net: page_pool: use alloc_pages_bulk in refill code path
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
7ee3d4e8 75#include <asm/sections.h>
1da177e4 76#include <asm/tlbflush.h>
ac924c60 77#include <asm/div64.h>
1da177e4 78#include "internal.h"
e900a918 79#include "shuffle.h"
36e66c55 80#include "page_reporting.h"
1da177e4 81
f04a5d5d
DH
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
47b6a24a
DH
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
2c335680
AK
110/*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
c8e251fa
CS
121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 123#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 124
72812019
LS
125#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
126DEFINE_PER_CPU(int, numa_node);
127EXPORT_PER_CPU_SYMBOL(numa_node);
128#endif
129
4518085e
KW
130DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
131
7aac7898
LS
132#ifdef CONFIG_HAVE_MEMORYLESS_NODES
133/*
134 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
135 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
136 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
137 * defined in <linux/topology.h>.
138 */
139DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
140EXPORT_PER_CPU_SYMBOL(_numa_mem_);
141#endif
142
bd233f53 143/* work_structs for global per-cpu drains */
d9367bd0
WY
144struct pcpu_drain {
145 struct zone *zone;
146 struct work_struct work;
147};
8b885f53
JY
148static DEFINE_MUTEX(pcpu_drain_mutex);
149static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 150
38addce8 151#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 152volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
153EXPORT_SYMBOL(latent_entropy);
154#endif
155
1da177e4 156/*
13808910 157 * Array of node states.
1da177e4 158 */
13808910
CL
159nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
160 [N_POSSIBLE] = NODE_MASK_ALL,
161 [N_ONLINE] = { { [0] = 1UL } },
162#ifndef CONFIG_NUMA
163 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
164#ifdef CONFIG_HIGHMEM
165 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 166#endif
20b2f52b 167 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
168 [N_CPU] = { { [0] = 1UL } },
169#endif /* NUMA */
170};
171EXPORT_SYMBOL(node_states);
172
ca79b0c2
AK
173atomic_long_t _totalram_pages __read_mostly;
174EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 175unsigned long totalreserve_pages __read_mostly;
e48322ab 176unsigned long totalcma_pages __read_mostly;
ab8fabd4 177
1b76b02f 178int percpu_pagelist_fraction;
dcce284a 179gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 180DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
181EXPORT_SYMBOL(init_on_alloc);
182
51cba1eb 183DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
184EXPORT_SYMBOL(init_on_free);
185
04013513
VB
186static bool _init_on_alloc_enabled_early __read_mostly
187 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
188static int __init early_init_on_alloc(char *buf)
189{
6471384a 190
04013513 191 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
192}
193early_param("init_on_alloc", early_init_on_alloc);
194
04013513
VB
195static bool _init_on_free_enabled_early __read_mostly
196 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
197static int __init early_init_on_free(char *buf)
198{
04013513 199 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
200}
201early_param("init_on_free", early_init_on_free);
1da177e4 202
bb14c2c7
VB
203/*
204 * A cached value of the page's pageblock's migratetype, used when the page is
205 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
206 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
207 * Also the migratetype set in the page does not necessarily match the pcplist
208 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
209 * other index - this ensures that it will be put on the correct CMA freelist.
210 */
211static inline int get_pcppage_migratetype(struct page *page)
212{
213 return page->index;
214}
215
216static inline void set_pcppage_migratetype(struct page *page, int migratetype)
217{
218 page->index = migratetype;
219}
220
452aa699
RW
221#ifdef CONFIG_PM_SLEEP
222/*
223 * The following functions are used by the suspend/hibernate code to temporarily
224 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
225 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
226 * they should always be called with system_transition_mutex held
227 * (gfp_allowed_mask also should only be modified with system_transition_mutex
228 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
229 * with that modification).
452aa699 230 */
c9e664f1
RW
231
232static gfp_t saved_gfp_mask;
233
234void pm_restore_gfp_mask(void)
452aa699 235{
55f2503c 236 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
237 if (saved_gfp_mask) {
238 gfp_allowed_mask = saved_gfp_mask;
239 saved_gfp_mask = 0;
240 }
452aa699
RW
241}
242
c9e664f1 243void pm_restrict_gfp_mask(void)
452aa699 244{
55f2503c 245 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
246 WARN_ON(saved_gfp_mask);
247 saved_gfp_mask = gfp_allowed_mask;
d0164adc 248 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 249}
f90ac398
MG
250
251bool pm_suspended_storage(void)
252{
d0164adc 253 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
254 return false;
255 return true;
256}
452aa699
RW
257#endif /* CONFIG_PM_SLEEP */
258
d9c23400 259#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 260unsigned int pageblock_order __read_mostly;
d9c23400
MG
261#endif
262
7fef431b
DH
263static void __free_pages_ok(struct page *page, unsigned int order,
264 fpi_t fpi_flags);
a226f6c8 265
1da177e4
LT
266/*
267 * results with 256, 32 in the lowmem_reserve sysctl:
268 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
269 * 1G machine -> (16M dma, 784M normal, 224M high)
270 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
271 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 272 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
273 *
274 * TBD: should special case ZONE_DMA32 machines here - in those we normally
275 * don't need any ZONE_NORMAL reservation
1da177e4 276 */
d3cda233 277int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 278#ifdef CONFIG_ZONE_DMA
d3cda233 279 [ZONE_DMA] = 256,
4b51d669 280#endif
fb0e7942 281#ifdef CONFIG_ZONE_DMA32
d3cda233 282 [ZONE_DMA32] = 256,
fb0e7942 283#endif
d3cda233 284 [ZONE_NORMAL] = 32,
e53ef38d 285#ifdef CONFIG_HIGHMEM
d3cda233 286 [ZONE_HIGHMEM] = 0,
e53ef38d 287#endif
d3cda233 288 [ZONE_MOVABLE] = 0,
2f1b6248 289};
1da177e4 290
15ad7cdc 291static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 292#ifdef CONFIG_ZONE_DMA
2f1b6248 293 "DMA",
4b51d669 294#endif
fb0e7942 295#ifdef CONFIG_ZONE_DMA32
2f1b6248 296 "DMA32",
fb0e7942 297#endif
2f1b6248 298 "Normal",
e53ef38d 299#ifdef CONFIG_HIGHMEM
2a1e274a 300 "HighMem",
e53ef38d 301#endif
2a1e274a 302 "Movable",
033fbae9
DW
303#ifdef CONFIG_ZONE_DEVICE
304 "Device",
305#endif
2f1b6248
CL
306};
307
c999fbd3 308const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
309 "Unmovable",
310 "Movable",
311 "Reclaimable",
312 "HighAtomic",
313#ifdef CONFIG_CMA
314 "CMA",
315#endif
316#ifdef CONFIG_MEMORY_ISOLATION
317 "Isolate",
318#endif
319};
320
ae70eddd
AK
321compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
322 [NULL_COMPOUND_DTOR] = NULL,
323 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 324#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 325 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 326#endif
9a982250 327#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 328 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 329#endif
f1e61557
KS
330};
331
1da177e4 332int min_free_kbytes = 1024;
42aa83cb 333int user_min_free_kbytes = -1;
24512228
MG
334#ifdef CONFIG_DISCONTIGMEM
335/*
336 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
337 * are not on separate NUMA nodes. Functionally this works but with
338 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
339 * quite small. By default, do not boost watermarks on discontigmem as in
340 * many cases very high-order allocations like THP are likely to be
341 * unsupported and the premature reclaim offsets the advantage of long-term
342 * fragmentation avoidance.
343 */
344int watermark_boost_factor __read_mostly;
345#else
1c30844d 346int watermark_boost_factor __read_mostly = 15000;
24512228 347#endif
795ae7a0 348int watermark_scale_factor = 10;
1da177e4 349
bbe5d993
OS
350static unsigned long nr_kernel_pages __initdata;
351static unsigned long nr_all_pages __initdata;
352static unsigned long dma_reserve __initdata;
1da177e4 353
bbe5d993
OS
354static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
355static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 356static unsigned long required_kernelcore __initdata;
a5c6d650 357static unsigned long required_kernelcore_percent __initdata;
7f16f91f 358static unsigned long required_movablecore __initdata;
a5c6d650 359static unsigned long required_movablecore_percent __initdata;
bbe5d993 360static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 361static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
362
363/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
364int movable_zone;
365EXPORT_SYMBOL(movable_zone);
c713216d 366
418508c1 367#if MAX_NUMNODES > 1
b9726c26 368unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 369unsigned int nr_online_nodes __read_mostly = 1;
418508c1 370EXPORT_SYMBOL(nr_node_ids);
62bc62a8 371EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
372#endif
373
9ef9acb0
MG
374int page_group_by_mobility_disabled __read_mostly;
375
3a80a7fa 376#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
377/*
378 * During boot we initialize deferred pages on-demand, as needed, but once
379 * page_alloc_init_late() has finished, the deferred pages are all initialized,
380 * and we can permanently disable that path.
381 */
382static DEFINE_STATIC_KEY_TRUE(deferred_pages);
383
384/*
385 * Calling kasan_free_pages() only after deferred memory initialization
386 * has completed. Poisoning pages during deferred memory init will greatly
387 * lengthen the process and cause problem in large memory systems as the
388 * deferred pages initialization is done with interrupt disabled.
389 *
390 * Assuming that there will be no reference to those newly initialized
391 * pages before they are ever allocated, this should have no effect on
392 * KASAN memory tracking as the poison will be properly inserted at page
393 * allocation time. The only corner case is when pages are allocated by
394 * on-demand allocation and then freed again before the deferred pages
395 * initialization is done, but this is not likely to happen.
396 */
2c335680 397static inline void kasan_free_nondeferred_pages(struct page *page, int order,
1bb5eab3 398 bool init, fpi_t fpi_flags)
3c0c12cc 399{
2c335680
AK
400 if (static_branch_unlikely(&deferred_pages))
401 return;
402 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
403 (fpi_flags & FPI_SKIP_KASAN_POISON))
404 return;
1bb5eab3 405 kasan_free_pages(page, order, init);
3c0c12cc
WL
406}
407
3a80a7fa 408/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 409static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 410{
ef70b6f4
MG
411 int nid = early_pfn_to_nid(pfn);
412
413 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
414 return true;
415
416 return false;
417}
418
419/*
d3035be4 420 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
421 * later in the boot cycle when it can be parallelised.
422 */
d3035be4
PT
423static bool __meminit
424defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 425{
d3035be4
PT
426 static unsigned long prev_end_pfn, nr_initialised;
427
428 /*
429 * prev_end_pfn static that contains the end of previous zone
430 * No need to protect because called very early in boot before smp_init.
431 */
432 if (prev_end_pfn != end_pfn) {
433 prev_end_pfn = end_pfn;
434 nr_initialised = 0;
435 }
436
3c2c6488 437 /* Always populate low zones for address-constrained allocations */
d3035be4 438 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 439 return false;
23b68cfa 440
dc2da7b4
BH
441 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
442 return true;
23b68cfa
WY
443 /*
444 * We start only with one section of pages, more pages are added as
445 * needed until the rest of deferred pages are initialized.
446 */
d3035be4 447 nr_initialised++;
23b68cfa 448 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
449 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
450 NODE_DATA(nid)->first_deferred_pfn = pfn;
451 return true;
3a80a7fa 452 }
d3035be4 453 return false;
3a80a7fa
MG
454}
455#else
2c335680 456static inline void kasan_free_nondeferred_pages(struct page *page, int order,
1bb5eab3 457 bool init, fpi_t fpi_flags)
2c335680
AK
458{
459 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
460 (fpi_flags & FPI_SKIP_KASAN_POISON))
461 return;
1bb5eab3 462 kasan_free_pages(page, order, init);
2c335680 463}
3c0c12cc 464
3a80a7fa
MG
465static inline bool early_page_uninitialised(unsigned long pfn)
466{
467 return false;
468}
469
d3035be4 470static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 471{
d3035be4 472 return false;
3a80a7fa
MG
473}
474#endif
475
0b423ca2
MG
476/* Return a pointer to the bitmap storing bits affecting a block of pages */
477static inline unsigned long *get_pageblock_bitmap(struct page *page,
478 unsigned long pfn)
479{
480#ifdef CONFIG_SPARSEMEM
f1eca35a 481 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
482#else
483 return page_zone(page)->pageblock_flags;
484#endif /* CONFIG_SPARSEMEM */
485}
486
487static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
488{
489#ifdef CONFIG_SPARSEMEM
490 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
491#else
492 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 493#endif /* CONFIG_SPARSEMEM */
399b795b 494 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
495}
496
535b81e2
WY
497static __always_inline
498unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 499 unsigned long pfn,
0b423ca2
MG
500 unsigned long mask)
501{
502 unsigned long *bitmap;
503 unsigned long bitidx, word_bitidx;
504 unsigned long word;
505
506 bitmap = get_pageblock_bitmap(page, pfn);
507 bitidx = pfn_to_bitidx(page, pfn);
508 word_bitidx = bitidx / BITS_PER_LONG;
509 bitidx &= (BITS_PER_LONG-1);
510
511 word = bitmap[word_bitidx];
d93d5ab9 512 return (word >> bitidx) & mask;
0b423ca2
MG
513}
514
a00cda3f
MCC
515/**
516 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
517 * @page: The page within the block of interest
518 * @pfn: The target page frame number
519 * @mask: mask of bits that the caller is interested in
520 *
521 * Return: pageblock_bits flags
522 */
0b423ca2 523unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
524 unsigned long mask)
525{
535b81e2 526 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
527}
528
529static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
530{
535b81e2 531 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
532}
533
534/**
535 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
536 * @page: The page within the block of interest
537 * @flags: The flags to set
538 * @pfn: The target page frame number
0b423ca2
MG
539 * @mask: mask of bits that the caller is interested in
540 */
541void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
542 unsigned long pfn,
0b423ca2
MG
543 unsigned long mask)
544{
545 unsigned long *bitmap;
546 unsigned long bitidx, word_bitidx;
547 unsigned long old_word, word;
548
549 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 550 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
551
552 bitmap = get_pageblock_bitmap(page, pfn);
553 bitidx = pfn_to_bitidx(page, pfn);
554 word_bitidx = bitidx / BITS_PER_LONG;
555 bitidx &= (BITS_PER_LONG-1);
556
557 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
558
d93d5ab9
WY
559 mask <<= bitidx;
560 flags <<= bitidx;
0b423ca2
MG
561
562 word = READ_ONCE(bitmap[word_bitidx]);
563 for (;;) {
564 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
565 if (word == old_word)
566 break;
567 word = old_word;
568 }
569}
3a80a7fa 570
ee6f509c 571void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 572{
5d0f3f72
KM
573 if (unlikely(page_group_by_mobility_disabled &&
574 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
575 migratetype = MIGRATE_UNMOVABLE;
576
d93d5ab9 577 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 578 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
579}
580
13e7444b 581#ifdef CONFIG_DEBUG_VM
c6a57e19 582static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 583{
bdc8cb98
DH
584 int ret = 0;
585 unsigned seq;
586 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 587 unsigned long sp, start_pfn;
c6a57e19 588
bdc8cb98
DH
589 do {
590 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
591 start_pfn = zone->zone_start_pfn;
592 sp = zone->spanned_pages;
108bcc96 593 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
594 ret = 1;
595 } while (zone_span_seqretry(zone, seq));
596
b5e6a5a2 597 if (ret)
613813e8
DH
598 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
599 pfn, zone_to_nid(zone), zone->name,
600 start_pfn, start_pfn + sp);
b5e6a5a2 601
bdc8cb98 602 return ret;
c6a57e19
DH
603}
604
605static int page_is_consistent(struct zone *zone, struct page *page)
606{
14e07298 607 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 608 return 0;
1da177e4 609 if (zone != page_zone(page))
c6a57e19
DH
610 return 0;
611
612 return 1;
613}
614/*
615 * Temporary debugging check for pages not lying within a given zone.
616 */
d73d3c9f 617static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
618{
619 if (page_outside_zone_boundaries(zone, page))
1da177e4 620 return 1;
c6a57e19
DH
621 if (!page_is_consistent(zone, page))
622 return 1;
623
1da177e4
LT
624 return 0;
625}
13e7444b 626#else
d73d3c9f 627static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
628{
629 return 0;
630}
631#endif
632
82a3241a 633static void bad_page(struct page *page, const char *reason)
1da177e4 634{
d936cf9b
HD
635 static unsigned long resume;
636 static unsigned long nr_shown;
637 static unsigned long nr_unshown;
638
639 /*
640 * Allow a burst of 60 reports, then keep quiet for that minute;
641 * or allow a steady drip of one report per second.
642 */
643 if (nr_shown == 60) {
644 if (time_before(jiffies, resume)) {
645 nr_unshown++;
646 goto out;
647 }
648 if (nr_unshown) {
ff8e8116 649 pr_alert(
1e9e6365 650 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
651 nr_unshown);
652 nr_unshown = 0;
653 }
654 nr_shown = 0;
655 }
656 if (nr_shown++ == 0)
657 resume = jiffies + 60 * HZ;
658
ff8e8116 659 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 660 current->comm, page_to_pfn(page));
ff8e8116 661 __dump_page(page, reason);
4e462112 662 dump_page_owner(page);
3dc14741 663
4f31888c 664 print_modules();
1da177e4 665 dump_stack();
d936cf9b 666out:
8cc3b392 667 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 668 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
670}
671
1da177e4
LT
672/*
673 * Higher-order pages are called "compound pages". They are structured thusly:
674 *
1d798ca3 675 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 676 *
1d798ca3
KS
677 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
678 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 679 *
1d798ca3
KS
680 * The first tail page's ->compound_dtor holds the offset in array of compound
681 * page destructors. See compound_page_dtors.
1da177e4 682 *
1d798ca3 683 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 684 * This usage means that zero-order pages may not be compound.
1da177e4 685 */
d98c7a09 686
9a982250 687void free_compound_page(struct page *page)
d98c7a09 688{
7ae88534 689 mem_cgroup_uncharge(page);
7fef431b 690 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
691}
692
d00181b9 693void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
694{
695 int i;
696 int nr_pages = 1 << order;
697
18229df5
AW
698 __SetPageHead(page);
699 for (i = 1; i < nr_pages; i++) {
700 struct page *p = page + i;
58a84aa9 701 set_page_count(p, 0);
1c290f64 702 p->mapping = TAIL_MAPPING;
1d798ca3 703 set_compound_head(p, page);
18229df5 704 }
1378a5ee
MWO
705
706 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
707 set_compound_order(page, order);
53f9263b 708 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
709 if (hpage_pincount_available(page))
710 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
711}
712
c0a32fc5
SG
713#ifdef CONFIG_DEBUG_PAGEALLOC
714unsigned int _debug_guardpage_minorder;
96a2b03f 715
8e57f8ac
VB
716bool _debug_pagealloc_enabled_early __read_mostly
717 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
718EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 719DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 720EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
721
722DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 723
031bc574
JK
724static int __init early_debug_pagealloc(char *buf)
725{
8e57f8ac 726 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
727}
728early_param("debug_pagealloc", early_debug_pagealloc);
729
c0a32fc5
SG
730static int __init debug_guardpage_minorder_setup(char *buf)
731{
732 unsigned long res;
733
734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 735 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
736 return 0;
737 }
738 _debug_guardpage_minorder = res;
1170532b 739 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
740 return 0;
741}
f1c1e9f7 742early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 743
acbc15a4 744static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 745 unsigned int order, int migratetype)
c0a32fc5 746{
e30825f1 747 if (!debug_guardpage_enabled())
acbc15a4
JK
748 return false;
749
750 if (order >= debug_guardpage_minorder())
751 return false;
e30825f1 752
3972f6bb 753 __SetPageGuard(page);
2847cf95
JK
754 INIT_LIST_HEAD(&page->lru);
755 set_page_private(page, order);
756 /* Guard pages are not available for any usage */
757 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
758
759 return true;
c0a32fc5
SG
760}
761
2847cf95
JK
762static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype)
c0a32fc5 764{
e30825f1
JK
765 if (!debug_guardpage_enabled())
766 return;
767
3972f6bb 768 __ClearPageGuard(page);
e30825f1 769
2847cf95
JK
770 set_page_private(page, 0);
771 if (!is_migrate_isolate(migratetype))
772 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
773}
774#else
acbc15a4
JK
775static inline bool set_page_guard(struct zone *zone, struct page *page,
776 unsigned int order, int migratetype) { return false; }
2847cf95
JK
777static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype) {}
c0a32fc5
SG
779#endif
780
04013513
VB
781/*
782 * Enable static keys related to various memory debugging and hardening options.
783 * Some override others, and depend on early params that are evaluated in the
784 * order of appearance. So we need to first gather the full picture of what was
785 * enabled, and then make decisions.
786 */
787void init_mem_debugging_and_hardening(void)
788{
789 if (_init_on_alloc_enabled_early) {
790 if (page_poisoning_enabled())
791 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
792 "will take precedence over init_on_alloc\n");
793 else
794 static_branch_enable(&init_on_alloc);
795 }
796 if (_init_on_free_enabled_early) {
797 if (page_poisoning_enabled())
798 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
799 "will take precedence over init_on_free\n");
800 else
801 static_branch_enable(&init_on_free);
802 }
803
8db26a3d
VB
804#ifdef CONFIG_PAGE_POISONING
805 /*
806 * Page poisoning is debug page alloc for some arches. If
807 * either of those options are enabled, enable poisoning.
808 */
809 if (page_poisoning_enabled() ||
810 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
811 debug_pagealloc_enabled()))
812 static_branch_enable(&_page_poisoning_enabled);
813#endif
814
04013513
VB
815#ifdef CONFIG_DEBUG_PAGEALLOC
816 if (!debug_pagealloc_enabled())
817 return;
818
819 static_branch_enable(&_debug_pagealloc_enabled);
820
821 if (!debug_guardpage_minorder())
822 return;
823
824 static_branch_enable(&_debug_guardpage_enabled);
825#endif
826}
827
ab130f91 828static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 829{
4c21e2f2 830 set_page_private(page, order);
676165a8 831 __SetPageBuddy(page);
1da177e4
LT
832}
833
1da177e4
LT
834/*
835 * This function checks whether a page is free && is the buddy
6e292b9b 836 * we can coalesce a page and its buddy if
13ad59df 837 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 838 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
839 * (c) a page and its buddy have the same order &&
840 * (d) a page and its buddy are in the same zone.
676165a8 841 *
6e292b9b
MW
842 * For recording whether a page is in the buddy system, we set PageBuddy.
843 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 844 *
676165a8 845 * For recording page's order, we use page_private(page).
1da177e4 846 */
fe925c0c 847static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 848 unsigned int order)
1da177e4 849{
fe925c0c 850 if (!page_is_guard(buddy) && !PageBuddy(buddy))
851 return false;
4c5018ce 852
ab130f91 853 if (buddy_order(buddy) != order)
fe925c0c 854 return false;
c0a32fc5 855
fe925c0c 856 /*
857 * zone check is done late to avoid uselessly calculating
858 * zone/node ids for pages that could never merge.
859 */
860 if (page_zone_id(page) != page_zone_id(buddy))
861 return false;
d34c5fa0 862
fe925c0c 863 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 864
fe925c0c 865 return true;
1da177e4
LT
866}
867
5e1f0f09
MG
868#ifdef CONFIG_COMPACTION
869static inline struct capture_control *task_capc(struct zone *zone)
870{
871 struct capture_control *capc = current->capture_control;
872
deba0487 873 return unlikely(capc) &&
5e1f0f09
MG
874 !(current->flags & PF_KTHREAD) &&
875 !capc->page &&
deba0487 876 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
877}
878
879static inline bool
880compaction_capture(struct capture_control *capc, struct page *page,
881 int order, int migratetype)
882{
883 if (!capc || order != capc->cc->order)
884 return false;
885
886 /* Do not accidentally pollute CMA or isolated regions*/
887 if (is_migrate_cma(migratetype) ||
888 is_migrate_isolate(migratetype))
889 return false;
890
891 /*
892 * Do not let lower order allocations polluate a movable pageblock.
893 * This might let an unmovable request use a reclaimable pageblock
894 * and vice-versa but no more than normal fallback logic which can
895 * have trouble finding a high-order free page.
896 */
897 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
898 return false;
899
900 capc->page = page;
901 return true;
902}
903
904#else
905static inline struct capture_control *task_capc(struct zone *zone)
906{
907 return NULL;
908}
909
910static inline bool
911compaction_capture(struct capture_control *capc, struct page *page,
912 int order, int migratetype)
913{
914 return false;
915}
916#endif /* CONFIG_COMPACTION */
917
6ab01363
AD
918/* Used for pages not on another list */
919static inline void add_to_free_list(struct page *page, struct zone *zone,
920 unsigned int order, int migratetype)
921{
922 struct free_area *area = &zone->free_area[order];
923
924 list_add(&page->lru, &area->free_list[migratetype]);
925 area->nr_free++;
926}
927
928/* Used for pages not on another list */
929static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
930 unsigned int order, int migratetype)
931{
932 struct free_area *area = &zone->free_area[order];
933
934 list_add_tail(&page->lru, &area->free_list[migratetype]);
935 area->nr_free++;
936}
937
293ffa5e
DH
938/*
939 * Used for pages which are on another list. Move the pages to the tail
940 * of the list - so the moved pages won't immediately be considered for
941 * allocation again (e.g., optimization for memory onlining).
942 */
6ab01363
AD
943static inline void move_to_free_list(struct page *page, struct zone *zone,
944 unsigned int order, int migratetype)
945{
946 struct free_area *area = &zone->free_area[order];
947
293ffa5e 948 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
949}
950
951static inline void del_page_from_free_list(struct page *page, struct zone *zone,
952 unsigned int order)
953{
36e66c55
AD
954 /* clear reported state and update reported page count */
955 if (page_reported(page))
956 __ClearPageReported(page);
957
6ab01363
AD
958 list_del(&page->lru);
959 __ClearPageBuddy(page);
960 set_page_private(page, 0);
961 zone->free_area[order].nr_free--;
962}
963
a2129f24
AD
964/*
965 * If this is not the largest possible page, check if the buddy
966 * of the next-highest order is free. If it is, it's possible
967 * that pages are being freed that will coalesce soon. In case,
968 * that is happening, add the free page to the tail of the list
969 * so it's less likely to be used soon and more likely to be merged
970 * as a higher order page
971 */
972static inline bool
973buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
974 struct page *page, unsigned int order)
975{
976 struct page *higher_page, *higher_buddy;
977 unsigned long combined_pfn;
978
979 if (order >= MAX_ORDER - 2)
980 return false;
981
982 if (!pfn_valid_within(buddy_pfn))
983 return false;
984
985 combined_pfn = buddy_pfn & pfn;
986 higher_page = page + (combined_pfn - pfn);
987 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
988 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
989
990 return pfn_valid_within(buddy_pfn) &&
991 page_is_buddy(higher_page, higher_buddy, order + 1);
992}
993
1da177e4
LT
994/*
995 * Freeing function for a buddy system allocator.
996 *
997 * The concept of a buddy system is to maintain direct-mapped table
998 * (containing bit values) for memory blocks of various "orders".
999 * The bottom level table contains the map for the smallest allocatable
1000 * units of memory (here, pages), and each level above it describes
1001 * pairs of units from the levels below, hence, "buddies".
1002 * At a high level, all that happens here is marking the table entry
1003 * at the bottom level available, and propagating the changes upward
1004 * as necessary, plus some accounting needed to play nicely with other
1005 * parts of the VM system.
1006 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1007 * free pages of length of (1 << order) and marked with PageBuddy.
1008 * Page's order is recorded in page_private(page) field.
1da177e4 1009 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1010 * other. That is, if we allocate a small block, and both were
1011 * free, the remainder of the region must be split into blocks.
1da177e4 1012 * If a block is freed, and its buddy is also free, then this
5f63b720 1013 * triggers coalescing into a block of larger size.
1da177e4 1014 *
6d49e352 1015 * -- nyc
1da177e4
LT
1016 */
1017
48db57f8 1018static inline void __free_one_page(struct page *page,
dc4b0caf 1019 unsigned long pfn,
ed0ae21d 1020 struct zone *zone, unsigned int order,
f04a5d5d 1021 int migratetype, fpi_t fpi_flags)
1da177e4 1022{
a2129f24 1023 struct capture_control *capc = task_capc(zone);
3f649ab7 1024 unsigned long buddy_pfn;
a2129f24 1025 unsigned long combined_pfn;
d9dddbf5 1026 unsigned int max_order;
a2129f24
AD
1027 struct page *buddy;
1028 bool to_tail;
d9dddbf5 1029
7ad69832 1030 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1031
d29bb978 1032 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1033 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1034
ed0ae21d 1035 VM_BUG_ON(migratetype == -1);
d9dddbf5 1036 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1037 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1038
76741e77 1039 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1040 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1041
d9dddbf5 1042continue_merging:
7ad69832 1043 while (order < max_order) {
5e1f0f09
MG
1044 if (compaction_capture(capc, page, order, migratetype)) {
1045 __mod_zone_freepage_state(zone, -(1 << order),
1046 migratetype);
1047 return;
1048 }
76741e77
VB
1049 buddy_pfn = __find_buddy_pfn(pfn, order);
1050 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1051
1052 if (!pfn_valid_within(buddy_pfn))
1053 goto done_merging;
cb2b95e1 1054 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1055 goto done_merging;
c0a32fc5
SG
1056 /*
1057 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1058 * merge with it and move up one order.
1059 */
b03641af 1060 if (page_is_guard(buddy))
2847cf95 1061 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1062 else
6ab01363 1063 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1064 combined_pfn = buddy_pfn & pfn;
1065 page = page + (combined_pfn - pfn);
1066 pfn = combined_pfn;
1da177e4
LT
1067 order++;
1068 }
7ad69832 1069 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1070 /* If we are here, it means order is >= pageblock_order.
1071 * We want to prevent merge between freepages on isolate
1072 * pageblock and normal pageblock. Without this, pageblock
1073 * isolation could cause incorrect freepage or CMA accounting.
1074 *
1075 * We don't want to hit this code for the more frequent
1076 * low-order merging.
1077 */
1078 if (unlikely(has_isolate_pageblock(zone))) {
1079 int buddy_mt;
1080
76741e77
VB
1081 buddy_pfn = __find_buddy_pfn(pfn, order);
1082 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1083 buddy_mt = get_pageblock_migratetype(buddy);
1084
1085 if (migratetype != buddy_mt
1086 && (is_migrate_isolate(migratetype) ||
1087 is_migrate_isolate(buddy_mt)))
1088 goto done_merging;
1089 }
7ad69832 1090 max_order = order + 1;
d9dddbf5
VB
1091 goto continue_merging;
1092 }
1093
1094done_merging:
ab130f91 1095 set_buddy_order(page, order);
6dda9d55 1096
47b6a24a
DH
1097 if (fpi_flags & FPI_TO_TAIL)
1098 to_tail = true;
1099 else if (is_shuffle_order(order))
a2129f24 1100 to_tail = shuffle_pick_tail();
97500a4a 1101 else
a2129f24 1102 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1103
a2129f24 1104 if (to_tail)
6ab01363 1105 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1106 else
6ab01363 1107 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1108
1109 /* Notify page reporting subsystem of freed page */
f04a5d5d 1110 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1111 page_reporting_notify_free(order);
1da177e4
LT
1112}
1113
7bfec6f4
MG
1114/*
1115 * A bad page could be due to a number of fields. Instead of multiple branches,
1116 * try and check multiple fields with one check. The caller must do a detailed
1117 * check if necessary.
1118 */
1119static inline bool page_expected_state(struct page *page,
1120 unsigned long check_flags)
1121{
1122 if (unlikely(atomic_read(&page->_mapcount) != -1))
1123 return false;
1124
1125 if (unlikely((unsigned long)page->mapping |
1126 page_ref_count(page) |
1127#ifdef CONFIG_MEMCG
48060834 1128 page->memcg_data |
7bfec6f4
MG
1129#endif
1130 (page->flags & check_flags)))
1131 return false;
1132
1133 return true;
1134}
1135
58b7f119 1136static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1137{
82a3241a 1138 const char *bad_reason = NULL;
f0b791a3 1139
53f9263b 1140 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1141 bad_reason = "nonzero mapcount";
1142 if (unlikely(page->mapping != NULL))
1143 bad_reason = "non-NULL mapping";
fe896d18 1144 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1145 bad_reason = "nonzero _refcount";
58b7f119
WY
1146 if (unlikely(page->flags & flags)) {
1147 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1148 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1149 else
1150 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1151 }
9edad6ea 1152#ifdef CONFIG_MEMCG
48060834 1153 if (unlikely(page->memcg_data))
9edad6ea
JW
1154 bad_reason = "page still charged to cgroup";
1155#endif
58b7f119
WY
1156 return bad_reason;
1157}
1158
1159static void check_free_page_bad(struct page *page)
1160{
1161 bad_page(page,
1162 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1163}
1164
534fe5e3 1165static inline int check_free_page(struct page *page)
bb552ac6 1166{
da838d4f 1167 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1168 return 0;
bb552ac6
MG
1169
1170 /* Something has gone sideways, find it */
0d0c48a2 1171 check_free_page_bad(page);
7bfec6f4 1172 return 1;
1da177e4
LT
1173}
1174
4db7548c
MG
1175static int free_tail_pages_check(struct page *head_page, struct page *page)
1176{
1177 int ret = 1;
1178
1179 /*
1180 * We rely page->lru.next never has bit 0 set, unless the page
1181 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1182 */
1183 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1184
1185 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1186 ret = 0;
1187 goto out;
1188 }
1189 switch (page - head_page) {
1190 case 1:
4da1984e 1191 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1192 if (unlikely(compound_mapcount(page))) {
82a3241a 1193 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1194 goto out;
1195 }
1196 break;
1197 case 2:
1198 /*
1199 * the second tail page: ->mapping is
fa3015b7 1200 * deferred_list.next -- ignore value.
4db7548c
MG
1201 */
1202 break;
1203 default:
1204 if (page->mapping != TAIL_MAPPING) {
82a3241a 1205 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1206 goto out;
1207 }
1208 break;
1209 }
1210 if (unlikely(!PageTail(page))) {
82a3241a 1211 bad_page(page, "PageTail not set");
4db7548c
MG
1212 goto out;
1213 }
1214 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1215 bad_page(page, "compound_head not consistent");
4db7548c
MG
1216 goto out;
1217 }
1218 ret = 0;
1219out:
1220 page->mapping = NULL;
1221 clear_compound_head(page);
1222 return ret;
1223}
1224
6471384a
AP
1225static void kernel_init_free_pages(struct page *page, int numpages)
1226{
1227 int i;
1228
9e15afa5
QC
1229 /* s390's use of memset() could override KASAN redzones. */
1230 kasan_disable_current();
aa1ef4d7 1231 for (i = 0; i < numpages; i++) {
acb35b17 1232 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1233 page_kasan_tag_reset(page + i);
6471384a 1234 clear_highpage(page + i);
acb35b17 1235 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1236 }
9e15afa5 1237 kasan_enable_current();
6471384a
AP
1238}
1239
e2769dbd 1240static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1241 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1242{
e2769dbd 1243 int bad = 0;
1bb5eab3 1244 bool init;
4db7548c 1245
4db7548c
MG
1246 VM_BUG_ON_PAGE(PageTail(page), page);
1247
e2769dbd 1248 trace_mm_page_free(page, order);
e2769dbd 1249
79f5f8fa
OS
1250 if (unlikely(PageHWPoison(page)) && !order) {
1251 /*
1252 * Do not let hwpoison pages hit pcplists/buddy
1253 * Untie memcg state and reset page's owner
1254 */
18b2db3b 1255 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1256 __memcg_kmem_uncharge_page(page, order);
1257 reset_page_owner(page, order);
1258 return false;
1259 }
1260
e2769dbd
MG
1261 /*
1262 * Check tail pages before head page information is cleared to
1263 * avoid checking PageCompound for order-0 pages.
1264 */
1265 if (unlikely(order)) {
1266 bool compound = PageCompound(page);
1267 int i;
1268
1269 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1270
9a73f61b
KS
1271 if (compound)
1272 ClearPageDoubleMap(page);
e2769dbd
MG
1273 for (i = 1; i < (1 << order); i++) {
1274 if (compound)
1275 bad += free_tail_pages_check(page, page + i);
534fe5e3 1276 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1277 bad++;
1278 continue;
1279 }
1280 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1281 }
1282 }
bda807d4 1283 if (PageMappingFlags(page))
4db7548c 1284 page->mapping = NULL;
18b2db3b 1285 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1286 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1287 if (check_free)
534fe5e3 1288 bad += check_free_page(page);
e2769dbd
MG
1289 if (bad)
1290 return false;
4db7548c 1291
e2769dbd
MG
1292 page_cpupid_reset_last(page);
1293 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1294 reset_page_owner(page, order);
4db7548c
MG
1295
1296 if (!PageHighMem(page)) {
1297 debug_check_no_locks_freed(page_address(page),
e2769dbd 1298 PAGE_SIZE << order);
4db7548c 1299 debug_check_no_obj_freed(page_address(page),
e2769dbd 1300 PAGE_SIZE << order);
4db7548c 1301 }
6471384a 1302
8db26a3d
VB
1303 kernel_poison_pages(page, 1 << order);
1304
f9d79e8d 1305 /*
1bb5eab3
AK
1306 * As memory initialization might be integrated into KASAN,
1307 * kasan_free_pages and kernel_init_free_pages must be
1308 * kept together to avoid discrepancies in behavior.
1309 *
f9d79e8d
AK
1310 * With hardware tag-based KASAN, memory tags must be set before the
1311 * page becomes unavailable via debug_pagealloc or arch_free_page.
1312 */
1bb5eab3
AK
1313 init = want_init_on_free();
1314 if (init && !kasan_has_integrated_init())
1315 kernel_init_free_pages(page, 1 << order);
1316 kasan_free_nondeferred_pages(page, order, init, fpi_flags);
f9d79e8d 1317
234fdce8
QC
1318 /*
1319 * arch_free_page() can make the page's contents inaccessible. s390
1320 * does this. So nothing which can access the page's contents should
1321 * happen after this.
1322 */
1323 arch_free_page(page, order);
1324
77bc7fd6 1325 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1326
4db7548c
MG
1327 return true;
1328}
1329
e2769dbd 1330#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1331/*
1332 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1333 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1334 * moved from pcp lists to free lists.
1335 */
1336static bool free_pcp_prepare(struct page *page)
e2769dbd 1337{
2c335680 1338 return free_pages_prepare(page, 0, true, FPI_NONE);
e2769dbd
MG
1339}
1340
4462b32c 1341static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1342{
8e57f8ac 1343 if (debug_pagealloc_enabled_static())
534fe5e3 1344 return check_free_page(page);
4462b32c
VB
1345 else
1346 return false;
e2769dbd
MG
1347}
1348#else
4462b32c
VB
1349/*
1350 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1351 * moving from pcp lists to free list in order to reduce overhead. With
1352 * debug_pagealloc enabled, they are checked also immediately when being freed
1353 * to the pcp lists.
1354 */
e2769dbd
MG
1355static bool free_pcp_prepare(struct page *page)
1356{
8e57f8ac 1357 if (debug_pagealloc_enabled_static())
2c335680 1358 return free_pages_prepare(page, 0, true, FPI_NONE);
4462b32c 1359 else
2c335680 1360 return free_pages_prepare(page, 0, false, FPI_NONE);
e2769dbd
MG
1361}
1362
4db7548c
MG
1363static bool bulkfree_pcp_prepare(struct page *page)
1364{
534fe5e3 1365 return check_free_page(page);
4db7548c
MG
1366}
1367#endif /* CONFIG_DEBUG_VM */
1368
97334162
AL
1369static inline void prefetch_buddy(struct page *page)
1370{
1371 unsigned long pfn = page_to_pfn(page);
1372 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1373 struct page *buddy = page + (buddy_pfn - pfn);
1374
1375 prefetch(buddy);
1376}
1377
1da177e4 1378/*
5f8dcc21 1379 * Frees a number of pages from the PCP lists
1da177e4 1380 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1381 * count is the number of pages to free.
1da177e4
LT
1382 *
1383 * If the zone was previously in an "all pages pinned" state then look to
1384 * see if this freeing clears that state.
1385 *
1386 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1387 * pinned" detection logic.
1388 */
5f8dcc21
MG
1389static void free_pcppages_bulk(struct zone *zone, int count,
1390 struct per_cpu_pages *pcp)
1da177e4 1391{
5f8dcc21 1392 int migratetype = 0;
a6f9edd6 1393 int batch_free = 0;
5c3ad2eb 1394 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1395 bool isolated_pageblocks;
0a5f4e5b
AL
1396 struct page *page, *tmp;
1397 LIST_HEAD(head);
f2260e6b 1398
88e8ac11
CTR
1399 /*
1400 * Ensure proper count is passed which otherwise would stuck in the
1401 * below while (list_empty(list)) loop.
1402 */
1403 count = min(pcp->count, count);
e5b31ac2 1404 while (count) {
5f8dcc21
MG
1405 struct list_head *list;
1406
1407 /*
a6f9edd6
MG
1408 * Remove pages from lists in a round-robin fashion. A
1409 * batch_free count is maintained that is incremented when an
1410 * empty list is encountered. This is so more pages are freed
1411 * off fuller lists instead of spinning excessively around empty
1412 * lists
5f8dcc21
MG
1413 */
1414 do {
a6f9edd6 1415 batch_free++;
5f8dcc21
MG
1416 if (++migratetype == MIGRATE_PCPTYPES)
1417 migratetype = 0;
1418 list = &pcp->lists[migratetype];
1419 } while (list_empty(list));
48db57f8 1420
1d16871d
NK
1421 /* This is the only non-empty list. Free them all. */
1422 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1423 batch_free = count;
1d16871d 1424
a6f9edd6 1425 do {
a16601c5 1426 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1427 /* must delete to avoid corrupting pcp list */
a6f9edd6 1428 list_del(&page->lru);
77ba9062 1429 pcp->count--;
aa016d14 1430
4db7548c
MG
1431 if (bulkfree_pcp_prepare(page))
1432 continue;
1433
0a5f4e5b 1434 list_add_tail(&page->lru, &head);
97334162
AL
1435
1436 /*
1437 * We are going to put the page back to the global
1438 * pool, prefetch its buddy to speed up later access
1439 * under zone->lock. It is believed the overhead of
1440 * an additional test and calculating buddy_pfn here
1441 * can be offset by reduced memory latency later. To
1442 * avoid excessive prefetching due to large count, only
1443 * prefetch buddy for the first pcp->batch nr of pages.
1444 */
5c3ad2eb 1445 if (prefetch_nr) {
97334162 1446 prefetch_buddy(page);
5c3ad2eb
VB
1447 prefetch_nr--;
1448 }
e5b31ac2 1449 } while (--count && --batch_free && !list_empty(list));
1da177e4 1450 }
0a5f4e5b
AL
1451
1452 spin_lock(&zone->lock);
1453 isolated_pageblocks = has_isolate_pageblock(zone);
1454
1455 /*
1456 * Use safe version since after __free_one_page(),
1457 * page->lru.next will not point to original list.
1458 */
1459 list_for_each_entry_safe(page, tmp, &head, lru) {
1460 int mt = get_pcppage_migratetype(page);
1461 /* MIGRATE_ISOLATE page should not go to pcplists */
1462 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1463 /* Pageblock could have been isolated meanwhile */
1464 if (unlikely(isolated_pageblocks))
1465 mt = get_pageblock_migratetype(page);
1466
f04a5d5d 1467 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1468 trace_mm_page_pcpu_drain(page, 0, mt);
1469 }
d34b0733 1470 spin_unlock(&zone->lock);
1da177e4
LT
1471}
1472
dc4b0caf
MG
1473static void free_one_page(struct zone *zone,
1474 struct page *page, unsigned long pfn,
7aeb09f9 1475 unsigned int order,
7fef431b 1476 int migratetype, fpi_t fpi_flags)
1da177e4 1477{
d34b0733 1478 spin_lock(&zone->lock);
ad53f92e
JK
1479 if (unlikely(has_isolate_pageblock(zone) ||
1480 is_migrate_isolate(migratetype))) {
1481 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1482 }
7fef431b 1483 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1484 spin_unlock(&zone->lock);
48db57f8
NP
1485}
1486
1e8ce83c 1487static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1488 unsigned long zone, int nid)
1e8ce83c 1489{
d0dc12e8 1490 mm_zero_struct_page(page);
1e8ce83c 1491 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1492 init_page_count(page);
1493 page_mapcount_reset(page);
1494 page_cpupid_reset_last(page);
2813b9c0 1495 page_kasan_tag_reset(page);
1e8ce83c 1496
1e8ce83c
RH
1497 INIT_LIST_HEAD(&page->lru);
1498#ifdef WANT_PAGE_VIRTUAL
1499 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1500 if (!is_highmem_idx(zone))
1501 set_page_address(page, __va(pfn << PAGE_SHIFT));
1502#endif
1503}
1504
7e18adb4 1505#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1506static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1507{
1508 pg_data_t *pgdat;
1509 int nid, zid;
1510
1511 if (!early_page_uninitialised(pfn))
1512 return;
1513
1514 nid = early_pfn_to_nid(pfn);
1515 pgdat = NODE_DATA(nid);
1516
1517 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1518 struct zone *zone = &pgdat->node_zones[zid];
1519
1520 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1521 break;
1522 }
d0dc12e8 1523 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1524}
1525#else
1526static inline void init_reserved_page(unsigned long pfn)
1527{
1528}
1529#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1530
92923ca3
NZ
1531/*
1532 * Initialised pages do not have PageReserved set. This function is
1533 * called for each range allocated by the bootmem allocator and
1534 * marks the pages PageReserved. The remaining valid pages are later
1535 * sent to the buddy page allocator.
1536 */
4b50bcc7 1537void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1538{
1539 unsigned long start_pfn = PFN_DOWN(start);
1540 unsigned long end_pfn = PFN_UP(end);
1541
7e18adb4
MG
1542 for (; start_pfn < end_pfn; start_pfn++) {
1543 if (pfn_valid(start_pfn)) {
1544 struct page *page = pfn_to_page(start_pfn);
1545
1546 init_reserved_page(start_pfn);
1d798ca3
KS
1547
1548 /* Avoid false-positive PageTail() */
1549 INIT_LIST_HEAD(&page->lru);
1550
d483da5b
AD
1551 /*
1552 * no need for atomic set_bit because the struct
1553 * page is not visible yet so nobody should
1554 * access it yet.
1555 */
1556 __SetPageReserved(page);
7e18adb4
MG
1557 }
1558 }
92923ca3
NZ
1559}
1560
7fef431b
DH
1561static void __free_pages_ok(struct page *page, unsigned int order,
1562 fpi_t fpi_flags)
ec95f53a 1563{
d34b0733 1564 unsigned long flags;
95e34412 1565 int migratetype;
dc4b0caf 1566 unsigned long pfn = page_to_pfn(page);
ec95f53a 1567
2c335680 1568 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1569 return;
1570
cfc47a28 1571 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1572 local_irq_save(flags);
1573 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1574 free_one_page(page_zone(page), page, pfn, order, migratetype,
1575 fpi_flags);
d34b0733 1576 local_irq_restore(flags);
1da177e4
LT
1577}
1578
a9cd410a 1579void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1580{
c3993076 1581 unsigned int nr_pages = 1 << order;
e2d0bd2b 1582 struct page *p = page;
c3993076 1583 unsigned int loop;
a226f6c8 1584
7fef431b
DH
1585 /*
1586 * When initializing the memmap, __init_single_page() sets the refcount
1587 * of all pages to 1 ("allocated"/"not free"). We have to set the
1588 * refcount of all involved pages to 0.
1589 */
e2d0bd2b
YL
1590 prefetchw(p);
1591 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1592 prefetchw(p + 1);
c3993076
JW
1593 __ClearPageReserved(p);
1594 set_page_count(p, 0);
a226f6c8 1595 }
e2d0bd2b
YL
1596 __ClearPageReserved(p);
1597 set_page_count(p, 0);
c3993076 1598
9705bea5 1599 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1600
1601 /*
1602 * Bypass PCP and place fresh pages right to the tail, primarily
1603 * relevant for memory onlining.
1604 */
2c335680 1605 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1606}
1607
3f08a302 1608#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1609
03e92a5e
MR
1610/*
1611 * During memory init memblocks map pfns to nids. The search is expensive and
1612 * this caches recent lookups. The implementation of __early_pfn_to_nid
1613 * treats start/end as pfns.
1614 */
1615struct mminit_pfnnid_cache {
1616 unsigned long last_start;
1617 unsigned long last_end;
1618 int last_nid;
1619};
75a592a4 1620
03e92a5e 1621static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1622
1623/*
1624 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1625 */
03e92a5e 1626static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1627 struct mminit_pfnnid_cache *state)
75a592a4 1628{
6f24fbd3 1629 unsigned long start_pfn, end_pfn;
75a592a4
MG
1630 int nid;
1631
6f24fbd3
MR
1632 if (state->last_start <= pfn && pfn < state->last_end)
1633 return state->last_nid;
1634
1635 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1636 if (nid != NUMA_NO_NODE) {
1637 state->last_start = start_pfn;
1638 state->last_end = end_pfn;
1639 state->last_nid = nid;
1640 }
7ace9917
MG
1641
1642 return nid;
75a592a4 1643}
75a592a4 1644
75a592a4 1645int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1646{
7ace9917 1647 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1648 int nid;
1649
7ace9917 1650 spin_lock(&early_pfn_lock);
56ec43d8 1651 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1652 if (nid < 0)
e4568d38 1653 nid = first_online_node;
7ace9917 1654 spin_unlock(&early_pfn_lock);
75a592a4 1655
7ace9917 1656 return nid;
75a592a4 1657}
3f08a302 1658#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1659
7c2ee349 1660void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1661 unsigned int order)
1662{
1663 if (early_page_uninitialised(pfn))
1664 return;
a9cd410a 1665 __free_pages_core(page, order);
3a80a7fa
MG
1666}
1667
7cf91a98
JK
1668/*
1669 * Check that the whole (or subset of) a pageblock given by the interval of
1670 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1671 * with the migration of free compaction scanner. The scanners then need to
1672 * use only pfn_valid_within() check for arches that allow holes within
1673 * pageblocks.
1674 *
1675 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1676 *
1677 * It's possible on some configurations to have a setup like node0 node1 node0
1678 * i.e. it's possible that all pages within a zones range of pages do not
1679 * belong to a single zone. We assume that a border between node0 and node1
1680 * can occur within a single pageblock, but not a node0 node1 node0
1681 * interleaving within a single pageblock. It is therefore sufficient to check
1682 * the first and last page of a pageblock and avoid checking each individual
1683 * page in a pageblock.
1684 */
1685struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1686 unsigned long end_pfn, struct zone *zone)
1687{
1688 struct page *start_page;
1689 struct page *end_page;
1690
1691 /* end_pfn is one past the range we are checking */
1692 end_pfn--;
1693
1694 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1695 return NULL;
1696
2d070eab
MH
1697 start_page = pfn_to_online_page(start_pfn);
1698 if (!start_page)
1699 return NULL;
7cf91a98
JK
1700
1701 if (page_zone(start_page) != zone)
1702 return NULL;
1703
1704 end_page = pfn_to_page(end_pfn);
1705
1706 /* This gives a shorter code than deriving page_zone(end_page) */
1707 if (page_zone_id(start_page) != page_zone_id(end_page))
1708 return NULL;
1709
1710 return start_page;
1711}
1712
1713void set_zone_contiguous(struct zone *zone)
1714{
1715 unsigned long block_start_pfn = zone->zone_start_pfn;
1716 unsigned long block_end_pfn;
1717
1718 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1719 for (; block_start_pfn < zone_end_pfn(zone);
1720 block_start_pfn = block_end_pfn,
1721 block_end_pfn += pageblock_nr_pages) {
1722
1723 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1724
1725 if (!__pageblock_pfn_to_page(block_start_pfn,
1726 block_end_pfn, zone))
1727 return;
e84fe99b 1728 cond_resched();
7cf91a98
JK
1729 }
1730
1731 /* We confirm that there is no hole */
1732 zone->contiguous = true;
1733}
1734
1735void clear_zone_contiguous(struct zone *zone)
1736{
1737 zone->contiguous = false;
1738}
1739
7e18adb4 1740#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1741static void __init deferred_free_range(unsigned long pfn,
1742 unsigned long nr_pages)
a4de83dd 1743{
2f47a91f
PT
1744 struct page *page;
1745 unsigned long i;
a4de83dd 1746
2f47a91f 1747 if (!nr_pages)
a4de83dd
MG
1748 return;
1749
2f47a91f
PT
1750 page = pfn_to_page(pfn);
1751
a4de83dd 1752 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1753 if (nr_pages == pageblock_nr_pages &&
1754 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1755 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1756 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1757 return;
1758 }
1759
e780149b
XQ
1760 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1761 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1762 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1763 __free_pages_core(page, 0);
e780149b 1764 }
a4de83dd
MG
1765}
1766
d3cd131d
NS
1767/* Completion tracking for deferred_init_memmap() threads */
1768static atomic_t pgdat_init_n_undone __initdata;
1769static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1770
1771static inline void __init pgdat_init_report_one_done(void)
1772{
1773 if (atomic_dec_and_test(&pgdat_init_n_undone))
1774 complete(&pgdat_init_all_done_comp);
1775}
0e1cc95b 1776
2f47a91f 1777/*
80b1f41c
PT
1778 * Returns true if page needs to be initialized or freed to buddy allocator.
1779 *
1780 * First we check if pfn is valid on architectures where it is possible to have
1781 * holes within pageblock_nr_pages. On systems where it is not possible, this
1782 * function is optimized out.
1783 *
1784 * Then, we check if a current large page is valid by only checking the validity
1785 * of the head pfn.
2f47a91f 1786 */
56ec43d8 1787static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1788{
80b1f41c
PT
1789 if (!pfn_valid_within(pfn))
1790 return false;
1791 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1792 return false;
80b1f41c
PT
1793 return true;
1794}
2f47a91f 1795
80b1f41c
PT
1796/*
1797 * Free pages to buddy allocator. Try to free aligned pages in
1798 * pageblock_nr_pages sizes.
1799 */
56ec43d8 1800static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1801 unsigned long end_pfn)
1802{
80b1f41c
PT
1803 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1804 unsigned long nr_free = 0;
2f47a91f 1805
80b1f41c 1806 for (; pfn < end_pfn; pfn++) {
56ec43d8 1807 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1808 deferred_free_range(pfn - nr_free, nr_free);
1809 nr_free = 0;
1810 } else if (!(pfn & nr_pgmask)) {
1811 deferred_free_range(pfn - nr_free, nr_free);
1812 nr_free = 1;
80b1f41c
PT
1813 } else {
1814 nr_free++;
1815 }
1816 }
1817 /* Free the last block of pages to allocator */
1818 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1819}
1820
80b1f41c
PT
1821/*
1822 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1823 * by performing it only once every pageblock_nr_pages.
1824 * Return number of pages initialized.
1825 */
56ec43d8 1826static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1827 unsigned long pfn,
1828 unsigned long end_pfn)
2f47a91f 1829{
2f47a91f 1830 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1831 int nid = zone_to_nid(zone);
2f47a91f 1832 unsigned long nr_pages = 0;
56ec43d8 1833 int zid = zone_idx(zone);
2f47a91f 1834 struct page *page = NULL;
2f47a91f 1835
80b1f41c 1836 for (; pfn < end_pfn; pfn++) {
56ec43d8 1837 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1838 page = NULL;
2f47a91f 1839 continue;
80b1f41c 1840 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1841 page = pfn_to_page(pfn);
80b1f41c
PT
1842 } else {
1843 page++;
2f47a91f 1844 }
d0dc12e8 1845 __init_single_page(page, pfn, zid, nid);
80b1f41c 1846 nr_pages++;
2f47a91f 1847 }
80b1f41c 1848 return (nr_pages);
2f47a91f
PT
1849}
1850
0e56acae
AD
1851/*
1852 * This function is meant to pre-load the iterator for the zone init.
1853 * Specifically it walks through the ranges until we are caught up to the
1854 * first_init_pfn value and exits there. If we never encounter the value we
1855 * return false indicating there are no valid ranges left.
1856 */
1857static bool __init
1858deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1859 unsigned long *spfn, unsigned long *epfn,
1860 unsigned long first_init_pfn)
1861{
1862 u64 j;
1863
1864 /*
1865 * Start out by walking through the ranges in this zone that have
1866 * already been initialized. We don't need to do anything with them
1867 * so we just need to flush them out of the system.
1868 */
1869 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1870 if (*epfn <= first_init_pfn)
1871 continue;
1872 if (*spfn < first_init_pfn)
1873 *spfn = first_init_pfn;
1874 *i = j;
1875 return true;
1876 }
1877
1878 return false;
1879}
1880
1881/*
1882 * Initialize and free pages. We do it in two loops: first we initialize
1883 * struct page, then free to buddy allocator, because while we are
1884 * freeing pages we can access pages that are ahead (computing buddy
1885 * page in __free_one_page()).
1886 *
1887 * In order to try and keep some memory in the cache we have the loop
1888 * broken along max page order boundaries. This way we will not cause
1889 * any issues with the buddy page computation.
1890 */
1891static unsigned long __init
1892deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1893 unsigned long *end_pfn)
1894{
1895 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1896 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1897 unsigned long nr_pages = 0;
1898 u64 j = *i;
1899
1900 /* First we loop through and initialize the page values */
1901 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1902 unsigned long t;
1903
1904 if (mo_pfn <= *start_pfn)
1905 break;
1906
1907 t = min(mo_pfn, *end_pfn);
1908 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1909
1910 if (mo_pfn < *end_pfn) {
1911 *start_pfn = mo_pfn;
1912 break;
1913 }
1914 }
1915
1916 /* Reset values and now loop through freeing pages as needed */
1917 swap(j, *i);
1918
1919 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1920 unsigned long t;
1921
1922 if (mo_pfn <= spfn)
1923 break;
1924
1925 t = min(mo_pfn, epfn);
1926 deferred_free_pages(spfn, t);
1927
1928 if (mo_pfn <= epfn)
1929 break;
1930 }
1931
1932 return nr_pages;
1933}
1934
e4443149
DJ
1935static void __init
1936deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1937 void *arg)
1938{
1939 unsigned long spfn, epfn;
1940 struct zone *zone = arg;
1941 u64 i;
1942
1943 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1944
1945 /*
1946 * Initialize and free pages in MAX_ORDER sized increments so that we
1947 * can avoid introducing any issues with the buddy allocator.
1948 */
1949 while (spfn < end_pfn) {
1950 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1951 cond_resched();
1952 }
1953}
1954
ecd09650
DJ
1955/* An arch may override for more concurrency. */
1956__weak int __init
1957deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1958{
1959 return 1;
1960}
1961
7e18adb4 1962/* Initialise remaining memory on a node */
0e1cc95b 1963static int __init deferred_init_memmap(void *data)
7e18adb4 1964{
0e1cc95b 1965 pg_data_t *pgdat = data;
0e56acae 1966 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1967 unsigned long spfn = 0, epfn = 0;
0e56acae 1968 unsigned long first_init_pfn, flags;
7e18adb4 1969 unsigned long start = jiffies;
7e18adb4 1970 struct zone *zone;
e4443149 1971 int zid, max_threads;
2f47a91f 1972 u64 i;
7e18adb4 1973
3a2d7fa8
PT
1974 /* Bind memory initialisation thread to a local node if possible */
1975 if (!cpumask_empty(cpumask))
1976 set_cpus_allowed_ptr(current, cpumask);
1977
1978 pgdat_resize_lock(pgdat, &flags);
1979 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1980 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1981 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1982 pgdat_init_report_one_done();
0e1cc95b
MG
1983 return 0;
1984 }
1985
7e18adb4
MG
1986 /* Sanity check boundaries */
1987 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1988 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1989 pgdat->first_deferred_pfn = ULONG_MAX;
1990
3d060856
PT
1991 /*
1992 * Once we unlock here, the zone cannot be grown anymore, thus if an
1993 * interrupt thread must allocate this early in boot, zone must be
1994 * pre-grown prior to start of deferred page initialization.
1995 */
1996 pgdat_resize_unlock(pgdat, &flags);
1997
7e18adb4
MG
1998 /* Only the highest zone is deferred so find it */
1999 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2000 zone = pgdat->node_zones + zid;
2001 if (first_init_pfn < zone_end_pfn(zone))
2002 break;
2003 }
0e56acae
AD
2004
2005 /* If the zone is empty somebody else may have cleared out the zone */
2006 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2007 first_init_pfn))
2008 goto zone_empty;
7e18adb4 2009
ecd09650 2010 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2011
117003c3 2012 while (spfn < epfn) {
e4443149
DJ
2013 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2014 struct padata_mt_job job = {
2015 .thread_fn = deferred_init_memmap_chunk,
2016 .fn_arg = zone,
2017 .start = spfn,
2018 .size = epfn_align - spfn,
2019 .align = PAGES_PER_SECTION,
2020 .min_chunk = PAGES_PER_SECTION,
2021 .max_threads = max_threads,
2022 };
2023
2024 padata_do_multithreaded(&job);
2025 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2026 epfn_align);
117003c3 2027 }
0e56acae 2028zone_empty:
7e18adb4
MG
2029 /* Sanity check that the next zone really is unpopulated */
2030 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2031
89c7c402
DJ
2032 pr_info("node %d deferred pages initialised in %ums\n",
2033 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2034
2035 pgdat_init_report_one_done();
0e1cc95b
MG
2036 return 0;
2037}
c9e97a19 2038
c9e97a19
PT
2039/*
2040 * If this zone has deferred pages, try to grow it by initializing enough
2041 * deferred pages to satisfy the allocation specified by order, rounded up to
2042 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2043 * of SECTION_SIZE bytes by initializing struct pages in increments of
2044 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2045 *
2046 * Return true when zone was grown, otherwise return false. We return true even
2047 * when we grow less than requested, to let the caller decide if there are
2048 * enough pages to satisfy the allocation.
2049 *
2050 * Note: We use noinline because this function is needed only during boot, and
2051 * it is called from a __ref function _deferred_grow_zone. This way we are
2052 * making sure that it is not inlined into permanent text section.
2053 */
2054static noinline bool __init
2055deferred_grow_zone(struct zone *zone, unsigned int order)
2056{
c9e97a19 2057 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2058 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2059 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2060 unsigned long spfn, epfn, flags;
2061 unsigned long nr_pages = 0;
c9e97a19
PT
2062 u64 i;
2063
2064 /* Only the last zone may have deferred pages */
2065 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2066 return false;
2067
2068 pgdat_resize_lock(pgdat, &flags);
2069
c9e97a19
PT
2070 /*
2071 * If someone grew this zone while we were waiting for spinlock, return
2072 * true, as there might be enough pages already.
2073 */
2074 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2075 pgdat_resize_unlock(pgdat, &flags);
2076 return true;
2077 }
2078
0e56acae
AD
2079 /* If the zone is empty somebody else may have cleared out the zone */
2080 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2081 first_deferred_pfn)) {
2082 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2083 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2084 /* Retry only once. */
2085 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2086 }
2087
0e56acae
AD
2088 /*
2089 * Initialize and free pages in MAX_ORDER sized increments so
2090 * that we can avoid introducing any issues with the buddy
2091 * allocator.
2092 */
2093 while (spfn < epfn) {
2094 /* update our first deferred PFN for this section */
2095 first_deferred_pfn = spfn;
2096
2097 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2098 touch_nmi_watchdog();
c9e97a19 2099
0e56acae
AD
2100 /* We should only stop along section boundaries */
2101 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2102 continue;
c9e97a19 2103
0e56acae 2104 /* If our quota has been met we can stop here */
c9e97a19
PT
2105 if (nr_pages >= nr_pages_needed)
2106 break;
2107 }
2108
0e56acae 2109 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2110 pgdat_resize_unlock(pgdat, &flags);
2111
2112 return nr_pages > 0;
2113}
2114
2115/*
2116 * deferred_grow_zone() is __init, but it is called from
2117 * get_page_from_freelist() during early boot until deferred_pages permanently
2118 * disables this call. This is why we have refdata wrapper to avoid warning,
2119 * and to ensure that the function body gets unloaded.
2120 */
2121static bool __ref
2122_deferred_grow_zone(struct zone *zone, unsigned int order)
2123{
2124 return deferred_grow_zone(zone, order);
2125}
2126
7cf91a98 2127#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2128
2129void __init page_alloc_init_late(void)
2130{
7cf91a98 2131 struct zone *zone;
e900a918 2132 int nid;
7cf91a98
JK
2133
2134#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2135
d3cd131d
NS
2136 /* There will be num_node_state(N_MEMORY) threads */
2137 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2138 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2139 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2140 }
2141
2142 /* Block until all are initialised */
d3cd131d 2143 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2144
3e8fc007
MG
2145 /*
2146 * The number of managed pages has changed due to the initialisation
2147 * so the pcpu batch and high limits needs to be updated or the limits
2148 * will be artificially small.
2149 */
2150 for_each_populated_zone(zone)
2151 zone_pcp_update(zone);
2152
c9e97a19
PT
2153 /*
2154 * We initialized the rest of the deferred pages. Permanently disable
2155 * on-demand struct page initialization.
2156 */
2157 static_branch_disable(&deferred_pages);
2158
4248b0da
MG
2159 /* Reinit limits that are based on free pages after the kernel is up */
2160 files_maxfiles_init();
7cf91a98 2161#endif
350e88ba 2162
ba8f3587
LF
2163 buffer_init();
2164
3010f876
PT
2165 /* Discard memblock private memory */
2166 memblock_discard();
7cf91a98 2167
e900a918
DW
2168 for_each_node_state(nid, N_MEMORY)
2169 shuffle_free_memory(NODE_DATA(nid));
2170
7cf91a98
JK
2171 for_each_populated_zone(zone)
2172 set_zone_contiguous(zone);
7e18adb4 2173}
7e18adb4 2174
47118af0 2175#ifdef CONFIG_CMA
9cf510a5 2176/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2177void __init init_cma_reserved_pageblock(struct page *page)
2178{
2179 unsigned i = pageblock_nr_pages;
2180 struct page *p = page;
2181
2182 do {
2183 __ClearPageReserved(p);
2184 set_page_count(p, 0);
d883c6cf 2185 } while (++p, --i);
47118af0 2186
47118af0 2187 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2188
2189 if (pageblock_order >= MAX_ORDER) {
2190 i = pageblock_nr_pages;
2191 p = page;
2192 do {
2193 set_page_refcounted(p);
2194 __free_pages(p, MAX_ORDER - 1);
2195 p += MAX_ORDER_NR_PAGES;
2196 } while (i -= MAX_ORDER_NR_PAGES);
2197 } else {
2198 set_page_refcounted(page);
2199 __free_pages(page, pageblock_order);
2200 }
2201
3dcc0571 2202 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2203 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2204}
2205#endif
1da177e4
LT
2206
2207/*
2208 * The order of subdivision here is critical for the IO subsystem.
2209 * Please do not alter this order without good reasons and regression
2210 * testing. Specifically, as large blocks of memory are subdivided,
2211 * the order in which smaller blocks are delivered depends on the order
2212 * they're subdivided in this function. This is the primary factor
2213 * influencing the order in which pages are delivered to the IO
2214 * subsystem according to empirical testing, and this is also justified
2215 * by considering the behavior of a buddy system containing a single
2216 * large block of memory acted on by a series of small allocations.
2217 * This behavior is a critical factor in sglist merging's success.
2218 *
6d49e352 2219 * -- nyc
1da177e4 2220 */
085cc7d5 2221static inline void expand(struct zone *zone, struct page *page,
6ab01363 2222 int low, int high, int migratetype)
1da177e4
LT
2223{
2224 unsigned long size = 1 << high;
2225
2226 while (high > low) {
1da177e4
LT
2227 high--;
2228 size >>= 1;
309381fe 2229 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2230
acbc15a4
JK
2231 /*
2232 * Mark as guard pages (or page), that will allow to
2233 * merge back to allocator when buddy will be freed.
2234 * Corresponding page table entries will not be touched,
2235 * pages will stay not present in virtual address space
2236 */
2237 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2238 continue;
acbc15a4 2239
6ab01363 2240 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2241 set_buddy_order(&page[size], high);
1da177e4 2242 }
1da177e4
LT
2243}
2244
4e611801 2245static void check_new_page_bad(struct page *page)
1da177e4 2246{
f4c18e6f 2247 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2248 /* Don't complain about hwpoisoned pages */
2249 page_mapcount_reset(page); /* remove PageBuddy */
2250 return;
f4c18e6f 2251 }
58b7f119
WY
2252
2253 bad_page(page,
2254 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2255}
2256
2257/*
2258 * This page is about to be returned from the page allocator
2259 */
2260static inline int check_new_page(struct page *page)
2261{
2262 if (likely(page_expected_state(page,
2263 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2264 return 0;
2265
2266 check_new_page_bad(page);
2267 return 1;
2a7684a2
WF
2268}
2269
479f854a 2270#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2271/*
2272 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2273 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2274 * also checked when pcp lists are refilled from the free lists.
2275 */
2276static inline bool check_pcp_refill(struct page *page)
479f854a 2277{
8e57f8ac 2278 if (debug_pagealloc_enabled_static())
4462b32c
VB
2279 return check_new_page(page);
2280 else
2281 return false;
479f854a
MG
2282}
2283
4462b32c 2284static inline bool check_new_pcp(struct page *page)
479f854a
MG
2285{
2286 return check_new_page(page);
2287}
2288#else
4462b32c
VB
2289/*
2290 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2291 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2292 * enabled, they are also checked when being allocated from the pcp lists.
2293 */
2294static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2295{
2296 return check_new_page(page);
2297}
4462b32c 2298static inline bool check_new_pcp(struct page *page)
479f854a 2299{
8e57f8ac 2300 if (debug_pagealloc_enabled_static())
4462b32c
VB
2301 return check_new_page(page);
2302 else
2303 return false;
479f854a
MG
2304}
2305#endif /* CONFIG_DEBUG_VM */
2306
2307static bool check_new_pages(struct page *page, unsigned int order)
2308{
2309 int i;
2310 for (i = 0; i < (1 << order); i++) {
2311 struct page *p = page + i;
2312
2313 if (unlikely(check_new_page(p)))
2314 return true;
2315 }
2316
2317 return false;
2318}
2319
46f24fd8
JK
2320inline void post_alloc_hook(struct page *page, unsigned int order,
2321 gfp_t gfp_flags)
2322{
1bb5eab3
AK
2323 bool init;
2324
46f24fd8
JK
2325 set_page_private(page, 0);
2326 set_page_refcounted(page);
2327
2328 arch_alloc_page(page, order);
77bc7fd6 2329 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2330
2331 /*
2332 * Page unpoisoning must happen before memory initialization.
2333 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2334 * allocations and the page unpoisoning code will complain.
2335 */
8db26a3d 2336 kernel_unpoison_pages(page, 1 << order);
862b6dee 2337
1bb5eab3
AK
2338 /*
2339 * As memory initialization might be integrated into KASAN,
2340 * kasan_alloc_pages and kernel_init_free_pages must be
2341 * kept together to avoid discrepancies in behavior.
2342 */
2343 init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2344 kasan_alloc_pages(page, order, init);
2345 if (init && !kasan_has_integrated_init())
862b6dee 2346 kernel_init_free_pages(page, 1 << order);
1bb5eab3
AK
2347
2348 set_page_owner(page, order, gfp_flags);
46f24fd8
JK
2349}
2350
479f854a 2351static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2352 unsigned int alloc_flags)
2a7684a2 2353{
46f24fd8 2354 post_alloc_hook(page, order, gfp_flags);
17cf4406 2355
17cf4406
NP
2356 if (order && (gfp_flags & __GFP_COMP))
2357 prep_compound_page(page, order);
2358
75379191 2359 /*
2f064f34 2360 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2361 * allocate the page. The expectation is that the caller is taking
2362 * steps that will free more memory. The caller should avoid the page
2363 * being used for !PFMEMALLOC purposes.
2364 */
2f064f34
MH
2365 if (alloc_flags & ALLOC_NO_WATERMARKS)
2366 set_page_pfmemalloc(page);
2367 else
2368 clear_page_pfmemalloc(page);
1da177e4
LT
2369}
2370
56fd56b8
MG
2371/*
2372 * Go through the free lists for the given migratetype and remove
2373 * the smallest available page from the freelists
2374 */
85ccc8fa 2375static __always_inline
728ec980 2376struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2377 int migratetype)
2378{
2379 unsigned int current_order;
b8af2941 2380 struct free_area *area;
56fd56b8
MG
2381 struct page *page;
2382
2383 /* Find a page of the appropriate size in the preferred list */
2384 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2385 area = &(zone->free_area[current_order]);
b03641af 2386 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2387 if (!page)
2388 continue;
6ab01363
AD
2389 del_page_from_free_list(page, zone, current_order);
2390 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2391 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2392 return page;
2393 }
2394
2395 return NULL;
2396}
2397
2398
b2a0ac88
MG
2399/*
2400 * This array describes the order lists are fallen back to when
2401 * the free lists for the desirable migrate type are depleted
2402 */
da415663 2403static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2404 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2405 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2406 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2407#ifdef CONFIG_CMA
974a786e 2408 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2409#endif
194159fb 2410#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2411 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2412#endif
b2a0ac88
MG
2413};
2414
dc67647b 2415#ifdef CONFIG_CMA
85ccc8fa 2416static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2417 unsigned int order)
2418{
2419 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2420}
2421#else
2422static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2423 unsigned int order) { return NULL; }
2424#endif
2425
c361be55 2426/*
293ffa5e 2427 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2428 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2429 * boundary. If alignment is required, use move_freepages_block()
2430 */
02aa0cdd 2431static int move_freepages(struct zone *zone,
39ddb991 2432 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2433 int migratetype, int *num_movable)
c361be55
MG
2434{
2435 struct page *page;
39ddb991 2436 unsigned long pfn;
d00181b9 2437 unsigned int order;
d100313f 2438 int pages_moved = 0;
c361be55 2439
39ddb991
KW
2440 for (pfn = start_pfn; pfn <= end_pfn;) {
2441 if (!pfn_valid_within(pfn)) {
2442 pfn++;
c361be55
MG
2443 continue;
2444 }
2445
39ddb991 2446 page = pfn_to_page(pfn);
c361be55 2447 if (!PageBuddy(page)) {
02aa0cdd
VB
2448 /*
2449 * We assume that pages that could be isolated for
2450 * migration are movable. But we don't actually try
2451 * isolating, as that would be expensive.
2452 */
2453 if (num_movable &&
2454 (PageLRU(page) || __PageMovable(page)))
2455 (*num_movable)++;
39ddb991 2456 pfn++;
c361be55
MG
2457 continue;
2458 }
2459
cd961038
DR
2460 /* Make sure we are not inadvertently changing nodes */
2461 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2462 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2463
ab130f91 2464 order = buddy_order(page);
6ab01363 2465 move_to_free_list(page, zone, order, migratetype);
39ddb991 2466 pfn += 1 << order;
d100313f 2467 pages_moved += 1 << order;
c361be55
MG
2468 }
2469
d100313f 2470 return pages_moved;
c361be55
MG
2471}
2472
ee6f509c 2473int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2474 int migratetype, int *num_movable)
c361be55 2475{
39ddb991 2476 unsigned long start_pfn, end_pfn, pfn;
c361be55 2477
4a222127
DR
2478 if (num_movable)
2479 *num_movable = 0;
2480
39ddb991
KW
2481 pfn = page_to_pfn(page);
2482 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2483 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2484
2485 /* Do not cross zone boundaries */
108bcc96 2486 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2487 start_pfn = pfn;
108bcc96 2488 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2489 return 0;
2490
39ddb991 2491 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2492 num_movable);
c361be55
MG
2493}
2494
2f66a68f
MG
2495static void change_pageblock_range(struct page *pageblock_page,
2496 int start_order, int migratetype)
2497{
2498 int nr_pageblocks = 1 << (start_order - pageblock_order);
2499
2500 while (nr_pageblocks--) {
2501 set_pageblock_migratetype(pageblock_page, migratetype);
2502 pageblock_page += pageblock_nr_pages;
2503 }
2504}
2505
fef903ef 2506/*
9c0415eb
VB
2507 * When we are falling back to another migratetype during allocation, try to
2508 * steal extra free pages from the same pageblocks to satisfy further
2509 * allocations, instead of polluting multiple pageblocks.
2510 *
2511 * If we are stealing a relatively large buddy page, it is likely there will
2512 * be more free pages in the pageblock, so try to steal them all. For
2513 * reclaimable and unmovable allocations, we steal regardless of page size,
2514 * as fragmentation caused by those allocations polluting movable pageblocks
2515 * is worse than movable allocations stealing from unmovable and reclaimable
2516 * pageblocks.
fef903ef 2517 */
4eb7dce6
JK
2518static bool can_steal_fallback(unsigned int order, int start_mt)
2519{
2520 /*
2521 * Leaving this order check is intended, although there is
2522 * relaxed order check in next check. The reason is that
2523 * we can actually steal whole pageblock if this condition met,
2524 * but, below check doesn't guarantee it and that is just heuristic
2525 * so could be changed anytime.
2526 */
2527 if (order >= pageblock_order)
2528 return true;
2529
2530 if (order >= pageblock_order / 2 ||
2531 start_mt == MIGRATE_RECLAIMABLE ||
2532 start_mt == MIGRATE_UNMOVABLE ||
2533 page_group_by_mobility_disabled)
2534 return true;
2535
2536 return false;
2537}
2538
597c8920 2539static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2540{
2541 unsigned long max_boost;
2542
2543 if (!watermark_boost_factor)
597c8920 2544 return false;
14f69140
HW
2545 /*
2546 * Don't bother in zones that are unlikely to produce results.
2547 * On small machines, including kdump capture kernels running
2548 * in a small area, boosting the watermark can cause an out of
2549 * memory situation immediately.
2550 */
2551 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2552 return false;
1c30844d
MG
2553
2554 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2555 watermark_boost_factor, 10000);
94b3334c
MG
2556
2557 /*
2558 * high watermark may be uninitialised if fragmentation occurs
2559 * very early in boot so do not boost. We do not fall
2560 * through and boost by pageblock_nr_pages as failing
2561 * allocations that early means that reclaim is not going
2562 * to help and it may even be impossible to reclaim the
2563 * boosted watermark resulting in a hang.
2564 */
2565 if (!max_boost)
597c8920 2566 return false;
94b3334c 2567
1c30844d
MG
2568 max_boost = max(pageblock_nr_pages, max_boost);
2569
2570 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2571 max_boost);
597c8920
JW
2572
2573 return true;
1c30844d
MG
2574}
2575
4eb7dce6
JK
2576/*
2577 * This function implements actual steal behaviour. If order is large enough,
2578 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2579 * pageblock to our migratetype and determine how many already-allocated pages
2580 * are there in the pageblock with a compatible migratetype. If at least half
2581 * of pages are free or compatible, we can change migratetype of the pageblock
2582 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2583 */
2584static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2585 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2586{
ab130f91 2587 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2588 int free_pages, movable_pages, alike_pages;
2589 int old_block_type;
2590
2591 old_block_type = get_pageblock_migratetype(page);
fef903ef 2592
3bc48f96
VB
2593 /*
2594 * This can happen due to races and we want to prevent broken
2595 * highatomic accounting.
2596 */
02aa0cdd 2597 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2598 goto single_page;
2599
fef903ef
SB
2600 /* Take ownership for orders >= pageblock_order */
2601 if (current_order >= pageblock_order) {
2602 change_pageblock_range(page, current_order, start_type);
3bc48f96 2603 goto single_page;
fef903ef
SB
2604 }
2605
1c30844d
MG
2606 /*
2607 * Boost watermarks to increase reclaim pressure to reduce the
2608 * likelihood of future fallbacks. Wake kswapd now as the node
2609 * may be balanced overall and kswapd will not wake naturally.
2610 */
597c8920 2611 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2612 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2613
3bc48f96
VB
2614 /* We are not allowed to try stealing from the whole block */
2615 if (!whole_block)
2616 goto single_page;
2617
02aa0cdd
VB
2618 free_pages = move_freepages_block(zone, page, start_type,
2619 &movable_pages);
2620 /*
2621 * Determine how many pages are compatible with our allocation.
2622 * For movable allocation, it's the number of movable pages which
2623 * we just obtained. For other types it's a bit more tricky.
2624 */
2625 if (start_type == MIGRATE_MOVABLE) {
2626 alike_pages = movable_pages;
2627 } else {
2628 /*
2629 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2630 * to MOVABLE pageblock, consider all non-movable pages as
2631 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2632 * vice versa, be conservative since we can't distinguish the
2633 * exact migratetype of non-movable pages.
2634 */
2635 if (old_block_type == MIGRATE_MOVABLE)
2636 alike_pages = pageblock_nr_pages
2637 - (free_pages + movable_pages);
2638 else
2639 alike_pages = 0;
2640 }
2641
3bc48f96 2642 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2643 if (!free_pages)
3bc48f96 2644 goto single_page;
fef903ef 2645
02aa0cdd
VB
2646 /*
2647 * If a sufficient number of pages in the block are either free or of
2648 * comparable migratability as our allocation, claim the whole block.
2649 */
2650 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2651 page_group_by_mobility_disabled)
2652 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2653
2654 return;
2655
2656single_page:
6ab01363 2657 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2658}
2659
2149cdae
JK
2660/*
2661 * Check whether there is a suitable fallback freepage with requested order.
2662 * If only_stealable is true, this function returns fallback_mt only if
2663 * we can steal other freepages all together. This would help to reduce
2664 * fragmentation due to mixed migratetype pages in one pageblock.
2665 */
2666int find_suitable_fallback(struct free_area *area, unsigned int order,
2667 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2668{
2669 int i;
2670 int fallback_mt;
2671
2672 if (area->nr_free == 0)
2673 return -1;
2674
2675 *can_steal = false;
2676 for (i = 0;; i++) {
2677 fallback_mt = fallbacks[migratetype][i];
974a786e 2678 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2679 break;
2680
b03641af 2681 if (free_area_empty(area, fallback_mt))
4eb7dce6 2682 continue;
fef903ef 2683
4eb7dce6
JK
2684 if (can_steal_fallback(order, migratetype))
2685 *can_steal = true;
2686
2149cdae
JK
2687 if (!only_stealable)
2688 return fallback_mt;
2689
2690 if (*can_steal)
2691 return fallback_mt;
fef903ef 2692 }
4eb7dce6
JK
2693
2694 return -1;
fef903ef
SB
2695}
2696
0aaa29a5
MG
2697/*
2698 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2699 * there are no empty page blocks that contain a page with a suitable order
2700 */
2701static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2702 unsigned int alloc_order)
2703{
2704 int mt;
2705 unsigned long max_managed, flags;
2706
2707 /*
2708 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2709 * Check is race-prone but harmless.
2710 */
9705bea5 2711 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2712 if (zone->nr_reserved_highatomic >= max_managed)
2713 return;
2714
2715 spin_lock_irqsave(&zone->lock, flags);
2716
2717 /* Recheck the nr_reserved_highatomic limit under the lock */
2718 if (zone->nr_reserved_highatomic >= max_managed)
2719 goto out_unlock;
2720
2721 /* Yoink! */
2722 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2723 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2724 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2725 zone->nr_reserved_highatomic += pageblock_nr_pages;
2726 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2727 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2728 }
2729
2730out_unlock:
2731 spin_unlock_irqrestore(&zone->lock, flags);
2732}
2733
2734/*
2735 * Used when an allocation is about to fail under memory pressure. This
2736 * potentially hurts the reliability of high-order allocations when under
2737 * intense memory pressure but failed atomic allocations should be easier
2738 * to recover from than an OOM.
29fac03b
MK
2739 *
2740 * If @force is true, try to unreserve a pageblock even though highatomic
2741 * pageblock is exhausted.
0aaa29a5 2742 */
29fac03b
MK
2743static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2744 bool force)
0aaa29a5
MG
2745{
2746 struct zonelist *zonelist = ac->zonelist;
2747 unsigned long flags;
2748 struct zoneref *z;
2749 struct zone *zone;
2750 struct page *page;
2751 int order;
04c8716f 2752 bool ret;
0aaa29a5 2753
97a225e6 2754 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2755 ac->nodemask) {
29fac03b
MK
2756 /*
2757 * Preserve at least one pageblock unless memory pressure
2758 * is really high.
2759 */
2760 if (!force && zone->nr_reserved_highatomic <=
2761 pageblock_nr_pages)
0aaa29a5
MG
2762 continue;
2763
2764 spin_lock_irqsave(&zone->lock, flags);
2765 for (order = 0; order < MAX_ORDER; order++) {
2766 struct free_area *area = &(zone->free_area[order]);
2767
b03641af 2768 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2769 if (!page)
0aaa29a5
MG
2770 continue;
2771
0aaa29a5 2772 /*
4855e4a7
MK
2773 * In page freeing path, migratetype change is racy so
2774 * we can counter several free pages in a pageblock
2775 * in this loop althoug we changed the pageblock type
2776 * from highatomic to ac->migratetype. So we should
2777 * adjust the count once.
0aaa29a5 2778 */
a6ffdc07 2779 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2780 /*
2781 * It should never happen but changes to
2782 * locking could inadvertently allow a per-cpu
2783 * drain to add pages to MIGRATE_HIGHATOMIC
2784 * while unreserving so be safe and watch for
2785 * underflows.
2786 */
2787 zone->nr_reserved_highatomic -= min(
2788 pageblock_nr_pages,
2789 zone->nr_reserved_highatomic);
2790 }
0aaa29a5
MG
2791
2792 /*
2793 * Convert to ac->migratetype and avoid the normal
2794 * pageblock stealing heuristics. Minimally, the caller
2795 * is doing the work and needs the pages. More
2796 * importantly, if the block was always converted to
2797 * MIGRATE_UNMOVABLE or another type then the number
2798 * of pageblocks that cannot be completely freed
2799 * may increase.
2800 */
2801 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2802 ret = move_freepages_block(zone, page, ac->migratetype,
2803 NULL);
29fac03b
MK
2804 if (ret) {
2805 spin_unlock_irqrestore(&zone->lock, flags);
2806 return ret;
2807 }
0aaa29a5
MG
2808 }
2809 spin_unlock_irqrestore(&zone->lock, flags);
2810 }
04c8716f
MK
2811
2812 return false;
0aaa29a5
MG
2813}
2814
3bc48f96
VB
2815/*
2816 * Try finding a free buddy page on the fallback list and put it on the free
2817 * list of requested migratetype, possibly along with other pages from the same
2818 * block, depending on fragmentation avoidance heuristics. Returns true if
2819 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2820 *
2821 * The use of signed ints for order and current_order is a deliberate
2822 * deviation from the rest of this file, to make the for loop
2823 * condition simpler.
3bc48f96 2824 */
85ccc8fa 2825static __always_inline bool
6bb15450
MG
2826__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2827 unsigned int alloc_flags)
b2a0ac88 2828{
b8af2941 2829 struct free_area *area;
b002529d 2830 int current_order;
6bb15450 2831 int min_order = order;
b2a0ac88 2832 struct page *page;
4eb7dce6
JK
2833 int fallback_mt;
2834 bool can_steal;
b2a0ac88 2835
6bb15450
MG
2836 /*
2837 * Do not steal pages from freelists belonging to other pageblocks
2838 * i.e. orders < pageblock_order. If there are no local zones free,
2839 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2840 */
2841 if (alloc_flags & ALLOC_NOFRAGMENT)
2842 min_order = pageblock_order;
2843
7a8f58f3
VB
2844 /*
2845 * Find the largest available free page in the other list. This roughly
2846 * approximates finding the pageblock with the most free pages, which
2847 * would be too costly to do exactly.
2848 */
6bb15450 2849 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2850 --current_order) {
4eb7dce6
JK
2851 area = &(zone->free_area[current_order]);
2852 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2853 start_migratetype, false, &can_steal);
4eb7dce6
JK
2854 if (fallback_mt == -1)
2855 continue;
b2a0ac88 2856
7a8f58f3
VB
2857 /*
2858 * We cannot steal all free pages from the pageblock and the
2859 * requested migratetype is movable. In that case it's better to
2860 * steal and split the smallest available page instead of the
2861 * largest available page, because even if the next movable
2862 * allocation falls back into a different pageblock than this
2863 * one, it won't cause permanent fragmentation.
2864 */
2865 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2866 && current_order > order)
2867 goto find_smallest;
b2a0ac88 2868
7a8f58f3
VB
2869 goto do_steal;
2870 }
e0fff1bd 2871
7a8f58f3 2872 return false;
e0fff1bd 2873
7a8f58f3
VB
2874find_smallest:
2875 for (current_order = order; current_order < MAX_ORDER;
2876 current_order++) {
2877 area = &(zone->free_area[current_order]);
2878 fallback_mt = find_suitable_fallback(area, current_order,
2879 start_migratetype, false, &can_steal);
2880 if (fallback_mt != -1)
2881 break;
b2a0ac88
MG
2882 }
2883
7a8f58f3
VB
2884 /*
2885 * This should not happen - we already found a suitable fallback
2886 * when looking for the largest page.
2887 */
2888 VM_BUG_ON(current_order == MAX_ORDER);
2889
2890do_steal:
b03641af 2891 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2892
1c30844d
MG
2893 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2894 can_steal);
7a8f58f3
VB
2895
2896 trace_mm_page_alloc_extfrag(page, order, current_order,
2897 start_migratetype, fallback_mt);
2898
2899 return true;
2900
b2a0ac88
MG
2901}
2902
56fd56b8 2903/*
1da177e4
LT
2904 * Do the hard work of removing an element from the buddy allocator.
2905 * Call me with the zone->lock already held.
2906 */
85ccc8fa 2907static __always_inline struct page *
6bb15450
MG
2908__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2909 unsigned int alloc_flags)
1da177e4 2910{
1da177e4
LT
2911 struct page *page;
2912
ce8f86ee
H
2913 if (IS_ENABLED(CONFIG_CMA)) {
2914 /*
2915 * Balance movable allocations between regular and CMA areas by
2916 * allocating from CMA when over half of the zone's free memory
2917 * is in the CMA area.
2918 */
2919 if (alloc_flags & ALLOC_CMA &&
2920 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2921 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2922 page = __rmqueue_cma_fallback(zone, order);
2923 if (page)
2924 goto out;
2925 }
16867664 2926 }
3bc48f96 2927retry:
56fd56b8 2928 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2929 if (unlikely(!page)) {
8510e69c 2930 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2931 page = __rmqueue_cma_fallback(zone, order);
2932
6bb15450
MG
2933 if (!page && __rmqueue_fallback(zone, order, migratetype,
2934 alloc_flags))
3bc48f96 2935 goto retry;
728ec980 2936 }
ce8f86ee
H
2937out:
2938 if (page)
2939 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2940 return page;
1da177e4
LT
2941}
2942
5f63b720 2943/*
1da177e4
LT
2944 * Obtain a specified number of elements from the buddy allocator, all under
2945 * a single hold of the lock, for efficiency. Add them to the supplied list.
2946 * Returns the number of new pages which were placed at *list.
2947 */
5f63b720 2948static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2949 unsigned long count, struct list_head *list,
6bb15450 2950 int migratetype, unsigned int alloc_flags)
1da177e4 2951{
cb66bede 2952 int i, allocated = 0;
5f63b720 2953
d34b0733 2954 spin_lock(&zone->lock);
1da177e4 2955 for (i = 0; i < count; ++i) {
6bb15450
MG
2956 struct page *page = __rmqueue(zone, order, migratetype,
2957 alloc_flags);
085cc7d5 2958 if (unlikely(page == NULL))
1da177e4 2959 break;
81eabcbe 2960
479f854a
MG
2961 if (unlikely(check_pcp_refill(page)))
2962 continue;
2963
81eabcbe 2964 /*
0fac3ba5
VB
2965 * Split buddy pages returned by expand() are received here in
2966 * physical page order. The page is added to the tail of
2967 * caller's list. From the callers perspective, the linked list
2968 * is ordered by page number under some conditions. This is
2969 * useful for IO devices that can forward direction from the
2970 * head, thus also in the physical page order. This is useful
2971 * for IO devices that can merge IO requests if the physical
2972 * pages are ordered properly.
81eabcbe 2973 */
0fac3ba5 2974 list_add_tail(&page->lru, list);
cb66bede 2975 allocated++;
bb14c2c7 2976 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2977 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2978 -(1 << order));
1da177e4 2979 }
a6de734b
MG
2980
2981 /*
2982 * i pages were removed from the buddy list even if some leak due
2983 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 2984 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
2985 * pages added to the pcp list.
2986 */
f2260e6b 2987 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2988 spin_unlock(&zone->lock);
cb66bede 2989 return allocated;
1da177e4
LT
2990}
2991
4ae7c039 2992#ifdef CONFIG_NUMA
8fce4d8e 2993/*
4037d452
CL
2994 * Called from the vmstat counter updater to drain pagesets of this
2995 * currently executing processor on remote nodes after they have
2996 * expired.
2997 *
879336c3
CL
2998 * Note that this function must be called with the thread pinned to
2999 * a single processor.
8fce4d8e 3000 */
4037d452 3001void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3002{
4ae7c039 3003 unsigned long flags;
7be12fc9 3004 int to_drain, batch;
4ae7c039 3005
4037d452 3006 local_irq_save(flags);
4db0c3c2 3007 batch = READ_ONCE(pcp->batch);
7be12fc9 3008 to_drain = min(pcp->count, batch);
77ba9062 3009 if (to_drain > 0)
2a13515c 3010 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 3011 local_irq_restore(flags);
4ae7c039
CL
3012}
3013#endif
3014
9f8f2172 3015/*
93481ff0 3016 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3017 *
3018 * The processor must either be the current processor and the
3019 * thread pinned to the current processor or a processor that
3020 * is not online.
3021 */
93481ff0 3022static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3023{
c54ad30c 3024 unsigned long flags;
93481ff0
VB
3025 struct per_cpu_pageset *pset;
3026 struct per_cpu_pages *pcp;
1da177e4 3027
93481ff0
VB
3028 local_irq_save(flags);
3029 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3030
93481ff0 3031 pcp = &pset->pcp;
77ba9062 3032 if (pcp->count)
93481ff0 3033 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
3034 local_irq_restore(flags);
3035}
3dfa5721 3036
93481ff0
VB
3037/*
3038 * Drain pcplists of all zones on the indicated processor.
3039 *
3040 * The processor must either be the current processor and the
3041 * thread pinned to the current processor or a processor that
3042 * is not online.
3043 */
3044static void drain_pages(unsigned int cpu)
3045{
3046 struct zone *zone;
3047
3048 for_each_populated_zone(zone) {
3049 drain_pages_zone(cpu, zone);
1da177e4
LT
3050 }
3051}
1da177e4 3052
9f8f2172
CL
3053/*
3054 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3055 *
3056 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3057 * the single zone's pages.
9f8f2172 3058 */
93481ff0 3059void drain_local_pages(struct zone *zone)
9f8f2172 3060{
93481ff0
VB
3061 int cpu = smp_processor_id();
3062
3063 if (zone)
3064 drain_pages_zone(cpu, zone);
3065 else
3066 drain_pages(cpu);
9f8f2172
CL
3067}
3068
0ccce3b9
MG
3069static void drain_local_pages_wq(struct work_struct *work)
3070{
d9367bd0
WY
3071 struct pcpu_drain *drain;
3072
3073 drain = container_of(work, struct pcpu_drain, work);
3074
a459eeb7
MH
3075 /*
3076 * drain_all_pages doesn't use proper cpu hotplug protection so
3077 * we can race with cpu offline when the WQ can move this from
3078 * a cpu pinned worker to an unbound one. We can operate on a different
3079 * cpu which is allright but we also have to make sure to not move to
3080 * a different one.
3081 */
3082 preempt_disable();
d9367bd0 3083 drain_local_pages(drain->zone);
a459eeb7 3084 preempt_enable();
0ccce3b9
MG
3085}
3086
9f8f2172 3087/*
ec6e8c7e
VB
3088 * The implementation of drain_all_pages(), exposing an extra parameter to
3089 * drain on all cpus.
93481ff0 3090 *
ec6e8c7e
VB
3091 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3092 * not empty. The check for non-emptiness can however race with a free to
3093 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3094 * that need the guarantee that every CPU has drained can disable the
3095 * optimizing racy check.
9f8f2172 3096 */
3b1f3658 3097static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3098{
74046494 3099 int cpu;
74046494
GBY
3100
3101 /*
3102 * Allocate in the BSS so we wont require allocation in
3103 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3104 */
3105 static cpumask_t cpus_with_pcps;
3106
ce612879
MH
3107 /*
3108 * Make sure nobody triggers this path before mm_percpu_wq is fully
3109 * initialized.
3110 */
3111 if (WARN_ON_ONCE(!mm_percpu_wq))
3112 return;
3113
bd233f53
MG
3114 /*
3115 * Do not drain if one is already in progress unless it's specific to
3116 * a zone. Such callers are primarily CMA and memory hotplug and need
3117 * the drain to be complete when the call returns.
3118 */
3119 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3120 if (!zone)
3121 return;
3122 mutex_lock(&pcpu_drain_mutex);
3123 }
0ccce3b9 3124
74046494
GBY
3125 /*
3126 * We don't care about racing with CPU hotplug event
3127 * as offline notification will cause the notified
3128 * cpu to drain that CPU pcps and on_each_cpu_mask
3129 * disables preemption as part of its processing
3130 */
3131 for_each_online_cpu(cpu) {
93481ff0
VB
3132 struct per_cpu_pageset *pcp;
3133 struct zone *z;
74046494 3134 bool has_pcps = false;
93481ff0 3135
ec6e8c7e
VB
3136 if (force_all_cpus) {
3137 /*
3138 * The pcp.count check is racy, some callers need a
3139 * guarantee that no cpu is missed.
3140 */
3141 has_pcps = true;
3142 } else if (zone) {
74046494 3143 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3144 if (pcp->pcp.count)
74046494 3145 has_pcps = true;
93481ff0
VB
3146 } else {
3147 for_each_populated_zone(z) {
3148 pcp = per_cpu_ptr(z->pageset, cpu);
3149 if (pcp->pcp.count) {
3150 has_pcps = true;
3151 break;
3152 }
74046494
GBY
3153 }
3154 }
93481ff0 3155
74046494
GBY
3156 if (has_pcps)
3157 cpumask_set_cpu(cpu, &cpus_with_pcps);
3158 else
3159 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3160 }
0ccce3b9 3161
bd233f53 3162 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3163 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3164
3165 drain->zone = zone;
3166 INIT_WORK(&drain->work, drain_local_pages_wq);
3167 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3168 }
bd233f53 3169 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3170 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3171
3172 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3173}
3174
ec6e8c7e
VB
3175/*
3176 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3177 *
3178 * When zone parameter is non-NULL, spill just the single zone's pages.
3179 *
3180 * Note that this can be extremely slow as the draining happens in a workqueue.
3181 */
3182void drain_all_pages(struct zone *zone)
3183{
3184 __drain_all_pages(zone, false);
3185}
3186
296699de 3187#ifdef CONFIG_HIBERNATION
1da177e4 3188
556b969a
CY
3189/*
3190 * Touch the watchdog for every WD_PAGE_COUNT pages.
3191 */
3192#define WD_PAGE_COUNT (128*1024)
3193
1da177e4
LT
3194void mark_free_pages(struct zone *zone)
3195{
556b969a 3196 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3197 unsigned long flags;
7aeb09f9 3198 unsigned int order, t;
86760a2c 3199 struct page *page;
1da177e4 3200
8080fc03 3201 if (zone_is_empty(zone))
1da177e4
LT
3202 return;
3203
3204 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3205
108bcc96 3206 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3207 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3208 if (pfn_valid(pfn)) {
86760a2c 3209 page = pfn_to_page(pfn);
ba6b0979 3210
556b969a
CY
3211 if (!--page_count) {
3212 touch_nmi_watchdog();
3213 page_count = WD_PAGE_COUNT;
3214 }
3215
ba6b0979
JK
3216 if (page_zone(page) != zone)
3217 continue;
3218
7be98234
RW
3219 if (!swsusp_page_is_forbidden(page))
3220 swsusp_unset_page_free(page);
f623f0db 3221 }
1da177e4 3222
b2a0ac88 3223 for_each_migratetype_order(order, t) {
86760a2c
GT
3224 list_for_each_entry(page,
3225 &zone->free_area[order].free_list[t], lru) {
f623f0db 3226 unsigned long i;
1da177e4 3227
86760a2c 3228 pfn = page_to_pfn(page);
556b969a
CY
3229 for (i = 0; i < (1UL << order); i++) {
3230 if (!--page_count) {
3231 touch_nmi_watchdog();
3232 page_count = WD_PAGE_COUNT;
3233 }
7be98234 3234 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3235 }
f623f0db 3236 }
b2a0ac88 3237 }
1da177e4
LT
3238 spin_unlock_irqrestore(&zone->lock, flags);
3239}
e2c55dc8 3240#endif /* CONFIG_PM */
1da177e4 3241
2d4894b5 3242static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3243{
5f8dcc21 3244 int migratetype;
1da177e4 3245
4db7548c 3246 if (!free_pcp_prepare(page))
9cca35d4 3247 return false;
689bcebf 3248
dc4b0caf 3249 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3250 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3251 return true;
3252}
3253
2d4894b5 3254static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3255{
3256 struct zone *zone = page_zone(page);
3257 struct per_cpu_pages *pcp;
3258 int migratetype;
3259
3260 migratetype = get_pcppage_migratetype(page);
d34b0733 3261 __count_vm_event(PGFREE);
da456f14 3262
5f8dcc21
MG
3263 /*
3264 * We only track unmovable, reclaimable and movable on pcp lists.
3265 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3266 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3267 * areas back if necessary. Otherwise, we may have to free
3268 * excessively into the page allocator
3269 */
3270 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3271 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3272 free_one_page(zone, page, pfn, 0, migratetype,
3273 FPI_NONE);
9cca35d4 3274 return;
5f8dcc21
MG
3275 }
3276 migratetype = MIGRATE_MOVABLE;
3277 }
3278
99dcc3e5 3279 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3280 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3281 pcp->count++;
5c3ad2eb
VB
3282 if (pcp->count >= READ_ONCE(pcp->high))
3283 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
9cca35d4 3284}
5f8dcc21 3285
9cca35d4
MG
3286/*
3287 * Free a 0-order page
9cca35d4 3288 */
2d4894b5 3289void free_unref_page(struct page *page)
9cca35d4
MG
3290{
3291 unsigned long flags;
3292 unsigned long pfn = page_to_pfn(page);
3293
2d4894b5 3294 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3295 return;
3296
3297 local_irq_save(flags);
2d4894b5 3298 free_unref_page_commit(page, pfn);
d34b0733 3299 local_irq_restore(flags);
1da177e4
LT
3300}
3301
cc59850e
KK
3302/*
3303 * Free a list of 0-order pages
3304 */
2d4894b5 3305void free_unref_page_list(struct list_head *list)
cc59850e
KK
3306{
3307 struct page *page, *next;
9cca35d4 3308 unsigned long flags, pfn;
c24ad77d 3309 int batch_count = 0;
9cca35d4
MG
3310
3311 /* Prepare pages for freeing */
3312 list_for_each_entry_safe(page, next, list, lru) {
3313 pfn = page_to_pfn(page);
2d4894b5 3314 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3315 list_del(&page->lru);
3316 set_page_private(page, pfn);
3317 }
cc59850e 3318
9cca35d4 3319 local_irq_save(flags);
cc59850e 3320 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3321 unsigned long pfn = page_private(page);
3322
3323 set_page_private(page, 0);
2d4894b5
MG
3324 trace_mm_page_free_batched(page);
3325 free_unref_page_commit(page, pfn);
c24ad77d
LS
3326
3327 /*
3328 * Guard against excessive IRQ disabled times when we get
3329 * a large list of pages to free.
3330 */
3331 if (++batch_count == SWAP_CLUSTER_MAX) {
3332 local_irq_restore(flags);
3333 batch_count = 0;
3334 local_irq_save(flags);
3335 }
cc59850e 3336 }
9cca35d4 3337 local_irq_restore(flags);
cc59850e
KK
3338}
3339
8dfcc9ba
NP
3340/*
3341 * split_page takes a non-compound higher-order page, and splits it into
3342 * n (1<<order) sub-pages: page[0..n]
3343 * Each sub-page must be freed individually.
3344 *
3345 * Note: this is probably too low level an operation for use in drivers.
3346 * Please consult with lkml before using this in your driver.
3347 */
3348void split_page(struct page *page, unsigned int order)
3349{
3350 int i;
3351
309381fe
SL
3352 VM_BUG_ON_PAGE(PageCompound(page), page);
3353 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3354
a9627bc5 3355 for (i = 1; i < (1 << order); i++)
7835e98b 3356 set_page_refcounted(page + i);
8fb156c9 3357 split_page_owner(page, 1 << order);
e1baddf8 3358 split_page_memcg(page, 1 << order);
8dfcc9ba 3359}
5853ff23 3360EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3361
3c605096 3362int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3363{
748446bb
MG
3364 unsigned long watermark;
3365 struct zone *zone;
2139cbe6 3366 int mt;
748446bb
MG
3367
3368 BUG_ON(!PageBuddy(page));
3369
3370 zone = page_zone(page);
2e30abd1 3371 mt = get_pageblock_migratetype(page);
748446bb 3372
194159fb 3373 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3374 /*
3375 * Obey watermarks as if the page was being allocated. We can
3376 * emulate a high-order watermark check with a raised order-0
3377 * watermark, because we already know our high-order page
3378 * exists.
3379 */
fd1444b2 3380 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3381 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3382 return 0;
3383
8fb74b9f 3384 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3385 }
748446bb
MG
3386
3387 /* Remove page from free list */
b03641af 3388
6ab01363 3389 del_page_from_free_list(page, zone, order);
2139cbe6 3390
400bc7fd 3391 /*
3392 * Set the pageblock if the isolated page is at least half of a
3393 * pageblock
3394 */
748446bb
MG
3395 if (order >= pageblock_order - 1) {
3396 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3397 for (; page < endpage; page += pageblock_nr_pages) {
3398 int mt = get_pageblock_migratetype(page);
88ed365e 3399 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3400 && !is_migrate_highatomic(mt))
47118af0
MN
3401 set_pageblock_migratetype(page,
3402 MIGRATE_MOVABLE);
3403 }
748446bb
MG
3404 }
3405
f3a14ced 3406
8fb74b9f 3407 return 1UL << order;
1fb3f8ca
MG
3408}
3409
624f58d8
AD
3410/**
3411 * __putback_isolated_page - Return a now-isolated page back where we got it
3412 * @page: Page that was isolated
3413 * @order: Order of the isolated page
e6a0a7ad 3414 * @mt: The page's pageblock's migratetype
624f58d8
AD
3415 *
3416 * This function is meant to return a page pulled from the free lists via
3417 * __isolate_free_page back to the free lists they were pulled from.
3418 */
3419void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3420{
3421 struct zone *zone = page_zone(page);
3422
3423 /* zone lock should be held when this function is called */
3424 lockdep_assert_held(&zone->lock);
3425
3426 /* Return isolated page to tail of freelist. */
f04a5d5d 3427 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3428 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3429}
3430
060e7417
MG
3431/*
3432 * Update NUMA hit/miss statistics
3433 *
3434 * Must be called with interrupts disabled.
060e7417 3435 */
41b6167e 3436static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3437{
3438#ifdef CONFIG_NUMA
3a321d2a 3439 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3440
4518085e
KW
3441 /* skip numa counters update if numa stats is disabled */
3442 if (!static_branch_likely(&vm_numa_stat_key))
3443 return;
3444
c1093b74 3445 if (zone_to_nid(z) != numa_node_id())
060e7417 3446 local_stat = NUMA_OTHER;
060e7417 3447
c1093b74 3448 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3449 __inc_numa_state(z, NUMA_HIT);
2df26639 3450 else {
3a321d2a
KW
3451 __inc_numa_state(z, NUMA_MISS);
3452 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3453 }
3a321d2a 3454 __inc_numa_state(z, local_stat);
060e7417
MG
3455#endif
3456}
3457
066b2393 3458/* Remove page from the per-cpu list, caller must protect the list */
3b822017
JDB
3459static inline
3460struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3461 unsigned int alloc_flags,
453f85d4 3462 struct per_cpu_pages *pcp,
066b2393
MG
3463 struct list_head *list)
3464{
3465 struct page *page;
3466
3467 do {
3468 if (list_empty(list)) {
3469 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3470 READ_ONCE(pcp->batch), list,
6bb15450 3471 migratetype, alloc_flags);
066b2393
MG
3472 if (unlikely(list_empty(list)))
3473 return NULL;
3474 }
3475
453f85d4 3476 page = list_first_entry(list, struct page, lru);
066b2393
MG
3477 list_del(&page->lru);
3478 pcp->count--;
3479 } while (check_new_pcp(page));
3480
3481 return page;
3482}
3483
3484/* Lock and remove page from the per-cpu list */
3485static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3486 struct zone *zone, gfp_t gfp_flags,
3487 int migratetype, unsigned int alloc_flags)
066b2393
MG
3488{
3489 struct per_cpu_pages *pcp;
3490 struct list_head *list;
066b2393 3491 struct page *page;
d34b0733 3492 unsigned long flags;
066b2393 3493
d34b0733 3494 local_irq_save(flags);
066b2393
MG
3495 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3496 list = &pcp->lists[migratetype];
6bb15450 3497 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3498 if (page) {
1c52e6d0 3499 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3500 zone_statistics(preferred_zone, zone);
3501 }
d34b0733 3502 local_irq_restore(flags);
066b2393
MG
3503 return page;
3504}
3505
1da177e4 3506/*
75379191 3507 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3508 */
0a15c3e9 3509static inline
066b2393 3510struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3511 struct zone *zone, unsigned int order,
c603844b
MG
3512 gfp_t gfp_flags, unsigned int alloc_flags,
3513 int migratetype)
1da177e4
LT
3514{
3515 unsigned long flags;
689bcebf 3516 struct page *page;
1da177e4 3517
d34b0733 3518 if (likely(order == 0)) {
1d91df85
JK
3519 /*
3520 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3521 * we need to skip it when CMA area isn't allowed.
3522 */
3523 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3524 migratetype != MIGRATE_MOVABLE) {
3525 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3526 migratetype, alloc_flags);
1d91df85
JK
3527 goto out;
3528 }
066b2393 3529 }
83b9355b 3530
066b2393
MG
3531 /*
3532 * We most definitely don't want callers attempting to
3533 * allocate greater than order-1 page units with __GFP_NOFAIL.
3534 */
3535 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3536 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3537
066b2393
MG
3538 do {
3539 page = NULL;
1d91df85
JK
3540 /*
3541 * order-0 request can reach here when the pcplist is skipped
3542 * due to non-CMA allocation context. HIGHATOMIC area is
3543 * reserved for high-order atomic allocation, so order-0
3544 * request should skip it.
3545 */
3546 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3547 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3548 if (page)
3549 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3550 }
a74609fa 3551 if (!page)
6bb15450 3552 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3553 } while (page && check_new_pages(page, order));
3554 spin_unlock(&zone->lock);
3555 if (!page)
3556 goto failed;
3557 __mod_zone_freepage_state(zone, -(1 << order),
3558 get_pcppage_migratetype(page));
1da177e4 3559
16709d1d 3560 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3561 zone_statistics(preferred_zone, zone);
a74609fa 3562 local_irq_restore(flags);
1da177e4 3563
066b2393 3564out:
73444bc4
MG
3565 /* Separate test+clear to avoid unnecessary atomics */
3566 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3567 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3568 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3569 }
3570
066b2393 3571 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3572 return page;
a74609fa
NP
3573
3574failed:
3575 local_irq_restore(flags);
a74609fa 3576 return NULL;
1da177e4
LT
3577}
3578
933e312e
AM
3579#ifdef CONFIG_FAIL_PAGE_ALLOC
3580
b2588c4b 3581static struct {
933e312e
AM
3582 struct fault_attr attr;
3583
621a5f7a 3584 bool ignore_gfp_highmem;
71baba4b 3585 bool ignore_gfp_reclaim;
54114994 3586 u32 min_order;
933e312e
AM
3587} fail_page_alloc = {
3588 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3589 .ignore_gfp_reclaim = true,
621a5f7a 3590 .ignore_gfp_highmem = true,
54114994 3591 .min_order = 1,
933e312e
AM
3592};
3593
3594static int __init setup_fail_page_alloc(char *str)
3595{
3596 return setup_fault_attr(&fail_page_alloc.attr, str);
3597}
3598__setup("fail_page_alloc=", setup_fail_page_alloc);
3599
af3b8544 3600static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3601{
54114994 3602 if (order < fail_page_alloc.min_order)
deaf386e 3603 return false;
933e312e 3604 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3605 return false;
933e312e 3606 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3607 return false;
71baba4b
MG
3608 if (fail_page_alloc.ignore_gfp_reclaim &&
3609 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3610 return false;
933e312e
AM
3611
3612 return should_fail(&fail_page_alloc.attr, 1 << order);
3613}
3614
3615#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3616
3617static int __init fail_page_alloc_debugfs(void)
3618{
0825a6f9 3619 umode_t mode = S_IFREG | 0600;
933e312e 3620 struct dentry *dir;
933e312e 3621
dd48c085
AM
3622 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3623 &fail_page_alloc.attr);
b2588c4b 3624
d9f7979c
GKH
3625 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3626 &fail_page_alloc.ignore_gfp_reclaim);
3627 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3628 &fail_page_alloc.ignore_gfp_highmem);
3629 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3630
d9f7979c 3631 return 0;
933e312e
AM
3632}
3633
3634late_initcall(fail_page_alloc_debugfs);
3635
3636#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3637
3638#else /* CONFIG_FAIL_PAGE_ALLOC */
3639
af3b8544 3640static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3641{
deaf386e 3642 return false;
933e312e
AM
3643}
3644
3645#endif /* CONFIG_FAIL_PAGE_ALLOC */
3646
76cd6173 3647noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3648{
3649 return __should_fail_alloc_page(gfp_mask, order);
3650}
3651ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3652
f27ce0e1
JK
3653static inline long __zone_watermark_unusable_free(struct zone *z,
3654 unsigned int order, unsigned int alloc_flags)
3655{
3656 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3657 long unusable_free = (1 << order) - 1;
3658
3659 /*
3660 * If the caller does not have rights to ALLOC_HARDER then subtract
3661 * the high-atomic reserves. This will over-estimate the size of the
3662 * atomic reserve but it avoids a search.
3663 */
3664 if (likely(!alloc_harder))
3665 unusable_free += z->nr_reserved_highatomic;
3666
3667#ifdef CONFIG_CMA
3668 /* If allocation can't use CMA areas don't use free CMA pages */
3669 if (!(alloc_flags & ALLOC_CMA))
3670 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3671#endif
3672
3673 return unusable_free;
3674}
3675
1da177e4 3676/*
97a16fc8
MG
3677 * Return true if free base pages are above 'mark'. For high-order checks it
3678 * will return true of the order-0 watermark is reached and there is at least
3679 * one free page of a suitable size. Checking now avoids taking the zone lock
3680 * to check in the allocation paths if no pages are free.
1da177e4 3681 */
86a294a8 3682bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3683 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3684 long free_pages)
1da177e4 3685{
d23ad423 3686 long min = mark;
1da177e4 3687 int o;
cd04ae1e 3688 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3689
0aaa29a5 3690 /* free_pages may go negative - that's OK */
f27ce0e1 3691 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3692
7fb1d9fc 3693 if (alloc_flags & ALLOC_HIGH)
1da177e4 3694 min -= min / 2;
0aaa29a5 3695
f27ce0e1 3696 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3697 /*
3698 * OOM victims can try even harder than normal ALLOC_HARDER
3699 * users on the grounds that it's definitely going to be in
3700 * the exit path shortly and free memory. Any allocation it
3701 * makes during the free path will be small and short-lived.
3702 */
3703 if (alloc_flags & ALLOC_OOM)
3704 min -= min / 2;
3705 else
3706 min -= min / 4;
3707 }
3708
97a16fc8
MG
3709 /*
3710 * Check watermarks for an order-0 allocation request. If these
3711 * are not met, then a high-order request also cannot go ahead
3712 * even if a suitable page happened to be free.
3713 */
97a225e6 3714 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3715 return false;
1da177e4 3716
97a16fc8
MG
3717 /* If this is an order-0 request then the watermark is fine */
3718 if (!order)
3719 return true;
3720
3721 /* For a high-order request, check at least one suitable page is free */
3722 for (o = order; o < MAX_ORDER; o++) {
3723 struct free_area *area = &z->free_area[o];
3724 int mt;
3725
3726 if (!area->nr_free)
3727 continue;
3728
97a16fc8 3729 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3730 if (!free_area_empty(area, mt))
97a16fc8
MG
3731 return true;
3732 }
3733
3734#ifdef CONFIG_CMA
d883c6cf 3735 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3736 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3737 return true;
d883c6cf 3738 }
97a16fc8 3739#endif
76089d00 3740 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3741 return true;
1da177e4 3742 }
97a16fc8 3743 return false;
88f5acf8
MG
3744}
3745
7aeb09f9 3746bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3747 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3748{
97a225e6 3749 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3750 zone_page_state(z, NR_FREE_PAGES));
3751}
3752
48ee5f36 3753static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3754 unsigned long mark, int highest_zoneidx,
f80b08fc 3755 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3756{
f27ce0e1 3757 long free_pages;
d883c6cf 3758
f27ce0e1 3759 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3760
3761 /*
3762 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3763 * need to be calculated.
48ee5f36 3764 */
f27ce0e1
JK
3765 if (!order) {
3766 long fast_free;
3767
3768 fast_free = free_pages;
3769 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3770 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3771 return true;
3772 }
48ee5f36 3773
f80b08fc
CTR
3774 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3775 free_pages))
3776 return true;
3777 /*
3778 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3779 * when checking the min watermark. The min watermark is the
3780 * point where boosting is ignored so that kswapd is woken up
3781 * when below the low watermark.
3782 */
3783 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3784 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3785 mark = z->_watermark[WMARK_MIN];
3786 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3787 alloc_flags, free_pages);
3788 }
3789
3790 return false;
48ee5f36
MG
3791}
3792
7aeb09f9 3793bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3794 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3795{
3796 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3797
3798 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3799 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3800
97a225e6 3801 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3802 free_pages);
1da177e4
LT
3803}
3804
9276b1bc 3805#ifdef CONFIG_NUMA
957f822a
DR
3806static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3807{
e02dc017 3808 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3809 node_reclaim_distance;
957f822a 3810}
9276b1bc 3811#else /* CONFIG_NUMA */
957f822a
DR
3812static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3813{
3814 return true;
3815}
9276b1bc
PJ
3816#endif /* CONFIG_NUMA */
3817
6bb15450
MG
3818/*
3819 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3820 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3821 * premature use of a lower zone may cause lowmem pressure problems that
3822 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3823 * probably too small. It only makes sense to spread allocations to avoid
3824 * fragmentation between the Normal and DMA32 zones.
3825 */
3826static inline unsigned int
0a79cdad 3827alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3828{
736838e9 3829 unsigned int alloc_flags;
0a79cdad 3830
736838e9
MN
3831 /*
3832 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3833 * to save a branch.
3834 */
3835 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3836
3837#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3838 if (!zone)
3839 return alloc_flags;
3840
6bb15450 3841 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3842 return alloc_flags;
6bb15450
MG
3843
3844 /*
3845 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3846 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3847 * on UMA that if Normal is populated then so is DMA32.
3848 */
3849 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3850 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3851 return alloc_flags;
6bb15450 3852
8118b82e 3853 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3854#endif /* CONFIG_ZONE_DMA32 */
3855 return alloc_flags;
6bb15450 3856}
6bb15450 3857
8510e69c
JK
3858static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3859 unsigned int alloc_flags)
3860{
3861#ifdef CONFIG_CMA
3862 unsigned int pflags = current->flags;
3863
3864 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3865 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3866 alloc_flags |= ALLOC_CMA;
3867
3868#endif
3869 return alloc_flags;
3870}
3871
7fb1d9fc 3872/*
0798e519 3873 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3874 * a page.
3875 */
3876static struct page *
a9263751
VB
3877get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3878 const struct alloc_context *ac)
753ee728 3879{
6bb15450 3880 struct zoneref *z;
5117f45d 3881 struct zone *zone;
3b8c0be4 3882 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3883 bool no_fallback;
3b8c0be4 3884
6bb15450 3885retry:
7fb1d9fc 3886 /*
9276b1bc 3887 * Scan zonelist, looking for a zone with enough free.
344736f2 3888 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3889 */
6bb15450
MG
3890 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3891 z = ac->preferred_zoneref;
30d8ec73
MN
3892 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3893 ac->nodemask) {
be06af00 3894 struct page *page;
e085dbc5
JW
3895 unsigned long mark;
3896
664eedde
MG
3897 if (cpusets_enabled() &&
3898 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3899 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3900 continue;
a756cf59
JW
3901 /*
3902 * When allocating a page cache page for writing, we
281e3726
MG
3903 * want to get it from a node that is within its dirty
3904 * limit, such that no single node holds more than its
a756cf59 3905 * proportional share of globally allowed dirty pages.
281e3726 3906 * The dirty limits take into account the node's
a756cf59
JW
3907 * lowmem reserves and high watermark so that kswapd
3908 * should be able to balance it without having to
3909 * write pages from its LRU list.
3910 *
a756cf59 3911 * XXX: For now, allow allocations to potentially
281e3726 3912 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3913 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3914 * which is important when on a NUMA setup the allowed
281e3726 3915 * nodes are together not big enough to reach the
a756cf59 3916 * global limit. The proper fix for these situations
281e3726 3917 * will require awareness of nodes in the
a756cf59
JW
3918 * dirty-throttling and the flusher threads.
3919 */
3b8c0be4
MG
3920 if (ac->spread_dirty_pages) {
3921 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3922 continue;
3923
3924 if (!node_dirty_ok(zone->zone_pgdat)) {
3925 last_pgdat_dirty_limit = zone->zone_pgdat;
3926 continue;
3927 }
3928 }
7fb1d9fc 3929
6bb15450
MG
3930 if (no_fallback && nr_online_nodes > 1 &&
3931 zone != ac->preferred_zoneref->zone) {
3932 int local_nid;
3933
3934 /*
3935 * If moving to a remote node, retry but allow
3936 * fragmenting fallbacks. Locality is more important
3937 * than fragmentation avoidance.
3938 */
3939 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3940 if (zone_to_nid(zone) != local_nid) {
3941 alloc_flags &= ~ALLOC_NOFRAGMENT;
3942 goto retry;
3943 }
3944 }
3945
a9214443 3946 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3947 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3948 ac->highest_zoneidx, alloc_flags,
3949 gfp_mask)) {
fa5e084e
MG
3950 int ret;
3951
c9e97a19
PT
3952#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3953 /*
3954 * Watermark failed for this zone, but see if we can
3955 * grow this zone if it contains deferred pages.
3956 */
3957 if (static_branch_unlikely(&deferred_pages)) {
3958 if (_deferred_grow_zone(zone, order))
3959 goto try_this_zone;
3960 }
3961#endif
5dab2911
MG
3962 /* Checked here to keep the fast path fast */
3963 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3964 if (alloc_flags & ALLOC_NO_WATERMARKS)
3965 goto try_this_zone;
3966
a5f5f91d 3967 if (node_reclaim_mode == 0 ||
c33d6c06 3968 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3969 continue;
3970
a5f5f91d 3971 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3972 switch (ret) {
a5f5f91d 3973 case NODE_RECLAIM_NOSCAN:
fa5e084e 3974 /* did not scan */
cd38b115 3975 continue;
a5f5f91d 3976 case NODE_RECLAIM_FULL:
fa5e084e 3977 /* scanned but unreclaimable */
cd38b115 3978 continue;
fa5e084e
MG
3979 default:
3980 /* did we reclaim enough */
fed2719e 3981 if (zone_watermark_ok(zone, order, mark,
97a225e6 3982 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3983 goto try_this_zone;
3984
fed2719e 3985 continue;
0798e519 3986 }
7fb1d9fc
RS
3987 }
3988
fa5e084e 3989try_this_zone:
066b2393 3990 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3991 gfp_mask, alloc_flags, ac->migratetype);
75379191 3992 if (page) {
479f854a 3993 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3994
3995 /*
3996 * If this is a high-order atomic allocation then check
3997 * if the pageblock should be reserved for the future
3998 */
3999 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4000 reserve_highatomic_pageblock(page, zone, order);
4001
75379191 4002 return page;
c9e97a19
PT
4003 } else {
4004#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4005 /* Try again if zone has deferred pages */
4006 if (static_branch_unlikely(&deferred_pages)) {
4007 if (_deferred_grow_zone(zone, order))
4008 goto try_this_zone;
4009 }
4010#endif
75379191 4011 }
54a6eb5c 4012 }
9276b1bc 4013
6bb15450
MG
4014 /*
4015 * It's possible on a UMA machine to get through all zones that are
4016 * fragmented. If avoiding fragmentation, reset and try again.
4017 */
4018 if (no_fallback) {
4019 alloc_flags &= ~ALLOC_NOFRAGMENT;
4020 goto retry;
4021 }
4022
4ffeaf35 4023 return NULL;
753ee728
MH
4024}
4025
9af744d7 4026static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4027{
a238ab5b 4028 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4029
4030 /*
4031 * This documents exceptions given to allocations in certain
4032 * contexts that are allowed to allocate outside current's set
4033 * of allowed nodes.
4034 */
4035 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4036 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4037 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4038 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 4039 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4040 filter &= ~SHOW_MEM_FILTER_NODES;
4041
9af744d7 4042 show_mem(filter, nodemask);
aa187507
MH
4043}
4044
a8e99259 4045void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4046{
4047 struct va_format vaf;
4048 va_list args;
1be334e5 4049 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4050
0f7896f1 4051 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
4052 return;
4053
7877cdcc
MH
4054 va_start(args, fmt);
4055 vaf.fmt = fmt;
4056 vaf.va = &args;
ef8444ea 4057 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4058 current->comm, &vaf, gfp_mask, &gfp_mask,
4059 nodemask_pr_args(nodemask));
7877cdcc 4060 va_end(args);
3ee9a4f0 4061
a8e99259 4062 cpuset_print_current_mems_allowed();
ef8444ea 4063 pr_cont("\n");
a238ab5b 4064 dump_stack();
685dbf6f 4065 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4066}
4067
6c18ba7a
MH
4068static inline struct page *
4069__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4070 unsigned int alloc_flags,
4071 const struct alloc_context *ac)
4072{
4073 struct page *page;
4074
4075 page = get_page_from_freelist(gfp_mask, order,
4076 alloc_flags|ALLOC_CPUSET, ac);
4077 /*
4078 * fallback to ignore cpuset restriction if our nodes
4079 * are depleted
4080 */
4081 if (!page)
4082 page = get_page_from_freelist(gfp_mask, order,
4083 alloc_flags, ac);
4084
4085 return page;
4086}
4087
11e33f6a
MG
4088static inline struct page *
4089__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4090 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4091{
6e0fc46d
DR
4092 struct oom_control oc = {
4093 .zonelist = ac->zonelist,
4094 .nodemask = ac->nodemask,
2a966b77 4095 .memcg = NULL,
6e0fc46d
DR
4096 .gfp_mask = gfp_mask,
4097 .order = order,
6e0fc46d 4098 };
11e33f6a
MG
4099 struct page *page;
4100
9879de73
JW
4101 *did_some_progress = 0;
4102
9879de73 4103 /*
dc56401f
JW
4104 * Acquire the oom lock. If that fails, somebody else is
4105 * making progress for us.
9879de73 4106 */
dc56401f 4107 if (!mutex_trylock(&oom_lock)) {
9879de73 4108 *did_some_progress = 1;
11e33f6a 4109 schedule_timeout_uninterruptible(1);
1da177e4
LT
4110 return NULL;
4111 }
6b1de916 4112
11e33f6a
MG
4113 /*
4114 * Go through the zonelist yet one more time, keep very high watermark
4115 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4116 * we're still under heavy pressure. But make sure that this reclaim
4117 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4118 * allocation which will never fail due to oom_lock already held.
11e33f6a 4119 */
e746bf73
TH
4120 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4121 ~__GFP_DIRECT_RECLAIM, order,
4122 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4123 if (page)
11e33f6a
MG
4124 goto out;
4125
06ad276a
MH
4126 /* Coredumps can quickly deplete all memory reserves */
4127 if (current->flags & PF_DUMPCORE)
4128 goto out;
4129 /* The OOM killer will not help higher order allocs */
4130 if (order > PAGE_ALLOC_COSTLY_ORDER)
4131 goto out;
dcda9b04
MH
4132 /*
4133 * We have already exhausted all our reclaim opportunities without any
4134 * success so it is time to admit defeat. We will skip the OOM killer
4135 * because it is very likely that the caller has a more reasonable
4136 * fallback than shooting a random task.
cfb4a541
MN
4137 *
4138 * The OOM killer may not free memory on a specific node.
dcda9b04 4139 */
cfb4a541 4140 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4141 goto out;
06ad276a 4142 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4143 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4144 goto out;
4145 if (pm_suspended_storage())
4146 goto out;
4147 /*
4148 * XXX: GFP_NOFS allocations should rather fail than rely on
4149 * other request to make a forward progress.
4150 * We are in an unfortunate situation where out_of_memory cannot
4151 * do much for this context but let's try it to at least get
4152 * access to memory reserved if the current task is killed (see
4153 * out_of_memory). Once filesystems are ready to handle allocation
4154 * failures more gracefully we should just bail out here.
4155 */
4156
3c2c6488 4157 /* Exhausted what can be done so it's blame time */
5020e285 4158 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4159 *did_some_progress = 1;
5020e285 4160
6c18ba7a
MH
4161 /*
4162 * Help non-failing allocations by giving them access to memory
4163 * reserves
4164 */
4165 if (gfp_mask & __GFP_NOFAIL)
4166 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4167 ALLOC_NO_WATERMARKS, ac);
5020e285 4168 }
11e33f6a 4169out:
dc56401f 4170 mutex_unlock(&oom_lock);
11e33f6a
MG
4171 return page;
4172}
4173
33c2d214
MH
4174/*
4175 * Maximum number of compaction retries wit a progress before OOM
4176 * killer is consider as the only way to move forward.
4177 */
4178#define MAX_COMPACT_RETRIES 16
4179
56de7263
MG
4180#ifdef CONFIG_COMPACTION
4181/* Try memory compaction for high-order allocations before reclaim */
4182static struct page *
4183__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4184 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4185 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4186{
5e1f0f09 4187 struct page *page = NULL;
eb414681 4188 unsigned long pflags;
499118e9 4189 unsigned int noreclaim_flag;
53853e2d
VB
4190
4191 if (!order)
66199712 4192 return NULL;
66199712 4193
eb414681 4194 psi_memstall_enter(&pflags);
499118e9 4195 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4196
c5d01d0d 4197 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4198 prio, &page);
eb414681 4199
499118e9 4200 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4201 psi_memstall_leave(&pflags);
56de7263 4202
98dd3b48
VB
4203 /*
4204 * At least in one zone compaction wasn't deferred or skipped, so let's
4205 * count a compaction stall
4206 */
4207 count_vm_event(COMPACTSTALL);
8fb74b9f 4208
5e1f0f09
MG
4209 /* Prep a captured page if available */
4210 if (page)
4211 prep_new_page(page, order, gfp_mask, alloc_flags);
4212
4213 /* Try get a page from the freelist if available */
4214 if (!page)
4215 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4216
98dd3b48
VB
4217 if (page) {
4218 struct zone *zone = page_zone(page);
53853e2d 4219
98dd3b48
VB
4220 zone->compact_blockskip_flush = false;
4221 compaction_defer_reset(zone, order, true);
4222 count_vm_event(COMPACTSUCCESS);
4223 return page;
4224 }
56de7263 4225
98dd3b48
VB
4226 /*
4227 * It's bad if compaction run occurs and fails. The most likely reason
4228 * is that pages exist, but not enough to satisfy watermarks.
4229 */
4230 count_vm_event(COMPACTFAIL);
66199712 4231
98dd3b48 4232 cond_resched();
56de7263
MG
4233
4234 return NULL;
4235}
33c2d214 4236
3250845d
VB
4237static inline bool
4238should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4239 enum compact_result compact_result,
4240 enum compact_priority *compact_priority,
d9436498 4241 int *compaction_retries)
3250845d
VB
4242{
4243 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4244 int min_priority;
65190cff
MH
4245 bool ret = false;
4246 int retries = *compaction_retries;
4247 enum compact_priority priority = *compact_priority;
3250845d
VB
4248
4249 if (!order)
4250 return false;
4251
d9436498
VB
4252 if (compaction_made_progress(compact_result))
4253 (*compaction_retries)++;
4254
3250845d
VB
4255 /*
4256 * compaction considers all the zone as desperately out of memory
4257 * so it doesn't really make much sense to retry except when the
4258 * failure could be caused by insufficient priority
4259 */
d9436498
VB
4260 if (compaction_failed(compact_result))
4261 goto check_priority;
3250845d 4262
49433085
VB
4263 /*
4264 * compaction was skipped because there are not enough order-0 pages
4265 * to work with, so we retry only if it looks like reclaim can help.
4266 */
4267 if (compaction_needs_reclaim(compact_result)) {
4268 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4269 goto out;
4270 }
4271
3250845d
VB
4272 /*
4273 * make sure the compaction wasn't deferred or didn't bail out early
4274 * due to locks contention before we declare that we should give up.
49433085
VB
4275 * But the next retry should use a higher priority if allowed, so
4276 * we don't just keep bailing out endlessly.
3250845d 4277 */
65190cff 4278 if (compaction_withdrawn(compact_result)) {
49433085 4279 goto check_priority;
65190cff 4280 }
3250845d
VB
4281
4282 /*
dcda9b04 4283 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4284 * costly ones because they are de facto nofail and invoke OOM
4285 * killer to move on while costly can fail and users are ready
4286 * to cope with that. 1/4 retries is rather arbitrary but we
4287 * would need much more detailed feedback from compaction to
4288 * make a better decision.
4289 */
4290 if (order > PAGE_ALLOC_COSTLY_ORDER)
4291 max_retries /= 4;
65190cff
MH
4292 if (*compaction_retries <= max_retries) {
4293 ret = true;
4294 goto out;
4295 }
3250845d 4296
d9436498
VB
4297 /*
4298 * Make sure there are attempts at the highest priority if we exhausted
4299 * all retries or failed at the lower priorities.
4300 */
4301check_priority:
c2033b00
VB
4302 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4303 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4304
c2033b00 4305 if (*compact_priority > min_priority) {
d9436498
VB
4306 (*compact_priority)--;
4307 *compaction_retries = 0;
65190cff 4308 ret = true;
d9436498 4309 }
65190cff
MH
4310out:
4311 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4312 return ret;
3250845d 4313}
56de7263
MG
4314#else
4315static inline struct page *
4316__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4317 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4318 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4319{
33c2d214 4320 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4321 return NULL;
4322}
33c2d214
MH
4323
4324static inline bool
86a294a8
MH
4325should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4326 enum compact_result compact_result,
a5508cd8 4327 enum compact_priority *compact_priority,
d9436498 4328 int *compaction_retries)
33c2d214 4329{
31e49bfd
MH
4330 struct zone *zone;
4331 struct zoneref *z;
4332
4333 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4334 return false;
4335
4336 /*
4337 * There are setups with compaction disabled which would prefer to loop
4338 * inside the allocator rather than hit the oom killer prematurely.
4339 * Let's give them a good hope and keep retrying while the order-0
4340 * watermarks are OK.
4341 */
97a225e6
JK
4342 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4343 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4344 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4345 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4346 return true;
4347 }
33c2d214
MH
4348 return false;
4349}
3250845d 4350#endif /* CONFIG_COMPACTION */
56de7263 4351
d92a8cfc 4352#ifdef CONFIG_LOCKDEP
93781325 4353static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4354 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4355
f920e413 4356static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4357{
d92a8cfc
PZ
4358 /* no reclaim without waiting on it */
4359 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4360 return false;
4361
4362 /* this guy won't enter reclaim */
2e517d68 4363 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4364 return false;
4365
d92a8cfc
PZ
4366 if (gfp_mask & __GFP_NOLOCKDEP)
4367 return false;
4368
4369 return true;
4370}
4371
93781325
OS
4372void __fs_reclaim_acquire(void)
4373{
4374 lock_map_acquire(&__fs_reclaim_map);
4375}
4376
4377void __fs_reclaim_release(void)
4378{
4379 lock_map_release(&__fs_reclaim_map);
4380}
4381
d92a8cfc
PZ
4382void fs_reclaim_acquire(gfp_t gfp_mask)
4383{
f920e413
DV
4384 gfp_mask = current_gfp_context(gfp_mask);
4385
4386 if (__need_reclaim(gfp_mask)) {
4387 if (gfp_mask & __GFP_FS)
4388 __fs_reclaim_acquire();
4389
4390#ifdef CONFIG_MMU_NOTIFIER
4391 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4392 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4393#endif
4394
4395 }
d92a8cfc
PZ
4396}
4397EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4398
4399void fs_reclaim_release(gfp_t gfp_mask)
4400{
f920e413
DV
4401 gfp_mask = current_gfp_context(gfp_mask);
4402
4403 if (__need_reclaim(gfp_mask)) {
4404 if (gfp_mask & __GFP_FS)
4405 __fs_reclaim_release();
4406 }
d92a8cfc
PZ
4407}
4408EXPORT_SYMBOL_GPL(fs_reclaim_release);
4409#endif
4410
bba90710 4411/* Perform direct synchronous page reclaim */
2187e17b 4412static unsigned long
a9263751
VB
4413__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4414 const struct alloc_context *ac)
11e33f6a 4415{
499118e9 4416 unsigned int noreclaim_flag;
2187e17b 4417 unsigned long pflags, progress;
11e33f6a
MG
4418
4419 cond_resched();
4420
4421 /* We now go into synchronous reclaim */
4422 cpuset_memory_pressure_bump();
eb414681 4423 psi_memstall_enter(&pflags);
d92a8cfc 4424 fs_reclaim_acquire(gfp_mask);
93781325 4425 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4426
a9263751
VB
4427 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4428 ac->nodemask);
11e33f6a 4429
499118e9 4430 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4431 fs_reclaim_release(gfp_mask);
eb414681 4432 psi_memstall_leave(&pflags);
11e33f6a
MG
4433
4434 cond_resched();
4435
bba90710
MS
4436 return progress;
4437}
4438
4439/* The really slow allocator path where we enter direct reclaim */
4440static inline struct page *
4441__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4442 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4443 unsigned long *did_some_progress)
bba90710
MS
4444{
4445 struct page *page = NULL;
4446 bool drained = false;
4447
a9263751 4448 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4449 if (unlikely(!(*did_some_progress)))
4450 return NULL;
11e33f6a 4451
9ee493ce 4452retry:
31a6c190 4453 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4454
4455 /*
4456 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4457 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4458 * Shrink them and try again
9ee493ce
MG
4459 */
4460 if (!page && !drained) {
29fac03b 4461 unreserve_highatomic_pageblock(ac, false);
93481ff0 4462 drain_all_pages(NULL);
9ee493ce
MG
4463 drained = true;
4464 goto retry;
4465 }
4466
11e33f6a
MG
4467 return page;
4468}
4469
5ecd9d40
DR
4470static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4471 const struct alloc_context *ac)
3a025760
JW
4472{
4473 struct zoneref *z;
4474 struct zone *zone;
e1a55637 4475 pg_data_t *last_pgdat = NULL;
97a225e6 4476 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4477
97a225e6 4478 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4479 ac->nodemask) {
e1a55637 4480 if (last_pgdat != zone->zone_pgdat)
97a225e6 4481 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4482 last_pgdat = zone->zone_pgdat;
4483 }
3a025760
JW
4484}
4485
c603844b 4486static inline unsigned int
341ce06f
PZ
4487gfp_to_alloc_flags(gfp_t gfp_mask)
4488{
c603844b 4489 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4490
736838e9
MN
4491 /*
4492 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4493 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4494 * to save two branches.
4495 */
e6223a3b 4496 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4497 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4498
341ce06f
PZ
4499 /*
4500 * The caller may dip into page reserves a bit more if the caller
4501 * cannot run direct reclaim, or if the caller has realtime scheduling
4502 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4503 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4504 */
736838e9
MN
4505 alloc_flags |= (__force int)
4506 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4507
d0164adc 4508 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4509 /*
b104a35d
DR
4510 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4511 * if it can't schedule.
5c3240d9 4512 */
b104a35d 4513 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4514 alloc_flags |= ALLOC_HARDER;
523b9458 4515 /*
b104a35d 4516 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4517 * comment for __cpuset_node_allowed().
523b9458 4518 */
341ce06f 4519 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4520 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4521 alloc_flags |= ALLOC_HARDER;
4522
8510e69c
JK
4523 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4524
341ce06f
PZ
4525 return alloc_flags;
4526}
4527
cd04ae1e 4528static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4529{
cd04ae1e
MH
4530 if (!tsk_is_oom_victim(tsk))
4531 return false;
4532
4533 /*
4534 * !MMU doesn't have oom reaper so give access to memory reserves
4535 * only to the thread with TIF_MEMDIE set
4536 */
4537 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4538 return false;
4539
cd04ae1e
MH
4540 return true;
4541}
4542
4543/*
4544 * Distinguish requests which really need access to full memory
4545 * reserves from oom victims which can live with a portion of it
4546 */
4547static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4548{
4549 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4550 return 0;
31a6c190 4551 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4552 return ALLOC_NO_WATERMARKS;
31a6c190 4553 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4554 return ALLOC_NO_WATERMARKS;
4555 if (!in_interrupt()) {
4556 if (current->flags & PF_MEMALLOC)
4557 return ALLOC_NO_WATERMARKS;
4558 else if (oom_reserves_allowed(current))
4559 return ALLOC_OOM;
4560 }
31a6c190 4561
cd04ae1e
MH
4562 return 0;
4563}
4564
4565bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4566{
4567 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4568}
4569
0a0337e0
MH
4570/*
4571 * Checks whether it makes sense to retry the reclaim to make a forward progress
4572 * for the given allocation request.
491d79ae
JW
4573 *
4574 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4575 * without success, or when we couldn't even meet the watermark if we
4576 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4577 *
4578 * Returns true if a retry is viable or false to enter the oom path.
4579 */
4580static inline bool
4581should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4582 struct alloc_context *ac, int alloc_flags,
423b452e 4583 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4584{
4585 struct zone *zone;
4586 struct zoneref *z;
15f570bf 4587 bool ret = false;
0a0337e0 4588
423b452e
VB
4589 /*
4590 * Costly allocations might have made a progress but this doesn't mean
4591 * their order will become available due to high fragmentation so
4592 * always increment the no progress counter for them
4593 */
4594 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4595 *no_progress_loops = 0;
4596 else
4597 (*no_progress_loops)++;
4598
0a0337e0
MH
4599 /*
4600 * Make sure we converge to OOM if we cannot make any progress
4601 * several times in the row.
4602 */
04c8716f
MK
4603 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4604 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4605 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4606 }
0a0337e0 4607
bca67592
MG
4608 /*
4609 * Keep reclaiming pages while there is a chance this will lead
4610 * somewhere. If none of the target zones can satisfy our allocation
4611 * request even if all reclaimable pages are considered then we are
4612 * screwed and have to go OOM.
0a0337e0 4613 */
97a225e6
JK
4614 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4615 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4616 unsigned long available;
ede37713 4617 unsigned long reclaimable;
d379f01d
MH
4618 unsigned long min_wmark = min_wmark_pages(zone);
4619 bool wmark;
0a0337e0 4620
5a1c84b4 4621 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4622 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4623
4624 /*
491d79ae
JW
4625 * Would the allocation succeed if we reclaimed all
4626 * reclaimable pages?
0a0337e0 4627 */
d379f01d 4628 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4629 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4630 trace_reclaim_retry_zone(z, order, reclaimable,
4631 available, min_wmark, *no_progress_loops, wmark);
4632 if (wmark) {
ede37713
MH
4633 /*
4634 * If we didn't make any progress and have a lot of
4635 * dirty + writeback pages then we should wait for
4636 * an IO to complete to slow down the reclaim and
4637 * prevent from pre mature OOM
4638 */
4639 if (!did_some_progress) {
11fb9989 4640 unsigned long write_pending;
ede37713 4641
5a1c84b4
MG
4642 write_pending = zone_page_state_snapshot(zone,
4643 NR_ZONE_WRITE_PENDING);
ede37713 4644
11fb9989 4645 if (2 * write_pending > reclaimable) {
ede37713
MH
4646 congestion_wait(BLK_RW_ASYNC, HZ/10);
4647 return true;
4648 }
4649 }
5a1c84b4 4650
15f570bf
MH
4651 ret = true;
4652 goto out;
0a0337e0
MH
4653 }
4654 }
4655
15f570bf
MH
4656out:
4657 /*
4658 * Memory allocation/reclaim might be called from a WQ context and the
4659 * current implementation of the WQ concurrency control doesn't
4660 * recognize that a particular WQ is congested if the worker thread is
4661 * looping without ever sleeping. Therefore we have to do a short sleep
4662 * here rather than calling cond_resched().
4663 */
4664 if (current->flags & PF_WQ_WORKER)
4665 schedule_timeout_uninterruptible(1);
4666 else
4667 cond_resched();
4668 return ret;
0a0337e0
MH
4669}
4670
902b6281
VB
4671static inline bool
4672check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4673{
4674 /*
4675 * It's possible that cpuset's mems_allowed and the nodemask from
4676 * mempolicy don't intersect. This should be normally dealt with by
4677 * policy_nodemask(), but it's possible to race with cpuset update in
4678 * such a way the check therein was true, and then it became false
4679 * before we got our cpuset_mems_cookie here.
4680 * This assumes that for all allocations, ac->nodemask can come only
4681 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4682 * when it does not intersect with the cpuset restrictions) or the
4683 * caller can deal with a violated nodemask.
4684 */
4685 if (cpusets_enabled() && ac->nodemask &&
4686 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4687 ac->nodemask = NULL;
4688 return true;
4689 }
4690
4691 /*
4692 * When updating a task's mems_allowed or mempolicy nodemask, it is
4693 * possible to race with parallel threads in such a way that our
4694 * allocation can fail while the mask is being updated. If we are about
4695 * to fail, check if the cpuset changed during allocation and if so,
4696 * retry.
4697 */
4698 if (read_mems_allowed_retry(cpuset_mems_cookie))
4699 return true;
4700
4701 return false;
4702}
4703
11e33f6a
MG
4704static inline struct page *
4705__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4706 struct alloc_context *ac)
11e33f6a 4707{
d0164adc 4708 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4709 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4710 struct page *page = NULL;
c603844b 4711 unsigned int alloc_flags;
11e33f6a 4712 unsigned long did_some_progress;
5ce9bfef 4713 enum compact_priority compact_priority;
c5d01d0d 4714 enum compact_result compact_result;
5ce9bfef
VB
4715 int compaction_retries;
4716 int no_progress_loops;
5ce9bfef 4717 unsigned int cpuset_mems_cookie;
cd04ae1e 4718 int reserve_flags;
1da177e4 4719
d0164adc
MG
4720 /*
4721 * We also sanity check to catch abuse of atomic reserves being used by
4722 * callers that are not in atomic context.
4723 */
4724 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4725 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4726 gfp_mask &= ~__GFP_ATOMIC;
4727
5ce9bfef
VB
4728retry_cpuset:
4729 compaction_retries = 0;
4730 no_progress_loops = 0;
4731 compact_priority = DEF_COMPACT_PRIORITY;
4732 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4733
4734 /*
4735 * The fast path uses conservative alloc_flags to succeed only until
4736 * kswapd needs to be woken up, and to avoid the cost of setting up
4737 * alloc_flags precisely. So we do that now.
4738 */
4739 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4740
e47483bc
VB
4741 /*
4742 * We need to recalculate the starting point for the zonelist iterator
4743 * because we might have used different nodemask in the fast path, or
4744 * there was a cpuset modification and we are retrying - otherwise we
4745 * could end up iterating over non-eligible zones endlessly.
4746 */
4747 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4748 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4749 if (!ac->preferred_zoneref->zone)
4750 goto nopage;
4751
0a79cdad 4752 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4753 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4754
4755 /*
4756 * The adjusted alloc_flags might result in immediate success, so try
4757 * that first
4758 */
4759 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4760 if (page)
4761 goto got_pg;
4762
a8161d1e
VB
4763 /*
4764 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4765 * that we have enough base pages and don't need to reclaim. For non-
4766 * movable high-order allocations, do that as well, as compaction will
4767 * try prevent permanent fragmentation by migrating from blocks of the
4768 * same migratetype.
4769 * Don't try this for allocations that are allowed to ignore
4770 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4771 */
282722b0
VB
4772 if (can_direct_reclaim &&
4773 (costly_order ||
4774 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4775 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4776 page = __alloc_pages_direct_compact(gfp_mask, order,
4777 alloc_flags, ac,
a5508cd8 4778 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4779 &compact_result);
4780 if (page)
4781 goto got_pg;
4782
cc638f32
VB
4783 /*
4784 * Checks for costly allocations with __GFP_NORETRY, which
4785 * includes some THP page fault allocations
4786 */
4787 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4788 /*
4789 * If allocating entire pageblock(s) and compaction
4790 * failed because all zones are below low watermarks
4791 * or is prohibited because it recently failed at this
3f36d866
DR
4792 * order, fail immediately unless the allocator has
4793 * requested compaction and reclaim retry.
b39d0ee2
DR
4794 *
4795 * Reclaim is
4796 * - potentially very expensive because zones are far
4797 * below their low watermarks or this is part of very
4798 * bursty high order allocations,
4799 * - not guaranteed to help because isolate_freepages()
4800 * may not iterate over freed pages as part of its
4801 * linear scan, and
4802 * - unlikely to make entire pageblocks free on its
4803 * own.
4804 */
4805 if (compact_result == COMPACT_SKIPPED ||
4806 compact_result == COMPACT_DEFERRED)
4807 goto nopage;
a8161d1e 4808
a8161d1e 4809 /*
3eb2771b
VB
4810 * Looks like reclaim/compaction is worth trying, but
4811 * sync compaction could be very expensive, so keep
25160354 4812 * using async compaction.
a8161d1e 4813 */
a5508cd8 4814 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4815 }
4816 }
23771235 4817
31a6c190 4818retry:
23771235 4819 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4820 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4821 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4822
cd04ae1e
MH
4823 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4824 if (reserve_flags)
8510e69c 4825 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4826
e46e7b77 4827 /*
d6a24df0
VB
4828 * Reset the nodemask and zonelist iterators if memory policies can be
4829 * ignored. These allocations are high priority and system rather than
4830 * user oriented.
e46e7b77 4831 */
cd04ae1e 4832 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4833 ac->nodemask = NULL;
e46e7b77 4834 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4835 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4836 }
4837
23771235 4838 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4839 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4840 if (page)
4841 goto got_pg;
1da177e4 4842
d0164adc 4843 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4844 if (!can_direct_reclaim)
1da177e4
LT
4845 goto nopage;
4846
9a67f648
MH
4847 /* Avoid recursion of direct reclaim */
4848 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4849 goto nopage;
4850
a8161d1e
VB
4851 /* Try direct reclaim and then allocating */
4852 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4853 &did_some_progress);
4854 if (page)
4855 goto got_pg;
4856
4857 /* Try direct compaction and then allocating */
a9263751 4858 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4859 compact_priority, &compact_result);
56de7263
MG
4860 if (page)
4861 goto got_pg;
75f30861 4862
9083905a
JW
4863 /* Do not loop if specifically requested */
4864 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4865 goto nopage;
9083905a 4866
0a0337e0
MH
4867 /*
4868 * Do not retry costly high order allocations unless they are
dcda9b04 4869 * __GFP_RETRY_MAYFAIL
0a0337e0 4870 */
dcda9b04 4871 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4872 goto nopage;
0a0337e0 4873
0a0337e0 4874 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4875 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4876 goto retry;
4877
33c2d214
MH
4878 /*
4879 * It doesn't make any sense to retry for the compaction if the order-0
4880 * reclaim is not able to make any progress because the current
4881 * implementation of the compaction depends on the sufficient amount
4882 * of free memory (see __compaction_suitable)
4883 */
4884 if (did_some_progress > 0 &&
86a294a8 4885 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4886 compact_result, &compact_priority,
d9436498 4887 &compaction_retries))
33c2d214
MH
4888 goto retry;
4889
902b6281
VB
4890
4891 /* Deal with possible cpuset update races before we start OOM killing */
4892 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4893 goto retry_cpuset;
4894
9083905a
JW
4895 /* Reclaim has failed us, start killing things */
4896 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4897 if (page)
4898 goto got_pg;
4899
9a67f648 4900 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4901 if (tsk_is_oom_victim(current) &&
8510e69c 4902 (alloc_flags & ALLOC_OOM ||
c288983d 4903 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4904 goto nopage;
4905
9083905a 4906 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4907 if (did_some_progress) {
4908 no_progress_loops = 0;
9083905a 4909 goto retry;
0a0337e0 4910 }
9083905a 4911
1da177e4 4912nopage:
902b6281
VB
4913 /* Deal with possible cpuset update races before we fail */
4914 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4915 goto retry_cpuset;
4916
9a67f648
MH
4917 /*
4918 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4919 * we always retry
4920 */
4921 if (gfp_mask & __GFP_NOFAIL) {
4922 /*
4923 * All existing users of the __GFP_NOFAIL are blockable, so warn
4924 * of any new users that actually require GFP_NOWAIT
4925 */
4926 if (WARN_ON_ONCE(!can_direct_reclaim))
4927 goto fail;
4928
4929 /*
4930 * PF_MEMALLOC request from this context is rather bizarre
4931 * because we cannot reclaim anything and only can loop waiting
4932 * for somebody to do a work for us
4933 */
4934 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4935
4936 /*
4937 * non failing costly orders are a hard requirement which we
4938 * are not prepared for much so let's warn about these users
4939 * so that we can identify them and convert them to something
4940 * else.
4941 */
4942 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4943
6c18ba7a
MH
4944 /*
4945 * Help non-failing allocations by giving them access to memory
4946 * reserves but do not use ALLOC_NO_WATERMARKS because this
4947 * could deplete whole memory reserves which would just make
4948 * the situation worse
4949 */
4950 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4951 if (page)
4952 goto got_pg;
4953
9a67f648
MH
4954 cond_resched();
4955 goto retry;
4956 }
4957fail:
a8e99259 4958 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4959 "page allocation failure: order:%u", order);
1da177e4 4960got_pg:
072bb0aa 4961 return page;
1da177e4 4962}
11e33f6a 4963
9cd75558 4964static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4965 int preferred_nid, nodemask_t *nodemask,
8e6a930b 4966 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 4967 unsigned int *alloc_flags)
11e33f6a 4968{
97a225e6 4969 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4970 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4971 ac->nodemask = nodemask;
01c0bfe0 4972 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4973
682a3385 4974 if (cpusets_enabled()) {
8e6a930b 4975 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
4976 /*
4977 * When we are in the interrupt context, it is irrelevant
4978 * to the current task context. It means that any node ok.
4979 */
4980 if (!in_interrupt() && !ac->nodemask)
9cd75558 4981 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4982 else
4983 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4984 }
4985
d92a8cfc
PZ
4986 fs_reclaim_acquire(gfp_mask);
4987 fs_reclaim_release(gfp_mask);
11e33f6a 4988
d0164adc 4989 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4990
4991 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4992 return false;
11e33f6a 4993
8510e69c 4994 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4995
c9ab0c4f 4996 /* Dirty zone balancing only done in the fast path */
9cd75558 4997 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4998
e46e7b77
MG
4999 /*
5000 * The preferred zone is used for statistics but crucially it is
5001 * also used as the starting point for the zonelist iterator. It
5002 * may get reset for allocations that ignore memory policies.
5003 */
9cd75558 5004 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5005 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5006
5007 return true;
9cd75558
MG
5008}
5009
387ba26f 5010/*
0f87d9d3 5011 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5012 * @gfp: GFP flags for the allocation
5013 * @preferred_nid: The preferred NUMA node ID to allocate from
5014 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5015 * @nr_pages: The number of pages desired on the list or array
5016 * @page_list: Optional list to store the allocated pages
5017 * @page_array: Optional array to store the pages
387ba26f
MG
5018 *
5019 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5020 * allocate nr_pages quickly. Pages are added to page_list if page_list
5021 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5022 *
0f87d9d3
MG
5023 * For lists, nr_pages is the number of pages that should be allocated.
5024 *
5025 * For arrays, only NULL elements are populated with pages and nr_pages
5026 * is the maximum number of pages that will be stored in the array.
5027 *
5028 * Returns the number of pages on the list or array.
387ba26f
MG
5029 */
5030unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5031 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5032 struct list_head *page_list,
5033 struct page **page_array)
387ba26f
MG
5034{
5035 struct page *page;
5036 unsigned long flags;
5037 struct zone *zone;
5038 struct zoneref *z;
5039 struct per_cpu_pages *pcp;
5040 struct list_head *pcp_list;
5041 struct alloc_context ac;
5042 gfp_t alloc_gfp;
5043 unsigned int alloc_flags = ALLOC_WMARK_LOW;
0f87d9d3 5044 int nr_populated = 0;
387ba26f 5045
ce76f9a1 5046 if (unlikely(nr_pages <= 0))
387ba26f
MG
5047 return 0;
5048
0f87d9d3
MG
5049 /*
5050 * Skip populated array elements to determine if any pages need
5051 * to be allocated before disabling IRQs.
5052 */
5053 while (page_array && page_array[nr_populated] && nr_populated < nr_pages)
5054 nr_populated++;
5055
387ba26f 5056 /* Use the single page allocator for one page. */
0f87d9d3 5057 if (nr_pages - nr_populated == 1)
387ba26f
MG
5058 goto failed;
5059
5060 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5061 gfp &= gfp_allowed_mask;
5062 alloc_gfp = gfp;
5063 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5064 return 0;
5065 gfp = alloc_gfp;
5066
5067 /* Find an allowed local zone that meets the low watermark. */
5068 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5069 unsigned long mark;
5070
5071 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5072 !__cpuset_zone_allowed(zone, gfp)) {
5073 continue;
5074 }
5075
5076 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5077 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5078 goto failed;
5079 }
5080
5081 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5082 if (zone_watermark_fast(zone, 0, mark,
5083 zonelist_zone_idx(ac.preferred_zoneref),
5084 alloc_flags, gfp)) {
5085 break;
5086 }
5087 }
5088
5089 /*
5090 * If there are no allowed local zones that meets the watermarks then
5091 * try to allocate a single page and reclaim if necessary.
5092 */
ce76f9a1 5093 if (unlikely(!zone))
387ba26f
MG
5094 goto failed;
5095
5096 /* Attempt the batch allocation */
5097 local_irq_save(flags);
5098 pcp = &this_cpu_ptr(zone->pageset)->pcp;
5099 pcp_list = &pcp->lists[ac.migratetype];
5100
0f87d9d3
MG
5101 while (nr_populated < nr_pages) {
5102
5103 /* Skip existing pages */
5104 if (page_array && page_array[nr_populated]) {
5105 nr_populated++;
5106 continue;
5107 }
5108
387ba26f
MG
5109 page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
5110 pcp, pcp_list);
ce76f9a1 5111 if (unlikely(!page)) {
387ba26f 5112 /* Try and get at least one page */
0f87d9d3 5113 if (!nr_populated)
387ba26f
MG
5114 goto failed_irq;
5115 break;
5116 }
5117
5118 /*
5119 * Ideally this would be batched but the best way to do
5120 * that cheaply is to first convert zone_statistics to
5121 * be inaccurate per-cpu counter like vm_events to avoid
5122 * a RMW cycle then do the accounting with IRQs enabled.
5123 */
5124 __count_zid_vm_events(PGALLOC, zone_idx(zone), 1);
5125 zone_statistics(ac.preferred_zoneref->zone, zone);
5126
5127 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5128 if (page_list)
5129 list_add(&page->lru, page_list);
5130 else
5131 page_array[nr_populated] = page;
5132 nr_populated++;
387ba26f
MG
5133 }
5134
5135 local_irq_restore(flags);
5136
0f87d9d3 5137 return nr_populated;
387ba26f
MG
5138
5139failed_irq:
5140 local_irq_restore(flags);
5141
5142failed:
5143 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5144 if (page) {
0f87d9d3
MG
5145 if (page_list)
5146 list_add(&page->lru, page_list);
5147 else
5148 page_array[nr_populated] = page;
5149 nr_populated++;
387ba26f
MG
5150 }
5151
0f87d9d3 5152 return nr_populated;
387ba26f
MG
5153}
5154EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5155
9cd75558
MG
5156/*
5157 * This is the 'heart' of the zoned buddy allocator.
5158 */
84172f4b 5159struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5160 nodemask_t *nodemask)
9cd75558
MG
5161{
5162 struct page *page;
5163 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5164 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5165 struct alloc_context ac = { };
5166
c63ae43b
MH
5167 /*
5168 * There are several places where we assume that the order value is sane
5169 * so bail out early if the request is out of bound.
5170 */
5171 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5172 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5173 return NULL;
5174 }
5175
6e5e0f28
MWO
5176 gfp &= gfp_allowed_mask;
5177 alloc_gfp = gfp;
5178 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5179 &alloc_gfp, &alloc_flags))
9cd75558
MG
5180 return NULL;
5181
6bb15450
MG
5182 /*
5183 * Forbid the first pass from falling back to types that fragment
5184 * memory until all local zones are considered.
5185 */
6e5e0f28 5186 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5187
5117f45d 5188 /* First allocation attempt */
8e6a930b 5189 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5190 if (likely(page))
5191 goto out;
11e33f6a 5192
4fcb0971 5193 /*
7dea19f9
MH
5194 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5195 * resp. GFP_NOIO which has to be inherited for all allocation requests
5196 * from a particular context which has been marked by
5197 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 5198 */
6e5e0f28 5199 alloc_gfp = current_gfp_context(gfp);
4fcb0971 5200 ac.spread_dirty_pages = false;
23f086f9 5201
4741526b
MG
5202 /*
5203 * Restore the original nodemask if it was potentially replaced with
5204 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5205 */
97ce86f9 5206 ac.nodemask = nodemask;
16096c25 5207
8e6a930b 5208 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5209
4fcb0971 5210out:
6e5e0f28
MWO
5211 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5212 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5213 __free_pages(page, order);
5214 page = NULL;
4949148a
VD
5215 }
5216
8e6a930b 5217 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5218
11e33f6a 5219 return page;
1da177e4 5220}
84172f4b 5221EXPORT_SYMBOL(__alloc_pages);
1da177e4
LT
5222
5223/*
9ea9a680
MH
5224 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5225 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5226 * you need to access high mem.
1da177e4 5227 */
920c7a5d 5228unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5229{
945a1113
AM
5230 struct page *page;
5231
9ea9a680 5232 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5233 if (!page)
5234 return 0;
5235 return (unsigned long) page_address(page);
5236}
1da177e4
LT
5237EXPORT_SYMBOL(__get_free_pages);
5238
920c7a5d 5239unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5240{
945a1113 5241 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5242}
1da177e4
LT
5243EXPORT_SYMBOL(get_zeroed_page);
5244
742aa7fb 5245static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5246{
742aa7fb
AL
5247 if (order == 0) /* Via pcp? */
5248 free_unref_page(page);
5249 else
7fef431b 5250 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5251}
5252
7f194fbb
MWO
5253/**
5254 * __free_pages - Free pages allocated with alloc_pages().
5255 * @page: The page pointer returned from alloc_pages().
5256 * @order: The order of the allocation.
5257 *
5258 * This function can free multi-page allocations that are not compound
5259 * pages. It does not check that the @order passed in matches that of
5260 * the allocation, so it is easy to leak memory. Freeing more memory
5261 * than was allocated will probably emit a warning.
5262 *
5263 * If the last reference to this page is speculative, it will be released
5264 * by put_page() which only frees the first page of a non-compound
5265 * allocation. To prevent the remaining pages from being leaked, we free
5266 * the subsequent pages here. If you want to use the page's reference
5267 * count to decide when to free the allocation, you should allocate a
5268 * compound page, and use put_page() instead of __free_pages().
5269 *
5270 * Context: May be called in interrupt context or while holding a normal
5271 * spinlock, but not in NMI context or while holding a raw spinlock.
5272 */
742aa7fb
AL
5273void __free_pages(struct page *page, unsigned int order)
5274{
5275 if (put_page_testzero(page))
5276 free_the_page(page, order);
e320d301
MWO
5277 else if (!PageHead(page))
5278 while (order-- > 0)
5279 free_the_page(page + (1 << order), order);
742aa7fb 5280}
1da177e4
LT
5281EXPORT_SYMBOL(__free_pages);
5282
920c7a5d 5283void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5284{
5285 if (addr != 0) {
725d704e 5286 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5287 __free_pages(virt_to_page((void *)addr), order);
5288 }
5289}
5290
5291EXPORT_SYMBOL(free_pages);
5292
b63ae8ca
AD
5293/*
5294 * Page Fragment:
5295 * An arbitrary-length arbitrary-offset area of memory which resides
5296 * within a 0 or higher order page. Multiple fragments within that page
5297 * are individually refcounted, in the page's reference counter.
5298 *
5299 * The page_frag functions below provide a simple allocation framework for
5300 * page fragments. This is used by the network stack and network device
5301 * drivers to provide a backing region of memory for use as either an
5302 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5303 */
2976db80
AD
5304static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5305 gfp_t gfp_mask)
b63ae8ca
AD
5306{
5307 struct page *page = NULL;
5308 gfp_t gfp = gfp_mask;
5309
5310#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5311 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5312 __GFP_NOMEMALLOC;
5313 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5314 PAGE_FRAG_CACHE_MAX_ORDER);
5315 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5316#endif
5317 if (unlikely(!page))
5318 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5319
5320 nc->va = page ? page_address(page) : NULL;
5321
5322 return page;
5323}
5324
2976db80 5325void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5326{
5327 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5328
742aa7fb
AL
5329 if (page_ref_sub_and_test(page, count))
5330 free_the_page(page, compound_order(page));
44fdffd7 5331}
2976db80 5332EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5333
b358e212
KH
5334void *page_frag_alloc_align(struct page_frag_cache *nc,
5335 unsigned int fragsz, gfp_t gfp_mask,
5336 unsigned int align_mask)
b63ae8ca
AD
5337{
5338 unsigned int size = PAGE_SIZE;
5339 struct page *page;
5340 int offset;
5341
5342 if (unlikely(!nc->va)) {
5343refill:
2976db80 5344 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5345 if (!page)
5346 return NULL;
5347
5348#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5349 /* if size can vary use size else just use PAGE_SIZE */
5350 size = nc->size;
5351#endif
5352 /* Even if we own the page, we do not use atomic_set().
5353 * This would break get_page_unless_zero() users.
5354 */
86447726 5355 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5356
5357 /* reset page count bias and offset to start of new frag */
2f064f34 5358 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5359 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5360 nc->offset = size;
5361 }
5362
5363 offset = nc->offset - fragsz;
5364 if (unlikely(offset < 0)) {
5365 page = virt_to_page(nc->va);
5366
fe896d18 5367 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5368 goto refill;
5369
d8c19014
DZ
5370 if (unlikely(nc->pfmemalloc)) {
5371 free_the_page(page, compound_order(page));
5372 goto refill;
5373 }
5374
b63ae8ca
AD
5375#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5376 /* if size can vary use size else just use PAGE_SIZE */
5377 size = nc->size;
5378#endif
5379 /* OK, page count is 0, we can safely set it */
86447726 5380 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5381
5382 /* reset page count bias and offset to start of new frag */
86447726 5383 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5384 offset = size - fragsz;
5385 }
5386
5387 nc->pagecnt_bias--;
b358e212 5388 offset &= align_mask;
b63ae8ca
AD
5389 nc->offset = offset;
5390
5391 return nc->va + offset;
5392}
b358e212 5393EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5394
5395/*
5396 * Frees a page fragment allocated out of either a compound or order 0 page.
5397 */
8c2dd3e4 5398void page_frag_free(void *addr)
b63ae8ca
AD
5399{
5400 struct page *page = virt_to_head_page(addr);
5401
742aa7fb
AL
5402 if (unlikely(put_page_testzero(page)))
5403 free_the_page(page, compound_order(page));
b63ae8ca 5404}
8c2dd3e4 5405EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5406
d00181b9
KS
5407static void *make_alloc_exact(unsigned long addr, unsigned int order,
5408 size_t size)
ee85c2e1
AK
5409{
5410 if (addr) {
5411 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5412 unsigned long used = addr + PAGE_ALIGN(size);
5413
5414 split_page(virt_to_page((void *)addr), order);
5415 while (used < alloc_end) {
5416 free_page(used);
5417 used += PAGE_SIZE;
5418 }
5419 }
5420 return (void *)addr;
5421}
5422
2be0ffe2
TT
5423/**
5424 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5425 * @size: the number of bytes to allocate
63931eb9 5426 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5427 *
5428 * This function is similar to alloc_pages(), except that it allocates the
5429 * minimum number of pages to satisfy the request. alloc_pages() can only
5430 * allocate memory in power-of-two pages.
5431 *
5432 * This function is also limited by MAX_ORDER.
5433 *
5434 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5435 *
5436 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5437 */
5438void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5439{
5440 unsigned int order = get_order(size);
5441 unsigned long addr;
5442
63931eb9
VB
5443 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5444 gfp_mask &= ~__GFP_COMP;
5445
2be0ffe2 5446 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5447 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5448}
5449EXPORT_SYMBOL(alloc_pages_exact);
5450
ee85c2e1
AK
5451/**
5452 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5453 * pages on a node.
b5e6ab58 5454 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5455 * @size: the number of bytes to allocate
63931eb9 5456 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5457 *
5458 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5459 * back.
a862f68a
MR
5460 *
5461 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5462 */
e1931811 5463void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5464{
d00181b9 5465 unsigned int order = get_order(size);
63931eb9
VB
5466 struct page *p;
5467
5468 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5469 gfp_mask &= ~__GFP_COMP;
5470
5471 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5472 if (!p)
5473 return NULL;
5474 return make_alloc_exact((unsigned long)page_address(p), order, size);
5475}
ee85c2e1 5476
2be0ffe2
TT
5477/**
5478 * free_pages_exact - release memory allocated via alloc_pages_exact()
5479 * @virt: the value returned by alloc_pages_exact.
5480 * @size: size of allocation, same value as passed to alloc_pages_exact().
5481 *
5482 * Release the memory allocated by a previous call to alloc_pages_exact.
5483 */
5484void free_pages_exact(void *virt, size_t size)
5485{
5486 unsigned long addr = (unsigned long)virt;
5487 unsigned long end = addr + PAGE_ALIGN(size);
5488
5489 while (addr < end) {
5490 free_page(addr);
5491 addr += PAGE_SIZE;
5492 }
5493}
5494EXPORT_SYMBOL(free_pages_exact);
5495
e0fb5815
ZY
5496/**
5497 * nr_free_zone_pages - count number of pages beyond high watermark
5498 * @offset: The zone index of the highest zone
5499 *
a862f68a 5500 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5501 * high watermark within all zones at or below a given zone index. For each
5502 * zone, the number of pages is calculated as:
0e056eb5 5503 *
5504 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5505 *
5506 * Return: number of pages beyond high watermark.
e0fb5815 5507 */
ebec3862 5508static unsigned long nr_free_zone_pages(int offset)
1da177e4 5509{
dd1a239f 5510 struct zoneref *z;
54a6eb5c
MG
5511 struct zone *zone;
5512
e310fd43 5513 /* Just pick one node, since fallback list is circular */
ebec3862 5514 unsigned long sum = 0;
1da177e4 5515
0e88460d 5516 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5517
54a6eb5c 5518 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5519 unsigned long size = zone_managed_pages(zone);
41858966 5520 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5521 if (size > high)
5522 sum += size - high;
1da177e4
LT
5523 }
5524
5525 return sum;
5526}
5527
e0fb5815
ZY
5528/**
5529 * nr_free_buffer_pages - count number of pages beyond high watermark
5530 *
5531 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5532 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5533 *
5534 * Return: number of pages beyond high watermark within ZONE_DMA and
5535 * ZONE_NORMAL.
1da177e4 5536 */
ebec3862 5537unsigned long nr_free_buffer_pages(void)
1da177e4 5538{
af4ca457 5539 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5540}
c2f1a551 5541EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5542
08e0f6a9 5543static inline void show_node(struct zone *zone)
1da177e4 5544{
e5adfffc 5545 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5546 printk("Node %d ", zone_to_nid(zone));
1da177e4 5547}
1da177e4 5548
d02bd27b
IR
5549long si_mem_available(void)
5550{
5551 long available;
5552 unsigned long pagecache;
5553 unsigned long wmark_low = 0;
5554 unsigned long pages[NR_LRU_LISTS];
b29940c1 5555 unsigned long reclaimable;
d02bd27b
IR
5556 struct zone *zone;
5557 int lru;
5558
5559 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5560 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5561
5562 for_each_zone(zone)
a9214443 5563 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5564
5565 /*
5566 * Estimate the amount of memory available for userspace allocations,
5567 * without causing swapping.
5568 */
c41f012a 5569 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5570
5571 /*
5572 * Not all the page cache can be freed, otherwise the system will
5573 * start swapping. Assume at least half of the page cache, or the
5574 * low watermark worth of cache, needs to stay.
5575 */
5576 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5577 pagecache -= min(pagecache / 2, wmark_low);
5578 available += pagecache;
5579
5580 /*
b29940c1
VB
5581 * Part of the reclaimable slab and other kernel memory consists of
5582 * items that are in use, and cannot be freed. Cap this estimate at the
5583 * low watermark.
d02bd27b 5584 */
d42f3245
RG
5585 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5586 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5587 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5588
d02bd27b
IR
5589 if (available < 0)
5590 available = 0;
5591 return available;
5592}
5593EXPORT_SYMBOL_GPL(si_mem_available);
5594
1da177e4
LT
5595void si_meminfo(struct sysinfo *val)
5596{
ca79b0c2 5597 val->totalram = totalram_pages();
11fb9989 5598 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5599 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5600 val->bufferram = nr_blockdev_pages();
ca79b0c2 5601 val->totalhigh = totalhigh_pages();
1da177e4 5602 val->freehigh = nr_free_highpages();
1da177e4
LT
5603 val->mem_unit = PAGE_SIZE;
5604}
5605
5606EXPORT_SYMBOL(si_meminfo);
5607
5608#ifdef CONFIG_NUMA
5609void si_meminfo_node(struct sysinfo *val, int nid)
5610{
cdd91a77
JL
5611 int zone_type; /* needs to be signed */
5612 unsigned long managed_pages = 0;
fc2bd799
JK
5613 unsigned long managed_highpages = 0;
5614 unsigned long free_highpages = 0;
1da177e4
LT
5615 pg_data_t *pgdat = NODE_DATA(nid);
5616
cdd91a77 5617 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5618 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5619 val->totalram = managed_pages;
11fb9989 5620 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5621 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5622#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5623 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5624 struct zone *zone = &pgdat->node_zones[zone_type];
5625
5626 if (is_highmem(zone)) {
9705bea5 5627 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5628 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5629 }
5630 }
5631 val->totalhigh = managed_highpages;
5632 val->freehigh = free_highpages;
98d2b0eb 5633#else
fc2bd799
JK
5634 val->totalhigh = managed_highpages;
5635 val->freehigh = free_highpages;
98d2b0eb 5636#endif
1da177e4
LT
5637 val->mem_unit = PAGE_SIZE;
5638}
5639#endif
5640
ddd588b5 5641/*
7bf02ea2
DR
5642 * Determine whether the node should be displayed or not, depending on whether
5643 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5644 */
9af744d7 5645static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5646{
ddd588b5 5647 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5648 return false;
ddd588b5 5649
9af744d7
MH
5650 /*
5651 * no node mask - aka implicit memory numa policy. Do not bother with
5652 * the synchronization - read_mems_allowed_begin - because we do not
5653 * have to be precise here.
5654 */
5655 if (!nodemask)
5656 nodemask = &cpuset_current_mems_allowed;
5657
5658 return !node_isset(nid, *nodemask);
ddd588b5
DR
5659}
5660
1da177e4
LT
5661#define K(x) ((x) << (PAGE_SHIFT-10))
5662
377e4f16
RV
5663static void show_migration_types(unsigned char type)
5664{
5665 static const char types[MIGRATE_TYPES] = {
5666 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5667 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5668 [MIGRATE_RECLAIMABLE] = 'E',
5669 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5670#ifdef CONFIG_CMA
5671 [MIGRATE_CMA] = 'C',
5672#endif
194159fb 5673#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5674 [MIGRATE_ISOLATE] = 'I',
194159fb 5675#endif
377e4f16
RV
5676 };
5677 char tmp[MIGRATE_TYPES + 1];
5678 char *p = tmp;
5679 int i;
5680
5681 for (i = 0; i < MIGRATE_TYPES; i++) {
5682 if (type & (1 << i))
5683 *p++ = types[i];
5684 }
5685
5686 *p = '\0';
1f84a18f 5687 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5688}
5689
1da177e4
LT
5690/*
5691 * Show free area list (used inside shift_scroll-lock stuff)
5692 * We also calculate the percentage fragmentation. We do this by counting the
5693 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5694 *
5695 * Bits in @filter:
5696 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5697 * cpuset.
1da177e4 5698 */
9af744d7 5699void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5700{
d1bfcdb8 5701 unsigned long free_pcp = 0;
c7241913 5702 int cpu;
1da177e4 5703 struct zone *zone;
599d0c95 5704 pg_data_t *pgdat;
1da177e4 5705
ee99c71c 5706 for_each_populated_zone(zone) {
9af744d7 5707 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5708 continue;
d1bfcdb8 5709
761b0677
KK
5710 for_each_online_cpu(cpu)
5711 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5712 }
5713
a731286d
KM
5714 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5715 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5716 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5717 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5718 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5719 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5720 global_node_page_state(NR_ACTIVE_ANON),
5721 global_node_page_state(NR_INACTIVE_ANON),
5722 global_node_page_state(NR_ISOLATED_ANON),
5723 global_node_page_state(NR_ACTIVE_FILE),
5724 global_node_page_state(NR_INACTIVE_FILE),
5725 global_node_page_state(NR_ISOLATED_FILE),
5726 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5727 global_node_page_state(NR_FILE_DIRTY),
5728 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5729 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5730 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5731 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5732 global_node_page_state(NR_SHMEM),
f0c0c115 5733 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5734 global_zone_page_state(NR_BOUNCE),
5735 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5736 free_pcp,
c41f012a 5737 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5738
599d0c95 5739 for_each_online_pgdat(pgdat) {
9af744d7 5740 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5741 continue;
5742
599d0c95
MG
5743 printk("Node %d"
5744 " active_anon:%lukB"
5745 " inactive_anon:%lukB"
5746 " active_file:%lukB"
5747 " inactive_file:%lukB"
5748 " unevictable:%lukB"
5749 " isolated(anon):%lukB"
5750 " isolated(file):%lukB"
50658e2e 5751 " mapped:%lukB"
11fb9989
MG
5752 " dirty:%lukB"
5753 " writeback:%lukB"
5754 " shmem:%lukB"
5755#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5756 " shmem_thp: %lukB"
5757 " shmem_pmdmapped: %lukB"
5758 " anon_thp: %lukB"
5759#endif
5760 " writeback_tmp:%lukB"
991e7673
SB
5761 " kernel_stack:%lukB"
5762#ifdef CONFIG_SHADOW_CALL_STACK
5763 " shadow_call_stack:%lukB"
5764#endif
f0c0c115 5765 " pagetables:%lukB"
599d0c95
MG
5766 " all_unreclaimable? %s"
5767 "\n",
5768 pgdat->node_id,
5769 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5770 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5771 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5772 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5773 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5774 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5775 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5776 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5777 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5778 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5779 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5781 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5782 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5783 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5784#endif
11fb9989 5785 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5786 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5787#ifdef CONFIG_SHADOW_CALL_STACK
5788 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5789#endif
f0c0c115 5790 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5791 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5792 "yes" : "no");
599d0c95
MG
5793 }
5794
ee99c71c 5795 for_each_populated_zone(zone) {
1da177e4
LT
5796 int i;
5797
9af744d7 5798 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5799 continue;
d1bfcdb8
KK
5800
5801 free_pcp = 0;
5802 for_each_online_cpu(cpu)
5803 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5804
1da177e4 5805 show_node(zone);
1f84a18f
JP
5806 printk(KERN_CONT
5807 "%s"
1da177e4
LT
5808 " free:%lukB"
5809 " min:%lukB"
5810 " low:%lukB"
5811 " high:%lukB"
e47b346a 5812 " reserved_highatomic:%luKB"
71c799f4
MK
5813 " active_anon:%lukB"
5814 " inactive_anon:%lukB"
5815 " active_file:%lukB"
5816 " inactive_file:%lukB"
5817 " unevictable:%lukB"
5a1c84b4 5818 " writepending:%lukB"
1da177e4 5819 " present:%lukB"
9feedc9d 5820 " managed:%lukB"
4a0aa73f 5821 " mlocked:%lukB"
4a0aa73f 5822 " bounce:%lukB"
d1bfcdb8
KK
5823 " free_pcp:%lukB"
5824 " local_pcp:%ukB"
d1ce749a 5825 " free_cma:%lukB"
1da177e4
LT
5826 "\n",
5827 zone->name,
88f5acf8 5828 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5829 K(min_wmark_pages(zone)),
5830 K(low_wmark_pages(zone)),
5831 K(high_wmark_pages(zone)),
e47b346a 5832 K(zone->nr_reserved_highatomic),
71c799f4
MK
5833 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5834 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5835 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5836 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5837 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5838 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5839 K(zone->present_pages),
9705bea5 5840 K(zone_managed_pages(zone)),
4a0aa73f 5841 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5842 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5843 K(free_pcp),
5844 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5845 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5846 printk("lowmem_reserve[]:");
5847 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5848 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5849 printk(KERN_CONT "\n");
1da177e4
LT
5850 }
5851
ee99c71c 5852 for_each_populated_zone(zone) {
d00181b9
KS
5853 unsigned int order;
5854 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5855 unsigned char types[MAX_ORDER];
1da177e4 5856
9af744d7 5857 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5858 continue;
1da177e4 5859 show_node(zone);
1f84a18f 5860 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5861
5862 spin_lock_irqsave(&zone->lock, flags);
5863 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5864 struct free_area *area = &zone->free_area[order];
5865 int type;
5866
5867 nr[order] = area->nr_free;
8f9de51a 5868 total += nr[order] << order;
377e4f16
RV
5869
5870 types[order] = 0;
5871 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5872 if (!free_area_empty(area, type))
377e4f16
RV
5873 types[order] |= 1 << type;
5874 }
1da177e4
LT
5875 }
5876 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5877 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5878 printk(KERN_CONT "%lu*%lukB ",
5879 nr[order], K(1UL) << order);
377e4f16
RV
5880 if (nr[order])
5881 show_migration_types(types[order]);
5882 }
1f84a18f 5883 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5884 }
5885
949f7ec5
DR
5886 hugetlb_show_meminfo();
5887
11fb9989 5888 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5889
1da177e4
LT
5890 show_swap_cache_info();
5891}
5892
19770b32
MG
5893static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5894{
5895 zoneref->zone = zone;
5896 zoneref->zone_idx = zone_idx(zone);
5897}
5898
1da177e4
LT
5899/*
5900 * Builds allocation fallback zone lists.
1a93205b
CL
5901 *
5902 * Add all populated zones of a node to the zonelist.
1da177e4 5903 */
9d3be21b 5904static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5905{
1a93205b 5906 struct zone *zone;
bc732f1d 5907 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5908 int nr_zones = 0;
02a68a5e
CL
5909
5910 do {
2f6726e5 5911 zone_type--;
070f8032 5912 zone = pgdat->node_zones + zone_type;
6aa303de 5913 if (managed_zone(zone)) {
9d3be21b 5914 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5915 check_highest_zone(zone_type);
1da177e4 5916 }
2f6726e5 5917 } while (zone_type);
bc732f1d 5918
070f8032 5919 return nr_zones;
1da177e4
LT
5920}
5921
5922#ifdef CONFIG_NUMA
f0c0b2b8
KH
5923
5924static int __parse_numa_zonelist_order(char *s)
5925{
c9bff3ee
MH
5926 /*
5927 * We used to support different zonlists modes but they turned
5928 * out to be just not useful. Let's keep the warning in place
5929 * if somebody still use the cmd line parameter so that we do
5930 * not fail it silently
5931 */
5932 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5933 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5934 return -EINVAL;
5935 }
5936 return 0;
5937}
5938
c9bff3ee
MH
5939char numa_zonelist_order[] = "Node";
5940
f0c0b2b8
KH
5941/*
5942 * sysctl handler for numa_zonelist_order
5943 */
cccad5b9 5944int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5945 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5946{
32927393
CH
5947 if (write)
5948 return __parse_numa_zonelist_order(buffer);
5949 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5950}
5951
5952
62bc62a8 5953#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5954static int node_load[MAX_NUMNODES];
5955
1da177e4 5956/**
4dc3b16b 5957 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5958 * @node: node whose fallback list we're appending
5959 * @used_node_mask: nodemask_t of already used nodes
5960 *
5961 * We use a number of factors to determine which is the next node that should
5962 * appear on a given node's fallback list. The node should not have appeared
5963 * already in @node's fallback list, and it should be the next closest node
5964 * according to the distance array (which contains arbitrary distance values
5965 * from each node to each node in the system), and should also prefer nodes
5966 * with no CPUs, since presumably they'll have very little allocation pressure
5967 * on them otherwise.
a862f68a
MR
5968 *
5969 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5970 */
f0c0b2b8 5971static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5972{
4cf808eb 5973 int n, val;
1da177e4 5974 int min_val = INT_MAX;
00ef2d2f 5975 int best_node = NUMA_NO_NODE;
1da177e4 5976
4cf808eb
LT
5977 /* Use the local node if we haven't already */
5978 if (!node_isset(node, *used_node_mask)) {
5979 node_set(node, *used_node_mask);
5980 return node;
5981 }
1da177e4 5982
4b0ef1fe 5983 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5984
5985 /* Don't want a node to appear more than once */
5986 if (node_isset(n, *used_node_mask))
5987 continue;
5988
1da177e4
LT
5989 /* Use the distance array to find the distance */
5990 val = node_distance(node, n);
5991
4cf808eb
LT
5992 /* Penalize nodes under us ("prefer the next node") */
5993 val += (n < node);
5994
1da177e4 5995 /* Give preference to headless and unused nodes */
b630749f 5996 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5997 val += PENALTY_FOR_NODE_WITH_CPUS;
5998
5999 /* Slight preference for less loaded node */
6000 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6001 val += node_load[n];
6002
6003 if (val < min_val) {
6004 min_val = val;
6005 best_node = n;
6006 }
6007 }
6008
6009 if (best_node >= 0)
6010 node_set(best_node, *used_node_mask);
6011
6012 return best_node;
6013}
6014
f0c0b2b8
KH
6015
6016/*
6017 * Build zonelists ordered by node and zones within node.
6018 * This results in maximum locality--normal zone overflows into local
6019 * DMA zone, if any--but risks exhausting DMA zone.
6020 */
9d3be21b
MH
6021static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6022 unsigned nr_nodes)
1da177e4 6023{
9d3be21b
MH
6024 struct zoneref *zonerefs;
6025 int i;
6026
6027 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6028
6029 for (i = 0; i < nr_nodes; i++) {
6030 int nr_zones;
6031
6032 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6033
9d3be21b
MH
6034 nr_zones = build_zonerefs_node(node, zonerefs);
6035 zonerefs += nr_zones;
6036 }
6037 zonerefs->zone = NULL;
6038 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6039}
6040
523b9458
CL
6041/*
6042 * Build gfp_thisnode zonelists
6043 */
6044static void build_thisnode_zonelists(pg_data_t *pgdat)
6045{
9d3be21b
MH
6046 struct zoneref *zonerefs;
6047 int nr_zones;
523b9458 6048
9d3be21b
MH
6049 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6050 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6051 zonerefs += nr_zones;
6052 zonerefs->zone = NULL;
6053 zonerefs->zone_idx = 0;
523b9458
CL
6054}
6055
f0c0b2b8
KH
6056/*
6057 * Build zonelists ordered by zone and nodes within zones.
6058 * This results in conserving DMA zone[s] until all Normal memory is
6059 * exhausted, but results in overflowing to remote node while memory
6060 * may still exist in local DMA zone.
6061 */
f0c0b2b8 6062
f0c0b2b8
KH
6063static void build_zonelists(pg_data_t *pgdat)
6064{
9d3be21b
MH
6065 static int node_order[MAX_NUMNODES];
6066 int node, load, nr_nodes = 0;
d0ddf49b 6067 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6068 int local_node, prev_node;
1da177e4
LT
6069
6070 /* NUMA-aware ordering of nodes */
6071 local_node = pgdat->node_id;
62bc62a8 6072 load = nr_online_nodes;
1da177e4 6073 prev_node = local_node;
f0c0b2b8 6074
f0c0b2b8 6075 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6076 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6077 /*
6078 * We don't want to pressure a particular node.
6079 * So adding penalty to the first node in same
6080 * distance group to make it round-robin.
6081 */
957f822a
DR
6082 if (node_distance(local_node, node) !=
6083 node_distance(local_node, prev_node))
f0c0b2b8
KH
6084 node_load[node] = load;
6085
9d3be21b 6086 node_order[nr_nodes++] = node;
1da177e4
LT
6087 prev_node = node;
6088 load--;
1da177e4 6089 }
523b9458 6090
9d3be21b 6091 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6092 build_thisnode_zonelists(pgdat);
1da177e4
LT
6093}
6094
7aac7898
LS
6095#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6096/*
6097 * Return node id of node used for "local" allocations.
6098 * I.e., first node id of first zone in arg node's generic zonelist.
6099 * Used for initializing percpu 'numa_mem', which is used primarily
6100 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6101 */
6102int local_memory_node(int node)
6103{
c33d6c06 6104 struct zoneref *z;
7aac7898 6105
c33d6c06 6106 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6107 gfp_zone(GFP_KERNEL),
c33d6c06 6108 NULL);
c1093b74 6109 return zone_to_nid(z->zone);
7aac7898
LS
6110}
6111#endif
f0c0b2b8 6112
6423aa81
JK
6113static void setup_min_unmapped_ratio(void);
6114static void setup_min_slab_ratio(void);
1da177e4
LT
6115#else /* CONFIG_NUMA */
6116
f0c0b2b8 6117static void build_zonelists(pg_data_t *pgdat)
1da177e4 6118{
19655d34 6119 int node, local_node;
9d3be21b
MH
6120 struct zoneref *zonerefs;
6121 int nr_zones;
1da177e4
LT
6122
6123 local_node = pgdat->node_id;
1da177e4 6124
9d3be21b
MH
6125 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6126 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6127 zonerefs += nr_zones;
1da177e4 6128
54a6eb5c
MG
6129 /*
6130 * Now we build the zonelist so that it contains the zones
6131 * of all the other nodes.
6132 * We don't want to pressure a particular node, so when
6133 * building the zones for node N, we make sure that the
6134 * zones coming right after the local ones are those from
6135 * node N+1 (modulo N)
6136 */
6137 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6138 if (!node_online(node))
6139 continue;
9d3be21b
MH
6140 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6141 zonerefs += nr_zones;
1da177e4 6142 }
54a6eb5c
MG
6143 for (node = 0; node < local_node; node++) {
6144 if (!node_online(node))
6145 continue;
9d3be21b
MH
6146 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6147 zonerefs += nr_zones;
54a6eb5c
MG
6148 }
6149
9d3be21b
MH
6150 zonerefs->zone = NULL;
6151 zonerefs->zone_idx = 0;
1da177e4
LT
6152}
6153
6154#endif /* CONFIG_NUMA */
6155
99dcc3e5
CL
6156/*
6157 * Boot pageset table. One per cpu which is going to be used for all
6158 * zones and all nodes. The parameters will be set in such a way
6159 * that an item put on a list will immediately be handed over to
6160 * the buddy list. This is safe since pageset manipulation is done
6161 * with interrupts disabled.
6162 *
6163 * The boot_pagesets must be kept even after bootup is complete for
6164 * unused processors and/or zones. They do play a role for bootstrapping
6165 * hotplugged processors.
6166 *
6167 * zoneinfo_show() and maybe other functions do
6168 * not check if the processor is online before following the pageset pointer.
6169 * Other parts of the kernel may not check if the zone is available.
6170 */
69a8396a 6171static void pageset_init(struct per_cpu_pageset *p);
952eaf81
VB
6172/* These effectively disable the pcplists in the boot pageset completely */
6173#define BOOT_PAGESET_HIGH 0
6174#define BOOT_PAGESET_BATCH 1
99dcc3e5 6175static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 6176static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6177
11cd8638 6178static void __build_all_zonelists(void *data)
1da177e4 6179{
6811378e 6180 int nid;
afb6ebb3 6181 int __maybe_unused cpu;
9adb62a5 6182 pg_data_t *self = data;
b93e0f32
MH
6183 static DEFINE_SPINLOCK(lock);
6184
6185 spin_lock(&lock);
9276b1bc 6186
7f9cfb31
BL
6187#ifdef CONFIG_NUMA
6188 memset(node_load, 0, sizeof(node_load));
6189#endif
9adb62a5 6190
c1152583
WY
6191 /*
6192 * This node is hotadded and no memory is yet present. So just
6193 * building zonelists is fine - no need to touch other nodes.
6194 */
9adb62a5
JL
6195 if (self && !node_online(self->node_id)) {
6196 build_zonelists(self);
c1152583
WY
6197 } else {
6198 for_each_online_node(nid) {
6199 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6200
c1152583
WY
6201 build_zonelists(pgdat);
6202 }
99dcc3e5 6203
7aac7898
LS
6204#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6205 /*
6206 * We now know the "local memory node" for each node--
6207 * i.e., the node of the first zone in the generic zonelist.
6208 * Set up numa_mem percpu variable for on-line cpus. During
6209 * boot, only the boot cpu should be on-line; we'll init the
6210 * secondary cpus' numa_mem as they come on-line. During
6211 * node/memory hotplug, we'll fixup all on-line cpus.
6212 */
d9c9a0b9 6213 for_each_online_cpu(cpu)
7aac7898 6214 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6215#endif
d9c9a0b9 6216 }
b93e0f32
MH
6217
6218 spin_unlock(&lock);
6811378e
YG
6219}
6220
061f67bc
RV
6221static noinline void __init
6222build_all_zonelists_init(void)
6223{
afb6ebb3
MH
6224 int cpu;
6225
061f67bc 6226 __build_all_zonelists(NULL);
afb6ebb3
MH
6227
6228 /*
6229 * Initialize the boot_pagesets that are going to be used
6230 * for bootstrapping processors. The real pagesets for
6231 * each zone will be allocated later when the per cpu
6232 * allocator is available.
6233 *
6234 * boot_pagesets are used also for bootstrapping offline
6235 * cpus if the system is already booted because the pagesets
6236 * are needed to initialize allocators on a specific cpu too.
6237 * F.e. the percpu allocator needs the page allocator which
6238 * needs the percpu allocator in order to allocate its pagesets
6239 * (a chicken-egg dilemma).
6240 */
6241 for_each_possible_cpu(cpu)
69a8396a 6242 pageset_init(&per_cpu(boot_pageset, cpu));
afb6ebb3 6243
061f67bc
RV
6244 mminit_verify_zonelist();
6245 cpuset_init_current_mems_allowed();
6246}
6247
4eaf3f64 6248/*
4eaf3f64 6249 * unless system_state == SYSTEM_BOOTING.
061f67bc 6250 *
72675e13 6251 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6252 * [protected by SYSTEM_BOOTING].
4eaf3f64 6253 */
72675e13 6254void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6255{
0a18e607
DH
6256 unsigned long vm_total_pages;
6257
6811378e 6258 if (system_state == SYSTEM_BOOTING) {
061f67bc 6259 build_all_zonelists_init();
6811378e 6260 } else {
11cd8638 6261 __build_all_zonelists(pgdat);
6811378e
YG
6262 /* cpuset refresh routine should be here */
6263 }
56b9413b
DH
6264 /* Get the number of free pages beyond high watermark in all zones. */
6265 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6266 /*
6267 * Disable grouping by mobility if the number of pages in the
6268 * system is too low to allow the mechanism to work. It would be
6269 * more accurate, but expensive to check per-zone. This check is
6270 * made on memory-hotadd so a system can start with mobility
6271 * disabled and enable it later
6272 */
d9c23400 6273 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6274 page_group_by_mobility_disabled = 1;
6275 else
6276 page_group_by_mobility_disabled = 0;
6277
ce0725f7 6278 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6279 nr_online_nodes,
756a025f
JP
6280 page_group_by_mobility_disabled ? "off" : "on",
6281 vm_total_pages);
f0c0b2b8 6282#ifdef CONFIG_NUMA
f88dfff5 6283 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6284#endif
1da177e4
LT
6285}
6286
a9a9e77f
PT
6287/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6288static bool __meminit
6289overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6290{
a9a9e77f
PT
6291 static struct memblock_region *r;
6292
6293 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6294 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6295 for_each_mem_region(r) {
a9a9e77f
PT
6296 if (*pfn < memblock_region_memory_end_pfn(r))
6297 break;
6298 }
6299 }
6300 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6301 memblock_is_mirror(r)) {
6302 *pfn = memblock_region_memory_end_pfn(r);
6303 return true;
6304 }
6305 }
a9a9e77f
PT
6306 return false;
6307}
6308
1da177e4
LT
6309/*
6310 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6311 * up by memblock_free_all() once the early boot process is
1da177e4 6312 * done. Non-atomic initialization, single-pass.
d882c006
DH
6313 *
6314 * All aligned pageblocks are initialized to the specified migratetype
6315 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6316 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6317 */
ab28cb6e 6318void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6319 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6320 enum meminit_context context,
6321 struct vmem_altmap *altmap, int migratetype)
1da177e4 6322{
a9a9e77f 6323 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6324 struct page *page;
1da177e4 6325
22b31eec
HD
6326 if (highest_memmap_pfn < end_pfn - 1)
6327 highest_memmap_pfn = end_pfn - 1;
6328
966cf44f 6329#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6330 /*
6331 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6332 * memory. We limit the total number of pages to initialize to just
6333 * those that might contain the memory mapping. We will defer the
6334 * ZONE_DEVICE page initialization until after we have released
6335 * the hotplug lock.
4b94ffdc 6336 */
966cf44f
AD
6337 if (zone == ZONE_DEVICE) {
6338 if (!altmap)
6339 return;
6340
6341 if (start_pfn == altmap->base_pfn)
6342 start_pfn += altmap->reserve;
6343 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6344 }
6345#endif
4b94ffdc 6346
948c436e 6347 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6348 /*
b72d0ffb
AM
6349 * There can be holes in boot-time mem_map[]s handed to this
6350 * function. They do not exist on hotplugged memory.
a2f3aa02 6351 */
c1d0da83 6352 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6353 if (overlap_memmap_init(zone, &pfn))
6354 continue;
dc2da7b4 6355 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6356 break;
a2f3aa02 6357 }
ac5d2539 6358
d0dc12e8
PT
6359 page = pfn_to_page(pfn);
6360 __init_single_page(page, pfn, zone, nid);
c1d0da83 6361 if (context == MEMINIT_HOTPLUG)
d483da5b 6362 __SetPageReserved(page);
d0dc12e8 6363
ac5d2539 6364 /*
d882c006
DH
6365 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6366 * such that unmovable allocations won't be scattered all
6367 * over the place during system boot.
ac5d2539 6368 */
4eb29bd9 6369 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6370 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6371 cond_resched();
ac5d2539 6372 }
948c436e 6373 pfn++;
1da177e4
LT
6374 }
6375}
6376
966cf44f
AD
6377#ifdef CONFIG_ZONE_DEVICE
6378void __ref memmap_init_zone_device(struct zone *zone,
6379 unsigned long start_pfn,
1f8d75c1 6380 unsigned long nr_pages,
966cf44f
AD
6381 struct dev_pagemap *pgmap)
6382{
1f8d75c1 6383 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6384 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6385 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6386 unsigned long zone_idx = zone_idx(zone);
6387 unsigned long start = jiffies;
6388 int nid = pgdat->node_id;
6389
46d945ae 6390 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6391 return;
6392
6393 /*
6394 * The call to memmap_init_zone should have already taken care
6395 * of the pages reserved for the memmap, so we can just jump to
6396 * the end of that region and start processing the device pages.
6397 */
514caf23 6398 if (altmap) {
966cf44f 6399 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6400 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6401 }
6402
6403 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6404 struct page *page = pfn_to_page(pfn);
6405
6406 __init_single_page(page, pfn, zone_idx, nid);
6407
6408 /*
6409 * Mark page reserved as it will need to wait for onlining
6410 * phase for it to be fully associated with a zone.
6411 *
6412 * We can use the non-atomic __set_bit operation for setting
6413 * the flag as we are still initializing the pages.
6414 */
6415 __SetPageReserved(page);
6416
6417 /*
8a164fef
CH
6418 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6419 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6420 * ever freed or placed on a driver-private list.
966cf44f
AD
6421 */
6422 page->pgmap = pgmap;
8a164fef 6423 page->zone_device_data = NULL;
966cf44f
AD
6424
6425 /*
6426 * Mark the block movable so that blocks are reserved for
6427 * movable at startup. This will force kernel allocations
6428 * to reserve their blocks rather than leaking throughout
6429 * the address space during boot when many long-lived
6430 * kernel allocations are made.
6431 *
c1d0da83 6432 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6433 * because this is done early in section_activate()
966cf44f 6434 */
4eb29bd9 6435 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6436 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6437 cond_resched();
6438 }
6439 }
6440
fdc029b1 6441 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6442 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6443}
6444
6445#endif
1e548deb 6446static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6447{
7aeb09f9 6448 unsigned int order, t;
b2a0ac88
MG
6449 for_each_migratetype_order(order, t) {
6450 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6451 zone->free_area[order].nr_free = 0;
6452 }
6453}
6454
0740a50b
MR
6455#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6456/*
6457 * Only struct pages that correspond to ranges defined by memblock.memory
6458 * are zeroed and initialized by going through __init_single_page() during
6459 * memmap_init_zone().
6460 *
6461 * But, there could be struct pages that correspond to holes in
6462 * memblock.memory. This can happen because of the following reasons:
6463 * - physical memory bank size is not necessarily the exact multiple of the
6464 * arbitrary section size
6465 * - early reserved memory may not be listed in memblock.memory
6466 * - memory layouts defined with memmap= kernel parameter may not align
6467 * nicely with memmap sections
6468 *
6469 * Explicitly initialize those struct pages so that:
6470 * - PG_Reserved is set
6471 * - zone and node links point to zone and node that span the page if the
6472 * hole is in the middle of a zone
6473 * - zone and node links point to adjacent zone/node if the hole falls on
6474 * the zone boundary; the pages in such holes will be prepended to the
6475 * zone/node above the hole except for the trailing pages in the last
6476 * section that will be appended to the zone/node below.
6477 */
6478static u64 __meminit init_unavailable_range(unsigned long spfn,
6479 unsigned long epfn,
6480 int zone, int node)
6481{
6482 unsigned long pfn;
6483 u64 pgcnt = 0;
6484
6485 for (pfn = spfn; pfn < epfn; pfn++) {
6486 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6487 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6488 + pageblock_nr_pages - 1;
6489 continue;
6490 }
6491 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6492 __SetPageReserved(pfn_to_page(pfn));
6493 pgcnt++;
6494 }
6495
6496 return pgcnt;
6497}
6498#else
6499static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6500 int zone, int node)
6501{
6502 return 0;
6503}
6504#endif
6505
3256ff83 6506void __meminit __weak memmap_init_zone(struct zone *zone)
dfb3ccd0 6507{
3256ff83
BH
6508 unsigned long zone_start_pfn = zone->zone_start_pfn;
6509 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6510 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
0740a50b 6511 static unsigned long hole_pfn;
73a6e474 6512 unsigned long start_pfn, end_pfn;
0740a50b 6513 u64 pgcnt = 0;
73a6e474
BH
6514
6515 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
3256ff83
BH
6516 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6517 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
73a6e474 6518
3256ff83
BH
6519 if (end_pfn > start_pfn)
6520 memmap_init_range(end_pfn - start_pfn, nid,
6521 zone_id, start_pfn, zone_end_pfn,
6522 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
0740a50b
MR
6523
6524 if (hole_pfn < start_pfn)
6525 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6526 zone_id, nid);
6527 hole_pfn = end_pfn;
73a6e474 6528 }
0740a50b
MR
6529
6530#ifdef CONFIG_SPARSEMEM
6531 /*
6532 * Initialize the hole in the range [zone_end_pfn, section_end].
6533 * If zone boundary falls in the middle of a section, this hole
6534 * will be re-initialized during the call to this function for the
6535 * higher zone.
6536 */
6537 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6538 if (hole_pfn < end_pfn)
6539 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6540 zone_id, nid);
6541#endif
6542
6543 if (pgcnt)
6544 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6545 zone->name, pgcnt);
dfb3ccd0 6546}
1da177e4 6547
7cd2b0a3 6548static int zone_batchsize(struct zone *zone)
e7c8d5c9 6549{
3a6be87f 6550#ifdef CONFIG_MMU
e7c8d5c9
CL
6551 int batch;
6552
6553 /*
6554 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6555 * size of the zone.
e7c8d5c9 6556 */
9705bea5 6557 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6558 /* But no more than a meg. */
6559 if (batch * PAGE_SIZE > 1024 * 1024)
6560 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6561 batch /= 4; /* We effectively *= 4 below */
6562 if (batch < 1)
6563 batch = 1;
6564
6565 /*
0ceaacc9
NP
6566 * Clamp the batch to a 2^n - 1 value. Having a power
6567 * of 2 value was found to be more likely to have
6568 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6569 *
0ceaacc9
NP
6570 * For example if 2 tasks are alternately allocating
6571 * batches of pages, one task can end up with a lot
6572 * of pages of one half of the possible page colors
6573 * and the other with pages of the other colors.
e7c8d5c9 6574 */
9155203a 6575 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6576
e7c8d5c9 6577 return batch;
3a6be87f
DH
6578
6579#else
6580 /* The deferral and batching of frees should be suppressed under NOMMU
6581 * conditions.
6582 *
6583 * The problem is that NOMMU needs to be able to allocate large chunks
6584 * of contiguous memory as there's no hardware page translation to
6585 * assemble apparent contiguous memory from discontiguous pages.
6586 *
6587 * Queueing large contiguous runs of pages for batching, however,
6588 * causes the pages to actually be freed in smaller chunks. As there
6589 * can be a significant delay between the individual batches being
6590 * recycled, this leads to the once large chunks of space being
6591 * fragmented and becoming unavailable for high-order allocations.
6592 */
6593 return 0;
6594#endif
e7c8d5c9
CL
6595}
6596
8d7a8fa9 6597/*
5c3ad2eb
VB
6598 * pcp->high and pcp->batch values are related and generally batch is lower
6599 * than high. They are also related to pcp->count such that count is lower
6600 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6601 *
5c3ad2eb
VB
6602 * However, guaranteeing these relations at all times would require e.g. write
6603 * barriers here but also careful usage of read barriers at the read side, and
6604 * thus be prone to error and bad for performance. Thus the update only prevents
6605 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6606 * can cope with those fields changing asynchronously, and fully trust only the
6607 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6608 *
6609 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6610 * outside of boot time (or some other assurance that no concurrent updaters
6611 * exist).
6612 */
6613static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6614 unsigned long batch)
6615{
5c3ad2eb
VB
6616 WRITE_ONCE(pcp->batch, batch);
6617 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6618}
6619
88c90dbc 6620static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6621{
6622 struct per_cpu_pages *pcp;
5f8dcc21 6623 int migratetype;
2caaad41 6624
1c6fe946
MD
6625 memset(p, 0, sizeof(*p));
6626
3dfa5721 6627 pcp = &p->pcp;
5f8dcc21
MG
6628 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6629 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6630
69a8396a
VB
6631 /*
6632 * Set batch and high values safe for a boot pageset. A true percpu
6633 * pageset's initialization will update them subsequently. Here we don't
6634 * need to be as careful as pageset_update() as nobody can access the
6635 * pageset yet.
6636 */
952eaf81
VB
6637 pcp->high = BOOT_PAGESET_HIGH;
6638 pcp->batch = BOOT_PAGESET_BATCH;
88c90dbc
CS
6639}
6640
3b1f3658 6641static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6642 unsigned long batch)
6643{
6644 struct per_cpu_pageset *p;
6645 int cpu;
6646
6647 for_each_possible_cpu(cpu) {
6648 p = per_cpu_ptr(zone->pageset, cpu);
6649 pageset_update(&p->pcp, high, batch);
6650 }
6651}
6652
8ad4b1fb 6653/*
0a8b4f1d 6654 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6655 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6656 */
0a8b4f1d 6657static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6658{
7115ac6e
VB
6659 unsigned long new_high, new_batch;
6660
6661 if (percpu_pagelist_fraction) {
6662 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6663 new_batch = max(1UL, new_high / 4);
6664 if ((new_high / 4) > (PAGE_SHIFT * 8))
6665 new_batch = PAGE_SHIFT * 8;
6666 } else {
6667 new_batch = zone_batchsize(zone);
6668 new_high = 6 * new_batch;
6669 new_batch = max(1UL, 1 * new_batch);
6670 }
169f6c19 6671
952eaf81
VB
6672 if (zone->pageset_high == new_high &&
6673 zone->pageset_batch == new_batch)
6674 return;
6675
6676 zone->pageset_high = new_high;
6677 zone->pageset_batch = new_batch;
6678
ec6e8c7e 6679 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6680}
6681
72675e13 6682void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6683{
0a8b4f1d 6684 struct per_cpu_pageset *p;
319774e2 6685 int cpu;
0a8b4f1d 6686
319774e2 6687 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6688 for_each_possible_cpu(cpu) {
6689 p = per_cpu_ptr(zone->pageset, cpu);
6690 pageset_init(p);
6691 }
6692
6693 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6694}
6695
2caaad41 6696/*
99dcc3e5
CL
6697 * Allocate per cpu pagesets and initialize them.
6698 * Before this call only boot pagesets were available.
e7c8d5c9 6699 */
99dcc3e5 6700void __init setup_per_cpu_pageset(void)
e7c8d5c9 6701{
b4911ea2 6702 struct pglist_data *pgdat;
99dcc3e5 6703 struct zone *zone;
b418a0f9 6704 int __maybe_unused cpu;
e7c8d5c9 6705
319774e2
WF
6706 for_each_populated_zone(zone)
6707 setup_zone_pageset(zone);
b4911ea2 6708
b418a0f9
SD
6709#ifdef CONFIG_NUMA
6710 /*
6711 * Unpopulated zones continue using the boot pagesets.
6712 * The numa stats for these pagesets need to be reset.
6713 * Otherwise, they will end up skewing the stats of
6714 * the nodes these zones are associated with.
6715 */
6716 for_each_possible_cpu(cpu) {
6717 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6718 memset(pcp->vm_numa_stat_diff, 0,
6719 sizeof(pcp->vm_numa_stat_diff));
6720 }
6721#endif
6722
b4911ea2
MG
6723 for_each_online_pgdat(pgdat)
6724 pgdat->per_cpu_nodestats =
6725 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6726}
6727
c09b4240 6728static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6729{
99dcc3e5
CL
6730 /*
6731 * per cpu subsystem is not up at this point. The following code
6732 * relies on the ability of the linker to provide the
6733 * offset of a (static) per cpu variable into the per cpu area.
6734 */
6735 zone->pageset = &boot_pageset;
952eaf81
VB
6736 zone->pageset_high = BOOT_PAGESET_HIGH;
6737 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6738
b38a8725 6739 if (populated_zone(zone))
99dcc3e5
CL
6740 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6741 zone->name, zone->present_pages,
6742 zone_batchsize(zone));
ed8ece2e
DH
6743}
6744
dc0bbf3b 6745void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6746 unsigned long zone_start_pfn,
b171e409 6747 unsigned long size)
ed8ece2e
DH
6748{
6749 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6750 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6751
8f416836
WY
6752 if (zone_idx > pgdat->nr_zones)
6753 pgdat->nr_zones = zone_idx;
ed8ece2e 6754
ed8ece2e
DH
6755 zone->zone_start_pfn = zone_start_pfn;
6756
708614e6
MG
6757 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6758 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6759 pgdat->node_id,
6760 (unsigned long)zone_idx(zone),
6761 zone_start_pfn, (zone_start_pfn + size));
6762
1e548deb 6763 zone_init_free_lists(zone);
9dcb8b68 6764 zone->initialized = 1;
ed8ece2e
DH
6765}
6766
c713216d
MG
6767/**
6768 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6769 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6770 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6771 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6772 *
6773 * It returns the start and end page frame of a node based on information
7d018176 6774 * provided by memblock_set_node(). If called for a node
c713216d 6775 * with no available memory, a warning is printed and the start and end
88ca3b94 6776 * PFNs will be 0.
c713216d 6777 */
bbe5d993 6778void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6779 unsigned long *start_pfn, unsigned long *end_pfn)
6780{
c13291a5 6781 unsigned long this_start_pfn, this_end_pfn;
c713216d 6782 int i;
c13291a5 6783
c713216d
MG
6784 *start_pfn = -1UL;
6785 *end_pfn = 0;
6786
c13291a5
TH
6787 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6788 *start_pfn = min(*start_pfn, this_start_pfn);
6789 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6790 }
6791
633c0666 6792 if (*start_pfn == -1UL)
c713216d 6793 *start_pfn = 0;
c713216d
MG
6794}
6795
2a1e274a
MG
6796/*
6797 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6798 * assumption is made that zones within a node are ordered in monotonic
6799 * increasing memory addresses so that the "highest" populated zone is used
6800 */
b69a7288 6801static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6802{
6803 int zone_index;
6804 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6805 if (zone_index == ZONE_MOVABLE)
6806 continue;
6807
6808 if (arch_zone_highest_possible_pfn[zone_index] >
6809 arch_zone_lowest_possible_pfn[zone_index])
6810 break;
6811 }
6812
6813 VM_BUG_ON(zone_index == -1);
6814 movable_zone = zone_index;
6815}
6816
6817/*
6818 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6819 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6820 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6821 * in each node depending on the size of each node and how evenly kernelcore
6822 * is distributed. This helper function adjusts the zone ranges
6823 * provided by the architecture for a given node by using the end of the
6824 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6825 * zones within a node are in order of monotonic increases memory addresses
6826 */
bbe5d993 6827static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6828 unsigned long zone_type,
6829 unsigned long node_start_pfn,
6830 unsigned long node_end_pfn,
6831 unsigned long *zone_start_pfn,
6832 unsigned long *zone_end_pfn)
6833{
6834 /* Only adjust if ZONE_MOVABLE is on this node */
6835 if (zone_movable_pfn[nid]) {
6836 /* Size ZONE_MOVABLE */
6837 if (zone_type == ZONE_MOVABLE) {
6838 *zone_start_pfn = zone_movable_pfn[nid];
6839 *zone_end_pfn = min(node_end_pfn,
6840 arch_zone_highest_possible_pfn[movable_zone]);
6841
e506b996
XQ
6842 /* Adjust for ZONE_MOVABLE starting within this range */
6843 } else if (!mirrored_kernelcore &&
6844 *zone_start_pfn < zone_movable_pfn[nid] &&
6845 *zone_end_pfn > zone_movable_pfn[nid]) {
6846 *zone_end_pfn = zone_movable_pfn[nid];
6847
2a1e274a
MG
6848 /* Check if this whole range is within ZONE_MOVABLE */
6849 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6850 *zone_start_pfn = *zone_end_pfn;
6851 }
6852}
6853
c713216d
MG
6854/*
6855 * Return the number of pages a zone spans in a node, including holes
6856 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6857 */
bbe5d993 6858static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6859 unsigned long zone_type,
7960aedd
ZY
6860 unsigned long node_start_pfn,
6861 unsigned long node_end_pfn,
d91749c1 6862 unsigned long *zone_start_pfn,
854e8848 6863 unsigned long *zone_end_pfn)
c713216d 6864{
299c83dc
LF
6865 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6866 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6867 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6868 if (!node_start_pfn && !node_end_pfn)
6869 return 0;
6870
7960aedd 6871 /* Get the start and end of the zone */
299c83dc
LF
6872 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6873 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6874 adjust_zone_range_for_zone_movable(nid, zone_type,
6875 node_start_pfn, node_end_pfn,
d91749c1 6876 zone_start_pfn, zone_end_pfn);
c713216d
MG
6877
6878 /* Check that this node has pages within the zone's required range */
d91749c1 6879 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6880 return 0;
6881
6882 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6883 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6884 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6885
6886 /* Return the spanned pages */
d91749c1 6887 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6888}
6889
6890/*
6891 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6892 * then all holes in the requested range will be accounted for.
c713216d 6893 */
bbe5d993 6894unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6895 unsigned long range_start_pfn,
6896 unsigned long range_end_pfn)
6897{
96e907d1
TH
6898 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6899 unsigned long start_pfn, end_pfn;
6900 int i;
c713216d 6901
96e907d1
TH
6902 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6903 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6904 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6905 nr_absent -= end_pfn - start_pfn;
c713216d 6906 }
96e907d1 6907 return nr_absent;
c713216d
MG
6908}
6909
6910/**
6911 * absent_pages_in_range - Return number of page frames in holes within a range
6912 * @start_pfn: The start PFN to start searching for holes
6913 * @end_pfn: The end PFN to stop searching for holes
6914 *
a862f68a 6915 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6916 */
6917unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6918 unsigned long end_pfn)
6919{
6920 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6921}
6922
6923/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6924static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6925 unsigned long zone_type,
7960aedd 6926 unsigned long node_start_pfn,
854e8848 6927 unsigned long node_end_pfn)
c713216d 6928{
96e907d1
TH
6929 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6930 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6931 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6932 unsigned long nr_absent;
9c7cd687 6933
b5685e92 6934 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6935 if (!node_start_pfn && !node_end_pfn)
6936 return 0;
6937
96e907d1
TH
6938 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6939 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6940
2a1e274a
MG
6941 adjust_zone_range_for_zone_movable(nid, zone_type,
6942 node_start_pfn, node_end_pfn,
6943 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6944 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6945
6946 /*
6947 * ZONE_MOVABLE handling.
6948 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6949 * and vice versa.
6950 */
e506b996
XQ
6951 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6952 unsigned long start_pfn, end_pfn;
6953 struct memblock_region *r;
6954
cc6de168 6955 for_each_mem_region(r) {
e506b996
XQ
6956 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6957 zone_start_pfn, zone_end_pfn);
6958 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6959 zone_start_pfn, zone_end_pfn);
6960
6961 if (zone_type == ZONE_MOVABLE &&
6962 memblock_is_mirror(r))
6963 nr_absent += end_pfn - start_pfn;
6964
6965 if (zone_type == ZONE_NORMAL &&
6966 !memblock_is_mirror(r))
6967 nr_absent += end_pfn - start_pfn;
342332e6
TI
6968 }
6969 }
6970
6971 return nr_absent;
c713216d 6972}
0e0b864e 6973
bbe5d993 6974static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6975 unsigned long node_start_pfn,
854e8848 6976 unsigned long node_end_pfn)
c713216d 6977{
febd5949 6978 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6979 enum zone_type i;
6980
febd5949
GZ
6981 for (i = 0; i < MAX_NR_ZONES; i++) {
6982 struct zone *zone = pgdat->node_zones + i;
d91749c1 6983 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6984 unsigned long spanned, absent;
febd5949 6985 unsigned long size, real_size;
c713216d 6986
854e8848
MR
6987 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6988 node_start_pfn,
6989 node_end_pfn,
6990 &zone_start_pfn,
6991 &zone_end_pfn);
6992 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6993 node_start_pfn,
6994 node_end_pfn);
3f08a302
MR
6995
6996 size = spanned;
6997 real_size = size - absent;
6998
d91749c1
TI
6999 if (size)
7000 zone->zone_start_pfn = zone_start_pfn;
7001 else
7002 zone->zone_start_pfn = 0;
febd5949
GZ
7003 zone->spanned_pages = size;
7004 zone->present_pages = real_size;
7005
7006 totalpages += size;
7007 realtotalpages += real_size;
7008 }
7009
7010 pgdat->node_spanned_pages = totalpages;
c713216d
MG
7011 pgdat->node_present_pages = realtotalpages;
7012 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7013 realtotalpages);
7014}
7015
835c134e
MG
7016#ifndef CONFIG_SPARSEMEM
7017/*
7018 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7019 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7020 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7021 * round what is now in bits to nearest long in bits, then return it in
7022 * bytes.
7023 */
7c45512d 7024static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7025{
7026 unsigned long usemapsize;
7027
7c45512d 7028 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7029 usemapsize = roundup(zonesize, pageblock_nr_pages);
7030 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7031 usemapsize *= NR_PAGEBLOCK_BITS;
7032 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7033
7034 return usemapsize / 8;
7035}
7036
7010a6ec 7037static void __ref setup_usemap(struct zone *zone)
835c134e 7038{
7010a6ec
BH
7039 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7040 zone->spanned_pages);
835c134e 7041 zone->pageblock_flags = NULL;
23a7052a 7042 if (usemapsize) {
6782832e 7043 zone->pageblock_flags =
26fb3dae 7044 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7045 zone_to_nid(zone));
23a7052a
MR
7046 if (!zone->pageblock_flags)
7047 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7048 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7049 }
835c134e
MG
7050}
7051#else
7010a6ec 7052static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7053#endif /* CONFIG_SPARSEMEM */
7054
d9c23400 7055#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7056
d9c23400 7057/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7058void __init set_pageblock_order(void)
d9c23400 7059{
955c1cd7
AM
7060 unsigned int order;
7061
d9c23400
MG
7062 /* Check that pageblock_nr_pages has not already been setup */
7063 if (pageblock_order)
7064 return;
7065
955c1cd7
AM
7066 if (HPAGE_SHIFT > PAGE_SHIFT)
7067 order = HUGETLB_PAGE_ORDER;
7068 else
7069 order = MAX_ORDER - 1;
7070
d9c23400
MG
7071 /*
7072 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7073 * This value may be variable depending on boot parameters on IA64 and
7074 * powerpc.
d9c23400
MG
7075 */
7076 pageblock_order = order;
7077}
7078#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7079
ba72cb8c
MG
7080/*
7081 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7082 * is unused as pageblock_order is set at compile-time. See
7083 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7084 * the kernel config
ba72cb8c 7085 */
03e85f9d 7086void __init set_pageblock_order(void)
ba72cb8c 7087{
ba72cb8c 7088}
d9c23400
MG
7089
7090#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7091
03e85f9d 7092static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7093 unsigned long present_pages)
01cefaef
JL
7094{
7095 unsigned long pages = spanned_pages;
7096
7097 /*
7098 * Provide a more accurate estimation if there are holes within
7099 * the zone and SPARSEMEM is in use. If there are holes within the
7100 * zone, each populated memory region may cost us one or two extra
7101 * memmap pages due to alignment because memmap pages for each
89d790ab 7102 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7103 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7104 */
7105 if (spanned_pages > present_pages + (present_pages >> 4) &&
7106 IS_ENABLED(CONFIG_SPARSEMEM))
7107 pages = present_pages;
7108
7109 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7110}
7111
ace1db39
OS
7112#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7113static void pgdat_init_split_queue(struct pglist_data *pgdat)
7114{
364c1eeb
YS
7115 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7116
7117 spin_lock_init(&ds_queue->split_queue_lock);
7118 INIT_LIST_HEAD(&ds_queue->split_queue);
7119 ds_queue->split_queue_len = 0;
ace1db39
OS
7120}
7121#else
7122static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7123#endif
7124
7125#ifdef CONFIG_COMPACTION
7126static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7127{
7128 init_waitqueue_head(&pgdat->kcompactd_wait);
7129}
7130#else
7131static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7132#endif
7133
03e85f9d 7134static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7135{
208d54e5 7136 pgdat_resize_init(pgdat);
ace1db39 7137
ace1db39
OS
7138 pgdat_init_split_queue(pgdat);
7139 pgdat_init_kcompactd(pgdat);
7140
1da177e4 7141 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7142 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7143
eefa864b 7144 pgdat_page_ext_init(pgdat);
867e5e1d 7145 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7146}
7147
7148static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7149 unsigned long remaining_pages)
7150{
9705bea5 7151 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7152 zone_set_nid(zone, nid);
7153 zone->name = zone_names[idx];
7154 zone->zone_pgdat = NODE_DATA(nid);
7155 spin_lock_init(&zone->lock);
7156 zone_seqlock_init(zone);
7157 zone_pcp_init(zone);
7158}
7159
7160/*
7161 * Set up the zone data structures
7162 * - init pgdat internals
7163 * - init all zones belonging to this node
7164 *
7165 * NOTE: this function is only called during memory hotplug
7166 */
7167#ifdef CONFIG_MEMORY_HOTPLUG
7168void __ref free_area_init_core_hotplug(int nid)
7169{
7170 enum zone_type z;
7171 pg_data_t *pgdat = NODE_DATA(nid);
7172
7173 pgdat_init_internals(pgdat);
7174 for (z = 0; z < MAX_NR_ZONES; z++)
7175 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7176}
7177#endif
7178
7179/*
7180 * Set up the zone data structures:
7181 * - mark all pages reserved
7182 * - mark all memory queues empty
7183 * - clear the memory bitmaps
7184 *
7185 * NOTE: pgdat should get zeroed by caller.
7186 * NOTE: this function is only called during early init.
7187 */
7188static void __init free_area_init_core(struct pglist_data *pgdat)
7189{
7190 enum zone_type j;
7191 int nid = pgdat->node_id;
5f63b720 7192
03e85f9d 7193 pgdat_init_internals(pgdat);
385386cf
JW
7194 pgdat->per_cpu_nodestats = &boot_nodestats;
7195
1da177e4
LT
7196 for (j = 0; j < MAX_NR_ZONES; j++) {
7197 struct zone *zone = pgdat->node_zones + j;
e6943859 7198 unsigned long size, freesize, memmap_pages;
1da177e4 7199
febd5949 7200 size = zone->spanned_pages;
e6943859 7201 freesize = zone->present_pages;
1da177e4 7202
0e0b864e 7203 /*
9feedc9d 7204 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7205 * is used by this zone for memmap. This affects the watermark
7206 * and per-cpu initialisations
7207 */
e6943859 7208 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7209 if (!is_highmem_idx(j)) {
7210 if (freesize >= memmap_pages) {
7211 freesize -= memmap_pages;
7212 if (memmap_pages)
7213 printk(KERN_DEBUG
7214 " %s zone: %lu pages used for memmap\n",
7215 zone_names[j], memmap_pages);
7216 } else
1170532b 7217 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
7218 zone_names[j], memmap_pages, freesize);
7219 }
0e0b864e 7220
6267276f 7221 /* Account for reserved pages */
9feedc9d
JL
7222 if (j == 0 && freesize > dma_reserve) {
7223 freesize -= dma_reserve;
d903ef9f 7224 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 7225 zone_names[0], dma_reserve);
0e0b864e
MG
7226 }
7227
98d2b0eb 7228 if (!is_highmem_idx(j))
9feedc9d 7229 nr_kernel_pages += freesize;
01cefaef
JL
7230 /* Charge for highmem memmap if there are enough kernel pages */
7231 else if (nr_kernel_pages > memmap_pages * 2)
7232 nr_kernel_pages -= memmap_pages;
9feedc9d 7233 nr_all_pages += freesize;
1da177e4 7234
9feedc9d
JL
7235 /*
7236 * Set an approximate value for lowmem here, it will be adjusted
7237 * when the bootmem allocator frees pages into the buddy system.
7238 * And all highmem pages will be managed by the buddy system.
7239 */
03e85f9d 7240 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7241
d883c6cf 7242 if (!size)
1da177e4
LT
7243 continue;
7244
955c1cd7 7245 set_pageblock_order();
7010a6ec 7246 setup_usemap(zone);
9699ee7b 7247 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
3256ff83 7248 memmap_init_zone(zone);
1da177e4
LT
7249 }
7250}
7251
0cd842f9 7252#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 7253static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7254{
b0aeba74 7255 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7256 unsigned long __maybe_unused offset = 0;
7257
1da177e4
LT
7258 /* Skip empty nodes */
7259 if (!pgdat->node_spanned_pages)
7260 return;
7261
b0aeba74
TL
7262 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7263 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7264 /* ia64 gets its own node_mem_map, before this, without bootmem */
7265 if (!pgdat->node_mem_map) {
b0aeba74 7266 unsigned long size, end;
d41dee36
AW
7267 struct page *map;
7268
e984bb43
BP
7269 /*
7270 * The zone's endpoints aren't required to be MAX_ORDER
7271 * aligned but the node_mem_map endpoints must be in order
7272 * for the buddy allocator to function correctly.
7273 */
108bcc96 7274 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7275 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7276 size = (end - start) * sizeof(struct page);
26fb3dae
MR
7277 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7278 pgdat->node_id);
23a7052a
MR
7279 if (!map)
7280 panic("Failed to allocate %ld bytes for node %d memory map\n",
7281 size, pgdat->node_id);
a1c34a3b 7282 pgdat->node_mem_map = map + offset;
1da177e4 7283 }
0cd842f9
OS
7284 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7285 __func__, pgdat->node_id, (unsigned long)pgdat,
7286 (unsigned long)pgdat->node_mem_map);
12d810c1 7287#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
7288 /*
7289 * With no DISCONTIG, the global mem_map is just set as node 0's
7290 */
c713216d 7291 if (pgdat == NODE_DATA(0)) {
1da177e4 7292 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7293 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7294 mem_map -= offset;
c713216d 7295 }
1da177e4
LT
7296#endif
7297}
0cd842f9
OS
7298#else
7299static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7300#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 7301
0188dc98
OS
7302#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7303static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7304{
0188dc98
OS
7305 pgdat->first_deferred_pfn = ULONG_MAX;
7306}
7307#else
7308static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7309#endif
7310
854e8848 7311static void __init free_area_init_node(int nid)
1da177e4 7312{
9109fb7b 7313 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7314 unsigned long start_pfn = 0;
7315 unsigned long end_pfn = 0;
9109fb7b 7316
88fdf75d 7317 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7318 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7319
854e8848 7320 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7321
1da177e4 7322 pgdat->node_id = nid;
854e8848 7323 pgdat->node_start_pfn = start_pfn;
75ef7184 7324 pgdat->per_cpu_nodestats = NULL;
854e8848 7325
8d29e18a 7326 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7327 (u64)start_pfn << PAGE_SHIFT,
7328 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7329 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7330
7331 alloc_node_mem_map(pgdat);
0188dc98 7332 pgdat_set_deferred_range(pgdat);
1da177e4 7333
7f3eb55b 7334 free_area_init_core(pgdat);
1da177e4
LT
7335}
7336
bc9331a1 7337void __init free_area_init_memoryless_node(int nid)
3f08a302 7338{
854e8848 7339 free_area_init_node(nid);
3f08a302
MR
7340}
7341
418508c1
MS
7342#if MAX_NUMNODES > 1
7343/*
7344 * Figure out the number of possible node ids.
7345 */
f9872caf 7346void __init setup_nr_node_ids(void)
418508c1 7347{
904a9553 7348 unsigned int highest;
418508c1 7349
904a9553 7350 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7351 nr_node_ids = highest + 1;
7352}
418508c1
MS
7353#endif
7354
1e01979c
TH
7355/**
7356 * node_map_pfn_alignment - determine the maximum internode alignment
7357 *
7358 * This function should be called after node map is populated and sorted.
7359 * It calculates the maximum power of two alignment which can distinguish
7360 * all the nodes.
7361 *
7362 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7363 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7364 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7365 * shifted, 1GiB is enough and this function will indicate so.
7366 *
7367 * This is used to test whether pfn -> nid mapping of the chosen memory
7368 * model has fine enough granularity to avoid incorrect mapping for the
7369 * populated node map.
7370 *
a862f68a 7371 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7372 * requirement (single node).
7373 */
7374unsigned long __init node_map_pfn_alignment(void)
7375{
7376 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7377 unsigned long start, end, mask;
98fa15f3 7378 int last_nid = NUMA_NO_NODE;
c13291a5 7379 int i, nid;
1e01979c 7380
c13291a5 7381 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7382 if (!start || last_nid < 0 || last_nid == nid) {
7383 last_nid = nid;
7384 last_end = end;
7385 continue;
7386 }
7387
7388 /*
7389 * Start with a mask granular enough to pin-point to the
7390 * start pfn and tick off bits one-by-one until it becomes
7391 * too coarse to separate the current node from the last.
7392 */
7393 mask = ~((1 << __ffs(start)) - 1);
7394 while (mask && last_end <= (start & (mask << 1)))
7395 mask <<= 1;
7396
7397 /* accumulate all internode masks */
7398 accl_mask |= mask;
7399 }
7400
7401 /* convert mask to number of pages */
7402 return ~accl_mask + 1;
7403}
7404
c713216d
MG
7405/**
7406 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7407 *
a862f68a 7408 * Return: the minimum PFN based on information provided via
7d018176 7409 * memblock_set_node().
c713216d
MG
7410 */
7411unsigned long __init find_min_pfn_with_active_regions(void)
7412{
8a1b25fe 7413 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7414}
7415
37b07e41
LS
7416/*
7417 * early_calculate_totalpages()
7418 * Sum pages in active regions for movable zone.
4b0ef1fe 7419 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7420 */
484f51f8 7421static unsigned long __init early_calculate_totalpages(void)
7e63efef 7422{
7e63efef 7423 unsigned long totalpages = 0;
c13291a5
TH
7424 unsigned long start_pfn, end_pfn;
7425 int i, nid;
7426
7427 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7428 unsigned long pages = end_pfn - start_pfn;
7e63efef 7429
37b07e41
LS
7430 totalpages += pages;
7431 if (pages)
4b0ef1fe 7432 node_set_state(nid, N_MEMORY);
37b07e41 7433 }
b8af2941 7434 return totalpages;
7e63efef
MG
7435}
7436
2a1e274a
MG
7437/*
7438 * Find the PFN the Movable zone begins in each node. Kernel memory
7439 * is spread evenly between nodes as long as the nodes have enough
7440 * memory. When they don't, some nodes will have more kernelcore than
7441 * others
7442 */
b224ef85 7443static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7444{
7445 int i, nid;
7446 unsigned long usable_startpfn;
7447 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7448 /* save the state before borrow the nodemask */
4b0ef1fe 7449 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7450 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7451 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7452 struct memblock_region *r;
b2f3eebe
TC
7453
7454 /* Need to find movable_zone earlier when movable_node is specified. */
7455 find_usable_zone_for_movable();
7456
7457 /*
7458 * If movable_node is specified, ignore kernelcore and movablecore
7459 * options.
7460 */
7461 if (movable_node_is_enabled()) {
cc6de168 7462 for_each_mem_region(r) {
136199f0 7463 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7464 continue;
7465
d622abf7 7466 nid = memblock_get_region_node(r);
b2f3eebe 7467
136199f0 7468 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7469 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7470 min(usable_startpfn, zone_movable_pfn[nid]) :
7471 usable_startpfn;
7472 }
7473
7474 goto out2;
7475 }
2a1e274a 7476
342332e6
TI
7477 /*
7478 * If kernelcore=mirror is specified, ignore movablecore option
7479 */
7480 if (mirrored_kernelcore) {
7481 bool mem_below_4gb_not_mirrored = false;
7482
cc6de168 7483 for_each_mem_region(r) {
342332e6
TI
7484 if (memblock_is_mirror(r))
7485 continue;
7486
d622abf7 7487 nid = memblock_get_region_node(r);
342332e6
TI
7488
7489 usable_startpfn = memblock_region_memory_base_pfn(r);
7490
7491 if (usable_startpfn < 0x100000) {
7492 mem_below_4gb_not_mirrored = true;
7493 continue;
7494 }
7495
7496 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7497 min(usable_startpfn, zone_movable_pfn[nid]) :
7498 usable_startpfn;
7499 }
7500
7501 if (mem_below_4gb_not_mirrored)
633bf2fe 7502 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7503
7504 goto out2;
7505 }
7506
7e63efef 7507 /*
a5c6d650
DR
7508 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7509 * amount of necessary memory.
7510 */
7511 if (required_kernelcore_percent)
7512 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7513 10000UL;
7514 if (required_movablecore_percent)
7515 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7516 10000UL;
7517
7518 /*
7519 * If movablecore= was specified, calculate what size of
7e63efef
MG
7520 * kernelcore that corresponds so that memory usable for
7521 * any allocation type is evenly spread. If both kernelcore
7522 * and movablecore are specified, then the value of kernelcore
7523 * will be used for required_kernelcore if it's greater than
7524 * what movablecore would have allowed.
7525 */
7526 if (required_movablecore) {
7e63efef
MG
7527 unsigned long corepages;
7528
7529 /*
7530 * Round-up so that ZONE_MOVABLE is at least as large as what
7531 * was requested by the user
7532 */
7533 required_movablecore =
7534 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7535 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7536 corepages = totalpages - required_movablecore;
7537
7538 required_kernelcore = max(required_kernelcore, corepages);
7539 }
7540
bde304bd
XQ
7541 /*
7542 * If kernelcore was not specified or kernelcore size is larger
7543 * than totalpages, there is no ZONE_MOVABLE.
7544 */
7545 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7546 goto out;
2a1e274a
MG
7547
7548 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7549 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7550
7551restart:
7552 /* Spread kernelcore memory as evenly as possible throughout nodes */
7553 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7554 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7555 unsigned long start_pfn, end_pfn;
7556
2a1e274a
MG
7557 /*
7558 * Recalculate kernelcore_node if the division per node
7559 * now exceeds what is necessary to satisfy the requested
7560 * amount of memory for the kernel
7561 */
7562 if (required_kernelcore < kernelcore_node)
7563 kernelcore_node = required_kernelcore / usable_nodes;
7564
7565 /*
7566 * As the map is walked, we track how much memory is usable
7567 * by the kernel using kernelcore_remaining. When it is
7568 * 0, the rest of the node is usable by ZONE_MOVABLE
7569 */
7570 kernelcore_remaining = kernelcore_node;
7571
7572 /* Go through each range of PFNs within this node */
c13291a5 7573 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7574 unsigned long size_pages;
7575
c13291a5 7576 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7577 if (start_pfn >= end_pfn)
7578 continue;
7579
7580 /* Account for what is only usable for kernelcore */
7581 if (start_pfn < usable_startpfn) {
7582 unsigned long kernel_pages;
7583 kernel_pages = min(end_pfn, usable_startpfn)
7584 - start_pfn;
7585
7586 kernelcore_remaining -= min(kernel_pages,
7587 kernelcore_remaining);
7588 required_kernelcore -= min(kernel_pages,
7589 required_kernelcore);
7590
7591 /* Continue if range is now fully accounted */
7592 if (end_pfn <= usable_startpfn) {
7593
7594 /*
7595 * Push zone_movable_pfn to the end so
7596 * that if we have to rebalance
7597 * kernelcore across nodes, we will
7598 * not double account here
7599 */
7600 zone_movable_pfn[nid] = end_pfn;
7601 continue;
7602 }
7603 start_pfn = usable_startpfn;
7604 }
7605
7606 /*
7607 * The usable PFN range for ZONE_MOVABLE is from
7608 * start_pfn->end_pfn. Calculate size_pages as the
7609 * number of pages used as kernelcore
7610 */
7611 size_pages = end_pfn - start_pfn;
7612 if (size_pages > kernelcore_remaining)
7613 size_pages = kernelcore_remaining;
7614 zone_movable_pfn[nid] = start_pfn + size_pages;
7615
7616 /*
7617 * Some kernelcore has been met, update counts and
7618 * break if the kernelcore for this node has been
b8af2941 7619 * satisfied
2a1e274a
MG
7620 */
7621 required_kernelcore -= min(required_kernelcore,
7622 size_pages);
7623 kernelcore_remaining -= size_pages;
7624 if (!kernelcore_remaining)
7625 break;
7626 }
7627 }
7628
7629 /*
7630 * If there is still required_kernelcore, we do another pass with one
7631 * less node in the count. This will push zone_movable_pfn[nid] further
7632 * along on the nodes that still have memory until kernelcore is
b8af2941 7633 * satisfied
2a1e274a
MG
7634 */
7635 usable_nodes--;
7636 if (usable_nodes && required_kernelcore > usable_nodes)
7637 goto restart;
7638
b2f3eebe 7639out2:
2a1e274a
MG
7640 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7641 for (nid = 0; nid < MAX_NUMNODES; nid++)
7642 zone_movable_pfn[nid] =
7643 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7644
20e6926d 7645out:
66918dcd 7646 /* restore the node_state */
4b0ef1fe 7647 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7648}
7649
4b0ef1fe
LJ
7650/* Any regular or high memory on that node ? */
7651static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7652{
37b07e41
LS
7653 enum zone_type zone_type;
7654
4b0ef1fe 7655 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7656 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7657 if (populated_zone(zone)) {
7b0e0c0e
OS
7658 if (IS_ENABLED(CONFIG_HIGHMEM))
7659 node_set_state(nid, N_HIGH_MEMORY);
7660 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7661 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7662 break;
7663 }
37b07e41 7664 }
37b07e41
LS
7665}
7666
51930df5
MR
7667/*
7668 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7669 * such cases we allow max_zone_pfn sorted in the descending order
7670 */
7671bool __weak arch_has_descending_max_zone_pfns(void)
7672{
7673 return false;
7674}
7675
c713216d 7676/**
9691a071 7677 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7678 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7679 *
7680 * This will call free_area_init_node() for each active node in the system.
7d018176 7681 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7682 * zone in each node and their holes is calculated. If the maximum PFN
7683 * between two adjacent zones match, it is assumed that the zone is empty.
7684 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7685 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7686 * starts where the previous one ended. For example, ZONE_DMA32 starts
7687 * at arch_max_dma_pfn.
7688 */
9691a071 7689void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7690{
c13291a5 7691 unsigned long start_pfn, end_pfn;
51930df5
MR
7692 int i, nid, zone;
7693 bool descending;
a6af2bc3 7694
c713216d
MG
7695 /* Record where the zone boundaries are */
7696 memset(arch_zone_lowest_possible_pfn, 0,
7697 sizeof(arch_zone_lowest_possible_pfn));
7698 memset(arch_zone_highest_possible_pfn, 0,
7699 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7700
7701 start_pfn = find_min_pfn_with_active_regions();
51930df5 7702 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7703
7704 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7705 if (descending)
7706 zone = MAX_NR_ZONES - i - 1;
7707 else
7708 zone = i;
7709
7710 if (zone == ZONE_MOVABLE)
2a1e274a 7711 continue;
90cae1fe 7712
51930df5
MR
7713 end_pfn = max(max_zone_pfn[zone], start_pfn);
7714 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7715 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7716
7717 start_pfn = end_pfn;
c713216d 7718 }
2a1e274a
MG
7719
7720 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7721 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7722 find_zone_movable_pfns_for_nodes();
c713216d 7723
c713216d 7724 /* Print out the zone ranges */
f88dfff5 7725 pr_info("Zone ranges:\n");
2a1e274a
MG
7726 for (i = 0; i < MAX_NR_ZONES; i++) {
7727 if (i == ZONE_MOVABLE)
7728 continue;
f88dfff5 7729 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7730 if (arch_zone_lowest_possible_pfn[i] ==
7731 arch_zone_highest_possible_pfn[i])
f88dfff5 7732 pr_cont("empty\n");
72f0ba02 7733 else
8d29e18a
JG
7734 pr_cont("[mem %#018Lx-%#018Lx]\n",
7735 (u64)arch_zone_lowest_possible_pfn[i]
7736 << PAGE_SHIFT,
7737 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7738 << PAGE_SHIFT) - 1);
2a1e274a
MG
7739 }
7740
7741 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7742 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7743 for (i = 0; i < MAX_NUMNODES; i++) {
7744 if (zone_movable_pfn[i])
8d29e18a
JG
7745 pr_info(" Node %d: %#018Lx\n", i,
7746 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7747 }
c713216d 7748
f46edbd1
DW
7749 /*
7750 * Print out the early node map, and initialize the
7751 * subsection-map relative to active online memory ranges to
7752 * enable future "sub-section" extensions of the memory map.
7753 */
f88dfff5 7754 pr_info("Early memory node ranges\n");
f46edbd1 7755 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7756 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7757 (u64)start_pfn << PAGE_SHIFT,
7758 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7759 subsection_map_init(start_pfn, end_pfn - start_pfn);
7760 }
c713216d
MG
7761
7762 /* Initialise every node */
708614e6 7763 mminit_verify_pageflags_layout();
8ef82866 7764 setup_nr_node_ids();
c713216d
MG
7765 for_each_online_node(nid) {
7766 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7767 free_area_init_node(nid);
37b07e41
LS
7768
7769 /* Any memory on that node */
7770 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7771 node_set_state(nid, N_MEMORY);
7772 check_for_memory(pgdat, nid);
c713216d
MG
7773 }
7774}
2a1e274a 7775
a5c6d650
DR
7776static int __init cmdline_parse_core(char *p, unsigned long *core,
7777 unsigned long *percent)
2a1e274a
MG
7778{
7779 unsigned long long coremem;
a5c6d650
DR
7780 char *endptr;
7781
2a1e274a
MG
7782 if (!p)
7783 return -EINVAL;
7784
a5c6d650
DR
7785 /* Value may be a percentage of total memory, otherwise bytes */
7786 coremem = simple_strtoull(p, &endptr, 0);
7787 if (*endptr == '%') {
7788 /* Paranoid check for percent values greater than 100 */
7789 WARN_ON(coremem > 100);
2a1e274a 7790
a5c6d650
DR
7791 *percent = coremem;
7792 } else {
7793 coremem = memparse(p, &p);
7794 /* Paranoid check that UL is enough for the coremem value */
7795 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7796
a5c6d650
DR
7797 *core = coremem >> PAGE_SHIFT;
7798 *percent = 0UL;
7799 }
2a1e274a
MG
7800 return 0;
7801}
ed7ed365 7802
7e63efef
MG
7803/*
7804 * kernelcore=size sets the amount of memory for use for allocations that
7805 * cannot be reclaimed or migrated.
7806 */
7807static int __init cmdline_parse_kernelcore(char *p)
7808{
342332e6
TI
7809 /* parse kernelcore=mirror */
7810 if (parse_option_str(p, "mirror")) {
7811 mirrored_kernelcore = true;
7812 return 0;
7813 }
7814
a5c6d650
DR
7815 return cmdline_parse_core(p, &required_kernelcore,
7816 &required_kernelcore_percent);
7e63efef
MG
7817}
7818
7819/*
7820 * movablecore=size sets the amount of memory for use for allocations that
7821 * can be reclaimed or migrated.
7822 */
7823static int __init cmdline_parse_movablecore(char *p)
7824{
a5c6d650
DR
7825 return cmdline_parse_core(p, &required_movablecore,
7826 &required_movablecore_percent);
7e63efef
MG
7827}
7828
ed7ed365 7829early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7830early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7831
c3d5f5f0
JL
7832void adjust_managed_page_count(struct page *page, long count)
7833{
9705bea5 7834 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7835 totalram_pages_add(count);
3dcc0571
JL
7836#ifdef CONFIG_HIGHMEM
7837 if (PageHighMem(page))
ca79b0c2 7838 totalhigh_pages_add(count);
3dcc0571 7839#endif
c3d5f5f0 7840}
3dcc0571 7841EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7842
e5cb113f 7843unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7844{
11199692
JL
7845 void *pos;
7846 unsigned long pages = 0;
69afade7 7847
11199692
JL
7848 start = (void *)PAGE_ALIGN((unsigned long)start);
7849 end = (void *)((unsigned long)end & PAGE_MASK);
7850 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7851 struct page *page = virt_to_page(pos);
7852 void *direct_map_addr;
7853
7854 /*
7855 * 'direct_map_addr' might be different from 'pos'
7856 * because some architectures' virt_to_page()
7857 * work with aliases. Getting the direct map
7858 * address ensures that we get a _writeable_
7859 * alias for the memset().
7860 */
7861 direct_map_addr = page_address(page);
c746170d
VF
7862 /*
7863 * Perform a kasan-unchecked memset() since this memory
7864 * has not been initialized.
7865 */
7866 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 7867 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7868 memset(direct_map_addr, poison, PAGE_SIZE);
7869
7870 free_reserved_page(page);
69afade7
JL
7871 }
7872
7873 if (pages && s)
adb1fe9a
JP
7874 pr_info("Freeing %s memory: %ldK\n",
7875 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7876
7877 return pages;
7878}
7879
1f9d03c5 7880void __init mem_init_print_info(void)
7ee3d4e8
JL
7881{
7882 unsigned long physpages, codesize, datasize, rosize, bss_size;
7883 unsigned long init_code_size, init_data_size;
7884
7885 physpages = get_num_physpages();
7886 codesize = _etext - _stext;
7887 datasize = _edata - _sdata;
7888 rosize = __end_rodata - __start_rodata;
7889 bss_size = __bss_stop - __bss_start;
7890 init_data_size = __init_end - __init_begin;
7891 init_code_size = _einittext - _sinittext;
7892
7893 /*
7894 * Detect special cases and adjust section sizes accordingly:
7895 * 1) .init.* may be embedded into .data sections
7896 * 2) .init.text.* may be out of [__init_begin, __init_end],
7897 * please refer to arch/tile/kernel/vmlinux.lds.S.
7898 * 3) .rodata.* may be embedded into .text or .data sections.
7899 */
7900#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7901 do { \
7902 if (start <= pos && pos < end && size > adj) \
7903 size -= adj; \
7904 } while (0)
7ee3d4e8
JL
7905
7906 adj_init_size(__init_begin, __init_end, init_data_size,
7907 _sinittext, init_code_size);
7908 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7909 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7910 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7911 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7912
7913#undef adj_init_size
7914
756a025f 7915 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7916#ifdef CONFIG_HIGHMEM
756a025f 7917 ", %luK highmem"
7ee3d4e8 7918#endif
1f9d03c5 7919 ")\n",
756a025f
JP
7920 nr_free_pages() << (PAGE_SHIFT - 10),
7921 physpages << (PAGE_SHIFT - 10),
7922 codesize >> 10, datasize >> 10, rosize >> 10,
7923 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7924 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
1f9d03c5 7925 totalcma_pages << (PAGE_SHIFT - 10)
7ee3d4e8 7926#ifdef CONFIG_HIGHMEM
1f9d03c5 7927 , totalhigh_pages() << (PAGE_SHIFT - 10)
7ee3d4e8 7928#endif
1f9d03c5 7929 );
7ee3d4e8
JL
7930}
7931
0e0b864e 7932/**
88ca3b94
RD
7933 * set_dma_reserve - set the specified number of pages reserved in the first zone
7934 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7935 *
013110a7 7936 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7937 * In the DMA zone, a significant percentage may be consumed by kernel image
7938 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7939 * function may optionally be used to account for unfreeable pages in the
7940 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7941 * smaller per-cpu batchsize.
0e0b864e
MG
7942 */
7943void __init set_dma_reserve(unsigned long new_dma_reserve)
7944{
7945 dma_reserve = new_dma_reserve;
7946}
7947
005fd4bb 7948static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7949{
1da177e4 7950
005fd4bb
SAS
7951 lru_add_drain_cpu(cpu);
7952 drain_pages(cpu);
9f8f2172 7953
005fd4bb
SAS
7954 /*
7955 * Spill the event counters of the dead processor
7956 * into the current processors event counters.
7957 * This artificially elevates the count of the current
7958 * processor.
7959 */
7960 vm_events_fold_cpu(cpu);
9f8f2172 7961
005fd4bb
SAS
7962 /*
7963 * Zero the differential counters of the dead processor
7964 * so that the vm statistics are consistent.
7965 *
7966 * This is only okay since the processor is dead and cannot
7967 * race with what we are doing.
7968 */
7969 cpu_vm_stats_fold(cpu);
7970 return 0;
1da177e4 7971}
1da177e4 7972
e03a5125
NP
7973#ifdef CONFIG_NUMA
7974int hashdist = HASHDIST_DEFAULT;
7975
7976static int __init set_hashdist(char *str)
7977{
7978 if (!str)
7979 return 0;
7980 hashdist = simple_strtoul(str, &str, 0);
7981 return 1;
7982}
7983__setup("hashdist=", set_hashdist);
7984#endif
7985
1da177e4
LT
7986void __init page_alloc_init(void)
7987{
005fd4bb
SAS
7988 int ret;
7989
e03a5125
NP
7990#ifdef CONFIG_NUMA
7991 if (num_node_state(N_MEMORY) == 1)
7992 hashdist = 0;
7993#endif
7994
005fd4bb
SAS
7995 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7996 "mm/page_alloc:dead", NULL,
7997 page_alloc_cpu_dead);
7998 WARN_ON(ret < 0);
1da177e4
LT
7999}
8000
cb45b0e9 8001/*
34b10060 8002 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8003 * or min_free_kbytes changes.
8004 */
8005static void calculate_totalreserve_pages(void)
8006{
8007 struct pglist_data *pgdat;
8008 unsigned long reserve_pages = 0;
2f6726e5 8009 enum zone_type i, j;
cb45b0e9
HA
8010
8011 for_each_online_pgdat(pgdat) {
281e3726
MG
8012
8013 pgdat->totalreserve_pages = 0;
8014
cb45b0e9
HA
8015 for (i = 0; i < MAX_NR_ZONES; i++) {
8016 struct zone *zone = pgdat->node_zones + i;
3484b2de 8017 long max = 0;
9705bea5 8018 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8019
8020 /* Find valid and maximum lowmem_reserve in the zone */
8021 for (j = i; j < MAX_NR_ZONES; j++) {
8022 if (zone->lowmem_reserve[j] > max)
8023 max = zone->lowmem_reserve[j];
8024 }
8025
41858966
MG
8026 /* we treat the high watermark as reserved pages. */
8027 max += high_wmark_pages(zone);
cb45b0e9 8028
3d6357de
AK
8029 if (max > managed_pages)
8030 max = managed_pages;
a8d01437 8031
281e3726 8032 pgdat->totalreserve_pages += max;
a8d01437 8033
cb45b0e9
HA
8034 reserve_pages += max;
8035 }
8036 }
8037 totalreserve_pages = reserve_pages;
8038}
8039
1da177e4
LT
8040/*
8041 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8042 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8043 * has a correct pages reserved value, so an adequate number of
8044 * pages are left in the zone after a successful __alloc_pages().
8045 */
8046static void setup_per_zone_lowmem_reserve(void)
8047{
8048 struct pglist_data *pgdat;
470c61d7 8049 enum zone_type i, j;
1da177e4 8050
ec936fc5 8051 for_each_online_pgdat(pgdat) {
470c61d7
LS
8052 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8053 struct zone *zone = &pgdat->node_zones[i];
8054 int ratio = sysctl_lowmem_reserve_ratio[i];
8055 bool clear = !ratio || !zone_managed_pages(zone);
8056 unsigned long managed_pages = 0;
8057
8058 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8059 if (clear) {
8060 zone->lowmem_reserve[j] = 0;
d3cda233 8061 } else {
470c61d7
LS
8062 struct zone *upper_zone = &pgdat->node_zones[j];
8063
8064 managed_pages += zone_managed_pages(upper_zone);
8065 zone->lowmem_reserve[j] = managed_pages / ratio;
d3cda233 8066 }
1da177e4
LT
8067 }
8068 }
8069 }
cb45b0e9
HA
8070
8071 /* update totalreserve_pages */
8072 calculate_totalreserve_pages();
1da177e4
LT
8073}
8074
cfd3da1e 8075static void __setup_per_zone_wmarks(void)
1da177e4
LT
8076{
8077 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8078 unsigned long lowmem_pages = 0;
8079 struct zone *zone;
8080 unsigned long flags;
8081
8082 /* Calculate total number of !ZONE_HIGHMEM pages */
8083 for_each_zone(zone) {
8084 if (!is_highmem(zone))
9705bea5 8085 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8086 }
8087
8088 for_each_zone(zone) {
ac924c60
AM
8089 u64 tmp;
8090
1125b4e3 8091 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8092 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8093 do_div(tmp, lowmem_pages);
1da177e4
LT
8094 if (is_highmem(zone)) {
8095 /*
669ed175
NP
8096 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8097 * need highmem pages, so cap pages_min to a small
8098 * value here.
8099 *
41858966 8100 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8101 * deltas control async page reclaim, and so should
669ed175 8102 * not be capped for highmem.
1da177e4 8103 */
90ae8d67 8104 unsigned long min_pages;
1da177e4 8105
9705bea5 8106 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8107 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8108 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8109 } else {
669ed175
NP
8110 /*
8111 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8112 * proportionate to the zone's size.
8113 */
a9214443 8114 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8115 }
8116
795ae7a0
JW
8117 /*
8118 * Set the kswapd watermarks distance according to the
8119 * scale factor in proportion to available memory, but
8120 * ensure a minimum size on small systems.
8121 */
8122 tmp = max_t(u64, tmp >> 2,
9705bea5 8123 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8124 watermark_scale_factor, 10000));
8125
aa092591 8126 zone->watermark_boost = 0;
a9214443
MG
8127 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8128 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 8129
1125b4e3 8130 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8131 }
cb45b0e9
HA
8132
8133 /* update totalreserve_pages */
8134 calculate_totalreserve_pages();
1da177e4
LT
8135}
8136
cfd3da1e
MG
8137/**
8138 * setup_per_zone_wmarks - called when min_free_kbytes changes
8139 * or when memory is hot-{added|removed}
8140 *
8141 * Ensures that the watermark[min,low,high] values for each zone are set
8142 * correctly with respect to min_free_kbytes.
8143 */
8144void setup_per_zone_wmarks(void)
8145{
b93e0f32
MH
8146 static DEFINE_SPINLOCK(lock);
8147
8148 spin_lock(&lock);
cfd3da1e 8149 __setup_per_zone_wmarks();
b93e0f32 8150 spin_unlock(&lock);
cfd3da1e
MG
8151}
8152
1da177e4
LT
8153/*
8154 * Initialise min_free_kbytes.
8155 *
8156 * For small machines we want it small (128k min). For large machines
8beeae86 8157 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8158 * bandwidth does not increase linearly with machine size. We use
8159 *
b8af2941 8160 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8161 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8162 *
8163 * which yields
8164 *
8165 * 16MB: 512k
8166 * 32MB: 724k
8167 * 64MB: 1024k
8168 * 128MB: 1448k
8169 * 256MB: 2048k
8170 * 512MB: 2896k
8171 * 1024MB: 4096k
8172 * 2048MB: 5792k
8173 * 4096MB: 8192k
8174 * 8192MB: 11584k
8175 * 16384MB: 16384k
8176 */
1b79acc9 8177int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
8178{
8179 unsigned long lowmem_kbytes;
5f12733e 8180 int new_min_free_kbytes;
1da177e4
LT
8181
8182 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8183 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8184
8185 if (new_min_free_kbytes > user_min_free_kbytes) {
8186 min_free_kbytes = new_min_free_kbytes;
8187 if (min_free_kbytes < 128)
8188 min_free_kbytes = 128;
ee8eb9a5
JS
8189 if (min_free_kbytes > 262144)
8190 min_free_kbytes = 262144;
5f12733e
MH
8191 } else {
8192 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8193 new_min_free_kbytes, user_min_free_kbytes);
8194 }
bc75d33f 8195 setup_per_zone_wmarks();
a6cccdc3 8196 refresh_zone_stat_thresholds();
1da177e4 8197 setup_per_zone_lowmem_reserve();
6423aa81
JK
8198
8199#ifdef CONFIG_NUMA
8200 setup_min_unmapped_ratio();
8201 setup_min_slab_ratio();
8202#endif
8203
4aab2be0
VB
8204 khugepaged_min_free_kbytes_update();
8205
1da177e4
LT
8206 return 0;
8207}
e08d3fdf 8208postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8209
8210/*
b8af2941 8211 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8212 * that we can call two helper functions whenever min_free_kbytes
8213 * changes.
8214 */
cccad5b9 8215int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8216 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8217{
da8c757b
HP
8218 int rc;
8219
8220 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8221 if (rc)
8222 return rc;
8223
5f12733e
MH
8224 if (write) {
8225 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8226 setup_per_zone_wmarks();
5f12733e 8227 }
1da177e4
LT
8228 return 0;
8229}
8230
795ae7a0 8231int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8232 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8233{
8234 int rc;
8235
8236 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8237 if (rc)
8238 return rc;
8239
8240 if (write)
8241 setup_per_zone_wmarks();
8242
8243 return 0;
8244}
8245
9614634f 8246#ifdef CONFIG_NUMA
6423aa81 8247static void setup_min_unmapped_ratio(void)
9614634f 8248{
6423aa81 8249 pg_data_t *pgdat;
9614634f 8250 struct zone *zone;
9614634f 8251
a5f5f91d 8252 for_each_online_pgdat(pgdat)
81cbcbc2 8253 pgdat->min_unmapped_pages = 0;
a5f5f91d 8254
9614634f 8255 for_each_zone(zone)
9705bea5
AK
8256 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8257 sysctl_min_unmapped_ratio) / 100;
9614634f 8258}
0ff38490 8259
6423aa81
JK
8260
8261int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8262 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8263{
0ff38490
CL
8264 int rc;
8265
8d65af78 8266 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8267 if (rc)
8268 return rc;
8269
6423aa81
JK
8270 setup_min_unmapped_ratio();
8271
8272 return 0;
8273}
8274
8275static void setup_min_slab_ratio(void)
8276{
8277 pg_data_t *pgdat;
8278 struct zone *zone;
8279
a5f5f91d
MG
8280 for_each_online_pgdat(pgdat)
8281 pgdat->min_slab_pages = 0;
8282
0ff38490 8283 for_each_zone(zone)
9705bea5
AK
8284 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8285 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8286}
8287
8288int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8289 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8290{
8291 int rc;
8292
8293 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8294 if (rc)
8295 return rc;
8296
8297 setup_min_slab_ratio();
8298
0ff38490
CL
8299 return 0;
8300}
9614634f
CL
8301#endif
8302
1da177e4
LT
8303/*
8304 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8305 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8306 * whenever sysctl_lowmem_reserve_ratio changes.
8307 *
8308 * The reserve ratio obviously has absolutely no relation with the
41858966 8309 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8310 * if in function of the boot time zone sizes.
8311 */
cccad5b9 8312int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8313 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8314{
86aaf255
BH
8315 int i;
8316
8d65af78 8317 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8318
8319 for (i = 0; i < MAX_NR_ZONES; i++) {
8320 if (sysctl_lowmem_reserve_ratio[i] < 1)
8321 sysctl_lowmem_reserve_ratio[i] = 0;
8322 }
8323
1da177e4
LT
8324 setup_per_zone_lowmem_reserve();
8325 return 0;
8326}
8327
8ad4b1fb
RS
8328/*
8329 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8330 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8331 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8332 */
cccad5b9 8333int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8334 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8335{
8336 struct zone *zone;
7cd2b0a3 8337 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8338 int ret;
8339
7cd2b0a3
DR
8340 mutex_lock(&pcp_batch_high_lock);
8341 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8342
8d65af78 8343 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8344 if (!write || ret < 0)
8345 goto out;
8346
8347 /* Sanity checking to avoid pcp imbalance */
8348 if (percpu_pagelist_fraction &&
8349 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8350 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8351 ret = -EINVAL;
8352 goto out;
8353 }
8354
8355 /* No change? */
8356 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8357 goto out;
c8e251fa 8358
cb1ef534 8359 for_each_populated_zone(zone)
0a8b4f1d 8360 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8361out:
c8e251fa 8362 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8363 return ret;
8ad4b1fb
RS
8364}
8365
f6f34b43
SD
8366#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8367/*
8368 * Returns the number of pages that arch has reserved but
8369 * is not known to alloc_large_system_hash().
8370 */
8371static unsigned long __init arch_reserved_kernel_pages(void)
8372{
8373 return 0;
8374}
8375#endif
8376
9017217b
PT
8377/*
8378 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8379 * machines. As memory size is increased the scale is also increased but at
8380 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8381 * quadruples the scale is increased by one, which means the size of hash table
8382 * only doubles, instead of quadrupling as well.
8383 * Because 32-bit systems cannot have large physical memory, where this scaling
8384 * makes sense, it is disabled on such platforms.
8385 */
8386#if __BITS_PER_LONG > 32
8387#define ADAPT_SCALE_BASE (64ul << 30)
8388#define ADAPT_SCALE_SHIFT 2
8389#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8390#endif
8391
1da177e4
LT
8392/*
8393 * allocate a large system hash table from bootmem
8394 * - it is assumed that the hash table must contain an exact power-of-2
8395 * quantity of entries
8396 * - limit is the number of hash buckets, not the total allocation size
8397 */
8398void *__init alloc_large_system_hash(const char *tablename,
8399 unsigned long bucketsize,
8400 unsigned long numentries,
8401 int scale,
8402 int flags,
8403 unsigned int *_hash_shift,
8404 unsigned int *_hash_mask,
31fe62b9
TB
8405 unsigned long low_limit,
8406 unsigned long high_limit)
1da177e4 8407{
31fe62b9 8408 unsigned long long max = high_limit;
1da177e4
LT
8409 unsigned long log2qty, size;
8410 void *table = NULL;
3749a8f0 8411 gfp_t gfp_flags;
ec11408a 8412 bool virt;
121e6f32 8413 bool huge;
1da177e4
LT
8414
8415 /* allow the kernel cmdline to have a say */
8416 if (!numentries) {
8417 /* round applicable memory size up to nearest megabyte */
04903664 8418 numentries = nr_kernel_pages;
f6f34b43 8419 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8420
8421 /* It isn't necessary when PAGE_SIZE >= 1MB */
8422 if (PAGE_SHIFT < 20)
8423 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8424
9017217b
PT
8425#if __BITS_PER_LONG > 32
8426 if (!high_limit) {
8427 unsigned long adapt;
8428
8429 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8430 adapt <<= ADAPT_SCALE_SHIFT)
8431 scale++;
8432 }
8433#endif
8434
1da177e4
LT
8435 /* limit to 1 bucket per 2^scale bytes of low memory */
8436 if (scale > PAGE_SHIFT)
8437 numentries >>= (scale - PAGE_SHIFT);
8438 else
8439 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8440
8441 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8442 if (unlikely(flags & HASH_SMALL)) {
8443 /* Makes no sense without HASH_EARLY */
8444 WARN_ON(!(flags & HASH_EARLY));
8445 if (!(numentries >> *_hash_shift)) {
8446 numentries = 1UL << *_hash_shift;
8447 BUG_ON(!numentries);
8448 }
8449 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8450 numentries = PAGE_SIZE / bucketsize;
1da177e4 8451 }
6e692ed3 8452 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8453
8454 /* limit allocation size to 1/16 total memory by default */
8455 if (max == 0) {
8456 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8457 do_div(max, bucketsize);
8458 }
074b8517 8459 max = min(max, 0x80000000ULL);
1da177e4 8460
31fe62b9
TB
8461 if (numentries < low_limit)
8462 numentries = low_limit;
1da177e4
LT
8463 if (numentries > max)
8464 numentries = max;
8465
f0d1b0b3 8466 log2qty = ilog2(numentries);
1da177e4 8467
3749a8f0 8468 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8469 do {
ec11408a 8470 virt = false;
1da177e4 8471 size = bucketsize << log2qty;
ea1f5f37
PT
8472 if (flags & HASH_EARLY) {
8473 if (flags & HASH_ZERO)
26fb3dae 8474 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8475 else
7e1c4e27
MR
8476 table = memblock_alloc_raw(size,
8477 SMP_CACHE_BYTES);
ec11408a 8478 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8479 table = __vmalloc(size, gfp_flags);
ec11408a 8480 virt = true;
121e6f32 8481 huge = is_vm_area_hugepages(table);
ea1f5f37 8482 } else {
1037b83b
ED
8483 /*
8484 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8485 * some pages at the end of hash table which
8486 * alloc_pages_exact() automatically does
1037b83b 8487 */
ec11408a
NP
8488 table = alloc_pages_exact(size, gfp_flags);
8489 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8490 }
8491 } while (!table && size > PAGE_SIZE && --log2qty);
8492
8493 if (!table)
8494 panic("Failed to allocate %s hash table\n", tablename);
8495
ec11408a
NP
8496 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8497 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8498 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8499
8500 if (_hash_shift)
8501 *_hash_shift = log2qty;
8502 if (_hash_mask)
8503 *_hash_mask = (1 << log2qty) - 1;
8504
8505 return table;
8506}
a117e66e 8507
a5d76b54 8508/*
80934513 8509 * This function checks whether pageblock includes unmovable pages or not.
80934513 8510 *
b8af2941 8511 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8512 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8513 * check without lock_page also may miss some movable non-lru pages at
8514 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8515 *
8516 * Returns a page without holding a reference. If the caller wants to
047b9967 8517 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8518 * cannot get removed (e.g., via memory unplug) concurrently.
8519 *
a5d76b54 8520 */
4a55c047
QC
8521struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8522 int migratetype, int flags)
49ac8255 8523{
1a9f2191
QC
8524 unsigned long iter = 0;
8525 unsigned long pfn = page_to_pfn(page);
6a654e36 8526 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8527
1a9f2191
QC
8528 if (is_migrate_cma_page(page)) {
8529 /*
8530 * CMA allocations (alloc_contig_range) really need to mark
8531 * isolate CMA pageblocks even when they are not movable in fact
8532 * so consider them movable here.
8533 */
8534 if (is_migrate_cma(migratetype))
4a55c047 8535 return NULL;
1a9f2191 8536
3d680bdf 8537 return page;
1a9f2191 8538 }
4da2ce25 8539
6a654e36 8540 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8541 if (!pfn_valid_within(pfn + iter))
49ac8255 8542 continue;
29723fcc 8543
fe4c86c9 8544 page = pfn_to_page(pfn + iter);
c8721bbb 8545
c9c510dc
DH
8546 /*
8547 * Both, bootmem allocations and memory holes are marked
8548 * PG_reserved and are unmovable. We can even have unmovable
8549 * allocations inside ZONE_MOVABLE, for example when
8550 * specifying "movablecore".
8551 */
d7ab3672 8552 if (PageReserved(page))
3d680bdf 8553 return page;
d7ab3672 8554
9d789999
MH
8555 /*
8556 * If the zone is movable and we have ruled out all reserved
8557 * pages then it should be reasonably safe to assume the rest
8558 * is movable.
8559 */
8560 if (zone_idx(zone) == ZONE_MOVABLE)
8561 continue;
8562
c8721bbb
NH
8563 /*
8564 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8565 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8566 * We need not scan over tail pages because we don't
c8721bbb
NH
8567 * handle each tail page individually in migration.
8568 */
1da2f328 8569 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8570 struct page *head = compound_head(page);
8571 unsigned int skip_pages;
464c7ffb 8572
1da2f328
RR
8573 if (PageHuge(page)) {
8574 if (!hugepage_migration_supported(page_hstate(head)))
8575 return page;
8576 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8577 return page;
1da2f328 8578 }
464c7ffb 8579
d8c6546b 8580 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8581 iter += skip_pages - 1;
c8721bbb
NH
8582 continue;
8583 }
8584
97d255c8
MK
8585 /*
8586 * We can't use page_count without pin a page
8587 * because another CPU can free compound page.
8588 * This check already skips compound tails of THP
0139aa7b 8589 * because their page->_refcount is zero at all time.
97d255c8 8590 */
fe896d18 8591 if (!page_ref_count(page)) {
49ac8255 8592 if (PageBuddy(page))
ab130f91 8593 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8594 continue;
8595 }
97d255c8 8596
b023f468
WC
8597 /*
8598 * The HWPoisoned page may be not in buddy system, and
8599 * page_count() is not 0.
8600 */
756d25be 8601 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8602 continue;
8603
aa218795
DH
8604 /*
8605 * We treat all PageOffline() pages as movable when offlining
8606 * to give drivers a chance to decrement their reference count
8607 * in MEM_GOING_OFFLINE in order to indicate that these pages
8608 * can be offlined as there are no direct references anymore.
8609 * For actually unmovable PageOffline() where the driver does
8610 * not support this, we will fail later when trying to actually
8611 * move these pages that still have a reference count > 0.
8612 * (false negatives in this function only)
8613 */
8614 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8615 continue;
8616
fe4c86c9 8617 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8618 continue;
8619
49ac8255 8620 /*
6b4f7799
JW
8621 * If there are RECLAIMABLE pages, we need to check
8622 * it. But now, memory offline itself doesn't call
8623 * shrink_node_slabs() and it still to be fixed.
49ac8255 8624 */
3d680bdf 8625 return page;
49ac8255 8626 }
4a55c047 8627 return NULL;
49ac8255
KH
8628}
8629
8df995f6 8630#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8631static unsigned long pfn_max_align_down(unsigned long pfn)
8632{
8633 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8634 pageblock_nr_pages) - 1);
8635}
8636
8637static unsigned long pfn_max_align_up(unsigned long pfn)
8638{
8639 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8640 pageblock_nr_pages));
8641}
8642
a1394bdd
MK
8643#if defined(CONFIG_DYNAMIC_DEBUG) || \
8644 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8645/* Usage: See admin-guide/dynamic-debug-howto.rst */
8646static void alloc_contig_dump_pages(struct list_head *page_list)
8647{
8648 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8649
8650 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8651 struct page *page;
8652
8653 dump_stack();
8654 list_for_each_entry(page, page_list, lru)
8655 dump_page(page, "migration failure");
8656 }
8657}
8658#else
8659static inline void alloc_contig_dump_pages(struct list_head *page_list)
8660{
8661}
8662#endif
8663
041d3a8c 8664/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8665static int __alloc_contig_migrate_range(struct compact_control *cc,
8666 unsigned long start, unsigned long end)
041d3a8c
MN
8667{
8668 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8669 unsigned int nr_reclaimed;
041d3a8c
MN
8670 unsigned long pfn = start;
8671 unsigned int tries = 0;
8672 int ret = 0;
8b94e0b8
JK
8673 struct migration_target_control mtc = {
8674 .nid = zone_to_nid(cc->zone),
8675 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8676 };
041d3a8c 8677
be49a6e1 8678 migrate_prep();
041d3a8c 8679
bb13ffeb 8680 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8681 if (fatal_signal_pending(current)) {
8682 ret = -EINTR;
8683 break;
8684 }
8685
bb13ffeb
MG
8686 if (list_empty(&cc->migratepages)) {
8687 cc->nr_migratepages = 0;
edc2ca61 8688 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8689 if (!pfn) {
8690 ret = -EINTR;
8691 break;
8692 }
8693 tries = 0;
8694 } else if (++tries == 5) {
8695 ret = ret < 0 ? ret : -EBUSY;
8696 break;
8697 }
8698
beb51eaa
MK
8699 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8700 &cc->migratepages);
8701 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8702
8b94e0b8
JK
8703 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8704 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8705 }
2a6f5124 8706 if (ret < 0) {
a1394bdd 8707 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
8708 putback_movable_pages(&cc->migratepages);
8709 return ret;
8710 }
8711 return 0;
041d3a8c
MN
8712}
8713
8714/**
8715 * alloc_contig_range() -- tries to allocate given range of pages
8716 * @start: start PFN to allocate
8717 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8718 * @migratetype: migratetype of the underlaying pageblocks (either
8719 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8720 * in range must have the same migratetype and it must
8721 * be either of the two.
ca96b625 8722 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8723 *
8724 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8725 * aligned. The PFN range must belong to a single zone.
041d3a8c 8726 *
2c7452a0
MK
8727 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8728 * pageblocks in the range. Once isolated, the pageblocks should not
8729 * be modified by others.
041d3a8c 8730 *
a862f68a 8731 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8732 * pages which PFN is in [start, end) are allocated for the caller and
8733 * need to be freed with free_contig_range().
8734 */
0815f3d8 8735int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8736 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8737{
041d3a8c 8738 unsigned long outer_start, outer_end;
d00181b9
KS
8739 unsigned int order;
8740 int ret = 0;
041d3a8c 8741
bb13ffeb
MG
8742 struct compact_control cc = {
8743 .nr_migratepages = 0,
8744 .order = -1,
8745 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8746 .mode = MIGRATE_SYNC,
bb13ffeb 8747 .ignore_skip_hint = true,
2583d671 8748 .no_set_skip_hint = true,
7dea19f9 8749 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8750 .alloc_contig = true,
bb13ffeb
MG
8751 };
8752 INIT_LIST_HEAD(&cc.migratepages);
8753
041d3a8c
MN
8754 /*
8755 * What we do here is we mark all pageblocks in range as
8756 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8757 * have different sizes, and due to the way page allocator
8758 * work, we align the range to biggest of the two pages so
8759 * that page allocator won't try to merge buddies from
8760 * different pageblocks and change MIGRATE_ISOLATE to some
8761 * other migration type.
8762 *
8763 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8764 * migrate the pages from an unaligned range (ie. pages that
8765 * we are interested in). This will put all the pages in
8766 * range back to page allocator as MIGRATE_ISOLATE.
8767 *
8768 * When this is done, we take the pages in range from page
8769 * allocator removing them from the buddy system. This way
8770 * page allocator will never consider using them.
8771 *
8772 * This lets us mark the pageblocks back as
8773 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8774 * aligned range but not in the unaligned, original range are
8775 * put back to page allocator so that buddy can use them.
8776 */
8777
8778 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8779 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8780 if (ret)
86a595f9 8781 return ret;
041d3a8c 8782
7612921f
VB
8783 drain_all_pages(cc.zone);
8784
8ef5849f
JK
8785 /*
8786 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8787 * So, just fall through. test_pages_isolated() has a tracepoint
8788 * which will report the busy page.
8789 *
8790 * It is possible that busy pages could become available before
8791 * the call to test_pages_isolated, and the range will actually be
8792 * allocated. So, if we fall through be sure to clear ret so that
8793 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8794 */
bb13ffeb 8795 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8796 if (ret && ret != -EBUSY)
041d3a8c 8797 goto done;
63cd4489 8798 ret =0;
041d3a8c
MN
8799
8800 /*
8801 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8802 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8803 * more, all pages in [start, end) are free in page allocator.
8804 * What we are going to do is to allocate all pages from
8805 * [start, end) (that is remove them from page allocator).
8806 *
8807 * The only problem is that pages at the beginning and at the
8808 * end of interesting range may be not aligned with pages that
8809 * page allocator holds, ie. they can be part of higher order
8810 * pages. Because of this, we reserve the bigger range and
8811 * once this is done free the pages we are not interested in.
8812 *
8813 * We don't have to hold zone->lock here because the pages are
8814 * isolated thus they won't get removed from buddy.
8815 */
8816
041d3a8c
MN
8817 order = 0;
8818 outer_start = start;
8819 while (!PageBuddy(pfn_to_page(outer_start))) {
8820 if (++order >= MAX_ORDER) {
8ef5849f
JK
8821 outer_start = start;
8822 break;
041d3a8c
MN
8823 }
8824 outer_start &= ~0UL << order;
8825 }
8826
8ef5849f 8827 if (outer_start != start) {
ab130f91 8828 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8829
8830 /*
8831 * outer_start page could be small order buddy page and
8832 * it doesn't include start page. Adjust outer_start
8833 * in this case to report failed page properly
8834 * on tracepoint in test_pages_isolated()
8835 */
8836 if (outer_start + (1UL << order) <= start)
8837 outer_start = start;
8838 }
8839
041d3a8c 8840 /* Make sure the range is really isolated. */
756d25be 8841 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
8842 ret = -EBUSY;
8843 goto done;
8844 }
8845
49f223a9 8846 /* Grab isolated pages from freelists. */
bb13ffeb 8847 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8848 if (!outer_end) {
8849 ret = -EBUSY;
8850 goto done;
8851 }
8852
8853 /* Free head and tail (if any) */
8854 if (start != outer_start)
8855 free_contig_range(outer_start, start - outer_start);
8856 if (end != outer_end)
8857 free_contig_range(end, outer_end - end);
8858
8859done:
8860 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8861 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8862 return ret;
8863}
255f5985 8864EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8865
8866static int __alloc_contig_pages(unsigned long start_pfn,
8867 unsigned long nr_pages, gfp_t gfp_mask)
8868{
8869 unsigned long end_pfn = start_pfn + nr_pages;
8870
8871 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8872 gfp_mask);
8873}
8874
8875static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8876 unsigned long nr_pages)
8877{
8878 unsigned long i, end_pfn = start_pfn + nr_pages;
8879 struct page *page;
8880
8881 for (i = start_pfn; i < end_pfn; i++) {
8882 page = pfn_to_online_page(i);
8883 if (!page)
8884 return false;
8885
8886 if (page_zone(page) != z)
8887 return false;
8888
8889 if (PageReserved(page))
8890 return false;
8891
8892 if (page_count(page) > 0)
8893 return false;
8894
8895 if (PageHuge(page))
8896 return false;
8897 }
8898 return true;
8899}
8900
8901static bool zone_spans_last_pfn(const struct zone *zone,
8902 unsigned long start_pfn, unsigned long nr_pages)
8903{
8904 unsigned long last_pfn = start_pfn + nr_pages - 1;
8905
8906 return zone_spans_pfn(zone, last_pfn);
8907}
8908
8909/**
8910 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8911 * @nr_pages: Number of contiguous pages to allocate
8912 * @gfp_mask: GFP mask to limit search and used during compaction
8913 * @nid: Target node
8914 * @nodemask: Mask for other possible nodes
8915 *
8916 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8917 * on an applicable zonelist to find a contiguous pfn range which can then be
8918 * tried for allocation with alloc_contig_range(). This routine is intended
8919 * for allocation requests which can not be fulfilled with the buddy allocator.
8920 *
8921 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8922 * power of two then the alignment is guaranteed to be to the given nr_pages
8923 * (e.g. 1GB request would be aligned to 1GB).
8924 *
8925 * Allocated pages can be freed with free_contig_range() or by manually calling
8926 * __free_page() on each allocated page.
8927 *
8928 * Return: pointer to contiguous pages on success, or NULL if not successful.
8929 */
8930struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8931 int nid, nodemask_t *nodemask)
8932{
8933 unsigned long ret, pfn, flags;
8934 struct zonelist *zonelist;
8935 struct zone *zone;
8936 struct zoneref *z;
8937
8938 zonelist = node_zonelist(nid, gfp_mask);
8939 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8940 gfp_zone(gfp_mask), nodemask) {
8941 spin_lock_irqsave(&zone->lock, flags);
8942
8943 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8944 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8945 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8946 /*
8947 * We release the zone lock here because
8948 * alloc_contig_range() will also lock the zone
8949 * at some point. If there's an allocation
8950 * spinning on this lock, it may win the race
8951 * and cause alloc_contig_range() to fail...
8952 */
8953 spin_unlock_irqrestore(&zone->lock, flags);
8954 ret = __alloc_contig_pages(pfn, nr_pages,
8955 gfp_mask);
8956 if (!ret)
8957 return pfn_to_page(pfn);
8958 spin_lock_irqsave(&zone->lock, flags);
8959 }
8960 pfn += nr_pages;
8961 }
8962 spin_unlock_irqrestore(&zone->lock, flags);
8963 }
8964 return NULL;
8965}
4eb0716e 8966#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8967
4eb0716e 8968void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8969{
bcc2b02f
MS
8970 unsigned int count = 0;
8971
8972 for (; nr_pages--; pfn++) {
8973 struct page *page = pfn_to_page(pfn);
8974
8975 count += page_count(page) != 1;
8976 __free_page(page);
8977 }
8978 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8979}
255f5985 8980EXPORT_SYMBOL(free_contig_range);
041d3a8c 8981
0a647f38
CS
8982/*
8983 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8984 * page high values need to be recalulated.
8985 */
4ed7e022
JL
8986void __meminit zone_pcp_update(struct zone *zone)
8987{
c8e251fa 8988 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8989 zone_set_pageset_high_and_batch(zone);
c8e251fa 8990 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8991}
4ed7e022 8992
ec6e8c7e
VB
8993/*
8994 * Effectively disable pcplists for the zone by setting the high limit to 0
8995 * and draining all cpus. A concurrent page freeing on another CPU that's about
8996 * to put the page on pcplist will either finish before the drain and the page
8997 * will be drained, or observe the new high limit and skip the pcplist.
8998 *
8999 * Must be paired with a call to zone_pcp_enable().
9000 */
9001void zone_pcp_disable(struct zone *zone)
9002{
9003 mutex_lock(&pcp_batch_high_lock);
9004 __zone_set_pageset_high_and_batch(zone, 0, 1);
9005 __drain_all_pages(zone, true);
9006}
9007
9008void zone_pcp_enable(struct zone *zone)
9009{
9010 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9011 mutex_unlock(&pcp_batch_high_lock);
9012}
9013
340175b7
JL
9014void zone_pcp_reset(struct zone *zone)
9015{
9016 unsigned long flags;
5a883813
MK
9017 int cpu;
9018 struct per_cpu_pageset *pset;
340175b7
JL
9019
9020 /* avoid races with drain_pages() */
9021 local_irq_save(flags);
9022 if (zone->pageset != &boot_pageset) {
5a883813
MK
9023 for_each_online_cpu(cpu) {
9024 pset = per_cpu_ptr(zone->pageset, cpu);
9025 drain_zonestat(zone, pset);
9026 }
340175b7
JL
9027 free_percpu(zone->pageset);
9028 zone->pageset = &boot_pageset;
9029 }
9030 local_irq_restore(flags);
9031}
9032
6dcd73d7 9033#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9034/*
257bea71
DH
9035 * All pages in the range must be in a single zone, must not contain holes,
9036 * must span full sections, and must be isolated before calling this function.
0c0e6195 9037 */
257bea71 9038void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9039{
257bea71 9040 unsigned long pfn = start_pfn;
0c0e6195
KH
9041 struct page *page;
9042 struct zone *zone;
0ee5f4f3 9043 unsigned int order;
0c0e6195 9044 unsigned long flags;
5557c766 9045
2d070eab 9046 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9047 zone = page_zone(pfn_to_page(pfn));
9048 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9049 while (pfn < end_pfn) {
0c0e6195 9050 page = pfn_to_page(pfn);
b023f468
WC
9051 /*
9052 * The HWPoisoned page may be not in buddy system, and
9053 * page_count() is not 0.
9054 */
9055 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9056 pfn++;
b023f468
WC
9057 continue;
9058 }
aa218795
DH
9059 /*
9060 * At this point all remaining PageOffline() pages have a
9061 * reference count of 0 and can simply be skipped.
9062 */
9063 if (PageOffline(page)) {
9064 BUG_ON(page_count(page));
9065 BUG_ON(PageBuddy(page));
9066 pfn++;
aa218795
DH
9067 continue;
9068 }
b023f468 9069
0c0e6195
KH
9070 BUG_ON(page_count(page));
9071 BUG_ON(!PageBuddy(page));
ab130f91 9072 order = buddy_order(page);
6ab01363 9073 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9074 pfn += (1 << order);
9075 }
9076 spin_unlock_irqrestore(&zone->lock, flags);
9077}
9078#endif
8d22ba1b 9079
8d22ba1b
WF
9080bool is_free_buddy_page(struct page *page)
9081{
9082 struct zone *zone = page_zone(page);
9083 unsigned long pfn = page_to_pfn(page);
9084 unsigned long flags;
7aeb09f9 9085 unsigned int order;
8d22ba1b
WF
9086
9087 spin_lock_irqsave(&zone->lock, flags);
9088 for (order = 0; order < MAX_ORDER; order++) {
9089 struct page *page_head = page - (pfn & ((1 << order) - 1));
9090
ab130f91 9091 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
9092 break;
9093 }
9094 spin_unlock_irqrestore(&zone->lock, flags);
9095
9096 return order < MAX_ORDER;
9097}
d4ae9916
NH
9098
9099#ifdef CONFIG_MEMORY_FAILURE
9100/*
06be6ff3
OS
9101 * Break down a higher-order page in sub-pages, and keep our target out of
9102 * buddy allocator.
d4ae9916 9103 */
06be6ff3
OS
9104static void break_down_buddy_pages(struct zone *zone, struct page *page,
9105 struct page *target, int low, int high,
9106 int migratetype)
9107{
9108 unsigned long size = 1 << high;
9109 struct page *current_buddy, *next_page;
9110
9111 while (high > low) {
9112 high--;
9113 size >>= 1;
9114
9115 if (target >= &page[size]) {
9116 next_page = page + size;
9117 current_buddy = page;
9118 } else {
9119 next_page = page;
9120 current_buddy = page + size;
9121 }
9122
9123 if (set_page_guard(zone, current_buddy, high, migratetype))
9124 continue;
9125
9126 if (current_buddy != target) {
9127 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9128 set_buddy_order(current_buddy, high);
06be6ff3
OS
9129 page = next_page;
9130 }
9131 }
9132}
9133
9134/*
9135 * Take a page that will be marked as poisoned off the buddy allocator.
9136 */
9137bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9138{
9139 struct zone *zone = page_zone(page);
9140 unsigned long pfn = page_to_pfn(page);
9141 unsigned long flags;
9142 unsigned int order;
06be6ff3 9143 bool ret = false;
d4ae9916
NH
9144
9145 spin_lock_irqsave(&zone->lock, flags);
9146 for (order = 0; order < MAX_ORDER; order++) {
9147 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9148 int page_order = buddy_order(page_head);
d4ae9916 9149
ab130f91 9150 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9151 unsigned long pfn_head = page_to_pfn(page_head);
9152 int migratetype = get_pfnblock_migratetype(page_head,
9153 pfn_head);
9154
ab130f91 9155 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9156 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9157 page_order, migratetype);
06be6ff3 9158 ret = true;
d4ae9916
NH
9159 break;
9160 }
06be6ff3
OS
9161 if (page_count(page_head) > 0)
9162 break;
d4ae9916
NH
9163 }
9164 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9165 return ret;
d4ae9916
NH
9166}
9167#endif