(compact_result)) {
49433085 4440 goto check_priority;
65190cff 4441 }
3250845d
VB
4442
4443 /*
dcda9b04 4444 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4445 * costly ones because they are de facto nofail and invoke OOM
4446 * killer to move on while costly can fail and users are ready
4447 * to cope with that. 1/4 retries is rather arbitrary but we
4448 * would need much more detailed feedback from compaction to
4449 * make a better decision.
4450 */
4451 if (order > PAGE_ALLOC_COSTLY_ORDER)
4452 max_retries /= 4;
65190cff
MH
4453 if (*compaction_retries <= max_retries) {
4454 ret = true;
4455 goto out;
4456 }
3250845d 4457
d9436498
VB
4458 /*
4459 * Make sure there are attempts at the highest priority if we exhausted
4460 * all retries or failed at the lower priorities.
4461 */
4462check_priority:
c2033b00
VB
4463 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4464 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4465
c2033b00 4466 if (*compact_priority > min_priority) {
d9436498
VB
4467 (*compact_priority)--;
4468 *compaction_retries = 0;
65190cff 4469 ret = true;
d9436498 4470 }
65190cff
MH
4471out:
4472 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4473 return ret;
3250845d 4474}
56de7263
MG
4475#else
4476static inline struct page *
4477__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4478 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4479 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4480{
33c2d214 4481 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4482 return NULL;
4483}
33c2d214
MH
4484
4485static inline bool
86a294a8
MH
4486should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4487 enum compact_result compact_result,
a5508cd8 4488 enum compact_priority *compact_priority,
d9436498 4489 int *compaction_retries)
33c2d214 4490{
31e49bfd
MH
4491 struct zone *zone;
4492 struct zoneref *z;
4493
4494 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4495 return false;
4496
4497 /*
4498 * There are setups with compaction disabled which would prefer to loop
4499 * inside the allocator rather than hit the oom killer prematurely.
4500 * Let's give them a good hope and keep retrying while the order-0
4501 * watermarks are OK.
4502 */
97a225e6
JK
4503 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4504 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4505 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4506 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4507 return true;
4508 }
33c2d214
MH
4509 return false;
4510}
3250845d 4511#endif /* CONFIG_COMPACTION */
56de7263 4512
d92a8cfc 4513#ifdef CONFIG_LOCKDEP
93781325 4514static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4515 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4516
f920e413 4517static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4518{
d92a8cfc
PZ
4519 /* no reclaim without waiting on it */
4520 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4521 return false;
4522
4523 /* this guy won't enter reclaim */
2e517d68 4524 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4525 return false;
4526
d92a8cfc
PZ
4527 if (gfp_mask & __GFP_NOLOCKDEP)
4528 return false;
4529
4530 return true;
4531}
4532
4f3eaf45 4533void __fs_reclaim_acquire(unsigned long ip)
93781325 4534{
4f3eaf45 4535 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4536}
4537
4f3eaf45 4538void __fs_reclaim_release(unsigned long ip)
93781325 4539{
4f3eaf45 4540 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4541}
4542
d92a8cfc
PZ
4543void fs_reclaim_acquire(gfp_t gfp_mask)
4544{
f920e413
DV
4545 gfp_mask = current_gfp_context(gfp_mask);
4546
4547 if (__need_reclaim(gfp_mask)) {
4548 if (gfp_mask & __GFP_FS)
4f3eaf45 4549 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
4550
4551#ifdef CONFIG_MMU_NOTIFIER
4552 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4553 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4554#endif
4555
4556 }
d92a8cfc
PZ
4557}
4558EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4559
4560void fs_reclaim_release(gfp_t gfp_mask)
4561{
f920e413
DV
4562 gfp_mask = current_gfp_context(gfp_mask);
4563
4564 if (__need_reclaim(gfp_mask)) {
4565 if (gfp_mask & __GFP_FS)
4f3eaf45 4566 __fs_reclaim_release(_RET_IP_);
f920e413 4567 }
d92a8cfc
PZ
4568}
4569EXPORT_SYMBOL_GPL(fs_reclaim_release);
4570#endif
4571
bba90710 4572/* Perform direct synchronous page reclaim */
2187e17b 4573static unsigned long
a9263751
VB
4574__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4575 const struct alloc_context *ac)
11e33f6a 4576{
499118e9 4577 unsigned int noreclaim_flag;
2187e17b 4578 unsigned long pflags, progress;
11e33f6a
MG
4579
4580 cond_resched();
4581
4582 /* We now go into synchronous reclaim */
4583 cpuset_memory_pressure_bump();
eb414681 4584 psi_memstall_enter(&pflags);
d92a8cfc 4585 fs_reclaim_acquire(gfp_mask);
93781325 4586 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4587
a9263751
VB
4588 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4589 ac->nodemask);
11e33f6a 4590
499118e9 4591 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4592 fs_reclaim_release(gfp_mask);
eb414681 4593 psi_memstall_leave(&pflags);
11e33f6a
MG
4594
4595 cond_resched();
4596
bba90710
MS
4597 return progress;
4598}
4599
4600/* The really slow allocator path where we enter direct reclaim */
4601static inline struct page *
4602__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4603 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4604 unsigned long *did_some_progress)
bba90710
MS
4605{
4606 struct page *page = NULL;
4607 bool drained = false;
4608
a9263751 4609 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4610 if (unlikely(!(*did_some_progress)))
4611 return NULL;
11e33f6a 4612
9ee493ce 4613retry:
31a6c190 4614 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4615
4616 /*
4617 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4618 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4619 * Shrink them and try again
9ee493ce
MG
4620 */
4621 if (!page && !drained) {
29fac03b 4622 unreserve_highatomic_pageblock(ac, false);
93481ff0 4623 drain_all_pages(NULL);
9ee493ce
MG
4624 drained = true;
4625 goto retry;
4626 }
4627
11e33f6a
MG
4628 return page;
4629}
4630
5ecd9d40
DR
4631static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4632 const struct alloc_context *ac)
3a025760
JW
4633{
4634 struct zoneref *z;
4635 struct zone *zone;
e1a55637 4636 pg_data_t *last_pgdat = NULL;
97a225e6 4637 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4638
97a225e6 4639 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4640 ac->nodemask) {
e1a55637 4641 if (last_pgdat != zone->zone_pgdat)
97a225e6 4642 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4643 last_pgdat = zone->zone_pgdat;
4644 }
3a025760
JW
4645}
4646
c603844b 4647static inline unsigned int
341ce06f
PZ
4648gfp_to_alloc_flags(gfp_t gfp_mask)
4649{
c603844b 4650 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4651
736838e9
MN
4652 /*
4653 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4654 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4655 * to save two branches.
4656 */
e6223a3b 4657 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4658 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4659
341ce06f
PZ
4660 /*
4661 * The caller may dip into page reserves a bit more if the caller
4662 * cannot run direct reclaim, or if the caller has realtime scheduling
4663 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4664 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4665 */
736838e9
MN
4666 alloc_flags |= (__force int)
4667 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4668
d0164adc 4669 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4670 /*
b104a35d
DR
4671 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4672 * if it can't schedule.
5c3240d9 4673 */
b104a35d 4674 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4675 alloc_flags |= ALLOC_HARDER;
523b9458 4676 /*
b104a35d 4677 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4678 * comment for __cpuset_node_allowed().
523b9458 4679 */
341ce06f 4680 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4681 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4682 alloc_flags |= ALLOC_HARDER;
4683
8e3560d9 4684 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4685
341ce06f
PZ
4686 return alloc_flags;
4687}
4688
cd04ae1e 4689static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4690{
cd04ae1e
MH
4691 if (!tsk_is_oom_victim(tsk))
4692 return false;
4693
4694 /*
4695 * !MMU doesn't have oom reaper so give access to memory reserves
4696 * only to the thread with TIF_MEMDIE set
4697 */
4698 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4699 return false;
4700
cd04ae1e
MH
4701 return true;
4702}
4703
4704/*
4705 * Distinguish requests which really need access to full memory
4706 * reserves from oom victims which can live with a portion of it
4707 */
4708static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4709{
4710 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4711 return 0;
31a6c190 4712 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4713 return ALLOC_NO_WATERMARKS;
31a6c190 4714 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4715 return ALLOC_NO_WATERMARKS;
4716 if (!in_interrupt()) {
4717 if (current->flags & PF_MEMALLOC)
4718 return ALLOC_NO_WATERMARKS;
4719 else if (oom_reserves_allowed(current))
4720 return ALLOC_OOM;
4721 }
31a6c190 4722
cd04ae1e
MH
4723 return 0;
4724}
4725
4726bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4727{
4728 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4729}
4730
0a0337e0
MH
4731/*
4732 * Checks whether it makes sense to retry the reclaim to make a forward progress
4733 * for the given allocation request.
491d79ae
JW
4734 *
4735 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4736 * without success, or when we couldn't even meet the watermark if we
4737 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4738 *
4739 * Returns true if a retry is viable or false to enter the oom path.
4740 */
4741static inline bool
4742should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4743 struct alloc_context *ac, int alloc_flags,
423b452e 4744 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4745{
4746 struct zone *zone;
4747 struct zoneref *z;
15f570bf 4748 bool ret = false;
0a0337e0 4749
423b452e
VB
4750 /*
4751 * Costly allocations might have made a progress but this doesn't mean
4752 * their order will become available due to high fragmentation so
4753 * always increment the no progress counter for them
4754 */
4755 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4756 *no_progress_loops = 0;
4757 else
4758 (*no_progress_loops)++;
4759
0a0337e0
MH
4760 /*
4761 * Make sure we converge to OOM if we cannot make any progress
4762 * several times in the row.
4763 */
04c8716f
MK
4764 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4765 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4766 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4767 }
0a0337e0 4768
bca67592
MG
4769 /*
4770 * Keep reclaiming pages while there is a chance this will lead
4771 * somewhere. If none of the target zones can satisfy our allocation
4772 * request even if all reclaimable pages are considered then we are
4773 * screwed and have to go OOM.
0a0337e0 4774 */
97a225e6
JK
4775 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4776 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4777 unsigned long available;
ede37713 4778 unsigned long reclaimable;
d379f01d
MH
4779 unsigned long min_wmark = min_wmark_pages(zone);
4780 bool wmark;
0a0337e0 4781
5a1c84b4 4782 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4783 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4784
4785 /*
491d79ae
JW
4786 * Would the allocation succeed if we reclaimed all
4787 * reclaimable pages?
0a0337e0 4788 */
d379f01d 4789 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4790 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4791 trace_reclaim_retry_zone(z, order, reclaimable,
4792 available, min_wmark, *no_progress_loops, wmark);
4793 if (wmark) {
ede37713
MH
4794 /*
4795 * If we didn't make any progress and have a lot of
4796 * dirty + writeback pages then we should wait for
4797 * an IO to complete to slow down the reclaim and
4798 * prevent from pre mature OOM
4799 */
4800 if (!did_some_progress) {
11fb9989 4801 unsigned long write_pending;
ede37713 4802
5a1c84b4
MG
4803 write_pending = zone_page_state_snapshot(zone,
4804 NR_ZONE_WRITE_PENDING);
ede37713 4805
11fb9989 4806 if (2 * write_pending > reclaimable) {
ede37713
MH
4807 congestion_wait(BLK_RW_ASYNC, HZ/10);
4808 return true;
4809 }
4810 }
5a1c84b4 4811
15f570bf
MH
4812 ret = true;
4813 goto out;
0a0337e0
MH
4814 }
4815 }
4816
15f570bf
MH
4817out:
4818 /*
4819 * Memory allocation/reclaim might be called from a WQ context and the
4820 * current implementation of the WQ concurrency control doesn't
4821 * recognize that a particular WQ is congested if the worker thread is
4822 * looping without ever sleeping. Therefore we have to do a short sleep
4823 * here rather than calling cond_resched().
4824 */
4825 if (current->flags & PF_WQ_WORKER)
4826 schedule_timeout_uninterruptible(1);
4827 else
4828 cond_resched();
4829 return ret;
0a0337e0
MH
4830}
4831
902b6281
VB
4832static inline bool
4833check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4834{
4835 /*
4836 * It's possible that cpuset's mems_allowed and the nodemask from
4837 * mempolicy don't intersect. This should be normally dealt with by
4838 * policy_nodemask(), but it's possible to race with cpuset update in
4839 * such a way the check therein was true, and then it became false
4840 * before we got our cpuset_mems_cookie here.
4841 * This assumes that for all allocations, ac->nodemask can come only
4842 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4843 * when it does not intersect with the cpuset restrictions) or the
4844 * caller can deal with a violated nodemask.
4845 */
4846 if (cpusets_enabled() && ac->nodemask &&
4847 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4848 ac->nodemask = NULL;
4849 return true;
4850 }
4851
4852 /*
4853 * When updating a task's mems_allowed or mempolicy nodemask, it is
4854 * possible to race with parallel threads in such a way that our
4855 * allocation can fail while the mask is being updated. If we are about
4856 * to fail, check if the cpuset changed during allocation and if so,
4857 * retry.
4858 */
4859 if (read_mems_allowed_retry(cpuset_mems_cookie))
4860 return true;
4861
4862 return false;
4863}
4864
11e33f6a
MG
4865static inline struct page *
4866__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4867 struct alloc_context *ac)
11e33f6a 4868{
d0164adc 4869 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4870 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4871 struct page *page = NULL;
c603844b 4872 unsigned int alloc_flags;
11e33f6a 4873 unsigned long did_some_progress;
5ce9bfef 4874 enum compact_priority compact_priority;
c5d01d0d 4875 enum compact_result compact_result;
5ce9bfef
VB
4876 int compaction_retries;
4877 int no_progress_loops;
5ce9bfef 4878 unsigned int cpuset_mems_cookie;
cd04ae1e 4879 int reserve_flags;
1da177e4 4880
d0164adc
MG
4881 /*
4882 * We also sanity check to catch abuse of atomic reserves being used by
4883 * callers that are not in atomic context.
4884 */
4885 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4886 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4887 gfp_mask &= ~__GFP_ATOMIC;
4888
5ce9bfef
VB
4889retry_cpuset:
4890 compaction_retries = 0;
4891 no_progress_loops = 0;
4892 compact_priority = DEF_COMPACT_PRIORITY;
4893 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4894
4895 /*
4896 * The fast path uses conservative alloc_flags to succeed only until
4897 * kswapd needs to be woken up, and to avoid the cost of setting up
4898 * alloc_flags precisely. So we do that now.
4899 */
4900 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4901
e47483bc
VB
4902 /*
4903 * We need to recalculate the starting point for the zonelist iterator
4904 * because we might have used different nodemask in the fast path, or
4905 * there was a cpuset modification and we are retrying - otherwise we
4906 * could end up iterating over non-eligible zones endlessly.
4907 */
4908 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4909 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4910 if (!ac->preferred_zoneref->zone)
4911 goto nopage;
4912
8ca1b5a4
FT
4913 /*
4914 * Check for insane configurations where the cpuset doesn't contain
4915 * any suitable zone to satisfy the request - e.g. non-movable
4916 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4917 */
4918 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4919 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4920 ac->highest_zoneidx,
4921 &cpuset_current_mems_allowed);
4922 if (!z->zone)
4923 goto nopage;
4924 }
4925
0a79cdad 4926 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4927 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4928
4929 /*
4930 * The adjusted alloc_flags might result in immediate success, so try
4931 * that first
4932 */
4933 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4934 if (page)
4935 goto got_pg;
4936
a8161d1e
VB
4937 /*
4938 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4939 * that we have enough base pages and don't need to reclaim. For non-
4940 * movable high-order allocations, do that as well, as compaction will
4941 * try prevent permanent fragmentation by migrating from blocks of the
4942 * same migratetype.
4943 * Don't try this for allocations that are allowed to ignore
4944 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4945 */
282722b0
VB
4946 if (can_direct_reclaim &&
4947 (costly_order ||
4948 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4949 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4950 page = __alloc_pages_direct_compact(gfp_mask, order,
4951 alloc_flags, ac,
a5508cd8 4952 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4953 &compact_result);
4954 if (page)
4955 goto got_pg;
4956
cc638f32
VB
4957 /*
4958 * Checks for costly allocations with __GFP_NORETRY, which
4959 * includes some THP page fault allocations
4960 */
4961 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4962 /*
4963 * If allocating entire pageblock(s) and compaction
4964 * failed because all zones are below low watermarks
4965 * or is prohibited because it recently failed at this
3f36d866
DR
4966 * order, fail immediately unless the allocator has
4967 * requested compaction and reclaim retry.
b39d0ee2
DR
4968 *
4969 * Reclaim is
4970 * - potentially very expensive because zones are far
4971 * below their low watermarks or this is part of very
4972 * bursty high order allocations,
4973 * - not guaranteed to help because isolate_freepages()
4974 * may not iterate over freed pages as part of its
4975 * linear scan, and
4976 * - unlikely to make entire pageblocks free on its
4977 * own.
4978 */
4979 if (compact_result == COMPACT_SKIPPED ||
4980 compact_result == COMPACT_DEFERRED)
4981 goto nopage;
a8161d1e 4982
a8161d1e 4983 /*
3eb2771b
VB
4984 * Looks like reclaim/compaction is worth trying, but
4985 * sync compaction could be very expensive, so keep
25160354 4986 * using async compaction.
a8161d1e 4987 */
a5508cd8 4988 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4989 }
4990 }
23771235 4991
31a6c190 4992retry:
23771235 4993 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4994 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4995 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4996
cd04ae1e
MH
4997 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4998 if (reserve_flags)
8e3560d9 4999 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 5000
e46e7b77 5001 /*
d6a24df0
VB
5002 * Reset the nodemask and zonelist iterators if memory policies can be
5003 * ignored. These allocations are high priority and system rather than
5004 * user oriented.
e46e7b77 5005 */
cd04ae1e 5006 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 5007 ac->nodemask = NULL;
e46e7b77 5008 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5009 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
5010 }
5011
23771235 5012 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5013 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5014 if (page)
5015 goto got_pg;
1da177e4 5016
d0164adc 5017 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5018 if (!can_direct_reclaim)
1da177e4
LT
5019 goto nopage;
5020
9a67f648
MH
5021 /* Avoid recursion of direct reclaim */
5022 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5023 goto nopage;
5024
a8161d1e
VB
5025 /* Try direct reclaim and then allocating */
5026 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5027 &did_some_progress);
5028 if (page)
5029 goto got_pg;
5030
5031 /* Try direct compaction and then allocating */
a9263751 5032 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5033 compact_priority, &compact_result);
56de7263
MG
5034 if (page)
5035 goto got_pg;
75f30861 5036
9083905a
JW
5037 /* Do not loop if specifically requested */
5038 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5039 goto nopage;
9083905a 5040
0a0337e0
MH
5041 /*
5042 * Do not retry costly high order allocations unless they are
dcda9b04 5043 * __GFP_RETRY_MAYFAIL
0a0337e0 5044 */
dcda9b04 5045 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5046 goto nopage;
0a0337e0 5047
0a0337e0 5048 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5049 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5050 goto retry;
5051
33c2d214
MH
5052 /*
5053 * It doesn't make any sense to retry for the compaction if the order-0
5054 * reclaim is not able to make any progress because the current
5055 * implementation of the compaction depends on the sufficient amount
5056 * of free memory (see __compaction_suitable)
5057 */
5058 if (did_some_progress > 0 &&
86a294a8 5059 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5060 compact_result, &compact_priority,
d9436498 5061 &compaction_retries))
33c2d214
MH
5062 goto retry;
5063
902b6281
VB
5064
5065 /* Deal with possible cpuset update races before we start OOM killing */
5066 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
5067 goto retry_cpuset;
5068
9083905a
JW
5069 /* Reclaim has failed us, start killing things */
5070 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5071 if (page)
5072 goto got_pg;
5073
9a67f648 5074 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5075 if (tsk_is_oom_victim(current) &&
8510e69c 5076 (alloc_flags & ALLOC_OOM ||
c288983d 5077 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5078 goto nopage;
5079
9083905a 5080 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5081 if (did_some_progress) {
5082 no_progress_loops = 0;
9083905a 5083 goto retry;
0a0337e0 5084 }
9083905a 5085
1da177e4 5086nopage:
902b6281
VB
5087 /* Deal with possible cpuset update races before we fail */
5088 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5089 goto retry_cpuset;
5090
9a67f648
MH
5091 /*
5092 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5093 * we always retry
5094 */
5095 if (gfp_mask & __GFP_NOFAIL) {
5096 /*
5097 * All existing users of the __GFP_NOFAIL are blockable, so warn
5098 * of any new users that actually require GFP_NOWAIT
5099 */
5100 if (WARN_ON_ONCE(!can_direct_reclaim))
5101 goto fail;
5102
5103 /*
5104 * PF_MEMALLOC request from this context is rather bizarre
5105 * because we cannot reclaim anything and only can loop waiting
5106 * for somebody to do a work for us
5107 */
5108 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5109
5110 /*
5111 * non failing costly orders are a hard requirement which we
5112 * are not prepared for much so let's warn about these users
5113 * so that we can identify them and convert them to something
5114 * else.
5115 */
5116 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5117
6c18ba7a
MH
5118 /*
5119 * Help non-failing allocations by giving them access to memory
5120 * reserves but do not use ALLOC_NO_WATERMARKS because this
5121 * could deplete whole memory reserves which would just make
5122 * the situation worse
5123 */
5124 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5125 if (page)
5126 goto got_pg;
5127
9a67f648
MH
5128 cond_resched();
5129 goto retry;
5130 }
5131fail:
a8e99259 5132 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5133 "page allocation failure: order:%u", order);
1da177e4 5134got_pg:
072bb0aa 5135 return page;
1da177e4 5136}
11e33f6a 5137
9cd75558 5138static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5139 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5140 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5141 unsigned int *alloc_flags)
11e33f6a 5142{
97a225e6 5143 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5144 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5145 ac->nodemask = nodemask;
01c0bfe0 5146 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5147
682a3385 5148 if (cpusets_enabled()) {
8e6a930b 5149 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5150 /*
5151 * When we are in the interrupt context, it is irrelevant
5152 * to the current task context. It means that any node ok.
5153 */
88dc6f20 5154 if (in_task() && !ac->nodemask)
9cd75558 5155 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5156 else
5157 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5158 }
5159
d92a8cfc
PZ
5160 fs_reclaim_acquire(gfp_mask);
5161 fs_reclaim_release(gfp_mask);
11e33f6a 5162
d0164adc 5163 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
5164
5165 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5166 return false;
11e33f6a 5167
8e3560d9 5168 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5169
c9ab0c4f 5170 /* Dirty zone balancing only done in the fast path */
9cd75558 5171 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5172
e46e7b77
MG
5173 /*
5174 * The preferred zone is used for statistics but crucially it is
5175 * also used as the starting point for the zonelist iterator. It
5176 * may get reset for allocations that ignore memory policies.
5177 */
9cd75558 5178 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5179 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5180
5181 return true;
9cd75558
MG
5182}
5183
387ba26f 5184/*
0f87d9d3 5185 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5186 * @gfp: GFP flags for the allocation
5187 * @preferred_nid: The preferred NUMA node ID to allocate from
5188 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5189 * @nr_pages: The number of pages desired on the list or array
5190 * @page_list: Optional list to store the allocated pages
5191 * @page_array: Optional array to store the pages
387ba26f
MG
5192 *
5193 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5194 * allocate nr_pages quickly. Pages are added to page_list if page_list
5195 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5196 *
0f87d9d3
MG
5197 * For lists, nr_pages is the number of pages that should be allocated.
5198 *
5199 * For arrays, only NULL elements are populated with pages and nr_pages
5200 * is the maximum number of pages that will be stored in the array.
5201 *
5202 * Returns the number of pages on the list or array.
387ba26f
MG
5203 */
5204unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5205 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5206 struct list_head *page_list,
5207 struct page **page_array)
387ba26f
MG
5208{
5209 struct page *page;
5210 unsigned long flags;
5211 struct zone *zone;
5212 struct zoneref *z;
5213 struct per_cpu_pages *pcp;
5214 struct list_head *pcp_list;
5215 struct alloc_context ac;
5216 gfp_t alloc_gfp;
5217 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5218 int nr_populated = 0, nr_account = 0;
387ba26f 5219
0f87d9d3
MG
5220 /*
5221 * Skip populated array elements to determine if any pages need
5222 * to be allocated before disabling IRQs.
5223 */
b08e50dd 5224 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5225 nr_populated++;
5226
06147843
CL
5227 /* No pages requested? */
5228 if (unlikely(nr_pages <= 0))
5229 goto out;
5230
b3b64ebd
MG
5231 /* Already populated array? */
5232 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5233 goto out;
b3b64ebd 5234
8dcb3060
SB
5235 /* Bulk allocator does not support memcg accounting. */
5236 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5237 goto failed;
5238
387ba26f 5239 /* Use the single page allocator for one page. */
0f87d9d3 5240 if (nr_pages - nr_populated == 1)
387ba26f
MG
5241 goto failed;
5242
187ad460
MG
5243#ifdef CONFIG_PAGE_OWNER
5244 /*
5245 * PAGE_OWNER may recurse into the allocator to allocate space to
5246 * save the stack with pagesets.lock held. Releasing/reacquiring
5247 * removes much of the performance benefit of bulk allocation so
5248 * force the caller to allocate one page at a time as it'll have
5249 * similar performance to added complexity to the bulk allocator.
5250 */
5251 if (static_branch_unlikely(&page_owner_inited))
5252 goto failed;
5253#endif
5254
387ba26f
MG
5255 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5256 gfp &= gfp_allowed_mask;
5257 alloc_gfp = gfp;
5258 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5259 goto out;
387ba26f
MG
5260 gfp = alloc_gfp;
5261
5262 /* Find an allowed local zone that meets the low watermark. */
5263 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5264 unsigned long mark;
5265
5266 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5267 !__cpuset_zone_allowed(zone, gfp)) {
5268 continue;
5269 }
5270
5271 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5272 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5273 goto failed;
5274 }
5275
5276 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5277 if (zone_watermark_fast(zone, 0, mark,
5278 zonelist_zone_idx(ac.preferred_zoneref),
5279 alloc_flags, gfp)) {
5280 break;
5281 }
5282 }
5283
5284 /*
5285 * If there are no allowed local zones that meets the watermarks then
5286 * try to allocate a single page and reclaim if necessary.
5287 */
ce76f9a1 5288 if (unlikely(!zone))
387ba26f
MG
5289 goto failed;
5290
5291 /* Attempt the batch allocation */
dbbee9d5 5292 local_lock_irqsave(&pagesets.lock, flags);
28f836b6 5293 pcp = this_cpu_ptr(zone->per_cpu_pageset);
44042b44 5294 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
387ba26f 5295
0f87d9d3
MG
5296 while (nr_populated < nr_pages) {
5297
5298 /* Skip existing pages */
5299 if (page_array && page_array[nr_populated]) {
5300 nr_populated++;
5301 continue;
5302 }
5303
44042b44 5304 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5305 pcp, pcp_list);
ce76f9a1 5306 if (unlikely(!page)) {
387ba26f 5307 /* Try and get at least one page */
0f87d9d3 5308 if (!nr_populated)
387ba26f
MG
5309 goto failed_irq;
5310 break;
5311 }
3e23060b 5312 nr_account++;
387ba26f
MG
5313
5314 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5315 if (page_list)
5316 list_add(&page->lru, page_list);
5317 else
5318 page_array[nr_populated] = page;
5319 nr_populated++;
387ba26f
MG
5320 }
5321
43c95bcc
MG
5322 local_unlock_irqrestore(&pagesets.lock, flags);
5323
3e23060b
MG
5324 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5325 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5326
06147843 5327out:
0f87d9d3 5328 return nr_populated;
387ba26f
MG
5329
5330failed_irq:
dbbee9d5 5331 local_unlock_irqrestore(&pagesets.lock, flags);
387ba26f
MG
5332
5333failed:
5334 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5335 if (page) {
0f87d9d3
MG
5336 if (page_list)
5337 list_add(&page->lru, page_list);
5338 else
5339 page_array[nr_populated] = page;
5340 nr_populated++;
387ba26f
MG
5341 }
5342
06147843 5343 goto out;
387ba26f
MG
5344}
5345EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5346
9cd75558
MG
5347/*
5348 * This is the 'heart' of the zoned buddy allocator.
5349 */
84172f4b 5350struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5351 nodemask_t *nodemask)
9cd75558
MG
5352{
5353 struct page *page;
5354 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5355 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5356 struct alloc_context ac = { };
5357
c63ae43b
MH
5358 /*
5359 * There are several places where we assume that the order value is sane
5360 * so bail out early if the request is out of bound.
5361 */
5362 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5363 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5364 return NULL;
5365 }
5366
6e5e0f28 5367 gfp &= gfp_allowed_mask;
da6df1b0
PT
5368 /*
5369 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5370 * resp. GFP_NOIO which has to be inherited for all allocation requests
5371 * from a particular context which has been marked by
8e3560d9
PT
5372 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5373 * movable zones are not used during allocation.
da6df1b0
PT
5374 */
5375 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5376 alloc_gfp = gfp;
5377 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5378 &alloc_gfp, &alloc_flags))
9cd75558
MG
5379 return NULL;
5380
6bb15450
MG
5381 /*
5382 * Forbid the first pass from falling back to types that fragment
5383 * memory until all local zones are considered.
5384 */
6e5e0f28 5385 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5386
5117f45d 5387 /* First allocation attempt */
8e6a930b 5388 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5389 if (likely(page))
5390 goto out;
11e33f6a 5391
da6df1b0 5392 alloc_gfp = gfp;
4fcb0971 5393 ac.spread_dirty_pages = false;
23f086f9 5394
4741526b
MG
5395 /*
5396 * Restore the original nodemask if it was potentially replaced with
5397 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5398 */
97ce86f9 5399 ac.nodemask = nodemask;
16096c25 5400
8e6a930b 5401 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5402
4fcb0971 5403out:
6e5e0f28
MWO
5404 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5405 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5406 __free_pages(page, order);
5407 page = NULL;
4949148a
VD
5408 }
5409
8e6a930b 5410 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5411
11e33f6a 5412 return page;
1da177e4 5413}
84172f4b 5414EXPORT_SYMBOL(__alloc_pages);
1da177e4
LT
5415
5416/*
9ea9a680
MH
5417 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5418 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5419 * you need to access high mem.
1da177e4 5420 */
920c7a5d 5421unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5422{
945a1113
AM
5423 struct page *page;
5424
9ea9a680 5425 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5426 if (!page)
5427 return 0;
5428 return (unsigned long) page_address(page);
5429}
1da177e4
LT
5430EXPORT_SYMBOL(__get_free_pages);
5431
920c7a5d 5432unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5433{
945a1113 5434 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5435}
1da177e4
LT
5436EXPORT_SYMBOL(get_zeroed_page);
5437
7f194fbb
MWO
5438/**
5439 * __free_pages - Free pages allocated with alloc_pages().
5440 * @page: The page pointer returned from alloc_pages().
5441 * @order: The order of the allocation.
5442 *
5443 * This function can free multi-page allocations that are not compound
5444 * pages. It does not check that the @order passed in matches that of
5445 * the allocation, so it is easy to leak memory. Freeing more memory
5446 * than was allocated will probably emit a warning.
5447 *
5448 * If the last reference to this page is speculative, it will be released
5449 * by put_page() which only frees the first page of a non-compound
5450 * allocation. To prevent the remaining pages from being leaked, we free
5451 * the subsequent pages here. If you want to use the page's reference
5452 * count to decide when to free the allocation, you should allocate a
5453 * compound page, and use put_page() instead of __free_pages().
5454 *
5455 * Context: May be called in interrupt context or while holding a normal
5456 * spinlock, but not in NMI context or while holding a raw spinlock.
5457 */
742aa7fb
AL
5458void __free_pages(struct page *page, unsigned int order)
5459{
5460 if (put_page_testzero(page))
5461 free_the_page(page, order);
e320d301
MWO
5462 else if (!PageHead(page))
5463 while (order-- > 0)
5464 free_the_page(page + (1 << order), order);
742aa7fb 5465}
1da177e4
LT
5466EXPORT_SYMBOL(__free_pages);
5467
920c7a5d 5468void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5469{
5470 if (addr != 0) {
725d704e 5471 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5472 __free_pages(virt_to_page((void *)addr), order);
5473 }
5474}
5475
5476EXPORT_SYMBOL(free_pages);
5477
b63ae8ca
AD
5478/*
5479 * Page Fragment:
5480 * An arbitrary-length arbitrary-offset area of memory which resides
5481 * within a 0 or higher order page. Multiple fragments within that page
5482 * are individually refcounted, in the page's reference counter.
5483 *
5484 * The page_frag functions below provide a simple allocation framework for
5485 * page fragments. This is used by the network stack and network device
5486 * drivers to provide a backing region of memory for use as either an
5487 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5488 */
2976db80
AD
5489static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5490 gfp_t gfp_mask)
b63ae8ca
AD
5491{
5492 struct page *page = NULL;
5493 gfp_t gfp = gfp_mask;
5494
5495#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5496 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5497 __GFP_NOMEMALLOC;
5498 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5499 PAGE_FRAG_CACHE_MAX_ORDER);
5500 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5501#endif
5502 if (unlikely(!page))
5503 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5504
5505 nc->va = page ? page_address(page) : NULL;
5506
5507 return page;
5508}
5509
2976db80 5510void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5511{
5512 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5513
742aa7fb
AL
5514 if (page_ref_sub_and_test(page, count))
5515 free_the_page(page, compound_order(page));
44fdffd7 5516}
2976db80 5517EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5518
b358e212
KH
5519void *page_frag_alloc_align(struct page_frag_cache *nc,
5520 unsigned int fragsz, gfp_t gfp_mask,
5521 unsigned int align_mask)
b63ae8ca
AD
5522{
5523 unsigned int size = PAGE_SIZE;
5524 struct page *page;
5525 int offset;
5526
5527 if (unlikely(!nc->va)) {
5528refill:
2976db80 5529 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5530 if (!page)
5531 return NULL;
5532
5533#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5534 /* if size can vary use size else just use PAGE_SIZE */
5535 size = nc->size;
5536#endif
5537 /* Even if we own the page, we do not use atomic_set().
5538 * This would break get_page_unless_zero() users.
5539 */
86447726 5540 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5541
5542 /* reset page count bias and offset to start of new frag */
2f064f34 5543 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5544 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5545 nc->offset = size;
5546 }
5547
5548 offset = nc->offset - fragsz;
5549 if (unlikely(offset < 0)) {
5550 page = virt_to_page(nc->va);
5551
fe896d18 5552 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5553 goto refill;
5554
d8c19014
DZ
5555 if (unlikely(nc->pfmemalloc)) {
5556 free_the_page(page, compound_order(page));
5557 goto refill;
5558 }
5559
b63ae8ca
AD
5560#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5561 /* if size can vary use size else just use PAGE_SIZE */
5562 size = nc->size;
5563#endif
5564 /* OK, page count is 0, we can safely set it */
86447726 5565 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5566
5567 /* reset page count bias and offset to start of new frag */
86447726 5568 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5569 offset = size - fragsz;
5570 }
5571
5572 nc->pagecnt_bias--;
b358e212 5573 offset &= align_mask;
b63ae8ca
AD
5574 nc->offset = offset;
5575
5576 return nc->va + offset;
5577}
b358e212 5578EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5579
5580/*
5581 * Frees a page fragment allocated out of either a compound or order 0 page.
5582 */
8c2dd3e4 5583void page_frag_free(void *addr)
b63ae8ca
AD
5584{
5585 struct page *page = virt_to_head_page(addr);
5586
742aa7fb
AL
5587 if (unlikely(put_page_testzero(page)))
5588 free_the_page(page, compound_order(page));
b63ae8ca 5589}
8c2dd3e4 5590EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5591
d00181b9
KS
5592static void *make_alloc_exact(unsigned long addr, unsigned int order,
5593 size_t size)
ee85c2e1
AK
5594{
5595 if (addr) {
5596 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5597 unsigned long used = addr + PAGE_ALIGN(size);
5598
5599 split_page(virt_to_page((void *)addr), order);
5600 while (used < alloc_end) {
5601 free_page(used);
5602 used += PAGE_SIZE;
5603 }
5604 }
5605 return (void *)addr;
5606}
5607
2be0ffe2
TT
5608/**
5609 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5610 * @size: the number of bytes to allocate
63931eb9 5611 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5612 *
5613 * This function is similar to alloc_pages(), except that it allocates the
5614 * minimum number of pages to satisfy the request. alloc_pages() can only
5615 * allocate memory in power-of-two pages.
5616 *
5617 * This function is also limited by MAX_ORDER.
5618 *
5619 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5620 *
5621 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5622 */
5623void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5624{
5625 unsigned int order = get_order(size);
5626 unsigned long addr;
5627
ba7f1b9e
ML
5628 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5629 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 5630
2be0ffe2 5631 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5632 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5633}
5634EXPORT_SYMBOL(alloc_pages_exact);
5635
ee85c2e1
AK
5636/**
5637 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5638 * pages on a node.
b5e6ab58 5639 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5640 * @size: the number of bytes to allocate
63931eb9 5641 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5642 *
5643 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5644 * back.
a862f68a
MR
5645 *
5646 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5647 */
e1931811 5648void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5649{
d00181b9 5650 unsigned int order = get_order(size);
63931eb9
VB
5651 struct page *p;
5652
ba7f1b9e
ML
5653 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5654 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
5655
5656 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5657 if (!p)
5658 return NULL;
5659 return make_alloc_exact((unsigned long)page_address(p), order, size);
5660}
ee85c2e1 5661
2be0ffe2
TT
5662/**
5663 * free_pages_exact - release memory allocated via alloc_pages_exact()
5664 * @virt: the value returned by alloc_pages_exact.
5665 * @size: size of allocation, same value as passed to alloc_pages_exact().
5666 *
5667 * Release the memory allocated by a previous call to alloc_pages_exact.
5668 */
5669void free_pages_exact(void *virt, size_t size)
5670{
5671 unsigned long addr = (unsigned long)virt;
5672 unsigned long end = addr + PAGE_ALIGN(size);
5673
5674 while (addr < end) {
5675 free_page(addr);
5676 addr += PAGE_SIZE;
5677 }
5678}
5679EXPORT_SYMBOL(free_pages_exact);
5680
e0fb5815
ZY
5681/**
5682 * nr_free_zone_pages - count number of pages beyond high watermark
5683 * @offset: The zone index of the highest zone
5684 *
a862f68a 5685 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5686 * high watermark within all zones at or below a given zone index. For each
5687 * zone, the number of pages is calculated as:
0e056eb5 5688 *
5689 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5690 *
5691 * Return: number of pages beyond high watermark.
e0fb5815 5692 */
ebec3862 5693static unsigned long nr_free_zone_pages(int offset)
1da177e4 5694{
dd1a239f 5695 struct zoneref *z;
54a6eb5c
MG
5696 struct zone *zone;
5697
e310fd43 5698 /* Just pick one node, since fallback list is circular */
ebec3862 5699 unsigned long sum = 0;
1da177e4 5700
0e88460d 5701 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5702
54a6eb5c 5703 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5704 unsigned long size = zone_managed_pages(zone);
41858966 5705 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5706 if (size > high)
5707 sum += size - high;
1da177e4
LT
5708 }
5709
5710 return sum;
5711}
5712
e0fb5815
ZY
5713/**
5714 * nr_free_buffer_pages - count number of pages beyond high watermark
5715 *
5716 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5717 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5718 *
5719 * Return: number of pages beyond high watermark within ZONE_DMA and
5720 * ZONE_NORMAL.
1da177e4 5721 */
ebec3862 5722unsigned long nr_free_buffer_pages(void)
1da177e4 5723{
af4ca457 5724 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5725}
c2f1a551 5726EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5727
08e0f6a9 5728static inline void show_node(struct zone *zone)
1da177e4 5729{
e5adfffc 5730 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5731 printk("Node %d ", zone_to_nid(zone));
1da177e4 5732}
1da177e4 5733
d02bd27b
IR
5734long si_mem_available(void)
5735{
5736 long available;
5737 unsigned long pagecache;
5738 unsigned long wmark_low = 0;
5739 unsigned long pages[NR_LRU_LISTS];
b29940c1 5740 unsigned long reclaimable;
d02bd27b
IR
5741 struct zone *zone;
5742 int lru;
5743
5744 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5745 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5746
5747 for_each_zone(zone)
a9214443 5748 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5749
5750 /*
5751 * Estimate the amount of memory available for userspace allocations,
5752 * without causing swapping.
5753 */
c41f012a 5754 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5755
5756 /*
5757 * Not all the page cache can be freed, otherwise the system will
5758 * start swapping. Assume at least half of the page cache, or the
5759 * low watermark worth of cache, needs to stay.
5760 */
5761 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5762 pagecache -= min(pagecache / 2, wmark_low);
5763 available += pagecache;
5764
5765 /*
b29940c1
VB
5766 * Part of the reclaimable slab and other kernel memory consists of
5767 * items that are in use, and cannot be freed. Cap this estimate at the
5768 * low watermark.
d02bd27b 5769 */
d42f3245
RG
5770 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5771 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5772 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5773
d02bd27b
IR
5774 if (available < 0)
5775 available = 0;
5776 return available;
5777}
5778EXPORT_SYMBOL_GPL(si_mem_available);
5779
1da177e4
LT
5780void si_meminfo(struct sysinfo *val)
5781{
ca79b0c2 5782 val->totalram = totalram_pages();
11fb9989 5783 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5784 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5785 val->bufferram = nr_blockdev_pages();
ca79b0c2 5786 val->totalhigh = totalhigh_pages();
1da177e4 5787 val->freehigh = nr_free_highpages();
1da177e4
LT
5788 val->mem_unit = PAGE_SIZE;
5789}
5790
5791EXPORT_SYMBOL(si_meminfo);
5792
5793#ifdef CONFIG_NUMA
5794void si_meminfo_node(struct sysinfo *val, int nid)
5795{
cdd91a77
JL
5796 int zone_type; /* needs to be signed */
5797 unsigned long managed_pages = 0;
fc2bd799
JK
5798 unsigned long managed_highpages = 0;
5799 unsigned long free_highpages = 0;
1da177e4
LT
5800 pg_data_t *pgdat = NODE_DATA(nid);
5801
cdd91a77 5802 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5803 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5804 val->totalram = managed_pages;
11fb9989 5805 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5806 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5807#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5808 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5809 struct zone *zone = &pgdat->node_zones[zone_type];
5810
5811 if (is_highmem(zone)) {
9705bea5 5812 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5813 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5814 }
5815 }
5816 val->totalhigh = managed_highpages;
5817 val->freehigh = free_highpages;
98d2b0eb 5818#else
fc2bd799
JK
5819 val->totalhigh = managed_highpages;
5820 val->freehigh = free_highpages;
98d2b0eb 5821#endif
1da177e4
LT
5822 val->mem_unit = PAGE_SIZE;
5823}
5824#endif
5825
ddd588b5 5826/*
7bf02ea2
DR
5827 * Determine whether the node should be displayed or not, depending on whether
5828 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5829 */
9af744d7 5830static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5831{
ddd588b5 5832 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5833 return false;
ddd588b5 5834
9af744d7
MH
5835 /*
5836 * no node mask - aka implicit memory numa policy. Do not bother with
5837 * the synchronization - read_mems_allowed_begin - because we do not
5838 * have to be precise here.
5839 */
5840 if (!nodemask)
5841 nodemask = &cpuset_current_mems_allowed;
5842
5843 return !node_isset(nid, *nodemask);
ddd588b5
DR
5844}
5845
1da177e4
LT
5846#define K(x) ((x) << (PAGE_SHIFT-10))
5847
377e4f16
RV
5848static void show_migration_types(unsigned char type)
5849{
5850 static const char types[MIGRATE_TYPES] = {
5851 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5852 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5853 [MIGRATE_RECLAIMABLE] = 'E',
5854 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5855#ifdef CONFIG_CMA
5856 [MIGRATE_CMA] = 'C',
5857#endif
194159fb 5858#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5859 [MIGRATE_ISOLATE] = 'I',
194159fb 5860#endif
377e4f16
RV
5861 };
5862 char tmp[MIGRATE_TYPES + 1];
5863 char *p = tmp;
5864 int i;
5865
5866 for (i = 0; i < MIGRATE_TYPES; i++) {
5867 if (type & (1 << i))
5868 *p++ = types[i];
5869 }
5870
5871 *p = '\0';
1f84a18f 5872 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5873}
5874
1da177e4
LT
5875/*
5876 * Show free area list (used inside shift_scroll-lock stuff)
5877 * We also calculate the percentage fragmentation. We do this by counting the
5878 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5879 *
5880 * Bits in @filter:
5881 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5882 * cpuset.
1da177e4 5883 */
9af744d7 5884void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5885{
d1bfcdb8 5886 unsigned long free_pcp = 0;
c7241913 5887 int cpu;
1da177e4 5888 struct zone *zone;
599d0c95 5889 pg_data_t *pgdat;
1da177e4 5890
ee99c71c 5891 for_each_populated_zone(zone) {
9af744d7 5892 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5893 continue;
d1bfcdb8 5894
761b0677 5895 for_each_online_cpu(cpu)
28f836b6 5896 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
5897 }
5898
a731286d
KM
5899 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5900 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5901 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5902 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5903 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
eb2169ce 5904 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 5905 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5906 global_node_page_state(NR_ACTIVE_ANON),
5907 global_node_page_state(NR_INACTIVE_ANON),
5908 global_node_page_state(NR_ISOLATED_ANON),
5909 global_node_page_state(NR_ACTIVE_FILE),
5910 global_node_page_state(NR_INACTIVE_FILE),
5911 global_node_page_state(NR_ISOLATED_FILE),
5912 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5913 global_node_page_state(NR_FILE_DIRTY),
5914 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5915 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5916 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5917 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5918 global_node_page_state(NR_SHMEM),
f0c0c115 5919 global_node_page_state(NR_PAGETABLE),
c41f012a 5920 global_zone_page_state(NR_BOUNCE),
eb2169ce 5921 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 5922 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5923 free_pcp,
c41f012a 5924 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5925
599d0c95 5926 for_each_online_pgdat(pgdat) {
9af744d7 5927 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5928 continue;
5929
599d0c95
MG
5930 printk("Node %d"
5931 " active_anon:%lukB"
5932 " inactive_anon:%lukB"
5933 " active_file:%lukB"
5934 " inactive_file:%lukB"
5935 " unevictable:%lukB"
5936 " isolated(anon):%lukB"
5937 " isolated(file):%lukB"
50658e2e 5938 " mapped:%lukB"
11fb9989
MG
5939 " dirty:%lukB"
5940 " writeback:%lukB"
5941 " shmem:%lukB"
5942#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5943 " shmem_thp: %lukB"
5944 " shmem_pmdmapped: %lukB"
5945 " anon_thp: %lukB"
5946#endif
5947 " writeback_tmp:%lukB"
991e7673
SB
5948 " kernel_stack:%lukB"
5949#ifdef CONFIG_SHADOW_CALL_STACK
5950 " shadow_call_stack:%lukB"
5951#endif
f0c0c115 5952 " pagetables:%lukB"
599d0c95
MG
5953 " all_unreclaimable? %s"
5954 "\n",
5955 pgdat->node_id,
5956 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5957 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5958 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5959 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5960 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5961 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5962 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5963 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5964 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5965 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5966 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5968 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5969 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5970 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5971#endif
11fb9989 5972 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5973 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5974#ifdef CONFIG_SHADOW_CALL_STACK
5975 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5976#endif
f0c0c115 5977 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5978 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5979 "yes" : "no");
599d0c95
MG
5980 }
5981
ee99c71c 5982 for_each_populated_zone(zone) {
1da177e4
LT
5983 int i;
5984
9af744d7 5985 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5986 continue;
d1bfcdb8
KK
5987
5988 free_pcp = 0;
5989 for_each_online_cpu(cpu)
28f836b6 5990 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 5991
1da177e4 5992 show_node(zone);
1f84a18f
JP
5993 printk(KERN_CONT
5994 "%s"
1da177e4 5995 " free:%lukB"
a6ea8b5b 5996 " boost:%lukB"
1da177e4
LT
5997 " min:%lukB"
5998 " low:%lukB"
5999 " high:%lukB"
e47b346a 6000 " reserved_highatomic:%luKB"
71c799f4
MK
6001 " active_anon:%lukB"
6002 " inactive_anon:%lukB"
6003 " active_file:%lukB"
6004 " inactive_file:%lukB"
6005 " unevictable:%lukB"
5a1c84b4 6006 " writepending:%lukB"
1da177e4 6007 " present:%lukB"
9feedc9d 6008 " managed:%lukB"
4a0aa73f 6009 " mlocked:%lukB"
4a0aa73f 6010 " bounce:%lukB"
d1bfcdb8
KK
6011 " free_pcp:%lukB"
6012 " local_pcp:%ukB"
d1ce749a 6013 " free_cma:%lukB"
1da177e4
LT
6014 "\n",
6015 zone->name,
88f5acf8 6016 K(zone_page_state(zone, NR_FREE_PAGES)),
a6ea8b5b 6017 K(zone->watermark_boost),
41858966
MG
6018 K(min_wmark_pages(zone)),
6019 K(low_wmark_pages(zone)),
6020 K(high_wmark_pages(zone)),
e47b346a 6021 K(zone->nr_reserved_highatomic),
71c799f4
MK
6022 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6023 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6024 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6025 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6026 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6027 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6028 K(zone->present_pages),
9705bea5 6029 K(zone_managed_pages(zone)),
4a0aa73f 6030 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6031 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6032 K(free_pcp),
28f836b6 6033 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6034 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6035 printk("lowmem_reserve[]:");
6036 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6037 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6038 printk(KERN_CONT "\n");
1da177e4
LT
6039 }
6040
ee99c71c 6041 for_each_populated_zone(zone) {
d00181b9
KS
6042 unsigned int order;
6043 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6044 unsigned char types[MAX_ORDER];
1da177e4 6045
9af744d7 6046 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6047 continue;
1da177e4 6048 show_node(zone);
1f84a18f 6049 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6050
6051 spin_lock_irqsave(&zone->lock, flags);
6052 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6053 struct free_area *area = &zone->free_area[order];
6054 int type;
6055
6056 nr[order] = area->nr_free;
8f9de51a 6057 total += nr[order] << order;
377e4f16
RV
6058
6059 types[order] = 0;
6060 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6061 if (!free_area_empty(area, type))
377e4f16
RV
6062 types[order] |= 1 << type;
6063 }
1da177e4
LT
6064 }
6065 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6066 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6067 printk(KERN_CONT "%lu*%lukB ",
6068 nr[order], K(1UL) << order);
377e4f16
RV
6069 if (nr[order])
6070 show_migration_types(types[order]);
6071 }
1f84a18f 6072 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6073 }
6074
949f7ec5
DR
6075 hugetlb_show_meminfo();
6076
11fb9989 6077 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6078
1da177e4
LT
6079 show_swap_cache_info();
6080}
6081
19770b32
MG
6082static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6083{
6084 zoneref->zone = zone;
6085 zoneref->zone_idx = zone_idx(zone);
6086}
6087
1da177e4
LT
6088/*
6089 * Builds allocation fallback zone lists.
1a93205b
CL
6090 *
6091 * Add all populated zones of a node to the zonelist.
1da177e4 6092 */
9d3be21b 6093static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6094{
1a93205b 6095 struct zone *zone;
bc732f1d 6096 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6097 int nr_zones = 0;
02a68a5e
CL
6098
6099 do {
2f6726e5 6100 zone_type--;
070f8032 6101 zone = pgdat->node_zones + zone_type;
6aa303de 6102 if (managed_zone(zone)) {
9d3be21b 6103 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6104 check_highest_zone(zone_type);
1da177e4 6105 }
2f6726e5 6106 } while (zone_type);
bc732f1d 6107
070f8032 6108 return nr_zones;
1da177e4
LT
6109}
6110
6111#ifdef CONFIG_NUMA
f0c0b2b8
KH
6112
6113static int __parse_numa_zonelist_order(char *s)
6114{
c9bff3ee 6115 /*
f0953a1b 6116 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6117 * out to be just not useful. Let's keep the warning in place
6118 * if somebody still use the cmd line parameter so that we do
6119 * not fail it silently
6120 */
6121 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6122 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6123 return -EINVAL;
6124 }
6125 return 0;
6126}
6127
c9bff3ee
MH
6128char numa_zonelist_order[] = "Node";
6129
f0c0b2b8
KH
6130/*
6131 * sysctl handler for numa_zonelist_order
6132 */
cccad5b9 6133int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6134 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6135{
32927393
CH
6136 if (write)
6137 return __parse_numa_zonelist_order(buffer);
6138 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6139}
6140
6141
62bc62a8 6142#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
6143static int node_load[MAX_NUMNODES];
6144
1da177e4 6145/**
4dc3b16b 6146 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6147 * @node: node whose fallback list we're appending
6148 * @used_node_mask: nodemask_t of already used nodes
6149 *
6150 * We use a number of factors to determine which is the next node that should
6151 * appear on a given node's fallback list. The node should not have appeared
6152 * already in @node's fallback list, and it should be the next closest node
6153 * according to the distance array (which contains arbitrary distance values
6154 * from each node to each node in the system), and should also prefer nodes
6155 * with no CPUs, since presumably they'll have very little allocation pressure
6156 * on them otherwise.
a862f68a
MR
6157 *
6158 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6159 */
79c28a41 6160int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6161{
4cf808eb 6162 int n, val;
1da177e4 6163 int min_val = INT_MAX;
00ef2d2f 6164 int best_node = NUMA_NO_NODE;
1da177e4 6165
4cf808eb
LT
6166 /* Use the local node if we haven't already */
6167 if (!node_isset(node, *used_node_mask)) {
6168 node_set(node, *used_node_mask);
6169 return node;
6170 }
1da177e4 6171
4b0ef1fe 6172 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6173
6174 /* Don't want a node to appear more than once */
6175 if (node_isset(n, *used_node_mask))
6176 continue;
6177
1da177e4
LT
6178 /* Use the distance array to find the distance */
6179 val = node_distance(node, n);
6180
4cf808eb
LT
6181 /* Penalize nodes under us ("prefer the next node") */
6182 val += (n < node);
6183
1da177e4 6184 /* Give preference to headless and unused nodes */
b630749f 6185 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6186 val += PENALTY_FOR_NODE_WITH_CPUS;
6187
6188 /* Slight preference for less loaded node */
6189 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6190 val += node_load[n];
6191
6192 if (val < min_val) {
6193 min_val = val;
6194 best_node = n;
6195 }
6196 }
6197
6198 if (best_node >= 0)
6199 node_set(best_node, *used_node_mask);
6200
6201 return best_node;
6202}
6203
f0c0b2b8
KH
6204
6205/*
6206 * Build zonelists ordered by node and zones within node.
6207 * This results in maximum locality--normal zone overflows into local
6208 * DMA zone, if any--but risks exhausting DMA zone.
6209 */
9d3be21b
MH
6210static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6211 unsigned nr_nodes)
1da177e4 6212{
9d3be21b
MH
6213 struct zoneref *zonerefs;
6214 int i;
6215
6216 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6217
6218 for (i = 0; i < nr_nodes; i++) {
6219 int nr_zones;
6220
6221 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6222
9d3be21b
MH
6223 nr_zones = build_zonerefs_node(node, zonerefs);
6224 zonerefs += nr_zones;
6225 }
6226 zonerefs->zone = NULL;
6227 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6228}
6229
523b9458
CL
6230/*
6231 * Build gfp_thisnode zonelists
6232 */
6233static void build_thisnode_zonelists(pg_data_t *pgdat)
6234{
9d3be21b
MH
6235 struct zoneref *zonerefs;
6236 int nr_zones;
523b9458 6237
9d3be21b
MH
6238 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6239 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6240 zonerefs += nr_zones;
6241 zonerefs->zone = NULL;
6242 zonerefs->zone_idx = 0;
523b9458
CL
6243}
6244
f0c0b2b8
KH
6245/*
6246 * Build zonelists ordered by zone and nodes within zones.
6247 * This results in conserving DMA zone[s] until all Normal memory is
6248 * exhausted, but results in overflowing to remote node while memory
6249 * may still exist in local DMA zone.
6250 */
f0c0b2b8 6251
f0c0b2b8
KH
6252static void build_zonelists(pg_data_t *pgdat)
6253{
9d3be21b
MH
6254 static int node_order[MAX_NUMNODES];
6255 int node, load, nr_nodes = 0;
d0ddf49b 6256 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6257 int local_node, prev_node;
1da177e4
LT
6258
6259 /* NUMA-aware ordering of nodes */
6260 local_node = pgdat->node_id;
62bc62a8 6261 load = nr_online_nodes;
1da177e4 6262 prev_node = local_node;
f0c0b2b8 6263
f0c0b2b8 6264 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6265 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6266 /*
6267 * We don't want to pressure a particular node.
6268 * So adding penalty to the first node in same
6269 * distance group to make it round-robin.
6270 */
957f822a
DR
6271 if (node_distance(local_node, node) !=
6272 node_distance(local_node, prev_node))
54d032ce 6273 node_load[node] += load;
f0c0b2b8 6274
9d3be21b 6275 node_order[nr_nodes++] = node;
1da177e4
LT
6276 prev_node = node;
6277 load--;
1da177e4 6278 }
523b9458 6279
9d3be21b 6280 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6281 build_thisnode_zonelists(pgdat);
6cf25392
BR
6282 pr_info("Fallback order for Node %d: ", local_node);
6283 for (node = 0; node < nr_nodes; node++)
6284 pr_cont("%d ", node_order[node]);
6285 pr_cont("\n");
1da177e4
LT
6286}
6287
7aac7898
LS
6288#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6289/*
6290 * Return node id of node used for "local" allocations.
6291 * I.e., first node id of first zone in arg node's generic zonelist.
6292 * Used for initializing percpu 'numa_mem', which is used primarily
6293 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6294 */
6295int local_memory_node(int node)
6296{
c33d6c06 6297 struct zoneref *z;
7aac7898 6298
c33d6c06 6299 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6300 gfp_zone(GFP_KERNEL),
c33d6c06 6301 NULL);
c1093b74 6302 return zone_to_nid(z->zone);
7aac7898
LS
6303}
6304#endif
f0c0b2b8 6305
6423aa81
JK
6306static void setup_min_unmapped_ratio(void);
6307static void setup_min_slab_ratio(void);
1da177e4
LT
6308#else /* CONFIG_NUMA */
6309
f0c0b2b8 6310static void build_zonelists(pg_data_t *pgdat)
1da177e4 6311{
19655d34 6312 int node, local_node;
9d3be21b
MH
6313 struct zoneref *zonerefs;
6314 int nr_zones;
1da177e4
LT
6315
6316 local_node = pgdat->node_id;
1da177e4 6317
9d3be21b
MH
6318 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6319 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6320 zonerefs += nr_zones;
1da177e4 6321
54a6eb5c
MG
6322 /*
6323 * Now we build the zonelist so that it contains the zones
6324 * of all the other nodes.
6325 * We don't want to pressure a particular node, so when
6326 * building the zones for node N, we make sure that the
6327 * zones coming right after the local ones are those from
6328 * node N+1 (modulo N)
6329 */
6330 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6331 if (!node_online(node))
6332 continue;
9d3be21b
MH
6333 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6334 zonerefs += nr_zones;
1da177e4 6335 }
54a6eb5c
MG
6336 for (node = 0; node < local_node; node++) {
6337 if (!node_online(node))
6338 continue;
9d3be21b
MH
6339 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6340 zonerefs += nr_zones;
54a6eb5c
MG
6341 }
6342
9d3be21b
MH
6343 zonerefs->zone = NULL;
6344 zonerefs->zone_idx = 0;
1da177e4
LT
6345}
6346
6347#endif /* CONFIG_NUMA */
6348
99dcc3e5
CL
6349/*
6350 * Boot pageset table. One per cpu which is going to be used for all
6351 * zones and all nodes. The parameters will be set in such a way
6352 * that an item put on a list will immediately be handed over to
6353 * the buddy list. This is safe since pageset manipulation is done
6354 * with interrupts disabled.
6355 *
6356 * The boot_pagesets must be kept even after bootup is complete for
6357 * unused processors and/or zones. They do play a role for bootstrapping
6358 * hotplugged processors.
6359 *
6360 * zoneinfo_show() and maybe other functions do
6361 * not check if the processor is online before following the pageset pointer.
6362 * Other parts of the kernel may not check if the zone is available.
6363 */
28f836b6 6364static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6365/* These effectively disable the pcplists in the boot pageset completely */
6366#define BOOT_PAGESET_HIGH 0
6367#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6368static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6369static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
385386cf 6370static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6371
11cd8638 6372static void __build_all_zonelists(void *data)
1da177e4 6373{
6811378e 6374 int nid;
afb6ebb3 6375 int __maybe_unused cpu;
9adb62a5 6376 pg_data_t *self = data;
b93e0f32
MH
6377 static DEFINE_SPINLOCK(lock);
6378
6379 spin_lock(&lock);
9276b1bc 6380
7f9cfb31
BL
6381#ifdef CONFIG_NUMA
6382 memset(node_load, 0, sizeof(node_load));
6383#endif
9adb62a5 6384
c1152583
WY
6385 /*
6386 * This node is hotadded and no memory is yet present. So just
6387 * building zonelists is fine - no need to touch other nodes.
6388 */
9adb62a5
JL
6389 if (self && !node_online(self->node_id)) {
6390 build_zonelists(self);
c1152583
WY
6391 } else {
6392 for_each_online_node(nid) {
6393 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6394
c1152583
WY
6395 build_zonelists(pgdat);
6396 }
99dcc3e5 6397
7aac7898
LS
6398#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6399 /*
6400 * We now know the "local memory node" for each node--
6401 * i.e., the node of the first zone in the generic zonelist.
6402 * Set up numa_mem percpu variable for on-line cpus. During
6403 * boot, only the boot cpu should be on-line; we'll init the
6404 * secondary cpus' numa_mem as they come on-line. During
6405 * node/memory hotplug, we'll fixup all on-line cpus.
6406 */
d9c9a0b9 6407 for_each_online_cpu(cpu)
7aac7898 6408 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6409#endif
d9c9a0b9 6410 }
b93e0f32
MH
6411
6412 spin_unlock(&lock);
6811378e
YG
6413}
6414
061f67bc
RV
6415static noinline void __init
6416build_all_zonelists_init(void)
6417{
afb6ebb3
MH
6418 int cpu;
6419
061f67bc 6420 __build_all_zonelists(NULL);
afb6ebb3
MH
6421
6422 /*
6423 * Initialize the boot_pagesets that are going to be used
6424 * for bootstrapping processors. The real pagesets for
6425 * each zone will be allocated later when the per cpu
6426 * allocator is available.
6427 *
6428 * boot_pagesets are used also for bootstrapping offline
6429 * cpus if the system is already booted because the pagesets
6430 * are needed to initialize allocators on a specific cpu too.
6431 * F.e. the percpu allocator needs the page allocator which
6432 * needs the percpu allocator in order to allocate its pagesets
6433 * (a chicken-egg dilemma).
6434 */
6435 for_each_possible_cpu(cpu)
28f836b6 6436 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6437
061f67bc
RV
6438 mminit_verify_zonelist();
6439 cpuset_init_current_mems_allowed();
6440}
6441
4eaf3f64 6442/*
4eaf3f64 6443 * unless system_state == SYSTEM_BOOTING.
061f67bc 6444 *
72675e13 6445 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6446 * [protected by SYSTEM_BOOTING].
4eaf3f64 6447 */
72675e13 6448void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6449{
0a18e607
DH
6450 unsigned long vm_total_pages;
6451
6811378e 6452 if (system_state == SYSTEM_BOOTING) {
061f67bc 6453 build_all_zonelists_init();
6811378e 6454 } else {
11cd8638 6455 __build_all_zonelists(pgdat);
6811378e
YG
6456 /* cpuset refresh routine should be here */
6457 }
56b9413b
DH
6458 /* Get the number of free pages beyond high watermark in all zones. */
6459 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6460 /*
6461 * Disable grouping by mobility if the number of pages in the
6462 * system is too low to allow the mechanism to work. It would be
6463 * more accurate, but expensive to check per-zone. This check is
6464 * made on memory-hotadd so a system can start with mobility
6465 * disabled and enable it later
6466 */
d9c23400 6467 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6468 page_group_by_mobility_disabled = 1;
6469 else
6470 page_group_by_mobility_disabled = 0;
6471
ce0725f7 6472 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6473 nr_online_nodes,
756a025f
JP
6474 page_group_by_mobility_disabled ? "off" : "on",
6475 vm_total_pages);
f0c0b2b8 6476#ifdef CONFIG_NUMA
f88dfff5 6477 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6478#endif
1da177e4
LT
6479}
6480
a9a9e77f
PT
6481/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6482static bool __meminit
6483overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6484{
a9a9e77f
PT
6485 static struct memblock_region *r;
6486
6487 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6488 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6489 for_each_mem_region(r) {
a9a9e77f
PT
6490 if (*pfn < memblock_region_memory_end_pfn(r))
6491 break;
6492 }
6493 }
6494 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6495 memblock_is_mirror(r)) {
6496 *pfn = memblock_region_memory_end_pfn(r);
6497 return true;
6498 }
6499 }
a9a9e77f
PT
6500 return false;
6501}
6502
1da177e4
LT
6503/*
6504 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6505 * up by memblock_free_all() once the early boot process is
1da177e4 6506 * done. Non-atomic initialization, single-pass.
d882c006
DH
6507 *
6508 * All aligned pageblocks are initialized to the specified migratetype
6509 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6510 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6511 */
ab28cb6e 6512void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6513 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6514 enum meminit_context context,
6515 struct vmem_altmap *altmap, int migratetype)
1da177e4 6516{
a9a9e77f 6517 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6518 struct page *page;
1da177e4 6519
22b31eec
HD
6520 if (highest_memmap_pfn < end_pfn - 1)
6521 highest_memmap_pfn = end_pfn - 1;
6522
966cf44f 6523#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6524 /*
6525 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6526 * memory. We limit the total number of pages to initialize to just
6527 * those that might contain the memory mapping. We will defer the
6528 * ZONE_DEVICE page initialization until after we have released
6529 * the hotplug lock.
4b94ffdc 6530 */
966cf44f
AD
6531 if (zone == ZONE_DEVICE) {
6532 if (!altmap)
6533 return;
6534
6535 if (start_pfn == altmap->base_pfn)
6536 start_pfn += altmap->reserve;
6537 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6538 }
6539#endif
4b94ffdc 6540
948c436e 6541 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6542 /*
b72d0ffb
AM
6543 * There can be holes in boot-time mem_map[]s handed to this
6544 * function. They do not exist on hotplugged memory.
a2f3aa02 6545 */
c1d0da83 6546 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6547 if (overlap_memmap_init(zone, &pfn))
6548 continue;
dc2da7b4 6549 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6550 break;
a2f3aa02 6551 }
ac5d2539 6552
d0dc12e8
PT
6553 page = pfn_to_page(pfn);
6554 __init_single_page(page, pfn, zone, nid);
c1d0da83 6555 if (context == MEMINIT_HOTPLUG)
d483da5b 6556 __SetPageReserved(page);
d0dc12e8 6557
ac5d2539 6558 /*
d882c006
DH
6559 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6560 * such that unmovable allocations won't be scattered all
6561 * over the place during system boot.
ac5d2539 6562 */
4eb29bd9 6563 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6564 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6565 cond_resched();
ac5d2539 6566 }
948c436e 6567 pfn++;
1da177e4
LT
6568 }
6569}
6570
966cf44f
AD
6571#ifdef CONFIG_ZONE_DEVICE
6572void __ref memmap_init_zone_device(struct zone *zone,
6573 unsigned long start_pfn,
1f8d75c1 6574 unsigned long nr_pages,
966cf44f
AD
6575 struct dev_pagemap *pgmap)
6576{
1f8d75c1 6577 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6578 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6579 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6580 unsigned long zone_idx = zone_idx(zone);
6581 unsigned long start = jiffies;
6582 int nid = pgdat->node_id;
6583
46d945ae 6584 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6585 return;
6586
6587 /*
122e093c 6588 * The call to memmap_init should have already taken care
966cf44f
AD
6589 * of the pages reserved for the memmap, so we can just jump to
6590 * the end of that region and start processing the device pages.
6591 */
514caf23 6592 if (altmap) {
966cf44f 6593 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6594 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6595 }
6596
6597 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6598 struct page *page = pfn_to_page(pfn);
6599
6600 __init_single_page(page, pfn, zone_idx, nid);
6601
6602 /*
6603 * Mark page reserved as it will need to wait for onlining
6604 * phase for it to be fully associated with a zone.
6605 *
6606 * We can use the non-atomic __set_bit operation for setting
6607 * the flag as we are still initializing the pages.
6608 */
6609 __SetPageReserved(page);
6610
6611 /*
8a164fef
CH
6612 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6613 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6614 * ever freed or placed on a driver-private list.
966cf44f
AD
6615 */
6616 page->pgmap = pgmap;
8a164fef 6617 page->zone_device_data = NULL;
966cf44f
AD
6618
6619 /*
6620 * Mark the block movable so that blocks are reserved for
6621 * movable at startup. This will force kernel allocations
6622 * to reserve their blocks rather than leaking throughout
6623 * the address space during boot when many long-lived
6624 * kernel allocations are made.
6625 *
c1d0da83 6626 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6627 * because this is done early in section_activate()
966cf44f 6628 */
4eb29bd9 6629 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6630 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6631 cond_resched();
6632 }
6633 }
6634
fdc029b1 6635 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6636 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6637}
6638
6639#endif
1e548deb 6640static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6641{
7aeb09f9 6642 unsigned int order, t;
b2a0ac88
MG
6643 for_each_migratetype_order(order, t) {
6644 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6645 zone->free_area[order].nr_free = 0;
6646 }
6647}
6648
0740a50b
MR
6649/*
6650 * Only struct pages that correspond to ranges defined by memblock.memory
6651 * are zeroed and initialized by going through __init_single_page() during
122e093c 6652 * memmap_init_zone_range().
0740a50b
MR
6653 *
6654 * But, there could be struct pages that correspond to holes in
6655 * memblock.memory. This can happen because of the following reasons:
6656 * - physical memory bank size is not necessarily the exact multiple of the
6657 * arbitrary section size
6658 * - early reserved memory may not be listed in memblock.memory
6659 * - memory layouts defined with memmap= kernel parameter may not align
6660 * nicely with memmap sections
6661 *
6662 * Explicitly initialize those struct pages so that:
6663 * - PG_Reserved is set
6664 * - zone and node links point to zone and node that span the page if the
6665 * hole is in the middle of a zone
6666 * - zone and node links point to adjacent zone/node if the hole falls on
6667 * the zone boundary; the pages in such holes will be prepended to the
6668 * zone/node above the hole except for the trailing pages in the last
6669 * section that will be appended to the zone/node below.
6670 */
122e093c
MR
6671static void __init init_unavailable_range(unsigned long spfn,
6672 unsigned long epfn,
6673 int zone, int node)
0740a50b
MR
6674{
6675 unsigned long pfn;
6676 u64 pgcnt = 0;
6677
6678 for (pfn = spfn; pfn < epfn; pfn++) {
6679 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6680 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6681 + pageblock_nr_pages - 1;
6682 continue;
6683 }
6684 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6685 __SetPageReserved(pfn_to_page(pfn));
6686 pgcnt++;
6687 }
6688
122e093c
MR
6689 if (pgcnt)
6690 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6691 node, zone_names[zone], pgcnt);
0740a50b 6692}
0740a50b 6693
122e093c
MR
6694static void __init memmap_init_zone_range(struct zone *zone,
6695 unsigned long start_pfn,
6696 unsigned long end_pfn,
6697 unsigned long *hole_pfn)
dfb3ccd0 6698{
3256ff83
BH
6699 unsigned long zone_start_pfn = zone->zone_start_pfn;
6700 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6701 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6702
6703 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6704 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6705
6706 if (start_pfn >= end_pfn)
6707 return;
6708
6709 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6710 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6711
6712 if (*hole_pfn < start_pfn)
6713 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6714
6715 *hole_pfn = end_pfn;
6716}
6717
6718static void __init memmap_init(void)
6719{
73a6e474 6720 unsigned long start_pfn, end_pfn;
122e093c 6721 unsigned long hole_pfn = 0;
b346075f 6722 int i, j, zone_id = 0, nid;
73a6e474 6723
122e093c
MR
6724 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6725 struct pglist_data *node = NODE_DATA(nid);
73a6e474 6726
122e093c
MR
6727 for (j = 0; j < MAX_NR_ZONES; j++) {
6728 struct zone *zone = node->node_zones + j;
0740a50b 6729
122e093c
MR
6730 if (!populated_zone(zone))
6731 continue;
0740a50b 6732
122e093c
MR
6733 memmap_init_zone_range(zone, start_pfn, end_pfn,
6734 &hole_pfn);
6735 zone_id = j;
6736 }
73a6e474 6737 }
0740a50b
MR
6738
6739#ifdef CONFIG_SPARSEMEM
6740 /*
122e093c
MR
6741 * Initialize the memory map for hole in the range [memory_end,
6742 * section_end].
6743 * Append the pages in this hole to the highest zone in the last
6744 * node.
6745 * The call to init_unavailable_range() is outside the ifdef to
6746 * silence the compiler warining about zone_id set but not used;
6747 * for FLATMEM it is a nop anyway
0740a50b 6748 */
122e093c 6749 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6750 if (hole_pfn < end_pfn)
0740a50b 6751#endif
122e093c 6752 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6753}
1da177e4 6754
c803b3c8
MR
6755void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6756 phys_addr_t min_addr, int nid, bool exact_nid)
6757{
6758 void *ptr;
6759
6760 if (exact_nid)
6761 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6762 MEMBLOCK_ALLOC_ACCESSIBLE,
6763 nid);
6764 else
6765 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6766 MEMBLOCK_ALLOC_ACCESSIBLE,
6767 nid);
6768
6769 if (ptr && size > 0)
6770 page_init_poison(ptr, size);
6771
6772 return ptr;
6773}
6774
7cd2b0a3 6775static int zone_batchsize(struct zone *zone)
e7c8d5c9 6776{
3a6be87f 6777#ifdef CONFIG_MMU
e7c8d5c9
CL
6778 int batch;
6779
6780 /*
b92ca18e
MG
6781 * The number of pages to batch allocate is either ~0.1%
6782 * of the zone or 1MB, whichever is smaller. The batch
6783 * size is striking a balance between allocation latency
6784 * and zone lock contention.
e7c8d5c9 6785 */
b92ca18e 6786 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6787 batch /= 4; /* We effectively *= 4 below */
6788 if (batch < 1)
6789 batch = 1;
6790
6791 /*
0ceaacc9
NP
6792 * Clamp the batch to a 2^n - 1 value. Having a power
6793 * of 2 value was found to be more likely to have
6794 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6795 *
0ceaacc9
NP
6796 * For example if 2 tasks are alternately allocating
6797 * batches of pages, one task can end up with a lot
6798 * of pages of one half of the possible page colors
6799 * and the other with pages of the other colors.
e7c8d5c9 6800 */
9155203a 6801 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6802
e7c8d5c9 6803 return batch;
3a6be87f
DH
6804
6805#else
6806 /* The deferral and batching of frees should be suppressed under NOMMU
6807 * conditions.
6808 *
6809 * The problem is that NOMMU needs to be able to allocate large chunks
6810 * of contiguous memory as there's no hardware page translation to
6811 * assemble apparent contiguous memory from discontiguous pages.
6812 *
6813 * Queueing large contiguous runs of pages for batching, however,
6814 * causes the pages to actually be freed in smaller chunks. As there
6815 * can be a significant delay between the individual batches being
6816 * recycled, this leads to the once large chunks of space being
6817 * fragmented and becoming unavailable for high-order allocations.
6818 */
6819 return 0;
6820#endif
e7c8d5c9
CL
6821}
6822
04f8cfea 6823static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
6824{
6825#ifdef CONFIG_MMU
6826 int high;
203c06ee 6827 int nr_split_cpus;
74f44822
MG
6828 unsigned long total_pages;
6829
6830 if (!percpu_pagelist_high_fraction) {
6831 /*
6832 * By default, the high value of the pcp is based on the zone
6833 * low watermark so that if they are full then background
6834 * reclaim will not be started prematurely.
6835 */
6836 total_pages = low_wmark_pages(zone);
6837 } else {
6838 /*
6839 * If percpu_pagelist_high_fraction is configured, the high
6840 * value is based on a fraction of the managed pages in the
6841 * zone.
6842 */
6843 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6844 }
b92ca18e
MG
6845
6846 /*
74f44822
MG
6847 * Split the high value across all online CPUs local to the zone. Note
6848 * that early in boot that CPUs may not be online yet and that during
6849 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
6850 * onlined. For memory nodes that have no CPUs, split pcp->high across
6851 * all online CPUs to mitigate the risk that reclaim is triggered
6852 * prematurely due to pages stored on pcp lists.
b92ca18e 6853 */
203c06ee
MG
6854 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6855 if (!nr_split_cpus)
6856 nr_split_cpus = num_online_cpus();
6857 high = total_pages / nr_split_cpus;
b92ca18e
MG
6858
6859 /*
6860 * Ensure high is at least batch*4. The multiple is based on the
6861 * historical relationship between high and batch.
6862 */
6863 high = max(high, batch << 2);
6864
6865 return high;
6866#else
6867 return 0;
6868#endif
6869}
6870
8d7a8fa9 6871/*
5c3ad2eb
VB
6872 * pcp->high and pcp->batch values are related and generally batch is lower
6873 * than high. They are also related to pcp->count such that count is lower
6874 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6875 *
5c3ad2eb
VB
6876 * However, guaranteeing these relations at all times would require e.g. write
6877 * barriers here but also careful usage of read barriers at the read side, and
6878 * thus be prone to error and bad for performance. Thus the update only prevents
6879 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6880 * can cope with those fields changing asynchronously, and fully trust only the
6881 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6882 *
6883 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6884 * outside of boot time (or some other assurance that no concurrent updaters
6885 * exist).
6886 */
6887static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6888 unsigned long batch)
6889{
5c3ad2eb
VB
6890 WRITE_ONCE(pcp->batch, batch);
6891 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6892}
6893
28f836b6 6894static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 6895{
44042b44 6896 int pindex;
2caaad41 6897
28f836b6
MG
6898 memset(pcp, 0, sizeof(*pcp));
6899 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 6900
44042b44
MG
6901 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6902 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 6903
69a8396a
VB
6904 /*
6905 * Set batch and high values safe for a boot pageset. A true percpu
6906 * pageset's initialization will update them subsequently. Here we don't
6907 * need to be as careful as pageset_update() as nobody can access the
6908 * pageset yet.
6909 */
952eaf81
VB
6910 pcp->high = BOOT_PAGESET_HIGH;
6911 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 6912 pcp->free_factor = 0;
88c90dbc
CS
6913}
6914
3b1f3658 6915static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6916 unsigned long batch)
6917{
28f836b6 6918 struct per_cpu_pages *pcp;
ec6e8c7e
VB
6919 int cpu;
6920
6921 for_each_possible_cpu(cpu) {
28f836b6
MG
6922 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6923 pageset_update(pcp, high, batch);
ec6e8c7e
VB
6924 }
6925}
6926
8ad4b1fb 6927/*
0a8b4f1d 6928 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 6929 * zone based on the zone's size.
8ad4b1fb 6930 */
04f8cfea 6931static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 6932{
b92ca18e 6933 int new_high, new_batch;
7115ac6e 6934
b92ca18e 6935 new_batch = max(1, zone_batchsize(zone));
04f8cfea 6936 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 6937
952eaf81
VB
6938 if (zone->pageset_high == new_high &&
6939 zone->pageset_batch == new_batch)
6940 return;
6941
6942 zone->pageset_high = new_high;
6943 zone->pageset_batch = new_batch;
6944
ec6e8c7e 6945 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6946}
6947
72675e13 6948void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6949{
6950 int cpu;
0a8b4f1d 6951
28f836b6
MG
6952 /* Size may be 0 on !SMP && !NUMA */
6953 if (sizeof(struct per_cpu_zonestat) > 0)
6954 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6955
6956 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 6957 for_each_possible_cpu(cpu) {
28f836b6
MG
6958 struct per_cpu_pages *pcp;
6959 struct per_cpu_zonestat *pzstats;
6960
6961 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6962 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6963 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
6964 }
6965
04f8cfea 6966 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
6967}
6968
2caaad41 6969/*
99dcc3e5
CL
6970 * Allocate per cpu pagesets and initialize them.
6971 * Before this call only boot pagesets were available.
e7c8d5c9 6972 */
99dcc3e5 6973void __init setup_per_cpu_pageset(void)
e7c8d5c9 6974{
b4911ea2 6975 struct pglist_data *pgdat;
99dcc3e5 6976 struct zone *zone;
b418a0f9 6977 int __maybe_unused cpu;
e7c8d5c9 6978
319774e2
WF
6979 for_each_populated_zone(zone)
6980 setup_zone_pageset(zone);
b4911ea2 6981
b418a0f9
SD
6982#ifdef CONFIG_NUMA
6983 /*
6984 * Unpopulated zones continue using the boot pagesets.
6985 * The numa stats for these pagesets need to be reset.
6986 * Otherwise, they will end up skewing the stats of
6987 * the nodes these zones are associated with.
6988 */
6989 for_each_possible_cpu(cpu) {
28f836b6 6990 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
6991 memset(pzstats->vm_numa_event, 0,
6992 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
6993 }
6994#endif
6995
b4911ea2
MG
6996 for_each_online_pgdat(pgdat)
6997 pgdat->per_cpu_nodestats =
6998 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6999}
7000
c09b4240 7001static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 7002{
99dcc3e5
CL
7003 /*
7004 * per cpu subsystem is not up at this point. The following code
7005 * relies on the ability of the linker to provide the
7006 * offset of a (static) per cpu variable into the per cpu area.
7007 */
28f836b6
MG
7008 zone->per_cpu_pageset = &boot_pageset;
7009 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
7010 zone->pageset_high = BOOT_PAGESET_HIGH;
7011 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7012
b38a8725 7013 if (populated_zone(zone))
9660ecaa
HK
7014 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7015 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7016}
7017
dc0bbf3b 7018void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7019 unsigned long zone_start_pfn,
b171e409 7020 unsigned long size)
ed8ece2e
DH
7021{
7022 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7023 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7024
8f416836
WY
7025 if (zone_idx > pgdat->nr_zones)
7026 pgdat->nr_zones = zone_idx;
ed8ece2e 7027
ed8ece2e
DH
7028 zone->zone_start_pfn = zone_start_pfn;
7029
708614e6
MG
7030 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7031 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7032 pgdat->node_id,
7033 (unsigned long)zone_idx(zone),
7034 zone_start_pfn, (zone_start_pfn + size));
7035
1e548deb 7036 zone_init_free_lists(zone);
9dcb8b68 7037 zone->initialized = 1;
ed8ece2e
DH
7038}
7039
c713216d
MG
7040/**
7041 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7042 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7043 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7044 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7045 *
7046 * It returns the start and end page frame of a node based on information
7d018176 7047 * provided by memblock_set_node(). If called for a node
c713216d 7048 * with no available memory, a warning is printed and the start and end
88ca3b94 7049 * PFNs will be 0.
c713216d 7050 */
bbe5d993 7051void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7052 unsigned long *start_pfn, unsigned long *end_pfn)
7053{
c13291a5 7054 unsigned long this_start_pfn, this_end_pfn;
c713216d 7055 int i;
c13291a5 7056
c713216d
MG
7057 *start_pfn = -1UL;
7058 *end_pfn = 0;
7059
c13291a5
TH
7060 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7061 *start_pfn = min(*start_pfn, this_start_pfn);
7062 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7063 }
7064
633c0666 7065 if (*start_pfn == -1UL)
c713216d 7066 *start_pfn = 0;
c713216d
MG
7067}
7068
2a1e274a
MG
7069/*
7070 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7071 * assumption is made that zones within a node are ordered in monotonic
7072 * increasing memory addresses so that the "highest" populated zone is used
7073 */
b69a7288 7074static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7075{
7076 int zone_index;
7077 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7078 if (zone_index == ZONE_MOVABLE)
7079 continue;
7080
7081 if (arch_zone_highest_possible_pfn[zone_index] >
7082 arch_zone_lowest_possible_pfn[zone_index])
7083 break;
7084 }
7085
7086 VM_BUG_ON(zone_index == -1);
7087 movable_zone = zone_index;
7088}
7089
7090/*
7091 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7092 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7093 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7094 * in each node depending on the size of each node and how evenly kernelcore
7095 * is distributed. This helper function adjusts the zone ranges
7096 * provided by the architecture for a given node by using the end of the
7097 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7098 * zones within a node are in order of monotonic increases memory addresses
7099 */
bbe5d993 7100static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7101 unsigned long zone_type,
7102 unsigned long node_start_pfn,
7103 unsigned long node_end_pfn,
7104 unsigned long *zone_start_pfn,
7105 unsigned long *zone_end_pfn)
7106{
7107 /* Only adjust if ZONE_MOVABLE is on this node */
7108 if (zone_movable_pfn[nid]) {
7109 /* Size ZONE_MOVABLE */
7110 if (zone_type == ZONE_MOVABLE) {
7111 *zone_start_pfn = zone_movable_pfn[nid];
7112 *zone_end_pfn = min(node_end_pfn,
7113 arch_zone_highest_possible_pfn[movable_zone]);
7114
e506b996
XQ
7115 /* Adjust for ZONE_MOVABLE starting within this range */
7116 } else if (!mirrored_kernelcore &&
7117 *zone_start_pfn < zone_movable_pfn[nid] &&
7118 *zone_end_pfn > zone_movable_pfn[nid]) {
7119 *zone_end_pfn = zone_movable_pfn[nid];
7120
2a1e274a
MG
7121 /* Check if this whole range is within ZONE_MOVABLE */
7122 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7123 *zone_start_pfn = *zone_end_pfn;
7124 }
7125}
7126
c713216d
MG
7127/*
7128 * Return the number of pages a zone spans in a node, including holes
7129 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7130 */
bbe5d993 7131static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7132 unsigned long zone_type,
7960aedd
ZY
7133 unsigned long node_start_pfn,
7134 unsigned long node_end_pfn,
d91749c1 7135 unsigned long *zone_start_pfn,
854e8848 7136 unsigned long *zone_end_pfn)
c713216d 7137{
299c83dc
LF
7138 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7139 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7140 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7141 if (!node_start_pfn && !node_end_pfn)
7142 return 0;
7143
7960aedd 7144 /* Get the start and end of the zone */
299c83dc
LF
7145 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7146 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7147 adjust_zone_range_for_zone_movable(nid, zone_type,
7148 node_start_pfn, node_end_pfn,
d91749c1 7149 zone_start_pfn, zone_end_pfn);
c713216d
MG
7150
7151 /* Check that this node has pages within the zone's required range */
d91749c1 7152 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7153 return 0;
7154
7155 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7156 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7157 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7158
7159 /* Return the spanned pages */
d91749c1 7160 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7161}
7162
7163/*
7164 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7165 * then all holes in the requested range will be accounted for.
c713216d 7166 */
bbe5d993 7167unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7168 unsigned long range_start_pfn,
7169 unsigned long range_end_pfn)
7170{
96e907d1
TH
7171 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7172 unsigned long start_pfn, end_pfn;
7173 int i;
c713216d 7174
96e907d1
TH
7175 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7176 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7177 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7178 nr_absent -= end_pfn - start_pfn;
c713216d 7179 }
96e907d1 7180 return nr_absent;
c713216d
MG
7181}
7182
7183/**
7184 * absent_pages_in_range - Return number of page frames in holes within a range
7185 * @start_pfn: The start PFN to start searching for holes
7186 * @end_pfn: The end PFN to stop searching for holes
7187 *
a862f68a 7188 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7189 */
7190unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7191 unsigned long end_pfn)
7192{
7193 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7194}
7195
7196/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7197static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7198 unsigned long zone_type,
7960aedd 7199 unsigned long node_start_pfn,
854e8848 7200 unsigned long node_end_pfn)
c713216d 7201{
96e907d1
TH
7202 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7203 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7204 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7205 unsigned long nr_absent;
9c7cd687 7206
b5685e92 7207 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7208 if (!node_start_pfn && !node_end_pfn)
7209 return 0;
7210
96e907d1
TH
7211 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7212 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7213
2a1e274a
MG
7214 adjust_zone_range_for_zone_movable(nid, zone_type,
7215 node_start_pfn, node_end_pfn,
7216 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7217 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7218
7219 /*
7220 * ZONE_MOVABLE handling.
7221 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7222 * and vice versa.
7223 */
e506b996
XQ
7224 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7225 unsigned long start_pfn, end_pfn;
7226 struct memblock_region *r;
7227
cc6de168 7228 for_each_mem_region(r) {
e506b996
XQ
7229 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7230 zone_start_pfn, zone_end_pfn);
7231 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7232 zone_start_pfn, zone_end_pfn);
7233
7234 if (zone_type == ZONE_MOVABLE &&
7235 memblock_is_mirror(r))
7236 nr_absent += end_pfn - start_pfn;
7237
7238 if (zone_type == ZONE_NORMAL &&
7239 !memblock_is_mirror(r))
7240 nr_absent += end_pfn - start_pfn;
342332e6
TI
7241 }
7242 }
7243
7244 return nr_absent;
c713216d 7245}
0e0b864e 7246
bbe5d993 7247static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7248 unsigned long node_start_pfn,
854e8848 7249 unsigned long node_end_pfn)
c713216d 7250{
febd5949 7251 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7252 enum zone_type i;
7253
febd5949
GZ
7254 for (i = 0; i < MAX_NR_ZONES; i++) {
7255 struct zone *zone = pgdat->node_zones + i;
d91749c1 7256 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7257 unsigned long spanned, absent;
febd5949 7258 unsigned long size, real_size;
c713216d 7259
854e8848
MR
7260 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7261 node_start_pfn,
7262 node_end_pfn,
7263 &zone_start_pfn,
7264 &zone_end_pfn);
7265 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7266 node_start_pfn,
7267 node_end_pfn);
3f08a302
MR
7268
7269 size = spanned;
7270 real_size = size - absent;
7271
d91749c1
TI
7272 if (size)
7273 zone->zone_start_pfn = zone_start_pfn;
7274 else
7275 zone->zone_start_pfn = 0;
febd5949
GZ
7276 zone->spanned_pages = size;
7277 zone->present_pages = real_size;
4b097002
DH
7278#if defined(CONFIG_MEMORY_HOTPLUG)
7279 zone->present_early_pages = real_size;
7280#endif
febd5949
GZ
7281
7282 totalpages += size;
7283 realtotalpages += real_size;
7284 }
7285
7286 pgdat->node_spanned_pages = totalpages;
c713216d 7287 pgdat->node_present_pages = realtotalpages;
9660ecaa 7288 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7289}
7290
835c134e
MG
7291#ifndef CONFIG_SPARSEMEM
7292/*
7293 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7294 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7295 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7296 * round what is now in bits to nearest long in bits, then return it in
7297 * bytes.
7298 */
7c45512d 7299static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7300{
7301 unsigned long usemapsize;
7302
7c45512d 7303 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7304 usemapsize = roundup(zonesize, pageblock_nr_pages);
7305 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7306 usemapsize *= NR_PAGEBLOCK_BITS;
7307 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7308
7309 return usemapsize / 8;
7310}
7311
7010a6ec 7312static void __ref setup_usemap(struct zone *zone)
835c134e 7313{
7010a6ec
BH
7314 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7315 zone->spanned_pages);
835c134e 7316 zone->pageblock_flags = NULL;
23a7052a 7317 if (usemapsize) {
6782832e 7318 zone->pageblock_flags =
26fb3dae 7319 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7320 zone_to_nid(zone));
23a7052a
MR
7321 if (!zone->pageblock_flags)
7322 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7323 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7324 }
835c134e
MG
7325}
7326#else
7010a6ec 7327static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7328#endif /* CONFIG_SPARSEMEM */
7329
d9c23400 7330#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7331
d9c23400 7332/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7333void __init set_pageblock_order(void)
d9c23400 7334{
955c1cd7
AM
7335 unsigned int order;
7336
d9c23400
MG
7337 /* Check that pageblock_nr_pages has not already been setup */
7338 if (pageblock_order)
7339 return;
7340
955c1cd7
AM
7341 if (HPAGE_SHIFT > PAGE_SHIFT)
7342 order = HUGETLB_PAGE_ORDER;
7343 else
7344 order = MAX_ORDER - 1;
7345
d9c23400
MG
7346 /*
7347 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7348 * This value may be variable depending on boot parameters on IA64 and
7349 * powerpc.
d9c23400
MG
7350 */
7351 pageblock_order = order;
7352}
7353#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7354
ba72cb8c
MG
7355/*
7356 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7357 * is unused as pageblock_order is set at compile-time. See
7358 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7359 * the kernel config
ba72cb8c 7360 */
03e85f9d 7361void __init set_pageblock_order(void)
ba72cb8c 7362{
ba72cb8c 7363}
d9c23400
MG
7364
7365#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7366
03e85f9d 7367static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7368 unsigned long present_pages)
01cefaef
JL
7369{
7370 unsigned long pages = spanned_pages;
7371
7372 /*
7373 * Provide a more accurate estimation if there are holes within
7374 * the zone and SPARSEMEM is in use. If there are holes within the
7375 * zone, each populated memory region may cost us one or two extra
7376 * memmap pages due to alignment because memmap pages for each
89d790ab 7377 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7378 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7379 */
7380 if (spanned_pages > present_pages + (present_pages >> 4) &&
7381 IS_ENABLED(CONFIG_SPARSEMEM))
7382 pages = present_pages;
7383
7384 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7385}
7386
ace1db39
OS
7387#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7388static void pgdat_init_split_queue(struct pglist_data *pgdat)
7389{
364c1eeb
YS
7390 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7391
7392 spin_lock_init(&ds_queue->split_queue_lock);
7393 INIT_LIST_HEAD(&ds_queue->split_queue);
7394 ds_queue->split_queue_len = 0;
ace1db39
OS
7395}
7396#else
7397static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7398#endif
7399
7400#ifdef CONFIG_COMPACTION
7401static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7402{
7403 init_waitqueue_head(&pgdat->kcompactd_wait);
7404}
7405#else
7406static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7407#endif
7408
03e85f9d 7409static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7410{
208d54e5 7411 pgdat_resize_init(pgdat);
ace1db39 7412
ace1db39
OS
7413 pgdat_init_split_queue(pgdat);
7414 pgdat_init_kcompactd(pgdat);
7415
1da177e4 7416 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7417 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7418
eefa864b 7419 pgdat_page_ext_init(pgdat);
867e5e1d 7420 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7421}
7422
7423static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7424 unsigned long remaining_pages)
7425{
9705bea5 7426 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7427 zone_set_nid(zone, nid);
7428 zone->name = zone_names[idx];
7429 zone->zone_pgdat = NODE_DATA(nid);
7430 spin_lock_init(&zone->lock);
7431 zone_seqlock_init(zone);
7432 zone_pcp_init(zone);
7433}
7434
7435/*
7436 * Set up the zone data structures
7437 * - init pgdat internals
7438 * - init all zones belonging to this node
7439 *
7440 * NOTE: this function is only called during memory hotplug
7441 */
7442#ifdef CONFIG_MEMORY_HOTPLUG
7443void __ref free_area_init_core_hotplug(int nid)
7444{
7445 enum zone_type z;
7446 pg_data_t *pgdat = NODE_DATA(nid);
7447
7448 pgdat_init_internals(pgdat);
7449 for (z = 0; z < MAX_NR_ZONES; z++)
7450 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7451}
7452#endif
7453
7454/*
7455 * Set up the zone data structures:
7456 * - mark all pages reserved
7457 * - mark all memory queues empty
7458 * - clear the memory bitmaps
7459 *
7460 * NOTE: pgdat should get zeroed by caller.
7461 * NOTE: this function is only called during early init.
7462 */
7463static void __init free_area_init_core(struct pglist_data *pgdat)
7464{
7465 enum zone_type j;
7466 int nid = pgdat->node_id;
5f63b720 7467
03e85f9d 7468 pgdat_init_internals(pgdat);
385386cf
JW
7469 pgdat->per_cpu_nodestats = &boot_nodestats;
7470
1da177e4
LT
7471 for (j = 0; j < MAX_NR_ZONES; j++) {
7472 struct zone *zone = pgdat->node_zones + j;
e6943859 7473 unsigned long size, freesize, memmap_pages;
1da177e4 7474
febd5949 7475 size = zone->spanned_pages;
e6943859 7476 freesize = zone->present_pages;
1da177e4 7477
0e0b864e 7478 /*
9feedc9d 7479 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7480 * is used by this zone for memmap. This affects the watermark
7481 * and per-cpu initialisations
7482 */
e6943859 7483 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7484 if (!is_highmem_idx(j)) {
7485 if (freesize >= memmap_pages) {
7486 freesize -= memmap_pages;
7487 if (memmap_pages)
9660ecaa
HK
7488 pr_debug(" %s zone: %lu pages used for memmap\n",
7489 zone_names[j], memmap_pages);
ba914f48 7490 } else
e47aa905 7491 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7492 zone_names[j], memmap_pages, freesize);
7493 }
0e0b864e 7494
6267276f 7495 /* Account for reserved pages */
9feedc9d
JL
7496 if (j == 0 && freesize > dma_reserve) {
7497 freesize -= dma_reserve;
9660ecaa 7498 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7499 }
7500
98d2b0eb 7501 if (!is_highmem_idx(j))
9feedc9d 7502 nr_kernel_pages += freesize;
01cefaef
JL
7503 /* Charge for highmem memmap if there are enough kernel pages */
7504 else if (nr_kernel_pages > memmap_pages * 2)
7505 nr_kernel_pages -= memmap_pages;
9feedc9d 7506 nr_all_pages += freesize;
1da177e4 7507
9feedc9d
JL
7508 /*
7509 * Set an approximate value for lowmem here, it will be adjusted
7510 * when the bootmem allocator frees pages into the buddy system.
7511 * And all highmem pages will be managed by the buddy system.
7512 */
03e85f9d 7513 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7514
d883c6cf 7515 if (!size)
1da177e4
LT
7516 continue;
7517
955c1cd7 7518 set_pageblock_order();
7010a6ec 7519 setup_usemap(zone);
9699ee7b 7520 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7521 }
7522}
7523
43b02ba9 7524#ifdef CONFIG_FLATMEM
3b446da6 7525static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7526{
b0aeba74 7527 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7528 unsigned long __maybe_unused offset = 0;
7529
1da177e4
LT
7530 /* Skip empty nodes */
7531 if (!pgdat->node_spanned_pages)
7532 return;
7533
b0aeba74
TL
7534 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7535 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7536 /* ia64 gets its own node_mem_map, before this, without bootmem */
7537 if (!pgdat->node_mem_map) {
b0aeba74 7538 unsigned long size, end;
d41dee36
AW
7539 struct page *map;
7540
e984bb43
BP
7541 /*
7542 * The zone's endpoints aren't required to be MAX_ORDER
7543 * aligned but the node_mem_map endpoints must be in order
7544 * for the buddy allocator to function correctly.
7545 */
108bcc96 7546 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7547 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7548 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7549 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7550 pgdat->node_id, false);
23a7052a
MR
7551 if (!map)
7552 panic("Failed to allocate %ld bytes for node %d memory map\n",
7553 size, pgdat->node_id);
a1c34a3b 7554 pgdat->node_mem_map = map + offset;
1da177e4 7555 }
0cd842f9
OS
7556 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7557 __func__, pgdat->node_id, (unsigned long)pgdat,
7558 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7559#ifndef CONFIG_NUMA
1da177e4
LT
7560 /*
7561 * With no DISCONTIG, the global mem_map is just set as node 0's
7562 */
c713216d 7563 if (pgdat == NODE_DATA(0)) {
1da177e4 7564 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7565 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7566 mem_map -= offset;
c713216d 7567 }
1da177e4
LT
7568#endif
7569}
0cd842f9 7570#else
3b446da6 7571static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7572#endif /* CONFIG_FLATMEM */
1da177e4 7573
0188dc98
OS
7574#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7575static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7576{
0188dc98
OS
7577 pgdat->first_deferred_pfn = ULONG_MAX;
7578}
7579#else
7580static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7581#endif
7582
854e8848 7583static void __init free_area_init_node(int nid)
1da177e4 7584{
9109fb7b 7585 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7586 unsigned long start_pfn = 0;
7587 unsigned long end_pfn = 0;
9109fb7b 7588
88fdf75d 7589 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7590 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7591
854e8848 7592 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7593
1da177e4 7594 pgdat->node_id = nid;
854e8848 7595 pgdat->node_start_pfn = start_pfn;
75ef7184 7596 pgdat->per_cpu_nodestats = NULL;
854e8848 7597
8d29e18a 7598 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7599 (u64)start_pfn << PAGE_SHIFT,
7600 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7601 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7602
7603 alloc_node_mem_map(pgdat);
0188dc98 7604 pgdat_set_deferred_range(pgdat);
1da177e4 7605
7f3eb55b 7606 free_area_init_core(pgdat);
1da177e4
LT
7607}
7608
bc9331a1 7609void __init free_area_init_memoryless_node(int nid)
3f08a302 7610{
854e8848 7611 free_area_init_node(nid);
3f08a302
MR
7612}
7613
418508c1
MS
7614#if MAX_NUMNODES > 1
7615/*
7616 * Figure out the number of possible node ids.
7617 */
f9872caf 7618void __init setup_nr_node_ids(void)
418508c1 7619{
904a9553 7620 unsigned int highest;
418508c1 7621
904a9553 7622 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7623 nr_node_ids = highest + 1;
7624}
418508c1
MS
7625#endif
7626
1e01979c
TH
7627/**
7628 * node_map_pfn_alignment - determine the maximum internode alignment
7629 *
7630 * This function should be called after node map is populated and sorted.
7631 * It calculates the maximum power of two alignment which can distinguish
7632 * all the nodes.
7633 *
7634 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7635 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7636 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7637 * shifted, 1GiB is enough and this function will indicate so.
7638 *
7639 * This is used to test whether pfn -> nid mapping of the chosen memory
7640 * model has fine enough granularity to avoid incorrect mapping for the
7641 * populated node map.
7642 *
a862f68a 7643 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7644 * requirement (single node).
7645 */
7646unsigned long __init node_map_pfn_alignment(void)
7647{
7648 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7649 unsigned long start, end, mask;
98fa15f3 7650 int last_nid = NUMA_NO_NODE;
c13291a5 7651 int i, nid;
1e01979c 7652
c13291a5 7653 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7654 if (!start || last_nid < 0 || last_nid == nid) {
7655 last_nid = nid;
7656 last_end = end;
7657 continue;
7658 }
7659
7660 /*
7661 * Start with a mask granular enough to pin-point to the
7662 * start pfn and tick off bits one-by-one until it becomes
7663 * too coarse to separate the current node from the last.
7664 */
7665 mask = ~((1 << __ffs(start)) - 1);
7666 while (mask && last_end <= (start & (mask << 1)))
7667 mask <<= 1;
7668
7669 /* accumulate all internode masks */
7670 accl_mask |= mask;
7671 }
7672
7673 /* convert mask to number of pages */
7674 return ~accl_mask + 1;
7675}
7676
c713216d
MG
7677/**
7678 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7679 *
a862f68a 7680 * Return: the minimum PFN based on information provided via
7d018176 7681 * memblock_set_node().
c713216d
MG
7682 */
7683unsigned long __init find_min_pfn_with_active_regions(void)
7684{
8a1b25fe 7685 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7686}
7687
37b07e41
LS
7688/*
7689 * early_calculate_totalpages()
7690 * Sum pages in active regions for movable zone.
4b0ef1fe 7691 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7692 */
484f51f8 7693static unsigned long __init early_calculate_totalpages(void)
7e63efef 7694{
7e63efef 7695 unsigned long totalpages = 0;
c13291a5
TH
7696 unsigned long start_pfn, end_pfn;
7697 int i, nid;
7698
7699 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7700 unsigned long pages = end_pfn - start_pfn;
7e63efef 7701
37b07e41
LS
7702 totalpages += pages;
7703 if (pages)
4b0ef1fe 7704 node_set_state(nid, N_MEMORY);
37b07e41 7705 }
b8af2941 7706 return totalpages;
7e63efef
MG
7707}
7708
2a1e274a
MG
7709/*
7710 * Find the PFN the Movable zone begins in each node. Kernel memory
7711 * is spread evenly between nodes as long as the nodes have enough
7712 * memory. When they don't, some nodes will have more kernelcore than
7713 * others
7714 */
b224ef85 7715static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7716{
7717 int i, nid;
7718 unsigned long usable_startpfn;
7719 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7720 /* save the state before borrow the nodemask */
4b0ef1fe 7721 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7722 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7723 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7724 struct memblock_region *r;
b2f3eebe
TC
7725
7726 /* Need to find movable_zone earlier when movable_node is specified. */
7727 find_usable_zone_for_movable();
7728
7729 /*
7730 * If movable_node is specified, ignore kernelcore and movablecore
7731 * options.
7732 */
7733 if (movable_node_is_enabled()) {
cc6de168 7734 for_each_mem_region(r) {
136199f0 7735 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7736 continue;
7737
d622abf7 7738 nid = memblock_get_region_node(r);
b2f3eebe 7739
136199f0 7740 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7741 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7742 min(usable_startpfn, zone_movable_pfn[nid]) :
7743 usable_startpfn;
7744 }
7745
7746 goto out2;
7747 }
2a1e274a 7748
342332e6
TI
7749 /*
7750 * If kernelcore=mirror is specified, ignore movablecore option
7751 */
7752 if (mirrored_kernelcore) {
7753 bool mem_below_4gb_not_mirrored = false;
7754
cc6de168 7755 for_each_mem_region(r) {
342332e6
TI
7756 if (memblock_is_mirror(r))
7757 continue;
7758
d622abf7 7759 nid = memblock_get_region_node(r);
342332e6
TI
7760
7761 usable_startpfn = memblock_region_memory_base_pfn(r);
7762
7763 if (usable_startpfn < 0x100000) {
7764 mem_below_4gb_not_mirrored = true;
7765 continue;
7766 }
7767
7768 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7769 min(usable_startpfn, zone_movable_pfn[nid]) :
7770 usable_startpfn;
7771 }
7772
7773 if (mem_below_4gb_not_mirrored)
633bf2fe 7774 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7775
7776 goto out2;
7777 }
7778
7e63efef 7779 /*
a5c6d650
DR
7780 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7781 * amount of necessary memory.
7782 */
7783 if (required_kernelcore_percent)
7784 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7785 10000UL;
7786 if (required_movablecore_percent)
7787 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7788 10000UL;
7789
7790 /*
7791 * If movablecore= was specified, calculate what size of
7e63efef
MG
7792 * kernelcore that corresponds so that memory usable for
7793 * any allocation type is evenly spread. If both kernelcore
7794 * and movablecore are specified, then the value of kernelcore
7795 * will be used for required_kernelcore if it's greater than
7796 * what movablecore would have allowed.
7797 */
7798 if (required_movablecore) {
7e63efef
MG
7799 unsigned long corepages;
7800
7801 /*
7802 * Round-up so that ZONE_MOVABLE is at least as large as what
7803 * was requested by the user
7804 */
7805 required_movablecore =
7806 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7807 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7808 corepages = totalpages - required_movablecore;
7809
7810 required_kernelcore = max(required_kernelcore, corepages);
7811 }
7812
bde304bd
XQ
7813 /*
7814 * If kernelcore was not specified or kernelcore size is larger
7815 * than totalpages, there is no ZONE_MOVABLE.
7816 */
7817 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7818 goto out;
2a1e274a
MG
7819
7820 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7821 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7822
7823restart:
7824 /* Spread kernelcore memory as evenly as possible throughout nodes */
7825 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7826 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7827 unsigned long start_pfn, end_pfn;
7828
2a1e274a
MG
7829 /*
7830 * Recalculate kernelcore_node if the division per node
7831 * now exceeds what is necessary to satisfy the requested
7832 * amount of memory for the kernel
7833 */
7834 if (required_kernelcore < kernelcore_node)
7835 kernelcore_node = required_kernelcore / usable_nodes;
7836
7837 /*
7838 * As the map is walked, we track how much memory is usable
7839 * by the kernel using kernelcore_remaining. When it is
7840 * 0, the rest of the node is usable by ZONE_MOVABLE
7841 */
7842 kernelcore_remaining = kernelcore_node;
7843
7844 /* Go through each range of PFNs within this node */
c13291a5 7845 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7846 unsigned long size_pages;
7847
c13291a5 7848 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7849 if (start_pfn >= end_pfn)
7850 continue;
7851
7852 /* Account for what is only usable for kernelcore */
7853 if (start_pfn < usable_startpfn) {
7854 unsigned long kernel_pages;
7855 kernel_pages = min(end_pfn, usable_startpfn)
7856 - start_pfn;
7857
7858 kernelcore_remaining -= min(kernel_pages,
7859 kernelcore_remaining);
7860 required_kernelcore -= min(kernel_pages,
7861 required_kernelcore);
7862
7863 /* Continue if range is now fully accounted */
7864 if (end_pfn <= usable_startpfn) {
7865
7866 /*
7867 * Push zone_movable_pfn to the end so
7868 * that if we have to rebalance
7869 * kernelcore across nodes, we will
7870 * not double account here
7871 */
7872 zone_movable_pfn[nid] = end_pfn;
7873 continue;
7874 }
7875 start_pfn = usable_startpfn;
7876 }
7877
7878 /*
7879 * The usable PFN range for ZONE_MOVABLE is from
7880 * start_pfn->end_pfn. Calculate size_pages as the
7881 * number of pages used as kernelcore
7882 */
7883 size_pages = end_pfn - start_pfn;
7884 if (size_pages > kernelcore_remaining)
7885 size_pages = kernelcore_remaining;
7886 zone_movable_pfn[nid] = start_pfn + size_pages;
7887
7888 /*
7889 * Some kernelcore has been met, update counts and
7890 * break if the kernelcore for this node has been
b8af2941 7891 * satisfied
2a1e274a
MG
7892 */
7893 required_kernelcore -= min(required_kernelcore,
7894 size_pages);
7895 kernelcore_remaining -= size_pages;
7896 if (!kernelcore_remaining)
7897 break;
7898 }
7899 }
7900
7901 /*
7902 * If there is still required_kernelcore, we do another pass with one
7903 * less node in the count. This will push zone_movable_pfn[nid] further
7904 * along on the nodes that still have memory until kernelcore is
b8af2941 7905 * satisfied
2a1e274a
MG
7906 */
7907 usable_nodes--;
7908 if (usable_nodes && required_kernelcore > usable_nodes)
7909 goto restart;
7910
b2f3eebe 7911out2:
2a1e274a
MG
7912 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7913 for (nid = 0; nid < MAX_NUMNODES; nid++)
7914 zone_movable_pfn[nid] =
7915 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7916
20e6926d 7917out:
66918dcd 7918 /* restore the node_state */
4b0ef1fe 7919 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7920}
7921
4b0ef1fe
LJ
7922/* Any regular or high memory on that node ? */
7923static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7924{
37b07e41
LS
7925 enum zone_type zone_type;
7926
4b0ef1fe 7927 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7928 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7929 if (populated_zone(zone)) {
7b0e0c0e
OS
7930 if (IS_ENABLED(CONFIG_HIGHMEM))
7931 node_set_state(nid, N_HIGH_MEMORY);
7932 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7933 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7934 break;
7935 }
37b07e41 7936 }
37b07e41
LS
7937}
7938
51930df5 7939/*
f0953a1b 7940 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
7941 * such cases we allow max_zone_pfn sorted in the descending order
7942 */
7943bool __weak arch_has_descending_max_zone_pfns(void)
7944{
7945 return false;
7946}
7947
c713216d 7948/**
9691a071 7949 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7950 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7951 *
7952 * This will call free_area_init_node() for each active node in the system.
7d018176 7953 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7954 * zone in each node and their holes is calculated. If the maximum PFN
7955 * between two adjacent zones match, it is assumed that the zone is empty.
7956 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7957 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7958 * starts where the previous one ended. For example, ZONE_DMA32 starts
7959 * at arch_max_dma_pfn.
7960 */
9691a071 7961void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7962{
c13291a5 7963 unsigned long start_pfn, end_pfn;
51930df5
MR
7964 int i, nid, zone;
7965 bool descending;
a6af2bc3 7966
c713216d
MG
7967 /* Record where the zone boundaries are */
7968 memset(arch_zone_lowest_possible_pfn, 0,
7969 sizeof(arch_zone_lowest_possible_pfn));
7970 memset(arch_zone_highest_possible_pfn, 0,
7971 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7972
7973 start_pfn = find_min_pfn_with_active_regions();
51930df5 7974 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7975
7976 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7977 if (descending)
7978 zone = MAX_NR_ZONES - i - 1;
7979 else
7980 zone = i;
7981
7982 if (zone == ZONE_MOVABLE)
2a1e274a 7983 continue;
90cae1fe 7984
51930df5
MR
7985 end_pfn = max(max_zone_pfn[zone], start_pfn);
7986 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7987 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7988
7989 start_pfn = end_pfn;
c713216d 7990 }
2a1e274a
MG
7991
7992 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7993 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7994 find_zone_movable_pfns_for_nodes();
c713216d 7995
c713216d 7996 /* Print out the zone ranges */
f88dfff5 7997 pr_info("Zone ranges:\n");
2a1e274a
MG
7998 for (i = 0; i < MAX_NR_ZONES; i++) {
7999 if (i == ZONE_MOVABLE)
8000 continue;
f88dfff5 8001 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
8002 if (arch_zone_lowest_possible_pfn[i] ==
8003 arch_zone_highest_possible_pfn[i])
f88dfff5 8004 pr_cont("empty\n");
72f0ba02 8005 else
8d29e18a
JG
8006 pr_cont("[mem %#018Lx-%#018Lx]\n",
8007 (u64)arch_zone_lowest_possible_pfn[i]
8008 << PAGE_SHIFT,
8009 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8010 << PAGE_SHIFT) - 1);
2a1e274a
MG
8011 }
8012
8013 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8014 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8015 for (i = 0; i < MAX_NUMNODES; i++) {
8016 if (zone_movable_pfn[i])
8d29e18a
JG
8017 pr_info(" Node %d: %#018Lx\n", i,
8018 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8019 }
c713216d 8020
f46edbd1
DW
8021 /*
8022 * Print out the early node map, and initialize the
8023 * subsection-map relative to active online memory ranges to
8024 * enable future "sub-section" extensions of the memory map.
8025 */
f88dfff5 8026 pr_info("Early memory node ranges\n");
f46edbd1 8027 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8028 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8029 (u64)start_pfn << PAGE_SHIFT,
8030 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8031 subsection_map_init(start_pfn, end_pfn - start_pfn);
8032 }
c713216d
MG
8033
8034 /* Initialise every node */
708614e6 8035 mminit_verify_pageflags_layout();
8ef82866 8036 setup_nr_node_ids();
c713216d
MG
8037 for_each_online_node(nid) {
8038 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 8039 free_area_init_node(nid);
37b07e41
LS
8040
8041 /* Any memory on that node */
8042 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8043 node_set_state(nid, N_MEMORY);
8044 check_for_memory(pgdat, nid);
c713216d 8045 }
122e093c
MR
8046
8047 memmap_init();
c713216d 8048}
2a1e274a 8049
a5c6d650
DR
8050static int __init cmdline_parse_core(char *p, unsigned long *core,
8051 unsigned long *percent)
2a1e274a
MG
8052{
8053 unsigned long long coremem;
a5c6d650
DR
8054 char *endptr;
8055
2a1e274a
MG
8056 if (!p)
8057 return -EINVAL;
8058
a5c6d650
DR
8059 /* Value may be a percentage of total memory, otherwise bytes */
8060 coremem = simple_strtoull(p, &endptr, 0);
8061 if (*endptr == '%') {
8062 /* Paranoid check for percent values greater than 100 */
8063 WARN_ON(coremem > 100);
2a1e274a 8064
a5c6d650
DR
8065 *percent = coremem;
8066 } else {
8067 coremem = memparse(p, &p);
8068 /* Paranoid check that UL is enough for the coremem value */
8069 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8070
a5c6d650
DR
8071 *core = coremem >> PAGE_SHIFT;
8072 *percent = 0UL;
8073 }
2a1e274a
MG
8074 return 0;
8075}
ed7ed365 8076
7e63efef
MG
8077/*
8078 * kernelcore=size sets the amount of memory for use for allocations that
8079 * cannot be reclaimed or migrated.
8080 */
8081static int __init cmdline_parse_kernelcore(char *p)
8082{
342332e6
TI
8083 /* parse kernelcore=mirror */
8084 if (parse_option_str(p, "mirror")) {
8085 mirrored_kernelcore = true;
8086 return 0;
8087 }
8088
a5c6d650
DR
8089 return cmdline_parse_core(p, &required_kernelcore,
8090 &required_kernelcore_percent);
7e63efef
MG
8091}
8092
8093/*
8094 * movablecore=size sets the amount of memory for use for allocations that
8095 * can be reclaimed or migrated.
8096 */
8097static int __init cmdline_parse_movablecore(char *p)
8098{
a5c6d650
DR
8099 return cmdline_parse_core(p, &required_movablecore,
8100 &required_movablecore_percent);
7e63efef
MG
8101}
8102
ed7ed365 8103early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8104early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8105
c3d5f5f0
JL
8106void adjust_managed_page_count(struct page *page, long count)
8107{
9705bea5 8108 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8109 totalram_pages_add(count);
3dcc0571
JL
8110#ifdef CONFIG_HIGHMEM
8111 if (PageHighMem(page))
ca79b0c2 8112 totalhigh_pages_add(count);
3dcc0571 8113#endif
c3d5f5f0 8114}
3dcc0571 8115EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8116
e5cb113f 8117unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8118{
11199692
JL
8119 void *pos;
8120 unsigned long pages = 0;
69afade7 8121
11199692
JL
8122 start = (void *)PAGE_ALIGN((unsigned long)start);
8123 end = (void *)((unsigned long)end & PAGE_MASK);
8124 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8125 struct page *page = virt_to_page(pos);
8126 void *direct_map_addr;
8127
8128 /*
8129 * 'direct_map_addr' might be different from 'pos'
8130 * because some architectures' virt_to_page()
8131 * work with aliases. Getting the direct map
8132 * address ensures that we get a _writeable_
8133 * alias for the memset().
8134 */
8135 direct_map_addr = page_address(page);
c746170d
VF
8136 /*
8137 * Perform a kasan-unchecked memset() since this memory
8138 * has not been initialized.
8139 */
8140 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8141 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8142 memset(direct_map_addr, poison, PAGE_SIZE);
8143
8144 free_reserved_page(page);
69afade7
JL
8145 }
8146
8147 if (pages && s)
ff7ed9e4 8148 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8149
8150 return pages;
8151}
8152
1f9d03c5 8153void __init mem_init_print_info(void)
7ee3d4e8
JL
8154{
8155 unsigned long physpages, codesize, datasize, rosize, bss_size;
8156 unsigned long init_code_size, init_data_size;
8157
8158 physpages = get_num_physpages();
8159 codesize = _etext - _stext;
8160 datasize = _edata - _sdata;
8161 rosize = __end_rodata - __start_rodata;
8162 bss_size = __bss_stop - __bss_start;
8163 init_data_size = __init_end - __init_begin;
8164 init_code_size = _einittext - _sinittext;
8165
8166 /*
8167 * Detect special cases and adjust section sizes accordingly:
8168 * 1) .init.* may be embedded into .data sections
8169 * 2) .init.text.* may be out of [__init_begin, __init_end],
8170 * please refer to arch/tile/kernel/vmlinux.lds.S.
8171 * 3) .rodata.* may be embedded into .text or .data sections.
8172 */
8173#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
8174 do { \
8175 if (start <= pos && pos < end && size > adj) \
8176 size -= adj; \
8177 } while (0)
7ee3d4e8
JL
8178
8179 adj_init_size(__init_begin, __init_end, init_data_size,
8180 _sinittext, init_code_size);
8181 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8182 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8183 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8184 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8185
8186#undef adj_init_size
8187
756a025f 8188 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8189#ifdef CONFIG_HIGHMEM
756a025f 8190 ", %luK highmem"
7ee3d4e8 8191#endif
1f9d03c5 8192 ")\n",
ff7ed9e4 8193 K(nr_free_pages()), K(physpages),
756a025f
JP
8194 codesize >> 10, datasize >> 10, rosize >> 10,
8195 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ff7ed9e4
ML
8196 K(physpages - totalram_pages() - totalcma_pages),
8197 K(totalcma_pages)
7ee3d4e8 8198#ifdef CONFIG_HIGHMEM
ff7ed9e4 8199 , K(totalhigh_pages())
7ee3d4e8 8200#endif
1f9d03c5 8201 );
7ee3d4e8
JL
8202}
8203
0e0b864e 8204/**
88ca3b94
RD
8205 * set_dma_reserve - set the specified number of pages reserved in the first zone
8206 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8207 *
013110a7 8208 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8209 * In the DMA zone, a significant percentage may be consumed by kernel image
8210 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8211 * function may optionally be used to account for unfreeable pages in the
8212 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8213 * smaller per-cpu batchsize.
0e0b864e
MG
8214 */
8215void __init set_dma_reserve(unsigned long new_dma_reserve)
8216{
8217 dma_reserve = new_dma_reserve;
8218}
8219
005fd4bb 8220static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8221{
04f8cfea 8222 struct zone *zone;
1da177e4 8223
005fd4bb
SAS
8224 lru_add_drain_cpu(cpu);
8225 drain_pages(cpu);
9f8f2172 8226
005fd4bb
SAS
8227 /*
8228 * Spill the event counters of the dead processor
8229 * into the current processors event counters.
8230 * This artificially elevates the count of the current
8231 * processor.
8232 */
8233 vm_events_fold_cpu(cpu);
9f8f2172 8234
005fd4bb
SAS
8235 /*
8236 * Zero the differential counters of the dead processor
8237 * so that the vm statistics are consistent.
8238 *
8239 * This is only okay since the processor is dead and cannot
8240 * race with what we are doing.
8241 */
8242 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8243
8244 for_each_populated_zone(zone)
8245 zone_pcp_update(zone, 0);
8246
8247 return 0;
8248}
8249
8250static int page_alloc_cpu_online(unsigned int cpu)
8251{
8252 struct zone *zone;
8253
8254 for_each_populated_zone(zone)
8255 zone_pcp_update(zone, 1);
005fd4bb 8256 return 0;
1da177e4 8257}
1da177e4 8258
e03a5125
NP
8259#ifdef CONFIG_NUMA
8260int hashdist = HASHDIST_DEFAULT;
8261
8262static int __init set_hashdist(char *str)
8263{
8264 if (!str)
8265 return 0;
8266 hashdist = simple_strtoul(str, &str, 0);
8267 return 1;
8268}
8269__setup("hashdist=", set_hashdist);
8270#endif
8271
1da177e4
LT
8272void __init page_alloc_init(void)
8273{
005fd4bb
SAS
8274 int ret;
8275
e03a5125
NP
8276#ifdef CONFIG_NUMA
8277 if (num_node_state(N_MEMORY) == 1)
8278 hashdist = 0;
8279#endif
8280
04f8cfea
MG
8281 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8282 "mm/page_alloc:pcp",
8283 page_alloc_cpu_online,
005fd4bb
SAS
8284 page_alloc_cpu_dead);
8285 WARN_ON(ret < 0);
1da177e4
LT
8286}
8287
cb45b0e9 8288/*
34b10060 8289 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8290 * or min_free_kbytes changes.
8291 */
8292static void calculate_totalreserve_pages(void)
8293{
8294 struct pglist_data *pgdat;
8295 unsigned long reserve_pages = 0;
2f6726e5 8296 enum zone_type i, j;
cb45b0e9
HA
8297
8298 for_each_online_pgdat(pgdat) {
281e3726
MG
8299
8300 pgdat->totalreserve_pages = 0;
8301
cb45b0e9
HA
8302 for (i = 0; i < MAX_NR_ZONES; i++) {
8303 struct zone *zone = pgdat->node_zones + i;
3484b2de 8304 long max = 0;
9705bea5 8305 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8306
8307 /* Find valid and maximum lowmem_reserve in the zone */
8308 for (j = i; j < MAX_NR_ZONES; j++) {
8309 if (zone->lowmem_reserve[j] > max)
8310 max = zone->lowmem_reserve[j];
8311 }
8312
41858966
MG
8313 /* we treat the high watermark as reserved pages. */
8314 max += high_wmark_pages(zone);
cb45b0e9 8315
3d6357de
AK
8316 if (max > managed_pages)
8317 max = managed_pages;
a8d01437 8318
281e3726 8319 pgdat->totalreserve_pages += max;
a8d01437 8320
cb45b0e9
HA
8321 reserve_pages += max;
8322 }
8323 }
8324 totalreserve_pages = reserve_pages;
8325}
8326
1da177e4
LT
8327/*
8328 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8329 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8330 * has a correct pages reserved value, so an adequate number of
8331 * pages are left in the zone after a successful __alloc_pages().
8332 */
8333static void setup_per_zone_lowmem_reserve(void)
8334{
8335 struct pglist_data *pgdat;
470c61d7 8336 enum zone_type i, j;
1da177e4 8337
ec936fc5 8338 for_each_online_pgdat(pgdat) {
470c61d7
LS
8339 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8340 struct zone *zone = &pgdat->node_zones[i];
8341 int ratio = sysctl_lowmem_reserve_ratio[i];
8342 bool clear = !ratio || !zone_managed_pages(zone);
8343 unsigned long managed_pages = 0;
8344
8345 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8346 struct zone *upper_zone = &pgdat->node_zones[j];
8347
8348 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8349
f7ec1044
LS
8350 if (clear)
8351 zone->lowmem_reserve[j] = 0;
8352 else
470c61d7 8353 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8354 }
8355 }
8356 }
cb45b0e9
HA
8357
8358 /* update totalreserve_pages */
8359 calculate_totalreserve_pages();
1da177e4
LT
8360}
8361
cfd3da1e 8362static void __setup_per_zone_wmarks(void)
1da177e4
LT
8363{
8364 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8365 unsigned long lowmem_pages = 0;
8366 struct zone *zone;
8367 unsigned long flags;
8368
8369 /* Calculate total number of !ZONE_HIGHMEM pages */
8370 for_each_zone(zone) {
8371 if (!is_highmem(zone))
9705bea5 8372 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8373 }
8374
8375 for_each_zone(zone) {
ac924c60
AM
8376 u64 tmp;
8377
1125b4e3 8378 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8379 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8380 do_div(tmp, lowmem_pages);
1da177e4
LT
8381 if (is_highmem(zone)) {
8382 /*
669ed175
NP
8383 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8384 * need highmem pages, so cap pages_min to a small
8385 * value here.
8386 *
41858966 8387 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8388 * deltas control async page reclaim, and so should
669ed175 8389 * not be capped for highmem.
1da177e4 8390 */
90ae8d67 8391 unsigned long min_pages;
1da177e4 8392
9705bea5 8393 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8394 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8395 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8396 } else {
669ed175
NP
8397 /*
8398 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8399 * proportionate to the zone's size.
8400 */
a9214443 8401 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8402 }
8403
795ae7a0
JW
8404 /*
8405 * Set the kswapd watermarks distance according to the
8406 * scale factor in proportion to available memory, but
8407 * ensure a minimum size on small systems.
8408 */
8409 tmp = max_t(u64, tmp >> 2,
9705bea5 8410 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8411 watermark_scale_factor, 10000));
8412
aa092591 8413 zone->watermark_boost = 0;
a9214443
MG
8414 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8415 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 8416
1125b4e3 8417 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8418 }
cb45b0e9
HA
8419
8420 /* update totalreserve_pages */
8421 calculate_totalreserve_pages();
1da177e4
LT
8422}
8423
cfd3da1e
MG
8424/**
8425 * setup_per_zone_wmarks - called when min_free_kbytes changes
8426 * or when memory is hot-{added|removed}
8427 *
8428 * Ensures that the watermark[min,low,high] values for each zone are set
8429 * correctly with respect to min_free_kbytes.
8430 */
8431void setup_per_zone_wmarks(void)
8432{
b92ca18e 8433 struct zone *zone;
b93e0f32
MH
8434 static DEFINE_SPINLOCK(lock);
8435
8436 spin_lock(&lock);
cfd3da1e 8437 __setup_per_zone_wmarks();
b93e0f32 8438 spin_unlock(&lock);
b92ca18e
MG
8439
8440 /*
8441 * The watermark size have changed so update the pcpu batch
8442 * and high limits or the limits may be inappropriate.
8443 */
8444 for_each_zone(zone)
04f8cfea 8445 zone_pcp_update(zone, 0);
cfd3da1e
MG
8446}
8447
1da177e4
LT
8448/*
8449 * Initialise min_free_kbytes.
8450 *
8451 * For small machines we want it small (128k min). For large machines
8beeae86 8452 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8453 * bandwidth does not increase linearly with machine size. We use
8454 *
b8af2941 8455 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8456 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8457 *
8458 * which yields
8459 *
8460 * 16MB: 512k
8461 * 32MB: 724k
8462 * 64MB: 1024k
8463 * 128MB: 1448k
8464 * 256MB: 2048k
8465 * 512MB: 2896k
8466 * 1024MB: 4096k
8467 * 2048MB: 5792k
8468 * 4096MB: 8192k
8469 * 8192MB: 11584k
8470 * 16384MB: 16384k
8471 */
bd3400ea 8472void calculate_min_free_kbytes(void)
1da177e4
LT
8473{
8474 unsigned long lowmem_kbytes;
5f12733e 8475 int new_min_free_kbytes;
1da177e4
LT
8476
8477 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8478 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8479
59d336bd
WS
8480 if (new_min_free_kbytes > user_min_free_kbytes)
8481 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8482 else
5f12733e
MH
8483 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8484 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 8485
bd3400ea
LF
8486}
8487
8488int __meminit init_per_zone_wmark_min(void)
8489{
8490 calculate_min_free_kbytes();
bc75d33f 8491 setup_per_zone_wmarks();
a6cccdc3 8492 refresh_zone_stat_thresholds();
1da177e4 8493 setup_per_zone_lowmem_reserve();
6423aa81
JK
8494
8495#ifdef CONFIG_NUMA
8496 setup_min_unmapped_ratio();
8497 setup_min_slab_ratio();
8498#endif
8499
4aab2be0
VB
8500 khugepaged_min_free_kbytes_update();
8501
1da177e4
LT
8502 return 0;
8503}
e08d3fdf 8504postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8505
8506/*
b8af2941 8507 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8508 * that we can call two helper functions whenever min_free_kbytes
8509 * changes.
8510 */
cccad5b9 8511int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8512 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8513{
da8c757b
HP
8514 int rc;
8515
8516 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8517 if (rc)
8518 return rc;
8519
5f12733e
MH
8520 if (write) {
8521 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8522 setup_per_zone_wmarks();
5f12733e 8523 }
1da177e4
LT
8524 return 0;
8525}
8526
795ae7a0 8527int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8528 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8529{
8530 int rc;
8531
8532 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8533 if (rc)
8534 return rc;
8535
8536 if (write)
8537 setup_per_zone_wmarks();
8538
8539 return 0;
8540}
8541
9614634f 8542#ifdef CONFIG_NUMA
6423aa81 8543static void setup_min_unmapped_ratio(void)
9614634f 8544{
6423aa81 8545 pg_data_t *pgdat;
9614634f 8546 struct zone *zone;
9614634f 8547
a5f5f91d 8548 for_each_online_pgdat(pgdat)
81cbcbc2 8549 pgdat->min_unmapped_pages = 0;
a5f5f91d 8550
9614634f 8551 for_each_zone(zone)
9705bea5
AK
8552 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8553 sysctl_min_unmapped_ratio) / 100;
9614634f 8554}
0ff38490 8555
6423aa81
JK
8556
8557int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8558 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8559{
0ff38490
CL
8560 int rc;
8561
8d65af78 8562 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8563 if (rc)
8564 return rc;
8565
6423aa81
JK
8566 setup_min_unmapped_ratio();
8567
8568 return 0;
8569}
8570
8571static void setup_min_slab_ratio(void)
8572{
8573 pg_data_t *pgdat;
8574 struct zone *zone;
8575
a5f5f91d
MG
8576 for_each_online_pgdat(pgdat)
8577 pgdat->min_slab_pages = 0;
8578
0ff38490 8579 for_each_zone(zone)
9705bea5
AK
8580 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8581 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8582}
8583
8584int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8585 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8586{
8587 int rc;
8588
8589 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8590 if (rc)
8591 return rc;
8592
8593 setup_min_slab_ratio();
8594
0ff38490
CL
8595 return 0;
8596}
9614634f
CL
8597#endif
8598
1da177e4
LT
8599/*
8600 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8601 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8602 * whenever sysctl_lowmem_reserve_ratio changes.
8603 *
8604 * The reserve ratio obviously has absolutely no relation with the
41858966 8605 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8606 * if in function of the boot time zone sizes.
8607 */
cccad5b9 8608int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8609 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8610{
86aaf255
BH
8611 int i;
8612
8d65af78 8613 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8614
8615 for (i = 0; i < MAX_NR_ZONES; i++) {
8616 if (sysctl_lowmem_reserve_ratio[i] < 1)
8617 sysctl_lowmem_reserve_ratio[i] = 0;
8618 }
8619
1da177e4
LT
8620 setup_per_zone_lowmem_reserve();
8621 return 0;
8622}
8623
8ad4b1fb 8624/*
74f44822
MG
8625 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8626 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8627 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8628 */
74f44822
MG
8629int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8630 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8631{
8632 struct zone *zone;
74f44822 8633 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8634 int ret;
8635
7cd2b0a3 8636 mutex_lock(&pcp_batch_high_lock);
74f44822 8637 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8638
8d65af78 8639 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8640 if (!write || ret < 0)
8641 goto out;
8642
8643 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
8644 if (percpu_pagelist_high_fraction &&
8645 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8646 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
8647 ret = -EINVAL;
8648 goto out;
8649 }
8650
8651 /* No change? */
74f44822 8652 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 8653 goto out;
c8e251fa 8654
cb1ef534 8655 for_each_populated_zone(zone)
74f44822 8656 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 8657out:
c8e251fa 8658 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8659 return ret;
8ad4b1fb
RS
8660}
8661
f6f34b43
SD
8662#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8663/*
8664 * Returns the number of pages that arch has reserved but
8665 * is not known to alloc_large_system_hash().
8666 */
8667static unsigned long __init arch_reserved_kernel_pages(void)
8668{
8669 return 0;
8670}
8671#endif
8672
9017217b
PT
8673/*
8674 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8675 * machines. As memory size is increased the scale is also increased but at
8676 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8677 * quadruples the scale is increased by one, which means the size of hash table
8678 * only doubles, instead of quadrupling as well.
8679 * Because 32-bit systems cannot have large physical memory, where this scaling
8680 * makes sense, it is disabled on such platforms.
8681 */
8682#if __BITS_PER_LONG > 32
8683#define ADAPT_SCALE_BASE (64ul << 30)
8684#define ADAPT_SCALE_SHIFT 2
8685#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8686#endif
8687
1da177e4
LT
8688/*
8689 * allocate a large system hash table from bootmem
8690 * - it is assumed that the hash table must contain an exact power-of-2
8691 * quantity of entries
8692 * - limit is the number of hash buckets, not the total allocation size
8693 */
8694void *__init alloc_large_system_hash(const char *tablename,
8695 unsigned long bucketsize,
8696 unsigned long numentries,
8697 int scale,
8698 int flags,
8699 unsigned int *_hash_shift,
8700 unsigned int *_hash_mask,
31fe62b9
TB
8701 unsigned long low_limit,
8702 unsigned long high_limit)
1da177e4 8703{
31fe62b9 8704 unsigned long long max = high_limit;
1da177e4
LT
8705 unsigned long log2qty, size;
8706 void *table = NULL;
3749a8f0 8707 gfp_t gfp_flags;
ec11408a 8708 bool virt;
121e6f32 8709 bool huge;
1da177e4
LT
8710
8711 /* allow the kernel cmdline to have a say */
8712 if (!numentries) {
8713 /* round applicable memory size up to nearest megabyte */
04903664 8714 numentries = nr_kernel_pages;
f6f34b43 8715 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8716
8717 /* It isn't necessary when PAGE_SIZE >= 1MB */
8718 if (PAGE_SHIFT < 20)
8719 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8720
9017217b
PT
8721#if __BITS_PER_LONG > 32
8722 if (!high_limit) {
8723 unsigned long adapt;
8724
8725 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8726 adapt <<= ADAPT_SCALE_SHIFT)
8727 scale++;
8728 }
8729#endif
8730
1da177e4
LT
8731 /* limit to 1 bucket per 2^scale bytes of low memory */
8732 if (scale > PAGE_SHIFT)
8733 numentries >>= (scale - PAGE_SHIFT);
8734 else
8735 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8736
8737 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8738 if (unlikely(flags & HASH_SMALL)) {
8739 /* Makes no sense without HASH_EARLY */
8740 WARN_ON(!(flags & HASH_EARLY));
8741 if (!(numentries >> *_hash_shift)) {
8742 numentries = 1UL << *_hash_shift;
8743 BUG_ON(!numentries);
8744 }
8745 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8746 numentries = PAGE_SIZE / bucketsize;
1da177e4 8747 }
6e692ed3 8748 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8749
8750 /* limit allocation size to 1/16 total memory by default */
8751 if (max == 0) {
8752 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8753 do_div(max, bucketsize);
8754 }
074b8517 8755 max = min(max, 0x80000000ULL);
1da177e4 8756
31fe62b9
TB
8757 if (numentries < low_limit)
8758 numentries = low_limit;
1da177e4
LT
8759 if (numentries > max)
8760 numentries = max;
8761
f0d1b0b3 8762 log2qty = ilog2(numentries);
1da177e4 8763
3749a8f0 8764 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8765 do {
ec11408a 8766 virt = false;
1da177e4 8767 size = bucketsize << log2qty;
ea1f5f37
PT
8768 if (flags & HASH_EARLY) {
8769 if (flags & HASH_ZERO)
26fb3dae 8770 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8771 else
7e1c4e27
MR
8772 table = memblock_alloc_raw(size,
8773 SMP_CACHE_BYTES);
ec11408a 8774 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8775 table = __vmalloc(size, gfp_flags);
ec11408a 8776 virt = true;
084f7e23
ED
8777 if (table)
8778 huge = is_vm_area_hugepages(table);
ea1f5f37 8779 } else {
1037b83b
ED
8780 /*
8781 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8782 * some pages at the end of hash table which
8783 * alloc_pages_exact() automatically does
1037b83b 8784 */
ec11408a
NP
8785 table = alloc_pages_exact(size, gfp_flags);
8786 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8787 }
8788 } while (!table && size > PAGE_SIZE && --log2qty);
8789
8790 if (!table)
8791 panic("Failed to allocate %s hash table\n", tablename);
8792
ec11408a
NP
8793 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8794 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8795 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8796
8797 if (_hash_shift)
8798 *_hash_shift = log2qty;
8799 if (_hash_mask)
8800 *_hash_mask = (1 << log2qty) - 1;
8801
8802 return table;
8803}
a117e66e 8804
a5d76b54 8805/*
80934513 8806 * This function checks whether pageblock includes unmovable pages or not.
80934513 8807 *
b8af2941 8808 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8809 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8810 * check without lock_page also may miss some movable non-lru pages at
8811 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8812 *
8813 * Returns a page without holding a reference. If the caller wants to
047b9967 8814 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8815 * cannot get removed (e.g., via memory unplug) concurrently.
8816 *
a5d76b54 8817 */
4a55c047
QC
8818struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8819 int migratetype, int flags)
49ac8255 8820{
1a9f2191
QC
8821 unsigned long iter = 0;
8822 unsigned long pfn = page_to_pfn(page);
6a654e36 8823 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8824
1a9f2191
QC
8825 if (is_migrate_cma_page(page)) {
8826 /*
8827 * CMA allocations (alloc_contig_range) really need to mark
8828 * isolate CMA pageblocks even when they are not movable in fact
8829 * so consider them movable here.
8830 */
8831 if (is_migrate_cma(migratetype))
4a55c047 8832 return NULL;
1a9f2191 8833
3d680bdf 8834 return page;
1a9f2191 8835 }
4da2ce25 8836
6a654e36 8837 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8838 page = pfn_to_page(pfn + iter);
c8721bbb 8839
c9c510dc
DH
8840 /*
8841 * Both, bootmem allocations and memory holes are marked
8842 * PG_reserved and are unmovable. We can even have unmovable
8843 * allocations inside ZONE_MOVABLE, for example when
8844 * specifying "movablecore".
8845 */
d7ab3672 8846 if (PageReserved(page))
3d680bdf 8847 return page;
d7ab3672 8848
9d789999
MH
8849 /*
8850 * If the zone is movable and we have ruled out all reserved
8851 * pages then it should be reasonably safe to assume the rest
8852 * is movable.
8853 */
8854 if (zone_idx(zone) == ZONE_MOVABLE)
8855 continue;
8856
c8721bbb
NH
8857 /*
8858 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8859 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8860 * We need not scan over tail pages because we don't
c8721bbb
NH
8861 * handle each tail page individually in migration.
8862 */
1da2f328 8863 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8864 struct page *head = compound_head(page);
8865 unsigned int skip_pages;
464c7ffb 8866
1da2f328
RR
8867 if (PageHuge(page)) {
8868 if (!hugepage_migration_supported(page_hstate(head)))
8869 return page;
8870 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8871 return page;
1da2f328 8872 }
464c7ffb 8873
d8c6546b 8874 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8875 iter += skip_pages - 1;
c8721bbb
NH
8876 continue;
8877 }
8878
97d255c8
MK
8879 /*
8880 * We can't use page_count without pin a page
8881 * because another CPU can free compound page.
8882 * This check already skips compound tails of THP
0139aa7b 8883 * because their page->_refcount is zero at all time.
97d255c8 8884 */
fe896d18 8885 if (!page_ref_count(page)) {
49ac8255 8886 if (PageBuddy(page))
ab130f91 8887 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8888 continue;
8889 }
97d255c8 8890
b023f468
WC
8891 /*
8892 * The HWPoisoned page may be not in buddy system, and
8893 * page_count() is not 0.
8894 */
756d25be 8895 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8896 continue;
8897
aa218795
DH
8898 /*
8899 * We treat all PageOffline() pages as movable when offlining
8900 * to give drivers a chance to decrement their reference count
8901 * in MEM_GOING_OFFLINE in order to indicate that these pages
8902 * can be offlined as there are no direct references anymore.
8903 * For actually unmovable PageOffline() where the driver does
8904 * not support this, we will fail later when trying to actually
8905 * move these pages that still have a reference count > 0.
8906 * (false negatives in this function only)
8907 */
8908 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8909 continue;
8910
fe4c86c9 8911 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8912 continue;
8913
49ac8255 8914 /*
6b4f7799
JW
8915 * If there are RECLAIMABLE pages, we need to check
8916 * it. But now, memory offline itself doesn't call
8917 * shrink_node_slabs() and it still to be fixed.
49ac8255 8918 */
3d680bdf 8919 return page;
49ac8255 8920 }
4a55c047 8921 return NULL;
49ac8255
KH
8922}
8923
8df995f6 8924#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8925static unsigned long pfn_max_align_down(unsigned long pfn)
8926{
8927 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8928 pageblock_nr_pages) - 1);
8929}
8930
8931static unsigned long pfn_max_align_up(unsigned long pfn)
8932{
8933 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8934 pageblock_nr_pages));
8935}
8936
a1394bdd
MK
8937#if defined(CONFIG_DYNAMIC_DEBUG) || \
8938 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8939/* Usage: See admin-guide/dynamic-debug-howto.rst */
8940static void alloc_contig_dump_pages(struct list_head *page_list)
8941{
8942 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8943
8944 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8945 struct page *page;
8946
8947 dump_stack();
8948 list_for_each_entry(page, page_list, lru)
8949 dump_page(page, "migration failure");
8950 }
8951}
8952#else
8953static inline void alloc_contig_dump_pages(struct list_head *page_list)
8954{
8955}
8956#endif
8957
041d3a8c 8958/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8959static int __alloc_contig_migrate_range(struct compact_control *cc,
8960 unsigned long start, unsigned long end)
041d3a8c
MN
8961{
8962 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8963 unsigned int nr_reclaimed;
041d3a8c
MN
8964 unsigned long pfn = start;
8965 unsigned int tries = 0;
8966 int ret = 0;
8b94e0b8
JK
8967 struct migration_target_control mtc = {
8968 .nid = zone_to_nid(cc->zone),
8969 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8970 };
041d3a8c 8971
361a2a22 8972 lru_cache_disable();
041d3a8c 8973
bb13ffeb 8974 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8975 if (fatal_signal_pending(current)) {
8976 ret = -EINTR;
8977 break;
8978 }
8979
bb13ffeb
MG
8980 if (list_empty(&cc->migratepages)) {
8981 cc->nr_migratepages = 0;
c2ad7a1f
OS
8982 ret = isolate_migratepages_range(cc, pfn, end);
8983 if (ret && ret != -EAGAIN)
041d3a8c 8984 break;
c2ad7a1f 8985 pfn = cc->migrate_pfn;
041d3a8c
MN
8986 tries = 0;
8987 } else if (++tries == 5) {
c8e28b47 8988 ret = -EBUSY;
041d3a8c
MN
8989 break;
8990 }
8991
beb51eaa
MK
8992 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8993 &cc->migratepages);
8994 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8995
8b94e0b8 8996 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 8997 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
8998
8999 /*
9000 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9001 * to retry again over this error, so do the same here.
9002 */
9003 if (ret == -ENOMEM)
9004 break;
041d3a8c 9005 }
d479960e 9006
361a2a22 9007 lru_cache_enable();
2a6f5124 9008 if (ret < 0) {
151e084a
MK
9009 if (ret == -EBUSY)
9010 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9011 putback_movable_pages(&cc->migratepages);
9012 return ret;
9013 }
9014 return 0;
041d3a8c
MN
9015}
9016
9017/**
9018 * alloc_contig_range() -- tries to allocate given range of pages
9019 * @start: start PFN to allocate
9020 * @end: one-past-the-last PFN to allocate
f0953a1b 9021 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9022 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9023 * in range must have the same migratetype and it must
9024 * be either of the two.
ca96b625 9025 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
9026 *
9027 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 9028 * aligned. The PFN range must belong to a single zone.
041d3a8c 9029 *
2c7452a0
MK
9030 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9031 * pageblocks in the range. Once isolated, the pageblocks should not
9032 * be modified by others.
041d3a8c 9033 *
a862f68a 9034 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9035 * pages which PFN is in [start, end) are allocated for the caller and
9036 * need to be freed with free_contig_range().
9037 */
0815f3d8 9038int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9039 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9040{
041d3a8c 9041 unsigned long outer_start, outer_end;
d00181b9
KS
9042 unsigned int order;
9043 int ret = 0;
041d3a8c 9044
bb13ffeb
MG
9045 struct compact_control cc = {
9046 .nr_migratepages = 0,
9047 .order = -1,
9048 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9049 .mode = MIGRATE_SYNC,
bb13ffeb 9050 .ignore_skip_hint = true,
2583d671 9051 .no_set_skip_hint = true,
7dea19f9 9052 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9053 .alloc_contig = true,
bb13ffeb
MG
9054 };
9055 INIT_LIST_HEAD(&cc.migratepages);
9056
041d3a8c
MN
9057 /*
9058 * What we do here is we mark all pageblocks in range as
9059 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9060 * have different sizes, and due to the way page allocator
9061 * work, we align the range to biggest of the two pages so
9062 * that page allocator won't try to merge buddies from
9063 * different pageblocks and change MIGRATE_ISOLATE to some
9064 * other migration type.
9065 *
9066 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9067 * migrate the pages from an unaligned range (ie. pages that
9068 * we are interested in). This will put all the pages in
9069 * range back to page allocator as MIGRATE_ISOLATE.
9070 *
9071 * When this is done, we take the pages in range from page
9072 * allocator removing them from the buddy system. This way
9073 * page allocator will never consider using them.
9074 *
9075 * This lets us mark the pageblocks back as
9076 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9077 * aligned range but not in the unaligned, original range are
9078 * put back to page allocator so that buddy can use them.
9079 */
9080
9081 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 9082 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 9083 if (ret)
86a595f9 9084 return ret;
041d3a8c 9085
7612921f
VB
9086 drain_all_pages(cc.zone);
9087
8ef5849f
JK
9088 /*
9089 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9090 * So, just fall through. test_pages_isolated() has a tracepoint
9091 * which will report the busy page.
9092 *
9093 * It is possible that busy pages could become available before
9094 * the call to test_pages_isolated, and the range will actually be
9095 * allocated. So, if we fall through be sure to clear ret so that
9096 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9097 */
bb13ffeb 9098 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9099 if (ret && ret != -EBUSY)
041d3a8c 9100 goto done;
68d68ff6 9101 ret = 0;
041d3a8c
MN
9102
9103 /*
9104 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9105 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9106 * more, all pages in [start, end) are free in page allocator.
9107 * What we are going to do is to allocate all pages from
9108 * [start, end) (that is remove them from page allocator).
9109 *
9110 * The only problem is that pages at the beginning and at the
9111 * end of interesting range may be not aligned with pages that
9112 * page allocator holds, ie. they can be part of higher order
9113 * pages. Because of this, we reserve the bigger range and
9114 * once this is done free the pages we are not interested in.
9115 *
9116 * We don't have to hold zone->lock here because the pages are
9117 * isolated thus they won't get removed from buddy.
9118 */
9119
041d3a8c
MN
9120 order = 0;
9121 outer_start = start;
9122 while (!PageBuddy(pfn_to_page(outer_start))) {
9123 if (++order >= MAX_ORDER) {
8ef5849f
JK
9124 outer_start = start;
9125 break;
041d3a8c
MN
9126 }
9127 outer_start &= ~0UL << order;
9128 }
9129
8ef5849f 9130 if (outer_start != start) {
ab130f91 9131 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9132
9133 /*
9134 * outer_start page could be small order buddy page and
9135 * it doesn't include start page. Adjust outer_start
9136 * in this case to report failed page properly
9137 * on tracepoint in test_pages_isolated()
9138 */
9139 if (outer_start + (1UL << order) <= start)
9140 outer_start = start;
9141 }
9142
041d3a8c 9143 /* Make sure the range is really isolated. */
756d25be 9144 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9145 ret = -EBUSY;
9146 goto done;
9147 }
9148
49f223a9 9149 /* Grab isolated pages from freelists. */
bb13ffeb 9150 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9151 if (!outer_end) {
9152 ret = -EBUSY;
9153 goto done;
9154 }
9155
9156 /* Free head and tail (if any) */
9157 if (start != outer_start)
9158 free_contig_range(outer_start, start - outer_start);
9159 if (end != outer_end)
9160 free_contig_range(end, outer_end - end);
9161
9162done:
9163 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 9164 pfn_max_align_up(end), migratetype);
041d3a8c
MN
9165 return ret;
9166}
255f5985 9167EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9168
9169static int __alloc_contig_pages(unsigned long start_pfn,
9170 unsigned long nr_pages, gfp_t gfp_mask)
9171{
9172 unsigned long end_pfn = start_pfn + nr_pages;
9173
9174 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9175 gfp_mask);
9176}
9177
9178static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9179 unsigned long nr_pages)
9180{
9181 unsigned long i, end_pfn = start_pfn + nr_pages;
9182 struct page *page;
9183
9184 for (i = start_pfn; i < end_pfn; i++) {
9185 page = pfn_to_online_page(i);
9186 if (!page)
9187 return false;
9188
9189 if (page_zone(page) != z)
9190 return false;
9191
9192 if (PageReserved(page))
9193 return false;
5e27a2df
AK
9194 }
9195 return true;
9196}
9197
9198static bool zone_spans_last_pfn(const struct zone *zone,
9199 unsigned long start_pfn, unsigned long nr_pages)
9200{
9201 unsigned long last_pfn = start_pfn + nr_pages - 1;
9202
9203 return zone_spans_pfn(zone, last_pfn);
9204}
9205
9206/**
9207 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9208 * @nr_pages: Number of contiguous pages to allocate
9209 * @gfp_mask: GFP mask to limit search and used during compaction
9210 * @nid: Target node
9211 * @nodemask: Mask for other possible nodes
9212 *
9213 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9214 * on an applicable zonelist to find a contiguous pfn range which can then be
9215 * tried for allocation with alloc_contig_range(). This routine is intended
9216 * for allocation requests which can not be fulfilled with the buddy allocator.
9217 *
9218 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9219 * power of two then the alignment is guaranteed to be to the given nr_pages
9220 * (e.g. 1GB request would be aligned to 1GB).
9221 *
9222 * Allocated pages can be freed with free_contig_range() or by manually calling
9223 * __free_page() on each allocated page.
9224 *
9225 * Return: pointer to contiguous pages on success, or NULL if not successful.
9226 */
9227struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9228 int nid, nodemask_t *nodemask)
9229{
9230 unsigned long ret, pfn, flags;
9231 struct zonelist *zonelist;
9232 struct zone *zone;
9233 struct zoneref *z;
9234
9235 zonelist = node_zonelist(nid, gfp_mask);
9236 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9237 gfp_zone(gfp_mask), nodemask) {
9238 spin_lock_irqsave(&zone->lock, flags);
9239
9240 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9241 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9242 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9243 /*
9244 * We release the zone lock here because
9245 * alloc_contig_range() will also lock the zone
9246 * at some point. If there's an allocation
9247 * spinning on this lock, it may win the race
9248 * and cause alloc_contig_range() to fail...
9249 */
9250 spin_unlock_irqrestore(&zone->lock, flags);
9251 ret = __alloc_contig_pages(pfn, nr_pages,
9252 gfp_mask);
9253 if (!ret)
9254 return pfn_to_page(pfn);
9255 spin_lock_irqsave(&zone->lock, flags);
9256 }
9257 pfn += nr_pages;
9258 }
9259 spin_unlock_irqrestore(&zone->lock, flags);
9260 }
9261 return NULL;
9262}
4eb0716e 9263#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9264
78fa5150 9265void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9266{
78fa5150 9267 unsigned long count = 0;
bcc2b02f
MS
9268
9269 for (; nr_pages--; pfn++) {
9270 struct page *page = pfn_to_page(pfn);
9271
9272 count += page_count(page) != 1;
9273 __free_page(page);
9274 }
78fa5150 9275 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9276}
255f5985 9277EXPORT_SYMBOL(free_contig_range);
041d3a8c 9278
0a647f38
CS
9279/*
9280 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9281 * page high values need to be recalculated.
0a647f38 9282 */
04f8cfea 9283void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9284{
c8e251fa 9285 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9286 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9287 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9288}
4ed7e022 9289
ec6e8c7e
VB
9290/*
9291 * Effectively disable pcplists for the zone by setting the high limit to 0
9292 * and draining all cpus. A concurrent page freeing on another CPU that's about
9293 * to put the page on pcplist will either finish before the drain and the page
9294 * will be drained, or observe the new high limit and skip the pcplist.
9295 *
9296 * Must be paired with a call to zone_pcp_enable().
9297 */
9298void zone_pcp_disable(struct zone *zone)
9299{
9300 mutex_lock(&pcp_batch_high_lock);
9301 __zone_set_pageset_high_and_batch(zone, 0, 1);
9302 __drain_all_pages(zone, true);
9303}
9304
9305void zone_pcp_enable(struct zone *zone)
9306{
9307 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9308 mutex_unlock(&pcp_batch_high_lock);
9309}
9310
340175b7
JL
9311void zone_pcp_reset(struct zone *zone)
9312{
5a883813 9313 int cpu;
28f836b6 9314 struct per_cpu_zonestat *pzstats;
340175b7 9315
28f836b6 9316 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9317 for_each_online_cpu(cpu) {
28f836b6
MG
9318 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9319 drain_zonestat(zone, pzstats);
5a883813 9320 }
28f836b6
MG
9321 free_percpu(zone->per_cpu_pageset);
9322 free_percpu(zone->per_cpu_zonestats);
9323 zone->per_cpu_pageset = &boot_pageset;
9324 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9325 }
340175b7
JL
9326}
9327
6dcd73d7 9328#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9329/*
257bea71
DH
9330 * All pages in the range must be in a single zone, must not contain holes,
9331 * must span full sections, and must be isolated before calling this function.
0c0e6195 9332 */
257bea71 9333void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9334{
257bea71 9335 unsigned long pfn = start_pfn;
0c0e6195
KH
9336 struct page *page;
9337 struct zone *zone;
0ee5f4f3 9338 unsigned int order;
0c0e6195 9339 unsigned long flags;
5557c766 9340
2d070eab 9341 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9342 zone = page_zone(pfn_to_page(pfn));
9343 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9344 while (pfn < end_pfn) {
0c0e6195 9345 page = pfn_to_page(pfn);
b023f468
WC
9346 /*
9347 * The HWPoisoned page may be not in buddy system, and
9348 * page_count() is not 0.
9349 */
9350 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9351 pfn++;
b023f468
WC
9352 continue;
9353 }
aa218795
DH
9354 /*
9355 * At this point all remaining PageOffline() pages have a
9356 * reference count of 0 and can simply be skipped.
9357 */
9358 if (PageOffline(page)) {
9359 BUG_ON(page_count(page));
9360 BUG_ON(PageBuddy(page));
9361 pfn++;
aa218795
DH
9362 continue;
9363 }
b023f468 9364
0c0e6195
KH
9365 BUG_ON(page_count(page));
9366 BUG_ON(!PageBuddy(page));
ab130f91 9367 order = buddy_order(page);
6ab01363 9368 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9369 pfn += (1 << order);
9370 }
9371 spin_unlock_irqrestore(&zone->lock, flags);
9372}
9373#endif
8d22ba1b 9374
8446b59b
ED
9375/*
9376 * This function returns a stable result only if called under zone lock.
9377 */
8d22ba1b
WF
9378bool is_free_buddy_page(struct page *page)
9379{
8d22ba1b 9380 unsigned long pfn = page_to_pfn(page);
7aeb09f9 9381 unsigned int order;
8d22ba1b 9382
8d22ba1b
WF
9383 for (order = 0; order < MAX_ORDER; order++) {
9384 struct page *page_head = page - (pfn & ((1 << order) - 1));
9385
8446b59b
ED
9386 if (PageBuddy(page_head) &&
9387 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
9388 break;
9389 }
8d22ba1b
WF
9390
9391 return order < MAX_ORDER;
9392}
d4ae9916
NH
9393
9394#ifdef CONFIG_MEMORY_FAILURE
9395/*
06be6ff3
OS
9396 * Break down a higher-order page in sub-pages, and keep our target out of
9397 * buddy allocator.
d4ae9916 9398 */
06be6ff3
OS
9399static void break_down_buddy_pages(struct zone *zone, struct page *page,
9400 struct page *target, int low, int high,
9401 int migratetype)
9402{
9403 unsigned long size = 1 << high;
9404 struct page *current_buddy, *next_page;
9405
9406 while (high > low) {
9407 high--;
9408 size >>= 1;
9409
9410 if (target >= &page[size]) {
9411 next_page = page + size;
9412 current_buddy = page;
9413 } else {
9414 next_page = page;
9415 current_buddy = page + size;
9416 }
9417
9418 if (set_page_guard(zone, current_buddy, high, migratetype))
9419 continue;
9420
9421 if (current_buddy != target) {
9422 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9423 set_buddy_order(current_buddy, high);
06be6ff3
OS
9424 page = next_page;
9425 }
9426 }
9427}
9428
9429/*
9430 * Take a page that will be marked as poisoned off the buddy allocator.
9431 */
9432bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9433{
9434 struct zone *zone = page_zone(page);
9435 unsigned long pfn = page_to_pfn(page);
9436 unsigned long flags;
9437 unsigned int order;
06be6ff3 9438 bool ret = false;
d4ae9916
NH
9439
9440 spin_lock_irqsave(&zone->lock, flags);
9441 for (order = 0; order < MAX_ORDER; order++) {
9442 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9443 int page_order = buddy_order(page_head);
d4ae9916 9444
ab130f91 9445 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9446 unsigned long pfn_head = page_to_pfn(page_head);
9447 int migratetype = get_pfnblock_migratetype(page_head,
9448 pfn_head);
9449
ab130f91 9450 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9451 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9452 page_order, migratetype);
bac9c6fa
DH
9453 if (!is_migrate_isolate(migratetype))
9454 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9455 ret = true;
d4ae9916
NH
9456 break;
9457 }
06be6ff3
OS
9458 if (page_count(page_head) > 0)
9459 break;
d4ae9916
NH
9460 }
9461 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9462 return ret;
d4ae9916
NH
9463}
9464#endif