mm, oom: remove statically defined arch functions of same name
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
92#endif
93#ifdef CONFIG_MOVABLE_NODE
94 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
95#endif
96 [N_CPU] = { { [0] = 1UL } },
97#endif /* NUMA */
98};
99EXPORT_SYMBOL(node_states);
100
6c231b7b 101unsigned long totalram_pages __read_mostly;
cb45b0e9 102unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
103/*
104 * When calculating the number of globally allowed dirty pages, there
105 * is a certain number of per-zone reserves that should not be
106 * considered dirtyable memory. This is the sum of those reserves
107 * over all existing zones that contribute dirtyable memory.
108 */
109unsigned long dirty_balance_reserve __read_mostly;
110
1b76b02f 111int percpu_pagelist_fraction;
dcce284a 112gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 113
452aa699
RW
114#ifdef CONFIG_PM_SLEEP
115/*
116 * The following functions are used by the suspend/hibernate code to temporarily
117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118 * while devices are suspended. To avoid races with the suspend/hibernate code,
119 * they should always be called with pm_mutex held (gfp_allowed_mask also should
120 * only be modified with pm_mutex held, unless the suspend/hibernate code is
121 * guaranteed not to run in parallel with that modification).
122 */
c9e664f1
RW
123
124static gfp_t saved_gfp_mask;
125
126void pm_restore_gfp_mask(void)
452aa699
RW
127{
128 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
129 if (saved_gfp_mask) {
130 gfp_allowed_mask = saved_gfp_mask;
131 saved_gfp_mask = 0;
132 }
452aa699
RW
133}
134
c9e664f1 135void pm_restrict_gfp_mask(void)
452aa699 136{
452aa699 137 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
138 WARN_ON(saved_gfp_mask);
139 saved_gfp_mask = gfp_allowed_mask;
140 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 141}
f90ac398
MG
142
143bool pm_suspended_storage(void)
144{
145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 return false;
147 return true;
148}
452aa699
RW
149#endif /* CONFIG_PM_SLEEP */
150
d9c23400
MG
151#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152int pageblock_order __read_mostly;
153#endif
154
d98c7a09 155static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 156
1da177e4
LT
157/*
158 * results with 256, 32 in the lowmem_reserve sysctl:
159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160 * 1G machine -> (16M dma, 784M normal, 224M high)
161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
164 *
165 * TBD: should special case ZONE_DMA32 machines here - in those we normally
166 * don't need any ZONE_NORMAL reservation
1da177e4 167 */
2f1b6248 168int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 169#ifdef CONFIG_ZONE_DMA
2f1b6248 170 256,
4b51d669 171#endif
fb0e7942 172#ifdef CONFIG_ZONE_DMA32
2f1b6248 173 256,
fb0e7942 174#endif
e53ef38d 175#ifdef CONFIG_HIGHMEM
2a1e274a 176 32,
e53ef38d 177#endif
2a1e274a 178 32,
2f1b6248 179};
1da177e4
LT
180
181EXPORT_SYMBOL(totalram_pages);
1da177e4 182
15ad7cdc 183static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 184#ifdef CONFIG_ZONE_DMA
2f1b6248 185 "DMA",
4b51d669 186#endif
fb0e7942 187#ifdef CONFIG_ZONE_DMA32
2f1b6248 188 "DMA32",
fb0e7942 189#endif
2f1b6248 190 "Normal",
e53ef38d 191#ifdef CONFIG_HIGHMEM
2a1e274a 192 "HighMem",
e53ef38d 193#endif
2a1e274a 194 "Movable",
2f1b6248
CL
195};
196
1da177e4
LT
197int min_free_kbytes = 1024;
198
2c85f51d
JB
199static unsigned long __meminitdata nr_kernel_pages;
200static unsigned long __meminitdata nr_all_pages;
a3142c8e 201static unsigned long __meminitdata dma_reserve;
1da177e4 202
0ee332c1
TH
203#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206static unsigned long __initdata required_kernelcore;
207static unsigned long __initdata required_movablecore;
208static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209
210/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211int movable_zone;
212EXPORT_SYMBOL(movable_zone);
213#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 214
418508c1
MS
215#if MAX_NUMNODES > 1
216int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 217int nr_online_nodes __read_mostly = 1;
418508c1 218EXPORT_SYMBOL(nr_node_ids);
62bc62a8 219EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
220#endif
221
9ef9acb0
MG
222int page_group_by_mobility_disabled __read_mostly;
223
702d1a6e
MK
224/*
225 * NOTE:
226 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
227 * Instead, use {un}set_pageblock_isolate.
228 */
ee6f509c 229void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 230{
49255c61
MG
231
232 if (unlikely(page_group_by_mobility_disabled))
233 migratetype = MIGRATE_UNMOVABLE;
234
b2a0ac88
MG
235 set_pageblock_flags_group(page, (unsigned long)migratetype,
236 PB_migrate, PB_migrate_end);
237}
238
7f33d49a
RW
239bool oom_killer_disabled __read_mostly;
240
13e7444b 241#ifdef CONFIG_DEBUG_VM
c6a57e19 242static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 243{
bdc8cb98
DH
244 int ret = 0;
245 unsigned seq;
246 unsigned long pfn = page_to_pfn(page);
c6a57e19 247
bdc8cb98
DH
248 do {
249 seq = zone_span_seqbegin(zone);
250 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
251 ret = 1;
252 else if (pfn < zone->zone_start_pfn)
253 ret = 1;
254 } while (zone_span_seqretry(zone, seq));
255
256 return ret;
c6a57e19
DH
257}
258
259static int page_is_consistent(struct zone *zone, struct page *page)
260{
14e07298 261 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 262 return 0;
1da177e4 263 if (zone != page_zone(page))
c6a57e19
DH
264 return 0;
265
266 return 1;
267}
268/*
269 * Temporary debugging check for pages not lying within a given zone.
270 */
271static int bad_range(struct zone *zone, struct page *page)
272{
273 if (page_outside_zone_boundaries(zone, page))
1da177e4 274 return 1;
c6a57e19
DH
275 if (!page_is_consistent(zone, page))
276 return 1;
277
1da177e4
LT
278 return 0;
279}
13e7444b
NP
280#else
281static inline int bad_range(struct zone *zone, struct page *page)
282{
283 return 0;
284}
285#endif
286
224abf92 287static void bad_page(struct page *page)
1da177e4 288{
d936cf9b
HD
289 static unsigned long resume;
290 static unsigned long nr_shown;
291 static unsigned long nr_unshown;
292
2a7684a2
WF
293 /* Don't complain about poisoned pages */
294 if (PageHWPoison(page)) {
ef2b4b95 295 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
296 return;
297 }
298
d936cf9b
HD
299 /*
300 * Allow a burst of 60 reports, then keep quiet for that minute;
301 * or allow a steady drip of one report per second.
302 */
303 if (nr_shown == 60) {
304 if (time_before(jiffies, resume)) {
305 nr_unshown++;
306 goto out;
307 }
308 if (nr_unshown) {
1e9e6365
HD
309 printk(KERN_ALERT
310 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
311 nr_unshown);
312 nr_unshown = 0;
313 }
314 nr_shown = 0;
315 }
316 if (nr_shown++ == 0)
317 resume = jiffies + 60 * HZ;
318
1e9e6365 319 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 320 current->comm, page_to_pfn(page));
718a3821 321 dump_page(page);
3dc14741 322
4f31888c 323 print_modules();
1da177e4 324 dump_stack();
d936cf9b 325out:
8cc3b392 326 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 327 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 328 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
329}
330
1da177e4
LT
331/*
332 * Higher-order pages are called "compound pages". They are structured thusly:
333 *
334 * The first PAGE_SIZE page is called the "head page".
335 *
336 * The remaining PAGE_SIZE pages are called "tail pages".
337 *
6416b9fa
WSH
338 * All pages have PG_compound set. All tail pages have their ->first_page
339 * pointing at the head page.
1da177e4 340 *
41d78ba5
HD
341 * The first tail page's ->lru.next holds the address of the compound page's
342 * put_page() function. Its ->lru.prev holds the order of allocation.
343 * This usage means that zero-order pages may not be compound.
1da177e4 344 */
d98c7a09
HD
345
346static void free_compound_page(struct page *page)
347{
d85f3385 348 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
349}
350
01ad1c08 351void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
352{
353 int i;
354 int nr_pages = 1 << order;
355
356 set_compound_page_dtor(page, free_compound_page);
357 set_compound_order(page, order);
358 __SetPageHead(page);
359 for (i = 1; i < nr_pages; i++) {
360 struct page *p = page + i;
18229df5 361 __SetPageTail(p);
58a84aa9 362 set_page_count(p, 0);
18229df5
AW
363 p->first_page = page;
364 }
365}
366
59ff4216 367/* update __split_huge_page_refcount if you change this function */
8cc3b392 368static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
369{
370 int i;
371 int nr_pages = 1 << order;
8cc3b392 372 int bad = 0;
1da177e4 373
8cc3b392
HD
374 if (unlikely(compound_order(page) != order) ||
375 unlikely(!PageHead(page))) {
224abf92 376 bad_page(page);
8cc3b392
HD
377 bad++;
378 }
1da177e4 379
6d777953 380 __ClearPageHead(page);
8cc3b392 381
18229df5
AW
382 for (i = 1; i < nr_pages; i++) {
383 struct page *p = page + i;
1da177e4 384
e713a21d 385 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 386 bad_page(page);
8cc3b392
HD
387 bad++;
388 }
d85f3385 389 __ClearPageTail(p);
1da177e4 390 }
8cc3b392
HD
391
392 return bad;
1da177e4 393}
1da177e4 394
17cf4406
NP
395static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
396{
397 int i;
398
6626c5d5
AM
399 /*
400 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
401 * and __GFP_HIGHMEM from hard or soft interrupt context.
402 */
725d704e 403 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
404 for (i = 0; i < (1 << order); i++)
405 clear_highpage(page + i);
406}
407
c0a32fc5
SG
408#ifdef CONFIG_DEBUG_PAGEALLOC
409unsigned int _debug_guardpage_minorder;
410
411static int __init debug_guardpage_minorder_setup(char *buf)
412{
413 unsigned long res;
414
415 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
416 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
417 return 0;
418 }
419 _debug_guardpage_minorder = res;
420 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
421 return 0;
422}
423__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
424
425static inline void set_page_guard_flag(struct page *page)
426{
427 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428}
429
430static inline void clear_page_guard_flag(struct page *page)
431{
432 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
433}
434#else
435static inline void set_page_guard_flag(struct page *page) { }
436static inline void clear_page_guard_flag(struct page *page) { }
437#endif
438
6aa3001b
AM
439static inline void set_page_order(struct page *page, int order)
440{
4c21e2f2 441 set_page_private(page, order);
676165a8 442 __SetPageBuddy(page);
1da177e4
LT
443}
444
445static inline void rmv_page_order(struct page *page)
446{
676165a8 447 __ClearPageBuddy(page);
4c21e2f2 448 set_page_private(page, 0);
1da177e4
LT
449}
450
451/*
452 * Locate the struct page for both the matching buddy in our
453 * pair (buddy1) and the combined O(n+1) page they form (page).
454 *
455 * 1) Any buddy B1 will have an order O twin B2 which satisfies
456 * the following equation:
457 * B2 = B1 ^ (1 << O)
458 * For example, if the starting buddy (buddy2) is #8 its order
459 * 1 buddy is #10:
460 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
461 *
462 * 2) Any buddy B will have an order O+1 parent P which
463 * satisfies the following equation:
464 * P = B & ~(1 << O)
465 *
d6e05edc 466 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 467 */
1da177e4 468static inline unsigned long
43506fad 469__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 470{
43506fad 471 return page_idx ^ (1 << order);
1da177e4
LT
472}
473
474/*
475 * This function checks whether a page is free && is the buddy
476 * we can do coalesce a page and its buddy if
13e7444b 477 * (a) the buddy is not in a hole &&
676165a8 478 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
479 * (c) a page and its buddy have the same order &&
480 * (d) a page and its buddy are in the same zone.
676165a8 481 *
5f24ce5f
AA
482 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
483 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 484 *
676165a8 485 * For recording page's order, we use page_private(page).
1da177e4 486 */
cb2b95e1
AW
487static inline int page_is_buddy(struct page *page, struct page *buddy,
488 int order)
1da177e4 489{
14e07298 490 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 491 return 0;
13e7444b 492
cb2b95e1
AW
493 if (page_zone_id(page) != page_zone_id(buddy))
494 return 0;
495
c0a32fc5
SG
496 if (page_is_guard(buddy) && page_order(buddy) == order) {
497 VM_BUG_ON(page_count(buddy) != 0);
498 return 1;
499 }
500
cb2b95e1 501 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 502 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 503 return 1;
676165a8 504 }
6aa3001b 505 return 0;
1da177e4
LT
506}
507
508/*
509 * Freeing function for a buddy system allocator.
510 *
511 * The concept of a buddy system is to maintain direct-mapped table
512 * (containing bit values) for memory blocks of various "orders".
513 * The bottom level table contains the map for the smallest allocatable
514 * units of memory (here, pages), and each level above it describes
515 * pairs of units from the levels below, hence, "buddies".
516 * At a high level, all that happens here is marking the table entry
517 * at the bottom level available, and propagating the changes upward
518 * as necessary, plus some accounting needed to play nicely with other
519 * parts of the VM system.
520 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 521 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 522 * order is recorded in page_private(page) field.
1da177e4 523 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
524 * other. That is, if we allocate a small block, and both were
525 * free, the remainder of the region must be split into blocks.
1da177e4 526 * If a block is freed, and its buddy is also free, then this
5f63b720 527 * triggers coalescing into a block of larger size.
1da177e4
LT
528 *
529 * -- wli
530 */
531
48db57f8 532static inline void __free_one_page(struct page *page,
ed0ae21d
MG
533 struct zone *zone, unsigned int order,
534 int migratetype)
1da177e4
LT
535{
536 unsigned long page_idx;
6dda9d55 537 unsigned long combined_idx;
43506fad 538 unsigned long uninitialized_var(buddy_idx);
6dda9d55 539 struct page *buddy;
1da177e4 540
224abf92 541 if (unlikely(PageCompound(page)))
8cc3b392
HD
542 if (unlikely(destroy_compound_page(page, order)))
543 return;
1da177e4 544
ed0ae21d
MG
545 VM_BUG_ON(migratetype == -1);
546
1da177e4
LT
547 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
548
f2260e6b 549 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 550 VM_BUG_ON(bad_range(zone, page));
1da177e4 551
1da177e4 552 while (order < MAX_ORDER-1) {
43506fad
KC
553 buddy_idx = __find_buddy_index(page_idx, order);
554 buddy = page + (buddy_idx - page_idx);
cb2b95e1 555 if (!page_is_buddy(page, buddy, order))
3c82d0ce 556 break;
c0a32fc5
SG
557 /*
558 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
559 * merge with it and move up one order.
560 */
561 if (page_is_guard(buddy)) {
562 clear_page_guard_flag(buddy);
563 set_page_private(page, 0);
d1ce749a
BZ
564 __mod_zone_freepage_state(zone, 1 << order,
565 migratetype);
c0a32fc5
SG
566 } else {
567 list_del(&buddy->lru);
568 zone->free_area[order].nr_free--;
569 rmv_page_order(buddy);
570 }
43506fad 571 combined_idx = buddy_idx & page_idx;
1da177e4
LT
572 page = page + (combined_idx - page_idx);
573 page_idx = combined_idx;
574 order++;
575 }
576 set_page_order(page, order);
6dda9d55
CZ
577
578 /*
579 * If this is not the largest possible page, check if the buddy
580 * of the next-highest order is free. If it is, it's possible
581 * that pages are being freed that will coalesce soon. In case,
582 * that is happening, add the free page to the tail of the list
583 * so it's less likely to be used soon and more likely to be merged
584 * as a higher order page
585 */
b7f50cfa 586 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 587 struct page *higher_page, *higher_buddy;
43506fad
KC
588 combined_idx = buddy_idx & page_idx;
589 higher_page = page + (combined_idx - page_idx);
590 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 591 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
592 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
593 list_add_tail(&page->lru,
594 &zone->free_area[order].free_list[migratetype]);
595 goto out;
596 }
597 }
598
599 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
600out:
1da177e4
LT
601 zone->free_area[order].nr_free++;
602}
603
224abf92 604static inline int free_pages_check(struct page *page)
1da177e4 605{
92be2e33
NP
606 if (unlikely(page_mapcount(page) |
607 (page->mapping != NULL) |
a3af9c38 608 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
609 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
610 (mem_cgroup_bad_page_check(page)))) {
224abf92 611 bad_page(page);
79f4b7bf 612 return 1;
8cc3b392 613 }
79f4b7bf
HD
614 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
615 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
616 return 0;
1da177e4
LT
617}
618
619/*
5f8dcc21 620 * Frees a number of pages from the PCP lists
1da177e4 621 * Assumes all pages on list are in same zone, and of same order.
207f36ee 622 * count is the number of pages to free.
1da177e4
LT
623 *
624 * If the zone was previously in an "all pages pinned" state then look to
625 * see if this freeing clears that state.
626 *
627 * And clear the zone's pages_scanned counter, to hold off the "all pages are
628 * pinned" detection logic.
629 */
5f8dcc21
MG
630static void free_pcppages_bulk(struct zone *zone, int count,
631 struct per_cpu_pages *pcp)
1da177e4 632{
5f8dcc21 633 int migratetype = 0;
a6f9edd6 634 int batch_free = 0;
72853e29 635 int to_free = count;
5f8dcc21 636
c54ad30c 637 spin_lock(&zone->lock);
93e4a89a 638 zone->all_unreclaimable = 0;
1da177e4 639 zone->pages_scanned = 0;
f2260e6b 640
72853e29 641 while (to_free) {
48db57f8 642 struct page *page;
5f8dcc21
MG
643 struct list_head *list;
644
645 /*
a6f9edd6
MG
646 * Remove pages from lists in a round-robin fashion. A
647 * batch_free count is maintained that is incremented when an
648 * empty list is encountered. This is so more pages are freed
649 * off fuller lists instead of spinning excessively around empty
650 * lists
5f8dcc21
MG
651 */
652 do {
a6f9edd6 653 batch_free++;
5f8dcc21
MG
654 if (++migratetype == MIGRATE_PCPTYPES)
655 migratetype = 0;
656 list = &pcp->lists[migratetype];
657 } while (list_empty(list));
48db57f8 658
1d16871d
NK
659 /* This is the only non-empty list. Free them all. */
660 if (batch_free == MIGRATE_PCPTYPES)
661 batch_free = to_free;
662
a6f9edd6 663 do {
770c8aaa
BZ
664 int mt; /* migratetype of the to-be-freed page */
665
a6f9edd6
MG
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
b12c4ad1 669 mt = get_freepage_migratetype(page);
a7016235 670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
671 __free_one_page(page, zone, 0, mt);
672 trace_mm_page_pcpu_drain(page, 0, mt);
97d0da22
WC
673 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
674 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
675 if (is_migrate_cma(mt))
676 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
677 }
72853e29 678 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 679 }
c54ad30c 680 spin_unlock(&zone->lock);
1da177e4
LT
681}
682
ed0ae21d
MG
683static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
1da177e4 685{
006d22d9 686 spin_lock(&zone->lock);
93e4a89a 687 zone->all_unreclaimable = 0;
006d22d9 688 zone->pages_scanned = 0;
f2260e6b 689
ed0ae21d 690 __free_one_page(page, zone, order, migratetype);
2139cbe6 691 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 692 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 693 spin_unlock(&zone->lock);
48db57f8
NP
694}
695
ec95f53a 696static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 697{
1da177e4 698 int i;
8cc3b392 699 int bad = 0;
1da177e4 700
b413d48a 701 trace_mm_page_free(page, order);
b1eeab67
VN
702 kmemcheck_free_shadow(page, order);
703
8dd60a3a
AA
704 if (PageAnon(page))
705 page->mapping = NULL;
706 for (i = 0; i < (1 << order); i++)
707 bad += free_pages_check(page + i);
8cc3b392 708 if (bad)
ec95f53a 709 return false;
689bcebf 710
3ac7fe5a 711 if (!PageHighMem(page)) {
9858db50 712 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
713 debug_check_no_obj_freed(page_address(page),
714 PAGE_SIZE << order);
715 }
dafb1367 716 arch_free_page(page, order);
48db57f8 717 kernel_map_pages(page, 1 << order, 0);
dafb1367 718
ec95f53a
KM
719 return true;
720}
721
722static void __free_pages_ok(struct page *page, unsigned int order)
723{
724 unsigned long flags;
95e34412 725 int migratetype;
ec95f53a
KM
726
727 if (!free_pages_prepare(page, order))
728 return;
729
c54ad30c 730 local_irq_save(flags);
f8891e5e 731 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
732 migratetype = get_pageblock_migratetype(page);
733 set_freepage_migratetype(page, migratetype);
734 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 735 local_irq_restore(flags);
1da177e4
LT
736}
737
af370fb8 738void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 739{
c3993076
JW
740 unsigned int nr_pages = 1 << order;
741 unsigned int loop;
a226f6c8 742
c3993076
JW
743 prefetchw(page);
744 for (loop = 0; loop < nr_pages; loop++) {
745 struct page *p = &page[loop];
746
747 if (loop + 1 < nr_pages)
748 prefetchw(p + 1);
749 __ClearPageReserved(p);
750 set_page_count(p, 0);
a226f6c8 751 }
c3993076
JW
752
753 set_page_refcounted(page);
754 __free_pages(page, order);
a226f6c8
DH
755}
756
47118af0
MN
757#ifdef CONFIG_CMA
758/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759void __init init_cma_reserved_pageblock(struct page *page)
760{
761 unsigned i = pageblock_nr_pages;
762 struct page *p = page;
763
764 do {
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767 } while (++p, --i);
768
769 set_page_refcounted(page);
770 set_pageblock_migratetype(page, MIGRATE_CMA);
771 __free_pages(page, pageblock_order);
772 totalram_pages += pageblock_nr_pages;
773}
774#endif
1da177e4
LT
775
776/*
777 * The order of subdivision here is critical for the IO subsystem.
778 * Please do not alter this order without good reasons and regression
779 * testing. Specifically, as large blocks of memory are subdivided,
780 * the order in which smaller blocks are delivered depends on the order
781 * they're subdivided in this function. This is the primary factor
782 * influencing the order in which pages are delivered to the IO
783 * subsystem according to empirical testing, and this is also justified
784 * by considering the behavior of a buddy system containing a single
785 * large block of memory acted on by a series of small allocations.
786 * This behavior is a critical factor in sglist merging's success.
787 *
788 * -- wli
789 */
085cc7d5 790static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
791 int low, int high, struct free_area *area,
792 int migratetype)
1da177e4
LT
793{
794 unsigned long size = 1 << high;
795
796 while (high > low) {
797 area--;
798 high--;
799 size >>= 1;
725d704e 800 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
801
802#ifdef CONFIG_DEBUG_PAGEALLOC
803 if (high < debug_guardpage_minorder()) {
804 /*
805 * Mark as guard pages (or page), that will allow to
806 * merge back to allocator when buddy will be freed.
807 * Corresponding page table entries will not be touched,
808 * pages will stay not present in virtual address space
809 */
810 INIT_LIST_HEAD(&page[size].lru);
811 set_page_guard_flag(&page[size]);
812 set_page_private(&page[size], high);
813 /* Guard pages are not available for any usage */
d1ce749a
BZ
814 __mod_zone_freepage_state(zone, -(1 << high),
815 migratetype);
c0a32fc5
SG
816 continue;
817 }
818#endif
b2a0ac88 819 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
820 area->nr_free++;
821 set_page_order(&page[size], high);
822 }
1da177e4
LT
823}
824
1da177e4
LT
825/*
826 * This page is about to be returned from the page allocator
827 */
2a7684a2 828static inline int check_new_page(struct page *page)
1da177e4 829{
92be2e33
NP
830 if (unlikely(page_mapcount(page) |
831 (page->mapping != NULL) |
a3af9c38 832 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
833 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
834 (mem_cgroup_bad_page_check(page)))) {
224abf92 835 bad_page(page);
689bcebf 836 return 1;
8cc3b392 837 }
2a7684a2
WF
838 return 0;
839}
840
841static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
842{
843 int i;
844
845 for (i = 0; i < (1 << order); i++) {
846 struct page *p = page + i;
847 if (unlikely(check_new_page(p)))
848 return 1;
849 }
689bcebf 850
4c21e2f2 851 set_page_private(page, 0);
7835e98b 852 set_page_refcounted(page);
cc102509
NP
853
854 arch_alloc_page(page, order);
1da177e4 855 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
856
857 if (gfp_flags & __GFP_ZERO)
858 prep_zero_page(page, order, gfp_flags);
859
860 if (order && (gfp_flags & __GFP_COMP))
861 prep_compound_page(page, order);
862
689bcebf 863 return 0;
1da177e4
LT
864}
865
56fd56b8
MG
866/*
867 * Go through the free lists for the given migratetype and remove
868 * the smallest available page from the freelists
869 */
728ec980
MG
870static inline
871struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
872 int migratetype)
873{
874 unsigned int current_order;
875 struct free_area * area;
876 struct page *page;
877
878 /* Find a page of the appropriate size in the preferred list */
879 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
880 area = &(zone->free_area[current_order]);
881 if (list_empty(&area->free_list[migratetype]))
882 continue;
883
884 page = list_entry(area->free_list[migratetype].next,
885 struct page, lru);
886 list_del(&page->lru);
887 rmv_page_order(page);
888 area->nr_free--;
56fd56b8
MG
889 expand(zone, page, order, current_order, area, migratetype);
890 return page;
891 }
892
893 return NULL;
894}
895
896
b2a0ac88
MG
897/*
898 * This array describes the order lists are fallen back to when
899 * the free lists for the desirable migrate type are depleted
900 */
47118af0
MN
901static int fallbacks[MIGRATE_TYPES][4] = {
902 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
903 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
904#ifdef CONFIG_CMA
905 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
906 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
907#else
908 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
909#endif
6d4a4916
MN
910 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
911 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
912};
913
c361be55
MG
914/*
915 * Move the free pages in a range to the free lists of the requested type.
d9c23400 916 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
917 * boundary. If alignment is required, use move_freepages_block()
918 */
435b405c 919int move_freepages(struct zone *zone,
b69a7288
AB
920 struct page *start_page, struct page *end_page,
921 int migratetype)
c361be55
MG
922{
923 struct page *page;
924 unsigned long order;
d100313f 925 int pages_moved = 0;
c361be55
MG
926
927#ifndef CONFIG_HOLES_IN_ZONE
928 /*
929 * page_zone is not safe to call in this context when
930 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
931 * anyway as we check zone boundaries in move_freepages_block().
932 * Remove at a later date when no bug reports exist related to
ac0e5b7a 933 * grouping pages by mobility
c361be55
MG
934 */
935 BUG_ON(page_zone(start_page) != page_zone(end_page));
936#endif
937
938 for (page = start_page; page <= end_page;) {
344c790e
AL
939 /* Make sure we are not inadvertently changing nodes */
940 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
941
c361be55
MG
942 if (!pfn_valid_within(page_to_pfn(page))) {
943 page++;
944 continue;
945 }
946
947 if (!PageBuddy(page)) {
948 page++;
949 continue;
950 }
951
952 order = page_order(page);
84be48d8
KS
953 list_move(&page->lru,
954 &zone->free_area[order].free_list[migratetype]);
95e34412 955 set_freepage_migratetype(page, migratetype);
c361be55 956 page += 1 << order;
d100313f 957 pages_moved += 1 << order;
c361be55
MG
958 }
959
d100313f 960 return pages_moved;
c361be55
MG
961}
962
ee6f509c 963int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 964 int migratetype)
c361be55
MG
965{
966 unsigned long start_pfn, end_pfn;
967 struct page *start_page, *end_page;
968
969 start_pfn = page_to_pfn(page);
d9c23400 970 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 971 start_page = pfn_to_page(start_pfn);
d9c23400
MG
972 end_page = start_page + pageblock_nr_pages - 1;
973 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
974
975 /* Do not cross zone boundaries */
976 if (start_pfn < zone->zone_start_pfn)
977 start_page = page;
978 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
979 return 0;
980
981 return move_freepages(zone, start_page, end_page, migratetype);
982}
983
2f66a68f
MG
984static void change_pageblock_range(struct page *pageblock_page,
985 int start_order, int migratetype)
986{
987 int nr_pageblocks = 1 << (start_order - pageblock_order);
988
989 while (nr_pageblocks--) {
990 set_pageblock_migratetype(pageblock_page, migratetype);
991 pageblock_page += pageblock_nr_pages;
992 }
993}
994
b2a0ac88 995/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
996static inline struct page *
997__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
998{
999 struct free_area * area;
1000 int current_order;
1001 struct page *page;
1002 int migratetype, i;
1003
1004 /* Find the largest possible block of pages in the other list */
1005 for (current_order = MAX_ORDER-1; current_order >= order;
1006 --current_order) {
6d4a4916 1007 for (i = 0;; i++) {
b2a0ac88
MG
1008 migratetype = fallbacks[start_migratetype][i];
1009
56fd56b8
MG
1010 /* MIGRATE_RESERVE handled later if necessary */
1011 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1012 break;
e010487d 1013
b2a0ac88
MG
1014 area = &(zone->free_area[current_order]);
1015 if (list_empty(&area->free_list[migratetype]))
1016 continue;
1017
1018 page = list_entry(area->free_list[migratetype].next,
1019 struct page, lru);
1020 area->nr_free--;
1021
1022 /*
c361be55 1023 * If breaking a large block of pages, move all free
46dafbca
MG
1024 * pages to the preferred allocation list. If falling
1025 * back for a reclaimable kernel allocation, be more
25985edc 1026 * aggressive about taking ownership of free pages
47118af0
MN
1027 *
1028 * On the other hand, never change migration
1029 * type of MIGRATE_CMA pageblocks nor move CMA
1030 * pages on different free lists. We don't
1031 * want unmovable pages to be allocated from
1032 * MIGRATE_CMA areas.
b2a0ac88 1033 */
47118af0
MN
1034 if (!is_migrate_cma(migratetype) &&
1035 (unlikely(current_order >= pageblock_order / 2) ||
1036 start_migratetype == MIGRATE_RECLAIMABLE ||
1037 page_group_by_mobility_disabled)) {
1038 int pages;
46dafbca
MG
1039 pages = move_freepages_block(zone, page,
1040 start_migratetype);
1041
1042 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1043 if (pages >= (1 << (pageblock_order-1)) ||
1044 page_group_by_mobility_disabled)
46dafbca
MG
1045 set_pageblock_migratetype(page,
1046 start_migratetype);
1047
b2a0ac88 1048 migratetype = start_migratetype;
c361be55 1049 }
b2a0ac88
MG
1050
1051 /* Remove the page from the freelists */
1052 list_del(&page->lru);
1053 rmv_page_order(page);
b2a0ac88 1054
2f66a68f 1055 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1056 if (current_order >= pageblock_order &&
1057 !is_migrate_cma(migratetype))
2f66a68f 1058 change_pageblock_range(page, current_order,
b2a0ac88
MG
1059 start_migratetype);
1060
47118af0
MN
1061 expand(zone, page, order, current_order, area,
1062 is_migrate_cma(migratetype)
1063 ? migratetype : start_migratetype);
e0fff1bd
MG
1064
1065 trace_mm_page_alloc_extfrag(page, order, current_order,
1066 start_migratetype, migratetype);
1067
b2a0ac88
MG
1068 return page;
1069 }
1070 }
1071
728ec980 1072 return NULL;
b2a0ac88
MG
1073}
1074
56fd56b8 1075/*
1da177e4
LT
1076 * Do the hard work of removing an element from the buddy allocator.
1077 * Call me with the zone->lock already held.
1078 */
b2a0ac88
MG
1079static struct page *__rmqueue(struct zone *zone, unsigned int order,
1080 int migratetype)
1da177e4 1081{
1da177e4
LT
1082 struct page *page;
1083
728ec980 1084retry_reserve:
56fd56b8 1085 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1086
728ec980 1087 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1088 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1089
728ec980
MG
1090 /*
1091 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1092 * is used because __rmqueue_smallest is an inline function
1093 * and we want just one call site
1094 */
1095 if (!page) {
1096 migratetype = MIGRATE_RESERVE;
1097 goto retry_reserve;
1098 }
1099 }
1100
0d3d062a 1101 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1102 return page;
1da177e4
LT
1103}
1104
5f63b720 1105/*
1da177e4
LT
1106 * Obtain a specified number of elements from the buddy allocator, all under
1107 * a single hold of the lock, for efficiency. Add them to the supplied list.
1108 * Returns the number of new pages which were placed at *list.
1109 */
5f63b720 1110static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1111 unsigned long count, struct list_head *list,
e084b2d9 1112 int migratetype, int cold)
1da177e4 1113{
47118af0 1114 int mt = migratetype, i;
5f63b720 1115
c54ad30c 1116 spin_lock(&zone->lock);
1da177e4 1117 for (i = 0; i < count; ++i) {
b2a0ac88 1118 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1119 if (unlikely(page == NULL))
1da177e4 1120 break;
81eabcbe
MG
1121
1122 /*
1123 * Split buddy pages returned by expand() are received here
1124 * in physical page order. The page is added to the callers and
1125 * list and the list head then moves forward. From the callers
1126 * perspective, the linked list is ordered by page number in
1127 * some conditions. This is useful for IO devices that can
1128 * merge IO requests if the physical pages are ordered
1129 * properly.
1130 */
e084b2d9
MG
1131 if (likely(cold == 0))
1132 list_add(&page->lru, list);
1133 else
1134 list_add_tail(&page->lru, list);
47118af0
MN
1135 if (IS_ENABLED(CONFIG_CMA)) {
1136 mt = get_pageblock_migratetype(page);
1137 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1138 mt = migratetype;
1139 }
b12c4ad1 1140 set_freepage_migratetype(page, mt);
81eabcbe 1141 list = &page->lru;
d1ce749a
BZ
1142 if (is_migrate_cma(mt))
1143 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1144 -(1 << order));
1da177e4 1145 }
f2260e6b 1146 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1147 spin_unlock(&zone->lock);
085cc7d5 1148 return i;
1da177e4
LT
1149}
1150
4ae7c039 1151#ifdef CONFIG_NUMA
8fce4d8e 1152/*
4037d452
CL
1153 * Called from the vmstat counter updater to drain pagesets of this
1154 * currently executing processor on remote nodes after they have
1155 * expired.
1156 *
879336c3
CL
1157 * Note that this function must be called with the thread pinned to
1158 * a single processor.
8fce4d8e 1159 */
4037d452 1160void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1161{
4ae7c039 1162 unsigned long flags;
4037d452 1163 int to_drain;
4ae7c039 1164
4037d452
CL
1165 local_irq_save(flags);
1166 if (pcp->count >= pcp->batch)
1167 to_drain = pcp->batch;
1168 else
1169 to_drain = pcp->count;
2a13515c
KM
1170 if (to_drain > 0) {
1171 free_pcppages_bulk(zone, to_drain, pcp);
1172 pcp->count -= to_drain;
1173 }
4037d452 1174 local_irq_restore(flags);
4ae7c039
CL
1175}
1176#endif
1177
9f8f2172
CL
1178/*
1179 * Drain pages of the indicated processor.
1180 *
1181 * The processor must either be the current processor and the
1182 * thread pinned to the current processor or a processor that
1183 * is not online.
1184 */
1185static void drain_pages(unsigned int cpu)
1da177e4 1186{
c54ad30c 1187 unsigned long flags;
1da177e4 1188 struct zone *zone;
1da177e4 1189
ee99c71c 1190 for_each_populated_zone(zone) {
1da177e4 1191 struct per_cpu_pageset *pset;
3dfa5721 1192 struct per_cpu_pages *pcp;
1da177e4 1193
99dcc3e5
CL
1194 local_irq_save(flags);
1195 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1196
1197 pcp = &pset->pcp;
2ff754fa
DR
1198 if (pcp->count) {
1199 free_pcppages_bulk(zone, pcp->count, pcp);
1200 pcp->count = 0;
1201 }
3dfa5721 1202 local_irq_restore(flags);
1da177e4
LT
1203 }
1204}
1da177e4 1205
9f8f2172
CL
1206/*
1207 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1208 */
1209void drain_local_pages(void *arg)
1210{
1211 drain_pages(smp_processor_id());
1212}
1213
1214/*
74046494
GBY
1215 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1216 *
1217 * Note that this code is protected against sending an IPI to an offline
1218 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1219 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1220 * nothing keeps CPUs from showing up after we populated the cpumask and
1221 * before the call to on_each_cpu_mask().
9f8f2172
CL
1222 */
1223void drain_all_pages(void)
1224{
74046494
GBY
1225 int cpu;
1226 struct per_cpu_pageset *pcp;
1227 struct zone *zone;
1228
1229 /*
1230 * Allocate in the BSS so we wont require allocation in
1231 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1232 */
1233 static cpumask_t cpus_with_pcps;
1234
1235 /*
1236 * We don't care about racing with CPU hotplug event
1237 * as offline notification will cause the notified
1238 * cpu to drain that CPU pcps and on_each_cpu_mask
1239 * disables preemption as part of its processing
1240 */
1241 for_each_online_cpu(cpu) {
1242 bool has_pcps = false;
1243 for_each_populated_zone(zone) {
1244 pcp = per_cpu_ptr(zone->pageset, cpu);
1245 if (pcp->pcp.count) {
1246 has_pcps = true;
1247 break;
1248 }
1249 }
1250 if (has_pcps)
1251 cpumask_set_cpu(cpu, &cpus_with_pcps);
1252 else
1253 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1254 }
1255 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1256}
1257
296699de 1258#ifdef CONFIG_HIBERNATION
1da177e4
LT
1259
1260void mark_free_pages(struct zone *zone)
1261{
f623f0db
RW
1262 unsigned long pfn, max_zone_pfn;
1263 unsigned long flags;
b2a0ac88 1264 int order, t;
1da177e4
LT
1265 struct list_head *curr;
1266
1267 if (!zone->spanned_pages)
1268 return;
1269
1270 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1271
1272 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1273 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1274 if (pfn_valid(pfn)) {
1275 struct page *page = pfn_to_page(pfn);
1276
7be98234
RW
1277 if (!swsusp_page_is_forbidden(page))
1278 swsusp_unset_page_free(page);
f623f0db 1279 }
1da177e4 1280
b2a0ac88
MG
1281 for_each_migratetype_order(order, t) {
1282 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1283 unsigned long i;
1da177e4 1284
f623f0db
RW
1285 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1286 for (i = 0; i < (1UL << order); i++)
7be98234 1287 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1288 }
b2a0ac88 1289 }
1da177e4
LT
1290 spin_unlock_irqrestore(&zone->lock, flags);
1291}
e2c55dc8 1292#endif /* CONFIG_PM */
1da177e4 1293
1da177e4
LT
1294/*
1295 * Free a 0-order page
fc91668e 1296 * cold == 1 ? free a cold page : free a hot page
1da177e4 1297 */
fc91668e 1298void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1299{
1300 struct zone *zone = page_zone(page);
1301 struct per_cpu_pages *pcp;
1302 unsigned long flags;
5f8dcc21 1303 int migratetype;
1da177e4 1304
ec95f53a 1305 if (!free_pages_prepare(page, 0))
689bcebf
HD
1306 return;
1307
5f8dcc21 1308 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1309 set_freepage_migratetype(page, migratetype);
1da177e4 1310 local_irq_save(flags);
f8891e5e 1311 __count_vm_event(PGFREE);
da456f14 1312
5f8dcc21
MG
1313 /*
1314 * We only track unmovable, reclaimable and movable on pcp lists.
1315 * Free ISOLATE pages back to the allocator because they are being
1316 * offlined but treat RESERVE as movable pages so we can get those
1317 * areas back if necessary. Otherwise, we may have to free
1318 * excessively into the page allocator
1319 */
1320 if (migratetype >= MIGRATE_PCPTYPES) {
1321 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1322 free_one_page(zone, page, 0, migratetype);
1323 goto out;
1324 }
1325 migratetype = MIGRATE_MOVABLE;
1326 }
1327
99dcc3e5 1328 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1329 if (cold)
5f8dcc21 1330 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1331 else
5f8dcc21 1332 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1333 pcp->count++;
48db57f8 1334 if (pcp->count >= pcp->high) {
5f8dcc21 1335 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1336 pcp->count -= pcp->batch;
1337 }
5f8dcc21
MG
1338
1339out:
1da177e4 1340 local_irq_restore(flags);
1da177e4
LT
1341}
1342
cc59850e
KK
1343/*
1344 * Free a list of 0-order pages
1345 */
1346void free_hot_cold_page_list(struct list_head *list, int cold)
1347{
1348 struct page *page, *next;
1349
1350 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1351 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1352 free_hot_cold_page(page, cold);
1353 }
1354}
1355
8dfcc9ba
NP
1356/*
1357 * split_page takes a non-compound higher-order page, and splits it into
1358 * n (1<<order) sub-pages: page[0..n]
1359 * Each sub-page must be freed individually.
1360 *
1361 * Note: this is probably too low level an operation for use in drivers.
1362 * Please consult with lkml before using this in your driver.
1363 */
1364void split_page(struct page *page, unsigned int order)
1365{
1366 int i;
1367
725d704e
NP
1368 VM_BUG_ON(PageCompound(page));
1369 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1370
1371#ifdef CONFIG_KMEMCHECK
1372 /*
1373 * Split shadow pages too, because free(page[0]) would
1374 * otherwise free the whole shadow.
1375 */
1376 if (kmemcheck_page_is_tracked(page))
1377 split_page(virt_to_page(page[0].shadow), order);
1378#endif
1379
7835e98b
NP
1380 for (i = 1; i < (1 << order); i++)
1381 set_page_refcounted(page + i);
8dfcc9ba 1382}
8dfcc9ba 1383
748446bb 1384/*
1fb3f8ca
MG
1385 * Similar to the split_page family of functions except that the page
1386 * required at the given order and being isolated now to prevent races
1387 * with parallel allocators
748446bb 1388 */
1fb3f8ca 1389int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1390{
1391 unsigned int order;
1392 unsigned long watermark;
1393 struct zone *zone;
2139cbe6 1394 int mt;
748446bb
MG
1395
1396 BUG_ON(!PageBuddy(page));
1397
1398 zone = page_zone(page);
1399 order = page_order(page);
2e30abd1 1400 mt = get_pageblock_migratetype(page);
748446bb 1401
2e30abd1
MS
1402 if (mt != MIGRATE_ISOLATE) {
1403 /* Obey watermarks as if the page was being allocated */
1404 watermark = low_wmark_pages(zone) + (1 << order);
1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 return 0;
1407
1408 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1409 }
748446bb
MG
1410
1411 /* Remove page from free list */
1412 list_del(&page->lru);
1413 zone->free_area[order].nr_free--;
1414 rmv_page_order(page);
2139cbe6 1415
1fb3f8ca
MG
1416 if (alloc_order != order)
1417 expand(zone, page, alloc_order, order,
1418 &zone->free_area[order], migratetype);
748446bb 1419
1fb3f8ca 1420 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1421 if (order >= pageblock_order - 1) {
1422 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1423 for (; page < endpage; page += pageblock_nr_pages) {
1424 int mt = get_pageblock_migratetype(page);
1425 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1426 set_pageblock_migratetype(page,
1427 MIGRATE_MOVABLE);
1428 }
748446bb
MG
1429 }
1430
58d00209 1431 return 1UL << alloc_order;
1fb3f8ca
MG
1432}
1433
1434/*
1435 * Similar to split_page except the page is already free. As this is only
1436 * being used for migration, the migratetype of the block also changes.
1437 * As this is called with interrupts disabled, the caller is responsible
1438 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1439 * are enabled.
1440 *
1441 * Note: this is probably too low level an operation for use in drivers.
1442 * Please consult with lkml before using this in your driver.
1443 */
1444int split_free_page(struct page *page)
1445{
1446 unsigned int order;
1447 int nr_pages;
1448
1449 BUG_ON(!PageBuddy(page));
1450 order = page_order(page);
1451
1452 nr_pages = capture_free_page(page, order, 0);
1453 if (!nr_pages)
1454 return 0;
1455
1456 /* Split into individual pages */
1457 set_page_refcounted(page);
1458 split_page(page, order);
1459 return nr_pages;
748446bb
MG
1460}
1461
1da177e4
LT
1462/*
1463 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1464 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1465 * or two.
1466 */
0a15c3e9
MG
1467static inline
1468struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1469 struct zone *zone, int order, gfp_t gfp_flags,
1470 int migratetype)
1da177e4
LT
1471{
1472 unsigned long flags;
689bcebf 1473 struct page *page;
1da177e4
LT
1474 int cold = !!(gfp_flags & __GFP_COLD);
1475
689bcebf 1476again:
48db57f8 1477 if (likely(order == 0)) {
1da177e4 1478 struct per_cpu_pages *pcp;
5f8dcc21 1479 struct list_head *list;
1da177e4 1480
1da177e4 1481 local_irq_save(flags);
99dcc3e5
CL
1482 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1483 list = &pcp->lists[migratetype];
5f8dcc21 1484 if (list_empty(list)) {
535131e6 1485 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1486 pcp->batch, list,
e084b2d9 1487 migratetype, cold);
5f8dcc21 1488 if (unlikely(list_empty(list)))
6fb332fa 1489 goto failed;
535131e6 1490 }
b92a6edd 1491
5f8dcc21
MG
1492 if (cold)
1493 page = list_entry(list->prev, struct page, lru);
1494 else
1495 page = list_entry(list->next, struct page, lru);
1496
b92a6edd
MG
1497 list_del(&page->lru);
1498 pcp->count--;
7fb1d9fc 1499 } else {
dab48dab
AM
1500 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1501 /*
1502 * __GFP_NOFAIL is not to be used in new code.
1503 *
1504 * All __GFP_NOFAIL callers should be fixed so that they
1505 * properly detect and handle allocation failures.
1506 *
1507 * We most definitely don't want callers attempting to
4923abf9 1508 * allocate greater than order-1 page units with
dab48dab
AM
1509 * __GFP_NOFAIL.
1510 */
4923abf9 1511 WARN_ON_ONCE(order > 1);
dab48dab 1512 }
1da177e4 1513 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1514 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1515 spin_unlock(&zone->lock);
1516 if (!page)
1517 goto failed;
d1ce749a
BZ
1518 __mod_zone_freepage_state(zone, -(1 << order),
1519 get_pageblock_migratetype(page));
1da177e4
LT
1520 }
1521
f8891e5e 1522 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1523 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1524 local_irq_restore(flags);
1da177e4 1525
725d704e 1526 VM_BUG_ON(bad_range(zone, page));
17cf4406 1527 if (prep_new_page(page, order, gfp_flags))
a74609fa 1528 goto again;
1da177e4 1529 return page;
a74609fa
NP
1530
1531failed:
1532 local_irq_restore(flags);
a74609fa 1533 return NULL;
1da177e4
LT
1534}
1535
933e312e
AM
1536#ifdef CONFIG_FAIL_PAGE_ALLOC
1537
b2588c4b 1538static struct {
933e312e
AM
1539 struct fault_attr attr;
1540
1541 u32 ignore_gfp_highmem;
1542 u32 ignore_gfp_wait;
54114994 1543 u32 min_order;
933e312e
AM
1544} fail_page_alloc = {
1545 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1546 .ignore_gfp_wait = 1,
1547 .ignore_gfp_highmem = 1,
54114994 1548 .min_order = 1,
933e312e
AM
1549};
1550
1551static int __init setup_fail_page_alloc(char *str)
1552{
1553 return setup_fault_attr(&fail_page_alloc.attr, str);
1554}
1555__setup("fail_page_alloc=", setup_fail_page_alloc);
1556
deaf386e 1557static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1558{
54114994 1559 if (order < fail_page_alloc.min_order)
deaf386e 1560 return false;
933e312e 1561 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1562 return false;
933e312e 1563 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1564 return false;
933e312e 1565 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1566 return false;
933e312e
AM
1567
1568 return should_fail(&fail_page_alloc.attr, 1 << order);
1569}
1570
1571#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1572
1573static int __init fail_page_alloc_debugfs(void)
1574{
f4ae40a6 1575 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1576 struct dentry *dir;
933e312e 1577
dd48c085
AM
1578 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1579 &fail_page_alloc.attr);
1580 if (IS_ERR(dir))
1581 return PTR_ERR(dir);
933e312e 1582
b2588c4b
AM
1583 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1584 &fail_page_alloc.ignore_gfp_wait))
1585 goto fail;
1586 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1587 &fail_page_alloc.ignore_gfp_highmem))
1588 goto fail;
1589 if (!debugfs_create_u32("min-order", mode, dir,
1590 &fail_page_alloc.min_order))
1591 goto fail;
1592
1593 return 0;
1594fail:
dd48c085 1595 debugfs_remove_recursive(dir);
933e312e 1596
b2588c4b 1597 return -ENOMEM;
933e312e
AM
1598}
1599
1600late_initcall(fail_page_alloc_debugfs);
1601
1602#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1603
1604#else /* CONFIG_FAIL_PAGE_ALLOC */
1605
deaf386e 1606static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1607{
deaf386e 1608 return false;
933e312e
AM
1609}
1610
1611#endif /* CONFIG_FAIL_PAGE_ALLOC */
1612
1da177e4 1613/*
88f5acf8 1614 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1615 * of the allocation.
1616 */
88f5acf8
MG
1617static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1618 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1619{
1620 /* free_pages my go negative - that's OK */
d23ad423 1621 long min = mark;
2cfed075 1622 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1623 int o;
1624
df0a6daa 1625 free_pages -= (1 << order) - 1;
7fb1d9fc 1626 if (alloc_flags & ALLOC_HIGH)
1da177e4 1627 min -= min / 2;
7fb1d9fc 1628 if (alloc_flags & ALLOC_HARDER)
1da177e4 1629 min -= min / 4;
d95ea5d1
BZ
1630#ifdef CONFIG_CMA
1631 /* If allocation can't use CMA areas don't use free CMA pages */
1632 if (!(alloc_flags & ALLOC_CMA))
1633 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1634#endif
2cfed075 1635 if (free_pages <= min + lowmem_reserve)
88f5acf8 1636 return false;
1da177e4
LT
1637 for (o = 0; o < order; o++) {
1638 /* At the next order, this order's pages become unavailable */
1639 free_pages -= z->free_area[o].nr_free << o;
1640
1641 /* Require fewer higher order pages to be free */
1642 min >>= 1;
1643
1644 if (free_pages <= min)
88f5acf8 1645 return false;
1da177e4 1646 }
88f5acf8
MG
1647 return true;
1648}
1649
702d1a6e
MK
1650#ifdef CONFIG_MEMORY_ISOLATION
1651static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1652{
1653 if (unlikely(zone->nr_pageblock_isolate))
1654 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1655 return 0;
1656}
1657#else
1658static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1659{
1660 return 0;
1661}
1662#endif
1663
88f5acf8
MG
1664bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1665 int classzone_idx, int alloc_flags)
1666{
1667 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1668 zone_page_state(z, NR_FREE_PAGES));
1669}
1670
1671bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1672 int classzone_idx, int alloc_flags)
1673{
1674 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1675
1676 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1677 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1678
702d1a6e
MK
1679 /*
1680 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1681 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1682 * sleep although it could do so. But this is more desirable for memory
1683 * hotplug than sleeping which can cause a livelock in the direct
1684 * reclaim path.
1685 */
1686 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1687 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1688 free_pages);
1da177e4
LT
1689}
1690
9276b1bc
PJ
1691#ifdef CONFIG_NUMA
1692/*
1693 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1694 * skip over zones that are not allowed by the cpuset, or that have
1695 * been recently (in last second) found to be nearly full. See further
1696 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1697 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1698 *
1699 * If the zonelist cache is present in the passed in zonelist, then
1700 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1701 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1702 *
1703 * If the zonelist cache is not available for this zonelist, does
1704 * nothing and returns NULL.
1705 *
1706 * If the fullzones BITMAP in the zonelist cache is stale (more than
1707 * a second since last zap'd) then we zap it out (clear its bits.)
1708 *
1709 * We hold off even calling zlc_setup, until after we've checked the
1710 * first zone in the zonelist, on the theory that most allocations will
1711 * be satisfied from that first zone, so best to examine that zone as
1712 * quickly as we can.
1713 */
1714static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1715{
1716 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1717 nodemask_t *allowednodes; /* zonelist_cache approximation */
1718
1719 zlc = zonelist->zlcache_ptr;
1720 if (!zlc)
1721 return NULL;
1722
f05111f5 1723 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1724 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1725 zlc->last_full_zap = jiffies;
1726 }
1727
1728 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1729 &cpuset_current_mems_allowed :
4b0ef1fe 1730 &node_states[N_MEMORY];
9276b1bc
PJ
1731 return allowednodes;
1732}
1733
1734/*
1735 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1736 * if it is worth looking at further for free memory:
1737 * 1) Check that the zone isn't thought to be full (doesn't have its
1738 * bit set in the zonelist_cache fullzones BITMAP).
1739 * 2) Check that the zones node (obtained from the zonelist_cache
1740 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1741 * Return true (non-zero) if zone is worth looking at further, or
1742 * else return false (zero) if it is not.
1743 *
1744 * This check -ignores- the distinction between various watermarks,
1745 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1746 * found to be full for any variation of these watermarks, it will
1747 * be considered full for up to one second by all requests, unless
1748 * we are so low on memory on all allowed nodes that we are forced
1749 * into the second scan of the zonelist.
1750 *
1751 * In the second scan we ignore this zonelist cache and exactly
1752 * apply the watermarks to all zones, even it is slower to do so.
1753 * We are low on memory in the second scan, and should leave no stone
1754 * unturned looking for a free page.
1755 */
dd1a239f 1756static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1757 nodemask_t *allowednodes)
1758{
1759 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1760 int i; /* index of *z in zonelist zones */
1761 int n; /* node that zone *z is on */
1762
1763 zlc = zonelist->zlcache_ptr;
1764 if (!zlc)
1765 return 1;
1766
dd1a239f 1767 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1768 n = zlc->z_to_n[i];
1769
1770 /* This zone is worth trying if it is allowed but not full */
1771 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1772}
1773
1774/*
1775 * Given 'z' scanning a zonelist, set the corresponding bit in
1776 * zlc->fullzones, so that subsequent attempts to allocate a page
1777 * from that zone don't waste time re-examining it.
1778 */
dd1a239f 1779static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1780{
1781 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1782 int i; /* index of *z in zonelist zones */
1783
1784 zlc = zonelist->zlcache_ptr;
1785 if (!zlc)
1786 return;
1787
dd1a239f 1788 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1789
1790 set_bit(i, zlc->fullzones);
1791}
1792
76d3fbf8
MG
1793/*
1794 * clear all zones full, called after direct reclaim makes progress so that
1795 * a zone that was recently full is not skipped over for up to a second
1796 */
1797static void zlc_clear_zones_full(struct zonelist *zonelist)
1798{
1799 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1800
1801 zlc = zonelist->zlcache_ptr;
1802 if (!zlc)
1803 return;
1804
1805 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1806}
1807
957f822a
DR
1808static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1809{
1810 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1811}
1812
1813static void __paginginit init_zone_allows_reclaim(int nid)
1814{
1815 int i;
1816
1817 for_each_online_node(i)
6b187d02 1818 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1819 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1820 else
957f822a 1821 zone_reclaim_mode = 1;
957f822a
DR
1822}
1823
9276b1bc
PJ
1824#else /* CONFIG_NUMA */
1825
1826static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1827{
1828 return NULL;
1829}
1830
dd1a239f 1831static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1832 nodemask_t *allowednodes)
1833{
1834 return 1;
1835}
1836
dd1a239f 1837static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1838{
1839}
76d3fbf8
MG
1840
1841static void zlc_clear_zones_full(struct zonelist *zonelist)
1842{
1843}
957f822a
DR
1844
1845static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1846{
1847 return true;
1848}
1849
1850static inline void init_zone_allows_reclaim(int nid)
1851{
1852}
9276b1bc
PJ
1853#endif /* CONFIG_NUMA */
1854
7fb1d9fc 1855/*
0798e519 1856 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1857 * a page.
1858 */
1859static struct page *
19770b32 1860get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1861 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1862 struct zone *preferred_zone, int migratetype)
753ee728 1863{
dd1a239f 1864 struct zoneref *z;
7fb1d9fc 1865 struct page *page = NULL;
54a6eb5c 1866 int classzone_idx;
5117f45d 1867 struct zone *zone;
9276b1bc
PJ
1868 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1869 int zlc_active = 0; /* set if using zonelist_cache */
1870 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1871
19770b32 1872 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1873zonelist_scan:
7fb1d9fc 1874 /*
9276b1bc 1875 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1876 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1877 */
19770b32
MG
1878 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1879 high_zoneidx, nodemask) {
e5adfffc 1880 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1881 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1882 continue;
7fb1d9fc 1883 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1884 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1885 continue;
a756cf59
JW
1886 /*
1887 * When allocating a page cache page for writing, we
1888 * want to get it from a zone that is within its dirty
1889 * limit, such that no single zone holds more than its
1890 * proportional share of globally allowed dirty pages.
1891 * The dirty limits take into account the zone's
1892 * lowmem reserves and high watermark so that kswapd
1893 * should be able to balance it without having to
1894 * write pages from its LRU list.
1895 *
1896 * This may look like it could increase pressure on
1897 * lower zones by failing allocations in higher zones
1898 * before they are full. But the pages that do spill
1899 * over are limited as the lower zones are protected
1900 * by this very same mechanism. It should not become
1901 * a practical burden to them.
1902 *
1903 * XXX: For now, allow allocations to potentially
1904 * exceed the per-zone dirty limit in the slowpath
1905 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1906 * which is important when on a NUMA setup the allowed
1907 * zones are together not big enough to reach the
1908 * global limit. The proper fix for these situations
1909 * will require awareness of zones in the
1910 * dirty-throttling and the flusher threads.
1911 */
1912 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1913 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1914 goto this_zone_full;
7fb1d9fc 1915
41858966 1916 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1917 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1918 unsigned long mark;
fa5e084e
MG
1919 int ret;
1920
41858966 1921 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1922 if (zone_watermark_ok(zone, order, mark,
1923 classzone_idx, alloc_flags))
1924 goto try_this_zone;
1925
e5adfffc
KS
1926 if (IS_ENABLED(CONFIG_NUMA) &&
1927 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1928 /*
1929 * we do zlc_setup if there are multiple nodes
1930 * and before considering the first zone allowed
1931 * by the cpuset.
1932 */
1933 allowednodes = zlc_setup(zonelist, alloc_flags);
1934 zlc_active = 1;
1935 did_zlc_setup = 1;
1936 }
1937
957f822a
DR
1938 if (zone_reclaim_mode == 0 ||
1939 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1940 goto this_zone_full;
1941
cd38b115
MG
1942 /*
1943 * As we may have just activated ZLC, check if the first
1944 * eligible zone has failed zone_reclaim recently.
1945 */
e5adfffc 1946 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1947 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1948 continue;
1949
fa5e084e
MG
1950 ret = zone_reclaim(zone, gfp_mask, order);
1951 switch (ret) {
1952 case ZONE_RECLAIM_NOSCAN:
1953 /* did not scan */
cd38b115 1954 continue;
fa5e084e
MG
1955 case ZONE_RECLAIM_FULL:
1956 /* scanned but unreclaimable */
cd38b115 1957 continue;
fa5e084e
MG
1958 default:
1959 /* did we reclaim enough */
1960 if (!zone_watermark_ok(zone, order, mark,
1961 classzone_idx, alloc_flags))
9276b1bc 1962 goto this_zone_full;
0798e519 1963 }
7fb1d9fc
RS
1964 }
1965
fa5e084e 1966try_this_zone:
3dd28266
MG
1967 page = buffered_rmqueue(preferred_zone, zone, order,
1968 gfp_mask, migratetype);
0798e519 1969 if (page)
7fb1d9fc 1970 break;
9276b1bc 1971this_zone_full:
e5adfffc 1972 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1973 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1974 }
9276b1bc 1975
e5adfffc 1976 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1977 /* Disable zlc cache for second zonelist scan */
1978 zlc_active = 0;
1979 goto zonelist_scan;
1980 }
b121186a
AS
1981
1982 if (page)
1983 /*
1984 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1985 * necessary to allocate the page. The expectation is
1986 * that the caller is taking steps that will free more
1987 * memory. The caller should avoid the page being used
1988 * for !PFMEMALLOC purposes.
1989 */
1990 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1991
7fb1d9fc 1992 return page;
753ee728
MH
1993}
1994
29423e77
DR
1995/*
1996 * Large machines with many possible nodes should not always dump per-node
1997 * meminfo in irq context.
1998 */
1999static inline bool should_suppress_show_mem(void)
2000{
2001 bool ret = false;
2002
2003#if NODES_SHIFT > 8
2004 ret = in_interrupt();
2005#endif
2006 return ret;
2007}
2008
a238ab5b
DH
2009static DEFINE_RATELIMIT_STATE(nopage_rs,
2010 DEFAULT_RATELIMIT_INTERVAL,
2011 DEFAULT_RATELIMIT_BURST);
2012
2013void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2014{
a238ab5b
DH
2015 unsigned int filter = SHOW_MEM_FILTER_NODES;
2016
c0a32fc5
SG
2017 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2018 debug_guardpage_minorder() > 0)
a238ab5b
DH
2019 return;
2020
2021 /*
2022 * This documents exceptions given to allocations in certain
2023 * contexts that are allowed to allocate outside current's set
2024 * of allowed nodes.
2025 */
2026 if (!(gfp_mask & __GFP_NOMEMALLOC))
2027 if (test_thread_flag(TIF_MEMDIE) ||
2028 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2029 filter &= ~SHOW_MEM_FILTER_NODES;
2030 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2031 filter &= ~SHOW_MEM_FILTER_NODES;
2032
2033 if (fmt) {
3ee9a4f0
JP
2034 struct va_format vaf;
2035 va_list args;
2036
a238ab5b 2037 va_start(args, fmt);
3ee9a4f0
JP
2038
2039 vaf.fmt = fmt;
2040 vaf.va = &args;
2041
2042 pr_warn("%pV", &vaf);
2043
a238ab5b
DH
2044 va_end(args);
2045 }
2046
3ee9a4f0
JP
2047 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2048 current->comm, order, gfp_mask);
a238ab5b
DH
2049
2050 dump_stack();
2051 if (!should_suppress_show_mem())
2052 show_mem(filter);
2053}
2054
11e33f6a
MG
2055static inline int
2056should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2057 unsigned long did_some_progress,
11e33f6a 2058 unsigned long pages_reclaimed)
1da177e4 2059{
11e33f6a
MG
2060 /* Do not loop if specifically requested */
2061 if (gfp_mask & __GFP_NORETRY)
2062 return 0;
1da177e4 2063
f90ac398
MG
2064 /* Always retry if specifically requested */
2065 if (gfp_mask & __GFP_NOFAIL)
2066 return 1;
2067
2068 /*
2069 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2070 * making forward progress without invoking OOM. Suspend also disables
2071 * storage devices so kswapd will not help. Bail if we are suspending.
2072 */
2073 if (!did_some_progress && pm_suspended_storage())
2074 return 0;
2075
11e33f6a
MG
2076 /*
2077 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2078 * means __GFP_NOFAIL, but that may not be true in other
2079 * implementations.
2080 */
2081 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2082 return 1;
2083
2084 /*
2085 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2086 * specified, then we retry until we no longer reclaim any pages
2087 * (above), or we've reclaimed an order of pages at least as
2088 * large as the allocation's order. In both cases, if the
2089 * allocation still fails, we stop retrying.
2090 */
2091 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2092 return 1;
cf40bd16 2093
11e33f6a
MG
2094 return 0;
2095}
933e312e 2096
11e33f6a
MG
2097static inline struct page *
2098__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2099 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2100 nodemask_t *nodemask, struct zone *preferred_zone,
2101 int migratetype)
11e33f6a
MG
2102{
2103 struct page *page;
2104
2105 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2106 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2107 schedule_timeout_uninterruptible(1);
1da177e4
LT
2108 return NULL;
2109 }
6b1de916 2110
11e33f6a
MG
2111 /*
2112 * Go through the zonelist yet one more time, keep very high watermark
2113 * here, this is only to catch a parallel oom killing, we must fail if
2114 * we're still under heavy pressure.
2115 */
2116 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2117 order, zonelist, high_zoneidx,
5117f45d 2118 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2119 preferred_zone, migratetype);
7fb1d9fc 2120 if (page)
11e33f6a
MG
2121 goto out;
2122
4365a567
KH
2123 if (!(gfp_mask & __GFP_NOFAIL)) {
2124 /* The OOM killer will not help higher order allocs */
2125 if (order > PAGE_ALLOC_COSTLY_ORDER)
2126 goto out;
03668b3c
DR
2127 /* The OOM killer does not needlessly kill tasks for lowmem */
2128 if (high_zoneidx < ZONE_NORMAL)
2129 goto out;
4365a567
KH
2130 /*
2131 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2132 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2133 * The caller should handle page allocation failure by itself if
2134 * it specifies __GFP_THISNODE.
2135 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2136 */
2137 if (gfp_mask & __GFP_THISNODE)
2138 goto out;
2139 }
11e33f6a 2140 /* Exhausted what can be done so it's blamo time */
08ab9b10 2141 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2142
2143out:
2144 clear_zonelist_oom(zonelist, gfp_mask);
2145 return page;
2146}
2147
56de7263
MG
2148#ifdef CONFIG_COMPACTION
2149/* Try memory compaction for high-order allocations before reclaim */
2150static struct page *
2151__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2152 struct zonelist *zonelist, enum zone_type high_zoneidx,
2153 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2154 int migratetype, bool sync_migration,
c67fe375 2155 bool *contended_compaction, bool *deferred_compaction,
66199712 2156 unsigned long *did_some_progress)
56de7263 2157{
1fb3f8ca 2158 struct page *page = NULL;
56de7263 2159
66199712 2160 if (!order)
56de7263
MG
2161 return NULL;
2162
aff62249 2163 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2164 *deferred_compaction = true;
2165 return NULL;
2166 }
2167
c06b1fca 2168 current->flags |= PF_MEMALLOC;
56de7263 2169 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2170 nodemask, sync_migration,
1fb3f8ca 2171 contended_compaction, &page);
c06b1fca 2172 current->flags &= ~PF_MEMALLOC;
56de7263 2173
1fb3f8ca
MG
2174 /* If compaction captured a page, prep and use it */
2175 if (page) {
2176 prep_new_page(page, order, gfp_mask);
2177 goto got_page;
2178 }
2179
2180 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2181 /* Page migration frees to the PCP lists but we want merging */
2182 drain_pages(get_cpu());
2183 put_cpu();
2184
2185 page = get_page_from_freelist(gfp_mask, nodemask,
2186 order, zonelist, high_zoneidx,
cfd19c5a
MG
2187 alloc_flags & ~ALLOC_NO_WATERMARKS,
2188 preferred_zone, migratetype);
56de7263 2189 if (page) {
1fb3f8ca 2190got_page:
62997027 2191 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2192 preferred_zone->compact_considered = 0;
2193 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2194 if (order >= preferred_zone->compact_order_failed)
2195 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2196 count_vm_event(COMPACTSUCCESS);
2197 return page;
2198 }
2199
2200 /*
2201 * It's bad if compaction run occurs and fails.
2202 * The most likely reason is that pages exist,
2203 * but not enough to satisfy watermarks.
2204 */
2205 count_vm_event(COMPACTFAIL);
66199712
MG
2206
2207 /*
2208 * As async compaction considers a subset of pageblocks, only
2209 * defer if the failure was a sync compaction failure.
2210 */
2211 if (sync_migration)
aff62249 2212 defer_compaction(preferred_zone, order);
56de7263
MG
2213
2214 cond_resched();
2215 }
2216
2217 return NULL;
2218}
2219#else
2220static inline struct page *
2221__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2222 struct zonelist *zonelist, enum zone_type high_zoneidx,
2223 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2224 int migratetype, bool sync_migration,
c67fe375 2225 bool *contended_compaction, bool *deferred_compaction,
66199712 2226 unsigned long *did_some_progress)
56de7263
MG
2227{
2228 return NULL;
2229}
2230#endif /* CONFIG_COMPACTION */
2231
bba90710
MS
2232/* Perform direct synchronous page reclaim */
2233static int
2234__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2235 nodemask_t *nodemask)
11e33f6a 2236{
11e33f6a 2237 struct reclaim_state reclaim_state;
bba90710 2238 int progress;
11e33f6a
MG
2239
2240 cond_resched();
2241
2242 /* We now go into synchronous reclaim */
2243 cpuset_memory_pressure_bump();
c06b1fca 2244 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2245 lockdep_set_current_reclaim_state(gfp_mask);
2246 reclaim_state.reclaimed_slab = 0;
c06b1fca 2247 current->reclaim_state = &reclaim_state;
11e33f6a 2248
bba90710 2249 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2250
c06b1fca 2251 current->reclaim_state = NULL;
11e33f6a 2252 lockdep_clear_current_reclaim_state();
c06b1fca 2253 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2254
2255 cond_resched();
2256
bba90710
MS
2257 return progress;
2258}
2259
2260/* The really slow allocator path where we enter direct reclaim */
2261static inline struct page *
2262__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2263 struct zonelist *zonelist, enum zone_type high_zoneidx,
2264 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2265 int migratetype, unsigned long *did_some_progress)
2266{
2267 struct page *page = NULL;
2268 bool drained = false;
2269
2270 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2271 nodemask);
9ee493ce
MG
2272 if (unlikely(!(*did_some_progress)))
2273 return NULL;
11e33f6a 2274
76d3fbf8 2275 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2276 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2277 zlc_clear_zones_full(zonelist);
2278
9ee493ce
MG
2279retry:
2280 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2281 zonelist, high_zoneidx,
cfd19c5a
MG
2282 alloc_flags & ~ALLOC_NO_WATERMARKS,
2283 preferred_zone, migratetype);
9ee493ce
MG
2284
2285 /*
2286 * If an allocation failed after direct reclaim, it could be because
2287 * pages are pinned on the per-cpu lists. Drain them and try again
2288 */
2289 if (!page && !drained) {
2290 drain_all_pages();
2291 drained = true;
2292 goto retry;
2293 }
2294
11e33f6a
MG
2295 return page;
2296}
2297
1da177e4 2298/*
11e33f6a
MG
2299 * This is called in the allocator slow-path if the allocation request is of
2300 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2301 */
11e33f6a
MG
2302static inline struct page *
2303__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2304 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2305 nodemask_t *nodemask, struct zone *preferred_zone,
2306 int migratetype)
11e33f6a
MG
2307{
2308 struct page *page;
2309
2310 do {
2311 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2312 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2313 preferred_zone, migratetype);
11e33f6a
MG
2314
2315 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2316 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2317 } while (!page && (gfp_mask & __GFP_NOFAIL));
2318
2319 return page;
2320}
2321
2322static inline
2323void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2324 enum zone_type high_zoneidx,
2325 enum zone_type classzone_idx)
1da177e4 2326{
dd1a239f
MG
2327 struct zoneref *z;
2328 struct zone *zone;
1da177e4 2329
11e33f6a 2330 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2331 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2332}
cf40bd16 2333
341ce06f
PZ
2334static inline int
2335gfp_to_alloc_flags(gfp_t gfp_mask)
2336{
341ce06f
PZ
2337 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2338 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2339
a56f57ff 2340 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2341 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2342
341ce06f
PZ
2343 /*
2344 * The caller may dip into page reserves a bit more if the caller
2345 * cannot run direct reclaim, or if the caller has realtime scheduling
2346 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2347 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2348 */
e6223a3b 2349 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2350
341ce06f 2351 if (!wait) {
5c3240d9
AA
2352 /*
2353 * Not worth trying to allocate harder for
2354 * __GFP_NOMEMALLOC even if it can't schedule.
2355 */
2356 if (!(gfp_mask & __GFP_NOMEMALLOC))
2357 alloc_flags |= ALLOC_HARDER;
523b9458 2358 /*
341ce06f
PZ
2359 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2360 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2361 */
341ce06f 2362 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2363 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2364 alloc_flags |= ALLOC_HARDER;
2365
b37f1dd0
MG
2366 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2367 if (gfp_mask & __GFP_MEMALLOC)
2368 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2369 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2370 alloc_flags |= ALLOC_NO_WATERMARKS;
2371 else if (!in_interrupt() &&
2372 ((current->flags & PF_MEMALLOC) ||
2373 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2374 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2375 }
d95ea5d1
BZ
2376#ifdef CONFIG_CMA
2377 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2378 alloc_flags |= ALLOC_CMA;
2379#endif
341ce06f
PZ
2380 return alloc_flags;
2381}
2382
072bb0aa
MG
2383bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2384{
b37f1dd0 2385 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2386}
2387
11e33f6a
MG
2388static inline struct page *
2389__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2390 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2391 nodemask_t *nodemask, struct zone *preferred_zone,
2392 int migratetype)
11e33f6a
MG
2393{
2394 const gfp_t wait = gfp_mask & __GFP_WAIT;
2395 struct page *page = NULL;
2396 int alloc_flags;
2397 unsigned long pages_reclaimed = 0;
2398 unsigned long did_some_progress;
77f1fe6b 2399 bool sync_migration = false;
66199712 2400 bool deferred_compaction = false;
c67fe375 2401 bool contended_compaction = false;
1da177e4 2402
72807a74
MG
2403 /*
2404 * In the slowpath, we sanity check order to avoid ever trying to
2405 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2406 * be using allocators in order of preference for an area that is
2407 * too large.
2408 */
1fc28b70
MG
2409 if (order >= MAX_ORDER) {
2410 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2411 return NULL;
1fc28b70 2412 }
1da177e4 2413
952f3b51
CL
2414 /*
2415 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2416 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2417 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2418 * using a larger set of nodes after it has established that the
2419 * allowed per node queues are empty and that nodes are
2420 * over allocated.
2421 */
e5adfffc
KS
2422 if (IS_ENABLED(CONFIG_NUMA) &&
2423 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2424 goto nopage;
2425
cc4a6851 2426restart:
caf49191
LT
2427 if (!(gfp_mask & __GFP_NO_KSWAPD))
2428 wake_all_kswapd(order, zonelist, high_zoneidx,
2429 zone_idx(preferred_zone));
1da177e4 2430
9bf2229f 2431 /*
7fb1d9fc
RS
2432 * OK, we're below the kswapd watermark and have kicked background
2433 * reclaim. Now things get more complex, so set up alloc_flags according
2434 * to how we want to proceed.
9bf2229f 2435 */
341ce06f 2436 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2437
f33261d7
DR
2438 /*
2439 * Find the true preferred zone if the allocation is unconstrained by
2440 * cpusets.
2441 */
2442 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2443 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2444 &preferred_zone);
2445
cfa54a0f 2446rebalance:
341ce06f 2447 /* This is the last chance, in general, before the goto nopage. */
19770b32 2448 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2449 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2450 preferred_zone, migratetype);
7fb1d9fc
RS
2451 if (page)
2452 goto got_pg;
1da177e4 2453
11e33f6a 2454 /* Allocate without watermarks if the context allows */
341ce06f 2455 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2456 /*
2457 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2458 * the allocation is high priority and these type of
2459 * allocations are system rather than user orientated
2460 */
2461 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2462
341ce06f
PZ
2463 page = __alloc_pages_high_priority(gfp_mask, order,
2464 zonelist, high_zoneidx, nodemask,
2465 preferred_zone, migratetype);
cfd19c5a 2466 if (page) {
341ce06f 2467 goto got_pg;
cfd19c5a 2468 }
1da177e4
LT
2469 }
2470
2471 /* Atomic allocations - we can't balance anything */
2472 if (!wait)
2473 goto nopage;
2474
341ce06f 2475 /* Avoid recursion of direct reclaim */
c06b1fca 2476 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2477 goto nopage;
2478
6583bb64
DR
2479 /* Avoid allocations with no watermarks from looping endlessly */
2480 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2481 goto nopage;
2482
77f1fe6b
MG
2483 /*
2484 * Try direct compaction. The first pass is asynchronous. Subsequent
2485 * attempts after direct reclaim are synchronous
2486 */
56de7263
MG
2487 page = __alloc_pages_direct_compact(gfp_mask, order,
2488 zonelist, high_zoneidx,
2489 nodemask,
2490 alloc_flags, preferred_zone,
66199712 2491 migratetype, sync_migration,
c67fe375 2492 &contended_compaction,
66199712
MG
2493 &deferred_compaction,
2494 &did_some_progress);
56de7263
MG
2495 if (page)
2496 goto got_pg;
c6a140bf 2497 sync_migration = true;
56de7263 2498
31f8d42d
LT
2499 /*
2500 * If compaction is deferred for high-order allocations, it is because
2501 * sync compaction recently failed. In this is the case and the caller
2502 * requested a movable allocation that does not heavily disrupt the
2503 * system then fail the allocation instead of entering direct reclaim.
2504 */
2505 if ((deferred_compaction || contended_compaction) &&
caf49191 2506 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2507 goto nopage;
66199712 2508
11e33f6a
MG
2509 /* Try direct reclaim and then allocating */
2510 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2511 zonelist, high_zoneidx,
2512 nodemask,
5117f45d 2513 alloc_flags, preferred_zone,
3dd28266 2514 migratetype, &did_some_progress);
11e33f6a
MG
2515 if (page)
2516 goto got_pg;
1da177e4 2517
e33c3b5e 2518 /*
11e33f6a
MG
2519 * If we failed to make any progress reclaiming, then we are
2520 * running out of options and have to consider going OOM
e33c3b5e 2521 */
11e33f6a
MG
2522 if (!did_some_progress) {
2523 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2524 if (oom_killer_disabled)
2525 goto nopage;
29fd66d2
DR
2526 /* Coredumps can quickly deplete all memory reserves */
2527 if ((current->flags & PF_DUMPCORE) &&
2528 !(gfp_mask & __GFP_NOFAIL))
2529 goto nopage;
11e33f6a
MG
2530 page = __alloc_pages_may_oom(gfp_mask, order,
2531 zonelist, high_zoneidx,
3dd28266
MG
2532 nodemask, preferred_zone,
2533 migratetype);
11e33f6a
MG
2534 if (page)
2535 goto got_pg;
1da177e4 2536
03668b3c
DR
2537 if (!(gfp_mask & __GFP_NOFAIL)) {
2538 /*
2539 * The oom killer is not called for high-order
2540 * allocations that may fail, so if no progress
2541 * is being made, there are no other options and
2542 * retrying is unlikely to help.
2543 */
2544 if (order > PAGE_ALLOC_COSTLY_ORDER)
2545 goto nopage;
2546 /*
2547 * The oom killer is not called for lowmem
2548 * allocations to prevent needlessly killing
2549 * innocent tasks.
2550 */
2551 if (high_zoneidx < ZONE_NORMAL)
2552 goto nopage;
2553 }
e2c55dc8 2554
ff0ceb9d
DR
2555 goto restart;
2556 }
1da177e4
LT
2557 }
2558
11e33f6a 2559 /* Check if we should retry the allocation */
a41f24ea 2560 pages_reclaimed += did_some_progress;
f90ac398
MG
2561 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2562 pages_reclaimed)) {
11e33f6a 2563 /* Wait for some write requests to complete then retry */
0e093d99 2564 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2565 goto rebalance;
3e7d3449
MG
2566 } else {
2567 /*
2568 * High-order allocations do not necessarily loop after
2569 * direct reclaim and reclaim/compaction depends on compaction
2570 * being called after reclaim so call directly if necessary
2571 */
2572 page = __alloc_pages_direct_compact(gfp_mask, order,
2573 zonelist, high_zoneidx,
2574 nodemask,
2575 alloc_flags, preferred_zone,
66199712 2576 migratetype, sync_migration,
c67fe375 2577 &contended_compaction,
66199712
MG
2578 &deferred_compaction,
2579 &did_some_progress);
3e7d3449
MG
2580 if (page)
2581 goto got_pg;
1da177e4
LT
2582 }
2583
2584nopage:
a238ab5b 2585 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2586 return page;
1da177e4 2587got_pg:
b1eeab67
VN
2588 if (kmemcheck_enabled)
2589 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2590
072bb0aa 2591 return page;
1da177e4 2592}
11e33f6a
MG
2593
2594/*
2595 * This is the 'heart' of the zoned buddy allocator.
2596 */
2597struct page *
2598__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2599 struct zonelist *zonelist, nodemask_t *nodemask)
2600{
2601 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2602 struct zone *preferred_zone;
cc9a6c87 2603 struct page *page = NULL;
3dd28266 2604 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2605 unsigned int cpuset_mems_cookie;
d95ea5d1 2606 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
11e33f6a 2607
dcce284a
BH
2608 gfp_mask &= gfp_allowed_mask;
2609
11e33f6a
MG
2610 lockdep_trace_alloc(gfp_mask);
2611
2612 might_sleep_if(gfp_mask & __GFP_WAIT);
2613
2614 if (should_fail_alloc_page(gfp_mask, order))
2615 return NULL;
2616
2617 /*
2618 * Check the zones suitable for the gfp_mask contain at least one
2619 * valid zone. It's possible to have an empty zonelist as a result
2620 * of GFP_THISNODE and a memoryless node
2621 */
2622 if (unlikely(!zonelist->_zonerefs->zone))
2623 return NULL;
2624
cc9a6c87
MG
2625retry_cpuset:
2626 cpuset_mems_cookie = get_mems_allowed();
2627
5117f45d 2628 /* The preferred zone is used for statistics later */
f33261d7
DR
2629 first_zones_zonelist(zonelist, high_zoneidx,
2630 nodemask ? : &cpuset_current_mems_allowed,
2631 &preferred_zone);
cc9a6c87
MG
2632 if (!preferred_zone)
2633 goto out;
5117f45d 2634
d95ea5d1
BZ
2635#ifdef CONFIG_CMA
2636 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2637 alloc_flags |= ALLOC_CMA;
2638#endif
5117f45d 2639 /* First allocation attempt */
11e33f6a 2640 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2641 zonelist, high_zoneidx, alloc_flags,
3dd28266 2642 preferred_zone, migratetype);
11e33f6a
MG
2643 if (unlikely(!page))
2644 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2645 zonelist, high_zoneidx, nodemask,
3dd28266 2646 preferred_zone, migratetype);
11e33f6a 2647
4b4f278c 2648 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2649
2650out:
2651 /*
2652 * When updating a task's mems_allowed, it is possible to race with
2653 * parallel threads in such a way that an allocation can fail while
2654 * the mask is being updated. If a page allocation is about to fail,
2655 * check if the cpuset changed during allocation and if so, retry.
2656 */
2657 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2658 goto retry_cpuset;
2659
11e33f6a 2660 return page;
1da177e4 2661}
d239171e 2662EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2663
2664/*
2665 * Common helper functions.
2666 */
920c7a5d 2667unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2668{
945a1113
AM
2669 struct page *page;
2670
2671 /*
2672 * __get_free_pages() returns a 32-bit address, which cannot represent
2673 * a highmem page
2674 */
2675 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2676
1da177e4
LT
2677 page = alloc_pages(gfp_mask, order);
2678 if (!page)
2679 return 0;
2680 return (unsigned long) page_address(page);
2681}
1da177e4
LT
2682EXPORT_SYMBOL(__get_free_pages);
2683
920c7a5d 2684unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2685{
945a1113 2686 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2687}
1da177e4
LT
2688EXPORT_SYMBOL(get_zeroed_page);
2689
920c7a5d 2690void __free_pages(struct page *page, unsigned int order)
1da177e4 2691{
b5810039 2692 if (put_page_testzero(page)) {
1da177e4 2693 if (order == 0)
fc91668e 2694 free_hot_cold_page(page, 0);
1da177e4
LT
2695 else
2696 __free_pages_ok(page, order);
2697 }
2698}
2699
2700EXPORT_SYMBOL(__free_pages);
2701
920c7a5d 2702void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2703{
2704 if (addr != 0) {
725d704e 2705 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2706 __free_pages(virt_to_page((void *)addr), order);
2707 }
2708}
2709
2710EXPORT_SYMBOL(free_pages);
2711
ee85c2e1
AK
2712static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2713{
2714 if (addr) {
2715 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2716 unsigned long used = addr + PAGE_ALIGN(size);
2717
2718 split_page(virt_to_page((void *)addr), order);
2719 while (used < alloc_end) {
2720 free_page(used);
2721 used += PAGE_SIZE;
2722 }
2723 }
2724 return (void *)addr;
2725}
2726
2be0ffe2
TT
2727/**
2728 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2729 * @size: the number of bytes to allocate
2730 * @gfp_mask: GFP flags for the allocation
2731 *
2732 * This function is similar to alloc_pages(), except that it allocates the
2733 * minimum number of pages to satisfy the request. alloc_pages() can only
2734 * allocate memory in power-of-two pages.
2735 *
2736 * This function is also limited by MAX_ORDER.
2737 *
2738 * Memory allocated by this function must be released by free_pages_exact().
2739 */
2740void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2741{
2742 unsigned int order = get_order(size);
2743 unsigned long addr;
2744
2745 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2746 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2747}
2748EXPORT_SYMBOL(alloc_pages_exact);
2749
ee85c2e1
AK
2750/**
2751 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2752 * pages on a node.
b5e6ab58 2753 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2754 * @size: the number of bytes to allocate
2755 * @gfp_mask: GFP flags for the allocation
2756 *
2757 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2758 * back.
2759 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2760 * but is not exact.
2761 */
2762void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2763{
2764 unsigned order = get_order(size);
2765 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2766 if (!p)
2767 return NULL;
2768 return make_alloc_exact((unsigned long)page_address(p), order, size);
2769}
2770EXPORT_SYMBOL(alloc_pages_exact_nid);
2771
2be0ffe2
TT
2772/**
2773 * free_pages_exact - release memory allocated via alloc_pages_exact()
2774 * @virt: the value returned by alloc_pages_exact.
2775 * @size: size of allocation, same value as passed to alloc_pages_exact().
2776 *
2777 * Release the memory allocated by a previous call to alloc_pages_exact.
2778 */
2779void free_pages_exact(void *virt, size_t size)
2780{
2781 unsigned long addr = (unsigned long)virt;
2782 unsigned long end = addr + PAGE_ALIGN(size);
2783
2784 while (addr < end) {
2785 free_page(addr);
2786 addr += PAGE_SIZE;
2787 }
2788}
2789EXPORT_SYMBOL(free_pages_exact);
2790
1da177e4
LT
2791static unsigned int nr_free_zone_pages(int offset)
2792{
dd1a239f 2793 struct zoneref *z;
54a6eb5c
MG
2794 struct zone *zone;
2795
e310fd43 2796 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2797 unsigned int sum = 0;
2798
0e88460d 2799 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2800
54a6eb5c 2801 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2802 unsigned long size = zone->present_pages;
41858966 2803 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2804 if (size > high)
2805 sum += size - high;
1da177e4
LT
2806 }
2807
2808 return sum;
2809}
2810
2811/*
2812 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2813 */
2814unsigned int nr_free_buffer_pages(void)
2815{
af4ca457 2816 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2817}
c2f1a551 2818EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2819
2820/*
2821 * Amount of free RAM allocatable within all zones
2822 */
2823unsigned int nr_free_pagecache_pages(void)
2824{
2a1e274a 2825 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2826}
08e0f6a9
CL
2827
2828static inline void show_node(struct zone *zone)
1da177e4 2829{
e5adfffc 2830 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2831 printk("Node %d ", zone_to_nid(zone));
1da177e4 2832}
1da177e4 2833
1da177e4
LT
2834void si_meminfo(struct sysinfo *val)
2835{
2836 val->totalram = totalram_pages;
2837 val->sharedram = 0;
d23ad423 2838 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2839 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2840 val->totalhigh = totalhigh_pages;
2841 val->freehigh = nr_free_highpages();
1da177e4
LT
2842 val->mem_unit = PAGE_SIZE;
2843}
2844
2845EXPORT_SYMBOL(si_meminfo);
2846
2847#ifdef CONFIG_NUMA
2848void si_meminfo_node(struct sysinfo *val, int nid)
2849{
2850 pg_data_t *pgdat = NODE_DATA(nid);
2851
2852 val->totalram = pgdat->node_present_pages;
d23ad423 2853 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2854#ifdef CONFIG_HIGHMEM
1da177e4 2855 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2856 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2857 NR_FREE_PAGES);
98d2b0eb
CL
2858#else
2859 val->totalhigh = 0;
2860 val->freehigh = 0;
2861#endif
1da177e4
LT
2862 val->mem_unit = PAGE_SIZE;
2863}
2864#endif
2865
ddd588b5 2866/*
7bf02ea2
DR
2867 * Determine whether the node should be displayed or not, depending on whether
2868 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2869 */
7bf02ea2 2870bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2871{
2872 bool ret = false;
cc9a6c87 2873 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2874
2875 if (!(flags & SHOW_MEM_FILTER_NODES))
2876 goto out;
2877
cc9a6c87
MG
2878 do {
2879 cpuset_mems_cookie = get_mems_allowed();
2880 ret = !node_isset(nid, cpuset_current_mems_allowed);
2881 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2882out:
2883 return ret;
2884}
2885
1da177e4
LT
2886#define K(x) ((x) << (PAGE_SHIFT-10))
2887
377e4f16
RV
2888static void show_migration_types(unsigned char type)
2889{
2890 static const char types[MIGRATE_TYPES] = {
2891 [MIGRATE_UNMOVABLE] = 'U',
2892 [MIGRATE_RECLAIMABLE] = 'E',
2893 [MIGRATE_MOVABLE] = 'M',
2894 [MIGRATE_RESERVE] = 'R',
2895#ifdef CONFIG_CMA
2896 [MIGRATE_CMA] = 'C',
2897#endif
2898 [MIGRATE_ISOLATE] = 'I',
2899 };
2900 char tmp[MIGRATE_TYPES + 1];
2901 char *p = tmp;
2902 int i;
2903
2904 for (i = 0; i < MIGRATE_TYPES; i++) {
2905 if (type & (1 << i))
2906 *p++ = types[i];
2907 }
2908
2909 *p = '\0';
2910 printk("(%s) ", tmp);
2911}
2912
1da177e4
LT
2913/*
2914 * Show free area list (used inside shift_scroll-lock stuff)
2915 * We also calculate the percentage fragmentation. We do this by counting the
2916 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2917 * Suppresses nodes that are not allowed by current's cpuset if
2918 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2919 */
7bf02ea2 2920void show_free_areas(unsigned int filter)
1da177e4 2921{
c7241913 2922 int cpu;
1da177e4
LT
2923 struct zone *zone;
2924
ee99c71c 2925 for_each_populated_zone(zone) {
7bf02ea2 2926 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2927 continue;
c7241913
JS
2928 show_node(zone);
2929 printk("%s per-cpu:\n", zone->name);
1da177e4 2930
6b482c67 2931 for_each_online_cpu(cpu) {
1da177e4
LT
2932 struct per_cpu_pageset *pageset;
2933
99dcc3e5 2934 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2935
3dfa5721
CL
2936 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2937 cpu, pageset->pcp.high,
2938 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2939 }
2940 }
2941
a731286d
KM
2942 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2943 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2944 " unevictable:%lu"
b76146ed 2945 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2946 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2947 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2948 " free_cma:%lu\n",
4f98a2fe 2949 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2950 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2951 global_page_state(NR_ISOLATED_ANON),
2952 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2953 global_page_state(NR_INACTIVE_FILE),
a731286d 2954 global_page_state(NR_ISOLATED_FILE),
7b854121 2955 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2956 global_page_state(NR_FILE_DIRTY),
ce866b34 2957 global_page_state(NR_WRITEBACK),
fd39fc85 2958 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2959 global_page_state(NR_FREE_PAGES),
3701b033
KM
2960 global_page_state(NR_SLAB_RECLAIMABLE),
2961 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2962 global_page_state(NR_FILE_MAPPED),
4b02108a 2963 global_page_state(NR_SHMEM),
a25700a5 2964 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2965 global_page_state(NR_BOUNCE),
2966 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2967
ee99c71c 2968 for_each_populated_zone(zone) {
1da177e4
LT
2969 int i;
2970
7bf02ea2 2971 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2972 continue;
1da177e4
LT
2973 show_node(zone);
2974 printk("%s"
2975 " free:%lukB"
2976 " min:%lukB"
2977 " low:%lukB"
2978 " high:%lukB"
4f98a2fe
RR
2979 " active_anon:%lukB"
2980 " inactive_anon:%lukB"
2981 " active_file:%lukB"
2982 " inactive_file:%lukB"
7b854121 2983 " unevictable:%lukB"
a731286d
KM
2984 " isolated(anon):%lukB"
2985 " isolated(file):%lukB"
1da177e4 2986 " present:%lukB"
4a0aa73f
KM
2987 " mlocked:%lukB"
2988 " dirty:%lukB"
2989 " writeback:%lukB"
2990 " mapped:%lukB"
4b02108a 2991 " shmem:%lukB"
4a0aa73f
KM
2992 " slab_reclaimable:%lukB"
2993 " slab_unreclaimable:%lukB"
c6a7f572 2994 " kernel_stack:%lukB"
4a0aa73f
KM
2995 " pagetables:%lukB"
2996 " unstable:%lukB"
2997 " bounce:%lukB"
d1ce749a 2998 " free_cma:%lukB"
4a0aa73f 2999 " writeback_tmp:%lukB"
1da177e4
LT
3000 " pages_scanned:%lu"
3001 " all_unreclaimable? %s"
3002 "\n",
3003 zone->name,
88f5acf8 3004 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3005 K(min_wmark_pages(zone)),
3006 K(low_wmark_pages(zone)),
3007 K(high_wmark_pages(zone)),
4f98a2fe
RR
3008 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3009 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3010 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3011 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3012 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3013 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3014 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3015 K(zone->present_pages),
4a0aa73f
KM
3016 K(zone_page_state(zone, NR_MLOCK)),
3017 K(zone_page_state(zone, NR_FILE_DIRTY)),
3018 K(zone_page_state(zone, NR_WRITEBACK)),
3019 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3020 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3021 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3022 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3023 zone_page_state(zone, NR_KERNEL_STACK) *
3024 THREAD_SIZE / 1024,
4a0aa73f
KM
3025 K(zone_page_state(zone, NR_PAGETABLE)),
3026 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3027 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3028 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3029 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3030 zone->pages_scanned,
93e4a89a 3031 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3032 );
3033 printk("lowmem_reserve[]:");
3034 for (i = 0; i < MAX_NR_ZONES; i++)
3035 printk(" %lu", zone->lowmem_reserve[i]);
3036 printk("\n");
3037 }
3038
ee99c71c 3039 for_each_populated_zone(zone) {
8f9de51a 3040 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3041 unsigned char types[MAX_ORDER];
1da177e4 3042
7bf02ea2 3043 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3044 continue;
1da177e4
LT
3045 show_node(zone);
3046 printk("%s: ", zone->name);
1da177e4
LT
3047
3048 spin_lock_irqsave(&zone->lock, flags);
3049 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3050 struct free_area *area = &zone->free_area[order];
3051 int type;
3052
3053 nr[order] = area->nr_free;
8f9de51a 3054 total += nr[order] << order;
377e4f16
RV
3055
3056 types[order] = 0;
3057 for (type = 0; type < MIGRATE_TYPES; type++) {
3058 if (!list_empty(&area->free_list[type]))
3059 types[order] |= 1 << type;
3060 }
1da177e4
LT
3061 }
3062 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3063 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3064 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3065 if (nr[order])
3066 show_migration_types(types[order]);
3067 }
1da177e4
LT
3068 printk("= %lukB\n", K(total));
3069 }
3070
e6f3602d
LW
3071 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3072
1da177e4
LT
3073 show_swap_cache_info();
3074}
3075
19770b32
MG
3076static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3077{
3078 zoneref->zone = zone;
3079 zoneref->zone_idx = zone_idx(zone);
3080}
3081
1da177e4
LT
3082/*
3083 * Builds allocation fallback zone lists.
1a93205b
CL
3084 *
3085 * Add all populated zones of a node to the zonelist.
1da177e4 3086 */
f0c0b2b8
KH
3087static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3088 int nr_zones, enum zone_type zone_type)
1da177e4 3089{
1a93205b
CL
3090 struct zone *zone;
3091
98d2b0eb 3092 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3093 zone_type++;
02a68a5e
CL
3094
3095 do {
2f6726e5 3096 zone_type--;
070f8032 3097 zone = pgdat->node_zones + zone_type;
1a93205b 3098 if (populated_zone(zone)) {
dd1a239f
MG
3099 zoneref_set_zone(zone,
3100 &zonelist->_zonerefs[nr_zones++]);
070f8032 3101 check_highest_zone(zone_type);
1da177e4 3102 }
02a68a5e 3103
2f6726e5 3104 } while (zone_type);
070f8032 3105 return nr_zones;
1da177e4
LT
3106}
3107
f0c0b2b8
KH
3108
3109/*
3110 * zonelist_order:
3111 * 0 = automatic detection of better ordering.
3112 * 1 = order by ([node] distance, -zonetype)
3113 * 2 = order by (-zonetype, [node] distance)
3114 *
3115 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3116 * the same zonelist. So only NUMA can configure this param.
3117 */
3118#define ZONELIST_ORDER_DEFAULT 0
3119#define ZONELIST_ORDER_NODE 1
3120#define ZONELIST_ORDER_ZONE 2
3121
3122/* zonelist order in the kernel.
3123 * set_zonelist_order() will set this to NODE or ZONE.
3124 */
3125static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3126static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3127
3128
1da177e4 3129#ifdef CONFIG_NUMA
f0c0b2b8
KH
3130/* The value user specified ....changed by config */
3131static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3132/* string for sysctl */
3133#define NUMA_ZONELIST_ORDER_LEN 16
3134char numa_zonelist_order[16] = "default";
3135
3136/*
3137 * interface for configure zonelist ordering.
3138 * command line option "numa_zonelist_order"
3139 * = "[dD]efault - default, automatic configuration.
3140 * = "[nN]ode - order by node locality, then by zone within node
3141 * = "[zZ]one - order by zone, then by locality within zone
3142 */
3143
3144static int __parse_numa_zonelist_order(char *s)
3145{
3146 if (*s == 'd' || *s == 'D') {
3147 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3148 } else if (*s == 'n' || *s == 'N') {
3149 user_zonelist_order = ZONELIST_ORDER_NODE;
3150 } else if (*s == 'z' || *s == 'Z') {
3151 user_zonelist_order = ZONELIST_ORDER_ZONE;
3152 } else {
3153 printk(KERN_WARNING
3154 "Ignoring invalid numa_zonelist_order value: "
3155 "%s\n", s);
3156 return -EINVAL;
3157 }
3158 return 0;
3159}
3160
3161static __init int setup_numa_zonelist_order(char *s)
3162{
ecb256f8
VL
3163 int ret;
3164
3165 if (!s)
3166 return 0;
3167
3168 ret = __parse_numa_zonelist_order(s);
3169 if (ret == 0)
3170 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3171
3172 return ret;
f0c0b2b8
KH
3173}
3174early_param("numa_zonelist_order", setup_numa_zonelist_order);
3175
3176/*
3177 * sysctl handler for numa_zonelist_order
3178 */
3179int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3180 void __user *buffer, size_t *length,
f0c0b2b8
KH
3181 loff_t *ppos)
3182{
3183 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3184 int ret;
443c6f14 3185 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3186
443c6f14 3187 mutex_lock(&zl_order_mutex);
f0c0b2b8 3188 if (write)
443c6f14 3189 strcpy(saved_string, (char*)table->data);
8d65af78 3190 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3191 if (ret)
443c6f14 3192 goto out;
f0c0b2b8
KH
3193 if (write) {
3194 int oldval = user_zonelist_order;
3195 if (__parse_numa_zonelist_order((char*)table->data)) {
3196 /*
3197 * bogus value. restore saved string
3198 */
3199 strncpy((char*)table->data, saved_string,
3200 NUMA_ZONELIST_ORDER_LEN);
3201 user_zonelist_order = oldval;
4eaf3f64
HL
3202 } else if (oldval != user_zonelist_order) {
3203 mutex_lock(&zonelists_mutex);
9adb62a5 3204 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3205 mutex_unlock(&zonelists_mutex);
3206 }
f0c0b2b8 3207 }
443c6f14
AK
3208out:
3209 mutex_unlock(&zl_order_mutex);
3210 return ret;
f0c0b2b8
KH
3211}
3212
3213
62bc62a8 3214#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3215static int node_load[MAX_NUMNODES];
3216
1da177e4 3217/**
4dc3b16b 3218 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3219 * @node: node whose fallback list we're appending
3220 * @used_node_mask: nodemask_t of already used nodes
3221 *
3222 * We use a number of factors to determine which is the next node that should
3223 * appear on a given node's fallback list. The node should not have appeared
3224 * already in @node's fallback list, and it should be the next closest node
3225 * according to the distance array (which contains arbitrary distance values
3226 * from each node to each node in the system), and should also prefer nodes
3227 * with no CPUs, since presumably they'll have very little allocation pressure
3228 * on them otherwise.
3229 * It returns -1 if no node is found.
3230 */
f0c0b2b8 3231static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3232{
4cf808eb 3233 int n, val;
1da177e4
LT
3234 int min_val = INT_MAX;
3235 int best_node = -1;
a70f7302 3236 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3237
4cf808eb
LT
3238 /* Use the local node if we haven't already */
3239 if (!node_isset(node, *used_node_mask)) {
3240 node_set(node, *used_node_mask);
3241 return node;
3242 }
1da177e4 3243
4b0ef1fe 3244 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3245
3246 /* Don't want a node to appear more than once */
3247 if (node_isset(n, *used_node_mask))
3248 continue;
3249
1da177e4
LT
3250 /* Use the distance array to find the distance */
3251 val = node_distance(node, n);
3252
4cf808eb
LT
3253 /* Penalize nodes under us ("prefer the next node") */
3254 val += (n < node);
3255
1da177e4 3256 /* Give preference to headless and unused nodes */
a70f7302
RR
3257 tmp = cpumask_of_node(n);
3258 if (!cpumask_empty(tmp))
1da177e4
LT
3259 val += PENALTY_FOR_NODE_WITH_CPUS;
3260
3261 /* Slight preference for less loaded node */
3262 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3263 val += node_load[n];
3264
3265 if (val < min_val) {
3266 min_val = val;
3267 best_node = n;
3268 }
3269 }
3270
3271 if (best_node >= 0)
3272 node_set(best_node, *used_node_mask);
3273
3274 return best_node;
3275}
3276
f0c0b2b8
KH
3277
3278/*
3279 * Build zonelists ordered by node and zones within node.
3280 * This results in maximum locality--normal zone overflows into local
3281 * DMA zone, if any--but risks exhausting DMA zone.
3282 */
3283static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3284{
f0c0b2b8 3285 int j;
1da177e4 3286 struct zonelist *zonelist;
f0c0b2b8 3287
54a6eb5c 3288 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3289 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3290 ;
3291 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3292 MAX_NR_ZONES - 1);
dd1a239f
MG
3293 zonelist->_zonerefs[j].zone = NULL;
3294 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3295}
3296
523b9458
CL
3297/*
3298 * Build gfp_thisnode zonelists
3299 */
3300static void build_thisnode_zonelists(pg_data_t *pgdat)
3301{
523b9458
CL
3302 int j;
3303 struct zonelist *zonelist;
3304
54a6eb5c
MG
3305 zonelist = &pgdat->node_zonelists[1];
3306 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3307 zonelist->_zonerefs[j].zone = NULL;
3308 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3309}
3310
f0c0b2b8
KH
3311/*
3312 * Build zonelists ordered by zone and nodes within zones.
3313 * This results in conserving DMA zone[s] until all Normal memory is
3314 * exhausted, but results in overflowing to remote node while memory
3315 * may still exist in local DMA zone.
3316 */
3317static int node_order[MAX_NUMNODES];
3318
3319static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3320{
f0c0b2b8
KH
3321 int pos, j, node;
3322 int zone_type; /* needs to be signed */
3323 struct zone *z;
3324 struct zonelist *zonelist;
3325
54a6eb5c
MG
3326 zonelist = &pgdat->node_zonelists[0];
3327 pos = 0;
3328 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3329 for (j = 0; j < nr_nodes; j++) {
3330 node = node_order[j];
3331 z = &NODE_DATA(node)->node_zones[zone_type];
3332 if (populated_zone(z)) {
dd1a239f
MG
3333 zoneref_set_zone(z,
3334 &zonelist->_zonerefs[pos++]);
54a6eb5c 3335 check_highest_zone(zone_type);
f0c0b2b8
KH
3336 }
3337 }
f0c0b2b8 3338 }
dd1a239f
MG
3339 zonelist->_zonerefs[pos].zone = NULL;
3340 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3341}
3342
3343static int default_zonelist_order(void)
3344{
3345 int nid, zone_type;
3346 unsigned long low_kmem_size,total_size;
3347 struct zone *z;
3348 int average_size;
3349 /*
88393161 3350 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3351 * If they are really small and used heavily, the system can fall
3352 * into OOM very easily.
e325c90f 3353 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3354 */
3355 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3356 low_kmem_size = 0;
3357 total_size = 0;
3358 for_each_online_node(nid) {
3359 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3360 z = &NODE_DATA(nid)->node_zones[zone_type];
3361 if (populated_zone(z)) {
3362 if (zone_type < ZONE_NORMAL)
3363 low_kmem_size += z->present_pages;
3364 total_size += z->present_pages;
e325c90f
DR
3365 } else if (zone_type == ZONE_NORMAL) {
3366 /*
3367 * If any node has only lowmem, then node order
3368 * is preferred to allow kernel allocations
3369 * locally; otherwise, they can easily infringe
3370 * on other nodes when there is an abundance of
3371 * lowmem available to allocate from.
3372 */
3373 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3374 }
3375 }
3376 }
3377 if (!low_kmem_size || /* there are no DMA area. */
3378 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3379 return ZONELIST_ORDER_NODE;
3380 /*
3381 * look into each node's config.
3382 * If there is a node whose DMA/DMA32 memory is very big area on
3383 * local memory, NODE_ORDER may be suitable.
3384 */
37b07e41 3385 average_size = total_size /
4b0ef1fe 3386 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3387 for_each_online_node(nid) {
3388 low_kmem_size = 0;
3389 total_size = 0;
3390 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3391 z = &NODE_DATA(nid)->node_zones[zone_type];
3392 if (populated_zone(z)) {
3393 if (zone_type < ZONE_NORMAL)
3394 low_kmem_size += z->present_pages;
3395 total_size += z->present_pages;
3396 }
3397 }
3398 if (low_kmem_size &&
3399 total_size > average_size && /* ignore small node */
3400 low_kmem_size > total_size * 70/100)
3401 return ZONELIST_ORDER_NODE;
3402 }
3403 return ZONELIST_ORDER_ZONE;
3404}
3405
3406static void set_zonelist_order(void)
3407{
3408 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3409 current_zonelist_order = default_zonelist_order();
3410 else
3411 current_zonelist_order = user_zonelist_order;
3412}
3413
3414static void build_zonelists(pg_data_t *pgdat)
3415{
3416 int j, node, load;
3417 enum zone_type i;
1da177e4 3418 nodemask_t used_mask;
f0c0b2b8
KH
3419 int local_node, prev_node;
3420 struct zonelist *zonelist;
3421 int order = current_zonelist_order;
1da177e4
LT
3422
3423 /* initialize zonelists */
523b9458 3424 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3425 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3426 zonelist->_zonerefs[0].zone = NULL;
3427 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3428 }
3429
3430 /* NUMA-aware ordering of nodes */
3431 local_node = pgdat->node_id;
62bc62a8 3432 load = nr_online_nodes;
1da177e4
LT
3433 prev_node = local_node;
3434 nodes_clear(used_mask);
f0c0b2b8 3435
f0c0b2b8
KH
3436 memset(node_order, 0, sizeof(node_order));
3437 j = 0;
3438
1da177e4
LT
3439 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3440 /*
3441 * We don't want to pressure a particular node.
3442 * So adding penalty to the first node in same
3443 * distance group to make it round-robin.
3444 */
957f822a
DR
3445 if (node_distance(local_node, node) !=
3446 node_distance(local_node, prev_node))
f0c0b2b8
KH
3447 node_load[node] = load;
3448
1da177e4
LT
3449 prev_node = node;
3450 load--;
f0c0b2b8
KH
3451 if (order == ZONELIST_ORDER_NODE)
3452 build_zonelists_in_node_order(pgdat, node);
3453 else
3454 node_order[j++] = node; /* remember order */
3455 }
1da177e4 3456
f0c0b2b8
KH
3457 if (order == ZONELIST_ORDER_ZONE) {
3458 /* calculate node order -- i.e., DMA last! */
3459 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3460 }
523b9458
CL
3461
3462 build_thisnode_zonelists(pgdat);
1da177e4
LT
3463}
3464
9276b1bc 3465/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3466static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3467{
54a6eb5c
MG
3468 struct zonelist *zonelist;
3469 struct zonelist_cache *zlc;
dd1a239f 3470 struct zoneref *z;
9276b1bc 3471
54a6eb5c
MG
3472 zonelist = &pgdat->node_zonelists[0];
3473 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3474 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3475 for (z = zonelist->_zonerefs; z->zone; z++)
3476 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3477}
3478
7aac7898
LS
3479#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3480/*
3481 * Return node id of node used for "local" allocations.
3482 * I.e., first node id of first zone in arg node's generic zonelist.
3483 * Used for initializing percpu 'numa_mem', which is used primarily
3484 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3485 */
3486int local_memory_node(int node)
3487{
3488 struct zone *zone;
3489
3490 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3491 gfp_zone(GFP_KERNEL),
3492 NULL,
3493 &zone);
3494 return zone->node;
3495}
3496#endif
f0c0b2b8 3497
1da177e4
LT
3498#else /* CONFIG_NUMA */
3499
f0c0b2b8
KH
3500static void set_zonelist_order(void)
3501{
3502 current_zonelist_order = ZONELIST_ORDER_ZONE;
3503}
3504
3505static void build_zonelists(pg_data_t *pgdat)
1da177e4 3506{
19655d34 3507 int node, local_node;
54a6eb5c
MG
3508 enum zone_type j;
3509 struct zonelist *zonelist;
1da177e4
LT
3510
3511 local_node = pgdat->node_id;
1da177e4 3512
54a6eb5c
MG
3513 zonelist = &pgdat->node_zonelists[0];
3514 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3515
54a6eb5c
MG
3516 /*
3517 * Now we build the zonelist so that it contains the zones
3518 * of all the other nodes.
3519 * We don't want to pressure a particular node, so when
3520 * building the zones for node N, we make sure that the
3521 * zones coming right after the local ones are those from
3522 * node N+1 (modulo N)
3523 */
3524 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3525 if (!node_online(node))
3526 continue;
3527 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3528 MAX_NR_ZONES - 1);
1da177e4 3529 }
54a6eb5c
MG
3530 for (node = 0; node < local_node; node++) {
3531 if (!node_online(node))
3532 continue;
3533 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3534 MAX_NR_ZONES - 1);
3535 }
3536
dd1a239f
MG
3537 zonelist->_zonerefs[j].zone = NULL;
3538 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3539}
3540
9276b1bc 3541/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3542static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3543{
54a6eb5c 3544 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3545}
3546
1da177e4
LT
3547#endif /* CONFIG_NUMA */
3548
99dcc3e5
CL
3549/*
3550 * Boot pageset table. One per cpu which is going to be used for all
3551 * zones and all nodes. The parameters will be set in such a way
3552 * that an item put on a list will immediately be handed over to
3553 * the buddy list. This is safe since pageset manipulation is done
3554 * with interrupts disabled.
3555 *
3556 * The boot_pagesets must be kept even after bootup is complete for
3557 * unused processors and/or zones. They do play a role for bootstrapping
3558 * hotplugged processors.
3559 *
3560 * zoneinfo_show() and maybe other functions do
3561 * not check if the processor is online before following the pageset pointer.
3562 * Other parts of the kernel may not check if the zone is available.
3563 */
3564static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3565static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3566static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3567
4eaf3f64
HL
3568/*
3569 * Global mutex to protect against size modification of zonelists
3570 * as well as to serialize pageset setup for the new populated zone.
3571 */
3572DEFINE_MUTEX(zonelists_mutex);
3573
9b1a4d38 3574/* return values int ....just for stop_machine() */
4ed7e022 3575static int __build_all_zonelists(void *data)
1da177e4 3576{
6811378e 3577 int nid;
99dcc3e5 3578 int cpu;
9adb62a5 3579 pg_data_t *self = data;
9276b1bc 3580
7f9cfb31
BL
3581#ifdef CONFIG_NUMA
3582 memset(node_load, 0, sizeof(node_load));
3583#endif
9adb62a5
JL
3584
3585 if (self && !node_online(self->node_id)) {
3586 build_zonelists(self);
3587 build_zonelist_cache(self);
3588 }
3589
9276b1bc 3590 for_each_online_node(nid) {
7ea1530a
CL
3591 pg_data_t *pgdat = NODE_DATA(nid);
3592
3593 build_zonelists(pgdat);
3594 build_zonelist_cache(pgdat);
9276b1bc 3595 }
99dcc3e5
CL
3596
3597 /*
3598 * Initialize the boot_pagesets that are going to be used
3599 * for bootstrapping processors. The real pagesets for
3600 * each zone will be allocated later when the per cpu
3601 * allocator is available.
3602 *
3603 * boot_pagesets are used also for bootstrapping offline
3604 * cpus if the system is already booted because the pagesets
3605 * are needed to initialize allocators on a specific cpu too.
3606 * F.e. the percpu allocator needs the page allocator which
3607 * needs the percpu allocator in order to allocate its pagesets
3608 * (a chicken-egg dilemma).
3609 */
7aac7898 3610 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3611 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3612
7aac7898
LS
3613#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3614 /*
3615 * We now know the "local memory node" for each node--
3616 * i.e., the node of the first zone in the generic zonelist.
3617 * Set up numa_mem percpu variable for on-line cpus. During
3618 * boot, only the boot cpu should be on-line; we'll init the
3619 * secondary cpus' numa_mem as they come on-line. During
3620 * node/memory hotplug, we'll fixup all on-line cpus.
3621 */
3622 if (cpu_online(cpu))
3623 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3624#endif
3625 }
3626
6811378e
YG
3627 return 0;
3628}
3629
4eaf3f64
HL
3630/*
3631 * Called with zonelists_mutex held always
3632 * unless system_state == SYSTEM_BOOTING.
3633 */
9adb62a5 3634void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3635{
f0c0b2b8
KH
3636 set_zonelist_order();
3637
6811378e 3638 if (system_state == SYSTEM_BOOTING) {
423b41d7 3639 __build_all_zonelists(NULL);
68ad8df4 3640 mminit_verify_zonelist();
6811378e
YG
3641 cpuset_init_current_mems_allowed();
3642 } else {
183ff22b 3643 /* we have to stop all cpus to guarantee there is no user
6811378e 3644 of zonelist */
e9959f0f 3645#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3646 if (zone)
3647 setup_zone_pageset(zone);
e9959f0f 3648#endif
9adb62a5 3649 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3650 /* cpuset refresh routine should be here */
3651 }
bd1e22b8 3652 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3653 /*
3654 * Disable grouping by mobility if the number of pages in the
3655 * system is too low to allow the mechanism to work. It would be
3656 * more accurate, but expensive to check per-zone. This check is
3657 * made on memory-hotadd so a system can start with mobility
3658 * disabled and enable it later
3659 */
d9c23400 3660 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3661 page_group_by_mobility_disabled = 1;
3662 else
3663 page_group_by_mobility_disabled = 0;
3664
3665 printk("Built %i zonelists in %s order, mobility grouping %s. "
3666 "Total pages: %ld\n",
62bc62a8 3667 nr_online_nodes,
f0c0b2b8 3668 zonelist_order_name[current_zonelist_order],
9ef9acb0 3669 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3670 vm_total_pages);
3671#ifdef CONFIG_NUMA
3672 printk("Policy zone: %s\n", zone_names[policy_zone]);
3673#endif
1da177e4
LT
3674}
3675
3676/*
3677 * Helper functions to size the waitqueue hash table.
3678 * Essentially these want to choose hash table sizes sufficiently
3679 * large so that collisions trying to wait on pages are rare.
3680 * But in fact, the number of active page waitqueues on typical
3681 * systems is ridiculously low, less than 200. So this is even
3682 * conservative, even though it seems large.
3683 *
3684 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3685 * waitqueues, i.e. the size of the waitq table given the number of pages.
3686 */
3687#define PAGES_PER_WAITQUEUE 256
3688
cca448fe 3689#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3690static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3691{
3692 unsigned long size = 1;
3693
3694 pages /= PAGES_PER_WAITQUEUE;
3695
3696 while (size < pages)
3697 size <<= 1;
3698
3699 /*
3700 * Once we have dozens or even hundreds of threads sleeping
3701 * on IO we've got bigger problems than wait queue collision.
3702 * Limit the size of the wait table to a reasonable size.
3703 */
3704 size = min(size, 4096UL);
3705
3706 return max(size, 4UL);
3707}
cca448fe
YG
3708#else
3709/*
3710 * A zone's size might be changed by hot-add, so it is not possible to determine
3711 * a suitable size for its wait_table. So we use the maximum size now.
3712 *
3713 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3714 *
3715 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3716 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3717 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3718 *
3719 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3720 * or more by the traditional way. (See above). It equals:
3721 *
3722 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3723 * ia64(16K page size) : = ( 8G + 4M)byte.
3724 * powerpc (64K page size) : = (32G +16M)byte.
3725 */
3726static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3727{
3728 return 4096UL;
3729}
3730#endif
1da177e4
LT
3731
3732/*
3733 * This is an integer logarithm so that shifts can be used later
3734 * to extract the more random high bits from the multiplicative
3735 * hash function before the remainder is taken.
3736 */
3737static inline unsigned long wait_table_bits(unsigned long size)
3738{
3739 return ffz(~size);
3740}
3741
3742#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3743
6d3163ce
AH
3744/*
3745 * Check if a pageblock contains reserved pages
3746 */
3747static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3748{
3749 unsigned long pfn;
3750
3751 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3752 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3753 return 1;
3754 }
3755 return 0;
3756}
3757
56fd56b8 3758/*
d9c23400 3759 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3760 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3761 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3762 * higher will lead to a bigger reserve which will get freed as contiguous
3763 * blocks as reclaim kicks in
3764 */
3765static void setup_zone_migrate_reserve(struct zone *zone)
3766{
6d3163ce 3767 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3768 struct page *page;
78986a67
MG
3769 unsigned long block_migratetype;
3770 int reserve;
56fd56b8 3771
d0215638
MH
3772 /*
3773 * Get the start pfn, end pfn and the number of blocks to reserve
3774 * We have to be careful to be aligned to pageblock_nr_pages to
3775 * make sure that we always check pfn_valid for the first page in
3776 * the block.
3777 */
56fd56b8
MG
3778 start_pfn = zone->zone_start_pfn;
3779 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3780 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3781 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3782 pageblock_order;
56fd56b8 3783
78986a67
MG
3784 /*
3785 * Reserve blocks are generally in place to help high-order atomic
3786 * allocations that are short-lived. A min_free_kbytes value that
3787 * would result in more than 2 reserve blocks for atomic allocations
3788 * is assumed to be in place to help anti-fragmentation for the
3789 * future allocation of hugepages at runtime.
3790 */
3791 reserve = min(2, reserve);
3792
d9c23400 3793 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3794 if (!pfn_valid(pfn))
3795 continue;
3796 page = pfn_to_page(pfn);
3797
344c790e
AL
3798 /* Watch out for overlapping nodes */
3799 if (page_to_nid(page) != zone_to_nid(zone))
3800 continue;
3801
56fd56b8
MG
3802 block_migratetype = get_pageblock_migratetype(page);
3803
938929f1
MG
3804 /* Only test what is necessary when the reserves are not met */
3805 if (reserve > 0) {
3806 /*
3807 * Blocks with reserved pages will never free, skip
3808 * them.
3809 */
3810 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3811 if (pageblock_is_reserved(pfn, block_end_pfn))
3812 continue;
56fd56b8 3813
938929f1
MG
3814 /* If this block is reserved, account for it */
3815 if (block_migratetype == MIGRATE_RESERVE) {
3816 reserve--;
3817 continue;
3818 }
3819
3820 /* Suitable for reserving if this block is movable */
3821 if (block_migratetype == MIGRATE_MOVABLE) {
3822 set_pageblock_migratetype(page,
3823 MIGRATE_RESERVE);
3824 move_freepages_block(zone, page,
3825 MIGRATE_RESERVE);
3826 reserve--;
3827 continue;
3828 }
56fd56b8
MG
3829 }
3830
3831 /*
3832 * If the reserve is met and this is a previous reserved block,
3833 * take it back
3834 */
3835 if (block_migratetype == MIGRATE_RESERVE) {
3836 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3837 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3838 }
3839 }
3840}
ac0e5b7a 3841
1da177e4
LT
3842/*
3843 * Initially all pages are reserved - free ones are freed
3844 * up by free_all_bootmem() once the early boot process is
3845 * done. Non-atomic initialization, single-pass.
3846 */
c09b4240 3847void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3848 unsigned long start_pfn, enum memmap_context context)
1da177e4 3849{
1da177e4 3850 struct page *page;
29751f69
AW
3851 unsigned long end_pfn = start_pfn + size;
3852 unsigned long pfn;
86051ca5 3853 struct zone *z;
1da177e4 3854
22b31eec
HD
3855 if (highest_memmap_pfn < end_pfn - 1)
3856 highest_memmap_pfn = end_pfn - 1;
3857
86051ca5 3858 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3859 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3860 /*
3861 * There can be holes in boot-time mem_map[]s
3862 * handed to this function. They do not
3863 * exist on hotplugged memory.
3864 */
3865 if (context == MEMMAP_EARLY) {
3866 if (!early_pfn_valid(pfn))
3867 continue;
3868 if (!early_pfn_in_nid(pfn, nid))
3869 continue;
3870 }
d41dee36
AW
3871 page = pfn_to_page(pfn);
3872 set_page_links(page, zone, nid, pfn);
708614e6 3873 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3874 init_page_count(page);
1da177e4
LT
3875 reset_page_mapcount(page);
3876 SetPageReserved(page);
b2a0ac88
MG
3877 /*
3878 * Mark the block movable so that blocks are reserved for
3879 * movable at startup. This will force kernel allocations
3880 * to reserve their blocks rather than leaking throughout
3881 * the address space during boot when many long-lived
56fd56b8
MG
3882 * kernel allocations are made. Later some blocks near
3883 * the start are marked MIGRATE_RESERVE by
3884 * setup_zone_migrate_reserve()
86051ca5
KH
3885 *
3886 * bitmap is created for zone's valid pfn range. but memmap
3887 * can be created for invalid pages (for alignment)
3888 * check here not to call set_pageblock_migratetype() against
3889 * pfn out of zone.
b2a0ac88 3890 */
86051ca5
KH
3891 if ((z->zone_start_pfn <= pfn)
3892 && (pfn < z->zone_start_pfn + z->spanned_pages)
3893 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3894 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3895
1da177e4
LT
3896 INIT_LIST_HEAD(&page->lru);
3897#ifdef WANT_PAGE_VIRTUAL
3898 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3899 if (!is_highmem_idx(zone))
3212c6be 3900 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3901#endif
1da177e4
LT
3902 }
3903}
3904
1e548deb 3905static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3906{
b2a0ac88
MG
3907 int order, t;
3908 for_each_migratetype_order(order, t) {
3909 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3910 zone->free_area[order].nr_free = 0;
3911 }
3912}
3913
3914#ifndef __HAVE_ARCH_MEMMAP_INIT
3915#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3916 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3917#endif
3918
4ed7e022 3919static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3920{
3a6be87f 3921#ifdef CONFIG_MMU
e7c8d5c9
CL
3922 int batch;
3923
3924 /*
3925 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3926 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3927 *
3928 * OK, so we don't know how big the cache is. So guess.
3929 */
3930 batch = zone->present_pages / 1024;
ba56e91c
SR
3931 if (batch * PAGE_SIZE > 512 * 1024)
3932 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3933 batch /= 4; /* We effectively *= 4 below */
3934 if (batch < 1)
3935 batch = 1;
3936
3937 /*
0ceaacc9
NP
3938 * Clamp the batch to a 2^n - 1 value. Having a power
3939 * of 2 value was found to be more likely to have
3940 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3941 *
0ceaacc9
NP
3942 * For example if 2 tasks are alternately allocating
3943 * batches of pages, one task can end up with a lot
3944 * of pages of one half of the possible page colors
3945 * and the other with pages of the other colors.
e7c8d5c9 3946 */
9155203a 3947 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3948
e7c8d5c9 3949 return batch;
3a6be87f
DH
3950
3951#else
3952 /* The deferral and batching of frees should be suppressed under NOMMU
3953 * conditions.
3954 *
3955 * The problem is that NOMMU needs to be able to allocate large chunks
3956 * of contiguous memory as there's no hardware page translation to
3957 * assemble apparent contiguous memory from discontiguous pages.
3958 *
3959 * Queueing large contiguous runs of pages for batching, however,
3960 * causes the pages to actually be freed in smaller chunks. As there
3961 * can be a significant delay between the individual batches being
3962 * recycled, this leads to the once large chunks of space being
3963 * fragmented and becoming unavailable for high-order allocations.
3964 */
3965 return 0;
3966#endif
e7c8d5c9
CL
3967}
3968
b69a7288 3969static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3970{
3971 struct per_cpu_pages *pcp;
5f8dcc21 3972 int migratetype;
2caaad41 3973
1c6fe946
MD
3974 memset(p, 0, sizeof(*p));
3975
3dfa5721 3976 pcp = &p->pcp;
2caaad41 3977 pcp->count = 0;
2caaad41
CL
3978 pcp->high = 6 * batch;
3979 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3980 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3981 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3982}
3983
8ad4b1fb
RS
3984/*
3985 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3986 * to the value high for the pageset p.
3987 */
3988
3989static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3990 unsigned long high)
3991{
3992 struct per_cpu_pages *pcp;
3993
3dfa5721 3994 pcp = &p->pcp;
8ad4b1fb
RS
3995 pcp->high = high;
3996 pcp->batch = max(1UL, high/4);
3997 if ((high/4) > (PAGE_SHIFT * 8))
3998 pcp->batch = PAGE_SHIFT * 8;
3999}
4000
4ed7e022 4001static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4002{
4003 int cpu;
4004
4005 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4006
4007 for_each_possible_cpu(cpu) {
4008 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4009
4010 setup_pageset(pcp, zone_batchsize(zone));
4011
4012 if (percpu_pagelist_fraction)
4013 setup_pagelist_highmark(pcp,
4014 (zone->present_pages /
4015 percpu_pagelist_fraction));
4016 }
4017}
4018
2caaad41 4019/*
99dcc3e5
CL
4020 * Allocate per cpu pagesets and initialize them.
4021 * Before this call only boot pagesets were available.
e7c8d5c9 4022 */
99dcc3e5 4023void __init setup_per_cpu_pageset(void)
e7c8d5c9 4024{
99dcc3e5 4025 struct zone *zone;
e7c8d5c9 4026
319774e2
WF
4027 for_each_populated_zone(zone)
4028 setup_zone_pageset(zone);
e7c8d5c9
CL
4029}
4030
577a32f6 4031static noinline __init_refok
cca448fe 4032int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4033{
4034 int i;
4035 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4036 size_t alloc_size;
ed8ece2e
DH
4037
4038 /*
4039 * The per-page waitqueue mechanism uses hashed waitqueues
4040 * per zone.
4041 */
02b694de
YG
4042 zone->wait_table_hash_nr_entries =
4043 wait_table_hash_nr_entries(zone_size_pages);
4044 zone->wait_table_bits =
4045 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4046 alloc_size = zone->wait_table_hash_nr_entries
4047 * sizeof(wait_queue_head_t);
4048
cd94b9db 4049 if (!slab_is_available()) {
cca448fe 4050 zone->wait_table = (wait_queue_head_t *)
8f389a99 4051 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4052 } else {
4053 /*
4054 * This case means that a zone whose size was 0 gets new memory
4055 * via memory hot-add.
4056 * But it may be the case that a new node was hot-added. In
4057 * this case vmalloc() will not be able to use this new node's
4058 * memory - this wait_table must be initialized to use this new
4059 * node itself as well.
4060 * To use this new node's memory, further consideration will be
4061 * necessary.
4062 */
8691f3a7 4063 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4064 }
4065 if (!zone->wait_table)
4066 return -ENOMEM;
ed8ece2e 4067
02b694de 4068 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4069 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4070
4071 return 0;
ed8ece2e
DH
4072}
4073
c09b4240 4074static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4075{
99dcc3e5
CL
4076 /*
4077 * per cpu subsystem is not up at this point. The following code
4078 * relies on the ability of the linker to provide the
4079 * offset of a (static) per cpu variable into the per cpu area.
4080 */
4081 zone->pageset = &boot_pageset;
ed8ece2e 4082
f5335c0f 4083 if (zone->present_pages)
99dcc3e5
CL
4084 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4085 zone->name, zone->present_pages,
4086 zone_batchsize(zone));
ed8ece2e
DH
4087}
4088
4ed7e022 4089int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4090 unsigned long zone_start_pfn,
a2f3aa02
DH
4091 unsigned long size,
4092 enum memmap_context context)
ed8ece2e
DH
4093{
4094 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4095 int ret;
4096 ret = zone_wait_table_init(zone, size);
4097 if (ret)
4098 return ret;
ed8ece2e
DH
4099 pgdat->nr_zones = zone_idx(zone) + 1;
4100
ed8ece2e
DH
4101 zone->zone_start_pfn = zone_start_pfn;
4102
708614e6
MG
4103 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4104 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4105 pgdat->node_id,
4106 (unsigned long)zone_idx(zone),
4107 zone_start_pfn, (zone_start_pfn + size));
4108
1e548deb 4109 zone_init_free_lists(zone);
718127cc
YG
4110
4111 return 0;
ed8ece2e
DH
4112}
4113
0ee332c1 4114#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4115#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4116/*
4117 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4118 * Architectures may implement their own version but if add_active_range()
4119 * was used and there are no special requirements, this is a convenient
4120 * alternative
4121 */
f2dbcfa7 4122int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4123{
c13291a5
TH
4124 unsigned long start_pfn, end_pfn;
4125 int i, nid;
c713216d 4126
c13291a5 4127 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4128 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4129 return nid;
cc2559bc
KH
4130 /* This is a memory hole */
4131 return -1;
c713216d
MG
4132}
4133#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4134
f2dbcfa7
KH
4135int __meminit early_pfn_to_nid(unsigned long pfn)
4136{
cc2559bc
KH
4137 int nid;
4138
4139 nid = __early_pfn_to_nid(pfn);
4140 if (nid >= 0)
4141 return nid;
4142 /* just returns 0 */
4143 return 0;
f2dbcfa7
KH
4144}
4145
cc2559bc
KH
4146#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4147bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4148{
4149 int nid;
4150
4151 nid = __early_pfn_to_nid(pfn);
4152 if (nid >= 0 && nid != node)
4153 return false;
4154 return true;
4155}
4156#endif
f2dbcfa7 4157
c713216d
MG
4158/**
4159 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4160 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4161 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4162 *
4163 * If an architecture guarantees that all ranges registered with
4164 * add_active_ranges() contain no holes and may be freed, this
4165 * this function may be used instead of calling free_bootmem() manually.
4166 */
c13291a5 4167void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4168{
c13291a5
TH
4169 unsigned long start_pfn, end_pfn;
4170 int i, this_nid;
edbe7d23 4171
c13291a5
TH
4172 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4173 start_pfn = min(start_pfn, max_low_pfn);
4174 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4175
c13291a5
TH
4176 if (start_pfn < end_pfn)
4177 free_bootmem_node(NODE_DATA(this_nid),
4178 PFN_PHYS(start_pfn),
4179 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4180 }
edbe7d23 4181}
edbe7d23 4182
c713216d
MG
4183/**
4184 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4185 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4186 *
4187 * If an architecture guarantees that all ranges registered with
4188 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4189 * function may be used instead of calling memory_present() manually.
c713216d
MG
4190 */
4191void __init sparse_memory_present_with_active_regions(int nid)
4192{
c13291a5
TH
4193 unsigned long start_pfn, end_pfn;
4194 int i, this_nid;
c713216d 4195
c13291a5
TH
4196 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4197 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4198}
4199
4200/**
4201 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4202 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4203 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4204 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4205 *
4206 * It returns the start and end page frame of a node based on information
4207 * provided by an arch calling add_active_range(). If called for a node
4208 * with no available memory, a warning is printed and the start and end
88ca3b94 4209 * PFNs will be 0.
c713216d 4210 */
a3142c8e 4211void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4212 unsigned long *start_pfn, unsigned long *end_pfn)
4213{
c13291a5 4214 unsigned long this_start_pfn, this_end_pfn;
c713216d 4215 int i;
c13291a5 4216
c713216d
MG
4217 *start_pfn = -1UL;
4218 *end_pfn = 0;
4219
c13291a5
TH
4220 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4221 *start_pfn = min(*start_pfn, this_start_pfn);
4222 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4223 }
4224
633c0666 4225 if (*start_pfn == -1UL)
c713216d 4226 *start_pfn = 0;
c713216d
MG
4227}
4228
2a1e274a
MG
4229/*
4230 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4231 * assumption is made that zones within a node are ordered in monotonic
4232 * increasing memory addresses so that the "highest" populated zone is used
4233 */
b69a7288 4234static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4235{
4236 int zone_index;
4237 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4238 if (zone_index == ZONE_MOVABLE)
4239 continue;
4240
4241 if (arch_zone_highest_possible_pfn[zone_index] >
4242 arch_zone_lowest_possible_pfn[zone_index])
4243 break;
4244 }
4245
4246 VM_BUG_ON(zone_index == -1);
4247 movable_zone = zone_index;
4248}
4249
4250/*
4251 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4252 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4253 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4254 * in each node depending on the size of each node and how evenly kernelcore
4255 * is distributed. This helper function adjusts the zone ranges
4256 * provided by the architecture for a given node by using the end of the
4257 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4258 * zones within a node are in order of monotonic increases memory addresses
4259 */
b69a7288 4260static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4261 unsigned long zone_type,
4262 unsigned long node_start_pfn,
4263 unsigned long node_end_pfn,
4264 unsigned long *zone_start_pfn,
4265 unsigned long *zone_end_pfn)
4266{
4267 /* Only adjust if ZONE_MOVABLE is on this node */
4268 if (zone_movable_pfn[nid]) {
4269 /* Size ZONE_MOVABLE */
4270 if (zone_type == ZONE_MOVABLE) {
4271 *zone_start_pfn = zone_movable_pfn[nid];
4272 *zone_end_pfn = min(node_end_pfn,
4273 arch_zone_highest_possible_pfn[movable_zone]);
4274
4275 /* Adjust for ZONE_MOVABLE starting within this range */
4276 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4277 *zone_end_pfn > zone_movable_pfn[nid]) {
4278 *zone_end_pfn = zone_movable_pfn[nid];
4279
4280 /* Check if this whole range is within ZONE_MOVABLE */
4281 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4282 *zone_start_pfn = *zone_end_pfn;
4283 }
4284}
4285
c713216d
MG
4286/*
4287 * Return the number of pages a zone spans in a node, including holes
4288 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4289 */
6ea6e688 4290static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4291 unsigned long zone_type,
4292 unsigned long *ignored)
4293{
4294 unsigned long node_start_pfn, node_end_pfn;
4295 unsigned long zone_start_pfn, zone_end_pfn;
4296
4297 /* Get the start and end of the node and zone */
4298 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4299 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4300 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4301 adjust_zone_range_for_zone_movable(nid, zone_type,
4302 node_start_pfn, node_end_pfn,
4303 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4304
4305 /* Check that this node has pages within the zone's required range */
4306 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4307 return 0;
4308
4309 /* Move the zone boundaries inside the node if necessary */
4310 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4311 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4312
4313 /* Return the spanned pages */
4314 return zone_end_pfn - zone_start_pfn;
4315}
4316
4317/*
4318 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4319 * then all holes in the requested range will be accounted for.
c713216d 4320 */
32996250 4321unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4322 unsigned long range_start_pfn,
4323 unsigned long range_end_pfn)
4324{
96e907d1
TH
4325 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4326 unsigned long start_pfn, end_pfn;
4327 int i;
c713216d 4328
96e907d1
TH
4329 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4330 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4331 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4332 nr_absent -= end_pfn - start_pfn;
c713216d 4333 }
96e907d1 4334 return nr_absent;
c713216d
MG
4335}
4336
4337/**
4338 * absent_pages_in_range - Return number of page frames in holes within a range
4339 * @start_pfn: The start PFN to start searching for holes
4340 * @end_pfn: The end PFN to stop searching for holes
4341 *
88ca3b94 4342 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4343 */
4344unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4345 unsigned long end_pfn)
4346{
4347 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4348}
4349
4350/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4351static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4352 unsigned long zone_type,
4353 unsigned long *ignored)
4354{
96e907d1
TH
4355 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4356 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4357 unsigned long node_start_pfn, node_end_pfn;
4358 unsigned long zone_start_pfn, zone_end_pfn;
4359
4360 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4361 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4362 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4363
2a1e274a
MG
4364 adjust_zone_range_for_zone_movable(nid, zone_type,
4365 node_start_pfn, node_end_pfn,
4366 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4367 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4368}
0e0b864e 4369
0ee332c1 4370#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4371static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4372 unsigned long zone_type,
4373 unsigned long *zones_size)
4374{
4375 return zones_size[zone_type];
4376}
4377
6ea6e688 4378static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4379 unsigned long zone_type,
4380 unsigned long *zholes_size)
4381{
4382 if (!zholes_size)
4383 return 0;
4384
4385 return zholes_size[zone_type];
4386}
0e0b864e 4387
0ee332c1 4388#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4389
a3142c8e 4390static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4391 unsigned long *zones_size, unsigned long *zholes_size)
4392{
4393 unsigned long realtotalpages, totalpages = 0;
4394 enum zone_type i;
4395
4396 for (i = 0; i < MAX_NR_ZONES; i++)
4397 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4398 zones_size);
4399 pgdat->node_spanned_pages = totalpages;
4400
4401 realtotalpages = totalpages;
4402 for (i = 0; i < MAX_NR_ZONES; i++)
4403 realtotalpages -=
4404 zone_absent_pages_in_node(pgdat->node_id, i,
4405 zholes_size);
4406 pgdat->node_present_pages = realtotalpages;
4407 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4408 realtotalpages);
4409}
4410
835c134e
MG
4411#ifndef CONFIG_SPARSEMEM
4412/*
4413 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4414 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4415 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4416 * round what is now in bits to nearest long in bits, then return it in
4417 * bytes.
4418 */
4419static unsigned long __init usemap_size(unsigned long zonesize)
4420{
4421 unsigned long usemapsize;
4422
d9c23400
MG
4423 usemapsize = roundup(zonesize, pageblock_nr_pages);
4424 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4425 usemapsize *= NR_PAGEBLOCK_BITS;
4426 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4427
4428 return usemapsize / 8;
4429}
4430
4431static void __init setup_usemap(struct pglist_data *pgdat,
4432 struct zone *zone, unsigned long zonesize)
4433{
4434 unsigned long usemapsize = usemap_size(zonesize);
4435 zone->pageblock_flags = NULL;
58a01a45 4436 if (usemapsize)
8f389a99
YL
4437 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4438 usemapsize);
835c134e
MG
4439}
4440#else
fa9f90be 4441static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4442 struct zone *zone, unsigned long zonesize) {}
4443#endif /* CONFIG_SPARSEMEM */
4444
d9c23400 4445#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4446
d9c23400 4447/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4448void __init set_pageblock_order(void)
d9c23400 4449{
955c1cd7
AM
4450 unsigned int order;
4451
d9c23400
MG
4452 /* Check that pageblock_nr_pages has not already been setup */
4453 if (pageblock_order)
4454 return;
4455
955c1cd7
AM
4456 if (HPAGE_SHIFT > PAGE_SHIFT)
4457 order = HUGETLB_PAGE_ORDER;
4458 else
4459 order = MAX_ORDER - 1;
4460
d9c23400
MG
4461 /*
4462 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4463 * This value may be variable depending on boot parameters on IA64 and
4464 * powerpc.
d9c23400
MG
4465 */
4466 pageblock_order = order;
4467}
4468#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4469
ba72cb8c
MG
4470/*
4471 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4472 * is unused as pageblock_order is set at compile-time. See
4473 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4474 * the kernel config
ba72cb8c 4475 */
ca57df79 4476void __init set_pageblock_order(void)
ba72cb8c 4477{
ba72cb8c 4478}
d9c23400
MG
4479
4480#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4481
1da177e4
LT
4482/*
4483 * Set up the zone data structures:
4484 * - mark all pages reserved
4485 * - mark all memory queues empty
4486 * - clear the memory bitmaps
6527af5d
MK
4487 *
4488 * NOTE: pgdat should get zeroed by caller.
1da177e4 4489 */
b5a0e011 4490static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4491 unsigned long *zones_size, unsigned long *zholes_size)
4492{
2f1b6248 4493 enum zone_type j;
ed8ece2e 4494 int nid = pgdat->node_id;
1da177e4 4495 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4496 int ret;
1da177e4 4497
208d54e5 4498 pgdat_resize_init(pgdat);
1da177e4 4499 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4500 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4501 pgdat_page_cgroup_init(pgdat);
5f63b720 4502
1da177e4
LT
4503 for (j = 0; j < MAX_NR_ZONES; j++) {
4504 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4505 unsigned long size, realsize, memmap_pages;
1da177e4 4506
c713216d
MG
4507 size = zone_spanned_pages_in_node(nid, j, zones_size);
4508 realsize = size - zone_absent_pages_in_node(nid, j,
4509 zholes_size);
1da177e4 4510
0e0b864e
MG
4511 /*
4512 * Adjust realsize so that it accounts for how much memory
4513 * is used by this zone for memmap. This affects the watermark
4514 * and per-cpu initialisations
4515 */
f7232154
JW
4516 memmap_pages =
4517 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4518 if (realsize >= memmap_pages) {
4519 realsize -= memmap_pages;
5594c8c8
YL
4520 if (memmap_pages)
4521 printk(KERN_DEBUG
4522 " %s zone: %lu pages used for memmap\n",
4523 zone_names[j], memmap_pages);
0e0b864e
MG
4524 } else
4525 printk(KERN_WARNING
4526 " %s zone: %lu pages exceeds realsize %lu\n",
4527 zone_names[j], memmap_pages, realsize);
4528
6267276f
CL
4529 /* Account for reserved pages */
4530 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4531 realsize -= dma_reserve;
d903ef9f 4532 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4533 zone_names[0], dma_reserve);
0e0b864e
MG
4534 }
4535
98d2b0eb 4536 if (!is_highmem_idx(j))
1da177e4
LT
4537 nr_kernel_pages += realsize;
4538 nr_all_pages += realsize;
4539
4540 zone->spanned_pages = size;
4541 zone->present_pages = realsize;
9614634f 4542#ifdef CONFIG_NUMA
d5f541ed 4543 zone->node = nid;
8417bba4 4544 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4545 / 100;
0ff38490 4546 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4547#endif
1da177e4
LT
4548 zone->name = zone_names[j];
4549 spin_lock_init(&zone->lock);
4550 spin_lock_init(&zone->lru_lock);
bdc8cb98 4551 zone_seqlock_init(zone);
1da177e4 4552 zone->zone_pgdat = pgdat;
1da177e4 4553
ed8ece2e 4554 zone_pcp_init(zone);
bea8c150 4555 lruvec_init(&zone->lruvec);
1da177e4
LT
4556 if (!size)
4557 continue;
4558
955c1cd7 4559 set_pageblock_order();
835c134e 4560 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4561 ret = init_currently_empty_zone(zone, zone_start_pfn,
4562 size, MEMMAP_EARLY);
718127cc 4563 BUG_ON(ret);
76cdd58e 4564 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4565 zone_start_pfn += size;
1da177e4
LT
4566 }
4567}
4568
577a32f6 4569static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4570{
1da177e4
LT
4571 /* Skip empty nodes */
4572 if (!pgdat->node_spanned_pages)
4573 return;
4574
d41dee36 4575#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4576 /* ia64 gets its own node_mem_map, before this, without bootmem */
4577 if (!pgdat->node_mem_map) {
e984bb43 4578 unsigned long size, start, end;
d41dee36
AW
4579 struct page *map;
4580
e984bb43
BP
4581 /*
4582 * The zone's endpoints aren't required to be MAX_ORDER
4583 * aligned but the node_mem_map endpoints must be in order
4584 * for the buddy allocator to function correctly.
4585 */
4586 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4587 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4588 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4589 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4590 map = alloc_remap(pgdat->node_id, size);
4591 if (!map)
8f389a99 4592 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4593 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4594 }
12d810c1 4595#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4596 /*
4597 * With no DISCONTIG, the global mem_map is just set as node 0's
4598 */
c713216d 4599 if (pgdat == NODE_DATA(0)) {
1da177e4 4600 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4601#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4602 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4603 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4604#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4605 }
1da177e4 4606#endif
d41dee36 4607#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4608}
4609
9109fb7b
JW
4610void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4611 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4612{
9109fb7b
JW
4613 pg_data_t *pgdat = NODE_DATA(nid);
4614
88fdf75d 4615 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4616 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4617
1da177e4
LT
4618 pgdat->node_id = nid;
4619 pgdat->node_start_pfn = node_start_pfn;
957f822a 4620 init_zone_allows_reclaim(nid);
c713216d 4621 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4622
4623 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4624#ifdef CONFIG_FLAT_NODE_MEM_MAP
4625 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4626 nid, (unsigned long)pgdat,
4627 (unsigned long)pgdat->node_mem_map);
4628#endif
1da177e4
LT
4629
4630 free_area_init_core(pgdat, zones_size, zholes_size);
4631}
4632
0ee332c1 4633#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4634
4635#if MAX_NUMNODES > 1
4636/*
4637 * Figure out the number of possible node ids.
4638 */
4639static void __init setup_nr_node_ids(void)
4640{
4641 unsigned int node;
4642 unsigned int highest = 0;
4643
4644 for_each_node_mask(node, node_possible_map)
4645 highest = node;
4646 nr_node_ids = highest + 1;
4647}
4648#else
4649static inline void setup_nr_node_ids(void)
4650{
4651}
4652#endif
4653
1e01979c
TH
4654/**
4655 * node_map_pfn_alignment - determine the maximum internode alignment
4656 *
4657 * This function should be called after node map is populated and sorted.
4658 * It calculates the maximum power of two alignment which can distinguish
4659 * all the nodes.
4660 *
4661 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4662 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4663 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4664 * shifted, 1GiB is enough and this function will indicate so.
4665 *
4666 * This is used to test whether pfn -> nid mapping of the chosen memory
4667 * model has fine enough granularity to avoid incorrect mapping for the
4668 * populated node map.
4669 *
4670 * Returns the determined alignment in pfn's. 0 if there is no alignment
4671 * requirement (single node).
4672 */
4673unsigned long __init node_map_pfn_alignment(void)
4674{
4675 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4676 unsigned long start, end, mask;
1e01979c 4677 int last_nid = -1;
c13291a5 4678 int i, nid;
1e01979c 4679
c13291a5 4680 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4681 if (!start || last_nid < 0 || last_nid == nid) {
4682 last_nid = nid;
4683 last_end = end;
4684 continue;
4685 }
4686
4687 /*
4688 * Start with a mask granular enough to pin-point to the
4689 * start pfn and tick off bits one-by-one until it becomes
4690 * too coarse to separate the current node from the last.
4691 */
4692 mask = ~((1 << __ffs(start)) - 1);
4693 while (mask && last_end <= (start & (mask << 1)))
4694 mask <<= 1;
4695
4696 /* accumulate all internode masks */
4697 accl_mask |= mask;
4698 }
4699
4700 /* convert mask to number of pages */
4701 return ~accl_mask + 1;
4702}
4703
a6af2bc3 4704/* Find the lowest pfn for a node */
b69a7288 4705static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4706{
a6af2bc3 4707 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4708 unsigned long start_pfn;
4709 int i;
1abbfb41 4710
c13291a5
TH
4711 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4712 min_pfn = min(min_pfn, start_pfn);
c713216d 4713
a6af2bc3
MG
4714 if (min_pfn == ULONG_MAX) {
4715 printk(KERN_WARNING
2bc0d261 4716 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4717 return 0;
4718 }
4719
4720 return min_pfn;
c713216d
MG
4721}
4722
4723/**
4724 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4725 *
4726 * It returns the minimum PFN based on information provided via
88ca3b94 4727 * add_active_range().
c713216d
MG
4728 */
4729unsigned long __init find_min_pfn_with_active_regions(void)
4730{
4731 return find_min_pfn_for_node(MAX_NUMNODES);
4732}
4733
37b07e41
LS
4734/*
4735 * early_calculate_totalpages()
4736 * Sum pages in active regions for movable zone.
4b0ef1fe 4737 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4738 */
484f51f8 4739static unsigned long __init early_calculate_totalpages(void)
7e63efef 4740{
7e63efef 4741 unsigned long totalpages = 0;
c13291a5
TH
4742 unsigned long start_pfn, end_pfn;
4743 int i, nid;
4744
4745 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4746 unsigned long pages = end_pfn - start_pfn;
7e63efef 4747
37b07e41
LS
4748 totalpages += pages;
4749 if (pages)
4b0ef1fe 4750 node_set_state(nid, N_MEMORY);
37b07e41
LS
4751 }
4752 return totalpages;
7e63efef
MG
4753}
4754
2a1e274a
MG
4755/*
4756 * Find the PFN the Movable zone begins in each node. Kernel memory
4757 * is spread evenly between nodes as long as the nodes have enough
4758 * memory. When they don't, some nodes will have more kernelcore than
4759 * others
4760 */
b224ef85 4761static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4762{
4763 int i, nid;
4764 unsigned long usable_startpfn;
4765 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4766 /* save the state before borrow the nodemask */
4b0ef1fe 4767 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4768 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4769 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4770
7e63efef
MG
4771 /*
4772 * If movablecore was specified, calculate what size of
4773 * kernelcore that corresponds so that memory usable for
4774 * any allocation type is evenly spread. If both kernelcore
4775 * and movablecore are specified, then the value of kernelcore
4776 * will be used for required_kernelcore if it's greater than
4777 * what movablecore would have allowed.
4778 */
4779 if (required_movablecore) {
7e63efef
MG
4780 unsigned long corepages;
4781
4782 /*
4783 * Round-up so that ZONE_MOVABLE is at least as large as what
4784 * was requested by the user
4785 */
4786 required_movablecore =
4787 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4788 corepages = totalpages - required_movablecore;
4789
4790 required_kernelcore = max(required_kernelcore, corepages);
4791 }
4792
2a1e274a
MG
4793 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4794 if (!required_kernelcore)
66918dcd 4795 goto out;
2a1e274a
MG
4796
4797 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4798 find_usable_zone_for_movable();
4799 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4800
4801restart:
4802 /* Spread kernelcore memory as evenly as possible throughout nodes */
4803 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4804 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4805 unsigned long start_pfn, end_pfn;
4806
2a1e274a
MG
4807 /*
4808 * Recalculate kernelcore_node if the division per node
4809 * now exceeds what is necessary to satisfy the requested
4810 * amount of memory for the kernel
4811 */
4812 if (required_kernelcore < kernelcore_node)
4813 kernelcore_node = required_kernelcore / usable_nodes;
4814
4815 /*
4816 * As the map is walked, we track how much memory is usable
4817 * by the kernel using kernelcore_remaining. When it is
4818 * 0, the rest of the node is usable by ZONE_MOVABLE
4819 */
4820 kernelcore_remaining = kernelcore_node;
4821
4822 /* Go through each range of PFNs within this node */
c13291a5 4823 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4824 unsigned long size_pages;
4825
c13291a5 4826 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4827 if (start_pfn >= end_pfn)
4828 continue;
4829
4830 /* Account for what is only usable for kernelcore */
4831 if (start_pfn < usable_startpfn) {
4832 unsigned long kernel_pages;
4833 kernel_pages = min(end_pfn, usable_startpfn)
4834 - start_pfn;
4835
4836 kernelcore_remaining -= min(kernel_pages,
4837 kernelcore_remaining);
4838 required_kernelcore -= min(kernel_pages,
4839 required_kernelcore);
4840
4841 /* Continue if range is now fully accounted */
4842 if (end_pfn <= usable_startpfn) {
4843
4844 /*
4845 * Push zone_movable_pfn to the end so
4846 * that if we have to rebalance
4847 * kernelcore across nodes, we will
4848 * not double account here
4849 */
4850 zone_movable_pfn[nid] = end_pfn;
4851 continue;
4852 }
4853 start_pfn = usable_startpfn;
4854 }
4855
4856 /*
4857 * The usable PFN range for ZONE_MOVABLE is from
4858 * start_pfn->end_pfn. Calculate size_pages as the
4859 * number of pages used as kernelcore
4860 */
4861 size_pages = end_pfn - start_pfn;
4862 if (size_pages > kernelcore_remaining)
4863 size_pages = kernelcore_remaining;
4864 zone_movable_pfn[nid] = start_pfn + size_pages;
4865
4866 /*
4867 * Some kernelcore has been met, update counts and
4868 * break if the kernelcore for this node has been
4869 * satisified
4870 */
4871 required_kernelcore -= min(required_kernelcore,
4872 size_pages);
4873 kernelcore_remaining -= size_pages;
4874 if (!kernelcore_remaining)
4875 break;
4876 }
4877 }
4878
4879 /*
4880 * If there is still required_kernelcore, we do another pass with one
4881 * less node in the count. This will push zone_movable_pfn[nid] further
4882 * along on the nodes that still have memory until kernelcore is
4883 * satisified
4884 */
4885 usable_nodes--;
4886 if (usable_nodes && required_kernelcore > usable_nodes)
4887 goto restart;
4888
4889 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4890 for (nid = 0; nid < MAX_NUMNODES; nid++)
4891 zone_movable_pfn[nid] =
4892 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4893
4894out:
4895 /* restore the node_state */
4b0ef1fe 4896 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
4897}
4898
4b0ef1fe
LJ
4899/* Any regular or high memory on that node ? */
4900static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 4901{
37b07e41
LS
4902 enum zone_type zone_type;
4903
4b0ef1fe
LJ
4904 if (N_MEMORY == N_NORMAL_MEMORY)
4905 return;
4906
4907 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 4908 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4909 if (zone->present_pages) {
4b0ef1fe
LJ
4910 node_set_state(nid, N_HIGH_MEMORY);
4911 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4912 zone_type <= ZONE_NORMAL)
4913 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
4914 break;
4915 }
37b07e41 4916 }
37b07e41
LS
4917}
4918
c713216d
MG
4919/**
4920 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4921 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4922 *
4923 * This will call free_area_init_node() for each active node in the system.
4924 * Using the page ranges provided by add_active_range(), the size of each
4925 * zone in each node and their holes is calculated. If the maximum PFN
4926 * between two adjacent zones match, it is assumed that the zone is empty.
4927 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4928 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4929 * starts where the previous one ended. For example, ZONE_DMA32 starts
4930 * at arch_max_dma_pfn.
4931 */
4932void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4933{
c13291a5
TH
4934 unsigned long start_pfn, end_pfn;
4935 int i, nid;
a6af2bc3 4936
c713216d
MG
4937 /* Record where the zone boundaries are */
4938 memset(arch_zone_lowest_possible_pfn, 0,
4939 sizeof(arch_zone_lowest_possible_pfn));
4940 memset(arch_zone_highest_possible_pfn, 0,
4941 sizeof(arch_zone_highest_possible_pfn));
4942 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4943 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4944 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4945 if (i == ZONE_MOVABLE)
4946 continue;
c713216d
MG
4947 arch_zone_lowest_possible_pfn[i] =
4948 arch_zone_highest_possible_pfn[i-1];
4949 arch_zone_highest_possible_pfn[i] =
4950 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4951 }
2a1e274a
MG
4952 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4953 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4954
4955 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4956 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4957 find_zone_movable_pfns_for_nodes();
c713216d 4958
c713216d 4959 /* Print out the zone ranges */
a62e2f4f 4960 printk("Zone ranges:\n");
2a1e274a
MG
4961 for (i = 0; i < MAX_NR_ZONES; i++) {
4962 if (i == ZONE_MOVABLE)
4963 continue;
155cbfc8 4964 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4965 if (arch_zone_lowest_possible_pfn[i] ==
4966 arch_zone_highest_possible_pfn[i])
155cbfc8 4967 printk(KERN_CONT "empty\n");
72f0ba02 4968 else
a62e2f4f
BH
4969 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4970 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4971 (arch_zone_highest_possible_pfn[i]
4972 << PAGE_SHIFT) - 1);
2a1e274a
MG
4973 }
4974
4975 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4976 printk("Movable zone start for each node\n");
2a1e274a
MG
4977 for (i = 0; i < MAX_NUMNODES; i++) {
4978 if (zone_movable_pfn[i])
a62e2f4f
BH
4979 printk(" Node %d: %#010lx\n", i,
4980 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4981 }
c713216d 4982
f2d52fe5 4983 /* Print out the early node map */
a62e2f4f 4984 printk("Early memory node ranges\n");
c13291a5 4985 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4986 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4987 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4988
4989 /* Initialise every node */
708614e6 4990 mminit_verify_pageflags_layout();
8ef82866 4991 setup_nr_node_ids();
c713216d
MG
4992 for_each_online_node(nid) {
4993 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4994 free_area_init_node(nid, NULL,
c713216d 4995 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4996
4997 /* Any memory on that node */
4998 if (pgdat->node_present_pages)
4b0ef1fe
LJ
4999 node_set_state(nid, N_MEMORY);
5000 check_for_memory(pgdat, nid);
c713216d
MG
5001 }
5002}
2a1e274a 5003
7e63efef 5004static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5005{
5006 unsigned long long coremem;
5007 if (!p)
5008 return -EINVAL;
5009
5010 coremem = memparse(p, &p);
7e63efef 5011 *core = coremem >> PAGE_SHIFT;
2a1e274a 5012
7e63efef 5013 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5014 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5015
5016 return 0;
5017}
ed7ed365 5018
7e63efef
MG
5019/*
5020 * kernelcore=size sets the amount of memory for use for allocations that
5021 * cannot be reclaimed or migrated.
5022 */
5023static int __init cmdline_parse_kernelcore(char *p)
5024{
5025 return cmdline_parse_core(p, &required_kernelcore);
5026}
5027
5028/*
5029 * movablecore=size sets the amount of memory for use for allocations that
5030 * can be reclaimed or migrated.
5031 */
5032static int __init cmdline_parse_movablecore(char *p)
5033{
5034 return cmdline_parse_core(p, &required_movablecore);
5035}
5036
ed7ed365 5037early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5038early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5039
0ee332c1 5040#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5041
0e0b864e 5042/**
88ca3b94
RD
5043 * set_dma_reserve - set the specified number of pages reserved in the first zone
5044 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5045 *
5046 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5047 * In the DMA zone, a significant percentage may be consumed by kernel image
5048 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5049 * function may optionally be used to account for unfreeable pages in the
5050 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5051 * smaller per-cpu batchsize.
0e0b864e
MG
5052 */
5053void __init set_dma_reserve(unsigned long new_dma_reserve)
5054{
5055 dma_reserve = new_dma_reserve;
5056}
5057
1da177e4
LT
5058void __init free_area_init(unsigned long *zones_size)
5059{
9109fb7b 5060 free_area_init_node(0, zones_size,
1da177e4
LT
5061 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5062}
1da177e4 5063
1da177e4
LT
5064static int page_alloc_cpu_notify(struct notifier_block *self,
5065 unsigned long action, void *hcpu)
5066{
5067 int cpu = (unsigned long)hcpu;
1da177e4 5068
8bb78442 5069 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5070 lru_add_drain_cpu(cpu);
9f8f2172
CL
5071 drain_pages(cpu);
5072
5073 /*
5074 * Spill the event counters of the dead processor
5075 * into the current processors event counters.
5076 * This artificially elevates the count of the current
5077 * processor.
5078 */
f8891e5e 5079 vm_events_fold_cpu(cpu);
9f8f2172
CL
5080
5081 /*
5082 * Zero the differential counters of the dead processor
5083 * so that the vm statistics are consistent.
5084 *
5085 * This is only okay since the processor is dead and cannot
5086 * race with what we are doing.
5087 */
2244b95a 5088 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5089 }
5090 return NOTIFY_OK;
5091}
1da177e4
LT
5092
5093void __init page_alloc_init(void)
5094{
5095 hotcpu_notifier(page_alloc_cpu_notify, 0);
5096}
5097
cb45b0e9
HA
5098/*
5099 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5100 * or min_free_kbytes changes.
5101 */
5102static void calculate_totalreserve_pages(void)
5103{
5104 struct pglist_data *pgdat;
5105 unsigned long reserve_pages = 0;
2f6726e5 5106 enum zone_type i, j;
cb45b0e9
HA
5107
5108 for_each_online_pgdat(pgdat) {
5109 for (i = 0; i < MAX_NR_ZONES; i++) {
5110 struct zone *zone = pgdat->node_zones + i;
5111 unsigned long max = 0;
5112
5113 /* Find valid and maximum lowmem_reserve in the zone */
5114 for (j = i; j < MAX_NR_ZONES; j++) {
5115 if (zone->lowmem_reserve[j] > max)
5116 max = zone->lowmem_reserve[j];
5117 }
5118
41858966
MG
5119 /* we treat the high watermark as reserved pages. */
5120 max += high_wmark_pages(zone);
cb45b0e9
HA
5121
5122 if (max > zone->present_pages)
5123 max = zone->present_pages;
5124 reserve_pages += max;
ab8fabd4
JW
5125 /*
5126 * Lowmem reserves are not available to
5127 * GFP_HIGHUSER page cache allocations and
5128 * kswapd tries to balance zones to their high
5129 * watermark. As a result, neither should be
5130 * regarded as dirtyable memory, to prevent a
5131 * situation where reclaim has to clean pages
5132 * in order to balance the zones.
5133 */
5134 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5135 }
5136 }
ab8fabd4 5137 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5138 totalreserve_pages = reserve_pages;
5139}
5140
1da177e4
LT
5141/*
5142 * setup_per_zone_lowmem_reserve - called whenever
5143 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5144 * has a correct pages reserved value, so an adequate number of
5145 * pages are left in the zone after a successful __alloc_pages().
5146 */
5147static void setup_per_zone_lowmem_reserve(void)
5148{
5149 struct pglist_data *pgdat;
2f6726e5 5150 enum zone_type j, idx;
1da177e4 5151
ec936fc5 5152 for_each_online_pgdat(pgdat) {
1da177e4
LT
5153 for (j = 0; j < MAX_NR_ZONES; j++) {
5154 struct zone *zone = pgdat->node_zones + j;
5155 unsigned long present_pages = zone->present_pages;
5156
5157 zone->lowmem_reserve[j] = 0;
5158
2f6726e5
CL
5159 idx = j;
5160 while (idx) {
1da177e4
LT
5161 struct zone *lower_zone;
5162
2f6726e5
CL
5163 idx--;
5164
1da177e4
LT
5165 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5166 sysctl_lowmem_reserve_ratio[idx] = 1;
5167
5168 lower_zone = pgdat->node_zones + idx;
5169 lower_zone->lowmem_reserve[j] = present_pages /
5170 sysctl_lowmem_reserve_ratio[idx];
5171 present_pages += lower_zone->present_pages;
5172 }
5173 }
5174 }
cb45b0e9
HA
5175
5176 /* update totalreserve_pages */
5177 calculate_totalreserve_pages();
1da177e4
LT
5178}
5179
cfd3da1e 5180static void __setup_per_zone_wmarks(void)
1da177e4
LT
5181{
5182 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5183 unsigned long lowmem_pages = 0;
5184 struct zone *zone;
5185 unsigned long flags;
5186
5187 /* Calculate total number of !ZONE_HIGHMEM pages */
5188 for_each_zone(zone) {
5189 if (!is_highmem(zone))
5190 lowmem_pages += zone->present_pages;
5191 }
5192
5193 for_each_zone(zone) {
ac924c60
AM
5194 u64 tmp;
5195
1125b4e3 5196 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5197 tmp = (u64)pages_min * zone->present_pages;
5198 do_div(tmp, lowmem_pages);
1da177e4
LT
5199 if (is_highmem(zone)) {
5200 /*
669ed175
NP
5201 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5202 * need highmem pages, so cap pages_min to a small
5203 * value here.
5204 *
41858966 5205 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5206 * deltas controls asynch page reclaim, and so should
5207 * not be capped for highmem.
1da177e4
LT
5208 */
5209 int min_pages;
5210
5211 min_pages = zone->present_pages / 1024;
5212 if (min_pages < SWAP_CLUSTER_MAX)
5213 min_pages = SWAP_CLUSTER_MAX;
5214 if (min_pages > 128)
5215 min_pages = 128;
41858966 5216 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5217 } else {
669ed175
NP
5218 /*
5219 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5220 * proportionate to the zone's size.
5221 */
41858966 5222 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5223 }
5224
41858966
MG
5225 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5226 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5227
56fd56b8 5228 setup_zone_migrate_reserve(zone);
1125b4e3 5229 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5230 }
cb45b0e9
HA
5231
5232 /* update totalreserve_pages */
5233 calculate_totalreserve_pages();
1da177e4
LT
5234}
5235
cfd3da1e
MG
5236/**
5237 * setup_per_zone_wmarks - called when min_free_kbytes changes
5238 * or when memory is hot-{added|removed}
5239 *
5240 * Ensures that the watermark[min,low,high] values for each zone are set
5241 * correctly with respect to min_free_kbytes.
5242 */
5243void setup_per_zone_wmarks(void)
5244{
5245 mutex_lock(&zonelists_mutex);
5246 __setup_per_zone_wmarks();
5247 mutex_unlock(&zonelists_mutex);
5248}
5249
55a4462a 5250/*
556adecb
RR
5251 * The inactive anon list should be small enough that the VM never has to
5252 * do too much work, but large enough that each inactive page has a chance
5253 * to be referenced again before it is swapped out.
5254 *
5255 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5256 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5257 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5258 * the anonymous pages are kept on the inactive list.
5259 *
5260 * total target max
5261 * memory ratio inactive anon
5262 * -------------------------------------
5263 * 10MB 1 5MB
5264 * 100MB 1 50MB
5265 * 1GB 3 250MB
5266 * 10GB 10 0.9GB
5267 * 100GB 31 3GB
5268 * 1TB 101 10GB
5269 * 10TB 320 32GB
5270 */
1b79acc9 5271static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5272{
96cb4df5 5273 unsigned int gb, ratio;
556adecb 5274
96cb4df5
MK
5275 /* Zone size in gigabytes */
5276 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5277 if (gb)
556adecb 5278 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5279 else
5280 ratio = 1;
556adecb 5281
96cb4df5
MK
5282 zone->inactive_ratio = ratio;
5283}
556adecb 5284
839a4fcc 5285static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5286{
5287 struct zone *zone;
5288
5289 for_each_zone(zone)
5290 calculate_zone_inactive_ratio(zone);
556adecb
RR
5291}
5292
1da177e4
LT
5293/*
5294 * Initialise min_free_kbytes.
5295 *
5296 * For small machines we want it small (128k min). For large machines
5297 * we want it large (64MB max). But it is not linear, because network
5298 * bandwidth does not increase linearly with machine size. We use
5299 *
5300 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5301 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5302 *
5303 * which yields
5304 *
5305 * 16MB: 512k
5306 * 32MB: 724k
5307 * 64MB: 1024k
5308 * 128MB: 1448k
5309 * 256MB: 2048k
5310 * 512MB: 2896k
5311 * 1024MB: 4096k
5312 * 2048MB: 5792k
5313 * 4096MB: 8192k
5314 * 8192MB: 11584k
5315 * 16384MB: 16384k
5316 */
1b79acc9 5317int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5318{
5319 unsigned long lowmem_kbytes;
5320
5321 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5322
5323 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5324 if (min_free_kbytes < 128)
5325 min_free_kbytes = 128;
5326 if (min_free_kbytes > 65536)
5327 min_free_kbytes = 65536;
bc75d33f 5328 setup_per_zone_wmarks();
a6cccdc3 5329 refresh_zone_stat_thresholds();
1da177e4 5330 setup_per_zone_lowmem_reserve();
556adecb 5331 setup_per_zone_inactive_ratio();
1da177e4
LT
5332 return 0;
5333}
bc75d33f 5334module_init(init_per_zone_wmark_min)
1da177e4
LT
5335
5336/*
5337 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5338 * that we can call two helper functions whenever min_free_kbytes
5339 * changes.
5340 */
5341int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5342 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5343{
8d65af78 5344 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5345 if (write)
bc75d33f 5346 setup_per_zone_wmarks();
1da177e4
LT
5347 return 0;
5348}
5349
9614634f
CL
5350#ifdef CONFIG_NUMA
5351int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5352 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5353{
5354 struct zone *zone;
5355 int rc;
5356
8d65af78 5357 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5358 if (rc)
5359 return rc;
5360
5361 for_each_zone(zone)
8417bba4 5362 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5363 sysctl_min_unmapped_ratio) / 100;
5364 return 0;
5365}
0ff38490
CL
5366
5367int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5368 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5369{
5370 struct zone *zone;
5371 int rc;
5372
8d65af78 5373 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5374 if (rc)
5375 return rc;
5376
5377 for_each_zone(zone)
5378 zone->min_slab_pages = (zone->present_pages *
5379 sysctl_min_slab_ratio) / 100;
5380 return 0;
5381}
9614634f
CL
5382#endif
5383
1da177e4
LT
5384/*
5385 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5386 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5387 * whenever sysctl_lowmem_reserve_ratio changes.
5388 *
5389 * The reserve ratio obviously has absolutely no relation with the
41858966 5390 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5391 * if in function of the boot time zone sizes.
5392 */
5393int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5394 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5395{
8d65af78 5396 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5397 setup_per_zone_lowmem_reserve();
5398 return 0;
5399}
5400
8ad4b1fb
RS
5401/*
5402 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5403 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5404 * can have before it gets flushed back to buddy allocator.
5405 */
5406
5407int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5408 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5409{
5410 struct zone *zone;
5411 unsigned int cpu;
5412 int ret;
5413
8d65af78 5414 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5415 if (!write || (ret < 0))
8ad4b1fb 5416 return ret;
364df0eb 5417 for_each_populated_zone(zone) {
99dcc3e5 5418 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5419 unsigned long high;
5420 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5421 setup_pagelist_highmark(
5422 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5423 }
5424 }
5425 return 0;
5426}
5427
f034b5d4 5428int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5429
5430#ifdef CONFIG_NUMA
5431static int __init set_hashdist(char *str)
5432{
5433 if (!str)
5434 return 0;
5435 hashdist = simple_strtoul(str, &str, 0);
5436 return 1;
5437}
5438__setup("hashdist=", set_hashdist);
5439#endif
5440
5441/*
5442 * allocate a large system hash table from bootmem
5443 * - it is assumed that the hash table must contain an exact power-of-2
5444 * quantity of entries
5445 * - limit is the number of hash buckets, not the total allocation size
5446 */
5447void *__init alloc_large_system_hash(const char *tablename,
5448 unsigned long bucketsize,
5449 unsigned long numentries,
5450 int scale,
5451 int flags,
5452 unsigned int *_hash_shift,
5453 unsigned int *_hash_mask,
31fe62b9
TB
5454 unsigned long low_limit,
5455 unsigned long high_limit)
1da177e4 5456{
31fe62b9 5457 unsigned long long max = high_limit;
1da177e4
LT
5458 unsigned long log2qty, size;
5459 void *table = NULL;
5460
5461 /* allow the kernel cmdline to have a say */
5462 if (!numentries) {
5463 /* round applicable memory size up to nearest megabyte */
04903664 5464 numentries = nr_kernel_pages;
1da177e4
LT
5465 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5466 numentries >>= 20 - PAGE_SHIFT;
5467 numentries <<= 20 - PAGE_SHIFT;
5468
5469 /* limit to 1 bucket per 2^scale bytes of low memory */
5470 if (scale > PAGE_SHIFT)
5471 numentries >>= (scale - PAGE_SHIFT);
5472 else
5473 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5474
5475 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5476 if (unlikely(flags & HASH_SMALL)) {
5477 /* Makes no sense without HASH_EARLY */
5478 WARN_ON(!(flags & HASH_EARLY));
5479 if (!(numentries >> *_hash_shift)) {
5480 numentries = 1UL << *_hash_shift;
5481 BUG_ON(!numentries);
5482 }
5483 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5484 numentries = PAGE_SIZE / bucketsize;
1da177e4 5485 }
6e692ed3 5486 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5487
5488 /* limit allocation size to 1/16 total memory by default */
5489 if (max == 0) {
5490 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5491 do_div(max, bucketsize);
5492 }
074b8517 5493 max = min(max, 0x80000000ULL);
1da177e4 5494
31fe62b9
TB
5495 if (numentries < low_limit)
5496 numentries = low_limit;
1da177e4
LT
5497 if (numentries > max)
5498 numentries = max;
5499
f0d1b0b3 5500 log2qty = ilog2(numentries);
1da177e4
LT
5501
5502 do {
5503 size = bucketsize << log2qty;
5504 if (flags & HASH_EARLY)
74768ed8 5505 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5506 else if (hashdist)
5507 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5508 else {
1037b83b
ED
5509 /*
5510 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5511 * some pages at the end of hash table which
5512 * alloc_pages_exact() automatically does
1037b83b 5513 */
264ef8a9 5514 if (get_order(size) < MAX_ORDER) {
a1dd268c 5515 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5516 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5517 }
1da177e4
LT
5518 }
5519 } while (!table && size > PAGE_SIZE && --log2qty);
5520
5521 if (!table)
5522 panic("Failed to allocate %s hash table\n", tablename);
5523
f241e660 5524 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5525 tablename,
f241e660 5526 (1UL << log2qty),
f0d1b0b3 5527 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5528 size);
5529
5530 if (_hash_shift)
5531 *_hash_shift = log2qty;
5532 if (_hash_mask)
5533 *_hash_mask = (1 << log2qty) - 1;
5534
5535 return table;
5536}
a117e66e 5537
835c134e
MG
5538/* Return a pointer to the bitmap storing bits affecting a block of pages */
5539static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5540 unsigned long pfn)
5541{
5542#ifdef CONFIG_SPARSEMEM
5543 return __pfn_to_section(pfn)->pageblock_flags;
5544#else
5545 return zone->pageblock_flags;
5546#endif /* CONFIG_SPARSEMEM */
5547}
5548
5549static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5550{
5551#ifdef CONFIG_SPARSEMEM
5552 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5553 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5554#else
5555 pfn = pfn - zone->zone_start_pfn;
d9c23400 5556 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5557#endif /* CONFIG_SPARSEMEM */
5558}
5559
5560/**
d9c23400 5561 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5562 * @page: The page within the block of interest
5563 * @start_bitidx: The first bit of interest to retrieve
5564 * @end_bitidx: The last bit of interest
5565 * returns pageblock_bits flags
5566 */
5567unsigned long get_pageblock_flags_group(struct page *page,
5568 int start_bitidx, int end_bitidx)
5569{
5570 struct zone *zone;
5571 unsigned long *bitmap;
5572 unsigned long pfn, bitidx;
5573 unsigned long flags = 0;
5574 unsigned long value = 1;
5575
5576 zone = page_zone(page);
5577 pfn = page_to_pfn(page);
5578 bitmap = get_pageblock_bitmap(zone, pfn);
5579 bitidx = pfn_to_bitidx(zone, pfn);
5580
5581 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5582 if (test_bit(bitidx + start_bitidx, bitmap))
5583 flags |= value;
6220ec78 5584
835c134e
MG
5585 return flags;
5586}
5587
5588/**
d9c23400 5589 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5590 * @page: The page within the block of interest
5591 * @start_bitidx: The first bit of interest
5592 * @end_bitidx: The last bit of interest
5593 * @flags: The flags to set
5594 */
5595void set_pageblock_flags_group(struct page *page, unsigned long flags,
5596 int start_bitidx, int end_bitidx)
5597{
5598 struct zone *zone;
5599 unsigned long *bitmap;
5600 unsigned long pfn, bitidx;
5601 unsigned long value = 1;
5602
5603 zone = page_zone(page);
5604 pfn = page_to_pfn(page);
5605 bitmap = get_pageblock_bitmap(zone, pfn);
5606 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5607 VM_BUG_ON(pfn < zone->zone_start_pfn);
5608 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5609
5610 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5611 if (flags & value)
5612 __set_bit(bitidx + start_bitidx, bitmap);
5613 else
5614 __clear_bit(bitidx + start_bitidx, bitmap);
5615}
a5d76b54
KH
5616
5617/*
80934513
MK
5618 * This function checks whether pageblock includes unmovable pages or not.
5619 * If @count is not zero, it is okay to include less @count unmovable pages
5620 *
5621 * PageLRU check wihtout isolation or lru_lock could race so that
5622 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5623 * expect this function should be exact.
a5d76b54 5624 */
b023f468
WC
5625bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5626 bool skip_hwpoisoned_pages)
49ac8255
KH
5627{
5628 unsigned long pfn, iter, found;
47118af0
MN
5629 int mt;
5630
49ac8255
KH
5631 /*
5632 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5633 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5634 */
5635 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5636 return false;
47118af0
MN
5637 mt = get_pageblock_migratetype(page);
5638 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5639 return false;
49ac8255
KH
5640
5641 pfn = page_to_pfn(page);
5642 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5643 unsigned long check = pfn + iter;
5644
29723fcc 5645 if (!pfn_valid_within(check))
49ac8255 5646 continue;
29723fcc 5647
49ac8255 5648 page = pfn_to_page(check);
97d255c8
MK
5649 /*
5650 * We can't use page_count without pin a page
5651 * because another CPU can free compound page.
5652 * This check already skips compound tails of THP
5653 * because their page->_count is zero at all time.
5654 */
5655 if (!atomic_read(&page->_count)) {
49ac8255
KH
5656 if (PageBuddy(page))
5657 iter += (1 << page_order(page)) - 1;
5658 continue;
5659 }
97d255c8 5660
b023f468
WC
5661 /*
5662 * The HWPoisoned page may be not in buddy system, and
5663 * page_count() is not 0.
5664 */
5665 if (skip_hwpoisoned_pages && PageHWPoison(page))
5666 continue;
5667
49ac8255
KH
5668 if (!PageLRU(page))
5669 found++;
5670 /*
5671 * If there are RECLAIMABLE pages, we need to check it.
5672 * But now, memory offline itself doesn't call shrink_slab()
5673 * and it still to be fixed.
5674 */
5675 /*
5676 * If the page is not RAM, page_count()should be 0.
5677 * we don't need more check. This is an _used_ not-movable page.
5678 *
5679 * The problematic thing here is PG_reserved pages. PG_reserved
5680 * is set to both of a memory hole page and a _used_ kernel
5681 * page at boot.
5682 */
5683 if (found > count)
80934513 5684 return true;
49ac8255 5685 }
80934513 5686 return false;
49ac8255
KH
5687}
5688
5689bool is_pageblock_removable_nolock(struct page *page)
5690{
656a0706
MH
5691 struct zone *zone;
5692 unsigned long pfn;
687875fb
MH
5693
5694 /*
5695 * We have to be careful here because we are iterating over memory
5696 * sections which are not zone aware so we might end up outside of
5697 * the zone but still within the section.
656a0706
MH
5698 * We have to take care about the node as well. If the node is offline
5699 * its NODE_DATA will be NULL - see page_zone.
687875fb 5700 */
656a0706
MH
5701 if (!node_online(page_to_nid(page)))
5702 return false;
5703
5704 zone = page_zone(page);
5705 pfn = page_to_pfn(page);
5706 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5707 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5708 return false;
5709
b023f468 5710 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5711}
0c0e6195 5712
041d3a8c
MN
5713#ifdef CONFIG_CMA
5714
5715static unsigned long pfn_max_align_down(unsigned long pfn)
5716{
5717 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5718 pageblock_nr_pages) - 1);
5719}
5720
5721static unsigned long pfn_max_align_up(unsigned long pfn)
5722{
5723 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5724 pageblock_nr_pages));
5725}
5726
041d3a8c 5727/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5728static int __alloc_contig_migrate_range(struct compact_control *cc,
5729 unsigned long start, unsigned long end)
041d3a8c
MN
5730{
5731 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5732 unsigned long nr_reclaimed;
041d3a8c
MN
5733 unsigned long pfn = start;
5734 unsigned int tries = 0;
5735 int ret = 0;
5736
be49a6e1 5737 migrate_prep();
041d3a8c 5738
bb13ffeb 5739 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5740 if (fatal_signal_pending(current)) {
5741 ret = -EINTR;
5742 break;
5743 }
5744
bb13ffeb
MG
5745 if (list_empty(&cc->migratepages)) {
5746 cc->nr_migratepages = 0;
5747 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5748 pfn, end, true);
041d3a8c
MN
5749 if (!pfn) {
5750 ret = -EINTR;
5751 break;
5752 }
5753 tries = 0;
5754 } else if (++tries == 5) {
5755 ret = ret < 0 ? ret : -EBUSY;
5756 break;
5757 }
5758
beb51eaa
MK
5759 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5760 &cc->migratepages);
5761 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5762
bb13ffeb 5763 ret = migrate_pages(&cc->migratepages,
723a0644 5764 alloc_migrate_target,
58f42fd5 5765 0, false, MIGRATE_SYNC);
041d3a8c
MN
5766 }
5767
5733c7d1 5768 putback_movable_pages(&cc->migratepages);
041d3a8c
MN
5769 return ret > 0 ? 0 : ret;
5770}
5771
5772/**
5773 * alloc_contig_range() -- tries to allocate given range of pages
5774 * @start: start PFN to allocate
5775 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5776 * @migratetype: migratetype of the underlaying pageblocks (either
5777 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5778 * in range must have the same migratetype and it must
5779 * be either of the two.
041d3a8c
MN
5780 *
5781 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5782 * aligned, however it's the caller's responsibility to guarantee that
5783 * we are the only thread that changes migrate type of pageblocks the
5784 * pages fall in.
5785 *
5786 * The PFN range must belong to a single zone.
5787 *
5788 * Returns zero on success or negative error code. On success all
5789 * pages which PFN is in [start, end) are allocated for the caller and
5790 * need to be freed with free_contig_range().
5791 */
0815f3d8
MN
5792int alloc_contig_range(unsigned long start, unsigned long end,
5793 unsigned migratetype)
041d3a8c 5794{
041d3a8c
MN
5795 unsigned long outer_start, outer_end;
5796 int ret = 0, order;
5797
bb13ffeb
MG
5798 struct compact_control cc = {
5799 .nr_migratepages = 0,
5800 .order = -1,
5801 .zone = page_zone(pfn_to_page(start)),
5802 .sync = true,
5803 .ignore_skip_hint = true,
5804 };
5805 INIT_LIST_HEAD(&cc.migratepages);
5806
041d3a8c
MN
5807 /*
5808 * What we do here is we mark all pageblocks in range as
5809 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5810 * have different sizes, and due to the way page allocator
5811 * work, we align the range to biggest of the two pages so
5812 * that page allocator won't try to merge buddies from
5813 * different pageblocks and change MIGRATE_ISOLATE to some
5814 * other migration type.
5815 *
5816 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5817 * migrate the pages from an unaligned range (ie. pages that
5818 * we are interested in). This will put all the pages in
5819 * range back to page allocator as MIGRATE_ISOLATE.
5820 *
5821 * When this is done, we take the pages in range from page
5822 * allocator removing them from the buddy system. This way
5823 * page allocator will never consider using them.
5824 *
5825 * This lets us mark the pageblocks back as
5826 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5827 * aligned range but not in the unaligned, original range are
5828 * put back to page allocator so that buddy can use them.
5829 */
5830
5831 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
5832 pfn_max_align_up(end), migratetype,
5833 false);
041d3a8c 5834 if (ret)
86a595f9 5835 return ret;
041d3a8c 5836
bb13ffeb 5837 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5838 if (ret)
5839 goto done;
5840
5841 /*
5842 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5843 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5844 * more, all pages in [start, end) are free in page allocator.
5845 * What we are going to do is to allocate all pages from
5846 * [start, end) (that is remove them from page allocator).
5847 *
5848 * The only problem is that pages at the beginning and at the
5849 * end of interesting range may be not aligned with pages that
5850 * page allocator holds, ie. they can be part of higher order
5851 * pages. Because of this, we reserve the bigger range and
5852 * once this is done free the pages we are not interested in.
5853 *
5854 * We don't have to hold zone->lock here because the pages are
5855 * isolated thus they won't get removed from buddy.
5856 */
5857
5858 lru_add_drain_all();
5859 drain_all_pages();
5860
5861 order = 0;
5862 outer_start = start;
5863 while (!PageBuddy(pfn_to_page(outer_start))) {
5864 if (++order >= MAX_ORDER) {
5865 ret = -EBUSY;
5866 goto done;
5867 }
5868 outer_start &= ~0UL << order;
5869 }
5870
5871 /* Make sure the range is really isolated. */
b023f468 5872 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
5873 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5874 outer_start, end);
5875 ret = -EBUSY;
5876 goto done;
5877 }
5878
49f223a9
MS
5879
5880 /* Grab isolated pages from freelists. */
bb13ffeb 5881 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5882 if (!outer_end) {
5883 ret = -EBUSY;
5884 goto done;
5885 }
5886
5887 /* Free head and tail (if any) */
5888 if (start != outer_start)
5889 free_contig_range(outer_start, start - outer_start);
5890 if (end != outer_end)
5891 free_contig_range(end, outer_end - end);
5892
5893done:
5894 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5895 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5896 return ret;
5897}
5898
5899void free_contig_range(unsigned long pfn, unsigned nr_pages)
5900{
5901 for (; nr_pages--; ++pfn)
5902 __free_page(pfn_to_page(pfn));
5903}
5904#endif
5905
4ed7e022
JL
5906#ifdef CONFIG_MEMORY_HOTPLUG
5907static int __meminit __zone_pcp_update(void *data)
5908{
5909 struct zone *zone = data;
5910 int cpu;
5911 unsigned long batch = zone_batchsize(zone), flags;
5912
5913 for_each_possible_cpu(cpu) {
5914 struct per_cpu_pageset *pset;
5915 struct per_cpu_pages *pcp;
5916
5917 pset = per_cpu_ptr(zone->pageset, cpu);
5918 pcp = &pset->pcp;
5919
5920 local_irq_save(flags);
5921 if (pcp->count > 0)
5922 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 5923 drain_zonestat(zone, pset);
4ed7e022
JL
5924 setup_pageset(pset, batch);
5925 local_irq_restore(flags);
5926 }
5927 return 0;
5928}
5929
5930void __meminit zone_pcp_update(struct zone *zone)
5931{
5932 stop_machine(__zone_pcp_update, zone, NULL);
5933}
5934#endif
5935
340175b7
JL
5936void zone_pcp_reset(struct zone *zone)
5937{
5938 unsigned long flags;
5a883813
MK
5939 int cpu;
5940 struct per_cpu_pageset *pset;
340175b7
JL
5941
5942 /* avoid races with drain_pages() */
5943 local_irq_save(flags);
5944 if (zone->pageset != &boot_pageset) {
5a883813
MK
5945 for_each_online_cpu(cpu) {
5946 pset = per_cpu_ptr(zone->pageset, cpu);
5947 drain_zonestat(zone, pset);
5948 }
340175b7
JL
5949 free_percpu(zone->pageset);
5950 zone->pageset = &boot_pageset;
5951 }
5952 local_irq_restore(flags);
5953}
5954
6dcd73d7 5955#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
5956/*
5957 * All pages in the range must be isolated before calling this.
5958 */
5959void
5960__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5961{
5962 struct page *page;
5963 struct zone *zone;
5964 int order, i;
5965 unsigned long pfn;
5966 unsigned long flags;
5967 /* find the first valid pfn */
5968 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5969 if (pfn_valid(pfn))
5970 break;
5971 if (pfn == end_pfn)
5972 return;
5973 zone = page_zone(pfn_to_page(pfn));
5974 spin_lock_irqsave(&zone->lock, flags);
5975 pfn = start_pfn;
5976 while (pfn < end_pfn) {
5977 if (!pfn_valid(pfn)) {
5978 pfn++;
5979 continue;
5980 }
5981 page = pfn_to_page(pfn);
b023f468
WC
5982 /*
5983 * The HWPoisoned page may be not in buddy system, and
5984 * page_count() is not 0.
5985 */
5986 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
5987 pfn++;
5988 SetPageReserved(page);
5989 continue;
5990 }
5991
0c0e6195
KH
5992 BUG_ON(page_count(page));
5993 BUG_ON(!PageBuddy(page));
5994 order = page_order(page);
5995#ifdef CONFIG_DEBUG_VM
5996 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5997 pfn, 1 << order, end_pfn);
5998#endif
5999 list_del(&page->lru);
6000 rmv_page_order(page);
6001 zone->free_area[order].nr_free--;
0c0e6195
KH
6002 for (i = 0; i < (1 << order); i++)
6003 SetPageReserved((page+i));
6004 pfn += (1 << order);
6005 }
6006 spin_unlock_irqrestore(&zone->lock, flags);
6007}
6008#endif
8d22ba1b
WF
6009
6010#ifdef CONFIG_MEMORY_FAILURE
6011bool is_free_buddy_page(struct page *page)
6012{
6013 struct zone *zone = page_zone(page);
6014 unsigned long pfn = page_to_pfn(page);
6015 unsigned long flags;
6016 int order;
6017
6018 spin_lock_irqsave(&zone->lock, flags);
6019 for (order = 0; order < MAX_ORDER; order++) {
6020 struct page *page_head = page - (pfn & ((1 << order) - 1));
6021
6022 if (PageBuddy(page_head) && page_order(page_head) >= order)
6023 break;
6024 }
6025 spin_unlock_irqrestore(&zone->lock, flags);
6026
6027 return order < MAX_ORDER;
6028}
6029#endif
718a3821 6030
51300cef 6031static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6032 {1UL << PG_locked, "locked" },
6033 {1UL << PG_error, "error" },
6034 {1UL << PG_referenced, "referenced" },
6035 {1UL << PG_uptodate, "uptodate" },
6036 {1UL << PG_dirty, "dirty" },
6037 {1UL << PG_lru, "lru" },
6038 {1UL << PG_active, "active" },
6039 {1UL << PG_slab, "slab" },
6040 {1UL << PG_owner_priv_1, "owner_priv_1" },
6041 {1UL << PG_arch_1, "arch_1" },
6042 {1UL << PG_reserved, "reserved" },
6043 {1UL << PG_private, "private" },
6044 {1UL << PG_private_2, "private_2" },
6045 {1UL << PG_writeback, "writeback" },
6046#ifdef CONFIG_PAGEFLAGS_EXTENDED
6047 {1UL << PG_head, "head" },
6048 {1UL << PG_tail, "tail" },
6049#else
6050 {1UL << PG_compound, "compound" },
6051#endif
6052 {1UL << PG_swapcache, "swapcache" },
6053 {1UL << PG_mappedtodisk, "mappedtodisk" },
6054 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6055 {1UL << PG_swapbacked, "swapbacked" },
6056 {1UL << PG_unevictable, "unevictable" },
6057#ifdef CONFIG_MMU
6058 {1UL << PG_mlocked, "mlocked" },
6059#endif
6060#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6061 {1UL << PG_uncached, "uncached" },
6062#endif
6063#ifdef CONFIG_MEMORY_FAILURE
6064 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6065#endif
6066#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6067 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6068#endif
718a3821
WF
6069};
6070
6071static void dump_page_flags(unsigned long flags)
6072{
6073 const char *delim = "";
6074 unsigned long mask;
6075 int i;
6076
51300cef 6077 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6078
718a3821
WF
6079 printk(KERN_ALERT "page flags: %#lx(", flags);
6080
6081 /* remove zone id */
6082 flags &= (1UL << NR_PAGEFLAGS) - 1;
6083
51300cef 6084 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6085
6086 mask = pageflag_names[i].mask;
6087 if ((flags & mask) != mask)
6088 continue;
6089
6090 flags &= ~mask;
6091 printk("%s%s", delim, pageflag_names[i].name);
6092 delim = "|";
6093 }
6094
6095 /* check for left over flags */
6096 if (flags)
6097 printk("%s%#lx", delim, flags);
6098
6099 printk(")\n");
6100}
6101
6102void dump_page(struct page *page)
6103{
6104 printk(KERN_ALERT
6105 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6106 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6107 page->mapping, page->index);
6108 dump_page_flags(page->flags);
f212ad7c 6109 mem_cgroup_print_bad_page(page);
718a3821 6110}