mm/page_alloc: fix incorrect isolation behavior by rechecking migratetype
[linux-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
c0a32fc5 59#include <linux/page-debug-flags.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
1da177e4 62
7ee3d4e8 63#include <asm/sections.h>
1da177e4 64#include <asm/tlbflush.h>
ac924c60 65#include <asm/div64.h>
1da177e4
LT
66#include "internal.h"
67
c8e251fa
CS
68/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 70#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 71
72812019
LS
72#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73DEFINE_PER_CPU(int, numa_node);
74EXPORT_PER_CPU_SYMBOL(numa_node);
75#endif
76
7aac7898
LS
77#ifdef CONFIG_HAVE_MEMORYLESS_NODES
78/*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 86int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
87#endif
88
1da177e4 89/*
13808910 90 * Array of node states.
1da177e4 91 */
13808910
CL
92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95#ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97#ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
99#endif
100#ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
102#endif
103 [N_CPU] = { { [0] = 1UL } },
104#endif /* NUMA */
105};
106EXPORT_SYMBOL(node_states);
107
c3d5f5f0
JL
108/* Protect totalram_pages and zone->managed_pages */
109static DEFINE_SPINLOCK(managed_page_count_lock);
110
6c231b7b 111unsigned long totalram_pages __read_mostly;
cb45b0e9 112unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
113/*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119unsigned long dirty_balance_reserve __read_mostly;
120
1b76b02f 121int percpu_pagelist_fraction;
dcce284a 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 123
452aa699
RW
124#ifdef CONFIG_PM_SLEEP
125/*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
c9e664f1
RW
133
134static gfp_t saved_gfp_mask;
135
136void pm_restore_gfp_mask(void)
452aa699
RW
137{
138 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
452aa699
RW
143}
144
c9e664f1 145void pm_restrict_gfp_mask(void)
452aa699 146{
452aa699 147 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 151}
f90ac398
MG
152
153bool pm_suspended_storage(void)
154{
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158}
452aa699
RW
159#endif /* CONFIG_PM_SLEEP */
160
d9c23400
MG
161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162int pageblock_order __read_mostly;
163#endif
164
d98c7a09 165static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 166
1da177e4
LT
167/*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
1da177e4 177 */
2f1b6248 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 179#ifdef CONFIG_ZONE_DMA
2f1b6248 180 256,
4b51d669 181#endif
fb0e7942 182#ifdef CONFIG_ZONE_DMA32
2f1b6248 183 256,
fb0e7942 184#endif
e53ef38d 185#ifdef CONFIG_HIGHMEM
2a1e274a 186 32,
e53ef38d 187#endif
2a1e274a 188 32,
2f1b6248 189};
1da177e4
LT
190
191EXPORT_SYMBOL(totalram_pages);
1da177e4 192
15ad7cdc 193static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 "DMA",
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 "DMA32",
fb0e7942 199#endif
2f1b6248 200 "Normal",
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 "HighMem",
e53ef38d 203#endif
2a1e274a 204 "Movable",
2f1b6248
CL
205};
206
1da177e4 207int min_free_kbytes = 1024;
42aa83cb 208int user_min_free_kbytes = -1;
1da177e4 209
2c85f51d
JB
210static unsigned long __meminitdata nr_kernel_pages;
211static unsigned long __meminitdata nr_all_pages;
a3142c8e 212static unsigned long __meminitdata dma_reserve;
1da177e4 213
0ee332c1
TH
214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217static unsigned long __initdata required_kernelcore;
218static unsigned long __initdata required_movablecore;
219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222int movable_zone;
223EXPORT_SYMBOL(movable_zone);
224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 225
418508c1
MS
226#if MAX_NUMNODES > 1
227int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 228int nr_online_nodes __read_mostly = 1;
418508c1 229EXPORT_SYMBOL(nr_node_ids);
62bc62a8 230EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
231#endif
232
9ef9acb0
MG
233int page_group_by_mobility_disabled __read_mostly;
234
ee6f509c 235void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 236{
5d0f3f72
KM
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
239 migratetype = MIGRATE_UNMOVABLE;
240
b2a0ac88
MG
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243}
244
7f33d49a
RW
245bool oom_killer_disabled __read_mostly;
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
59ff4216 382/* update __split_huge_page_refcount if you change this function */
8cc3b392 383static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
384{
385 int i;
386 int nr_pages = 1 << order;
8cc3b392 387 int bad = 0;
1da177e4 388
0bb2c763 389 if (unlikely(compound_order(page) != order)) {
f0b791a3 390 bad_page(page, "wrong compound order", 0);
8cc3b392
HD
391 bad++;
392 }
1da177e4 393
6d777953 394 __ClearPageHead(page);
8cc3b392 395
18229df5
AW
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
1da177e4 398
f0b791a3
DH
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
8cc3b392
HD
404 bad++;
405 }
d85f3385 406 __ClearPageTail(p);
1da177e4 407 }
8cc3b392
HD
408
409 return bad;
1da177e4 410}
1da177e4 411
7aeb09f9
MG
412static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
17cf4406
NP
414{
415 int i;
416
6626c5d5
AM
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
725d704e 421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424}
425
c0a32fc5
SG
426#ifdef CONFIG_DEBUG_PAGEALLOC
427unsigned int _debug_guardpage_minorder;
428
429static int __init debug_guardpage_minorder_setup(char *buf)
430{
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440}
441__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443static inline void set_page_guard_flag(struct page *page)
444{
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446}
447
448static inline void clear_page_guard_flag(struct page *page)
449{
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451}
452#else
453static inline void set_page_guard_flag(struct page *page) { }
454static inline void clear_page_guard_flag(struct page *page) { }
455#endif
456
7aeb09f9 457static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 458{
4c21e2f2 459 set_page_private(page, order);
676165a8 460 __SetPageBuddy(page);
1da177e4
LT
461}
462
463static inline void rmv_page_order(struct page *page)
464{
676165a8 465 __ClearPageBuddy(page);
4c21e2f2 466 set_page_private(page, 0);
1da177e4
LT
467}
468
469/*
470 * Locate the struct page for both the matching buddy in our
471 * pair (buddy1) and the combined O(n+1) page they form (page).
472 *
473 * 1) Any buddy B1 will have an order O twin B2 which satisfies
474 * the following equation:
475 * B2 = B1 ^ (1 << O)
476 * For example, if the starting buddy (buddy2) is #8 its order
477 * 1 buddy is #10:
478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
479 *
480 * 2) Any buddy B will have an order O+1 parent P which
481 * satisfies the following equation:
482 * P = B & ~(1 << O)
483 *
d6e05edc 484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 485 */
1da177e4 486static inline unsigned long
43506fad 487__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 488{
43506fad 489 return page_idx ^ (1 << order);
1da177e4
LT
490}
491
492/*
493 * This function checks whether a page is free && is the buddy
494 * we can do coalesce a page and its buddy if
13e7444b 495 * (a) the buddy is not in a hole &&
676165a8 496 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
497 * (c) a page and its buddy have the same order &&
498 * (d) a page and its buddy are in the same zone.
676165a8 499 *
cf6fe945
WSH
500 * For recording whether a page is in the buddy system, we set ->_mapcount
501 * PAGE_BUDDY_MAPCOUNT_VALUE.
502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503 * serialized by zone->lock.
1da177e4 504 *
676165a8 505 * For recording page's order, we use page_private(page).
1da177e4 506 */
cb2b95e1 507static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 508 unsigned int order)
1da177e4 509{
14e07298 510 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 511 return 0;
13e7444b 512
c0a32fc5 513 if (page_is_guard(buddy) && page_order(buddy) == order) {
309381fe 514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
515
516 if (page_zone_id(page) != page_zone_id(buddy))
517 return 0;
518
c0a32fc5
SG
519 return 1;
520 }
521
cb2b95e1 522 if (PageBuddy(buddy) && page_order(buddy) == order) {
309381fe 523 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
d34c5fa0
MG
524
525 /*
526 * zone check is done late to avoid uselessly
527 * calculating zone/node ids for pages that could
528 * never merge.
529 */
530 if (page_zone_id(page) != page_zone_id(buddy))
531 return 0;
532
6aa3001b 533 return 1;
676165a8 534 }
6aa3001b 535 return 0;
1da177e4
LT
536}
537
538/*
539 * Freeing function for a buddy system allocator.
540 *
541 * The concept of a buddy system is to maintain direct-mapped table
542 * (containing bit values) for memory blocks of various "orders".
543 * The bottom level table contains the map for the smallest allocatable
544 * units of memory (here, pages), and each level above it describes
545 * pairs of units from the levels below, hence, "buddies".
546 * At a high level, all that happens here is marking the table entry
547 * at the bottom level available, and propagating the changes upward
548 * as necessary, plus some accounting needed to play nicely with other
549 * parts of the VM system.
550 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
551 * free pages of length of (1 << order) and marked with _mapcount
552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
553 * field.
1da177e4 554 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
555 * other. That is, if we allocate a small block, and both were
556 * free, the remainder of the region must be split into blocks.
1da177e4 557 * If a block is freed, and its buddy is also free, then this
5f63b720 558 * triggers coalescing into a block of larger size.
1da177e4 559 *
6d49e352 560 * -- nyc
1da177e4
LT
561 */
562
48db57f8 563static inline void __free_one_page(struct page *page,
dc4b0caf 564 unsigned long pfn,
ed0ae21d
MG
565 struct zone *zone, unsigned int order,
566 int migratetype)
1da177e4
LT
567{
568 unsigned long page_idx;
6dda9d55 569 unsigned long combined_idx;
43506fad 570 unsigned long uninitialized_var(buddy_idx);
6dda9d55 571 struct page *buddy;
1da177e4 572
d29bb978
CS
573 VM_BUG_ON(!zone_is_initialized(zone));
574
224abf92 575 if (unlikely(PageCompound(page)))
8cc3b392
HD
576 if (unlikely(destroy_compound_page(page, order)))
577 return;
1da177e4 578
ed0ae21d
MG
579 VM_BUG_ON(migratetype == -1);
580
dc4b0caf 581 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 582
309381fe
SL
583 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 585
1da177e4 586 while (order < MAX_ORDER-1) {
43506fad
KC
587 buddy_idx = __find_buddy_index(page_idx, order);
588 buddy = page + (buddy_idx - page_idx);
cb2b95e1 589 if (!page_is_buddy(page, buddy, order))
3c82d0ce 590 break;
c0a32fc5
SG
591 /*
592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 * merge with it and move up one order.
594 */
595 if (page_is_guard(buddy)) {
596 clear_page_guard_flag(buddy);
597 set_page_private(page, 0);
d1ce749a
BZ
598 __mod_zone_freepage_state(zone, 1 << order,
599 migratetype);
c0a32fc5
SG
600 } else {
601 list_del(&buddy->lru);
602 zone->free_area[order].nr_free--;
603 rmv_page_order(buddy);
604 }
43506fad 605 combined_idx = buddy_idx & page_idx;
1da177e4
LT
606 page = page + (combined_idx - page_idx);
607 page_idx = combined_idx;
608 order++;
609 }
610 set_page_order(page, order);
6dda9d55
CZ
611
612 /*
613 * If this is not the largest possible page, check if the buddy
614 * of the next-highest order is free. If it is, it's possible
615 * that pages are being freed that will coalesce soon. In case,
616 * that is happening, add the free page to the tail of the list
617 * so it's less likely to be used soon and more likely to be merged
618 * as a higher order page
619 */
b7f50cfa 620 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 621 struct page *higher_page, *higher_buddy;
43506fad
KC
622 combined_idx = buddy_idx & page_idx;
623 higher_page = page + (combined_idx - page_idx);
624 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 625 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
626 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
627 list_add_tail(&page->lru,
628 &zone->free_area[order].free_list[migratetype]);
629 goto out;
630 }
631 }
632
633 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
634out:
1da177e4
LT
635 zone->free_area[order].nr_free++;
636}
637
224abf92 638static inline int free_pages_check(struct page *page)
1da177e4 639{
d230dec1 640 const char *bad_reason = NULL;
f0b791a3
DH
641 unsigned long bad_flags = 0;
642
643 if (unlikely(page_mapcount(page)))
644 bad_reason = "nonzero mapcount";
645 if (unlikely(page->mapping != NULL))
646 bad_reason = "non-NULL mapping";
647 if (unlikely(atomic_read(&page->_count) != 0))
648 bad_reason = "nonzero _count";
649 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
650 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
652 }
653 if (unlikely(mem_cgroup_bad_page_check(page)))
654 bad_reason = "cgroup check failed";
655 if (unlikely(bad_reason)) {
656 bad_page(page, bad_reason, bad_flags);
79f4b7bf 657 return 1;
8cc3b392 658 }
90572890 659 page_cpupid_reset_last(page);
79f4b7bf
HD
660 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
661 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
662 return 0;
1da177e4
LT
663}
664
665/*
5f8dcc21 666 * Frees a number of pages from the PCP lists
1da177e4 667 * Assumes all pages on list are in same zone, and of same order.
207f36ee 668 * count is the number of pages to free.
1da177e4
LT
669 *
670 * If the zone was previously in an "all pages pinned" state then look to
671 * see if this freeing clears that state.
672 *
673 * And clear the zone's pages_scanned counter, to hold off the "all pages are
674 * pinned" detection logic.
675 */
5f8dcc21
MG
676static void free_pcppages_bulk(struct zone *zone, int count,
677 struct per_cpu_pages *pcp)
1da177e4 678{
5f8dcc21 679 int migratetype = 0;
a6f9edd6 680 int batch_free = 0;
72853e29 681 int to_free = count;
0d5d823a 682 unsigned long nr_scanned;
5f8dcc21 683
c54ad30c 684 spin_lock(&zone->lock);
0d5d823a
MG
685 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
686 if (nr_scanned)
687 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 688
72853e29 689 while (to_free) {
48db57f8 690 struct page *page;
5f8dcc21
MG
691 struct list_head *list;
692
693 /*
a6f9edd6
MG
694 * Remove pages from lists in a round-robin fashion. A
695 * batch_free count is maintained that is incremented when an
696 * empty list is encountered. This is so more pages are freed
697 * off fuller lists instead of spinning excessively around empty
698 * lists
5f8dcc21
MG
699 */
700 do {
a6f9edd6 701 batch_free++;
5f8dcc21
MG
702 if (++migratetype == MIGRATE_PCPTYPES)
703 migratetype = 0;
704 list = &pcp->lists[migratetype];
705 } while (list_empty(list));
48db57f8 706
1d16871d
NK
707 /* This is the only non-empty list. Free them all. */
708 if (batch_free == MIGRATE_PCPTYPES)
709 batch_free = to_free;
710
a6f9edd6 711 do {
770c8aaa
BZ
712 int mt; /* migratetype of the to-be-freed page */
713
a6f9edd6
MG
714 page = list_entry(list->prev, struct page, lru);
715 /* must delete as __free_one_page list manipulates */
716 list_del(&page->lru);
b12c4ad1 717 mt = get_freepage_migratetype(page);
a7016235 718 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 719 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 720 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 721 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
722 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
723 if (is_migrate_cma(mt))
724 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
725 }
72853e29 726 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 727 }
c54ad30c 728 spin_unlock(&zone->lock);
1da177e4
LT
729}
730
dc4b0caf
MG
731static void free_one_page(struct zone *zone,
732 struct page *page, unsigned long pfn,
7aeb09f9 733 unsigned int order,
ed0ae21d 734 int migratetype)
1da177e4 735{
0d5d823a 736 unsigned long nr_scanned;
006d22d9 737 spin_lock(&zone->lock);
0d5d823a
MG
738 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
739 if (nr_scanned)
740 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 741
ad53f92e
JK
742 if (unlikely(has_isolate_pageblock(zone) ||
743 is_migrate_isolate(migratetype))) {
744 migratetype = get_pfnblock_migratetype(page, pfn);
745 if (is_migrate_isolate(migratetype))
746 goto skip_counting;
747 }
748 __mod_zone_freepage_state(zone, 1 << order, migratetype);
749
750skip_counting:
dc4b0caf 751 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 752 spin_unlock(&zone->lock);
48db57f8
NP
753}
754
ec95f53a 755static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 756{
1da177e4 757 int i;
8cc3b392 758 int bad = 0;
1da177e4 759
b413d48a 760 trace_mm_page_free(page, order);
b1eeab67
VN
761 kmemcheck_free_shadow(page, order);
762
8dd60a3a
AA
763 if (PageAnon(page))
764 page->mapping = NULL;
765 for (i = 0; i < (1 << order); i++)
766 bad += free_pages_check(page + i);
8cc3b392 767 if (bad)
ec95f53a 768 return false;
689bcebf 769
3ac7fe5a 770 if (!PageHighMem(page)) {
b8af2941
PK
771 debug_check_no_locks_freed(page_address(page),
772 PAGE_SIZE << order);
3ac7fe5a
TG
773 debug_check_no_obj_freed(page_address(page),
774 PAGE_SIZE << order);
775 }
dafb1367 776 arch_free_page(page, order);
48db57f8 777 kernel_map_pages(page, 1 << order, 0);
dafb1367 778
ec95f53a
KM
779 return true;
780}
781
782static void __free_pages_ok(struct page *page, unsigned int order)
783{
784 unsigned long flags;
95e34412 785 int migratetype;
dc4b0caf 786 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
787
788 if (!free_pages_prepare(page, order))
789 return;
790
cfc47a28 791 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 792 local_irq_save(flags);
f8891e5e 793 __count_vm_events(PGFREE, 1 << order);
95e34412 794 set_freepage_migratetype(page, migratetype);
dc4b0caf 795 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 796 local_irq_restore(flags);
1da177e4
LT
797}
798
170a5a7e 799void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 800{
c3993076 801 unsigned int nr_pages = 1 << order;
e2d0bd2b 802 struct page *p = page;
c3993076 803 unsigned int loop;
a226f6c8 804
e2d0bd2b
YL
805 prefetchw(p);
806 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
807 prefetchw(p + 1);
c3993076
JW
808 __ClearPageReserved(p);
809 set_page_count(p, 0);
a226f6c8 810 }
e2d0bd2b
YL
811 __ClearPageReserved(p);
812 set_page_count(p, 0);
c3993076 813
e2d0bd2b 814 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
815 set_page_refcounted(page);
816 __free_pages(page, order);
a226f6c8
DH
817}
818
47118af0 819#ifdef CONFIG_CMA
9cf510a5 820/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
821void __init init_cma_reserved_pageblock(struct page *page)
822{
823 unsigned i = pageblock_nr_pages;
824 struct page *p = page;
825
826 do {
827 __ClearPageReserved(p);
828 set_page_count(p, 0);
829 } while (++p, --i);
830
47118af0 831 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
832
833 if (pageblock_order >= MAX_ORDER) {
834 i = pageblock_nr_pages;
835 p = page;
836 do {
837 set_page_refcounted(p);
838 __free_pages(p, MAX_ORDER - 1);
839 p += MAX_ORDER_NR_PAGES;
840 } while (i -= MAX_ORDER_NR_PAGES);
841 } else {
842 set_page_refcounted(page);
843 __free_pages(page, pageblock_order);
844 }
845
3dcc0571 846 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
847}
848#endif
1da177e4
LT
849
850/*
851 * The order of subdivision here is critical for the IO subsystem.
852 * Please do not alter this order without good reasons and regression
853 * testing. Specifically, as large blocks of memory are subdivided,
854 * the order in which smaller blocks are delivered depends on the order
855 * they're subdivided in this function. This is the primary factor
856 * influencing the order in which pages are delivered to the IO
857 * subsystem according to empirical testing, and this is also justified
858 * by considering the behavior of a buddy system containing a single
859 * large block of memory acted on by a series of small allocations.
860 * This behavior is a critical factor in sglist merging's success.
861 *
6d49e352 862 * -- nyc
1da177e4 863 */
085cc7d5 864static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
865 int low, int high, struct free_area *area,
866 int migratetype)
1da177e4
LT
867{
868 unsigned long size = 1 << high;
869
870 while (high > low) {
871 area--;
872 high--;
873 size >>= 1;
309381fe 874 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5
SG
875
876#ifdef CONFIG_DEBUG_PAGEALLOC
877 if (high < debug_guardpage_minorder()) {
878 /*
879 * Mark as guard pages (or page), that will allow to
880 * merge back to allocator when buddy will be freed.
881 * Corresponding page table entries will not be touched,
882 * pages will stay not present in virtual address space
883 */
884 INIT_LIST_HEAD(&page[size].lru);
885 set_page_guard_flag(&page[size]);
886 set_page_private(&page[size], high);
887 /* Guard pages are not available for any usage */
d1ce749a
BZ
888 __mod_zone_freepage_state(zone, -(1 << high),
889 migratetype);
c0a32fc5
SG
890 continue;
891 }
892#endif
b2a0ac88 893 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
894 area->nr_free++;
895 set_page_order(&page[size], high);
896 }
1da177e4
LT
897}
898
1da177e4
LT
899/*
900 * This page is about to be returned from the page allocator
901 */
2a7684a2 902static inline int check_new_page(struct page *page)
1da177e4 903{
d230dec1 904 const char *bad_reason = NULL;
f0b791a3
DH
905 unsigned long bad_flags = 0;
906
907 if (unlikely(page_mapcount(page)))
908 bad_reason = "nonzero mapcount";
909 if (unlikely(page->mapping != NULL))
910 bad_reason = "non-NULL mapping";
911 if (unlikely(atomic_read(&page->_count) != 0))
912 bad_reason = "nonzero _count";
913 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
914 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
915 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
916 }
917 if (unlikely(mem_cgroup_bad_page_check(page)))
918 bad_reason = "cgroup check failed";
919 if (unlikely(bad_reason)) {
920 bad_page(page, bad_reason, bad_flags);
689bcebf 921 return 1;
8cc3b392 922 }
2a7684a2
WF
923 return 0;
924}
925
7aeb09f9 926static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
2a7684a2
WF
927{
928 int i;
929
930 for (i = 0; i < (1 << order); i++) {
931 struct page *p = page + i;
932 if (unlikely(check_new_page(p)))
933 return 1;
934 }
689bcebf 935
4c21e2f2 936 set_page_private(page, 0);
7835e98b 937 set_page_refcounted(page);
cc102509
NP
938
939 arch_alloc_page(page, order);
1da177e4 940 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
941
942 if (gfp_flags & __GFP_ZERO)
943 prep_zero_page(page, order, gfp_flags);
944
945 if (order && (gfp_flags & __GFP_COMP))
946 prep_compound_page(page, order);
947
689bcebf 948 return 0;
1da177e4
LT
949}
950
56fd56b8
MG
951/*
952 * Go through the free lists for the given migratetype and remove
953 * the smallest available page from the freelists
954 */
728ec980
MG
955static inline
956struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
957 int migratetype)
958{
959 unsigned int current_order;
b8af2941 960 struct free_area *area;
56fd56b8
MG
961 struct page *page;
962
963 /* Find a page of the appropriate size in the preferred list */
964 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
965 area = &(zone->free_area[current_order]);
966 if (list_empty(&area->free_list[migratetype]))
967 continue;
968
969 page = list_entry(area->free_list[migratetype].next,
970 struct page, lru);
971 list_del(&page->lru);
972 rmv_page_order(page);
973 area->nr_free--;
56fd56b8 974 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 975 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
976 return page;
977 }
978
979 return NULL;
980}
981
982
b2a0ac88
MG
983/*
984 * This array describes the order lists are fallen back to when
985 * the free lists for the desirable migrate type are depleted
986 */
47118af0
MN
987static int fallbacks[MIGRATE_TYPES][4] = {
988 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
989 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
990#ifdef CONFIG_CMA
991 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
992 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
993#else
994 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
995#endif
6d4a4916 996 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 997#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 998 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 999#endif
b2a0ac88
MG
1000};
1001
c361be55
MG
1002/*
1003 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1004 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1005 * boundary. If alignment is required, use move_freepages_block()
1006 */
435b405c 1007int move_freepages(struct zone *zone,
b69a7288
AB
1008 struct page *start_page, struct page *end_page,
1009 int migratetype)
c361be55
MG
1010{
1011 struct page *page;
1012 unsigned long order;
d100313f 1013 int pages_moved = 0;
c361be55
MG
1014
1015#ifndef CONFIG_HOLES_IN_ZONE
1016 /*
1017 * page_zone is not safe to call in this context when
1018 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1019 * anyway as we check zone boundaries in move_freepages_block().
1020 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1021 * grouping pages by mobility
c361be55 1022 */
97ee4ba7 1023 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1024#endif
1025
1026 for (page = start_page; page <= end_page;) {
344c790e 1027 /* Make sure we are not inadvertently changing nodes */
309381fe 1028 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1029
c361be55
MG
1030 if (!pfn_valid_within(page_to_pfn(page))) {
1031 page++;
1032 continue;
1033 }
1034
1035 if (!PageBuddy(page)) {
1036 page++;
1037 continue;
1038 }
1039
1040 order = page_order(page);
84be48d8
KS
1041 list_move(&page->lru,
1042 &zone->free_area[order].free_list[migratetype]);
95e34412 1043 set_freepage_migratetype(page, migratetype);
c361be55 1044 page += 1 << order;
d100313f 1045 pages_moved += 1 << order;
c361be55
MG
1046 }
1047
d100313f 1048 return pages_moved;
c361be55
MG
1049}
1050
ee6f509c 1051int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1052 int migratetype)
c361be55
MG
1053{
1054 unsigned long start_pfn, end_pfn;
1055 struct page *start_page, *end_page;
1056
1057 start_pfn = page_to_pfn(page);
d9c23400 1058 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1059 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1060 end_page = start_page + pageblock_nr_pages - 1;
1061 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1062
1063 /* Do not cross zone boundaries */
108bcc96 1064 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1065 start_page = page;
108bcc96 1066 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1067 return 0;
1068
1069 return move_freepages(zone, start_page, end_page, migratetype);
1070}
1071
2f66a68f
MG
1072static void change_pageblock_range(struct page *pageblock_page,
1073 int start_order, int migratetype)
1074{
1075 int nr_pageblocks = 1 << (start_order - pageblock_order);
1076
1077 while (nr_pageblocks--) {
1078 set_pageblock_migratetype(pageblock_page, migratetype);
1079 pageblock_page += pageblock_nr_pages;
1080 }
1081}
1082
fef903ef
SB
1083/*
1084 * If breaking a large block of pages, move all free pages to the preferred
1085 * allocation list. If falling back for a reclaimable kernel allocation, be
1086 * more aggressive about taking ownership of free pages.
1087 *
1088 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1089 * nor move CMA pages to different free lists. We don't want unmovable pages
1090 * to be allocated from MIGRATE_CMA areas.
1091 *
1092 * Returns the new migratetype of the pageblock (or the same old migratetype
1093 * if it was unchanged).
1094 */
1095static int try_to_steal_freepages(struct zone *zone, struct page *page,
1096 int start_type, int fallback_type)
1097{
1098 int current_order = page_order(page);
1099
0cbef29a
KM
1100 /*
1101 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1102 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1103 * is set to CMA so it is returned to the correct freelist in case
1104 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1105 */
fef903ef
SB
1106 if (is_migrate_cma(fallback_type))
1107 return fallback_type;
1108
1109 /* Take ownership for orders >= pageblock_order */
1110 if (current_order >= pageblock_order) {
1111 change_pageblock_range(page, current_order, start_type);
1112 return start_type;
1113 }
1114
1115 if (current_order >= pageblock_order / 2 ||
1116 start_type == MIGRATE_RECLAIMABLE ||
1117 page_group_by_mobility_disabled) {
1118 int pages;
1119
1120 pages = move_freepages_block(zone, page, start_type);
1121
1122 /* Claim the whole block if over half of it is free */
1123 if (pages >= (1 << (pageblock_order-1)) ||
1124 page_group_by_mobility_disabled) {
1125
1126 set_pageblock_migratetype(page, start_type);
1127 return start_type;
1128 }
1129
1130 }
1131
1132 return fallback_type;
1133}
1134
b2a0ac88 1135/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1136static inline struct page *
7aeb09f9 1137__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1138{
b8af2941 1139 struct free_area *area;
7aeb09f9 1140 unsigned int current_order;
b2a0ac88 1141 struct page *page;
fef903ef 1142 int migratetype, new_type, i;
b2a0ac88
MG
1143
1144 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1145 for (current_order = MAX_ORDER-1;
1146 current_order >= order && current_order <= MAX_ORDER-1;
1147 --current_order) {
6d4a4916 1148 for (i = 0;; i++) {
b2a0ac88
MG
1149 migratetype = fallbacks[start_migratetype][i];
1150
56fd56b8
MG
1151 /* MIGRATE_RESERVE handled later if necessary */
1152 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1153 break;
e010487d 1154
b2a0ac88
MG
1155 area = &(zone->free_area[current_order]);
1156 if (list_empty(&area->free_list[migratetype]))
1157 continue;
1158
1159 page = list_entry(area->free_list[migratetype].next,
1160 struct page, lru);
1161 area->nr_free--;
1162
fef903ef
SB
1163 new_type = try_to_steal_freepages(zone, page,
1164 start_migratetype,
1165 migratetype);
b2a0ac88
MG
1166
1167 /* Remove the page from the freelists */
1168 list_del(&page->lru);
1169 rmv_page_order(page);
b2a0ac88 1170
47118af0 1171 expand(zone, page, order, current_order, area,
0cbef29a 1172 new_type);
5bcc9f86
VB
1173 /* The freepage_migratetype may differ from pageblock's
1174 * migratetype depending on the decisions in
1175 * try_to_steal_freepages. This is OK as long as it does
1176 * not differ for MIGRATE_CMA type.
1177 */
1178 set_freepage_migratetype(page, new_type);
e0fff1bd 1179
52c8f6a5
KM
1180 trace_mm_page_alloc_extfrag(page, order, current_order,
1181 start_migratetype, migratetype, new_type);
e0fff1bd 1182
b2a0ac88
MG
1183 return page;
1184 }
1185 }
1186
728ec980 1187 return NULL;
b2a0ac88
MG
1188}
1189
56fd56b8 1190/*
1da177e4
LT
1191 * Do the hard work of removing an element from the buddy allocator.
1192 * Call me with the zone->lock already held.
1193 */
b2a0ac88
MG
1194static struct page *__rmqueue(struct zone *zone, unsigned int order,
1195 int migratetype)
1da177e4 1196{
1da177e4
LT
1197 struct page *page;
1198
728ec980 1199retry_reserve:
56fd56b8 1200 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1201
728ec980 1202 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1203 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1204
728ec980
MG
1205 /*
1206 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1207 * is used because __rmqueue_smallest is an inline function
1208 * and we want just one call site
1209 */
1210 if (!page) {
1211 migratetype = MIGRATE_RESERVE;
1212 goto retry_reserve;
1213 }
1214 }
1215
0d3d062a 1216 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1217 return page;
1da177e4
LT
1218}
1219
5f63b720 1220/*
1da177e4
LT
1221 * Obtain a specified number of elements from the buddy allocator, all under
1222 * a single hold of the lock, for efficiency. Add them to the supplied list.
1223 * Returns the number of new pages which were placed at *list.
1224 */
5f63b720 1225static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1226 unsigned long count, struct list_head *list,
b745bc85 1227 int migratetype, bool cold)
1da177e4 1228{
5bcc9f86 1229 int i;
5f63b720 1230
c54ad30c 1231 spin_lock(&zone->lock);
1da177e4 1232 for (i = 0; i < count; ++i) {
b2a0ac88 1233 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1234 if (unlikely(page == NULL))
1da177e4 1235 break;
81eabcbe
MG
1236
1237 /*
1238 * Split buddy pages returned by expand() are received here
1239 * in physical page order. The page is added to the callers and
1240 * list and the list head then moves forward. From the callers
1241 * perspective, the linked list is ordered by page number in
1242 * some conditions. This is useful for IO devices that can
1243 * merge IO requests if the physical pages are ordered
1244 * properly.
1245 */
b745bc85 1246 if (likely(!cold))
e084b2d9
MG
1247 list_add(&page->lru, list);
1248 else
1249 list_add_tail(&page->lru, list);
81eabcbe 1250 list = &page->lru;
5bcc9f86 1251 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1252 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1253 -(1 << order));
1da177e4 1254 }
f2260e6b 1255 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1256 spin_unlock(&zone->lock);
085cc7d5 1257 return i;
1da177e4
LT
1258}
1259
4ae7c039 1260#ifdef CONFIG_NUMA
8fce4d8e 1261/*
4037d452
CL
1262 * Called from the vmstat counter updater to drain pagesets of this
1263 * currently executing processor on remote nodes after they have
1264 * expired.
1265 *
879336c3
CL
1266 * Note that this function must be called with the thread pinned to
1267 * a single processor.
8fce4d8e 1268 */
4037d452 1269void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1270{
4ae7c039 1271 unsigned long flags;
7be12fc9 1272 int to_drain, batch;
4ae7c039 1273
4037d452 1274 local_irq_save(flags);
998d39cb 1275 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1276 to_drain = min(pcp->count, batch);
2a13515c
KM
1277 if (to_drain > 0) {
1278 free_pcppages_bulk(zone, to_drain, pcp);
1279 pcp->count -= to_drain;
1280 }
4037d452 1281 local_irq_restore(flags);
4ae7c039
CL
1282}
1283#endif
1284
9f8f2172
CL
1285/*
1286 * Drain pages of the indicated processor.
1287 *
1288 * The processor must either be the current processor and the
1289 * thread pinned to the current processor or a processor that
1290 * is not online.
1291 */
1292static void drain_pages(unsigned int cpu)
1da177e4 1293{
c54ad30c 1294 unsigned long flags;
1da177e4 1295 struct zone *zone;
1da177e4 1296
ee99c71c 1297 for_each_populated_zone(zone) {
1da177e4 1298 struct per_cpu_pageset *pset;
3dfa5721 1299 struct per_cpu_pages *pcp;
1da177e4 1300
99dcc3e5
CL
1301 local_irq_save(flags);
1302 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1303
1304 pcp = &pset->pcp;
2ff754fa
DR
1305 if (pcp->count) {
1306 free_pcppages_bulk(zone, pcp->count, pcp);
1307 pcp->count = 0;
1308 }
3dfa5721 1309 local_irq_restore(flags);
1da177e4
LT
1310 }
1311}
1da177e4 1312
9f8f2172
CL
1313/*
1314 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1315 */
1316void drain_local_pages(void *arg)
1317{
1318 drain_pages(smp_processor_id());
1319}
1320
1321/*
74046494
GBY
1322 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1323 *
1324 * Note that this code is protected against sending an IPI to an offline
1325 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1326 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1327 * nothing keeps CPUs from showing up after we populated the cpumask and
1328 * before the call to on_each_cpu_mask().
9f8f2172
CL
1329 */
1330void drain_all_pages(void)
1331{
74046494
GBY
1332 int cpu;
1333 struct per_cpu_pageset *pcp;
1334 struct zone *zone;
1335
1336 /*
1337 * Allocate in the BSS so we wont require allocation in
1338 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1339 */
1340 static cpumask_t cpus_with_pcps;
1341
1342 /*
1343 * We don't care about racing with CPU hotplug event
1344 * as offline notification will cause the notified
1345 * cpu to drain that CPU pcps and on_each_cpu_mask
1346 * disables preemption as part of its processing
1347 */
1348 for_each_online_cpu(cpu) {
1349 bool has_pcps = false;
1350 for_each_populated_zone(zone) {
1351 pcp = per_cpu_ptr(zone->pageset, cpu);
1352 if (pcp->pcp.count) {
1353 has_pcps = true;
1354 break;
1355 }
1356 }
1357 if (has_pcps)
1358 cpumask_set_cpu(cpu, &cpus_with_pcps);
1359 else
1360 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1361 }
1362 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1363}
1364
296699de 1365#ifdef CONFIG_HIBERNATION
1da177e4
LT
1366
1367void mark_free_pages(struct zone *zone)
1368{
f623f0db
RW
1369 unsigned long pfn, max_zone_pfn;
1370 unsigned long flags;
7aeb09f9 1371 unsigned int order, t;
1da177e4
LT
1372 struct list_head *curr;
1373
8080fc03 1374 if (zone_is_empty(zone))
1da177e4
LT
1375 return;
1376
1377 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1378
108bcc96 1379 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1380 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1381 if (pfn_valid(pfn)) {
1382 struct page *page = pfn_to_page(pfn);
1383
7be98234
RW
1384 if (!swsusp_page_is_forbidden(page))
1385 swsusp_unset_page_free(page);
f623f0db 1386 }
1da177e4 1387
b2a0ac88
MG
1388 for_each_migratetype_order(order, t) {
1389 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1390 unsigned long i;
1da177e4 1391
f623f0db
RW
1392 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1393 for (i = 0; i < (1UL << order); i++)
7be98234 1394 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1395 }
b2a0ac88 1396 }
1da177e4
LT
1397 spin_unlock_irqrestore(&zone->lock, flags);
1398}
e2c55dc8 1399#endif /* CONFIG_PM */
1da177e4 1400
1da177e4
LT
1401/*
1402 * Free a 0-order page
b745bc85 1403 * cold == true ? free a cold page : free a hot page
1da177e4 1404 */
b745bc85 1405void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1406{
1407 struct zone *zone = page_zone(page);
1408 struct per_cpu_pages *pcp;
1409 unsigned long flags;
dc4b0caf 1410 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1411 int migratetype;
1da177e4 1412
ec95f53a 1413 if (!free_pages_prepare(page, 0))
689bcebf
HD
1414 return;
1415
dc4b0caf 1416 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1417 set_freepage_migratetype(page, migratetype);
1da177e4 1418 local_irq_save(flags);
f8891e5e 1419 __count_vm_event(PGFREE);
da456f14 1420
5f8dcc21
MG
1421 /*
1422 * We only track unmovable, reclaimable and movable on pcp lists.
1423 * Free ISOLATE pages back to the allocator because they are being
1424 * offlined but treat RESERVE as movable pages so we can get those
1425 * areas back if necessary. Otherwise, we may have to free
1426 * excessively into the page allocator
1427 */
1428 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1429 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1430 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1431 goto out;
1432 }
1433 migratetype = MIGRATE_MOVABLE;
1434 }
1435
99dcc3e5 1436 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1437 if (!cold)
5f8dcc21 1438 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1439 else
1440 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1441 pcp->count++;
48db57f8 1442 if (pcp->count >= pcp->high) {
998d39cb
CS
1443 unsigned long batch = ACCESS_ONCE(pcp->batch);
1444 free_pcppages_bulk(zone, batch, pcp);
1445 pcp->count -= batch;
48db57f8 1446 }
5f8dcc21
MG
1447
1448out:
1da177e4 1449 local_irq_restore(flags);
1da177e4
LT
1450}
1451
cc59850e
KK
1452/*
1453 * Free a list of 0-order pages
1454 */
b745bc85 1455void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1456{
1457 struct page *page, *next;
1458
1459 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1460 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1461 free_hot_cold_page(page, cold);
1462 }
1463}
1464
8dfcc9ba
NP
1465/*
1466 * split_page takes a non-compound higher-order page, and splits it into
1467 * n (1<<order) sub-pages: page[0..n]
1468 * Each sub-page must be freed individually.
1469 *
1470 * Note: this is probably too low level an operation for use in drivers.
1471 * Please consult with lkml before using this in your driver.
1472 */
1473void split_page(struct page *page, unsigned int order)
1474{
1475 int i;
1476
309381fe
SL
1477 VM_BUG_ON_PAGE(PageCompound(page), page);
1478 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1479
1480#ifdef CONFIG_KMEMCHECK
1481 /*
1482 * Split shadow pages too, because free(page[0]) would
1483 * otherwise free the whole shadow.
1484 */
1485 if (kmemcheck_page_is_tracked(page))
1486 split_page(virt_to_page(page[0].shadow), order);
1487#endif
1488
7835e98b
NP
1489 for (i = 1; i < (1 << order); i++)
1490 set_page_refcounted(page + i);
8dfcc9ba 1491}
5853ff23 1492EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1493
8fb74b9f 1494static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1495{
748446bb
MG
1496 unsigned long watermark;
1497 struct zone *zone;
2139cbe6 1498 int mt;
748446bb
MG
1499
1500 BUG_ON(!PageBuddy(page));
1501
1502 zone = page_zone(page);
2e30abd1 1503 mt = get_pageblock_migratetype(page);
748446bb 1504
194159fb 1505 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1506 /* Obey watermarks as if the page was being allocated */
1507 watermark = low_wmark_pages(zone) + (1 << order);
1508 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1509 return 0;
1510
8fb74b9f 1511 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1512 }
748446bb
MG
1513
1514 /* Remove page from free list */
1515 list_del(&page->lru);
1516 zone->free_area[order].nr_free--;
1517 rmv_page_order(page);
2139cbe6 1518
8fb74b9f 1519 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1520 if (order >= pageblock_order - 1) {
1521 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1522 for (; page < endpage; page += pageblock_nr_pages) {
1523 int mt = get_pageblock_migratetype(page);
194159fb 1524 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1525 set_pageblock_migratetype(page,
1526 MIGRATE_MOVABLE);
1527 }
748446bb
MG
1528 }
1529
8fb74b9f 1530 return 1UL << order;
1fb3f8ca
MG
1531}
1532
1533/*
1534 * Similar to split_page except the page is already free. As this is only
1535 * being used for migration, the migratetype of the block also changes.
1536 * As this is called with interrupts disabled, the caller is responsible
1537 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1538 * are enabled.
1539 *
1540 * Note: this is probably too low level an operation for use in drivers.
1541 * Please consult with lkml before using this in your driver.
1542 */
1543int split_free_page(struct page *page)
1544{
1545 unsigned int order;
1546 int nr_pages;
1547
1fb3f8ca
MG
1548 order = page_order(page);
1549
8fb74b9f 1550 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1551 if (!nr_pages)
1552 return 0;
1553
1554 /* Split into individual pages */
1555 set_page_refcounted(page);
1556 split_page(page, order);
1557 return nr_pages;
748446bb
MG
1558}
1559
1da177e4
LT
1560/*
1561 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1562 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1563 * or two.
1564 */
0a15c3e9
MG
1565static inline
1566struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1567 struct zone *zone, unsigned int order,
1568 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1569{
1570 unsigned long flags;
689bcebf 1571 struct page *page;
b745bc85 1572 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1573
689bcebf 1574again:
48db57f8 1575 if (likely(order == 0)) {
1da177e4 1576 struct per_cpu_pages *pcp;
5f8dcc21 1577 struct list_head *list;
1da177e4 1578
1da177e4 1579 local_irq_save(flags);
99dcc3e5
CL
1580 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1581 list = &pcp->lists[migratetype];
5f8dcc21 1582 if (list_empty(list)) {
535131e6 1583 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1584 pcp->batch, list,
e084b2d9 1585 migratetype, cold);
5f8dcc21 1586 if (unlikely(list_empty(list)))
6fb332fa 1587 goto failed;
535131e6 1588 }
b92a6edd 1589
5f8dcc21
MG
1590 if (cold)
1591 page = list_entry(list->prev, struct page, lru);
1592 else
1593 page = list_entry(list->next, struct page, lru);
1594
b92a6edd
MG
1595 list_del(&page->lru);
1596 pcp->count--;
7fb1d9fc 1597 } else {
dab48dab
AM
1598 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1599 /*
1600 * __GFP_NOFAIL is not to be used in new code.
1601 *
1602 * All __GFP_NOFAIL callers should be fixed so that they
1603 * properly detect and handle allocation failures.
1604 *
1605 * We most definitely don't want callers attempting to
4923abf9 1606 * allocate greater than order-1 page units with
dab48dab
AM
1607 * __GFP_NOFAIL.
1608 */
4923abf9 1609 WARN_ON_ONCE(order > 1);
dab48dab 1610 }
1da177e4 1611 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1612 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1613 spin_unlock(&zone->lock);
1614 if (!page)
1615 goto failed;
d1ce749a 1616 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1617 get_freepage_migratetype(page));
1da177e4
LT
1618 }
1619
3a025760 1620 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1621 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1622 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1623 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1624
f8891e5e 1625 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1626 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1627 local_irq_restore(flags);
1da177e4 1628
309381fe 1629 VM_BUG_ON_PAGE(bad_range(zone, page), page);
17cf4406 1630 if (prep_new_page(page, order, gfp_flags))
a74609fa 1631 goto again;
1da177e4 1632 return page;
a74609fa
NP
1633
1634failed:
1635 local_irq_restore(flags);
a74609fa 1636 return NULL;
1da177e4
LT
1637}
1638
933e312e
AM
1639#ifdef CONFIG_FAIL_PAGE_ALLOC
1640
b2588c4b 1641static struct {
933e312e
AM
1642 struct fault_attr attr;
1643
1644 u32 ignore_gfp_highmem;
1645 u32 ignore_gfp_wait;
54114994 1646 u32 min_order;
933e312e
AM
1647} fail_page_alloc = {
1648 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1649 .ignore_gfp_wait = 1,
1650 .ignore_gfp_highmem = 1,
54114994 1651 .min_order = 1,
933e312e
AM
1652};
1653
1654static int __init setup_fail_page_alloc(char *str)
1655{
1656 return setup_fault_attr(&fail_page_alloc.attr, str);
1657}
1658__setup("fail_page_alloc=", setup_fail_page_alloc);
1659
deaf386e 1660static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1661{
54114994 1662 if (order < fail_page_alloc.min_order)
deaf386e 1663 return false;
933e312e 1664 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1665 return false;
933e312e 1666 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1667 return false;
933e312e 1668 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1669 return false;
933e312e
AM
1670
1671 return should_fail(&fail_page_alloc.attr, 1 << order);
1672}
1673
1674#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1675
1676static int __init fail_page_alloc_debugfs(void)
1677{
f4ae40a6 1678 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1679 struct dentry *dir;
933e312e 1680
dd48c085
AM
1681 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1682 &fail_page_alloc.attr);
1683 if (IS_ERR(dir))
1684 return PTR_ERR(dir);
933e312e 1685
b2588c4b
AM
1686 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1687 &fail_page_alloc.ignore_gfp_wait))
1688 goto fail;
1689 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1690 &fail_page_alloc.ignore_gfp_highmem))
1691 goto fail;
1692 if (!debugfs_create_u32("min-order", mode, dir,
1693 &fail_page_alloc.min_order))
1694 goto fail;
1695
1696 return 0;
1697fail:
dd48c085 1698 debugfs_remove_recursive(dir);
933e312e 1699
b2588c4b 1700 return -ENOMEM;
933e312e
AM
1701}
1702
1703late_initcall(fail_page_alloc_debugfs);
1704
1705#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1706
1707#else /* CONFIG_FAIL_PAGE_ALLOC */
1708
deaf386e 1709static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1710{
deaf386e 1711 return false;
933e312e
AM
1712}
1713
1714#endif /* CONFIG_FAIL_PAGE_ALLOC */
1715
1da177e4 1716/*
88f5acf8 1717 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1718 * of the allocation.
1719 */
7aeb09f9
MG
1720static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1721 unsigned long mark, int classzone_idx, int alloc_flags,
1722 long free_pages)
1da177e4
LT
1723{
1724 /* free_pages my go negative - that's OK */
d23ad423 1725 long min = mark;
1da177e4 1726 int o;
026b0814 1727 long free_cma = 0;
1da177e4 1728
df0a6daa 1729 free_pages -= (1 << order) - 1;
7fb1d9fc 1730 if (alloc_flags & ALLOC_HIGH)
1da177e4 1731 min -= min / 2;
7fb1d9fc 1732 if (alloc_flags & ALLOC_HARDER)
1da177e4 1733 min -= min / 4;
d95ea5d1
BZ
1734#ifdef CONFIG_CMA
1735 /* If allocation can't use CMA areas don't use free CMA pages */
1736 if (!(alloc_flags & ALLOC_CMA))
026b0814 1737 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1738#endif
026b0814 1739
3484b2de 1740 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1741 return false;
1da177e4
LT
1742 for (o = 0; o < order; o++) {
1743 /* At the next order, this order's pages become unavailable */
1744 free_pages -= z->free_area[o].nr_free << o;
1745
1746 /* Require fewer higher order pages to be free */
1747 min >>= 1;
1748
1749 if (free_pages <= min)
88f5acf8 1750 return false;
1da177e4 1751 }
88f5acf8
MG
1752 return true;
1753}
1754
7aeb09f9 1755bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1756 int classzone_idx, int alloc_flags)
1757{
1758 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1759 zone_page_state(z, NR_FREE_PAGES));
1760}
1761
7aeb09f9
MG
1762bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1763 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1764{
1765 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1766
1767 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1768 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1769
1770 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1771 free_pages);
1da177e4
LT
1772}
1773
9276b1bc
PJ
1774#ifdef CONFIG_NUMA
1775/*
1776 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1777 * skip over zones that are not allowed by the cpuset, or that have
1778 * been recently (in last second) found to be nearly full. See further
1779 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1780 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1781 *
a1aeb65a 1782 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1783 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1784 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1785 *
1786 * If the zonelist cache is not available for this zonelist, does
1787 * nothing and returns NULL.
1788 *
1789 * If the fullzones BITMAP in the zonelist cache is stale (more than
1790 * a second since last zap'd) then we zap it out (clear its bits.)
1791 *
1792 * We hold off even calling zlc_setup, until after we've checked the
1793 * first zone in the zonelist, on the theory that most allocations will
1794 * be satisfied from that first zone, so best to examine that zone as
1795 * quickly as we can.
1796 */
1797static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1798{
1799 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1800 nodemask_t *allowednodes; /* zonelist_cache approximation */
1801
1802 zlc = zonelist->zlcache_ptr;
1803 if (!zlc)
1804 return NULL;
1805
f05111f5 1806 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1807 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1808 zlc->last_full_zap = jiffies;
1809 }
1810
1811 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1812 &cpuset_current_mems_allowed :
4b0ef1fe 1813 &node_states[N_MEMORY];
9276b1bc
PJ
1814 return allowednodes;
1815}
1816
1817/*
1818 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1819 * if it is worth looking at further for free memory:
1820 * 1) Check that the zone isn't thought to be full (doesn't have its
1821 * bit set in the zonelist_cache fullzones BITMAP).
1822 * 2) Check that the zones node (obtained from the zonelist_cache
1823 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1824 * Return true (non-zero) if zone is worth looking at further, or
1825 * else return false (zero) if it is not.
1826 *
1827 * This check -ignores- the distinction between various watermarks,
1828 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1829 * found to be full for any variation of these watermarks, it will
1830 * be considered full for up to one second by all requests, unless
1831 * we are so low on memory on all allowed nodes that we are forced
1832 * into the second scan of the zonelist.
1833 *
1834 * In the second scan we ignore this zonelist cache and exactly
1835 * apply the watermarks to all zones, even it is slower to do so.
1836 * We are low on memory in the second scan, and should leave no stone
1837 * unturned looking for a free page.
1838 */
dd1a239f 1839static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1840 nodemask_t *allowednodes)
1841{
1842 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1843 int i; /* index of *z in zonelist zones */
1844 int n; /* node that zone *z is on */
1845
1846 zlc = zonelist->zlcache_ptr;
1847 if (!zlc)
1848 return 1;
1849
dd1a239f 1850 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1851 n = zlc->z_to_n[i];
1852
1853 /* This zone is worth trying if it is allowed but not full */
1854 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1855}
1856
1857/*
1858 * Given 'z' scanning a zonelist, set the corresponding bit in
1859 * zlc->fullzones, so that subsequent attempts to allocate a page
1860 * from that zone don't waste time re-examining it.
1861 */
dd1a239f 1862static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1863{
1864 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1865 int i; /* index of *z in zonelist zones */
1866
1867 zlc = zonelist->zlcache_ptr;
1868 if (!zlc)
1869 return;
1870
dd1a239f 1871 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1872
1873 set_bit(i, zlc->fullzones);
1874}
1875
76d3fbf8
MG
1876/*
1877 * clear all zones full, called after direct reclaim makes progress so that
1878 * a zone that was recently full is not skipped over for up to a second
1879 */
1880static void zlc_clear_zones_full(struct zonelist *zonelist)
1881{
1882 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1883
1884 zlc = zonelist->zlcache_ptr;
1885 if (!zlc)
1886 return;
1887
1888 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1889}
1890
81c0a2bb
JW
1891static bool zone_local(struct zone *local_zone, struct zone *zone)
1892{
fff4068c 1893 return local_zone->node == zone->node;
81c0a2bb
JW
1894}
1895
957f822a
DR
1896static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1897{
5f7a75ac
MG
1898 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1899 RECLAIM_DISTANCE;
957f822a
DR
1900}
1901
9276b1bc
PJ
1902#else /* CONFIG_NUMA */
1903
1904static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1905{
1906 return NULL;
1907}
1908
dd1a239f 1909static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1910 nodemask_t *allowednodes)
1911{
1912 return 1;
1913}
1914
dd1a239f 1915static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1916{
1917}
76d3fbf8
MG
1918
1919static void zlc_clear_zones_full(struct zonelist *zonelist)
1920{
1921}
957f822a 1922
81c0a2bb
JW
1923static bool zone_local(struct zone *local_zone, struct zone *zone)
1924{
1925 return true;
1926}
1927
957f822a
DR
1928static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1929{
1930 return true;
1931}
1932
9276b1bc
PJ
1933#endif /* CONFIG_NUMA */
1934
4ffeaf35
MG
1935static void reset_alloc_batches(struct zone *preferred_zone)
1936{
1937 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1938
1939 do {
1940 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1941 high_wmark_pages(zone) - low_wmark_pages(zone) -
1942 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 1943 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
1944 } while (zone++ != preferred_zone);
1945}
1946
7fb1d9fc 1947/*
0798e519 1948 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1949 * a page.
1950 */
1951static struct page *
19770b32 1952get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1953 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
d8846374 1954 struct zone *preferred_zone, int classzone_idx, int migratetype)
753ee728 1955{
dd1a239f 1956 struct zoneref *z;
7fb1d9fc 1957 struct page *page = NULL;
5117f45d 1958 struct zone *zone;
9276b1bc
PJ
1959 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1960 int zlc_active = 0; /* set if using zonelist_cache */
1961 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
1962 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1963 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
1964 int nr_fair_skipped = 0;
1965 bool zonelist_rescan;
54a6eb5c 1966
9276b1bc 1967zonelist_scan:
4ffeaf35
MG
1968 zonelist_rescan = false;
1969
7fb1d9fc 1970 /*
9276b1bc 1971 * Scan zonelist, looking for a zone with enough free.
3b11f0aa 1972 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
7fb1d9fc 1973 */
19770b32
MG
1974 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1975 high_zoneidx, nodemask) {
e085dbc5
JW
1976 unsigned long mark;
1977
e5adfffc 1978 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1979 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1980 continue;
664eedde
MG
1981 if (cpusets_enabled() &&
1982 (alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1983 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1984 continue;
81c0a2bb
JW
1985 /*
1986 * Distribute pages in proportion to the individual
1987 * zone size to ensure fair page aging. The zone a
1988 * page was allocated in should have no effect on the
1989 * time the page has in memory before being reclaimed.
81c0a2bb 1990 */
3a025760 1991 if (alloc_flags & ALLOC_FAIR) {
fff4068c 1992 if (!zone_local(preferred_zone, zone))
f7b5d647 1993 break;
57054651 1994 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 1995 nr_fair_skipped++;
3a025760 1996 continue;
4ffeaf35 1997 }
81c0a2bb 1998 }
a756cf59
JW
1999 /*
2000 * When allocating a page cache page for writing, we
2001 * want to get it from a zone that is within its dirty
2002 * limit, such that no single zone holds more than its
2003 * proportional share of globally allowed dirty pages.
2004 * The dirty limits take into account the zone's
2005 * lowmem reserves and high watermark so that kswapd
2006 * should be able to balance it without having to
2007 * write pages from its LRU list.
2008 *
2009 * This may look like it could increase pressure on
2010 * lower zones by failing allocations in higher zones
2011 * before they are full. But the pages that do spill
2012 * over are limited as the lower zones are protected
2013 * by this very same mechanism. It should not become
2014 * a practical burden to them.
2015 *
2016 * XXX: For now, allow allocations to potentially
2017 * exceed the per-zone dirty limit in the slowpath
2018 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2019 * which is important when on a NUMA setup the allowed
2020 * zones are together not big enough to reach the
2021 * global limit. The proper fix for these situations
2022 * will require awareness of zones in the
2023 * dirty-throttling and the flusher threads.
2024 */
a6e21b14 2025 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2026 continue;
7fb1d9fc 2027
e085dbc5
JW
2028 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2029 if (!zone_watermark_ok(zone, order, mark,
2030 classzone_idx, alloc_flags)) {
fa5e084e
MG
2031 int ret;
2032
5dab2911
MG
2033 /* Checked here to keep the fast path fast */
2034 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2035 if (alloc_flags & ALLOC_NO_WATERMARKS)
2036 goto try_this_zone;
2037
e5adfffc
KS
2038 if (IS_ENABLED(CONFIG_NUMA) &&
2039 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2040 /*
2041 * we do zlc_setup if there are multiple nodes
2042 * and before considering the first zone allowed
2043 * by the cpuset.
2044 */
2045 allowednodes = zlc_setup(zonelist, alloc_flags);
2046 zlc_active = 1;
2047 did_zlc_setup = 1;
2048 }
2049
957f822a
DR
2050 if (zone_reclaim_mode == 0 ||
2051 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
2052 goto this_zone_full;
2053
cd38b115
MG
2054 /*
2055 * As we may have just activated ZLC, check if the first
2056 * eligible zone has failed zone_reclaim recently.
2057 */
e5adfffc 2058 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2059 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2060 continue;
2061
fa5e084e
MG
2062 ret = zone_reclaim(zone, gfp_mask, order);
2063 switch (ret) {
2064 case ZONE_RECLAIM_NOSCAN:
2065 /* did not scan */
cd38b115 2066 continue;
fa5e084e
MG
2067 case ZONE_RECLAIM_FULL:
2068 /* scanned but unreclaimable */
cd38b115 2069 continue;
fa5e084e
MG
2070 default:
2071 /* did we reclaim enough */
fed2719e 2072 if (zone_watermark_ok(zone, order, mark,
fa5e084e 2073 classzone_idx, alloc_flags))
fed2719e
MG
2074 goto try_this_zone;
2075
2076 /*
2077 * Failed to reclaim enough to meet watermark.
2078 * Only mark the zone full if checking the min
2079 * watermark or if we failed to reclaim just
2080 * 1<<order pages or else the page allocator
2081 * fastpath will prematurely mark zones full
2082 * when the watermark is between the low and
2083 * min watermarks.
2084 */
2085 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2086 ret == ZONE_RECLAIM_SOME)
9276b1bc 2087 goto this_zone_full;
fed2719e
MG
2088
2089 continue;
0798e519 2090 }
7fb1d9fc
RS
2091 }
2092
fa5e084e 2093try_this_zone:
3dd28266
MG
2094 page = buffered_rmqueue(preferred_zone, zone, order,
2095 gfp_mask, migratetype);
0798e519 2096 if (page)
7fb1d9fc 2097 break;
9276b1bc 2098this_zone_full:
65bb3719 2099 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2100 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2101 }
9276b1bc 2102
4ffeaf35 2103 if (page) {
b121186a
AS
2104 /*
2105 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2106 * necessary to allocate the page. The expectation is
2107 * that the caller is taking steps that will free more
2108 * memory. The caller should avoid the page being used
2109 * for !PFMEMALLOC purposes.
2110 */
2111 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
4ffeaf35
MG
2112 return page;
2113 }
b121186a 2114
4ffeaf35
MG
2115 /*
2116 * The first pass makes sure allocations are spread fairly within the
2117 * local node. However, the local node might have free pages left
2118 * after the fairness batches are exhausted, and remote zones haven't
2119 * even been considered yet. Try once more without fairness, and
2120 * include remote zones now, before entering the slowpath and waking
2121 * kswapd: prefer spilling to a remote zone over swapping locally.
2122 */
2123 if (alloc_flags & ALLOC_FAIR) {
2124 alloc_flags &= ~ALLOC_FAIR;
2125 if (nr_fair_skipped) {
2126 zonelist_rescan = true;
2127 reset_alloc_batches(preferred_zone);
2128 }
2129 if (nr_online_nodes > 1)
2130 zonelist_rescan = true;
2131 }
2132
2133 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2134 /* Disable zlc cache for second zonelist scan */
2135 zlc_active = 0;
2136 zonelist_rescan = true;
2137 }
2138
2139 if (zonelist_rescan)
2140 goto zonelist_scan;
2141
2142 return NULL;
753ee728
MH
2143}
2144
29423e77
DR
2145/*
2146 * Large machines with many possible nodes should not always dump per-node
2147 * meminfo in irq context.
2148 */
2149static inline bool should_suppress_show_mem(void)
2150{
2151 bool ret = false;
2152
2153#if NODES_SHIFT > 8
2154 ret = in_interrupt();
2155#endif
2156 return ret;
2157}
2158
a238ab5b
DH
2159static DEFINE_RATELIMIT_STATE(nopage_rs,
2160 DEFAULT_RATELIMIT_INTERVAL,
2161 DEFAULT_RATELIMIT_BURST);
2162
2163void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2164{
a238ab5b
DH
2165 unsigned int filter = SHOW_MEM_FILTER_NODES;
2166
c0a32fc5
SG
2167 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2168 debug_guardpage_minorder() > 0)
a238ab5b
DH
2169 return;
2170
2171 /*
2172 * This documents exceptions given to allocations in certain
2173 * contexts that are allowed to allocate outside current's set
2174 * of allowed nodes.
2175 */
2176 if (!(gfp_mask & __GFP_NOMEMALLOC))
2177 if (test_thread_flag(TIF_MEMDIE) ||
2178 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2179 filter &= ~SHOW_MEM_FILTER_NODES;
2180 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2181 filter &= ~SHOW_MEM_FILTER_NODES;
2182
2183 if (fmt) {
3ee9a4f0
JP
2184 struct va_format vaf;
2185 va_list args;
2186
a238ab5b 2187 va_start(args, fmt);
3ee9a4f0
JP
2188
2189 vaf.fmt = fmt;
2190 vaf.va = &args;
2191
2192 pr_warn("%pV", &vaf);
2193
a238ab5b
DH
2194 va_end(args);
2195 }
2196
3ee9a4f0
JP
2197 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2198 current->comm, order, gfp_mask);
a238ab5b
DH
2199
2200 dump_stack();
2201 if (!should_suppress_show_mem())
2202 show_mem(filter);
2203}
2204
11e33f6a
MG
2205static inline int
2206should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2207 unsigned long did_some_progress,
11e33f6a 2208 unsigned long pages_reclaimed)
1da177e4 2209{
11e33f6a
MG
2210 /* Do not loop if specifically requested */
2211 if (gfp_mask & __GFP_NORETRY)
2212 return 0;
1da177e4 2213
f90ac398
MG
2214 /* Always retry if specifically requested */
2215 if (gfp_mask & __GFP_NOFAIL)
2216 return 1;
2217
2218 /*
2219 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2220 * making forward progress without invoking OOM. Suspend also disables
2221 * storage devices so kswapd will not help. Bail if we are suspending.
2222 */
2223 if (!did_some_progress && pm_suspended_storage())
2224 return 0;
2225
11e33f6a
MG
2226 /*
2227 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2228 * means __GFP_NOFAIL, but that may not be true in other
2229 * implementations.
2230 */
2231 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2232 return 1;
2233
2234 /*
2235 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2236 * specified, then we retry until we no longer reclaim any pages
2237 * (above), or we've reclaimed an order of pages at least as
2238 * large as the allocation's order. In both cases, if the
2239 * allocation still fails, we stop retrying.
2240 */
2241 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2242 return 1;
cf40bd16 2243
11e33f6a
MG
2244 return 0;
2245}
933e312e 2246
11e33f6a
MG
2247static inline struct page *
2248__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2249 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2250 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2251 int classzone_idx, int migratetype)
11e33f6a
MG
2252{
2253 struct page *page;
2254
e972a070
DR
2255 /* Acquire the per-zone oom lock for each zone */
2256 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
11e33f6a 2257 schedule_timeout_uninterruptible(1);
1da177e4
LT
2258 return NULL;
2259 }
6b1de916 2260
5695be14
MH
2261 /*
2262 * PM-freezer should be notified that there might be an OOM killer on
2263 * its way to kill and wake somebody up. This is too early and we might
2264 * end up not killing anything but false positives are acceptable.
2265 * See freeze_processes.
2266 */
2267 note_oom_kill();
2268
11e33f6a
MG
2269 /*
2270 * Go through the zonelist yet one more time, keep very high watermark
2271 * here, this is only to catch a parallel oom killing, we must fail if
2272 * we're still under heavy pressure.
2273 */
2274 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2275 order, zonelist, high_zoneidx,
5117f45d 2276 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
d8846374 2277 preferred_zone, classzone_idx, migratetype);
7fb1d9fc 2278 if (page)
11e33f6a
MG
2279 goto out;
2280
4365a567
KH
2281 if (!(gfp_mask & __GFP_NOFAIL)) {
2282 /* The OOM killer will not help higher order allocs */
2283 if (order > PAGE_ALLOC_COSTLY_ORDER)
2284 goto out;
03668b3c
DR
2285 /* The OOM killer does not needlessly kill tasks for lowmem */
2286 if (high_zoneidx < ZONE_NORMAL)
2287 goto out;
4365a567
KH
2288 /*
2289 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2290 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2291 * The caller should handle page allocation failure by itself if
2292 * it specifies __GFP_THISNODE.
2293 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2294 */
2295 if (gfp_mask & __GFP_THISNODE)
2296 goto out;
2297 }
11e33f6a 2298 /* Exhausted what can be done so it's blamo time */
08ab9b10 2299 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2300
2301out:
e972a070 2302 oom_zonelist_unlock(zonelist, gfp_mask);
11e33f6a
MG
2303 return page;
2304}
2305
56de7263
MG
2306#ifdef CONFIG_COMPACTION
2307/* Try memory compaction for high-order allocations before reclaim */
2308static struct page *
2309__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2310 struct zonelist *zonelist, enum zone_type high_zoneidx,
2311 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2312 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2313 int *contended_compaction, bool *deferred_compaction)
56de7263 2314{
53853e2d
VB
2315 struct zone *last_compact_zone = NULL;
2316 unsigned long compact_result;
98dd3b48 2317 struct page *page;
53853e2d
VB
2318
2319 if (!order)
66199712 2320 return NULL;
66199712 2321
c06b1fca 2322 current->flags |= PF_MEMALLOC;
53853e2d 2323 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
e0b9daeb 2324 nodemask, mode,
53853e2d
VB
2325 contended_compaction,
2326 &last_compact_zone);
c06b1fca 2327 current->flags &= ~PF_MEMALLOC;
56de7263 2328
98dd3b48
VB
2329 switch (compact_result) {
2330 case COMPACT_DEFERRED:
53853e2d 2331 *deferred_compaction = true;
98dd3b48
VB
2332 /* fall-through */
2333 case COMPACT_SKIPPED:
2334 return NULL;
2335 default:
2336 break;
2337 }
53853e2d 2338
98dd3b48
VB
2339 /*
2340 * At least in one zone compaction wasn't deferred or skipped, so let's
2341 * count a compaction stall
2342 */
2343 count_vm_event(COMPACTSTALL);
8fb74b9f 2344
98dd3b48
VB
2345 /* Page migration frees to the PCP lists but we want merging */
2346 drain_pages(get_cpu());
2347 put_cpu();
56de7263 2348
98dd3b48
VB
2349 page = get_page_from_freelist(gfp_mask, nodemask,
2350 order, zonelist, high_zoneidx,
2351 alloc_flags & ~ALLOC_NO_WATERMARKS,
2352 preferred_zone, classzone_idx, migratetype);
53853e2d 2353
98dd3b48
VB
2354 if (page) {
2355 struct zone *zone = page_zone(page);
53853e2d 2356
98dd3b48
VB
2357 zone->compact_blockskip_flush = false;
2358 compaction_defer_reset(zone, order, true);
2359 count_vm_event(COMPACTSUCCESS);
2360 return page;
2361 }
56de7263 2362
98dd3b48
VB
2363 /*
2364 * last_compact_zone is where try_to_compact_pages thought allocation
2365 * should succeed, so it did not defer compaction. But here we know
2366 * that it didn't succeed, so we do the defer.
2367 */
2368 if (last_compact_zone && mode != MIGRATE_ASYNC)
2369 defer_compaction(last_compact_zone, order);
53853e2d 2370
98dd3b48
VB
2371 /*
2372 * It's bad if compaction run occurs and fails. The most likely reason
2373 * is that pages exist, but not enough to satisfy watermarks.
2374 */
2375 count_vm_event(COMPACTFAIL);
66199712 2376
98dd3b48 2377 cond_resched();
56de7263
MG
2378
2379 return NULL;
2380}
2381#else
2382static inline struct page *
2383__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2384 struct zonelist *zonelist, enum zone_type high_zoneidx,
2385 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
53853e2d 2386 int classzone_idx, int migratetype, enum migrate_mode mode,
1f9efdef 2387 int *contended_compaction, bool *deferred_compaction)
56de7263
MG
2388{
2389 return NULL;
2390}
2391#endif /* CONFIG_COMPACTION */
2392
bba90710
MS
2393/* Perform direct synchronous page reclaim */
2394static int
2395__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2396 nodemask_t *nodemask)
11e33f6a 2397{
11e33f6a 2398 struct reclaim_state reclaim_state;
bba90710 2399 int progress;
11e33f6a
MG
2400
2401 cond_resched();
2402
2403 /* We now go into synchronous reclaim */
2404 cpuset_memory_pressure_bump();
c06b1fca 2405 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2406 lockdep_set_current_reclaim_state(gfp_mask);
2407 reclaim_state.reclaimed_slab = 0;
c06b1fca 2408 current->reclaim_state = &reclaim_state;
11e33f6a 2409
bba90710 2410 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2411
c06b1fca 2412 current->reclaim_state = NULL;
11e33f6a 2413 lockdep_clear_current_reclaim_state();
c06b1fca 2414 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2415
2416 cond_resched();
2417
bba90710
MS
2418 return progress;
2419}
2420
2421/* The really slow allocator path where we enter direct reclaim */
2422static inline struct page *
2423__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2424 struct zonelist *zonelist, enum zone_type high_zoneidx,
2425 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
d8846374 2426 int classzone_idx, int migratetype, unsigned long *did_some_progress)
bba90710
MS
2427{
2428 struct page *page = NULL;
2429 bool drained = false;
2430
2431 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2432 nodemask);
9ee493ce
MG
2433 if (unlikely(!(*did_some_progress)))
2434 return NULL;
11e33f6a 2435
76d3fbf8 2436 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2437 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2438 zlc_clear_zones_full(zonelist);
2439
9ee493ce
MG
2440retry:
2441 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2442 zonelist, high_zoneidx,
cfd19c5a 2443 alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374
MG
2444 preferred_zone, classzone_idx,
2445 migratetype);
9ee493ce
MG
2446
2447 /*
2448 * If an allocation failed after direct reclaim, it could be because
2449 * pages are pinned on the per-cpu lists. Drain them and try again
2450 */
2451 if (!page && !drained) {
2452 drain_all_pages();
2453 drained = true;
2454 goto retry;
2455 }
2456
11e33f6a
MG
2457 return page;
2458}
2459
1da177e4 2460/*
11e33f6a
MG
2461 * This is called in the allocator slow-path if the allocation request is of
2462 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2463 */
11e33f6a
MG
2464static inline struct page *
2465__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2466 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2467 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2468 int classzone_idx, int migratetype)
11e33f6a
MG
2469{
2470 struct page *page;
2471
2472 do {
2473 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2474 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
d8846374 2475 preferred_zone, classzone_idx, migratetype);
11e33f6a
MG
2476
2477 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2478 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2479 } while (!page && (gfp_mask & __GFP_NOFAIL));
2480
2481 return page;
2482}
2483
3a025760
JW
2484static void wake_all_kswapds(unsigned int order,
2485 struct zonelist *zonelist,
2486 enum zone_type high_zoneidx,
7ade3c99
WY
2487 struct zone *preferred_zone,
2488 nodemask_t *nodemask)
3a025760
JW
2489{
2490 struct zoneref *z;
2491 struct zone *zone;
2492
7ade3c99
WY
2493 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2494 high_zoneidx, nodemask)
3a025760
JW
2495 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2496}
2497
341ce06f
PZ
2498static inline int
2499gfp_to_alloc_flags(gfp_t gfp_mask)
2500{
341ce06f 2501 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2502 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2503
a56f57ff 2504 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2505 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2506
341ce06f
PZ
2507 /*
2508 * The caller may dip into page reserves a bit more if the caller
2509 * cannot run direct reclaim, or if the caller has realtime scheduling
2510 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2511 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2512 */
e6223a3b 2513 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2514
b104a35d 2515 if (atomic) {
5c3240d9 2516 /*
b104a35d
DR
2517 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2518 * if it can't schedule.
5c3240d9 2519 */
b104a35d 2520 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2521 alloc_flags |= ALLOC_HARDER;
523b9458 2522 /*
b104a35d
DR
2523 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2524 * comment for __cpuset_node_allowed_softwall().
523b9458 2525 */
341ce06f 2526 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2527 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2528 alloc_flags |= ALLOC_HARDER;
2529
b37f1dd0
MG
2530 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2531 if (gfp_mask & __GFP_MEMALLOC)
2532 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2533 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2534 alloc_flags |= ALLOC_NO_WATERMARKS;
2535 else if (!in_interrupt() &&
2536 ((current->flags & PF_MEMALLOC) ||
2537 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2538 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2539 }
d95ea5d1 2540#ifdef CONFIG_CMA
43e7a34d 2541 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2542 alloc_flags |= ALLOC_CMA;
2543#endif
341ce06f
PZ
2544 return alloc_flags;
2545}
2546
072bb0aa
MG
2547bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2548{
b37f1dd0 2549 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2550}
2551
11e33f6a
MG
2552static inline struct page *
2553__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2554 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266 2555 nodemask_t *nodemask, struct zone *preferred_zone,
d8846374 2556 int classzone_idx, int migratetype)
11e33f6a
MG
2557{
2558 const gfp_t wait = gfp_mask & __GFP_WAIT;
2559 struct page *page = NULL;
2560 int alloc_flags;
2561 unsigned long pages_reclaimed = 0;
2562 unsigned long did_some_progress;
e0b9daeb 2563 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2564 bool deferred_compaction = false;
1f9efdef 2565 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2566
72807a74
MG
2567 /*
2568 * In the slowpath, we sanity check order to avoid ever trying to
2569 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2570 * be using allocators in order of preference for an area that is
2571 * too large.
2572 */
1fc28b70
MG
2573 if (order >= MAX_ORDER) {
2574 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2575 return NULL;
1fc28b70 2576 }
1da177e4 2577
952f3b51
CL
2578 /*
2579 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2580 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2581 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2582 * using a larger set of nodes after it has established that the
2583 * allowed per node queues are empty and that nodes are
2584 * over allocated.
2585 */
3a025760
JW
2586 if (IS_ENABLED(CONFIG_NUMA) &&
2587 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2588 goto nopage;
2589
cc4a6851 2590restart:
3a025760 2591 if (!(gfp_mask & __GFP_NO_KSWAPD))
7ade3c99
WY
2592 wake_all_kswapds(order, zonelist, high_zoneidx,
2593 preferred_zone, nodemask);
1da177e4 2594
9bf2229f 2595 /*
7fb1d9fc
RS
2596 * OK, we're below the kswapd watermark and have kicked background
2597 * reclaim. Now things get more complex, so set up alloc_flags according
2598 * to how we want to proceed.
9bf2229f 2599 */
341ce06f 2600 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2601
f33261d7
DR
2602 /*
2603 * Find the true preferred zone if the allocation is unconstrained by
2604 * cpusets.
2605 */
d8846374
MG
2606 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2607 struct zoneref *preferred_zoneref;
2608 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2609 NULL, &preferred_zone);
2610 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2611 }
f33261d7 2612
cfa54a0f 2613rebalance:
341ce06f 2614 /* This is the last chance, in general, before the goto nopage. */
19770b32 2615 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f 2616 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
d8846374 2617 preferred_zone, classzone_idx, migratetype);
7fb1d9fc
RS
2618 if (page)
2619 goto got_pg;
1da177e4 2620
11e33f6a 2621 /* Allocate without watermarks if the context allows */
341ce06f 2622 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2623 /*
2624 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2625 * the allocation is high priority and these type of
2626 * allocations are system rather than user orientated
2627 */
2628 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2629
341ce06f
PZ
2630 page = __alloc_pages_high_priority(gfp_mask, order,
2631 zonelist, high_zoneidx, nodemask,
d8846374 2632 preferred_zone, classzone_idx, migratetype);
cfd19c5a 2633 if (page) {
341ce06f 2634 goto got_pg;
cfd19c5a 2635 }
1da177e4
LT
2636 }
2637
2638 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2639 if (!wait) {
2640 /*
2641 * All existing users of the deprecated __GFP_NOFAIL are
2642 * blockable, so warn of any new users that actually allow this
2643 * type of allocation to fail.
2644 */
2645 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2646 goto nopage;
aed0a0e3 2647 }
1da177e4 2648
341ce06f 2649 /* Avoid recursion of direct reclaim */
c06b1fca 2650 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2651 goto nopage;
2652
6583bb64
DR
2653 /* Avoid allocations with no watermarks from looping endlessly */
2654 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2655 goto nopage;
2656
77f1fe6b
MG
2657 /*
2658 * Try direct compaction. The first pass is asynchronous. Subsequent
2659 * attempts after direct reclaim are synchronous
2660 */
e0b9daeb
DR
2661 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2662 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2663 preferred_zone,
2664 classzone_idx, migratetype,
e0b9daeb 2665 migration_mode, &contended_compaction,
53853e2d 2666 &deferred_compaction);
56de7263
MG
2667 if (page)
2668 goto got_pg;
75f30861 2669
1f9efdef
VB
2670 /* Checks for THP-specific high-order allocations */
2671 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2672 /*
2673 * If compaction is deferred for high-order allocations, it is
2674 * because sync compaction recently failed. If this is the case
2675 * and the caller requested a THP allocation, we do not want
2676 * to heavily disrupt the system, so we fail the allocation
2677 * instead of entering direct reclaim.
2678 */
2679 if (deferred_compaction)
2680 goto nopage;
2681
2682 /*
2683 * In all zones where compaction was attempted (and not
2684 * deferred or skipped), lock contention has been detected.
2685 * For THP allocation we do not want to disrupt the others
2686 * so we fallback to base pages instead.
2687 */
2688 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2689 goto nopage;
2690
2691 /*
2692 * If compaction was aborted due to need_resched(), we do not
2693 * want to further increase allocation latency, unless it is
2694 * khugepaged trying to collapse.
2695 */
2696 if (contended_compaction == COMPACT_CONTENDED_SCHED
2697 && !(current->flags & PF_KTHREAD))
2698 goto nopage;
2699 }
66199712 2700
8fe78048
DR
2701 /*
2702 * It can become very expensive to allocate transparent hugepages at
2703 * fault, so use asynchronous memory compaction for THP unless it is
2704 * khugepaged trying to collapse.
2705 */
2706 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2707 (current->flags & PF_KTHREAD))
2708 migration_mode = MIGRATE_SYNC_LIGHT;
2709
11e33f6a
MG
2710 /* Try direct reclaim and then allocating */
2711 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2712 zonelist, high_zoneidx,
2713 nodemask,
5117f45d 2714 alloc_flags, preferred_zone,
d8846374
MG
2715 classzone_idx, migratetype,
2716 &did_some_progress);
11e33f6a
MG
2717 if (page)
2718 goto got_pg;
1da177e4 2719
e33c3b5e 2720 /*
11e33f6a
MG
2721 * If we failed to make any progress reclaiming, then we are
2722 * running out of options and have to consider going OOM
e33c3b5e 2723 */
11e33f6a 2724 if (!did_some_progress) {
b9921ecd 2725 if (oom_gfp_allowed(gfp_mask)) {
7f33d49a
RW
2726 if (oom_killer_disabled)
2727 goto nopage;
29fd66d2
DR
2728 /* Coredumps can quickly deplete all memory reserves */
2729 if ((current->flags & PF_DUMPCORE) &&
2730 !(gfp_mask & __GFP_NOFAIL))
2731 goto nopage;
11e33f6a
MG
2732 page = __alloc_pages_may_oom(gfp_mask, order,
2733 zonelist, high_zoneidx,
3dd28266 2734 nodemask, preferred_zone,
d8846374 2735 classzone_idx, migratetype);
11e33f6a
MG
2736 if (page)
2737 goto got_pg;
1da177e4 2738
03668b3c
DR
2739 if (!(gfp_mask & __GFP_NOFAIL)) {
2740 /*
2741 * The oom killer is not called for high-order
2742 * allocations that may fail, so if no progress
2743 * is being made, there are no other options and
2744 * retrying is unlikely to help.
2745 */
2746 if (order > PAGE_ALLOC_COSTLY_ORDER)
2747 goto nopage;
2748 /*
2749 * The oom killer is not called for lowmem
2750 * allocations to prevent needlessly killing
2751 * innocent tasks.
2752 */
2753 if (high_zoneidx < ZONE_NORMAL)
2754 goto nopage;
2755 }
e2c55dc8 2756
ff0ceb9d
DR
2757 goto restart;
2758 }
1da177e4
LT
2759 }
2760
11e33f6a 2761 /* Check if we should retry the allocation */
a41f24ea 2762 pages_reclaimed += did_some_progress;
f90ac398
MG
2763 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2764 pages_reclaimed)) {
11e33f6a 2765 /* Wait for some write requests to complete then retry */
0e093d99 2766 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2767 goto rebalance;
3e7d3449
MG
2768 } else {
2769 /*
2770 * High-order allocations do not necessarily loop after
2771 * direct reclaim and reclaim/compaction depends on compaction
2772 * being called after reclaim so call directly if necessary
2773 */
e0b9daeb
DR
2774 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2775 high_zoneidx, nodemask, alloc_flags,
d8846374
MG
2776 preferred_zone,
2777 classzone_idx, migratetype,
e0b9daeb 2778 migration_mode, &contended_compaction,
53853e2d 2779 &deferred_compaction);
3e7d3449
MG
2780 if (page)
2781 goto got_pg;
1da177e4
LT
2782 }
2783
2784nopage:
a238ab5b 2785 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2786 return page;
1da177e4 2787got_pg:
b1eeab67
VN
2788 if (kmemcheck_enabled)
2789 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2790
072bb0aa 2791 return page;
1da177e4 2792}
11e33f6a
MG
2793
2794/*
2795 * This is the 'heart' of the zoned buddy allocator.
2796 */
2797struct page *
2798__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2799 struct zonelist *zonelist, nodemask_t *nodemask)
2800{
2801 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2802 struct zone *preferred_zone;
d8846374 2803 struct zoneref *preferred_zoneref;
cc9a6c87 2804 struct page *page = NULL;
43e7a34d 2805 int migratetype = gfpflags_to_migratetype(gfp_mask);
cc9a6c87 2806 unsigned int cpuset_mems_cookie;
3a025760 2807 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
d8846374 2808 int classzone_idx;
11e33f6a 2809
dcce284a
BH
2810 gfp_mask &= gfp_allowed_mask;
2811
11e33f6a
MG
2812 lockdep_trace_alloc(gfp_mask);
2813
2814 might_sleep_if(gfp_mask & __GFP_WAIT);
2815
2816 if (should_fail_alloc_page(gfp_mask, order))
2817 return NULL;
2818
2819 /*
2820 * Check the zones suitable for the gfp_mask contain at least one
2821 * valid zone. It's possible to have an empty zonelist as a result
2822 * of GFP_THISNODE and a memoryless node
2823 */
2824 if (unlikely(!zonelist->_zonerefs->zone))
2825 return NULL;
2826
21bb9bd1
VB
2827 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2828 alloc_flags |= ALLOC_CMA;
2829
cc9a6c87 2830retry_cpuset:
d26914d1 2831 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2832
5117f45d 2833 /* The preferred zone is used for statistics later */
d8846374 2834 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
f33261d7
DR
2835 nodemask ? : &cpuset_current_mems_allowed,
2836 &preferred_zone);
cc9a6c87
MG
2837 if (!preferred_zone)
2838 goto out;
d8846374 2839 classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2840
2841 /* First allocation attempt */
11e33f6a 2842 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2843 zonelist, high_zoneidx, alloc_flags,
d8846374 2844 preferred_zone, classzone_idx, migratetype);
21caf2fc
ML
2845 if (unlikely(!page)) {
2846 /*
2847 * Runtime PM, block IO and its error handling path
2848 * can deadlock because I/O on the device might not
2849 * complete.
2850 */
2851 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2852 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2853 zonelist, high_zoneidx, nodemask,
d8846374 2854 preferred_zone, classzone_idx, migratetype);
21caf2fc 2855 }
11e33f6a 2856
4b4f278c 2857 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2858
2859out:
2860 /*
2861 * When updating a task's mems_allowed, it is possible to race with
2862 * parallel threads in such a way that an allocation can fail while
2863 * the mask is being updated. If a page allocation is about to fail,
2864 * check if the cpuset changed during allocation and if so, retry.
2865 */
d26914d1 2866 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2867 goto retry_cpuset;
2868
11e33f6a 2869 return page;
1da177e4 2870}
d239171e 2871EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2872
2873/*
2874 * Common helper functions.
2875 */
920c7a5d 2876unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2877{
945a1113
AM
2878 struct page *page;
2879
2880 /*
2881 * __get_free_pages() returns a 32-bit address, which cannot represent
2882 * a highmem page
2883 */
2884 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2885
1da177e4
LT
2886 page = alloc_pages(gfp_mask, order);
2887 if (!page)
2888 return 0;
2889 return (unsigned long) page_address(page);
2890}
1da177e4
LT
2891EXPORT_SYMBOL(__get_free_pages);
2892
920c7a5d 2893unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2894{
945a1113 2895 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2896}
1da177e4
LT
2897EXPORT_SYMBOL(get_zeroed_page);
2898
920c7a5d 2899void __free_pages(struct page *page, unsigned int order)
1da177e4 2900{
b5810039 2901 if (put_page_testzero(page)) {
1da177e4 2902 if (order == 0)
b745bc85 2903 free_hot_cold_page(page, false);
1da177e4
LT
2904 else
2905 __free_pages_ok(page, order);
2906 }
2907}
2908
2909EXPORT_SYMBOL(__free_pages);
2910
920c7a5d 2911void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2912{
2913 if (addr != 0) {
725d704e 2914 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2915 __free_pages(virt_to_page((void *)addr), order);
2916 }
2917}
2918
2919EXPORT_SYMBOL(free_pages);
2920
6a1a0d3b 2921/*
52383431
VD
2922 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2923 * of the current memory cgroup.
6a1a0d3b 2924 *
52383431
VD
2925 * It should be used when the caller would like to use kmalloc, but since the
2926 * allocation is large, it has to fall back to the page allocator.
2927 */
2928struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2929{
2930 struct page *page;
2931 struct mem_cgroup *memcg = NULL;
2932
2933 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2934 return NULL;
2935 page = alloc_pages(gfp_mask, order);
2936 memcg_kmem_commit_charge(page, memcg, order);
2937 return page;
2938}
2939
2940struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2941{
2942 struct page *page;
2943 struct mem_cgroup *memcg = NULL;
2944
2945 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2946 return NULL;
2947 page = alloc_pages_node(nid, gfp_mask, order);
2948 memcg_kmem_commit_charge(page, memcg, order);
2949 return page;
2950}
2951
2952/*
2953 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2954 * alloc_kmem_pages.
6a1a0d3b 2955 */
52383431 2956void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2957{
2958 memcg_kmem_uncharge_pages(page, order);
2959 __free_pages(page, order);
2960}
2961
52383431 2962void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2963{
2964 if (addr != 0) {
2965 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2966 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2967 }
2968}
2969
ee85c2e1
AK
2970static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2971{
2972 if (addr) {
2973 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2974 unsigned long used = addr + PAGE_ALIGN(size);
2975
2976 split_page(virt_to_page((void *)addr), order);
2977 while (used < alloc_end) {
2978 free_page(used);
2979 used += PAGE_SIZE;
2980 }
2981 }
2982 return (void *)addr;
2983}
2984
2be0ffe2
TT
2985/**
2986 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2987 * @size: the number of bytes to allocate
2988 * @gfp_mask: GFP flags for the allocation
2989 *
2990 * This function is similar to alloc_pages(), except that it allocates the
2991 * minimum number of pages to satisfy the request. alloc_pages() can only
2992 * allocate memory in power-of-two pages.
2993 *
2994 * This function is also limited by MAX_ORDER.
2995 *
2996 * Memory allocated by this function must be released by free_pages_exact().
2997 */
2998void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2999{
3000 unsigned int order = get_order(size);
3001 unsigned long addr;
3002
3003 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3004 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3005}
3006EXPORT_SYMBOL(alloc_pages_exact);
3007
ee85c2e1
AK
3008/**
3009 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3010 * pages on a node.
b5e6ab58 3011 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3012 * @size: the number of bytes to allocate
3013 * @gfp_mask: GFP flags for the allocation
3014 *
3015 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3016 * back.
3017 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3018 * but is not exact.
3019 */
e1931811 3020void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3021{
3022 unsigned order = get_order(size);
3023 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3024 if (!p)
3025 return NULL;
3026 return make_alloc_exact((unsigned long)page_address(p), order, size);
3027}
ee85c2e1 3028
2be0ffe2
TT
3029/**
3030 * free_pages_exact - release memory allocated via alloc_pages_exact()
3031 * @virt: the value returned by alloc_pages_exact.
3032 * @size: size of allocation, same value as passed to alloc_pages_exact().
3033 *
3034 * Release the memory allocated by a previous call to alloc_pages_exact.
3035 */
3036void free_pages_exact(void *virt, size_t size)
3037{
3038 unsigned long addr = (unsigned long)virt;
3039 unsigned long end = addr + PAGE_ALIGN(size);
3040
3041 while (addr < end) {
3042 free_page(addr);
3043 addr += PAGE_SIZE;
3044 }
3045}
3046EXPORT_SYMBOL(free_pages_exact);
3047
e0fb5815
ZY
3048/**
3049 * nr_free_zone_pages - count number of pages beyond high watermark
3050 * @offset: The zone index of the highest zone
3051 *
3052 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3053 * high watermark within all zones at or below a given zone index. For each
3054 * zone, the number of pages is calculated as:
834405c3 3055 * managed_pages - high_pages
e0fb5815 3056 */
ebec3862 3057static unsigned long nr_free_zone_pages(int offset)
1da177e4 3058{
dd1a239f 3059 struct zoneref *z;
54a6eb5c
MG
3060 struct zone *zone;
3061
e310fd43 3062 /* Just pick one node, since fallback list is circular */
ebec3862 3063 unsigned long sum = 0;
1da177e4 3064
0e88460d 3065 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3066
54a6eb5c 3067 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3068 unsigned long size = zone->managed_pages;
41858966 3069 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3070 if (size > high)
3071 sum += size - high;
1da177e4
LT
3072 }
3073
3074 return sum;
3075}
3076
e0fb5815
ZY
3077/**
3078 * nr_free_buffer_pages - count number of pages beyond high watermark
3079 *
3080 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3081 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3082 */
ebec3862 3083unsigned long nr_free_buffer_pages(void)
1da177e4 3084{
af4ca457 3085 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3086}
c2f1a551 3087EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3088
e0fb5815
ZY
3089/**
3090 * nr_free_pagecache_pages - count number of pages beyond high watermark
3091 *
3092 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3093 * high watermark within all zones.
1da177e4 3094 */
ebec3862 3095unsigned long nr_free_pagecache_pages(void)
1da177e4 3096{
2a1e274a 3097 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3098}
08e0f6a9
CL
3099
3100static inline void show_node(struct zone *zone)
1da177e4 3101{
e5adfffc 3102 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3103 printk("Node %d ", zone_to_nid(zone));
1da177e4 3104}
1da177e4 3105
1da177e4
LT
3106void si_meminfo(struct sysinfo *val)
3107{
3108 val->totalram = totalram_pages;
cc7452b6 3109 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3110 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3111 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3112 val->totalhigh = totalhigh_pages;
3113 val->freehigh = nr_free_highpages();
1da177e4
LT
3114 val->mem_unit = PAGE_SIZE;
3115}
3116
3117EXPORT_SYMBOL(si_meminfo);
3118
3119#ifdef CONFIG_NUMA
3120void si_meminfo_node(struct sysinfo *val, int nid)
3121{
cdd91a77
JL
3122 int zone_type; /* needs to be signed */
3123 unsigned long managed_pages = 0;
1da177e4
LT
3124 pg_data_t *pgdat = NODE_DATA(nid);
3125
cdd91a77
JL
3126 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3127 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3128 val->totalram = managed_pages;
cc7452b6 3129 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3130 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3131#ifdef CONFIG_HIGHMEM
b40da049 3132 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3133 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3134 NR_FREE_PAGES);
98d2b0eb
CL
3135#else
3136 val->totalhigh = 0;
3137 val->freehigh = 0;
3138#endif
1da177e4
LT
3139 val->mem_unit = PAGE_SIZE;
3140}
3141#endif
3142
ddd588b5 3143/*
7bf02ea2
DR
3144 * Determine whether the node should be displayed or not, depending on whether
3145 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3146 */
7bf02ea2 3147bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3148{
3149 bool ret = false;
cc9a6c87 3150 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3151
3152 if (!(flags & SHOW_MEM_FILTER_NODES))
3153 goto out;
3154
cc9a6c87 3155 do {
d26914d1 3156 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3157 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3158 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3159out:
3160 return ret;
3161}
3162
1da177e4
LT
3163#define K(x) ((x) << (PAGE_SHIFT-10))
3164
377e4f16
RV
3165static void show_migration_types(unsigned char type)
3166{
3167 static const char types[MIGRATE_TYPES] = {
3168 [MIGRATE_UNMOVABLE] = 'U',
3169 [MIGRATE_RECLAIMABLE] = 'E',
3170 [MIGRATE_MOVABLE] = 'M',
3171 [MIGRATE_RESERVE] = 'R',
3172#ifdef CONFIG_CMA
3173 [MIGRATE_CMA] = 'C',
3174#endif
194159fb 3175#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3176 [MIGRATE_ISOLATE] = 'I',
194159fb 3177#endif
377e4f16
RV
3178 };
3179 char tmp[MIGRATE_TYPES + 1];
3180 char *p = tmp;
3181 int i;
3182
3183 for (i = 0; i < MIGRATE_TYPES; i++) {
3184 if (type & (1 << i))
3185 *p++ = types[i];
3186 }
3187
3188 *p = '\0';
3189 printk("(%s) ", tmp);
3190}
3191
1da177e4
LT
3192/*
3193 * Show free area list (used inside shift_scroll-lock stuff)
3194 * We also calculate the percentage fragmentation. We do this by counting the
3195 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3196 * Suppresses nodes that are not allowed by current's cpuset if
3197 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3198 */
7bf02ea2 3199void show_free_areas(unsigned int filter)
1da177e4 3200{
c7241913 3201 int cpu;
1da177e4
LT
3202 struct zone *zone;
3203
ee99c71c 3204 for_each_populated_zone(zone) {
7bf02ea2 3205 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3206 continue;
c7241913
JS
3207 show_node(zone);
3208 printk("%s per-cpu:\n", zone->name);
1da177e4 3209
6b482c67 3210 for_each_online_cpu(cpu) {
1da177e4
LT
3211 struct per_cpu_pageset *pageset;
3212
99dcc3e5 3213 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3214
3dfa5721
CL
3215 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3216 cpu, pageset->pcp.high,
3217 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3218 }
3219 }
3220
a731286d
KM
3221 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3222 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3223 " unevictable:%lu"
b76146ed 3224 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3225 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3226 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3227 " free_cma:%lu\n",
4f98a2fe 3228 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3229 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3230 global_page_state(NR_ISOLATED_ANON),
3231 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3232 global_page_state(NR_INACTIVE_FILE),
a731286d 3233 global_page_state(NR_ISOLATED_FILE),
7b854121 3234 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3235 global_page_state(NR_FILE_DIRTY),
ce866b34 3236 global_page_state(NR_WRITEBACK),
fd39fc85 3237 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3238 global_page_state(NR_FREE_PAGES),
3701b033
KM
3239 global_page_state(NR_SLAB_RECLAIMABLE),
3240 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3241 global_page_state(NR_FILE_MAPPED),
4b02108a 3242 global_page_state(NR_SHMEM),
a25700a5 3243 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3244 global_page_state(NR_BOUNCE),
3245 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3246
ee99c71c 3247 for_each_populated_zone(zone) {
1da177e4
LT
3248 int i;
3249
7bf02ea2 3250 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3251 continue;
1da177e4
LT
3252 show_node(zone);
3253 printk("%s"
3254 " free:%lukB"
3255 " min:%lukB"
3256 " low:%lukB"
3257 " high:%lukB"
4f98a2fe
RR
3258 " active_anon:%lukB"
3259 " inactive_anon:%lukB"
3260 " active_file:%lukB"
3261 " inactive_file:%lukB"
7b854121 3262 " unevictable:%lukB"
a731286d
KM
3263 " isolated(anon):%lukB"
3264 " isolated(file):%lukB"
1da177e4 3265 " present:%lukB"
9feedc9d 3266 " managed:%lukB"
4a0aa73f
KM
3267 " mlocked:%lukB"
3268 " dirty:%lukB"
3269 " writeback:%lukB"
3270 " mapped:%lukB"
4b02108a 3271 " shmem:%lukB"
4a0aa73f
KM
3272 " slab_reclaimable:%lukB"
3273 " slab_unreclaimable:%lukB"
c6a7f572 3274 " kernel_stack:%lukB"
4a0aa73f
KM
3275 " pagetables:%lukB"
3276 " unstable:%lukB"
3277 " bounce:%lukB"
d1ce749a 3278 " free_cma:%lukB"
4a0aa73f 3279 " writeback_tmp:%lukB"
1da177e4
LT
3280 " pages_scanned:%lu"
3281 " all_unreclaimable? %s"
3282 "\n",
3283 zone->name,
88f5acf8 3284 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3285 K(min_wmark_pages(zone)),
3286 K(low_wmark_pages(zone)),
3287 K(high_wmark_pages(zone)),
4f98a2fe
RR
3288 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3289 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3290 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3291 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3292 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3293 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3294 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3295 K(zone->present_pages),
9feedc9d 3296 K(zone->managed_pages),
4a0aa73f
KM
3297 K(zone_page_state(zone, NR_MLOCK)),
3298 K(zone_page_state(zone, NR_FILE_DIRTY)),
3299 K(zone_page_state(zone, NR_WRITEBACK)),
3300 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3301 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3302 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3303 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3304 zone_page_state(zone, NR_KERNEL_STACK) *
3305 THREAD_SIZE / 1024,
4a0aa73f
KM
3306 K(zone_page_state(zone, NR_PAGETABLE)),
3307 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3308 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3309 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3310 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3311 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3312 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3313 );
3314 printk("lowmem_reserve[]:");
3315 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3316 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3317 printk("\n");
3318 }
3319
ee99c71c 3320 for_each_populated_zone(zone) {
b8af2941 3321 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3322 unsigned char types[MAX_ORDER];
1da177e4 3323
7bf02ea2 3324 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3325 continue;
1da177e4
LT
3326 show_node(zone);
3327 printk("%s: ", zone->name);
1da177e4
LT
3328
3329 spin_lock_irqsave(&zone->lock, flags);
3330 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3331 struct free_area *area = &zone->free_area[order];
3332 int type;
3333
3334 nr[order] = area->nr_free;
8f9de51a 3335 total += nr[order] << order;
377e4f16
RV
3336
3337 types[order] = 0;
3338 for (type = 0; type < MIGRATE_TYPES; type++) {
3339 if (!list_empty(&area->free_list[type]))
3340 types[order] |= 1 << type;
3341 }
1da177e4
LT
3342 }
3343 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3344 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3345 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3346 if (nr[order])
3347 show_migration_types(types[order]);
3348 }
1da177e4
LT
3349 printk("= %lukB\n", K(total));
3350 }
3351
949f7ec5
DR
3352 hugetlb_show_meminfo();
3353
e6f3602d
LW
3354 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3355
1da177e4
LT
3356 show_swap_cache_info();
3357}
3358
19770b32
MG
3359static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3360{
3361 zoneref->zone = zone;
3362 zoneref->zone_idx = zone_idx(zone);
3363}
3364
1da177e4
LT
3365/*
3366 * Builds allocation fallback zone lists.
1a93205b
CL
3367 *
3368 * Add all populated zones of a node to the zonelist.
1da177e4 3369 */
f0c0b2b8 3370static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3371 int nr_zones)
1da177e4 3372{
1a93205b 3373 struct zone *zone;
bc732f1d 3374 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3375
3376 do {
2f6726e5 3377 zone_type--;
070f8032 3378 zone = pgdat->node_zones + zone_type;
1a93205b 3379 if (populated_zone(zone)) {
dd1a239f
MG
3380 zoneref_set_zone(zone,
3381 &zonelist->_zonerefs[nr_zones++]);
070f8032 3382 check_highest_zone(zone_type);
1da177e4 3383 }
2f6726e5 3384 } while (zone_type);
bc732f1d 3385
070f8032 3386 return nr_zones;
1da177e4
LT
3387}
3388
f0c0b2b8
KH
3389
3390/*
3391 * zonelist_order:
3392 * 0 = automatic detection of better ordering.
3393 * 1 = order by ([node] distance, -zonetype)
3394 * 2 = order by (-zonetype, [node] distance)
3395 *
3396 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3397 * the same zonelist. So only NUMA can configure this param.
3398 */
3399#define ZONELIST_ORDER_DEFAULT 0
3400#define ZONELIST_ORDER_NODE 1
3401#define ZONELIST_ORDER_ZONE 2
3402
3403/* zonelist order in the kernel.
3404 * set_zonelist_order() will set this to NODE or ZONE.
3405 */
3406static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3407static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3408
3409
1da177e4 3410#ifdef CONFIG_NUMA
f0c0b2b8
KH
3411/* The value user specified ....changed by config */
3412static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3413/* string for sysctl */
3414#define NUMA_ZONELIST_ORDER_LEN 16
3415char numa_zonelist_order[16] = "default";
3416
3417/*
3418 * interface for configure zonelist ordering.
3419 * command line option "numa_zonelist_order"
3420 * = "[dD]efault - default, automatic configuration.
3421 * = "[nN]ode - order by node locality, then by zone within node
3422 * = "[zZ]one - order by zone, then by locality within zone
3423 */
3424
3425static int __parse_numa_zonelist_order(char *s)
3426{
3427 if (*s == 'd' || *s == 'D') {
3428 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3429 } else if (*s == 'n' || *s == 'N') {
3430 user_zonelist_order = ZONELIST_ORDER_NODE;
3431 } else if (*s == 'z' || *s == 'Z') {
3432 user_zonelist_order = ZONELIST_ORDER_ZONE;
3433 } else {
3434 printk(KERN_WARNING
3435 "Ignoring invalid numa_zonelist_order value: "
3436 "%s\n", s);
3437 return -EINVAL;
3438 }
3439 return 0;
3440}
3441
3442static __init int setup_numa_zonelist_order(char *s)
3443{
ecb256f8
VL
3444 int ret;
3445
3446 if (!s)
3447 return 0;
3448
3449 ret = __parse_numa_zonelist_order(s);
3450 if (ret == 0)
3451 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3452
3453 return ret;
f0c0b2b8
KH
3454}
3455early_param("numa_zonelist_order", setup_numa_zonelist_order);
3456
3457/*
3458 * sysctl handler for numa_zonelist_order
3459 */
cccad5b9 3460int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3461 void __user *buffer, size_t *length,
f0c0b2b8
KH
3462 loff_t *ppos)
3463{
3464 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3465 int ret;
443c6f14 3466 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3467
443c6f14 3468 mutex_lock(&zl_order_mutex);
dacbde09
CG
3469 if (write) {
3470 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3471 ret = -EINVAL;
3472 goto out;
3473 }
3474 strcpy(saved_string, (char *)table->data);
3475 }
8d65af78 3476 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3477 if (ret)
443c6f14 3478 goto out;
f0c0b2b8
KH
3479 if (write) {
3480 int oldval = user_zonelist_order;
dacbde09
CG
3481
3482 ret = __parse_numa_zonelist_order((char *)table->data);
3483 if (ret) {
f0c0b2b8
KH
3484 /*
3485 * bogus value. restore saved string
3486 */
dacbde09 3487 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3488 NUMA_ZONELIST_ORDER_LEN);
3489 user_zonelist_order = oldval;
4eaf3f64
HL
3490 } else if (oldval != user_zonelist_order) {
3491 mutex_lock(&zonelists_mutex);
9adb62a5 3492 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3493 mutex_unlock(&zonelists_mutex);
3494 }
f0c0b2b8 3495 }
443c6f14
AK
3496out:
3497 mutex_unlock(&zl_order_mutex);
3498 return ret;
f0c0b2b8
KH
3499}
3500
3501
62bc62a8 3502#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3503static int node_load[MAX_NUMNODES];
3504
1da177e4 3505/**
4dc3b16b 3506 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3507 * @node: node whose fallback list we're appending
3508 * @used_node_mask: nodemask_t of already used nodes
3509 *
3510 * We use a number of factors to determine which is the next node that should
3511 * appear on a given node's fallback list. The node should not have appeared
3512 * already in @node's fallback list, and it should be the next closest node
3513 * according to the distance array (which contains arbitrary distance values
3514 * from each node to each node in the system), and should also prefer nodes
3515 * with no CPUs, since presumably they'll have very little allocation pressure
3516 * on them otherwise.
3517 * It returns -1 if no node is found.
3518 */
f0c0b2b8 3519static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3520{
4cf808eb 3521 int n, val;
1da177e4 3522 int min_val = INT_MAX;
00ef2d2f 3523 int best_node = NUMA_NO_NODE;
a70f7302 3524 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3525
4cf808eb
LT
3526 /* Use the local node if we haven't already */
3527 if (!node_isset(node, *used_node_mask)) {
3528 node_set(node, *used_node_mask);
3529 return node;
3530 }
1da177e4 3531
4b0ef1fe 3532 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3533
3534 /* Don't want a node to appear more than once */
3535 if (node_isset(n, *used_node_mask))
3536 continue;
3537
1da177e4
LT
3538 /* Use the distance array to find the distance */
3539 val = node_distance(node, n);
3540
4cf808eb
LT
3541 /* Penalize nodes under us ("prefer the next node") */
3542 val += (n < node);
3543
1da177e4 3544 /* Give preference to headless and unused nodes */
a70f7302
RR
3545 tmp = cpumask_of_node(n);
3546 if (!cpumask_empty(tmp))
1da177e4
LT
3547 val += PENALTY_FOR_NODE_WITH_CPUS;
3548
3549 /* Slight preference for less loaded node */
3550 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3551 val += node_load[n];
3552
3553 if (val < min_val) {
3554 min_val = val;
3555 best_node = n;
3556 }
3557 }
3558
3559 if (best_node >= 0)
3560 node_set(best_node, *used_node_mask);
3561
3562 return best_node;
3563}
3564
f0c0b2b8
KH
3565
3566/*
3567 * Build zonelists ordered by node and zones within node.
3568 * This results in maximum locality--normal zone overflows into local
3569 * DMA zone, if any--but risks exhausting DMA zone.
3570 */
3571static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3572{
f0c0b2b8 3573 int j;
1da177e4 3574 struct zonelist *zonelist;
f0c0b2b8 3575
54a6eb5c 3576 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3577 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3578 ;
bc732f1d 3579 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3580 zonelist->_zonerefs[j].zone = NULL;
3581 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3582}
3583
523b9458
CL
3584/*
3585 * Build gfp_thisnode zonelists
3586 */
3587static void build_thisnode_zonelists(pg_data_t *pgdat)
3588{
523b9458
CL
3589 int j;
3590 struct zonelist *zonelist;
3591
54a6eb5c 3592 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3593 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3594 zonelist->_zonerefs[j].zone = NULL;
3595 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3596}
3597
f0c0b2b8
KH
3598/*
3599 * Build zonelists ordered by zone and nodes within zones.
3600 * This results in conserving DMA zone[s] until all Normal memory is
3601 * exhausted, but results in overflowing to remote node while memory
3602 * may still exist in local DMA zone.
3603 */
3604static int node_order[MAX_NUMNODES];
3605
3606static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3607{
f0c0b2b8
KH
3608 int pos, j, node;
3609 int zone_type; /* needs to be signed */
3610 struct zone *z;
3611 struct zonelist *zonelist;
3612
54a6eb5c
MG
3613 zonelist = &pgdat->node_zonelists[0];
3614 pos = 0;
3615 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3616 for (j = 0; j < nr_nodes; j++) {
3617 node = node_order[j];
3618 z = &NODE_DATA(node)->node_zones[zone_type];
3619 if (populated_zone(z)) {
dd1a239f
MG
3620 zoneref_set_zone(z,
3621 &zonelist->_zonerefs[pos++]);
54a6eb5c 3622 check_highest_zone(zone_type);
f0c0b2b8
KH
3623 }
3624 }
f0c0b2b8 3625 }
dd1a239f
MG
3626 zonelist->_zonerefs[pos].zone = NULL;
3627 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3628}
3629
3193913c
MG
3630#if defined(CONFIG_64BIT)
3631/*
3632 * Devices that require DMA32/DMA are relatively rare and do not justify a
3633 * penalty to every machine in case the specialised case applies. Default
3634 * to Node-ordering on 64-bit NUMA machines
3635 */
3636static int default_zonelist_order(void)
3637{
3638 return ZONELIST_ORDER_NODE;
3639}
3640#else
3641/*
3642 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3643 * by the kernel. If processes running on node 0 deplete the low memory zone
3644 * then reclaim will occur more frequency increasing stalls and potentially
3645 * be easier to OOM if a large percentage of the zone is under writeback or
3646 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3647 * Hence, default to zone ordering on 32-bit.
3648 */
f0c0b2b8
KH
3649static int default_zonelist_order(void)
3650{
f0c0b2b8
KH
3651 return ZONELIST_ORDER_ZONE;
3652}
3193913c 3653#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3654
3655static void set_zonelist_order(void)
3656{
3657 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3658 current_zonelist_order = default_zonelist_order();
3659 else
3660 current_zonelist_order = user_zonelist_order;
3661}
3662
3663static void build_zonelists(pg_data_t *pgdat)
3664{
3665 int j, node, load;
3666 enum zone_type i;
1da177e4 3667 nodemask_t used_mask;
f0c0b2b8
KH
3668 int local_node, prev_node;
3669 struct zonelist *zonelist;
3670 int order = current_zonelist_order;
1da177e4
LT
3671
3672 /* initialize zonelists */
523b9458 3673 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3674 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3675 zonelist->_zonerefs[0].zone = NULL;
3676 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3677 }
3678
3679 /* NUMA-aware ordering of nodes */
3680 local_node = pgdat->node_id;
62bc62a8 3681 load = nr_online_nodes;
1da177e4
LT
3682 prev_node = local_node;
3683 nodes_clear(used_mask);
f0c0b2b8 3684
f0c0b2b8
KH
3685 memset(node_order, 0, sizeof(node_order));
3686 j = 0;
3687
1da177e4
LT
3688 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3689 /*
3690 * We don't want to pressure a particular node.
3691 * So adding penalty to the first node in same
3692 * distance group to make it round-robin.
3693 */
957f822a
DR
3694 if (node_distance(local_node, node) !=
3695 node_distance(local_node, prev_node))
f0c0b2b8
KH
3696 node_load[node] = load;
3697
1da177e4
LT
3698 prev_node = node;
3699 load--;
f0c0b2b8
KH
3700 if (order == ZONELIST_ORDER_NODE)
3701 build_zonelists_in_node_order(pgdat, node);
3702 else
3703 node_order[j++] = node; /* remember order */
3704 }
1da177e4 3705
f0c0b2b8
KH
3706 if (order == ZONELIST_ORDER_ZONE) {
3707 /* calculate node order -- i.e., DMA last! */
3708 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3709 }
523b9458
CL
3710
3711 build_thisnode_zonelists(pgdat);
1da177e4
LT
3712}
3713
9276b1bc 3714/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3715static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3716{
54a6eb5c
MG
3717 struct zonelist *zonelist;
3718 struct zonelist_cache *zlc;
dd1a239f 3719 struct zoneref *z;
9276b1bc 3720
54a6eb5c
MG
3721 zonelist = &pgdat->node_zonelists[0];
3722 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3723 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3724 for (z = zonelist->_zonerefs; z->zone; z++)
3725 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3726}
3727
7aac7898
LS
3728#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3729/*
3730 * Return node id of node used for "local" allocations.
3731 * I.e., first node id of first zone in arg node's generic zonelist.
3732 * Used for initializing percpu 'numa_mem', which is used primarily
3733 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3734 */
3735int local_memory_node(int node)
3736{
3737 struct zone *zone;
3738
3739 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3740 gfp_zone(GFP_KERNEL),
3741 NULL,
3742 &zone);
3743 return zone->node;
3744}
3745#endif
f0c0b2b8 3746
1da177e4
LT
3747#else /* CONFIG_NUMA */
3748
f0c0b2b8
KH
3749static void set_zonelist_order(void)
3750{
3751 current_zonelist_order = ZONELIST_ORDER_ZONE;
3752}
3753
3754static void build_zonelists(pg_data_t *pgdat)
1da177e4 3755{
19655d34 3756 int node, local_node;
54a6eb5c
MG
3757 enum zone_type j;
3758 struct zonelist *zonelist;
1da177e4
LT
3759
3760 local_node = pgdat->node_id;
1da177e4 3761
54a6eb5c 3762 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3763 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3764
54a6eb5c
MG
3765 /*
3766 * Now we build the zonelist so that it contains the zones
3767 * of all the other nodes.
3768 * We don't want to pressure a particular node, so when
3769 * building the zones for node N, we make sure that the
3770 * zones coming right after the local ones are those from
3771 * node N+1 (modulo N)
3772 */
3773 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3774 if (!node_online(node))
3775 continue;
bc732f1d 3776 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3777 }
54a6eb5c
MG
3778 for (node = 0; node < local_node; node++) {
3779 if (!node_online(node))
3780 continue;
bc732f1d 3781 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3782 }
3783
dd1a239f
MG
3784 zonelist->_zonerefs[j].zone = NULL;
3785 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3786}
3787
9276b1bc 3788/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3789static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3790{
54a6eb5c 3791 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3792}
3793
1da177e4
LT
3794#endif /* CONFIG_NUMA */
3795
99dcc3e5
CL
3796/*
3797 * Boot pageset table. One per cpu which is going to be used for all
3798 * zones and all nodes. The parameters will be set in such a way
3799 * that an item put on a list will immediately be handed over to
3800 * the buddy list. This is safe since pageset manipulation is done
3801 * with interrupts disabled.
3802 *
3803 * The boot_pagesets must be kept even after bootup is complete for
3804 * unused processors and/or zones. They do play a role for bootstrapping
3805 * hotplugged processors.
3806 *
3807 * zoneinfo_show() and maybe other functions do
3808 * not check if the processor is online before following the pageset pointer.
3809 * Other parts of the kernel may not check if the zone is available.
3810 */
3811static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3812static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3813static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3814
4eaf3f64
HL
3815/*
3816 * Global mutex to protect against size modification of zonelists
3817 * as well as to serialize pageset setup for the new populated zone.
3818 */
3819DEFINE_MUTEX(zonelists_mutex);
3820
9b1a4d38 3821/* return values int ....just for stop_machine() */
4ed7e022 3822static int __build_all_zonelists(void *data)
1da177e4 3823{
6811378e 3824 int nid;
99dcc3e5 3825 int cpu;
9adb62a5 3826 pg_data_t *self = data;
9276b1bc 3827
7f9cfb31
BL
3828#ifdef CONFIG_NUMA
3829 memset(node_load, 0, sizeof(node_load));
3830#endif
9adb62a5
JL
3831
3832 if (self && !node_online(self->node_id)) {
3833 build_zonelists(self);
3834 build_zonelist_cache(self);
3835 }
3836
9276b1bc 3837 for_each_online_node(nid) {
7ea1530a
CL
3838 pg_data_t *pgdat = NODE_DATA(nid);
3839
3840 build_zonelists(pgdat);
3841 build_zonelist_cache(pgdat);
9276b1bc 3842 }
99dcc3e5
CL
3843
3844 /*
3845 * Initialize the boot_pagesets that are going to be used
3846 * for bootstrapping processors. The real pagesets for
3847 * each zone will be allocated later when the per cpu
3848 * allocator is available.
3849 *
3850 * boot_pagesets are used also for bootstrapping offline
3851 * cpus if the system is already booted because the pagesets
3852 * are needed to initialize allocators on a specific cpu too.
3853 * F.e. the percpu allocator needs the page allocator which
3854 * needs the percpu allocator in order to allocate its pagesets
3855 * (a chicken-egg dilemma).
3856 */
7aac7898 3857 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3858 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3859
7aac7898
LS
3860#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3861 /*
3862 * We now know the "local memory node" for each node--
3863 * i.e., the node of the first zone in the generic zonelist.
3864 * Set up numa_mem percpu variable for on-line cpus. During
3865 * boot, only the boot cpu should be on-line; we'll init the
3866 * secondary cpus' numa_mem as they come on-line. During
3867 * node/memory hotplug, we'll fixup all on-line cpus.
3868 */
3869 if (cpu_online(cpu))
3870 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3871#endif
3872 }
3873
6811378e
YG
3874 return 0;
3875}
3876
4eaf3f64
HL
3877/*
3878 * Called with zonelists_mutex held always
3879 * unless system_state == SYSTEM_BOOTING.
3880 */
9adb62a5 3881void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3882{
f0c0b2b8
KH
3883 set_zonelist_order();
3884
6811378e 3885 if (system_state == SYSTEM_BOOTING) {
423b41d7 3886 __build_all_zonelists(NULL);
68ad8df4 3887 mminit_verify_zonelist();
6811378e
YG
3888 cpuset_init_current_mems_allowed();
3889 } else {
e9959f0f 3890#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3891 if (zone)
3892 setup_zone_pageset(zone);
e9959f0f 3893#endif
dd1895e2
CS
3894 /* we have to stop all cpus to guarantee there is no user
3895 of zonelist */
9adb62a5 3896 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3897 /* cpuset refresh routine should be here */
3898 }
bd1e22b8 3899 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3900 /*
3901 * Disable grouping by mobility if the number of pages in the
3902 * system is too low to allow the mechanism to work. It would be
3903 * more accurate, but expensive to check per-zone. This check is
3904 * made on memory-hotadd so a system can start with mobility
3905 * disabled and enable it later
3906 */
d9c23400 3907 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3908 page_group_by_mobility_disabled = 1;
3909 else
3910 page_group_by_mobility_disabled = 0;
3911
3912 printk("Built %i zonelists in %s order, mobility grouping %s. "
3913 "Total pages: %ld\n",
62bc62a8 3914 nr_online_nodes,
f0c0b2b8 3915 zonelist_order_name[current_zonelist_order],
9ef9acb0 3916 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3917 vm_total_pages);
3918#ifdef CONFIG_NUMA
3919 printk("Policy zone: %s\n", zone_names[policy_zone]);
3920#endif
1da177e4
LT
3921}
3922
3923/*
3924 * Helper functions to size the waitqueue hash table.
3925 * Essentially these want to choose hash table sizes sufficiently
3926 * large so that collisions trying to wait on pages are rare.
3927 * But in fact, the number of active page waitqueues on typical
3928 * systems is ridiculously low, less than 200. So this is even
3929 * conservative, even though it seems large.
3930 *
3931 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3932 * waitqueues, i.e. the size of the waitq table given the number of pages.
3933 */
3934#define PAGES_PER_WAITQUEUE 256
3935
cca448fe 3936#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3937static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3938{
3939 unsigned long size = 1;
3940
3941 pages /= PAGES_PER_WAITQUEUE;
3942
3943 while (size < pages)
3944 size <<= 1;
3945
3946 /*
3947 * Once we have dozens or even hundreds of threads sleeping
3948 * on IO we've got bigger problems than wait queue collision.
3949 * Limit the size of the wait table to a reasonable size.
3950 */
3951 size = min(size, 4096UL);
3952
3953 return max(size, 4UL);
3954}
cca448fe
YG
3955#else
3956/*
3957 * A zone's size might be changed by hot-add, so it is not possible to determine
3958 * a suitable size for its wait_table. So we use the maximum size now.
3959 *
3960 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3961 *
3962 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3963 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3964 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3965 *
3966 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3967 * or more by the traditional way. (See above). It equals:
3968 *
3969 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3970 * ia64(16K page size) : = ( 8G + 4M)byte.
3971 * powerpc (64K page size) : = (32G +16M)byte.
3972 */
3973static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3974{
3975 return 4096UL;
3976}
3977#endif
1da177e4
LT
3978
3979/*
3980 * This is an integer logarithm so that shifts can be used later
3981 * to extract the more random high bits from the multiplicative
3982 * hash function before the remainder is taken.
3983 */
3984static inline unsigned long wait_table_bits(unsigned long size)
3985{
3986 return ffz(~size);
3987}
3988
6d3163ce
AH
3989/*
3990 * Check if a pageblock contains reserved pages
3991 */
3992static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3993{
3994 unsigned long pfn;
3995
3996 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3997 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3998 return 1;
3999 }
4000 return 0;
4001}
4002
56fd56b8 4003/*
d9c23400 4004 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4005 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4006 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4007 * higher will lead to a bigger reserve which will get freed as contiguous
4008 * blocks as reclaim kicks in
4009 */
4010static void setup_zone_migrate_reserve(struct zone *zone)
4011{
6d3163ce 4012 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4013 struct page *page;
78986a67
MG
4014 unsigned long block_migratetype;
4015 int reserve;
943dca1a 4016 int old_reserve;
56fd56b8 4017
d0215638
MH
4018 /*
4019 * Get the start pfn, end pfn and the number of blocks to reserve
4020 * We have to be careful to be aligned to pageblock_nr_pages to
4021 * make sure that we always check pfn_valid for the first page in
4022 * the block.
4023 */
56fd56b8 4024 start_pfn = zone->zone_start_pfn;
108bcc96 4025 end_pfn = zone_end_pfn(zone);
d0215638 4026 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4027 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4028 pageblock_order;
56fd56b8 4029
78986a67
MG
4030 /*
4031 * Reserve blocks are generally in place to help high-order atomic
4032 * allocations that are short-lived. A min_free_kbytes value that
4033 * would result in more than 2 reserve blocks for atomic allocations
4034 * is assumed to be in place to help anti-fragmentation for the
4035 * future allocation of hugepages at runtime.
4036 */
4037 reserve = min(2, reserve);
943dca1a
YI
4038 old_reserve = zone->nr_migrate_reserve_block;
4039
4040 /* When memory hot-add, we almost always need to do nothing */
4041 if (reserve == old_reserve)
4042 return;
4043 zone->nr_migrate_reserve_block = reserve;
78986a67 4044
d9c23400 4045 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4046 if (!pfn_valid(pfn))
4047 continue;
4048 page = pfn_to_page(pfn);
4049
344c790e
AL
4050 /* Watch out for overlapping nodes */
4051 if (page_to_nid(page) != zone_to_nid(zone))
4052 continue;
4053
56fd56b8
MG
4054 block_migratetype = get_pageblock_migratetype(page);
4055
938929f1
MG
4056 /* Only test what is necessary when the reserves are not met */
4057 if (reserve > 0) {
4058 /*
4059 * Blocks with reserved pages will never free, skip
4060 * them.
4061 */
4062 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4063 if (pageblock_is_reserved(pfn, block_end_pfn))
4064 continue;
56fd56b8 4065
938929f1
MG
4066 /* If this block is reserved, account for it */
4067 if (block_migratetype == MIGRATE_RESERVE) {
4068 reserve--;
4069 continue;
4070 }
4071
4072 /* Suitable for reserving if this block is movable */
4073 if (block_migratetype == MIGRATE_MOVABLE) {
4074 set_pageblock_migratetype(page,
4075 MIGRATE_RESERVE);
4076 move_freepages_block(zone, page,
4077 MIGRATE_RESERVE);
4078 reserve--;
4079 continue;
4080 }
943dca1a
YI
4081 } else if (!old_reserve) {
4082 /*
4083 * At boot time we don't need to scan the whole zone
4084 * for turning off MIGRATE_RESERVE.
4085 */
4086 break;
56fd56b8
MG
4087 }
4088
4089 /*
4090 * If the reserve is met and this is a previous reserved block,
4091 * take it back
4092 */
4093 if (block_migratetype == MIGRATE_RESERVE) {
4094 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4095 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4096 }
4097 }
4098}
ac0e5b7a 4099
1da177e4
LT
4100/*
4101 * Initially all pages are reserved - free ones are freed
4102 * up by free_all_bootmem() once the early boot process is
4103 * done. Non-atomic initialization, single-pass.
4104 */
c09b4240 4105void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4106 unsigned long start_pfn, enum memmap_context context)
1da177e4 4107{
1da177e4 4108 struct page *page;
29751f69
AW
4109 unsigned long end_pfn = start_pfn + size;
4110 unsigned long pfn;
86051ca5 4111 struct zone *z;
1da177e4 4112
22b31eec
HD
4113 if (highest_memmap_pfn < end_pfn - 1)
4114 highest_memmap_pfn = end_pfn - 1;
4115
86051ca5 4116 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4117 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4118 /*
4119 * There can be holes in boot-time mem_map[]s
4120 * handed to this function. They do not
4121 * exist on hotplugged memory.
4122 */
4123 if (context == MEMMAP_EARLY) {
4124 if (!early_pfn_valid(pfn))
4125 continue;
4126 if (!early_pfn_in_nid(pfn, nid))
4127 continue;
4128 }
d41dee36
AW
4129 page = pfn_to_page(pfn);
4130 set_page_links(page, zone, nid, pfn);
708614e6 4131 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4132 init_page_count(page);
22b751c3 4133 page_mapcount_reset(page);
90572890 4134 page_cpupid_reset_last(page);
1da177e4 4135 SetPageReserved(page);
b2a0ac88
MG
4136 /*
4137 * Mark the block movable so that blocks are reserved for
4138 * movable at startup. This will force kernel allocations
4139 * to reserve their blocks rather than leaking throughout
4140 * the address space during boot when many long-lived
56fd56b8
MG
4141 * kernel allocations are made. Later some blocks near
4142 * the start are marked MIGRATE_RESERVE by
4143 * setup_zone_migrate_reserve()
86051ca5
KH
4144 *
4145 * bitmap is created for zone's valid pfn range. but memmap
4146 * can be created for invalid pages (for alignment)
4147 * check here not to call set_pageblock_migratetype() against
4148 * pfn out of zone.
b2a0ac88 4149 */
86051ca5 4150 if ((z->zone_start_pfn <= pfn)
108bcc96 4151 && (pfn < zone_end_pfn(z))
86051ca5 4152 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4153 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4154
1da177e4
LT
4155 INIT_LIST_HEAD(&page->lru);
4156#ifdef WANT_PAGE_VIRTUAL
4157 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4158 if (!is_highmem_idx(zone))
3212c6be 4159 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4160#endif
1da177e4
LT
4161 }
4162}
4163
1e548deb 4164static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4165{
7aeb09f9 4166 unsigned int order, t;
b2a0ac88
MG
4167 for_each_migratetype_order(order, t) {
4168 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4169 zone->free_area[order].nr_free = 0;
4170 }
4171}
4172
4173#ifndef __HAVE_ARCH_MEMMAP_INIT
4174#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4175 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4176#endif
4177
7cd2b0a3 4178static int zone_batchsize(struct zone *zone)
e7c8d5c9 4179{
3a6be87f 4180#ifdef CONFIG_MMU
e7c8d5c9
CL
4181 int batch;
4182
4183 /*
4184 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4185 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4186 *
4187 * OK, so we don't know how big the cache is. So guess.
4188 */
b40da049 4189 batch = zone->managed_pages / 1024;
ba56e91c
SR
4190 if (batch * PAGE_SIZE > 512 * 1024)
4191 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4192 batch /= 4; /* We effectively *= 4 below */
4193 if (batch < 1)
4194 batch = 1;
4195
4196 /*
0ceaacc9
NP
4197 * Clamp the batch to a 2^n - 1 value. Having a power
4198 * of 2 value was found to be more likely to have
4199 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4200 *
0ceaacc9
NP
4201 * For example if 2 tasks are alternately allocating
4202 * batches of pages, one task can end up with a lot
4203 * of pages of one half of the possible page colors
4204 * and the other with pages of the other colors.
e7c8d5c9 4205 */
9155203a 4206 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4207
e7c8d5c9 4208 return batch;
3a6be87f
DH
4209
4210#else
4211 /* The deferral and batching of frees should be suppressed under NOMMU
4212 * conditions.
4213 *
4214 * The problem is that NOMMU needs to be able to allocate large chunks
4215 * of contiguous memory as there's no hardware page translation to
4216 * assemble apparent contiguous memory from discontiguous pages.
4217 *
4218 * Queueing large contiguous runs of pages for batching, however,
4219 * causes the pages to actually be freed in smaller chunks. As there
4220 * can be a significant delay between the individual batches being
4221 * recycled, this leads to the once large chunks of space being
4222 * fragmented and becoming unavailable for high-order allocations.
4223 */
4224 return 0;
4225#endif
e7c8d5c9
CL
4226}
4227
8d7a8fa9
CS
4228/*
4229 * pcp->high and pcp->batch values are related and dependent on one another:
4230 * ->batch must never be higher then ->high.
4231 * The following function updates them in a safe manner without read side
4232 * locking.
4233 *
4234 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4235 * those fields changing asynchronously (acording the the above rule).
4236 *
4237 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4238 * outside of boot time (or some other assurance that no concurrent updaters
4239 * exist).
4240 */
4241static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4242 unsigned long batch)
4243{
4244 /* start with a fail safe value for batch */
4245 pcp->batch = 1;
4246 smp_wmb();
4247
4248 /* Update high, then batch, in order */
4249 pcp->high = high;
4250 smp_wmb();
4251
4252 pcp->batch = batch;
4253}
4254
3664033c 4255/* a companion to pageset_set_high() */
4008bab7
CS
4256static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4257{
8d7a8fa9 4258 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4259}
4260
88c90dbc 4261static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4262{
4263 struct per_cpu_pages *pcp;
5f8dcc21 4264 int migratetype;
2caaad41 4265
1c6fe946
MD
4266 memset(p, 0, sizeof(*p));
4267
3dfa5721 4268 pcp = &p->pcp;
2caaad41 4269 pcp->count = 0;
5f8dcc21
MG
4270 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4271 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4272}
4273
88c90dbc
CS
4274static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4275{
4276 pageset_init(p);
4277 pageset_set_batch(p, batch);
4278}
4279
8ad4b1fb 4280/*
3664033c 4281 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4282 * to the value high for the pageset p.
4283 */
3664033c 4284static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4285 unsigned long high)
4286{
8d7a8fa9
CS
4287 unsigned long batch = max(1UL, high / 4);
4288 if ((high / 4) > (PAGE_SHIFT * 8))
4289 batch = PAGE_SHIFT * 8;
8ad4b1fb 4290
8d7a8fa9 4291 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4292}
4293
7cd2b0a3
DR
4294static void pageset_set_high_and_batch(struct zone *zone,
4295 struct per_cpu_pageset *pcp)
56cef2b8 4296{
56cef2b8 4297 if (percpu_pagelist_fraction)
3664033c 4298 pageset_set_high(pcp,
56cef2b8
CS
4299 (zone->managed_pages /
4300 percpu_pagelist_fraction));
4301 else
4302 pageset_set_batch(pcp, zone_batchsize(zone));
4303}
4304
169f6c19
CS
4305static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4306{
4307 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4308
4309 pageset_init(pcp);
4310 pageset_set_high_and_batch(zone, pcp);
4311}
4312
4ed7e022 4313static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4314{
4315 int cpu;
319774e2 4316 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4317 for_each_possible_cpu(cpu)
4318 zone_pageset_init(zone, cpu);
319774e2
WF
4319}
4320
2caaad41 4321/*
99dcc3e5
CL
4322 * Allocate per cpu pagesets and initialize them.
4323 * Before this call only boot pagesets were available.
e7c8d5c9 4324 */
99dcc3e5 4325void __init setup_per_cpu_pageset(void)
e7c8d5c9 4326{
99dcc3e5 4327 struct zone *zone;
e7c8d5c9 4328
319774e2
WF
4329 for_each_populated_zone(zone)
4330 setup_zone_pageset(zone);
e7c8d5c9
CL
4331}
4332
577a32f6 4333static noinline __init_refok
cca448fe 4334int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4335{
4336 int i;
cca448fe 4337 size_t alloc_size;
ed8ece2e
DH
4338
4339 /*
4340 * The per-page waitqueue mechanism uses hashed waitqueues
4341 * per zone.
4342 */
02b694de
YG
4343 zone->wait_table_hash_nr_entries =
4344 wait_table_hash_nr_entries(zone_size_pages);
4345 zone->wait_table_bits =
4346 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4347 alloc_size = zone->wait_table_hash_nr_entries
4348 * sizeof(wait_queue_head_t);
4349
cd94b9db 4350 if (!slab_is_available()) {
cca448fe 4351 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4352 memblock_virt_alloc_node_nopanic(
4353 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4354 } else {
4355 /*
4356 * This case means that a zone whose size was 0 gets new memory
4357 * via memory hot-add.
4358 * But it may be the case that a new node was hot-added. In
4359 * this case vmalloc() will not be able to use this new node's
4360 * memory - this wait_table must be initialized to use this new
4361 * node itself as well.
4362 * To use this new node's memory, further consideration will be
4363 * necessary.
4364 */
8691f3a7 4365 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4366 }
4367 if (!zone->wait_table)
4368 return -ENOMEM;
ed8ece2e 4369
b8af2941 4370 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4371 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4372
4373 return 0;
ed8ece2e
DH
4374}
4375
c09b4240 4376static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4377{
99dcc3e5
CL
4378 /*
4379 * per cpu subsystem is not up at this point. The following code
4380 * relies on the ability of the linker to provide the
4381 * offset of a (static) per cpu variable into the per cpu area.
4382 */
4383 zone->pageset = &boot_pageset;
ed8ece2e 4384
b38a8725 4385 if (populated_zone(zone))
99dcc3e5
CL
4386 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4387 zone->name, zone->present_pages,
4388 zone_batchsize(zone));
ed8ece2e
DH
4389}
4390
4ed7e022 4391int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4392 unsigned long zone_start_pfn,
a2f3aa02
DH
4393 unsigned long size,
4394 enum memmap_context context)
ed8ece2e
DH
4395{
4396 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4397 int ret;
4398 ret = zone_wait_table_init(zone, size);
4399 if (ret)
4400 return ret;
ed8ece2e
DH
4401 pgdat->nr_zones = zone_idx(zone) + 1;
4402
ed8ece2e
DH
4403 zone->zone_start_pfn = zone_start_pfn;
4404
708614e6
MG
4405 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4406 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4407 pgdat->node_id,
4408 (unsigned long)zone_idx(zone),
4409 zone_start_pfn, (zone_start_pfn + size));
4410
1e548deb 4411 zone_init_free_lists(zone);
718127cc
YG
4412
4413 return 0;
ed8ece2e
DH
4414}
4415
0ee332c1 4416#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4417#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4418/*
4419 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4420 */
f2dbcfa7 4421int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4422{
c13291a5 4423 unsigned long start_pfn, end_pfn;
e76b63f8 4424 int nid;
7c243c71
RA
4425 /*
4426 * NOTE: The following SMP-unsafe globals are only used early in boot
4427 * when the kernel is running single-threaded.
4428 */
4429 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4430 static int __meminitdata last_nid;
4431
4432 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4433 return last_nid;
c713216d 4434
e76b63f8
YL
4435 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4436 if (nid != -1) {
4437 last_start_pfn = start_pfn;
4438 last_end_pfn = end_pfn;
4439 last_nid = nid;
4440 }
4441
4442 return nid;
c713216d
MG
4443}
4444#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4445
f2dbcfa7
KH
4446int __meminit early_pfn_to_nid(unsigned long pfn)
4447{
cc2559bc
KH
4448 int nid;
4449
4450 nid = __early_pfn_to_nid(pfn);
4451 if (nid >= 0)
4452 return nid;
4453 /* just returns 0 */
4454 return 0;
f2dbcfa7
KH
4455}
4456
cc2559bc
KH
4457#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4458bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4459{
4460 int nid;
4461
4462 nid = __early_pfn_to_nid(pfn);
4463 if (nid >= 0 && nid != node)
4464 return false;
4465 return true;
4466}
4467#endif
f2dbcfa7 4468
c713216d 4469/**
6782832e 4470 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4471 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4472 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4473 *
7d018176
ZZ
4474 * If an architecture guarantees that all ranges registered contain no holes
4475 * and may be freed, this this function may be used instead of calling
4476 * memblock_free_early_nid() manually.
c713216d 4477 */
c13291a5 4478void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4479{
c13291a5
TH
4480 unsigned long start_pfn, end_pfn;
4481 int i, this_nid;
edbe7d23 4482
c13291a5
TH
4483 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4484 start_pfn = min(start_pfn, max_low_pfn);
4485 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4486
c13291a5 4487 if (start_pfn < end_pfn)
6782832e
SS
4488 memblock_free_early_nid(PFN_PHYS(start_pfn),
4489 (end_pfn - start_pfn) << PAGE_SHIFT,
4490 this_nid);
edbe7d23 4491 }
edbe7d23 4492}
edbe7d23 4493
c713216d
MG
4494/**
4495 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4496 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4497 *
7d018176
ZZ
4498 * If an architecture guarantees that all ranges registered contain no holes and may
4499 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4500 */
4501void __init sparse_memory_present_with_active_regions(int nid)
4502{
c13291a5
TH
4503 unsigned long start_pfn, end_pfn;
4504 int i, this_nid;
c713216d 4505
c13291a5
TH
4506 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4507 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4508}
4509
4510/**
4511 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4512 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4513 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4514 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4515 *
4516 * It returns the start and end page frame of a node based on information
7d018176 4517 * provided by memblock_set_node(). If called for a node
c713216d 4518 * with no available memory, a warning is printed and the start and end
88ca3b94 4519 * PFNs will be 0.
c713216d 4520 */
a3142c8e 4521void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4522 unsigned long *start_pfn, unsigned long *end_pfn)
4523{
c13291a5 4524 unsigned long this_start_pfn, this_end_pfn;
c713216d 4525 int i;
c13291a5 4526
c713216d
MG
4527 *start_pfn = -1UL;
4528 *end_pfn = 0;
4529
c13291a5
TH
4530 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4531 *start_pfn = min(*start_pfn, this_start_pfn);
4532 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4533 }
4534
633c0666 4535 if (*start_pfn == -1UL)
c713216d 4536 *start_pfn = 0;
c713216d
MG
4537}
4538
2a1e274a
MG
4539/*
4540 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4541 * assumption is made that zones within a node are ordered in monotonic
4542 * increasing memory addresses so that the "highest" populated zone is used
4543 */
b69a7288 4544static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4545{
4546 int zone_index;
4547 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4548 if (zone_index == ZONE_MOVABLE)
4549 continue;
4550
4551 if (arch_zone_highest_possible_pfn[zone_index] >
4552 arch_zone_lowest_possible_pfn[zone_index])
4553 break;
4554 }
4555
4556 VM_BUG_ON(zone_index == -1);
4557 movable_zone = zone_index;
4558}
4559
4560/*
4561 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4562 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4563 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4564 * in each node depending on the size of each node and how evenly kernelcore
4565 * is distributed. This helper function adjusts the zone ranges
4566 * provided by the architecture for a given node by using the end of the
4567 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4568 * zones within a node are in order of monotonic increases memory addresses
4569 */
b69a7288 4570static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4571 unsigned long zone_type,
4572 unsigned long node_start_pfn,
4573 unsigned long node_end_pfn,
4574 unsigned long *zone_start_pfn,
4575 unsigned long *zone_end_pfn)
4576{
4577 /* Only adjust if ZONE_MOVABLE is on this node */
4578 if (zone_movable_pfn[nid]) {
4579 /* Size ZONE_MOVABLE */
4580 if (zone_type == ZONE_MOVABLE) {
4581 *zone_start_pfn = zone_movable_pfn[nid];
4582 *zone_end_pfn = min(node_end_pfn,
4583 arch_zone_highest_possible_pfn[movable_zone]);
4584
4585 /* Adjust for ZONE_MOVABLE starting within this range */
4586 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4587 *zone_end_pfn > zone_movable_pfn[nid]) {
4588 *zone_end_pfn = zone_movable_pfn[nid];
4589
4590 /* Check if this whole range is within ZONE_MOVABLE */
4591 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4592 *zone_start_pfn = *zone_end_pfn;
4593 }
4594}
4595
c713216d
MG
4596/*
4597 * Return the number of pages a zone spans in a node, including holes
4598 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4599 */
6ea6e688 4600static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4601 unsigned long zone_type,
7960aedd
ZY
4602 unsigned long node_start_pfn,
4603 unsigned long node_end_pfn,
c713216d
MG
4604 unsigned long *ignored)
4605{
c713216d
MG
4606 unsigned long zone_start_pfn, zone_end_pfn;
4607
7960aedd 4608 /* Get the start and end of the zone */
c713216d
MG
4609 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4610 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4611 adjust_zone_range_for_zone_movable(nid, zone_type,
4612 node_start_pfn, node_end_pfn,
4613 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4614
4615 /* Check that this node has pages within the zone's required range */
4616 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4617 return 0;
4618
4619 /* Move the zone boundaries inside the node if necessary */
4620 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4621 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4622
4623 /* Return the spanned pages */
4624 return zone_end_pfn - zone_start_pfn;
4625}
4626
4627/*
4628 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4629 * then all holes in the requested range will be accounted for.
c713216d 4630 */
32996250 4631unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4632 unsigned long range_start_pfn,
4633 unsigned long range_end_pfn)
4634{
96e907d1
TH
4635 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4636 unsigned long start_pfn, end_pfn;
4637 int i;
c713216d 4638
96e907d1
TH
4639 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4640 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4641 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4642 nr_absent -= end_pfn - start_pfn;
c713216d 4643 }
96e907d1 4644 return nr_absent;
c713216d
MG
4645}
4646
4647/**
4648 * absent_pages_in_range - Return number of page frames in holes within a range
4649 * @start_pfn: The start PFN to start searching for holes
4650 * @end_pfn: The end PFN to stop searching for holes
4651 *
88ca3b94 4652 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4653 */
4654unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4655 unsigned long end_pfn)
4656{
4657 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4658}
4659
4660/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4661static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4662 unsigned long zone_type,
7960aedd
ZY
4663 unsigned long node_start_pfn,
4664 unsigned long node_end_pfn,
c713216d
MG
4665 unsigned long *ignored)
4666{
96e907d1
TH
4667 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4668 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4669 unsigned long zone_start_pfn, zone_end_pfn;
4670
96e907d1
TH
4671 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4672 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4673
2a1e274a
MG
4674 adjust_zone_range_for_zone_movable(nid, zone_type,
4675 node_start_pfn, node_end_pfn,
4676 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4677 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4678}
0e0b864e 4679
0ee332c1 4680#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4681static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4682 unsigned long zone_type,
7960aedd
ZY
4683 unsigned long node_start_pfn,
4684 unsigned long node_end_pfn,
c713216d
MG
4685 unsigned long *zones_size)
4686{
4687 return zones_size[zone_type];
4688}
4689
6ea6e688 4690static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4691 unsigned long zone_type,
7960aedd
ZY
4692 unsigned long node_start_pfn,
4693 unsigned long node_end_pfn,
c713216d
MG
4694 unsigned long *zholes_size)
4695{
4696 if (!zholes_size)
4697 return 0;
4698
4699 return zholes_size[zone_type];
4700}
20e6926d 4701
0ee332c1 4702#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4703
a3142c8e 4704static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4705 unsigned long node_start_pfn,
4706 unsigned long node_end_pfn,
4707 unsigned long *zones_size,
4708 unsigned long *zholes_size)
c713216d
MG
4709{
4710 unsigned long realtotalpages, totalpages = 0;
4711 enum zone_type i;
4712
4713 for (i = 0; i < MAX_NR_ZONES; i++)
4714 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4715 node_start_pfn,
4716 node_end_pfn,
4717 zones_size);
c713216d
MG
4718 pgdat->node_spanned_pages = totalpages;
4719
4720 realtotalpages = totalpages;
4721 for (i = 0; i < MAX_NR_ZONES; i++)
4722 realtotalpages -=
4723 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4724 node_start_pfn, node_end_pfn,
4725 zholes_size);
c713216d
MG
4726 pgdat->node_present_pages = realtotalpages;
4727 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4728 realtotalpages);
4729}
4730
835c134e
MG
4731#ifndef CONFIG_SPARSEMEM
4732/*
4733 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4734 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4735 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4736 * round what is now in bits to nearest long in bits, then return it in
4737 * bytes.
4738 */
7c45512d 4739static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4740{
4741 unsigned long usemapsize;
4742
7c45512d 4743 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4744 usemapsize = roundup(zonesize, pageblock_nr_pages);
4745 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4746 usemapsize *= NR_PAGEBLOCK_BITS;
4747 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4748
4749 return usemapsize / 8;
4750}
4751
4752static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4753 struct zone *zone,
4754 unsigned long zone_start_pfn,
4755 unsigned long zonesize)
835c134e 4756{
7c45512d 4757 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4758 zone->pageblock_flags = NULL;
58a01a45 4759 if (usemapsize)
6782832e
SS
4760 zone->pageblock_flags =
4761 memblock_virt_alloc_node_nopanic(usemapsize,
4762 pgdat->node_id);
835c134e
MG
4763}
4764#else
7c45512d
LT
4765static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4766 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4767#endif /* CONFIG_SPARSEMEM */
4768
d9c23400 4769#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4770
d9c23400 4771/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4772void __paginginit set_pageblock_order(void)
d9c23400 4773{
955c1cd7
AM
4774 unsigned int order;
4775
d9c23400
MG
4776 /* Check that pageblock_nr_pages has not already been setup */
4777 if (pageblock_order)
4778 return;
4779
955c1cd7
AM
4780 if (HPAGE_SHIFT > PAGE_SHIFT)
4781 order = HUGETLB_PAGE_ORDER;
4782 else
4783 order = MAX_ORDER - 1;
4784
d9c23400
MG
4785 /*
4786 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4787 * This value may be variable depending on boot parameters on IA64 and
4788 * powerpc.
d9c23400
MG
4789 */
4790 pageblock_order = order;
4791}
4792#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4793
ba72cb8c
MG
4794/*
4795 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4796 * is unused as pageblock_order is set at compile-time. See
4797 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4798 * the kernel config
ba72cb8c 4799 */
15ca220e 4800void __paginginit set_pageblock_order(void)
ba72cb8c 4801{
ba72cb8c 4802}
d9c23400
MG
4803
4804#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4805
01cefaef
JL
4806static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4807 unsigned long present_pages)
4808{
4809 unsigned long pages = spanned_pages;
4810
4811 /*
4812 * Provide a more accurate estimation if there are holes within
4813 * the zone and SPARSEMEM is in use. If there are holes within the
4814 * zone, each populated memory region may cost us one or two extra
4815 * memmap pages due to alignment because memmap pages for each
4816 * populated regions may not naturally algined on page boundary.
4817 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4818 */
4819 if (spanned_pages > present_pages + (present_pages >> 4) &&
4820 IS_ENABLED(CONFIG_SPARSEMEM))
4821 pages = present_pages;
4822
4823 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4824}
4825
1da177e4
LT
4826/*
4827 * Set up the zone data structures:
4828 * - mark all pages reserved
4829 * - mark all memory queues empty
4830 * - clear the memory bitmaps
6527af5d
MK
4831 *
4832 * NOTE: pgdat should get zeroed by caller.
1da177e4 4833 */
b5a0e011 4834static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4835 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4836 unsigned long *zones_size, unsigned long *zholes_size)
4837{
2f1b6248 4838 enum zone_type j;
ed8ece2e 4839 int nid = pgdat->node_id;
1da177e4 4840 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4841 int ret;
1da177e4 4842
208d54e5 4843 pgdat_resize_init(pgdat);
8177a420
AA
4844#ifdef CONFIG_NUMA_BALANCING
4845 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4846 pgdat->numabalancing_migrate_nr_pages = 0;
4847 pgdat->numabalancing_migrate_next_window = jiffies;
4848#endif
1da177e4 4849 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4850 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4851 pgdat_page_cgroup_init(pgdat);
5f63b720 4852
1da177e4
LT
4853 for (j = 0; j < MAX_NR_ZONES; j++) {
4854 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4855 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4856
7960aedd
ZY
4857 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4858 node_end_pfn, zones_size);
9feedc9d 4859 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4860 node_start_pfn,
4861 node_end_pfn,
c713216d 4862 zholes_size);
1da177e4 4863
0e0b864e 4864 /*
9feedc9d 4865 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4866 * is used by this zone for memmap. This affects the watermark
4867 * and per-cpu initialisations
4868 */
01cefaef 4869 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4870 if (freesize >= memmap_pages) {
4871 freesize -= memmap_pages;
5594c8c8
YL
4872 if (memmap_pages)
4873 printk(KERN_DEBUG
4874 " %s zone: %lu pages used for memmap\n",
4875 zone_names[j], memmap_pages);
0e0b864e
MG
4876 } else
4877 printk(KERN_WARNING
9feedc9d
JL
4878 " %s zone: %lu pages exceeds freesize %lu\n",
4879 zone_names[j], memmap_pages, freesize);
0e0b864e 4880
6267276f 4881 /* Account for reserved pages */
9feedc9d
JL
4882 if (j == 0 && freesize > dma_reserve) {
4883 freesize -= dma_reserve;
d903ef9f 4884 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4885 zone_names[0], dma_reserve);
0e0b864e
MG
4886 }
4887
98d2b0eb 4888 if (!is_highmem_idx(j))
9feedc9d 4889 nr_kernel_pages += freesize;
01cefaef
JL
4890 /* Charge for highmem memmap if there are enough kernel pages */
4891 else if (nr_kernel_pages > memmap_pages * 2)
4892 nr_kernel_pages -= memmap_pages;
9feedc9d 4893 nr_all_pages += freesize;
1da177e4
LT
4894
4895 zone->spanned_pages = size;
306f2e9e 4896 zone->present_pages = realsize;
9feedc9d
JL
4897 /*
4898 * Set an approximate value for lowmem here, it will be adjusted
4899 * when the bootmem allocator frees pages into the buddy system.
4900 * And all highmem pages will be managed by the buddy system.
4901 */
4902 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4903#ifdef CONFIG_NUMA
d5f541ed 4904 zone->node = nid;
9feedc9d 4905 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4906 / 100;
9feedc9d 4907 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4908#endif
1da177e4
LT
4909 zone->name = zone_names[j];
4910 spin_lock_init(&zone->lock);
4911 spin_lock_init(&zone->lru_lock);
bdc8cb98 4912 zone_seqlock_init(zone);
1da177e4 4913 zone->zone_pgdat = pgdat;
ed8ece2e 4914 zone_pcp_init(zone);
81c0a2bb
JW
4915
4916 /* For bootup, initialized properly in watermark setup */
4917 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4918
bea8c150 4919 lruvec_init(&zone->lruvec);
1da177e4
LT
4920 if (!size)
4921 continue;
4922
955c1cd7 4923 set_pageblock_order();
7c45512d 4924 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4925 ret = init_currently_empty_zone(zone, zone_start_pfn,
4926 size, MEMMAP_EARLY);
718127cc 4927 BUG_ON(ret);
76cdd58e 4928 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4929 zone_start_pfn += size;
1da177e4
LT
4930 }
4931}
4932
577a32f6 4933static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4934{
1da177e4
LT
4935 /* Skip empty nodes */
4936 if (!pgdat->node_spanned_pages)
4937 return;
4938
d41dee36 4939#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4940 /* ia64 gets its own node_mem_map, before this, without bootmem */
4941 if (!pgdat->node_mem_map) {
e984bb43 4942 unsigned long size, start, end;
d41dee36
AW
4943 struct page *map;
4944
e984bb43
BP
4945 /*
4946 * The zone's endpoints aren't required to be MAX_ORDER
4947 * aligned but the node_mem_map endpoints must be in order
4948 * for the buddy allocator to function correctly.
4949 */
4950 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4951 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4952 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4953 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4954 map = alloc_remap(pgdat->node_id, size);
4955 if (!map)
6782832e
SS
4956 map = memblock_virt_alloc_node_nopanic(size,
4957 pgdat->node_id);
e984bb43 4958 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4959 }
12d810c1 4960#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4961 /*
4962 * With no DISCONTIG, the global mem_map is just set as node 0's
4963 */
c713216d 4964 if (pgdat == NODE_DATA(0)) {
1da177e4 4965 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4966#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4967 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4968 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4969#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4970 }
1da177e4 4971#endif
d41dee36 4972#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4973}
4974
9109fb7b
JW
4975void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4976 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4977{
9109fb7b 4978 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4979 unsigned long start_pfn = 0;
4980 unsigned long end_pfn = 0;
9109fb7b 4981
88fdf75d 4982 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4983 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4984
1da177e4
LT
4985 pgdat->node_id = nid;
4986 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4987#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4988 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8b375f64
LC
4989 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4990 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
4991#endif
4992 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4993 zones_size, zholes_size);
1da177e4
LT
4994
4995 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4996#ifdef CONFIG_FLAT_NODE_MEM_MAP
4997 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4998 nid, (unsigned long)pgdat,
4999 (unsigned long)pgdat->node_mem_map);
5000#endif
1da177e4 5001
7960aedd
ZY
5002 free_area_init_core(pgdat, start_pfn, end_pfn,
5003 zones_size, zholes_size);
1da177e4
LT
5004}
5005
0ee332c1 5006#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5007
5008#if MAX_NUMNODES > 1
5009/*
5010 * Figure out the number of possible node ids.
5011 */
f9872caf 5012void __init setup_nr_node_ids(void)
418508c1
MS
5013{
5014 unsigned int node;
5015 unsigned int highest = 0;
5016
5017 for_each_node_mask(node, node_possible_map)
5018 highest = node;
5019 nr_node_ids = highest + 1;
5020}
418508c1
MS
5021#endif
5022
1e01979c
TH
5023/**
5024 * node_map_pfn_alignment - determine the maximum internode alignment
5025 *
5026 * This function should be called after node map is populated and sorted.
5027 * It calculates the maximum power of two alignment which can distinguish
5028 * all the nodes.
5029 *
5030 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5031 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5032 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5033 * shifted, 1GiB is enough and this function will indicate so.
5034 *
5035 * This is used to test whether pfn -> nid mapping of the chosen memory
5036 * model has fine enough granularity to avoid incorrect mapping for the
5037 * populated node map.
5038 *
5039 * Returns the determined alignment in pfn's. 0 if there is no alignment
5040 * requirement (single node).
5041 */
5042unsigned long __init node_map_pfn_alignment(void)
5043{
5044 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5045 unsigned long start, end, mask;
1e01979c 5046 int last_nid = -1;
c13291a5 5047 int i, nid;
1e01979c 5048
c13291a5 5049 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5050 if (!start || last_nid < 0 || last_nid == nid) {
5051 last_nid = nid;
5052 last_end = end;
5053 continue;
5054 }
5055
5056 /*
5057 * Start with a mask granular enough to pin-point to the
5058 * start pfn and tick off bits one-by-one until it becomes
5059 * too coarse to separate the current node from the last.
5060 */
5061 mask = ~((1 << __ffs(start)) - 1);
5062 while (mask && last_end <= (start & (mask << 1)))
5063 mask <<= 1;
5064
5065 /* accumulate all internode masks */
5066 accl_mask |= mask;
5067 }
5068
5069 /* convert mask to number of pages */
5070 return ~accl_mask + 1;
5071}
5072
a6af2bc3 5073/* Find the lowest pfn for a node */
b69a7288 5074static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5075{
a6af2bc3 5076 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5077 unsigned long start_pfn;
5078 int i;
1abbfb41 5079
c13291a5
TH
5080 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5081 min_pfn = min(min_pfn, start_pfn);
c713216d 5082
a6af2bc3
MG
5083 if (min_pfn == ULONG_MAX) {
5084 printk(KERN_WARNING
2bc0d261 5085 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5086 return 0;
5087 }
5088
5089 return min_pfn;
c713216d
MG
5090}
5091
5092/**
5093 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5094 *
5095 * It returns the minimum PFN based on information provided via
7d018176 5096 * memblock_set_node().
c713216d
MG
5097 */
5098unsigned long __init find_min_pfn_with_active_regions(void)
5099{
5100 return find_min_pfn_for_node(MAX_NUMNODES);
5101}
5102
37b07e41
LS
5103/*
5104 * early_calculate_totalpages()
5105 * Sum pages in active regions for movable zone.
4b0ef1fe 5106 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5107 */
484f51f8 5108static unsigned long __init early_calculate_totalpages(void)
7e63efef 5109{
7e63efef 5110 unsigned long totalpages = 0;
c13291a5
TH
5111 unsigned long start_pfn, end_pfn;
5112 int i, nid;
5113
5114 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5115 unsigned long pages = end_pfn - start_pfn;
7e63efef 5116
37b07e41
LS
5117 totalpages += pages;
5118 if (pages)
4b0ef1fe 5119 node_set_state(nid, N_MEMORY);
37b07e41 5120 }
b8af2941 5121 return totalpages;
7e63efef
MG
5122}
5123
2a1e274a
MG
5124/*
5125 * Find the PFN the Movable zone begins in each node. Kernel memory
5126 * is spread evenly between nodes as long as the nodes have enough
5127 * memory. When they don't, some nodes will have more kernelcore than
5128 * others
5129 */
b224ef85 5130static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5131{
5132 int i, nid;
5133 unsigned long usable_startpfn;
5134 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5135 /* save the state before borrow the nodemask */
4b0ef1fe 5136 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5137 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5138 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5139 struct memblock_region *r;
b2f3eebe
TC
5140
5141 /* Need to find movable_zone earlier when movable_node is specified. */
5142 find_usable_zone_for_movable();
5143
5144 /*
5145 * If movable_node is specified, ignore kernelcore and movablecore
5146 * options.
5147 */
5148 if (movable_node_is_enabled()) {
136199f0
EM
5149 for_each_memblock(memory, r) {
5150 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5151 continue;
5152
136199f0 5153 nid = r->nid;
b2f3eebe 5154
136199f0 5155 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5156 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5157 min(usable_startpfn, zone_movable_pfn[nid]) :
5158 usable_startpfn;
5159 }
5160
5161 goto out2;
5162 }
2a1e274a 5163
7e63efef 5164 /*
b2f3eebe 5165 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5166 * kernelcore that corresponds so that memory usable for
5167 * any allocation type is evenly spread. If both kernelcore
5168 * and movablecore are specified, then the value of kernelcore
5169 * will be used for required_kernelcore if it's greater than
5170 * what movablecore would have allowed.
5171 */
5172 if (required_movablecore) {
7e63efef
MG
5173 unsigned long corepages;
5174
5175 /*
5176 * Round-up so that ZONE_MOVABLE is at least as large as what
5177 * was requested by the user
5178 */
5179 required_movablecore =
5180 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5181 corepages = totalpages - required_movablecore;
5182
5183 required_kernelcore = max(required_kernelcore, corepages);
5184 }
5185
20e6926d
YL
5186 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5187 if (!required_kernelcore)
66918dcd 5188 goto out;
2a1e274a
MG
5189
5190 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5191 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5192
5193restart:
5194 /* Spread kernelcore memory as evenly as possible throughout nodes */
5195 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5196 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5197 unsigned long start_pfn, end_pfn;
5198
2a1e274a
MG
5199 /*
5200 * Recalculate kernelcore_node if the division per node
5201 * now exceeds what is necessary to satisfy the requested
5202 * amount of memory for the kernel
5203 */
5204 if (required_kernelcore < kernelcore_node)
5205 kernelcore_node = required_kernelcore / usable_nodes;
5206
5207 /*
5208 * As the map is walked, we track how much memory is usable
5209 * by the kernel using kernelcore_remaining. When it is
5210 * 0, the rest of the node is usable by ZONE_MOVABLE
5211 */
5212 kernelcore_remaining = kernelcore_node;
5213
5214 /* Go through each range of PFNs within this node */
c13291a5 5215 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5216 unsigned long size_pages;
5217
c13291a5 5218 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5219 if (start_pfn >= end_pfn)
5220 continue;
5221
5222 /* Account for what is only usable for kernelcore */
5223 if (start_pfn < usable_startpfn) {
5224 unsigned long kernel_pages;
5225 kernel_pages = min(end_pfn, usable_startpfn)
5226 - start_pfn;
5227
5228 kernelcore_remaining -= min(kernel_pages,
5229 kernelcore_remaining);
5230 required_kernelcore -= min(kernel_pages,
5231 required_kernelcore);
5232
5233 /* Continue if range is now fully accounted */
5234 if (end_pfn <= usable_startpfn) {
5235
5236 /*
5237 * Push zone_movable_pfn to the end so
5238 * that if we have to rebalance
5239 * kernelcore across nodes, we will
5240 * not double account here
5241 */
5242 zone_movable_pfn[nid] = end_pfn;
5243 continue;
5244 }
5245 start_pfn = usable_startpfn;
5246 }
5247
5248 /*
5249 * The usable PFN range for ZONE_MOVABLE is from
5250 * start_pfn->end_pfn. Calculate size_pages as the
5251 * number of pages used as kernelcore
5252 */
5253 size_pages = end_pfn - start_pfn;
5254 if (size_pages > kernelcore_remaining)
5255 size_pages = kernelcore_remaining;
5256 zone_movable_pfn[nid] = start_pfn + size_pages;
5257
5258 /*
5259 * Some kernelcore has been met, update counts and
5260 * break if the kernelcore for this node has been
b8af2941 5261 * satisfied
2a1e274a
MG
5262 */
5263 required_kernelcore -= min(required_kernelcore,
5264 size_pages);
5265 kernelcore_remaining -= size_pages;
5266 if (!kernelcore_remaining)
5267 break;
5268 }
5269 }
5270
5271 /*
5272 * If there is still required_kernelcore, we do another pass with one
5273 * less node in the count. This will push zone_movable_pfn[nid] further
5274 * along on the nodes that still have memory until kernelcore is
b8af2941 5275 * satisfied
2a1e274a
MG
5276 */
5277 usable_nodes--;
5278 if (usable_nodes && required_kernelcore > usable_nodes)
5279 goto restart;
5280
b2f3eebe 5281out2:
2a1e274a
MG
5282 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5283 for (nid = 0; nid < MAX_NUMNODES; nid++)
5284 zone_movable_pfn[nid] =
5285 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5286
20e6926d 5287out:
66918dcd 5288 /* restore the node_state */
4b0ef1fe 5289 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5290}
5291
4b0ef1fe
LJ
5292/* Any regular or high memory on that node ? */
5293static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5294{
37b07e41
LS
5295 enum zone_type zone_type;
5296
4b0ef1fe
LJ
5297 if (N_MEMORY == N_NORMAL_MEMORY)
5298 return;
5299
5300 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5301 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5302 if (populated_zone(zone)) {
4b0ef1fe
LJ
5303 node_set_state(nid, N_HIGH_MEMORY);
5304 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5305 zone_type <= ZONE_NORMAL)
5306 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5307 break;
5308 }
37b07e41 5309 }
37b07e41
LS
5310}
5311
c713216d
MG
5312/**
5313 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5314 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5315 *
5316 * This will call free_area_init_node() for each active node in the system.
7d018176 5317 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5318 * zone in each node and their holes is calculated. If the maximum PFN
5319 * between two adjacent zones match, it is assumed that the zone is empty.
5320 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5321 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5322 * starts where the previous one ended. For example, ZONE_DMA32 starts
5323 * at arch_max_dma_pfn.
5324 */
5325void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5326{
c13291a5
TH
5327 unsigned long start_pfn, end_pfn;
5328 int i, nid;
a6af2bc3 5329
c713216d
MG
5330 /* Record where the zone boundaries are */
5331 memset(arch_zone_lowest_possible_pfn, 0,
5332 sizeof(arch_zone_lowest_possible_pfn));
5333 memset(arch_zone_highest_possible_pfn, 0,
5334 sizeof(arch_zone_highest_possible_pfn));
5335 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5336 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5337 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5338 if (i == ZONE_MOVABLE)
5339 continue;
c713216d
MG
5340 arch_zone_lowest_possible_pfn[i] =
5341 arch_zone_highest_possible_pfn[i-1];
5342 arch_zone_highest_possible_pfn[i] =
5343 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5344 }
2a1e274a
MG
5345 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5346 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5347
5348 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5349 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5350 find_zone_movable_pfns_for_nodes();
c713216d 5351
c713216d 5352 /* Print out the zone ranges */
a62e2f4f 5353 printk("Zone ranges:\n");
2a1e274a
MG
5354 for (i = 0; i < MAX_NR_ZONES; i++) {
5355 if (i == ZONE_MOVABLE)
5356 continue;
155cbfc8 5357 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5358 if (arch_zone_lowest_possible_pfn[i] ==
5359 arch_zone_highest_possible_pfn[i])
155cbfc8 5360 printk(KERN_CONT "empty\n");
72f0ba02 5361 else
a62e2f4f
BH
5362 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5363 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5364 (arch_zone_highest_possible_pfn[i]
5365 << PAGE_SHIFT) - 1);
2a1e274a
MG
5366 }
5367
5368 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5369 printk("Movable zone start for each node\n");
2a1e274a
MG
5370 for (i = 0; i < MAX_NUMNODES; i++) {
5371 if (zone_movable_pfn[i])
a62e2f4f
BH
5372 printk(" Node %d: %#010lx\n", i,
5373 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5374 }
c713216d 5375
f2d52fe5 5376 /* Print out the early node map */
a62e2f4f 5377 printk("Early memory node ranges\n");
c13291a5 5378 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5379 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5380 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5381
5382 /* Initialise every node */
708614e6 5383 mminit_verify_pageflags_layout();
8ef82866 5384 setup_nr_node_ids();
c713216d
MG
5385 for_each_online_node(nid) {
5386 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5387 free_area_init_node(nid, NULL,
c713216d 5388 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5389
5390 /* Any memory on that node */
5391 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5392 node_set_state(nid, N_MEMORY);
5393 check_for_memory(pgdat, nid);
c713216d
MG
5394 }
5395}
2a1e274a 5396
7e63efef 5397static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5398{
5399 unsigned long long coremem;
5400 if (!p)
5401 return -EINVAL;
5402
5403 coremem = memparse(p, &p);
7e63efef 5404 *core = coremem >> PAGE_SHIFT;
2a1e274a 5405
7e63efef 5406 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5407 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5408
5409 return 0;
5410}
ed7ed365 5411
7e63efef
MG
5412/*
5413 * kernelcore=size sets the amount of memory for use for allocations that
5414 * cannot be reclaimed or migrated.
5415 */
5416static int __init cmdline_parse_kernelcore(char *p)
5417{
5418 return cmdline_parse_core(p, &required_kernelcore);
5419}
5420
5421/*
5422 * movablecore=size sets the amount of memory for use for allocations that
5423 * can be reclaimed or migrated.
5424 */
5425static int __init cmdline_parse_movablecore(char *p)
5426{
5427 return cmdline_parse_core(p, &required_movablecore);
5428}
5429
ed7ed365 5430early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5431early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5432
0ee332c1 5433#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5434
c3d5f5f0
JL
5435void adjust_managed_page_count(struct page *page, long count)
5436{
5437 spin_lock(&managed_page_count_lock);
5438 page_zone(page)->managed_pages += count;
5439 totalram_pages += count;
3dcc0571
JL
5440#ifdef CONFIG_HIGHMEM
5441 if (PageHighMem(page))
5442 totalhigh_pages += count;
5443#endif
c3d5f5f0
JL
5444 spin_unlock(&managed_page_count_lock);
5445}
3dcc0571 5446EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5447
11199692 5448unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5449{
11199692
JL
5450 void *pos;
5451 unsigned long pages = 0;
69afade7 5452
11199692
JL
5453 start = (void *)PAGE_ALIGN((unsigned long)start);
5454 end = (void *)((unsigned long)end & PAGE_MASK);
5455 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5456 if ((unsigned int)poison <= 0xFF)
11199692
JL
5457 memset(pos, poison, PAGE_SIZE);
5458 free_reserved_page(virt_to_page(pos));
69afade7
JL
5459 }
5460
5461 if (pages && s)
11199692 5462 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5463 s, pages << (PAGE_SHIFT - 10), start, end);
5464
5465 return pages;
5466}
11199692 5467EXPORT_SYMBOL(free_reserved_area);
69afade7 5468
cfa11e08
JL
5469#ifdef CONFIG_HIGHMEM
5470void free_highmem_page(struct page *page)
5471{
5472 __free_reserved_page(page);
5473 totalram_pages++;
7b4b2a0d 5474 page_zone(page)->managed_pages++;
cfa11e08
JL
5475 totalhigh_pages++;
5476}
5477#endif
5478
7ee3d4e8
JL
5479
5480void __init mem_init_print_info(const char *str)
5481{
5482 unsigned long physpages, codesize, datasize, rosize, bss_size;
5483 unsigned long init_code_size, init_data_size;
5484
5485 physpages = get_num_physpages();
5486 codesize = _etext - _stext;
5487 datasize = _edata - _sdata;
5488 rosize = __end_rodata - __start_rodata;
5489 bss_size = __bss_stop - __bss_start;
5490 init_data_size = __init_end - __init_begin;
5491 init_code_size = _einittext - _sinittext;
5492
5493 /*
5494 * Detect special cases and adjust section sizes accordingly:
5495 * 1) .init.* may be embedded into .data sections
5496 * 2) .init.text.* may be out of [__init_begin, __init_end],
5497 * please refer to arch/tile/kernel/vmlinux.lds.S.
5498 * 3) .rodata.* may be embedded into .text or .data sections.
5499 */
5500#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5501 do { \
5502 if (start <= pos && pos < end && size > adj) \
5503 size -= adj; \
5504 } while (0)
7ee3d4e8
JL
5505
5506 adj_init_size(__init_begin, __init_end, init_data_size,
5507 _sinittext, init_code_size);
5508 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5509 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5510 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5511 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5512
5513#undef adj_init_size
5514
5515 printk("Memory: %luK/%luK available "
5516 "(%luK kernel code, %luK rwdata, %luK rodata, "
5517 "%luK init, %luK bss, %luK reserved"
5518#ifdef CONFIG_HIGHMEM
5519 ", %luK highmem"
5520#endif
5521 "%s%s)\n",
5522 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5523 codesize >> 10, datasize >> 10, rosize >> 10,
5524 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5525 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5526#ifdef CONFIG_HIGHMEM
5527 totalhigh_pages << (PAGE_SHIFT-10),
5528#endif
5529 str ? ", " : "", str ? str : "");
5530}
5531
0e0b864e 5532/**
88ca3b94
RD
5533 * set_dma_reserve - set the specified number of pages reserved in the first zone
5534 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5535 *
5536 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5537 * In the DMA zone, a significant percentage may be consumed by kernel image
5538 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5539 * function may optionally be used to account for unfreeable pages in the
5540 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5541 * smaller per-cpu batchsize.
0e0b864e
MG
5542 */
5543void __init set_dma_reserve(unsigned long new_dma_reserve)
5544{
5545 dma_reserve = new_dma_reserve;
5546}
5547
1da177e4
LT
5548void __init free_area_init(unsigned long *zones_size)
5549{
9109fb7b 5550 free_area_init_node(0, zones_size,
1da177e4
LT
5551 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5552}
1da177e4 5553
1da177e4
LT
5554static int page_alloc_cpu_notify(struct notifier_block *self,
5555 unsigned long action, void *hcpu)
5556{
5557 int cpu = (unsigned long)hcpu;
1da177e4 5558
8bb78442 5559 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5560 lru_add_drain_cpu(cpu);
9f8f2172
CL
5561 drain_pages(cpu);
5562
5563 /*
5564 * Spill the event counters of the dead processor
5565 * into the current processors event counters.
5566 * This artificially elevates the count of the current
5567 * processor.
5568 */
f8891e5e 5569 vm_events_fold_cpu(cpu);
9f8f2172
CL
5570
5571 /*
5572 * Zero the differential counters of the dead processor
5573 * so that the vm statistics are consistent.
5574 *
5575 * This is only okay since the processor is dead and cannot
5576 * race with what we are doing.
5577 */
2bb921e5 5578 cpu_vm_stats_fold(cpu);
1da177e4
LT
5579 }
5580 return NOTIFY_OK;
5581}
1da177e4
LT
5582
5583void __init page_alloc_init(void)
5584{
5585 hotcpu_notifier(page_alloc_cpu_notify, 0);
5586}
5587
cb45b0e9
HA
5588/*
5589 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5590 * or min_free_kbytes changes.
5591 */
5592static void calculate_totalreserve_pages(void)
5593{
5594 struct pglist_data *pgdat;
5595 unsigned long reserve_pages = 0;
2f6726e5 5596 enum zone_type i, j;
cb45b0e9
HA
5597
5598 for_each_online_pgdat(pgdat) {
5599 for (i = 0; i < MAX_NR_ZONES; i++) {
5600 struct zone *zone = pgdat->node_zones + i;
3484b2de 5601 long max = 0;
cb45b0e9
HA
5602
5603 /* Find valid and maximum lowmem_reserve in the zone */
5604 for (j = i; j < MAX_NR_ZONES; j++) {
5605 if (zone->lowmem_reserve[j] > max)
5606 max = zone->lowmem_reserve[j];
5607 }
5608
41858966
MG
5609 /* we treat the high watermark as reserved pages. */
5610 max += high_wmark_pages(zone);
cb45b0e9 5611
b40da049
JL
5612 if (max > zone->managed_pages)
5613 max = zone->managed_pages;
cb45b0e9 5614 reserve_pages += max;
ab8fabd4
JW
5615 /*
5616 * Lowmem reserves are not available to
5617 * GFP_HIGHUSER page cache allocations and
5618 * kswapd tries to balance zones to their high
5619 * watermark. As a result, neither should be
5620 * regarded as dirtyable memory, to prevent a
5621 * situation where reclaim has to clean pages
5622 * in order to balance the zones.
5623 */
5624 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5625 }
5626 }
ab8fabd4 5627 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5628 totalreserve_pages = reserve_pages;
5629}
5630
1da177e4
LT
5631/*
5632 * setup_per_zone_lowmem_reserve - called whenever
5633 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5634 * has a correct pages reserved value, so an adequate number of
5635 * pages are left in the zone after a successful __alloc_pages().
5636 */
5637static void setup_per_zone_lowmem_reserve(void)
5638{
5639 struct pglist_data *pgdat;
2f6726e5 5640 enum zone_type j, idx;
1da177e4 5641
ec936fc5 5642 for_each_online_pgdat(pgdat) {
1da177e4
LT
5643 for (j = 0; j < MAX_NR_ZONES; j++) {
5644 struct zone *zone = pgdat->node_zones + j;
b40da049 5645 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5646
5647 zone->lowmem_reserve[j] = 0;
5648
2f6726e5
CL
5649 idx = j;
5650 while (idx) {
1da177e4
LT
5651 struct zone *lower_zone;
5652
2f6726e5
CL
5653 idx--;
5654
1da177e4
LT
5655 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5656 sysctl_lowmem_reserve_ratio[idx] = 1;
5657
5658 lower_zone = pgdat->node_zones + idx;
b40da049 5659 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5660 sysctl_lowmem_reserve_ratio[idx];
b40da049 5661 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5662 }
5663 }
5664 }
cb45b0e9
HA
5665
5666 /* update totalreserve_pages */
5667 calculate_totalreserve_pages();
1da177e4
LT
5668}
5669
cfd3da1e 5670static void __setup_per_zone_wmarks(void)
1da177e4
LT
5671{
5672 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5673 unsigned long lowmem_pages = 0;
5674 struct zone *zone;
5675 unsigned long flags;
5676
5677 /* Calculate total number of !ZONE_HIGHMEM pages */
5678 for_each_zone(zone) {
5679 if (!is_highmem(zone))
b40da049 5680 lowmem_pages += zone->managed_pages;
1da177e4
LT
5681 }
5682
5683 for_each_zone(zone) {
ac924c60
AM
5684 u64 tmp;
5685
1125b4e3 5686 spin_lock_irqsave(&zone->lock, flags);
b40da049 5687 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5688 do_div(tmp, lowmem_pages);
1da177e4
LT
5689 if (is_highmem(zone)) {
5690 /*
669ed175
NP
5691 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5692 * need highmem pages, so cap pages_min to a small
5693 * value here.
5694 *
41858966 5695 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5696 * deltas controls asynch page reclaim, and so should
5697 * not be capped for highmem.
1da177e4 5698 */
90ae8d67 5699 unsigned long min_pages;
1da177e4 5700
b40da049 5701 min_pages = zone->managed_pages / 1024;
90ae8d67 5702 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5703 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5704 } else {
669ed175
NP
5705 /*
5706 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5707 * proportionate to the zone's size.
5708 */
41858966 5709 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5710 }
5711
41858966
MG
5712 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5713 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5714
81c0a2bb 5715 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5716 high_wmark_pages(zone) - low_wmark_pages(zone) -
5717 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5718
56fd56b8 5719 setup_zone_migrate_reserve(zone);
1125b4e3 5720 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5721 }
cb45b0e9
HA
5722
5723 /* update totalreserve_pages */
5724 calculate_totalreserve_pages();
1da177e4
LT
5725}
5726
cfd3da1e
MG
5727/**
5728 * setup_per_zone_wmarks - called when min_free_kbytes changes
5729 * or when memory is hot-{added|removed}
5730 *
5731 * Ensures that the watermark[min,low,high] values for each zone are set
5732 * correctly with respect to min_free_kbytes.
5733 */
5734void setup_per_zone_wmarks(void)
5735{
5736 mutex_lock(&zonelists_mutex);
5737 __setup_per_zone_wmarks();
5738 mutex_unlock(&zonelists_mutex);
5739}
5740
55a4462a 5741/*
556adecb
RR
5742 * The inactive anon list should be small enough that the VM never has to
5743 * do too much work, but large enough that each inactive page has a chance
5744 * to be referenced again before it is swapped out.
5745 *
5746 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5747 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5748 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5749 * the anonymous pages are kept on the inactive list.
5750 *
5751 * total target max
5752 * memory ratio inactive anon
5753 * -------------------------------------
5754 * 10MB 1 5MB
5755 * 100MB 1 50MB
5756 * 1GB 3 250MB
5757 * 10GB 10 0.9GB
5758 * 100GB 31 3GB
5759 * 1TB 101 10GB
5760 * 10TB 320 32GB
5761 */
1b79acc9 5762static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5763{
96cb4df5 5764 unsigned int gb, ratio;
556adecb 5765
96cb4df5 5766 /* Zone size in gigabytes */
b40da049 5767 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5768 if (gb)
556adecb 5769 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5770 else
5771 ratio = 1;
556adecb 5772
96cb4df5
MK
5773 zone->inactive_ratio = ratio;
5774}
556adecb 5775
839a4fcc 5776static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5777{
5778 struct zone *zone;
5779
5780 for_each_zone(zone)
5781 calculate_zone_inactive_ratio(zone);
556adecb
RR
5782}
5783
1da177e4
LT
5784/*
5785 * Initialise min_free_kbytes.
5786 *
5787 * For small machines we want it small (128k min). For large machines
5788 * we want it large (64MB max). But it is not linear, because network
5789 * bandwidth does not increase linearly with machine size. We use
5790 *
b8af2941 5791 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5792 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5793 *
5794 * which yields
5795 *
5796 * 16MB: 512k
5797 * 32MB: 724k
5798 * 64MB: 1024k
5799 * 128MB: 1448k
5800 * 256MB: 2048k
5801 * 512MB: 2896k
5802 * 1024MB: 4096k
5803 * 2048MB: 5792k
5804 * 4096MB: 8192k
5805 * 8192MB: 11584k
5806 * 16384MB: 16384k
5807 */
1b79acc9 5808int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5809{
5810 unsigned long lowmem_kbytes;
5f12733e 5811 int new_min_free_kbytes;
1da177e4
LT
5812
5813 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5814 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5815
5816 if (new_min_free_kbytes > user_min_free_kbytes) {
5817 min_free_kbytes = new_min_free_kbytes;
5818 if (min_free_kbytes < 128)
5819 min_free_kbytes = 128;
5820 if (min_free_kbytes > 65536)
5821 min_free_kbytes = 65536;
5822 } else {
5823 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5824 new_min_free_kbytes, user_min_free_kbytes);
5825 }
bc75d33f 5826 setup_per_zone_wmarks();
a6cccdc3 5827 refresh_zone_stat_thresholds();
1da177e4 5828 setup_per_zone_lowmem_reserve();
556adecb 5829 setup_per_zone_inactive_ratio();
1da177e4
LT
5830 return 0;
5831}
bc75d33f 5832module_init(init_per_zone_wmark_min)
1da177e4
LT
5833
5834/*
b8af2941 5835 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5836 * that we can call two helper functions whenever min_free_kbytes
5837 * changes.
5838 */
cccad5b9 5839int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5840 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5841{
da8c757b
HP
5842 int rc;
5843
5844 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5845 if (rc)
5846 return rc;
5847
5f12733e
MH
5848 if (write) {
5849 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5850 setup_per_zone_wmarks();
5f12733e 5851 }
1da177e4
LT
5852 return 0;
5853}
5854
9614634f 5855#ifdef CONFIG_NUMA
cccad5b9 5856int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5857 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5858{
5859 struct zone *zone;
5860 int rc;
5861
8d65af78 5862 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5863 if (rc)
5864 return rc;
5865
5866 for_each_zone(zone)
b40da049 5867 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5868 sysctl_min_unmapped_ratio) / 100;
5869 return 0;
5870}
0ff38490 5871
cccad5b9 5872int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5873 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5874{
5875 struct zone *zone;
5876 int rc;
5877
8d65af78 5878 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5879 if (rc)
5880 return rc;
5881
5882 for_each_zone(zone)
b40da049 5883 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5884 sysctl_min_slab_ratio) / 100;
5885 return 0;
5886}
9614634f
CL
5887#endif
5888
1da177e4
LT
5889/*
5890 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5891 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5892 * whenever sysctl_lowmem_reserve_ratio changes.
5893 *
5894 * The reserve ratio obviously has absolutely no relation with the
41858966 5895 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5896 * if in function of the boot time zone sizes.
5897 */
cccad5b9 5898int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5899 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5900{
8d65af78 5901 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5902 setup_per_zone_lowmem_reserve();
5903 return 0;
5904}
5905
8ad4b1fb
RS
5906/*
5907 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5908 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5909 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5910 */
cccad5b9 5911int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5912 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5913{
5914 struct zone *zone;
7cd2b0a3 5915 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5916 int ret;
5917
7cd2b0a3
DR
5918 mutex_lock(&pcp_batch_high_lock);
5919 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5920
8d65af78 5921 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5922 if (!write || ret < 0)
5923 goto out;
5924
5925 /* Sanity checking to avoid pcp imbalance */
5926 if (percpu_pagelist_fraction &&
5927 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5928 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5929 ret = -EINVAL;
5930 goto out;
5931 }
5932
5933 /* No change? */
5934 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5935 goto out;
c8e251fa 5936
364df0eb 5937 for_each_populated_zone(zone) {
7cd2b0a3
DR
5938 unsigned int cpu;
5939
22a7f12b 5940 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5941 pageset_set_high_and_batch(zone,
5942 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5943 }
7cd2b0a3 5944out:
c8e251fa 5945 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5946 return ret;
8ad4b1fb
RS
5947}
5948
f034b5d4 5949int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5950
5951#ifdef CONFIG_NUMA
5952static int __init set_hashdist(char *str)
5953{
5954 if (!str)
5955 return 0;
5956 hashdist = simple_strtoul(str, &str, 0);
5957 return 1;
5958}
5959__setup("hashdist=", set_hashdist);
5960#endif
5961
5962/*
5963 * allocate a large system hash table from bootmem
5964 * - it is assumed that the hash table must contain an exact power-of-2
5965 * quantity of entries
5966 * - limit is the number of hash buckets, not the total allocation size
5967 */
5968void *__init alloc_large_system_hash(const char *tablename,
5969 unsigned long bucketsize,
5970 unsigned long numentries,
5971 int scale,
5972 int flags,
5973 unsigned int *_hash_shift,
5974 unsigned int *_hash_mask,
31fe62b9
TB
5975 unsigned long low_limit,
5976 unsigned long high_limit)
1da177e4 5977{
31fe62b9 5978 unsigned long long max = high_limit;
1da177e4
LT
5979 unsigned long log2qty, size;
5980 void *table = NULL;
5981
5982 /* allow the kernel cmdline to have a say */
5983 if (!numentries) {
5984 /* round applicable memory size up to nearest megabyte */
04903664 5985 numentries = nr_kernel_pages;
a7e83318
JZ
5986
5987 /* It isn't necessary when PAGE_SIZE >= 1MB */
5988 if (PAGE_SHIFT < 20)
5989 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5990
5991 /* limit to 1 bucket per 2^scale bytes of low memory */
5992 if (scale > PAGE_SHIFT)
5993 numentries >>= (scale - PAGE_SHIFT);
5994 else
5995 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5996
5997 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5998 if (unlikely(flags & HASH_SMALL)) {
5999 /* Makes no sense without HASH_EARLY */
6000 WARN_ON(!(flags & HASH_EARLY));
6001 if (!(numentries >> *_hash_shift)) {
6002 numentries = 1UL << *_hash_shift;
6003 BUG_ON(!numentries);
6004 }
6005 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6006 numentries = PAGE_SIZE / bucketsize;
1da177e4 6007 }
6e692ed3 6008 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6009
6010 /* limit allocation size to 1/16 total memory by default */
6011 if (max == 0) {
6012 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6013 do_div(max, bucketsize);
6014 }
074b8517 6015 max = min(max, 0x80000000ULL);
1da177e4 6016
31fe62b9
TB
6017 if (numentries < low_limit)
6018 numentries = low_limit;
1da177e4
LT
6019 if (numentries > max)
6020 numentries = max;
6021
f0d1b0b3 6022 log2qty = ilog2(numentries);
1da177e4
LT
6023
6024 do {
6025 size = bucketsize << log2qty;
6026 if (flags & HASH_EARLY)
6782832e 6027 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6028 else if (hashdist)
6029 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6030 else {
1037b83b
ED
6031 /*
6032 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6033 * some pages at the end of hash table which
6034 * alloc_pages_exact() automatically does
1037b83b 6035 */
264ef8a9 6036 if (get_order(size) < MAX_ORDER) {
a1dd268c 6037 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6038 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6039 }
1da177e4
LT
6040 }
6041 } while (!table && size > PAGE_SIZE && --log2qty);
6042
6043 if (!table)
6044 panic("Failed to allocate %s hash table\n", tablename);
6045
f241e660 6046 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6047 tablename,
f241e660 6048 (1UL << log2qty),
f0d1b0b3 6049 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6050 size);
6051
6052 if (_hash_shift)
6053 *_hash_shift = log2qty;
6054 if (_hash_mask)
6055 *_hash_mask = (1 << log2qty) - 1;
6056
6057 return table;
6058}
a117e66e 6059
835c134e
MG
6060/* Return a pointer to the bitmap storing bits affecting a block of pages */
6061static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6062 unsigned long pfn)
6063{
6064#ifdef CONFIG_SPARSEMEM
6065 return __pfn_to_section(pfn)->pageblock_flags;
6066#else
6067 return zone->pageblock_flags;
6068#endif /* CONFIG_SPARSEMEM */
6069}
6070
6071static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6072{
6073#ifdef CONFIG_SPARSEMEM
6074 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6075 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6076#else
c060f943 6077 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6078 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6079#endif /* CONFIG_SPARSEMEM */
6080}
6081
6082/**
1aab4d77 6083 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6084 * @page: The page within the block of interest
1aab4d77
RD
6085 * @pfn: The target page frame number
6086 * @end_bitidx: The last bit of interest to retrieve
6087 * @mask: mask of bits that the caller is interested in
6088 *
6089 * Return: pageblock_bits flags
835c134e 6090 */
dc4b0caf 6091unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6092 unsigned long end_bitidx,
6093 unsigned long mask)
835c134e
MG
6094{
6095 struct zone *zone;
6096 unsigned long *bitmap;
dc4b0caf 6097 unsigned long bitidx, word_bitidx;
e58469ba 6098 unsigned long word;
835c134e
MG
6099
6100 zone = page_zone(page);
835c134e
MG
6101 bitmap = get_pageblock_bitmap(zone, pfn);
6102 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6103 word_bitidx = bitidx / BITS_PER_LONG;
6104 bitidx &= (BITS_PER_LONG-1);
835c134e 6105
e58469ba
MG
6106 word = bitmap[word_bitidx];
6107 bitidx += end_bitidx;
6108 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6109}
6110
6111/**
dc4b0caf 6112 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6113 * @page: The page within the block of interest
835c134e 6114 * @flags: The flags to set
1aab4d77
RD
6115 * @pfn: The target page frame number
6116 * @end_bitidx: The last bit of interest
6117 * @mask: mask of bits that the caller is interested in
835c134e 6118 */
dc4b0caf
MG
6119void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6120 unsigned long pfn,
e58469ba
MG
6121 unsigned long end_bitidx,
6122 unsigned long mask)
835c134e
MG
6123{
6124 struct zone *zone;
6125 unsigned long *bitmap;
dc4b0caf 6126 unsigned long bitidx, word_bitidx;
e58469ba
MG
6127 unsigned long old_word, word;
6128
6129 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6130
6131 zone = page_zone(page);
835c134e
MG
6132 bitmap = get_pageblock_bitmap(zone, pfn);
6133 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6134 word_bitidx = bitidx / BITS_PER_LONG;
6135 bitidx &= (BITS_PER_LONG-1);
6136
309381fe 6137 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6138
e58469ba
MG
6139 bitidx += end_bitidx;
6140 mask <<= (BITS_PER_LONG - bitidx - 1);
6141 flags <<= (BITS_PER_LONG - bitidx - 1);
6142
6143 word = ACCESS_ONCE(bitmap[word_bitidx]);
6144 for (;;) {
6145 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6146 if (word == old_word)
6147 break;
6148 word = old_word;
6149 }
835c134e 6150}
a5d76b54
KH
6151
6152/*
80934513
MK
6153 * This function checks whether pageblock includes unmovable pages or not.
6154 * If @count is not zero, it is okay to include less @count unmovable pages
6155 *
b8af2941 6156 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6157 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6158 * expect this function should be exact.
a5d76b54 6159 */
b023f468
WC
6160bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6161 bool skip_hwpoisoned_pages)
49ac8255
KH
6162{
6163 unsigned long pfn, iter, found;
47118af0
MN
6164 int mt;
6165
49ac8255
KH
6166 /*
6167 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6168 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6169 */
6170 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6171 return false;
47118af0
MN
6172 mt = get_pageblock_migratetype(page);
6173 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6174 return false;
49ac8255
KH
6175
6176 pfn = page_to_pfn(page);
6177 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6178 unsigned long check = pfn + iter;
6179
29723fcc 6180 if (!pfn_valid_within(check))
49ac8255 6181 continue;
29723fcc 6182
49ac8255 6183 page = pfn_to_page(check);
c8721bbb
NH
6184
6185 /*
6186 * Hugepages are not in LRU lists, but they're movable.
6187 * We need not scan over tail pages bacause we don't
6188 * handle each tail page individually in migration.
6189 */
6190 if (PageHuge(page)) {
6191 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6192 continue;
6193 }
6194
97d255c8
MK
6195 /*
6196 * We can't use page_count without pin a page
6197 * because another CPU can free compound page.
6198 * This check already skips compound tails of THP
6199 * because their page->_count is zero at all time.
6200 */
6201 if (!atomic_read(&page->_count)) {
49ac8255
KH
6202 if (PageBuddy(page))
6203 iter += (1 << page_order(page)) - 1;
6204 continue;
6205 }
97d255c8 6206
b023f468
WC
6207 /*
6208 * The HWPoisoned page may be not in buddy system, and
6209 * page_count() is not 0.
6210 */
6211 if (skip_hwpoisoned_pages && PageHWPoison(page))
6212 continue;
6213
49ac8255
KH
6214 if (!PageLRU(page))
6215 found++;
6216 /*
6217 * If there are RECLAIMABLE pages, we need to check it.
6218 * But now, memory offline itself doesn't call shrink_slab()
6219 * and it still to be fixed.
6220 */
6221 /*
6222 * If the page is not RAM, page_count()should be 0.
6223 * we don't need more check. This is an _used_ not-movable page.
6224 *
6225 * The problematic thing here is PG_reserved pages. PG_reserved
6226 * is set to both of a memory hole page and a _used_ kernel
6227 * page at boot.
6228 */
6229 if (found > count)
80934513 6230 return true;
49ac8255 6231 }
80934513 6232 return false;
49ac8255
KH
6233}
6234
6235bool is_pageblock_removable_nolock(struct page *page)
6236{
656a0706
MH
6237 struct zone *zone;
6238 unsigned long pfn;
687875fb
MH
6239
6240 /*
6241 * We have to be careful here because we are iterating over memory
6242 * sections which are not zone aware so we might end up outside of
6243 * the zone but still within the section.
656a0706
MH
6244 * We have to take care about the node as well. If the node is offline
6245 * its NODE_DATA will be NULL - see page_zone.
687875fb 6246 */
656a0706
MH
6247 if (!node_online(page_to_nid(page)))
6248 return false;
6249
6250 zone = page_zone(page);
6251 pfn = page_to_pfn(page);
108bcc96 6252 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6253 return false;
6254
b023f468 6255 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6256}
0c0e6195 6257
041d3a8c
MN
6258#ifdef CONFIG_CMA
6259
6260static unsigned long pfn_max_align_down(unsigned long pfn)
6261{
6262 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6263 pageblock_nr_pages) - 1);
6264}
6265
6266static unsigned long pfn_max_align_up(unsigned long pfn)
6267{
6268 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6269 pageblock_nr_pages));
6270}
6271
041d3a8c 6272/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6273static int __alloc_contig_migrate_range(struct compact_control *cc,
6274 unsigned long start, unsigned long end)
041d3a8c
MN
6275{
6276 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6277 unsigned long nr_reclaimed;
041d3a8c
MN
6278 unsigned long pfn = start;
6279 unsigned int tries = 0;
6280 int ret = 0;
6281
be49a6e1 6282 migrate_prep();
041d3a8c 6283
bb13ffeb 6284 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6285 if (fatal_signal_pending(current)) {
6286 ret = -EINTR;
6287 break;
6288 }
6289
bb13ffeb
MG
6290 if (list_empty(&cc->migratepages)) {
6291 cc->nr_migratepages = 0;
edc2ca61 6292 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6293 if (!pfn) {
6294 ret = -EINTR;
6295 break;
6296 }
6297 tries = 0;
6298 } else if (++tries == 5) {
6299 ret = ret < 0 ? ret : -EBUSY;
6300 break;
6301 }
6302
beb51eaa
MK
6303 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6304 &cc->migratepages);
6305 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6306
9c620e2b 6307 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6308 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6309 }
2a6f5124
SP
6310 if (ret < 0) {
6311 putback_movable_pages(&cc->migratepages);
6312 return ret;
6313 }
6314 return 0;
041d3a8c
MN
6315}
6316
6317/**
6318 * alloc_contig_range() -- tries to allocate given range of pages
6319 * @start: start PFN to allocate
6320 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6321 * @migratetype: migratetype of the underlaying pageblocks (either
6322 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6323 * in range must have the same migratetype and it must
6324 * be either of the two.
041d3a8c
MN
6325 *
6326 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6327 * aligned, however it's the caller's responsibility to guarantee that
6328 * we are the only thread that changes migrate type of pageblocks the
6329 * pages fall in.
6330 *
6331 * The PFN range must belong to a single zone.
6332 *
6333 * Returns zero on success or negative error code. On success all
6334 * pages which PFN is in [start, end) are allocated for the caller and
6335 * need to be freed with free_contig_range().
6336 */
0815f3d8
MN
6337int alloc_contig_range(unsigned long start, unsigned long end,
6338 unsigned migratetype)
041d3a8c 6339{
041d3a8c
MN
6340 unsigned long outer_start, outer_end;
6341 int ret = 0, order;
6342
bb13ffeb
MG
6343 struct compact_control cc = {
6344 .nr_migratepages = 0,
6345 .order = -1,
6346 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6347 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6348 .ignore_skip_hint = true,
6349 };
6350 INIT_LIST_HEAD(&cc.migratepages);
6351
041d3a8c
MN
6352 /*
6353 * What we do here is we mark all pageblocks in range as
6354 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6355 * have different sizes, and due to the way page allocator
6356 * work, we align the range to biggest of the two pages so
6357 * that page allocator won't try to merge buddies from
6358 * different pageblocks and change MIGRATE_ISOLATE to some
6359 * other migration type.
6360 *
6361 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6362 * migrate the pages from an unaligned range (ie. pages that
6363 * we are interested in). This will put all the pages in
6364 * range back to page allocator as MIGRATE_ISOLATE.
6365 *
6366 * When this is done, we take the pages in range from page
6367 * allocator removing them from the buddy system. This way
6368 * page allocator will never consider using them.
6369 *
6370 * This lets us mark the pageblocks back as
6371 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6372 * aligned range but not in the unaligned, original range are
6373 * put back to page allocator so that buddy can use them.
6374 */
6375
6376 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6377 pfn_max_align_up(end), migratetype,
6378 false);
041d3a8c 6379 if (ret)
86a595f9 6380 return ret;
041d3a8c 6381
bb13ffeb 6382 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6383 if (ret)
6384 goto done;
6385
6386 /*
6387 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6388 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6389 * more, all pages in [start, end) are free in page allocator.
6390 * What we are going to do is to allocate all pages from
6391 * [start, end) (that is remove them from page allocator).
6392 *
6393 * The only problem is that pages at the beginning and at the
6394 * end of interesting range may be not aligned with pages that
6395 * page allocator holds, ie. they can be part of higher order
6396 * pages. Because of this, we reserve the bigger range and
6397 * once this is done free the pages we are not interested in.
6398 *
6399 * We don't have to hold zone->lock here because the pages are
6400 * isolated thus they won't get removed from buddy.
6401 */
6402
6403 lru_add_drain_all();
6404 drain_all_pages();
6405
6406 order = 0;
6407 outer_start = start;
6408 while (!PageBuddy(pfn_to_page(outer_start))) {
6409 if (++order >= MAX_ORDER) {
6410 ret = -EBUSY;
6411 goto done;
6412 }
6413 outer_start &= ~0UL << order;
6414 }
6415
6416 /* Make sure the range is really isolated. */
b023f468 6417 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6418 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6419 outer_start, end);
6420 ret = -EBUSY;
6421 goto done;
6422 }
6423
49f223a9
MS
6424
6425 /* Grab isolated pages from freelists. */
bb13ffeb 6426 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6427 if (!outer_end) {
6428 ret = -EBUSY;
6429 goto done;
6430 }
6431
6432 /* Free head and tail (if any) */
6433 if (start != outer_start)
6434 free_contig_range(outer_start, start - outer_start);
6435 if (end != outer_end)
6436 free_contig_range(end, outer_end - end);
6437
6438done:
6439 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6440 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6441 return ret;
6442}
6443
6444void free_contig_range(unsigned long pfn, unsigned nr_pages)
6445{
bcc2b02f
MS
6446 unsigned int count = 0;
6447
6448 for (; nr_pages--; pfn++) {
6449 struct page *page = pfn_to_page(pfn);
6450
6451 count += page_count(page) != 1;
6452 __free_page(page);
6453 }
6454 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6455}
6456#endif
6457
4ed7e022 6458#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6459/*
6460 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6461 * page high values need to be recalulated.
6462 */
4ed7e022
JL
6463void __meminit zone_pcp_update(struct zone *zone)
6464{
0a647f38 6465 unsigned cpu;
c8e251fa 6466 mutex_lock(&pcp_batch_high_lock);
0a647f38 6467 for_each_possible_cpu(cpu)
169f6c19
CS
6468 pageset_set_high_and_batch(zone,
6469 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6470 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6471}
6472#endif
6473
340175b7
JL
6474void zone_pcp_reset(struct zone *zone)
6475{
6476 unsigned long flags;
5a883813
MK
6477 int cpu;
6478 struct per_cpu_pageset *pset;
340175b7
JL
6479
6480 /* avoid races with drain_pages() */
6481 local_irq_save(flags);
6482 if (zone->pageset != &boot_pageset) {
5a883813
MK
6483 for_each_online_cpu(cpu) {
6484 pset = per_cpu_ptr(zone->pageset, cpu);
6485 drain_zonestat(zone, pset);
6486 }
340175b7
JL
6487 free_percpu(zone->pageset);
6488 zone->pageset = &boot_pageset;
6489 }
6490 local_irq_restore(flags);
6491}
6492
6dcd73d7 6493#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6494/*
6495 * All pages in the range must be isolated before calling this.
6496 */
6497void
6498__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6499{
6500 struct page *page;
6501 struct zone *zone;
7aeb09f9 6502 unsigned int order, i;
0c0e6195
KH
6503 unsigned long pfn;
6504 unsigned long flags;
6505 /* find the first valid pfn */
6506 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6507 if (pfn_valid(pfn))
6508 break;
6509 if (pfn == end_pfn)
6510 return;
6511 zone = page_zone(pfn_to_page(pfn));
6512 spin_lock_irqsave(&zone->lock, flags);
6513 pfn = start_pfn;
6514 while (pfn < end_pfn) {
6515 if (!pfn_valid(pfn)) {
6516 pfn++;
6517 continue;
6518 }
6519 page = pfn_to_page(pfn);
b023f468
WC
6520 /*
6521 * The HWPoisoned page may be not in buddy system, and
6522 * page_count() is not 0.
6523 */
6524 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6525 pfn++;
6526 SetPageReserved(page);
6527 continue;
6528 }
6529
0c0e6195
KH
6530 BUG_ON(page_count(page));
6531 BUG_ON(!PageBuddy(page));
6532 order = page_order(page);
6533#ifdef CONFIG_DEBUG_VM
6534 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6535 pfn, 1 << order, end_pfn);
6536#endif
6537 list_del(&page->lru);
6538 rmv_page_order(page);
6539 zone->free_area[order].nr_free--;
0c0e6195
KH
6540 for (i = 0; i < (1 << order); i++)
6541 SetPageReserved((page+i));
6542 pfn += (1 << order);
6543 }
6544 spin_unlock_irqrestore(&zone->lock, flags);
6545}
6546#endif
8d22ba1b
WF
6547
6548#ifdef CONFIG_MEMORY_FAILURE
6549bool is_free_buddy_page(struct page *page)
6550{
6551 struct zone *zone = page_zone(page);
6552 unsigned long pfn = page_to_pfn(page);
6553 unsigned long flags;
7aeb09f9 6554 unsigned int order;
8d22ba1b
WF
6555
6556 spin_lock_irqsave(&zone->lock, flags);
6557 for (order = 0; order < MAX_ORDER; order++) {
6558 struct page *page_head = page - (pfn & ((1 << order) - 1));
6559
6560 if (PageBuddy(page_head) && page_order(page_head) >= order)
6561 break;
6562 }
6563 spin_unlock_irqrestore(&zone->lock, flags);
6564
6565 return order < MAX_ORDER;
6566}
6567#endif