mm/writeback: discard NR_UNSTABLE_NFS, use NR_WRITEBACK instead
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
36e66c55 77#include "page_reporting.h"
1da177e4 78
c8e251fa
CS
79/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 81#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 82
72812019
LS
83#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84DEFINE_PER_CPU(int, numa_node);
85EXPORT_PER_CPU_SYMBOL(numa_node);
86#endif
87
4518085e
KW
88DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
7aac7898
LS
90#ifdef CONFIG_HAVE_MEMORYLESS_NODES
91/*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
8b885f53
JY
106static DEFINE_MUTEX(pcpu_drain_mutex);
107static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
0ee332c1 338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
351#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
f1eca35a 453 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464#else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467#endif /* CONFIG_SPARSEMEM */
468}
469
470/**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483{
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496}
497
498unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501{
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548}
3a80a7fa 549
ee6f509c 550void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 551{
5d0f3f72
KM
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
554 migratetype = MIGRATE_UNMOVABLE;
555
b2a0ac88
MG
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558}
559
13e7444b 560#ifdef CONFIG_DEBUG_VM
c6a57e19 561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 562{
bdc8cb98
DH
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 566 unsigned long sp, start_pfn;
c6a57e19 567
bdc8cb98
DH
568 do {
569 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
108bcc96 572 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
b5e6a5a2 576 if (ret)
613813e8
DH
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
b5e6a5a2 580
bdc8cb98 581 return ret;
c6a57e19
DH
582}
583
584static int page_is_consistent(struct zone *zone, struct page *page)
585{
14e07298 586 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 587 return 0;
1da177e4 588 if (zone != page_zone(page))
c6a57e19
DH
589 return 0;
590
591 return 1;
592}
593/*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
d73d3c9f 596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
597{
598 if (page_outside_zone_boundaries(zone, page))
1da177e4 599 return 1;
c6a57e19
DH
600 if (!page_is_consistent(zone, page))
601 return 1;
602
1da177e4
LT
603 return 0;
604}
13e7444b 605#else
d73d3c9f 606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
607{
608 return 0;
609}
610#endif
611
d230dec1
KS
612static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
1da177e4 614{
d936cf9b
HD
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
ff8e8116 629 pr_alert(
1e9e6365 630 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
ff8e8116 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 640 current->comm, page_to_pfn(page));
ff8e8116
VB
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
4e462112 646 dump_page_owner(page);
3dc14741 647
4f31888c 648 print_modules();
1da177e4 649 dump_stack();
d936cf9b 650out:
8cc3b392 651 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 652 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
654}
655
1da177e4
LT
656/*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
1d798ca3 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 660 *
1d798ca3
KS
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 663 *
1d798ca3
KS
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
1da177e4 666 *
1d798ca3 667 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 668 * This usage means that zero-order pages may not be compound.
1da177e4 669 */
d98c7a09 670
9a982250 671void free_compound_page(struct page *page)
d98c7a09 672{
7ae88534 673 mem_cgroup_uncharge(page);
d85f3385 674 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
675}
676
d00181b9 677void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
678{
679 int i;
680 int nr_pages = 1 << order;
681
f1e61557 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
58a84aa9 687 set_page_count(p, 0);
1c290f64 688 p->mapping = TAIL_MAPPING;
1d798ca3 689 set_compound_head(p, page);
18229df5 690 }
53f9263b 691 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
692 if (hpage_pincount_available(page))
693 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
694}
695
c0a32fc5
SG
696#ifdef CONFIG_DEBUG_PAGEALLOC
697unsigned int _debug_guardpage_minorder;
96a2b03f 698
8e57f8ac
VB
699bool _debug_pagealloc_enabled_early __read_mostly
700 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
701EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 702DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 703EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
704
705DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 706
031bc574
JK
707static int __init early_debug_pagealloc(char *buf)
708{
8e57f8ac 709 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
710}
711early_param("debug_pagealloc", early_debug_pagealloc);
712
8e57f8ac 713void init_debug_pagealloc(void)
e30825f1 714{
031bc574
JK
715 if (!debug_pagealloc_enabled())
716 return;
717
8e57f8ac
VB
718 static_branch_enable(&_debug_pagealloc_enabled);
719
f1c1e9f7
JK
720 if (!debug_guardpage_minorder())
721 return;
722
96a2b03f 723 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
724}
725
c0a32fc5
SG
726static int __init debug_guardpage_minorder_setup(char *buf)
727{
728 unsigned long res;
729
730 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 731 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
732 return 0;
733 }
734 _debug_guardpage_minorder = res;
1170532b 735 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
736 return 0;
737}
f1c1e9f7 738early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 739
acbc15a4 740static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 741 unsigned int order, int migratetype)
c0a32fc5 742{
e30825f1 743 if (!debug_guardpage_enabled())
acbc15a4
JK
744 return false;
745
746 if (order >= debug_guardpage_minorder())
747 return false;
e30825f1 748
3972f6bb 749 __SetPageGuard(page);
2847cf95
JK
750 INIT_LIST_HEAD(&page->lru);
751 set_page_private(page, order);
752 /* Guard pages are not available for any usage */
753 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
754
755 return true;
c0a32fc5
SG
756}
757
2847cf95
JK
758static inline void clear_page_guard(struct zone *zone, struct page *page,
759 unsigned int order, int migratetype)
c0a32fc5 760{
e30825f1
JK
761 if (!debug_guardpage_enabled())
762 return;
763
3972f6bb 764 __ClearPageGuard(page);
e30825f1 765
2847cf95
JK
766 set_page_private(page, 0);
767 if (!is_migrate_isolate(migratetype))
768 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
769}
770#else
acbc15a4
JK
771static inline bool set_page_guard(struct zone *zone, struct page *page,
772 unsigned int order, int migratetype) { return false; }
2847cf95
JK
773static inline void clear_page_guard(struct zone *zone, struct page *page,
774 unsigned int order, int migratetype) {}
c0a32fc5
SG
775#endif
776
7aeb09f9 777static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 778{
4c21e2f2 779 set_page_private(page, order);
676165a8 780 __SetPageBuddy(page);
1da177e4
LT
781}
782
1da177e4
LT
783/*
784 * This function checks whether a page is free && is the buddy
6e292b9b 785 * we can coalesce a page and its buddy if
13ad59df 786 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 787 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
788 * (c) a page and its buddy have the same order &&
789 * (d) a page and its buddy are in the same zone.
676165a8 790 *
6e292b9b
MW
791 * For recording whether a page is in the buddy system, we set PageBuddy.
792 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 793 *
676165a8 794 * For recording page's order, we use page_private(page).
1da177e4 795 */
fe925c0c 796static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 797 unsigned int order)
1da177e4 798{
fe925c0c 799 if (!page_is_guard(buddy) && !PageBuddy(buddy))
800 return false;
4c5018ce 801
fe925c0c 802 if (page_order(buddy) != order)
803 return false;
c0a32fc5 804
fe925c0c 805 /*
806 * zone check is done late to avoid uselessly calculating
807 * zone/node ids for pages that could never merge.
808 */
809 if (page_zone_id(page) != page_zone_id(buddy))
810 return false;
d34c5fa0 811
fe925c0c 812 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 813
fe925c0c 814 return true;
1da177e4
LT
815}
816
5e1f0f09
MG
817#ifdef CONFIG_COMPACTION
818static inline struct capture_control *task_capc(struct zone *zone)
819{
820 struct capture_control *capc = current->capture_control;
821
822 return capc &&
823 !(current->flags & PF_KTHREAD) &&
824 !capc->page &&
825 capc->cc->zone == zone &&
826 capc->cc->direct_compaction ? capc : NULL;
827}
828
829static inline bool
830compaction_capture(struct capture_control *capc, struct page *page,
831 int order, int migratetype)
832{
833 if (!capc || order != capc->cc->order)
834 return false;
835
836 /* Do not accidentally pollute CMA or isolated regions*/
837 if (is_migrate_cma(migratetype) ||
838 is_migrate_isolate(migratetype))
839 return false;
840
841 /*
842 * Do not let lower order allocations polluate a movable pageblock.
843 * This might let an unmovable request use a reclaimable pageblock
844 * and vice-versa but no more than normal fallback logic which can
845 * have trouble finding a high-order free page.
846 */
847 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
848 return false;
849
850 capc->page = page;
851 return true;
852}
853
854#else
855static inline struct capture_control *task_capc(struct zone *zone)
856{
857 return NULL;
858}
859
860static inline bool
861compaction_capture(struct capture_control *capc, struct page *page,
862 int order, int migratetype)
863{
864 return false;
865}
866#endif /* CONFIG_COMPACTION */
867
6ab01363
AD
868/* Used for pages not on another list */
869static inline void add_to_free_list(struct page *page, struct zone *zone,
870 unsigned int order, int migratetype)
871{
872 struct free_area *area = &zone->free_area[order];
873
874 list_add(&page->lru, &area->free_list[migratetype]);
875 area->nr_free++;
876}
877
878/* Used for pages not on another list */
879static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
880 unsigned int order, int migratetype)
881{
882 struct free_area *area = &zone->free_area[order];
883
884 list_add_tail(&page->lru, &area->free_list[migratetype]);
885 area->nr_free++;
886}
887
888/* Used for pages which are on another list */
889static inline void move_to_free_list(struct page *page, struct zone *zone,
890 unsigned int order, int migratetype)
891{
892 struct free_area *area = &zone->free_area[order];
893
894 list_move(&page->lru, &area->free_list[migratetype]);
895}
896
897static inline void del_page_from_free_list(struct page *page, struct zone *zone,
898 unsigned int order)
899{
36e66c55
AD
900 /* clear reported state and update reported page count */
901 if (page_reported(page))
902 __ClearPageReported(page);
903
6ab01363
AD
904 list_del(&page->lru);
905 __ClearPageBuddy(page);
906 set_page_private(page, 0);
907 zone->free_area[order].nr_free--;
908}
909
a2129f24
AD
910/*
911 * If this is not the largest possible page, check if the buddy
912 * of the next-highest order is free. If it is, it's possible
913 * that pages are being freed that will coalesce soon. In case,
914 * that is happening, add the free page to the tail of the list
915 * so it's less likely to be used soon and more likely to be merged
916 * as a higher order page
917 */
918static inline bool
919buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
920 struct page *page, unsigned int order)
921{
922 struct page *higher_page, *higher_buddy;
923 unsigned long combined_pfn;
924
925 if (order >= MAX_ORDER - 2)
926 return false;
927
928 if (!pfn_valid_within(buddy_pfn))
929 return false;
930
931 combined_pfn = buddy_pfn & pfn;
932 higher_page = page + (combined_pfn - pfn);
933 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
934 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
935
936 return pfn_valid_within(buddy_pfn) &&
937 page_is_buddy(higher_page, higher_buddy, order + 1);
938}
939
1da177e4
LT
940/*
941 * Freeing function for a buddy system allocator.
942 *
943 * The concept of a buddy system is to maintain direct-mapped table
944 * (containing bit values) for memory blocks of various "orders".
945 * The bottom level table contains the map for the smallest allocatable
946 * units of memory (here, pages), and each level above it describes
947 * pairs of units from the levels below, hence, "buddies".
948 * At a high level, all that happens here is marking the table entry
949 * at the bottom level available, and propagating the changes upward
950 * as necessary, plus some accounting needed to play nicely with other
951 * parts of the VM system.
952 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
953 * free pages of length of (1 << order) and marked with PageBuddy.
954 * Page's order is recorded in page_private(page) field.
1da177e4 955 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
956 * other. That is, if we allocate a small block, and both were
957 * free, the remainder of the region must be split into blocks.
1da177e4 958 * If a block is freed, and its buddy is also free, then this
5f63b720 959 * triggers coalescing into a block of larger size.
1da177e4 960 *
6d49e352 961 * -- nyc
1da177e4
LT
962 */
963
48db57f8 964static inline void __free_one_page(struct page *page,
dc4b0caf 965 unsigned long pfn,
ed0ae21d 966 struct zone *zone, unsigned int order,
36e66c55 967 int migratetype, bool report)
1da177e4 968{
a2129f24 969 struct capture_control *capc = task_capc(zone);
76741e77 970 unsigned long uninitialized_var(buddy_pfn);
a2129f24 971 unsigned long combined_pfn;
d9dddbf5 972 unsigned int max_order;
a2129f24
AD
973 struct page *buddy;
974 bool to_tail;
d9dddbf5
VB
975
976 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 977
d29bb978 978 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 979 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 980
ed0ae21d 981 VM_BUG_ON(migratetype == -1);
d9dddbf5 982 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 983 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 984
76741e77 985 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 986 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 987
d9dddbf5 988continue_merging:
3c605096 989 while (order < max_order - 1) {
5e1f0f09
MG
990 if (compaction_capture(capc, page, order, migratetype)) {
991 __mod_zone_freepage_state(zone, -(1 << order),
992 migratetype);
993 return;
994 }
76741e77
VB
995 buddy_pfn = __find_buddy_pfn(pfn, order);
996 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
997
998 if (!pfn_valid_within(buddy_pfn))
999 goto done_merging;
cb2b95e1 1000 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1001 goto done_merging;
c0a32fc5
SG
1002 /*
1003 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1004 * merge with it and move up one order.
1005 */
b03641af 1006 if (page_is_guard(buddy))
2847cf95 1007 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1008 else
6ab01363 1009 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1010 combined_pfn = buddy_pfn & pfn;
1011 page = page + (combined_pfn - pfn);
1012 pfn = combined_pfn;
1da177e4
LT
1013 order++;
1014 }
d9dddbf5
VB
1015 if (max_order < MAX_ORDER) {
1016 /* If we are here, it means order is >= pageblock_order.
1017 * We want to prevent merge between freepages on isolate
1018 * pageblock and normal pageblock. Without this, pageblock
1019 * isolation could cause incorrect freepage or CMA accounting.
1020 *
1021 * We don't want to hit this code for the more frequent
1022 * low-order merging.
1023 */
1024 if (unlikely(has_isolate_pageblock(zone))) {
1025 int buddy_mt;
1026
76741e77
VB
1027 buddy_pfn = __find_buddy_pfn(pfn, order);
1028 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1029 buddy_mt = get_pageblock_migratetype(buddy);
1030
1031 if (migratetype != buddy_mt
1032 && (is_migrate_isolate(migratetype) ||
1033 is_migrate_isolate(buddy_mt)))
1034 goto done_merging;
1035 }
1036 max_order++;
1037 goto continue_merging;
1038 }
1039
1040done_merging:
1da177e4 1041 set_page_order(page, order);
6dda9d55 1042
97500a4a 1043 if (is_shuffle_order(order))
a2129f24 1044 to_tail = shuffle_pick_tail();
97500a4a 1045 else
a2129f24 1046 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1047
a2129f24 1048 if (to_tail)
6ab01363 1049 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1050 else
6ab01363 1051 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1052
1053 /* Notify page reporting subsystem of freed page */
1054 if (report)
1055 page_reporting_notify_free(order);
1da177e4
LT
1056}
1057
7bfec6f4
MG
1058/*
1059 * A bad page could be due to a number of fields. Instead of multiple branches,
1060 * try and check multiple fields with one check. The caller must do a detailed
1061 * check if necessary.
1062 */
1063static inline bool page_expected_state(struct page *page,
1064 unsigned long check_flags)
1065{
1066 if (unlikely(atomic_read(&page->_mapcount) != -1))
1067 return false;
1068
1069 if (unlikely((unsigned long)page->mapping |
1070 page_ref_count(page) |
1071#ifdef CONFIG_MEMCG
1072 (unsigned long)page->mem_cgroup |
1073#endif
1074 (page->flags & check_flags)))
1075 return false;
1076
1077 return true;
1078}
1079
bb552ac6 1080static void free_pages_check_bad(struct page *page)
1da177e4 1081{
7bfec6f4
MG
1082 const char *bad_reason;
1083 unsigned long bad_flags;
1084
7bfec6f4
MG
1085 bad_reason = NULL;
1086 bad_flags = 0;
f0b791a3 1087
53f9263b 1088 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1089 bad_reason = "nonzero mapcount";
1090 if (unlikely(page->mapping != NULL))
1091 bad_reason = "non-NULL mapping";
fe896d18 1092 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1093 bad_reason = "nonzero _refcount";
f0b791a3
DH
1094 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1095 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1096 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1097 }
9edad6ea
JW
1098#ifdef CONFIG_MEMCG
1099 if (unlikely(page->mem_cgroup))
1100 bad_reason = "page still charged to cgroup";
1101#endif
7bfec6f4 1102 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1103}
1104
1105static inline int free_pages_check(struct page *page)
1106{
da838d4f 1107 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1108 return 0;
bb552ac6
MG
1109
1110 /* Something has gone sideways, find it */
1111 free_pages_check_bad(page);
7bfec6f4 1112 return 1;
1da177e4
LT
1113}
1114
4db7548c
MG
1115static int free_tail_pages_check(struct page *head_page, struct page *page)
1116{
1117 int ret = 1;
1118
1119 /*
1120 * We rely page->lru.next never has bit 0 set, unless the page
1121 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1122 */
1123 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1124
1125 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1126 ret = 0;
1127 goto out;
1128 }
1129 switch (page - head_page) {
1130 case 1:
4da1984e 1131 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1132 if (unlikely(compound_mapcount(page))) {
1133 bad_page(page, "nonzero compound_mapcount", 0);
1134 goto out;
1135 }
1136 break;
1137 case 2:
1138 /*
1139 * the second tail page: ->mapping is
fa3015b7 1140 * deferred_list.next -- ignore value.
4db7548c
MG
1141 */
1142 break;
1143 default:
1144 if (page->mapping != TAIL_MAPPING) {
1145 bad_page(page, "corrupted mapping in tail page", 0);
1146 goto out;
1147 }
1148 break;
1149 }
1150 if (unlikely(!PageTail(page))) {
1151 bad_page(page, "PageTail not set", 0);
1152 goto out;
1153 }
1154 if (unlikely(compound_head(page) != head_page)) {
1155 bad_page(page, "compound_head not consistent", 0);
1156 goto out;
1157 }
1158 ret = 0;
1159out:
1160 page->mapping = NULL;
1161 clear_compound_head(page);
1162 return ret;
1163}
1164
6471384a
AP
1165static void kernel_init_free_pages(struct page *page, int numpages)
1166{
1167 int i;
1168
1169 for (i = 0; i < numpages; i++)
1170 clear_highpage(page + i);
1171}
1172
e2769dbd
MG
1173static __always_inline bool free_pages_prepare(struct page *page,
1174 unsigned int order, bool check_free)
4db7548c 1175{
e2769dbd 1176 int bad = 0;
4db7548c 1177
4db7548c
MG
1178 VM_BUG_ON_PAGE(PageTail(page), page);
1179
e2769dbd 1180 trace_mm_page_free(page, order);
e2769dbd
MG
1181
1182 /*
1183 * Check tail pages before head page information is cleared to
1184 * avoid checking PageCompound for order-0 pages.
1185 */
1186 if (unlikely(order)) {
1187 bool compound = PageCompound(page);
1188 int i;
1189
1190 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1191
9a73f61b
KS
1192 if (compound)
1193 ClearPageDoubleMap(page);
e2769dbd
MG
1194 for (i = 1; i < (1 << order); i++) {
1195 if (compound)
1196 bad += free_tail_pages_check(page, page + i);
1197 if (unlikely(free_pages_check(page + i))) {
1198 bad++;
1199 continue;
1200 }
1201 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1202 }
1203 }
bda807d4 1204 if (PageMappingFlags(page))
4db7548c 1205 page->mapping = NULL;
c4159a75 1206 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1207 __memcg_kmem_uncharge_page(page, order);
e2769dbd
MG
1208 if (check_free)
1209 bad += free_pages_check(page);
1210 if (bad)
1211 return false;
4db7548c 1212
e2769dbd
MG
1213 page_cpupid_reset_last(page);
1214 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1215 reset_page_owner(page, order);
4db7548c
MG
1216
1217 if (!PageHighMem(page)) {
1218 debug_check_no_locks_freed(page_address(page),
e2769dbd 1219 PAGE_SIZE << order);
4db7548c 1220 debug_check_no_obj_freed(page_address(page),
e2769dbd 1221 PAGE_SIZE << order);
4db7548c 1222 }
6471384a
AP
1223 if (want_init_on_free())
1224 kernel_init_free_pages(page, 1 << order);
1225
e2769dbd 1226 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1227 /*
1228 * arch_free_page() can make the page's contents inaccessible. s390
1229 * does this. So nothing which can access the page's contents should
1230 * happen after this.
1231 */
1232 arch_free_page(page, order);
1233
8e57f8ac 1234 if (debug_pagealloc_enabled_static())
d6332692
RE
1235 kernel_map_pages(page, 1 << order, 0);
1236
3c0c12cc 1237 kasan_free_nondeferred_pages(page, order);
4db7548c 1238
4db7548c
MG
1239 return true;
1240}
1241
e2769dbd 1242#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1243/*
1244 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1245 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1246 * moved from pcp lists to free lists.
1247 */
1248static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1249{
1250 return free_pages_prepare(page, 0, true);
1251}
1252
4462b32c 1253static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1254{
8e57f8ac 1255 if (debug_pagealloc_enabled_static())
4462b32c
VB
1256 return free_pages_check(page);
1257 else
1258 return false;
e2769dbd
MG
1259}
1260#else
4462b32c
VB
1261/*
1262 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1263 * moving from pcp lists to free list in order to reduce overhead. With
1264 * debug_pagealloc enabled, they are checked also immediately when being freed
1265 * to the pcp lists.
1266 */
e2769dbd
MG
1267static bool free_pcp_prepare(struct page *page)
1268{
8e57f8ac 1269 if (debug_pagealloc_enabled_static())
4462b32c
VB
1270 return free_pages_prepare(page, 0, true);
1271 else
1272 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1273}
1274
4db7548c
MG
1275static bool bulkfree_pcp_prepare(struct page *page)
1276{
1277 return free_pages_check(page);
1278}
1279#endif /* CONFIG_DEBUG_VM */
1280
97334162
AL
1281static inline void prefetch_buddy(struct page *page)
1282{
1283 unsigned long pfn = page_to_pfn(page);
1284 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1285 struct page *buddy = page + (buddy_pfn - pfn);
1286
1287 prefetch(buddy);
1288}
1289
1da177e4 1290/*
5f8dcc21 1291 * Frees a number of pages from the PCP lists
1da177e4 1292 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1293 * count is the number of pages to free.
1da177e4
LT
1294 *
1295 * If the zone was previously in an "all pages pinned" state then look to
1296 * see if this freeing clears that state.
1297 *
1298 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1299 * pinned" detection logic.
1300 */
5f8dcc21
MG
1301static void free_pcppages_bulk(struct zone *zone, int count,
1302 struct per_cpu_pages *pcp)
1da177e4 1303{
5f8dcc21 1304 int migratetype = 0;
a6f9edd6 1305 int batch_free = 0;
97334162 1306 int prefetch_nr = 0;
3777999d 1307 bool isolated_pageblocks;
0a5f4e5b
AL
1308 struct page *page, *tmp;
1309 LIST_HEAD(head);
f2260e6b 1310
e5b31ac2 1311 while (count) {
5f8dcc21
MG
1312 struct list_head *list;
1313
1314 /*
a6f9edd6
MG
1315 * Remove pages from lists in a round-robin fashion. A
1316 * batch_free count is maintained that is incremented when an
1317 * empty list is encountered. This is so more pages are freed
1318 * off fuller lists instead of spinning excessively around empty
1319 * lists
5f8dcc21
MG
1320 */
1321 do {
a6f9edd6 1322 batch_free++;
5f8dcc21
MG
1323 if (++migratetype == MIGRATE_PCPTYPES)
1324 migratetype = 0;
1325 list = &pcp->lists[migratetype];
1326 } while (list_empty(list));
48db57f8 1327
1d16871d
NK
1328 /* This is the only non-empty list. Free them all. */
1329 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1330 batch_free = count;
1d16871d 1331
a6f9edd6 1332 do {
a16601c5 1333 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1334 /* must delete to avoid corrupting pcp list */
a6f9edd6 1335 list_del(&page->lru);
77ba9062 1336 pcp->count--;
aa016d14 1337
4db7548c
MG
1338 if (bulkfree_pcp_prepare(page))
1339 continue;
1340
0a5f4e5b 1341 list_add_tail(&page->lru, &head);
97334162
AL
1342
1343 /*
1344 * We are going to put the page back to the global
1345 * pool, prefetch its buddy to speed up later access
1346 * under zone->lock. It is believed the overhead of
1347 * an additional test and calculating buddy_pfn here
1348 * can be offset by reduced memory latency later. To
1349 * avoid excessive prefetching due to large count, only
1350 * prefetch buddy for the first pcp->batch nr of pages.
1351 */
1352 if (prefetch_nr++ < pcp->batch)
1353 prefetch_buddy(page);
e5b31ac2 1354 } while (--count && --batch_free && !list_empty(list));
1da177e4 1355 }
0a5f4e5b
AL
1356
1357 spin_lock(&zone->lock);
1358 isolated_pageblocks = has_isolate_pageblock(zone);
1359
1360 /*
1361 * Use safe version since after __free_one_page(),
1362 * page->lru.next will not point to original list.
1363 */
1364 list_for_each_entry_safe(page, tmp, &head, lru) {
1365 int mt = get_pcppage_migratetype(page);
1366 /* MIGRATE_ISOLATE page should not go to pcplists */
1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368 /* Pageblock could have been isolated meanwhile */
1369 if (unlikely(isolated_pageblocks))
1370 mt = get_pageblock_migratetype(page);
1371
36e66c55 1372 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1373 trace_mm_page_pcpu_drain(page, 0, mt);
1374 }
d34b0733 1375 spin_unlock(&zone->lock);
1da177e4
LT
1376}
1377
dc4b0caf
MG
1378static void free_one_page(struct zone *zone,
1379 struct page *page, unsigned long pfn,
7aeb09f9 1380 unsigned int order,
ed0ae21d 1381 int migratetype)
1da177e4 1382{
d34b0733 1383 spin_lock(&zone->lock);
ad53f92e
JK
1384 if (unlikely(has_isolate_pageblock(zone) ||
1385 is_migrate_isolate(migratetype))) {
1386 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1387 }
36e66c55 1388 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1389 spin_unlock(&zone->lock);
48db57f8
NP
1390}
1391
1e8ce83c 1392static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1393 unsigned long zone, int nid)
1e8ce83c 1394{
d0dc12e8 1395 mm_zero_struct_page(page);
1e8ce83c 1396 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1397 init_page_count(page);
1398 page_mapcount_reset(page);
1399 page_cpupid_reset_last(page);
2813b9c0 1400 page_kasan_tag_reset(page);
1e8ce83c 1401
1e8ce83c
RH
1402 INIT_LIST_HEAD(&page->lru);
1403#ifdef WANT_PAGE_VIRTUAL
1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 if (!is_highmem_idx(zone))
1406 set_page_address(page, __va(pfn << PAGE_SHIFT));
1407#endif
1408}
1409
7e18adb4 1410#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1411static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1412{
1413 pg_data_t *pgdat;
1414 int nid, zid;
1415
1416 if (!early_page_uninitialised(pfn))
1417 return;
1418
1419 nid = early_pfn_to_nid(pfn);
1420 pgdat = NODE_DATA(nid);
1421
1422 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423 struct zone *zone = &pgdat->node_zones[zid];
1424
1425 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426 break;
1427 }
d0dc12e8 1428 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1429}
1430#else
1431static inline void init_reserved_page(unsigned long pfn)
1432{
1433}
1434#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435
92923ca3
NZ
1436/*
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1441 */
4b50bcc7 1442void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1443{
1444 unsigned long start_pfn = PFN_DOWN(start);
1445 unsigned long end_pfn = PFN_UP(end);
1446
7e18adb4
MG
1447 for (; start_pfn < end_pfn; start_pfn++) {
1448 if (pfn_valid(start_pfn)) {
1449 struct page *page = pfn_to_page(start_pfn);
1450
1451 init_reserved_page(start_pfn);
1d798ca3
KS
1452
1453 /* Avoid false-positive PageTail() */
1454 INIT_LIST_HEAD(&page->lru);
1455
d483da5b
AD
1456 /*
1457 * no need for atomic set_bit because the struct
1458 * page is not visible yet so nobody should
1459 * access it yet.
1460 */
1461 __SetPageReserved(page);
7e18adb4
MG
1462 }
1463 }
92923ca3
NZ
1464}
1465
ec95f53a
KM
1466static void __free_pages_ok(struct page *page, unsigned int order)
1467{
d34b0733 1468 unsigned long flags;
95e34412 1469 int migratetype;
dc4b0caf 1470 unsigned long pfn = page_to_pfn(page);
ec95f53a 1471
e2769dbd 1472 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1473 return;
1474
cfc47a28 1475 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1476 local_irq_save(flags);
1477 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1478 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1479 local_irq_restore(flags);
1da177e4
LT
1480}
1481
a9cd410a 1482void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1483{
c3993076 1484 unsigned int nr_pages = 1 << order;
e2d0bd2b 1485 struct page *p = page;
c3993076 1486 unsigned int loop;
a226f6c8 1487
e2d0bd2b
YL
1488 prefetchw(p);
1489 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 prefetchw(p + 1);
c3993076
JW
1491 __ClearPageReserved(p);
1492 set_page_count(p, 0);
a226f6c8 1493 }
e2d0bd2b
YL
1494 __ClearPageReserved(p);
1495 set_page_count(p, 0);
c3993076 1496
9705bea5 1497 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1498 set_page_refcounted(page);
1499 __free_pages(page, order);
a226f6c8
DH
1500}
1501
75a592a4
MG
1502#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1503 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1504
75a592a4
MG
1505static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1506
1507int __meminit early_pfn_to_nid(unsigned long pfn)
1508{
7ace9917 1509 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1510 int nid;
1511
7ace9917 1512 spin_lock(&early_pfn_lock);
75a592a4 1513 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1514 if (nid < 0)
e4568d38 1515 nid = first_online_node;
7ace9917
MG
1516 spin_unlock(&early_pfn_lock);
1517
1518 return nid;
75a592a4
MG
1519}
1520#endif
1521
1522#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1523/* Only safe to use early in boot when initialisation is single-threaded */
1524static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1525{
1526 int nid;
1527
56ec43d8 1528 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1529 if (nid >= 0 && nid != node)
1530 return false;
1531 return true;
1532}
1533
75a592a4 1534#else
75a592a4
MG
1535static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1536{
1537 return true;
1538}
75a592a4
MG
1539#endif
1540
1541
7c2ee349 1542void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1543 unsigned int order)
1544{
1545 if (early_page_uninitialised(pfn))
1546 return;
a9cd410a 1547 __free_pages_core(page, order);
3a80a7fa
MG
1548}
1549
7cf91a98
JK
1550/*
1551 * Check that the whole (or subset of) a pageblock given by the interval of
1552 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1553 * with the migration of free compaction scanner. The scanners then need to
1554 * use only pfn_valid_within() check for arches that allow holes within
1555 * pageblocks.
1556 *
1557 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1558 *
1559 * It's possible on some configurations to have a setup like node0 node1 node0
1560 * i.e. it's possible that all pages within a zones range of pages do not
1561 * belong to a single zone. We assume that a border between node0 and node1
1562 * can occur within a single pageblock, but not a node0 node1 node0
1563 * interleaving within a single pageblock. It is therefore sufficient to check
1564 * the first and last page of a pageblock and avoid checking each individual
1565 * page in a pageblock.
1566 */
1567struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1568 unsigned long end_pfn, struct zone *zone)
1569{
1570 struct page *start_page;
1571 struct page *end_page;
1572
1573 /* end_pfn is one past the range we are checking */
1574 end_pfn--;
1575
1576 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1577 return NULL;
1578
2d070eab
MH
1579 start_page = pfn_to_online_page(start_pfn);
1580 if (!start_page)
1581 return NULL;
7cf91a98
JK
1582
1583 if (page_zone(start_page) != zone)
1584 return NULL;
1585
1586 end_page = pfn_to_page(end_pfn);
1587
1588 /* This gives a shorter code than deriving page_zone(end_page) */
1589 if (page_zone_id(start_page) != page_zone_id(end_page))
1590 return NULL;
1591
1592 return start_page;
1593}
1594
1595void set_zone_contiguous(struct zone *zone)
1596{
1597 unsigned long block_start_pfn = zone->zone_start_pfn;
1598 unsigned long block_end_pfn;
1599
1600 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1601 for (; block_start_pfn < zone_end_pfn(zone);
1602 block_start_pfn = block_end_pfn,
1603 block_end_pfn += pageblock_nr_pages) {
1604
1605 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1606
1607 if (!__pageblock_pfn_to_page(block_start_pfn,
1608 block_end_pfn, zone))
1609 return;
e84fe99b 1610 cond_resched();
7cf91a98
JK
1611 }
1612
1613 /* We confirm that there is no hole */
1614 zone->contiguous = true;
1615}
1616
1617void clear_zone_contiguous(struct zone *zone)
1618{
1619 zone->contiguous = false;
1620}
1621
7e18adb4 1622#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1623static void __init deferred_free_range(unsigned long pfn,
1624 unsigned long nr_pages)
a4de83dd 1625{
2f47a91f
PT
1626 struct page *page;
1627 unsigned long i;
a4de83dd 1628
2f47a91f 1629 if (!nr_pages)
a4de83dd
MG
1630 return;
1631
2f47a91f
PT
1632 page = pfn_to_page(pfn);
1633
a4de83dd 1634 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1635 if (nr_pages == pageblock_nr_pages &&
1636 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1637 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1638 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1639 return;
1640 }
1641
e780149b
XQ
1642 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1643 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1644 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1645 __free_pages_core(page, 0);
e780149b 1646 }
a4de83dd
MG
1647}
1648
d3cd131d
NS
1649/* Completion tracking for deferred_init_memmap() threads */
1650static atomic_t pgdat_init_n_undone __initdata;
1651static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1652
1653static inline void __init pgdat_init_report_one_done(void)
1654{
1655 if (atomic_dec_and_test(&pgdat_init_n_undone))
1656 complete(&pgdat_init_all_done_comp);
1657}
0e1cc95b 1658
2f47a91f 1659/*
80b1f41c
PT
1660 * Returns true if page needs to be initialized or freed to buddy allocator.
1661 *
1662 * First we check if pfn is valid on architectures where it is possible to have
1663 * holes within pageblock_nr_pages. On systems where it is not possible, this
1664 * function is optimized out.
1665 *
1666 * Then, we check if a current large page is valid by only checking the validity
1667 * of the head pfn.
2f47a91f 1668 */
56ec43d8 1669static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1670{
80b1f41c
PT
1671 if (!pfn_valid_within(pfn))
1672 return false;
1673 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1674 return false;
80b1f41c
PT
1675 return true;
1676}
2f47a91f 1677
80b1f41c
PT
1678/*
1679 * Free pages to buddy allocator. Try to free aligned pages in
1680 * pageblock_nr_pages sizes.
1681 */
56ec43d8 1682static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1683 unsigned long end_pfn)
1684{
80b1f41c
PT
1685 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1686 unsigned long nr_free = 0;
2f47a91f 1687
80b1f41c 1688 for (; pfn < end_pfn; pfn++) {
56ec43d8 1689 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1690 deferred_free_range(pfn - nr_free, nr_free);
1691 nr_free = 0;
1692 } else if (!(pfn & nr_pgmask)) {
1693 deferred_free_range(pfn - nr_free, nr_free);
1694 nr_free = 1;
3a2d7fa8 1695 touch_nmi_watchdog();
80b1f41c
PT
1696 } else {
1697 nr_free++;
1698 }
1699 }
1700 /* Free the last block of pages to allocator */
1701 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1702}
1703
80b1f41c
PT
1704/*
1705 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1706 * by performing it only once every pageblock_nr_pages.
1707 * Return number of pages initialized.
1708 */
56ec43d8 1709static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1710 unsigned long pfn,
1711 unsigned long end_pfn)
2f47a91f 1712{
2f47a91f 1713 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1714 int nid = zone_to_nid(zone);
2f47a91f 1715 unsigned long nr_pages = 0;
56ec43d8 1716 int zid = zone_idx(zone);
2f47a91f 1717 struct page *page = NULL;
2f47a91f 1718
80b1f41c 1719 for (; pfn < end_pfn; pfn++) {
56ec43d8 1720 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1721 page = NULL;
2f47a91f 1722 continue;
80b1f41c 1723 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1724 page = pfn_to_page(pfn);
3a2d7fa8 1725 touch_nmi_watchdog();
80b1f41c
PT
1726 } else {
1727 page++;
2f47a91f 1728 }
d0dc12e8 1729 __init_single_page(page, pfn, zid, nid);
80b1f41c 1730 nr_pages++;
2f47a91f 1731 }
80b1f41c 1732 return (nr_pages);
2f47a91f
PT
1733}
1734
0e56acae
AD
1735/*
1736 * This function is meant to pre-load the iterator for the zone init.
1737 * Specifically it walks through the ranges until we are caught up to the
1738 * first_init_pfn value and exits there. If we never encounter the value we
1739 * return false indicating there are no valid ranges left.
1740 */
1741static bool __init
1742deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1743 unsigned long *spfn, unsigned long *epfn,
1744 unsigned long first_init_pfn)
1745{
1746 u64 j;
1747
1748 /*
1749 * Start out by walking through the ranges in this zone that have
1750 * already been initialized. We don't need to do anything with them
1751 * so we just need to flush them out of the system.
1752 */
1753 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1754 if (*epfn <= first_init_pfn)
1755 continue;
1756 if (*spfn < first_init_pfn)
1757 *spfn = first_init_pfn;
1758 *i = j;
1759 return true;
1760 }
1761
1762 return false;
1763}
1764
1765/*
1766 * Initialize and free pages. We do it in two loops: first we initialize
1767 * struct page, then free to buddy allocator, because while we are
1768 * freeing pages we can access pages that are ahead (computing buddy
1769 * page in __free_one_page()).
1770 *
1771 * In order to try and keep some memory in the cache we have the loop
1772 * broken along max page order boundaries. This way we will not cause
1773 * any issues with the buddy page computation.
1774 */
1775static unsigned long __init
1776deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1777 unsigned long *end_pfn)
1778{
1779 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1780 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1781 unsigned long nr_pages = 0;
1782 u64 j = *i;
1783
1784 /* First we loop through and initialize the page values */
1785 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1786 unsigned long t;
1787
1788 if (mo_pfn <= *start_pfn)
1789 break;
1790
1791 t = min(mo_pfn, *end_pfn);
1792 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1793
1794 if (mo_pfn < *end_pfn) {
1795 *start_pfn = mo_pfn;
1796 break;
1797 }
1798 }
1799
1800 /* Reset values and now loop through freeing pages as needed */
1801 swap(j, *i);
1802
1803 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1804 unsigned long t;
1805
1806 if (mo_pfn <= spfn)
1807 break;
1808
1809 t = min(mo_pfn, epfn);
1810 deferred_free_pages(spfn, t);
1811
1812 if (mo_pfn <= epfn)
1813 break;
1814 }
1815
1816 return nr_pages;
1817}
1818
7e18adb4 1819/* Initialise remaining memory on a node */
0e1cc95b 1820static int __init deferred_init_memmap(void *data)
7e18adb4 1821{
0e1cc95b 1822 pg_data_t *pgdat = data;
0e56acae
AD
1823 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1824 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1825 unsigned long first_init_pfn, flags;
7e18adb4 1826 unsigned long start = jiffies;
7e18adb4 1827 struct zone *zone;
0e56acae 1828 int zid;
2f47a91f 1829 u64 i;
7e18adb4 1830
3a2d7fa8
PT
1831 /* Bind memory initialisation thread to a local node if possible */
1832 if (!cpumask_empty(cpumask))
1833 set_cpus_allowed_ptr(current, cpumask);
1834
1835 pgdat_resize_lock(pgdat, &flags);
1836 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1837 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1838 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1839 pgdat_init_report_one_done();
0e1cc95b
MG
1840 return 0;
1841 }
1842
7e18adb4
MG
1843 /* Sanity check boundaries */
1844 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1845 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1846 pgdat->first_deferred_pfn = ULONG_MAX;
1847
1848 /* Only the highest zone is deferred so find it */
1849 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1850 zone = pgdat->node_zones + zid;
1851 if (first_init_pfn < zone_end_pfn(zone))
1852 break;
1853 }
0e56acae
AD
1854
1855 /* If the zone is empty somebody else may have cleared out the zone */
1856 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1857 first_init_pfn))
1858 goto zone_empty;
7e18adb4 1859
80b1f41c 1860 /*
0e56acae
AD
1861 * Initialize and free pages in MAX_ORDER sized increments so
1862 * that we can avoid introducing any issues with the buddy
1863 * allocator.
80b1f41c 1864 */
0e56acae
AD
1865 while (spfn < epfn)
1866 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1867zone_empty:
3a2d7fa8 1868 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1869
1870 /* Sanity check that the next zone really is unpopulated */
1871 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1872
837566e7
AD
1873 pr_info("node %d initialised, %lu pages in %ums\n",
1874 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1875
1876 pgdat_init_report_one_done();
0e1cc95b
MG
1877 return 0;
1878}
c9e97a19 1879
c9e97a19
PT
1880/*
1881 * If this zone has deferred pages, try to grow it by initializing enough
1882 * deferred pages to satisfy the allocation specified by order, rounded up to
1883 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1884 * of SECTION_SIZE bytes by initializing struct pages in increments of
1885 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1886 *
1887 * Return true when zone was grown, otherwise return false. We return true even
1888 * when we grow less than requested, to let the caller decide if there are
1889 * enough pages to satisfy the allocation.
1890 *
1891 * Note: We use noinline because this function is needed only during boot, and
1892 * it is called from a __ref function _deferred_grow_zone. This way we are
1893 * making sure that it is not inlined into permanent text section.
1894 */
1895static noinline bool __init
1896deferred_grow_zone(struct zone *zone, unsigned int order)
1897{
c9e97a19 1898 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1899 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1900 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1901 unsigned long spfn, epfn, flags;
1902 unsigned long nr_pages = 0;
c9e97a19
PT
1903 u64 i;
1904
1905 /* Only the last zone may have deferred pages */
1906 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1907 return false;
1908
1909 pgdat_resize_lock(pgdat, &flags);
1910
1911 /*
1912 * If deferred pages have been initialized while we were waiting for
1913 * the lock, return true, as the zone was grown. The caller will retry
1914 * this zone. We won't return to this function since the caller also
1915 * has this static branch.
1916 */
1917 if (!static_branch_unlikely(&deferred_pages)) {
1918 pgdat_resize_unlock(pgdat, &flags);
1919 return true;
1920 }
1921
1922 /*
1923 * If someone grew this zone while we were waiting for spinlock, return
1924 * true, as there might be enough pages already.
1925 */
1926 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1927 pgdat_resize_unlock(pgdat, &flags);
1928 return true;
1929 }
1930
0e56acae
AD
1931 /* If the zone is empty somebody else may have cleared out the zone */
1932 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1933 first_deferred_pfn)) {
1934 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1935 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1936 /* Retry only once. */
1937 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1938 }
1939
0e56acae
AD
1940 /*
1941 * Initialize and free pages in MAX_ORDER sized increments so
1942 * that we can avoid introducing any issues with the buddy
1943 * allocator.
1944 */
1945 while (spfn < epfn) {
1946 /* update our first deferred PFN for this section */
1947 first_deferred_pfn = spfn;
1948
1949 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1950
0e56acae
AD
1951 /* We should only stop along section boundaries */
1952 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1953 continue;
c9e97a19 1954
0e56acae 1955 /* If our quota has been met we can stop here */
c9e97a19
PT
1956 if (nr_pages >= nr_pages_needed)
1957 break;
1958 }
1959
0e56acae 1960 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1961 pgdat_resize_unlock(pgdat, &flags);
1962
1963 return nr_pages > 0;
1964}
1965
1966/*
1967 * deferred_grow_zone() is __init, but it is called from
1968 * get_page_from_freelist() during early boot until deferred_pages permanently
1969 * disables this call. This is why we have refdata wrapper to avoid warning,
1970 * and to ensure that the function body gets unloaded.
1971 */
1972static bool __ref
1973_deferred_grow_zone(struct zone *zone, unsigned int order)
1974{
1975 return deferred_grow_zone(zone, order);
1976}
1977
7cf91a98 1978#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1979
1980void __init page_alloc_init_late(void)
1981{
7cf91a98 1982 struct zone *zone;
e900a918 1983 int nid;
7cf91a98
JK
1984
1985#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1986
d3cd131d
NS
1987 /* There will be num_node_state(N_MEMORY) threads */
1988 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1989 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1990 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1991 }
1992
1993 /* Block until all are initialised */
d3cd131d 1994 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1995
3e8fc007
MG
1996 /*
1997 * The number of managed pages has changed due to the initialisation
1998 * so the pcpu batch and high limits needs to be updated or the limits
1999 * will be artificially small.
2000 */
2001 for_each_populated_zone(zone)
2002 zone_pcp_update(zone);
2003
c9e97a19
PT
2004 /*
2005 * We initialized the rest of the deferred pages. Permanently disable
2006 * on-demand struct page initialization.
2007 */
2008 static_branch_disable(&deferred_pages);
2009
4248b0da
MG
2010 /* Reinit limits that are based on free pages after the kernel is up */
2011 files_maxfiles_init();
7cf91a98 2012#endif
350e88ba 2013
3010f876
PT
2014 /* Discard memblock private memory */
2015 memblock_discard();
7cf91a98 2016
e900a918
DW
2017 for_each_node_state(nid, N_MEMORY)
2018 shuffle_free_memory(NODE_DATA(nid));
2019
7cf91a98
JK
2020 for_each_populated_zone(zone)
2021 set_zone_contiguous(zone);
7e18adb4 2022}
7e18adb4 2023
47118af0 2024#ifdef CONFIG_CMA
9cf510a5 2025/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2026void __init init_cma_reserved_pageblock(struct page *page)
2027{
2028 unsigned i = pageblock_nr_pages;
2029 struct page *p = page;
2030
2031 do {
2032 __ClearPageReserved(p);
2033 set_page_count(p, 0);
d883c6cf 2034 } while (++p, --i);
47118af0 2035
47118af0 2036 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2037
2038 if (pageblock_order >= MAX_ORDER) {
2039 i = pageblock_nr_pages;
2040 p = page;
2041 do {
2042 set_page_refcounted(p);
2043 __free_pages(p, MAX_ORDER - 1);
2044 p += MAX_ORDER_NR_PAGES;
2045 } while (i -= MAX_ORDER_NR_PAGES);
2046 } else {
2047 set_page_refcounted(page);
2048 __free_pages(page, pageblock_order);
2049 }
2050
3dcc0571 2051 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2052}
2053#endif
1da177e4
LT
2054
2055/*
2056 * The order of subdivision here is critical for the IO subsystem.
2057 * Please do not alter this order without good reasons and regression
2058 * testing. Specifically, as large blocks of memory are subdivided,
2059 * the order in which smaller blocks are delivered depends on the order
2060 * they're subdivided in this function. This is the primary factor
2061 * influencing the order in which pages are delivered to the IO
2062 * subsystem according to empirical testing, and this is also justified
2063 * by considering the behavior of a buddy system containing a single
2064 * large block of memory acted on by a series of small allocations.
2065 * This behavior is a critical factor in sglist merging's success.
2066 *
6d49e352 2067 * -- nyc
1da177e4 2068 */
085cc7d5 2069static inline void expand(struct zone *zone, struct page *page,
6ab01363 2070 int low, int high, int migratetype)
1da177e4
LT
2071{
2072 unsigned long size = 1 << high;
2073
2074 while (high > low) {
1da177e4
LT
2075 high--;
2076 size >>= 1;
309381fe 2077 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2078
acbc15a4
JK
2079 /*
2080 * Mark as guard pages (or page), that will allow to
2081 * merge back to allocator when buddy will be freed.
2082 * Corresponding page table entries will not be touched,
2083 * pages will stay not present in virtual address space
2084 */
2085 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2086 continue;
acbc15a4 2087
6ab01363 2088 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2089 set_page_order(&page[size], high);
2090 }
1da177e4
LT
2091}
2092
4e611801 2093static void check_new_page_bad(struct page *page)
1da177e4 2094{
4e611801
VB
2095 const char *bad_reason = NULL;
2096 unsigned long bad_flags = 0;
7bfec6f4 2097
53f9263b 2098 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
2099 bad_reason = "nonzero mapcount";
2100 if (unlikely(page->mapping != NULL))
2101 bad_reason = "non-NULL mapping";
fe896d18 2102 if (unlikely(page_ref_count(page) != 0))
136ac591 2103 bad_reason = "nonzero _refcount";
f4c18e6f
NH
2104 if (unlikely(page->flags & __PG_HWPOISON)) {
2105 bad_reason = "HWPoisoned (hardware-corrupted)";
2106 bad_flags = __PG_HWPOISON;
e570f56c
NH
2107 /* Don't complain about hwpoisoned pages */
2108 page_mapcount_reset(page); /* remove PageBuddy */
2109 return;
f4c18e6f 2110 }
f0b791a3
DH
2111 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2112 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2113 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2114 }
9edad6ea
JW
2115#ifdef CONFIG_MEMCG
2116 if (unlikely(page->mem_cgroup))
2117 bad_reason = "page still charged to cgroup";
2118#endif
4e611801
VB
2119 bad_page(page, bad_reason, bad_flags);
2120}
2121
2122/*
2123 * This page is about to be returned from the page allocator
2124 */
2125static inline int check_new_page(struct page *page)
2126{
2127 if (likely(page_expected_state(page,
2128 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2129 return 0;
2130
2131 check_new_page_bad(page);
2132 return 1;
2a7684a2
WF
2133}
2134
bd33ef36 2135static inline bool free_pages_prezeroed(void)
1414c7f4 2136{
6471384a
AP
2137 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2138 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2139}
2140
479f854a 2141#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2142/*
2143 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2144 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2145 * also checked when pcp lists are refilled from the free lists.
2146 */
2147static inline bool check_pcp_refill(struct page *page)
479f854a 2148{
8e57f8ac 2149 if (debug_pagealloc_enabled_static())
4462b32c
VB
2150 return check_new_page(page);
2151 else
2152 return false;
479f854a
MG
2153}
2154
4462b32c 2155static inline bool check_new_pcp(struct page *page)
479f854a
MG
2156{
2157 return check_new_page(page);
2158}
2159#else
4462b32c
VB
2160/*
2161 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2162 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2163 * enabled, they are also checked when being allocated from the pcp lists.
2164 */
2165static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2166{
2167 return check_new_page(page);
2168}
4462b32c 2169static inline bool check_new_pcp(struct page *page)
479f854a 2170{
8e57f8ac 2171 if (debug_pagealloc_enabled_static())
4462b32c
VB
2172 return check_new_page(page);
2173 else
2174 return false;
479f854a
MG
2175}
2176#endif /* CONFIG_DEBUG_VM */
2177
2178static bool check_new_pages(struct page *page, unsigned int order)
2179{
2180 int i;
2181 for (i = 0; i < (1 << order); i++) {
2182 struct page *p = page + i;
2183
2184 if (unlikely(check_new_page(p)))
2185 return true;
2186 }
2187
2188 return false;
2189}
2190
46f24fd8
JK
2191inline void post_alloc_hook(struct page *page, unsigned int order,
2192 gfp_t gfp_flags)
2193{
2194 set_page_private(page, 0);
2195 set_page_refcounted(page);
2196
2197 arch_alloc_page(page, order);
8e57f8ac 2198 if (debug_pagealloc_enabled_static())
d6332692 2199 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2200 kasan_alloc_pages(page, order);
4117992d 2201 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2202 set_page_owner(page, order, gfp_flags);
2203}
2204
479f854a 2205static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2206 unsigned int alloc_flags)
2a7684a2 2207{
46f24fd8 2208 post_alloc_hook(page, order, gfp_flags);
17cf4406 2209
6471384a
AP
2210 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2211 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2212
2213 if (order && (gfp_flags & __GFP_COMP))
2214 prep_compound_page(page, order);
2215
75379191 2216 /*
2f064f34 2217 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2218 * allocate the page. The expectation is that the caller is taking
2219 * steps that will free more memory. The caller should avoid the page
2220 * being used for !PFMEMALLOC purposes.
2221 */
2f064f34
MH
2222 if (alloc_flags & ALLOC_NO_WATERMARKS)
2223 set_page_pfmemalloc(page);
2224 else
2225 clear_page_pfmemalloc(page);
1da177e4
LT
2226}
2227
56fd56b8
MG
2228/*
2229 * Go through the free lists for the given migratetype and remove
2230 * the smallest available page from the freelists
2231 */
85ccc8fa 2232static __always_inline
728ec980 2233struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2234 int migratetype)
2235{
2236 unsigned int current_order;
b8af2941 2237 struct free_area *area;
56fd56b8
MG
2238 struct page *page;
2239
2240 /* Find a page of the appropriate size in the preferred list */
2241 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2242 area = &(zone->free_area[current_order]);
b03641af 2243 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2244 if (!page)
2245 continue;
6ab01363
AD
2246 del_page_from_free_list(page, zone, current_order);
2247 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2248 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2249 return page;
2250 }
2251
2252 return NULL;
2253}
2254
2255
b2a0ac88
MG
2256/*
2257 * This array describes the order lists are fallen back to when
2258 * the free lists for the desirable migrate type are depleted
2259 */
47118af0 2260static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2261 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2262 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2263 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2264#ifdef CONFIG_CMA
974a786e 2265 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2266#endif
194159fb 2267#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2268 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2269#endif
b2a0ac88
MG
2270};
2271
dc67647b 2272#ifdef CONFIG_CMA
85ccc8fa 2273static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2274 unsigned int order)
2275{
2276 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2277}
2278#else
2279static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2280 unsigned int order) { return NULL; }
2281#endif
2282
c361be55
MG
2283/*
2284 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2285 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2286 * boundary. If alignment is required, use move_freepages_block()
2287 */
02aa0cdd 2288static int move_freepages(struct zone *zone,
b69a7288 2289 struct page *start_page, struct page *end_page,
02aa0cdd 2290 int migratetype, int *num_movable)
c361be55
MG
2291{
2292 struct page *page;
d00181b9 2293 unsigned int order;
d100313f 2294 int pages_moved = 0;
c361be55 2295
c361be55
MG
2296 for (page = start_page; page <= end_page;) {
2297 if (!pfn_valid_within(page_to_pfn(page))) {
2298 page++;
2299 continue;
2300 }
2301
2302 if (!PageBuddy(page)) {
02aa0cdd
VB
2303 /*
2304 * We assume that pages that could be isolated for
2305 * migration are movable. But we don't actually try
2306 * isolating, as that would be expensive.
2307 */
2308 if (num_movable &&
2309 (PageLRU(page) || __PageMovable(page)))
2310 (*num_movable)++;
2311
c361be55
MG
2312 page++;
2313 continue;
2314 }
2315
cd961038
DR
2316 /* Make sure we are not inadvertently changing nodes */
2317 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2318 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2319
c361be55 2320 order = page_order(page);
6ab01363 2321 move_to_free_list(page, zone, order, migratetype);
c361be55 2322 page += 1 << order;
d100313f 2323 pages_moved += 1 << order;
c361be55
MG
2324 }
2325
d100313f 2326 return pages_moved;
c361be55
MG
2327}
2328
ee6f509c 2329int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2330 int migratetype, int *num_movable)
c361be55
MG
2331{
2332 unsigned long start_pfn, end_pfn;
2333 struct page *start_page, *end_page;
2334
4a222127
DR
2335 if (num_movable)
2336 *num_movable = 0;
2337
c361be55 2338 start_pfn = page_to_pfn(page);
d9c23400 2339 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2340 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2341 end_page = start_page + pageblock_nr_pages - 1;
2342 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2343
2344 /* Do not cross zone boundaries */
108bcc96 2345 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2346 start_page = page;
108bcc96 2347 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2348 return 0;
2349
02aa0cdd
VB
2350 return move_freepages(zone, start_page, end_page, migratetype,
2351 num_movable);
c361be55
MG
2352}
2353
2f66a68f
MG
2354static void change_pageblock_range(struct page *pageblock_page,
2355 int start_order, int migratetype)
2356{
2357 int nr_pageblocks = 1 << (start_order - pageblock_order);
2358
2359 while (nr_pageblocks--) {
2360 set_pageblock_migratetype(pageblock_page, migratetype);
2361 pageblock_page += pageblock_nr_pages;
2362 }
2363}
2364
fef903ef 2365/*
9c0415eb
VB
2366 * When we are falling back to another migratetype during allocation, try to
2367 * steal extra free pages from the same pageblocks to satisfy further
2368 * allocations, instead of polluting multiple pageblocks.
2369 *
2370 * If we are stealing a relatively large buddy page, it is likely there will
2371 * be more free pages in the pageblock, so try to steal them all. For
2372 * reclaimable and unmovable allocations, we steal regardless of page size,
2373 * as fragmentation caused by those allocations polluting movable pageblocks
2374 * is worse than movable allocations stealing from unmovable and reclaimable
2375 * pageblocks.
fef903ef 2376 */
4eb7dce6
JK
2377static bool can_steal_fallback(unsigned int order, int start_mt)
2378{
2379 /*
2380 * Leaving this order check is intended, although there is
2381 * relaxed order check in next check. The reason is that
2382 * we can actually steal whole pageblock if this condition met,
2383 * but, below check doesn't guarantee it and that is just heuristic
2384 * so could be changed anytime.
2385 */
2386 if (order >= pageblock_order)
2387 return true;
2388
2389 if (order >= pageblock_order / 2 ||
2390 start_mt == MIGRATE_RECLAIMABLE ||
2391 start_mt == MIGRATE_UNMOVABLE ||
2392 page_group_by_mobility_disabled)
2393 return true;
2394
2395 return false;
2396}
2397
1c30844d
MG
2398static inline void boost_watermark(struct zone *zone)
2399{
2400 unsigned long max_boost;
2401
2402 if (!watermark_boost_factor)
2403 return;
14f69140
HW
2404 /*
2405 * Don't bother in zones that are unlikely to produce results.
2406 * On small machines, including kdump capture kernels running
2407 * in a small area, boosting the watermark can cause an out of
2408 * memory situation immediately.
2409 */
2410 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2411 return;
1c30844d
MG
2412
2413 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2414 watermark_boost_factor, 10000);
94b3334c
MG
2415
2416 /*
2417 * high watermark may be uninitialised if fragmentation occurs
2418 * very early in boot so do not boost. We do not fall
2419 * through and boost by pageblock_nr_pages as failing
2420 * allocations that early means that reclaim is not going
2421 * to help and it may even be impossible to reclaim the
2422 * boosted watermark resulting in a hang.
2423 */
2424 if (!max_boost)
2425 return;
2426
1c30844d
MG
2427 max_boost = max(pageblock_nr_pages, max_boost);
2428
2429 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2430 max_boost);
2431}
2432
4eb7dce6
JK
2433/*
2434 * This function implements actual steal behaviour. If order is large enough,
2435 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2436 * pageblock to our migratetype and determine how many already-allocated pages
2437 * are there in the pageblock with a compatible migratetype. If at least half
2438 * of pages are free or compatible, we can change migratetype of the pageblock
2439 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2440 */
2441static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2442 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2443{
d00181b9 2444 unsigned int current_order = page_order(page);
02aa0cdd
VB
2445 int free_pages, movable_pages, alike_pages;
2446 int old_block_type;
2447
2448 old_block_type = get_pageblock_migratetype(page);
fef903ef 2449
3bc48f96
VB
2450 /*
2451 * This can happen due to races and we want to prevent broken
2452 * highatomic accounting.
2453 */
02aa0cdd 2454 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2455 goto single_page;
2456
fef903ef
SB
2457 /* Take ownership for orders >= pageblock_order */
2458 if (current_order >= pageblock_order) {
2459 change_pageblock_range(page, current_order, start_type);
3bc48f96 2460 goto single_page;
fef903ef
SB
2461 }
2462
1c30844d
MG
2463 /*
2464 * Boost watermarks to increase reclaim pressure to reduce the
2465 * likelihood of future fallbacks. Wake kswapd now as the node
2466 * may be balanced overall and kswapd will not wake naturally.
2467 */
2468 boost_watermark(zone);
2469 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2470 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2471
3bc48f96
VB
2472 /* We are not allowed to try stealing from the whole block */
2473 if (!whole_block)
2474 goto single_page;
2475
02aa0cdd
VB
2476 free_pages = move_freepages_block(zone, page, start_type,
2477 &movable_pages);
2478 /*
2479 * Determine how many pages are compatible with our allocation.
2480 * For movable allocation, it's the number of movable pages which
2481 * we just obtained. For other types it's a bit more tricky.
2482 */
2483 if (start_type == MIGRATE_MOVABLE) {
2484 alike_pages = movable_pages;
2485 } else {
2486 /*
2487 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2488 * to MOVABLE pageblock, consider all non-movable pages as
2489 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2490 * vice versa, be conservative since we can't distinguish the
2491 * exact migratetype of non-movable pages.
2492 */
2493 if (old_block_type == MIGRATE_MOVABLE)
2494 alike_pages = pageblock_nr_pages
2495 - (free_pages + movable_pages);
2496 else
2497 alike_pages = 0;
2498 }
2499
3bc48f96 2500 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2501 if (!free_pages)
3bc48f96 2502 goto single_page;
fef903ef 2503
02aa0cdd
VB
2504 /*
2505 * If a sufficient number of pages in the block are either free or of
2506 * comparable migratability as our allocation, claim the whole block.
2507 */
2508 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2509 page_group_by_mobility_disabled)
2510 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2511
2512 return;
2513
2514single_page:
6ab01363 2515 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2516}
2517
2149cdae
JK
2518/*
2519 * Check whether there is a suitable fallback freepage with requested order.
2520 * If only_stealable is true, this function returns fallback_mt only if
2521 * we can steal other freepages all together. This would help to reduce
2522 * fragmentation due to mixed migratetype pages in one pageblock.
2523 */
2524int find_suitable_fallback(struct free_area *area, unsigned int order,
2525 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2526{
2527 int i;
2528 int fallback_mt;
2529
2530 if (area->nr_free == 0)
2531 return -1;
2532
2533 *can_steal = false;
2534 for (i = 0;; i++) {
2535 fallback_mt = fallbacks[migratetype][i];
974a786e 2536 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2537 break;
2538
b03641af 2539 if (free_area_empty(area, fallback_mt))
4eb7dce6 2540 continue;
fef903ef 2541
4eb7dce6
JK
2542 if (can_steal_fallback(order, migratetype))
2543 *can_steal = true;
2544
2149cdae
JK
2545 if (!only_stealable)
2546 return fallback_mt;
2547
2548 if (*can_steal)
2549 return fallback_mt;
fef903ef 2550 }
4eb7dce6
JK
2551
2552 return -1;
fef903ef
SB
2553}
2554
0aaa29a5
MG
2555/*
2556 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2557 * there are no empty page blocks that contain a page with a suitable order
2558 */
2559static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2560 unsigned int alloc_order)
2561{
2562 int mt;
2563 unsigned long max_managed, flags;
2564
2565 /*
2566 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2567 * Check is race-prone but harmless.
2568 */
9705bea5 2569 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2570 if (zone->nr_reserved_highatomic >= max_managed)
2571 return;
2572
2573 spin_lock_irqsave(&zone->lock, flags);
2574
2575 /* Recheck the nr_reserved_highatomic limit under the lock */
2576 if (zone->nr_reserved_highatomic >= max_managed)
2577 goto out_unlock;
2578
2579 /* Yoink! */
2580 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2581 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2582 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2583 zone->nr_reserved_highatomic += pageblock_nr_pages;
2584 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2585 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2586 }
2587
2588out_unlock:
2589 spin_unlock_irqrestore(&zone->lock, flags);
2590}
2591
2592/*
2593 * Used when an allocation is about to fail under memory pressure. This
2594 * potentially hurts the reliability of high-order allocations when under
2595 * intense memory pressure but failed atomic allocations should be easier
2596 * to recover from than an OOM.
29fac03b
MK
2597 *
2598 * If @force is true, try to unreserve a pageblock even though highatomic
2599 * pageblock is exhausted.
0aaa29a5 2600 */
29fac03b
MK
2601static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2602 bool force)
0aaa29a5
MG
2603{
2604 struct zonelist *zonelist = ac->zonelist;
2605 unsigned long flags;
2606 struct zoneref *z;
2607 struct zone *zone;
2608 struct page *page;
2609 int order;
04c8716f 2610 bool ret;
0aaa29a5
MG
2611
2612 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2613 ac->nodemask) {
29fac03b
MK
2614 /*
2615 * Preserve at least one pageblock unless memory pressure
2616 * is really high.
2617 */
2618 if (!force && zone->nr_reserved_highatomic <=
2619 pageblock_nr_pages)
0aaa29a5
MG
2620 continue;
2621
2622 spin_lock_irqsave(&zone->lock, flags);
2623 for (order = 0; order < MAX_ORDER; order++) {
2624 struct free_area *area = &(zone->free_area[order]);
2625
b03641af 2626 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2627 if (!page)
0aaa29a5
MG
2628 continue;
2629
0aaa29a5 2630 /*
4855e4a7
MK
2631 * In page freeing path, migratetype change is racy so
2632 * we can counter several free pages in a pageblock
2633 * in this loop althoug we changed the pageblock type
2634 * from highatomic to ac->migratetype. So we should
2635 * adjust the count once.
0aaa29a5 2636 */
a6ffdc07 2637 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2638 /*
2639 * It should never happen but changes to
2640 * locking could inadvertently allow a per-cpu
2641 * drain to add pages to MIGRATE_HIGHATOMIC
2642 * while unreserving so be safe and watch for
2643 * underflows.
2644 */
2645 zone->nr_reserved_highatomic -= min(
2646 pageblock_nr_pages,
2647 zone->nr_reserved_highatomic);
2648 }
0aaa29a5
MG
2649
2650 /*
2651 * Convert to ac->migratetype and avoid the normal
2652 * pageblock stealing heuristics. Minimally, the caller
2653 * is doing the work and needs the pages. More
2654 * importantly, if the block was always converted to
2655 * MIGRATE_UNMOVABLE or another type then the number
2656 * of pageblocks that cannot be completely freed
2657 * may increase.
2658 */
2659 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2660 ret = move_freepages_block(zone, page, ac->migratetype,
2661 NULL);
29fac03b
MK
2662 if (ret) {
2663 spin_unlock_irqrestore(&zone->lock, flags);
2664 return ret;
2665 }
0aaa29a5
MG
2666 }
2667 spin_unlock_irqrestore(&zone->lock, flags);
2668 }
04c8716f
MK
2669
2670 return false;
0aaa29a5
MG
2671}
2672
3bc48f96
VB
2673/*
2674 * Try finding a free buddy page on the fallback list and put it on the free
2675 * list of requested migratetype, possibly along with other pages from the same
2676 * block, depending on fragmentation avoidance heuristics. Returns true if
2677 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2678 *
2679 * The use of signed ints for order and current_order is a deliberate
2680 * deviation from the rest of this file, to make the for loop
2681 * condition simpler.
3bc48f96 2682 */
85ccc8fa 2683static __always_inline bool
6bb15450
MG
2684__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2685 unsigned int alloc_flags)
b2a0ac88 2686{
b8af2941 2687 struct free_area *area;
b002529d 2688 int current_order;
6bb15450 2689 int min_order = order;
b2a0ac88 2690 struct page *page;
4eb7dce6
JK
2691 int fallback_mt;
2692 bool can_steal;
b2a0ac88 2693
6bb15450
MG
2694 /*
2695 * Do not steal pages from freelists belonging to other pageblocks
2696 * i.e. orders < pageblock_order. If there are no local zones free,
2697 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2698 */
2699 if (alloc_flags & ALLOC_NOFRAGMENT)
2700 min_order = pageblock_order;
2701
7a8f58f3
VB
2702 /*
2703 * Find the largest available free page in the other list. This roughly
2704 * approximates finding the pageblock with the most free pages, which
2705 * would be too costly to do exactly.
2706 */
6bb15450 2707 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2708 --current_order) {
4eb7dce6
JK
2709 area = &(zone->free_area[current_order]);
2710 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2711 start_migratetype, false, &can_steal);
4eb7dce6
JK
2712 if (fallback_mt == -1)
2713 continue;
b2a0ac88 2714
7a8f58f3
VB
2715 /*
2716 * We cannot steal all free pages from the pageblock and the
2717 * requested migratetype is movable. In that case it's better to
2718 * steal and split the smallest available page instead of the
2719 * largest available page, because even if the next movable
2720 * allocation falls back into a different pageblock than this
2721 * one, it won't cause permanent fragmentation.
2722 */
2723 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2724 && current_order > order)
2725 goto find_smallest;
b2a0ac88 2726
7a8f58f3
VB
2727 goto do_steal;
2728 }
e0fff1bd 2729
7a8f58f3 2730 return false;
e0fff1bd 2731
7a8f58f3
VB
2732find_smallest:
2733 for (current_order = order; current_order < MAX_ORDER;
2734 current_order++) {
2735 area = &(zone->free_area[current_order]);
2736 fallback_mt = find_suitable_fallback(area, current_order,
2737 start_migratetype, false, &can_steal);
2738 if (fallback_mt != -1)
2739 break;
b2a0ac88
MG
2740 }
2741
7a8f58f3
VB
2742 /*
2743 * This should not happen - we already found a suitable fallback
2744 * when looking for the largest page.
2745 */
2746 VM_BUG_ON(current_order == MAX_ORDER);
2747
2748do_steal:
b03641af 2749 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2750
1c30844d
MG
2751 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2752 can_steal);
7a8f58f3
VB
2753
2754 trace_mm_page_alloc_extfrag(page, order, current_order,
2755 start_migratetype, fallback_mt);
2756
2757 return true;
2758
b2a0ac88
MG
2759}
2760
56fd56b8 2761/*
1da177e4
LT
2762 * Do the hard work of removing an element from the buddy allocator.
2763 * Call me with the zone->lock already held.
2764 */
85ccc8fa 2765static __always_inline struct page *
6bb15450
MG
2766__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2767 unsigned int alloc_flags)
1da177e4 2768{
1da177e4
LT
2769 struct page *page;
2770
3bc48f96 2771retry:
56fd56b8 2772 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2773 if (unlikely(!page)) {
dc67647b
JK
2774 if (migratetype == MIGRATE_MOVABLE)
2775 page = __rmqueue_cma_fallback(zone, order);
2776
6bb15450
MG
2777 if (!page && __rmqueue_fallback(zone, order, migratetype,
2778 alloc_flags))
3bc48f96 2779 goto retry;
728ec980
MG
2780 }
2781
0d3d062a 2782 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2783 return page;
1da177e4
LT
2784}
2785
5f63b720 2786/*
1da177e4
LT
2787 * Obtain a specified number of elements from the buddy allocator, all under
2788 * a single hold of the lock, for efficiency. Add them to the supplied list.
2789 * Returns the number of new pages which were placed at *list.
2790 */
5f63b720 2791static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2792 unsigned long count, struct list_head *list,
6bb15450 2793 int migratetype, unsigned int alloc_flags)
1da177e4 2794{
a6de734b 2795 int i, alloced = 0;
5f63b720 2796
d34b0733 2797 spin_lock(&zone->lock);
1da177e4 2798 for (i = 0; i < count; ++i) {
6bb15450
MG
2799 struct page *page = __rmqueue(zone, order, migratetype,
2800 alloc_flags);
085cc7d5 2801 if (unlikely(page == NULL))
1da177e4 2802 break;
81eabcbe 2803
479f854a
MG
2804 if (unlikely(check_pcp_refill(page)))
2805 continue;
2806
81eabcbe 2807 /*
0fac3ba5
VB
2808 * Split buddy pages returned by expand() are received here in
2809 * physical page order. The page is added to the tail of
2810 * caller's list. From the callers perspective, the linked list
2811 * is ordered by page number under some conditions. This is
2812 * useful for IO devices that can forward direction from the
2813 * head, thus also in the physical page order. This is useful
2814 * for IO devices that can merge IO requests if the physical
2815 * pages are ordered properly.
81eabcbe 2816 */
0fac3ba5 2817 list_add_tail(&page->lru, list);
a6de734b 2818 alloced++;
bb14c2c7 2819 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2820 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2821 -(1 << order));
1da177e4 2822 }
a6de734b
MG
2823
2824 /*
2825 * i pages were removed from the buddy list even if some leak due
2826 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2827 * on i. Do not confuse with 'alloced' which is the number of
2828 * pages added to the pcp list.
2829 */
f2260e6b 2830 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2831 spin_unlock(&zone->lock);
a6de734b 2832 return alloced;
1da177e4
LT
2833}
2834
4ae7c039 2835#ifdef CONFIG_NUMA
8fce4d8e 2836/*
4037d452
CL
2837 * Called from the vmstat counter updater to drain pagesets of this
2838 * currently executing processor on remote nodes after they have
2839 * expired.
2840 *
879336c3
CL
2841 * Note that this function must be called with the thread pinned to
2842 * a single processor.
8fce4d8e 2843 */
4037d452 2844void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2845{
4ae7c039 2846 unsigned long flags;
7be12fc9 2847 int to_drain, batch;
4ae7c039 2848
4037d452 2849 local_irq_save(flags);
4db0c3c2 2850 batch = READ_ONCE(pcp->batch);
7be12fc9 2851 to_drain = min(pcp->count, batch);
77ba9062 2852 if (to_drain > 0)
2a13515c 2853 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2854 local_irq_restore(flags);
4ae7c039
CL
2855}
2856#endif
2857
9f8f2172 2858/*
93481ff0 2859 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2860 *
2861 * The processor must either be the current processor and the
2862 * thread pinned to the current processor or a processor that
2863 * is not online.
2864 */
93481ff0 2865static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2866{
c54ad30c 2867 unsigned long flags;
93481ff0
VB
2868 struct per_cpu_pageset *pset;
2869 struct per_cpu_pages *pcp;
1da177e4 2870
93481ff0
VB
2871 local_irq_save(flags);
2872 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2873
93481ff0 2874 pcp = &pset->pcp;
77ba9062 2875 if (pcp->count)
93481ff0 2876 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2877 local_irq_restore(flags);
2878}
3dfa5721 2879
93481ff0
VB
2880/*
2881 * Drain pcplists of all zones on the indicated processor.
2882 *
2883 * The processor must either be the current processor and the
2884 * thread pinned to the current processor or a processor that
2885 * is not online.
2886 */
2887static void drain_pages(unsigned int cpu)
2888{
2889 struct zone *zone;
2890
2891 for_each_populated_zone(zone) {
2892 drain_pages_zone(cpu, zone);
1da177e4
LT
2893 }
2894}
1da177e4 2895
9f8f2172
CL
2896/*
2897 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2898 *
2899 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2900 * the single zone's pages.
9f8f2172 2901 */
93481ff0 2902void drain_local_pages(struct zone *zone)
9f8f2172 2903{
93481ff0
VB
2904 int cpu = smp_processor_id();
2905
2906 if (zone)
2907 drain_pages_zone(cpu, zone);
2908 else
2909 drain_pages(cpu);
9f8f2172
CL
2910}
2911
0ccce3b9
MG
2912static void drain_local_pages_wq(struct work_struct *work)
2913{
d9367bd0
WY
2914 struct pcpu_drain *drain;
2915
2916 drain = container_of(work, struct pcpu_drain, work);
2917
a459eeb7
MH
2918 /*
2919 * drain_all_pages doesn't use proper cpu hotplug protection so
2920 * we can race with cpu offline when the WQ can move this from
2921 * a cpu pinned worker to an unbound one. We can operate on a different
2922 * cpu which is allright but we also have to make sure to not move to
2923 * a different one.
2924 */
2925 preempt_disable();
d9367bd0 2926 drain_local_pages(drain->zone);
a459eeb7 2927 preempt_enable();
0ccce3b9
MG
2928}
2929
9f8f2172 2930/*
74046494
GBY
2931 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2932 *
93481ff0
VB
2933 * When zone parameter is non-NULL, spill just the single zone's pages.
2934 *
0ccce3b9 2935 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2936 */
93481ff0 2937void drain_all_pages(struct zone *zone)
9f8f2172 2938{
74046494 2939 int cpu;
74046494
GBY
2940
2941 /*
2942 * Allocate in the BSS so we wont require allocation in
2943 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2944 */
2945 static cpumask_t cpus_with_pcps;
2946
ce612879
MH
2947 /*
2948 * Make sure nobody triggers this path before mm_percpu_wq is fully
2949 * initialized.
2950 */
2951 if (WARN_ON_ONCE(!mm_percpu_wq))
2952 return;
2953
bd233f53
MG
2954 /*
2955 * Do not drain if one is already in progress unless it's specific to
2956 * a zone. Such callers are primarily CMA and memory hotplug and need
2957 * the drain to be complete when the call returns.
2958 */
2959 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2960 if (!zone)
2961 return;
2962 mutex_lock(&pcpu_drain_mutex);
2963 }
0ccce3b9 2964
74046494
GBY
2965 /*
2966 * We don't care about racing with CPU hotplug event
2967 * as offline notification will cause the notified
2968 * cpu to drain that CPU pcps and on_each_cpu_mask
2969 * disables preemption as part of its processing
2970 */
2971 for_each_online_cpu(cpu) {
93481ff0
VB
2972 struct per_cpu_pageset *pcp;
2973 struct zone *z;
74046494 2974 bool has_pcps = false;
93481ff0
VB
2975
2976 if (zone) {
74046494 2977 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2978 if (pcp->pcp.count)
74046494 2979 has_pcps = true;
93481ff0
VB
2980 } else {
2981 for_each_populated_zone(z) {
2982 pcp = per_cpu_ptr(z->pageset, cpu);
2983 if (pcp->pcp.count) {
2984 has_pcps = true;
2985 break;
2986 }
74046494
GBY
2987 }
2988 }
93481ff0 2989
74046494
GBY
2990 if (has_pcps)
2991 cpumask_set_cpu(cpu, &cpus_with_pcps);
2992 else
2993 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2994 }
0ccce3b9 2995
bd233f53 2996 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2997 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2998
2999 drain->zone = zone;
3000 INIT_WORK(&drain->work, drain_local_pages_wq);
3001 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3002 }
bd233f53 3003 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3004 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3005
3006 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3007}
3008
296699de 3009#ifdef CONFIG_HIBERNATION
1da177e4 3010
556b969a
CY
3011/*
3012 * Touch the watchdog for every WD_PAGE_COUNT pages.
3013 */
3014#define WD_PAGE_COUNT (128*1024)
3015
1da177e4
LT
3016void mark_free_pages(struct zone *zone)
3017{
556b969a 3018 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3019 unsigned long flags;
7aeb09f9 3020 unsigned int order, t;
86760a2c 3021 struct page *page;
1da177e4 3022
8080fc03 3023 if (zone_is_empty(zone))
1da177e4
LT
3024 return;
3025
3026 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3027
108bcc96 3028 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3029 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3030 if (pfn_valid(pfn)) {
86760a2c 3031 page = pfn_to_page(pfn);
ba6b0979 3032
556b969a
CY
3033 if (!--page_count) {
3034 touch_nmi_watchdog();
3035 page_count = WD_PAGE_COUNT;
3036 }
3037
ba6b0979
JK
3038 if (page_zone(page) != zone)
3039 continue;
3040
7be98234
RW
3041 if (!swsusp_page_is_forbidden(page))
3042 swsusp_unset_page_free(page);
f623f0db 3043 }
1da177e4 3044
b2a0ac88 3045 for_each_migratetype_order(order, t) {
86760a2c
GT
3046 list_for_each_entry(page,
3047 &zone->free_area[order].free_list[t], lru) {
f623f0db 3048 unsigned long i;
1da177e4 3049
86760a2c 3050 pfn = page_to_pfn(page);
556b969a
CY
3051 for (i = 0; i < (1UL << order); i++) {
3052 if (!--page_count) {
3053 touch_nmi_watchdog();
3054 page_count = WD_PAGE_COUNT;
3055 }
7be98234 3056 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3057 }
f623f0db 3058 }
b2a0ac88 3059 }
1da177e4
LT
3060 spin_unlock_irqrestore(&zone->lock, flags);
3061}
e2c55dc8 3062#endif /* CONFIG_PM */
1da177e4 3063
2d4894b5 3064static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3065{
5f8dcc21 3066 int migratetype;
1da177e4 3067
4db7548c 3068 if (!free_pcp_prepare(page))
9cca35d4 3069 return false;
689bcebf 3070
dc4b0caf 3071 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3072 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3073 return true;
3074}
3075
2d4894b5 3076static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3077{
3078 struct zone *zone = page_zone(page);
3079 struct per_cpu_pages *pcp;
3080 int migratetype;
3081
3082 migratetype = get_pcppage_migratetype(page);
d34b0733 3083 __count_vm_event(PGFREE);
da456f14 3084
5f8dcc21
MG
3085 /*
3086 * We only track unmovable, reclaimable and movable on pcp lists.
3087 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3088 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3089 * areas back if necessary. Otherwise, we may have to free
3090 * excessively into the page allocator
3091 */
3092 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3093 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3094 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3095 return;
5f8dcc21
MG
3096 }
3097 migratetype = MIGRATE_MOVABLE;
3098 }
3099
99dcc3e5 3100 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3101 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3102 pcp->count++;
48db57f8 3103 if (pcp->count >= pcp->high) {
4db0c3c2 3104 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3105 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3106 }
9cca35d4 3107}
5f8dcc21 3108
9cca35d4
MG
3109/*
3110 * Free a 0-order page
9cca35d4 3111 */
2d4894b5 3112void free_unref_page(struct page *page)
9cca35d4
MG
3113{
3114 unsigned long flags;
3115 unsigned long pfn = page_to_pfn(page);
3116
2d4894b5 3117 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3118 return;
3119
3120 local_irq_save(flags);
2d4894b5 3121 free_unref_page_commit(page, pfn);
d34b0733 3122 local_irq_restore(flags);
1da177e4
LT
3123}
3124
cc59850e
KK
3125/*
3126 * Free a list of 0-order pages
3127 */
2d4894b5 3128void free_unref_page_list(struct list_head *list)
cc59850e
KK
3129{
3130 struct page *page, *next;
9cca35d4 3131 unsigned long flags, pfn;
c24ad77d 3132 int batch_count = 0;
9cca35d4
MG
3133
3134 /* Prepare pages for freeing */
3135 list_for_each_entry_safe(page, next, list, lru) {
3136 pfn = page_to_pfn(page);
2d4894b5 3137 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3138 list_del(&page->lru);
3139 set_page_private(page, pfn);
3140 }
cc59850e 3141
9cca35d4 3142 local_irq_save(flags);
cc59850e 3143 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3144 unsigned long pfn = page_private(page);
3145
3146 set_page_private(page, 0);
2d4894b5
MG
3147 trace_mm_page_free_batched(page);
3148 free_unref_page_commit(page, pfn);
c24ad77d
LS
3149
3150 /*
3151 * Guard against excessive IRQ disabled times when we get
3152 * a large list of pages to free.
3153 */
3154 if (++batch_count == SWAP_CLUSTER_MAX) {
3155 local_irq_restore(flags);
3156 batch_count = 0;
3157 local_irq_save(flags);
3158 }
cc59850e 3159 }
9cca35d4 3160 local_irq_restore(flags);
cc59850e
KK
3161}
3162
8dfcc9ba
NP
3163/*
3164 * split_page takes a non-compound higher-order page, and splits it into
3165 * n (1<<order) sub-pages: page[0..n]
3166 * Each sub-page must be freed individually.
3167 *
3168 * Note: this is probably too low level an operation for use in drivers.
3169 * Please consult with lkml before using this in your driver.
3170 */
3171void split_page(struct page *page, unsigned int order)
3172{
3173 int i;
3174
309381fe
SL
3175 VM_BUG_ON_PAGE(PageCompound(page), page);
3176 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3177
a9627bc5 3178 for (i = 1; i < (1 << order); i++)
7835e98b 3179 set_page_refcounted(page + i);
a9627bc5 3180 split_page_owner(page, order);
8dfcc9ba 3181}
5853ff23 3182EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3183
3c605096 3184int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3185{
748446bb
MG
3186 unsigned long watermark;
3187 struct zone *zone;
2139cbe6 3188 int mt;
748446bb
MG
3189
3190 BUG_ON(!PageBuddy(page));
3191
3192 zone = page_zone(page);
2e30abd1 3193 mt = get_pageblock_migratetype(page);
748446bb 3194
194159fb 3195 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3196 /*
3197 * Obey watermarks as if the page was being allocated. We can
3198 * emulate a high-order watermark check with a raised order-0
3199 * watermark, because we already know our high-order page
3200 * exists.
3201 */
fd1444b2 3202 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3203 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3204 return 0;
3205
8fb74b9f 3206 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3207 }
748446bb
MG
3208
3209 /* Remove page from free list */
b03641af 3210
6ab01363 3211 del_page_from_free_list(page, zone, order);
2139cbe6 3212
400bc7fd 3213 /*
3214 * Set the pageblock if the isolated page is at least half of a
3215 * pageblock
3216 */
748446bb
MG
3217 if (order >= pageblock_order - 1) {
3218 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3219 for (; page < endpage; page += pageblock_nr_pages) {
3220 int mt = get_pageblock_migratetype(page);
88ed365e 3221 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3222 && !is_migrate_highatomic(mt))
47118af0
MN
3223 set_pageblock_migratetype(page,
3224 MIGRATE_MOVABLE);
3225 }
748446bb
MG
3226 }
3227
f3a14ced 3228
8fb74b9f 3229 return 1UL << order;
1fb3f8ca
MG
3230}
3231
624f58d8
AD
3232/**
3233 * __putback_isolated_page - Return a now-isolated page back where we got it
3234 * @page: Page that was isolated
3235 * @order: Order of the isolated page
e6a0a7ad 3236 * @mt: The page's pageblock's migratetype
624f58d8
AD
3237 *
3238 * This function is meant to return a page pulled from the free lists via
3239 * __isolate_free_page back to the free lists they were pulled from.
3240 */
3241void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3242{
3243 struct zone *zone = page_zone(page);
3244
3245 /* zone lock should be held when this function is called */
3246 lockdep_assert_held(&zone->lock);
3247
3248 /* Return isolated page to tail of freelist. */
36e66c55 3249 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3250}
3251
060e7417
MG
3252/*
3253 * Update NUMA hit/miss statistics
3254 *
3255 * Must be called with interrupts disabled.
060e7417 3256 */
41b6167e 3257static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3258{
3259#ifdef CONFIG_NUMA
3a321d2a 3260 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3261
4518085e
KW
3262 /* skip numa counters update if numa stats is disabled */
3263 if (!static_branch_likely(&vm_numa_stat_key))
3264 return;
3265
c1093b74 3266 if (zone_to_nid(z) != numa_node_id())
060e7417 3267 local_stat = NUMA_OTHER;
060e7417 3268
c1093b74 3269 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3270 __inc_numa_state(z, NUMA_HIT);
2df26639 3271 else {
3a321d2a
KW
3272 __inc_numa_state(z, NUMA_MISS);
3273 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3274 }
3a321d2a 3275 __inc_numa_state(z, local_stat);
060e7417
MG
3276#endif
3277}
3278
066b2393
MG
3279/* Remove page from the per-cpu list, caller must protect the list */
3280static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3281 unsigned int alloc_flags,
453f85d4 3282 struct per_cpu_pages *pcp,
066b2393
MG
3283 struct list_head *list)
3284{
3285 struct page *page;
3286
3287 do {
3288 if (list_empty(list)) {
3289 pcp->count += rmqueue_bulk(zone, 0,
3290 pcp->batch, list,
6bb15450 3291 migratetype, alloc_flags);
066b2393
MG
3292 if (unlikely(list_empty(list)))
3293 return NULL;
3294 }
3295
453f85d4 3296 page = list_first_entry(list, struct page, lru);
066b2393
MG
3297 list_del(&page->lru);
3298 pcp->count--;
3299 } while (check_new_pcp(page));
3300
3301 return page;
3302}
3303
3304/* Lock and remove page from the per-cpu list */
3305static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3306 struct zone *zone, gfp_t gfp_flags,
3307 int migratetype, unsigned int alloc_flags)
066b2393
MG
3308{
3309 struct per_cpu_pages *pcp;
3310 struct list_head *list;
066b2393 3311 struct page *page;
d34b0733 3312 unsigned long flags;
066b2393 3313
d34b0733 3314 local_irq_save(flags);
066b2393
MG
3315 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3316 list = &pcp->lists[migratetype];
6bb15450 3317 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3318 if (page) {
1c52e6d0 3319 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3320 zone_statistics(preferred_zone, zone);
3321 }
d34b0733 3322 local_irq_restore(flags);
066b2393
MG
3323 return page;
3324}
3325
1da177e4 3326/*
75379191 3327 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3328 */
0a15c3e9 3329static inline
066b2393 3330struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3331 struct zone *zone, unsigned int order,
c603844b
MG
3332 gfp_t gfp_flags, unsigned int alloc_flags,
3333 int migratetype)
1da177e4
LT
3334{
3335 unsigned long flags;
689bcebf 3336 struct page *page;
1da177e4 3337
d34b0733 3338 if (likely(order == 0)) {
1c52e6d0
YS
3339 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3340 migratetype, alloc_flags);
066b2393
MG
3341 goto out;
3342 }
83b9355b 3343
066b2393
MG
3344 /*
3345 * We most definitely don't want callers attempting to
3346 * allocate greater than order-1 page units with __GFP_NOFAIL.
3347 */
3348 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3349 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3350
066b2393
MG
3351 do {
3352 page = NULL;
3353 if (alloc_flags & ALLOC_HARDER) {
3354 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3355 if (page)
3356 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3357 }
a74609fa 3358 if (!page)
6bb15450 3359 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3360 } while (page && check_new_pages(page, order));
3361 spin_unlock(&zone->lock);
3362 if (!page)
3363 goto failed;
3364 __mod_zone_freepage_state(zone, -(1 << order),
3365 get_pcppage_migratetype(page));
1da177e4 3366
16709d1d 3367 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3368 zone_statistics(preferred_zone, zone);
a74609fa 3369 local_irq_restore(flags);
1da177e4 3370
066b2393 3371out:
73444bc4
MG
3372 /* Separate test+clear to avoid unnecessary atomics */
3373 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3374 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3375 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3376 }
3377
066b2393 3378 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3379 return page;
a74609fa
NP
3380
3381failed:
3382 local_irq_restore(flags);
a74609fa 3383 return NULL;
1da177e4
LT
3384}
3385
933e312e
AM
3386#ifdef CONFIG_FAIL_PAGE_ALLOC
3387
b2588c4b 3388static struct {
933e312e
AM
3389 struct fault_attr attr;
3390
621a5f7a 3391 bool ignore_gfp_highmem;
71baba4b 3392 bool ignore_gfp_reclaim;
54114994 3393 u32 min_order;
933e312e
AM
3394} fail_page_alloc = {
3395 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3396 .ignore_gfp_reclaim = true,
621a5f7a 3397 .ignore_gfp_highmem = true,
54114994 3398 .min_order = 1,
933e312e
AM
3399};
3400
3401static int __init setup_fail_page_alloc(char *str)
3402{
3403 return setup_fault_attr(&fail_page_alloc.attr, str);
3404}
3405__setup("fail_page_alloc=", setup_fail_page_alloc);
3406
af3b8544 3407static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3408{
54114994 3409 if (order < fail_page_alloc.min_order)
deaf386e 3410 return false;
933e312e 3411 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3412 return false;
933e312e 3413 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3414 return false;
71baba4b
MG
3415 if (fail_page_alloc.ignore_gfp_reclaim &&
3416 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3417 return false;
933e312e
AM
3418
3419 return should_fail(&fail_page_alloc.attr, 1 << order);
3420}
3421
3422#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3423
3424static int __init fail_page_alloc_debugfs(void)
3425{
0825a6f9 3426 umode_t mode = S_IFREG | 0600;
933e312e 3427 struct dentry *dir;
933e312e 3428
dd48c085
AM
3429 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3430 &fail_page_alloc.attr);
b2588c4b 3431
d9f7979c
GKH
3432 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3433 &fail_page_alloc.ignore_gfp_reclaim);
3434 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3435 &fail_page_alloc.ignore_gfp_highmem);
3436 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3437
d9f7979c 3438 return 0;
933e312e
AM
3439}
3440
3441late_initcall(fail_page_alloc_debugfs);
3442
3443#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3444
3445#else /* CONFIG_FAIL_PAGE_ALLOC */
3446
af3b8544 3447static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3448{
deaf386e 3449 return false;
933e312e
AM
3450}
3451
3452#endif /* CONFIG_FAIL_PAGE_ALLOC */
3453
af3b8544
BP
3454static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3455{
3456 return __should_fail_alloc_page(gfp_mask, order);
3457}
3458ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3459
1da177e4 3460/*
97a16fc8
MG
3461 * Return true if free base pages are above 'mark'. For high-order checks it
3462 * will return true of the order-0 watermark is reached and there is at least
3463 * one free page of a suitable size. Checking now avoids taking the zone lock
3464 * to check in the allocation paths if no pages are free.
1da177e4 3465 */
86a294a8
MH
3466bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3467 int classzone_idx, unsigned int alloc_flags,
3468 long free_pages)
1da177e4 3469{
d23ad423 3470 long min = mark;
1da177e4 3471 int o;
cd04ae1e 3472 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3473
0aaa29a5 3474 /* free_pages may go negative - that's OK */
df0a6daa 3475 free_pages -= (1 << order) - 1;
0aaa29a5 3476
7fb1d9fc 3477 if (alloc_flags & ALLOC_HIGH)
1da177e4 3478 min -= min / 2;
0aaa29a5
MG
3479
3480 /*
3481 * If the caller does not have rights to ALLOC_HARDER then subtract
3482 * the high-atomic reserves. This will over-estimate the size of the
3483 * atomic reserve but it avoids a search.
3484 */
cd04ae1e 3485 if (likely(!alloc_harder)) {
0aaa29a5 3486 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3487 } else {
3488 /*
3489 * OOM victims can try even harder than normal ALLOC_HARDER
3490 * users on the grounds that it's definitely going to be in
3491 * the exit path shortly and free memory. Any allocation it
3492 * makes during the free path will be small and short-lived.
3493 */
3494 if (alloc_flags & ALLOC_OOM)
3495 min -= min / 2;
3496 else
3497 min -= min / 4;
3498 }
3499
e2b19197 3500
d883c6cf
JK
3501#ifdef CONFIG_CMA
3502 /* If allocation can't use CMA areas don't use free CMA pages */
3503 if (!(alloc_flags & ALLOC_CMA))
3504 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3505#endif
3506
97a16fc8
MG
3507 /*
3508 * Check watermarks for an order-0 allocation request. If these
3509 * are not met, then a high-order request also cannot go ahead
3510 * even if a suitable page happened to be free.
3511 */
3512 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3513 return false;
1da177e4 3514
97a16fc8
MG
3515 /* If this is an order-0 request then the watermark is fine */
3516 if (!order)
3517 return true;
3518
3519 /* For a high-order request, check at least one suitable page is free */
3520 for (o = order; o < MAX_ORDER; o++) {
3521 struct free_area *area = &z->free_area[o];
3522 int mt;
3523
3524 if (!area->nr_free)
3525 continue;
3526
97a16fc8 3527 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3528 if (!free_area_empty(area, mt))
97a16fc8
MG
3529 return true;
3530 }
3531
3532#ifdef CONFIG_CMA
d883c6cf 3533 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3534 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3535 return true;
d883c6cf 3536 }
97a16fc8 3537#endif
76089d00 3538 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3539 return true;
1da177e4 3540 }
97a16fc8 3541 return false;
88f5acf8
MG
3542}
3543
7aeb09f9 3544bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3545 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3546{
3547 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3548 zone_page_state(z, NR_FREE_PAGES));
3549}
3550
48ee5f36
MG
3551static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3552 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3553{
3554 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3555 long cma_pages = 0;
3556
3557#ifdef CONFIG_CMA
3558 /* If allocation can't use CMA areas don't use free CMA pages */
3559 if (!(alloc_flags & ALLOC_CMA))
3560 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3561#endif
48ee5f36
MG
3562
3563 /*
3564 * Fast check for order-0 only. If this fails then the reserves
3565 * need to be calculated. There is a corner case where the check
3566 * passes but only the high-order atomic reserve are free. If
3567 * the caller is !atomic then it'll uselessly search the free
3568 * list. That corner case is then slower but it is harmless.
3569 */
d883c6cf 3570 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3571 return true;
3572
3573 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3574 free_pages);
3575}
3576
7aeb09f9 3577bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3578 unsigned long mark, int classzone_idx)
88f5acf8
MG
3579{
3580 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3581
3582 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3583 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3584
e2b19197 3585 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3586 free_pages);
1da177e4
LT
3587}
3588
9276b1bc 3589#ifdef CONFIG_NUMA
957f822a
DR
3590static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3591{
e02dc017 3592 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3593 node_reclaim_distance;
957f822a 3594}
9276b1bc 3595#else /* CONFIG_NUMA */
957f822a
DR
3596static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3597{
3598 return true;
3599}
9276b1bc
PJ
3600#endif /* CONFIG_NUMA */
3601
6bb15450
MG
3602/*
3603 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3604 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3605 * premature use of a lower zone may cause lowmem pressure problems that
3606 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3607 * probably too small. It only makes sense to spread allocations to avoid
3608 * fragmentation between the Normal and DMA32 zones.
3609 */
3610static inline unsigned int
0a79cdad 3611alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3612{
736838e9 3613 unsigned int alloc_flags;
0a79cdad 3614
736838e9
MN
3615 /*
3616 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3617 * to save a branch.
3618 */
3619 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3620
3621#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3622 if (!zone)
3623 return alloc_flags;
3624
6bb15450 3625 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3626 return alloc_flags;
6bb15450
MG
3627
3628 /*
3629 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3630 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3631 * on UMA that if Normal is populated then so is DMA32.
3632 */
3633 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3634 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3635 return alloc_flags;
6bb15450 3636
8118b82e 3637 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3638#endif /* CONFIG_ZONE_DMA32 */
3639 return alloc_flags;
6bb15450 3640}
6bb15450 3641
7fb1d9fc 3642/*
0798e519 3643 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3644 * a page.
3645 */
3646static struct page *
a9263751
VB
3647get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3648 const struct alloc_context *ac)
753ee728 3649{
6bb15450 3650 struct zoneref *z;
5117f45d 3651 struct zone *zone;
3b8c0be4 3652 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3653 bool no_fallback;
3b8c0be4 3654
6bb15450 3655retry:
7fb1d9fc 3656 /*
9276b1bc 3657 * Scan zonelist, looking for a zone with enough free.
344736f2 3658 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3659 */
6bb15450
MG
3660 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3661 z = ac->preferred_zoneref;
c33d6c06 3662 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3663 ac->nodemask) {
be06af00 3664 struct page *page;
e085dbc5
JW
3665 unsigned long mark;
3666
664eedde
MG
3667 if (cpusets_enabled() &&
3668 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3669 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3670 continue;
a756cf59
JW
3671 /*
3672 * When allocating a page cache page for writing, we
281e3726
MG
3673 * want to get it from a node that is within its dirty
3674 * limit, such that no single node holds more than its
a756cf59 3675 * proportional share of globally allowed dirty pages.
281e3726 3676 * The dirty limits take into account the node's
a756cf59
JW
3677 * lowmem reserves and high watermark so that kswapd
3678 * should be able to balance it without having to
3679 * write pages from its LRU list.
3680 *
a756cf59 3681 * XXX: For now, allow allocations to potentially
281e3726 3682 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3683 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3684 * which is important when on a NUMA setup the allowed
281e3726 3685 * nodes are together not big enough to reach the
a756cf59 3686 * global limit. The proper fix for these situations
281e3726 3687 * will require awareness of nodes in the
a756cf59
JW
3688 * dirty-throttling and the flusher threads.
3689 */
3b8c0be4
MG
3690 if (ac->spread_dirty_pages) {
3691 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3692 continue;
3693
3694 if (!node_dirty_ok(zone->zone_pgdat)) {
3695 last_pgdat_dirty_limit = zone->zone_pgdat;
3696 continue;
3697 }
3698 }
7fb1d9fc 3699
6bb15450
MG
3700 if (no_fallback && nr_online_nodes > 1 &&
3701 zone != ac->preferred_zoneref->zone) {
3702 int local_nid;
3703
3704 /*
3705 * If moving to a remote node, retry but allow
3706 * fragmenting fallbacks. Locality is more important
3707 * than fragmentation avoidance.
3708 */
3709 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3710 if (zone_to_nid(zone) != local_nid) {
3711 alloc_flags &= ~ALLOC_NOFRAGMENT;
3712 goto retry;
3713 }
3714 }
3715
a9214443 3716 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3717 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3718 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3719 int ret;
3720
c9e97a19
PT
3721#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3722 /*
3723 * Watermark failed for this zone, but see if we can
3724 * grow this zone if it contains deferred pages.
3725 */
3726 if (static_branch_unlikely(&deferred_pages)) {
3727 if (_deferred_grow_zone(zone, order))
3728 goto try_this_zone;
3729 }
3730#endif
5dab2911
MG
3731 /* Checked here to keep the fast path fast */
3732 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3733 if (alloc_flags & ALLOC_NO_WATERMARKS)
3734 goto try_this_zone;
3735
a5f5f91d 3736 if (node_reclaim_mode == 0 ||
c33d6c06 3737 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3738 continue;
3739
a5f5f91d 3740 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3741 switch (ret) {
a5f5f91d 3742 case NODE_RECLAIM_NOSCAN:
fa5e084e 3743 /* did not scan */
cd38b115 3744 continue;
a5f5f91d 3745 case NODE_RECLAIM_FULL:
fa5e084e 3746 /* scanned but unreclaimable */
cd38b115 3747 continue;
fa5e084e
MG
3748 default:
3749 /* did we reclaim enough */
fed2719e 3750 if (zone_watermark_ok(zone, order, mark,
93ea9964 3751 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3752 goto try_this_zone;
3753
fed2719e 3754 continue;
0798e519 3755 }
7fb1d9fc
RS
3756 }
3757
fa5e084e 3758try_this_zone:
066b2393 3759 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3760 gfp_mask, alloc_flags, ac->migratetype);
75379191 3761 if (page) {
479f854a 3762 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3763
3764 /*
3765 * If this is a high-order atomic allocation then check
3766 * if the pageblock should be reserved for the future
3767 */
3768 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3769 reserve_highatomic_pageblock(page, zone, order);
3770
75379191 3771 return page;
c9e97a19
PT
3772 } else {
3773#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3774 /* Try again if zone has deferred pages */
3775 if (static_branch_unlikely(&deferred_pages)) {
3776 if (_deferred_grow_zone(zone, order))
3777 goto try_this_zone;
3778 }
3779#endif
75379191 3780 }
54a6eb5c 3781 }
9276b1bc 3782
6bb15450
MG
3783 /*
3784 * It's possible on a UMA machine to get through all zones that are
3785 * fragmented. If avoiding fragmentation, reset and try again.
3786 */
3787 if (no_fallback) {
3788 alloc_flags &= ~ALLOC_NOFRAGMENT;
3789 goto retry;
3790 }
3791
4ffeaf35 3792 return NULL;
753ee728
MH
3793}
3794
9af744d7 3795static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3796{
a238ab5b 3797 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3798
3799 /*
3800 * This documents exceptions given to allocations in certain
3801 * contexts that are allowed to allocate outside current's set
3802 * of allowed nodes.
3803 */
3804 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3805 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3806 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3807 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3808 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3809 filter &= ~SHOW_MEM_FILTER_NODES;
3810
9af744d7 3811 show_mem(filter, nodemask);
aa187507
MH
3812}
3813
a8e99259 3814void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3815{
3816 struct va_format vaf;
3817 va_list args;
1be334e5 3818 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3819
0f7896f1 3820 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3821 return;
3822
7877cdcc
MH
3823 va_start(args, fmt);
3824 vaf.fmt = fmt;
3825 vaf.va = &args;
ef8444ea 3826 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3827 current->comm, &vaf, gfp_mask, &gfp_mask,
3828 nodemask_pr_args(nodemask));
7877cdcc 3829 va_end(args);
3ee9a4f0 3830
a8e99259 3831 cpuset_print_current_mems_allowed();
ef8444ea 3832 pr_cont("\n");
a238ab5b 3833 dump_stack();
685dbf6f 3834 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3835}
3836
6c18ba7a
MH
3837static inline struct page *
3838__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3839 unsigned int alloc_flags,
3840 const struct alloc_context *ac)
3841{
3842 struct page *page;
3843
3844 page = get_page_from_freelist(gfp_mask, order,
3845 alloc_flags|ALLOC_CPUSET, ac);
3846 /*
3847 * fallback to ignore cpuset restriction if our nodes
3848 * are depleted
3849 */
3850 if (!page)
3851 page = get_page_from_freelist(gfp_mask, order,
3852 alloc_flags, ac);
3853
3854 return page;
3855}
3856
11e33f6a
MG
3857static inline struct page *
3858__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3859 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3860{
6e0fc46d
DR
3861 struct oom_control oc = {
3862 .zonelist = ac->zonelist,
3863 .nodemask = ac->nodemask,
2a966b77 3864 .memcg = NULL,
6e0fc46d
DR
3865 .gfp_mask = gfp_mask,
3866 .order = order,
6e0fc46d 3867 };
11e33f6a
MG
3868 struct page *page;
3869
9879de73
JW
3870 *did_some_progress = 0;
3871
9879de73 3872 /*
dc56401f
JW
3873 * Acquire the oom lock. If that fails, somebody else is
3874 * making progress for us.
9879de73 3875 */
dc56401f 3876 if (!mutex_trylock(&oom_lock)) {
9879de73 3877 *did_some_progress = 1;
11e33f6a 3878 schedule_timeout_uninterruptible(1);
1da177e4
LT
3879 return NULL;
3880 }
6b1de916 3881
11e33f6a
MG
3882 /*
3883 * Go through the zonelist yet one more time, keep very high watermark
3884 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3885 * we're still under heavy pressure. But make sure that this reclaim
3886 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3887 * allocation which will never fail due to oom_lock already held.
11e33f6a 3888 */
e746bf73
TH
3889 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3890 ~__GFP_DIRECT_RECLAIM, order,
3891 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3892 if (page)
11e33f6a
MG
3893 goto out;
3894
06ad276a
MH
3895 /* Coredumps can quickly deplete all memory reserves */
3896 if (current->flags & PF_DUMPCORE)
3897 goto out;
3898 /* The OOM killer will not help higher order allocs */
3899 if (order > PAGE_ALLOC_COSTLY_ORDER)
3900 goto out;
dcda9b04
MH
3901 /*
3902 * We have already exhausted all our reclaim opportunities without any
3903 * success so it is time to admit defeat. We will skip the OOM killer
3904 * because it is very likely that the caller has a more reasonable
3905 * fallback than shooting a random task.
3906 */
3907 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3908 goto out;
06ad276a
MH
3909 /* The OOM killer does not needlessly kill tasks for lowmem */
3910 if (ac->high_zoneidx < ZONE_NORMAL)
3911 goto out;
3912 if (pm_suspended_storage())
3913 goto out;
3914 /*
3915 * XXX: GFP_NOFS allocations should rather fail than rely on
3916 * other request to make a forward progress.
3917 * We are in an unfortunate situation where out_of_memory cannot
3918 * do much for this context but let's try it to at least get
3919 * access to memory reserved if the current task is killed (see
3920 * out_of_memory). Once filesystems are ready to handle allocation
3921 * failures more gracefully we should just bail out here.
3922 */
3923
3924 /* The OOM killer may not free memory on a specific node */
3925 if (gfp_mask & __GFP_THISNODE)
3926 goto out;
3da88fb3 3927
3c2c6488 3928 /* Exhausted what can be done so it's blame time */
5020e285 3929 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3930 *did_some_progress = 1;
5020e285 3931
6c18ba7a
MH
3932 /*
3933 * Help non-failing allocations by giving them access to memory
3934 * reserves
3935 */
3936 if (gfp_mask & __GFP_NOFAIL)
3937 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3938 ALLOC_NO_WATERMARKS, ac);
5020e285 3939 }
11e33f6a 3940out:
dc56401f 3941 mutex_unlock(&oom_lock);
11e33f6a
MG
3942 return page;
3943}
3944
33c2d214
MH
3945/*
3946 * Maximum number of compaction retries wit a progress before OOM
3947 * killer is consider as the only way to move forward.
3948 */
3949#define MAX_COMPACT_RETRIES 16
3950
56de7263
MG
3951#ifdef CONFIG_COMPACTION
3952/* Try memory compaction for high-order allocations before reclaim */
3953static struct page *
3954__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3955 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3956 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3957{
5e1f0f09 3958 struct page *page = NULL;
eb414681 3959 unsigned long pflags;
499118e9 3960 unsigned int noreclaim_flag;
53853e2d
VB
3961
3962 if (!order)
66199712 3963 return NULL;
66199712 3964
eb414681 3965 psi_memstall_enter(&pflags);
499118e9 3966 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3967
c5d01d0d 3968 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3969 prio, &page);
eb414681 3970
499118e9 3971 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3972 psi_memstall_leave(&pflags);
56de7263 3973
98dd3b48
VB
3974 /*
3975 * At least in one zone compaction wasn't deferred or skipped, so let's
3976 * count a compaction stall
3977 */
3978 count_vm_event(COMPACTSTALL);
8fb74b9f 3979
5e1f0f09
MG
3980 /* Prep a captured page if available */
3981 if (page)
3982 prep_new_page(page, order, gfp_mask, alloc_flags);
3983
3984 /* Try get a page from the freelist if available */
3985 if (!page)
3986 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3987
98dd3b48
VB
3988 if (page) {
3989 struct zone *zone = page_zone(page);
53853e2d 3990
98dd3b48
VB
3991 zone->compact_blockskip_flush = false;
3992 compaction_defer_reset(zone, order, true);
3993 count_vm_event(COMPACTSUCCESS);
3994 return page;
3995 }
56de7263 3996
98dd3b48
VB
3997 /*
3998 * It's bad if compaction run occurs and fails. The most likely reason
3999 * is that pages exist, but not enough to satisfy watermarks.
4000 */
4001 count_vm_event(COMPACTFAIL);
66199712 4002
98dd3b48 4003 cond_resched();
56de7263
MG
4004
4005 return NULL;
4006}
33c2d214 4007
3250845d
VB
4008static inline bool
4009should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4010 enum compact_result compact_result,
4011 enum compact_priority *compact_priority,
d9436498 4012 int *compaction_retries)
3250845d
VB
4013{
4014 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4015 int min_priority;
65190cff
MH
4016 bool ret = false;
4017 int retries = *compaction_retries;
4018 enum compact_priority priority = *compact_priority;
3250845d
VB
4019
4020 if (!order)
4021 return false;
4022
d9436498
VB
4023 if (compaction_made_progress(compact_result))
4024 (*compaction_retries)++;
4025
3250845d
VB
4026 /*
4027 * compaction considers all the zone as desperately out of memory
4028 * so it doesn't really make much sense to retry except when the
4029 * failure could be caused by insufficient priority
4030 */
d9436498
VB
4031 if (compaction_failed(compact_result))
4032 goto check_priority;
3250845d 4033
49433085
VB
4034 /*
4035 * compaction was skipped because there are not enough order-0 pages
4036 * to work with, so we retry only if it looks like reclaim can help.
4037 */
4038 if (compaction_needs_reclaim(compact_result)) {
4039 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4040 goto out;
4041 }
4042
3250845d
VB
4043 /*
4044 * make sure the compaction wasn't deferred or didn't bail out early
4045 * due to locks contention before we declare that we should give up.
49433085
VB
4046 * But the next retry should use a higher priority if allowed, so
4047 * we don't just keep bailing out endlessly.
3250845d 4048 */
65190cff 4049 if (compaction_withdrawn(compact_result)) {
49433085 4050 goto check_priority;
65190cff 4051 }
3250845d
VB
4052
4053 /*
dcda9b04 4054 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4055 * costly ones because they are de facto nofail and invoke OOM
4056 * killer to move on while costly can fail and users are ready
4057 * to cope with that. 1/4 retries is rather arbitrary but we
4058 * would need much more detailed feedback from compaction to
4059 * make a better decision.
4060 */
4061 if (order > PAGE_ALLOC_COSTLY_ORDER)
4062 max_retries /= 4;
65190cff
MH
4063 if (*compaction_retries <= max_retries) {
4064 ret = true;
4065 goto out;
4066 }
3250845d 4067
d9436498
VB
4068 /*
4069 * Make sure there are attempts at the highest priority if we exhausted
4070 * all retries or failed at the lower priorities.
4071 */
4072check_priority:
c2033b00
VB
4073 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4074 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4075
c2033b00 4076 if (*compact_priority > min_priority) {
d9436498
VB
4077 (*compact_priority)--;
4078 *compaction_retries = 0;
65190cff 4079 ret = true;
d9436498 4080 }
65190cff
MH
4081out:
4082 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4083 return ret;
3250845d 4084}
56de7263
MG
4085#else
4086static inline struct page *
4087__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4088 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4089 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4090{
33c2d214 4091 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4092 return NULL;
4093}
33c2d214
MH
4094
4095static inline bool
86a294a8
MH
4096should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4097 enum compact_result compact_result,
a5508cd8 4098 enum compact_priority *compact_priority,
d9436498 4099 int *compaction_retries)
33c2d214 4100{
31e49bfd
MH
4101 struct zone *zone;
4102 struct zoneref *z;
4103
4104 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4105 return false;
4106
4107 /*
4108 * There are setups with compaction disabled which would prefer to loop
4109 * inside the allocator rather than hit the oom killer prematurely.
4110 * Let's give them a good hope and keep retrying while the order-0
4111 * watermarks are OK.
4112 */
4113 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4114 ac->nodemask) {
4115 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4116 ac_classzone_idx(ac), alloc_flags))
4117 return true;
4118 }
33c2d214
MH
4119 return false;
4120}
3250845d 4121#endif /* CONFIG_COMPACTION */
56de7263 4122
d92a8cfc 4123#ifdef CONFIG_LOCKDEP
93781325 4124static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4125 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4126
4127static bool __need_fs_reclaim(gfp_t gfp_mask)
4128{
4129 gfp_mask = current_gfp_context(gfp_mask);
4130
4131 /* no reclaim without waiting on it */
4132 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4133 return false;
4134
4135 /* this guy won't enter reclaim */
2e517d68 4136 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4137 return false;
4138
4139 /* We're only interested __GFP_FS allocations for now */
4140 if (!(gfp_mask & __GFP_FS))
4141 return false;
4142
4143 if (gfp_mask & __GFP_NOLOCKDEP)
4144 return false;
4145
4146 return true;
4147}
4148
93781325
OS
4149void __fs_reclaim_acquire(void)
4150{
4151 lock_map_acquire(&__fs_reclaim_map);
4152}
4153
4154void __fs_reclaim_release(void)
4155{
4156 lock_map_release(&__fs_reclaim_map);
4157}
4158
d92a8cfc
PZ
4159void fs_reclaim_acquire(gfp_t gfp_mask)
4160{
4161 if (__need_fs_reclaim(gfp_mask))
93781325 4162 __fs_reclaim_acquire();
d92a8cfc
PZ
4163}
4164EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4165
4166void fs_reclaim_release(gfp_t gfp_mask)
4167{
4168 if (__need_fs_reclaim(gfp_mask))
93781325 4169 __fs_reclaim_release();
d92a8cfc
PZ
4170}
4171EXPORT_SYMBOL_GPL(fs_reclaim_release);
4172#endif
4173
bba90710
MS
4174/* Perform direct synchronous page reclaim */
4175static int
a9263751
VB
4176__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4177 const struct alloc_context *ac)
11e33f6a 4178{
bba90710 4179 int progress;
499118e9 4180 unsigned int noreclaim_flag;
eb414681 4181 unsigned long pflags;
11e33f6a
MG
4182
4183 cond_resched();
4184
4185 /* We now go into synchronous reclaim */
4186 cpuset_memory_pressure_bump();
eb414681 4187 psi_memstall_enter(&pflags);
d92a8cfc 4188 fs_reclaim_acquire(gfp_mask);
93781325 4189 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4190
a9263751
VB
4191 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4192 ac->nodemask);
11e33f6a 4193
499118e9 4194 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4195 fs_reclaim_release(gfp_mask);
eb414681 4196 psi_memstall_leave(&pflags);
11e33f6a
MG
4197
4198 cond_resched();
4199
bba90710
MS
4200 return progress;
4201}
4202
4203/* The really slow allocator path where we enter direct reclaim */
4204static inline struct page *
4205__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4206 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4207 unsigned long *did_some_progress)
bba90710
MS
4208{
4209 struct page *page = NULL;
4210 bool drained = false;
4211
a9263751 4212 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4213 if (unlikely(!(*did_some_progress)))
4214 return NULL;
11e33f6a 4215
9ee493ce 4216retry:
31a6c190 4217 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4218
4219 /*
4220 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4221 * pages are pinned on the per-cpu lists or in high alloc reserves.
4222 * Shrink them them and try again
9ee493ce
MG
4223 */
4224 if (!page && !drained) {
29fac03b 4225 unreserve_highatomic_pageblock(ac, false);
93481ff0 4226 drain_all_pages(NULL);
9ee493ce
MG
4227 drained = true;
4228 goto retry;
4229 }
4230
11e33f6a
MG
4231 return page;
4232}
4233
5ecd9d40
DR
4234static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4235 const struct alloc_context *ac)
3a025760
JW
4236{
4237 struct zoneref *z;
4238 struct zone *zone;
e1a55637 4239 pg_data_t *last_pgdat = NULL;
5ecd9d40 4240 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4241
5ecd9d40
DR
4242 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4243 ac->nodemask) {
e1a55637 4244 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4245 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4246 last_pgdat = zone->zone_pgdat;
4247 }
3a025760
JW
4248}
4249
c603844b 4250static inline unsigned int
341ce06f
PZ
4251gfp_to_alloc_flags(gfp_t gfp_mask)
4252{
c603844b 4253 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4254
736838e9
MN
4255 /*
4256 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4257 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4258 * to save two branches.
4259 */
e6223a3b 4260 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4261 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4262
341ce06f
PZ
4263 /*
4264 * The caller may dip into page reserves a bit more if the caller
4265 * cannot run direct reclaim, or if the caller has realtime scheduling
4266 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4267 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4268 */
736838e9
MN
4269 alloc_flags |= (__force int)
4270 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4271
d0164adc 4272 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4273 /*
b104a35d
DR
4274 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4275 * if it can't schedule.
5c3240d9 4276 */
b104a35d 4277 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4278 alloc_flags |= ALLOC_HARDER;
523b9458 4279 /*
b104a35d 4280 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4281 * comment for __cpuset_node_allowed().
523b9458 4282 */
341ce06f 4283 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4284 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4285 alloc_flags |= ALLOC_HARDER;
4286
d883c6cf
JK
4287#ifdef CONFIG_CMA
4288 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4289 alloc_flags |= ALLOC_CMA;
4290#endif
341ce06f
PZ
4291 return alloc_flags;
4292}
4293
cd04ae1e 4294static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4295{
cd04ae1e
MH
4296 if (!tsk_is_oom_victim(tsk))
4297 return false;
4298
4299 /*
4300 * !MMU doesn't have oom reaper so give access to memory reserves
4301 * only to the thread with TIF_MEMDIE set
4302 */
4303 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4304 return false;
4305
cd04ae1e
MH
4306 return true;
4307}
4308
4309/*
4310 * Distinguish requests which really need access to full memory
4311 * reserves from oom victims which can live with a portion of it
4312 */
4313static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4314{
4315 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4316 return 0;
31a6c190 4317 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4318 return ALLOC_NO_WATERMARKS;
31a6c190 4319 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4320 return ALLOC_NO_WATERMARKS;
4321 if (!in_interrupt()) {
4322 if (current->flags & PF_MEMALLOC)
4323 return ALLOC_NO_WATERMARKS;
4324 else if (oom_reserves_allowed(current))
4325 return ALLOC_OOM;
4326 }
31a6c190 4327
cd04ae1e
MH
4328 return 0;
4329}
4330
4331bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4332{
4333 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4334}
4335
0a0337e0
MH
4336/*
4337 * Checks whether it makes sense to retry the reclaim to make a forward progress
4338 * for the given allocation request.
491d79ae
JW
4339 *
4340 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4341 * without success, or when we couldn't even meet the watermark if we
4342 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4343 *
4344 * Returns true if a retry is viable or false to enter the oom path.
4345 */
4346static inline bool
4347should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4348 struct alloc_context *ac, int alloc_flags,
423b452e 4349 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4350{
4351 struct zone *zone;
4352 struct zoneref *z;
15f570bf 4353 bool ret = false;
0a0337e0 4354
423b452e
VB
4355 /*
4356 * Costly allocations might have made a progress but this doesn't mean
4357 * their order will become available due to high fragmentation so
4358 * always increment the no progress counter for them
4359 */
4360 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4361 *no_progress_loops = 0;
4362 else
4363 (*no_progress_loops)++;
4364
0a0337e0
MH
4365 /*
4366 * Make sure we converge to OOM if we cannot make any progress
4367 * several times in the row.
4368 */
04c8716f
MK
4369 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4370 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4371 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4372 }
0a0337e0 4373
bca67592
MG
4374 /*
4375 * Keep reclaiming pages while there is a chance this will lead
4376 * somewhere. If none of the target zones can satisfy our allocation
4377 * request even if all reclaimable pages are considered then we are
4378 * screwed and have to go OOM.
0a0337e0
MH
4379 */
4380 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4381 ac->nodemask) {
4382 unsigned long available;
ede37713 4383 unsigned long reclaimable;
d379f01d
MH
4384 unsigned long min_wmark = min_wmark_pages(zone);
4385 bool wmark;
0a0337e0 4386
5a1c84b4 4387 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4388 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4389
4390 /*
491d79ae
JW
4391 * Would the allocation succeed if we reclaimed all
4392 * reclaimable pages?
0a0337e0 4393 */
d379f01d
MH
4394 wmark = __zone_watermark_ok(zone, order, min_wmark,
4395 ac_classzone_idx(ac), alloc_flags, available);
4396 trace_reclaim_retry_zone(z, order, reclaimable,
4397 available, min_wmark, *no_progress_loops, wmark);
4398 if (wmark) {
ede37713
MH
4399 /*
4400 * If we didn't make any progress and have a lot of
4401 * dirty + writeback pages then we should wait for
4402 * an IO to complete to slow down the reclaim and
4403 * prevent from pre mature OOM
4404 */
4405 if (!did_some_progress) {
11fb9989 4406 unsigned long write_pending;
ede37713 4407
5a1c84b4
MG
4408 write_pending = zone_page_state_snapshot(zone,
4409 NR_ZONE_WRITE_PENDING);
ede37713 4410
11fb9989 4411 if (2 * write_pending > reclaimable) {
ede37713
MH
4412 congestion_wait(BLK_RW_ASYNC, HZ/10);
4413 return true;
4414 }
4415 }
5a1c84b4 4416
15f570bf
MH
4417 ret = true;
4418 goto out;
0a0337e0
MH
4419 }
4420 }
4421
15f570bf
MH
4422out:
4423 /*
4424 * Memory allocation/reclaim might be called from a WQ context and the
4425 * current implementation of the WQ concurrency control doesn't
4426 * recognize that a particular WQ is congested if the worker thread is
4427 * looping without ever sleeping. Therefore we have to do a short sleep
4428 * here rather than calling cond_resched().
4429 */
4430 if (current->flags & PF_WQ_WORKER)
4431 schedule_timeout_uninterruptible(1);
4432 else
4433 cond_resched();
4434 return ret;
0a0337e0
MH
4435}
4436
902b6281
VB
4437static inline bool
4438check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4439{
4440 /*
4441 * It's possible that cpuset's mems_allowed and the nodemask from
4442 * mempolicy don't intersect. This should be normally dealt with by
4443 * policy_nodemask(), but it's possible to race with cpuset update in
4444 * such a way the check therein was true, and then it became false
4445 * before we got our cpuset_mems_cookie here.
4446 * This assumes that for all allocations, ac->nodemask can come only
4447 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4448 * when it does not intersect with the cpuset restrictions) or the
4449 * caller can deal with a violated nodemask.
4450 */
4451 if (cpusets_enabled() && ac->nodemask &&
4452 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4453 ac->nodemask = NULL;
4454 return true;
4455 }
4456
4457 /*
4458 * When updating a task's mems_allowed or mempolicy nodemask, it is
4459 * possible to race with parallel threads in such a way that our
4460 * allocation can fail while the mask is being updated. If we are about
4461 * to fail, check if the cpuset changed during allocation and if so,
4462 * retry.
4463 */
4464 if (read_mems_allowed_retry(cpuset_mems_cookie))
4465 return true;
4466
4467 return false;
4468}
4469
11e33f6a
MG
4470static inline struct page *
4471__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4472 struct alloc_context *ac)
11e33f6a 4473{
d0164adc 4474 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4475 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4476 struct page *page = NULL;
c603844b 4477 unsigned int alloc_flags;
11e33f6a 4478 unsigned long did_some_progress;
5ce9bfef 4479 enum compact_priority compact_priority;
c5d01d0d 4480 enum compact_result compact_result;
5ce9bfef
VB
4481 int compaction_retries;
4482 int no_progress_loops;
5ce9bfef 4483 unsigned int cpuset_mems_cookie;
cd04ae1e 4484 int reserve_flags;
1da177e4 4485
d0164adc
MG
4486 /*
4487 * We also sanity check to catch abuse of atomic reserves being used by
4488 * callers that are not in atomic context.
4489 */
4490 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4491 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4492 gfp_mask &= ~__GFP_ATOMIC;
4493
5ce9bfef
VB
4494retry_cpuset:
4495 compaction_retries = 0;
4496 no_progress_loops = 0;
4497 compact_priority = DEF_COMPACT_PRIORITY;
4498 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4499
4500 /*
4501 * The fast path uses conservative alloc_flags to succeed only until
4502 * kswapd needs to be woken up, and to avoid the cost of setting up
4503 * alloc_flags precisely. So we do that now.
4504 */
4505 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4506
e47483bc
VB
4507 /*
4508 * We need to recalculate the starting point for the zonelist iterator
4509 * because we might have used different nodemask in the fast path, or
4510 * there was a cpuset modification and we are retrying - otherwise we
4511 * could end up iterating over non-eligible zones endlessly.
4512 */
4513 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4514 ac->high_zoneidx, ac->nodemask);
4515 if (!ac->preferred_zoneref->zone)
4516 goto nopage;
4517
0a79cdad 4518 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4519 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4520
4521 /*
4522 * The adjusted alloc_flags might result in immediate success, so try
4523 * that first
4524 */
4525 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4526 if (page)
4527 goto got_pg;
4528
a8161d1e
VB
4529 /*
4530 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4531 * that we have enough base pages and don't need to reclaim. For non-
4532 * movable high-order allocations, do that as well, as compaction will
4533 * try prevent permanent fragmentation by migrating from blocks of the
4534 * same migratetype.
4535 * Don't try this for allocations that are allowed to ignore
4536 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4537 */
282722b0
VB
4538 if (can_direct_reclaim &&
4539 (costly_order ||
4540 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4541 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4542 page = __alloc_pages_direct_compact(gfp_mask, order,
4543 alloc_flags, ac,
a5508cd8 4544 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4545 &compact_result);
4546 if (page)
4547 goto got_pg;
4548
cc638f32
VB
4549 /*
4550 * Checks for costly allocations with __GFP_NORETRY, which
4551 * includes some THP page fault allocations
4552 */
4553 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4554 /*
4555 * If allocating entire pageblock(s) and compaction
4556 * failed because all zones are below low watermarks
4557 * or is prohibited because it recently failed at this
3f36d866
DR
4558 * order, fail immediately unless the allocator has
4559 * requested compaction and reclaim retry.
b39d0ee2
DR
4560 *
4561 * Reclaim is
4562 * - potentially very expensive because zones are far
4563 * below their low watermarks or this is part of very
4564 * bursty high order allocations,
4565 * - not guaranteed to help because isolate_freepages()
4566 * may not iterate over freed pages as part of its
4567 * linear scan, and
4568 * - unlikely to make entire pageblocks free on its
4569 * own.
4570 */
4571 if (compact_result == COMPACT_SKIPPED ||
4572 compact_result == COMPACT_DEFERRED)
4573 goto nopage;
a8161d1e 4574
a8161d1e 4575 /*
3eb2771b
VB
4576 * Looks like reclaim/compaction is worth trying, but
4577 * sync compaction could be very expensive, so keep
25160354 4578 * using async compaction.
a8161d1e 4579 */
a5508cd8 4580 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4581 }
4582 }
23771235 4583
31a6c190 4584retry:
23771235 4585 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4586 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4587 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4588
cd04ae1e
MH
4589 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4590 if (reserve_flags)
4591 alloc_flags = reserve_flags;
23771235 4592
e46e7b77 4593 /*
d6a24df0
VB
4594 * Reset the nodemask and zonelist iterators if memory policies can be
4595 * ignored. These allocations are high priority and system rather than
4596 * user oriented.
e46e7b77 4597 */
cd04ae1e 4598 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4599 ac->nodemask = NULL;
e46e7b77
MG
4600 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4601 ac->high_zoneidx, ac->nodemask);
4602 }
4603
23771235 4604 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4605 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4606 if (page)
4607 goto got_pg;
1da177e4 4608
d0164adc 4609 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4610 if (!can_direct_reclaim)
1da177e4
LT
4611 goto nopage;
4612
9a67f648
MH
4613 /* Avoid recursion of direct reclaim */
4614 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4615 goto nopage;
4616
a8161d1e
VB
4617 /* Try direct reclaim and then allocating */
4618 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4619 &did_some_progress);
4620 if (page)
4621 goto got_pg;
4622
4623 /* Try direct compaction and then allocating */
a9263751 4624 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4625 compact_priority, &compact_result);
56de7263
MG
4626 if (page)
4627 goto got_pg;
75f30861 4628
9083905a
JW
4629 /* Do not loop if specifically requested */
4630 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4631 goto nopage;
9083905a 4632
0a0337e0
MH
4633 /*
4634 * Do not retry costly high order allocations unless they are
dcda9b04 4635 * __GFP_RETRY_MAYFAIL
0a0337e0 4636 */
dcda9b04 4637 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4638 goto nopage;
0a0337e0 4639
0a0337e0 4640 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4641 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4642 goto retry;
4643
33c2d214
MH
4644 /*
4645 * It doesn't make any sense to retry for the compaction if the order-0
4646 * reclaim is not able to make any progress because the current
4647 * implementation of the compaction depends on the sufficient amount
4648 * of free memory (see __compaction_suitable)
4649 */
4650 if (did_some_progress > 0 &&
86a294a8 4651 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4652 compact_result, &compact_priority,
d9436498 4653 &compaction_retries))
33c2d214
MH
4654 goto retry;
4655
902b6281
VB
4656
4657 /* Deal with possible cpuset update races before we start OOM killing */
4658 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4659 goto retry_cpuset;
4660
9083905a
JW
4661 /* Reclaim has failed us, start killing things */
4662 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4663 if (page)
4664 goto got_pg;
4665
9a67f648 4666 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4667 if (tsk_is_oom_victim(current) &&
4668 (alloc_flags == ALLOC_OOM ||
c288983d 4669 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4670 goto nopage;
4671
9083905a 4672 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4673 if (did_some_progress) {
4674 no_progress_loops = 0;
9083905a 4675 goto retry;
0a0337e0 4676 }
9083905a 4677
1da177e4 4678nopage:
902b6281
VB
4679 /* Deal with possible cpuset update races before we fail */
4680 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4681 goto retry_cpuset;
4682
9a67f648
MH
4683 /*
4684 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4685 * we always retry
4686 */
4687 if (gfp_mask & __GFP_NOFAIL) {
4688 /*
4689 * All existing users of the __GFP_NOFAIL are blockable, so warn
4690 * of any new users that actually require GFP_NOWAIT
4691 */
4692 if (WARN_ON_ONCE(!can_direct_reclaim))
4693 goto fail;
4694
4695 /*
4696 * PF_MEMALLOC request from this context is rather bizarre
4697 * because we cannot reclaim anything and only can loop waiting
4698 * for somebody to do a work for us
4699 */
4700 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4701
4702 /*
4703 * non failing costly orders are a hard requirement which we
4704 * are not prepared for much so let's warn about these users
4705 * so that we can identify them and convert them to something
4706 * else.
4707 */
4708 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4709
6c18ba7a
MH
4710 /*
4711 * Help non-failing allocations by giving them access to memory
4712 * reserves but do not use ALLOC_NO_WATERMARKS because this
4713 * could deplete whole memory reserves which would just make
4714 * the situation worse
4715 */
4716 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4717 if (page)
4718 goto got_pg;
4719
9a67f648
MH
4720 cond_resched();
4721 goto retry;
4722 }
4723fail:
a8e99259 4724 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4725 "page allocation failure: order:%u", order);
1da177e4 4726got_pg:
072bb0aa 4727 return page;
1da177e4 4728}
11e33f6a 4729
9cd75558 4730static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4731 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4732 struct alloc_context *ac, gfp_t *alloc_mask,
4733 unsigned int *alloc_flags)
11e33f6a 4734{
9cd75558 4735 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4736 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4737 ac->nodemask = nodemask;
4738 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4739
682a3385 4740 if (cpusets_enabled()) {
9cd75558 4741 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4742 if (!ac->nodemask)
4743 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4744 else
4745 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4746 }
4747
d92a8cfc
PZ
4748 fs_reclaim_acquire(gfp_mask);
4749 fs_reclaim_release(gfp_mask);
11e33f6a 4750
d0164adc 4751 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4752
4753 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4754 return false;
11e33f6a 4755
d883c6cf
JK
4756 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4757 *alloc_flags |= ALLOC_CMA;
4758
9cd75558
MG
4759 return true;
4760}
21bb9bd1 4761
9cd75558 4762/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4763static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4764{
c9ab0c4f 4765 /* Dirty zone balancing only done in the fast path */
9cd75558 4766 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4767
e46e7b77
MG
4768 /*
4769 * The preferred zone is used for statistics but crucially it is
4770 * also used as the starting point for the zonelist iterator. It
4771 * may get reset for allocations that ignore memory policies.
4772 */
9cd75558
MG
4773 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4774 ac->high_zoneidx, ac->nodemask);
4775}
4776
4777/*
4778 * This is the 'heart' of the zoned buddy allocator.
4779 */
4780struct page *
04ec6264
VB
4781__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4782 nodemask_t *nodemask)
9cd75558
MG
4783{
4784 struct page *page;
4785 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4786 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4787 struct alloc_context ac = { };
4788
c63ae43b
MH
4789 /*
4790 * There are several places where we assume that the order value is sane
4791 * so bail out early if the request is out of bound.
4792 */
4793 if (unlikely(order >= MAX_ORDER)) {
4794 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4795 return NULL;
4796 }
4797
9cd75558 4798 gfp_mask &= gfp_allowed_mask;
f19360f0 4799 alloc_mask = gfp_mask;
04ec6264 4800 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4801 return NULL;
4802
a380b40a 4803 finalise_ac(gfp_mask, &ac);
5bb1b169 4804
6bb15450
MG
4805 /*
4806 * Forbid the first pass from falling back to types that fragment
4807 * memory until all local zones are considered.
4808 */
0a79cdad 4809 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4810
5117f45d 4811 /* First allocation attempt */
a9263751 4812 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4813 if (likely(page))
4814 goto out;
11e33f6a 4815
4fcb0971 4816 /*
7dea19f9
MH
4817 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4818 * resp. GFP_NOIO which has to be inherited for all allocation requests
4819 * from a particular context which has been marked by
4820 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4821 */
7dea19f9 4822 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4823 ac.spread_dirty_pages = false;
23f086f9 4824
4741526b
MG
4825 /*
4826 * Restore the original nodemask if it was potentially replaced with
4827 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4828 */
97ce86f9 4829 ac.nodemask = nodemask;
16096c25 4830
4fcb0971 4831 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4832
4fcb0971 4833out:
c4159a75 4834 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4835 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4836 __free_pages(page, order);
4837 page = NULL;
4949148a
VD
4838 }
4839
4fcb0971
MG
4840 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4841
11e33f6a 4842 return page;
1da177e4 4843}
d239171e 4844EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4845
4846/*
9ea9a680
MH
4847 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4848 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4849 * you need to access high mem.
1da177e4 4850 */
920c7a5d 4851unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4852{
945a1113
AM
4853 struct page *page;
4854
9ea9a680 4855 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4856 if (!page)
4857 return 0;
4858 return (unsigned long) page_address(page);
4859}
1da177e4
LT
4860EXPORT_SYMBOL(__get_free_pages);
4861
920c7a5d 4862unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4863{
945a1113 4864 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4865}
1da177e4
LT
4866EXPORT_SYMBOL(get_zeroed_page);
4867
742aa7fb 4868static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4869{
742aa7fb
AL
4870 if (order == 0) /* Via pcp? */
4871 free_unref_page(page);
4872 else
4873 __free_pages_ok(page, order);
1da177e4
LT
4874}
4875
742aa7fb
AL
4876void __free_pages(struct page *page, unsigned int order)
4877{
4878 if (put_page_testzero(page))
4879 free_the_page(page, order);
4880}
1da177e4
LT
4881EXPORT_SYMBOL(__free_pages);
4882
920c7a5d 4883void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4884{
4885 if (addr != 0) {
725d704e 4886 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4887 __free_pages(virt_to_page((void *)addr), order);
4888 }
4889}
4890
4891EXPORT_SYMBOL(free_pages);
4892
b63ae8ca
AD
4893/*
4894 * Page Fragment:
4895 * An arbitrary-length arbitrary-offset area of memory which resides
4896 * within a 0 or higher order page. Multiple fragments within that page
4897 * are individually refcounted, in the page's reference counter.
4898 *
4899 * The page_frag functions below provide a simple allocation framework for
4900 * page fragments. This is used by the network stack and network device
4901 * drivers to provide a backing region of memory for use as either an
4902 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4903 */
2976db80
AD
4904static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4905 gfp_t gfp_mask)
b63ae8ca
AD
4906{
4907 struct page *page = NULL;
4908 gfp_t gfp = gfp_mask;
4909
4910#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4911 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4912 __GFP_NOMEMALLOC;
4913 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4914 PAGE_FRAG_CACHE_MAX_ORDER);
4915 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4916#endif
4917 if (unlikely(!page))
4918 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4919
4920 nc->va = page ? page_address(page) : NULL;
4921
4922 return page;
4923}
4924
2976db80 4925void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4926{
4927 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4928
742aa7fb
AL
4929 if (page_ref_sub_and_test(page, count))
4930 free_the_page(page, compound_order(page));
44fdffd7 4931}
2976db80 4932EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4933
8c2dd3e4
AD
4934void *page_frag_alloc(struct page_frag_cache *nc,
4935 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4936{
4937 unsigned int size = PAGE_SIZE;
4938 struct page *page;
4939 int offset;
4940
4941 if (unlikely(!nc->va)) {
4942refill:
2976db80 4943 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4944 if (!page)
4945 return NULL;
4946
4947#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4948 /* if size can vary use size else just use PAGE_SIZE */
4949 size = nc->size;
4950#endif
4951 /* Even if we own the page, we do not use atomic_set().
4952 * This would break get_page_unless_zero() users.
4953 */
86447726 4954 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4955
4956 /* reset page count bias and offset to start of new frag */
2f064f34 4957 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4958 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4959 nc->offset = size;
4960 }
4961
4962 offset = nc->offset - fragsz;
4963 if (unlikely(offset < 0)) {
4964 page = virt_to_page(nc->va);
4965
fe896d18 4966 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4967 goto refill;
4968
4969#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4970 /* if size can vary use size else just use PAGE_SIZE */
4971 size = nc->size;
4972#endif
4973 /* OK, page count is 0, we can safely set it */
86447726 4974 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4975
4976 /* reset page count bias and offset to start of new frag */
86447726 4977 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4978 offset = size - fragsz;
4979 }
4980
4981 nc->pagecnt_bias--;
4982 nc->offset = offset;
4983
4984 return nc->va + offset;
4985}
8c2dd3e4 4986EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4987
4988/*
4989 * Frees a page fragment allocated out of either a compound or order 0 page.
4990 */
8c2dd3e4 4991void page_frag_free(void *addr)
b63ae8ca
AD
4992{
4993 struct page *page = virt_to_head_page(addr);
4994
742aa7fb
AL
4995 if (unlikely(put_page_testzero(page)))
4996 free_the_page(page, compound_order(page));
b63ae8ca 4997}
8c2dd3e4 4998EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4999
d00181b9
KS
5000static void *make_alloc_exact(unsigned long addr, unsigned int order,
5001 size_t size)
ee85c2e1
AK
5002{
5003 if (addr) {
5004 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5005 unsigned long used = addr + PAGE_ALIGN(size);
5006
5007 split_page(virt_to_page((void *)addr), order);
5008 while (used < alloc_end) {
5009 free_page(used);
5010 used += PAGE_SIZE;
5011 }
5012 }
5013 return (void *)addr;
5014}
5015
2be0ffe2
TT
5016/**
5017 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5018 * @size: the number of bytes to allocate
63931eb9 5019 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5020 *
5021 * This function is similar to alloc_pages(), except that it allocates the
5022 * minimum number of pages to satisfy the request. alloc_pages() can only
5023 * allocate memory in power-of-two pages.
5024 *
5025 * This function is also limited by MAX_ORDER.
5026 *
5027 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5028 *
5029 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5030 */
5031void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5032{
5033 unsigned int order = get_order(size);
5034 unsigned long addr;
5035
63931eb9
VB
5036 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5037 gfp_mask &= ~__GFP_COMP;
5038
2be0ffe2 5039 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5040 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5041}
5042EXPORT_SYMBOL(alloc_pages_exact);
5043
ee85c2e1
AK
5044/**
5045 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5046 * pages on a node.
b5e6ab58 5047 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5048 * @size: the number of bytes to allocate
63931eb9 5049 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5050 *
5051 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5052 * back.
a862f68a
MR
5053 *
5054 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5055 */
e1931811 5056void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5057{
d00181b9 5058 unsigned int order = get_order(size);
63931eb9
VB
5059 struct page *p;
5060
5061 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5062 gfp_mask &= ~__GFP_COMP;
5063
5064 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5065 if (!p)
5066 return NULL;
5067 return make_alloc_exact((unsigned long)page_address(p), order, size);
5068}
ee85c2e1 5069
2be0ffe2
TT
5070/**
5071 * free_pages_exact - release memory allocated via alloc_pages_exact()
5072 * @virt: the value returned by alloc_pages_exact.
5073 * @size: size of allocation, same value as passed to alloc_pages_exact().
5074 *
5075 * Release the memory allocated by a previous call to alloc_pages_exact.
5076 */
5077void free_pages_exact(void *virt, size_t size)
5078{
5079 unsigned long addr = (unsigned long)virt;
5080 unsigned long end = addr + PAGE_ALIGN(size);
5081
5082 while (addr < end) {
5083 free_page(addr);
5084 addr += PAGE_SIZE;
5085 }
5086}
5087EXPORT_SYMBOL(free_pages_exact);
5088
e0fb5815
ZY
5089/**
5090 * nr_free_zone_pages - count number of pages beyond high watermark
5091 * @offset: The zone index of the highest zone
5092 *
a862f68a 5093 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5094 * high watermark within all zones at or below a given zone index. For each
5095 * zone, the number of pages is calculated as:
0e056eb5 5096 *
5097 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5098 *
5099 * Return: number of pages beyond high watermark.
e0fb5815 5100 */
ebec3862 5101static unsigned long nr_free_zone_pages(int offset)
1da177e4 5102{
dd1a239f 5103 struct zoneref *z;
54a6eb5c
MG
5104 struct zone *zone;
5105
e310fd43 5106 /* Just pick one node, since fallback list is circular */
ebec3862 5107 unsigned long sum = 0;
1da177e4 5108
0e88460d 5109 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5110
54a6eb5c 5111 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5112 unsigned long size = zone_managed_pages(zone);
41858966 5113 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5114 if (size > high)
5115 sum += size - high;
1da177e4
LT
5116 }
5117
5118 return sum;
5119}
5120
e0fb5815
ZY
5121/**
5122 * nr_free_buffer_pages - count number of pages beyond high watermark
5123 *
5124 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5125 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5126 *
5127 * Return: number of pages beyond high watermark within ZONE_DMA and
5128 * ZONE_NORMAL.
1da177e4 5129 */
ebec3862 5130unsigned long nr_free_buffer_pages(void)
1da177e4 5131{
af4ca457 5132 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5133}
c2f1a551 5134EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5135
e0fb5815
ZY
5136/**
5137 * nr_free_pagecache_pages - count number of pages beyond high watermark
5138 *
5139 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5140 * high watermark within all zones.
a862f68a
MR
5141 *
5142 * Return: number of pages beyond high watermark within all zones.
1da177e4 5143 */
ebec3862 5144unsigned long nr_free_pagecache_pages(void)
1da177e4 5145{
2a1e274a 5146 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5147}
08e0f6a9
CL
5148
5149static inline void show_node(struct zone *zone)
1da177e4 5150{
e5adfffc 5151 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5152 printk("Node %d ", zone_to_nid(zone));
1da177e4 5153}
1da177e4 5154
d02bd27b
IR
5155long si_mem_available(void)
5156{
5157 long available;
5158 unsigned long pagecache;
5159 unsigned long wmark_low = 0;
5160 unsigned long pages[NR_LRU_LISTS];
b29940c1 5161 unsigned long reclaimable;
d02bd27b
IR
5162 struct zone *zone;
5163 int lru;
5164
5165 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5166 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5167
5168 for_each_zone(zone)
a9214443 5169 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5170
5171 /*
5172 * Estimate the amount of memory available for userspace allocations,
5173 * without causing swapping.
5174 */
c41f012a 5175 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5176
5177 /*
5178 * Not all the page cache can be freed, otherwise the system will
5179 * start swapping. Assume at least half of the page cache, or the
5180 * low watermark worth of cache, needs to stay.
5181 */
5182 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5183 pagecache -= min(pagecache / 2, wmark_low);
5184 available += pagecache;
5185
5186 /*
b29940c1
VB
5187 * Part of the reclaimable slab and other kernel memory consists of
5188 * items that are in use, and cannot be freed. Cap this estimate at the
5189 * low watermark.
d02bd27b 5190 */
b29940c1
VB
5191 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5192 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5193 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5194
d02bd27b
IR
5195 if (available < 0)
5196 available = 0;
5197 return available;
5198}
5199EXPORT_SYMBOL_GPL(si_mem_available);
5200
1da177e4
LT
5201void si_meminfo(struct sysinfo *val)
5202{
ca79b0c2 5203 val->totalram = totalram_pages();
11fb9989 5204 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5205 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5206 val->bufferram = nr_blockdev_pages();
ca79b0c2 5207 val->totalhigh = totalhigh_pages();
1da177e4 5208 val->freehigh = nr_free_highpages();
1da177e4
LT
5209 val->mem_unit = PAGE_SIZE;
5210}
5211
5212EXPORT_SYMBOL(si_meminfo);
5213
5214#ifdef CONFIG_NUMA
5215void si_meminfo_node(struct sysinfo *val, int nid)
5216{
cdd91a77
JL
5217 int zone_type; /* needs to be signed */
5218 unsigned long managed_pages = 0;
fc2bd799
JK
5219 unsigned long managed_highpages = 0;
5220 unsigned long free_highpages = 0;
1da177e4
LT
5221 pg_data_t *pgdat = NODE_DATA(nid);
5222
cdd91a77 5223 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5224 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5225 val->totalram = managed_pages;
11fb9989 5226 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5227 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5228#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5229 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5230 struct zone *zone = &pgdat->node_zones[zone_type];
5231
5232 if (is_highmem(zone)) {
9705bea5 5233 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5234 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5235 }
5236 }
5237 val->totalhigh = managed_highpages;
5238 val->freehigh = free_highpages;
98d2b0eb 5239#else
fc2bd799
JK
5240 val->totalhigh = managed_highpages;
5241 val->freehigh = free_highpages;
98d2b0eb 5242#endif
1da177e4
LT
5243 val->mem_unit = PAGE_SIZE;
5244}
5245#endif
5246
ddd588b5 5247/*
7bf02ea2
DR
5248 * Determine whether the node should be displayed or not, depending on whether
5249 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5250 */
9af744d7 5251static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5252{
ddd588b5 5253 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5254 return false;
ddd588b5 5255
9af744d7
MH
5256 /*
5257 * no node mask - aka implicit memory numa policy. Do not bother with
5258 * the synchronization - read_mems_allowed_begin - because we do not
5259 * have to be precise here.
5260 */
5261 if (!nodemask)
5262 nodemask = &cpuset_current_mems_allowed;
5263
5264 return !node_isset(nid, *nodemask);
ddd588b5
DR
5265}
5266
1da177e4
LT
5267#define K(x) ((x) << (PAGE_SHIFT-10))
5268
377e4f16
RV
5269static void show_migration_types(unsigned char type)
5270{
5271 static const char types[MIGRATE_TYPES] = {
5272 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5273 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5274 [MIGRATE_RECLAIMABLE] = 'E',
5275 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5276#ifdef CONFIG_CMA
5277 [MIGRATE_CMA] = 'C',
5278#endif
194159fb 5279#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5280 [MIGRATE_ISOLATE] = 'I',
194159fb 5281#endif
377e4f16
RV
5282 };
5283 char tmp[MIGRATE_TYPES + 1];
5284 char *p = tmp;
5285 int i;
5286
5287 for (i = 0; i < MIGRATE_TYPES; i++) {
5288 if (type & (1 << i))
5289 *p++ = types[i];
5290 }
5291
5292 *p = '\0';
1f84a18f 5293 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5294}
5295
1da177e4
LT
5296/*
5297 * Show free area list (used inside shift_scroll-lock stuff)
5298 * We also calculate the percentage fragmentation. We do this by counting the
5299 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5300 *
5301 * Bits in @filter:
5302 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5303 * cpuset.
1da177e4 5304 */
9af744d7 5305void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5306{
d1bfcdb8 5307 unsigned long free_pcp = 0;
c7241913 5308 int cpu;
1da177e4 5309 struct zone *zone;
599d0c95 5310 pg_data_t *pgdat;
1da177e4 5311
ee99c71c 5312 for_each_populated_zone(zone) {
9af744d7 5313 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5314 continue;
d1bfcdb8 5315
761b0677
KK
5316 for_each_online_cpu(cpu)
5317 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5318 }
5319
a731286d
KM
5320 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5321 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5322 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5323 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5324 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5325 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5326 global_node_page_state(NR_ACTIVE_ANON),
5327 global_node_page_state(NR_INACTIVE_ANON),
5328 global_node_page_state(NR_ISOLATED_ANON),
5329 global_node_page_state(NR_ACTIVE_FILE),
5330 global_node_page_state(NR_INACTIVE_FILE),
5331 global_node_page_state(NR_ISOLATED_FILE),
5332 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5333 global_node_page_state(NR_FILE_DIRTY),
5334 global_node_page_state(NR_WRITEBACK),
d507e2eb
JW
5335 global_node_page_state(NR_SLAB_RECLAIMABLE),
5336 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5337 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5338 global_node_page_state(NR_SHMEM),
c41f012a
MH
5339 global_zone_page_state(NR_PAGETABLE),
5340 global_zone_page_state(NR_BOUNCE),
5341 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5342 free_pcp,
c41f012a 5343 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5344
599d0c95 5345 for_each_online_pgdat(pgdat) {
9af744d7 5346 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5347 continue;
5348
599d0c95
MG
5349 printk("Node %d"
5350 " active_anon:%lukB"
5351 " inactive_anon:%lukB"
5352 " active_file:%lukB"
5353 " inactive_file:%lukB"
5354 " unevictable:%lukB"
5355 " isolated(anon):%lukB"
5356 " isolated(file):%lukB"
50658e2e 5357 " mapped:%lukB"
11fb9989
MG
5358 " dirty:%lukB"
5359 " writeback:%lukB"
5360 " shmem:%lukB"
5361#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5362 " shmem_thp: %lukB"
5363 " shmem_pmdmapped: %lukB"
5364 " anon_thp: %lukB"
5365#endif
5366 " writeback_tmp:%lukB"
599d0c95
MG
5367 " all_unreclaimable? %s"
5368 "\n",
5369 pgdat->node_id,
5370 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5371 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5372 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5373 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5374 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5375 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5376 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5377 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5378 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5379 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5380 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5381#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5382 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5383 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5384 * HPAGE_PMD_NR),
5385 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5386#endif
11fb9989 5387 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
c73322d0
JW
5388 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5389 "yes" : "no");
599d0c95
MG
5390 }
5391
ee99c71c 5392 for_each_populated_zone(zone) {
1da177e4
LT
5393 int i;
5394
9af744d7 5395 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5396 continue;
d1bfcdb8
KK
5397
5398 free_pcp = 0;
5399 for_each_online_cpu(cpu)
5400 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5401
1da177e4 5402 show_node(zone);
1f84a18f
JP
5403 printk(KERN_CONT
5404 "%s"
1da177e4
LT
5405 " free:%lukB"
5406 " min:%lukB"
5407 " low:%lukB"
5408 " high:%lukB"
e47b346a 5409 " reserved_highatomic:%luKB"
71c799f4
MK
5410 " active_anon:%lukB"
5411 " inactive_anon:%lukB"
5412 " active_file:%lukB"
5413 " inactive_file:%lukB"
5414 " unevictable:%lukB"
5a1c84b4 5415 " writepending:%lukB"
1da177e4 5416 " present:%lukB"
9feedc9d 5417 " managed:%lukB"
4a0aa73f 5418 " mlocked:%lukB"
c6a7f572 5419 " kernel_stack:%lukB"
4a0aa73f 5420 " pagetables:%lukB"
4a0aa73f 5421 " bounce:%lukB"
d1bfcdb8
KK
5422 " free_pcp:%lukB"
5423 " local_pcp:%ukB"
d1ce749a 5424 " free_cma:%lukB"
1da177e4
LT
5425 "\n",
5426 zone->name,
88f5acf8 5427 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5428 K(min_wmark_pages(zone)),
5429 K(low_wmark_pages(zone)),
5430 K(high_wmark_pages(zone)),
e47b346a 5431 K(zone->nr_reserved_highatomic),
71c799f4
MK
5432 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5433 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5434 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5435 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5436 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5437 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5438 K(zone->present_pages),
9705bea5 5439 K(zone_managed_pages(zone)),
4a0aa73f 5440 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5441 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5442 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5443 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5444 K(free_pcp),
5445 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5446 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5447 printk("lowmem_reserve[]:");
5448 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5449 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5450 printk(KERN_CONT "\n");
1da177e4
LT
5451 }
5452
ee99c71c 5453 for_each_populated_zone(zone) {
d00181b9
KS
5454 unsigned int order;
5455 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5456 unsigned char types[MAX_ORDER];
1da177e4 5457
9af744d7 5458 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5459 continue;
1da177e4 5460 show_node(zone);
1f84a18f 5461 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5462
5463 spin_lock_irqsave(&zone->lock, flags);
5464 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5465 struct free_area *area = &zone->free_area[order];
5466 int type;
5467
5468 nr[order] = area->nr_free;
8f9de51a 5469 total += nr[order] << order;
377e4f16
RV
5470
5471 types[order] = 0;
5472 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5473 if (!free_area_empty(area, type))
377e4f16
RV
5474 types[order] |= 1 << type;
5475 }
1da177e4
LT
5476 }
5477 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5478 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5479 printk(KERN_CONT "%lu*%lukB ",
5480 nr[order], K(1UL) << order);
377e4f16
RV
5481 if (nr[order])
5482 show_migration_types(types[order]);
5483 }
1f84a18f 5484 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5485 }
5486
949f7ec5
DR
5487 hugetlb_show_meminfo();
5488
11fb9989 5489 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5490
1da177e4
LT
5491 show_swap_cache_info();
5492}
5493
19770b32
MG
5494static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5495{
5496 zoneref->zone = zone;
5497 zoneref->zone_idx = zone_idx(zone);
5498}
5499
1da177e4
LT
5500/*
5501 * Builds allocation fallback zone lists.
1a93205b
CL
5502 *
5503 * Add all populated zones of a node to the zonelist.
1da177e4 5504 */
9d3be21b 5505static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5506{
1a93205b 5507 struct zone *zone;
bc732f1d 5508 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5509 int nr_zones = 0;
02a68a5e
CL
5510
5511 do {
2f6726e5 5512 zone_type--;
070f8032 5513 zone = pgdat->node_zones + zone_type;
6aa303de 5514 if (managed_zone(zone)) {
9d3be21b 5515 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5516 check_highest_zone(zone_type);
1da177e4 5517 }
2f6726e5 5518 } while (zone_type);
bc732f1d 5519
070f8032 5520 return nr_zones;
1da177e4
LT
5521}
5522
5523#ifdef CONFIG_NUMA
f0c0b2b8
KH
5524
5525static int __parse_numa_zonelist_order(char *s)
5526{
c9bff3ee
MH
5527 /*
5528 * We used to support different zonlists modes but they turned
5529 * out to be just not useful. Let's keep the warning in place
5530 * if somebody still use the cmd line parameter so that we do
5531 * not fail it silently
5532 */
5533 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5534 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5535 return -EINVAL;
5536 }
5537 return 0;
5538}
5539
5540static __init int setup_numa_zonelist_order(char *s)
5541{
ecb256f8
VL
5542 if (!s)
5543 return 0;
5544
c9bff3ee 5545 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5546}
5547early_param("numa_zonelist_order", setup_numa_zonelist_order);
5548
c9bff3ee
MH
5549char numa_zonelist_order[] = "Node";
5550
f0c0b2b8
KH
5551/*
5552 * sysctl handler for numa_zonelist_order
5553 */
cccad5b9 5554int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5555 void __user *buffer, size_t *length,
f0c0b2b8
KH
5556 loff_t *ppos)
5557{
c9bff3ee 5558 char *str;
f0c0b2b8
KH
5559 int ret;
5560
c9bff3ee
MH
5561 if (!write)
5562 return proc_dostring(table, write, buffer, length, ppos);
5563 str = memdup_user_nul(buffer, 16);
5564 if (IS_ERR(str))
5565 return PTR_ERR(str);
dacbde09 5566
c9bff3ee
MH
5567 ret = __parse_numa_zonelist_order(str);
5568 kfree(str);
443c6f14 5569 return ret;
f0c0b2b8
KH
5570}
5571
5572
62bc62a8 5573#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5574static int node_load[MAX_NUMNODES];
5575
1da177e4 5576/**
4dc3b16b 5577 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5578 * @node: node whose fallback list we're appending
5579 * @used_node_mask: nodemask_t of already used nodes
5580 *
5581 * We use a number of factors to determine which is the next node that should
5582 * appear on a given node's fallback list. The node should not have appeared
5583 * already in @node's fallback list, and it should be the next closest node
5584 * according to the distance array (which contains arbitrary distance values
5585 * from each node to each node in the system), and should also prefer nodes
5586 * with no CPUs, since presumably they'll have very little allocation pressure
5587 * on them otherwise.
a862f68a
MR
5588 *
5589 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5590 */
f0c0b2b8 5591static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5592{
4cf808eb 5593 int n, val;
1da177e4 5594 int min_val = INT_MAX;
00ef2d2f 5595 int best_node = NUMA_NO_NODE;
a70f7302 5596 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5597
4cf808eb
LT
5598 /* Use the local node if we haven't already */
5599 if (!node_isset(node, *used_node_mask)) {
5600 node_set(node, *used_node_mask);
5601 return node;
5602 }
1da177e4 5603
4b0ef1fe 5604 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5605
5606 /* Don't want a node to appear more than once */
5607 if (node_isset(n, *used_node_mask))
5608 continue;
5609
1da177e4
LT
5610 /* Use the distance array to find the distance */
5611 val = node_distance(node, n);
5612
4cf808eb
LT
5613 /* Penalize nodes under us ("prefer the next node") */
5614 val += (n < node);
5615
1da177e4 5616 /* Give preference to headless and unused nodes */
a70f7302
RR
5617 tmp = cpumask_of_node(n);
5618 if (!cpumask_empty(tmp))
1da177e4
LT
5619 val += PENALTY_FOR_NODE_WITH_CPUS;
5620
5621 /* Slight preference for less loaded node */
5622 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5623 val += node_load[n];
5624
5625 if (val < min_val) {
5626 min_val = val;
5627 best_node = n;
5628 }
5629 }
5630
5631 if (best_node >= 0)
5632 node_set(best_node, *used_node_mask);
5633
5634 return best_node;
5635}
5636
f0c0b2b8
KH
5637
5638/*
5639 * Build zonelists ordered by node and zones within node.
5640 * This results in maximum locality--normal zone overflows into local
5641 * DMA zone, if any--but risks exhausting DMA zone.
5642 */
9d3be21b
MH
5643static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5644 unsigned nr_nodes)
1da177e4 5645{
9d3be21b
MH
5646 struct zoneref *zonerefs;
5647 int i;
5648
5649 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5650
5651 for (i = 0; i < nr_nodes; i++) {
5652 int nr_zones;
5653
5654 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5655
9d3be21b
MH
5656 nr_zones = build_zonerefs_node(node, zonerefs);
5657 zonerefs += nr_zones;
5658 }
5659 zonerefs->zone = NULL;
5660 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5661}
5662
523b9458
CL
5663/*
5664 * Build gfp_thisnode zonelists
5665 */
5666static void build_thisnode_zonelists(pg_data_t *pgdat)
5667{
9d3be21b
MH
5668 struct zoneref *zonerefs;
5669 int nr_zones;
523b9458 5670
9d3be21b
MH
5671 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5672 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5673 zonerefs += nr_zones;
5674 zonerefs->zone = NULL;
5675 zonerefs->zone_idx = 0;
523b9458
CL
5676}
5677
f0c0b2b8
KH
5678/*
5679 * Build zonelists ordered by zone and nodes within zones.
5680 * This results in conserving DMA zone[s] until all Normal memory is
5681 * exhausted, but results in overflowing to remote node while memory
5682 * may still exist in local DMA zone.
5683 */
f0c0b2b8 5684
f0c0b2b8
KH
5685static void build_zonelists(pg_data_t *pgdat)
5686{
9d3be21b
MH
5687 static int node_order[MAX_NUMNODES];
5688 int node, load, nr_nodes = 0;
1da177e4 5689 nodemask_t used_mask;
f0c0b2b8 5690 int local_node, prev_node;
1da177e4
LT
5691
5692 /* NUMA-aware ordering of nodes */
5693 local_node = pgdat->node_id;
62bc62a8 5694 load = nr_online_nodes;
1da177e4
LT
5695 prev_node = local_node;
5696 nodes_clear(used_mask);
f0c0b2b8 5697
f0c0b2b8 5698 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5699 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5700 /*
5701 * We don't want to pressure a particular node.
5702 * So adding penalty to the first node in same
5703 * distance group to make it round-robin.
5704 */
957f822a
DR
5705 if (node_distance(local_node, node) !=
5706 node_distance(local_node, prev_node))
f0c0b2b8
KH
5707 node_load[node] = load;
5708
9d3be21b 5709 node_order[nr_nodes++] = node;
1da177e4
LT
5710 prev_node = node;
5711 load--;
1da177e4 5712 }
523b9458 5713
9d3be21b 5714 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5715 build_thisnode_zonelists(pgdat);
1da177e4
LT
5716}
5717
7aac7898
LS
5718#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5719/*
5720 * Return node id of node used for "local" allocations.
5721 * I.e., first node id of first zone in arg node's generic zonelist.
5722 * Used for initializing percpu 'numa_mem', which is used primarily
5723 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5724 */
5725int local_memory_node(int node)
5726{
c33d6c06 5727 struct zoneref *z;
7aac7898 5728
c33d6c06 5729 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5730 gfp_zone(GFP_KERNEL),
c33d6c06 5731 NULL);
c1093b74 5732 return zone_to_nid(z->zone);
7aac7898
LS
5733}
5734#endif
f0c0b2b8 5735
6423aa81
JK
5736static void setup_min_unmapped_ratio(void);
5737static void setup_min_slab_ratio(void);
1da177e4
LT
5738#else /* CONFIG_NUMA */
5739
f0c0b2b8 5740static void build_zonelists(pg_data_t *pgdat)
1da177e4 5741{
19655d34 5742 int node, local_node;
9d3be21b
MH
5743 struct zoneref *zonerefs;
5744 int nr_zones;
1da177e4
LT
5745
5746 local_node = pgdat->node_id;
1da177e4 5747
9d3be21b
MH
5748 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5749 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5750 zonerefs += nr_zones;
1da177e4 5751
54a6eb5c
MG
5752 /*
5753 * Now we build the zonelist so that it contains the zones
5754 * of all the other nodes.
5755 * We don't want to pressure a particular node, so when
5756 * building the zones for node N, we make sure that the
5757 * zones coming right after the local ones are those from
5758 * node N+1 (modulo N)
5759 */
5760 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5761 if (!node_online(node))
5762 continue;
9d3be21b
MH
5763 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5764 zonerefs += nr_zones;
1da177e4 5765 }
54a6eb5c
MG
5766 for (node = 0; node < local_node; node++) {
5767 if (!node_online(node))
5768 continue;
9d3be21b
MH
5769 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5770 zonerefs += nr_zones;
54a6eb5c
MG
5771 }
5772
9d3be21b
MH
5773 zonerefs->zone = NULL;
5774 zonerefs->zone_idx = 0;
1da177e4
LT
5775}
5776
5777#endif /* CONFIG_NUMA */
5778
99dcc3e5
CL
5779/*
5780 * Boot pageset table. One per cpu which is going to be used for all
5781 * zones and all nodes. The parameters will be set in such a way
5782 * that an item put on a list will immediately be handed over to
5783 * the buddy list. This is safe since pageset manipulation is done
5784 * with interrupts disabled.
5785 *
5786 * The boot_pagesets must be kept even after bootup is complete for
5787 * unused processors and/or zones. They do play a role for bootstrapping
5788 * hotplugged processors.
5789 *
5790 * zoneinfo_show() and maybe other functions do
5791 * not check if the processor is online before following the pageset pointer.
5792 * Other parts of the kernel may not check if the zone is available.
5793 */
5794static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5795static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5796static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5797
11cd8638 5798static void __build_all_zonelists(void *data)
1da177e4 5799{
6811378e 5800 int nid;
afb6ebb3 5801 int __maybe_unused cpu;
9adb62a5 5802 pg_data_t *self = data;
b93e0f32
MH
5803 static DEFINE_SPINLOCK(lock);
5804
5805 spin_lock(&lock);
9276b1bc 5806
7f9cfb31
BL
5807#ifdef CONFIG_NUMA
5808 memset(node_load, 0, sizeof(node_load));
5809#endif
9adb62a5 5810
c1152583
WY
5811 /*
5812 * This node is hotadded and no memory is yet present. So just
5813 * building zonelists is fine - no need to touch other nodes.
5814 */
9adb62a5
JL
5815 if (self && !node_online(self->node_id)) {
5816 build_zonelists(self);
c1152583
WY
5817 } else {
5818 for_each_online_node(nid) {
5819 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5820
c1152583
WY
5821 build_zonelists(pgdat);
5822 }
99dcc3e5 5823
7aac7898
LS
5824#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5825 /*
5826 * We now know the "local memory node" for each node--
5827 * i.e., the node of the first zone in the generic zonelist.
5828 * Set up numa_mem percpu variable for on-line cpus. During
5829 * boot, only the boot cpu should be on-line; we'll init the
5830 * secondary cpus' numa_mem as they come on-line. During
5831 * node/memory hotplug, we'll fixup all on-line cpus.
5832 */
d9c9a0b9 5833 for_each_online_cpu(cpu)
7aac7898 5834 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5835#endif
d9c9a0b9 5836 }
b93e0f32
MH
5837
5838 spin_unlock(&lock);
6811378e
YG
5839}
5840
061f67bc
RV
5841static noinline void __init
5842build_all_zonelists_init(void)
5843{
afb6ebb3
MH
5844 int cpu;
5845
061f67bc 5846 __build_all_zonelists(NULL);
afb6ebb3
MH
5847
5848 /*
5849 * Initialize the boot_pagesets that are going to be used
5850 * for bootstrapping processors. The real pagesets for
5851 * each zone will be allocated later when the per cpu
5852 * allocator is available.
5853 *
5854 * boot_pagesets are used also for bootstrapping offline
5855 * cpus if the system is already booted because the pagesets
5856 * are needed to initialize allocators on a specific cpu too.
5857 * F.e. the percpu allocator needs the page allocator which
5858 * needs the percpu allocator in order to allocate its pagesets
5859 * (a chicken-egg dilemma).
5860 */
5861 for_each_possible_cpu(cpu)
5862 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5863
061f67bc
RV
5864 mminit_verify_zonelist();
5865 cpuset_init_current_mems_allowed();
5866}
5867
4eaf3f64 5868/*
4eaf3f64 5869 * unless system_state == SYSTEM_BOOTING.
061f67bc 5870 *
72675e13 5871 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5872 * [protected by SYSTEM_BOOTING].
4eaf3f64 5873 */
72675e13 5874void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5875{
5876 if (system_state == SYSTEM_BOOTING) {
061f67bc 5877 build_all_zonelists_init();
6811378e 5878 } else {
11cd8638 5879 __build_all_zonelists(pgdat);
6811378e
YG
5880 /* cpuset refresh routine should be here */
5881 }
bd1e22b8 5882 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5883 /*
5884 * Disable grouping by mobility if the number of pages in the
5885 * system is too low to allow the mechanism to work. It would be
5886 * more accurate, but expensive to check per-zone. This check is
5887 * made on memory-hotadd so a system can start with mobility
5888 * disabled and enable it later
5889 */
d9c23400 5890 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5891 page_group_by_mobility_disabled = 1;
5892 else
5893 page_group_by_mobility_disabled = 0;
5894
ce0725f7 5895 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5896 nr_online_nodes,
756a025f
JP
5897 page_group_by_mobility_disabled ? "off" : "on",
5898 vm_total_pages);
f0c0b2b8 5899#ifdef CONFIG_NUMA
f88dfff5 5900 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5901#endif
1da177e4
LT
5902}
5903
a9a9e77f
PT
5904/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5905static bool __meminit
5906overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5907{
5908#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5909 static struct memblock_region *r;
5910
5911 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5912 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5913 for_each_memblock(memory, r) {
5914 if (*pfn < memblock_region_memory_end_pfn(r))
5915 break;
5916 }
5917 }
5918 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5919 memblock_is_mirror(r)) {
5920 *pfn = memblock_region_memory_end_pfn(r);
5921 return true;
5922 }
5923 }
5924#endif
5925 return false;
5926}
5927
3f135355
KS
5928#ifdef CONFIG_SPARSEMEM
5929/* Skip PFNs that belong to non-present sections */
5930static inline __meminit unsigned long next_pfn(unsigned long pfn)
5931{
4c605881 5932 const unsigned long section_nr = pfn_to_section_nr(++pfn);
3f135355 5933
3f135355
KS
5934 if (present_section_nr(section_nr))
5935 return pfn;
4c605881 5936 return section_nr_to_pfn(next_present_section_nr(section_nr));
3f135355
KS
5937}
5938#else
5939static inline __meminit unsigned long next_pfn(unsigned long pfn)
5940{
5941 return pfn++;
5942}
5943#endif
5944
1da177e4
LT
5945/*
5946 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5947 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5948 * done. Non-atomic initialization, single-pass.
5949 */
c09b4240 5950void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5951 unsigned long start_pfn, enum memmap_context context,
5952 struct vmem_altmap *altmap)
1da177e4 5953{
a9a9e77f 5954 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5955 struct page *page;
1da177e4 5956
22b31eec
HD
5957 if (highest_memmap_pfn < end_pfn - 1)
5958 highest_memmap_pfn = end_pfn - 1;
5959
966cf44f 5960#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5961 /*
5962 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5963 * memory. We limit the total number of pages to initialize to just
5964 * those that might contain the memory mapping. We will defer the
5965 * ZONE_DEVICE page initialization until after we have released
5966 * the hotplug lock.
4b94ffdc 5967 */
966cf44f
AD
5968 if (zone == ZONE_DEVICE) {
5969 if (!altmap)
5970 return;
5971
5972 if (start_pfn == altmap->base_pfn)
5973 start_pfn += altmap->reserve;
5974 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5975 }
5976#endif
4b94ffdc 5977
948c436e 5978 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 5979 /*
b72d0ffb
AM
5980 * There can be holes in boot-time mem_map[]s handed to this
5981 * function. They do not exist on hotplugged memory.
a2f3aa02 5982 */
a9a9e77f 5983 if (context == MEMMAP_EARLY) {
3f135355 5984 if (!early_pfn_valid(pfn)) {
948c436e 5985 pfn = next_pfn(pfn);
b72d0ffb 5986 continue;
3f135355 5987 }
948c436e
DH
5988 if (!early_pfn_in_nid(pfn, nid)) {
5989 pfn++;
a9a9e77f 5990 continue;
948c436e 5991 }
a9a9e77f
PT
5992 if (overlap_memmap_init(zone, &pfn))
5993 continue;
5994 if (defer_init(nid, pfn, end_pfn))
5995 break;
a2f3aa02 5996 }
ac5d2539 5997
d0dc12e8
PT
5998 page = pfn_to_page(pfn);
5999 __init_single_page(page, pfn, zone, nid);
6000 if (context == MEMMAP_HOTPLUG)
d483da5b 6001 __SetPageReserved(page);
d0dc12e8 6002
ac5d2539
MG
6003 /*
6004 * Mark the block movable so that blocks are reserved for
6005 * movable at startup. This will force kernel allocations
6006 * to reserve their blocks rather than leaking throughout
6007 * the address space during boot when many long-lived
974a786e 6008 * kernel allocations are made.
ac5d2539
MG
6009 *
6010 * bitmap is created for zone's valid pfn range. but memmap
6011 * can be created for invalid pages (for alignment)
6012 * check here not to call set_pageblock_migratetype() against
6013 * pfn out of zone.
6014 */
6015 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 6016 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 6017 cond_resched();
ac5d2539 6018 }
948c436e 6019 pfn++;
1da177e4
LT
6020 }
6021}
6022
966cf44f
AD
6023#ifdef CONFIG_ZONE_DEVICE
6024void __ref memmap_init_zone_device(struct zone *zone,
6025 unsigned long start_pfn,
1f8d75c1 6026 unsigned long nr_pages,
966cf44f
AD
6027 struct dev_pagemap *pgmap)
6028{
1f8d75c1 6029 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6030 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6031 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6032 unsigned long zone_idx = zone_idx(zone);
6033 unsigned long start = jiffies;
6034 int nid = pgdat->node_id;
6035
46d945ae 6036 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6037 return;
6038
6039 /*
6040 * The call to memmap_init_zone should have already taken care
6041 * of the pages reserved for the memmap, so we can just jump to
6042 * the end of that region and start processing the device pages.
6043 */
514caf23 6044 if (altmap) {
966cf44f 6045 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6046 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6047 }
6048
6049 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6050 struct page *page = pfn_to_page(pfn);
6051
6052 __init_single_page(page, pfn, zone_idx, nid);
6053
6054 /*
6055 * Mark page reserved as it will need to wait for onlining
6056 * phase for it to be fully associated with a zone.
6057 *
6058 * We can use the non-atomic __set_bit operation for setting
6059 * the flag as we are still initializing the pages.
6060 */
6061 __SetPageReserved(page);
6062
6063 /*
8a164fef
CH
6064 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6065 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6066 * ever freed or placed on a driver-private list.
966cf44f
AD
6067 */
6068 page->pgmap = pgmap;
8a164fef 6069 page->zone_device_data = NULL;
966cf44f
AD
6070
6071 /*
6072 * Mark the block movable so that blocks are reserved for
6073 * movable at startup. This will force kernel allocations
6074 * to reserve their blocks rather than leaking throughout
6075 * the address space during boot when many long-lived
6076 * kernel allocations are made.
6077 *
6078 * bitmap is created for zone's valid pfn range. but memmap
6079 * can be created for invalid pages (for alignment)
6080 * check here not to call set_pageblock_migratetype() against
6081 * pfn out of zone.
6082 *
6083 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 6084 * because this is done early in section_activate()
966cf44f
AD
6085 */
6086 if (!(pfn & (pageblock_nr_pages - 1))) {
6087 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6088 cond_resched();
6089 }
6090 }
6091
fdc029b1 6092 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6093 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6094}
6095
6096#endif
1e548deb 6097static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6098{
7aeb09f9 6099 unsigned int order, t;
b2a0ac88
MG
6100 for_each_migratetype_order(order, t) {
6101 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6102 zone->free_area[order].nr_free = 0;
6103 }
6104}
6105
dfb3ccd0
PT
6106void __meminit __weak memmap_init(unsigned long size, int nid,
6107 unsigned long zone, unsigned long start_pfn)
6108{
6109 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6110}
1da177e4 6111
7cd2b0a3 6112static int zone_batchsize(struct zone *zone)
e7c8d5c9 6113{
3a6be87f 6114#ifdef CONFIG_MMU
e7c8d5c9
CL
6115 int batch;
6116
6117 /*
6118 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6119 * size of the zone.
e7c8d5c9 6120 */
9705bea5 6121 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6122 /* But no more than a meg. */
6123 if (batch * PAGE_SIZE > 1024 * 1024)
6124 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6125 batch /= 4; /* We effectively *= 4 below */
6126 if (batch < 1)
6127 batch = 1;
6128
6129 /*
0ceaacc9
NP
6130 * Clamp the batch to a 2^n - 1 value. Having a power
6131 * of 2 value was found to be more likely to have
6132 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6133 *
0ceaacc9
NP
6134 * For example if 2 tasks are alternately allocating
6135 * batches of pages, one task can end up with a lot
6136 * of pages of one half of the possible page colors
6137 * and the other with pages of the other colors.
e7c8d5c9 6138 */
9155203a 6139 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6140
e7c8d5c9 6141 return batch;
3a6be87f
DH
6142
6143#else
6144 /* The deferral and batching of frees should be suppressed under NOMMU
6145 * conditions.
6146 *
6147 * The problem is that NOMMU needs to be able to allocate large chunks
6148 * of contiguous memory as there's no hardware page translation to
6149 * assemble apparent contiguous memory from discontiguous pages.
6150 *
6151 * Queueing large contiguous runs of pages for batching, however,
6152 * causes the pages to actually be freed in smaller chunks. As there
6153 * can be a significant delay between the individual batches being
6154 * recycled, this leads to the once large chunks of space being
6155 * fragmented and becoming unavailable for high-order allocations.
6156 */
6157 return 0;
6158#endif
e7c8d5c9
CL
6159}
6160
8d7a8fa9
CS
6161/*
6162 * pcp->high and pcp->batch values are related and dependent on one another:
6163 * ->batch must never be higher then ->high.
6164 * The following function updates them in a safe manner without read side
6165 * locking.
6166 *
6167 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6168 * those fields changing asynchronously (acording the the above rule).
6169 *
6170 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6171 * outside of boot time (or some other assurance that no concurrent updaters
6172 * exist).
6173 */
6174static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6175 unsigned long batch)
6176{
6177 /* start with a fail safe value for batch */
6178 pcp->batch = 1;
6179 smp_wmb();
6180
6181 /* Update high, then batch, in order */
6182 pcp->high = high;
6183 smp_wmb();
6184
6185 pcp->batch = batch;
6186}
6187
3664033c 6188/* a companion to pageset_set_high() */
4008bab7
CS
6189static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6190{
8d7a8fa9 6191 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6192}
6193
88c90dbc 6194static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6195{
6196 struct per_cpu_pages *pcp;
5f8dcc21 6197 int migratetype;
2caaad41 6198
1c6fe946
MD
6199 memset(p, 0, sizeof(*p));
6200
3dfa5721 6201 pcp = &p->pcp;
5f8dcc21
MG
6202 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6203 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6204}
6205
88c90dbc
CS
6206static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6207{
6208 pageset_init(p);
6209 pageset_set_batch(p, batch);
6210}
6211
8ad4b1fb 6212/*
3664033c 6213 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6214 * to the value high for the pageset p.
6215 */
3664033c 6216static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6217 unsigned long high)
6218{
8d7a8fa9
CS
6219 unsigned long batch = max(1UL, high / 4);
6220 if ((high / 4) > (PAGE_SHIFT * 8))
6221 batch = PAGE_SHIFT * 8;
8ad4b1fb 6222
8d7a8fa9 6223 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6224}
6225
7cd2b0a3
DR
6226static void pageset_set_high_and_batch(struct zone *zone,
6227 struct per_cpu_pageset *pcp)
56cef2b8 6228{
56cef2b8 6229 if (percpu_pagelist_fraction)
3664033c 6230 pageset_set_high(pcp,
9705bea5 6231 (zone_managed_pages(zone) /
56cef2b8
CS
6232 percpu_pagelist_fraction));
6233 else
6234 pageset_set_batch(pcp, zone_batchsize(zone));
6235}
6236
169f6c19
CS
6237static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6238{
6239 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6240
6241 pageset_init(pcp);
6242 pageset_set_high_and_batch(zone, pcp);
6243}
6244
72675e13 6245void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6246{
6247 int cpu;
319774e2 6248 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6249 for_each_possible_cpu(cpu)
6250 zone_pageset_init(zone, cpu);
319774e2
WF
6251}
6252
2caaad41 6253/*
99dcc3e5
CL
6254 * Allocate per cpu pagesets and initialize them.
6255 * Before this call only boot pagesets were available.
e7c8d5c9 6256 */
99dcc3e5 6257void __init setup_per_cpu_pageset(void)
e7c8d5c9 6258{
b4911ea2 6259 struct pglist_data *pgdat;
99dcc3e5 6260 struct zone *zone;
e7c8d5c9 6261
319774e2
WF
6262 for_each_populated_zone(zone)
6263 setup_zone_pageset(zone);
b4911ea2
MG
6264
6265 for_each_online_pgdat(pgdat)
6266 pgdat->per_cpu_nodestats =
6267 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6268}
6269
c09b4240 6270static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6271{
99dcc3e5
CL
6272 /*
6273 * per cpu subsystem is not up at this point. The following code
6274 * relies on the ability of the linker to provide the
6275 * offset of a (static) per cpu variable into the per cpu area.
6276 */
6277 zone->pageset = &boot_pageset;
ed8ece2e 6278
b38a8725 6279 if (populated_zone(zone))
99dcc3e5
CL
6280 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6281 zone->name, zone->present_pages,
6282 zone_batchsize(zone));
ed8ece2e
DH
6283}
6284
dc0bbf3b 6285void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6286 unsigned long zone_start_pfn,
b171e409 6287 unsigned long size)
ed8ece2e
DH
6288{
6289 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6290 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6291
8f416836
WY
6292 if (zone_idx > pgdat->nr_zones)
6293 pgdat->nr_zones = zone_idx;
ed8ece2e 6294
ed8ece2e
DH
6295 zone->zone_start_pfn = zone_start_pfn;
6296
708614e6
MG
6297 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6298 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6299 pgdat->node_id,
6300 (unsigned long)zone_idx(zone),
6301 zone_start_pfn, (zone_start_pfn + size));
6302
1e548deb 6303 zone_init_free_lists(zone);
9dcb8b68 6304 zone->initialized = 1;
ed8ece2e
DH
6305}
6306
0ee332c1 6307#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6308#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6309
c713216d
MG
6310/*
6311 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6312 */
8a942fde
MG
6313int __meminit __early_pfn_to_nid(unsigned long pfn,
6314 struct mminit_pfnnid_cache *state)
c713216d 6315{
c13291a5 6316 unsigned long start_pfn, end_pfn;
e76b63f8 6317 int nid;
7c243c71 6318
8a942fde
MG
6319 if (state->last_start <= pfn && pfn < state->last_end)
6320 return state->last_nid;
c713216d 6321
e76b63f8 6322 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6323 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6324 state->last_start = start_pfn;
6325 state->last_end = end_pfn;
6326 state->last_nid = nid;
e76b63f8
YL
6327 }
6328
6329 return nid;
c713216d
MG
6330}
6331#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6332
c713216d 6333/**
6782832e 6334 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6335 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6336 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6337 *
7d018176
ZZ
6338 * If an architecture guarantees that all ranges registered contain no holes
6339 * and may be freed, this this function may be used instead of calling
6340 * memblock_free_early_nid() manually.
c713216d 6341 */
c13291a5 6342void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6343{
c13291a5
TH
6344 unsigned long start_pfn, end_pfn;
6345 int i, this_nid;
edbe7d23 6346
c13291a5
TH
6347 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6348 start_pfn = min(start_pfn, max_low_pfn);
6349 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6350
c13291a5 6351 if (start_pfn < end_pfn)
6782832e
SS
6352 memblock_free_early_nid(PFN_PHYS(start_pfn),
6353 (end_pfn - start_pfn) << PAGE_SHIFT,
6354 this_nid);
edbe7d23 6355 }
edbe7d23 6356}
edbe7d23 6357
c713216d
MG
6358/**
6359 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6360 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6361 *
7d018176
ZZ
6362 * If an architecture guarantees that all ranges registered contain no holes and may
6363 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6364 */
6365void __init sparse_memory_present_with_active_regions(int nid)
6366{
c13291a5
TH
6367 unsigned long start_pfn, end_pfn;
6368 int i, this_nid;
c713216d 6369
c13291a5
TH
6370 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6371 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6372}
6373
6374/**
6375 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6376 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6377 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6378 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6379 *
6380 * It returns the start and end page frame of a node based on information
7d018176 6381 * provided by memblock_set_node(). If called for a node
c713216d 6382 * with no available memory, a warning is printed and the start and end
88ca3b94 6383 * PFNs will be 0.
c713216d 6384 */
bbe5d993 6385void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6386 unsigned long *start_pfn, unsigned long *end_pfn)
6387{
c13291a5 6388 unsigned long this_start_pfn, this_end_pfn;
c713216d 6389 int i;
c13291a5 6390
c713216d
MG
6391 *start_pfn = -1UL;
6392 *end_pfn = 0;
6393
c13291a5
TH
6394 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6395 *start_pfn = min(*start_pfn, this_start_pfn);
6396 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6397 }
6398
633c0666 6399 if (*start_pfn == -1UL)
c713216d 6400 *start_pfn = 0;
c713216d
MG
6401}
6402
2a1e274a
MG
6403/*
6404 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6405 * assumption is made that zones within a node are ordered in monotonic
6406 * increasing memory addresses so that the "highest" populated zone is used
6407 */
b69a7288 6408static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6409{
6410 int zone_index;
6411 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6412 if (zone_index == ZONE_MOVABLE)
6413 continue;
6414
6415 if (arch_zone_highest_possible_pfn[zone_index] >
6416 arch_zone_lowest_possible_pfn[zone_index])
6417 break;
6418 }
6419
6420 VM_BUG_ON(zone_index == -1);
6421 movable_zone = zone_index;
6422}
6423
6424/*
6425 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6426 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6427 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6428 * in each node depending on the size of each node and how evenly kernelcore
6429 * is distributed. This helper function adjusts the zone ranges
6430 * provided by the architecture for a given node by using the end of the
6431 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6432 * zones within a node are in order of monotonic increases memory addresses
6433 */
bbe5d993 6434static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6435 unsigned long zone_type,
6436 unsigned long node_start_pfn,
6437 unsigned long node_end_pfn,
6438 unsigned long *zone_start_pfn,
6439 unsigned long *zone_end_pfn)
6440{
6441 /* Only adjust if ZONE_MOVABLE is on this node */
6442 if (zone_movable_pfn[nid]) {
6443 /* Size ZONE_MOVABLE */
6444 if (zone_type == ZONE_MOVABLE) {
6445 *zone_start_pfn = zone_movable_pfn[nid];
6446 *zone_end_pfn = min(node_end_pfn,
6447 arch_zone_highest_possible_pfn[movable_zone]);
6448
e506b996
XQ
6449 /* Adjust for ZONE_MOVABLE starting within this range */
6450 } else if (!mirrored_kernelcore &&
6451 *zone_start_pfn < zone_movable_pfn[nid] &&
6452 *zone_end_pfn > zone_movable_pfn[nid]) {
6453 *zone_end_pfn = zone_movable_pfn[nid];
6454
2a1e274a
MG
6455 /* Check if this whole range is within ZONE_MOVABLE */
6456 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6457 *zone_start_pfn = *zone_end_pfn;
6458 }
6459}
6460
c713216d
MG
6461/*
6462 * Return the number of pages a zone spans in a node, including holes
6463 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6464 */
bbe5d993 6465static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6466 unsigned long zone_type,
7960aedd
ZY
6467 unsigned long node_start_pfn,
6468 unsigned long node_end_pfn,
d91749c1
TI
6469 unsigned long *zone_start_pfn,
6470 unsigned long *zone_end_pfn,
c713216d
MG
6471 unsigned long *ignored)
6472{
299c83dc
LF
6473 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6474 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6475 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6476 if (!node_start_pfn && !node_end_pfn)
6477 return 0;
6478
7960aedd 6479 /* Get the start and end of the zone */
299c83dc
LF
6480 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6481 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6482 adjust_zone_range_for_zone_movable(nid, zone_type,
6483 node_start_pfn, node_end_pfn,
d91749c1 6484 zone_start_pfn, zone_end_pfn);
c713216d
MG
6485
6486 /* Check that this node has pages within the zone's required range */
d91749c1 6487 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6488 return 0;
6489
6490 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6491 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6492 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6493
6494 /* Return the spanned pages */
d91749c1 6495 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6496}
6497
6498/*
6499 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6500 * then all holes in the requested range will be accounted for.
c713216d 6501 */
bbe5d993 6502unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6503 unsigned long range_start_pfn,
6504 unsigned long range_end_pfn)
6505{
96e907d1
TH
6506 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6507 unsigned long start_pfn, end_pfn;
6508 int i;
c713216d 6509
96e907d1
TH
6510 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6511 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6512 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6513 nr_absent -= end_pfn - start_pfn;
c713216d 6514 }
96e907d1 6515 return nr_absent;
c713216d
MG
6516}
6517
6518/**
6519 * absent_pages_in_range - Return number of page frames in holes within a range
6520 * @start_pfn: The start PFN to start searching for holes
6521 * @end_pfn: The end PFN to stop searching for holes
6522 *
a862f68a 6523 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6524 */
6525unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6526 unsigned long end_pfn)
6527{
6528 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6529}
6530
6531/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6532static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6533 unsigned long zone_type,
7960aedd
ZY
6534 unsigned long node_start_pfn,
6535 unsigned long node_end_pfn,
c713216d
MG
6536 unsigned long *ignored)
6537{
96e907d1
TH
6538 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6539 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6540 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6541 unsigned long nr_absent;
9c7cd687 6542
b5685e92 6543 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6544 if (!node_start_pfn && !node_end_pfn)
6545 return 0;
6546
96e907d1
TH
6547 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6548 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6549
2a1e274a
MG
6550 adjust_zone_range_for_zone_movable(nid, zone_type,
6551 node_start_pfn, node_end_pfn,
6552 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6553 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6554
6555 /*
6556 * ZONE_MOVABLE handling.
6557 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6558 * and vice versa.
6559 */
e506b996
XQ
6560 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6561 unsigned long start_pfn, end_pfn;
6562 struct memblock_region *r;
6563
6564 for_each_memblock(memory, r) {
6565 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6566 zone_start_pfn, zone_end_pfn);
6567 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6568 zone_start_pfn, zone_end_pfn);
6569
6570 if (zone_type == ZONE_MOVABLE &&
6571 memblock_is_mirror(r))
6572 nr_absent += end_pfn - start_pfn;
6573
6574 if (zone_type == ZONE_NORMAL &&
6575 !memblock_is_mirror(r))
6576 nr_absent += end_pfn - start_pfn;
342332e6
TI
6577 }
6578 }
6579
6580 return nr_absent;
c713216d 6581}
0e0b864e 6582
0ee332c1 6583#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6584static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6585 unsigned long zone_type,
7960aedd
ZY
6586 unsigned long node_start_pfn,
6587 unsigned long node_end_pfn,
d91749c1
TI
6588 unsigned long *zone_start_pfn,
6589 unsigned long *zone_end_pfn,
c713216d
MG
6590 unsigned long *zones_size)
6591{
d91749c1
TI
6592 unsigned int zone;
6593
6594 *zone_start_pfn = node_start_pfn;
6595 for (zone = 0; zone < zone_type; zone++)
6596 *zone_start_pfn += zones_size[zone];
6597
6598 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6599
c713216d
MG
6600 return zones_size[zone_type];
6601}
6602
bbe5d993 6603static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6604 unsigned long zone_type,
7960aedd
ZY
6605 unsigned long node_start_pfn,
6606 unsigned long node_end_pfn,
c713216d
MG
6607 unsigned long *zholes_size)
6608{
6609 if (!zholes_size)
6610 return 0;
6611
6612 return zholes_size[zone_type];
6613}
20e6926d 6614
0ee332c1 6615#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6616
bbe5d993 6617static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6618 unsigned long node_start_pfn,
6619 unsigned long node_end_pfn,
6620 unsigned long *zones_size,
6621 unsigned long *zholes_size)
c713216d 6622{
febd5949 6623 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6624 enum zone_type i;
6625
febd5949
GZ
6626 for (i = 0; i < MAX_NR_ZONES; i++) {
6627 struct zone *zone = pgdat->node_zones + i;
d91749c1 6628 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6629 unsigned long size, real_size;
c713216d 6630
febd5949
GZ
6631 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6632 node_start_pfn,
6633 node_end_pfn,
d91749c1
TI
6634 &zone_start_pfn,
6635 &zone_end_pfn,
febd5949
GZ
6636 zones_size);
6637 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6638 node_start_pfn, node_end_pfn,
6639 zholes_size);
d91749c1
TI
6640 if (size)
6641 zone->zone_start_pfn = zone_start_pfn;
6642 else
6643 zone->zone_start_pfn = 0;
febd5949
GZ
6644 zone->spanned_pages = size;
6645 zone->present_pages = real_size;
6646
6647 totalpages += size;
6648 realtotalpages += real_size;
6649 }
6650
6651 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6652 pgdat->node_present_pages = realtotalpages;
6653 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6654 realtotalpages);
6655}
6656
835c134e
MG
6657#ifndef CONFIG_SPARSEMEM
6658/*
6659 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6660 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6661 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6662 * round what is now in bits to nearest long in bits, then return it in
6663 * bytes.
6664 */
7c45512d 6665static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6666{
6667 unsigned long usemapsize;
6668
7c45512d 6669 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6670 usemapsize = roundup(zonesize, pageblock_nr_pages);
6671 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6672 usemapsize *= NR_PAGEBLOCK_BITS;
6673 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6674
6675 return usemapsize / 8;
6676}
6677
7cc2a959 6678static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6679 struct zone *zone,
6680 unsigned long zone_start_pfn,
6681 unsigned long zonesize)
835c134e 6682{
7c45512d 6683 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6684 zone->pageblock_flags = NULL;
23a7052a 6685 if (usemapsize) {
6782832e 6686 zone->pageblock_flags =
26fb3dae
MR
6687 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6688 pgdat->node_id);
23a7052a
MR
6689 if (!zone->pageblock_flags)
6690 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6691 usemapsize, zone->name, pgdat->node_id);
6692 }
835c134e
MG
6693}
6694#else
7c45512d
LT
6695static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6696 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6697#endif /* CONFIG_SPARSEMEM */
6698
d9c23400 6699#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6700
d9c23400 6701/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6702void __init set_pageblock_order(void)
d9c23400 6703{
955c1cd7
AM
6704 unsigned int order;
6705
d9c23400
MG
6706 /* Check that pageblock_nr_pages has not already been setup */
6707 if (pageblock_order)
6708 return;
6709
955c1cd7
AM
6710 if (HPAGE_SHIFT > PAGE_SHIFT)
6711 order = HUGETLB_PAGE_ORDER;
6712 else
6713 order = MAX_ORDER - 1;
6714
d9c23400
MG
6715 /*
6716 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6717 * This value may be variable depending on boot parameters on IA64 and
6718 * powerpc.
d9c23400
MG
6719 */
6720 pageblock_order = order;
6721}
6722#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6723
ba72cb8c
MG
6724/*
6725 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6726 * is unused as pageblock_order is set at compile-time. See
6727 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6728 * the kernel config
ba72cb8c 6729 */
03e85f9d 6730void __init set_pageblock_order(void)
ba72cb8c 6731{
ba72cb8c 6732}
d9c23400
MG
6733
6734#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6735
03e85f9d 6736static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6737 unsigned long present_pages)
01cefaef
JL
6738{
6739 unsigned long pages = spanned_pages;
6740
6741 /*
6742 * Provide a more accurate estimation if there are holes within
6743 * the zone and SPARSEMEM is in use. If there are holes within the
6744 * zone, each populated memory region may cost us one or two extra
6745 * memmap pages due to alignment because memmap pages for each
89d790ab 6746 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6747 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6748 */
6749 if (spanned_pages > present_pages + (present_pages >> 4) &&
6750 IS_ENABLED(CONFIG_SPARSEMEM))
6751 pages = present_pages;
6752
6753 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6754}
6755
ace1db39
OS
6756#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6757static void pgdat_init_split_queue(struct pglist_data *pgdat)
6758{
364c1eeb
YS
6759 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6760
6761 spin_lock_init(&ds_queue->split_queue_lock);
6762 INIT_LIST_HEAD(&ds_queue->split_queue);
6763 ds_queue->split_queue_len = 0;
ace1db39
OS
6764}
6765#else
6766static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6767#endif
6768
6769#ifdef CONFIG_COMPACTION
6770static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6771{
6772 init_waitqueue_head(&pgdat->kcompactd_wait);
6773}
6774#else
6775static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6776#endif
6777
03e85f9d 6778static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6779{
208d54e5 6780 pgdat_resize_init(pgdat);
ace1db39 6781
ace1db39
OS
6782 pgdat_init_split_queue(pgdat);
6783 pgdat_init_kcompactd(pgdat);
6784
1da177e4 6785 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6786 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6787
eefa864b 6788 pgdat_page_ext_init(pgdat);
a52633d8 6789 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6790 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6791}
6792
6793static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6794 unsigned long remaining_pages)
6795{
9705bea5 6796 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6797 zone_set_nid(zone, nid);
6798 zone->name = zone_names[idx];
6799 zone->zone_pgdat = NODE_DATA(nid);
6800 spin_lock_init(&zone->lock);
6801 zone_seqlock_init(zone);
6802 zone_pcp_init(zone);
6803}
6804
6805/*
6806 * Set up the zone data structures
6807 * - init pgdat internals
6808 * - init all zones belonging to this node
6809 *
6810 * NOTE: this function is only called during memory hotplug
6811 */
6812#ifdef CONFIG_MEMORY_HOTPLUG
6813void __ref free_area_init_core_hotplug(int nid)
6814{
6815 enum zone_type z;
6816 pg_data_t *pgdat = NODE_DATA(nid);
6817
6818 pgdat_init_internals(pgdat);
6819 for (z = 0; z < MAX_NR_ZONES; z++)
6820 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6821}
6822#endif
6823
6824/*
6825 * Set up the zone data structures:
6826 * - mark all pages reserved
6827 * - mark all memory queues empty
6828 * - clear the memory bitmaps
6829 *
6830 * NOTE: pgdat should get zeroed by caller.
6831 * NOTE: this function is only called during early init.
6832 */
6833static void __init free_area_init_core(struct pglist_data *pgdat)
6834{
6835 enum zone_type j;
6836 int nid = pgdat->node_id;
5f63b720 6837
03e85f9d 6838 pgdat_init_internals(pgdat);
385386cf
JW
6839 pgdat->per_cpu_nodestats = &boot_nodestats;
6840
1da177e4
LT
6841 for (j = 0; j < MAX_NR_ZONES; j++) {
6842 struct zone *zone = pgdat->node_zones + j;
e6943859 6843 unsigned long size, freesize, memmap_pages;
d91749c1 6844 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6845
febd5949 6846 size = zone->spanned_pages;
e6943859 6847 freesize = zone->present_pages;
1da177e4 6848
0e0b864e 6849 /*
9feedc9d 6850 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6851 * is used by this zone for memmap. This affects the watermark
6852 * and per-cpu initialisations
6853 */
e6943859 6854 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6855 if (!is_highmem_idx(j)) {
6856 if (freesize >= memmap_pages) {
6857 freesize -= memmap_pages;
6858 if (memmap_pages)
6859 printk(KERN_DEBUG
6860 " %s zone: %lu pages used for memmap\n",
6861 zone_names[j], memmap_pages);
6862 } else
1170532b 6863 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6864 zone_names[j], memmap_pages, freesize);
6865 }
0e0b864e 6866
6267276f 6867 /* Account for reserved pages */
9feedc9d
JL
6868 if (j == 0 && freesize > dma_reserve) {
6869 freesize -= dma_reserve;
d903ef9f 6870 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6871 zone_names[0], dma_reserve);
0e0b864e
MG
6872 }
6873
98d2b0eb 6874 if (!is_highmem_idx(j))
9feedc9d 6875 nr_kernel_pages += freesize;
01cefaef
JL
6876 /* Charge for highmem memmap if there are enough kernel pages */
6877 else if (nr_kernel_pages > memmap_pages * 2)
6878 nr_kernel_pages -= memmap_pages;
9feedc9d 6879 nr_all_pages += freesize;
1da177e4 6880
9feedc9d
JL
6881 /*
6882 * Set an approximate value for lowmem here, it will be adjusted
6883 * when the bootmem allocator frees pages into the buddy system.
6884 * And all highmem pages will be managed by the buddy system.
6885 */
03e85f9d 6886 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6887
d883c6cf 6888 if (!size)
1da177e4
LT
6889 continue;
6890
955c1cd7 6891 set_pageblock_order();
d883c6cf
JK
6892 setup_usemap(pgdat, zone, zone_start_pfn, size);
6893 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6894 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6895 }
6896}
6897
0cd842f9 6898#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6899static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6900{
b0aeba74 6901 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6902 unsigned long __maybe_unused offset = 0;
6903
1da177e4
LT
6904 /* Skip empty nodes */
6905 if (!pgdat->node_spanned_pages)
6906 return;
6907
b0aeba74
TL
6908 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6909 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6910 /* ia64 gets its own node_mem_map, before this, without bootmem */
6911 if (!pgdat->node_mem_map) {
b0aeba74 6912 unsigned long size, end;
d41dee36
AW
6913 struct page *map;
6914
e984bb43
BP
6915 /*
6916 * The zone's endpoints aren't required to be MAX_ORDER
6917 * aligned but the node_mem_map endpoints must be in order
6918 * for the buddy allocator to function correctly.
6919 */
108bcc96 6920 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6921 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6922 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6923 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6924 pgdat->node_id);
23a7052a
MR
6925 if (!map)
6926 panic("Failed to allocate %ld bytes for node %d memory map\n",
6927 size, pgdat->node_id);
a1c34a3b 6928 pgdat->node_mem_map = map + offset;
1da177e4 6929 }
0cd842f9
OS
6930 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6931 __func__, pgdat->node_id, (unsigned long)pgdat,
6932 (unsigned long)pgdat->node_mem_map);
12d810c1 6933#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6934 /*
6935 * With no DISCONTIG, the global mem_map is just set as node 0's
6936 */
c713216d 6937 if (pgdat == NODE_DATA(0)) {
1da177e4 6938 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6939#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6940 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6941 mem_map -= offset;
0ee332c1 6942#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6943 }
1da177e4
LT
6944#endif
6945}
0cd842f9
OS
6946#else
6947static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6948#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6949
0188dc98
OS
6950#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6951static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6952{
0188dc98
OS
6953 pgdat->first_deferred_pfn = ULONG_MAX;
6954}
6955#else
6956static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6957#endif
6958
03e85f9d 6959void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6960 unsigned long node_start_pfn,
6961 unsigned long *zholes_size)
1da177e4 6962{
9109fb7b 6963 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6964 unsigned long start_pfn = 0;
6965 unsigned long end_pfn = 0;
9109fb7b 6966
88fdf75d 6967 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6968 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6969
1da177e4
LT
6970 pgdat->node_id = nid;
6971 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6972 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6973#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6974 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6975 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6976 (u64)start_pfn << PAGE_SHIFT,
6977 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6978#else
6979 start_pfn = node_start_pfn;
7960aedd
ZY
6980#endif
6981 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6982 zones_size, zholes_size);
1da177e4
LT
6983
6984 alloc_node_mem_map(pgdat);
0188dc98 6985 pgdat_set_deferred_range(pgdat);
1da177e4 6986
7f3eb55b 6987 free_area_init_core(pgdat);
1da177e4
LT
6988}
6989
aca52c39 6990#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6991/*
4b094b78
DH
6992 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6993 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6994 */
4b094b78 6995static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6996{
6997 unsigned long pfn;
6998 u64 pgcnt = 0;
6999
7000 for (pfn = spfn; pfn < epfn; pfn++) {
7001 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7002 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7003 + pageblock_nr_pages - 1;
7004 continue;
7005 }
4b094b78
DH
7006 /*
7007 * Use a fake node/zone (0) for now. Some of these pages
7008 * (in memblock.reserved but not in memblock.memory) will
7009 * get re-initialized via reserve_bootmem_region() later.
7010 */
7011 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7012 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
7013 pgcnt++;
7014 }
7015
7016 return pgcnt;
7017}
7018
a4a3ede2
PT
7019/*
7020 * Only struct pages that are backed by physical memory are zeroed and
7021 * initialized by going through __init_single_page(). But, there are some
7022 * struct pages which are reserved in memblock allocator and their fields
7023 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 7024 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
7025 *
7026 * This function also addresses a similar issue where struct pages are left
7027 * uninitialized because the physical address range is not covered by
7028 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
7029 * layout is manually configured via memmap=, or when the highest physical
7030 * address (max_pfn) does not end on a section boundary.
a4a3ede2 7031 */
4b094b78 7032static void __init init_unavailable_mem(void)
a4a3ede2
PT
7033{
7034 phys_addr_t start, end;
a4a3ede2 7035 u64 i, pgcnt;
907ec5fc 7036 phys_addr_t next = 0;
a4a3ede2
PT
7037
7038 /*
907ec5fc 7039 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
7040 */
7041 pgcnt = 0;
907ec5fc
NH
7042 for_each_mem_range(i, &memblock.memory, NULL,
7043 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 7044 if (next < start)
4b094b78
DH
7045 pgcnt += init_unavailable_range(PFN_DOWN(next),
7046 PFN_UP(start));
907ec5fc
NH
7047 next = end;
7048 }
e822969c
DH
7049
7050 /*
7051 * Early sections always have a fully populated memmap for the whole
7052 * section - see pfn_valid(). If the last section has holes at the
7053 * end and that section is marked "online", the memmap will be
7054 * considered initialized. Make sure that memmap has a well defined
7055 * state.
7056 */
4b094b78
DH
7057 pgcnt += init_unavailable_range(PFN_DOWN(next),
7058 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7059
a4a3ede2
PT
7060 /*
7061 * Struct pages that do not have backing memory. This could be because
7062 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7063 */
7064 if (pgcnt)
907ec5fc 7065 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7066}
4b094b78
DH
7067#else
7068static inline void __init init_unavailable_mem(void)
7069{
7070}
aca52c39 7071#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7072
0ee332c1 7073#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
7074
7075#if MAX_NUMNODES > 1
7076/*
7077 * Figure out the number of possible node ids.
7078 */
f9872caf 7079void __init setup_nr_node_ids(void)
418508c1 7080{
904a9553 7081 unsigned int highest;
418508c1 7082
904a9553 7083 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7084 nr_node_ids = highest + 1;
7085}
418508c1
MS
7086#endif
7087
1e01979c
TH
7088/**
7089 * node_map_pfn_alignment - determine the maximum internode alignment
7090 *
7091 * This function should be called after node map is populated and sorted.
7092 * It calculates the maximum power of two alignment which can distinguish
7093 * all the nodes.
7094 *
7095 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7096 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7097 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7098 * shifted, 1GiB is enough and this function will indicate so.
7099 *
7100 * This is used to test whether pfn -> nid mapping of the chosen memory
7101 * model has fine enough granularity to avoid incorrect mapping for the
7102 * populated node map.
7103 *
a862f68a 7104 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7105 * requirement (single node).
7106 */
7107unsigned long __init node_map_pfn_alignment(void)
7108{
7109 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7110 unsigned long start, end, mask;
98fa15f3 7111 int last_nid = NUMA_NO_NODE;
c13291a5 7112 int i, nid;
1e01979c 7113
c13291a5 7114 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7115 if (!start || last_nid < 0 || last_nid == nid) {
7116 last_nid = nid;
7117 last_end = end;
7118 continue;
7119 }
7120
7121 /*
7122 * Start with a mask granular enough to pin-point to the
7123 * start pfn and tick off bits one-by-one until it becomes
7124 * too coarse to separate the current node from the last.
7125 */
7126 mask = ~((1 << __ffs(start)) - 1);
7127 while (mask && last_end <= (start & (mask << 1)))
7128 mask <<= 1;
7129
7130 /* accumulate all internode masks */
7131 accl_mask |= mask;
7132 }
7133
7134 /* convert mask to number of pages */
7135 return ~accl_mask + 1;
7136}
7137
a6af2bc3 7138/* Find the lowest pfn for a node */
b69a7288 7139static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 7140{
a6af2bc3 7141 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
7142 unsigned long start_pfn;
7143 int i;
1abbfb41 7144
c13291a5
TH
7145 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7146 min_pfn = min(min_pfn, start_pfn);
c713216d 7147
a6af2bc3 7148 if (min_pfn == ULONG_MAX) {
1170532b 7149 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
7150 return 0;
7151 }
7152
7153 return min_pfn;
c713216d
MG
7154}
7155
7156/**
7157 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7158 *
a862f68a 7159 * Return: the minimum PFN based on information provided via
7d018176 7160 * memblock_set_node().
c713216d
MG
7161 */
7162unsigned long __init find_min_pfn_with_active_regions(void)
7163{
7164 return find_min_pfn_for_node(MAX_NUMNODES);
7165}
7166
37b07e41
LS
7167/*
7168 * early_calculate_totalpages()
7169 * Sum pages in active regions for movable zone.
4b0ef1fe 7170 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7171 */
484f51f8 7172static unsigned long __init early_calculate_totalpages(void)
7e63efef 7173{
7e63efef 7174 unsigned long totalpages = 0;
c13291a5
TH
7175 unsigned long start_pfn, end_pfn;
7176 int i, nid;
7177
7178 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7179 unsigned long pages = end_pfn - start_pfn;
7e63efef 7180
37b07e41
LS
7181 totalpages += pages;
7182 if (pages)
4b0ef1fe 7183 node_set_state(nid, N_MEMORY);
37b07e41 7184 }
b8af2941 7185 return totalpages;
7e63efef
MG
7186}
7187
2a1e274a
MG
7188/*
7189 * Find the PFN the Movable zone begins in each node. Kernel memory
7190 * is spread evenly between nodes as long as the nodes have enough
7191 * memory. When they don't, some nodes will have more kernelcore than
7192 * others
7193 */
b224ef85 7194static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7195{
7196 int i, nid;
7197 unsigned long usable_startpfn;
7198 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7199 /* save the state before borrow the nodemask */
4b0ef1fe 7200 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7201 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7202 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7203 struct memblock_region *r;
b2f3eebe
TC
7204
7205 /* Need to find movable_zone earlier when movable_node is specified. */
7206 find_usable_zone_for_movable();
7207
7208 /*
7209 * If movable_node is specified, ignore kernelcore and movablecore
7210 * options.
7211 */
7212 if (movable_node_is_enabled()) {
136199f0
EM
7213 for_each_memblock(memory, r) {
7214 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7215 continue;
7216
136199f0 7217 nid = r->nid;
b2f3eebe 7218
136199f0 7219 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7220 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7221 min(usable_startpfn, zone_movable_pfn[nid]) :
7222 usable_startpfn;
7223 }
7224
7225 goto out2;
7226 }
2a1e274a 7227
342332e6
TI
7228 /*
7229 * If kernelcore=mirror is specified, ignore movablecore option
7230 */
7231 if (mirrored_kernelcore) {
7232 bool mem_below_4gb_not_mirrored = false;
7233
7234 for_each_memblock(memory, r) {
7235 if (memblock_is_mirror(r))
7236 continue;
7237
7238 nid = r->nid;
7239
7240 usable_startpfn = memblock_region_memory_base_pfn(r);
7241
7242 if (usable_startpfn < 0x100000) {
7243 mem_below_4gb_not_mirrored = true;
7244 continue;
7245 }
7246
7247 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7248 min(usable_startpfn, zone_movable_pfn[nid]) :
7249 usable_startpfn;
7250 }
7251
7252 if (mem_below_4gb_not_mirrored)
7253 pr_warn("This configuration results in unmirrored kernel memory.");
7254
7255 goto out2;
7256 }
7257
7e63efef 7258 /*
a5c6d650
DR
7259 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7260 * amount of necessary memory.
7261 */
7262 if (required_kernelcore_percent)
7263 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7264 10000UL;
7265 if (required_movablecore_percent)
7266 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7267 10000UL;
7268
7269 /*
7270 * If movablecore= was specified, calculate what size of
7e63efef
MG
7271 * kernelcore that corresponds so that memory usable for
7272 * any allocation type is evenly spread. If both kernelcore
7273 * and movablecore are specified, then the value of kernelcore
7274 * will be used for required_kernelcore if it's greater than
7275 * what movablecore would have allowed.
7276 */
7277 if (required_movablecore) {
7e63efef
MG
7278 unsigned long corepages;
7279
7280 /*
7281 * Round-up so that ZONE_MOVABLE is at least as large as what
7282 * was requested by the user
7283 */
7284 required_movablecore =
7285 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7286 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7287 corepages = totalpages - required_movablecore;
7288
7289 required_kernelcore = max(required_kernelcore, corepages);
7290 }
7291
bde304bd
XQ
7292 /*
7293 * If kernelcore was not specified or kernelcore size is larger
7294 * than totalpages, there is no ZONE_MOVABLE.
7295 */
7296 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7297 goto out;
2a1e274a
MG
7298
7299 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7300 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7301
7302restart:
7303 /* Spread kernelcore memory as evenly as possible throughout nodes */
7304 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7305 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7306 unsigned long start_pfn, end_pfn;
7307
2a1e274a
MG
7308 /*
7309 * Recalculate kernelcore_node if the division per node
7310 * now exceeds what is necessary to satisfy the requested
7311 * amount of memory for the kernel
7312 */
7313 if (required_kernelcore < kernelcore_node)
7314 kernelcore_node = required_kernelcore / usable_nodes;
7315
7316 /*
7317 * As the map is walked, we track how much memory is usable
7318 * by the kernel using kernelcore_remaining. When it is
7319 * 0, the rest of the node is usable by ZONE_MOVABLE
7320 */
7321 kernelcore_remaining = kernelcore_node;
7322
7323 /* Go through each range of PFNs within this node */
c13291a5 7324 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7325 unsigned long size_pages;
7326
c13291a5 7327 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7328 if (start_pfn >= end_pfn)
7329 continue;
7330
7331 /* Account for what is only usable for kernelcore */
7332 if (start_pfn < usable_startpfn) {
7333 unsigned long kernel_pages;
7334 kernel_pages = min(end_pfn, usable_startpfn)
7335 - start_pfn;
7336
7337 kernelcore_remaining -= min(kernel_pages,
7338 kernelcore_remaining);
7339 required_kernelcore -= min(kernel_pages,
7340 required_kernelcore);
7341
7342 /* Continue if range is now fully accounted */
7343 if (end_pfn <= usable_startpfn) {
7344
7345 /*
7346 * Push zone_movable_pfn to the end so
7347 * that if we have to rebalance
7348 * kernelcore across nodes, we will
7349 * not double account here
7350 */
7351 zone_movable_pfn[nid] = end_pfn;
7352 continue;
7353 }
7354 start_pfn = usable_startpfn;
7355 }
7356
7357 /*
7358 * The usable PFN range for ZONE_MOVABLE is from
7359 * start_pfn->end_pfn. Calculate size_pages as the
7360 * number of pages used as kernelcore
7361 */
7362 size_pages = end_pfn - start_pfn;
7363 if (size_pages > kernelcore_remaining)
7364 size_pages = kernelcore_remaining;
7365 zone_movable_pfn[nid] = start_pfn + size_pages;
7366
7367 /*
7368 * Some kernelcore has been met, update counts and
7369 * break if the kernelcore for this node has been
b8af2941 7370 * satisfied
2a1e274a
MG
7371 */
7372 required_kernelcore -= min(required_kernelcore,
7373 size_pages);
7374 kernelcore_remaining -= size_pages;
7375 if (!kernelcore_remaining)
7376 break;
7377 }
7378 }
7379
7380 /*
7381 * If there is still required_kernelcore, we do another pass with one
7382 * less node in the count. This will push zone_movable_pfn[nid] further
7383 * along on the nodes that still have memory until kernelcore is
b8af2941 7384 * satisfied
2a1e274a
MG
7385 */
7386 usable_nodes--;
7387 if (usable_nodes && required_kernelcore > usable_nodes)
7388 goto restart;
7389
b2f3eebe 7390out2:
2a1e274a
MG
7391 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7392 for (nid = 0; nid < MAX_NUMNODES; nid++)
7393 zone_movable_pfn[nid] =
7394 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7395
20e6926d 7396out:
66918dcd 7397 /* restore the node_state */
4b0ef1fe 7398 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7399}
7400
4b0ef1fe
LJ
7401/* Any regular or high memory on that node ? */
7402static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7403{
37b07e41
LS
7404 enum zone_type zone_type;
7405
4b0ef1fe 7406 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7407 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7408 if (populated_zone(zone)) {
7b0e0c0e
OS
7409 if (IS_ENABLED(CONFIG_HIGHMEM))
7410 node_set_state(nid, N_HIGH_MEMORY);
7411 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7412 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7413 break;
7414 }
37b07e41 7415 }
37b07e41
LS
7416}
7417
c713216d
MG
7418/**
7419 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7420 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7421 *
7422 * This will call free_area_init_node() for each active node in the system.
7d018176 7423 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7424 * zone in each node and their holes is calculated. If the maximum PFN
7425 * between two adjacent zones match, it is assumed that the zone is empty.
7426 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7427 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7428 * starts where the previous one ended. For example, ZONE_DMA32 starts
7429 * at arch_max_dma_pfn.
7430 */
7431void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7432{
c13291a5
TH
7433 unsigned long start_pfn, end_pfn;
7434 int i, nid;
a6af2bc3 7435
c713216d
MG
7436 /* Record where the zone boundaries are */
7437 memset(arch_zone_lowest_possible_pfn, 0,
7438 sizeof(arch_zone_lowest_possible_pfn));
7439 memset(arch_zone_highest_possible_pfn, 0,
7440 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7441
7442 start_pfn = find_min_pfn_with_active_regions();
7443
7444 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7445 if (i == ZONE_MOVABLE)
7446 continue;
90cae1fe
OH
7447
7448 end_pfn = max(max_zone_pfn[i], start_pfn);
7449 arch_zone_lowest_possible_pfn[i] = start_pfn;
7450 arch_zone_highest_possible_pfn[i] = end_pfn;
7451
7452 start_pfn = end_pfn;
c713216d 7453 }
2a1e274a
MG
7454
7455 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7456 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7457 find_zone_movable_pfns_for_nodes();
c713216d 7458
c713216d 7459 /* Print out the zone ranges */
f88dfff5 7460 pr_info("Zone ranges:\n");
2a1e274a
MG
7461 for (i = 0; i < MAX_NR_ZONES; i++) {
7462 if (i == ZONE_MOVABLE)
7463 continue;
f88dfff5 7464 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7465 if (arch_zone_lowest_possible_pfn[i] ==
7466 arch_zone_highest_possible_pfn[i])
f88dfff5 7467 pr_cont("empty\n");
72f0ba02 7468 else
8d29e18a
JG
7469 pr_cont("[mem %#018Lx-%#018Lx]\n",
7470 (u64)arch_zone_lowest_possible_pfn[i]
7471 << PAGE_SHIFT,
7472 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7473 << PAGE_SHIFT) - 1);
2a1e274a
MG
7474 }
7475
7476 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7477 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7478 for (i = 0; i < MAX_NUMNODES; i++) {
7479 if (zone_movable_pfn[i])
8d29e18a
JG
7480 pr_info(" Node %d: %#018Lx\n", i,
7481 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7482 }
c713216d 7483
f46edbd1
DW
7484 /*
7485 * Print out the early node map, and initialize the
7486 * subsection-map relative to active online memory ranges to
7487 * enable future "sub-section" extensions of the memory map.
7488 */
f88dfff5 7489 pr_info("Early memory node ranges\n");
f46edbd1 7490 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7491 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7492 (u64)start_pfn << PAGE_SHIFT,
7493 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7494 subsection_map_init(start_pfn, end_pfn - start_pfn);
7495 }
c713216d
MG
7496
7497 /* Initialise every node */
708614e6 7498 mminit_verify_pageflags_layout();
8ef82866 7499 setup_nr_node_ids();
4b094b78 7500 init_unavailable_mem();
c713216d
MG
7501 for_each_online_node(nid) {
7502 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7503 free_area_init_node(nid, NULL,
c713216d 7504 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7505
7506 /* Any memory on that node */
7507 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7508 node_set_state(nid, N_MEMORY);
7509 check_for_memory(pgdat, nid);
c713216d
MG
7510 }
7511}
2a1e274a 7512
a5c6d650
DR
7513static int __init cmdline_parse_core(char *p, unsigned long *core,
7514 unsigned long *percent)
2a1e274a
MG
7515{
7516 unsigned long long coremem;
a5c6d650
DR
7517 char *endptr;
7518
2a1e274a
MG
7519 if (!p)
7520 return -EINVAL;
7521
a5c6d650
DR
7522 /* Value may be a percentage of total memory, otherwise bytes */
7523 coremem = simple_strtoull(p, &endptr, 0);
7524 if (*endptr == '%') {
7525 /* Paranoid check for percent values greater than 100 */
7526 WARN_ON(coremem > 100);
2a1e274a 7527
a5c6d650
DR
7528 *percent = coremem;
7529 } else {
7530 coremem = memparse(p, &p);
7531 /* Paranoid check that UL is enough for the coremem value */
7532 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7533
a5c6d650
DR
7534 *core = coremem >> PAGE_SHIFT;
7535 *percent = 0UL;
7536 }
2a1e274a
MG
7537 return 0;
7538}
ed7ed365 7539
7e63efef
MG
7540/*
7541 * kernelcore=size sets the amount of memory for use for allocations that
7542 * cannot be reclaimed or migrated.
7543 */
7544static int __init cmdline_parse_kernelcore(char *p)
7545{
342332e6
TI
7546 /* parse kernelcore=mirror */
7547 if (parse_option_str(p, "mirror")) {
7548 mirrored_kernelcore = true;
7549 return 0;
7550 }
7551
a5c6d650
DR
7552 return cmdline_parse_core(p, &required_kernelcore,
7553 &required_kernelcore_percent);
7e63efef
MG
7554}
7555
7556/*
7557 * movablecore=size sets the amount of memory for use for allocations that
7558 * can be reclaimed or migrated.
7559 */
7560static int __init cmdline_parse_movablecore(char *p)
7561{
a5c6d650
DR
7562 return cmdline_parse_core(p, &required_movablecore,
7563 &required_movablecore_percent);
7e63efef
MG
7564}
7565
ed7ed365 7566early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7567early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7568
0ee332c1 7569#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7570
c3d5f5f0
JL
7571void adjust_managed_page_count(struct page *page, long count)
7572{
9705bea5 7573 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7574 totalram_pages_add(count);
3dcc0571
JL
7575#ifdef CONFIG_HIGHMEM
7576 if (PageHighMem(page))
ca79b0c2 7577 totalhigh_pages_add(count);
3dcc0571 7578#endif
c3d5f5f0 7579}
3dcc0571 7580EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7581
e5cb113f 7582unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7583{
11199692
JL
7584 void *pos;
7585 unsigned long pages = 0;
69afade7 7586
11199692
JL
7587 start = (void *)PAGE_ALIGN((unsigned long)start);
7588 end = (void *)((unsigned long)end & PAGE_MASK);
7589 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7590 struct page *page = virt_to_page(pos);
7591 void *direct_map_addr;
7592
7593 /*
7594 * 'direct_map_addr' might be different from 'pos'
7595 * because some architectures' virt_to_page()
7596 * work with aliases. Getting the direct map
7597 * address ensures that we get a _writeable_
7598 * alias for the memset().
7599 */
7600 direct_map_addr = page_address(page);
dbe67df4 7601 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7602 memset(direct_map_addr, poison, PAGE_SIZE);
7603
7604 free_reserved_page(page);
69afade7
JL
7605 }
7606
7607 if (pages && s)
adb1fe9a
JP
7608 pr_info("Freeing %s memory: %ldK\n",
7609 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7610
7611 return pages;
7612}
7613
cfa11e08
JL
7614#ifdef CONFIG_HIGHMEM
7615void free_highmem_page(struct page *page)
7616{
7617 __free_reserved_page(page);
ca79b0c2 7618 totalram_pages_inc();
9705bea5 7619 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7620 totalhigh_pages_inc();
cfa11e08
JL
7621}
7622#endif
7623
7ee3d4e8
JL
7624
7625void __init mem_init_print_info(const char *str)
7626{
7627 unsigned long physpages, codesize, datasize, rosize, bss_size;
7628 unsigned long init_code_size, init_data_size;
7629
7630 physpages = get_num_physpages();
7631 codesize = _etext - _stext;
7632 datasize = _edata - _sdata;
7633 rosize = __end_rodata - __start_rodata;
7634 bss_size = __bss_stop - __bss_start;
7635 init_data_size = __init_end - __init_begin;
7636 init_code_size = _einittext - _sinittext;
7637
7638 /*
7639 * Detect special cases and adjust section sizes accordingly:
7640 * 1) .init.* may be embedded into .data sections
7641 * 2) .init.text.* may be out of [__init_begin, __init_end],
7642 * please refer to arch/tile/kernel/vmlinux.lds.S.
7643 * 3) .rodata.* may be embedded into .text or .data sections.
7644 */
7645#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7646 do { \
7647 if (start <= pos && pos < end && size > adj) \
7648 size -= adj; \
7649 } while (0)
7ee3d4e8
JL
7650
7651 adj_init_size(__init_begin, __init_end, init_data_size,
7652 _sinittext, init_code_size);
7653 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7654 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7655 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7656 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7657
7658#undef adj_init_size
7659
756a025f 7660 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7661#ifdef CONFIG_HIGHMEM
756a025f 7662 ", %luK highmem"
7ee3d4e8 7663#endif
756a025f
JP
7664 "%s%s)\n",
7665 nr_free_pages() << (PAGE_SHIFT - 10),
7666 physpages << (PAGE_SHIFT - 10),
7667 codesize >> 10, datasize >> 10, rosize >> 10,
7668 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7669 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7670 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7671#ifdef CONFIG_HIGHMEM
ca79b0c2 7672 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7673#endif
756a025f 7674 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7675}
7676
0e0b864e 7677/**
88ca3b94
RD
7678 * set_dma_reserve - set the specified number of pages reserved in the first zone
7679 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7680 *
013110a7 7681 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7682 * In the DMA zone, a significant percentage may be consumed by kernel image
7683 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7684 * function may optionally be used to account for unfreeable pages in the
7685 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7686 * smaller per-cpu batchsize.
0e0b864e
MG
7687 */
7688void __init set_dma_reserve(unsigned long new_dma_reserve)
7689{
7690 dma_reserve = new_dma_reserve;
7691}
7692
1da177e4
LT
7693void __init free_area_init(unsigned long *zones_size)
7694{
4b094b78 7695 init_unavailable_mem();
9109fb7b 7696 free_area_init_node(0, zones_size,
1da177e4
LT
7697 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7698}
1da177e4 7699
005fd4bb 7700static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7701{
1da177e4 7702
005fd4bb
SAS
7703 lru_add_drain_cpu(cpu);
7704 drain_pages(cpu);
9f8f2172 7705
005fd4bb
SAS
7706 /*
7707 * Spill the event counters of the dead processor
7708 * into the current processors event counters.
7709 * This artificially elevates the count of the current
7710 * processor.
7711 */
7712 vm_events_fold_cpu(cpu);
9f8f2172 7713
005fd4bb
SAS
7714 /*
7715 * Zero the differential counters of the dead processor
7716 * so that the vm statistics are consistent.
7717 *
7718 * This is only okay since the processor is dead and cannot
7719 * race with what we are doing.
7720 */
7721 cpu_vm_stats_fold(cpu);
7722 return 0;
1da177e4 7723}
1da177e4 7724
e03a5125
NP
7725#ifdef CONFIG_NUMA
7726int hashdist = HASHDIST_DEFAULT;
7727
7728static int __init set_hashdist(char *str)
7729{
7730 if (!str)
7731 return 0;
7732 hashdist = simple_strtoul(str, &str, 0);
7733 return 1;
7734}
7735__setup("hashdist=", set_hashdist);
7736#endif
7737
1da177e4
LT
7738void __init page_alloc_init(void)
7739{
005fd4bb
SAS
7740 int ret;
7741
e03a5125
NP
7742#ifdef CONFIG_NUMA
7743 if (num_node_state(N_MEMORY) == 1)
7744 hashdist = 0;
7745#endif
7746
005fd4bb
SAS
7747 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7748 "mm/page_alloc:dead", NULL,
7749 page_alloc_cpu_dead);
7750 WARN_ON(ret < 0);
1da177e4
LT
7751}
7752
cb45b0e9 7753/*
34b10060 7754 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7755 * or min_free_kbytes changes.
7756 */
7757static void calculate_totalreserve_pages(void)
7758{
7759 struct pglist_data *pgdat;
7760 unsigned long reserve_pages = 0;
2f6726e5 7761 enum zone_type i, j;
cb45b0e9
HA
7762
7763 for_each_online_pgdat(pgdat) {
281e3726
MG
7764
7765 pgdat->totalreserve_pages = 0;
7766
cb45b0e9
HA
7767 for (i = 0; i < MAX_NR_ZONES; i++) {
7768 struct zone *zone = pgdat->node_zones + i;
3484b2de 7769 long max = 0;
9705bea5 7770 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7771
7772 /* Find valid and maximum lowmem_reserve in the zone */
7773 for (j = i; j < MAX_NR_ZONES; j++) {
7774 if (zone->lowmem_reserve[j] > max)
7775 max = zone->lowmem_reserve[j];
7776 }
7777
41858966
MG
7778 /* we treat the high watermark as reserved pages. */
7779 max += high_wmark_pages(zone);
cb45b0e9 7780
3d6357de
AK
7781 if (max > managed_pages)
7782 max = managed_pages;
a8d01437 7783
281e3726 7784 pgdat->totalreserve_pages += max;
a8d01437 7785
cb45b0e9
HA
7786 reserve_pages += max;
7787 }
7788 }
7789 totalreserve_pages = reserve_pages;
7790}
7791
1da177e4
LT
7792/*
7793 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7794 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7795 * has a correct pages reserved value, so an adequate number of
7796 * pages are left in the zone after a successful __alloc_pages().
7797 */
7798static void setup_per_zone_lowmem_reserve(void)
7799{
7800 struct pglist_data *pgdat;
2f6726e5 7801 enum zone_type j, idx;
1da177e4 7802
ec936fc5 7803 for_each_online_pgdat(pgdat) {
1da177e4
LT
7804 for (j = 0; j < MAX_NR_ZONES; j++) {
7805 struct zone *zone = pgdat->node_zones + j;
9705bea5 7806 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7807
7808 zone->lowmem_reserve[j] = 0;
7809
2f6726e5
CL
7810 idx = j;
7811 while (idx) {
1da177e4
LT
7812 struct zone *lower_zone;
7813
2f6726e5 7814 idx--;
1da177e4 7815 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7816
7817 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7818 sysctl_lowmem_reserve_ratio[idx] = 0;
7819 lower_zone->lowmem_reserve[j] = 0;
7820 } else {
7821 lower_zone->lowmem_reserve[j] =
7822 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7823 }
9705bea5 7824 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7825 }
7826 }
7827 }
cb45b0e9
HA
7828
7829 /* update totalreserve_pages */
7830 calculate_totalreserve_pages();
1da177e4
LT
7831}
7832
cfd3da1e 7833static void __setup_per_zone_wmarks(void)
1da177e4
LT
7834{
7835 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7836 unsigned long lowmem_pages = 0;
7837 struct zone *zone;
7838 unsigned long flags;
7839
7840 /* Calculate total number of !ZONE_HIGHMEM pages */
7841 for_each_zone(zone) {
7842 if (!is_highmem(zone))
9705bea5 7843 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7844 }
7845
7846 for_each_zone(zone) {
ac924c60
AM
7847 u64 tmp;
7848
1125b4e3 7849 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7850 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7851 do_div(tmp, lowmem_pages);
1da177e4
LT
7852 if (is_highmem(zone)) {
7853 /*
669ed175
NP
7854 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7855 * need highmem pages, so cap pages_min to a small
7856 * value here.
7857 *
41858966 7858 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7859 * deltas control async page reclaim, and so should
669ed175 7860 * not be capped for highmem.
1da177e4 7861 */
90ae8d67 7862 unsigned long min_pages;
1da177e4 7863
9705bea5 7864 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7865 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7866 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7867 } else {
669ed175
NP
7868 /*
7869 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7870 * proportionate to the zone's size.
7871 */
a9214443 7872 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7873 }
7874
795ae7a0
JW
7875 /*
7876 * Set the kswapd watermarks distance according to the
7877 * scale factor in proportion to available memory, but
7878 * ensure a minimum size on small systems.
7879 */
7880 tmp = max_t(u64, tmp >> 2,
9705bea5 7881 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7882 watermark_scale_factor, 10000));
7883
a9214443
MG
7884 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7885 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7886 zone->watermark_boost = 0;
49f223a9 7887
1125b4e3 7888 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7889 }
cb45b0e9
HA
7890
7891 /* update totalreserve_pages */
7892 calculate_totalreserve_pages();
1da177e4
LT
7893}
7894
cfd3da1e
MG
7895/**
7896 * setup_per_zone_wmarks - called when min_free_kbytes changes
7897 * or when memory is hot-{added|removed}
7898 *
7899 * Ensures that the watermark[min,low,high] values for each zone are set
7900 * correctly with respect to min_free_kbytes.
7901 */
7902void setup_per_zone_wmarks(void)
7903{
b93e0f32
MH
7904 static DEFINE_SPINLOCK(lock);
7905
7906 spin_lock(&lock);
cfd3da1e 7907 __setup_per_zone_wmarks();
b93e0f32 7908 spin_unlock(&lock);
cfd3da1e
MG
7909}
7910
1da177e4
LT
7911/*
7912 * Initialise min_free_kbytes.
7913 *
7914 * For small machines we want it small (128k min). For large machines
7915 * we want it large (64MB max). But it is not linear, because network
7916 * bandwidth does not increase linearly with machine size. We use
7917 *
b8af2941 7918 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7919 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7920 *
7921 * which yields
7922 *
7923 * 16MB: 512k
7924 * 32MB: 724k
7925 * 64MB: 1024k
7926 * 128MB: 1448k
7927 * 256MB: 2048k
7928 * 512MB: 2896k
7929 * 1024MB: 4096k
7930 * 2048MB: 5792k
7931 * 4096MB: 8192k
7932 * 8192MB: 11584k
7933 * 16384MB: 16384k
7934 */
1b79acc9 7935int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7936{
7937 unsigned long lowmem_kbytes;
5f12733e 7938 int new_min_free_kbytes;
1da177e4
LT
7939
7940 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7941 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7942
7943 if (new_min_free_kbytes > user_min_free_kbytes) {
7944 min_free_kbytes = new_min_free_kbytes;
7945 if (min_free_kbytes < 128)
7946 min_free_kbytes = 128;
ee8eb9a5
JS
7947 if (min_free_kbytes > 262144)
7948 min_free_kbytes = 262144;
5f12733e
MH
7949 } else {
7950 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7951 new_min_free_kbytes, user_min_free_kbytes);
7952 }
bc75d33f 7953 setup_per_zone_wmarks();
a6cccdc3 7954 refresh_zone_stat_thresholds();
1da177e4 7955 setup_per_zone_lowmem_reserve();
6423aa81
JK
7956
7957#ifdef CONFIG_NUMA
7958 setup_min_unmapped_ratio();
7959 setup_min_slab_ratio();
7960#endif
7961
1da177e4
LT
7962 return 0;
7963}
bc22af74 7964core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7965
7966/*
b8af2941 7967 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7968 * that we can call two helper functions whenever min_free_kbytes
7969 * changes.
7970 */
cccad5b9 7971int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7972 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7973{
da8c757b
HP
7974 int rc;
7975
7976 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7977 if (rc)
7978 return rc;
7979
5f12733e
MH
7980 if (write) {
7981 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7982 setup_per_zone_wmarks();
5f12733e 7983 }
1da177e4
LT
7984 return 0;
7985}
7986
1c30844d
MG
7987int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7988 void __user *buffer, size_t *length, loff_t *ppos)
7989{
7990 int rc;
7991
7992 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7993 if (rc)
7994 return rc;
7995
7996 return 0;
7997}
7998
795ae7a0
JW
7999int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8000 void __user *buffer, size_t *length, loff_t *ppos)
8001{
8002 int rc;
8003
8004 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8005 if (rc)
8006 return rc;
8007
8008 if (write)
8009 setup_per_zone_wmarks();
8010
8011 return 0;
8012}
8013
9614634f 8014#ifdef CONFIG_NUMA
6423aa81 8015static void setup_min_unmapped_ratio(void)
9614634f 8016{
6423aa81 8017 pg_data_t *pgdat;
9614634f 8018 struct zone *zone;
9614634f 8019
a5f5f91d 8020 for_each_online_pgdat(pgdat)
81cbcbc2 8021 pgdat->min_unmapped_pages = 0;
a5f5f91d 8022
9614634f 8023 for_each_zone(zone)
9705bea5
AK
8024 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8025 sysctl_min_unmapped_ratio) / 100;
9614634f 8026}
0ff38490 8027
6423aa81
JK
8028
8029int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8030 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 8031{
0ff38490
CL
8032 int rc;
8033
8d65af78 8034 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8035 if (rc)
8036 return rc;
8037
6423aa81
JK
8038 setup_min_unmapped_ratio();
8039
8040 return 0;
8041}
8042
8043static void setup_min_slab_ratio(void)
8044{
8045 pg_data_t *pgdat;
8046 struct zone *zone;
8047
a5f5f91d
MG
8048 for_each_online_pgdat(pgdat)
8049 pgdat->min_slab_pages = 0;
8050
0ff38490 8051 for_each_zone(zone)
9705bea5
AK
8052 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8053 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8054}
8055
8056int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8057 void __user *buffer, size_t *length, loff_t *ppos)
8058{
8059 int rc;
8060
8061 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8062 if (rc)
8063 return rc;
8064
8065 setup_min_slab_ratio();
8066
0ff38490
CL
8067 return 0;
8068}
9614634f
CL
8069#endif
8070
1da177e4
LT
8071/*
8072 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8073 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8074 * whenever sysctl_lowmem_reserve_ratio changes.
8075 *
8076 * The reserve ratio obviously has absolutely no relation with the
41858966 8077 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8078 * if in function of the boot time zone sizes.
8079 */
cccad5b9 8080int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8081 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 8082{
8d65af78 8083 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
8084 setup_per_zone_lowmem_reserve();
8085 return 0;
8086}
8087
cb1ef534
MG
8088static void __zone_pcp_update(struct zone *zone)
8089{
8090 unsigned int cpu;
8091
8092 for_each_possible_cpu(cpu)
8093 pageset_set_high_and_batch(zone,
8094 per_cpu_ptr(zone->pageset, cpu));
8095}
8096
8ad4b1fb
RS
8097/*
8098 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8099 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8100 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8101 */
cccad5b9 8102int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8103 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8104{
8105 struct zone *zone;
7cd2b0a3 8106 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8107 int ret;
8108
7cd2b0a3
DR
8109 mutex_lock(&pcp_batch_high_lock);
8110 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8111
8d65af78 8112 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8113 if (!write || ret < 0)
8114 goto out;
8115
8116 /* Sanity checking to avoid pcp imbalance */
8117 if (percpu_pagelist_fraction &&
8118 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8119 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8120 ret = -EINVAL;
8121 goto out;
8122 }
8123
8124 /* No change? */
8125 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8126 goto out;
c8e251fa 8127
cb1ef534
MG
8128 for_each_populated_zone(zone)
8129 __zone_pcp_update(zone);
7cd2b0a3 8130out:
c8e251fa 8131 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8132 return ret;
8ad4b1fb
RS
8133}
8134
f6f34b43
SD
8135#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8136/*
8137 * Returns the number of pages that arch has reserved but
8138 * is not known to alloc_large_system_hash().
8139 */
8140static unsigned long __init arch_reserved_kernel_pages(void)
8141{
8142 return 0;
8143}
8144#endif
8145
9017217b
PT
8146/*
8147 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8148 * machines. As memory size is increased the scale is also increased but at
8149 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8150 * quadruples the scale is increased by one, which means the size of hash table
8151 * only doubles, instead of quadrupling as well.
8152 * Because 32-bit systems cannot have large physical memory, where this scaling
8153 * makes sense, it is disabled on such platforms.
8154 */
8155#if __BITS_PER_LONG > 32
8156#define ADAPT_SCALE_BASE (64ul << 30)
8157#define ADAPT_SCALE_SHIFT 2
8158#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8159#endif
8160
1da177e4
LT
8161/*
8162 * allocate a large system hash table from bootmem
8163 * - it is assumed that the hash table must contain an exact power-of-2
8164 * quantity of entries
8165 * - limit is the number of hash buckets, not the total allocation size
8166 */
8167void *__init alloc_large_system_hash(const char *tablename,
8168 unsigned long bucketsize,
8169 unsigned long numentries,
8170 int scale,
8171 int flags,
8172 unsigned int *_hash_shift,
8173 unsigned int *_hash_mask,
31fe62b9
TB
8174 unsigned long low_limit,
8175 unsigned long high_limit)
1da177e4 8176{
31fe62b9 8177 unsigned long long max = high_limit;
1da177e4
LT
8178 unsigned long log2qty, size;
8179 void *table = NULL;
3749a8f0 8180 gfp_t gfp_flags;
ec11408a 8181 bool virt;
1da177e4
LT
8182
8183 /* allow the kernel cmdline to have a say */
8184 if (!numentries) {
8185 /* round applicable memory size up to nearest megabyte */
04903664 8186 numentries = nr_kernel_pages;
f6f34b43 8187 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8188
8189 /* It isn't necessary when PAGE_SIZE >= 1MB */
8190 if (PAGE_SHIFT < 20)
8191 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8192
9017217b
PT
8193#if __BITS_PER_LONG > 32
8194 if (!high_limit) {
8195 unsigned long adapt;
8196
8197 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8198 adapt <<= ADAPT_SCALE_SHIFT)
8199 scale++;
8200 }
8201#endif
8202
1da177e4
LT
8203 /* limit to 1 bucket per 2^scale bytes of low memory */
8204 if (scale > PAGE_SHIFT)
8205 numentries >>= (scale - PAGE_SHIFT);
8206 else
8207 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8208
8209 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8210 if (unlikely(flags & HASH_SMALL)) {
8211 /* Makes no sense without HASH_EARLY */
8212 WARN_ON(!(flags & HASH_EARLY));
8213 if (!(numentries >> *_hash_shift)) {
8214 numentries = 1UL << *_hash_shift;
8215 BUG_ON(!numentries);
8216 }
8217 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8218 numentries = PAGE_SIZE / bucketsize;
1da177e4 8219 }
6e692ed3 8220 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8221
8222 /* limit allocation size to 1/16 total memory by default */
8223 if (max == 0) {
8224 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8225 do_div(max, bucketsize);
8226 }
074b8517 8227 max = min(max, 0x80000000ULL);
1da177e4 8228
31fe62b9
TB
8229 if (numentries < low_limit)
8230 numentries = low_limit;
1da177e4
LT
8231 if (numentries > max)
8232 numentries = max;
8233
f0d1b0b3 8234 log2qty = ilog2(numentries);
1da177e4 8235
3749a8f0 8236 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8237 do {
ec11408a 8238 virt = false;
1da177e4 8239 size = bucketsize << log2qty;
ea1f5f37
PT
8240 if (flags & HASH_EARLY) {
8241 if (flags & HASH_ZERO)
26fb3dae 8242 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8243 else
7e1c4e27
MR
8244 table = memblock_alloc_raw(size,
8245 SMP_CACHE_BYTES);
ec11408a 8246 } else if (get_order(size) >= MAX_ORDER || hashdist) {
3749a8f0 8247 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ec11408a 8248 virt = true;
ea1f5f37 8249 } else {
1037b83b
ED
8250 /*
8251 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8252 * some pages at the end of hash table which
8253 * alloc_pages_exact() automatically does
1037b83b 8254 */
ec11408a
NP
8255 table = alloc_pages_exact(size, gfp_flags);
8256 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8257 }
8258 } while (!table && size > PAGE_SIZE && --log2qty);
8259
8260 if (!table)
8261 panic("Failed to allocate %s hash table\n", tablename);
8262
ec11408a
NP
8263 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8264 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8265 virt ? "vmalloc" : "linear");
1da177e4
LT
8266
8267 if (_hash_shift)
8268 *_hash_shift = log2qty;
8269 if (_hash_mask)
8270 *_hash_mask = (1 << log2qty) - 1;
8271
8272 return table;
8273}
a117e66e 8274
a5d76b54 8275/*
80934513 8276 * This function checks whether pageblock includes unmovable pages or not.
80934513 8277 *
b8af2941 8278 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8279 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8280 * check without lock_page also may miss some movable non-lru pages at
8281 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8282 *
8283 * Returns a page without holding a reference. If the caller wants to
8284 * dereference that page (e.g., dumping), it has to make sure that that it
8285 * cannot get removed (e.g., via memory unplug) concurrently.
8286 *
a5d76b54 8287 */
4a55c047
QC
8288struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8289 int migratetype, int flags)
49ac8255 8290{
1a9f2191
QC
8291 unsigned long iter = 0;
8292 unsigned long pfn = page_to_pfn(page);
47118af0 8293
49ac8255 8294 /*
15c30bc0
MH
8295 * TODO we could make this much more efficient by not checking every
8296 * page in the range if we know all of them are in MOVABLE_ZONE and
8297 * that the movable zone guarantees that pages are migratable but
8298 * the later is not the case right now unfortunatelly. E.g. movablecore
8299 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8300 */
49ac8255 8301
1a9f2191
QC
8302 if (is_migrate_cma_page(page)) {
8303 /*
8304 * CMA allocations (alloc_contig_range) really need to mark
8305 * isolate CMA pageblocks even when they are not movable in fact
8306 * so consider them movable here.
8307 */
8308 if (is_migrate_cma(migratetype))
4a55c047 8309 return NULL;
1a9f2191 8310
3d680bdf 8311 return page;
1a9f2191 8312 }
4da2ce25 8313
fe4c86c9
DH
8314 for (; iter < pageblock_nr_pages; iter++) {
8315 if (!pfn_valid_within(pfn + iter))
49ac8255 8316 continue;
29723fcc 8317
fe4c86c9 8318 page = pfn_to_page(pfn + iter);
c8721bbb 8319
d7ab3672 8320 if (PageReserved(page))
3d680bdf 8321 return page;
d7ab3672 8322
9d789999
MH
8323 /*
8324 * If the zone is movable and we have ruled out all reserved
8325 * pages then it should be reasonably safe to assume the rest
8326 * is movable.
8327 */
8328 if (zone_idx(zone) == ZONE_MOVABLE)
8329 continue;
8330
c8721bbb
NH
8331 /*
8332 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8333 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8334 * We need not scan over tail pages because we don't
c8721bbb
NH
8335 * handle each tail page individually in migration.
8336 */
1da2f328 8337 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8338 struct page *head = compound_head(page);
8339 unsigned int skip_pages;
464c7ffb 8340
1da2f328
RR
8341 if (PageHuge(page)) {
8342 if (!hugepage_migration_supported(page_hstate(head)))
8343 return page;
8344 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8345 return page;
1da2f328 8346 }
464c7ffb 8347
d8c6546b 8348 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8349 iter += skip_pages - 1;
c8721bbb
NH
8350 continue;
8351 }
8352
97d255c8
MK
8353 /*
8354 * We can't use page_count without pin a page
8355 * because another CPU can free compound page.
8356 * This check already skips compound tails of THP
0139aa7b 8357 * because their page->_refcount is zero at all time.
97d255c8 8358 */
fe896d18 8359 if (!page_ref_count(page)) {
49ac8255
KH
8360 if (PageBuddy(page))
8361 iter += (1 << page_order(page)) - 1;
8362 continue;
8363 }
97d255c8 8364
b023f468
WC
8365 /*
8366 * The HWPoisoned page may be not in buddy system, and
8367 * page_count() is not 0.
8368 */
756d25be 8369 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8370 continue;
8371
fe4c86c9 8372 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8373 continue;
8374
49ac8255 8375 /*
6b4f7799
JW
8376 * If there are RECLAIMABLE pages, we need to check
8377 * it. But now, memory offline itself doesn't call
8378 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8379 */
8380 /*
8381 * If the page is not RAM, page_count()should be 0.
8382 * we don't need more check. This is an _used_ not-movable page.
8383 *
8384 * The problematic thing here is PG_reserved pages. PG_reserved
8385 * is set to both of a memory hole page and a _used_ kernel
8386 * page at boot.
8387 */
3d680bdf 8388 return page;
49ac8255 8389 }
4a55c047 8390 return NULL;
49ac8255
KH
8391}
8392
8df995f6 8393#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8394static unsigned long pfn_max_align_down(unsigned long pfn)
8395{
8396 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8397 pageblock_nr_pages) - 1);
8398}
8399
8400static unsigned long pfn_max_align_up(unsigned long pfn)
8401{
8402 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8403 pageblock_nr_pages));
8404}
8405
041d3a8c 8406/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8407static int __alloc_contig_migrate_range(struct compact_control *cc,
8408 unsigned long start, unsigned long end)
041d3a8c
MN
8409{
8410 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8411 unsigned long nr_reclaimed;
041d3a8c
MN
8412 unsigned long pfn = start;
8413 unsigned int tries = 0;
8414 int ret = 0;
8415
be49a6e1 8416 migrate_prep();
041d3a8c 8417
bb13ffeb 8418 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8419 if (fatal_signal_pending(current)) {
8420 ret = -EINTR;
8421 break;
8422 }
8423
bb13ffeb
MG
8424 if (list_empty(&cc->migratepages)) {
8425 cc->nr_migratepages = 0;
edc2ca61 8426 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8427 if (!pfn) {
8428 ret = -EINTR;
8429 break;
8430 }
8431 tries = 0;
8432 } else if (++tries == 5) {
8433 ret = ret < 0 ? ret : -EBUSY;
8434 break;
8435 }
8436
beb51eaa
MK
8437 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8438 &cc->migratepages);
8439 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8440
9c620e2b 8441 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8442 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8443 }
2a6f5124
SP
8444 if (ret < 0) {
8445 putback_movable_pages(&cc->migratepages);
8446 return ret;
8447 }
8448 return 0;
041d3a8c
MN
8449}
8450
8451/**
8452 * alloc_contig_range() -- tries to allocate given range of pages
8453 * @start: start PFN to allocate
8454 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8455 * @migratetype: migratetype of the underlaying pageblocks (either
8456 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8457 * in range must have the same migratetype and it must
8458 * be either of the two.
ca96b625 8459 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8460 *
8461 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8462 * aligned. The PFN range must belong to a single zone.
041d3a8c 8463 *
2c7452a0
MK
8464 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8465 * pageblocks in the range. Once isolated, the pageblocks should not
8466 * be modified by others.
041d3a8c 8467 *
a862f68a 8468 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8469 * pages which PFN is in [start, end) are allocated for the caller and
8470 * need to be freed with free_contig_range().
8471 */
0815f3d8 8472int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8473 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8474{
041d3a8c 8475 unsigned long outer_start, outer_end;
d00181b9
KS
8476 unsigned int order;
8477 int ret = 0;
041d3a8c 8478
bb13ffeb
MG
8479 struct compact_control cc = {
8480 .nr_migratepages = 0,
8481 .order = -1,
8482 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8483 .mode = MIGRATE_SYNC,
bb13ffeb 8484 .ignore_skip_hint = true,
2583d671 8485 .no_set_skip_hint = true,
7dea19f9 8486 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8487 .alloc_contig = true,
bb13ffeb
MG
8488 };
8489 INIT_LIST_HEAD(&cc.migratepages);
8490
041d3a8c
MN
8491 /*
8492 * What we do here is we mark all pageblocks in range as
8493 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8494 * have different sizes, and due to the way page allocator
8495 * work, we align the range to biggest of the two pages so
8496 * that page allocator won't try to merge buddies from
8497 * different pageblocks and change MIGRATE_ISOLATE to some
8498 * other migration type.
8499 *
8500 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8501 * migrate the pages from an unaligned range (ie. pages that
8502 * we are interested in). This will put all the pages in
8503 * range back to page allocator as MIGRATE_ISOLATE.
8504 *
8505 * When this is done, we take the pages in range from page
8506 * allocator removing them from the buddy system. This way
8507 * page allocator will never consider using them.
8508 *
8509 * This lets us mark the pageblocks back as
8510 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8511 * aligned range but not in the unaligned, original range are
8512 * put back to page allocator so that buddy can use them.
8513 */
8514
8515 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8516 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8517 if (ret < 0)
86a595f9 8518 return ret;
041d3a8c 8519
8ef5849f
JK
8520 /*
8521 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8522 * So, just fall through. test_pages_isolated() has a tracepoint
8523 * which will report the busy page.
8524 *
8525 * It is possible that busy pages could become available before
8526 * the call to test_pages_isolated, and the range will actually be
8527 * allocated. So, if we fall through be sure to clear ret so that
8528 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8529 */
bb13ffeb 8530 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8531 if (ret && ret != -EBUSY)
041d3a8c 8532 goto done;
63cd4489 8533 ret =0;
041d3a8c
MN
8534
8535 /*
8536 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8537 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8538 * more, all pages in [start, end) are free in page allocator.
8539 * What we are going to do is to allocate all pages from
8540 * [start, end) (that is remove them from page allocator).
8541 *
8542 * The only problem is that pages at the beginning and at the
8543 * end of interesting range may be not aligned with pages that
8544 * page allocator holds, ie. they can be part of higher order
8545 * pages. Because of this, we reserve the bigger range and
8546 * once this is done free the pages we are not interested in.
8547 *
8548 * We don't have to hold zone->lock here because the pages are
8549 * isolated thus they won't get removed from buddy.
8550 */
8551
8552 lru_add_drain_all();
041d3a8c
MN
8553
8554 order = 0;
8555 outer_start = start;
8556 while (!PageBuddy(pfn_to_page(outer_start))) {
8557 if (++order >= MAX_ORDER) {
8ef5849f
JK
8558 outer_start = start;
8559 break;
041d3a8c
MN
8560 }
8561 outer_start &= ~0UL << order;
8562 }
8563
8ef5849f
JK
8564 if (outer_start != start) {
8565 order = page_order(pfn_to_page(outer_start));
8566
8567 /*
8568 * outer_start page could be small order buddy page and
8569 * it doesn't include start page. Adjust outer_start
8570 * in this case to report failed page properly
8571 * on tracepoint in test_pages_isolated()
8572 */
8573 if (outer_start + (1UL << order) <= start)
8574 outer_start = start;
8575 }
8576
041d3a8c 8577 /* Make sure the range is really isolated. */
756d25be 8578 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8579 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8580 __func__, outer_start, end);
041d3a8c
MN
8581 ret = -EBUSY;
8582 goto done;
8583 }
8584
49f223a9 8585 /* Grab isolated pages from freelists. */
bb13ffeb 8586 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8587 if (!outer_end) {
8588 ret = -EBUSY;
8589 goto done;
8590 }
8591
8592 /* Free head and tail (if any) */
8593 if (start != outer_start)
8594 free_contig_range(outer_start, start - outer_start);
8595 if (end != outer_end)
8596 free_contig_range(end, outer_end - end);
8597
8598done:
8599 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8600 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8601 return ret;
8602}
5e27a2df
AK
8603
8604static int __alloc_contig_pages(unsigned long start_pfn,
8605 unsigned long nr_pages, gfp_t gfp_mask)
8606{
8607 unsigned long end_pfn = start_pfn + nr_pages;
8608
8609 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8610 gfp_mask);
8611}
8612
8613static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8614 unsigned long nr_pages)
8615{
8616 unsigned long i, end_pfn = start_pfn + nr_pages;
8617 struct page *page;
8618
8619 for (i = start_pfn; i < end_pfn; i++) {
8620 page = pfn_to_online_page(i);
8621 if (!page)
8622 return false;
8623
8624 if (page_zone(page) != z)
8625 return false;
8626
8627 if (PageReserved(page))
8628 return false;
8629
8630 if (page_count(page) > 0)
8631 return false;
8632
8633 if (PageHuge(page))
8634 return false;
8635 }
8636 return true;
8637}
8638
8639static bool zone_spans_last_pfn(const struct zone *zone,
8640 unsigned long start_pfn, unsigned long nr_pages)
8641{
8642 unsigned long last_pfn = start_pfn + nr_pages - 1;
8643
8644 return zone_spans_pfn(zone, last_pfn);
8645}
8646
8647/**
8648 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8649 * @nr_pages: Number of contiguous pages to allocate
8650 * @gfp_mask: GFP mask to limit search and used during compaction
8651 * @nid: Target node
8652 * @nodemask: Mask for other possible nodes
8653 *
8654 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8655 * on an applicable zonelist to find a contiguous pfn range which can then be
8656 * tried for allocation with alloc_contig_range(). This routine is intended
8657 * for allocation requests which can not be fulfilled with the buddy allocator.
8658 *
8659 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8660 * power of two then the alignment is guaranteed to be to the given nr_pages
8661 * (e.g. 1GB request would be aligned to 1GB).
8662 *
8663 * Allocated pages can be freed with free_contig_range() or by manually calling
8664 * __free_page() on each allocated page.
8665 *
8666 * Return: pointer to contiguous pages on success, or NULL if not successful.
8667 */
8668struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8669 int nid, nodemask_t *nodemask)
8670{
8671 unsigned long ret, pfn, flags;
8672 struct zonelist *zonelist;
8673 struct zone *zone;
8674 struct zoneref *z;
8675
8676 zonelist = node_zonelist(nid, gfp_mask);
8677 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8678 gfp_zone(gfp_mask), nodemask) {
8679 spin_lock_irqsave(&zone->lock, flags);
8680
8681 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8682 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8683 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8684 /*
8685 * We release the zone lock here because
8686 * alloc_contig_range() will also lock the zone
8687 * at some point. If there's an allocation
8688 * spinning on this lock, it may win the race
8689 * and cause alloc_contig_range() to fail...
8690 */
8691 spin_unlock_irqrestore(&zone->lock, flags);
8692 ret = __alloc_contig_pages(pfn, nr_pages,
8693 gfp_mask);
8694 if (!ret)
8695 return pfn_to_page(pfn);
8696 spin_lock_irqsave(&zone->lock, flags);
8697 }
8698 pfn += nr_pages;
8699 }
8700 spin_unlock_irqrestore(&zone->lock, flags);
8701 }
8702 return NULL;
8703}
4eb0716e 8704#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8705
4eb0716e 8706void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8707{
bcc2b02f
MS
8708 unsigned int count = 0;
8709
8710 for (; nr_pages--; pfn++) {
8711 struct page *page = pfn_to_page(pfn);
8712
8713 count += page_count(page) != 1;
8714 __free_page(page);
8715 }
8716 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8717}
041d3a8c 8718
0a647f38
CS
8719/*
8720 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8721 * page high values need to be recalulated.
8722 */
4ed7e022
JL
8723void __meminit zone_pcp_update(struct zone *zone)
8724{
c8e251fa 8725 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8726 __zone_pcp_update(zone);
c8e251fa 8727 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8728}
4ed7e022 8729
340175b7
JL
8730void zone_pcp_reset(struct zone *zone)
8731{
8732 unsigned long flags;
5a883813
MK
8733 int cpu;
8734 struct per_cpu_pageset *pset;
340175b7
JL
8735
8736 /* avoid races with drain_pages() */
8737 local_irq_save(flags);
8738 if (zone->pageset != &boot_pageset) {
5a883813
MK
8739 for_each_online_cpu(cpu) {
8740 pset = per_cpu_ptr(zone->pageset, cpu);
8741 drain_zonestat(zone, pset);
8742 }
340175b7
JL
8743 free_percpu(zone->pageset);
8744 zone->pageset = &boot_pageset;
8745 }
8746 local_irq_restore(flags);
8747}
8748
6dcd73d7 8749#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8750/*
b9eb6319
JK
8751 * All pages in the range must be in a single zone and isolated
8752 * before calling this.
0c0e6195 8753 */
5557c766 8754unsigned long
0c0e6195
KH
8755__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8756{
8757 struct page *page;
8758 struct zone *zone;
0ee5f4f3 8759 unsigned int order;
0c0e6195
KH
8760 unsigned long pfn;
8761 unsigned long flags;
5557c766
MH
8762 unsigned long offlined_pages = 0;
8763
0c0e6195
KH
8764 /* find the first valid pfn */
8765 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8766 if (pfn_valid(pfn))
8767 break;
8768 if (pfn == end_pfn)
5557c766
MH
8769 return offlined_pages;
8770
2d070eab 8771 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8772 zone = page_zone(pfn_to_page(pfn));
8773 spin_lock_irqsave(&zone->lock, flags);
8774 pfn = start_pfn;
8775 while (pfn < end_pfn) {
8776 if (!pfn_valid(pfn)) {
8777 pfn++;
8778 continue;
8779 }
8780 page = pfn_to_page(pfn);
b023f468
WC
8781 /*
8782 * The HWPoisoned page may be not in buddy system, and
8783 * page_count() is not 0.
8784 */
8785 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8786 pfn++;
5557c766 8787 offlined_pages++;
b023f468
WC
8788 continue;
8789 }
8790
0c0e6195
KH
8791 BUG_ON(page_count(page));
8792 BUG_ON(!PageBuddy(page));
8793 order = page_order(page);
5557c766 8794 offlined_pages += 1 << order;
6ab01363 8795 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8796 pfn += (1 << order);
8797 }
8798 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8799
8800 return offlined_pages;
0c0e6195
KH
8801}
8802#endif
8d22ba1b 8803
8d22ba1b
WF
8804bool is_free_buddy_page(struct page *page)
8805{
8806 struct zone *zone = page_zone(page);
8807 unsigned long pfn = page_to_pfn(page);
8808 unsigned long flags;
7aeb09f9 8809 unsigned int order;
8d22ba1b
WF
8810
8811 spin_lock_irqsave(&zone->lock, flags);
8812 for (order = 0; order < MAX_ORDER; order++) {
8813 struct page *page_head = page - (pfn & ((1 << order) - 1));
8814
8815 if (PageBuddy(page_head) && page_order(page_head) >= order)
8816 break;
8817 }
8818 spin_unlock_irqrestore(&zone->lock, flags);
8819
8820 return order < MAX_ORDER;
8821}
d4ae9916
NH
8822
8823#ifdef CONFIG_MEMORY_FAILURE
8824/*
8825 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8826 * test is performed under the zone lock to prevent a race against page
8827 * allocation.
8828 */
8829bool set_hwpoison_free_buddy_page(struct page *page)
8830{
8831 struct zone *zone = page_zone(page);
8832 unsigned long pfn = page_to_pfn(page);
8833 unsigned long flags;
8834 unsigned int order;
8835 bool hwpoisoned = false;
8836
8837 spin_lock_irqsave(&zone->lock, flags);
8838 for (order = 0; order < MAX_ORDER; order++) {
8839 struct page *page_head = page - (pfn & ((1 << order) - 1));
8840
8841 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8842 if (!TestSetPageHWPoison(page))
8843 hwpoisoned = true;
8844 break;
8845 }
8846 }
8847 spin_unlock_irqrestore(&zone->lock, flags);
8848
8849 return hwpoisoned;
8850}
8851#endif