mm, page_alloc: avoid expensive reclaim when compaction may not succeed
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
1da177e4 77
c8e251fa
CS
78/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 80#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 81
72812019
LS
82#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83DEFINE_PER_CPU(int, numa_node);
84EXPORT_PER_CPU_SYMBOL(numa_node);
85#endif
86
4518085e
KW
87DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
7aac7898
LS
89#ifdef CONFIG_HAVE_MEMORYLESS_NODES
90/*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 98int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
bd233f53 106DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 107DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
0ee332c1 338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
351#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
f1eca35a 453 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464#else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467#endif /* CONFIG_SPARSEMEM */
468}
469
470/**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483{
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496}
497
498unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501{
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548}
3a80a7fa 549
ee6f509c 550void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 551{
5d0f3f72
KM
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
554 migratetype = MIGRATE_UNMOVABLE;
555
b2a0ac88
MG
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558}
559
13e7444b 560#ifdef CONFIG_DEBUG_VM
c6a57e19 561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 562{
bdc8cb98
DH
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 566 unsigned long sp, start_pfn;
c6a57e19 567
bdc8cb98
DH
568 do {
569 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
108bcc96 572 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
b5e6a5a2 576 if (ret)
613813e8
DH
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
b5e6a5a2 580
bdc8cb98 581 return ret;
c6a57e19
DH
582}
583
584static int page_is_consistent(struct zone *zone, struct page *page)
585{
14e07298 586 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 587 return 0;
1da177e4 588 if (zone != page_zone(page))
c6a57e19
DH
589 return 0;
590
591 return 1;
592}
593/*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
d73d3c9f 596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
597{
598 if (page_outside_zone_boundaries(zone, page))
1da177e4 599 return 1;
c6a57e19
DH
600 if (!page_is_consistent(zone, page))
601 return 1;
602
1da177e4
LT
603 return 0;
604}
13e7444b 605#else
d73d3c9f 606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
607{
608 return 0;
609}
610#endif
611
d230dec1
KS
612static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
1da177e4 614{
d936cf9b
HD
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
ff8e8116 629 pr_alert(
1e9e6365 630 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
ff8e8116 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 640 current->comm, page_to_pfn(page));
ff8e8116
VB
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
4e462112 646 dump_page_owner(page);
3dc14741 647
4f31888c 648 print_modules();
1da177e4 649 dump_stack();
d936cf9b 650out:
8cc3b392 651 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 652 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
654}
655
1da177e4
LT
656/*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
1d798ca3 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 660 *
1d798ca3
KS
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 663 *
1d798ca3
KS
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
1da177e4 666 *
1d798ca3 667 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 668 * This usage means that zero-order pages may not be compound.
1da177e4 669 */
d98c7a09 670
9a982250 671void free_compound_page(struct page *page)
d98c7a09 672{
d85f3385 673 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
674}
675
d00181b9 676void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
677{
678 int i;
679 int nr_pages = 1 << order;
680
f1e61557 681 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
682 set_compound_order(page, order);
683 __SetPageHead(page);
684 for (i = 1; i < nr_pages; i++) {
685 struct page *p = page + i;
58a84aa9 686 set_page_count(p, 0);
1c290f64 687 p->mapping = TAIL_MAPPING;
1d798ca3 688 set_compound_head(p, page);
18229df5 689 }
53f9263b 690 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
691}
692
c0a32fc5
SG
693#ifdef CONFIG_DEBUG_PAGEALLOC
694unsigned int _debug_guardpage_minorder;
96a2b03f
VB
695
696#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
697DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
698#else
699DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
700#endif
505f6d22 701EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
702
703DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 704
031bc574
JK
705static int __init early_debug_pagealloc(char *buf)
706{
96a2b03f
VB
707 bool enable = false;
708
709 if (kstrtobool(buf, &enable))
031bc574 710 return -EINVAL;
96a2b03f
VB
711
712 if (enable)
713 static_branch_enable(&_debug_pagealloc_enabled);
714
715 return 0;
031bc574
JK
716}
717early_param("debug_pagealloc", early_debug_pagealloc);
718
e30825f1
JK
719static void init_debug_guardpage(void)
720{
031bc574
JK
721 if (!debug_pagealloc_enabled())
722 return;
723
f1c1e9f7
JK
724 if (!debug_guardpage_minorder())
725 return;
726
96a2b03f 727 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
728}
729
c0a32fc5
SG
730static int __init debug_guardpage_minorder_setup(char *buf)
731{
732 unsigned long res;
733
734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 735 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
736 return 0;
737 }
738 _debug_guardpage_minorder = res;
1170532b 739 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
740 return 0;
741}
f1c1e9f7 742early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 743
acbc15a4 744static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 745 unsigned int order, int migratetype)
c0a32fc5 746{
e30825f1 747 if (!debug_guardpage_enabled())
acbc15a4
JK
748 return false;
749
750 if (order >= debug_guardpage_minorder())
751 return false;
e30825f1 752
3972f6bb 753 __SetPageGuard(page);
2847cf95
JK
754 INIT_LIST_HEAD(&page->lru);
755 set_page_private(page, order);
756 /* Guard pages are not available for any usage */
757 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
758
759 return true;
c0a32fc5
SG
760}
761
2847cf95
JK
762static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype)
c0a32fc5 764{
e30825f1
JK
765 if (!debug_guardpage_enabled())
766 return;
767
3972f6bb 768 __ClearPageGuard(page);
e30825f1 769
2847cf95
JK
770 set_page_private(page, 0);
771 if (!is_migrate_isolate(migratetype))
772 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
773}
774#else
acbc15a4
JK
775static inline bool set_page_guard(struct zone *zone, struct page *page,
776 unsigned int order, int migratetype) { return false; }
2847cf95
JK
777static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype) {}
c0a32fc5
SG
779#endif
780
7aeb09f9 781static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 782{
4c21e2f2 783 set_page_private(page, order);
676165a8 784 __SetPageBuddy(page);
1da177e4
LT
785}
786
1da177e4
LT
787/*
788 * This function checks whether a page is free && is the buddy
6e292b9b 789 * we can coalesce a page and its buddy if
13ad59df 790 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 791 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
792 * (c) a page and its buddy have the same order &&
793 * (d) a page and its buddy are in the same zone.
676165a8 794 *
6e292b9b
MW
795 * For recording whether a page is in the buddy system, we set PageBuddy.
796 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 797 *
676165a8 798 * For recording page's order, we use page_private(page).
1da177e4 799 */
cb2b95e1 800static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 801 unsigned int order)
1da177e4 802{
c0a32fc5 803 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
804 if (page_zone_id(page) != page_zone_id(buddy))
805 return 0;
806
4c5018ce
WY
807 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
808
c0a32fc5
SG
809 return 1;
810 }
811
cb2b95e1 812 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
813 /*
814 * zone check is done late to avoid uselessly
815 * calculating zone/node ids for pages that could
816 * never merge.
817 */
818 if (page_zone_id(page) != page_zone_id(buddy))
819 return 0;
820
4c5018ce
WY
821 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
822
6aa3001b 823 return 1;
676165a8 824 }
6aa3001b 825 return 0;
1da177e4
LT
826}
827
5e1f0f09
MG
828#ifdef CONFIG_COMPACTION
829static inline struct capture_control *task_capc(struct zone *zone)
830{
831 struct capture_control *capc = current->capture_control;
832
833 return capc &&
834 !(current->flags & PF_KTHREAD) &&
835 !capc->page &&
836 capc->cc->zone == zone &&
837 capc->cc->direct_compaction ? capc : NULL;
838}
839
840static inline bool
841compaction_capture(struct capture_control *capc, struct page *page,
842 int order, int migratetype)
843{
844 if (!capc || order != capc->cc->order)
845 return false;
846
847 /* Do not accidentally pollute CMA or isolated regions*/
848 if (is_migrate_cma(migratetype) ||
849 is_migrate_isolate(migratetype))
850 return false;
851
852 /*
853 * Do not let lower order allocations polluate a movable pageblock.
854 * This might let an unmovable request use a reclaimable pageblock
855 * and vice-versa but no more than normal fallback logic which can
856 * have trouble finding a high-order free page.
857 */
858 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
859 return false;
860
861 capc->page = page;
862 return true;
863}
864
865#else
866static inline struct capture_control *task_capc(struct zone *zone)
867{
868 return NULL;
869}
870
871static inline bool
872compaction_capture(struct capture_control *capc, struct page *page,
873 int order, int migratetype)
874{
875 return false;
876}
877#endif /* CONFIG_COMPACTION */
878
1da177e4
LT
879/*
880 * Freeing function for a buddy system allocator.
881 *
882 * The concept of a buddy system is to maintain direct-mapped table
883 * (containing bit values) for memory blocks of various "orders".
884 * The bottom level table contains the map for the smallest allocatable
885 * units of memory (here, pages), and each level above it describes
886 * pairs of units from the levels below, hence, "buddies".
887 * At a high level, all that happens here is marking the table entry
888 * at the bottom level available, and propagating the changes upward
889 * as necessary, plus some accounting needed to play nicely with other
890 * parts of the VM system.
891 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
892 * free pages of length of (1 << order) and marked with PageBuddy.
893 * Page's order is recorded in page_private(page) field.
1da177e4 894 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
895 * other. That is, if we allocate a small block, and both were
896 * free, the remainder of the region must be split into blocks.
1da177e4 897 * If a block is freed, and its buddy is also free, then this
5f63b720 898 * triggers coalescing into a block of larger size.
1da177e4 899 *
6d49e352 900 * -- nyc
1da177e4
LT
901 */
902
48db57f8 903static inline void __free_one_page(struct page *page,
dc4b0caf 904 unsigned long pfn,
ed0ae21d
MG
905 struct zone *zone, unsigned int order,
906 int migratetype)
1da177e4 907{
76741e77
VB
908 unsigned long combined_pfn;
909 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 910 struct page *buddy;
d9dddbf5 911 unsigned int max_order;
5e1f0f09 912 struct capture_control *capc = task_capc(zone);
d9dddbf5
VB
913
914 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 915
d29bb978 916 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 917 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 918
ed0ae21d 919 VM_BUG_ON(migratetype == -1);
d9dddbf5 920 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 921 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 922
76741e77 923 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 924 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 925
d9dddbf5 926continue_merging:
3c605096 927 while (order < max_order - 1) {
5e1f0f09
MG
928 if (compaction_capture(capc, page, order, migratetype)) {
929 __mod_zone_freepage_state(zone, -(1 << order),
930 migratetype);
931 return;
932 }
76741e77
VB
933 buddy_pfn = __find_buddy_pfn(pfn, order);
934 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
935
936 if (!pfn_valid_within(buddy_pfn))
937 goto done_merging;
cb2b95e1 938 if (!page_is_buddy(page, buddy, order))
d9dddbf5 939 goto done_merging;
c0a32fc5
SG
940 /*
941 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
942 * merge with it and move up one order.
943 */
b03641af 944 if (page_is_guard(buddy))
2847cf95 945 clear_page_guard(zone, buddy, order, migratetype);
b03641af
DW
946 else
947 del_page_from_free_area(buddy, &zone->free_area[order]);
76741e77
VB
948 combined_pfn = buddy_pfn & pfn;
949 page = page + (combined_pfn - pfn);
950 pfn = combined_pfn;
1da177e4
LT
951 order++;
952 }
d9dddbf5
VB
953 if (max_order < MAX_ORDER) {
954 /* If we are here, it means order is >= pageblock_order.
955 * We want to prevent merge between freepages on isolate
956 * pageblock and normal pageblock. Without this, pageblock
957 * isolation could cause incorrect freepage or CMA accounting.
958 *
959 * We don't want to hit this code for the more frequent
960 * low-order merging.
961 */
962 if (unlikely(has_isolate_pageblock(zone))) {
963 int buddy_mt;
964
76741e77
VB
965 buddy_pfn = __find_buddy_pfn(pfn, order);
966 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
967 buddy_mt = get_pageblock_migratetype(buddy);
968
969 if (migratetype != buddy_mt
970 && (is_migrate_isolate(migratetype) ||
971 is_migrate_isolate(buddy_mt)))
972 goto done_merging;
973 }
974 max_order++;
975 goto continue_merging;
976 }
977
978done_merging:
1da177e4 979 set_page_order(page, order);
6dda9d55
CZ
980
981 /*
982 * If this is not the largest possible page, check if the buddy
983 * of the next-highest order is free. If it is, it's possible
984 * that pages are being freed that will coalesce soon. In case,
985 * that is happening, add the free page to the tail of the list
986 * so it's less likely to be used soon and more likely to be merged
987 * as a higher order page
988 */
97500a4a
DW
989 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
990 && !is_shuffle_order(order)) {
6dda9d55 991 struct page *higher_page, *higher_buddy;
76741e77
VB
992 combined_pfn = buddy_pfn & pfn;
993 higher_page = page + (combined_pfn - pfn);
994 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
995 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
996 if (pfn_valid_within(buddy_pfn) &&
997 page_is_buddy(higher_page, higher_buddy, order + 1)) {
b03641af
DW
998 add_to_free_area_tail(page, &zone->free_area[order],
999 migratetype);
1000 return;
6dda9d55
CZ
1001 }
1002 }
1003
97500a4a
DW
1004 if (is_shuffle_order(order))
1005 add_to_free_area_random(page, &zone->free_area[order],
1006 migratetype);
1007 else
1008 add_to_free_area(page, &zone->free_area[order], migratetype);
1009
1da177e4
LT
1010}
1011
7bfec6f4
MG
1012/*
1013 * A bad page could be due to a number of fields. Instead of multiple branches,
1014 * try and check multiple fields with one check. The caller must do a detailed
1015 * check if necessary.
1016 */
1017static inline bool page_expected_state(struct page *page,
1018 unsigned long check_flags)
1019{
1020 if (unlikely(atomic_read(&page->_mapcount) != -1))
1021 return false;
1022
1023 if (unlikely((unsigned long)page->mapping |
1024 page_ref_count(page) |
1025#ifdef CONFIG_MEMCG
1026 (unsigned long)page->mem_cgroup |
1027#endif
1028 (page->flags & check_flags)))
1029 return false;
1030
1031 return true;
1032}
1033
bb552ac6 1034static void free_pages_check_bad(struct page *page)
1da177e4 1035{
7bfec6f4
MG
1036 const char *bad_reason;
1037 unsigned long bad_flags;
1038
7bfec6f4
MG
1039 bad_reason = NULL;
1040 bad_flags = 0;
f0b791a3 1041
53f9263b 1042 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1043 bad_reason = "nonzero mapcount";
1044 if (unlikely(page->mapping != NULL))
1045 bad_reason = "non-NULL mapping";
fe896d18 1046 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1047 bad_reason = "nonzero _refcount";
f0b791a3
DH
1048 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1049 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1050 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1051 }
9edad6ea
JW
1052#ifdef CONFIG_MEMCG
1053 if (unlikely(page->mem_cgroup))
1054 bad_reason = "page still charged to cgroup";
1055#endif
7bfec6f4 1056 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1057}
1058
1059static inline int free_pages_check(struct page *page)
1060{
da838d4f 1061 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1062 return 0;
bb552ac6
MG
1063
1064 /* Something has gone sideways, find it */
1065 free_pages_check_bad(page);
7bfec6f4 1066 return 1;
1da177e4
LT
1067}
1068
4db7548c
MG
1069static int free_tail_pages_check(struct page *head_page, struct page *page)
1070{
1071 int ret = 1;
1072
1073 /*
1074 * We rely page->lru.next never has bit 0 set, unless the page
1075 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1076 */
1077 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1078
1079 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1080 ret = 0;
1081 goto out;
1082 }
1083 switch (page - head_page) {
1084 case 1:
4da1984e 1085 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1086 if (unlikely(compound_mapcount(page))) {
1087 bad_page(page, "nonzero compound_mapcount", 0);
1088 goto out;
1089 }
1090 break;
1091 case 2:
1092 /*
1093 * the second tail page: ->mapping is
fa3015b7 1094 * deferred_list.next -- ignore value.
4db7548c
MG
1095 */
1096 break;
1097 default:
1098 if (page->mapping != TAIL_MAPPING) {
1099 bad_page(page, "corrupted mapping in tail page", 0);
1100 goto out;
1101 }
1102 break;
1103 }
1104 if (unlikely(!PageTail(page))) {
1105 bad_page(page, "PageTail not set", 0);
1106 goto out;
1107 }
1108 if (unlikely(compound_head(page) != head_page)) {
1109 bad_page(page, "compound_head not consistent", 0);
1110 goto out;
1111 }
1112 ret = 0;
1113out:
1114 page->mapping = NULL;
1115 clear_compound_head(page);
1116 return ret;
1117}
1118
6471384a
AP
1119static void kernel_init_free_pages(struct page *page, int numpages)
1120{
1121 int i;
1122
1123 for (i = 0; i < numpages; i++)
1124 clear_highpage(page + i);
1125}
1126
e2769dbd
MG
1127static __always_inline bool free_pages_prepare(struct page *page,
1128 unsigned int order, bool check_free)
4db7548c 1129{
e2769dbd 1130 int bad = 0;
4db7548c 1131
4db7548c
MG
1132 VM_BUG_ON_PAGE(PageTail(page), page);
1133
e2769dbd 1134 trace_mm_page_free(page, order);
e2769dbd
MG
1135
1136 /*
1137 * Check tail pages before head page information is cleared to
1138 * avoid checking PageCompound for order-0 pages.
1139 */
1140 if (unlikely(order)) {
1141 bool compound = PageCompound(page);
1142 int i;
1143
1144 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1145
9a73f61b
KS
1146 if (compound)
1147 ClearPageDoubleMap(page);
e2769dbd
MG
1148 for (i = 1; i < (1 << order); i++) {
1149 if (compound)
1150 bad += free_tail_pages_check(page, page + i);
1151 if (unlikely(free_pages_check(page + i))) {
1152 bad++;
1153 continue;
1154 }
1155 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1156 }
1157 }
bda807d4 1158 if (PageMappingFlags(page))
4db7548c 1159 page->mapping = NULL;
c4159a75 1160 if (memcg_kmem_enabled() && PageKmemcg(page))
60cd4bcd 1161 __memcg_kmem_uncharge(page, order);
e2769dbd
MG
1162 if (check_free)
1163 bad += free_pages_check(page);
1164 if (bad)
1165 return false;
4db7548c 1166
e2769dbd
MG
1167 page_cpupid_reset_last(page);
1168 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1169 reset_page_owner(page, order);
4db7548c
MG
1170
1171 if (!PageHighMem(page)) {
1172 debug_check_no_locks_freed(page_address(page),
e2769dbd 1173 PAGE_SIZE << order);
4db7548c 1174 debug_check_no_obj_freed(page_address(page),
e2769dbd 1175 PAGE_SIZE << order);
4db7548c 1176 }
e2769dbd 1177 arch_free_page(page, order);
6471384a
AP
1178 if (want_init_on_free())
1179 kernel_init_free_pages(page, 1 << order);
1180
e2769dbd 1181 kernel_poison_pages(page, 1 << order, 0);
d6332692
RE
1182 if (debug_pagealloc_enabled())
1183 kernel_map_pages(page, 1 << order, 0);
1184
3c0c12cc 1185 kasan_free_nondeferred_pages(page, order);
4db7548c 1186
4db7548c
MG
1187 return true;
1188}
1189
e2769dbd 1190#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1191/*
1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1194 * moved from pcp lists to free lists.
1195 */
1196static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1197{
1198 return free_pages_prepare(page, 0, true);
1199}
1200
4462b32c 1201static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1202{
4462b32c
VB
1203 if (debug_pagealloc_enabled())
1204 return free_pages_check(page);
1205 else
1206 return false;
e2769dbd
MG
1207}
1208#else
4462b32c
VB
1209/*
1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1211 * moving from pcp lists to free list in order to reduce overhead. With
1212 * debug_pagealloc enabled, they are checked also immediately when being freed
1213 * to the pcp lists.
1214 */
e2769dbd
MG
1215static bool free_pcp_prepare(struct page *page)
1216{
4462b32c
VB
1217 if (debug_pagealloc_enabled())
1218 return free_pages_prepare(page, 0, true);
1219 else
1220 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1221}
1222
4db7548c
MG
1223static bool bulkfree_pcp_prepare(struct page *page)
1224{
1225 return free_pages_check(page);
1226}
1227#endif /* CONFIG_DEBUG_VM */
1228
97334162
AL
1229static inline void prefetch_buddy(struct page *page)
1230{
1231 unsigned long pfn = page_to_pfn(page);
1232 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1233 struct page *buddy = page + (buddy_pfn - pfn);
1234
1235 prefetch(buddy);
1236}
1237
1da177e4 1238/*
5f8dcc21 1239 * Frees a number of pages from the PCP lists
1da177e4 1240 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1241 * count is the number of pages to free.
1da177e4
LT
1242 *
1243 * If the zone was previously in an "all pages pinned" state then look to
1244 * see if this freeing clears that state.
1245 *
1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1247 * pinned" detection logic.
1248 */
5f8dcc21
MG
1249static void free_pcppages_bulk(struct zone *zone, int count,
1250 struct per_cpu_pages *pcp)
1da177e4 1251{
5f8dcc21 1252 int migratetype = 0;
a6f9edd6 1253 int batch_free = 0;
97334162 1254 int prefetch_nr = 0;
3777999d 1255 bool isolated_pageblocks;
0a5f4e5b
AL
1256 struct page *page, *tmp;
1257 LIST_HEAD(head);
f2260e6b 1258
e5b31ac2 1259 while (count) {
5f8dcc21
MG
1260 struct list_head *list;
1261
1262 /*
a6f9edd6
MG
1263 * Remove pages from lists in a round-robin fashion. A
1264 * batch_free count is maintained that is incremented when an
1265 * empty list is encountered. This is so more pages are freed
1266 * off fuller lists instead of spinning excessively around empty
1267 * lists
5f8dcc21
MG
1268 */
1269 do {
a6f9edd6 1270 batch_free++;
5f8dcc21
MG
1271 if (++migratetype == MIGRATE_PCPTYPES)
1272 migratetype = 0;
1273 list = &pcp->lists[migratetype];
1274 } while (list_empty(list));
48db57f8 1275
1d16871d
NK
1276 /* This is the only non-empty list. Free them all. */
1277 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1278 batch_free = count;
1d16871d 1279
a6f9edd6 1280 do {
a16601c5 1281 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1282 /* must delete to avoid corrupting pcp list */
a6f9edd6 1283 list_del(&page->lru);
77ba9062 1284 pcp->count--;
aa016d14 1285
4db7548c
MG
1286 if (bulkfree_pcp_prepare(page))
1287 continue;
1288
0a5f4e5b 1289 list_add_tail(&page->lru, &head);
97334162
AL
1290
1291 /*
1292 * We are going to put the page back to the global
1293 * pool, prefetch its buddy to speed up later access
1294 * under zone->lock. It is believed the overhead of
1295 * an additional test and calculating buddy_pfn here
1296 * can be offset by reduced memory latency later. To
1297 * avoid excessive prefetching due to large count, only
1298 * prefetch buddy for the first pcp->batch nr of pages.
1299 */
1300 if (prefetch_nr++ < pcp->batch)
1301 prefetch_buddy(page);
e5b31ac2 1302 } while (--count && --batch_free && !list_empty(list));
1da177e4 1303 }
0a5f4e5b
AL
1304
1305 spin_lock(&zone->lock);
1306 isolated_pageblocks = has_isolate_pageblock(zone);
1307
1308 /*
1309 * Use safe version since after __free_one_page(),
1310 * page->lru.next will not point to original list.
1311 */
1312 list_for_each_entry_safe(page, tmp, &head, lru) {
1313 int mt = get_pcppage_migratetype(page);
1314 /* MIGRATE_ISOLATE page should not go to pcplists */
1315 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1316 /* Pageblock could have been isolated meanwhile */
1317 if (unlikely(isolated_pageblocks))
1318 mt = get_pageblock_migratetype(page);
1319
1320 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1321 trace_mm_page_pcpu_drain(page, 0, mt);
1322 }
d34b0733 1323 spin_unlock(&zone->lock);
1da177e4
LT
1324}
1325
dc4b0caf
MG
1326static void free_one_page(struct zone *zone,
1327 struct page *page, unsigned long pfn,
7aeb09f9 1328 unsigned int order,
ed0ae21d 1329 int migratetype)
1da177e4 1330{
d34b0733 1331 spin_lock(&zone->lock);
ad53f92e
JK
1332 if (unlikely(has_isolate_pageblock(zone) ||
1333 is_migrate_isolate(migratetype))) {
1334 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1335 }
dc4b0caf 1336 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1337 spin_unlock(&zone->lock);
48db57f8
NP
1338}
1339
1e8ce83c 1340static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1341 unsigned long zone, int nid)
1e8ce83c 1342{
d0dc12e8 1343 mm_zero_struct_page(page);
1e8ce83c 1344 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1345 init_page_count(page);
1346 page_mapcount_reset(page);
1347 page_cpupid_reset_last(page);
2813b9c0 1348 page_kasan_tag_reset(page);
1e8ce83c 1349
1e8ce83c
RH
1350 INIT_LIST_HEAD(&page->lru);
1351#ifdef WANT_PAGE_VIRTUAL
1352 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1353 if (!is_highmem_idx(zone))
1354 set_page_address(page, __va(pfn << PAGE_SHIFT));
1355#endif
1356}
1357
7e18adb4 1358#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1359static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1360{
1361 pg_data_t *pgdat;
1362 int nid, zid;
1363
1364 if (!early_page_uninitialised(pfn))
1365 return;
1366
1367 nid = early_pfn_to_nid(pfn);
1368 pgdat = NODE_DATA(nid);
1369
1370 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1371 struct zone *zone = &pgdat->node_zones[zid];
1372
1373 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1374 break;
1375 }
d0dc12e8 1376 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1377}
1378#else
1379static inline void init_reserved_page(unsigned long pfn)
1380{
1381}
1382#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1383
92923ca3
NZ
1384/*
1385 * Initialised pages do not have PageReserved set. This function is
1386 * called for each range allocated by the bootmem allocator and
1387 * marks the pages PageReserved. The remaining valid pages are later
1388 * sent to the buddy page allocator.
1389 */
4b50bcc7 1390void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1391{
1392 unsigned long start_pfn = PFN_DOWN(start);
1393 unsigned long end_pfn = PFN_UP(end);
1394
7e18adb4
MG
1395 for (; start_pfn < end_pfn; start_pfn++) {
1396 if (pfn_valid(start_pfn)) {
1397 struct page *page = pfn_to_page(start_pfn);
1398
1399 init_reserved_page(start_pfn);
1d798ca3
KS
1400
1401 /* Avoid false-positive PageTail() */
1402 INIT_LIST_HEAD(&page->lru);
1403
d483da5b
AD
1404 /*
1405 * no need for atomic set_bit because the struct
1406 * page is not visible yet so nobody should
1407 * access it yet.
1408 */
1409 __SetPageReserved(page);
7e18adb4
MG
1410 }
1411 }
92923ca3
NZ
1412}
1413
ec95f53a
KM
1414static void __free_pages_ok(struct page *page, unsigned int order)
1415{
d34b0733 1416 unsigned long flags;
95e34412 1417 int migratetype;
dc4b0caf 1418 unsigned long pfn = page_to_pfn(page);
ec95f53a 1419
e2769dbd 1420 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1421 return;
1422
cfc47a28 1423 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1424 local_irq_save(flags);
1425 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1426 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1427 local_irq_restore(flags);
1da177e4
LT
1428}
1429
a9cd410a 1430void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1431{
c3993076 1432 unsigned int nr_pages = 1 << order;
e2d0bd2b 1433 struct page *p = page;
c3993076 1434 unsigned int loop;
a226f6c8 1435
e2d0bd2b
YL
1436 prefetchw(p);
1437 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1438 prefetchw(p + 1);
c3993076
JW
1439 __ClearPageReserved(p);
1440 set_page_count(p, 0);
a226f6c8 1441 }
e2d0bd2b
YL
1442 __ClearPageReserved(p);
1443 set_page_count(p, 0);
c3993076 1444
9705bea5 1445 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1446 set_page_refcounted(page);
1447 __free_pages(page, order);
a226f6c8
DH
1448}
1449
75a592a4
MG
1450#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1451 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1452
75a592a4
MG
1453static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1454
1455int __meminit early_pfn_to_nid(unsigned long pfn)
1456{
7ace9917 1457 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1458 int nid;
1459
7ace9917 1460 spin_lock(&early_pfn_lock);
75a592a4 1461 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1462 if (nid < 0)
e4568d38 1463 nid = first_online_node;
7ace9917
MG
1464 spin_unlock(&early_pfn_lock);
1465
1466 return nid;
75a592a4
MG
1467}
1468#endif
1469
1470#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1471/* Only safe to use early in boot when initialisation is single-threaded */
1472static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1473{
1474 int nid;
1475
56ec43d8 1476 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1477 if (nid >= 0 && nid != node)
1478 return false;
1479 return true;
1480}
1481
75a592a4 1482#else
75a592a4
MG
1483static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1484{
1485 return true;
1486}
75a592a4
MG
1487#endif
1488
1489
7c2ee349 1490void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1491 unsigned int order)
1492{
1493 if (early_page_uninitialised(pfn))
1494 return;
a9cd410a 1495 __free_pages_core(page, order);
3a80a7fa
MG
1496}
1497
7cf91a98
JK
1498/*
1499 * Check that the whole (or subset of) a pageblock given by the interval of
1500 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1501 * with the migration of free compaction scanner. The scanners then need to
1502 * use only pfn_valid_within() check for arches that allow holes within
1503 * pageblocks.
1504 *
1505 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1506 *
1507 * It's possible on some configurations to have a setup like node0 node1 node0
1508 * i.e. it's possible that all pages within a zones range of pages do not
1509 * belong to a single zone. We assume that a border between node0 and node1
1510 * can occur within a single pageblock, but not a node0 node1 node0
1511 * interleaving within a single pageblock. It is therefore sufficient to check
1512 * the first and last page of a pageblock and avoid checking each individual
1513 * page in a pageblock.
1514 */
1515struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1516 unsigned long end_pfn, struct zone *zone)
1517{
1518 struct page *start_page;
1519 struct page *end_page;
1520
1521 /* end_pfn is one past the range we are checking */
1522 end_pfn--;
1523
1524 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1525 return NULL;
1526
2d070eab
MH
1527 start_page = pfn_to_online_page(start_pfn);
1528 if (!start_page)
1529 return NULL;
7cf91a98
JK
1530
1531 if (page_zone(start_page) != zone)
1532 return NULL;
1533
1534 end_page = pfn_to_page(end_pfn);
1535
1536 /* This gives a shorter code than deriving page_zone(end_page) */
1537 if (page_zone_id(start_page) != page_zone_id(end_page))
1538 return NULL;
1539
1540 return start_page;
1541}
1542
1543void set_zone_contiguous(struct zone *zone)
1544{
1545 unsigned long block_start_pfn = zone->zone_start_pfn;
1546 unsigned long block_end_pfn;
1547
1548 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1549 for (; block_start_pfn < zone_end_pfn(zone);
1550 block_start_pfn = block_end_pfn,
1551 block_end_pfn += pageblock_nr_pages) {
1552
1553 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1554
1555 if (!__pageblock_pfn_to_page(block_start_pfn,
1556 block_end_pfn, zone))
1557 return;
1558 }
1559
1560 /* We confirm that there is no hole */
1561 zone->contiguous = true;
1562}
1563
1564void clear_zone_contiguous(struct zone *zone)
1565{
1566 zone->contiguous = false;
1567}
1568
7e18adb4 1569#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1570static void __init deferred_free_range(unsigned long pfn,
1571 unsigned long nr_pages)
a4de83dd 1572{
2f47a91f
PT
1573 struct page *page;
1574 unsigned long i;
a4de83dd 1575
2f47a91f 1576 if (!nr_pages)
a4de83dd
MG
1577 return;
1578
2f47a91f
PT
1579 page = pfn_to_page(pfn);
1580
a4de83dd 1581 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1582 if (nr_pages == pageblock_nr_pages &&
1583 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1584 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1585 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1586 return;
1587 }
1588
e780149b
XQ
1589 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1590 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1592 __free_pages_core(page, 0);
e780149b 1593 }
a4de83dd
MG
1594}
1595
d3cd131d
NS
1596/* Completion tracking for deferred_init_memmap() threads */
1597static atomic_t pgdat_init_n_undone __initdata;
1598static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1599
1600static inline void __init pgdat_init_report_one_done(void)
1601{
1602 if (atomic_dec_and_test(&pgdat_init_n_undone))
1603 complete(&pgdat_init_all_done_comp);
1604}
0e1cc95b 1605
2f47a91f 1606/*
80b1f41c
PT
1607 * Returns true if page needs to be initialized or freed to buddy allocator.
1608 *
1609 * First we check if pfn is valid on architectures where it is possible to have
1610 * holes within pageblock_nr_pages. On systems where it is not possible, this
1611 * function is optimized out.
1612 *
1613 * Then, we check if a current large page is valid by only checking the validity
1614 * of the head pfn.
2f47a91f 1615 */
56ec43d8 1616static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1617{
80b1f41c
PT
1618 if (!pfn_valid_within(pfn))
1619 return false;
1620 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1621 return false;
80b1f41c
PT
1622 return true;
1623}
2f47a91f 1624
80b1f41c
PT
1625/*
1626 * Free pages to buddy allocator. Try to free aligned pages in
1627 * pageblock_nr_pages sizes.
1628 */
56ec43d8 1629static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1630 unsigned long end_pfn)
1631{
80b1f41c
PT
1632 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1633 unsigned long nr_free = 0;
2f47a91f 1634
80b1f41c 1635 for (; pfn < end_pfn; pfn++) {
56ec43d8 1636 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1637 deferred_free_range(pfn - nr_free, nr_free);
1638 nr_free = 0;
1639 } else if (!(pfn & nr_pgmask)) {
1640 deferred_free_range(pfn - nr_free, nr_free);
1641 nr_free = 1;
3a2d7fa8 1642 touch_nmi_watchdog();
80b1f41c
PT
1643 } else {
1644 nr_free++;
1645 }
1646 }
1647 /* Free the last block of pages to allocator */
1648 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1649}
1650
80b1f41c
PT
1651/*
1652 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1653 * by performing it only once every pageblock_nr_pages.
1654 * Return number of pages initialized.
1655 */
56ec43d8 1656static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1657 unsigned long pfn,
1658 unsigned long end_pfn)
2f47a91f 1659{
2f47a91f 1660 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1661 int nid = zone_to_nid(zone);
2f47a91f 1662 unsigned long nr_pages = 0;
56ec43d8 1663 int zid = zone_idx(zone);
2f47a91f 1664 struct page *page = NULL;
2f47a91f 1665
80b1f41c 1666 for (; pfn < end_pfn; pfn++) {
56ec43d8 1667 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1668 page = NULL;
2f47a91f 1669 continue;
80b1f41c 1670 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1671 page = pfn_to_page(pfn);
3a2d7fa8 1672 touch_nmi_watchdog();
80b1f41c
PT
1673 } else {
1674 page++;
2f47a91f 1675 }
d0dc12e8 1676 __init_single_page(page, pfn, zid, nid);
80b1f41c 1677 nr_pages++;
2f47a91f 1678 }
80b1f41c 1679 return (nr_pages);
2f47a91f
PT
1680}
1681
0e56acae
AD
1682/*
1683 * This function is meant to pre-load the iterator for the zone init.
1684 * Specifically it walks through the ranges until we are caught up to the
1685 * first_init_pfn value and exits there. If we never encounter the value we
1686 * return false indicating there are no valid ranges left.
1687 */
1688static bool __init
1689deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1690 unsigned long *spfn, unsigned long *epfn,
1691 unsigned long first_init_pfn)
1692{
1693 u64 j;
1694
1695 /*
1696 * Start out by walking through the ranges in this zone that have
1697 * already been initialized. We don't need to do anything with them
1698 * so we just need to flush them out of the system.
1699 */
1700 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1701 if (*epfn <= first_init_pfn)
1702 continue;
1703 if (*spfn < first_init_pfn)
1704 *spfn = first_init_pfn;
1705 *i = j;
1706 return true;
1707 }
1708
1709 return false;
1710}
1711
1712/*
1713 * Initialize and free pages. We do it in two loops: first we initialize
1714 * struct page, then free to buddy allocator, because while we are
1715 * freeing pages we can access pages that are ahead (computing buddy
1716 * page in __free_one_page()).
1717 *
1718 * In order to try and keep some memory in the cache we have the loop
1719 * broken along max page order boundaries. This way we will not cause
1720 * any issues with the buddy page computation.
1721 */
1722static unsigned long __init
1723deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1724 unsigned long *end_pfn)
1725{
1726 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1727 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1728 unsigned long nr_pages = 0;
1729 u64 j = *i;
1730
1731 /* First we loop through and initialize the page values */
1732 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1733 unsigned long t;
1734
1735 if (mo_pfn <= *start_pfn)
1736 break;
1737
1738 t = min(mo_pfn, *end_pfn);
1739 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1740
1741 if (mo_pfn < *end_pfn) {
1742 *start_pfn = mo_pfn;
1743 break;
1744 }
1745 }
1746
1747 /* Reset values and now loop through freeing pages as needed */
1748 swap(j, *i);
1749
1750 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1751 unsigned long t;
1752
1753 if (mo_pfn <= spfn)
1754 break;
1755
1756 t = min(mo_pfn, epfn);
1757 deferred_free_pages(spfn, t);
1758
1759 if (mo_pfn <= epfn)
1760 break;
1761 }
1762
1763 return nr_pages;
1764}
1765
7e18adb4 1766/* Initialise remaining memory on a node */
0e1cc95b 1767static int __init deferred_init_memmap(void *data)
7e18adb4 1768{
0e1cc95b 1769 pg_data_t *pgdat = data;
0e56acae
AD
1770 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1771 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1772 unsigned long first_init_pfn, flags;
7e18adb4 1773 unsigned long start = jiffies;
7e18adb4 1774 struct zone *zone;
0e56acae 1775 int zid;
2f47a91f 1776 u64 i;
7e18adb4 1777
3a2d7fa8
PT
1778 /* Bind memory initialisation thread to a local node if possible */
1779 if (!cpumask_empty(cpumask))
1780 set_cpus_allowed_ptr(current, cpumask);
1781
1782 pgdat_resize_lock(pgdat, &flags);
1783 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1784 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1785 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1786 pgdat_init_report_one_done();
0e1cc95b
MG
1787 return 0;
1788 }
1789
7e18adb4
MG
1790 /* Sanity check boundaries */
1791 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1792 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1793 pgdat->first_deferred_pfn = ULONG_MAX;
1794
1795 /* Only the highest zone is deferred so find it */
1796 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1797 zone = pgdat->node_zones + zid;
1798 if (first_init_pfn < zone_end_pfn(zone))
1799 break;
1800 }
0e56acae
AD
1801
1802 /* If the zone is empty somebody else may have cleared out the zone */
1803 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1804 first_init_pfn))
1805 goto zone_empty;
7e18adb4 1806
80b1f41c 1807 /*
0e56acae
AD
1808 * Initialize and free pages in MAX_ORDER sized increments so
1809 * that we can avoid introducing any issues with the buddy
1810 * allocator.
80b1f41c 1811 */
0e56acae
AD
1812 while (spfn < epfn)
1813 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1814zone_empty:
3a2d7fa8 1815 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1816
1817 /* Sanity check that the next zone really is unpopulated */
1818 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1819
837566e7
AD
1820 pr_info("node %d initialised, %lu pages in %ums\n",
1821 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1822
1823 pgdat_init_report_one_done();
0e1cc95b
MG
1824 return 0;
1825}
c9e97a19 1826
c9e97a19
PT
1827/*
1828 * If this zone has deferred pages, try to grow it by initializing enough
1829 * deferred pages to satisfy the allocation specified by order, rounded up to
1830 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1831 * of SECTION_SIZE bytes by initializing struct pages in increments of
1832 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1833 *
1834 * Return true when zone was grown, otherwise return false. We return true even
1835 * when we grow less than requested, to let the caller decide if there are
1836 * enough pages to satisfy the allocation.
1837 *
1838 * Note: We use noinline because this function is needed only during boot, and
1839 * it is called from a __ref function _deferred_grow_zone. This way we are
1840 * making sure that it is not inlined into permanent text section.
1841 */
1842static noinline bool __init
1843deferred_grow_zone(struct zone *zone, unsigned int order)
1844{
c9e97a19 1845 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1846 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1847 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1848 unsigned long spfn, epfn, flags;
1849 unsigned long nr_pages = 0;
c9e97a19
PT
1850 u64 i;
1851
1852 /* Only the last zone may have deferred pages */
1853 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1854 return false;
1855
1856 pgdat_resize_lock(pgdat, &flags);
1857
1858 /*
1859 * If deferred pages have been initialized while we were waiting for
1860 * the lock, return true, as the zone was grown. The caller will retry
1861 * this zone. We won't return to this function since the caller also
1862 * has this static branch.
1863 */
1864 if (!static_branch_unlikely(&deferred_pages)) {
1865 pgdat_resize_unlock(pgdat, &flags);
1866 return true;
1867 }
1868
1869 /*
1870 * If someone grew this zone while we were waiting for spinlock, return
1871 * true, as there might be enough pages already.
1872 */
1873 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1874 pgdat_resize_unlock(pgdat, &flags);
1875 return true;
1876 }
1877
0e56acae
AD
1878 /* If the zone is empty somebody else may have cleared out the zone */
1879 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1880 first_deferred_pfn)) {
1881 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1882 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1883 /* Retry only once. */
1884 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1885 }
1886
0e56acae
AD
1887 /*
1888 * Initialize and free pages in MAX_ORDER sized increments so
1889 * that we can avoid introducing any issues with the buddy
1890 * allocator.
1891 */
1892 while (spfn < epfn) {
1893 /* update our first deferred PFN for this section */
1894 first_deferred_pfn = spfn;
1895
1896 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1897
0e56acae
AD
1898 /* We should only stop along section boundaries */
1899 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1900 continue;
c9e97a19 1901
0e56acae 1902 /* If our quota has been met we can stop here */
c9e97a19
PT
1903 if (nr_pages >= nr_pages_needed)
1904 break;
1905 }
1906
0e56acae 1907 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1908 pgdat_resize_unlock(pgdat, &flags);
1909
1910 return nr_pages > 0;
1911}
1912
1913/*
1914 * deferred_grow_zone() is __init, but it is called from
1915 * get_page_from_freelist() during early boot until deferred_pages permanently
1916 * disables this call. This is why we have refdata wrapper to avoid warning,
1917 * and to ensure that the function body gets unloaded.
1918 */
1919static bool __ref
1920_deferred_grow_zone(struct zone *zone, unsigned int order)
1921{
1922 return deferred_grow_zone(zone, order);
1923}
1924
7cf91a98 1925#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1926
1927void __init page_alloc_init_late(void)
1928{
7cf91a98 1929 struct zone *zone;
e900a918 1930 int nid;
7cf91a98
JK
1931
1932#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1933
d3cd131d
NS
1934 /* There will be num_node_state(N_MEMORY) threads */
1935 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1936 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1937 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1938 }
1939
1940 /* Block until all are initialised */
d3cd131d 1941 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1942
c9e97a19
PT
1943 /*
1944 * We initialized the rest of the deferred pages. Permanently disable
1945 * on-demand struct page initialization.
1946 */
1947 static_branch_disable(&deferred_pages);
1948
4248b0da
MG
1949 /* Reinit limits that are based on free pages after the kernel is up */
1950 files_maxfiles_init();
7cf91a98 1951#endif
350e88ba 1952
3010f876
PT
1953 /* Discard memblock private memory */
1954 memblock_discard();
7cf91a98 1955
e900a918
DW
1956 for_each_node_state(nid, N_MEMORY)
1957 shuffle_free_memory(NODE_DATA(nid));
1958
7cf91a98
JK
1959 for_each_populated_zone(zone)
1960 set_zone_contiguous(zone);
3972f6bb
VB
1961
1962#ifdef CONFIG_DEBUG_PAGEALLOC
1963 init_debug_guardpage();
1964#endif
7e18adb4 1965}
7e18adb4 1966
47118af0 1967#ifdef CONFIG_CMA
9cf510a5 1968/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1969void __init init_cma_reserved_pageblock(struct page *page)
1970{
1971 unsigned i = pageblock_nr_pages;
1972 struct page *p = page;
1973
1974 do {
1975 __ClearPageReserved(p);
1976 set_page_count(p, 0);
d883c6cf 1977 } while (++p, --i);
47118af0 1978
47118af0 1979 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1980
1981 if (pageblock_order >= MAX_ORDER) {
1982 i = pageblock_nr_pages;
1983 p = page;
1984 do {
1985 set_page_refcounted(p);
1986 __free_pages(p, MAX_ORDER - 1);
1987 p += MAX_ORDER_NR_PAGES;
1988 } while (i -= MAX_ORDER_NR_PAGES);
1989 } else {
1990 set_page_refcounted(page);
1991 __free_pages(page, pageblock_order);
1992 }
1993
3dcc0571 1994 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1995}
1996#endif
1da177e4
LT
1997
1998/*
1999 * The order of subdivision here is critical for the IO subsystem.
2000 * Please do not alter this order without good reasons and regression
2001 * testing. Specifically, as large blocks of memory are subdivided,
2002 * the order in which smaller blocks are delivered depends on the order
2003 * they're subdivided in this function. This is the primary factor
2004 * influencing the order in which pages are delivered to the IO
2005 * subsystem according to empirical testing, and this is also justified
2006 * by considering the behavior of a buddy system containing a single
2007 * large block of memory acted on by a series of small allocations.
2008 * This behavior is a critical factor in sglist merging's success.
2009 *
6d49e352 2010 * -- nyc
1da177e4 2011 */
085cc7d5 2012static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
2013 int low, int high, struct free_area *area,
2014 int migratetype)
1da177e4
LT
2015{
2016 unsigned long size = 1 << high;
2017
2018 while (high > low) {
2019 area--;
2020 high--;
2021 size >>= 1;
309381fe 2022 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2023
acbc15a4
JK
2024 /*
2025 * Mark as guard pages (or page), that will allow to
2026 * merge back to allocator when buddy will be freed.
2027 * Corresponding page table entries will not be touched,
2028 * pages will stay not present in virtual address space
2029 */
2030 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2031 continue;
acbc15a4 2032
b03641af 2033 add_to_free_area(&page[size], area, migratetype);
1da177e4
LT
2034 set_page_order(&page[size], high);
2035 }
1da177e4
LT
2036}
2037
4e611801 2038static void check_new_page_bad(struct page *page)
1da177e4 2039{
4e611801
VB
2040 const char *bad_reason = NULL;
2041 unsigned long bad_flags = 0;
7bfec6f4 2042
53f9263b 2043 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
2044 bad_reason = "nonzero mapcount";
2045 if (unlikely(page->mapping != NULL))
2046 bad_reason = "non-NULL mapping";
fe896d18 2047 if (unlikely(page_ref_count(page) != 0))
136ac591 2048 bad_reason = "nonzero _refcount";
f4c18e6f
NH
2049 if (unlikely(page->flags & __PG_HWPOISON)) {
2050 bad_reason = "HWPoisoned (hardware-corrupted)";
2051 bad_flags = __PG_HWPOISON;
e570f56c
NH
2052 /* Don't complain about hwpoisoned pages */
2053 page_mapcount_reset(page); /* remove PageBuddy */
2054 return;
f4c18e6f 2055 }
f0b791a3
DH
2056 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2057 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2058 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2059 }
9edad6ea
JW
2060#ifdef CONFIG_MEMCG
2061 if (unlikely(page->mem_cgroup))
2062 bad_reason = "page still charged to cgroup";
2063#endif
4e611801
VB
2064 bad_page(page, bad_reason, bad_flags);
2065}
2066
2067/*
2068 * This page is about to be returned from the page allocator
2069 */
2070static inline int check_new_page(struct page *page)
2071{
2072 if (likely(page_expected_state(page,
2073 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2074 return 0;
2075
2076 check_new_page_bad(page);
2077 return 1;
2a7684a2
WF
2078}
2079
bd33ef36 2080static inline bool free_pages_prezeroed(void)
1414c7f4 2081{
6471384a
AP
2082 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2083 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2084}
2085
479f854a 2086#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2087/*
2088 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2089 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2090 * also checked when pcp lists are refilled from the free lists.
2091 */
2092static inline bool check_pcp_refill(struct page *page)
479f854a 2093{
4462b32c
VB
2094 if (debug_pagealloc_enabled())
2095 return check_new_page(page);
2096 else
2097 return false;
479f854a
MG
2098}
2099
4462b32c 2100static inline bool check_new_pcp(struct page *page)
479f854a
MG
2101{
2102 return check_new_page(page);
2103}
2104#else
4462b32c
VB
2105/*
2106 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2107 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2108 * enabled, they are also checked when being allocated from the pcp lists.
2109 */
2110static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2111{
2112 return check_new_page(page);
2113}
4462b32c 2114static inline bool check_new_pcp(struct page *page)
479f854a 2115{
4462b32c
VB
2116 if (debug_pagealloc_enabled())
2117 return check_new_page(page);
2118 else
2119 return false;
479f854a
MG
2120}
2121#endif /* CONFIG_DEBUG_VM */
2122
2123static bool check_new_pages(struct page *page, unsigned int order)
2124{
2125 int i;
2126 for (i = 0; i < (1 << order); i++) {
2127 struct page *p = page + i;
2128
2129 if (unlikely(check_new_page(p)))
2130 return true;
2131 }
2132
2133 return false;
2134}
2135
46f24fd8
JK
2136inline void post_alloc_hook(struct page *page, unsigned int order,
2137 gfp_t gfp_flags)
2138{
2139 set_page_private(page, 0);
2140 set_page_refcounted(page);
2141
2142 arch_alloc_page(page, order);
d6332692
RE
2143 if (debug_pagealloc_enabled())
2144 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2145 kasan_alloc_pages(page, order);
4117992d 2146 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2147 set_page_owner(page, order, gfp_flags);
2148}
2149
479f854a 2150static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2151 unsigned int alloc_flags)
2a7684a2 2152{
46f24fd8 2153 post_alloc_hook(page, order, gfp_flags);
17cf4406 2154
6471384a
AP
2155 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2156 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2157
2158 if (order && (gfp_flags & __GFP_COMP))
2159 prep_compound_page(page, order);
2160
75379191 2161 /*
2f064f34 2162 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2163 * allocate the page. The expectation is that the caller is taking
2164 * steps that will free more memory. The caller should avoid the page
2165 * being used for !PFMEMALLOC purposes.
2166 */
2f064f34
MH
2167 if (alloc_flags & ALLOC_NO_WATERMARKS)
2168 set_page_pfmemalloc(page);
2169 else
2170 clear_page_pfmemalloc(page);
1da177e4
LT
2171}
2172
56fd56b8
MG
2173/*
2174 * Go through the free lists for the given migratetype and remove
2175 * the smallest available page from the freelists
2176 */
85ccc8fa 2177static __always_inline
728ec980 2178struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2179 int migratetype)
2180{
2181 unsigned int current_order;
b8af2941 2182 struct free_area *area;
56fd56b8
MG
2183 struct page *page;
2184
2185 /* Find a page of the appropriate size in the preferred list */
2186 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2187 area = &(zone->free_area[current_order]);
b03641af 2188 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2189 if (!page)
2190 continue;
b03641af 2191 del_page_from_free_area(page, area);
56fd56b8 2192 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2193 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2194 return page;
2195 }
2196
2197 return NULL;
2198}
2199
2200
b2a0ac88
MG
2201/*
2202 * This array describes the order lists are fallen back to when
2203 * the free lists for the desirable migrate type are depleted
2204 */
47118af0 2205static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2206 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2207 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2208 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2209#ifdef CONFIG_CMA
974a786e 2210 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2211#endif
194159fb 2212#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2213 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2214#endif
b2a0ac88
MG
2215};
2216
dc67647b 2217#ifdef CONFIG_CMA
85ccc8fa 2218static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2219 unsigned int order)
2220{
2221 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2222}
2223#else
2224static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2225 unsigned int order) { return NULL; }
2226#endif
2227
c361be55
MG
2228/*
2229 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2230 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2231 * boundary. If alignment is required, use move_freepages_block()
2232 */
02aa0cdd 2233static int move_freepages(struct zone *zone,
b69a7288 2234 struct page *start_page, struct page *end_page,
02aa0cdd 2235 int migratetype, int *num_movable)
c361be55
MG
2236{
2237 struct page *page;
d00181b9 2238 unsigned int order;
d100313f 2239 int pages_moved = 0;
c361be55 2240
c361be55
MG
2241 for (page = start_page; page <= end_page;) {
2242 if (!pfn_valid_within(page_to_pfn(page))) {
2243 page++;
2244 continue;
2245 }
2246
2247 if (!PageBuddy(page)) {
02aa0cdd
VB
2248 /*
2249 * We assume that pages that could be isolated for
2250 * migration are movable. But we don't actually try
2251 * isolating, as that would be expensive.
2252 */
2253 if (num_movable &&
2254 (PageLRU(page) || __PageMovable(page)))
2255 (*num_movable)++;
2256
c361be55
MG
2257 page++;
2258 continue;
2259 }
2260
cd961038
DR
2261 /* Make sure we are not inadvertently changing nodes */
2262 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2263 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2264
c361be55 2265 order = page_order(page);
b03641af 2266 move_to_free_area(page, &zone->free_area[order], migratetype);
c361be55 2267 page += 1 << order;
d100313f 2268 pages_moved += 1 << order;
c361be55
MG
2269 }
2270
d100313f 2271 return pages_moved;
c361be55
MG
2272}
2273
ee6f509c 2274int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2275 int migratetype, int *num_movable)
c361be55
MG
2276{
2277 unsigned long start_pfn, end_pfn;
2278 struct page *start_page, *end_page;
2279
4a222127
DR
2280 if (num_movable)
2281 *num_movable = 0;
2282
c361be55 2283 start_pfn = page_to_pfn(page);
d9c23400 2284 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2285 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2286 end_page = start_page + pageblock_nr_pages - 1;
2287 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2288
2289 /* Do not cross zone boundaries */
108bcc96 2290 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2291 start_page = page;
108bcc96 2292 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2293 return 0;
2294
02aa0cdd
VB
2295 return move_freepages(zone, start_page, end_page, migratetype,
2296 num_movable);
c361be55
MG
2297}
2298
2f66a68f
MG
2299static void change_pageblock_range(struct page *pageblock_page,
2300 int start_order, int migratetype)
2301{
2302 int nr_pageblocks = 1 << (start_order - pageblock_order);
2303
2304 while (nr_pageblocks--) {
2305 set_pageblock_migratetype(pageblock_page, migratetype);
2306 pageblock_page += pageblock_nr_pages;
2307 }
2308}
2309
fef903ef 2310/*
9c0415eb
VB
2311 * When we are falling back to another migratetype during allocation, try to
2312 * steal extra free pages from the same pageblocks to satisfy further
2313 * allocations, instead of polluting multiple pageblocks.
2314 *
2315 * If we are stealing a relatively large buddy page, it is likely there will
2316 * be more free pages in the pageblock, so try to steal them all. For
2317 * reclaimable and unmovable allocations, we steal regardless of page size,
2318 * as fragmentation caused by those allocations polluting movable pageblocks
2319 * is worse than movable allocations stealing from unmovable and reclaimable
2320 * pageblocks.
fef903ef 2321 */
4eb7dce6
JK
2322static bool can_steal_fallback(unsigned int order, int start_mt)
2323{
2324 /*
2325 * Leaving this order check is intended, although there is
2326 * relaxed order check in next check. The reason is that
2327 * we can actually steal whole pageblock if this condition met,
2328 * but, below check doesn't guarantee it and that is just heuristic
2329 * so could be changed anytime.
2330 */
2331 if (order >= pageblock_order)
2332 return true;
2333
2334 if (order >= pageblock_order / 2 ||
2335 start_mt == MIGRATE_RECLAIMABLE ||
2336 start_mt == MIGRATE_UNMOVABLE ||
2337 page_group_by_mobility_disabled)
2338 return true;
2339
2340 return false;
2341}
2342
1c30844d
MG
2343static inline void boost_watermark(struct zone *zone)
2344{
2345 unsigned long max_boost;
2346
2347 if (!watermark_boost_factor)
2348 return;
2349
2350 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2351 watermark_boost_factor, 10000);
94b3334c
MG
2352
2353 /*
2354 * high watermark may be uninitialised if fragmentation occurs
2355 * very early in boot so do not boost. We do not fall
2356 * through and boost by pageblock_nr_pages as failing
2357 * allocations that early means that reclaim is not going
2358 * to help and it may even be impossible to reclaim the
2359 * boosted watermark resulting in a hang.
2360 */
2361 if (!max_boost)
2362 return;
2363
1c30844d
MG
2364 max_boost = max(pageblock_nr_pages, max_boost);
2365
2366 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2367 max_boost);
2368}
2369
4eb7dce6
JK
2370/*
2371 * This function implements actual steal behaviour. If order is large enough,
2372 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2373 * pageblock to our migratetype and determine how many already-allocated pages
2374 * are there in the pageblock with a compatible migratetype. If at least half
2375 * of pages are free or compatible, we can change migratetype of the pageblock
2376 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2377 */
2378static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2379 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2380{
d00181b9 2381 unsigned int current_order = page_order(page);
3bc48f96 2382 struct free_area *area;
02aa0cdd
VB
2383 int free_pages, movable_pages, alike_pages;
2384 int old_block_type;
2385
2386 old_block_type = get_pageblock_migratetype(page);
fef903ef 2387
3bc48f96
VB
2388 /*
2389 * This can happen due to races and we want to prevent broken
2390 * highatomic accounting.
2391 */
02aa0cdd 2392 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2393 goto single_page;
2394
fef903ef
SB
2395 /* Take ownership for orders >= pageblock_order */
2396 if (current_order >= pageblock_order) {
2397 change_pageblock_range(page, current_order, start_type);
3bc48f96 2398 goto single_page;
fef903ef
SB
2399 }
2400
1c30844d
MG
2401 /*
2402 * Boost watermarks to increase reclaim pressure to reduce the
2403 * likelihood of future fallbacks. Wake kswapd now as the node
2404 * may be balanced overall and kswapd will not wake naturally.
2405 */
2406 boost_watermark(zone);
2407 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2408 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2409
3bc48f96
VB
2410 /* We are not allowed to try stealing from the whole block */
2411 if (!whole_block)
2412 goto single_page;
2413
02aa0cdd
VB
2414 free_pages = move_freepages_block(zone, page, start_type,
2415 &movable_pages);
2416 /*
2417 * Determine how many pages are compatible with our allocation.
2418 * For movable allocation, it's the number of movable pages which
2419 * we just obtained. For other types it's a bit more tricky.
2420 */
2421 if (start_type == MIGRATE_MOVABLE) {
2422 alike_pages = movable_pages;
2423 } else {
2424 /*
2425 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2426 * to MOVABLE pageblock, consider all non-movable pages as
2427 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2428 * vice versa, be conservative since we can't distinguish the
2429 * exact migratetype of non-movable pages.
2430 */
2431 if (old_block_type == MIGRATE_MOVABLE)
2432 alike_pages = pageblock_nr_pages
2433 - (free_pages + movable_pages);
2434 else
2435 alike_pages = 0;
2436 }
2437
3bc48f96 2438 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2439 if (!free_pages)
3bc48f96 2440 goto single_page;
fef903ef 2441
02aa0cdd
VB
2442 /*
2443 * If a sufficient number of pages in the block are either free or of
2444 * comparable migratability as our allocation, claim the whole block.
2445 */
2446 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2447 page_group_by_mobility_disabled)
2448 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2449
2450 return;
2451
2452single_page:
2453 area = &zone->free_area[current_order];
b03641af 2454 move_to_free_area(page, area, start_type);
4eb7dce6
JK
2455}
2456
2149cdae
JK
2457/*
2458 * Check whether there is a suitable fallback freepage with requested order.
2459 * If only_stealable is true, this function returns fallback_mt only if
2460 * we can steal other freepages all together. This would help to reduce
2461 * fragmentation due to mixed migratetype pages in one pageblock.
2462 */
2463int find_suitable_fallback(struct free_area *area, unsigned int order,
2464 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2465{
2466 int i;
2467 int fallback_mt;
2468
2469 if (area->nr_free == 0)
2470 return -1;
2471
2472 *can_steal = false;
2473 for (i = 0;; i++) {
2474 fallback_mt = fallbacks[migratetype][i];
974a786e 2475 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2476 break;
2477
b03641af 2478 if (free_area_empty(area, fallback_mt))
4eb7dce6 2479 continue;
fef903ef 2480
4eb7dce6
JK
2481 if (can_steal_fallback(order, migratetype))
2482 *can_steal = true;
2483
2149cdae
JK
2484 if (!only_stealable)
2485 return fallback_mt;
2486
2487 if (*can_steal)
2488 return fallback_mt;
fef903ef 2489 }
4eb7dce6
JK
2490
2491 return -1;
fef903ef
SB
2492}
2493
0aaa29a5
MG
2494/*
2495 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2496 * there are no empty page blocks that contain a page with a suitable order
2497 */
2498static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2499 unsigned int alloc_order)
2500{
2501 int mt;
2502 unsigned long max_managed, flags;
2503
2504 /*
2505 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2506 * Check is race-prone but harmless.
2507 */
9705bea5 2508 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2509 if (zone->nr_reserved_highatomic >= max_managed)
2510 return;
2511
2512 spin_lock_irqsave(&zone->lock, flags);
2513
2514 /* Recheck the nr_reserved_highatomic limit under the lock */
2515 if (zone->nr_reserved_highatomic >= max_managed)
2516 goto out_unlock;
2517
2518 /* Yoink! */
2519 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2520 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2521 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2522 zone->nr_reserved_highatomic += pageblock_nr_pages;
2523 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2524 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2525 }
2526
2527out_unlock:
2528 spin_unlock_irqrestore(&zone->lock, flags);
2529}
2530
2531/*
2532 * Used when an allocation is about to fail under memory pressure. This
2533 * potentially hurts the reliability of high-order allocations when under
2534 * intense memory pressure but failed atomic allocations should be easier
2535 * to recover from than an OOM.
29fac03b
MK
2536 *
2537 * If @force is true, try to unreserve a pageblock even though highatomic
2538 * pageblock is exhausted.
0aaa29a5 2539 */
29fac03b
MK
2540static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2541 bool force)
0aaa29a5
MG
2542{
2543 struct zonelist *zonelist = ac->zonelist;
2544 unsigned long flags;
2545 struct zoneref *z;
2546 struct zone *zone;
2547 struct page *page;
2548 int order;
04c8716f 2549 bool ret;
0aaa29a5
MG
2550
2551 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2552 ac->nodemask) {
29fac03b
MK
2553 /*
2554 * Preserve at least one pageblock unless memory pressure
2555 * is really high.
2556 */
2557 if (!force && zone->nr_reserved_highatomic <=
2558 pageblock_nr_pages)
0aaa29a5
MG
2559 continue;
2560
2561 spin_lock_irqsave(&zone->lock, flags);
2562 for (order = 0; order < MAX_ORDER; order++) {
2563 struct free_area *area = &(zone->free_area[order]);
2564
b03641af 2565 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2566 if (!page)
0aaa29a5
MG
2567 continue;
2568
0aaa29a5 2569 /*
4855e4a7
MK
2570 * In page freeing path, migratetype change is racy so
2571 * we can counter several free pages in a pageblock
2572 * in this loop althoug we changed the pageblock type
2573 * from highatomic to ac->migratetype. So we should
2574 * adjust the count once.
0aaa29a5 2575 */
a6ffdc07 2576 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2577 /*
2578 * It should never happen but changes to
2579 * locking could inadvertently allow a per-cpu
2580 * drain to add pages to MIGRATE_HIGHATOMIC
2581 * while unreserving so be safe and watch for
2582 * underflows.
2583 */
2584 zone->nr_reserved_highatomic -= min(
2585 pageblock_nr_pages,
2586 zone->nr_reserved_highatomic);
2587 }
0aaa29a5
MG
2588
2589 /*
2590 * Convert to ac->migratetype and avoid the normal
2591 * pageblock stealing heuristics. Minimally, the caller
2592 * is doing the work and needs the pages. More
2593 * importantly, if the block was always converted to
2594 * MIGRATE_UNMOVABLE or another type then the number
2595 * of pageblocks that cannot be completely freed
2596 * may increase.
2597 */
2598 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2599 ret = move_freepages_block(zone, page, ac->migratetype,
2600 NULL);
29fac03b
MK
2601 if (ret) {
2602 spin_unlock_irqrestore(&zone->lock, flags);
2603 return ret;
2604 }
0aaa29a5
MG
2605 }
2606 spin_unlock_irqrestore(&zone->lock, flags);
2607 }
04c8716f
MK
2608
2609 return false;
0aaa29a5
MG
2610}
2611
3bc48f96
VB
2612/*
2613 * Try finding a free buddy page on the fallback list and put it on the free
2614 * list of requested migratetype, possibly along with other pages from the same
2615 * block, depending on fragmentation avoidance heuristics. Returns true if
2616 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2617 *
2618 * The use of signed ints for order and current_order is a deliberate
2619 * deviation from the rest of this file, to make the for loop
2620 * condition simpler.
3bc48f96 2621 */
85ccc8fa 2622static __always_inline bool
6bb15450
MG
2623__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2624 unsigned int alloc_flags)
b2a0ac88 2625{
b8af2941 2626 struct free_area *area;
b002529d 2627 int current_order;
6bb15450 2628 int min_order = order;
b2a0ac88 2629 struct page *page;
4eb7dce6
JK
2630 int fallback_mt;
2631 bool can_steal;
b2a0ac88 2632
6bb15450
MG
2633 /*
2634 * Do not steal pages from freelists belonging to other pageblocks
2635 * i.e. orders < pageblock_order. If there are no local zones free,
2636 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2637 */
2638 if (alloc_flags & ALLOC_NOFRAGMENT)
2639 min_order = pageblock_order;
2640
7a8f58f3
VB
2641 /*
2642 * Find the largest available free page in the other list. This roughly
2643 * approximates finding the pageblock with the most free pages, which
2644 * would be too costly to do exactly.
2645 */
6bb15450 2646 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2647 --current_order) {
4eb7dce6
JK
2648 area = &(zone->free_area[current_order]);
2649 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2650 start_migratetype, false, &can_steal);
4eb7dce6
JK
2651 if (fallback_mt == -1)
2652 continue;
b2a0ac88 2653
7a8f58f3
VB
2654 /*
2655 * We cannot steal all free pages from the pageblock and the
2656 * requested migratetype is movable. In that case it's better to
2657 * steal and split the smallest available page instead of the
2658 * largest available page, because even if the next movable
2659 * allocation falls back into a different pageblock than this
2660 * one, it won't cause permanent fragmentation.
2661 */
2662 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2663 && current_order > order)
2664 goto find_smallest;
b2a0ac88 2665
7a8f58f3
VB
2666 goto do_steal;
2667 }
e0fff1bd 2668
7a8f58f3 2669 return false;
e0fff1bd 2670
7a8f58f3
VB
2671find_smallest:
2672 for (current_order = order; current_order < MAX_ORDER;
2673 current_order++) {
2674 area = &(zone->free_area[current_order]);
2675 fallback_mt = find_suitable_fallback(area, current_order,
2676 start_migratetype, false, &can_steal);
2677 if (fallback_mt != -1)
2678 break;
b2a0ac88
MG
2679 }
2680
7a8f58f3
VB
2681 /*
2682 * This should not happen - we already found a suitable fallback
2683 * when looking for the largest page.
2684 */
2685 VM_BUG_ON(current_order == MAX_ORDER);
2686
2687do_steal:
b03641af 2688 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2689
1c30844d
MG
2690 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2691 can_steal);
7a8f58f3
VB
2692
2693 trace_mm_page_alloc_extfrag(page, order, current_order,
2694 start_migratetype, fallback_mt);
2695
2696 return true;
2697
b2a0ac88
MG
2698}
2699
56fd56b8 2700/*
1da177e4
LT
2701 * Do the hard work of removing an element from the buddy allocator.
2702 * Call me with the zone->lock already held.
2703 */
85ccc8fa 2704static __always_inline struct page *
6bb15450
MG
2705__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2706 unsigned int alloc_flags)
1da177e4 2707{
1da177e4
LT
2708 struct page *page;
2709
3bc48f96 2710retry:
56fd56b8 2711 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2712 if (unlikely(!page)) {
dc67647b
JK
2713 if (migratetype == MIGRATE_MOVABLE)
2714 page = __rmqueue_cma_fallback(zone, order);
2715
6bb15450
MG
2716 if (!page && __rmqueue_fallback(zone, order, migratetype,
2717 alloc_flags))
3bc48f96 2718 goto retry;
728ec980
MG
2719 }
2720
0d3d062a 2721 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2722 return page;
1da177e4
LT
2723}
2724
5f63b720 2725/*
1da177e4
LT
2726 * Obtain a specified number of elements from the buddy allocator, all under
2727 * a single hold of the lock, for efficiency. Add them to the supplied list.
2728 * Returns the number of new pages which were placed at *list.
2729 */
5f63b720 2730static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2731 unsigned long count, struct list_head *list,
6bb15450 2732 int migratetype, unsigned int alloc_flags)
1da177e4 2733{
a6de734b 2734 int i, alloced = 0;
5f63b720 2735
d34b0733 2736 spin_lock(&zone->lock);
1da177e4 2737 for (i = 0; i < count; ++i) {
6bb15450
MG
2738 struct page *page = __rmqueue(zone, order, migratetype,
2739 alloc_flags);
085cc7d5 2740 if (unlikely(page == NULL))
1da177e4 2741 break;
81eabcbe 2742
479f854a
MG
2743 if (unlikely(check_pcp_refill(page)))
2744 continue;
2745
81eabcbe 2746 /*
0fac3ba5
VB
2747 * Split buddy pages returned by expand() are received here in
2748 * physical page order. The page is added to the tail of
2749 * caller's list. From the callers perspective, the linked list
2750 * is ordered by page number under some conditions. This is
2751 * useful for IO devices that can forward direction from the
2752 * head, thus also in the physical page order. This is useful
2753 * for IO devices that can merge IO requests if the physical
2754 * pages are ordered properly.
81eabcbe 2755 */
0fac3ba5 2756 list_add_tail(&page->lru, list);
a6de734b 2757 alloced++;
bb14c2c7 2758 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2759 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2760 -(1 << order));
1da177e4 2761 }
a6de734b
MG
2762
2763 /*
2764 * i pages were removed from the buddy list even if some leak due
2765 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2766 * on i. Do not confuse with 'alloced' which is the number of
2767 * pages added to the pcp list.
2768 */
f2260e6b 2769 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2770 spin_unlock(&zone->lock);
a6de734b 2771 return alloced;
1da177e4
LT
2772}
2773
4ae7c039 2774#ifdef CONFIG_NUMA
8fce4d8e 2775/*
4037d452
CL
2776 * Called from the vmstat counter updater to drain pagesets of this
2777 * currently executing processor on remote nodes after they have
2778 * expired.
2779 *
879336c3
CL
2780 * Note that this function must be called with the thread pinned to
2781 * a single processor.
8fce4d8e 2782 */
4037d452 2783void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2784{
4ae7c039 2785 unsigned long flags;
7be12fc9 2786 int to_drain, batch;
4ae7c039 2787
4037d452 2788 local_irq_save(flags);
4db0c3c2 2789 batch = READ_ONCE(pcp->batch);
7be12fc9 2790 to_drain = min(pcp->count, batch);
77ba9062 2791 if (to_drain > 0)
2a13515c 2792 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2793 local_irq_restore(flags);
4ae7c039
CL
2794}
2795#endif
2796
9f8f2172 2797/*
93481ff0 2798 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2799 *
2800 * The processor must either be the current processor and the
2801 * thread pinned to the current processor or a processor that
2802 * is not online.
2803 */
93481ff0 2804static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2805{
c54ad30c 2806 unsigned long flags;
93481ff0
VB
2807 struct per_cpu_pageset *pset;
2808 struct per_cpu_pages *pcp;
1da177e4 2809
93481ff0
VB
2810 local_irq_save(flags);
2811 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2812
93481ff0 2813 pcp = &pset->pcp;
77ba9062 2814 if (pcp->count)
93481ff0 2815 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2816 local_irq_restore(flags);
2817}
3dfa5721 2818
93481ff0
VB
2819/*
2820 * Drain pcplists of all zones on the indicated processor.
2821 *
2822 * The processor must either be the current processor and the
2823 * thread pinned to the current processor or a processor that
2824 * is not online.
2825 */
2826static void drain_pages(unsigned int cpu)
2827{
2828 struct zone *zone;
2829
2830 for_each_populated_zone(zone) {
2831 drain_pages_zone(cpu, zone);
1da177e4
LT
2832 }
2833}
1da177e4 2834
9f8f2172
CL
2835/*
2836 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2837 *
2838 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2839 * the single zone's pages.
9f8f2172 2840 */
93481ff0 2841void drain_local_pages(struct zone *zone)
9f8f2172 2842{
93481ff0
VB
2843 int cpu = smp_processor_id();
2844
2845 if (zone)
2846 drain_pages_zone(cpu, zone);
2847 else
2848 drain_pages(cpu);
9f8f2172
CL
2849}
2850
0ccce3b9
MG
2851static void drain_local_pages_wq(struct work_struct *work)
2852{
d9367bd0
WY
2853 struct pcpu_drain *drain;
2854
2855 drain = container_of(work, struct pcpu_drain, work);
2856
a459eeb7
MH
2857 /*
2858 * drain_all_pages doesn't use proper cpu hotplug protection so
2859 * we can race with cpu offline when the WQ can move this from
2860 * a cpu pinned worker to an unbound one. We can operate on a different
2861 * cpu which is allright but we also have to make sure to not move to
2862 * a different one.
2863 */
2864 preempt_disable();
d9367bd0 2865 drain_local_pages(drain->zone);
a459eeb7 2866 preempt_enable();
0ccce3b9
MG
2867}
2868
9f8f2172 2869/*
74046494
GBY
2870 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2871 *
93481ff0
VB
2872 * When zone parameter is non-NULL, spill just the single zone's pages.
2873 *
0ccce3b9 2874 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2875 */
93481ff0 2876void drain_all_pages(struct zone *zone)
9f8f2172 2877{
74046494 2878 int cpu;
74046494
GBY
2879
2880 /*
2881 * Allocate in the BSS so we wont require allocation in
2882 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2883 */
2884 static cpumask_t cpus_with_pcps;
2885
ce612879
MH
2886 /*
2887 * Make sure nobody triggers this path before mm_percpu_wq is fully
2888 * initialized.
2889 */
2890 if (WARN_ON_ONCE(!mm_percpu_wq))
2891 return;
2892
bd233f53
MG
2893 /*
2894 * Do not drain if one is already in progress unless it's specific to
2895 * a zone. Such callers are primarily CMA and memory hotplug and need
2896 * the drain to be complete when the call returns.
2897 */
2898 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2899 if (!zone)
2900 return;
2901 mutex_lock(&pcpu_drain_mutex);
2902 }
0ccce3b9 2903
74046494
GBY
2904 /*
2905 * We don't care about racing with CPU hotplug event
2906 * as offline notification will cause the notified
2907 * cpu to drain that CPU pcps and on_each_cpu_mask
2908 * disables preemption as part of its processing
2909 */
2910 for_each_online_cpu(cpu) {
93481ff0
VB
2911 struct per_cpu_pageset *pcp;
2912 struct zone *z;
74046494 2913 bool has_pcps = false;
93481ff0
VB
2914
2915 if (zone) {
74046494 2916 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2917 if (pcp->pcp.count)
74046494 2918 has_pcps = true;
93481ff0
VB
2919 } else {
2920 for_each_populated_zone(z) {
2921 pcp = per_cpu_ptr(z->pageset, cpu);
2922 if (pcp->pcp.count) {
2923 has_pcps = true;
2924 break;
2925 }
74046494
GBY
2926 }
2927 }
93481ff0 2928
74046494
GBY
2929 if (has_pcps)
2930 cpumask_set_cpu(cpu, &cpus_with_pcps);
2931 else
2932 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2933 }
0ccce3b9 2934
bd233f53 2935 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2936 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2937
2938 drain->zone = zone;
2939 INIT_WORK(&drain->work, drain_local_pages_wq);
2940 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2941 }
bd233f53 2942 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2943 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2944
2945 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2946}
2947
296699de 2948#ifdef CONFIG_HIBERNATION
1da177e4 2949
556b969a
CY
2950/*
2951 * Touch the watchdog for every WD_PAGE_COUNT pages.
2952 */
2953#define WD_PAGE_COUNT (128*1024)
2954
1da177e4
LT
2955void mark_free_pages(struct zone *zone)
2956{
556b969a 2957 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2958 unsigned long flags;
7aeb09f9 2959 unsigned int order, t;
86760a2c 2960 struct page *page;
1da177e4 2961
8080fc03 2962 if (zone_is_empty(zone))
1da177e4
LT
2963 return;
2964
2965 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2966
108bcc96 2967 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2968 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2969 if (pfn_valid(pfn)) {
86760a2c 2970 page = pfn_to_page(pfn);
ba6b0979 2971
556b969a
CY
2972 if (!--page_count) {
2973 touch_nmi_watchdog();
2974 page_count = WD_PAGE_COUNT;
2975 }
2976
ba6b0979
JK
2977 if (page_zone(page) != zone)
2978 continue;
2979
7be98234
RW
2980 if (!swsusp_page_is_forbidden(page))
2981 swsusp_unset_page_free(page);
f623f0db 2982 }
1da177e4 2983
b2a0ac88 2984 for_each_migratetype_order(order, t) {
86760a2c
GT
2985 list_for_each_entry(page,
2986 &zone->free_area[order].free_list[t], lru) {
f623f0db 2987 unsigned long i;
1da177e4 2988
86760a2c 2989 pfn = page_to_pfn(page);
556b969a
CY
2990 for (i = 0; i < (1UL << order); i++) {
2991 if (!--page_count) {
2992 touch_nmi_watchdog();
2993 page_count = WD_PAGE_COUNT;
2994 }
7be98234 2995 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2996 }
f623f0db 2997 }
b2a0ac88 2998 }
1da177e4
LT
2999 spin_unlock_irqrestore(&zone->lock, flags);
3000}
e2c55dc8 3001#endif /* CONFIG_PM */
1da177e4 3002
2d4894b5 3003static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3004{
5f8dcc21 3005 int migratetype;
1da177e4 3006
4db7548c 3007 if (!free_pcp_prepare(page))
9cca35d4 3008 return false;
689bcebf 3009
dc4b0caf 3010 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3011 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3012 return true;
3013}
3014
2d4894b5 3015static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3016{
3017 struct zone *zone = page_zone(page);
3018 struct per_cpu_pages *pcp;
3019 int migratetype;
3020
3021 migratetype = get_pcppage_migratetype(page);
d34b0733 3022 __count_vm_event(PGFREE);
da456f14 3023
5f8dcc21
MG
3024 /*
3025 * We only track unmovable, reclaimable and movable on pcp lists.
3026 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3027 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3028 * areas back if necessary. Otherwise, we may have to free
3029 * excessively into the page allocator
3030 */
3031 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3032 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3033 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3034 return;
5f8dcc21
MG
3035 }
3036 migratetype = MIGRATE_MOVABLE;
3037 }
3038
99dcc3e5 3039 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3040 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3041 pcp->count++;
48db57f8 3042 if (pcp->count >= pcp->high) {
4db0c3c2 3043 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3044 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3045 }
9cca35d4 3046}
5f8dcc21 3047
9cca35d4
MG
3048/*
3049 * Free a 0-order page
9cca35d4 3050 */
2d4894b5 3051void free_unref_page(struct page *page)
9cca35d4
MG
3052{
3053 unsigned long flags;
3054 unsigned long pfn = page_to_pfn(page);
3055
2d4894b5 3056 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3057 return;
3058
3059 local_irq_save(flags);
2d4894b5 3060 free_unref_page_commit(page, pfn);
d34b0733 3061 local_irq_restore(flags);
1da177e4
LT
3062}
3063
cc59850e
KK
3064/*
3065 * Free a list of 0-order pages
3066 */
2d4894b5 3067void free_unref_page_list(struct list_head *list)
cc59850e
KK
3068{
3069 struct page *page, *next;
9cca35d4 3070 unsigned long flags, pfn;
c24ad77d 3071 int batch_count = 0;
9cca35d4
MG
3072
3073 /* Prepare pages for freeing */
3074 list_for_each_entry_safe(page, next, list, lru) {
3075 pfn = page_to_pfn(page);
2d4894b5 3076 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3077 list_del(&page->lru);
3078 set_page_private(page, pfn);
3079 }
cc59850e 3080
9cca35d4 3081 local_irq_save(flags);
cc59850e 3082 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3083 unsigned long pfn = page_private(page);
3084
3085 set_page_private(page, 0);
2d4894b5
MG
3086 trace_mm_page_free_batched(page);
3087 free_unref_page_commit(page, pfn);
c24ad77d
LS
3088
3089 /*
3090 * Guard against excessive IRQ disabled times when we get
3091 * a large list of pages to free.
3092 */
3093 if (++batch_count == SWAP_CLUSTER_MAX) {
3094 local_irq_restore(flags);
3095 batch_count = 0;
3096 local_irq_save(flags);
3097 }
cc59850e 3098 }
9cca35d4 3099 local_irq_restore(flags);
cc59850e
KK
3100}
3101
8dfcc9ba
NP
3102/*
3103 * split_page takes a non-compound higher-order page, and splits it into
3104 * n (1<<order) sub-pages: page[0..n]
3105 * Each sub-page must be freed individually.
3106 *
3107 * Note: this is probably too low level an operation for use in drivers.
3108 * Please consult with lkml before using this in your driver.
3109 */
3110void split_page(struct page *page, unsigned int order)
3111{
3112 int i;
3113
309381fe
SL
3114 VM_BUG_ON_PAGE(PageCompound(page), page);
3115 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3116
a9627bc5 3117 for (i = 1; i < (1 << order); i++)
7835e98b 3118 set_page_refcounted(page + i);
a9627bc5 3119 split_page_owner(page, order);
8dfcc9ba 3120}
5853ff23 3121EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3122
3c605096 3123int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3124{
b03641af 3125 struct free_area *area = &page_zone(page)->free_area[order];
748446bb
MG
3126 unsigned long watermark;
3127 struct zone *zone;
2139cbe6 3128 int mt;
748446bb
MG
3129
3130 BUG_ON(!PageBuddy(page));
3131
3132 zone = page_zone(page);
2e30abd1 3133 mt = get_pageblock_migratetype(page);
748446bb 3134
194159fb 3135 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3136 /*
3137 * Obey watermarks as if the page was being allocated. We can
3138 * emulate a high-order watermark check with a raised order-0
3139 * watermark, because we already know our high-order page
3140 * exists.
3141 */
fd1444b2 3142 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3143 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3144 return 0;
3145
8fb74b9f 3146 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3147 }
748446bb
MG
3148
3149 /* Remove page from free list */
b03641af
DW
3150
3151 del_page_from_free_area(page, area);
2139cbe6 3152
400bc7fd 3153 /*
3154 * Set the pageblock if the isolated page is at least half of a
3155 * pageblock
3156 */
748446bb
MG
3157 if (order >= pageblock_order - 1) {
3158 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3159 for (; page < endpage; page += pageblock_nr_pages) {
3160 int mt = get_pageblock_migratetype(page);
88ed365e 3161 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3162 && !is_migrate_highatomic(mt))
47118af0
MN
3163 set_pageblock_migratetype(page,
3164 MIGRATE_MOVABLE);
3165 }
748446bb
MG
3166 }
3167
f3a14ced 3168
8fb74b9f 3169 return 1UL << order;
1fb3f8ca
MG
3170}
3171
060e7417
MG
3172/*
3173 * Update NUMA hit/miss statistics
3174 *
3175 * Must be called with interrupts disabled.
060e7417 3176 */
41b6167e 3177static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3178{
3179#ifdef CONFIG_NUMA
3a321d2a 3180 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3181
4518085e
KW
3182 /* skip numa counters update if numa stats is disabled */
3183 if (!static_branch_likely(&vm_numa_stat_key))
3184 return;
3185
c1093b74 3186 if (zone_to_nid(z) != numa_node_id())
060e7417 3187 local_stat = NUMA_OTHER;
060e7417 3188
c1093b74 3189 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3190 __inc_numa_state(z, NUMA_HIT);
2df26639 3191 else {
3a321d2a
KW
3192 __inc_numa_state(z, NUMA_MISS);
3193 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3194 }
3a321d2a 3195 __inc_numa_state(z, local_stat);
060e7417
MG
3196#endif
3197}
3198
066b2393
MG
3199/* Remove page from the per-cpu list, caller must protect the list */
3200static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3201 unsigned int alloc_flags,
453f85d4 3202 struct per_cpu_pages *pcp,
066b2393
MG
3203 struct list_head *list)
3204{
3205 struct page *page;
3206
3207 do {
3208 if (list_empty(list)) {
3209 pcp->count += rmqueue_bulk(zone, 0,
3210 pcp->batch, list,
6bb15450 3211 migratetype, alloc_flags);
066b2393
MG
3212 if (unlikely(list_empty(list)))
3213 return NULL;
3214 }
3215
453f85d4 3216 page = list_first_entry(list, struct page, lru);
066b2393
MG
3217 list_del(&page->lru);
3218 pcp->count--;
3219 } while (check_new_pcp(page));
3220
3221 return page;
3222}
3223
3224/* Lock and remove page from the per-cpu list */
3225static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3226 struct zone *zone, gfp_t gfp_flags,
3227 int migratetype, unsigned int alloc_flags)
066b2393
MG
3228{
3229 struct per_cpu_pages *pcp;
3230 struct list_head *list;
066b2393 3231 struct page *page;
d34b0733 3232 unsigned long flags;
066b2393 3233
d34b0733 3234 local_irq_save(flags);
066b2393
MG
3235 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3236 list = &pcp->lists[migratetype];
6bb15450 3237 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3238 if (page) {
1c52e6d0 3239 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3240 zone_statistics(preferred_zone, zone);
3241 }
d34b0733 3242 local_irq_restore(flags);
066b2393
MG
3243 return page;
3244}
3245
1da177e4 3246/*
75379191 3247 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3248 */
0a15c3e9 3249static inline
066b2393 3250struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3251 struct zone *zone, unsigned int order,
c603844b
MG
3252 gfp_t gfp_flags, unsigned int alloc_flags,
3253 int migratetype)
1da177e4
LT
3254{
3255 unsigned long flags;
689bcebf 3256 struct page *page;
1da177e4 3257
d34b0733 3258 if (likely(order == 0)) {
1c52e6d0
YS
3259 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3260 migratetype, alloc_flags);
066b2393
MG
3261 goto out;
3262 }
83b9355b 3263
066b2393
MG
3264 /*
3265 * We most definitely don't want callers attempting to
3266 * allocate greater than order-1 page units with __GFP_NOFAIL.
3267 */
3268 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3269 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3270
066b2393
MG
3271 do {
3272 page = NULL;
3273 if (alloc_flags & ALLOC_HARDER) {
3274 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3275 if (page)
3276 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3277 }
a74609fa 3278 if (!page)
6bb15450 3279 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3280 } while (page && check_new_pages(page, order));
3281 spin_unlock(&zone->lock);
3282 if (!page)
3283 goto failed;
3284 __mod_zone_freepage_state(zone, -(1 << order),
3285 get_pcppage_migratetype(page));
1da177e4 3286
16709d1d 3287 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3288 zone_statistics(preferred_zone, zone);
a74609fa 3289 local_irq_restore(flags);
1da177e4 3290
066b2393 3291out:
73444bc4
MG
3292 /* Separate test+clear to avoid unnecessary atomics */
3293 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3294 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3295 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3296 }
3297
066b2393 3298 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3299 return page;
a74609fa
NP
3300
3301failed:
3302 local_irq_restore(flags);
a74609fa 3303 return NULL;
1da177e4
LT
3304}
3305
933e312e
AM
3306#ifdef CONFIG_FAIL_PAGE_ALLOC
3307
b2588c4b 3308static struct {
933e312e
AM
3309 struct fault_attr attr;
3310
621a5f7a 3311 bool ignore_gfp_highmem;
71baba4b 3312 bool ignore_gfp_reclaim;
54114994 3313 u32 min_order;
933e312e
AM
3314} fail_page_alloc = {
3315 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3316 .ignore_gfp_reclaim = true,
621a5f7a 3317 .ignore_gfp_highmem = true,
54114994 3318 .min_order = 1,
933e312e
AM
3319};
3320
3321static int __init setup_fail_page_alloc(char *str)
3322{
3323 return setup_fault_attr(&fail_page_alloc.attr, str);
3324}
3325__setup("fail_page_alloc=", setup_fail_page_alloc);
3326
af3b8544 3327static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3328{
54114994 3329 if (order < fail_page_alloc.min_order)
deaf386e 3330 return false;
933e312e 3331 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3332 return false;
933e312e 3333 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3334 return false;
71baba4b
MG
3335 if (fail_page_alloc.ignore_gfp_reclaim &&
3336 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3337 return false;
933e312e
AM
3338
3339 return should_fail(&fail_page_alloc.attr, 1 << order);
3340}
3341
3342#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3343
3344static int __init fail_page_alloc_debugfs(void)
3345{
0825a6f9 3346 umode_t mode = S_IFREG | 0600;
933e312e 3347 struct dentry *dir;
933e312e 3348
dd48c085
AM
3349 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3350 &fail_page_alloc.attr);
b2588c4b 3351
d9f7979c
GKH
3352 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3353 &fail_page_alloc.ignore_gfp_reclaim);
3354 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3355 &fail_page_alloc.ignore_gfp_highmem);
3356 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3357
d9f7979c 3358 return 0;
933e312e
AM
3359}
3360
3361late_initcall(fail_page_alloc_debugfs);
3362
3363#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3364
3365#else /* CONFIG_FAIL_PAGE_ALLOC */
3366
af3b8544 3367static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3368{
deaf386e 3369 return false;
933e312e
AM
3370}
3371
3372#endif /* CONFIG_FAIL_PAGE_ALLOC */
3373
af3b8544
BP
3374static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3375{
3376 return __should_fail_alloc_page(gfp_mask, order);
3377}
3378ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3379
1da177e4 3380/*
97a16fc8
MG
3381 * Return true if free base pages are above 'mark'. For high-order checks it
3382 * will return true of the order-0 watermark is reached and there is at least
3383 * one free page of a suitable size. Checking now avoids taking the zone lock
3384 * to check in the allocation paths if no pages are free.
1da177e4 3385 */
86a294a8
MH
3386bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3387 int classzone_idx, unsigned int alloc_flags,
3388 long free_pages)
1da177e4 3389{
d23ad423 3390 long min = mark;
1da177e4 3391 int o;
cd04ae1e 3392 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3393
0aaa29a5 3394 /* free_pages may go negative - that's OK */
df0a6daa 3395 free_pages -= (1 << order) - 1;
0aaa29a5 3396
7fb1d9fc 3397 if (alloc_flags & ALLOC_HIGH)
1da177e4 3398 min -= min / 2;
0aaa29a5
MG
3399
3400 /*
3401 * If the caller does not have rights to ALLOC_HARDER then subtract
3402 * the high-atomic reserves. This will over-estimate the size of the
3403 * atomic reserve but it avoids a search.
3404 */
cd04ae1e 3405 if (likely(!alloc_harder)) {
0aaa29a5 3406 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3407 } else {
3408 /*
3409 * OOM victims can try even harder than normal ALLOC_HARDER
3410 * users on the grounds that it's definitely going to be in
3411 * the exit path shortly and free memory. Any allocation it
3412 * makes during the free path will be small and short-lived.
3413 */
3414 if (alloc_flags & ALLOC_OOM)
3415 min -= min / 2;
3416 else
3417 min -= min / 4;
3418 }
3419
e2b19197 3420
d883c6cf
JK
3421#ifdef CONFIG_CMA
3422 /* If allocation can't use CMA areas don't use free CMA pages */
3423 if (!(alloc_flags & ALLOC_CMA))
3424 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3425#endif
3426
97a16fc8
MG
3427 /*
3428 * Check watermarks for an order-0 allocation request. If these
3429 * are not met, then a high-order request also cannot go ahead
3430 * even if a suitable page happened to be free.
3431 */
3432 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3433 return false;
1da177e4 3434
97a16fc8
MG
3435 /* If this is an order-0 request then the watermark is fine */
3436 if (!order)
3437 return true;
3438
3439 /* For a high-order request, check at least one suitable page is free */
3440 for (o = order; o < MAX_ORDER; o++) {
3441 struct free_area *area = &z->free_area[o];
3442 int mt;
3443
3444 if (!area->nr_free)
3445 continue;
3446
97a16fc8 3447 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3448 if (!free_area_empty(area, mt))
97a16fc8
MG
3449 return true;
3450 }
3451
3452#ifdef CONFIG_CMA
d883c6cf 3453 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3454 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3455 return true;
d883c6cf 3456 }
97a16fc8 3457#endif
b050e376
VB
3458 if (alloc_harder &&
3459 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3460 return true;
1da177e4 3461 }
97a16fc8 3462 return false;
88f5acf8
MG
3463}
3464
7aeb09f9 3465bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3466 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3467{
3468 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3469 zone_page_state(z, NR_FREE_PAGES));
3470}
3471
48ee5f36
MG
3472static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3473 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3474{
3475 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3476 long cma_pages = 0;
3477
3478#ifdef CONFIG_CMA
3479 /* If allocation can't use CMA areas don't use free CMA pages */
3480 if (!(alloc_flags & ALLOC_CMA))
3481 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3482#endif
48ee5f36
MG
3483
3484 /*
3485 * Fast check for order-0 only. If this fails then the reserves
3486 * need to be calculated. There is a corner case where the check
3487 * passes but only the high-order atomic reserve are free. If
3488 * the caller is !atomic then it'll uselessly search the free
3489 * list. That corner case is then slower but it is harmless.
3490 */
d883c6cf 3491 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3492 return true;
3493
3494 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3495 free_pages);
3496}
3497
7aeb09f9 3498bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3499 unsigned long mark, int classzone_idx)
88f5acf8
MG
3500{
3501 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3502
3503 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3504 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3505
e2b19197 3506 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3507 free_pages);
1da177e4
LT
3508}
3509
9276b1bc 3510#ifdef CONFIG_NUMA
957f822a
DR
3511static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3512{
e02dc017 3513 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3514 RECLAIM_DISTANCE;
957f822a 3515}
9276b1bc 3516#else /* CONFIG_NUMA */
957f822a
DR
3517static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3518{
3519 return true;
3520}
9276b1bc
PJ
3521#endif /* CONFIG_NUMA */
3522
6bb15450
MG
3523/*
3524 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3525 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3526 * premature use of a lower zone may cause lowmem pressure problems that
3527 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3528 * probably too small. It only makes sense to spread allocations to avoid
3529 * fragmentation between the Normal and DMA32 zones.
3530 */
3531static inline unsigned int
0a79cdad 3532alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3533{
0a79cdad
MG
3534 unsigned int alloc_flags = 0;
3535
3536 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3537 alloc_flags |= ALLOC_KSWAPD;
3538
3539#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3540 if (!zone)
3541 return alloc_flags;
3542
6bb15450 3543 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3544 return alloc_flags;
6bb15450
MG
3545
3546 /*
3547 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3548 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3549 * on UMA that if Normal is populated then so is DMA32.
3550 */
3551 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3552 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3553 return alloc_flags;
6bb15450 3554
8118b82e 3555 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3556#endif /* CONFIG_ZONE_DMA32 */
3557 return alloc_flags;
6bb15450 3558}
6bb15450 3559
7fb1d9fc 3560/*
0798e519 3561 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3562 * a page.
3563 */
3564static struct page *
a9263751
VB
3565get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3566 const struct alloc_context *ac)
753ee728 3567{
6bb15450 3568 struct zoneref *z;
5117f45d 3569 struct zone *zone;
3b8c0be4 3570 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3571 bool no_fallback;
3b8c0be4 3572
6bb15450 3573retry:
7fb1d9fc 3574 /*
9276b1bc 3575 * Scan zonelist, looking for a zone with enough free.
344736f2 3576 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3577 */
6bb15450
MG
3578 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3579 z = ac->preferred_zoneref;
c33d6c06 3580 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3581 ac->nodemask) {
be06af00 3582 struct page *page;
e085dbc5
JW
3583 unsigned long mark;
3584
664eedde
MG
3585 if (cpusets_enabled() &&
3586 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3587 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3588 continue;
a756cf59
JW
3589 /*
3590 * When allocating a page cache page for writing, we
281e3726
MG
3591 * want to get it from a node that is within its dirty
3592 * limit, such that no single node holds more than its
a756cf59 3593 * proportional share of globally allowed dirty pages.
281e3726 3594 * The dirty limits take into account the node's
a756cf59
JW
3595 * lowmem reserves and high watermark so that kswapd
3596 * should be able to balance it without having to
3597 * write pages from its LRU list.
3598 *
a756cf59 3599 * XXX: For now, allow allocations to potentially
281e3726 3600 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3601 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3602 * which is important when on a NUMA setup the allowed
281e3726 3603 * nodes are together not big enough to reach the
a756cf59 3604 * global limit. The proper fix for these situations
281e3726 3605 * will require awareness of nodes in the
a756cf59
JW
3606 * dirty-throttling and the flusher threads.
3607 */
3b8c0be4
MG
3608 if (ac->spread_dirty_pages) {
3609 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3610 continue;
3611
3612 if (!node_dirty_ok(zone->zone_pgdat)) {
3613 last_pgdat_dirty_limit = zone->zone_pgdat;
3614 continue;
3615 }
3616 }
7fb1d9fc 3617
6bb15450
MG
3618 if (no_fallback && nr_online_nodes > 1 &&
3619 zone != ac->preferred_zoneref->zone) {
3620 int local_nid;
3621
3622 /*
3623 * If moving to a remote node, retry but allow
3624 * fragmenting fallbacks. Locality is more important
3625 * than fragmentation avoidance.
3626 */
3627 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3628 if (zone_to_nid(zone) != local_nid) {
3629 alloc_flags &= ~ALLOC_NOFRAGMENT;
3630 goto retry;
3631 }
3632 }
3633
a9214443 3634 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3635 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3636 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3637 int ret;
3638
c9e97a19
PT
3639#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3640 /*
3641 * Watermark failed for this zone, but see if we can
3642 * grow this zone if it contains deferred pages.
3643 */
3644 if (static_branch_unlikely(&deferred_pages)) {
3645 if (_deferred_grow_zone(zone, order))
3646 goto try_this_zone;
3647 }
3648#endif
5dab2911
MG
3649 /* Checked here to keep the fast path fast */
3650 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3651 if (alloc_flags & ALLOC_NO_WATERMARKS)
3652 goto try_this_zone;
3653
a5f5f91d 3654 if (node_reclaim_mode == 0 ||
c33d6c06 3655 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3656 continue;
3657
a5f5f91d 3658 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3659 switch (ret) {
a5f5f91d 3660 case NODE_RECLAIM_NOSCAN:
fa5e084e 3661 /* did not scan */
cd38b115 3662 continue;
a5f5f91d 3663 case NODE_RECLAIM_FULL:
fa5e084e 3664 /* scanned but unreclaimable */
cd38b115 3665 continue;
fa5e084e
MG
3666 default:
3667 /* did we reclaim enough */
fed2719e 3668 if (zone_watermark_ok(zone, order, mark,
93ea9964 3669 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3670 goto try_this_zone;
3671
fed2719e 3672 continue;
0798e519 3673 }
7fb1d9fc
RS
3674 }
3675
fa5e084e 3676try_this_zone:
066b2393 3677 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3678 gfp_mask, alloc_flags, ac->migratetype);
75379191 3679 if (page) {
479f854a 3680 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3681
3682 /*
3683 * If this is a high-order atomic allocation then check
3684 * if the pageblock should be reserved for the future
3685 */
3686 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3687 reserve_highatomic_pageblock(page, zone, order);
3688
75379191 3689 return page;
c9e97a19
PT
3690 } else {
3691#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3692 /* Try again if zone has deferred pages */
3693 if (static_branch_unlikely(&deferred_pages)) {
3694 if (_deferred_grow_zone(zone, order))
3695 goto try_this_zone;
3696 }
3697#endif
75379191 3698 }
54a6eb5c 3699 }
9276b1bc 3700
6bb15450
MG
3701 /*
3702 * It's possible on a UMA machine to get through all zones that are
3703 * fragmented. If avoiding fragmentation, reset and try again.
3704 */
3705 if (no_fallback) {
3706 alloc_flags &= ~ALLOC_NOFRAGMENT;
3707 goto retry;
3708 }
3709
4ffeaf35 3710 return NULL;
753ee728
MH
3711}
3712
9af744d7 3713static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3714{
a238ab5b 3715 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3716 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3717
2c029a1e 3718 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3719 return;
3720
3721 /*
3722 * This documents exceptions given to allocations in certain
3723 * contexts that are allowed to allocate outside current's set
3724 * of allowed nodes.
3725 */
3726 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3727 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3728 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3729 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3730 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3731 filter &= ~SHOW_MEM_FILTER_NODES;
3732
9af744d7 3733 show_mem(filter, nodemask);
aa187507
MH
3734}
3735
a8e99259 3736void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3737{
3738 struct va_format vaf;
3739 va_list args;
3740 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3741 DEFAULT_RATELIMIT_BURST);
3742
0f7896f1 3743 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3744 return;
3745
7877cdcc
MH
3746 va_start(args, fmt);
3747 vaf.fmt = fmt;
3748 vaf.va = &args;
ef8444ea 3749 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3750 current->comm, &vaf, gfp_mask, &gfp_mask,
3751 nodemask_pr_args(nodemask));
7877cdcc 3752 va_end(args);
3ee9a4f0 3753
a8e99259 3754 cpuset_print_current_mems_allowed();
ef8444ea 3755 pr_cont("\n");
a238ab5b 3756 dump_stack();
685dbf6f 3757 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3758}
3759
6c18ba7a
MH
3760static inline struct page *
3761__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3762 unsigned int alloc_flags,
3763 const struct alloc_context *ac)
3764{
3765 struct page *page;
3766
3767 page = get_page_from_freelist(gfp_mask, order,
3768 alloc_flags|ALLOC_CPUSET, ac);
3769 /*
3770 * fallback to ignore cpuset restriction if our nodes
3771 * are depleted
3772 */
3773 if (!page)
3774 page = get_page_from_freelist(gfp_mask, order,
3775 alloc_flags, ac);
3776
3777 return page;
3778}
3779
11e33f6a
MG
3780static inline struct page *
3781__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3782 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3783{
6e0fc46d
DR
3784 struct oom_control oc = {
3785 .zonelist = ac->zonelist,
3786 .nodemask = ac->nodemask,
2a966b77 3787 .memcg = NULL,
6e0fc46d
DR
3788 .gfp_mask = gfp_mask,
3789 .order = order,
6e0fc46d 3790 };
11e33f6a
MG
3791 struct page *page;
3792
9879de73
JW
3793 *did_some_progress = 0;
3794
9879de73 3795 /*
dc56401f
JW
3796 * Acquire the oom lock. If that fails, somebody else is
3797 * making progress for us.
9879de73 3798 */
dc56401f 3799 if (!mutex_trylock(&oom_lock)) {
9879de73 3800 *did_some_progress = 1;
11e33f6a 3801 schedule_timeout_uninterruptible(1);
1da177e4
LT
3802 return NULL;
3803 }
6b1de916 3804
11e33f6a
MG
3805 /*
3806 * Go through the zonelist yet one more time, keep very high watermark
3807 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3808 * we're still under heavy pressure. But make sure that this reclaim
3809 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3810 * allocation which will never fail due to oom_lock already held.
11e33f6a 3811 */
e746bf73
TH
3812 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3813 ~__GFP_DIRECT_RECLAIM, order,
3814 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3815 if (page)
11e33f6a
MG
3816 goto out;
3817
06ad276a
MH
3818 /* Coredumps can quickly deplete all memory reserves */
3819 if (current->flags & PF_DUMPCORE)
3820 goto out;
3821 /* The OOM killer will not help higher order allocs */
3822 if (order > PAGE_ALLOC_COSTLY_ORDER)
3823 goto out;
dcda9b04
MH
3824 /*
3825 * We have already exhausted all our reclaim opportunities without any
3826 * success so it is time to admit defeat. We will skip the OOM killer
3827 * because it is very likely that the caller has a more reasonable
3828 * fallback than shooting a random task.
3829 */
3830 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3831 goto out;
06ad276a
MH
3832 /* The OOM killer does not needlessly kill tasks for lowmem */
3833 if (ac->high_zoneidx < ZONE_NORMAL)
3834 goto out;
3835 if (pm_suspended_storage())
3836 goto out;
3837 /*
3838 * XXX: GFP_NOFS allocations should rather fail than rely on
3839 * other request to make a forward progress.
3840 * We are in an unfortunate situation where out_of_memory cannot
3841 * do much for this context but let's try it to at least get
3842 * access to memory reserved if the current task is killed (see
3843 * out_of_memory). Once filesystems are ready to handle allocation
3844 * failures more gracefully we should just bail out here.
3845 */
3846
3847 /* The OOM killer may not free memory on a specific node */
3848 if (gfp_mask & __GFP_THISNODE)
3849 goto out;
3da88fb3 3850
3c2c6488 3851 /* Exhausted what can be done so it's blame time */
5020e285 3852 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3853 *did_some_progress = 1;
5020e285 3854
6c18ba7a
MH
3855 /*
3856 * Help non-failing allocations by giving them access to memory
3857 * reserves
3858 */
3859 if (gfp_mask & __GFP_NOFAIL)
3860 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3861 ALLOC_NO_WATERMARKS, ac);
5020e285 3862 }
11e33f6a 3863out:
dc56401f 3864 mutex_unlock(&oom_lock);
11e33f6a
MG
3865 return page;
3866}
3867
33c2d214
MH
3868/*
3869 * Maximum number of compaction retries wit a progress before OOM
3870 * killer is consider as the only way to move forward.
3871 */
3872#define MAX_COMPACT_RETRIES 16
3873
56de7263
MG
3874#ifdef CONFIG_COMPACTION
3875/* Try memory compaction for high-order allocations before reclaim */
3876static struct page *
3877__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3878 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3879 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3880{
5e1f0f09 3881 struct page *page = NULL;
eb414681 3882 unsigned long pflags;
499118e9 3883 unsigned int noreclaim_flag;
53853e2d
VB
3884
3885 if (!order)
66199712 3886 return NULL;
66199712 3887
eb414681 3888 psi_memstall_enter(&pflags);
499118e9 3889 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3890
c5d01d0d 3891 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3892 prio, &page);
eb414681 3893
499118e9 3894 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3895 psi_memstall_leave(&pflags);
56de7263 3896
98dd3b48
VB
3897 /*
3898 * At least in one zone compaction wasn't deferred or skipped, so let's
3899 * count a compaction stall
3900 */
3901 count_vm_event(COMPACTSTALL);
8fb74b9f 3902
5e1f0f09
MG
3903 /* Prep a captured page if available */
3904 if (page)
3905 prep_new_page(page, order, gfp_mask, alloc_flags);
3906
3907 /* Try get a page from the freelist if available */
3908 if (!page)
3909 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3910
98dd3b48
VB
3911 if (page) {
3912 struct zone *zone = page_zone(page);
53853e2d 3913
98dd3b48
VB
3914 zone->compact_blockskip_flush = false;
3915 compaction_defer_reset(zone, order, true);
3916 count_vm_event(COMPACTSUCCESS);
3917 return page;
3918 }
56de7263 3919
98dd3b48
VB
3920 /*
3921 * It's bad if compaction run occurs and fails. The most likely reason
3922 * is that pages exist, but not enough to satisfy watermarks.
3923 */
3924 count_vm_event(COMPACTFAIL);
66199712 3925
98dd3b48 3926 cond_resched();
56de7263
MG
3927
3928 return NULL;
3929}
33c2d214 3930
3250845d
VB
3931static inline bool
3932should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3933 enum compact_result compact_result,
3934 enum compact_priority *compact_priority,
d9436498 3935 int *compaction_retries)
3250845d
VB
3936{
3937 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3938 int min_priority;
65190cff
MH
3939 bool ret = false;
3940 int retries = *compaction_retries;
3941 enum compact_priority priority = *compact_priority;
3250845d
VB
3942
3943 if (!order)
3944 return false;
3945
d9436498
VB
3946 if (compaction_made_progress(compact_result))
3947 (*compaction_retries)++;
3948
3250845d
VB
3949 /*
3950 * compaction considers all the zone as desperately out of memory
3951 * so it doesn't really make much sense to retry except when the
3952 * failure could be caused by insufficient priority
3953 */
d9436498
VB
3954 if (compaction_failed(compact_result))
3955 goto check_priority;
3250845d
VB
3956
3957 /*
3958 * make sure the compaction wasn't deferred or didn't bail out early
3959 * due to locks contention before we declare that we should give up.
3960 * But do not retry if the given zonelist is not suitable for
3961 * compaction.
3962 */
65190cff
MH
3963 if (compaction_withdrawn(compact_result)) {
3964 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3965 goto out;
3966 }
3250845d
VB
3967
3968 /*
dcda9b04 3969 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3970 * costly ones because they are de facto nofail and invoke OOM
3971 * killer to move on while costly can fail and users are ready
3972 * to cope with that. 1/4 retries is rather arbitrary but we
3973 * would need much more detailed feedback from compaction to
3974 * make a better decision.
3975 */
3976 if (order > PAGE_ALLOC_COSTLY_ORDER)
3977 max_retries /= 4;
65190cff
MH
3978 if (*compaction_retries <= max_retries) {
3979 ret = true;
3980 goto out;
3981 }
3250845d 3982
d9436498
VB
3983 /*
3984 * Make sure there are attempts at the highest priority if we exhausted
3985 * all retries or failed at the lower priorities.
3986 */
3987check_priority:
c2033b00
VB
3988 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3989 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3990
c2033b00 3991 if (*compact_priority > min_priority) {
d9436498
VB
3992 (*compact_priority)--;
3993 *compaction_retries = 0;
65190cff 3994 ret = true;
d9436498 3995 }
65190cff
MH
3996out:
3997 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3998 return ret;
3250845d 3999}
56de7263
MG
4000#else
4001static inline struct page *
4002__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4003 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4004 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4005{
33c2d214 4006 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4007 return NULL;
4008}
33c2d214
MH
4009
4010static inline bool
86a294a8
MH
4011should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4012 enum compact_result compact_result,
a5508cd8 4013 enum compact_priority *compact_priority,
d9436498 4014 int *compaction_retries)
33c2d214 4015{
31e49bfd
MH
4016 struct zone *zone;
4017 struct zoneref *z;
4018
4019 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4020 return false;
4021
4022 /*
4023 * There are setups with compaction disabled which would prefer to loop
4024 * inside the allocator rather than hit the oom killer prematurely.
4025 * Let's give them a good hope and keep retrying while the order-0
4026 * watermarks are OK.
4027 */
4028 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4029 ac->nodemask) {
4030 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4031 ac_classzone_idx(ac), alloc_flags))
4032 return true;
4033 }
33c2d214
MH
4034 return false;
4035}
3250845d 4036#endif /* CONFIG_COMPACTION */
56de7263 4037
d92a8cfc 4038#ifdef CONFIG_LOCKDEP
93781325 4039static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4040 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4041
4042static bool __need_fs_reclaim(gfp_t gfp_mask)
4043{
4044 gfp_mask = current_gfp_context(gfp_mask);
4045
4046 /* no reclaim without waiting on it */
4047 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4048 return false;
4049
4050 /* this guy won't enter reclaim */
2e517d68 4051 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4052 return false;
4053
4054 /* We're only interested __GFP_FS allocations for now */
4055 if (!(gfp_mask & __GFP_FS))
4056 return false;
4057
4058 if (gfp_mask & __GFP_NOLOCKDEP)
4059 return false;
4060
4061 return true;
4062}
4063
93781325
OS
4064void __fs_reclaim_acquire(void)
4065{
4066 lock_map_acquire(&__fs_reclaim_map);
4067}
4068
4069void __fs_reclaim_release(void)
4070{
4071 lock_map_release(&__fs_reclaim_map);
4072}
4073
d92a8cfc
PZ
4074void fs_reclaim_acquire(gfp_t gfp_mask)
4075{
4076 if (__need_fs_reclaim(gfp_mask))
93781325 4077 __fs_reclaim_acquire();
d92a8cfc
PZ
4078}
4079EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4080
4081void fs_reclaim_release(gfp_t gfp_mask)
4082{
4083 if (__need_fs_reclaim(gfp_mask))
93781325 4084 __fs_reclaim_release();
d92a8cfc
PZ
4085}
4086EXPORT_SYMBOL_GPL(fs_reclaim_release);
4087#endif
4088
bba90710
MS
4089/* Perform direct synchronous page reclaim */
4090static int
a9263751
VB
4091__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4092 const struct alloc_context *ac)
11e33f6a 4093{
bba90710 4094 int progress;
499118e9 4095 unsigned int noreclaim_flag;
eb414681 4096 unsigned long pflags;
11e33f6a
MG
4097
4098 cond_resched();
4099
4100 /* We now go into synchronous reclaim */
4101 cpuset_memory_pressure_bump();
eb414681 4102 psi_memstall_enter(&pflags);
d92a8cfc 4103 fs_reclaim_acquire(gfp_mask);
93781325 4104 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4105
a9263751
VB
4106 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4107 ac->nodemask);
11e33f6a 4108
499118e9 4109 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4110 fs_reclaim_release(gfp_mask);
eb414681 4111 psi_memstall_leave(&pflags);
11e33f6a
MG
4112
4113 cond_resched();
4114
bba90710
MS
4115 return progress;
4116}
4117
4118/* The really slow allocator path where we enter direct reclaim */
4119static inline struct page *
4120__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4121 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4122 unsigned long *did_some_progress)
bba90710
MS
4123{
4124 struct page *page = NULL;
4125 bool drained = false;
4126
a9263751 4127 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4128 if (unlikely(!(*did_some_progress)))
4129 return NULL;
11e33f6a 4130
9ee493ce 4131retry:
31a6c190 4132 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4133
4134 /*
4135 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4136 * pages are pinned on the per-cpu lists or in high alloc reserves.
4137 * Shrink them them and try again
9ee493ce
MG
4138 */
4139 if (!page && !drained) {
29fac03b 4140 unreserve_highatomic_pageblock(ac, false);
93481ff0 4141 drain_all_pages(NULL);
9ee493ce
MG
4142 drained = true;
4143 goto retry;
4144 }
4145
11e33f6a
MG
4146 return page;
4147}
4148
5ecd9d40
DR
4149static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4150 const struct alloc_context *ac)
3a025760
JW
4151{
4152 struct zoneref *z;
4153 struct zone *zone;
e1a55637 4154 pg_data_t *last_pgdat = NULL;
5ecd9d40 4155 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4156
5ecd9d40
DR
4157 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4158 ac->nodemask) {
e1a55637 4159 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4160 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4161 last_pgdat = zone->zone_pgdat;
4162 }
3a025760
JW
4163}
4164
c603844b 4165static inline unsigned int
341ce06f
PZ
4166gfp_to_alloc_flags(gfp_t gfp_mask)
4167{
c603844b 4168 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4169
a56f57ff 4170 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 4171 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 4172
341ce06f
PZ
4173 /*
4174 * The caller may dip into page reserves a bit more if the caller
4175 * cannot run direct reclaim, or if the caller has realtime scheduling
4176 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4177 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4178 */
e6223a3b 4179 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4180
d0164adc 4181 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4182 /*
b104a35d
DR
4183 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4184 * if it can't schedule.
5c3240d9 4185 */
b104a35d 4186 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4187 alloc_flags |= ALLOC_HARDER;
523b9458 4188 /*
b104a35d 4189 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4190 * comment for __cpuset_node_allowed().
523b9458 4191 */
341ce06f 4192 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4193 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4194 alloc_flags |= ALLOC_HARDER;
4195
0a79cdad
MG
4196 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4197 alloc_flags |= ALLOC_KSWAPD;
4198
d883c6cf
JK
4199#ifdef CONFIG_CMA
4200 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4201 alloc_flags |= ALLOC_CMA;
4202#endif
341ce06f
PZ
4203 return alloc_flags;
4204}
4205
cd04ae1e 4206static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4207{
cd04ae1e
MH
4208 if (!tsk_is_oom_victim(tsk))
4209 return false;
4210
4211 /*
4212 * !MMU doesn't have oom reaper so give access to memory reserves
4213 * only to the thread with TIF_MEMDIE set
4214 */
4215 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4216 return false;
4217
cd04ae1e
MH
4218 return true;
4219}
4220
4221/*
4222 * Distinguish requests which really need access to full memory
4223 * reserves from oom victims which can live with a portion of it
4224 */
4225static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4226{
4227 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4228 return 0;
31a6c190 4229 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4230 return ALLOC_NO_WATERMARKS;
31a6c190 4231 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4232 return ALLOC_NO_WATERMARKS;
4233 if (!in_interrupt()) {
4234 if (current->flags & PF_MEMALLOC)
4235 return ALLOC_NO_WATERMARKS;
4236 else if (oom_reserves_allowed(current))
4237 return ALLOC_OOM;
4238 }
31a6c190 4239
cd04ae1e
MH
4240 return 0;
4241}
4242
4243bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4244{
4245 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4246}
4247
0a0337e0
MH
4248/*
4249 * Checks whether it makes sense to retry the reclaim to make a forward progress
4250 * for the given allocation request.
491d79ae
JW
4251 *
4252 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4253 * without success, or when we couldn't even meet the watermark if we
4254 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4255 *
4256 * Returns true if a retry is viable or false to enter the oom path.
4257 */
4258static inline bool
4259should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4260 struct alloc_context *ac, int alloc_flags,
423b452e 4261 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4262{
4263 struct zone *zone;
4264 struct zoneref *z;
15f570bf 4265 bool ret = false;
0a0337e0 4266
423b452e
VB
4267 /*
4268 * Costly allocations might have made a progress but this doesn't mean
4269 * their order will become available due to high fragmentation so
4270 * always increment the no progress counter for them
4271 */
4272 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4273 *no_progress_loops = 0;
4274 else
4275 (*no_progress_loops)++;
4276
0a0337e0
MH
4277 /*
4278 * Make sure we converge to OOM if we cannot make any progress
4279 * several times in the row.
4280 */
04c8716f
MK
4281 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4282 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4283 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4284 }
0a0337e0 4285
bca67592
MG
4286 /*
4287 * Keep reclaiming pages while there is a chance this will lead
4288 * somewhere. If none of the target zones can satisfy our allocation
4289 * request even if all reclaimable pages are considered then we are
4290 * screwed and have to go OOM.
0a0337e0
MH
4291 */
4292 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4293 ac->nodemask) {
4294 unsigned long available;
ede37713 4295 unsigned long reclaimable;
d379f01d
MH
4296 unsigned long min_wmark = min_wmark_pages(zone);
4297 bool wmark;
0a0337e0 4298
5a1c84b4 4299 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4300 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4301
4302 /*
491d79ae
JW
4303 * Would the allocation succeed if we reclaimed all
4304 * reclaimable pages?
0a0337e0 4305 */
d379f01d
MH
4306 wmark = __zone_watermark_ok(zone, order, min_wmark,
4307 ac_classzone_idx(ac), alloc_flags, available);
4308 trace_reclaim_retry_zone(z, order, reclaimable,
4309 available, min_wmark, *no_progress_loops, wmark);
4310 if (wmark) {
ede37713
MH
4311 /*
4312 * If we didn't make any progress and have a lot of
4313 * dirty + writeback pages then we should wait for
4314 * an IO to complete to slow down the reclaim and
4315 * prevent from pre mature OOM
4316 */
4317 if (!did_some_progress) {
11fb9989 4318 unsigned long write_pending;
ede37713 4319
5a1c84b4
MG
4320 write_pending = zone_page_state_snapshot(zone,
4321 NR_ZONE_WRITE_PENDING);
ede37713 4322
11fb9989 4323 if (2 * write_pending > reclaimable) {
ede37713
MH
4324 congestion_wait(BLK_RW_ASYNC, HZ/10);
4325 return true;
4326 }
4327 }
5a1c84b4 4328
15f570bf
MH
4329 ret = true;
4330 goto out;
0a0337e0
MH
4331 }
4332 }
4333
15f570bf
MH
4334out:
4335 /*
4336 * Memory allocation/reclaim might be called from a WQ context and the
4337 * current implementation of the WQ concurrency control doesn't
4338 * recognize that a particular WQ is congested if the worker thread is
4339 * looping without ever sleeping. Therefore we have to do a short sleep
4340 * here rather than calling cond_resched().
4341 */
4342 if (current->flags & PF_WQ_WORKER)
4343 schedule_timeout_uninterruptible(1);
4344 else
4345 cond_resched();
4346 return ret;
0a0337e0
MH
4347}
4348
902b6281
VB
4349static inline bool
4350check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4351{
4352 /*
4353 * It's possible that cpuset's mems_allowed and the nodemask from
4354 * mempolicy don't intersect. This should be normally dealt with by
4355 * policy_nodemask(), but it's possible to race with cpuset update in
4356 * such a way the check therein was true, and then it became false
4357 * before we got our cpuset_mems_cookie here.
4358 * This assumes that for all allocations, ac->nodemask can come only
4359 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4360 * when it does not intersect with the cpuset restrictions) or the
4361 * caller can deal with a violated nodemask.
4362 */
4363 if (cpusets_enabled() && ac->nodemask &&
4364 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4365 ac->nodemask = NULL;
4366 return true;
4367 }
4368
4369 /*
4370 * When updating a task's mems_allowed or mempolicy nodemask, it is
4371 * possible to race with parallel threads in such a way that our
4372 * allocation can fail while the mask is being updated. If we are about
4373 * to fail, check if the cpuset changed during allocation and if so,
4374 * retry.
4375 */
4376 if (read_mems_allowed_retry(cpuset_mems_cookie))
4377 return true;
4378
4379 return false;
4380}
4381
11e33f6a
MG
4382static inline struct page *
4383__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4384 struct alloc_context *ac)
11e33f6a 4385{
d0164adc 4386 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4387 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4388 struct page *page = NULL;
c603844b 4389 unsigned int alloc_flags;
11e33f6a 4390 unsigned long did_some_progress;
5ce9bfef 4391 enum compact_priority compact_priority;
c5d01d0d 4392 enum compact_result compact_result;
5ce9bfef
VB
4393 int compaction_retries;
4394 int no_progress_loops;
5ce9bfef 4395 unsigned int cpuset_mems_cookie;
cd04ae1e 4396 int reserve_flags;
1da177e4 4397
d0164adc
MG
4398 /*
4399 * We also sanity check to catch abuse of atomic reserves being used by
4400 * callers that are not in atomic context.
4401 */
4402 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4403 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4404 gfp_mask &= ~__GFP_ATOMIC;
4405
5ce9bfef
VB
4406retry_cpuset:
4407 compaction_retries = 0;
4408 no_progress_loops = 0;
4409 compact_priority = DEF_COMPACT_PRIORITY;
4410 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4411
4412 /*
4413 * The fast path uses conservative alloc_flags to succeed only until
4414 * kswapd needs to be woken up, and to avoid the cost of setting up
4415 * alloc_flags precisely. So we do that now.
4416 */
4417 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4418
e47483bc
VB
4419 /*
4420 * We need to recalculate the starting point for the zonelist iterator
4421 * because we might have used different nodemask in the fast path, or
4422 * there was a cpuset modification and we are retrying - otherwise we
4423 * could end up iterating over non-eligible zones endlessly.
4424 */
4425 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4426 ac->high_zoneidx, ac->nodemask);
4427 if (!ac->preferred_zoneref->zone)
4428 goto nopage;
4429
0a79cdad 4430 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4431 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4432
4433 /*
4434 * The adjusted alloc_flags might result in immediate success, so try
4435 * that first
4436 */
4437 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4438 if (page)
4439 goto got_pg;
4440
a8161d1e
VB
4441 /*
4442 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4443 * that we have enough base pages and don't need to reclaim. For non-
4444 * movable high-order allocations, do that as well, as compaction will
4445 * try prevent permanent fragmentation by migrating from blocks of the
4446 * same migratetype.
4447 * Don't try this for allocations that are allowed to ignore
4448 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4449 */
282722b0
VB
4450 if (can_direct_reclaim &&
4451 (costly_order ||
4452 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4453 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4454 page = __alloc_pages_direct_compact(gfp_mask, order,
4455 alloc_flags, ac,
a5508cd8 4456 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4457 &compact_result);
4458 if (page)
4459 goto got_pg;
4460
b39d0ee2
DR
4461 if (order >= pageblock_order && (gfp_mask & __GFP_IO)) {
4462 /*
4463 * If allocating entire pageblock(s) and compaction
4464 * failed because all zones are below low watermarks
4465 * or is prohibited because it recently failed at this
4466 * order, fail immediately.
4467 *
4468 * Reclaim is
4469 * - potentially very expensive because zones are far
4470 * below their low watermarks or this is part of very
4471 * bursty high order allocations,
4472 * - not guaranteed to help because isolate_freepages()
4473 * may not iterate over freed pages as part of its
4474 * linear scan, and
4475 * - unlikely to make entire pageblocks free on its
4476 * own.
4477 */
4478 if (compact_result == COMPACT_SKIPPED ||
4479 compact_result == COMPACT_DEFERRED)
4480 goto nopage;
4481 }
4482
3eb2771b
VB
4483 /*
4484 * Checks for costly allocations with __GFP_NORETRY, which
4485 * includes THP page fault allocations
4486 */
282722b0 4487 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4488 /*
4489 * If compaction is deferred for high-order allocations,
4490 * it is because sync compaction recently failed. If
4491 * this is the case and the caller requested a THP
4492 * allocation, we do not want to heavily disrupt the
4493 * system, so we fail the allocation instead of entering
4494 * direct reclaim.
4495 */
4496 if (compact_result == COMPACT_DEFERRED)
4497 goto nopage;
4498
a8161d1e 4499 /*
3eb2771b
VB
4500 * Looks like reclaim/compaction is worth trying, but
4501 * sync compaction could be very expensive, so keep
25160354 4502 * using async compaction.
a8161d1e 4503 */
a5508cd8 4504 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4505 }
4506 }
23771235 4507
31a6c190 4508retry:
23771235 4509 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4510 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4511 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4512
cd04ae1e
MH
4513 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4514 if (reserve_flags)
4515 alloc_flags = reserve_flags;
23771235 4516
e46e7b77 4517 /*
d6a24df0
VB
4518 * Reset the nodemask and zonelist iterators if memory policies can be
4519 * ignored. These allocations are high priority and system rather than
4520 * user oriented.
e46e7b77 4521 */
cd04ae1e 4522 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4523 ac->nodemask = NULL;
e46e7b77
MG
4524 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4525 ac->high_zoneidx, ac->nodemask);
4526 }
4527
23771235 4528 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4529 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4530 if (page)
4531 goto got_pg;
1da177e4 4532
d0164adc 4533 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4534 if (!can_direct_reclaim)
1da177e4
LT
4535 goto nopage;
4536
9a67f648
MH
4537 /* Avoid recursion of direct reclaim */
4538 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4539 goto nopage;
4540
a8161d1e
VB
4541 /* Try direct reclaim and then allocating */
4542 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4543 &did_some_progress);
4544 if (page)
4545 goto got_pg;
4546
4547 /* Try direct compaction and then allocating */
a9263751 4548 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4549 compact_priority, &compact_result);
56de7263
MG
4550 if (page)
4551 goto got_pg;
75f30861 4552
9083905a
JW
4553 /* Do not loop if specifically requested */
4554 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4555 goto nopage;
9083905a 4556
0a0337e0
MH
4557 /*
4558 * Do not retry costly high order allocations unless they are
dcda9b04 4559 * __GFP_RETRY_MAYFAIL
0a0337e0 4560 */
dcda9b04 4561 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4562 goto nopage;
0a0337e0 4563
0a0337e0 4564 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4565 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4566 goto retry;
4567
33c2d214
MH
4568 /*
4569 * It doesn't make any sense to retry for the compaction if the order-0
4570 * reclaim is not able to make any progress because the current
4571 * implementation of the compaction depends on the sufficient amount
4572 * of free memory (see __compaction_suitable)
4573 */
4574 if (did_some_progress > 0 &&
86a294a8 4575 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4576 compact_result, &compact_priority,
d9436498 4577 &compaction_retries))
33c2d214
MH
4578 goto retry;
4579
902b6281
VB
4580
4581 /* Deal with possible cpuset update races before we start OOM killing */
4582 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4583 goto retry_cpuset;
4584
9083905a
JW
4585 /* Reclaim has failed us, start killing things */
4586 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4587 if (page)
4588 goto got_pg;
4589
9a67f648 4590 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4591 if (tsk_is_oom_victim(current) &&
4592 (alloc_flags == ALLOC_OOM ||
c288983d 4593 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4594 goto nopage;
4595
9083905a 4596 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4597 if (did_some_progress) {
4598 no_progress_loops = 0;
9083905a 4599 goto retry;
0a0337e0 4600 }
9083905a 4601
1da177e4 4602nopage:
902b6281
VB
4603 /* Deal with possible cpuset update races before we fail */
4604 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4605 goto retry_cpuset;
4606
9a67f648
MH
4607 /*
4608 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4609 * we always retry
4610 */
4611 if (gfp_mask & __GFP_NOFAIL) {
4612 /*
4613 * All existing users of the __GFP_NOFAIL are blockable, so warn
4614 * of any new users that actually require GFP_NOWAIT
4615 */
4616 if (WARN_ON_ONCE(!can_direct_reclaim))
4617 goto fail;
4618
4619 /*
4620 * PF_MEMALLOC request from this context is rather bizarre
4621 * because we cannot reclaim anything and only can loop waiting
4622 * for somebody to do a work for us
4623 */
4624 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4625
4626 /*
4627 * non failing costly orders are a hard requirement which we
4628 * are not prepared for much so let's warn about these users
4629 * so that we can identify them and convert them to something
4630 * else.
4631 */
4632 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4633
6c18ba7a
MH
4634 /*
4635 * Help non-failing allocations by giving them access to memory
4636 * reserves but do not use ALLOC_NO_WATERMARKS because this
4637 * could deplete whole memory reserves which would just make
4638 * the situation worse
4639 */
4640 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4641 if (page)
4642 goto got_pg;
4643
9a67f648
MH
4644 cond_resched();
4645 goto retry;
4646 }
4647fail:
a8e99259 4648 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4649 "page allocation failure: order:%u", order);
1da177e4 4650got_pg:
072bb0aa 4651 return page;
1da177e4 4652}
11e33f6a 4653
9cd75558 4654static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4655 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4656 struct alloc_context *ac, gfp_t *alloc_mask,
4657 unsigned int *alloc_flags)
11e33f6a 4658{
9cd75558 4659 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4660 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4661 ac->nodemask = nodemask;
4662 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4663
682a3385 4664 if (cpusets_enabled()) {
9cd75558 4665 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4666 if (!ac->nodemask)
4667 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4668 else
4669 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4670 }
4671
d92a8cfc
PZ
4672 fs_reclaim_acquire(gfp_mask);
4673 fs_reclaim_release(gfp_mask);
11e33f6a 4674
d0164adc 4675 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4676
4677 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4678 return false;
11e33f6a 4679
d883c6cf
JK
4680 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4681 *alloc_flags |= ALLOC_CMA;
4682
9cd75558
MG
4683 return true;
4684}
21bb9bd1 4685
9cd75558 4686/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4687static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4688{
c9ab0c4f 4689 /* Dirty zone balancing only done in the fast path */
9cd75558 4690 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4691
e46e7b77
MG
4692 /*
4693 * The preferred zone is used for statistics but crucially it is
4694 * also used as the starting point for the zonelist iterator. It
4695 * may get reset for allocations that ignore memory policies.
4696 */
9cd75558
MG
4697 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4698 ac->high_zoneidx, ac->nodemask);
4699}
4700
4701/*
4702 * This is the 'heart' of the zoned buddy allocator.
4703 */
4704struct page *
04ec6264
VB
4705__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4706 nodemask_t *nodemask)
9cd75558
MG
4707{
4708 struct page *page;
4709 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4710 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4711 struct alloc_context ac = { };
4712
c63ae43b
MH
4713 /*
4714 * There are several places where we assume that the order value is sane
4715 * so bail out early if the request is out of bound.
4716 */
4717 if (unlikely(order >= MAX_ORDER)) {
4718 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4719 return NULL;
4720 }
4721
9cd75558 4722 gfp_mask &= gfp_allowed_mask;
f19360f0 4723 alloc_mask = gfp_mask;
04ec6264 4724 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4725 return NULL;
4726
a380b40a 4727 finalise_ac(gfp_mask, &ac);
5bb1b169 4728
6bb15450
MG
4729 /*
4730 * Forbid the first pass from falling back to types that fragment
4731 * memory until all local zones are considered.
4732 */
0a79cdad 4733 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4734
5117f45d 4735 /* First allocation attempt */
a9263751 4736 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4737 if (likely(page))
4738 goto out;
11e33f6a 4739
4fcb0971 4740 /*
7dea19f9
MH
4741 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4742 * resp. GFP_NOIO which has to be inherited for all allocation requests
4743 * from a particular context which has been marked by
4744 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4745 */
7dea19f9 4746 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4747 ac.spread_dirty_pages = false;
23f086f9 4748
4741526b
MG
4749 /*
4750 * Restore the original nodemask if it was potentially replaced with
4751 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4752 */
e47483bc 4753 if (unlikely(ac.nodemask != nodemask))
4741526b 4754 ac.nodemask = nodemask;
16096c25 4755
4fcb0971 4756 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4757
4fcb0971 4758out:
c4159a75 4759 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
60cd4bcd 4760 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
c4159a75
VD
4761 __free_pages(page, order);
4762 page = NULL;
4949148a
VD
4763 }
4764
4fcb0971
MG
4765 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4766
11e33f6a 4767 return page;
1da177e4 4768}
d239171e 4769EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4770
4771/*
9ea9a680
MH
4772 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4773 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4774 * you need to access high mem.
1da177e4 4775 */
920c7a5d 4776unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4777{
945a1113
AM
4778 struct page *page;
4779
9ea9a680 4780 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4781 if (!page)
4782 return 0;
4783 return (unsigned long) page_address(page);
4784}
1da177e4
LT
4785EXPORT_SYMBOL(__get_free_pages);
4786
920c7a5d 4787unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4788{
945a1113 4789 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4790}
1da177e4
LT
4791EXPORT_SYMBOL(get_zeroed_page);
4792
742aa7fb 4793static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4794{
742aa7fb
AL
4795 if (order == 0) /* Via pcp? */
4796 free_unref_page(page);
4797 else
4798 __free_pages_ok(page, order);
1da177e4
LT
4799}
4800
742aa7fb
AL
4801void __free_pages(struct page *page, unsigned int order)
4802{
4803 if (put_page_testzero(page))
4804 free_the_page(page, order);
4805}
1da177e4
LT
4806EXPORT_SYMBOL(__free_pages);
4807
920c7a5d 4808void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4809{
4810 if (addr != 0) {
725d704e 4811 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4812 __free_pages(virt_to_page((void *)addr), order);
4813 }
4814}
4815
4816EXPORT_SYMBOL(free_pages);
4817
b63ae8ca
AD
4818/*
4819 * Page Fragment:
4820 * An arbitrary-length arbitrary-offset area of memory which resides
4821 * within a 0 or higher order page. Multiple fragments within that page
4822 * are individually refcounted, in the page's reference counter.
4823 *
4824 * The page_frag functions below provide a simple allocation framework for
4825 * page fragments. This is used by the network stack and network device
4826 * drivers to provide a backing region of memory for use as either an
4827 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4828 */
2976db80
AD
4829static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4830 gfp_t gfp_mask)
b63ae8ca
AD
4831{
4832 struct page *page = NULL;
4833 gfp_t gfp = gfp_mask;
4834
4835#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4836 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4837 __GFP_NOMEMALLOC;
4838 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4839 PAGE_FRAG_CACHE_MAX_ORDER);
4840 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4841#endif
4842 if (unlikely(!page))
4843 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4844
4845 nc->va = page ? page_address(page) : NULL;
4846
4847 return page;
4848}
4849
2976db80 4850void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4851{
4852 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4853
742aa7fb
AL
4854 if (page_ref_sub_and_test(page, count))
4855 free_the_page(page, compound_order(page));
44fdffd7 4856}
2976db80 4857EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4858
8c2dd3e4
AD
4859void *page_frag_alloc(struct page_frag_cache *nc,
4860 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4861{
4862 unsigned int size = PAGE_SIZE;
4863 struct page *page;
4864 int offset;
4865
4866 if (unlikely(!nc->va)) {
4867refill:
2976db80 4868 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4869 if (!page)
4870 return NULL;
4871
4872#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4873 /* if size can vary use size else just use PAGE_SIZE */
4874 size = nc->size;
4875#endif
4876 /* Even if we own the page, we do not use atomic_set().
4877 * This would break get_page_unless_zero() users.
4878 */
86447726 4879 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4880
4881 /* reset page count bias and offset to start of new frag */
2f064f34 4882 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4883 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4884 nc->offset = size;
4885 }
4886
4887 offset = nc->offset - fragsz;
4888 if (unlikely(offset < 0)) {
4889 page = virt_to_page(nc->va);
4890
fe896d18 4891 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4892 goto refill;
4893
4894#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4895 /* if size can vary use size else just use PAGE_SIZE */
4896 size = nc->size;
4897#endif
4898 /* OK, page count is 0, we can safely set it */
86447726 4899 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4900
4901 /* reset page count bias and offset to start of new frag */
86447726 4902 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4903 offset = size - fragsz;
4904 }
4905
4906 nc->pagecnt_bias--;
4907 nc->offset = offset;
4908
4909 return nc->va + offset;
4910}
8c2dd3e4 4911EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4912
4913/*
4914 * Frees a page fragment allocated out of either a compound or order 0 page.
4915 */
8c2dd3e4 4916void page_frag_free(void *addr)
b63ae8ca
AD
4917{
4918 struct page *page = virt_to_head_page(addr);
4919
742aa7fb
AL
4920 if (unlikely(put_page_testzero(page)))
4921 free_the_page(page, compound_order(page));
b63ae8ca 4922}
8c2dd3e4 4923EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4924
d00181b9
KS
4925static void *make_alloc_exact(unsigned long addr, unsigned int order,
4926 size_t size)
ee85c2e1
AK
4927{
4928 if (addr) {
4929 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4930 unsigned long used = addr + PAGE_ALIGN(size);
4931
4932 split_page(virt_to_page((void *)addr), order);
4933 while (used < alloc_end) {
4934 free_page(used);
4935 used += PAGE_SIZE;
4936 }
4937 }
4938 return (void *)addr;
4939}
4940
2be0ffe2
TT
4941/**
4942 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4943 * @size: the number of bytes to allocate
63931eb9 4944 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4945 *
4946 * This function is similar to alloc_pages(), except that it allocates the
4947 * minimum number of pages to satisfy the request. alloc_pages() can only
4948 * allocate memory in power-of-two pages.
4949 *
4950 * This function is also limited by MAX_ORDER.
4951 *
4952 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4953 *
4954 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4955 */
4956void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4957{
4958 unsigned int order = get_order(size);
4959 unsigned long addr;
4960
63931eb9
VB
4961 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4962 gfp_mask &= ~__GFP_COMP;
4963
2be0ffe2 4964 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4965 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4966}
4967EXPORT_SYMBOL(alloc_pages_exact);
4968
ee85c2e1
AK
4969/**
4970 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4971 * pages on a node.
b5e6ab58 4972 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4973 * @size: the number of bytes to allocate
63931eb9 4974 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4975 *
4976 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4977 * back.
a862f68a
MR
4978 *
4979 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4980 */
e1931811 4981void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4982{
d00181b9 4983 unsigned int order = get_order(size);
63931eb9
VB
4984 struct page *p;
4985
4986 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4987 gfp_mask &= ~__GFP_COMP;
4988
4989 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4990 if (!p)
4991 return NULL;
4992 return make_alloc_exact((unsigned long)page_address(p), order, size);
4993}
ee85c2e1 4994
2be0ffe2
TT
4995/**
4996 * free_pages_exact - release memory allocated via alloc_pages_exact()
4997 * @virt: the value returned by alloc_pages_exact.
4998 * @size: size of allocation, same value as passed to alloc_pages_exact().
4999 *
5000 * Release the memory allocated by a previous call to alloc_pages_exact.
5001 */
5002void free_pages_exact(void *virt, size_t size)
5003{
5004 unsigned long addr = (unsigned long)virt;
5005 unsigned long end = addr + PAGE_ALIGN(size);
5006
5007 while (addr < end) {
5008 free_page(addr);
5009 addr += PAGE_SIZE;
5010 }
5011}
5012EXPORT_SYMBOL(free_pages_exact);
5013
e0fb5815
ZY
5014/**
5015 * nr_free_zone_pages - count number of pages beyond high watermark
5016 * @offset: The zone index of the highest zone
5017 *
a862f68a 5018 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5019 * high watermark within all zones at or below a given zone index. For each
5020 * zone, the number of pages is calculated as:
0e056eb5 5021 *
5022 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5023 *
5024 * Return: number of pages beyond high watermark.
e0fb5815 5025 */
ebec3862 5026static unsigned long nr_free_zone_pages(int offset)
1da177e4 5027{
dd1a239f 5028 struct zoneref *z;
54a6eb5c
MG
5029 struct zone *zone;
5030
e310fd43 5031 /* Just pick one node, since fallback list is circular */
ebec3862 5032 unsigned long sum = 0;
1da177e4 5033
0e88460d 5034 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5035
54a6eb5c 5036 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5037 unsigned long size = zone_managed_pages(zone);
41858966 5038 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5039 if (size > high)
5040 sum += size - high;
1da177e4
LT
5041 }
5042
5043 return sum;
5044}
5045
e0fb5815
ZY
5046/**
5047 * nr_free_buffer_pages - count number of pages beyond high watermark
5048 *
5049 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5050 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5051 *
5052 * Return: number of pages beyond high watermark within ZONE_DMA and
5053 * ZONE_NORMAL.
1da177e4 5054 */
ebec3862 5055unsigned long nr_free_buffer_pages(void)
1da177e4 5056{
af4ca457 5057 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5058}
c2f1a551 5059EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5060
e0fb5815
ZY
5061/**
5062 * nr_free_pagecache_pages - count number of pages beyond high watermark
5063 *
5064 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5065 * high watermark within all zones.
a862f68a
MR
5066 *
5067 * Return: number of pages beyond high watermark within all zones.
1da177e4 5068 */
ebec3862 5069unsigned long nr_free_pagecache_pages(void)
1da177e4 5070{
2a1e274a 5071 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5072}
08e0f6a9
CL
5073
5074static inline void show_node(struct zone *zone)
1da177e4 5075{
e5adfffc 5076 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5077 printk("Node %d ", zone_to_nid(zone));
1da177e4 5078}
1da177e4 5079
d02bd27b
IR
5080long si_mem_available(void)
5081{
5082 long available;
5083 unsigned long pagecache;
5084 unsigned long wmark_low = 0;
5085 unsigned long pages[NR_LRU_LISTS];
b29940c1 5086 unsigned long reclaimable;
d02bd27b
IR
5087 struct zone *zone;
5088 int lru;
5089
5090 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5091 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5092
5093 for_each_zone(zone)
a9214443 5094 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5095
5096 /*
5097 * Estimate the amount of memory available for userspace allocations,
5098 * without causing swapping.
5099 */
c41f012a 5100 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5101
5102 /*
5103 * Not all the page cache can be freed, otherwise the system will
5104 * start swapping. Assume at least half of the page cache, or the
5105 * low watermark worth of cache, needs to stay.
5106 */
5107 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5108 pagecache -= min(pagecache / 2, wmark_low);
5109 available += pagecache;
5110
5111 /*
b29940c1
VB
5112 * Part of the reclaimable slab and other kernel memory consists of
5113 * items that are in use, and cannot be freed. Cap this estimate at the
5114 * low watermark.
d02bd27b 5115 */
b29940c1
VB
5116 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5117 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5118 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5119
d02bd27b
IR
5120 if (available < 0)
5121 available = 0;
5122 return available;
5123}
5124EXPORT_SYMBOL_GPL(si_mem_available);
5125
1da177e4
LT
5126void si_meminfo(struct sysinfo *val)
5127{
ca79b0c2 5128 val->totalram = totalram_pages();
11fb9989 5129 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5130 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5131 val->bufferram = nr_blockdev_pages();
ca79b0c2 5132 val->totalhigh = totalhigh_pages();
1da177e4 5133 val->freehigh = nr_free_highpages();
1da177e4
LT
5134 val->mem_unit = PAGE_SIZE;
5135}
5136
5137EXPORT_SYMBOL(si_meminfo);
5138
5139#ifdef CONFIG_NUMA
5140void si_meminfo_node(struct sysinfo *val, int nid)
5141{
cdd91a77
JL
5142 int zone_type; /* needs to be signed */
5143 unsigned long managed_pages = 0;
fc2bd799
JK
5144 unsigned long managed_highpages = 0;
5145 unsigned long free_highpages = 0;
1da177e4
LT
5146 pg_data_t *pgdat = NODE_DATA(nid);
5147
cdd91a77 5148 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5149 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5150 val->totalram = managed_pages;
11fb9989 5151 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5152 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5153#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5154 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5155 struct zone *zone = &pgdat->node_zones[zone_type];
5156
5157 if (is_highmem(zone)) {
9705bea5 5158 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5159 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5160 }
5161 }
5162 val->totalhigh = managed_highpages;
5163 val->freehigh = free_highpages;
98d2b0eb 5164#else
fc2bd799
JK
5165 val->totalhigh = managed_highpages;
5166 val->freehigh = free_highpages;
98d2b0eb 5167#endif
1da177e4
LT
5168 val->mem_unit = PAGE_SIZE;
5169}
5170#endif
5171
ddd588b5 5172/*
7bf02ea2
DR
5173 * Determine whether the node should be displayed or not, depending on whether
5174 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5175 */
9af744d7 5176static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5177{
ddd588b5 5178 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5179 return false;
ddd588b5 5180
9af744d7
MH
5181 /*
5182 * no node mask - aka implicit memory numa policy. Do not bother with
5183 * the synchronization - read_mems_allowed_begin - because we do not
5184 * have to be precise here.
5185 */
5186 if (!nodemask)
5187 nodemask = &cpuset_current_mems_allowed;
5188
5189 return !node_isset(nid, *nodemask);
ddd588b5
DR
5190}
5191
1da177e4
LT
5192#define K(x) ((x) << (PAGE_SHIFT-10))
5193
377e4f16
RV
5194static void show_migration_types(unsigned char type)
5195{
5196 static const char types[MIGRATE_TYPES] = {
5197 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5198 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5199 [MIGRATE_RECLAIMABLE] = 'E',
5200 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5201#ifdef CONFIG_CMA
5202 [MIGRATE_CMA] = 'C',
5203#endif
194159fb 5204#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5205 [MIGRATE_ISOLATE] = 'I',
194159fb 5206#endif
377e4f16
RV
5207 };
5208 char tmp[MIGRATE_TYPES + 1];
5209 char *p = tmp;
5210 int i;
5211
5212 for (i = 0; i < MIGRATE_TYPES; i++) {
5213 if (type & (1 << i))
5214 *p++ = types[i];
5215 }
5216
5217 *p = '\0';
1f84a18f 5218 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5219}
5220
1da177e4
LT
5221/*
5222 * Show free area list (used inside shift_scroll-lock stuff)
5223 * We also calculate the percentage fragmentation. We do this by counting the
5224 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5225 *
5226 * Bits in @filter:
5227 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5228 * cpuset.
1da177e4 5229 */
9af744d7 5230void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5231{
d1bfcdb8 5232 unsigned long free_pcp = 0;
c7241913 5233 int cpu;
1da177e4 5234 struct zone *zone;
599d0c95 5235 pg_data_t *pgdat;
1da177e4 5236
ee99c71c 5237 for_each_populated_zone(zone) {
9af744d7 5238 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5239 continue;
d1bfcdb8 5240
761b0677
KK
5241 for_each_online_cpu(cpu)
5242 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5243 }
5244
a731286d
KM
5245 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5246 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5247 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5248 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5249 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5250 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5251 global_node_page_state(NR_ACTIVE_ANON),
5252 global_node_page_state(NR_INACTIVE_ANON),
5253 global_node_page_state(NR_ISOLATED_ANON),
5254 global_node_page_state(NR_ACTIVE_FILE),
5255 global_node_page_state(NR_INACTIVE_FILE),
5256 global_node_page_state(NR_ISOLATED_FILE),
5257 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5258 global_node_page_state(NR_FILE_DIRTY),
5259 global_node_page_state(NR_WRITEBACK),
5260 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5261 global_node_page_state(NR_SLAB_RECLAIMABLE),
5262 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5263 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5264 global_node_page_state(NR_SHMEM),
c41f012a
MH
5265 global_zone_page_state(NR_PAGETABLE),
5266 global_zone_page_state(NR_BOUNCE),
5267 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5268 free_pcp,
c41f012a 5269 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5270
599d0c95 5271 for_each_online_pgdat(pgdat) {
9af744d7 5272 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5273 continue;
5274
599d0c95
MG
5275 printk("Node %d"
5276 " active_anon:%lukB"
5277 " inactive_anon:%lukB"
5278 " active_file:%lukB"
5279 " inactive_file:%lukB"
5280 " unevictable:%lukB"
5281 " isolated(anon):%lukB"
5282 " isolated(file):%lukB"
50658e2e 5283 " mapped:%lukB"
11fb9989
MG
5284 " dirty:%lukB"
5285 " writeback:%lukB"
5286 " shmem:%lukB"
5287#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5288 " shmem_thp: %lukB"
5289 " shmem_pmdmapped: %lukB"
5290 " anon_thp: %lukB"
5291#endif
5292 " writeback_tmp:%lukB"
5293 " unstable:%lukB"
599d0c95
MG
5294 " all_unreclaimable? %s"
5295 "\n",
5296 pgdat->node_id,
5297 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5298 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5299 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5300 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5301 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5302 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5303 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5304 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5305 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5306 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5307 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5308#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5309 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5310 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5311 * HPAGE_PMD_NR),
5312 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5313#endif
11fb9989
MG
5314 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5315 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5316 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5317 "yes" : "no");
599d0c95
MG
5318 }
5319
ee99c71c 5320 for_each_populated_zone(zone) {
1da177e4
LT
5321 int i;
5322
9af744d7 5323 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5324 continue;
d1bfcdb8
KK
5325
5326 free_pcp = 0;
5327 for_each_online_cpu(cpu)
5328 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5329
1da177e4 5330 show_node(zone);
1f84a18f
JP
5331 printk(KERN_CONT
5332 "%s"
1da177e4
LT
5333 " free:%lukB"
5334 " min:%lukB"
5335 " low:%lukB"
5336 " high:%lukB"
71c799f4
MK
5337 " active_anon:%lukB"
5338 " inactive_anon:%lukB"
5339 " active_file:%lukB"
5340 " inactive_file:%lukB"
5341 " unevictable:%lukB"
5a1c84b4 5342 " writepending:%lukB"
1da177e4 5343 " present:%lukB"
9feedc9d 5344 " managed:%lukB"
4a0aa73f 5345 " mlocked:%lukB"
c6a7f572 5346 " kernel_stack:%lukB"
4a0aa73f 5347 " pagetables:%lukB"
4a0aa73f 5348 " bounce:%lukB"
d1bfcdb8
KK
5349 " free_pcp:%lukB"
5350 " local_pcp:%ukB"
d1ce749a 5351 " free_cma:%lukB"
1da177e4
LT
5352 "\n",
5353 zone->name,
88f5acf8 5354 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5355 K(min_wmark_pages(zone)),
5356 K(low_wmark_pages(zone)),
5357 K(high_wmark_pages(zone)),
71c799f4
MK
5358 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5359 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5360 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5361 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5362 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5363 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5364 K(zone->present_pages),
9705bea5 5365 K(zone_managed_pages(zone)),
4a0aa73f 5366 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5367 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5368 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5369 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5370 K(free_pcp),
5371 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5372 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5373 printk("lowmem_reserve[]:");
5374 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5375 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5376 printk(KERN_CONT "\n");
1da177e4
LT
5377 }
5378
ee99c71c 5379 for_each_populated_zone(zone) {
d00181b9
KS
5380 unsigned int order;
5381 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5382 unsigned char types[MAX_ORDER];
1da177e4 5383
9af744d7 5384 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5385 continue;
1da177e4 5386 show_node(zone);
1f84a18f 5387 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5388
5389 spin_lock_irqsave(&zone->lock, flags);
5390 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5391 struct free_area *area = &zone->free_area[order];
5392 int type;
5393
5394 nr[order] = area->nr_free;
8f9de51a 5395 total += nr[order] << order;
377e4f16
RV
5396
5397 types[order] = 0;
5398 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5399 if (!free_area_empty(area, type))
377e4f16
RV
5400 types[order] |= 1 << type;
5401 }
1da177e4
LT
5402 }
5403 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5404 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5405 printk(KERN_CONT "%lu*%lukB ",
5406 nr[order], K(1UL) << order);
377e4f16
RV
5407 if (nr[order])
5408 show_migration_types(types[order]);
5409 }
1f84a18f 5410 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5411 }
5412
949f7ec5
DR
5413 hugetlb_show_meminfo();
5414
11fb9989 5415 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5416
1da177e4
LT
5417 show_swap_cache_info();
5418}
5419
19770b32
MG
5420static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5421{
5422 zoneref->zone = zone;
5423 zoneref->zone_idx = zone_idx(zone);
5424}
5425
1da177e4
LT
5426/*
5427 * Builds allocation fallback zone lists.
1a93205b
CL
5428 *
5429 * Add all populated zones of a node to the zonelist.
1da177e4 5430 */
9d3be21b 5431static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5432{
1a93205b 5433 struct zone *zone;
bc732f1d 5434 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5435 int nr_zones = 0;
02a68a5e
CL
5436
5437 do {
2f6726e5 5438 zone_type--;
070f8032 5439 zone = pgdat->node_zones + zone_type;
6aa303de 5440 if (managed_zone(zone)) {
9d3be21b 5441 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5442 check_highest_zone(zone_type);
1da177e4 5443 }
2f6726e5 5444 } while (zone_type);
bc732f1d 5445
070f8032 5446 return nr_zones;
1da177e4
LT
5447}
5448
5449#ifdef CONFIG_NUMA
f0c0b2b8
KH
5450
5451static int __parse_numa_zonelist_order(char *s)
5452{
c9bff3ee
MH
5453 /*
5454 * We used to support different zonlists modes but they turned
5455 * out to be just not useful. Let's keep the warning in place
5456 * if somebody still use the cmd line parameter so that we do
5457 * not fail it silently
5458 */
5459 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5460 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5461 return -EINVAL;
5462 }
5463 return 0;
5464}
5465
5466static __init int setup_numa_zonelist_order(char *s)
5467{
ecb256f8
VL
5468 if (!s)
5469 return 0;
5470
c9bff3ee 5471 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5472}
5473early_param("numa_zonelist_order", setup_numa_zonelist_order);
5474
c9bff3ee
MH
5475char numa_zonelist_order[] = "Node";
5476
f0c0b2b8
KH
5477/*
5478 * sysctl handler for numa_zonelist_order
5479 */
cccad5b9 5480int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5481 void __user *buffer, size_t *length,
f0c0b2b8
KH
5482 loff_t *ppos)
5483{
c9bff3ee 5484 char *str;
f0c0b2b8
KH
5485 int ret;
5486
c9bff3ee
MH
5487 if (!write)
5488 return proc_dostring(table, write, buffer, length, ppos);
5489 str = memdup_user_nul(buffer, 16);
5490 if (IS_ERR(str))
5491 return PTR_ERR(str);
dacbde09 5492
c9bff3ee
MH
5493 ret = __parse_numa_zonelist_order(str);
5494 kfree(str);
443c6f14 5495 return ret;
f0c0b2b8
KH
5496}
5497
5498
62bc62a8 5499#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5500static int node_load[MAX_NUMNODES];
5501
1da177e4 5502/**
4dc3b16b 5503 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5504 * @node: node whose fallback list we're appending
5505 * @used_node_mask: nodemask_t of already used nodes
5506 *
5507 * We use a number of factors to determine which is the next node that should
5508 * appear on a given node's fallback list. The node should not have appeared
5509 * already in @node's fallback list, and it should be the next closest node
5510 * according to the distance array (which contains arbitrary distance values
5511 * from each node to each node in the system), and should also prefer nodes
5512 * with no CPUs, since presumably they'll have very little allocation pressure
5513 * on them otherwise.
a862f68a
MR
5514 *
5515 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5516 */
f0c0b2b8 5517static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5518{
4cf808eb 5519 int n, val;
1da177e4 5520 int min_val = INT_MAX;
00ef2d2f 5521 int best_node = NUMA_NO_NODE;
a70f7302 5522 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5523
4cf808eb
LT
5524 /* Use the local node if we haven't already */
5525 if (!node_isset(node, *used_node_mask)) {
5526 node_set(node, *used_node_mask);
5527 return node;
5528 }
1da177e4 5529
4b0ef1fe 5530 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5531
5532 /* Don't want a node to appear more than once */
5533 if (node_isset(n, *used_node_mask))
5534 continue;
5535
1da177e4
LT
5536 /* Use the distance array to find the distance */
5537 val = node_distance(node, n);
5538
4cf808eb
LT
5539 /* Penalize nodes under us ("prefer the next node") */
5540 val += (n < node);
5541
1da177e4 5542 /* Give preference to headless and unused nodes */
a70f7302
RR
5543 tmp = cpumask_of_node(n);
5544 if (!cpumask_empty(tmp))
1da177e4
LT
5545 val += PENALTY_FOR_NODE_WITH_CPUS;
5546
5547 /* Slight preference for less loaded node */
5548 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5549 val += node_load[n];
5550
5551 if (val < min_val) {
5552 min_val = val;
5553 best_node = n;
5554 }
5555 }
5556
5557 if (best_node >= 0)
5558 node_set(best_node, *used_node_mask);
5559
5560 return best_node;
5561}
5562
f0c0b2b8
KH
5563
5564/*
5565 * Build zonelists ordered by node and zones within node.
5566 * This results in maximum locality--normal zone overflows into local
5567 * DMA zone, if any--but risks exhausting DMA zone.
5568 */
9d3be21b
MH
5569static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5570 unsigned nr_nodes)
1da177e4 5571{
9d3be21b
MH
5572 struct zoneref *zonerefs;
5573 int i;
5574
5575 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5576
5577 for (i = 0; i < nr_nodes; i++) {
5578 int nr_zones;
5579
5580 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5581
9d3be21b
MH
5582 nr_zones = build_zonerefs_node(node, zonerefs);
5583 zonerefs += nr_zones;
5584 }
5585 zonerefs->zone = NULL;
5586 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5587}
5588
523b9458
CL
5589/*
5590 * Build gfp_thisnode zonelists
5591 */
5592static void build_thisnode_zonelists(pg_data_t *pgdat)
5593{
9d3be21b
MH
5594 struct zoneref *zonerefs;
5595 int nr_zones;
523b9458 5596
9d3be21b
MH
5597 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5598 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5599 zonerefs += nr_zones;
5600 zonerefs->zone = NULL;
5601 zonerefs->zone_idx = 0;
523b9458
CL
5602}
5603
f0c0b2b8
KH
5604/*
5605 * Build zonelists ordered by zone and nodes within zones.
5606 * This results in conserving DMA zone[s] until all Normal memory is
5607 * exhausted, but results in overflowing to remote node while memory
5608 * may still exist in local DMA zone.
5609 */
f0c0b2b8 5610
f0c0b2b8
KH
5611static void build_zonelists(pg_data_t *pgdat)
5612{
9d3be21b
MH
5613 static int node_order[MAX_NUMNODES];
5614 int node, load, nr_nodes = 0;
1da177e4 5615 nodemask_t used_mask;
f0c0b2b8 5616 int local_node, prev_node;
1da177e4
LT
5617
5618 /* NUMA-aware ordering of nodes */
5619 local_node = pgdat->node_id;
62bc62a8 5620 load = nr_online_nodes;
1da177e4
LT
5621 prev_node = local_node;
5622 nodes_clear(used_mask);
f0c0b2b8 5623
f0c0b2b8 5624 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5625 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5626 /*
5627 * We don't want to pressure a particular node.
5628 * So adding penalty to the first node in same
5629 * distance group to make it round-robin.
5630 */
957f822a
DR
5631 if (node_distance(local_node, node) !=
5632 node_distance(local_node, prev_node))
f0c0b2b8
KH
5633 node_load[node] = load;
5634
9d3be21b 5635 node_order[nr_nodes++] = node;
1da177e4
LT
5636 prev_node = node;
5637 load--;
1da177e4 5638 }
523b9458 5639
9d3be21b 5640 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5641 build_thisnode_zonelists(pgdat);
1da177e4
LT
5642}
5643
7aac7898
LS
5644#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5645/*
5646 * Return node id of node used for "local" allocations.
5647 * I.e., first node id of first zone in arg node's generic zonelist.
5648 * Used for initializing percpu 'numa_mem', which is used primarily
5649 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5650 */
5651int local_memory_node(int node)
5652{
c33d6c06 5653 struct zoneref *z;
7aac7898 5654
c33d6c06 5655 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5656 gfp_zone(GFP_KERNEL),
c33d6c06 5657 NULL);
c1093b74 5658 return zone_to_nid(z->zone);
7aac7898
LS
5659}
5660#endif
f0c0b2b8 5661
6423aa81
JK
5662static void setup_min_unmapped_ratio(void);
5663static void setup_min_slab_ratio(void);
1da177e4
LT
5664#else /* CONFIG_NUMA */
5665
f0c0b2b8 5666static void build_zonelists(pg_data_t *pgdat)
1da177e4 5667{
19655d34 5668 int node, local_node;
9d3be21b
MH
5669 struct zoneref *zonerefs;
5670 int nr_zones;
1da177e4
LT
5671
5672 local_node = pgdat->node_id;
1da177e4 5673
9d3be21b
MH
5674 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5675 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5676 zonerefs += nr_zones;
1da177e4 5677
54a6eb5c
MG
5678 /*
5679 * Now we build the zonelist so that it contains the zones
5680 * of all the other nodes.
5681 * We don't want to pressure a particular node, so when
5682 * building the zones for node N, we make sure that the
5683 * zones coming right after the local ones are those from
5684 * node N+1 (modulo N)
5685 */
5686 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5687 if (!node_online(node))
5688 continue;
9d3be21b
MH
5689 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5690 zonerefs += nr_zones;
1da177e4 5691 }
54a6eb5c
MG
5692 for (node = 0; node < local_node; node++) {
5693 if (!node_online(node))
5694 continue;
9d3be21b
MH
5695 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5696 zonerefs += nr_zones;
54a6eb5c
MG
5697 }
5698
9d3be21b
MH
5699 zonerefs->zone = NULL;
5700 zonerefs->zone_idx = 0;
1da177e4
LT
5701}
5702
5703#endif /* CONFIG_NUMA */
5704
99dcc3e5
CL
5705/*
5706 * Boot pageset table. One per cpu which is going to be used for all
5707 * zones and all nodes. The parameters will be set in such a way
5708 * that an item put on a list will immediately be handed over to
5709 * the buddy list. This is safe since pageset manipulation is done
5710 * with interrupts disabled.
5711 *
5712 * The boot_pagesets must be kept even after bootup is complete for
5713 * unused processors and/or zones. They do play a role for bootstrapping
5714 * hotplugged processors.
5715 *
5716 * zoneinfo_show() and maybe other functions do
5717 * not check if the processor is online before following the pageset pointer.
5718 * Other parts of the kernel may not check if the zone is available.
5719 */
5720static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5721static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5722static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5723
11cd8638 5724static void __build_all_zonelists(void *data)
1da177e4 5725{
6811378e 5726 int nid;
afb6ebb3 5727 int __maybe_unused cpu;
9adb62a5 5728 pg_data_t *self = data;
b93e0f32
MH
5729 static DEFINE_SPINLOCK(lock);
5730
5731 spin_lock(&lock);
9276b1bc 5732
7f9cfb31
BL
5733#ifdef CONFIG_NUMA
5734 memset(node_load, 0, sizeof(node_load));
5735#endif
9adb62a5 5736
c1152583
WY
5737 /*
5738 * This node is hotadded and no memory is yet present. So just
5739 * building zonelists is fine - no need to touch other nodes.
5740 */
9adb62a5
JL
5741 if (self && !node_online(self->node_id)) {
5742 build_zonelists(self);
c1152583
WY
5743 } else {
5744 for_each_online_node(nid) {
5745 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5746
c1152583
WY
5747 build_zonelists(pgdat);
5748 }
99dcc3e5 5749
7aac7898
LS
5750#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5751 /*
5752 * We now know the "local memory node" for each node--
5753 * i.e., the node of the first zone in the generic zonelist.
5754 * Set up numa_mem percpu variable for on-line cpus. During
5755 * boot, only the boot cpu should be on-line; we'll init the
5756 * secondary cpus' numa_mem as they come on-line. During
5757 * node/memory hotplug, we'll fixup all on-line cpus.
5758 */
d9c9a0b9 5759 for_each_online_cpu(cpu)
7aac7898 5760 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5761#endif
d9c9a0b9 5762 }
b93e0f32
MH
5763
5764 spin_unlock(&lock);
6811378e
YG
5765}
5766
061f67bc
RV
5767static noinline void __init
5768build_all_zonelists_init(void)
5769{
afb6ebb3
MH
5770 int cpu;
5771
061f67bc 5772 __build_all_zonelists(NULL);
afb6ebb3
MH
5773
5774 /*
5775 * Initialize the boot_pagesets that are going to be used
5776 * for bootstrapping processors. The real pagesets for
5777 * each zone will be allocated later when the per cpu
5778 * allocator is available.
5779 *
5780 * boot_pagesets are used also for bootstrapping offline
5781 * cpus if the system is already booted because the pagesets
5782 * are needed to initialize allocators on a specific cpu too.
5783 * F.e. the percpu allocator needs the page allocator which
5784 * needs the percpu allocator in order to allocate its pagesets
5785 * (a chicken-egg dilemma).
5786 */
5787 for_each_possible_cpu(cpu)
5788 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5789
061f67bc
RV
5790 mminit_verify_zonelist();
5791 cpuset_init_current_mems_allowed();
5792}
5793
4eaf3f64 5794/*
4eaf3f64 5795 * unless system_state == SYSTEM_BOOTING.
061f67bc 5796 *
72675e13 5797 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5798 * [protected by SYSTEM_BOOTING].
4eaf3f64 5799 */
72675e13 5800void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5801{
5802 if (system_state == SYSTEM_BOOTING) {
061f67bc 5803 build_all_zonelists_init();
6811378e 5804 } else {
11cd8638 5805 __build_all_zonelists(pgdat);
6811378e
YG
5806 /* cpuset refresh routine should be here */
5807 }
bd1e22b8 5808 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5809 /*
5810 * Disable grouping by mobility if the number of pages in the
5811 * system is too low to allow the mechanism to work. It would be
5812 * more accurate, but expensive to check per-zone. This check is
5813 * made on memory-hotadd so a system can start with mobility
5814 * disabled and enable it later
5815 */
d9c23400 5816 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5817 page_group_by_mobility_disabled = 1;
5818 else
5819 page_group_by_mobility_disabled = 0;
5820
ce0725f7 5821 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5822 nr_online_nodes,
756a025f
JP
5823 page_group_by_mobility_disabled ? "off" : "on",
5824 vm_total_pages);
f0c0b2b8 5825#ifdef CONFIG_NUMA
f88dfff5 5826 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5827#endif
1da177e4
LT
5828}
5829
a9a9e77f
PT
5830/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5831static bool __meminit
5832overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5833{
5834#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5835 static struct memblock_region *r;
5836
5837 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5838 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5839 for_each_memblock(memory, r) {
5840 if (*pfn < memblock_region_memory_end_pfn(r))
5841 break;
5842 }
5843 }
5844 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5845 memblock_is_mirror(r)) {
5846 *pfn = memblock_region_memory_end_pfn(r);
5847 return true;
5848 }
5849 }
5850#endif
5851 return false;
5852}
5853
1da177e4
LT
5854/*
5855 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5856 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5857 * done. Non-atomic initialization, single-pass.
5858 */
c09b4240 5859void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5860 unsigned long start_pfn, enum memmap_context context,
5861 struct vmem_altmap *altmap)
1da177e4 5862{
a9a9e77f 5863 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5864 struct page *page;
1da177e4 5865
22b31eec
HD
5866 if (highest_memmap_pfn < end_pfn - 1)
5867 highest_memmap_pfn = end_pfn - 1;
5868
966cf44f 5869#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5870 /*
5871 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5872 * memory. We limit the total number of pages to initialize to just
5873 * those that might contain the memory mapping. We will defer the
5874 * ZONE_DEVICE page initialization until after we have released
5875 * the hotplug lock.
4b94ffdc 5876 */
966cf44f
AD
5877 if (zone == ZONE_DEVICE) {
5878 if (!altmap)
5879 return;
5880
5881 if (start_pfn == altmap->base_pfn)
5882 start_pfn += altmap->reserve;
5883 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5884 }
5885#endif
4b94ffdc 5886
cbe8dd4a 5887 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5888 /*
b72d0ffb
AM
5889 * There can be holes in boot-time mem_map[]s handed to this
5890 * function. They do not exist on hotplugged memory.
a2f3aa02 5891 */
a9a9e77f
PT
5892 if (context == MEMMAP_EARLY) {
5893 if (!early_pfn_valid(pfn))
b72d0ffb 5894 continue;
a9a9e77f
PT
5895 if (!early_pfn_in_nid(pfn, nid))
5896 continue;
5897 if (overlap_memmap_init(zone, &pfn))
5898 continue;
5899 if (defer_init(nid, pfn, end_pfn))
5900 break;
a2f3aa02 5901 }
ac5d2539 5902
d0dc12e8
PT
5903 page = pfn_to_page(pfn);
5904 __init_single_page(page, pfn, zone, nid);
5905 if (context == MEMMAP_HOTPLUG)
d483da5b 5906 __SetPageReserved(page);
d0dc12e8 5907
ac5d2539
MG
5908 /*
5909 * Mark the block movable so that blocks are reserved for
5910 * movable at startup. This will force kernel allocations
5911 * to reserve their blocks rather than leaking throughout
5912 * the address space during boot when many long-lived
974a786e 5913 * kernel allocations are made.
ac5d2539
MG
5914 *
5915 * bitmap is created for zone's valid pfn range. but memmap
5916 * can be created for invalid pages (for alignment)
5917 * check here not to call set_pageblock_migratetype() against
5918 * pfn out of zone.
5919 */
5920 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5921 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5922 cond_resched();
ac5d2539 5923 }
1da177e4
LT
5924 }
5925}
5926
966cf44f
AD
5927#ifdef CONFIG_ZONE_DEVICE
5928void __ref memmap_init_zone_device(struct zone *zone,
5929 unsigned long start_pfn,
5930 unsigned long size,
5931 struct dev_pagemap *pgmap)
5932{
5933 unsigned long pfn, end_pfn = start_pfn + size;
5934 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 5935 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
5936 unsigned long zone_idx = zone_idx(zone);
5937 unsigned long start = jiffies;
5938 int nid = pgdat->node_id;
5939
46d945ae 5940 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
5941 return;
5942
5943 /*
5944 * The call to memmap_init_zone should have already taken care
5945 * of the pages reserved for the memmap, so we can just jump to
5946 * the end of that region and start processing the device pages.
5947 */
514caf23 5948 if (altmap) {
966cf44f
AD
5949 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5950 size = end_pfn - start_pfn;
5951 }
5952
5953 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5954 struct page *page = pfn_to_page(pfn);
5955
5956 __init_single_page(page, pfn, zone_idx, nid);
5957
5958 /*
5959 * Mark page reserved as it will need to wait for onlining
5960 * phase for it to be fully associated with a zone.
5961 *
5962 * We can use the non-atomic __set_bit operation for setting
5963 * the flag as we are still initializing the pages.
5964 */
5965 __SetPageReserved(page);
5966
5967 /*
8a164fef
CH
5968 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5969 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5970 * ever freed or placed on a driver-private list.
966cf44f
AD
5971 */
5972 page->pgmap = pgmap;
8a164fef 5973 page->zone_device_data = NULL;
966cf44f
AD
5974
5975 /*
5976 * Mark the block movable so that blocks are reserved for
5977 * movable at startup. This will force kernel allocations
5978 * to reserve their blocks rather than leaking throughout
5979 * the address space during boot when many long-lived
5980 * kernel allocations are made.
5981 *
5982 * bitmap is created for zone's valid pfn range. but memmap
5983 * can be created for invalid pages (for alignment)
5984 * check here not to call set_pageblock_migratetype() against
5985 * pfn out of zone.
5986 *
5987 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 5988 * because this is done early in section_activate()
966cf44f
AD
5989 */
5990 if (!(pfn & (pageblock_nr_pages - 1))) {
5991 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5992 cond_resched();
5993 }
5994 }
5995
5996 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5997 size, jiffies_to_msecs(jiffies - start));
5998}
5999
6000#endif
1e548deb 6001static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6002{
7aeb09f9 6003 unsigned int order, t;
b2a0ac88
MG
6004 for_each_migratetype_order(order, t) {
6005 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6006 zone->free_area[order].nr_free = 0;
6007 }
6008}
6009
dfb3ccd0
PT
6010void __meminit __weak memmap_init(unsigned long size, int nid,
6011 unsigned long zone, unsigned long start_pfn)
6012{
6013 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6014}
1da177e4 6015
7cd2b0a3 6016static int zone_batchsize(struct zone *zone)
e7c8d5c9 6017{
3a6be87f 6018#ifdef CONFIG_MMU
e7c8d5c9
CL
6019 int batch;
6020
6021 /*
6022 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6023 * size of the zone.
e7c8d5c9 6024 */
9705bea5 6025 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6026 /* But no more than a meg. */
6027 if (batch * PAGE_SIZE > 1024 * 1024)
6028 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6029 batch /= 4; /* We effectively *= 4 below */
6030 if (batch < 1)
6031 batch = 1;
6032
6033 /*
0ceaacc9
NP
6034 * Clamp the batch to a 2^n - 1 value. Having a power
6035 * of 2 value was found to be more likely to have
6036 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6037 *
0ceaacc9
NP
6038 * For example if 2 tasks are alternately allocating
6039 * batches of pages, one task can end up with a lot
6040 * of pages of one half of the possible page colors
6041 * and the other with pages of the other colors.
e7c8d5c9 6042 */
9155203a 6043 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6044
e7c8d5c9 6045 return batch;
3a6be87f
DH
6046
6047#else
6048 /* The deferral and batching of frees should be suppressed under NOMMU
6049 * conditions.
6050 *
6051 * The problem is that NOMMU needs to be able to allocate large chunks
6052 * of contiguous memory as there's no hardware page translation to
6053 * assemble apparent contiguous memory from discontiguous pages.
6054 *
6055 * Queueing large contiguous runs of pages for batching, however,
6056 * causes the pages to actually be freed in smaller chunks. As there
6057 * can be a significant delay between the individual batches being
6058 * recycled, this leads to the once large chunks of space being
6059 * fragmented and becoming unavailable for high-order allocations.
6060 */
6061 return 0;
6062#endif
e7c8d5c9
CL
6063}
6064
8d7a8fa9
CS
6065/*
6066 * pcp->high and pcp->batch values are related and dependent on one another:
6067 * ->batch must never be higher then ->high.
6068 * The following function updates them in a safe manner without read side
6069 * locking.
6070 *
6071 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6072 * those fields changing asynchronously (acording the the above rule).
6073 *
6074 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6075 * outside of boot time (or some other assurance that no concurrent updaters
6076 * exist).
6077 */
6078static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6079 unsigned long batch)
6080{
6081 /* start with a fail safe value for batch */
6082 pcp->batch = 1;
6083 smp_wmb();
6084
6085 /* Update high, then batch, in order */
6086 pcp->high = high;
6087 smp_wmb();
6088
6089 pcp->batch = batch;
6090}
6091
3664033c 6092/* a companion to pageset_set_high() */
4008bab7
CS
6093static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6094{
8d7a8fa9 6095 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6096}
6097
88c90dbc 6098static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6099{
6100 struct per_cpu_pages *pcp;
5f8dcc21 6101 int migratetype;
2caaad41 6102
1c6fe946
MD
6103 memset(p, 0, sizeof(*p));
6104
3dfa5721 6105 pcp = &p->pcp;
5f8dcc21
MG
6106 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6107 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6108}
6109
88c90dbc
CS
6110static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6111{
6112 pageset_init(p);
6113 pageset_set_batch(p, batch);
6114}
6115
8ad4b1fb 6116/*
3664033c 6117 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6118 * to the value high for the pageset p.
6119 */
3664033c 6120static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6121 unsigned long high)
6122{
8d7a8fa9
CS
6123 unsigned long batch = max(1UL, high / 4);
6124 if ((high / 4) > (PAGE_SHIFT * 8))
6125 batch = PAGE_SHIFT * 8;
8ad4b1fb 6126
8d7a8fa9 6127 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6128}
6129
7cd2b0a3
DR
6130static void pageset_set_high_and_batch(struct zone *zone,
6131 struct per_cpu_pageset *pcp)
56cef2b8 6132{
56cef2b8 6133 if (percpu_pagelist_fraction)
3664033c 6134 pageset_set_high(pcp,
9705bea5 6135 (zone_managed_pages(zone) /
56cef2b8
CS
6136 percpu_pagelist_fraction));
6137 else
6138 pageset_set_batch(pcp, zone_batchsize(zone));
6139}
6140
169f6c19
CS
6141static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6142{
6143 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6144
6145 pageset_init(pcp);
6146 pageset_set_high_and_batch(zone, pcp);
6147}
6148
72675e13 6149void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6150{
6151 int cpu;
319774e2 6152 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6153 for_each_possible_cpu(cpu)
6154 zone_pageset_init(zone, cpu);
319774e2
WF
6155}
6156
2caaad41 6157/*
99dcc3e5
CL
6158 * Allocate per cpu pagesets and initialize them.
6159 * Before this call only boot pagesets were available.
e7c8d5c9 6160 */
99dcc3e5 6161void __init setup_per_cpu_pageset(void)
e7c8d5c9 6162{
b4911ea2 6163 struct pglist_data *pgdat;
99dcc3e5 6164 struct zone *zone;
e7c8d5c9 6165
319774e2
WF
6166 for_each_populated_zone(zone)
6167 setup_zone_pageset(zone);
b4911ea2
MG
6168
6169 for_each_online_pgdat(pgdat)
6170 pgdat->per_cpu_nodestats =
6171 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6172}
6173
c09b4240 6174static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6175{
99dcc3e5
CL
6176 /*
6177 * per cpu subsystem is not up at this point. The following code
6178 * relies on the ability of the linker to provide the
6179 * offset of a (static) per cpu variable into the per cpu area.
6180 */
6181 zone->pageset = &boot_pageset;
ed8ece2e 6182
b38a8725 6183 if (populated_zone(zone))
99dcc3e5
CL
6184 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6185 zone->name, zone->present_pages,
6186 zone_batchsize(zone));
ed8ece2e
DH
6187}
6188
dc0bbf3b 6189void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6190 unsigned long zone_start_pfn,
b171e409 6191 unsigned long size)
ed8ece2e
DH
6192{
6193 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6194 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6195
8f416836
WY
6196 if (zone_idx > pgdat->nr_zones)
6197 pgdat->nr_zones = zone_idx;
ed8ece2e 6198
ed8ece2e
DH
6199 zone->zone_start_pfn = zone_start_pfn;
6200
708614e6
MG
6201 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6202 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6203 pgdat->node_id,
6204 (unsigned long)zone_idx(zone),
6205 zone_start_pfn, (zone_start_pfn + size));
6206
1e548deb 6207 zone_init_free_lists(zone);
9dcb8b68 6208 zone->initialized = 1;
ed8ece2e
DH
6209}
6210
0ee332c1 6211#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6212#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6213
c713216d
MG
6214/*
6215 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6216 */
8a942fde
MG
6217int __meminit __early_pfn_to_nid(unsigned long pfn,
6218 struct mminit_pfnnid_cache *state)
c713216d 6219{
c13291a5 6220 unsigned long start_pfn, end_pfn;
e76b63f8 6221 int nid;
7c243c71 6222
8a942fde
MG
6223 if (state->last_start <= pfn && pfn < state->last_end)
6224 return state->last_nid;
c713216d 6225
e76b63f8 6226 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6227 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6228 state->last_start = start_pfn;
6229 state->last_end = end_pfn;
6230 state->last_nid = nid;
e76b63f8
YL
6231 }
6232
6233 return nid;
c713216d
MG
6234}
6235#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6236
c713216d 6237/**
6782832e 6238 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6239 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6240 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6241 *
7d018176
ZZ
6242 * If an architecture guarantees that all ranges registered contain no holes
6243 * and may be freed, this this function may be used instead of calling
6244 * memblock_free_early_nid() manually.
c713216d 6245 */
c13291a5 6246void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6247{
c13291a5
TH
6248 unsigned long start_pfn, end_pfn;
6249 int i, this_nid;
edbe7d23 6250
c13291a5
TH
6251 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6252 start_pfn = min(start_pfn, max_low_pfn);
6253 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6254
c13291a5 6255 if (start_pfn < end_pfn)
6782832e
SS
6256 memblock_free_early_nid(PFN_PHYS(start_pfn),
6257 (end_pfn - start_pfn) << PAGE_SHIFT,
6258 this_nid);
edbe7d23 6259 }
edbe7d23 6260}
edbe7d23 6261
c713216d
MG
6262/**
6263 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6264 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6265 *
7d018176
ZZ
6266 * If an architecture guarantees that all ranges registered contain no holes and may
6267 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6268 */
6269void __init sparse_memory_present_with_active_regions(int nid)
6270{
c13291a5
TH
6271 unsigned long start_pfn, end_pfn;
6272 int i, this_nid;
c713216d 6273
c13291a5
TH
6274 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6275 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6276}
6277
6278/**
6279 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6280 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6281 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6282 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6283 *
6284 * It returns the start and end page frame of a node based on information
7d018176 6285 * provided by memblock_set_node(). If called for a node
c713216d 6286 * with no available memory, a warning is printed and the start and end
88ca3b94 6287 * PFNs will be 0.
c713216d 6288 */
bbe5d993 6289void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6290 unsigned long *start_pfn, unsigned long *end_pfn)
6291{
c13291a5 6292 unsigned long this_start_pfn, this_end_pfn;
c713216d 6293 int i;
c13291a5 6294
c713216d
MG
6295 *start_pfn = -1UL;
6296 *end_pfn = 0;
6297
c13291a5
TH
6298 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6299 *start_pfn = min(*start_pfn, this_start_pfn);
6300 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6301 }
6302
633c0666 6303 if (*start_pfn == -1UL)
c713216d 6304 *start_pfn = 0;
c713216d
MG
6305}
6306
2a1e274a
MG
6307/*
6308 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6309 * assumption is made that zones within a node are ordered in monotonic
6310 * increasing memory addresses so that the "highest" populated zone is used
6311 */
b69a7288 6312static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6313{
6314 int zone_index;
6315 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6316 if (zone_index == ZONE_MOVABLE)
6317 continue;
6318
6319 if (arch_zone_highest_possible_pfn[zone_index] >
6320 arch_zone_lowest_possible_pfn[zone_index])
6321 break;
6322 }
6323
6324 VM_BUG_ON(zone_index == -1);
6325 movable_zone = zone_index;
6326}
6327
6328/*
6329 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6330 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6331 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6332 * in each node depending on the size of each node and how evenly kernelcore
6333 * is distributed. This helper function adjusts the zone ranges
6334 * provided by the architecture for a given node by using the end of the
6335 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6336 * zones within a node are in order of monotonic increases memory addresses
6337 */
bbe5d993 6338static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6339 unsigned long zone_type,
6340 unsigned long node_start_pfn,
6341 unsigned long node_end_pfn,
6342 unsigned long *zone_start_pfn,
6343 unsigned long *zone_end_pfn)
6344{
6345 /* Only adjust if ZONE_MOVABLE is on this node */
6346 if (zone_movable_pfn[nid]) {
6347 /* Size ZONE_MOVABLE */
6348 if (zone_type == ZONE_MOVABLE) {
6349 *zone_start_pfn = zone_movable_pfn[nid];
6350 *zone_end_pfn = min(node_end_pfn,
6351 arch_zone_highest_possible_pfn[movable_zone]);
6352
e506b996
XQ
6353 /* Adjust for ZONE_MOVABLE starting within this range */
6354 } else if (!mirrored_kernelcore &&
6355 *zone_start_pfn < zone_movable_pfn[nid] &&
6356 *zone_end_pfn > zone_movable_pfn[nid]) {
6357 *zone_end_pfn = zone_movable_pfn[nid];
6358
2a1e274a
MG
6359 /* Check if this whole range is within ZONE_MOVABLE */
6360 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6361 *zone_start_pfn = *zone_end_pfn;
6362 }
6363}
6364
c713216d
MG
6365/*
6366 * Return the number of pages a zone spans in a node, including holes
6367 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6368 */
bbe5d993 6369static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6370 unsigned long zone_type,
7960aedd
ZY
6371 unsigned long node_start_pfn,
6372 unsigned long node_end_pfn,
d91749c1
TI
6373 unsigned long *zone_start_pfn,
6374 unsigned long *zone_end_pfn,
c713216d
MG
6375 unsigned long *ignored)
6376{
299c83dc
LF
6377 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6378 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6379 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6380 if (!node_start_pfn && !node_end_pfn)
6381 return 0;
6382
7960aedd 6383 /* Get the start and end of the zone */
299c83dc
LF
6384 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6385 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6386 adjust_zone_range_for_zone_movable(nid, zone_type,
6387 node_start_pfn, node_end_pfn,
d91749c1 6388 zone_start_pfn, zone_end_pfn);
c713216d
MG
6389
6390 /* Check that this node has pages within the zone's required range */
d91749c1 6391 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6392 return 0;
6393
6394 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6395 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6396 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6397
6398 /* Return the spanned pages */
d91749c1 6399 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6400}
6401
6402/*
6403 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6404 * then all holes in the requested range will be accounted for.
c713216d 6405 */
bbe5d993 6406unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6407 unsigned long range_start_pfn,
6408 unsigned long range_end_pfn)
6409{
96e907d1
TH
6410 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6411 unsigned long start_pfn, end_pfn;
6412 int i;
c713216d 6413
96e907d1
TH
6414 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6415 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6416 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6417 nr_absent -= end_pfn - start_pfn;
c713216d 6418 }
96e907d1 6419 return nr_absent;
c713216d
MG
6420}
6421
6422/**
6423 * absent_pages_in_range - Return number of page frames in holes within a range
6424 * @start_pfn: The start PFN to start searching for holes
6425 * @end_pfn: The end PFN to stop searching for holes
6426 *
a862f68a 6427 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6428 */
6429unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6430 unsigned long end_pfn)
6431{
6432 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6433}
6434
6435/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6436static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6437 unsigned long zone_type,
7960aedd
ZY
6438 unsigned long node_start_pfn,
6439 unsigned long node_end_pfn,
c713216d
MG
6440 unsigned long *ignored)
6441{
96e907d1
TH
6442 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6443 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6444 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6445 unsigned long nr_absent;
9c7cd687 6446
b5685e92 6447 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6448 if (!node_start_pfn && !node_end_pfn)
6449 return 0;
6450
96e907d1
TH
6451 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6452 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6453
2a1e274a
MG
6454 adjust_zone_range_for_zone_movable(nid, zone_type,
6455 node_start_pfn, node_end_pfn,
6456 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6457 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6458
6459 /*
6460 * ZONE_MOVABLE handling.
6461 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6462 * and vice versa.
6463 */
e506b996
XQ
6464 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6465 unsigned long start_pfn, end_pfn;
6466 struct memblock_region *r;
6467
6468 for_each_memblock(memory, r) {
6469 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6470 zone_start_pfn, zone_end_pfn);
6471 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6472 zone_start_pfn, zone_end_pfn);
6473
6474 if (zone_type == ZONE_MOVABLE &&
6475 memblock_is_mirror(r))
6476 nr_absent += end_pfn - start_pfn;
6477
6478 if (zone_type == ZONE_NORMAL &&
6479 !memblock_is_mirror(r))
6480 nr_absent += end_pfn - start_pfn;
342332e6
TI
6481 }
6482 }
6483
6484 return nr_absent;
c713216d 6485}
0e0b864e 6486
0ee332c1 6487#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6488static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6489 unsigned long zone_type,
7960aedd
ZY
6490 unsigned long node_start_pfn,
6491 unsigned long node_end_pfn,
d91749c1
TI
6492 unsigned long *zone_start_pfn,
6493 unsigned long *zone_end_pfn,
c713216d
MG
6494 unsigned long *zones_size)
6495{
d91749c1
TI
6496 unsigned int zone;
6497
6498 *zone_start_pfn = node_start_pfn;
6499 for (zone = 0; zone < zone_type; zone++)
6500 *zone_start_pfn += zones_size[zone];
6501
6502 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6503
c713216d
MG
6504 return zones_size[zone_type];
6505}
6506
bbe5d993 6507static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6508 unsigned long zone_type,
7960aedd
ZY
6509 unsigned long node_start_pfn,
6510 unsigned long node_end_pfn,
c713216d
MG
6511 unsigned long *zholes_size)
6512{
6513 if (!zholes_size)
6514 return 0;
6515
6516 return zholes_size[zone_type];
6517}
20e6926d 6518
0ee332c1 6519#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6520
bbe5d993 6521static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6522 unsigned long node_start_pfn,
6523 unsigned long node_end_pfn,
6524 unsigned long *zones_size,
6525 unsigned long *zholes_size)
c713216d 6526{
febd5949 6527 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6528 enum zone_type i;
6529
febd5949
GZ
6530 for (i = 0; i < MAX_NR_ZONES; i++) {
6531 struct zone *zone = pgdat->node_zones + i;
d91749c1 6532 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6533 unsigned long size, real_size;
c713216d 6534
febd5949
GZ
6535 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6536 node_start_pfn,
6537 node_end_pfn,
d91749c1
TI
6538 &zone_start_pfn,
6539 &zone_end_pfn,
febd5949
GZ
6540 zones_size);
6541 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6542 node_start_pfn, node_end_pfn,
6543 zholes_size);
d91749c1
TI
6544 if (size)
6545 zone->zone_start_pfn = zone_start_pfn;
6546 else
6547 zone->zone_start_pfn = 0;
febd5949
GZ
6548 zone->spanned_pages = size;
6549 zone->present_pages = real_size;
6550
6551 totalpages += size;
6552 realtotalpages += real_size;
6553 }
6554
6555 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6556 pgdat->node_present_pages = realtotalpages;
6557 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6558 realtotalpages);
6559}
6560
835c134e
MG
6561#ifndef CONFIG_SPARSEMEM
6562/*
6563 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6564 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6565 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6566 * round what is now in bits to nearest long in bits, then return it in
6567 * bytes.
6568 */
7c45512d 6569static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6570{
6571 unsigned long usemapsize;
6572
7c45512d 6573 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6574 usemapsize = roundup(zonesize, pageblock_nr_pages);
6575 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6576 usemapsize *= NR_PAGEBLOCK_BITS;
6577 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6578
6579 return usemapsize / 8;
6580}
6581
7cc2a959 6582static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6583 struct zone *zone,
6584 unsigned long zone_start_pfn,
6585 unsigned long zonesize)
835c134e 6586{
7c45512d 6587 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6588 zone->pageblock_flags = NULL;
23a7052a 6589 if (usemapsize) {
6782832e 6590 zone->pageblock_flags =
26fb3dae
MR
6591 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6592 pgdat->node_id);
23a7052a
MR
6593 if (!zone->pageblock_flags)
6594 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6595 usemapsize, zone->name, pgdat->node_id);
6596 }
835c134e
MG
6597}
6598#else
7c45512d
LT
6599static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6600 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6601#endif /* CONFIG_SPARSEMEM */
6602
d9c23400 6603#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6604
d9c23400 6605/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6606void __init set_pageblock_order(void)
d9c23400 6607{
955c1cd7
AM
6608 unsigned int order;
6609
d9c23400
MG
6610 /* Check that pageblock_nr_pages has not already been setup */
6611 if (pageblock_order)
6612 return;
6613
955c1cd7
AM
6614 if (HPAGE_SHIFT > PAGE_SHIFT)
6615 order = HUGETLB_PAGE_ORDER;
6616 else
6617 order = MAX_ORDER - 1;
6618
d9c23400
MG
6619 /*
6620 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6621 * This value may be variable depending on boot parameters on IA64 and
6622 * powerpc.
d9c23400
MG
6623 */
6624 pageblock_order = order;
6625}
6626#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6627
ba72cb8c
MG
6628/*
6629 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6630 * is unused as pageblock_order is set at compile-time. See
6631 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6632 * the kernel config
ba72cb8c 6633 */
03e85f9d 6634void __init set_pageblock_order(void)
ba72cb8c 6635{
ba72cb8c 6636}
d9c23400
MG
6637
6638#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6639
03e85f9d 6640static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6641 unsigned long present_pages)
01cefaef
JL
6642{
6643 unsigned long pages = spanned_pages;
6644
6645 /*
6646 * Provide a more accurate estimation if there are holes within
6647 * the zone and SPARSEMEM is in use. If there are holes within the
6648 * zone, each populated memory region may cost us one or two extra
6649 * memmap pages due to alignment because memmap pages for each
89d790ab 6650 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6651 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6652 */
6653 if (spanned_pages > present_pages + (present_pages >> 4) &&
6654 IS_ENABLED(CONFIG_SPARSEMEM))
6655 pages = present_pages;
6656
6657 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6658}
6659
ace1db39
OS
6660#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6661static void pgdat_init_split_queue(struct pglist_data *pgdat)
6662{
6663 spin_lock_init(&pgdat->split_queue_lock);
6664 INIT_LIST_HEAD(&pgdat->split_queue);
6665 pgdat->split_queue_len = 0;
6666}
6667#else
6668static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6669#endif
6670
6671#ifdef CONFIG_COMPACTION
6672static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6673{
6674 init_waitqueue_head(&pgdat->kcompactd_wait);
6675}
6676#else
6677static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6678#endif
6679
03e85f9d 6680static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6681{
208d54e5 6682 pgdat_resize_init(pgdat);
ace1db39 6683
ace1db39
OS
6684 pgdat_init_split_queue(pgdat);
6685 pgdat_init_kcompactd(pgdat);
6686
1da177e4 6687 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6688 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6689
eefa864b 6690 pgdat_page_ext_init(pgdat);
a52633d8 6691 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6692 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6693}
6694
6695static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6696 unsigned long remaining_pages)
6697{
9705bea5 6698 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6699 zone_set_nid(zone, nid);
6700 zone->name = zone_names[idx];
6701 zone->zone_pgdat = NODE_DATA(nid);
6702 spin_lock_init(&zone->lock);
6703 zone_seqlock_init(zone);
6704 zone_pcp_init(zone);
6705}
6706
6707/*
6708 * Set up the zone data structures
6709 * - init pgdat internals
6710 * - init all zones belonging to this node
6711 *
6712 * NOTE: this function is only called during memory hotplug
6713 */
6714#ifdef CONFIG_MEMORY_HOTPLUG
6715void __ref free_area_init_core_hotplug(int nid)
6716{
6717 enum zone_type z;
6718 pg_data_t *pgdat = NODE_DATA(nid);
6719
6720 pgdat_init_internals(pgdat);
6721 for (z = 0; z < MAX_NR_ZONES; z++)
6722 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6723}
6724#endif
6725
6726/*
6727 * Set up the zone data structures:
6728 * - mark all pages reserved
6729 * - mark all memory queues empty
6730 * - clear the memory bitmaps
6731 *
6732 * NOTE: pgdat should get zeroed by caller.
6733 * NOTE: this function is only called during early init.
6734 */
6735static void __init free_area_init_core(struct pglist_data *pgdat)
6736{
6737 enum zone_type j;
6738 int nid = pgdat->node_id;
5f63b720 6739
03e85f9d 6740 pgdat_init_internals(pgdat);
385386cf
JW
6741 pgdat->per_cpu_nodestats = &boot_nodestats;
6742
1da177e4
LT
6743 for (j = 0; j < MAX_NR_ZONES; j++) {
6744 struct zone *zone = pgdat->node_zones + j;
e6943859 6745 unsigned long size, freesize, memmap_pages;
d91749c1 6746 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6747
febd5949 6748 size = zone->spanned_pages;
e6943859 6749 freesize = zone->present_pages;
1da177e4 6750
0e0b864e 6751 /*
9feedc9d 6752 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6753 * is used by this zone for memmap. This affects the watermark
6754 * and per-cpu initialisations
6755 */
e6943859 6756 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6757 if (!is_highmem_idx(j)) {
6758 if (freesize >= memmap_pages) {
6759 freesize -= memmap_pages;
6760 if (memmap_pages)
6761 printk(KERN_DEBUG
6762 " %s zone: %lu pages used for memmap\n",
6763 zone_names[j], memmap_pages);
6764 } else
1170532b 6765 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6766 zone_names[j], memmap_pages, freesize);
6767 }
0e0b864e 6768
6267276f 6769 /* Account for reserved pages */
9feedc9d
JL
6770 if (j == 0 && freesize > dma_reserve) {
6771 freesize -= dma_reserve;
d903ef9f 6772 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6773 zone_names[0], dma_reserve);
0e0b864e
MG
6774 }
6775
98d2b0eb 6776 if (!is_highmem_idx(j))
9feedc9d 6777 nr_kernel_pages += freesize;
01cefaef
JL
6778 /* Charge for highmem memmap if there are enough kernel pages */
6779 else if (nr_kernel_pages > memmap_pages * 2)
6780 nr_kernel_pages -= memmap_pages;
9feedc9d 6781 nr_all_pages += freesize;
1da177e4 6782
9feedc9d
JL
6783 /*
6784 * Set an approximate value for lowmem here, it will be adjusted
6785 * when the bootmem allocator frees pages into the buddy system.
6786 * And all highmem pages will be managed by the buddy system.
6787 */
03e85f9d 6788 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6789
d883c6cf 6790 if (!size)
1da177e4
LT
6791 continue;
6792
955c1cd7 6793 set_pageblock_order();
d883c6cf
JK
6794 setup_usemap(pgdat, zone, zone_start_pfn, size);
6795 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6796 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6797 }
6798}
6799
0cd842f9 6800#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6801static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6802{
b0aeba74 6803 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6804 unsigned long __maybe_unused offset = 0;
6805
1da177e4
LT
6806 /* Skip empty nodes */
6807 if (!pgdat->node_spanned_pages)
6808 return;
6809
b0aeba74
TL
6810 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6811 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6812 /* ia64 gets its own node_mem_map, before this, without bootmem */
6813 if (!pgdat->node_mem_map) {
b0aeba74 6814 unsigned long size, end;
d41dee36
AW
6815 struct page *map;
6816
e984bb43
BP
6817 /*
6818 * The zone's endpoints aren't required to be MAX_ORDER
6819 * aligned but the node_mem_map endpoints must be in order
6820 * for the buddy allocator to function correctly.
6821 */
108bcc96 6822 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6823 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6824 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6825 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6826 pgdat->node_id);
23a7052a
MR
6827 if (!map)
6828 panic("Failed to allocate %ld bytes for node %d memory map\n",
6829 size, pgdat->node_id);
a1c34a3b 6830 pgdat->node_mem_map = map + offset;
1da177e4 6831 }
0cd842f9
OS
6832 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6833 __func__, pgdat->node_id, (unsigned long)pgdat,
6834 (unsigned long)pgdat->node_mem_map);
12d810c1 6835#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6836 /*
6837 * With no DISCONTIG, the global mem_map is just set as node 0's
6838 */
c713216d 6839 if (pgdat == NODE_DATA(0)) {
1da177e4 6840 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6841#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6842 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6843 mem_map -= offset;
0ee332c1 6844#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6845 }
1da177e4
LT
6846#endif
6847}
0cd842f9
OS
6848#else
6849static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6850#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6851
0188dc98
OS
6852#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6853static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6854{
0188dc98
OS
6855 pgdat->first_deferred_pfn = ULONG_MAX;
6856}
6857#else
6858static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6859#endif
6860
03e85f9d 6861void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6862 unsigned long node_start_pfn,
6863 unsigned long *zholes_size)
1da177e4 6864{
9109fb7b 6865 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6866 unsigned long start_pfn = 0;
6867 unsigned long end_pfn = 0;
9109fb7b 6868
88fdf75d 6869 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6870 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6871
1da177e4
LT
6872 pgdat->node_id = nid;
6873 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6874 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6875#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6876 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6877 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6878 (u64)start_pfn << PAGE_SHIFT,
6879 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6880#else
6881 start_pfn = node_start_pfn;
7960aedd
ZY
6882#endif
6883 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6884 zones_size, zholes_size);
1da177e4
LT
6885
6886 alloc_node_mem_map(pgdat);
0188dc98 6887 pgdat_set_deferred_range(pgdat);
1da177e4 6888
7f3eb55b 6889 free_area_init_core(pgdat);
1da177e4
LT
6890}
6891
aca52c39 6892#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6893/*
6894 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6895 * pages zeroed
6896 */
6897static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6898{
6899 unsigned long pfn;
6900 u64 pgcnt = 0;
6901
6902 for (pfn = spfn; pfn < epfn; pfn++) {
6903 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6904 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6905 + pageblock_nr_pages - 1;
6906 continue;
6907 }
6908 mm_zero_struct_page(pfn_to_page(pfn));
6909 pgcnt++;
6910 }
6911
6912 return pgcnt;
6913}
6914
a4a3ede2
PT
6915/*
6916 * Only struct pages that are backed by physical memory are zeroed and
6917 * initialized by going through __init_single_page(). But, there are some
6918 * struct pages which are reserved in memblock allocator and their fields
6919 * may be accessed (for example page_to_pfn() on some configuration accesses
6920 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6921 *
6922 * This function also addresses a similar issue where struct pages are left
6923 * uninitialized because the physical address range is not covered by
6924 * memblock.memory or memblock.reserved. That could happen when memblock
6925 * layout is manually configured via memmap=.
a4a3ede2 6926 */
03e85f9d 6927void __init zero_resv_unavail(void)
a4a3ede2
PT
6928{
6929 phys_addr_t start, end;
a4a3ede2 6930 u64 i, pgcnt;
907ec5fc 6931 phys_addr_t next = 0;
a4a3ede2
PT
6932
6933 /*
907ec5fc 6934 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6935 */
6936 pgcnt = 0;
907ec5fc
NH
6937 for_each_mem_range(i, &memblock.memory, NULL,
6938 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6939 if (next < start)
6940 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6941 next = end;
6942 }
ec393a0f 6943 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6944
a4a3ede2
PT
6945 /*
6946 * Struct pages that do not have backing memory. This could be because
6947 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6948 */
6949 if (pgcnt)
907ec5fc 6950 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6951}
aca52c39 6952#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6953
0ee332c1 6954#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6955
6956#if MAX_NUMNODES > 1
6957/*
6958 * Figure out the number of possible node ids.
6959 */
f9872caf 6960void __init setup_nr_node_ids(void)
418508c1 6961{
904a9553 6962 unsigned int highest;
418508c1 6963
904a9553 6964 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6965 nr_node_ids = highest + 1;
6966}
418508c1
MS
6967#endif
6968
1e01979c
TH
6969/**
6970 * node_map_pfn_alignment - determine the maximum internode alignment
6971 *
6972 * This function should be called after node map is populated and sorted.
6973 * It calculates the maximum power of two alignment which can distinguish
6974 * all the nodes.
6975 *
6976 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6977 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6978 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6979 * shifted, 1GiB is enough and this function will indicate so.
6980 *
6981 * This is used to test whether pfn -> nid mapping of the chosen memory
6982 * model has fine enough granularity to avoid incorrect mapping for the
6983 * populated node map.
6984 *
a862f68a 6985 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
6986 * requirement (single node).
6987 */
6988unsigned long __init node_map_pfn_alignment(void)
6989{
6990 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6991 unsigned long start, end, mask;
98fa15f3 6992 int last_nid = NUMA_NO_NODE;
c13291a5 6993 int i, nid;
1e01979c 6994
c13291a5 6995 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6996 if (!start || last_nid < 0 || last_nid == nid) {
6997 last_nid = nid;
6998 last_end = end;
6999 continue;
7000 }
7001
7002 /*
7003 * Start with a mask granular enough to pin-point to the
7004 * start pfn and tick off bits one-by-one until it becomes
7005 * too coarse to separate the current node from the last.
7006 */
7007 mask = ~((1 << __ffs(start)) - 1);
7008 while (mask && last_end <= (start & (mask << 1)))
7009 mask <<= 1;
7010
7011 /* accumulate all internode masks */
7012 accl_mask |= mask;
7013 }
7014
7015 /* convert mask to number of pages */
7016 return ~accl_mask + 1;
7017}
7018
a6af2bc3 7019/* Find the lowest pfn for a node */
b69a7288 7020static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 7021{
a6af2bc3 7022 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
7023 unsigned long start_pfn;
7024 int i;
1abbfb41 7025
c13291a5
TH
7026 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7027 min_pfn = min(min_pfn, start_pfn);
c713216d 7028
a6af2bc3 7029 if (min_pfn == ULONG_MAX) {
1170532b 7030 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
7031 return 0;
7032 }
7033
7034 return min_pfn;
c713216d
MG
7035}
7036
7037/**
7038 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7039 *
a862f68a 7040 * Return: the minimum PFN based on information provided via
7d018176 7041 * memblock_set_node().
c713216d
MG
7042 */
7043unsigned long __init find_min_pfn_with_active_regions(void)
7044{
7045 return find_min_pfn_for_node(MAX_NUMNODES);
7046}
7047
37b07e41
LS
7048/*
7049 * early_calculate_totalpages()
7050 * Sum pages in active regions for movable zone.
4b0ef1fe 7051 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7052 */
484f51f8 7053static unsigned long __init early_calculate_totalpages(void)
7e63efef 7054{
7e63efef 7055 unsigned long totalpages = 0;
c13291a5
TH
7056 unsigned long start_pfn, end_pfn;
7057 int i, nid;
7058
7059 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7060 unsigned long pages = end_pfn - start_pfn;
7e63efef 7061
37b07e41
LS
7062 totalpages += pages;
7063 if (pages)
4b0ef1fe 7064 node_set_state(nid, N_MEMORY);
37b07e41 7065 }
b8af2941 7066 return totalpages;
7e63efef
MG
7067}
7068
2a1e274a
MG
7069/*
7070 * Find the PFN the Movable zone begins in each node. Kernel memory
7071 * is spread evenly between nodes as long as the nodes have enough
7072 * memory. When they don't, some nodes will have more kernelcore than
7073 * others
7074 */
b224ef85 7075static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7076{
7077 int i, nid;
7078 unsigned long usable_startpfn;
7079 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7080 /* save the state before borrow the nodemask */
4b0ef1fe 7081 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7082 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7083 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7084 struct memblock_region *r;
b2f3eebe
TC
7085
7086 /* Need to find movable_zone earlier when movable_node is specified. */
7087 find_usable_zone_for_movable();
7088
7089 /*
7090 * If movable_node is specified, ignore kernelcore and movablecore
7091 * options.
7092 */
7093 if (movable_node_is_enabled()) {
136199f0
EM
7094 for_each_memblock(memory, r) {
7095 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7096 continue;
7097
136199f0 7098 nid = r->nid;
b2f3eebe 7099
136199f0 7100 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7101 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7102 min(usable_startpfn, zone_movable_pfn[nid]) :
7103 usable_startpfn;
7104 }
7105
7106 goto out2;
7107 }
2a1e274a 7108
342332e6
TI
7109 /*
7110 * If kernelcore=mirror is specified, ignore movablecore option
7111 */
7112 if (mirrored_kernelcore) {
7113 bool mem_below_4gb_not_mirrored = false;
7114
7115 for_each_memblock(memory, r) {
7116 if (memblock_is_mirror(r))
7117 continue;
7118
7119 nid = r->nid;
7120
7121 usable_startpfn = memblock_region_memory_base_pfn(r);
7122
7123 if (usable_startpfn < 0x100000) {
7124 mem_below_4gb_not_mirrored = true;
7125 continue;
7126 }
7127
7128 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7129 min(usable_startpfn, zone_movable_pfn[nid]) :
7130 usable_startpfn;
7131 }
7132
7133 if (mem_below_4gb_not_mirrored)
7134 pr_warn("This configuration results in unmirrored kernel memory.");
7135
7136 goto out2;
7137 }
7138
7e63efef 7139 /*
a5c6d650
DR
7140 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7141 * amount of necessary memory.
7142 */
7143 if (required_kernelcore_percent)
7144 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7145 10000UL;
7146 if (required_movablecore_percent)
7147 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7148 10000UL;
7149
7150 /*
7151 * If movablecore= was specified, calculate what size of
7e63efef
MG
7152 * kernelcore that corresponds so that memory usable for
7153 * any allocation type is evenly spread. If both kernelcore
7154 * and movablecore are specified, then the value of kernelcore
7155 * will be used for required_kernelcore if it's greater than
7156 * what movablecore would have allowed.
7157 */
7158 if (required_movablecore) {
7e63efef
MG
7159 unsigned long corepages;
7160
7161 /*
7162 * Round-up so that ZONE_MOVABLE is at least as large as what
7163 * was requested by the user
7164 */
7165 required_movablecore =
7166 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7167 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7168 corepages = totalpages - required_movablecore;
7169
7170 required_kernelcore = max(required_kernelcore, corepages);
7171 }
7172
bde304bd
XQ
7173 /*
7174 * If kernelcore was not specified or kernelcore size is larger
7175 * than totalpages, there is no ZONE_MOVABLE.
7176 */
7177 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7178 goto out;
2a1e274a
MG
7179
7180 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7181 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7182
7183restart:
7184 /* Spread kernelcore memory as evenly as possible throughout nodes */
7185 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7186 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7187 unsigned long start_pfn, end_pfn;
7188
2a1e274a
MG
7189 /*
7190 * Recalculate kernelcore_node if the division per node
7191 * now exceeds what is necessary to satisfy the requested
7192 * amount of memory for the kernel
7193 */
7194 if (required_kernelcore < kernelcore_node)
7195 kernelcore_node = required_kernelcore / usable_nodes;
7196
7197 /*
7198 * As the map is walked, we track how much memory is usable
7199 * by the kernel using kernelcore_remaining. When it is
7200 * 0, the rest of the node is usable by ZONE_MOVABLE
7201 */
7202 kernelcore_remaining = kernelcore_node;
7203
7204 /* Go through each range of PFNs within this node */
c13291a5 7205 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7206 unsigned long size_pages;
7207
c13291a5 7208 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7209 if (start_pfn >= end_pfn)
7210 continue;
7211
7212 /* Account for what is only usable for kernelcore */
7213 if (start_pfn < usable_startpfn) {
7214 unsigned long kernel_pages;
7215 kernel_pages = min(end_pfn, usable_startpfn)
7216 - start_pfn;
7217
7218 kernelcore_remaining -= min(kernel_pages,
7219 kernelcore_remaining);
7220 required_kernelcore -= min(kernel_pages,
7221 required_kernelcore);
7222
7223 /* Continue if range is now fully accounted */
7224 if (end_pfn <= usable_startpfn) {
7225
7226 /*
7227 * Push zone_movable_pfn to the end so
7228 * that if we have to rebalance
7229 * kernelcore across nodes, we will
7230 * not double account here
7231 */
7232 zone_movable_pfn[nid] = end_pfn;
7233 continue;
7234 }
7235 start_pfn = usable_startpfn;
7236 }
7237
7238 /*
7239 * The usable PFN range for ZONE_MOVABLE is from
7240 * start_pfn->end_pfn. Calculate size_pages as the
7241 * number of pages used as kernelcore
7242 */
7243 size_pages = end_pfn - start_pfn;
7244 if (size_pages > kernelcore_remaining)
7245 size_pages = kernelcore_remaining;
7246 zone_movable_pfn[nid] = start_pfn + size_pages;
7247
7248 /*
7249 * Some kernelcore has been met, update counts and
7250 * break if the kernelcore for this node has been
b8af2941 7251 * satisfied
2a1e274a
MG
7252 */
7253 required_kernelcore -= min(required_kernelcore,
7254 size_pages);
7255 kernelcore_remaining -= size_pages;
7256 if (!kernelcore_remaining)
7257 break;
7258 }
7259 }
7260
7261 /*
7262 * If there is still required_kernelcore, we do another pass with one
7263 * less node in the count. This will push zone_movable_pfn[nid] further
7264 * along on the nodes that still have memory until kernelcore is
b8af2941 7265 * satisfied
2a1e274a
MG
7266 */
7267 usable_nodes--;
7268 if (usable_nodes && required_kernelcore > usable_nodes)
7269 goto restart;
7270
b2f3eebe 7271out2:
2a1e274a
MG
7272 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7273 for (nid = 0; nid < MAX_NUMNODES; nid++)
7274 zone_movable_pfn[nid] =
7275 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7276
20e6926d 7277out:
66918dcd 7278 /* restore the node_state */
4b0ef1fe 7279 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7280}
7281
4b0ef1fe
LJ
7282/* Any regular or high memory on that node ? */
7283static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7284{
37b07e41
LS
7285 enum zone_type zone_type;
7286
4b0ef1fe 7287 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7288 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7289 if (populated_zone(zone)) {
7b0e0c0e
OS
7290 if (IS_ENABLED(CONFIG_HIGHMEM))
7291 node_set_state(nid, N_HIGH_MEMORY);
7292 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7293 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7294 break;
7295 }
37b07e41 7296 }
37b07e41
LS
7297}
7298
c713216d
MG
7299/**
7300 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7301 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7302 *
7303 * This will call free_area_init_node() for each active node in the system.
7d018176 7304 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7305 * zone in each node and their holes is calculated. If the maximum PFN
7306 * between two adjacent zones match, it is assumed that the zone is empty.
7307 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7308 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7309 * starts where the previous one ended. For example, ZONE_DMA32 starts
7310 * at arch_max_dma_pfn.
7311 */
7312void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7313{
c13291a5
TH
7314 unsigned long start_pfn, end_pfn;
7315 int i, nid;
a6af2bc3 7316
c713216d
MG
7317 /* Record where the zone boundaries are */
7318 memset(arch_zone_lowest_possible_pfn, 0,
7319 sizeof(arch_zone_lowest_possible_pfn));
7320 memset(arch_zone_highest_possible_pfn, 0,
7321 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7322
7323 start_pfn = find_min_pfn_with_active_regions();
7324
7325 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7326 if (i == ZONE_MOVABLE)
7327 continue;
90cae1fe
OH
7328
7329 end_pfn = max(max_zone_pfn[i], start_pfn);
7330 arch_zone_lowest_possible_pfn[i] = start_pfn;
7331 arch_zone_highest_possible_pfn[i] = end_pfn;
7332
7333 start_pfn = end_pfn;
c713216d 7334 }
2a1e274a
MG
7335
7336 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7337 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7338 find_zone_movable_pfns_for_nodes();
c713216d 7339
c713216d 7340 /* Print out the zone ranges */
f88dfff5 7341 pr_info("Zone ranges:\n");
2a1e274a
MG
7342 for (i = 0; i < MAX_NR_ZONES; i++) {
7343 if (i == ZONE_MOVABLE)
7344 continue;
f88dfff5 7345 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7346 if (arch_zone_lowest_possible_pfn[i] ==
7347 arch_zone_highest_possible_pfn[i])
f88dfff5 7348 pr_cont("empty\n");
72f0ba02 7349 else
8d29e18a
JG
7350 pr_cont("[mem %#018Lx-%#018Lx]\n",
7351 (u64)arch_zone_lowest_possible_pfn[i]
7352 << PAGE_SHIFT,
7353 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7354 << PAGE_SHIFT) - 1);
2a1e274a
MG
7355 }
7356
7357 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7358 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7359 for (i = 0; i < MAX_NUMNODES; i++) {
7360 if (zone_movable_pfn[i])
8d29e18a
JG
7361 pr_info(" Node %d: %#018Lx\n", i,
7362 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7363 }
c713216d 7364
f46edbd1
DW
7365 /*
7366 * Print out the early node map, and initialize the
7367 * subsection-map relative to active online memory ranges to
7368 * enable future "sub-section" extensions of the memory map.
7369 */
f88dfff5 7370 pr_info("Early memory node ranges\n");
f46edbd1 7371 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7372 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7373 (u64)start_pfn << PAGE_SHIFT,
7374 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7375 subsection_map_init(start_pfn, end_pfn - start_pfn);
7376 }
c713216d
MG
7377
7378 /* Initialise every node */
708614e6 7379 mminit_verify_pageflags_layout();
8ef82866 7380 setup_nr_node_ids();
e181ae0c 7381 zero_resv_unavail();
c713216d
MG
7382 for_each_online_node(nid) {
7383 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7384 free_area_init_node(nid, NULL,
c713216d 7385 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7386
7387 /* Any memory on that node */
7388 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7389 node_set_state(nid, N_MEMORY);
7390 check_for_memory(pgdat, nid);
c713216d
MG
7391 }
7392}
2a1e274a 7393
a5c6d650
DR
7394static int __init cmdline_parse_core(char *p, unsigned long *core,
7395 unsigned long *percent)
2a1e274a
MG
7396{
7397 unsigned long long coremem;
a5c6d650
DR
7398 char *endptr;
7399
2a1e274a
MG
7400 if (!p)
7401 return -EINVAL;
7402
a5c6d650
DR
7403 /* Value may be a percentage of total memory, otherwise bytes */
7404 coremem = simple_strtoull(p, &endptr, 0);
7405 if (*endptr == '%') {
7406 /* Paranoid check for percent values greater than 100 */
7407 WARN_ON(coremem > 100);
2a1e274a 7408
a5c6d650
DR
7409 *percent = coremem;
7410 } else {
7411 coremem = memparse(p, &p);
7412 /* Paranoid check that UL is enough for the coremem value */
7413 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7414
a5c6d650
DR
7415 *core = coremem >> PAGE_SHIFT;
7416 *percent = 0UL;
7417 }
2a1e274a
MG
7418 return 0;
7419}
ed7ed365 7420
7e63efef
MG
7421/*
7422 * kernelcore=size sets the amount of memory for use for allocations that
7423 * cannot be reclaimed or migrated.
7424 */
7425static int __init cmdline_parse_kernelcore(char *p)
7426{
342332e6
TI
7427 /* parse kernelcore=mirror */
7428 if (parse_option_str(p, "mirror")) {
7429 mirrored_kernelcore = true;
7430 return 0;
7431 }
7432
a5c6d650
DR
7433 return cmdline_parse_core(p, &required_kernelcore,
7434 &required_kernelcore_percent);
7e63efef
MG
7435}
7436
7437/*
7438 * movablecore=size sets the amount of memory for use for allocations that
7439 * can be reclaimed or migrated.
7440 */
7441static int __init cmdline_parse_movablecore(char *p)
7442{
a5c6d650
DR
7443 return cmdline_parse_core(p, &required_movablecore,
7444 &required_movablecore_percent);
7e63efef
MG
7445}
7446
ed7ed365 7447early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7448early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7449
0ee332c1 7450#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7451
c3d5f5f0
JL
7452void adjust_managed_page_count(struct page *page, long count)
7453{
9705bea5 7454 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7455 totalram_pages_add(count);
3dcc0571
JL
7456#ifdef CONFIG_HIGHMEM
7457 if (PageHighMem(page))
ca79b0c2 7458 totalhigh_pages_add(count);
3dcc0571 7459#endif
c3d5f5f0 7460}
3dcc0571 7461EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7462
e5cb113f 7463unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7464{
11199692
JL
7465 void *pos;
7466 unsigned long pages = 0;
69afade7 7467
11199692
JL
7468 start = (void *)PAGE_ALIGN((unsigned long)start);
7469 end = (void *)((unsigned long)end & PAGE_MASK);
7470 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7471 struct page *page = virt_to_page(pos);
7472 void *direct_map_addr;
7473
7474 /*
7475 * 'direct_map_addr' might be different from 'pos'
7476 * because some architectures' virt_to_page()
7477 * work with aliases. Getting the direct map
7478 * address ensures that we get a _writeable_
7479 * alias for the memset().
7480 */
7481 direct_map_addr = page_address(page);
dbe67df4 7482 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7483 memset(direct_map_addr, poison, PAGE_SIZE);
7484
7485 free_reserved_page(page);
69afade7
JL
7486 }
7487
7488 if (pages && s)
adb1fe9a
JP
7489 pr_info("Freeing %s memory: %ldK\n",
7490 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7491
7492 return pages;
7493}
7494
cfa11e08
JL
7495#ifdef CONFIG_HIGHMEM
7496void free_highmem_page(struct page *page)
7497{
7498 __free_reserved_page(page);
ca79b0c2 7499 totalram_pages_inc();
9705bea5 7500 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7501 totalhigh_pages_inc();
cfa11e08
JL
7502}
7503#endif
7504
7ee3d4e8
JL
7505
7506void __init mem_init_print_info(const char *str)
7507{
7508 unsigned long physpages, codesize, datasize, rosize, bss_size;
7509 unsigned long init_code_size, init_data_size;
7510
7511 physpages = get_num_physpages();
7512 codesize = _etext - _stext;
7513 datasize = _edata - _sdata;
7514 rosize = __end_rodata - __start_rodata;
7515 bss_size = __bss_stop - __bss_start;
7516 init_data_size = __init_end - __init_begin;
7517 init_code_size = _einittext - _sinittext;
7518
7519 /*
7520 * Detect special cases and adjust section sizes accordingly:
7521 * 1) .init.* may be embedded into .data sections
7522 * 2) .init.text.* may be out of [__init_begin, __init_end],
7523 * please refer to arch/tile/kernel/vmlinux.lds.S.
7524 * 3) .rodata.* may be embedded into .text or .data sections.
7525 */
7526#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7527 do { \
7528 if (start <= pos && pos < end && size > adj) \
7529 size -= adj; \
7530 } while (0)
7ee3d4e8
JL
7531
7532 adj_init_size(__init_begin, __init_end, init_data_size,
7533 _sinittext, init_code_size);
7534 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7535 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7536 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7537 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7538
7539#undef adj_init_size
7540
756a025f 7541 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7542#ifdef CONFIG_HIGHMEM
756a025f 7543 ", %luK highmem"
7ee3d4e8 7544#endif
756a025f
JP
7545 "%s%s)\n",
7546 nr_free_pages() << (PAGE_SHIFT - 10),
7547 physpages << (PAGE_SHIFT - 10),
7548 codesize >> 10, datasize >> 10, rosize >> 10,
7549 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7550 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7551 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7552#ifdef CONFIG_HIGHMEM
ca79b0c2 7553 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7554#endif
756a025f 7555 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7556}
7557
0e0b864e 7558/**
88ca3b94
RD
7559 * set_dma_reserve - set the specified number of pages reserved in the first zone
7560 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7561 *
013110a7 7562 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7563 * In the DMA zone, a significant percentage may be consumed by kernel image
7564 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7565 * function may optionally be used to account for unfreeable pages in the
7566 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7567 * smaller per-cpu batchsize.
0e0b864e
MG
7568 */
7569void __init set_dma_reserve(unsigned long new_dma_reserve)
7570{
7571 dma_reserve = new_dma_reserve;
7572}
7573
1da177e4
LT
7574void __init free_area_init(unsigned long *zones_size)
7575{
e181ae0c 7576 zero_resv_unavail();
9109fb7b 7577 free_area_init_node(0, zones_size,
1da177e4
LT
7578 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7579}
1da177e4 7580
005fd4bb 7581static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7582{
1da177e4 7583
005fd4bb
SAS
7584 lru_add_drain_cpu(cpu);
7585 drain_pages(cpu);
9f8f2172 7586
005fd4bb
SAS
7587 /*
7588 * Spill the event counters of the dead processor
7589 * into the current processors event counters.
7590 * This artificially elevates the count of the current
7591 * processor.
7592 */
7593 vm_events_fold_cpu(cpu);
9f8f2172 7594
005fd4bb
SAS
7595 /*
7596 * Zero the differential counters of the dead processor
7597 * so that the vm statistics are consistent.
7598 *
7599 * This is only okay since the processor is dead and cannot
7600 * race with what we are doing.
7601 */
7602 cpu_vm_stats_fold(cpu);
7603 return 0;
1da177e4 7604}
1da177e4 7605
e03a5125
NP
7606#ifdef CONFIG_NUMA
7607int hashdist = HASHDIST_DEFAULT;
7608
7609static int __init set_hashdist(char *str)
7610{
7611 if (!str)
7612 return 0;
7613 hashdist = simple_strtoul(str, &str, 0);
7614 return 1;
7615}
7616__setup("hashdist=", set_hashdist);
7617#endif
7618
1da177e4
LT
7619void __init page_alloc_init(void)
7620{
005fd4bb
SAS
7621 int ret;
7622
e03a5125
NP
7623#ifdef CONFIG_NUMA
7624 if (num_node_state(N_MEMORY) == 1)
7625 hashdist = 0;
7626#endif
7627
005fd4bb
SAS
7628 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7629 "mm/page_alloc:dead", NULL,
7630 page_alloc_cpu_dead);
7631 WARN_ON(ret < 0);
1da177e4
LT
7632}
7633
cb45b0e9 7634/*
34b10060 7635 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7636 * or min_free_kbytes changes.
7637 */
7638static void calculate_totalreserve_pages(void)
7639{
7640 struct pglist_data *pgdat;
7641 unsigned long reserve_pages = 0;
2f6726e5 7642 enum zone_type i, j;
cb45b0e9
HA
7643
7644 for_each_online_pgdat(pgdat) {
281e3726
MG
7645
7646 pgdat->totalreserve_pages = 0;
7647
cb45b0e9
HA
7648 for (i = 0; i < MAX_NR_ZONES; i++) {
7649 struct zone *zone = pgdat->node_zones + i;
3484b2de 7650 long max = 0;
9705bea5 7651 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7652
7653 /* Find valid and maximum lowmem_reserve in the zone */
7654 for (j = i; j < MAX_NR_ZONES; j++) {
7655 if (zone->lowmem_reserve[j] > max)
7656 max = zone->lowmem_reserve[j];
7657 }
7658
41858966
MG
7659 /* we treat the high watermark as reserved pages. */
7660 max += high_wmark_pages(zone);
cb45b0e9 7661
3d6357de
AK
7662 if (max > managed_pages)
7663 max = managed_pages;
a8d01437 7664
281e3726 7665 pgdat->totalreserve_pages += max;
a8d01437 7666
cb45b0e9
HA
7667 reserve_pages += max;
7668 }
7669 }
7670 totalreserve_pages = reserve_pages;
7671}
7672
1da177e4
LT
7673/*
7674 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7675 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7676 * has a correct pages reserved value, so an adequate number of
7677 * pages are left in the zone after a successful __alloc_pages().
7678 */
7679static void setup_per_zone_lowmem_reserve(void)
7680{
7681 struct pglist_data *pgdat;
2f6726e5 7682 enum zone_type j, idx;
1da177e4 7683
ec936fc5 7684 for_each_online_pgdat(pgdat) {
1da177e4
LT
7685 for (j = 0; j < MAX_NR_ZONES; j++) {
7686 struct zone *zone = pgdat->node_zones + j;
9705bea5 7687 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7688
7689 zone->lowmem_reserve[j] = 0;
7690
2f6726e5
CL
7691 idx = j;
7692 while (idx) {
1da177e4
LT
7693 struct zone *lower_zone;
7694
2f6726e5 7695 idx--;
1da177e4 7696 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7697
7698 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7699 sysctl_lowmem_reserve_ratio[idx] = 0;
7700 lower_zone->lowmem_reserve[j] = 0;
7701 } else {
7702 lower_zone->lowmem_reserve[j] =
7703 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7704 }
9705bea5 7705 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7706 }
7707 }
7708 }
cb45b0e9
HA
7709
7710 /* update totalreserve_pages */
7711 calculate_totalreserve_pages();
1da177e4
LT
7712}
7713
cfd3da1e 7714static void __setup_per_zone_wmarks(void)
1da177e4
LT
7715{
7716 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7717 unsigned long lowmem_pages = 0;
7718 struct zone *zone;
7719 unsigned long flags;
7720
7721 /* Calculate total number of !ZONE_HIGHMEM pages */
7722 for_each_zone(zone) {
7723 if (!is_highmem(zone))
9705bea5 7724 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7725 }
7726
7727 for_each_zone(zone) {
ac924c60
AM
7728 u64 tmp;
7729
1125b4e3 7730 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7731 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7732 do_div(tmp, lowmem_pages);
1da177e4
LT
7733 if (is_highmem(zone)) {
7734 /*
669ed175
NP
7735 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7736 * need highmem pages, so cap pages_min to a small
7737 * value here.
7738 *
41858966 7739 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7740 * deltas control async page reclaim, and so should
669ed175 7741 * not be capped for highmem.
1da177e4 7742 */
90ae8d67 7743 unsigned long min_pages;
1da177e4 7744
9705bea5 7745 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7746 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7747 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7748 } else {
669ed175
NP
7749 /*
7750 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7751 * proportionate to the zone's size.
7752 */
a9214443 7753 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7754 }
7755
795ae7a0
JW
7756 /*
7757 * Set the kswapd watermarks distance according to the
7758 * scale factor in proportion to available memory, but
7759 * ensure a minimum size on small systems.
7760 */
7761 tmp = max_t(u64, tmp >> 2,
9705bea5 7762 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7763 watermark_scale_factor, 10000));
7764
a9214443
MG
7765 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7766 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7767 zone->watermark_boost = 0;
49f223a9 7768
1125b4e3 7769 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7770 }
cb45b0e9
HA
7771
7772 /* update totalreserve_pages */
7773 calculate_totalreserve_pages();
1da177e4
LT
7774}
7775
cfd3da1e
MG
7776/**
7777 * setup_per_zone_wmarks - called when min_free_kbytes changes
7778 * or when memory is hot-{added|removed}
7779 *
7780 * Ensures that the watermark[min,low,high] values for each zone are set
7781 * correctly with respect to min_free_kbytes.
7782 */
7783void setup_per_zone_wmarks(void)
7784{
b93e0f32
MH
7785 static DEFINE_SPINLOCK(lock);
7786
7787 spin_lock(&lock);
cfd3da1e 7788 __setup_per_zone_wmarks();
b93e0f32 7789 spin_unlock(&lock);
cfd3da1e
MG
7790}
7791
1da177e4
LT
7792/*
7793 * Initialise min_free_kbytes.
7794 *
7795 * For small machines we want it small (128k min). For large machines
7796 * we want it large (64MB max). But it is not linear, because network
7797 * bandwidth does not increase linearly with machine size. We use
7798 *
b8af2941 7799 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7800 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7801 *
7802 * which yields
7803 *
7804 * 16MB: 512k
7805 * 32MB: 724k
7806 * 64MB: 1024k
7807 * 128MB: 1448k
7808 * 256MB: 2048k
7809 * 512MB: 2896k
7810 * 1024MB: 4096k
7811 * 2048MB: 5792k
7812 * 4096MB: 8192k
7813 * 8192MB: 11584k
7814 * 16384MB: 16384k
7815 */
1b79acc9 7816int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7817{
7818 unsigned long lowmem_kbytes;
5f12733e 7819 int new_min_free_kbytes;
1da177e4
LT
7820
7821 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7822 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7823
7824 if (new_min_free_kbytes > user_min_free_kbytes) {
7825 min_free_kbytes = new_min_free_kbytes;
7826 if (min_free_kbytes < 128)
7827 min_free_kbytes = 128;
7828 if (min_free_kbytes > 65536)
7829 min_free_kbytes = 65536;
7830 } else {
7831 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7832 new_min_free_kbytes, user_min_free_kbytes);
7833 }
bc75d33f 7834 setup_per_zone_wmarks();
a6cccdc3 7835 refresh_zone_stat_thresholds();
1da177e4 7836 setup_per_zone_lowmem_reserve();
6423aa81
JK
7837
7838#ifdef CONFIG_NUMA
7839 setup_min_unmapped_ratio();
7840 setup_min_slab_ratio();
7841#endif
7842
1da177e4
LT
7843 return 0;
7844}
bc22af74 7845core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7846
7847/*
b8af2941 7848 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7849 * that we can call two helper functions whenever min_free_kbytes
7850 * changes.
7851 */
cccad5b9 7852int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7853 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7854{
da8c757b
HP
7855 int rc;
7856
7857 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7858 if (rc)
7859 return rc;
7860
5f12733e
MH
7861 if (write) {
7862 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7863 setup_per_zone_wmarks();
5f12733e 7864 }
1da177e4
LT
7865 return 0;
7866}
7867
1c30844d
MG
7868int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7869 void __user *buffer, size_t *length, loff_t *ppos)
7870{
7871 int rc;
7872
7873 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7874 if (rc)
7875 return rc;
7876
7877 return 0;
7878}
7879
795ae7a0
JW
7880int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7881 void __user *buffer, size_t *length, loff_t *ppos)
7882{
7883 int rc;
7884
7885 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7886 if (rc)
7887 return rc;
7888
7889 if (write)
7890 setup_per_zone_wmarks();
7891
7892 return 0;
7893}
7894
9614634f 7895#ifdef CONFIG_NUMA
6423aa81 7896static void setup_min_unmapped_ratio(void)
9614634f 7897{
6423aa81 7898 pg_data_t *pgdat;
9614634f 7899 struct zone *zone;
9614634f 7900
a5f5f91d 7901 for_each_online_pgdat(pgdat)
81cbcbc2 7902 pgdat->min_unmapped_pages = 0;
a5f5f91d 7903
9614634f 7904 for_each_zone(zone)
9705bea5
AK
7905 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7906 sysctl_min_unmapped_ratio) / 100;
9614634f 7907}
0ff38490 7908
6423aa81
JK
7909
7910int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7911 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7912{
0ff38490
CL
7913 int rc;
7914
8d65af78 7915 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7916 if (rc)
7917 return rc;
7918
6423aa81
JK
7919 setup_min_unmapped_ratio();
7920
7921 return 0;
7922}
7923
7924static void setup_min_slab_ratio(void)
7925{
7926 pg_data_t *pgdat;
7927 struct zone *zone;
7928
a5f5f91d
MG
7929 for_each_online_pgdat(pgdat)
7930 pgdat->min_slab_pages = 0;
7931
0ff38490 7932 for_each_zone(zone)
9705bea5
AK
7933 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7934 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7935}
7936
7937int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7938 void __user *buffer, size_t *length, loff_t *ppos)
7939{
7940 int rc;
7941
7942 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7943 if (rc)
7944 return rc;
7945
7946 setup_min_slab_ratio();
7947
0ff38490
CL
7948 return 0;
7949}
9614634f
CL
7950#endif
7951
1da177e4
LT
7952/*
7953 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7954 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7955 * whenever sysctl_lowmem_reserve_ratio changes.
7956 *
7957 * The reserve ratio obviously has absolutely no relation with the
41858966 7958 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7959 * if in function of the boot time zone sizes.
7960 */
cccad5b9 7961int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7962 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7963{
8d65af78 7964 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7965 setup_per_zone_lowmem_reserve();
7966 return 0;
7967}
7968
8ad4b1fb
RS
7969/*
7970 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7971 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7972 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7973 */
cccad5b9 7974int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7975 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7976{
7977 struct zone *zone;
7cd2b0a3 7978 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7979 int ret;
7980
7cd2b0a3
DR
7981 mutex_lock(&pcp_batch_high_lock);
7982 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7983
8d65af78 7984 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7985 if (!write || ret < 0)
7986 goto out;
7987
7988 /* Sanity checking to avoid pcp imbalance */
7989 if (percpu_pagelist_fraction &&
7990 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7991 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7992 ret = -EINVAL;
7993 goto out;
7994 }
7995
7996 /* No change? */
7997 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7998 goto out;
c8e251fa 7999
364df0eb 8000 for_each_populated_zone(zone) {
7cd2b0a3
DR
8001 unsigned int cpu;
8002
22a7f12b 8003 for_each_possible_cpu(cpu)
7cd2b0a3
DR
8004 pageset_set_high_and_batch(zone,
8005 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 8006 }
7cd2b0a3 8007out:
c8e251fa 8008 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8009 return ret;
8ad4b1fb
RS
8010}
8011
f6f34b43
SD
8012#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8013/*
8014 * Returns the number of pages that arch has reserved but
8015 * is not known to alloc_large_system_hash().
8016 */
8017static unsigned long __init arch_reserved_kernel_pages(void)
8018{
8019 return 0;
8020}
8021#endif
8022
9017217b
PT
8023/*
8024 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8025 * machines. As memory size is increased the scale is also increased but at
8026 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8027 * quadruples the scale is increased by one, which means the size of hash table
8028 * only doubles, instead of quadrupling as well.
8029 * Because 32-bit systems cannot have large physical memory, where this scaling
8030 * makes sense, it is disabled on such platforms.
8031 */
8032#if __BITS_PER_LONG > 32
8033#define ADAPT_SCALE_BASE (64ul << 30)
8034#define ADAPT_SCALE_SHIFT 2
8035#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8036#endif
8037
1da177e4
LT
8038/*
8039 * allocate a large system hash table from bootmem
8040 * - it is assumed that the hash table must contain an exact power-of-2
8041 * quantity of entries
8042 * - limit is the number of hash buckets, not the total allocation size
8043 */
8044void *__init alloc_large_system_hash(const char *tablename,
8045 unsigned long bucketsize,
8046 unsigned long numentries,
8047 int scale,
8048 int flags,
8049 unsigned int *_hash_shift,
8050 unsigned int *_hash_mask,
31fe62b9
TB
8051 unsigned long low_limit,
8052 unsigned long high_limit)
1da177e4 8053{
31fe62b9 8054 unsigned long long max = high_limit;
1da177e4
LT
8055 unsigned long log2qty, size;
8056 void *table = NULL;
3749a8f0 8057 gfp_t gfp_flags;
ec11408a 8058 bool virt;
1da177e4
LT
8059
8060 /* allow the kernel cmdline to have a say */
8061 if (!numentries) {
8062 /* round applicable memory size up to nearest megabyte */
04903664 8063 numentries = nr_kernel_pages;
f6f34b43 8064 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8065
8066 /* It isn't necessary when PAGE_SIZE >= 1MB */
8067 if (PAGE_SHIFT < 20)
8068 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8069
9017217b
PT
8070#if __BITS_PER_LONG > 32
8071 if (!high_limit) {
8072 unsigned long adapt;
8073
8074 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8075 adapt <<= ADAPT_SCALE_SHIFT)
8076 scale++;
8077 }
8078#endif
8079
1da177e4
LT
8080 /* limit to 1 bucket per 2^scale bytes of low memory */
8081 if (scale > PAGE_SHIFT)
8082 numentries >>= (scale - PAGE_SHIFT);
8083 else
8084 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8085
8086 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8087 if (unlikely(flags & HASH_SMALL)) {
8088 /* Makes no sense without HASH_EARLY */
8089 WARN_ON(!(flags & HASH_EARLY));
8090 if (!(numentries >> *_hash_shift)) {
8091 numentries = 1UL << *_hash_shift;
8092 BUG_ON(!numentries);
8093 }
8094 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8095 numentries = PAGE_SIZE / bucketsize;
1da177e4 8096 }
6e692ed3 8097 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8098
8099 /* limit allocation size to 1/16 total memory by default */
8100 if (max == 0) {
8101 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8102 do_div(max, bucketsize);
8103 }
074b8517 8104 max = min(max, 0x80000000ULL);
1da177e4 8105
31fe62b9
TB
8106 if (numentries < low_limit)
8107 numentries = low_limit;
1da177e4
LT
8108 if (numentries > max)
8109 numentries = max;
8110
f0d1b0b3 8111 log2qty = ilog2(numentries);
1da177e4 8112
3749a8f0 8113 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8114 do {
ec11408a 8115 virt = false;
1da177e4 8116 size = bucketsize << log2qty;
ea1f5f37
PT
8117 if (flags & HASH_EARLY) {
8118 if (flags & HASH_ZERO)
26fb3dae 8119 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8120 else
7e1c4e27
MR
8121 table = memblock_alloc_raw(size,
8122 SMP_CACHE_BYTES);
ec11408a 8123 } else if (get_order(size) >= MAX_ORDER || hashdist) {
3749a8f0 8124 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ec11408a 8125 virt = true;
ea1f5f37 8126 } else {
1037b83b
ED
8127 /*
8128 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8129 * some pages at the end of hash table which
8130 * alloc_pages_exact() automatically does
1037b83b 8131 */
ec11408a
NP
8132 table = alloc_pages_exact(size, gfp_flags);
8133 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8134 }
8135 } while (!table && size > PAGE_SIZE && --log2qty);
8136
8137 if (!table)
8138 panic("Failed to allocate %s hash table\n", tablename);
8139
ec11408a
NP
8140 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8141 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8142 virt ? "vmalloc" : "linear");
1da177e4
LT
8143
8144 if (_hash_shift)
8145 *_hash_shift = log2qty;
8146 if (_hash_mask)
8147 *_hash_mask = (1 << log2qty) - 1;
8148
8149 return table;
8150}
a117e66e 8151
a5d76b54 8152/*
80934513
MK
8153 * This function checks whether pageblock includes unmovable pages or not.
8154 * If @count is not zero, it is okay to include less @count unmovable pages
8155 *
b8af2941 8156 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8157 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8158 * check without lock_page also may miss some movable non-lru pages at
8159 * race condition. So you can't expect this function should be exact.
a5d76b54 8160 */
b023f468 8161bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 8162 int migratetype, int flags)
49ac8255 8163{
1a9f2191
QC
8164 unsigned long found;
8165 unsigned long iter = 0;
8166 unsigned long pfn = page_to_pfn(page);
8167 const char *reason = "unmovable page";
47118af0 8168
49ac8255 8169 /*
15c30bc0
MH
8170 * TODO we could make this much more efficient by not checking every
8171 * page in the range if we know all of them are in MOVABLE_ZONE and
8172 * that the movable zone guarantees that pages are migratable but
8173 * the later is not the case right now unfortunatelly. E.g. movablecore
8174 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8175 */
49ac8255 8176
1a9f2191
QC
8177 if (is_migrate_cma_page(page)) {
8178 /*
8179 * CMA allocations (alloc_contig_range) really need to mark
8180 * isolate CMA pageblocks even when they are not movable in fact
8181 * so consider them movable here.
8182 */
8183 if (is_migrate_cma(migratetype))
8184 return false;
8185
8186 reason = "CMA page";
8187 goto unmovable;
8188 }
4da2ce25 8189
1a9f2191 8190 for (found = 0; iter < pageblock_nr_pages; iter++) {
49ac8255
KH
8191 unsigned long check = pfn + iter;
8192
29723fcc 8193 if (!pfn_valid_within(check))
49ac8255 8194 continue;
29723fcc 8195
49ac8255 8196 page = pfn_to_page(check);
c8721bbb 8197
d7ab3672 8198 if (PageReserved(page))
15c30bc0 8199 goto unmovable;
d7ab3672 8200
9d789999
MH
8201 /*
8202 * If the zone is movable and we have ruled out all reserved
8203 * pages then it should be reasonably safe to assume the rest
8204 * is movable.
8205 */
8206 if (zone_idx(zone) == ZONE_MOVABLE)
8207 continue;
8208
c8721bbb
NH
8209 /*
8210 * Hugepages are not in LRU lists, but they're movable.
8bb4e7a2 8211 * We need not scan over tail pages because we don't
c8721bbb
NH
8212 * handle each tail page individually in migration.
8213 */
8214 if (PageHuge(page)) {
17e2e7d7
OS
8215 struct page *head = compound_head(page);
8216 unsigned int skip_pages;
464c7ffb 8217
17e2e7d7 8218 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
8219 goto unmovable;
8220
17e2e7d7
OS
8221 skip_pages = (1 << compound_order(head)) - (page - head);
8222 iter += skip_pages - 1;
c8721bbb
NH
8223 continue;
8224 }
8225
97d255c8
MK
8226 /*
8227 * We can't use page_count without pin a page
8228 * because another CPU can free compound page.
8229 * This check already skips compound tails of THP
0139aa7b 8230 * because their page->_refcount is zero at all time.
97d255c8 8231 */
fe896d18 8232 if (!page_ref_count(page)) {
49ac8255
KH
8233 if (PageBuddy(page))
8234 iter += (1 << page_order(page)) - 1;
8235 continue;
8236 }
97d255c8 8237
b023f468
WC
8238 /*
8239 * The HWPoisoned page may be not in buddy system, and
8240 * page_count() is not 0.
8241 */
d381c547 8242 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
8243 continue;
8244
0efadf48
YX
8245 if (__PageMovable(page))
8246 continue;
8247
49ac8255
KH
8248 if (!PageLRU(page))
8249 found++;
8250 /*
6b4f7799
JW
8251 * If there are RECLAIMABLE pages, we need to check
8252 * it. But now, memory offline itself doesn't call
8253 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8254 */
8255 /*
8256 * If the page is not RAM, page_count()should be 0.
8257 * we don't need more check. This is an _used_ not-movable page.
8258 *
8259 * The problematic thing here is PG_reserved pages. PG_reserved
8260 * is set to both of a memory hole page and a _used_ kernel
8261 * page at boot.
8262 */
8263 if (found > count)
15c30bc0 8264 goto unmovable;
49ac8255 8265 }
80934513 8266 return false;
15c30bc0
MH
8267unmovable:
8268 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547 8269 if (flags & REPORT_FAILURE)
1a9f2191 8270 dump_page(pfn_to_page(pfn + iter), reason);
15c30bc0 8271 return true;
49ac8255
KH
8272}
8273
8df995f6 8274#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8275static unsigned long pfn_max_align_down(unsigned long pfn)
8276{
8277 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8278 pageblock_nr_pages) - 1);
8279}
8280
8281static unsigned long pfn_max_align_up(unsigned long pfn)
8282{
8283 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8284 pageblock_nr_pages));
8285}
8286
041d3a8c 8287/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8288static int __alloc_contig_migrate_range(struct compact_control *cc,
8289 unsigned long start, unsigned long end)
041d3a8c
MN
8290{
8291 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8292 unsigned long nr_reclaimed;
041d3a8c
MN
8293 unsigned long pfn = start;
8294 unsigned int tries = 0;
8295 int ret = 0;
8296
be49a6e1 8297 migrate_prep();
041d3a8c 8298
bb13ffeb 8299 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8300 if (fatal_signal_pending(current)) {
8301 ret = -EINTR;
8302 break;
8303 }
8304
bb13ffeb
MG
8305 if (list_empty(&cc->migratepages)) {
8306 cc->nr_migratepages = 0;
edc2ca61 8307 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8308 if (!pfn) {
8309 ret = -EINTR;
8310 break;
8311 }
8312 tries = 0;
8313 } else if (++tries == 5) {
8314 ret = ret < 0 ? ret : -EBUSY;
8315 break;
8316 }
8317
beb51eaa
MK
8318 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8319 &cc->migratepages);
8320 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8321
9c620e2b 8322 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8323 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8324 }
2a6f5124
SP
8325 if (ret < 0) {
8326 putback_movable_pages(&cc->migratepages);
8327 return ret;
8328 }
8329 return 0;
041d3a8c
MN
8330}
8331
8332/**
8333 * alloc_contig_range() -- tries to allocate given range of pages
8334 * @start: start PFN to allocate
8335 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8336 * @migratetype: migratetype of the underlaying pageblocks (either
8337 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8338 * in range must have the same migratetype and it must
8339 * be either of the two.
ca96b625 8340 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8341 *
8342 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8343 * aligned. The PFN range must belong to a single zone.
041d3a8c 8344 *
2c7452a0
MK
8345 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8346 * pageblocks in the range. Once isolated, the pageblocks should not
8347 * be modified by others.
041d3a8c 8348 *
a862f68a 8349 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8350 * pages which PFN is in [start, end) are allocated for the caller and
8351 * need to be freed with free_contig_range().
8352 */
0815f3d8 8353int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8354 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8355{
041d3a8c 8356 unsigned long outer_start, outer_end;
d00181b9
KS
8357 unsigned int order;
8358 int ret = 0;
041d3a8c 8359
bb13ffeb
MG
8360 struct compact_control cc = {
8361 .nr_migratepages = 0,
8362 .order = -1,
8363 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8364 .mode = MIGRATE_SYNC,
bb13ffeb 8365 .ignore_skip_hint = true,
2583d671 8366 .no_set_skip_hint = true,
7dea19f9 8367 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8368 };
8369 INIT_LIST_HEAD(&cc.migratepages);
8370
041d3a8c
MN
8371 /*
8372 * What we do here is we mark all pageblocks in range as
8373 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8374 * have different sizes, and due to the way page allocator
8375 * work, we align the range to biggest of the two pages so
8376 * that page allocator won't try to merge buddies from
8377 * different pageblocks and change MIGRATE_ISOLATE to some
8378 * other migration type.
8379 *
8380 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8381 * migrate the pages from an unaligned range (ie. pages that
8382 * we are interested in). This will put all the pages in
8383 * range back to page allocator as MIGRATE_ISOLATE.
8384 *
8385 * When this is done, we take the pages in range from page
8386 * allocator removing them from the buddy system. This way
8387 * page allocator will never consider using them.
8388 *
8389 * This lets us mark the pageblocks back as
8390 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8391 * aligned range but not in the unaligned, original range are
8392 * put back to page allocator so that buddy can use them.
8393 */
8394
8395 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8396 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8397 if (ret < 0)
86a595f9 8398 return ret;
041d3a8c 8399
8ef5849f
JK
8400 /*
8401 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8402 * So, just fall through. test_pages_isolated() has a tracepoint
8403 * which will report the busy page.
8404 *
8405 * It is possible that busy pages could become available before
8406 * the call to test_pages_isolated, and the range will actually be
8407 * allocated. So, if we fall through be sure to clear ret so that
8408 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8409 */
bb13ffeb 8410 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8411 if (ret && ret != -EBUSY)
041d3a8c 8412 goto done;
63cd4489 8413 ret =0;
041d3a8c
MN
8414
8415 /*
8416 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8417 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8418 * more, all pages in [start, end) are free in page allocator.
8419 * What we are going to do is to allocate all pages from
8420 * [start, end) (that is remove them from page allocator).
8421 *
8422 * The only problem is that pages at the beginning and at the
8423 * end of interesting range may be not aligned with pages that
8424 * page allocator holds, ie. they can be part of higher order
8425 * pages. Because of this, we reserve the bigger range and
8426 * once this is done free the pages we are not interested in.
8427 *
8428 * We don't have to hold zone->lock here because the pages are
8429 * isolated thus they won't get removed from buddy.
8430 */
8431
8432 lru_add_drain_all();
041d3a8c
MN
8433
8434 order = 0;
8435 outer_start = start;
8436 while (!PageBuddy(pfn_to_page(outer_start))) {
8437 if (++order >= MAX_ORDER) {
8ef5849f
JK
8438 outer_start = start;
8439 break;
041d3a8c
MN
8440 }
8441 outer_start &= ~0UL << order;
8442 }
8443
8ef5849f
JK
8444 if (outer_start != start) {
8445 order = page_order(pfn_to_page(outer_start));
8446
8447 /*
8448 * outer_start page could be small order buddy page and
8449 * it doesn't include start page. Adjust outer_start
8450 * in this case to report failed page properly
8451 * on tracepoint in test_pages_isolated()
8452 */
8453 if (outer_start + (1UL << order) <= start)
8454 outer_start = start;
8455 }
8456
041d3a8c 8457 /* Make sure the range is really isolated. */
b023f468 8458 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8459 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8460 __func__, outer_start, end);
041d3a8c
MN
8461 ret = -EBUSY;
8462 goto done;
8463 }
8464
49f223a9 8465 /* Grab isolated pages from freelists. */
bb13ffeb 8466 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8467 if (!outer_end) {
8468 ret = -EBUSY;
8469 goto done;
8470 }
8471
8472 /* Free head and tail (if any) */
8473 if (start != outer_start)
8474 free_contig_range(outer_start, start - outer_start);
8475 if (end != outer_end)
8476 free_contig_range(end, outer_end - end);
8477
8478done:
8479 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8480 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8481 return ret;
8482}
4eb0716e 8483#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8484
4eb0716e 8485void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8486{
bcc2b02f
MS
8487 unsigned int count = 0;
8488
8489 for (; nr_pages--; pfn++) {
8490 struct page *page = pfn_to_page(pfn);
8491
8492 count += page_count(page) != 1;
8493 __free_page(page);
8494 }
8495 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8496}
041d3a8c 8497
d883c6cf 8498#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8499/*
8500 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8501 * page high values need to be recalulated.
8502 */
4ed7e022
JL
8503void __meminit zone_pcp_update(struct zone *zone)
8504{
0a647f38 8505 unsigned cpu;
c8e251fa 8506 mutex_lock(&pcp_batch_high_lock);
0a647f38 8507 for_each_possible_cpu(cpu)
169f6c19
CS
8508 pageset_set_high_and_batch(zone,
8509 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8510 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8511}
8512#endif
8513
340175b7
JL
8514void zone_pcp_reset(struct zone *zone)
8515{
8516 unsigned long flags;
5a883813
MK
8517 int cpu;
8518 struct per_cpu_pageset *pset;
340175b7
JL
8519
8520 /* avoid races with drain_pages() */
8521 local_irq_save(flags);
8522 if (zone->pageset != &boot_pageset) {
5a883813
MK
8523 for_each_online_cpu(cpu) {
8524 pset = per_cpu_ptr(zone->pageset, cpu);
8525 drain_zonestat(zone, pset);
8526 }
340175b7
JL
8527 free_percpu(zone->pageset);
8528 zone->pageset = &boot_pageset;
8529 }
8530 local_irq_restore(flags);
8531}
8532
6dcd73d7 8533#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8534/*
b9eb6319
JK
8535 * All pages in the range must be in a single zone and isolated
8536 * before calling this.
0c0e6195 8537 */
5557c766 8538unsigned long
0c0e6195
KH
8539__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8540{
8541 struct page *page;
8542 struct zone *zone;
7aeb09f9 8543 unsigned int order, i;
0c0e6195
KH
8544 unsigned long pfn;
8545 unsigned long flags;
5557c766
MH
8546 unsigned long offlined_pages = 0;
8547
0c0e6195
KH
8548 /* find the first valid pfn */
8549 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8550 if (pfn_valid(pfn))
8551 break;
8552 if (pfn == end_pfn)
5557c766
MH
8553 return offlined_pages;
8554
2d070eab 8555 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8556 zone = page_zone(pfn_to_page(pfn));
8557 spin_lock_irqsave(&zone->lock, flags);
8558 pfn = start_pfn;
8559 while (pfn < end_pfn) {
8560 if (!pfn_valid(pfn)) {
8561 pfn++;
8562 continue;
8563 }
8564 page = pfn_to_page(pfn);
b023f468
WC
8565 /*
8566 * The HWPoisoned page may be not in buddy system, and
8567 * page_count() is not 0.
8568 */
8569 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8570 pfn++;
8571 SetPageReserved(page);
5557c766 8572 offlined_pages++;
b023f468
WC
8573 continue;
8574 }
8575
0c0e6195
KH
8576 BUG_ON(page_count(page));
8577 BUG_ON(!PageBuddy(page));
8578 order = page_order(page);
5557c766 8579 offlined_pages += 1 << order;
0c0e6195 8580#ifdef CONFIG_DEBUG_VM
1170532b
JP
8581 pr_info("remove from free list %lx %d %lx\n",
8582 pfn, 1 << order, end_pfn);
0c0e6195 8583#endif
b03641af 8584 del_page_from_free_area(page, &zone->free_area[order]);
0c0e6195
KH
8585 for (i = 0; i < (1 << order); i++)
8586 SetPageReserved((page+i));
8587 pfn += (1 << order);
8588 }
8589 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8590
8591 return offlined_pages;
0c0e6195
KH
8592}
8593#endif
8d22ba1b 8594
8d22ba1b
WF
8595bool is_free_buddy_page(struct page *page)
8596{
8597 struct zone *zone = page_zone(page);
8598 unsigned long pfn = page_to_pfn(page);
8599 unsigned long flags;
7aeb09f9 8600 unsigned int order;
8d22ba1b
WF
8601
8602 spin_lock_irqsave(&zone->lock, flags);
8603 for (order = 0; order < MAX_ORDER; order++) {
8604 struct page *page_head = page - (pfn & ((1 << order) - 1));
8605
8606 if (PageBuddy(page_head) && page_order(page_head) >= order)
8607 break;
8608 }
8609 spin_unlock_irqrestore(&zone->lock, flags);
8610
8611 return order < MAX_ORDER;
8612}
d4ae9916
NH
8613
8614#ifdef CONFIG_MEMORY_FAILURE
8615/*
8616 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8617 * test is performed under the zone lock to prevent a race against page
8618 * allocation.
8619 */
8620bool set_hwpoison_free_buddy_page(struct page *page)
8621{
8622 struct zone *zone = page_zone(page);
8623 unsigned long pfn = page_to_pfn(page);
8624 unsigned long flags;
8625 unsigned int order;
8626 bool hwpoisoned = false;
8627
8628 spin_lock_irqsave(&zone->lock, flags);
8629 for (order = 0; order < MAX_ORDER; order++) {
8630 struct page *page_head = page - (pfn & ((1 << order) - 1));
8631
8632 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8633 if (!TestSetPageHWPoison(page))
8634 hwpoisoned = true;
8635 break;
8636 }
8637 }
8638 spin_unlock_irqrestore(&zone->lock, flags);
8639
8640 return hwpoisoned;
8641}
8642#endif