Merge tag 'for-linus-5.9b-rc9-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
e4443149 71#include <linux/padata.h>
1da177e4 72
7ee3d4e8 73#include <asm/sections.h>
1da177e4 74#include <asm/tlbflush.h>
ac924c60 75#include <asm/div64.h>
1da177e4 76#include "internal.h"
e900a918 77#include "shuffle.h"
36e66c55 78#include "page_reporting.h"
1da177e4 79
c8e251fa
CS
80/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 82#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 83
72812019
LS
84#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85DEFINE_PER_CPU(int, numa_node);
86EXPORT_PER_CPU_SYMBOL(numa_node);
87#endif
88
4518085e
KW
89DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90
7aac7898
LS
91#ifdef CONFIG_HAVE_MEMORYLESS_NODES
92/*
93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96 * defined in <linux/topology.h>.
97 */
98DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
99EXPORT_PER_CPU_SYMBOL(_numa_mem_);
100#endif
101
bd233f53 102/* work_structs for global per-cpu drains */
d9367bd0
WY
103struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106};
8b885f53
JY
107static DEFINE_MUTEX(pcpu_drain_mutex);
108static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 109
38addce8 110#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 111volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
112EXPORT_SYMBOL(latent_entropy);
113#endif
114
1da177e4 115/*
13808910 116 * Array of node states.
1da177e4 117 */
13808910
CL
118nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121#ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123#ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 125#endif
20b2f52b 126 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
127 [N_CPU] = { { [0] = 1UL } },
128#endif /* NUMA */
129};
130EXPORT_SYMBOL(node_states);
131
ca79b0c2
AK
132atomic_long_t _totalram_pages __read_mostly;
133EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 134unsigned long totalreserve_pages __read_mostly;
e48322ab 135unsigned long totalcma_pages __read_mostly;
ab8fabd4 136
1b76b02f 137int percpu_pagelist_fraction;
dcce284a 138gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
139#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141#else
142DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143#endif
144EXPORT_SYMBOL(init_on_alloc);
145
146#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147DEFINE_STATIC_KEY_TRUE(init_on_free);
148#else
149DEFINE_STATIC_KEY_FALSE(init_on_free);
150#endif
151EXPORT_SYMBOL(init_on_free);
152
153static int __init early_init_on_alloc(char *buf)
154{
155 int ret;
156 bool bool_result;
157
158 if (!buf)
159 return -EINVAL;
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 if (bool_result)
164 static_branch_enable(&init_on_alloc);
165 else
166 static_branch_disable(&init_on_alloc);
167 return ret;
168}
169early_param("init_on_alloc", early_init_on_alloc);
170
171static int __init early_init_on_free(char *buf)
172{
173 int ret;
174 bool bool_result;
175
176 if (!buf)
177 return -EINVAL;
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 if (bool_result)
182 static_branch_enable(&init_on_free);
183 else
184 static_branch_disable(&init_on_free);
185 return ret;
186}
187early_param("init_on_free", early_init_on_free);
1da177e4 188
bb14c2c7
VB
189/*
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
196 */
197static inline int get_pcppage_migratetype(struct page *page)
198{
199 return page->index;
200}
201
202static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203{
204 page->index = migratetype;
205}
206
452aa699
RW
207#ifdef CONFIG_PM_SLEEP
208/*
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
452aa699 216 */
c9e664f1
RW
217
218static gfp_t saved_gfp_mask;
219
220void pm_restore_gfp_mask(void)
452aa699 221{
55f2503c 222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
225 saved_gfp_mask = 0;
226 }
452aa699
RW
227}
228
c9e664f1 229void pm_restrict_gfp_mask(void)
452aa699 230{
55f2503c 231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
d0164adc 234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 235}
f90ac398
MG
236
237bool pm_suspended_storage(void)
238{
d0164adc 239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
240 return false;
241 return true;
242}
452aa699
RW
243#endif /* CONFIG_PM_SLEEP */
244
d9c23400 245#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 246unsigned int pageblock_order __read_mostly;
d9c23400
MG
247#endif
248
d98c7a09 249static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 250
1da177e4
LT
251/*
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
258 *
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
1da177e4 261 */
d3cda233 262int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 263#ifdef CONFIG_ZONE_DMA
d3cda233 264 [ZONE_DMA] = 256,
4b51d669 265#endif
fb0e7942 266#ifdef CONFIG_ZONE_DMA32
d3cda233 267 [ZONE_DMA32] = 256,
fb0e7942 268#endif
d3cda233 269 [ZONE_NORMAL] = 32,
e53ef38d 270#ifdef CONFIG_HIGHMEM
d3cda233 271 [ZONE_HIGHMEM] = 0,
e53ef38d 272#endif
d3cda233 273 [ZONE_MOVABLE] = 0,
2f1b6248 274};
1da177e4 275
15ad7cdc 276static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 277#ifdef CONFIG_ZONE_DMA
2f1b6248 278 "DMA",
4b51d669 279#endif
fb0e7942 280#ifdef CONFIG_ZONE_DMA32
2f1b6248 281 "DMA32",
fb0e7942 282#endif
2f1b6248 283 "Normal",
e53ef38d 284#ifdef CONFIG_HIGHMEM
2a1e274a 285 "HighMem",
e53ef38d 286#endif
2a1e274a 287 "Movable",
033fbae9
DW
288#ifdef CONFIG_ZONE_DEVICE
289 "Device",
290#endif
2f1b6248
CL
291};
292
c999fbd3 293const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
294 "Unmovable",
295 "Movable",
296 "Reclaimable",
297 "HighAtomic",
298#ifdef CONFIG_CMA
299 "CMA",
300#endif
301#ifdef CONFIG_MEMORY_ISOLATION
302 "Isolate",
303#endif
304};
305
ae70eddd
AK
306compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 [NULL_COMPOUND_DTOR] = NULL,
308 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 309#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 310 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 311#endif
9a982250 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 314#endif
f1e61557
KS
315};
316
1da177e4 317int min_free_kbytes = 1024;
42aa83cb 318int user_min_free_kbytes = -1;
24512228
MG
319#ifdef CONFIG_DISCONTIGMEM
320/*
321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322 * are not on separate NUMA nodes. Functionally this works but with
323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324 * quite small. By default, do not boost watermarks on discontigmem as in
325 * many cases very high-order allocations like THP are likely to be
326 * unsupported and the premature reclaim offsets the advantage of long-term
327 * fragmentation avoidance.
328 */
329int watermark_boost_factor __read_mostly;
330#else
1c30844d 331int watermark_boost_factor __read_mostly = 15000;
24512228 332#endif
795ae7a0 333int watermark_scale_factor = 10;
1da177e4 334
bbe5d993
OS
335static unsigned long nr_kernel_pages __initdata;
336static unsigned long nr_all_pages __initdata;
337static unsigned long dma_reserve __initdata;
1da177e4 338
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
c713216d 351
418508c1 352#if MAX_NUMNODES > 1
b9726c26 353unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 354unsigned int nr_online_nodes __read_mostly = 1;
418508c1 355EXPORT_SYMBOL(nr_node_ids);
62bc62a8 356EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
357#endif
358
9ef9acb0
MG
359int page_group_by_mobility_disabled __read_mostly;
360
3a80a7fa 361#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
362/*
363 * During boot we initialize deferred pages on-demand, as needed, but once
364 * page_alloc_init_late() has finished, the deferred pages are all initialized,
365 * and we can permanently disable that path.
366 */
367static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368
369/*
370 * Calling kasan_free_pages() only after deferred memory initialization
371 * has completed. Poisoning pages during deferred memory init will greatly
372 * lengthen the process and cause problem in large memory systems as the
373 * deferred pages initialization is done with interrupt disabled.
374 *
375 * Assuming that there will be no reference to those newly initialized
376 * pages before they are ever allocated, this should have no effect on
377 * KASAN memory tracking as the poison will be properly inserted at page
378 * allocation time. The only corner case is when pages are allocated by
379 * on-demand allocation and then freed again before the deferred pages
380 * initialization is done, but this is not likely to happen.
381 */
382static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383{
384 if (!static_branch_unlikely(&deferred_pages))
385 kasan_free_pages(page, order);
386}
387
3a80a7fa 388/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 389static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 390{
ef70b6f4
MG
391 int nid = early_pfn_to_nid(pfn);
392
393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
394 return true;
395
396 return false;
397}
398
399/*
d3035be4 400 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
401 * later in the boot cycle when it can be parallelised.
402 */
d3035be4
PT
403static bool __meminit
404defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 405{
d3035be4
PT
406 static unsigned long prev_end_pfn, nr_initialised;
407
408 /*
409 * prev_end_pfn static that contains the end of previous zone
410 * No need to protect because called very early in boot before smp_init.
411 */
412 if (prev_end_pfn != end_pfn) {
413 prev_end_pfn = end_pfn;
414 nr_initialised = 0;
415 }
416
3c2c6488 417 /* Always populate low zones for address-constrained allocations */
d3035be4 418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 419 return false;
23b68cfa
WY
420
421 /*
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
424 */
d3035be4 425 nr_initialised++;
23b68cfa 426 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
429 return true;
3a80a7fa 430 }
d3035be4 431 return false;
3a80a7fa
MG
432}
433#else
3c0c12cc
WL
434#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
435
3a80a7fa
MG
436static inline bool early_page_uninitialised(unsigned long pfn)
437{
438 return false;
439}
440
d3035be4 441static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 442{
d3035be4 443 return false;
3a80a7fa
MG
444}
445#endif
446
0b423ca2
MG
447/* Return a pointer to the bitmap storing bits affecting a block of pages */
448static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 unsigned long pfn)
450{
451#ifdef CONFIG_SPARSEMEM
f1eca35a 452 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
453#else
454 return page_zone(page)->pageblock_flags;
455#endif /* CONFIG_SPARSEMEM */
456}
457
458static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459{
460#ifdef CONFIG_SPARSEMEM
461 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
462#else
463 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 464#endif /* CONFIG_SPARSEMEM */
399b795b 465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
466}
467
468/**
469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470 * @page: The page within the block of interest
471 * @pfn: The target page frame number
0b423ca2
MG
472 * @mask: mask of bits that the caller is interested in
473 *
474 * Return: pageblock_bits flags
475 */
535b81e2
WY
476static __always_inline
477unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 478 unsigned long pfn,
0b423ca2
MG
479 unsigned long mask)
480{
481 unsigned long *bitmap;
482 unsigned long bitidx, word_bitidx;
483 unsigned long word;
484
485 bitmap = get_pageblock_bitmap(page, pfn);
486 bitidx = pfn_to_bitidx(page, pfn);
487 word_bitidx = bitidx / BITS_PER_LONG;
488 bitidx &= (BITS_PER_LONG-1);
489
490 word = bitmap[word_bitidx];
d93d5ab9 491 return (word >> bitidx) & mask;
0b423ca2
MG
492}
493
494unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
495 unsigned long mask)
496{
535b81e2 497 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
498}
499
500static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
501{
535b81e2 502 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
503}
504
505/**
506 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
507 * @page: The page within the block of interest
508 * @flags: The flags to set
509 * @pfn: The target page frame number
0b423ca2
MG
510 * @mask: mask of bits that the caller is interested in
511 */
512void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
513 unsigned long pfn,
0b423ca2
MG
514 unsigned long mask)
515{
516 unsigned long *bitmap;
517 unsigned long bitidx, word_bitidx;
518 unsigned long old_word, word;
519
520 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 521 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
522
523 bitmap = get_pageblock_bitmap(page, pfn);
524 bitidx = pfn_to_bitidx(page, pfn);
525 word_bitidx = bitidx / BITS_PER_LONG;
526 bitidx &= (BITS_PER_LONG-1);
527
528 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
529
d93d5ab9
WY
530 mask <<= bitidx;
531 flags <<= bitidx;
0b423ca2
MG
532
533 word = READ_ONCE(bitmap[word_bitidx]);
534 for (;;) {
535 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
536 if (word == old_word)
537 break;
538 word = old_word;
539 }
540}
3a80a7fa 541
ee6f509c 542void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 543{
5d0f3f72
KM
544 if (unlikely(page_group_by_mobility_disabled &&
545 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
546 migratetype = MIGRATE_UNMOVABLE;
547
d93d5ab9 548 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 549 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
550}
551
13e7444b 552#ifdef CONFIG_DEBUG_VM
c6a57e19 553static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 554{
bdc8cb98
DH
555 int ret = 0;
556 unsigned seq;
557 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 558 unsigned long sp, start_pfn;
c6a57e19 559
bdc8cb98
DH
560 do {
561 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
562 start_pfn = zone->zone_start_pfn;
563 sp = zone->spanned_pages;
108bcc96 564 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
565 ret = 1;
566 } while (zone_span_seqretry(zone, seq));
567
b5e6a5a2 568 if (ret)
613813e8
DH
569 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
570 pfn, zone_to_nid(zone), zone->name,
571 start_pfn, start_pfn + sp);
b5e6a5a2 572
bdc8cb98 573 return ret;
c6a57e19
DH
574}
575
576static int page_is_consistent(struct zone *zone, struct page *page)
577{
14e07298 578 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 579 return 0;
1da177e4 580 if (zone != page_zone(page))
c6a57e19
DH
581 return 0;
582
583 return 1;
584}
585/*
586 * Temporary debugging check for pages not lying within a given zone.
587 */
d73d3c9f 588static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
589{
590 if (page_outside_zone_boundaries(zone, page))
1da177e4 591 return 1;
c6a57e19
DH
592 if (!page_is_consistent(zone, page))
593 return 1;
594
1da177e4
LT
595 return 0;
596}
13e7444b 597#else
d73d3c9f 598static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
599{
600 return 0;
601}
602#endif
603
82a3241a 604static void bad_page(struct page *page, const char *reason)
1da177e4 605{
d936cf9b
HD
606 static unsigned long resume;
607 static unsigned long nr_shown;
608 static unsigned long nr_unshown;
609
610 /*
611 * Allow a burst of 60 reports, then keep quiet for that minute;
612 * or allow a steady drip of one report per second.
613 */
614 if (nr_shown == 60) {
615 if (time_before(jiffies, resume)) {
616 nr_unshown++;
617 goto out;
618 }
619 if (nr_unshown) {
ff8e8116 620 pr_alert(
1e9e6365 621 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
622 nr_unshown);
623 nr_unshown = 0;
624 }
625 nr_shown = 0;
626 }
627 if (nr_shown++ == 0)
628 resume = jiffies + 60 * HZ;
629
ff8e8116 630 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 631 current->comm, page_to_pfn(page));
ff8e8116 632 __dump_page(page, reason);
4e462112 633 dump_page_owner(page);
3dc14741 634
4f31888c 635 print_modules();
1da177e4 636 dump_stack();
d936cf9b 637out:
8cc3b392 638 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 639 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 640 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
641}
642
1da177e4
LT
643/*
644 * Higher-order pages are called "compound pages". They are structured thusly:
645 *
1d798ca3 646 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 647 *
1d798ca3
KS
648 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
649 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 650 *
1d798ca3
KS
651 * The first tail page's ->compound_dtor holds the offset in array of compound
652 * page destructors. See compound_page_dtors.
1da177e4 653 *
1d798ca3 654 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 655 * This usage means that zero-order pages may not be compound.
1da177e4 656 */
d98c7a09 657
9a982250 658void free_compound_page(struct page *page)
d98c7a09 659{
7ae88534 660 mem_cgroup_uncharge(page);
d85f3385 661 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
662}
663
d00181b9 664void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
665{
666 int i;
667 int nr_pages = 1 << order;
668
18229df5
AW
669 __SetPageHead(page);
670 for (i = 1; i < nr_pages; i++) {
671 struct page *p = page + i;
58a84aa9 672 set_page_count(p, 0);
1c290f64 673 p->mapping = TAIL_MAPPING;
1d798ca3 674 set_compound_head(p, page);
18229df5 675 }
1378a5ee
MWO
676
677 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
678 set_compound_order(page, order);
53f9263b 679 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
680 if (hpage_pincount_available(page))
681 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
682}
683
c0a32fc5
SG
684#ifdef CONFIG_DEBUG_PAGEALLOC
685unsigned int _debug_guardpage_minorder;
96a2b03f 686
8e57f8ac
VB
687bool _debug_pagealloc_enabled_early __read_mostly
688 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
689EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 690DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 691EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
692
693DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 694
031bc574
JK
695static int __init early_debug_pagealloc(char *buf)
696{
8e57f8ac 697 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
698}
699early_param("debug_pagealloc", early_debug_pagealloc);
700
8e57f8ac 701void init_debug_pagealloc(void)
e30825f1 702{
031bc574
JK
703 if (!debug_pagealloc_enabled())
704 return;
705
8e57f8ac
VB
706 static_branch_enable(&_debug_pagealloc_enabled);
707
f1c1e9f7
JK
708 if (!debug_guardpage_minorder())
709 return;
710
96a2b03f 711 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
712}
713
c0a32fc5
SG
714static int __init debug_guardpage_minorder_setup(char *buf)
715{
716 unsigned long res;
717
718 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 719 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
720 return 0;
721 }
722 _debug_guardpage_minorder = res;
1170532b 723 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
724 return 0;
725}
f1c1e9f7 726early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 727
acbc15a4 728static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 729 unsigned int order, int migratetype)
c0a32fc5 730{
e30825f1 731 if (!debug_guardpage_enabled())
acbc15a4
JK
732 return false;
733
734 if (order >= debug_guardpage_minorder())
735 return false;
e30825f1 736
3972f6bb 737 __SetPageGuard(page);
2847cf95
JK
738 INIT_LIST_HEAD(&page->lru);
739 set_page_private(page, order);
740 /* Guard pages are not available for any usage */
741 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
742
743 return true;
c0a32fc5
SG
744}
745
2847cf95
JK
746static inline void clear_page_guard(struct zone *zone, struct page *page,
747 unsigned int order, int migratetype)
c0a32fc5 748{
e30825f1
JK
749 if (!debug_guardpage_enabled())
750 return;
751
3972f6bb 752 __ClearPageGuard(page);
e30825f1 753
2847cf95
JK
754 set_page_private(page, 0);
755 if (!is_migrate_isolate(migratetype))
756 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
757}
758#else
acbc15a4
JK
759static inline bool set_page_guard(struct zone *zone, struct page *page,
760 unsigned int order, int migratetype) { return false; }
2847cf95
JK
761static inline void clear_page_guard(struct zone *zone, struct page *page,
762 unsigned int order, int migratetype) {}
c0a32fc5
SG
763#endif
764
7aeb09f9 765static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 766{
4c21e2f2 767 set_page_private(page, order);
676165a8 768 __SetPageBuddy(page);
1da177e4
LT
769}
770
1da177e4
LT
771/*
772 * This function checks whether a page is free && is the buddy
6e292b9b 773 * we can coalesce a page and its buddy if
13ad59df 774 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 775 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
776 * (c) a page and its buddy have the same order &&
777 * (d) a page and its buddy are in the same zone.
676165a8 778 *
6e292b9b
MW
779 * For recording whether a page is in the buddy system, we set PageBuddy.
780 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 781 *
676165a8 782 * For recording page's order, we use page_private(page).
1da177e4 783 */
fe925c0c 784static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 785 unsigned int order)
1da177e4 786{
fe925c0c 787 if (!page_is_guard(buddy) && !PageBuddy(buddy))
788 return false;
4c5018ce 789
fe925c0c 790 if (page_order(buddy) != order)
791 return false;
c0a32fc5 792
fe925c0c 793 /*
794 * zone check is done late to avoid uselessly calculating
795 * zone/node ids for pages that could never merge.
796 */
797 if (page_zone_id(page) != page_zone_id(buddy))
798 return false;
d34c5fa0 799
fe925c0c 800 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 801
fe925c0c 802 return true;
1da177e4
LT
803}
804
5e1f0f09
MG
805#ifdef CONFIG_COMPACTION
806static inline struct capture_control *task_capc(struct zone *zone)
807{
808 struct capture_control *capc = current->capture_control;
809
deba0487 810 return unlikely(capc) &&
5e1f0f09
MG
811 !(current->flags & PF_KTHREAD) &&
812 !capc->page &&
deba0487 813 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
814}
815
816static inline bool
817compaction_capture(struct capture_control *capc, struct page *page,
818 int order, int migratetype)
819{
820 if (!capc || order != capc->cc->order)
821 return false;
822
823 /* Do not accidentally pollute CMA or isolated regions*/
824 if (is_migrate_cma(migratetype) ||
825 is_migrate_isolate(migratetype))
826 return false;
827
828 /*
829 * Do not let lower order allocations polluate a movable pageblock.
830 * This might let an unmovable request use a reclaimable pageblock
831 * and vice-versa but no more than normal fallback logic which can
832 * have trouble finding a high-order free page.
833 */
834 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
835 return false;
836
837 capc->page = page;
838 return true;
839}
840
841#else
842static inline struct capture_control *task_capc(struct zone *zone)
843{
844 return NULL;
845}
846
847static inline bool
848compaction_capture(struct capture_control *capc, struct page *page,
849 int order, int migratetype)
850{
851 return false;
852}
853#endif /* CONFIG_COMPACTION */
854
6ab01363
AD
855/* Used for pages not on another list */
856static inline void add_to_free_list(struct page *page, struct zone *zone,
857 unsigned int order, int migratetype)
858{
859 struct free_area *area = &zone->free_area[order];
860
861 list_add(&page->lru, &area->free_list[migratetype]);
862 area->nr_free++;
863}
864
865/* Used for pages not on another list */
866static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
867 unsigned int order, int migratetype)
868{
869 struct free_area *area = &zone->free_area[order];
870
871 list_add_tail(&page->lru, &area->free_list[migratetype]);
872 area->nr_free++;
873}
874
875/* Used for pages which are on another list */
876static inline void move_to_free_list(struct page *page, struct zone *zone,
877 unsigned int order, int migratetype)
878{
879 struct free_area *area = &zone->free_area[order];
880
881 list_move(&page->lru, &area->free_list[migratetype]);
882}
883
884static inline void del_page_from_free_list(struct page *page, struct zone *zone,
885 unsigned int order)
886{
36e66c55
AD
887 /* clear reported state and update reported page count */
888 if (page_reported(page))
889 __ClearPageReported(page);
890
6ab01363
AD
891 list_del(&page->lru);
892 __ClearPageBuddy(page);
893 set_page_private(page, 0);
894 zone->free_area[order].nr_free--;
895}
896
a2129f24
AD
897/*
898 * If this is not the largest possible page, check if the buddy
899 * of the next-highest order is free. If it is, it's possible
900 * that pages are being freed that will coalesce soon. In case,
901 * that is happening, add the free page to the tail of the list
902 * so it's less likely to be used soon and more likely to be merged
903 * as a higher order page
904 */
905static inline bool
906buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
907 struct page *page, unsigned int order)
908{
909 struct page *higher_page, *higher_buddy;
910 unsigned long combined_pfn;
911
912 if (order >= MAX_ORDER - 2)
913 return false;
914
915 if (!pfn_valid_within(buddy_pfn))
916 return false;
917
918 combined_pfn = buddy_pfn & pfn;
919 higher_page = page + (combined_pfn - pfn);
920 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
921 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
922
923 return pfn_valid_within(buddy_pfn) &&
924 page_is_buddy(higher_page, higher_buddy, order + 1);
925}
926
1da177e4
LT
927/*
928 * Freeing function for a buddy system allocator.
929 *
930 * The concept of a buddy system is to maintain direct-mapped table
931 * (containing bit values) for memory blocks of various "orders".
932 * The bottom level table contains the map for the smallest allocatable
933 * units of memory (here, pages), and each level above it describes
934 * pairs of units from the levels below, hence, "buddies".
935 * At a high level, all that happens here is marking the table entry
936 * at the bottom level available, and propagating the changes upward
937 * as necessary, plus some accounting needed to play nicely with other
938 * parts of the VM system.
939 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
940 * free pages of length of (1 << order) and marked with PageBuddy.
941 * Page's order is recorded in page_private(page) field.
1da177e4 942 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
943 * other. That is, if we allocate a small block, and both were
944 * free, the remainder of the region must be split into blocks.
1da177e4 945 * If a block is freed, and its buddy is also free, then this
5f63b720 946 * triggers coalescing into a block of larger size.
1da177e4 947 *
6d49e352 948 * -- nyc
1da177e4
LT
949 */
950
48db57f8 951static inline void __free_one_page(struct page *page,
dc4b0caf 952 unsigned long pfn,
ed0ae21d 953 struct zone *zone, unsigned int order,
36e66c55 954 int migratetype, bool report)
1da177e4 955{
a2129f24 956 struct capture_control *capc = task_capc(zone);
3f649ab7 957 unsigned long buddy_pfn;
a2129f24 958 unsigned long combined_pfn;
d9dddbf5 959 unsigned int max_order;
a2129f24
AD
960 struct page *buddy;
961 bool to_tail;
d9dddbf5
VB
962
963 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 964
d29bb978 965 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 966 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 967
ed0ae21d 968 VM_BUG_ON(migratetype == -1);
d9dddbf5 969 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 970 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 971
76741e77 972 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 973 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 974
d9dddbf5 975continue_merging:
3c605096 976 while (order < max_order - 1) {
5e1f0f09
MG
977 if (compaction_capture(capc, page, order, migratetype)) {
978 __mod_zone_freepage_state(zone, -(1 << order),
979 migratetype);
980 return;
981 }
76741e77
VB
982 buddy_pfn = __find_buddy_pfn(pfn, order);
983 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
984
985 if (!pfn_valid_within(buddy_pfn))
986 goto done_merging;
cb2b95e1 987 if (!page_is_buddy(page, buddy, order))
d9dddbf5 988 goto done_merging;
c0a32fc5
SG
989 /*
990 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
991 * merge with it and move up one order.
992 */
b03641af 993 if (page_is_guard(buddy))
2847cf95 994 clear_page_guard(zone, buddy, order, migratetype);
b03641af 995 else
6ab01363 996 del_page_from_free_list(buddy, zone, order);
76741e77
VB
997 combined_pfn = buddy_pfn & pfn;
998 page = page + (combined_pfn - pfn);
999 pfn = combined_pfn;
1da177e4
LT
1000 order++;
1001 }
d9dddbf5
VB
1002 if (max_order < MAX_ORDER) {
1003 /* If we are here, it means order is >= pageblock_order.
1004 * We want to prevent merge between freepages on isolate
1005 * pageblock and normal pageblock. Without this, pageblock
1006 * isolation could cause incorrect freepage or CMA accounting.
1007 *
1008 * We don't want to hit this code for the more frequent
1009 * low-order merging.
1010 */
1011 if (unlikely(has_isolate_pageblock(zone))) {
1012 int buddy_mt;
1013
76741e77
VB
1014 buddy_pfn = __find_buddy_pfn(pfn, order);
1015 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1016 buddy_mt = get_pageblock_migratetype(buddy);
1017
1018 if (migratetype != buddy_mt
1019 && (is_migrate_isolate(migratetype) ||
1020 is_migrate_isolate(buddy_mt)))
1021 goto done_merging;
1022 }
1023 max_order++;
1024 goto continue_merging;
1025 }
1026
1027done_merging:
1da177e4 1028 set_page_order(page, order);
6dda9d55 1029
97500a4a 1030 if (is_shuffle_order(order))
a2129f24 1031 to_tail = shuffle_pick_tail();
97500a4a 1032 else
a2129f24 1033 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1034
a2129f24 1035 if (to_tail)
6ab01363 1036 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1037 else
6ab01363 1038 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1039
1040 /* Notify page reporting subsystem of freed page */
1041 if (report)
1042 page_reporting_notify_free(order);
1da177e4
LT
1043}
1044
7bfec6f4
MG
1045/*
1046 * A bad page could be due to a number of fields. Instead of multiple branches,
1047 * try and check multiple fields with one check. The caller must do a detailed
1048 * check if necessary.
1049 */
1050static inline bool page_expected_state(struct page *page,
1051 unsigned long check_flags)
1052{
1053 if (unlikely(atomic_read(&page->_mapcount) != -1))
1054 return false;
1055
1056 if (unlikely((unsigned long)page->mapping |
1057 page_ref_count(page) |
1058#ifdef CONFIG_MEMCG
1059 (unsigned long)page->mem_cgroup |
1060#endif
1061 (page->flags & check_flags)))
1062 return false;
1063
1064 return true;
1065}
1066
58b7f119 1067static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1068{
82a3241a 1069 const char *bad_reason = NULL;
f0b791a3 1070
53f9263b 1071 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1072 bad_reason = "nonzero mapcount";
1073 if (unlikely(page->mapping != NULL))
1074 bad_reason = "non-NULL mapping";
fe896d18 1075 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1076 bad_reason = "nonzero _refcount";
58b7f119
WY
1077 if (unlikely(page->flags & flags)) {
1078 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1079 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1080 else
1081 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1082 }
9edad6ea
JW
1083#ifdef CONFIG_MEMCG
1084 if (unlikely(page->mem_cgroup))
1085 bad_reason = "page still charged to cgroup";
1086#endif
58b7f119
WY
1087 return bad_reason;
1088}
1089
1090static void check_free_page_bad(struct page *page)
1091{
1092 bad_page(page,
1093 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1094}
1095
534fe5e3 1096static inline int check_free_page(struct page *page)
bb552ac6 1097{
da838d4f 1098 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1099 return 0;
bb552ac6
MG
1100
1101 /* Something has gone sideways, find it */
0d0c48a2 1102 check_free_page_bad(page);
7bfec6f4 1103 return 1;
1da177e4
LT
1104}
1105
4db7548c
MG
1106static int free_tail_pages_check(struct page *head_page, struct page *page)
1107{
1108 int ret = 1;
1109
1110 /*
1111 * We rely page->lru.next never has bit 0 set, unless the page
1112 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1113 */
1114 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1115
1116 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1117 ret = 0;
1118 goto out;
1119 }
1120 switch (page - head_page) {
1121 case 1:
4da1984e 1122 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1123 if (unlikely(compound_mapcount(page))) {
82a3241a 1124 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1125 goto out;
1126 }
1127 break;
1128 case 2:
1129 /*
1130 * the second tail page: ->mapping is
fa3015b7 1131 * deferred_list.next -- ignore value.
4db7548c
MG
1132 */
1133 break;
1134 default:
1135 if (page->mapping != TAIL_MAPPING) {
82a3241a 1136 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1137 goto out;
1138 }
1139 break;
1140 }
1141 if (unlikely(!PageTail(page))) {
82a3241a 1142 bad_page(page, "PageTail not set");
4db7548c
MG
1143 goto out;
1144 }
1145 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1146 bad_page(page, "compound_head not consistent");
4db7548c
MG
1147 goto out;
1148 }
1149 ret = 0;
1150out:
1151 page->mapping = NULL;
1152 clear_compound_head(page);
1153 return ret;
1154}
1155
6471384a
AP
1156static void kernel_init_free_pages(struct page *page, int numpages)
1157{
1158 int i;
1159
9e15afa5
QC
1160 /* s390's use of memset() could override KASAN redzones. */
1161 kasan_disable_current();
6471384a
AP
1162 for (i = 0; i < numpages; i++)
1163 clear_highpage(page + i);
9e15afa5 1164 kasan_enable_current();
6471384a
AP
1165}
1166
e2769dbd
MG
1167static __always_inline bool free_pages_prepare(struct page *page,
1168 unsigned int order, bool check_free)
4db7548c 1169{
e2769dbd 1170 int bad = 0;
4db7548c 1171
4db7548c
MG
1172 VM_BUG_ON_PAGE(PageTail(page), page);
1173
e2769dbd 1174 trace_mm_page_free(page, order);
e2769dbd
MG
1175
1176 /*
1177 * Check tail pages before head page information is cleared to
1178 * avoid checking PageCompound for order-0 pages.
1179 */
1180 if (unlikely(order)) {
1181 bool compound = PageCompound(page);
1182 int i;
1183
1184 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1185
9a73f61b
KS
1186 if (compound)
1187 ClearPageDoubleMap(page);
e2769dbd
MG
1188 for (i = 1; i < (1 << order); i++) {
1189 if (compound)
1190 bad += free_tail_pages_check(page, page + i);
534fe5e3 1191 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1192 bad++;
1193 continue;
1194 }
1195 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1196 }
1197 }
bda807d4 1198 if (PageMappingFlags(page))
4db7548c 1199 page->mapping = NULL;
c4159a75 1200 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1201 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1202 if (check_free)
534fe5e3 1203 bad += check_free_page(page);
e2769dbd
MG
1204 if (bad)
1205 return false;
4db7548c 1206
e2769dbd
MG
1207 page_cpupid_reset_last(page);
1208 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1209 reset_page_owner(page, order);
4db7548c
MG
1210
1211 if (!PageHighMem(page)) {
1212 debug_check_no_locks_freed(page_address(page),
e2769dbd 1213 PAGE_SIZE << order);
4db7548c 1214 debug_check_no_obj_freed(page_address(page),
e2769dbd 1215 PAGE_SIZE << order);
4db7548c 1216 }
6471384a
AP
1217 if (want_init_on_free())
1218 kernel_init_free_pages(page, 1 << order);
1219
e2769dbd 1220 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1221 /*
1222 * arch_free_page() can make the page's contents inaccessible. s390
1223 * does this. So nothing which can access the page's contents should
1224 * happen after this.
1225 */
1226 arch_free_page(page, order);
1227
8e57f8ac 1228 if (debug_pagealloc_enabled_static())
d6332692
RE
1229 kernel_map_pages(page, 1 << order, 0);
1230
3c0c12cc 1231 kasan_free_nondeferred_pages(page, order);
4db7548c 1232
4db7548c
MG
1233 return true;
1234}
1235
e2769dbd 1236#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1237/*
1238 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1239 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1240 * moved from pcp lists to free lists.
1241 */
1242static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1243{
1244 return free_pages_prepare(page, 0, true);
1245}
1246
4462b32c 1247static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1248{
8e57f8ac 1249 if (debug_pagealloc_enabled_static())
534fe5e3 1250 return check_free_page(page);
4462b32c
VB
1251 else
1252 return false;
e2769dbd
MG
1253}
1254#else
4462b32c
VB
1255/*
1256 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1257 * moving from pcp lists to free list in order to reduce overhead. With
1258 * debug_pagealloc enabled, they are checked also immediately when being freed
1259 * to the pcp lists.
1260 */
e2769dbd
MG
1261static bool free_pcp_prepare(struct page *page)
1262{
8e57f8ac 1263 if (debug_pagealloc_enabled_static())
4462b32c
VB
1264 return free_pages_prepare(page, 0, true);
1265 else
1266 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1267}
1268
4db7548c
MG
1269static bool bulkfree_pcp_prepare(struct page *page)
1270{
534fe5e3 1271 return check_free_page(page);
4db7548c
MG
1272}
1273#endif /* CONFIG_DEBUG_VM */
1274
97334162
AL
1275static inline void prefetch_buddy(struct page *page)
1276{
1277 unsigned long pfn = page_to_pfn(page);
1278 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1279 struct page *buddy = page + (buddy_pfn - pfn);
1280
1281 prefetch(buddy);
1282}
1283
1da177e4 1284/*
5f8dcc21 1285 * Frees a number of pages from the PCP lists
1da177e4 1286 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1287 * count is the number of pages to free.
1da177e4
LT
1288 *
1289 * If the zone was previously in an "all pages pinned" state then look to
1290 * see if this freeing clears that state.
1291 *
1292 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1293 * pinned" detection logic.
1294 */
5f8dcc21
MG
1295static void free_pcppages_bulk(struct zone *zone, int count,
1296 struct per_cpu_pages *pcp)
1da177e4 1297{
5f8dcc21 1298 int migratetype = 0;
a6f9edd6 1299 int batch_free = 0;
97334162 1300 int prefetch_nr = 0;
3777999d 1301 bool isolated_pageblocks;
0a5f4e5b
AL
1302 struct page *page, *tmp;
1303 LIST_HEAD(head);
f2260e6b 1304
88e8ac11
CTR
1305 /*
1306 * Ensure proper count is passed which otherwise would stuck in the
1307 * below while (list_empty(list)) loop.
1308 */
1309 count = min(pcp->count, count);
e5b31ac2 1310 while (count) {
5f8dcc21
MG
1311 struct list_head *list;
1312
1313 /*
a6f9edd6
MG
1314 * Remove pages from lists in a round-robin fashion. A
1315 * batch_free count is maintained that is incremented when an
1316 * empty list is encountered. This is so more pages are freed
1317 * off fuller lists instead of spinning excessively around empty
1318 * lists
5f8dcc21
MG
1319 */
1320 do {
a6f9edd6 1321 batch_free++;
5f8dcc21
MG
1322 if (++migratetype == MIGRATE_PCPTYPES)
1323 migratetype = 0;
1324 list = &pcp->lists[migratetype];
1325 } while (list_empty(list));
48db57f8 1326
1d16871d
NK
1327 /* This is the only non-empty list. Free them all. */
1328 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1329 batch_free = count;
1d16871d 1330
a6f9edd6 1331 do {
a16601c5 1332 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1333 /* must delete to avoid corrupting pcp list */
a6f9edd6 1334 list_del(&page->lru);
77ba9062 1335 pcp->count--;
aa016d14 1336
4db7548c
MG
1337 if (bulkfree_pcp_prepare(page))
1338 continue;
1339
0a5f4e5b 1340 list_add_tail(&page->lru, &head);
97334162
AL
1341
1342 /*
1343 * We are going to put the page back to the global
1344 * pool, prefetch its buddy to speed up later access
1345 * under zone->lock. It is believed the overhead of
1346 * an additional test and calculating buddy_pfn here
1347 * can be offset by reduced memory latency later. To
1348 * avoid excessive prefetching due to large count, only
1349 * prefetch buddy for the first pcp->batch nr of pages.
1350 */
1351 if (prefetch_nr++ < pcp->batch)
1352 prefetch_buddy(page);
e5b31ac2 1353 } while (--count && --batch_free && !list_empty(list));
1da177e4 1354 }
0a5f4e5b
AL
1355
1356 spin_lock(&zone->lock);
1357 isolated_pageblocks = has_isolate_pageblock(zone);
1358
1359 /*
1360 * Use safe version since after __free_one_page(),
1361 * page->lru.next will not point to original list.
1362 */
1363 list_for_each_entry_safe(page, tmp, &head, lru) {
1364 int mt = get_pcppage_migratetype(page);
1365 /* MIGRATE_ISOLATE page should not go to pcplists */
1366 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1367 /* Pageblock could have been isolated meanwhile */
1368 if (unlikely(isolated_pageblocks))
1369 mt = get_pageblock_migratetype(page);
1370
36e66c55 1371 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1372 trace_mm_page_pcpu_drain(page, 0, mt);
1373 }
d34b0733 1374 spin_unlock(&zone->lock);
1da177e4
LT
1375}
1376
dc4b0caf
MG
1377static void free_one_page(struct zone *zone,
1378 struct page *page, unsigned long pfn,
7aeb09f9 1379 unsigned int order,
ed0ae21d 1380 int migratetype)
1da177e4 1381{
d34b0733 1382 spin_lock(&zone->lock);
ad53f92e
JK
1383 if (unlikely(has_isolate_pageblock(zone) ||
1384 is_migrate_isolate(migratetype))) {
1385 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1386 }
36e66c55 1387 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1388 spin_unlock(&zone->lock);
48db57f8
NP
1389}
1390
1e8ce83c 1391static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1392 unsigned long zone, int nid)
1e8ce83c 1393{
d0dc12e8 1394 mm_zero_struct_page(page);
1e8ce83c 1395 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1396 init_page_count(page);
1397 page_mapcount_reset(page);
1398 page_cpupid_reset_last(page);
2813b9c0 1399 page_kasan_tag_reset(page);
1e8ce83c 1400
1e8ce83c
RH
1401 INIT_LIST_HEAD(&page->lru);
1402#ifdef WANT_PAGE_VIRTUAL
1403 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1404 if (!is_highmem_idx(zone))
1405 set_page_address(page, __va(pfn << PAGE_SHIFT));
1406#endif
1407}
1408
7e18adb4 1409#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1410static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1411{
1412 pg_data_t *pgdat;
1413 int nid, zid;
1414
1415 if (!early_page_uninitialised(pfn))
1416 return;
1417
1418 nid = early_pfn_to_nid(pfn);
1419 pgdat = NODE_DATA(nid);
1420
1421 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1422 struct zone *zone = &pgdat->node_zones[zid];
1423
1424 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1425 break;
1426 }
d0dc12e8 1427 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1428}
1429#else
1430static inline void init_reserved_page(unsigned long pfn)
1431{
1432}
1433#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1434
92923ca3
NZ
1435/*
1436 * Initialised pages do not have PageReserved set. This function is
1437 * called for each range allocated by the bootmem allocator and
1438 * marks the pages PageReserved. The remaining valid pages are later
1439 * sent to the buddy page allocator.
1440 */
4b50bcc7 1441void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1442{
1443 unsigned long start_pfn = PFN_DOWN(start);
1444 unsigned long end_pfn = PFN_UP(end);
1445
7e18adb4
MG
1446 for (; start_pfn < end_pfn; start_pfn++) {
1447 if (pfn_valid(start_pfn)) {
1448 struct page *page = pfn_to_page(start_pfn);
1449
1450 init_reserved_page(start_pfn);
1d798ca3
KS
1451
1452 /* Avoid false-positive PageTail() */
1453 INIT_LIST_HEAD(&page->lru);
1454
d483da5b
AD
1455 /*
1456 * no need for atomic set_bit because the struct
1457 * page is not visible yet so nobody should
1458 * access it yet.
1459 */
1460 __SetPageReserved(page);
7e18adb4
MG
1461 }
1462 }
92923ca3
NZ
1463}
1464
ec95f53a
KM
1465static void __free_pages_ok(struct page *page, unsigned int order)
1466{
d34b0733 1467 unsigned long flags;
95e34412 1468 int migratetype;
dc4b0caf 1469 unsigned long pfn = page_to_pfn(page);
ec95f53a 1470
e2769dbd 1471 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1472 return;
1473
cfc47a28 1474 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1475 local_irq_save(flags);
1476 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1477 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1478 local_irq_restore(flags);
1da177e4
LT
1479}
1480
a9cd410a 1481void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1482{
c3993076 1483 unsigned int nr_pages = 1 << order;
e2d0bd2b 1484 struct page *p = page;
c3993076 1485 unsigned int loop;
a226f6c8 1486
e2d0bd2b
YL
1487 prefetchw(p);
1488 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1489 prefetchw(p + 1);
c3993076
JW
1490 __ClearPageReserved(p);
1491 set_page_count(p, 0);
a226f6c8 1492 }
e2d0bd2b
YL
1493 __ClearPageReserved(p);
1494 set_page_count(p, 0);
c3993076 1495
9705bea5 1496 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1497 set_page_refcounted(page);
1498 __free_pages(page, order);
a226f6c8
DH
1499}
1500
3f08a302 1501#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1502
75a592a4
MG
1503static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1504
6f24fbd3
MR
1505#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1506
1507/*
1508 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1509 */
1510int __meminit __early_pfn_to_nid(unsigned long pfn,
1511 struct mminit_pfnnid_cache *state)
75a592a4 1512{
6f24fbd3 1513 unsigned long start_pfn, end_pfn;
75a592a4
MG
1514 int nid;
1515
6f24fbd3
MR
1516 if (state->last_start <= pfn && pfn < state->last_end)
1517 return state->last_nid;
1518
1519 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1520 if (nid != NUMA_NO_NODE) {
1521 state->last_start = start_pfn;
1522 state->last_end = end_pfn;
1523 state->last_nid = nid;
1524 }
7ace9917
MG
1525
1526 return nid;
75a592a4 1527}
6f24fbd3 1528#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
75a592a4 1529
75a592a4 1530int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1531{
7ace9917 1532 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1533 int nid;
1534
7ace9917 1535 spin_lock(&early_pfn_lock);
56ec43d8 1536 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1537 if (nid < 0)
e4568d38 1538 nid = first_online_node;
7ace9917 1539 spin_unlock(&early_pfn_lock);
75a592a4 1540
7ace9917 1541 return nid;
75a592a4 1542}
3f08a302 1543#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1544
7c2ee349 1545void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1546 unsigned int order)
1547{
1548 if (early_page_uninitialised(pfn))
1549 return;
a9cd410a 1550 __free_pages_core(page, order);
3a80a7fa
MG
1551}
1552
7cf91a98
JK
1553/*
1554 * Check that the whole (or subset of) a pageblock given by the interval of
1555 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1556 * with the migration of free compaction scanner. The scanners then need to
1557 * use only pfn_valid_within() check for arches that allow holes within
1558 * pageblocks.
1559 *
1560 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1561 *
1562 * It's possible on some configurations to have a setup like node0 node1 node0
1563 * i.e. it's possible that all pages within a zones range of pages do not
1564 * belong to a single zone. We assume that a border between node0 and node1
1565 * can occur within a single pageblock, but not a node0 node1 node0
1566 * interleaving within a single pageblock. It is therefore sufficient to check
1567 * the first and last page of a pageblock and avoid checking each individual
1568 * page in a pageblock.
1569 */
1570struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1571 unsigned long end_pfn, struct zone *zone)
1572{
1573 struct page *start_page;
1574 struct page *end_page;
1575
1576 /* end_pfn is one past the range we are checking */
1577 end_pfn--;
1578
1579 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1580 return NULL;
1581
2d070eab
MH
1582 start_page = pfn_to_online_page(start_pfn);
1583 if (!start_page)
1584 return NULL;
7cf91a98
JK
1585
1586 if (page_zone(start_page) != zone)
1587 return NULL;
1588
1589 end_page = pfn_to_page(end_pfn);
1590
1591 /* This gives a shorter code than deriving page_zone(end_page) */
1592 if (page_zone_id(start_page) != page_zone_id(end_page))
1593 return NULL;
1594
1595 return start_page;
1596}
1597
1598void set_zone_contiguous(struct zone *zone)
1599{
1600 unsigned long block_start_pfn = zone->zone_start_pfn;
1601 unsigned long block_end_pfn;
1602
1603 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1604 for (; block_start_pfn < zone_end_pfn(zone);
1605 block_start_pfn = block_end_pfn,
1606 block_end_pfn += pageblock_nr_pages) {
1607
1608 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1609
1610 if (!__pageblock_pfn_to_page(block_start_pfn,
1611 block_end_pfn, zone))
1612 return;
e84fe99b 1613 cond_resched();
7cf91a98
JK
1614 }
1615
1616 /* We confirm that there is no hole */
1617 zone->contiguous = true;
1618}
1619
1620void clear_zone_contiguous(struct zone *zone)
1621{
1622 zone->contiguous = false;
1623}
1624
7e18adb4 1625#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1626static void __init deferred_free_range(unsigned long pfn,
1627 unsigned long nr_pages)
a4de83dd 1628{
2f47a91f
PT
1629 struct page *page;
1630 unsigned long i;
a4de83dd 1631
2f47a91f 1632 if (!nr_pages)
a4de83dd
MG
1633 return;
1634
2f47a91f
PT
1635 page = pfn_to_page(pfn);
1636
a4de83dd 1637 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1638 if (nr_pages == pageblock_nr_pages &&
1639 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1640 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1641 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1642 return;
1643 }
1644
e780149b
XQ
1645 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1646 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1647 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1648 __free_pages_core(page, 0);
e780149b 1649 }
a4de83dd
MG
1650}
1651
d3cd131d
NS
1652/* Completion tracking for deferred_init_memmap() threads */
1653static atomic_t pgdat_init_n_undone __initdata;
1654static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1655
1656static inline void __init pgdat_init_report_one_done(void)
1657{
1658 if (atomic_dec_and_test(&pgdat_init_n_undone))
1659 complete(&pgdat_init_all_done_comp);
1660}
0e1cc95b 1661
2f47a91f 1662/*
80b1f41c
PT
1663 * Returns true if page needs to be initialized or freed to buddy allocator.
1664 *
1665 * First we check if pfn is valid on architectures where it is possible to have
1666 * holes within pageblock_nr_pages. On systems where it is not possible, this
1667 * function is optimized out.
1668 *
1669 * Then, we check if a current large page is valid by only checking the validity
1670 * of the head pfn.
2f47a91f 1671 */
56ec43d8 1672static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1673{
80b1f41c
PT
1674 if (!pfn_valid_within(pfn))
1675 return false;
1676 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1677 return false;
80b1f41c
PT
1678 return true;
1679}
2f47a91f 1680
80b1f41c
PT
1681/*
1682 * Free pages to buddy allocator. Try to free aligned pages in
1683 * pageblock_nr_pages sizes.
1684 */
56ec43d8 1685static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1686 unsigned long end_pfn)
1687{
80b1f41c
PT
1688 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1689 unsigned long nr_free = 0;
2f47a91f 1690
80b1f41c 1691 for (; pfn < end_pfn; pfn++) {
56ec43d8 1692 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1693 deferred_free_range(pfn - nr_free, nr_free);
1694 nr_free = 0;
1695 } else if (!(pfn & nr_pgmask)) {
1696 deferred_free_range(pfn - nr_free, nr_free);
1697 nr_free = 1;
80b1f41c
PT
1698 } else {
1699 nr_free++;
1700 }
1701 }
1702 /* Free the last block of pages to allocator */
1703 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1704}
1705
80b1f41c
PT
1706/*
1707 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1708 * by performing it only once every pageblock_nr_pages.
1709 * Return number of pages initialized.
1710 */
56ec43d8 1711static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1712 unsigned long pfn,
1713 unsigned long end_pfn)
2f47a91f 1714{
2f47a91f 1715 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1716 int nid = zone_to_nid(zone);
2f47a91f 1717 unsigned long nr_pages = 0;
56ec43d8 1718 int zid = zone_idx(zone);
2f47a91f 1719 struct page *page = NULL;
2f47a91f 1720
80b1f41c 1721 for (; pfn < end_pfn; pfn++) {
56ec43d8 1722 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1723 page = NULL;
2f47a91f 1724 continue;
80b1f41c 1725 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1726 page = pfn_to_page(pfn);
80b1f41c
PT
1727 } else {
1728 page++;
2f47a91f 1729 }
d0dc12e8 1730 __init_single_page(page, pfn, zid, nid);
80b1f41c 1731 nr_pages++;
2f47a91f 1732 }
80b1f41c 1733 return (nr_pages);
2f47a91f
PT
1734}
1735
0e56acae
AD
1736/*
1737 * This function is meant to pre-load the iterator for the zone init.
1738 * Specifically it walks through the ranges until we are caught up to the
1739 * first_init_pfn value and exits there. If we never encounter the value we
1740 * return false indicating there are no valid ranges left.
1741 */
1742static bool __init
1743deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1744 unsigned long *spfn, unsigned long *epfn,
1745 unsigned long first_init_pfn)
1746{
1747 u64 j;
1748
1749 /*
1750 * Start out by walking through the ranges in this zone that have
1751 * already been initialized. We don't need to do anything with them
1752 * so we just need to flush them out of the system.
1753 */
1754 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1755 if (*epfn <= first_init_pfn)
1756 continue;
1757 if (*spfn < first_init_pfn)
1758 *spfn = first_init_pfn;
1759 *i = j;
1760 return true;
1761 }
1762
1763 return false;
1764}
1765
1766/*
1767 * Initialize and free pages. We do it in two loops: first we initialize
1768 * struct page, then free to buddy allocator, because while we are
1769 * freeing pages we can access pages that are ahead (computing buddy
1770 * page in __free_one_page()).
1771 *
1772 * In order to try and keep some memory in the cache we have the loop
1773 * broken along max page order boundaries. This way we will not cause
1774 * any issues with the buddy page computation.
1775 */
1776static unsigned long __init
1777deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1778 unsigned long *end_pfn)
1779{
1780 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1781 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1782 unsigned long nr_pages = 0;
1783 u64 j = *i;
1784
1785 /* First we loop through and initialize the page values */
1786 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1787 unsigned long t;
1788
1789 if (mo_pfn <= *start_pfn)
1790 break;
1791
1792 t = min(mo_pfn, *end_pfn);
1793 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1794
1795 if (mo_pfn < *end_pfn) {
1796 *start_pfn = mo_pfn;
1797 break;
1798 }
1799 }
1800
1801 /* Reset values and now loop through freeing pages as needed */
1802 swap(j, *i);
1803
1804 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1805 unsigned long t;
1806
1807 if (mo_pfn <= spfn)
1808 break;
1809
1810 t = min(mo_pfn, epfn);
1811 deferred_free_pages(spfn, t);
1812
1813 if (mo_pfn <= epfn)
1814 break;
1815 }
1816
1817 return nr_pages;
1818}
1819
e4443149
DJ
1820static void __init
1821deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1822 void *arg)
1823{
1824 unsigned long spfn, epfn;
1825 struct zone *zone = arg;
1826 u64 i;
1827
1828 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1829
1830 /*
1831 * Initialize and free pages in MAX_ORDER sized increments so that we
1832 * can avoid introducing any issues with the buddy allocator.
1833 */
1834 while (spfn < end_pfn) {
1835 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1836 cond_resched();
1837 }
1838}
1839
ecd09650
DJ
1840/* An arch may override for more concurrency. */
1841__weak int __init
1842deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1843{
1844 return 1;
1845}
1846
7e18adb4 1847/* Initialise remaining memory on a node */
0e1cc95b 1848static int __init deferred_init_memmap(void *data)
7e18adb4 1849{
0e1cc95b 1850 pg_data_t *pgdat = data;
0e56acae 1851 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1852 unsigned long spfn = 0, epfn = 0;
0e56acae 1853 unsigned long first_init_pfn, flags;
7e18adb4 1854 unsigned long start = jiffies;
7e18adb4 1855 struct zone *zone;
e4443149 1856 int zid, max_threads;
2f47a91f 1857 u64 i;
7e18adb4 1858
3a2d7fa8
PT
1859 /* Bind memory initialisation thread to a local node if possible */
1860 if (!cpumask_empty(cpumask))
1861 set_cpus_allowed_ptr(current, cpumask);
1862
1863 pgdat_resize_lock(pgdat, &flags);
1864 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1865 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1866 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1867 pgdat_init_report_one_done();
0e1cc95b
MG
1868 return 0;
1869 }
1870
7e18adb4
MG
1871 /* Sanity check boundaries */
1872 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1873 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1874 pgdat->first_deferred_pfn = ULONG_MAX;
1875
3d060856
PT
1876 /*
1877 * Once we unlock here, the zone cannot be grown anymore, thus if an
1878 * interrupt thread must allocate this early in boot, zone must be
1879 * pre-grown prior to start of deferred page initialization.
1880 */
1881 pgdat_resize_unlock(pgdat, &flags);
1882
7e18adb4
MG
1883 /* Only the highest zone is deferred so find it */
1884 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1885 zone = pgdat->node_zones + zid;
1886 if (first_init_pfn < zone_end_pfn(zone))
1887 break;
1888 }
0e56acae
AD
1889
1890 /* If the zone is empty somebody else may have cleared out the zone */
1891 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1892 first_init_pfn))
1893 goto zone_empty;
7e18adb4 1894
ecd09650 1895 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1896
117003c3 1897 while (spfn < epfn) {
e4443149
DJ
1898 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1899 struct padata_mt_job job = {
1900 .thread_fn = deferred_init_memmap_chunk,
1901 .fn_arg = zone,
1902 .start = spfn,
1903 .size = epfn_align - spfn,
1904 .align = PAGES_PER_SECTION,
1905 .min_chunk = PAGES_PER_SECTION,
1906 .max_threads = max_threads,
1907 };
1908
1909 padata_do_multithreaded(&job);
1910 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1911 epfn_align);
117003c3 1912 }
0e56acae 1913zone_empty:
7e18adb4
MG
1914 /* Sanity check that the next zone really is unpopulated */
1915 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1916
89c7c402
DJ
1917 pr_info("node %d deferred pages initialised in %ums\n",
1918 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1919
1920 pgdat_init_report_one_done();
0e1cc95b
MG
1921 return 0;
1922}
c9e97a19 1923
c9e97a19
PT
1924/*
1925 * If this zone has deferred pages, try to grow it by initializing enough
1926 * deferred pages to satisfy the allocation specified by order, rounded up to
1927 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1928 * of SECTION_SIZE bytes by initializing struct pages in increments of
1929 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1930 *
1931 * Return true when zone was grown, otherwise return false. We return true even
1932 * when we grow less than requested, to let the caller decide if there are
1933 * enough pages to satisfy the allocation.
1934 *
1935 * Note: We use noinline because this function is needed only during boot, and
1936 * it is called from a __ref function _deferred_grow_zone. This way we are
1937 * making sure that it is not inlined into permanent text section.
1938 */
1939static noinline bool __init
1940deferred_grow_zone(struct zone *zone, unsigned int order)
1941{
c9e97a19 1942 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1943 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1944 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1945 unsigned long spfn, epfn, flags;
1946 unsigned long nr_pages = 0;
c9e97a19
PT
1947 u64 i;
1948
1949 /* Only the last zone may have deferred pages */
1950 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1951 return false;
1952
1953 pgdat_resize_lock(pgdat, &flags);
1954
c9e97a19
PT
1955 /*
1956 * If someone grew this zone while we were waiting for spinlock, return
1957 * true, as there might be enough pages already.
1958 */
1959 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1960 pgdat_resize_unlock(pgdat, &flags);
1961 return true;
1962 }
1963
0e56acae
AD
1964 /* If the zone is empty somebody else may have cleared out the zone */
1965 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1966 first_deferred_pfn)) {
1967 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1968 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1969 /* Retry only once. */
1970 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1971 }
1972
0e56acae
AD
1973 /*
1974 * Initialize and free pages in MAX_ORDER sized increments so
1975 * that we can avoid introducing any issues with the buddy
1976 * allocator.
1977 */
1978 while (spfn < epfn) {
1979 /* update our first deferred PFN for this section */
1980 first_deferred_pfn = spfn;
1981
1982 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 1983 touch_nmi_watchdog();
c9e97a19 1984
0e56acae
AD
1985 /* We should only stop along section boundaries */
1986 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1987 continue;
c9e97a19 1988
0e56acae 1989 /* If our quota has been met we can stop here */
c9e97a19
PT
1990 if (nr_pages >= nr_pages_needed)
1991 break;
1992 }
1993
0e56acae 1994 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1995 pgdat_resize_unlock(pgdat, &flags);
1996
1997 return nr_pages > 0;
1998}
1999
2000/*
2001 * deferred_grow_zone() is __init, but it is called from
2002 * get_page_from_freelist() during early boot until deferred_pages permanently
2003 * disables this call. This is why we have refdata wrapper to avoid warning,
2004 * and to ensure that the function body gets unloaded.
2005 */
2006static bool __ref
2007_deferred_grow_zone(struct zone *zone, unsigned int order)
2008{
2009 return deferred_grow_zone(zone, order);
2010}
2011
7cf91a98 2012#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2013
2014void __init page_alloc_init_late(void)
2015{
7cf91a98 2016 struct zone *zone;
e900a918 2017 int nid;
7cf91a98
JK
2018
2019#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2020
d3cd131d
NS
2021 /* There will be num_node_state(N_MEMORY) threads */
2022 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2023 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2024 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2025 }
2026
2027 /* Block until all are initialised */
d3cd131d 2028 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2029
3e8fc007
MG
2030 /*
2031 * The number of managed pages has changed due to the initialisation
2032 * so the pcpu batch and high limits needs to be updated or the limits
2033 * will be artificially small.
2034 */
2035 for_each_populated_zone(zone)
2036 zone_pcp_update(zone);
2037
c9e97a19
PT
2038 /*
2039 * We initialized the rest of the deferred pages. Permanently disable
2040 * on-demand struct page initialization.
2041 */
2042 static_branch_disable(&deferred_pages);
2043
4248b0da
MG
2044 /* Reinit limits that are based on free pages after the kernel is up */
2045 files_maxfiles_init();
7cf91a98 2046#endif
350e88ba 2047
3010f876
PT
2048 /* Discard memblock private memory */
2049 memblock_discard();
7cf91a98 2050
e900a918
DW
2051 for_each_node_state(nid, N_MEMORY)
2052 shuffle_free_memory(NODE_DATA(nid));
2053
7cf91a98
JK
2054 for_each_populated_zone(zone)
2055 set_zone_contiguous(zone);
7e18adb4 2056}
7e18adb4 2057
47118af0 2058#ifdef CONFIG_CMA
9cf510a5 2059/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2060void __init init_cma_reserved_pageblock(struct page *page)
2061{
2062 unsigned i = pageblock_nr_pages;
2063 struct page *p = page;
2064
2065 do {
2066 __ClearPageReserved(p);
2067 set_page_count(p, 0);
d883c6cf 2068 } while (++p, --i);
47118af0 2069
47118af0 2070 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2071
2072 if (pageblock_order >= MAX_ORDER) {
2073 i = pageblock_nr_pages;
2074 p = page;
2075 do {
2076 set_page_refcounted(p);
2077 __free_pages(p, MAX_ORDER - 1);
2078 p += MAX_ORDER_NR_PAGES;
2079 } while (i -= MAX_ORDER_NR_PAGES);
2080 } else {
2081 set_page_refcounted(page);
2082 __free_pages(page, pageblock_order);
2083 }
2084
3dcc0571 2085 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2086}
2087#endif
1da177e4
LT
2088
2089/*
2090 * The order of subdivision here is critical for the IO subsystem.
2091 * Please do not alter this order without good reasons and regression
2092 * testing. Specifically, as large blocks of memory are subdivided,
2093 * the order in which smaller blocks are delivered depends on the order
2094 * they're subdivided in this function. This is the primary factor
2095 * influencing the order in which pages are delivered to the IO
2096 * subsystem according to empirical testing, and this is also justified
2097 * by considering the behavior of a buddy system containing a single
2098 * large block of memory acted on by a series of small allocations.
2099 * This behavior is a critical factor in sglist merging's success.
2100 *
6d49e352 2101 * -- nyc
1da177e4 2102 */
085cc7d5 2103static inline void expand(struct zone *zone, struct page *page,
6ab01363 2104 int low, int high, int migratetype)
1da177e4
LT
2105{
2106 unsigned long size = 1 << high;
2107
2108 while (high > low) {
1da177e4
LT
2109 high--;
2110 size >>= 1;
309381fe 2111 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2112
acbc15a4
JK
2113 /*
2114 * Mark as guard pages (or page), that will allow to
2115 * merge back to allocator when buddy will be freed.
2116 * Corresponding page table entries will not be touched,
2117 * pages will stay not present in virtual address space
2118 */
2119 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2120 continue;
acbc15a4 2121
6ab01363 2122 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2123 set_page_order(&page[size], high);
2124 }
1da177e4
LT
2125}
2126
4e611801 2127static void check_new_page_bad(struct page *page)
1da177e4 2128{
f4c18e6f 2129 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2130 /* Don't complain about hwpoisoned pages */
2131 page_mapcount_reset(page); /* remove PageBuddy */
2132 return;
f4c18e6f 2133 }
58b7f119
WY
2134
2135 bad_page(page,
2136 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2137}
2138
2139/*
2140 * This page is about to be returned from the page allocator
2141 */
2142static inline int check_new_page(struct page *page)
2143{
2144 if (likely(page_expected_state(page,
2145 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2146 return 0;
2147
2148 check_new_page_bad(page);
2149 return 1;
2a7684a2
WF
2150}
2151
bd33ef36 2152static inline bool free_pages_prezeroed(void)
1414c7f4 2153{
6471384a
AP
2154 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2155 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2156}
2157
479f854a 2158#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2159/*
2160 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2161 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2162 * also checked when pcp lists are refilled from the free lists.
2163 */
2164static inline bool check_pcp_refill(struct page *page)
479f854a 2165{
8e57f8ac 2166 if (debug_pagealloc_enabled_static())
4462b32c
VB
2167 return check_new_page(page);
2168 else
2169 return false;
479f854a
MG
2170}
2171
4462b32c 2172static inline bool check_new_pcp(struct page *page)
479f854a
MG
2173{
2174 return check_new_page(page);
2175}
2176#else
4462b32c
VB
2177/*
2178 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2179 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2180 * enabled, they are also checked when being allocated from the pcp lists.
2181 */
2182static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2183{
2184 return check_new_page(page);
2185}
4462b32c 2186static inline bool check_new_pcp(struct page *page)
479f854a 2187{
8e57f8ac 2188 if (debug_pagealloc_enabled_static())
4462b32c
VB
2189 return check_new_page(page);
2190 else
2191 return false;
479f854a
MG
2192}
2193#endif /* CONFIG_DEBUG_VM */
2194
2195static bool check_new_pages(struct page *page, unsigned int order)
2196{
2197 int i;
2198 for (i = 0; i < (1 << order); i++) {
2199 struct page *p = page + i;
2200
2201 if (unlikely(check_new_page(p)))
2202 return true;
2203 }
2204
2205 return false;
2206}
2207
46f24fd8
JK
2208inline void post_alloc_hook(struct page *page, unsigned int order,
2209 gfp_t gfp_flags)
2210{
2211 set_page_private(page, 0);
2212 set_page_refcounted(page);
2213
2214 arch_alloc_page(page, order);
8e57f8ac 2215 if (debug_pagealloc_enabled_static())
d6332692 2216 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2217 kasan_alloc_pages(page, order);
4117992d 2218 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2219 set_page_owner(page, order, gfp_flags);
2220}
2221
479f854a 2222static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2223 unsigned int alloc_flags)
2a7684a2 2224{
46f24fd8 2225 post_alloc_hook(page, order, gfp_flags);
17cf4406 2226
6471384a
AP
2227 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2228 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2229
2230 if (order && (gfp_flags & __GFP_COMP))
2231 prep_compound_page(page, order);
2232
75379191 2233 /*
2f064f34 2234 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2235 * allocate the page. The expectation is that the caller is taking
2236 * steps that will free more memory. The caller should avoid the page
2237 * being used for !PFMEMALLOC purposes.
2238 */
2f064f34
MH
2239 if (alloc_flags & ALLOC_NO_WATERMARKS)
2240 set_page_pfmemalloc(page);
2241 else
2242 clear_page_pfmemalloc(page);
1da177e4
LT
2243}
2244
56fd56b8
MG
2245/*
2246 * Go through the free lists for the given migratetype and remove
2247 * the smallest available page from the freelists
2248 */
85ccc8fa 2249static __always_inline
728ec980 2250struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2251 int migratetype)
2252{
2253 unsigned int current_order;
b8af2941 2254 struct free_area *area;
56fd56b8
MG
2255 struct page *page;
2256
2257 /* Find a page of the appropriate size in the preferred list */
2258 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2259 area = &(zone->free_area[current_order]);
b03641af 2260 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2261 if (!page)
2262 continue;
6ab01363
AD
2263 del_page_from_free_list(page, zone, current_order);
2264 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2265 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2266 return page;
2267 }
2268
2269 return NULL;
2270}
2271
2272
b2a0ac88
MG
2273/*
2274 * This array describes the order lists are fallen back to when
2275 * the free lists for the desirable migrate type are depleted
2276 */
da415663 2277static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2278 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2279 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2280 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2281#ifdef CONFIG_CMA
974a786e 2282 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2283#endif
194159fb 2284#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2285 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2286#endif
b2a0ac88
MG
2287};
2288
dc67647b 2289#ifdef CONFIG_CMA
85ccc8fa 2290static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2291 unsigned int order)
2292{
2293 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2294}
2295#else
2296static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2297 unsigned int order) { return NULL; }
2298#endif
2299
c361be55
MG
2300/*
2301 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2302 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2303 * boundary. If alignment is required, use move_freepages_block()
2304 */
02aa0cdd 2305static int move_freepages(struct zone *zone,
b69a7288 2306 struct page *start_page, struct page *end_page,
02aa0cdd 2307 int migratetype, int *num_movable)
c361be55
MG
2308{
2309 struct page *page;
d00181b9 2310 unsigned int order;
d100313f 2311 int pages_moved = 0;
c361be55 2312
c361be55
MG
2313 for (page = start_page; page <= end_page;) {
2314 if (!pfn_valid_within(page_to_pfn(page))) {
2315 page++;
2316 continue;
2317 }
2318
2319 if (!PageBuddy(page)) {
02aa0cdd
VB
2320 /*
2321 * We assume that pages that could be isolated for
2322 * migration are movable. But we don't actually try
2323 * isolating, as that would be expensive.
2324 */
2325 if (num_movable &&
2326 (PageLRU(page) || __PageMovable(page)))
2327 (*num_movable)++;
2328
c361be55
MG
2329 page++;
2330 continue;
2331 }
2332
cd961038
DR
2333 /* Make sure we are not inadvertently changing nodes */
2334 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2335 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2336
c361be55 2337 order = page_order(page);
6ab01363 2338 move_to_free_list(page, zone, order, migratetype);
c361be55 2339 page += 1 << order;
d100313f 2340 pages_moved += 1 << order;
c361be55
MG
2341 }
2342
d100313f 2343 return pages_moved;
c361be55
MG
2344}
2345
ee6f509c 2346int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2347 int migratetype, int *num_movable)
c361be55
MG
2348{
2349 unsigned long start_pfn, end_pfn;
2350 struct page *start_page, *end_page;
2351
4a222127
DR
2352 if (num_movable)
2353 *num_movable = 0;
2354
c361be55 2355 start_pfn = page_to_pfn(page);
d9c23400 2356 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2357 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2358 end_page = start_page + pageblock_nr_pages - 1;
2359 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2360
2361 /* Do not cross zone boundaries */
108bcc96 2362 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2363 start_page = page;
108bcc96 2364 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2365 return 0;
2366
02aa0cdd
VB
2367 return move_freepages(zone, start_page, end_page, migratetype,
2368 num_movable);
c361be55
MG
2369}
2370
2f66a68f
MG
2371static void change_pageblock_range(struct page *pageblock_page,
2372 int start_order, int migratetype)
2373{
2374 int nr_pageblocks = 1 << (start_order - pageblock_order);
2375
2376 while (nr_pageblocks--) {
2377 set_pageblock_migratetype(pageblock_page, migratetype);
2378 pageblock_page += pageblock_nr_pages;
2379 }
2380}
2381
fef903ef 2382/*
9c0415eb
VB
2383 * When we are falling back to another migratetype during allocation, try to
2384 * steal extra free pages from the same pageblocks to satisfy further
2385 * allocations, instead of polluting multiple pageblocks.
2386 *
2387 * If we are stealing a relatively large buddy page, it is likely there will
2388 * be more free pages in the pageblock, so try to steal them all. For
2389 * reclaimable and unmovable allocations, we steal regardless of page size,
2390 * as fragmentation caused by those allocations polluting movable pageblocks
2391 * is worse than movable allocations stealing from unmovable and reclaimable
2392 * pageblocks.
fef903ef 2393 */
4eb7dce6
JK
2394static bool can_steal_fallback(unsigned int order, int start_mt)
2395{
2396 /*
2397 * Leaving this order check is intended, although there is
2398 * relaxed order check in next check. The reason is that
2399 * we can actually steal whole pageblock if this condition met,
2400 * but, below check doesn't guarantee it and that is just heuristic
2401 * so could be changed anytime.
2402 */
2403 if (order >= pageblock_order)
2404 return true;
2405
2406 if (order >= pageblock_order / 2 ||
2407 start_mt == MIGRATE_RECLAIMABLE ||
2408 start_mt == MIGRATE_UNMOVABLE ||
2409 page_group_by_mobility_disabled)
2410 return true;
2411
2412 return false;
2413}
2414
1c30844d
MG
2415static inline void boost_watermark(struct zone *zone)
2416{
2417 unsigned long max_boost;
2418
2419 if (!watermark_boost_factor)
2420 return;
14f69140
HW
2421 /*
2422 * Don't bother in zones that are unlikely to produce results.
2423 * On small machines, including kdump capture kernels running
2424 * in a small area, boosting the watermark can cause an out of
2425 * memory situation immediately.
2426 */
2427 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2428 return;
1c30844d
MG
2429
2430 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2431 watermark_boost_factor, 10000);
94b3334c
MG
2432
2433 /*
2434 * high watermark may be uninitialised if fragmentation occurs
2435 * very early in boot so do not boost. We do not fall
2436 * through and boost by pageblock_nr_pages as failing
2437 * allocations that early means that reclaim is not going
2438 * to help and it may even be impossible to reclaim the
2439 * boosted watermark resulting in a hang.
2440 */
2441 if (!max_boost)
2442 return;
2443
1c30844d
MG
2444 max_boost = max(pageblock_nr_pages, max_boost);
2445
2446 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2447 max_boost);
2448}
2449
4eb7dce6
JK
2450/*
2451 * This function implements actual steal behaviour. If order is large enough,
2452 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2453 * pageblock to our migratetype and determine how many already-allocated pages
2454 * are there in the pageblock with a compatible migratetype. If at least half
2455 * of pages are free or compatible, we can change migratetype of the pageblock
2456 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2457 */
2458static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2459 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2460{
d00181b9 2461 unsigned int current_order = page_order(page);
02aa0cdd
VB
2462 int free_pages, movable_pages, alike_pages;
2463 int old_block_type;
2464
2465 old_block_type = get_pageblock_migratetype(page);
fef903ef 2466
3bc48f96
VB
2467 /*
2468 * This can happen due to races and we want to prevent broken
2469 * highatomic accounting.
2470 */
02aa0cdd 2471 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2472 goto single_page;
2473
fef903ef
SB
2474 /* Take ownership for orders >= pageblock_order */
2475 if (current_order >= pageblock_order) {
2476 change_pageblock_range(page, current_order, start_type);
3bc48f96 2477 goto single_page;
fef903ef
SB
2478 }
2479
1c30844d
MG
2480 /*
2481 * Boost watermarks to increase reclaim pressure to reduce the
2482 * likelihood of future fallbacks. Wake kswapd now as the node
2483 * may be balanced overall and kswapd will not wake naturally.
2484 */
2485 boost_watermark(zone);
2486 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2487 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2488
3bc48f96
VB
2489 /* We are not allowed to try stealing from the whole block */
2490 if (!whole_block)
2491 goto single_page;
2492
02aa0cdd
VB
2493 free_pages = move_freepages_block(zone, page, start_type,
2494 &movable_pages);
2495 /*
2496 * Determine how many pages are compatible with our allocation.
2497 * For movable allocation, it's the number of movable pages which
2498 * we just obtained. For other types it's a bit more tricky.
2499 */
2500 if (start_type == MIGRATE_MOVABLE) {
2501 alike_pages = movable_pages;
2502 } else {
2503 /*
2504 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2505 * to MOVABLE pageblock, consider all non-movable pages as
2506 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2507 * vice versa, be conservative since we can't distinguish the
2508 * exact migratetype of non-movable pages.
2509 */
2510 if (old_block_type == MIGRATE_MOVABLE)
2511 alike_pages = pageblock_nr_pages
2512 - (free_pages + movable_pages);
2513 else
2514 alike_pages = 0;
2515 }
2516
3bc48f96 2517 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2518 if (!free_pages)
3bc48f96 2519 goto single_page;
fef903ef 2520
02aa0cdd
VB
2521 /*
2522 * If a sufficient number of pages in the block are either free or of
2523 * comparable migratability as our allocation, claim the whole block.
2524 */
2525 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2526 page_group_by_mobility_disabled)
2527 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2528
2529 return;
2530
2531single_page:
6ab01363 2532 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2533}
2534
2149cdae
JK
2535/*
2536 * Check whether there is a suitable fallback freepage with requested order.
2537 * If only_stealable is true, this function returns fallback_mt only if
2538 * we can steal other freepages all together. This would help to reduce
2539 * fragmentation due to mixed migratetype pages in one pageblock.
2540 */
2541int find_suitable_fallback(struct free_area *area, unsigned int order,
2542 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2543{
2544 int i;
2545 int fallback_mt;
2546
2547 if (area->nr_free == 0)
2548 return -1;
2549
2550 *can_steal = false;
2551 for (i = 0;; i++) {
2552 fallback_mt = fallbacks[migratetype][i];
974a786e 2553 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2554 break;
2555
b03641af 2556 if (free_area_empty(area, fallback_mt))
4eb7dce6 2557 continue;
fef903ef 2558
4eb7dce6
JK
2559 if (can_steal_fallback(order, migratetype))
2560 *can_steal = true;
2561
2149cdae
JK
2562 if (!only_stealable)
2563 return fallback_mt;
2564
2565 if (*can_steal)
2566 return fallback_mt;
fef903ef 2567 }
4eb7dce6
JK
2568
2569 return -1;
fef903ef
SB
2570}
2571
0aaa29a5
MG
2572/*
2573 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2574 * there are no empty page blocks that contain a page with a suitable order
2575 */
2576static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2577 unsigned int alloc_order)
2578{
2579 int mt;
2580 unsigned long max_managed, flags;
2581
2582 /*
2583 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2584 * Check is race-prone but harmless.
2585 */
9705bea5 2586 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2587 if (zone->nr_reserved_highatomic >= max_managed)
2588 return;
2589
2590 spin_lock_irqsave(&zone->lock, flags);
2591
2592 /* Recheck the nr_reserved_highatomic limit under the lock */
2593 if (zone->nr_reserved_highatomic >= max_managed)
2594 goto out_unlock;
2595
2596 /* Yoink! */
2597 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2598 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2599 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2600 zone->nr_reserved_highatomic += pageblock_nr_pages;
2601 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2602 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2603 }
2604
2605out_unlock:
2606 spin_unlock_irqrestore(&zone->lock, flags);
2607}
2608
2609/*
2610 * Used when an allocation is about to fail under memory pressure. This
2611 * potentially hurts the reliability of high-order allocations when under
2612 * intense memory pressure but failed atomic allocations should be easier
2613 * to recover from than an OOM.
29fac03b
MK
2614 *
2615 * If @force is true, try to unreserve a pageblock even though highatomic
2616 * pageblock is exhausted.
0aaa29a5 2617 */
29fac03b
MK
2618static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2619 bool force)
0aaa29a5
MG
2620{
2621 struct zonelist *zonelist = ac->zonelist;
2622 unsigned long flags;
2623 struct zoneref *z;
2624 struct zone *zone;
2625 struct page *page;
2626 int order;
04c8716f 2627 bool ret;
0aaa29a5 2628
97a225e6 2629 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2630 ac->nodemask) {
29fac03b
MK
2631 /*
2632 * Preserve at least one pageblock unless memory pressure
2633 * is really high.
2634 */
2635 if (!force && zone->nr_reserved_highatomic <=
2636 pageblock_nr_pages)
0aaa29a5
MG
2637 continue;
2638
2639 spin_lock_irqsave(&zone->lock, flags);
2640 for (order = 0; order < MAX_ORDER; order++) {
2641 struct free_area *area = &(zone->free_area[order]);
2642
b03641af 2643 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2644 if (!page)
0aaa29a5
MG
2645 continue;
2646
0aaa29a5 2647 /*
4855e4a7
MK
2648 * In page freeing path, migratetype change is racy so
2649 * we can counter several free pages in a pageblock
2650 * in this loop althoug we changed the pageblock type
2651 * from highatomic to ac->migratetype. So we should
2652 * adjust the count once.
0aaa29a5 2653 */
a6ffdc07 2654 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2655 /*
2656 * It should never happen but changes to
2657 * locking could inadvertently allow a per-cpu
2658 * drain to add pages to MIGRATE_HIGHATOMIC
2659 * while unreserving so be safe and watch for
2660 * underflows.
2661 */
2662 zone->nr_reserved_highatomic -= min(
2663 pageblock_nr_pages,
2664 zone->nr_reserved_highatomic);
2665 }
0aaa29a5
MG
2666
2667 /*
2668 * Convert to ac->migratetype and avoid the normal
2669 * pageblock stealing heuristics. Minimally, the caller
2670 * is doing the work and needs the pages. More
2671 * importantly, if the block was always converted to
2672 * MIGRATE_UNMOVABLE or another type then the number
2673 * of pageblocks that cannot be completely freed
2674 * may increase.
2675 */
2676 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2677 ret = move_freepages_block(zone, page, ac->migratetype,
2678 NULL);
29fac03b
MK
2679 if (ret) {
2680 spin_unlock_irqrestore(&zone->lock, flags);
2681 return ret;
2682 }
0aaa29a5
MG
2683 }
2684 spin_unlock_irqrestore(&zone->lock, flags);
2685 }
04c8716f
MK
2686
2687 return false;
0aaa29a5
MG
2688}
2689
3bc48f96
VB
2690/*
2691 * Try finding a free buddy page on the fallback list and put it on the free
2692 * list of requested migratetype, possibly along with other pages from the same
2693 * block, depending on fragmentation avoidance heuristics. Returns true if
2694 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2695 *
2696 * The use of signed ints for order and current_order is a deliberate
2697 * deviation from the rest of this file, to make the for loop
2698 * condition simpler.
3bc48f96 2699 */
85ccc8fa 2700static __always_inline bool
6bb15450
MG
2701__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2702 unsigned int alloc_flags)
b2a0ac88 2703{
b8af2941 2704 struct free_area *area;
b002529d 2705 int current_order;
6bb15450 2706 int min_order = order;
b2a0ac88 2707 struct page *page;
4eb7dce6
JK
2708 int fallback_mt;
2709 bool can_steal;
b2a0ac88 2710
6bb15450
MG
2711 /*
2712 * Do not steal pages from freelists belonging to other pageblocks
2713 * i.e. orders < pageblock_order. If there are no local zones free,
2714 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2715 */
2716 if (alloc_flags & ALLOC_NOFRAGMENT)
2717 min_order = pageblock_order;
2718
7a8f58f3
VB
2719 /*
2720 * Find the largest available free page in the other list. This roughly
2721 * approximates finding the pageblock with the most free pages, which
2722 * would be too costly to do exactly.
2723 */
6bb15450 2724 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2725 --current_order) {
4eb7dce6
JK
2726 area = &(zone->free_area[current_order]);
2727 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2728 start_migratetype, false, &can_steal);
4eb7dce6
JK
2729 if (fallback_mt == -1)
2730 continue;
b2a0ac88 2731
7a8f58f3
VB
2732 /*
2733 * We cannot steal all free pages from the pageblock and the
2734 * requested migratetype is movable. In that case it's better to
2735 * steal and split the smallest available page instead of the
2736 * largest available page, because even if the next movable
2737 * allocation falls back into a different pageblock than this
2738 * one, it won't cause permanent fragmentation.
2739 */
2740 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2741 && current_order > order)
2742 goto find_smallest;
b2a0ac88 2743
7a8f58f3
VB
2744 goto do_steal;
2745 }
e0fff1bd 2746
7a8f58f3 2747 return false;
e0fff1bd 2748
7a8f58f3
VB
2749find_smallest:
2750 for (current_order = order; current_order < MAX_ORDER;
2751 current_order++) {
2752 area = &(zone->free_area[current_order]);
2753 fallback_mt = find_suitable_fallback(area, current_order,
2754 start_migratetype, false, &can_steal);
2755 if (fallback_mt != -1)
2756 break;
b2a0ac88
MG
2757 }
2758
7a8f58f3
VB
2759 /*
2760 * This should not happen - we already found a suitable fallback
2761 * when looking for the largest page.
2762 */
2763 VM_BUG_ON(current_order == MAX_ORDER);
2764
2765do_steal:
b03641af 2766 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2767
1c30844d
MG
2768 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2769 can_steal);
7a8f58f3
VB
2770
2771 trace_mm_page_alloc_extfrag(page, order, current_order,
2772 start_migratetype, fallback_mt);
2773
2774 return true;
2775
b2a0ac88
MG
2776}
2777
56fd56b8 2778/*
1da177e4
LT
2779 * Do the hard work of removing an element from the buddy allocator.
2780 * Call me with the zone->lock already held.
2781 */
85ccc8fa 2782static __always_inline struct page *
6bb15450
MG
2783__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2784 unsigned int alloc_flags)
1da177e4 2785{
1da177e4
LT
2786 struct page *page;
2787
16867664
RG
2788#ifdef CONFIG_CMA
2789 /*
2790 * Balance movable allocations between regular and CMA areas by
2791 * allocating from CMA when over half of the zone's free memory
2792 * is in the CMA area.
2793 */
8510e69c 2794 if (alloc_flags & ALLOC_CMA &&
16867664
RG
2795 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2796 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2797 page = __rmqueue_cma_fallback(zone, order);
2798 if (page)
2799 return page;
2800 }
2801#endif
3bc48f96 2802retry:
56fd56b8 2803 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2804 if (unlikely(!page)) {
8510e69c 2805 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2806 page = __rmqueue_cma_fallback(zone, order);
2807
6bb15450
MG
2808 if (!page && __rmqueue_fallback(zone, order, migratetype,
2809 alloc_flags))
3bc48f96 2810 goto retry;
728ec980
MG
2811 }
2812
0d3d062a 2813 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2814 return page;
1da177e4
LT
2815}
2816
5f63b720 2817/*
1da177e4
LT
2818 * Obtain a specified number of elements from the buddy allocator, all under
2819 * a single hold of the lock, for efficiency. Add them to the supplied list.
2820 * Returns the number of new pages which were placed at *list.
2821 */
5f63b720 2822static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2823 unsigned long count, struct list_head *list,
6bb15450 2824 int migratetype, unsigned int alloc_flags)
1da177e4 2825{
a6de734b 2826 int i, alloced = 0;
5f63b720 2827
d34b0733 2828 spin_lock(&zone->lock);
1da177e4 2829 for (i = 0; i < count; ++i) {
6bb15450
MG
2830 struct page *page = __rmqueue(zone, order, migratetype,
2831 alloc_flags);
085cc7d5 2832 if (unlikely(page == NULL))
1da177e4 2833 break;
81eabcbe 2834
479f854a
MG
2835 if (unlikely(check_pcp_refill(page)))
2836 continue;
2837
81eabcbe 2838 /*
0fac3ba5
VB
2839 * Split buddy pages returned by expand() are received here in
2840 * physical page order. The page is added to the tail of
2841 * caller's list. From the callers perspective, the linked list
2842 * is ordered by page number under some conditions. This is
2843 * useful for IO devices that can forward direction from the
2844 * head, thus also in the physical page order. This is useful
2845 * for IO devices that can merge IO requests if the physical
2846 * pages are ordered properly.
81eabcbe 2847 */
0fac3ba5 2848 list_add_tail(&page->lru, list);
a6de734b 2849 alloced++;
bb14c2c7 2850 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2851 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2852 -(1 << order));
1da177e4 2853 }
a6de734b
MG
2854
2855 /*
2856 * i pages were removed from the buddy list even if some leak due
2857 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2858 * on i. Do not confuse with 'alloced' which is the number of
2859 * pages added to the pcp list.
2860 */
f2260e6b 2861 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2862 spin_unlock(&zone->lock);
a6de734b 2863 return alloced;
1da177e4
LT
2864}
2865
4ae7c039 2866#ifdef CONFIG_NUMA
8fce4d8e 2867/*
4037d452
CL
2868 * Called from the vmstat counter updater to drain pagesets of this
2869 * currently executing processor on remote nodes after they have
2870 * expired.
2871 *
879336c3
CL
2872 * Note that this function must be called with the thread pinned to
2873 * a single processor.
8fce4d8e 2874 */
4037d452 2875void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2876{
4ae7c039 2877 unsigned long flags;
7be12fc9 2878 int to_drain, batch;
4ae7c039 2879
4037d452 2880 local_irq_save(flags);
4db0c3c2 2881 batch = READ_ONCE(pcp->batch);
7be12fc9 2882 to_drain = min(pcp->count, batch);
77ba9062 2883 if (to_drain > 0)
2a13515c 2884 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2885 local_irq_restore(flags);
4ae7c039
CL
2886}
2887#endif
2888
9f8f2172 2889/*
93481ff0 2890 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2891 *
2892 * The processor must either be the current processor and the
2893 * thread pinned to the current processor or a processor that
2894 * is not online.
2895 */
93481ff0 2896static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2897{
c54ad30c 2898 unsigned long flags;
93481ff0
VB
2899 struct per_cpu_pageset *pset;
2900 struct per_cpu_pages *pcp;
1da177e4 2901
93481ff0
VB
2902 local_irq_save(flags);
2903 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2904
93481ff0 2905 pcp = &pset->pcp;
77ba9062 2906 if (pcp->count)
93481ff0 2907 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2908 local_irq_restore(flags);
2909}
3dfa5721 2910
93481ff0
VB
2911/*
2912 * Drain pcplists of all zones on the indicated processor.
2913 *
2914 * The processor must either be the current processor and the
2915 * thread pinned to the current processor or a processor that
2916 * is not online.
2917 */
2918static void drain_pages(unsigned int cpu)
2919{
2920 struct zone *zone;
2921
2922 for_each_populated_zone(zone) {
2923 drain_pages_zone(cpu, zone);
1da177e4
LT
2924 }
2925}
1da177e4 2926
9f8f2172
CL
2927/*
2928 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2929 *
2930 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2931 * the single zone's pages.
9f8f2172 2932 */
93481ff0 2933void drain_local_pages(struct zone *zone)
9f8f2172 2934{
93481ff0
VB
2935 int cpu = smp_processor_id();
2936
2937 if (zone)
2938 drain_pages_zone(cpu, zone);
2939 else
2940 drain_pages(cpu);
9f8f2172
CL
2941}
2942
0ccce3b9
MG
2943static void drain_local_pages_wq(struct work_struct *work)
2944{
d9367bd0
WY
2945 struct pcpu_drain *drain;
2946
2947 drain = container_of(work, struct pcpu_drain, work);
2948
a459eeb7
MH
2949 /*
2950 * drain_all_pages doesn't use proper cpu hotplug protection so
2951 * we can race with cpu offline when the WQ can move this from
2952 * a cpu pinned worker to an unbound one. We can operate on a different
2953 * cpu which is allright but we also have to make sure to not move to
2954 * a different one.
2955 */
2956 preempt_disable();
d9367bd0 2957 drain_local_pages(drain->zone);
a459eeb7 2958 preempt_enable();
0ccce3b9
MG
2959}
2960
9f8f2172 2961/*
74046494
GBY
2962 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2963 *
93481ff0
VB
2964 * When zone parameter is non-NULL, spill just the single zone's pages.
2965 *
0ccce3b9 2966 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2967 */
93481ff0 2968void drain_all_pages(struct zone *zone)
9f8f2172 2969{
74046494 2970 int cpu;
74046494
GBY
2971
2972 /*
2973 * Allocate in the BSS so we wont require allocation in
2974 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2975 */
2976 static cpumask_t cpus_with_pcps;
2977
ce612879
MH
2978 /*
2979 * Make sure nobody triggers this path before mm_percpu_wq is fully
2980 * initialized.
2981 */
2982 if (WARN_ON_ONCE(!mm_percpu_wq))
2983 return;
2984
bd233f53
MG
2985 /*
2986 * Do not drain if one is already in progress unless it's specific to
2987 * a zone. Such callers are primarily CMA and memory hotplug and need
2988 * the drain to be complete when the call returns.
2989 */
2990 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2991 if (!zone)
2992 return;
2993 mutex_lock(&pcpu_drain_mutex);
2994 }
0ccce3b9 2995
74046494
GBY
2996 /*
2997 * We don't care about racing with CPU hotplug event
2998 * as offline notification will cause the notified
2999 * cpu to drain that CPU pcps and on_each_cpu_mask
3000 * disables preemption as part of its processing
3001 */
3002 for_each_online_cpu(cpu) {
93481ff0
VB
3003 struct per_cpu_pageset *pcp;
3004 struct zone *z;
74046494 3005 bool has_pcps = false;
93481ff0
VB
3006
3007 if (zone) {
74046494 3008 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3009 if (pcp->pcp.count)
74046494 3010 has_pcps = true;
93481ff0
VB
3011 } else {
3012 for_each_populated_zone(z) {
3013 pcp = per_cpu_ptr(z->pageset, cpu);
3014 if (pcp->pcp.count) {
3015 has_pcps = true;
3016 break;
3017 }
74046494
GBY
3018 }
3019 }
93481ff0 3020
74046494
GBY
3021 if (has_pcps)
3022 cpumask_set_cpu(cpu, &cpus_with_pcps);
3023 else
3024 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3025 }
0ccce3b9 3026
bd233f53 3027 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3028 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3029
3030 drain->zone = zone;
3031 INIT_WORK(&drain->work, drain_local_pages_wq);
3032 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3033 }
bd233f53 3034 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3035 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3036
3037 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3038}
3039
296699de 3040#ifdef CONFIG_HIBERNATION
1da177e4 3041
556b969a
CY
3042/*
3043 * Touch the watchdog for every WD_PAGE_COUNT pages.
3044 */
3045#define WD_PAGE_COUNT (128*1024)
3046
1da177e4
LT
3047void mark_free_pages(struct zone *zone)
3048{
556b969a 3049 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3050 unsigned long flags;
7aeb09f9 3051 unsigned int order, t;
86760a2c 3052 struct page *page;
1da177e4 3053
8080fc03 3054 if (zone_is_empty(zone))
1da177e4
LT
3055 return;
3056
3057 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3058
108bcc96 3059 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3060 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3061 if (pfn_valid(pfn)) {
86760a2c 3062 page = pfn_to_page(pfn);
ba6b0979 3063
556b969a
CY
3064 if (!--page_count) {
3065 touch_nmi_watchdog();
3066 page_count = WD_PAGE_COUNT;
3067 }
3068
ba6b0979
JK
3069 if (page_zone(page) != zone)
3070 continue;
3071
7be98234
RW
3072 if (!swsusp_page_is_forbidden(page))
3073 swsusp_unset_page_free(page);
f623f0db 3074 }
1da177e4 3075
b2a0ac88 3076 for_each_migratetype_order(order, t) {
86760a2c
GT
3077 list_for_each_entry(page,
3078 &zone->free_area[order].free_list[t], lru) {
f623f0db 3079 unsigned long i;
1da177e4 3080
86760a2c 3081 pfn = page_to_pfn(page);
556b969a
CY
3082 for (i = 0; i < (1UL << order); i++) {
3083 if (!--page_count) {
3084 touch_nmi_watchdog();
3085 page_count = WD_PAGE_COUNT;
3086 }
7be98234 3087 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3088 }
f623f0db 3089 }
b2a0ac88 3090 }
1da177e4
LT
3091 spin_unlock_irqrestore(&zone->lock, flags);
3092}
e2c55dc8 3093#endif /* CONFIG_PM */
1da177e4 3094
2d4894b5 3095static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3096{
5f8dcc21 3097 int migratetype;
1da177e4 3098
4db7548c 3099 if (!free_pcp_prepare(page))
9cca35d4 3100 return false;
689bcebf 3101
dc4b0caf 3102 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3103 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3104 return true;
3105}
3106
2d4894b5 3107static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3108{
3109 struct zone *zone = page_zone(page);
3110 struct per_cpu_pages *pcp;
3111 int migratetype;
3112
3113 migratetype = get_pcppage_migratetype(page);
d34b0733 3114 __count_vm_event(PGFREE);
da456f14 3115
5f8dcc21
MG
3116 /*
3117 * We only track unmovable, reclaimable and movable on pcp lists.
3118 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3119 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3120 * areas back if necessary. Otherwise, we may have to free
3121 * excessively into the page allocator
3122 */
3123 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3124 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3125 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3126 return;
5f8dcc21
MG
3127 }
3128 migratetype = MIGRATE_MOVABLE;
3129 }
3130
99dcc3e5 3131 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3132 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3133 pcp->count++;
48db57f8 3134 if (pcp->count >= pcp->high) {
4db0c3c2 3135 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3136 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3137 }
9cca35d4 3138}
5f8dcc21 3139
9cca35d4
MG
3140/*
3141 * Free a 0-order page
9cca35d4 3142 */
2d4894b5 3143void free_unref_page(struct page *page)
9cca35d4
MG
3144{
3145 unsigned long flags;
3146 unsigned long pfn = page_to_pfn(page);
3147
2d4894b5 3148 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3149 return;
3150
3151 local_irq_save(flags);
2d4894b5 3152 free_unref_page_commit(page, pfn);
d34b0733 3153 local_irq_restore(flags);
1da177e4
LT
3154}
3155
cc59850e
KK
3156/*
3157 * Free a list of 0-order pages
3158 */
2d4894b5 3159void free_unref_page_list(struct list_head *list)
cc59850e
KK
3160{
3161 struct page *page, *next;
9cca35d4 3162 unsigned long flags, pfn;
c24ad77d 3163 int batch_count = 0;
9cca35d4
MG
3164
3165 /* Prepare pages for freeing */
3166 list_for_each_entry_safe(page, next, list, lru) {
3167 pfn = page_to_pfn(page);
2d4894b5 3168 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3169 list_del(&page->lru);
3170 set_page_private(page, pfn);
3171 }
cc59850e 3172
9cca35d4 3173 local_irq_save(flags);
cc59850e 3174 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3175 unsigned long pfn = page_private(page);
3176
3177 set_page_private(page, 0);
2d4894b5
MG
3178 trace_mm_page_free_batched(page);
3179 free_unref_page_commit(page, pfn);
c24ad77d
LS
3180
3181 /*
3182 * Guard against excessive IRQ disabled times when we get
3183 * a large list of pages to free.
3184 */
3185 if (++batch_count == SWAP_CLUSTER_MAX) {
3186 local_irq_restore(flags);
3187 batch_count = 0;
3188 local_irq_save(flags);
3189 }
cc59850e 3190 }
9cca35d4 3191 local_irq_restore(flags);
cc59850e
KK
3192}
3193
8dfcc9ba
NP
3194/*
3195 * split_page takes a non-compound higher-order page, and splits it into
3196 * n (1<<order) sub-pages: page[0..n]
3197 * Each sub-page must be freed individually.
3198 *
3199 * Note: this is probably too low level an operation for use in drivers.
3200 * Please consult with lkml before using this in your driver.
3201 */
3202void split_page(struct page *page, unsigned int order)
3203{
3204 int i;
3205
309381fe
SL
3206 VM_BUG_ON_PAGE(PageCompound(page), page);
3207 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3208
a9627bc5 3209 for (i = 1; i < (1 << order); i++)
7835e98b 3210 set_page_refcounted(page + i);
a9627bc5 3211 split_page_owner(page, order);
8dfcc9ba 3212}
5853ff23 3213EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3214
3c605096 3215int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3216{
748446bb
MG
3217 unsigned long watermark;
3218 struct zone *zone;
2139cbe6 3219 int mt;
748446bb
MG
3220
3221 BUG_ON(!PageBuddy(page));
3222
3223 zone = page_zone(page);
2e30abd1 3224 mt = get_pageblock_migratetype(page);
748446bb 3225
194159fb 3226 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3227 /*
3228 * Obey watermarks as if the page was being allocated. We can
3229 * emulate a high-order watermark check with a raised order-0
3230 * watermark, because we already know our high-order page
3231 * exists.
3232 */
fd1444b2 3233 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3234 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3235 return 0;
3236
8fb74b9f 3237 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3238 }
748446bb
MG
3239
3240 /* Remove page from free list */
b03641af 3241
6ab01363 3242 del_page_from_free_list(page, zone, order);
2139cbe6 3243
400bc7fd 3244 /*
3245 * Set the pageblock if the isolated page is at least half of a
3246 * pageblock
3247 */
748446bb
MG
3248 if (order >= pageblock_order - 1) {
3249 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3250 for (; page < endpage; page += pageblock_nr_pages) {
3251 int mt = get_pageblock_migratetype(page);
88ed365e 3252 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3253 && !is_migrate_highatomic(mt))
47118af0
MN
3254 set_pageblock_migratetype(page,
3255 MIGRATE_MOVABLE);
3256 }
748446bb
MG
3257 }
3258
f3a14ced 3259
8fb74b9f 3260 return 1UL << order;
1fb3f8ca
MG
3261}
3262
624f58d8
AD
3263/**
3264 * __putback_isolated_page - Return a now-isolated page back where we got it
3265 * @page: Page that was isolated
3266 * @order: Order of the isolated page
e6a0a7ad 3267 * @mt: The page's pageblock's migratetype
624f58d8
AD
3268 *
3269 * This function is meant to return a page pulled from the free lists via
3270 * __isolate_free_page back to the free lists they were pulled from.
3271 */
3272void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3273{
3274 struct zone *zone = page_zone(page);
3275
3276 /* zone lock should be held when this function is called */
3277 lockdep_assert_held(&zone->lock);
3278
3279 /* Return isolated page to tail of freelist. */
36e66c55 3280 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3281}
3282
060e7417
MG
3283/*
3284 * Update NUMA hit/miss statistics
3285 *
3286 * Must be called with interrupts disabled.
060e7417 3287 */
41b6167e 3288static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3289{
3290#ifdef CONFIG_NUMA
3a321d2a 3291 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3292
4518085e
KW
3293 /* skip numa counters update if numa stats is disabled */
3294 if (!static_branch_likely(&vm_numa_stat_key))
3295 return;
3296
c1093b74 3297 if (zone_to_nid(z) != numa_node_id())
060e7417 3298 local_stat = NUMA_OTHER;
060e7417 3299
c1093b74 3300 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3301 __inc_numa_state(z, NUMA_HIT);
2df26639 3302 else {
3a321d2a
KW
3303 __inc_numa_state(z, NUMA_MISS);
3304 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3305 }
3a321d2a 3306 __inc_numa_state(z, local_stat);
060e7417
MG
3307#endif
3308}
3309
066b2393
MG
3310/* Remove page from the per-cpu list, caller must protect the list */
3311static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3312 unsigned int alloc_flags,
453f85d4 3313 struct per_cpu_pages *pcp,
066b2393
MG
3314 struct list_head *list)
3315{
3316 struct page *page;
3317
3318 do {
3319 if (list_empty(list)) {
3320 pcp->count += rmqueue_bulk(zone, 0,
3321 pcp->batch, list,
6bb15450 3322 migratetype, alloc_flags);
066b2393
MG
3323 if (unlikely(list_empty(list)))
3324 return NULL;
3325 }
3326
453f85d4 3327 page = list_first_entry(list, struct page, lru);
066b2393
MG
3328 list_del(&page->lru);
3329 pcp->count--;
3330 } while (check_new_pcp(page));
3331
3332 return page;
3333}
3334
3335/* Lock and remove page from the per-cpu list */
3336static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3337 struct zone *zone, gfp_t gfp_flags,
3338 int migratetype, unsigned int alloc_flags)
066b2393
MG
3339{
3340 struct per_cpu_pages *pcp;
3341 struct list_head *list;
066b2393 3342 struct page *page;
d34b0733 3343 unsigned long flags;
066b2393 3344
d34b0733 3345 local_irq_save(flags);
066b2393
MG
3346 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3347 list = &pcp->lists[migratetype];
6bb15450 3348 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3349 if (page) {
1c52e6d0 3350 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3351 zone_statistics(preferred_zone, zone);
3352 }
d34b0733 3353 local_irq_restore(flags);
066b2393
MG
3354 return page;
3355}
3356
1da177e4 3357/*
75379191 3358 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3359 */
0a15c3e9 3360static inline
066b2393 3361struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3362 struct zone *zone, unsigned int order,
c603844b
MG
3363 gfp_t gfp_flags, unsigned int alloc_flags,
3364 int migratetype)
1da177e4
LT
3365{
3366 unsigned long flags;
689bcebf 3367 struct page *page;
1da177e4 3368
d34b0733 3369 if (likely(order == 0)) {
1d91df85
JK
3370 /*
3371 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3372 * we need to skip it when CMA area isn't allowed.
3373 */
3374 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3375 migratetype != MIGRATE_MOVABLE) {
3376 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3377 migratetype, alloc_flags);
1d91df85
JK
3378 goto out;
3379 }
066b2393 3380 }
83b9355b 3381
066b2393
MG
3382 /*
3383 * We most definitely don't want callers attempting to
3384 * allocate greater than order-1 page units with __GFP_NOFAIL.
3385 */
3386 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3387 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3388
066b2393
MG
3389 do {
3390 page = NULL;
1d91df85
JK
3391 /*
3392 * order-0 request can reach here when the pcplist is skipped
3393 * due to non-CMA allocation context. HIGHATOMIC area is
3394 * reserved for high-order atomic allocation, so order-0
3395 * request should skip it.
3396 */
3397 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3398 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3399 if (page)
3400 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3401 }
a74609fa 3402 if (!page)
6bb15450 3403 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3404 } while (page && check_new_pages(page, order));
3405 spin_unlock(&zone->lock);
3406 if (!page)
3407 goto failed;
3408 __mod_zone_freepage_state(zone, -(1 << order),
3409 get_pcppage_migratetype(page));
1da177e4 3410
16709d1d 3411 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3412 zone_statistics(preferred_zone, zone);
a74609fa 3413 local_irq_restore(flags);
1da177e4 3414
066b2393 3415out:
73444bc4
MG
3416 /* Separate test+clear to avoid unnecessary atomics */
3417 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3418 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3419 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3420 }
3421
066b2393 3422 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3423 return page;
a74609fa
NP
3424
3425failed:
3426 local_irq_restore(flags);
a74609fa 3427 return NULL;
1da177e4
LT
3428}
3429
933e312e
AM
3430#ifdef CONFIG_FAIL_PAGE_ALLOC
3431
b2588c4b 3432static struct {
933e312e
AM
3433 struct fault_attr attr;
3434
621a5f7a 3435 bool ignore_gfp_highmem;
71baba4b 3436 bool ignore_gfp_reclaim;
54114994 3437 u32 min_order;
933e312e
AM
3438} fail_page_alloc = {
3439 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3440 .ignore_gfp_reclaim = true,
621a5f7a 3441 .ignore_gfp_highmem = true,
54114994 3442 .min_order = 1,
933e312e
AM
3443};
3444
3445static int __init setup_fail_page_alloc(char *str)
3446{
3447 return setup_fault_attr(&fail_page_alloc.attr, str);
3448}
3449__setup("fail_page_alloc=", setup_fail_page_alloc);
3450
af3b8544 3451static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3452{
54114994 3453 if (order < fail_page_alloc.min_order)
deaf386e 3454 return false;
933e312e 3455 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3456 return false;
933e312e 3457 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3458 return false;
71baba4b
MG
3459 if (fail_page_alloc.ignore_gfp_reclaim &&
3460 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3461 return false;
933e312e
AM
3462
3463 return should_fail(&fail_page_alloc.attr, 1 << order);
3464}
3465
3466#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3467
3468static int __init fail_page_alloc_debugfs(void)
3469{
0825a6f9 3470 umode_t mode = S_IFREG | 0600;
933e312e 3471 struct dentry *dir;
933e312e 3472
dd48c085
AM
3473 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3474 &fail_page_alloc.attr);
b2588c4b 3475
d9f7979c
GKH
3476 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3477 &fail_page_alloc.ignore_gfp_reclaim);
3478 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3479 &fail_page_alloc.ignore_gfp_highmem);
3480 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3481
d9f7979c 3482 return 0;
933e312e
AM
3483}
3484
3485late_initcall(fail_page_alloc_debugfs);
3486
3487#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3488
3489#else /* CONFIG_FAIL_PAGE_ALLOC */
3490
af3b8544 3491static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3492{
deaf386e 3493 return false;
933e312e
AM
3494}
3495
3496#endif /* CONFIG_FAIL_PAGE_ALLOC */
3497
af3b8544
BP
3498static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3499{
3500 return __should_fail_alloc_page(gfp_mask, order);
3501}
3502ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3503
f27ce0e1
JK
3504static inline long __zone_watermark_unusable_free(struct zone *z,
3505 unsigned int order, unsigned int alloc_flags)
3506{
3507 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3508 long unusable_free = (1 << order) - 1;
3509
3510 /*
3511 * If the caller does not have rights to ALLOC_HARDER then subtract
3512 * the high-atomic reserves. This will over-estimate the size of the
3513 * atomic reserve but it avoids a search.
3514 */
3515 if (likely(!alloc_harder))
3516 unusable_free += z->nr_reserved_highatomic;
3517
3518#ifdef CONFIG_CMA
3519 /* If allocation can't use CMA areas don't use free CMA pages */
3520 if (!(alloc_flags & ALLOC_CMA))
3521 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3522#endif
3523
3524 return unusable_free;
3525}
3526
1da177e4 3527/*
97a16fc8
MG
3528 * Return true if free base pages are above 'mark'. For high-order checks it
3529 * will return true of the order-0 watermark is reached and there is at least
3530 * one free page of a suitable size. Checking now avoids taking the zone lock
3531 * to check in the allocation paths if no pages are free.
1da177e4 3532 */
86a294a8 3533bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3534 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3535 long free_pages)
1da177e4 3536{
d23ad423 3537 long min = mark;
1da177e4 3538 int o;
cd04ae1e 3539 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3540
0aaa29a5 3541 /* free_pages may go negative - that's OK */
f27ce0e1 3542 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3543
7fb1d9fc 3544 if (alloc_flags & ALLOC_HIGH)
1da177e4 3545 min -= min / 2;
0aaa29a5 3546
f27ce0e1 3547 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3548 /*
3549 * OOM victims can try even harder than normal ALLOC_HARDER
3550 * users on the grounds that it's definitely going to be in
3551 * the exit path shortly and free memory. Any allocation it
3552 * makes during the free path will be small and short-lived.
3553 */
3554 if (alloc_flags & ALLOC_OOM)
3555 min -= min / 2;
3556 else
3557 min -= min / 4;
3558 }
3559
97a16fc8
MG
3560 /*
3561 * Check watermarks for an order-0 allocation request. If these
3562 * are not met, then a high-order request also cannot go ahead
3563 * even if a suitable page happened to be free.
3564 */
97a225e6 3565 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3566 return false;
1da177e4 3567
97a16fc8
MG
3568 /* If this is an order-0 request then the watermark is fine */
3569 if (!order)
3570 return true;
3571
3572 /* For a high-order request, check at least one suitable page is free */
3573 for (o = order; o < MAX_ORDER; o++) {
3574 struct free_area *area = &z->free_area[o];
3575 int mt;
3576
3577 if (!area->nr_free)
3578 continue;
3579
97a16fc8 3580 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3581 if (!free_area_empty(area, mt))
97a16fc8
MG
3582 return true;
3583 }
3584
3585#ifdef CONFIG_CMA
d883c6cf 3586 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3587 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3588 return true;
d883c6cf 3589 }
97a16fc8 3590#endif
76089d00 3591 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3592 return true;
1da177e4 3593 }
97a16fc8 3594 return false;
88f5acf8
MG
3595}
3596
7aeb09f9 3597bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3598 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3599{
97a225e6 3600 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3601 zone_page_state(z, NR_FREE_PAGES));
3602}
3603
48ee5f36 3604static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3605 unsigned long mark, int highest_zoneidx,
f80b08fc 3606 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3607{
f27ce0e1 3608 long free_pages;
d883c6cf 3609
f27ce0e1 3610 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3611
3612 /*
3613 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3614 * need to be calculated.
48ee5f36 3615 */
f27ce0e1
JK
3616 if (!order) {
3617 long fast_free;
3618
3619 fast_free = free_pages;
3620 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3621 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3622 return true;
3623 }
48ee5f36 3624
f80b08fc
CTR
3625 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3626 free_pages))
3627 return true;
3628 /*
3629 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3630 * when checking the min watermark. The min watermark is the
3631 * point where boosting is ignored so that kswapd is woken up
3632 * when below the low watermark.
3633 */
3634 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3635 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3636 mark = z->_watermark[WMARK_MIN];
3637 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3638 alloc_flags, free_pages);
3639 }
3640
3641 return false;
48ee5f36
MG
3642}
3643
7aeb09f9 3644bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3645 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3646{
3647 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3648
3649 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3650 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3651
97a225e6 3652 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3653 free_pages);
1da177e4
LT
3654}
3655
9276b1bc 3656#ifdef CONFIG_NUMA
957f822a
DR
3657static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3658{
e02dc017 3659 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3660 node_reclaim_distance;
957f822a 3661}
9276b1bc 3662#else /* CONFIG_NUMA */
957f822a
DR
3663static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3664{
3665 return true;
3666}
9276b1bc
PJ
3667#endif /* CONFIG_NUMA */
3668
6bb15450
MG
3669/*
3670 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3671 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3672 * premature use of a lower zone may cause lowmem pressure problems that
3673 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3674 * probably too small. It only makes sense to spread allocations to avoid
3675 * fragmentation between the Normal and DMA32 zones.
3676 */
3677static inline unsigned int
0a79cdad 3678alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3679{
736838e9 3680 unsigned int alloc_flags;
0a79cdad 3681
736838e9
MN
3682 /*
3683 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3684 * to save a branch.
3685 */
3686 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3687
3688#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3689 if (!zone)
3690 return alloc_flags;
3691
6bb15450 3692 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3693 return alloc_flags;
6bb15450
MG
3694
3695 /*
3696 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3697 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3698 * on UMA that if Normal is populated then so is DMA32.
3699 */
3700 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3701 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3702 return alloc_flags;
6bb15450 3703
8118b82e 3704 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3705#endif /* CONFIG_ZONE_DMA32 */
3706 return alloc_flags;
6bb15450 3707}
6bb15450 3708
8510e69c
JK
3709static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3710 unsigned int alloc_flags)
3711{
3712#ifdef CONFIG_CMA
3713 unsigned int pflags = current->flags;
3714
3715 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3716 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3717 alloc_flags |= ALLOC_CMA;
3718
3719#endif
3720 return alloc_flags;
3721}
3722
7fb1d9fc 3723/*
0798e519 3724 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3725 * a page.
3726 */
3727static struct page *
a9263751
VB
3728get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3729 const struct alloc_context *ac)
753ee728 3730{
6bb15450 3731 struct zoneref *z;
5117f45d 3732 struct zone *zone;
3b8c0be4 3733 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3734 bool no_fallback;
3b8c0be4 3735
6bb15450 3736retry:
7fb1d9fc 3737 /*
9276b1bc 3738 * Scan zonelist, looking for a zone with enough free.
344736f2 3739 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3740 */
6bb15450
MG
3741 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3742 z = ac->preferred_zoneref;
97a225e6
JK
3743 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3744 ac->highest_zoneidx, ac->nodemask) {
be06af00 3745 struct page *page;
e085dbc5
JW
3746 unsigned long mark;
3747
664eedde
MG
3748 if (cpusets_enabled() &&
3749 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3750 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3751 continue;
a756cf59
JW
3752 /*
3753 * When allocating a page cache page for writing, we
281e3726
MG
3754 * want to get it from a node that is within its dirty
3755 * limit, such that no single node holds more than its
a756cf59 3756 * proportional share of globally allowed dirty pages.
281e3726 3757 * The dirty limits take into account the node's
a756cf59
JW
3758 * lowmem reserves and high watermark so that kswapd
3759 * should be able to balance it without having to
3760 * write pages from its LRU list.
3761 *
a756cf59 3762 * XXX: For now, allow allocations to potentially
281e3726 3763 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3764 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3765 * which is important when on a NUMA setup the allowed
281e3726 3766 * nodes are together not big enough to reach the
a756cf59 3767 * global limit. The proper fix for these situations
281e3726 3768 * will require awareness of nodes in the
a756cf59
JW
3769 * dirty-throttling and the flusher threads.
3770 */
3b8c0be4
MG
3771 if (ac->spread_dirty_pages) {
3772 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3773 continue;
3774
3775 if (!node_dirty_ok(zone->zone_pgdat)) {
3776 last_pgdat_dirty_limit = zone->zone_pgdat;
3777 continue;
3778 }
3779 }
7fb1d9fc 3780
6bb15450
MG
3781 if (no_fallback && nr_online_nodes > 1 &&
3782 zone != ac->preferred_zoneref->zone) {
3783 int local_nid;
3784
3785 /*
3786 * If moving to a remote node, retry but allow
3787 * fragmenting fallbacks. Locality is more important
3788 * than fragmentation avoidance.
3789 */
3790 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3791 if (zone_to_nid(zone) != local_nid) {
3792 alloc_flags &= ~ALLOC_NOFRAGMENT;
3793 goto retry;
3794 }
3795 }
3796
a9214443 3797 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3798 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3799 ac->highest_zoneidx, alloc_flags,
3800 gfp_mask)) {
fa5e084e
MG
3801 int ret;
3802
c9e97a19
PT
3803#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3804 /*
3805 * Watermark failed for this zone, but see if we can
3806 * grow this zone if it contains deferred pages.
3807 */
3808 if (static_branch_unlikely(&deferred_pages)) {
3809 if (_deferred_grow_zone(zone, order))
3810 goto try_this_zone;
3811 }
3812#endif
5dab2911
MG
3813 /* Checked here to keep the fast path fast */
3814 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3815 if (alloc_flags & ALLOC_NO_WATERMARKS)
3816 goto try_this_zone;
3817
a5f5f91d 3818 if (node_reclaim_mode == 0 ||
c33d6c06 3819 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3820 continue;
3821
a5f5f91d 3822 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3823 switch (ret) {
a5f5f91d 3824 case NODE_RECLAIM_NOSCAN:
fa5e084e 3825 /* did not scan */
cd38b115 3826 continue;
a5f5f91d 3827 case NODE_RECLAIM_FULL:
fa5e084e 3828 /* scanned but unreclaimable */
cd38b115 3829 continue;
fa5e084e
MG
3830 default:
3831 /* did we reclaim enough */
fed2719e 3832 if (zone_watermark_ok(zone, order, mark,
97a225e6 3833 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3834 goto try_this_zone;
3835
fed2719e 3836 continue;
0798e519 3837 }
7fb1d9fc
RS
3838 }
3839
fa5e084e 3840try_this_zone:
066b2393 3841 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3842 gfp_mask, alloc_flags, ac->migratetype);
75379191 3843 if (page) {
479f854a 3844 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3845
3846 /*
3847 * If this is a high-order atomic allocation then check
3848 * if the pageblock should be reserved for the future
3849 */
3850 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3851 reserve_highatomic_pageblock(page, zone, order);
3852
75379191 3853 return page;
c9e97a19
PT
3854 } else {
3855#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3856 /* Try again if zone has deferred pages */
3857 if (static_branch_unlikely(&deferred_pages)) {
3858 if (_deferred_grow_zone(zone, order))
3859 goto try_this_zone;
3860 }
3861#endif
75379191 3862 }
54a6eb5c 3863 }
9276b1bc 3864
6bb15450
MG
3865 /*
3866 * It's possible on a UMA machine to get through all zones that are
3867 * fragmented. If avoiding fragmentation, reset and try again.
3868 */
3869 if (no_fallback) {
3870 alloc_flags &= ~ALLOC_NOFRAGMENT;
3871 goto retry;
3872 }
3873
4ffeaf35 3874 return NULL;
753ee728
MH
3875}
3876
9af744d7 3877static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3878{
a238ab5b 3879 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3880
3881 /*
3882 * This documents exceptions given to allocations in certain
3883 * contexts that are allowed to allocate outside current's set
3884 * of allowed nodes.
3885 */
3886 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3887 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3888 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3889 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3890 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3891 filter &= ~SHOW_MEM_FILTER_NODES;
3892
9af744d7 3893 show_mem(filter, nodemask);
aa187507
MH
3894}
3895
a8e99259 3896void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3897{
3898 struct va_format vaf;
3899 va_list args;
1be334e5 3900 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3901
0f7896f1 3902 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3903 return;
3904
7877cdcc
MH
3905 va_start(args, fmt);
3906 vaf.fmt = fmt;
3907 vaf.va = &args;
ef8444ea 3908 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3909 current->comm, &vaf, gfp_mask, &gfp_mask,
3910 nodemask_pr_args(nodemask));
7877cdcc 3911 va_end(args);
3ee9a4f0 3912
a8e99259 3913 cpuset_print_current_mems_allowed();
ef8444ea 3914 pr_cont("\n");
a238ab5b 3915 dump_stack();
685dbf6f 3916 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3917}
3918
6c18ba7a
MH
3919static inline struct page *
3920__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3921 unsigned int alloc_flags,
3922 const struct alloc_context *ac)
3923{
3924 struct page *page;
3925
3926 page = get_page_from_freelist(gfp_mask, order,
3927 alloc_flags|ALLOC_CPUSET, ac);
3928 /*
3929 * fallback to ignore cpuset restriction if our nodes
3930 * are depleted
3931 */
3932 if (!page)
3933 page = get_page_from_freelist(gfp_mask, order,
3934 alloc_flags, ac);
3935
3936 return page;
3937}
3938
11e33f6a
MG
3939static inline struct page *
3940__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3941 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3942{
6e0fc46d
DR
3943 struct oom_control oc = {
3944 .zonelist = ac->zonelist,
3945 .nodemask = ac->nodemask,
2a966b77 3946 .memcg = NULL,
6e0fc46d
DR
3947 .gfp_mask = gfp_mask,
3948 .order = order,
6e0fc46d 3949 };
11e33f6a
MG
3950 struct page *page;
3951
9879de73
JW
3952 *did_some_progress = 0;
3953
9879de73 3954 /*
dc56401f
JW
3955 * Acquire the oom lock. If that fails, somebody else is
3956 * making progress for us.
9879de73 3957 */
dc56401f 3958 if (!mutex_trylock(&oom_lock)) {
9879de73 3959 *did_some_progress = 1;
11e33f6a 3960 schedule_timeout_uninterruptible(1);
1da177e4
LT
3961 return NULL;
3962 }
6b1de916 3963
11e33f6a
MG
3964 /*
3965 * Go through the zonelist yet one more time, keep very high watermark
3966 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3967 * we're still under heavy pressure. But make sure that this reclaim
3968 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3969 * allocation which will never fail due to oom_lock already held.
11e33f6a 3970 */
e746bf73
TH
3971 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3972 ~__GFP_DIRECT_RECLAIM, order,
3973 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3974 if (page)
11e33f6a
MG
3975 goto out;
3976
06ad276a
MH
3977 /* Coredumps can quickly deplete all memory reserves */
3978 if (current->flags & PF_DUMPCORE)
3979 goto out;
3980 /* The OOM killer will not help higher order allocs */
3981 if (order > PAGE_ALLOC_COSTLY_ORDER)
3982 goto out;
dcda9b04
MH
3983 /*
3984 * We have already exhausted all our reclaim opportunities without any
3985 * success so it is time to admit defeat. We will skip the OOM killer
3986 * because it is very likely that the caller has a more reasonable
3987 * fallback than shooting a random task.
3988 */
3989 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3990 goto out;
06ad276a 3991 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3992 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3993 goto out;
3994 if (pm_suspended_storage())
3995 goto out;
3996 /*
3997 * XXX: GFP_NOFS allocations should rather fail than rely on
3998 * other request to make a forward progress.
3999 * We are in an unfortunate situation where out_of_memory cannot
4000 * do much for this context but let's try it to at least get
4001 * access to memory reserved if the current task is killed (see
4002 * out_of_memory). Once filesystems are ready to handle allocation
4003 * failures more gracefully we should just bail out here.
4004 */
4005
4006 /* The OOM killer may not free memory on a specific node */
4007 if (gfp_mask & __GFP_THISNODE)
4008 goto out;
3da88fb3 4009
3c2c6488 4010 /* Exhausted what can be done so it's blame time */
5020e285 4011 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4012 *did_some_progress = 1;
5020e285 4013
6c18ba7a
MH
4014 /*
4015 * Help non-failing allocations by giving them access to memory
4016 * reserves
4017 */
4018 if (gfp_mask & __GFP_NOFAIL)
4019 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4020 ALLOC_NO_WATERMARKS, ac);
5020e285 4021 }
11e33f6a 4022out:
dc56401f 4023 mutex_unlock(&oom_lock);
11e33f6a
MG
4024 return page;
4025}
4026
33c2d214
MH
4027/*
4028 * Maximum number of compaction retries wit a progress before OOM
4029 * killer is consider as the only way to move forward.
4030 */
4031#define MAX_COMPACT_RETRIES 16
4032
56de7263
MG
4033#ifdef CONFIG_COMPACTION
4034/* Try memory compaction for high-order allocations before reclaim */
4035static struct page *
4036__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4037 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4038 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4039{
5e1f0f09 4040 struct page *page = NULL;
eb414681 4041 unsigned long pflags;
499118e9 4042 unsigned int noreclaim_flag;
53853e2d
VB
4043
4044 if (!order)
66199712 4045 return NULL;
66199712 4046
eb414681 4047 psi_memstall_enter(&pflags);
499118e9 4048 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4049
c5d01d0d 4050 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4051 prio, &page);
eb414681 4052
499118e9 4053 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4054 psi_memstall_leave(&pflags);
56de7263 4055
98dd3b48
VB
4056 /*
4057 * At least in one zone compaction wasn't deferred or skipped, so let's
4058 * count a compaction stall
4059 */
4060 count_vm_event(COMPACTSTALL);
8fb74b9f 4061
5e1f0f09
MG
4062 /* Prep a captured page if available */
4063 if (page)
4064 prep_new_page(page, order, gfp_mask, alloc_flags);
4065
4066 /* Try get a page from the freelist if available */
4067 if (!page)
4068 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4069
98dd3b48
VB
4070 if (page) {
4071 struct zone *zone = page_zone(page);
53853e2d 4072
98dd3b48
VB
4073 zone->compact_blockskip_flush = false;
4074 compaction_defer_reset(zone, order, true);
4075 count_vm_event(COMPACTSUCCESS);
4076 return page;
4077 }
56de7263 4078
98dd3b48
VB
4079 /*
4080 * It's bad if compaction run occurs and fails. The most likely reason
4081 * is that pages exist, but not enough to satisfy watermarks.
4082 */
4083 count_vm_event(COMPACTFAIL);
66199712 4084
98dd3b48 4085 cond_resched();
56de7263
MG
4086
4087 return NULL;
4088}
33c2d214 4089
3250845d
VB
4090static inline bool
4091should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4092 enum compact_result compact_result,
4093 enum compact_priority *compact_priority,
d9436498 4094 int *compaction_retries)
3250845d
VB
4095{
4096 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4097 int min_priority;
65190cff
MH
4098 bool ret = false;
4099 int retries = *compaction_retries;
4100 enum compact_priority priority = *compact_priority;
3250845d
VB
4101
4102 if (!order)
4103 return false;
4104
d9436498
VB
4105 if (compaction_made_progress(compact_result))
4106 (*compaction_retries)++;
4107
3250845d
VB
4108 /*
4109 * compaction considers all the zone as desperately out of memory
4110 * so it doesn't really make much sense to retry except when the
4111 * failure could be caused by insufficient priority
4112 */
d9436498
VB
4113 if (compaction_failed(compact_result))
4114 goto check_priority;
3250845d 4115
49433085
VB
4116 /*
4117 * compaction was skipped because there are not enough order-0 pages
4118 * to work with, so we retry only if it looks like reclaim can help.
4119 */
4120 if (compaction_needs_reclaim(compact_result)) {
4121 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4122 goto out;
4123 }
4124
3250845d
VB
4125 /*
4126 * make sure the compaction wasn't deferred or didn't bail out early
4127 * due to locks contention before we declare that we should give up.
49433085
VB
4128 * But the next retry should use a higher priority if allowed, so
4129 * we don't just keep bailing out endlessly.
3250845d 4130 */
65190cff 4131 if (compaction_withdrawn(compact_result)) {
49433085 4132 goto check_priority;
65190cff 4133 }
3250845d
VB
4134
4135 /*
dcda9b04 4136 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4137 * costly ones because they are de facto nofail and invoke OOM
4138 * killer to move on while costly can fail and users are ready
4139 * to cope with that. 1/4 retries is rather arbitrary but we
4140 * would need much more detailed feedback from compaction to
4141 * make a better decision.
4142 */
4143 if (order > PAGE_ALLOC_COSTLY_ORDER)
4144 max_retries /= 4;
65190cff
MH
4145 if (*compaction_retries <= max_retries) {
4146 ret = true;
4147 goto out;
4148 }
3250845d 4149
d9436498
VB
4150 /*
4151 * Make sure there are attempts at the highest priority if we exhausted
4152 * all retries or failed at the lower priorities.
4153 */
4154check_priority:
c2033b00
VB
4155 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4156 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4157
c2033b00 4158 if (*compact_priority > min_priority) {
d9436498
VB
4159 (*compact_priority)--;
4160 *compaction_retries = 0;
65190cff 4161 ret = true;
d9436498 4162 }
65190cff
MH
4163out:
4164 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4165 return ret;
3250845d 4166}
56de7263
MG
4167#else
4168static inline struct page *
4169__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4170 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4171 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4172{
33c2d214 4173 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4174 return NULL;
4175}
33c2d214
MH
4176
4177static inline bool
86a294a8
MH
4178should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4179 enum compact_result compact_result,
a5508cd8 4180 enum compact_priority *compact_priority,
d9436498 4181 int *compaction_retries)
33c2d214 4182{
31e49bfd
MH
4183 struct zone *zone;
4184 struct zoneref *z;
4185
4186 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4187 return false;
4188
4189 /*
4190 * There are setups with compaction disabled which would prefer to loop
4191 * inside the allocator rather than hit the oom killer prematurely.
4192 * Let's give them a good hope and keep retrying while the order-0
4193 * watermarks are OK.
4194 */
97a225e6
JK
4195 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4196 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4197 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4198 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4199 return true;
4200 }
33c2d214
MH
4201 return false;
4202}
3250845d 4203#endif /* CONFIG_COMPACTION */
56de7263 4204
d92a8cfc 4205#ifdef CONFIG_LOCKDEP
93781325 4206static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4207 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4208
4209static bool __need_fs_reclaim(gfp_t gfp_mask)
4210{
4211 gfp_mask = current_gfp_context(gfp_mask);
4212
4213 /* no reclaim without waiting on it */
4214 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4215 return false;
4216
4217 /* this guy won't enter reclaim */
2e517d68 4218 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4219 return false;
4220
4221 /* We're only interested __GFP_FS allocations for now */
4222 if (!(gfp_mask & __GFP_FS))
4223 return false;
4224
4225 if (gfp_mask & __GFP_NOLOCKDEP)
4226 return false;
4227
4228 return true;
4229}
4230
93781325
OS
4231void __fs_reclaim_acquire(void)
4232{
4233 lock_map_acquire(&__fs_reclaim_map);
4234}
4235
4236void __fs_reclaim_release(void)
4237{
4238 lock_map_release(&__fs_reclaim_map);
4239}
4240
d92a8cfc
PZ
4241void fs_reclaim_acquire(gfp_t gfp_mask)
4242{
4243 if (__need_fs_reclaim(gfp_mask))
93781325 4244 __fs_reclaim_acquire();
d92a8cfc
PZ
4245}
4246EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4247
4248void fs_reclaim_release(gfp_t gfp_mask)
4249{
4250 if (__need_fs_reclaim(gfp_mask))
93781325 4251 __fs_reclaim_release();
d92a8cfc
PZ
4252}
4253EXPORT_SYMBOL_GPL(fs_reclaim_release);
4254#endif
4255
bba90710
MS
4256/* Perform direct synchronous page reclaim */
4257static int
a9263751
VB
4258__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4259 const struct alloc_context *ac)
11e33f6a 4260{
bba90710 4261 int progress;
499118e9 4262 unsigned int noreclaim_flag;
eb414681 4263 unsigned long pflags;
11e33f6a
MG
4264
4265 cond_resched();
4266
4267 /* We now go into synchronous reclaim */
4268 cpuset_memory_pressure_bump();
eb414681 4269 psi_memstall_enter(&pflags);
d92a8cfc 4270 fs_reclaim_acquire(gfp_mask);
93781325 4271 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4272
a9263751
VB
4273 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4274 ac->nodemask);
11e33f6a 4275
499118e9 4276 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4277 fs_reclaim_release(gfp_mask);
eb414681 4278 psi_memstall_leave(&pflags);
11e33f6a
MG
4279
4280 cond_resched();
4281
bba90710
MS
4282 return progress;
4283}
4284
4285/* The really slow allocator path where we enter direct reclaim */
4286static inline struct page *
4287__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4288 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4289 unsigned long *did_some_progress)
bba90710
MS
4290{
4291 struct page *page = NULL;
4292 bool drained = false;
4293
a9263751 4294 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4295 if (unlikely(!(*did_some_progress)))
4296 return NULL;
11e33f6a 4297
9ee493ce 4298retry:
31a6c190 4299 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4300
4301 /*
4302 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4303 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4304 * Shrink them and try again
9ee493ce
MG
4305 */
4306 if (!page && !drained) {
29fac03b 4307 unreserve_highatomic_pageblock(ac, false);
93481ff0 4308 drain_all_pages(NULL);
9ee493ce
MG
4309 drained = true;
4310 goto retry;
4311 }
4312
11e33f6a
MG
4313 return page;
4314}
4315
5ecd9d40
DR
4316static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4317 const struct alloc_context *ac)
3a025760
JW
4318{
4319 struct zoneref *z;
4320 struct zone *zone;
e1a55637 4321 pg_data_t *last_pgdat = NULL;
97a225e6 4322 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4323
97a225e6 4324 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4325 ac->nodemask) {
e1a55637 4326 if (last_pgdat != zone->zone_pgdat)
97a225e6 4327 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4328 last_pgdat = zone->zone_pgdat;
4329 }
3a025760
JW
4330}
4331
c603844b 4332static inline unsigned int
341ce06f
PZ
4333gfp_to_alloc_flags(gfp_t gfp_mask)
4334{
c603844b 4335 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4336
736838e9
MN
4337 /*
4338 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4339 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4340 * to save two branches.
4341 */
e6223a3b 4342 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4343 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4344
341ce06f
PZ
4345 /*
4346 * The caller may dip into page reserves a bit more if the caller
4347 * cannot run direct reclaim, or if the caller has realtime scheduling
4348 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4349 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4350 */
736838e9
MN
4351 alloc_flags |= (__force int)
4352 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4353
d0164adc 4354 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4355 /*
b104a35d
DR
4356 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4357 * if it can't schedule.
5c3240d9 4358 */
b104a35d 4359 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4360 alloc_flags |= ALLOC_HARDER;
523b9458 4361 /*
b104a35d 4362 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4363 * comment for __cpuset_node_allowed().
523b9458 4364 */
341ce06f 4365 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4366 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4367 alloc_flags |= ALLOC_HARDER;
4368
8510e69c
JK
4369 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4370
341ce06f
PZ
4371 return alloc_flags;
4372}
4373
cd04ae1e 4374static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4375{
cd04ae1e
MH
4376 if (!tsk_is_oom_victim(tsk))
4377 return false;
4378
4379 /*
4380 * !MMU doesn't have oom reaper so give access to memory reserves
4381 * only to the thread with TIF_MEMDIE set
4382 */
4383 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4384 return false;
4385
cd04ae1e
MH
4386 return true;
4387}
4388
4389/*
4390 * Distinguish requests which really need access to full memory
4391 * reserves from oom victims which can live with a portion of it
4392 */
4393static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4394{
4395 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4396 return 0;
31a6c190 4397 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4398 return ALLOC_NO_WATERMARKS;
31a6c190 4399 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4400 return ALLOC_NO_WATERMARKS;
4401 if (!in_interrupt()) {
4402 if (current->flags & PF_MEMALLOC)
4403 return ALLOC_NO_WATERMARKS;
4404 else if (oom_reserves_allowed(current))
4405 return ALLOC_OOM;
4406 }
31a6c190 4407
cd04ae1e
MH
4408 return 0;
4409}
4410
4411bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4412{
4413 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4414}
4415
0a0337e0
MH
4416/*
4417 * Checks whether it makes sense to retry the reclaim to make a forward progress
4418 * for the given allocation request.
491d79ae
JW
4419 *
4420 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4421 * without success, or when we couldn't even meet the watermark if we
4422 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4423 *
4424 * Returns true if a retry is viable or false to enter the oom path.
4425 */
4426static inline bool
4427should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4428 struct alloc_context *ac, int alloc_flags,
423b452e 4429 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4430{
4431 struct zone *zone;
4432 struct zoneref *z;
15f570bf 4433 bool ret = false;
0a0337e0 4434
423b452e
VB
4435 /*
4436 * Costly allocations might have made a progress but this doesn't mean
4437 * their order will become available due to high fragmentation so
4438 * always increment the no progress counter for them
4439 */
4440 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4441 *no_progress_loops = 0;
4442 else
4443 (*no_progress_loops)++;
4444
0a0337e0
MH
4445 /*
4446 * Make sure we converge to OOM if we cannot make any progress
4447 * several times in the row.
4448 */
04c8716f
MK
4449 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4450 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4451 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4452 }
0a0337e0 4453
bca67592
MG
4454 /*
4455 * Keep reclaiming pages while there is a chance this will lead
4456 * somewhere. If none of the target zones can satisfy our allocation
4457 * request even if all reclaimable pages are considered then we are
4458 * screwed and have to go OOM.
0a0337e0 4459 */
97a225e6
JK
4460 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4461 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4462 unsigned long available;
ede37713 4463 unsigned long reclaimable;
d379f01d
MH
4464 unsigned long min_wmark = min_wmark_pages(zone);
4465 bool wmark;
0a0337e0 4466
5a1c84b4 4467 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4468 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4469
4470 /*
491d79ae
JW
4471 * Would the allocation succeed if we reclaimed all
4472 * reclaimable pages?
0a0337e0 4473 */
d379f01d 4474 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4475 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4476 trace_reclaim_retry_zone(z, order, reclaimable,
4477 available, min_wmark, *no_progress_loops, wmark);
4478 if (wmark) {
ede37713
MH
4479 /*
4480 * If we didn't make any progress and have a lot of
4481 * dirty + writeback pages then we should wait for
4482 * an IO to complete to slow down the reclaim and
4483 * prevent from pre mature OOM
4484 */
4485 if (!did_some_progress) {
11fb9989 4486 unsigned long write_pending;
ede37713 4487
5a1c84b4
MG
4488 write_pending = zone_page_state_snapshot(zone,
4489 NR_ZONE_WRITE_PENDING);
ede37713 4490
11fb9989 4491 if (2 * write_pending > reclaimable) {
ede37713
MH
4492 congestion_wait(BLK_RW_ASYNC, HZ/10);
4493 return true;
4494 }
4495 }
5a1c84b4 4496
15f570bf
MH
4497 ret = true;
4498 goto out;
0a0337e0
MH
4499 }
4500 }
4501
15f570bf
MH
4502out:
4503 /*
4504 * Memory allocation/reclaim might be called from a WQ context and the
4505 * current implementation of the WQ concurrency control doesn't
4506 * recognize that a particular WQ is congested if the worker thread is
4507 * looping without ever sleeping. Therefore we have to do a short sleep
4508 * here rather than calling cond_resched().
4509 */
4510 if (current->flags & PF_WQ_WORKER)
4511 schedule_timeout_uninterruptible(1);
4512 else
4513 cond_resched();
4514 return ret;
0a0337e0
MH
4515}
4516
902b6281
VB
4517static inline bool
4518check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4519{
4520 /*
4521 * It's possible that cpuset's mems_allowed and the nodemask from
4522 * mempolicy don't intersect. This should be normally dealt with by
4523 * policy_nodemask(), but it's possible to race with cpuset update in
4524 * such a way the check therein was true, and then it became false
4525 * before we got our cpuset_mems_cookie here.
4526 * This assumes that for all allocations, ac->nodemask can come only
4527 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4528 * when it does not intersect with the cpuset restrictions) or the
4529 * caller can deal with a violated nodemask.
4530 */
4531 if (cpusets_enabled() && ac->nodemask &&
4532 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4533 ac->nodemask = NULL;
4534 return true;
4535 }
4536
4537 /*
4538 * When updating a task's mems_allowed or mempolicy nodemask, it is
4539 * possible to race with parallel threads in such a way that our
4540 * allocation can fail while the mask is being updated. If we are about
4541 * to fail, check if the cpuset changed during allocation and if so,
4542 * retry.
4543 */
4544 if (read_mems_allowed_retry(cpuset_mems_cookie))
4545 return true;
4546
4547 return false;
4548}
4549
11e33f6a
MG
4550static inline struct page *
4551__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4552 struct alloc_context *ac)
11e33f6a 4553{
d0164adc 4554 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4555 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4556 struct page *page = NULL;
c603844b 4557 unsigned int alloc_flags;
11e33f6a 4558 unsigned long did_some_progress;
5ce9bfef 4559 enum compact_priority compact_priority;
c5d01d0d 4560 enum compact_result compact_result;
5ce9bfef
VB
4561 int compaction_retries;
4562 int no_progress_loops;
5ce9bfef 4563 unsigned int cpuset_mems_cookie;
cd04ae1e 4564 int reserve_flags;
1da177e4 4565
d0164adc
MG
4566 /*
4567 * We also sanity check to catch abuse of atomic reserves being used by
4568 * callers that are not in atomic context.
4569 */
4570 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4571 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4572 gfp_mask &= ~__GFP_ATOMIC;
4573
5ce9bfef
VB
4574retry_cpuset:
4575 compaction_retries = 0;
4576 no_progress_loops = 0;
4577 compact_priority = DEF_COMPACT_PRIORITY;
4578 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4579
4580 /*
4581 * The fast path uses conservative alloc_flags to succeed only until
4582 * kswapd needs to be woken up, and to avoid the cost of setting up
4583 * alloc_flags precisely. So we do that now.
4584 */
4585 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4586
e47483bc
VB
4587 /*
4588 * We need to recalculate the starting point for the zonelist iterator
4589 * because we might have used different nodemask in the fast path, or
4590 * there was a cpuset modification and we are retrying - otherwise we
4591 * could end up iterating over non-eligible zones endlessly.
4592 */
4593 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4594 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4595 if (!ac->preferred_zoneref->zone)
4596 goto nopage;
4597
0a79cdad 4598 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4599 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4600
4601 /*
4602 * The adjusted alloc_flags might result in immediate success, so try
4603 * that first
4604 */
4605 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4606 if (page)
4607 goto got_pg;
4608
a8161d1e
VB
4609 /*
4610 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4611 * that we have enough base pages and don't need to reclaim. For non-
4612 * movable high-order allocations, do that as well, as compaction will
4613 * try prevent permanent fragmentation by migrating from blocks of the
4614 * same migratetype.
4615 * Don't try this for allocations that are allowed to ignore
4616 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4617 */
282722b0
VB
4618 if (can_direct_reclaim &&
4619 (costly_order ||
4620 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4621 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4622 page = __alloc_pages_direct_compact(gfp_mask, order,
4623 alloc_flags, ac,
a5508cd8 4624 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4625 &compact_result);
4626 if (page)
4627 goto got_pg;
4628
cc638f32
VB
4629 /*
4630 * Checks for costly allocations with __GFP_NORETRY, which
4631 * includes some THP page fault allocations
4632 */
4633 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4634 /*
4635 * If allocating entire pageblock(s) and compaction
4636 * failed because all zones are below low watermarks
4637 * or is prohibited because it recently failed at this
3f36d866
DR
4638 * order, fail immediately unless the allocator has
4639 * requested compaction and reclaim retry.
b39d0ee2
DR
4640 *
4641 * Reclaim is
4642 * - potentially very expensive because zones are far
4643 * below their low watermarks or this is part of very
4644 * bursty high order allocations,
4645 * - not guaranteed to help because isolate_freepages()
4646 * may not iterate over freed pages as part of its
4647 * linear scan, and
4648 * - unlikely to make entire pageblocks free on its
4649 * own.
4650 */
4651 if (compact_result == COMPACT_SKIPPED ||
4652 compact_result == COMPACT_DEFERRED)
4653 goto nopage;
a8161d1e 4654
a8161d1e 4655 /*
3eb2771b
VB
4656 * Looks like reclaim/compaction is worth trying, but
4657 * sync compaction could be very expensive, so keep
25160354 4658 * using async compaction.
a8161d1e 4659 */
a5508cd8 4660 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4661 }
4662 }
23771235 4663
31a6c190 4664retry:
23771235 4665 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4666 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4667 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4668
cd04ae1e
MH
4669 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4670 if (reserve_flags)
8510e69c 4671 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4672
e46e7b77 4673 /*
d6a24df0
VB
4674 * Reset the nodemask and zonelist iterators if memory policies can be
4675 * ignored. These allocations are high priority and system rather than
4676 * user oriented.
e46e7b77 4677 */
cd04ae1e 4678 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4679 ac->nodemask = NULL;
e46e7b77 4680 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4681 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4682 }
4683
23771235 4684 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4685 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4686 if (page)
4687 goto got_pg;
1da177e4 4688
d0164adc 4689 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4690 if (!can_direct_reclaim)
1da177e4
LT
4691 goto nopage;
4692
9a67f648
MH
4693 /* Avoid recursion of direct reclaim */
4694 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4695 goto nopage;
4696
a8161d1e
VB
4697 /* Try direct reclaim and then allocating */
4698 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4699 &did_some_progress);
4700 if (page)
4701 goto got_pg;
4702
4703 /* Try direct compaction and then allocating */
a9263751 4704 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4705 compact_priority, &compact_result);
56de7263
MG
4706 if (page)
4707 goto got_pg;
75f30861 4708
9083905a
JW
4709 /* Do not loop if specifically requested */
4710 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4711 goto nopage;
9083905a 4712
0a0337e0
MH
4713 /*
4714 * Do not retry costly high order allocations unless they are
dcda9b04 4715 * __GFP_RETRY_MAYFAIL
0a0337e0 4716 */
dcda9b04 4717 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4718 goto nopage;
0a0337e0 4719
0a0337e0 4720 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4721 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4722 goto retry;
4723
33c2d214
MH
4724 /*
4725 * It doesn't make any sense to retry for the compaction if the order-0
4726 * reclaim is not able to make any progress because the current
4727 * implementation of the compaction depends on the sufficient amount
4728 * of free memory (see __compaction_suitable)
4729 */
4730 if (did_some_progress > 0 &&
86a294a8 4731 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4732 compact_result, &compact_priority,
d9436498 4733 &compaction_retries))
33c2d214
MH
4734 goto retry;
4735
902b6281
VB
4736
4737 /* Deal with possible cpuset update races before we start OOM killing */
4738 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4739 goto retry_cpuset;
4740
9083905a
JW
4741 /* Reclaim has failed us, start killing things */
4742 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4743 if (page)
4744 goto got_pg;
4745
9a67f648 4746 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4747 if (tsk_is_oom_victim(current) &&
8510e69c 4748 (alloc_flags & ALLOC_OOM ||
c288983d 4749 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4750 goto nopage;
4751
9083905a 4752 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4753 if (did_some_progress) {
4754 no_progress_loops = 0;
9083905a 4755 goto retry;
0a0337e0 4756 }
9083905a 4757
1da177e4 4758nopage:
902b6281
VB
4759 /* Deal with possible cpuset update races before we fail */
4760 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4761 goto retry_cpuset;
4762
9a67f648
MH
4763 /*
4764 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4765 * we always retry
4766 */
4767 if (gfp_mask & __GFP_NOFAIL) {
4768 /*
4769 * All existing users of the __GFP_NOFAIL are blockable, so warn
4770 * of any new users that actually require GFP_NOWAIT
4771 */
4772 if (WARN_ON_ONCE(!can_direct_reclaim))
4773 goto fail;
4774
4775 /*
4776 * PF_MEMALLOC request from this context is rather bizarre
4777 * because we cannot reclaim anything and only can loop waiting
4778 * for somebody to do a work for us
4779 */
4780 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4781
4782 /*
4783 * non failing costly orders are a hard requirement which we
4784 * are not prepared for much so let's warn about these users
4785 * so that we can identify them and convert them to something
4786 * else.
4787 */
4788 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4789
6c18ba7a
MH
4790 /*
4791 * Help non-failing allocations by giving them access to memory
4792 * reserves but do not use ALLOC_NO_WATERMARKS because this
4793 * could deplete whole memory reserves which would just make
4794 * the situation worse
4795 */
4796 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4797 if (page)
4798 goto got_pg;
4799
9a67f648
MH
4800 cond_resched();
4801 goto retry;
4802 }
4803fail:
a8e99259 4804 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4805 "page allocation failure: order:%u", order);
1da177e4 4806got_pg:
072bb0aa 4807 return page;
1da177e4 4808}
11e33f6a 4809
9cd75558 4810static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4811 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4812 struct alloc_context *ac, gfp_t *alloc_mask,
4813 unsigned int *alloc_flags)
11e33f6a 4814{
97a225e6 4815 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4816 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4817 ac->nodemask = nodemask;
01c0bfe0 4818 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4819
682a3385 4820 if (cpusets_enabled()) {
9cd75558 4821 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4822 /*
4823 * When we are in the interrupt context, it is irrelevant
4824 * to the current task context. It means that any node ok.
4825 */
4826 if (!in_interrupt() && !ac->nodemask)
9cd75558 4827 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4828 else
4829 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4830 }
4831
d92a8cfc
PZ
4832 fs_reclaim_acquire(gfp_mask);
4833 fs_reclaim_release(gfp_mask);
11e33f6a 4834
d0164adc 4835 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4836
4837 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4838 return false;
11e33f6a 4839
8510e69c 4840 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4841
9cd75558
MG
4842 return true;
4843}
21bb9bd1 4844
9cd75558 4845/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4846static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4847{
c9ab0c4f 4848 /* Dirty zone balancing only done in the fast path */
9cd75558 4849 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4850
e46e7b77
MG
4851 /*
4852 * The preferred zone is used for statistics but crucially it is
4853 * also used as the starting point for the zonelist iterator. It
4854 * may get reset for allocations that ignore memory policies.
4855 */
9cd75558 4856 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4857 ac->highest_zoneidx, ac->nodemask);
9cd75558
MG
4858}
4859
4860/*
4861 * This is the 'heart' of the zoned buddy allocator.
4862 */
4863struct page *
04ec6264
VB
4864__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4865 nodemask_t *nodemask)
9cd75558
MG
4866{
4867 struct page *page;
4868 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4869 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4870 struct alloc_context ac = { };
4871
c63ae43b
MH
4872 /*
4873 * There are several places where we assume that the order value is sane
4874 * so bail out early if the request is out of bound.
4875 */
4876 if (unlikely(order >= MAX_ORDER)) {
4877 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4878 return NULL;
4879 }
4880
9cd75558 4881 gfp_mask &= gfp_allowed_mask;
f19360f0 4882 alloc_mask = gfp_mask;
04ec6264 4883 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4884 return NULL;
4885
a380b40a 4886 finalise_ac(gfp_mask, &ac);
5bb1b169 4887
6bb15450
MG
4888 /*
4889 * Forbid the first pass from falling back to types that fragment
4890 * memory until all local zones are considered.
4891 */
0a79cdad 4892 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4893
5117f45d 4894 /* First allocation attempt */
a9263751 4895 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4896 if (likely(page))
4897 goto out;
11e33f6a 4898
4fcb0971 4899 /*
7dea19f9
MH
4900 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4901 * resp. GFP_NOIO which has to be inherited for all allocation requests
4902 * from a particular context which has been marked by
4903 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4904 */
7dea19f9 4905 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4906 ac.spread_dirty_pages = false;
23f086f9 4907
4741526b
MG
4908 /*
4909 * Restore the original nodemask if it was potentially replaced with
4910 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4911 */
97ce86f9 4912 ac.nodemask = nodemask;
16096c25 4913
4fcb0971 4914 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4915
4fcb0971 4916out:
c4159a75 4917 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4918 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4919 __free_pages(page, order);
4920 page = NULL;
4949148a
VD
4921 }
4922
4fcb0971
MG
4923 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4924
11e33f6a 4925 return page;
1da177e4 4926}
d239171e 4927EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4928
4929/*
9ea9a680
MH
4930 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4931 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4932 * you need to access high mem.
1da177e4 4933 */
920c7a5d 4934unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4935{
945a1113
AM
4936 struct page *page;
4937
9ea9a680 4938 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4939 if (!page)
4940 return 0;
4941 return (unsigned long) page_address(page);
4942}
1da177e4
LT
4943EXPORT_SYMBOL(__get_free_pages);
4944
920c7a5d 4945unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4946{
945a1113 4947 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4948}
1da177e4
LT
4949EXPORT_SYMBOL(get_zeroed_page);
4950
742aa7fb 4951static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4952{
742aa7fb
AL
4953 if (order == 0) /* Via pcp? */
4954 free_unref_page(page);
4955 else
4956 __free_pages_ok(page, order);
1da177e4
LT
4957}
4958
742aa7fb
AL
4959void __free_pages(struct page *page, unsigned int order)
4960{
4961 if (put_page_testzero(page))
4962 free_the_page(page, order);
4963}
1da177e4
LT
4964EXPORT_SYMBOL(__free_pages);
4965
920c7a5d 4966void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4967{
4968 if (addr != 0) {
725d704e 4969 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4970 __free_pages(virt_to_page((void *)addr), order);
4971 }
4972}
4973
4974EXPORT_SYMBOL(free_pages);
4975
b63ae8ca
AD
4976/*
4977 * Page Fragment:
4978 * An arbitrary-length arbitrary-offset area of memory which resides
4979 * within a 0 or higher order page. Multiple fragments within that page
4980 * are individually refcounted, in the page's reference counter.
4981 *
4982 * The page_frag functions below provide a simple allocation framework for
4983 * page fragments. This is used by the network stack and network device
4984 * drivers to provide a backing region of memory for use as either an
4985 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4986 */
2976db80
AD
4987static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4988 gfp_t gfp_mask)
b63ae8ca
AD
4989{
4990 struct page *page = NULL;
4991 gfp_t gfp = gfp_mask;
4992
4993#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4994 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4995 __GFP_NOMEMALLOC;
4996 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4997 PAGE_FRAG_CACHE_MAX_ORDER);
4998 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4999#endif
5000 if (unlikely(!page))
5001 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5002
5003 nc->va = page ? page_address(page) : NULL;
5004
5005 return page;
5006}
5007
2976db80 5008void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5009{
5010 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5011
742aa7fb
AL
5012 if (page_ref_sub_and_test(page, count))
5013 free_the_page(page, compound_order(page));
44fdffd7 5014}
2976db80 5015EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5016
8c2dd3e4
AD
5017void *page_frag_alloc(struct page_frag_cache *nc,
5018 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5019{
5020 unsigned int size = PAGE_SIZE;
5021 struct page *page;
5022 int offset;
5023
5024 if (unlikely(!nc->va)) {
5025refill:
2976db80 5026 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5027 if (!page)
5028 return NULL;
5029
5030#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5031 /* if size can vary use size else just use PAGE_SIZE */
5032 size = nc->size;
5033#endif
5034 /* Even if we own the page, we do not use atomic_set().
5035 * This would break get_page_unless_zero() users.
5036 */
86447726 5037 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5038
5039 /* reset page count bias and offset to start of new frag */
2f064f34 5040 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5041 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5042 nc->offset = size;
5043 }
5044
5045 offset = nc->offset - fragsz;
5046 if (unlikely(offset < 0)) {
5047 page = virt_to_page(nc->va);
5048
fe896d18 5049 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5050 goto refill;
5051
5052#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5053 /* if size can vary use size else just use PAGE_SIZE */
5054 size = nc->size;
5055#endif
5056 /* OK, page count is 0, we can safely set it */
86447726 5057 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5058
5059 /* reset page count bias and offset to start of new frag */
86447726 5060 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5061 offset = size - fragsz;
5062 }
5063
5064 nc->pagecnt_bias--;
5065 nc->offset = offset;
5066
5067 return nc->va + offset;
5068}
8c2dd3e4 5069EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5070
5071/*
5072 * Frees a page fragment allocated out of either a compound or order 0 page.
5073 */
8c2dd3e4 5074void page_frag_free(void *addr)
b63ae8ca
AD
5075{
5076 struct page *page = virt_to_head_page(addr);
5077
742aa7fb
AL
5078 if (unlikely(put_page_testzero(page)))
5079 free_the_page(page, compound_order(page));
b63ae8ca 5080}
8c2dd3e4 5081EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5082
d00181b9
KS
5083static void *make_alloc_exact(unsigned long addr, unsigned int order,
5084 size_t size)
ee85c2e1
AK
5085{
5086 if (addr) {
5087 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5088 unsigned long used = addr + PAGE_ALIGN(size);
5089
5090 split_page(virt_to_page((void *)addr), order);
5091 while (used < alloc_end) {
5092 free_page(used);
5093 used += PAGE_SIZE;
5094 }
5095 }
5096 return (void *)addr;
5097}
5098
2be0ffe2
TT
5099/**
5100 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5101 * @size: the number of bytes to allocate
63931eb9 5102 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5103 *
5104 * This function is similar to alloc_pages(), except that it allocates the
5105 * minimum number of pages to satisfy the request. alloc_pages() can only
5106 * allocate memory in power-of-two pages.
5107 *
5108 * This function is also limited by MAX_ORDER.
5109 *
5110 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5111 *
5112 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5113 */
5114void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5115{
5116 unsigned int order = get_order(size);
5117 unsigned long addr;
5118
63931eb9
VB
5119 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5120 gfp_mask &= ~__GFP_COMP;
5121
2be0ffe2 5122 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5123 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5124}
5125EXPORT_SYMBOL(alloc_pages_exact);
5126
ee85c2e1
AK
5127/**
5128 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5129 * pages on a node.
b5e6ab58 5130 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5131 * @size: the number of bytes to allocate
63931eb9 5132 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5133 *
5134 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5135 * back.
a862f68a
MR
5136 *
5137 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5138 */
e1931811 5139void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5140{
d00181b9 5141 unsigned int order = get_order(size);
63931eb9
VB
5142 struct page *p;
5143
5144 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5145 gfp_mask &= ~__GFP_COMP;
5146
5147 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5148 if (!p)
5149 return NULL;
5150 return make_alloc_exact((unsigned long)page_address(p), order, size);
5151}
ee85c2e1 5152
2be0ffe2
TT
5153/**
5154 * free_pages_exact - release memory allocated via alloc_pages_exact()
5155 * @virt: the value returned by alloc_pages_exact.
5156 * @size: size of allocation, same value as passed to alloc_pages_exact().
5157 *
5158 * Release the memory allocated by a previous call to alloc_pages_exact.
5159 */
5160void free_pages_exact(void *virt, size_t size)
5161{
5162 unsigned long addr = (unsigned long)virt;
5163 unsigned long end = addr + PAGE_ALIGN(size);
5164
5165 while (addr < end) {
5166 free_page(addr);
5167 addr += PAGE_SIZE;
5168 }
5169}
5170EXPORT_SYMBOL(free_pages_exact);
5171
e0fb5815
ZY
5172/**
5173 * nr_free_zone_pages - count number of pages beyond high watermark
5174 * @offset: The zone index of the highest zone
5175 *
a862f68a 5176 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5177 * high watermark within all zones at or below a given zone index. For each
5178 * zone, the number of pages is calculated as:
0e056eb5 5179 *
5180 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5181 *
5182 * Return: number of pages beyond high watermark.
e0fb5815 5183 */
ebec3862 5184static unsigned long nr_free_zone_pages(int offset)
1da177e4 5185{
dd1a239f 5186 struct zoneref *z;
54a6eb5c
MG
5187 struct zone *zone;
5188
e310fd43 5189 /* Just pick one node, since fallback list is circular */
ebec3862 5190 unsigned long sum = 0;
1da177e4 5191
0e88460d 5192 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5193
54a6eb5c 5194 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5195 unsigned long size = zone_managed_pages(zone);
41858966 5196 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5197 if (size > high)
5198 sum += size - high;
1da177e4
LT
5199 }
5200
5201 return sum;
5202}
5203
e0fb5815
ZY
5204/**
5205 * nr_free_buffer_pages - count number of pages beyond high watermark
5206 *
5207 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5208 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5209 *
5210 * Return: number of pages beyond high watermark within ZONE_DMA and
5211 * ZONE_NORMAL.
1da177e4 5212 */
ebec3862 5213unsigned long nr_free_buffer_pages(void)
1da177e4 5214{
af4ca457 5215 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5216}
c2f1a551 5217EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5218
08e0f6a9 5219static inline void show_node(struct zone *zone)
1da177e4 5220{
e5adfffc 5221 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5222 printk("Node %d ", zone_to_nid(zone));
1da177e4 5223}
1da177e4 5224
d02bd27b
IR
5225long si_mem_available(void)
5226{
5227 long available;
5228 unsigned long pagecache;
5229 unsigned long wmark_low = 0;
5230 unsigned long pages[NR_LRU_LISTS];
b29940c1 5231 unsigned long reclaimable;
d02bd27b
IR
5232 struct zone *zone;
5233 int lru;
5234
5235 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5236 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5237
5238 for_each_zone(zone)
a9214443 5239 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5240
5241 /*
5242 * Estimate the amount of memory available for userspace allocations,
5243 * without causing swapping.
5244 */
c41f012a 5245 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5246
5247 /*
5248 * Not all the page cache can be freed, otherwise the system will
5249 * start swapping. Assume at least half of the page cache, or the
5250 * low watermark worth of cache, needs to stay.
5251 */
5252 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5253 pagecache -= min(pagecache / 2, wmark_low);
5254 available += pagecache;
5255
5256 /*
b29940c1
VB
5257 * Part of the reclaimable slab and other kernel memory consists of
5258 * items that are in use, and cannot be freed. Cap this estimate at the
5259 * low watermark.
d02bd27b 5260 */
d42f3245
RG
5261 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5262 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5263 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5264
d02bd27b
IR
5265 if (available < 0)
5266 available = 0;
5267 return available;
5268}
5269EXPORT_SYMBOL_GPL(si_mem_available);
5270
1da177e4
LT
5271void si_meminfo(struct sysinfo *val)
5272{
ca79b0c2 5273 val->totalram = totalram_pages();
11fb9989 5274 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5275 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5276 val->bufferram = nr_blockdev_pages();
ca79b0c2 5277 val->totalhigh = totalhigh_pages();
1da177e4 5278 val->freehigh = nr_free_highpages();
1da177e4
LT
5279 val->mem_unit = PAGE_SIZE;
5280}
5281
5282EXPORT_SYMBOL(si_meminfo);
5283
5284#ifdef CONFIG_NUMA
5285void si_meminfo_node(struct sysinfo *val, int nid)
5286{
cdd91a77
JL
5287 int zone_type; /* needs to be signed */
5288 unsigned long managed_pages = 0;
fc2bd799
JK
5289 unsigned long managed_highpages = 0;
5290 unsigned long free_highpages = 0;
1da177e4
LT
5291 pg_data_t *pgdat = NODE_DATA(nid);
5292
cdd91a77 5293 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5294 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5295 val->totalram = managed_pages;
11fb9989 5296 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5297 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5298#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5299 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5300 struct zone *zone = &pgdat->node_zones[zone_type];
5301
5302 if (is_highmem(zone)) {
9705bea5 5303 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5304 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5305 }
5306 }
5307 val->totalhigh = managed_highpages;
5308 val->freehigh = free_highpages;
98d2b0eb 5309#else
fc2bd799
JK
5310 val->totalhigh = managed_highpages;
5311 val->freehigh = free_highpages;
98d2b0eb 5312#endif
1da177e4
LT
5313 val->mem_unit = PAGE_SIZE;
5314}
5315#endif
5316
ddd588b5 5317/*
7bf02ea2
DR
5318 * Determine whether the node should be displayed or not, depending on whether
5319 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5320 */
9af744d7 5321static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5322{
ddd588b5 5323 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5324 return false;
ddd588b5 5325
9af744d7
MH
5326 /*
5327 * no node mask - aka implicit memory numa policy. Do not bother with
5328 * the synchronization - read_mems_allowed_begin - because we do not
5329 * have to be precise here.
5330 */
5331 if (!nodemask)
5332 nodemask = &cpuset_current_mems_allowed;
5333
5334 return !node_isset(nid, *nodemask);
ddd588b5
DR
5335}
5336
1da177e4
LT
5337#define K(x) ((x) << (PAGE_SHIFT-10))
5338
377e4f16
RV
5339static void show_migration_types(unsigned char type)
5340{
5341 static const char types[MIGRATE_TYPES] = {
5342 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5343 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5344 [MIGRATE_RECLAIMABLE] = 'E',
5345 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5346#ifdef CONFIG_CMA
5347 [MIGRATE_CMA] = 'C',
5348#endif
194159fb 5349#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5350 [MIGRATE_ISOLATE] = 'I',
194159fb 5351#endif
377e4f16
RV
5352 };
5353 char tmp[MIGRATE_TYPES + 1];
5354 char *p = tmp;
5355 int i;
5356
5357 for (i = 0; i < MIGRATE_TYPES; i++) {
5358 if (type & (1 << i))
5359 *p++ = types[i];
5360 }
5361
5362 *p = '\0';
1f84a18f 5363 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5364}
5365
1da177e4
LT
5366/*
5367 * Show free area list (used inside shift_scroll-lock stuff)
5368 * We also calculate the percentage fragmentation. We do this by counting the
5369 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5370 *
5371 * Bits in @filter:
5372 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5373 * cpuset.
1da177e4 5374 */
9af744d7 5375void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5376{
d1bfcdb8 5377 unsigned long free_pcp = 0;
c7241913 5378 int cpu;
1da177e4 5379 struct zone *zone;
599d0c95 5380 pg_data_t *pgdat;
1da177e4 5381
ee99c71c 5382 for_each_populated_zone(zone) {
9af744d7 5383 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5384 continue;
d1bfcdb8 5385
761b0677
KK
5386 for_each_online_cpu(cpu)
5387 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5388 }
5389
a731286d
KM
5390 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5391 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5392 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5393 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5394 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5395 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5396 global_node_page_state(NR_ACTIVE_ANON),
5397 global_node_page_state(NR_INACTIVE_ANON),
5398 global_node_page_state(NR_ISOLATED_ANON),
5399 global_node_page_state(NR_ACTIVE_FILE),
5400 global_node_page_state(NR_INACTIVE_FILE),
5401 global_node_page_state(NR_ISOLATED_FILE),
5402 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5403 global_node_page_state(NR_FILE_DIRTY),
5404 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5405 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5406 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5407 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5408 global_node_page_state(NR_SHMEM),
c41f012a
MH
5409 global_zone_page_state(NR_PAGETABLE),
5410 global_zone_page_state(NR_BOUNCE),
5411 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5412 free_pcp,
c41f012a 5413 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5414
599d0c95 5415 for_each_online_pgdat(pgdat) {
9af744d7 5416 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5417 continue;
5418
599d0c95
MG
5419 printk("Node %d"
5420 " active_anon:%lukB"
5421 " inactive_anon:%lukB"
5422 " active_file:%lukB"
5423 " inactive_file:%lukB"
5424 " unevictable:%lukB"
5425 " isolated(anon):%lukB"
5426 " isolated(file):%lukB"
50658e2e 5427 " mapped:%lukB"
11fb9989
MG
5428 " dirty:%lukB"
5429 " writeback:%lukB"
5430 " shmem:%lukB"
5431#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5432 " shmem_thp: %lukB"
5433 " shmem_pmdmapped: %lukB"
5434 " anon_thp: %lukB"
5435#endif
5436 " writeback_tmp:%lukB"
991e7673
SB
5437 " kernel_stack:%lukB"
5438#ifdef CONFIG_SHADOW_CALL_STACK
5439 " shadow_call_stack:%lukB"
5440#endif
599d0c95
MG
5441 " all_unreclaimable? %s"
5442 "\n",
5443 pgdat->node_id,
5444 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5445 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5446 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5447 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5448 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5449 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5450 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5451 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5452 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5453 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5454 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5455#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5456 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5457 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5458 * HPAGE_PMD_NR),
5459 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5460#endif
11fb9989 5461 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5462 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5463#ifdef CONFIG_SHADOW_CALL_STACK
5464 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5465#endif
c73322d0
JW
5466 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5467 "yes" : "no");
599d0c95
MG
5468 }
5469
ee99c71c 5470 for_each_populated_zone(zone) {
1da177e4
LT
5471 int i;
5472
9af744d7 5473 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5474 continue;
d1bfcdb8
KK
5475
5476 free_pcp = 0;
5477 for_each_online_cpu(cpu)
5478 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5479
1da177e4 5480 show_node(zone);
1f84a18f
JP
5481 printk(KERN_CONT
5482 "%s"
1da177e4
LT
5483 " free:%lukB"
5484 " min:%lukB"
5485 " low:%lukB"
5486 " high:%lukB"
e47b346a 5487 " reserved_highatomic:%luKB"
71c799f4
MK
5488 " active_anon:%lukB"
5489 " inactive_anon:%lukB"
5490 " active_file:%lukB"
5491 " inactive_file:%lukB"
5492 " unevictable:%lukB"
5a1c84b4 5493 " writepending:%lukB"
1da177e4 5494 " present:%lukB"
9feedc9d 5495 " managed:%lukB"
4a0aa73f 5496 " mlocked:%lukB"
4a0aa73f 5497 " pagetables:%lukB"
4a0aa73f 5498 " bounce:%lukB"
d1bfcdb8
KK
5499 " free_pcp:%lukB"
5500 " local_pcp:%ukB"
d1ce749a 5501 " free_cma:%lukB"
1da177e4
LT
5502 "\n",
5503 zone->name,
88f5acf8 5504 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5505 K(min_wmark_pages(zone)),
5506 K(low_wmark_pages(zone)),
5507 K(high_wmark_pages(zone)),
e47b346a 5508 K(zone->nr_reserved_highatomic),
71c799f4
MK
5509 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5510 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5511 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5512 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5513 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5514 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5515 K(zone->present_pages),
9705bea5 5516 K(zone_managed_pages(zone)),
4a0aa73f 5517 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5518 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5519 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5520 K(free_pcp),
5521 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5522 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5523 printk("lowmem_reserve[]:");
5524 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5525 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5526 printk(KERN_CONT "\n");
1da177e4
LT
5527 }
5528
ee99c71c 5529 for_each_populated_zone(zone) {
d00181b9
KS
5530 unsigned int order;
5531 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5532 unsigned char types[MAX_ORDER];
1da177e4 5533
9af744d7 5534 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5535 continue;
1da177e4 5536 show_node(zone);
1f84a18f 5537 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5538
5539 spin_lock_irqsave(&zone->lock, flags);
5540 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5541 struct free_area *area = &zone->free_area[order];
5542 int type;
5543
5544 nr[order] = area->nr_free;
8f9de51a 5545 total += nr[order] << order;
377e4f16
RV
5546
5547 types[order] = 0;
5548 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5549 if (!free_area_empty(area, type))
377e4f16
RV
5550 types[order] |= 1 << type;
5551 }
1da177e4
LT
5552 }
5553 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5554 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5555 printk(KERN_CONT "%lu*%lukB ",
5556 nr[order], K(1UL) << order);
377e4f16
RV
5557 if (nr[order])
5558 show_migration_types(types[order]);
5559 }
1f84a18f 5560 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5561 }
5562
949f7ec5
DR
5563 hugetlb_show_meminfo();
5564
11fb9989 5565 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5566
1da177e4
LT
5567 show_swap_cache_info();
5568}
5569
19770b32
MG
5570static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5571{
5572 zoneref->zone = zone;
5573 zoneref->zone_idx = zone_idx(zone);
5574}
5575
1da177e4
LT
5576/*
5577 * Builds allocation fallback zone lists.
1a93205b
CL
5578 *
5579 * Add all populated zones of a node to the zonelist.
1da177e4 5580 */
9d3be21b 5581static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5582{
1a93205b 5583 struct zone *zone;
bc732f1d 5584 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5585 int nr_zones = 0;
02a68a5e
CL
5586
5587 do {
2f6726e5 5588 zone_type--;
070f8032 5589 zone = pgdat->node_zones + zone_type;
6aa303de 5590 if (managed_zone(zone)) {
9d3be21b 5591 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5592 check_highest_zone(zone_type);
1da177e4 5593 }
2f6726e5 5594 } while (zone_type);
bc732f1d 5595
070f8032 5596 return nr_zones;
1da177e4
LT
5597}
5598
5599#ifdef CONFIG_NUMA
f0c0b2b8
KH
5600
5601static int __parse_numa_zonelist_order(char *s)
5602{
c9bff3ee
MH
5603 /*
5604 * We used to support different zonlists modes but they turned
5605 * out to be just not useful. Let's keep the warning in place
5606 * if somebody still use the cmd line parameter so that we do
5607 * not fail it silently
5608 */
5609 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5610 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5611 return -EINVAL;
5612 }
5613 return 0;
5614}
5615
c9bff3ee
MH
5616char numa_zonelist_order[] = "Node";
5617
f0c0b2b8
KH
5618/*
5619 * sysctl handler for numa_zonelist_order
5620 */
cccad5b9 5621int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5622 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5623{
32927393
CH
5624 if (write)
5625 return __parse_numa_zonelist_order(buffer);
5626 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5627}
5628
5629
62bc62a8 5630#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5631static int node_load[MAX_NUMNODES];
5632
1da177e4 5633/**
4dc3b16b 5634 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5635 * @node: node whose fallback list we're appending
5636 * @used_node_mask: nodemask_t of already used nodes
5637 *
5638 * We use a number of factors to determine which is the next node that should
5639 * appear on a given node's fallback list. The node should not have appeared
5640 * already in @node's fallback list, and it should be the next closest node
5641 * according to the distance array (which contains arbitrary distance values
5642 * from each node to each node in the system), and should also prefer nodes
5643 * with no CPUs, since presumably they'll have very little allocation pressure
5644 * on them otherwise.
a862f68a
MR
5645 *
5646 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5647 */
f0c0b2b8 5648static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5649{
4cf808eb 5650 int n, val;
1da177e4 5651 int min_val = INT_MAX;
00ef2d2f 5652 int best_node = NUMA_NO_NODE;
a70f7302 5653 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5654
4cf808eb
LT
5655 /* Use the local node if we haven't already */
5656 if (!node_isset(node, *used_node_mask)) {
5657 node_set(node, *used_node_mask);
5658 return node;
5659 }
1da177e4 5660
4b0ef1fe 5661 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5662
5663 /* Don't want a node to appear more than once */
5664 if (node_isset(n, *used_node_mask))
5665 continue;
5666
1da177e4
LT
5667 /* Use the distance array to find the distance */
5668 val = node_distance(node, n);
5669
4cf808eb
LT
5670 /* Penalize nodes under us ("prefer the next node") */
5671 val += (n < node);
5672
1da177e4 5673 /* Give preference to headless and unused nodes */
a70f7302
RR
5674 tmp = cpumask_of_node(n);
5675 if (!cpumask_empty(tmp))
1da177e4
LT
5676 val += PENALTY_FOR_NODE_WITH_CPUS;
5677
5678 /* Slight preference for less loaded node */
5679 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5680 val += node_load[n];
5681
5682 if (val < min_val) {
5683 min_val = val;
5684 best_node = n;
5685 }
5686 }
5687
5688 if (best_node >= 0)
5689 node_set(best_node, *used_node_mask);
5690
5691 return best_node;
5692}
5693
f0c0b2b8
KH
5694
5695/*
5696 * Build zonelists ordered by node and zones within node.
5697 * This results in maximum locality--normal zone overflows into local
5698 * DMA zone, if any--but risks exhausting DMA zone.
5699 */
9d3be21b
MH
5700static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5701 unsigned nr_nodes)
1da177e4 5702{
9d3be21b
MH
5703 struct zoneref *zonerefs;
5704 int i;
5705
5706 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5707
5708 for (i = 0; i < nr_nodes; i++) {
5709 int nr_zones;
5710
5711 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5712
9d3be21b
MH
5713 nr_zones = build_zonerefs_node(node, zonerefs);
5714 zonerefs += nr_zones;
5715 }
5716 zonerefs->zone = NULL;
5717 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5718}
5719
523b9458
CL
5720/*
5721 * Build gfp_thisnode zonelists
5722 */
5723static void build_thisnode_zonelists(pg_data_t *pgdat)
5724{
9d3be21b
MH
5725 struct zoneref *zonerefs;
5726 int nr_zones;
523b9458 5727
9d3be21b
MH
5728 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5729 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5730 zonerefs += nr_zones;
5731 zonerefs->zone = NULL;
5732 zonerefs->zone_idx = 0;
523b9458
CL
5733}
5734
f0c0b2b8
KH
5735/*
5736 * Build zonelists ordered by zone and nodes within zones.
5737 * This results in conserving DMA zone[s] until all Normal memory is
5738 * exhausted, but results in overflowing to remote node while memory
5739 * may still exist in local DMA zone.
5740 */
f0c0b2b8 5741
f0c0b2b8
KH
5742static void build_zonelists(pg_data_t *pgdat)
5743{
9d3be21b
MH
5744 static int node_order[MAX_NUMNODES];
5745 int node, load, nr_nodes = 0;
d0ddf49b 5746 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5747 int local_node, prev_node;
1da177e4
LT
5748
5749 /* NUMA-aware ordering of nodes */
5750 local_node = pgdat->node_id;
62bc62a8 5751 load = nr_online_nodes;
1da177e4 5752 prev_node = local_node;
f0c0b2b8 5753
f0c0b2b8 5754 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5755 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5756 /*
5757 * We don't want to pressure a particular node.
5758 * So adding penalty to the first node in same
5759 * distance group to make it round-robin.
5760 */
957f822a
DR
5761 if (node_distance(local_node, node) !=
5762 node_distance(local_node, prev_node))
f0c0b2b8
KH
5763 node_load[node] = load;
5764
9d3be21b 5765 node_order[nr_nodes++] = node;
1da177e4
LT
5766 prev_node = node;
5767 load--;
1da177e4 5768 }
523b9458 5769
9d3be21b 5770 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5771 build_thisnode_zonelists(pgdat);
1da177e4
LT
5772}
5773
7aac7898
LS
5774#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5775/*
5776 * Return node id of node used for "local" allocations.
5777 * I.e., first node id of first zone in arg node's generic zonelist.
5778 * Used for initializing percpu 'numa_mem', which is used primarily
5779 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5780 */
5781int local_memory_node(int node)
5782{
c33d6c06 5783 struct zoneref *z;
7aac7898 5784
c33d6c06 5785 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5786 gfp_zone(GFP_KERNEL),
c33d6c06 5787 NULL);
c1093b74 5788 return zone_to_nid(z->zone);
7aac7898
LS
5789}
5790#endif
f0c0b2b8 5791
6423aa81
JK
5792static void setup_min_unmapped_ratio(void);
5793static void setup_min_slab_ratio(void);
1da177e4
LT
5794#else /* CONFIG_NUMA */
5795
f0c0b2b8 5796static void build_zonelists(pg_data_t *pgdat)
1da177e4 5797{
19655d34 5798 int node, local_node;
9d3be21b
MH
5799 struct zoneref *zonerefs;
5800 int nr_zones;
1da177e4
LT
5801
5802 local_node = pgdat->node_id;
1da177e4 5803
9d3be21b
MH
5804 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5805 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5806 zonerefs += nr_zones;
1da177e4 5807
54a6eb5c
MG
5808 /*
5809 * Now we build the zonelist so that it contains the zones
5810 * of all the other nodes.
5811 * We don't want to pressure a particular node, so when
5812 * building the zones for node N, we make sure that the
5813 * zones coming right after the local ones are those from
5814 * node N+1 (modulo N)
5815 */
5816 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5817 if (!node_online(node))
5818 continue;
9d3be21b
MH
5819 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5820 zonerefs += nr_zones;
1da177e4 5821 }
54a6eb5c
MG
5822 for (node = 0; node < local_node; node++) {
5823 if (!node_online(node))
5824 continue;
9d3be21b
MH
5825 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5826 zonerefs += nr_zones;
54a6eb5c
MG
5827 }
5828
9d3be21b
MH
5829 zonerefs->zone = NULL;
5830 zonerefs->zone_idx = 0;
1da177e4
LT
5831}
5832
5833#endif /* CONFIG_NUMA */
5834
99dcc3e5
CL
5835/*
5836 * Boot pageset table. One per cpu which is going to be used for all
5837 * zones and all nodes. The parameters will be set in such a way
5838 * that an item put on a list will immediately be handed over to
5839 * the buddy list. This is safe since pageset manipulation is done
5840 * with interrupts disabled.
5841 *
5842 * The boot_pagesets must be kept even after bootup is complete for
5843 * unused processors and/or zones. They do play a role for bootstrapping
5844 * hotplugged processors.
5845 *
5846 * zoneinfo_show() and maybe other functions do
5847 * not check if the processor is online before following the pageset pointer.
5848 * Other parts of the kernel may not check if the zone is available.
5849 */
5850static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5851static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5852static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5853
11cd8638 5854static void __build_all_zonelists(void *data)
1da177e4 5855{
6811378e 5856 int nid;
afb6ebb3 5857 int __maybe_unused cpu;
9adb62a5 5858 pg_data_t *self = data;
b93e0f32
MH
5859 static DEFINE_SPINLOCK(lock);
5860
5861 spin_lock(&lock);
9276b1bc 5862
7f9cfb31
BL
5863#ifdef CONFIG_NUMA
5864 memset(node_load, 0, sizeof(node_load));
5865#endif
9adb62a5 5866
c1152583
WY
5867 /*
5868 * This node is hotadded and no memory is yet present. So just
5869 * building zonelists is fine - no need to touch other nodes.
5870 */
9adb62a5
JL
5871 if (self && !node_online(self->node_id)) {
5872 build_zonelists(self);
c1152583
WY
5873 } else {
5874 for_each_online_node(nid) {
5875 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5876
c1152583
WY
5877 build_zonelists(pgdat);
5878 }
99dcc3e5 5879
7aac7898
LS
5880#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5881 /*
5882 * We now know the "local memory node" for each node--
5883 * i.e., the node of the first zone in the generic zonelist.
5884 * Set up numa_mem percpu variable for on-line cpus. During
5885 * boot, only the boot cpu should be on-line; we'll init the
5886 * secondary cpus' numa_mem as they come on-line. During
5887 * node/memory hotplug, we'll fixup all on-line cpus.
5888 */
d9c9a0b9 5889 for_each_online_cpu(cpu)
7aac7898 5890 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5891#endif
d9c9a0b9 5892 }
b93e0f32
MH
5893
5894 spin_unlock(&lock);
6811378e
YG
5895}
5896
061f67bc
RV
5897static noinline void __init
5898build_all_zonelists_init(void)
5899{
afb6ebb3
MH
5900 int cpu;
5901
061f67bc 5902 __build_all_zonelists(NULL);
afb6ebb3
MH
5903
5904 /*
5905 * Initialize the boot_pagesets that are going to be used
5906 * for bootstrapping processors. The real pagesets for
5907 * each zone will be allocated later when the per cpu
5908 * allocator is available.
5909 *
5910 * boot_pagesets are used also for bootstrapping offline
5911 * cpus if the system is already booted because the pagesets
5912 * are needed to initialize allocators on a specific cpu too.
5913 * F.e. the percpu allocator needs the page allocator which
5914 * needs the percpu allocator in order to allocate its pagesets
5915 * (a chicken-egg dilemma).
5916 */
5917 for_each_possible_cpu(cpu)
5918 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5919
061f67bc
RV
5920 mminit_verify_zonelist();
5921 cpuset_init_current_mems_allowed();
5922}
5923
4eaf3f64 5924/*
4eaf3f64 5925 * unless system_state == SYSTEM_BOOTING.
061f67bc 5926 *
72675e13 5927 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5928 * [protected by SYSTEM_BOOTING].
4eaf3f64 5929 */
72675e13 5930void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5931{
0a18e607
DH
5932 unsigned long vm_total_pages;
5933
6811378e 5934 if (system_state == SYSTEM_BOOTING) {
061f67bc 5935 build_all_zonelists_init();
6811378e 5936 } else {
11cd8638 5937 __build_all_zonelists(pgdat);
6811378e
YG
5938 /* cpuset refresh routine should be here */
5939 }
56b9413b
DH
5940 /* Get the number of free pages beyond high watermark in all zones. */
5941 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5942 /*
5943 * Disable grouping by mobility if the number of pages in the
5944 * system is too low to allow the mechanism to work. It would be
5945 * more accurate, but expensive to check per-zone. This check is
5946 * made on memory-hotadd so a system can start with mobility
5947 * disabled and enable it later
5948 */
d9c23400 5949 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5950 page_group_by_mobility_disabled = 1;
5951 else
5952 page_group_by_mobility_disabled = 0;
5953
ce0725f7 5954 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5955 nr_online_nodes,
756a025f
JP
5956 page_group_by_mobility_disabled ? "off" : "on",
5957 vm_total_pages);
f0c0b2b8 5958#ifdef CONFIG_NUMA
f88dfff5 5959 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5960#endif
1da177e4
LT
5961}
5962
a9a9e77f
PT
5963/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5964static bool __meminit
5965overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5966{
a9a9e77f
PT
5967 static struct memblock_region *r;
5968
5969 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5970 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5971 for_each_memblock(memory, r) {
5972 if (*pfn < memblock_region_memory_end_pfn(r))
5973 break;
5974 }
5975 }
5976 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5977 memblock_is_mirror(r)) {
5978 *pfn = memblock_region_memory_end_pfn(r);
5979 return true;
5980 }
5981 }
a9a9e77f
PT
5982 return false;
5983}
5984
1da177e4
LT
5985/*
5986 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5987 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5988 * done. Non-atomic initialization, single-pass.
5989 */
c09b4240 5990void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
c1d0da83 5991 unsigned long start_pfn, enum meminit_context context,
a99583e7 5992 struct vmem_altmap *altmap)
1da177e4 5993{
a9a9e77f 5994 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5995 struct page *page;
1da177e4 5996
22b31eec
HD
5997 if (highest_memmap_pfn < end_pfn - 1)
5998 highest_memmap_pfn = end_pfn - 1;
5999
966cf44f 6000#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6001 /*
6002 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6003 * memory. We limit the total number of pages to initialize to just
6004 * those that might contain the memory mapping. We will defer the
6005 * ZONE_DEVICE page initialization until after we have released
6006 * the hotplug lock.
4b94ffdc 6007 */
966cf44f
AD
6008 if (zone == ZONE_DEVICE) {
6009 if (!altmap)
6010 return;
6011
6012 if (start_pfn == altmap->base_pfn)
6013 start_pfn += altmap->reserve;
6014 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6015 }
6016#endif
4b94ffdc 6017
948c436e 6018 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6019 /*
b72d0ffb
AM
6020 * There can be holes in boot-time mem_map[]s handed to this
6021 * function. They do not exist on hotplugged memory.
a2f3aa02 6022 */
c1d0da83 6023 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6024 if (overlap_memmap_init(zone, &pfn))
6025 continue;
6026 if (defer_init(nid, pfn, end_pfn))
6027 break;
a2f3aa02 6028 }
ac5d2539 6029
d0dc12e8
PT
6030 page = pfn_to_page(pfn);
6031 __init_single_page(page, pfn, zone, nid);
c1d0da83 6032 if (context == MEMINIT_HOTPLUG)
d483da5b 6033 __SetPageReserved(page);
d0dc12e8 6034
ac5d2539
MG
6035 /*
6036 * Mark the block movable so that blocks are reserved for
6037 * movable at startup. This will force kernel allocations
6038 * to reserve their blocks rather than leaking throughout
6039 * the address space during boot when many long-lived
974a786e 6040 * kernel allocations are made.
ac5d2539
MG
6041 *
6042 * bitmap is created for zone's valid pfn range. but memmap
6043 * can be created for invalid pages (for alignment)
6044 * check here not to call set_pageblock_migratetype() against
6045 * pfn out of zone.
6046 */
6047 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 6048 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 6049 cond_resched();
ac5d2539 6050 }
948c436e 6051 pfn++;
1da177e4
LT
6052 }
6053}
6054
966cf44f
AD
6055#ifdef CONFIG_ZONE_DEVICE
6056void __ref memmap_init_zone_device(struct zone *zone,
6057 unsigned long start_pfn,
1f8d75c1 6058 unsigned long nr_pages,
966cf44f
AD
6059 struct dev_pagemap *pgmap)
6060{
1f8d75c1 6061 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6062 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6063 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6064 unsigned long zone_idx = zone_idx(zone);
6065 unsigned long start = jiffies;
6066 int nid = pgdat->node_id;
6067
46d945ae 6068 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6069 return;
6070
6071 /*
6072 * The call to memmap_init_zone should have already taken care
6073 * of the pages reserved for the memmap, so we can just jump to
6074 * the end of that region and start processing the device pages.
6075 */
514caf23 6076 if (altmap) {
966cf44f 6077 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6078 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6079 }
6080
6081 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6082 struct page *page = pfn_to_page(pfn);
6083
6084 __init_single_page(page, pfn, zone_idx, nid);
6085
6086 /*
6087 * Mark page reserved as it will need to wait for onlining
6088 * phase for it to be fully associated with a zone.
6089 *
6090 * We can use the non-atomic __set_bit operation for setting
6091 * the flag as we are still initializing the pages.
6092 */
6093 __SetPageReserved(page);
6094
6095 /*
8a164fef
CH
6096 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6097 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6098 * ever freed or placed on a driver-private list.
966cf44f
AD
6099 */
6100 page->pgmap = pgmap;
8a164fef 6101 page->zone_device_data = NULL;
966cf44f
AD
6102
6103 /*
6104 * Mark the block movable so that blocks are reserved for
6105 * movable at startup. This will force kernel allocations
6106 * to reserve their blocks rather than leaking throughout
6107 * the address space during boot when many long-lived
6108 * kernel allocations are made.
6109 *
6110 * bitmap is created for zone's valid pfn range. but memmap
6111 * can be created for invalid pages (for alignment)
6112 * check here not to call set_pageblock_migratetype() against
6113 * pfn out of zone.
6114 *
c1d0da83 6115 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6116 * because this is done early in section_activate()
966cf44f
AD
6117 */
6118 if (!(pfn & (pageblock_nr_pages - 1))) {
6119 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6120 cond_resched();
6121 }
6122 }
6123
fdc029b1 6124 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6125 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6126}
6127
6128#endif
1e548deb 6129static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6130{
7aeb09f9 6131 unsigned int order, t;
b2a0ac88
MG
6132 for_each_migratetype_order(order, t) {
6133 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6134 zone->free_area[order].nr_free = 0;
6135 }
6136}
6137
dfb3ccd0 6138void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6139 unsigned long zone,
6140 unsigned long range_start_pfn)
dfb3ccd0 6141{
73a6e474
BH
6142 unsigned long start_pfn, end_pfn;
6143 unsigned long range_end_pfn = range_start_pfn + size;
6144 int i;
6145
6146 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6147 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6148 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6149
6150 if (end_pfn > start_pfn) {
6151 size = end_pfn - start_pfn;
6152 memmap_init_zone(size, nid, zone, start_pfn,
c1d0da83 6153 MEMINIT_EARLY, NULL);
73a6e474
BH
6154 }
6155 }
dfb3ccd0 6156}
1da177e4 6157
7cd2b0a3 6158static int zone_batchsize(struct zone *zone)
e7c8d5c9 6159{
3a6be87f 6160#ifdef CONFIG_MMU
e7c8d5c9
CL
6161 int batch;
6162
6163 /*
6164 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6165 * size of the zone.
e7c8d5c9 6166 */
9705bea5 6167 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6168 /* But no more than a meg. */
6169 if (batch * PAGE_SIZE > 1024 * 1024)
6170 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6171 batch /= 4; /* We effectively *= 4 below */
6172 if (batch < 1)
6173 batch = 1;
6174
6175 /*
0ceaacc9
NP
6176 * Clamp the batch to a 2^n - 1 value. Having a power
6177 * of 2 value was found to be more likely to have
6178 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6179 *
0ceaacc9
NP
6180 * For example if 2 tasks are alternately allocating
6181 * batches of pages, one task can end up with a lot
6182 * of pages of one half of the possible page colors
6183 * and the other with pages of the other colors.
e7c8d5c9 6184 */
9155203a 6185 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6186
e7c8d5c9 6187 return batch;
3a6be87f
DH
6188
6189#else
6190 /* The deferral and batching of frees should be suppressed under NOMMU
6191 * conditions.
6192 *
6193 * The problem is that NOMMU needs to be able to allocate large chunks
6194 * of contiguous memory as there's no hardware page translation to
6195 * assemble apparent contiguous memory from discontiguous pages.
6196 *
6197 * Queueing large contiguous runs of pages for batching, however,
6198 * causes the pages to actually be freed in smaller chunks. As there
6199 * can be a significant delay between the individual batches being
6200 * recycled, this leads to the once large chunks of space being
6201 * fragmented and becoming unavailable for high-order allocations.
6202 */
6203 return 0;
6204#endif
e7c8d5c9
CL
6205}
6206
8d7a8fa9
CS
6207/*
6208 * pcp->high and pcp->batch values are related and dependent on one another:
6209 * ->batch must never be higher then ->high.
6210 * The following function updates them in a safe manner without read side
6211 * locking.
6212 *
6213 * Any new users of pcp->batch and pcp->high should ensure they can cope with
047b9967 6214 * those fields changing asynchronously (acording to the above rule).
8d7a8fa9
CS
6215 *
6216 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6217 * outside of boot time (or some other assurance that no concurrent updaters
6218 * exist).
6219 */
6220static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6221 unsigned long batch)
6222{
6223 /* start with a fail safe value for batch */
6224 pcp->batch = 1;
6225 smp_wmb();
6226
6227 /* Update high, then batch, in order */
6228 pcp->high = high;
6229 smp_wmb();
6230
6231 pcp->batch = batch;
6232}
6233
3664033c 6234/* a companion to pageset_set_high() */
4008bab7
CS
6235static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6236{
8d7a8fa9 6237 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6238}
6239
88c90dbc 6240static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6241{
6242 struct per_cpu_pages *pcp;
5f8dcc21 6243 int migratetype;
2caaad41 6244
1c6fe946
MD
6245 memset(p, 0, sizeof(*p));
6246
3dfa5721 6247 pcp = &p->pcp;
5f8dcc21
MG
6248 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6249 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6250}
6251
88c90dbc
CS
6252static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6253{
6254 pageset_init(p);
6255 pageset_set_batch(p, batch);
6256}
6257
8ad4b1fb 6258/*
3664033c 6259 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6260 * to the value high for the pageset p.
6261 */
3664033c 6262static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6263 unsigned long high)
6264{
8d7a8fa9
CS
6265 unsigned long batch = max(1UL, high / 4);
6266 if ((high / 4) > (PAGE_SHIFT * 8))
6267 batch = PAGE_SHIFT * 8;
8ad4b1fb 6268
8d7a8fa9 6269 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6270}
6271
7cd2b0a3
DR
6272static void pageset_set_high_and_batch(struct zone *zone,
6273 struct per_cpu_pageset *pcp)
56cef2b8 6274{
56cef2b8 6275 if (percpu_pagelist_fraction)
3664033c 6276 pageset_set_high(pcp,
9705bea5 6277 (zone_managed_pages(zone) /
56cef2b8
CS
6278 percpu_pagelist_fraction));
6279 else
6280 pageset_set_batch(pcp, zone_batchsize(zone));
6281}
6282
169f6c19
CS
6283static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6284{
6285 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6286
6287 pageset_init(pcp);
6288 pageset_set_high_and_batch(zone, pcp);
6289}
6290
72675e13 6291void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6292{
6293 int cpu;
319774e2 6294 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6295 for_each_possible_cpu(cpu)
6296 zone_pageset_init(zone, cpu);
319774e2
WF
6297}
6298
2caaad41 6299/*
99dcc3e5
CL
6300 * Allocate per cpu pagesets and initialize them.
6301 * Before this call only boot pagesets were available.
e7c8d5c9 6302 */
99dcc3e5 6303void __init setup_per_cpu_pageset(void)
e7c8d5c9 6304{
b4911ea2 6305 struct pglist_data *pgdat;
99dcc3e5 6306 struct zone *zone;
b418a0f9 6307 int __maybe_unused cpu;
e7c8d5c9 6308
319774e2
WF
6309 for_each_populated_zone(zone)
6310 setup_zone_pageset(zone);
b4911ea2 6311
b418a0f9
SD
6312#ifdef CONFIG_NUMA
6313 /*
6314 * Unpopulated zones continue using the boot pagesets.
6315 * The numa stats for these pagesets need to be reset.
6316 * Otherwise, they will end up skewing the stats of
6317 * the nodes these zones are associated with.
6318 */
6319 for_each_possible_cpu(cpu) {
6320 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6321 memset(pcp->vm_numa_stat_diff, 0,
6322 sizeof(pcp->vm_numa_stat_diff));
6323 }
6324#endif
6325
b4911ea2
MG
6326 for_each_online_pgdat(pgdat)
6327 pgdat->per_cpu_nodestats =
6328 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6329}
6330
c09b4240 6331static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6332{
99dcc3e5
CL
6333 /*
6334 * per cpu subsystem is not up at this point. The following code
6335 * relies on the ability of the linker to provide the
6336 * offset of a (static) per cpu variable into the per cpu area.
6337 */
6338 zone->pageset = &boot_pageset;
ed8ece2e 6339
b38a8725 6340 if (populated_zone(zone))
99dcc3e5
CL
6341 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6342 zone->name, zone->present_pages,
6343 zone_batchsize(zone));
ed8ece2e
DH
6344}
6345
dc0bbf3b 6346void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6347 unsigned long zone_start_pfn,
b171e409 6348 unsigned long size)
ed8ece2e
DH
6349{
6350 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6351 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6352
8f416836
WY
6353 if (zone_idx > pgdat->nr_zones)
6354 pgdat->nr_zones = zone_idx;
ed8ece2e 6355
ed8ece2e
DH
6356 zone->zone_start_pfn = zone_start_pfn;
6357
708614e6
MG
6358 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6359 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6360 pgdat->node_id,
6361 (unsigned long)zone_idx(zone),
6362 zone_start_pfn, (zone_start_pfn + size));
6363
1e548deb 6364 zone_init_free_lists(zone);
9dcb8b68 6365 zone->initialized = 1;
ed8ece2e
DH
6366}
6367
c713216d
MG
6368/**
6369 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6370 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6371 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6372 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6373 *
6374 * It returns the start and end page frame of a node based on information
7d018176 6375 * provided by memblock_set_node(). If called for a node
c713216d 6376 * with no available memory, a warning is printed and the start and end
88ca3b94 6377 * PFNs will be 0.
c713216d 6378 */
bbe5d993 6379void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6380 unsigned long *start_pfn, unsigned long *end_pfn)
6381{
c13291a5 6382 unsigned long this_start_pfn, this_end_pfn;
c713216d 6383 int i;
c13291a5 6384
c713216d
MG
6385 *start_pfn = -1UL;
6386 *end_pfn = 0;
6387
c13291a5
TH
6388 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6389 *start_pfn = min(*start_pfn, this_start_pfn);
6390 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6391 }
6392
633c0666 6393 if (*start_pfn == -1UL)
c713216d 6394 *start_pfn = 0;
c713216d
MG
6395}
6396
2a1e274a
MG
6397/*
6398 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6399 * assumption is made that zones within a node are ordered in monotonic
6400 * increasing memory addresses so that the "highest" populated zone is used
6401 */
b69a7288 6402static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6403{
6404 int zone_index;
6405 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6406 if (zone_index == ZONE_MOVABLE)
6407 continue;
6408
6409 if (arch_zone_highest_possible_pfn[zone_index] >
6410 arch_zone_lowest_possible_pfn[zone_index])
6411 break;
6412 }
6413
6414 VM_BUG_ON(zone_index == -1);
6415 movable_zone = zone_index;
6416}
6417
6418/*
6419 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6420 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6421 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6422 * in each node depending on the size of each node and how evenly kernelcore
6423 * is distributed. This helper function adjusts the zone ranges
6424 * provided by the architecture for a given node by using the end of the
6425 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6426 * zones within a node are in order of monotonic increases memory addresses
6427 */
bbe5d993 6428static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6429 unsigned long zone_type,
6430 unsigned long node_start_pfn,
6431 unsigned long node_end_pfn,
6432 unsigned long *zone_start_pfn,
6433 unsigned long *zone_end_pfn)
6434{
6435 /* Only adjust if ZONE_MOVABLE is on this node */
6436 if (zone_movable_pfn[nid]) {
6437 /* Size ZONE_MOVABLE */
6438 if (zone_type == ZONE_MOVABLE) {
6439 *zone_start_pfn = zone_movable_pfn[nid];
6440 *zone_end_pfn = min(node_end_pfn,
6441 arch_zone_highest_possible_pfn[movable_zone]);
6442
e506b996
XQ
6443 /* Adjust for ZONE_MOVABLE starting within this range */
6444 } else if (!mirrored_kernelcore &&
6445 *zone_start_pfn < zone_movable_pfn[nid] &&
6446 *zone_end_pfn > zone_movable_pfn[nid]) {
6447 *zone_end_pfn = zone_movable_pfn[nid];
6448
2a1e274a
MG
6449 /* Check if this whole range is within ZONE_MOVABLE */
6450 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6451 *zone_start_pfn = *zone_end_pfn;
6452 }
6453}
6454
c713216d
MG
6455/*
6456 * Return the number of pages a zone spans in a node, including holes
6457 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6458 */
bbe5d993 6459static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6460 unsigned long zone_type,
7960aedd
ZY
6461 unsigned long node_start_pfn,
6462 unsigned long node_end_pfn,
d91749c1 6463 unsigned long *zone_start_pfn,
854e8848 6464 unsigned long *zone_end_pfn)
c713216d 6465{
299c83dc
LF
6466 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6467 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6468 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6469 if (!node_start_pfn && !node_end_pfn)
6470 return 0;
6471
7960aedd 6472 /* Get the start and end of the zone */
299c83dc
LF
6473 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6474 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6475 adjust_zone_range_for_zone_movable(nid, zone_type,
6476 node_start_pfn, node_end_pfn,
d91749c1 6477 zone_start_pfn, zone_end_pfn);
c713216d
MG
6478
6479 /* Check that this node has pages within the zone's required range */
d91749c1 6480 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6481 return 0;
6482
6483 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6484 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6485 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6486
6487 /* Return the spanned pages */
d91749c1 6488 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6489}
6490
6491/*
6492 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6493 * then all holes in the requested range will be accounted for.
c713216d 6494 */
bbe5d993 6495unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6496 unsigned long range_start_pfn,
6497 unsigned long range_end_pfn)
6498{
96e907d1
TH
6499 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6500 unsigned long start_pfn, end_pfn;
6501 int i;
c713216d 6502
96e907d1
TH
6503 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6504 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6505 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6506 nr_absent -= end_pfn - start_pfn;
c713216d 6507 }
96e907d1 6508 return nr_absent;
c713216d
MG
6509}
6510
6511/**
6512 * absent_pages_in_range - Return number of page frames in holes within a range
6513 * @start_pfn: The start PFN to start searching for holes
6514 * @end_pfn: The end PFN to stop searching for holes
6515 *
a862f68a 6516 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6517 */
6518unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6519 unsigned long end_pfn)
6520{
6521 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6522}
6523
6524/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6525static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6526 unsigned long zone_type,
7960aedd 6527 unsigned long node_start_pfn,
854e8848 6528 unsigned long node_end_pfn)
c713216d 6529{
96e907d1
TH
6530 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6531 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6532 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6533 unsigned long nr_absent;
9c7cd687 6534
b5685e92 6535 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6536 if (!node_start_pfn && !node_end_pfn)
6537 return 0;
6538
96e907d1
TH
6539 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6540 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6541
2a1e274a
MG
6542 adjust_zone_range_for_zone_movable(nid, zone_type,
6543 node_start_pfn, node_end_pfn,
6544 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6545 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6546
6547 /*
6548 * ZONE_MOVABLE handling.
6549 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6550 * and vice versa.
6551 */
e506b996
XQ
6552 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6553 unsigned long start_pfn, end_pfn;
6554 struct memblock_region *r;
6555
6556 for_each_memblock(memory, r) {
6557 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6558 zone_start_pfn, zone_end_pfn);
6559 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6560 zone_start_pfn, zone_end_pfn);
6561
6562 if (zone_type == ZONE_MOVABLE &&
6563 memblock_is_mirror(r))
6564 nr_absent += end_pfn - start_pfn;
6565
6566 if (zone_type == ZONE_NORMAL &&
6567 !memblock_is_mirror(r))
6568 nr_absent += end_pfn - start_pfn;
342332e6
TI
6569 }
6570 }
6571
6572 return nr_absent;
c713216d 6573}
0e0b864e 6574
bbe5d993 6575static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6576 unsigned long node_start_pfn,
854e8848 6577 unsigned long node_end_pfn)
c713216d 6578{
febd5949 6579 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6580 enum zone_type i;
6581
febd5949
GZ
6582 for (i = 0; i < MAX_NR_ZONES; i++) {
6583 struct zone *zone = pgdat->node_zones + i;
d91749c1 6584 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6585 unsigned long spanned, absent;
febd5949 6586 unsigned long size, real_size;
c713216d 6587
854e8848
MR
6588 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6589 node_start_pfn,
6590 node_end_pfn,
6591 &zone_start_pfn,
6592 &zone_end_pfn);
6593 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6594 node_start_pfn,
6595 node_end_pfn);
3f08a302
MR
6596
6597 size = spanned;
6598 real_size = size - absent;
6599
d91749c1
TI
6600 if (size)
6601 zone->zone_start_pfn = zone_start_pfn;
6602 else
6603 zone->zone_start_pfn = 0;
febd5949
GZ
6604 zone->spanned_pages = size;
6605 zone->present_pages = real_size;
6606
6607 totalpages += size;
6608 realtotalpages += real_size;
6609 }
6610
6611 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6612 pgdat->node_present_pages = realtotalpages;
6613 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6614 realtotalpages);
6615}
6616
835c134e
MG
6617#ifndef CONFIG_SPARSEMEM
6618/*
6619 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6620 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6621 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6622 * round what is now in bits to nearest long in bits, then return it in
6623 * bytes.
6624 */
7c45512d 6625static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6626{
6627 unsigned long usemapsize;
6628
7c45512d 6629 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6630 usemapsize = roundup(zonesize, pageblock_nr_pages);
6631 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6632 usemapsize *= NR_PAGEBLOCK_BITS;
6633 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6634
6635 return usemapsize / 8;
6636}
6637
7cc2a959 6638static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6639 struct zone *zone,
6640 unsigned long zone_start_pfn,
6641 unsigned long zonesize)
835c134e 6642{
7c45512d 6643 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6644 zone->pageblock_flags = NULL;
23a7052a 6645 if (usemapsize) {
6782832e 6646 zone->pageblock_flags =
26fb3dae
MR
6647 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6648 pgdat->node_id);
23a7052a
MR
6649 if (!zone->pageblock_flags)
6650 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6651 usemapsize, zone->name, pgdat->node_id);
6652 }
835c134e
MG
6653}
6654#else
7c45512d
LT
6655static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6656 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6657#endif /* CONFIG_SPARSEMEM */
6658
d9c23400 6659#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6660
d9c23400 6661/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6662void __init set_pageblock_order(void)
d9c23400 6663{
955c1cd7
AM
6664 unsigned int order;
6665
d9c23400
MG
6666 /* Check that pageblock_nr_pages has not already been setup */
6667 if (pageblock_order)
6668 return;
6669
955c1cd7
AM
6670 if (HPAGE_SHIFT > PAGE_SHIFT)
6671 order = HUGETLB_PAGE_ORDER;
6672 else
6673 order = MAX_ORDER - 1;
6674
d9c23400
MG
6675 /*
6676 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6677 * This value may be variable depending on boot parameters on IA64 and
6678 * powerpc.
d9c23400
MG
6679 */
6680 pageblock_order = order;
6681}
6682#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6683
ba72cb8c
MG
6684/*
6685 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6686 * is unused as pageblock_order is set at compile-time. See
6687 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6688 * the kernel config
ba72cb8c 6689 */
03e85f9d 6690void __init set_pageblock_order(void)
ba72cb8c 6691{
ba72cb8c 6692}
d9c23400
MG
6693
6694#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6695
03e85f9d 6696static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6697 unsigned long present_pages)
01cefaef
JL
6698{
6699 unsigned long pages = spanned_pages;
6700
6701 /*
6702 * Provide a more accurate estimation if there are holes within
6703 * the zone and SPARSEMEM is in use. If there are holes within the
6704 * zone, each populated memory region may cost us one or two extra
6705 * memmap pages due to alignment because memmap pages for each
89d790ab 6706 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6707 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6708 */
6709 if (spanned_pages > present_pages + (present_pages >> 4) &&
6710 IS_ENABLED(CONFIG_SPARSEMEM))
6711 pages = present_pages;
6712
6713 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6714}
6715
ace1db39
OS
6716#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6717static void pgdat_init_split_queue(struct pglist_data *pgdat)
6718{
364c1eeb
YS
6719 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6720
6721 spin_lock_init(&ds_queue->split_queue_lock);
6722 INIT_LIST_HEAD(&ds_queue->split_queue);
6723 ds_queue->split_queue_len = 0;
ace1db39
OS
6724}
6725#else
6726static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6727#endif
6728
6729#ifdef CONFIG_COMPACTION
6730static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6731{
6732 init_waitqueue_head(&pgdat->kcompactd_wait);
6733}
6734#else
6735static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6736#endif
6737
03e85f9d 6738static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6739{
208d54e5 6740 pgdat_resize_init(pgdat);
ace1db39 6741
ace1db39
OS
6742 pgdat_init_split_queue(pgdat);
6743 pgdat_init_kcompactd(pgdat);
6744
1da177e4 6745 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6746 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6747
eefa864b 6748 pgdat_page_ext_init(pgdat);
a52633d8 6749 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6750 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6751}
6752
6753static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6754 unsigned long remaining_pages)
6755{
9705bea5 6756 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6757 zone_set_nid(zone, nid);
6758 zone->name = zone_names[idx];
6759 zone->zone_pgdat = NODE_DATA(nid);
6760 spin_lock_init(&zone->lock);
6761 zone_seqlock_init(zone);
6762 zone_pcp_init(zone);
6763}
6764
6765/*
6766 * Set up the zone data structures
6767 * - init pgdat internals
6768 * - init all zones belonging to this node
6769 *
6770 * NOTE: this function is only called during memory hotplug
6771 */
6772#ifdef CONFIG_MEMORY_HOTPLUG
6773void __ref free_area_init_core_hotplug(int nid)
6774{
6775 enum zone_type z;
6776 pg_data_t *pgdat = NODE_DATA(nid);
6777
6778 pgdat_init_internals(pgdat);
6779 for (z = 0; z < MAX_NR_ZONES; z++)
6780 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6781}
6782#endif
6783
6784/*
6785 * Set up the zone data structures:
6786 * - mark all pages reserved
6787 * - mark all memory queues empty
6788 * - clear the memory bitmaps
6789 *
6790 * NOTE: pgdat should get zeroed by caller.
6791 * NOTE: this function is only called during early init.
6792 */
6793static void __init free_area_init_core(struct pglist_data *pgdat)
6794{
6795 enum zone_type j;
6796 int nid = pgdat->node_id;
5f63b720 6797
03e85f9d 6798 pgdat_init_internals(pgdat);
385386cf
JW
6799 pgdat->per_cpu_nodestats = &boot_nodestats;
6800
1da177e4
LT
6801 for (j = 0; j < MAX_NR_ZONES; j++) {
6802 struct zone *zone = pgdat->node_zones + j;
e6943859 6803 unsigned long size, freesize, memmap_pages;
d91749c1 6804 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6805
febd5949 6806 size = zone->spanned_pages;
e6943859 6807 freesize = zone->present_pages;
1da177e4 6808
0e0b864e 6809 /*
9feedc9d 6810 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6811 * is used by this zone for memmap. This affects the watermark
6812 * and per-cpu initialisations
6813 */
e6943859 6814 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6815 if (!is_highmem_idx(j)) {
6816 if (freesize >= memmap_pages) {
6817 freesize -= memmap_pages;
6818 if (memmap_pages)
6819 printk(KERN_DEBUG
6820 " %s zone: %lu pages used for memmap\n",
6821 zone_names[j], memmap_pages);
6822 } else
1170532b 6823 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6824 zone_names[j], memmap_pages, freesize);
6825 }
0e0b864e 6826
6267276f 6827 /* Account for reserved pages */
9feedc9d
JL
6828 if (j == 0 && freesize > dma_reserve) {
6829 freesize -= dma_reserve;
d903ef9f 6830 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6831 zone_names[0], dma_reserve);
0e0b864e
MG
6832 }
6833
98d2b0eb 6834 if (!is_highmem_idx(j))
9feedc9d 6835 nr_kernel_pages += freesize;
01cefaef
JL
6836 /* Charge for highmem memmap if there are enough kernel pages */
6837 else if (nr_kernel_pages > memmap_pages * 2)
6838 nr_kernel_pages -= memmap_pages;
9feedc9d 6839 nr_all_pages += freesize;
1da177e4 6840
9feedc9d
JL
6841 /*
6842 * Set an approximate value for lowmem here, it will be adjusted
6843 * when the bootmem allocator frees pages into the buddy system.
6844 * And all highmem pages will be managed by the buddy system.
6845 */
03e85f9d 6846 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6847
d883c6cf 6848 if (!size)
1da177e4
LT
6849 continue;
6850
955c1cd7 6851 set_pageblock_order();
d883c6cf
JK
6852 setup_usemap(pgdat, zone, zone_start_pfn, size);
6853 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6854 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6855 }
6856}
6857
0cd842f9 6858#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6859static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6860{
b0aeba74 6861 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6862 unsigned long __maybe_unused offset = 0;
6863
1da177e4
LT
6864 /* Skip empty nodes */
6865 if (!pgdat->node_spanned_pages)
6866 return;
6867
b0aeba74
TL
6868 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6869 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6870 /* ia64 gets its own node_mem_map, before this, without bootmem */
6871 if (!pgdat->node_mem_map) {
b0aeba74 6872 unsigned long size, end;
d41dee36
AW
6873 struct page *map;
6874
e984bb43
BP
6875 /*
6876 * The zone's endpoints aren't required to be MAX_ORDER
6877 * aligned but the node_mem_map endpoints must be in order
6878 * for the buddy allocator to function correctly.
6879 */
108bcc96 6880 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6881 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6882 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6883 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6884 pgdat->node_id);
23a7052a
MR
6885 if (!map)
6886 panic("Failed to allocate %ld bytes for node %d memory map\n",
6887 size, pgdat->node_id);
a1c34a3b 6888 pgdat->node_mem_map = map + offset;
1da177e4 6889 }
0cd842f9
OS
6890 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6891 __func__, pgdat->node_id, (unsigned long)pgdat,
6892 (unsigned long)pgdat->node_mem_map);
12d810c1 6893#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6894 /*
6895 * With no DISCONTIG, the global mem_map is just set as node 0's
6896 */
c713216d 6897 if (pgdat == NODE_DATA(0)) {
1da177e4 6898 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6899 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6900 mem_map -= offset;
c713216d 6901 }
1da177e4
LT
6902#endif
6903}
0cd842f9
OS
6904#else
6905static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6906#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6907
0188dc98
OS
6908#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6909static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6910{
0188dc98
OS
6911 pgdat->first_deferred_pfn = ULONG_MAX;
6912}
6913#else
6914static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6915#endif
6916
854e8848 6917static void __init free_area_init_node(int nid)
1da177e4 6918{
9109fb7b 6919 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6920 unsigned long start_pfn = 0;
6921 unsigned long end_pfn = 0;
9109fb7b 6922
88fdf75d 6923 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 6924 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 6925
854e8848 6926 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 6927
1da177e4 6928 pgdat->node_id = nid;
854e8848 6929 pgdat->node_start_pfn = start_pfn;
75ef7184 6930 pgdat->per_cpu_nodestats = NULL;
854e8848 6931
8d29e18a 6932 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6933 (u64)start_pfn << PAGE_SHIFT,
6934 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 6935 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
6936
6937 alloc_node_mem_map(pgdat);
0188dc98 6938 pgdat_set_deferred_range(pgdat);
1da177e4 6939
7f3eb55b 6940 free_area_init_core(pgdat);
1da177e4
LT
6941}
6942
bc9331a1 6943void __init free_area_init_memoryless_node(int nid)
3f08a302 6944{
854e8848 6945 free_area_init_node(nid);
3f08a302
MR
6946}
6947
aca52c39 6948#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6949/*
4b094b78
DH
6950 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6951 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6952 */
4b094b78 6953static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6954{
6955 unsigned long pfn;
6956 u64 pgcnt = 0;
6957
6958 for (pfn = spfn; pfn < epfn; pfn++) {
6959 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6960 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6961 + pageblock_nr_pages - 1;
6962 continue;
6963 }
4b094b78
DH
6964 /*
6965 * Use a fake node/zone (0) for now. Some of these pages
6966 * (in memblock.reserved but not in memblock.memory) will
6967 * get re-initialized via reserve_bootmem_region() later.
6968 */
6969 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6970 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
6971 pgcnt++;
6972 }
6973
6974 return pgcnt;
6975}
6976
a4a3ede2
PT
6977/*
6978 * Only struct pages that are backed by physical memory are zeroed and
6979 * initialized by going through __init_single_page(). But, there are some
6980 * struct pages which are reserved in memblock allocator and their fields
6981 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 6982 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
6983 *
6984 * This function also addresses a similar issue where struct pages are left
6985 * uninitialized because the physical address range is not covered by
6986 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
6987 * layout is manually configured via memmap=, or when the highest physical
6988 * address (max_pfn) does not end on a section boundary.
a4a3ede2 6989 */
4b094b78 6990static void __init init_unavailable_mem(void)
a4a3ede2
PT
6991{
6992 phys_addr_t start, end;
a4a3ede2 6993 u64 i, pgcnt;
907ec5fc 6994 phys_addr_t next = 0;
a4a3ede2
PT
6995
6996 /*
907ec5fc 6997 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6998 */
6999 pgcnt = 0;
907ec5fc
NH
7000 for_each_mem_range(i, &memblock.memory, NULL,
7001 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 7002 if (next < start)
4b094b78
DH
7003 pgcnt += init_unavailable_range(PFN_DOWN(next),
7004 PFN_UP(start));
907ec5fc
NH
7005 next = end;
7006 }
e822969c
DH
7007
7008 /*
7009 * Early sections always have a fully populated memmap for the whole
7010 * section - see pfn_valid(). If the last section has holes at the
7011 * end and that section is marked "online", the memmap will be
7012 * considered initialized. Make sure that memmap has a well defined
7013 * state.
7014 */
4b094b78
DH
7015 pgcnt += init_unavailable_range(PFN_DOWN(next),
7016 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7017
a4a3ede2
PT
7018 /*
7019 * Struct pages that do not have backing memory. This could be because
7020 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7021 */
7022 if (pgcnt)
907ec5fc 7023 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7024}
4b094b78
DH
7025#else
7026static inline void __init init_unavailable_mem(void)
7027{
7028}
aca52c39 7029#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7030
418508c1
MS
7031#if MAX_NUMNODES > 1
7032/*
7033 * Figure out the number of possible node ids.
7034 */
f9872caf 7035void __init setup_nr_node_ids(void)
418508c1 7036{
904a9553 7037 unsigned int highest;
418508c1 7038
904a9553 7039 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7040 nr_node_ids = highest + 1;
7041}
418508c1
MS
7042#endif
7043
1e01979c
TH
7044/**
7045 * node_map_pfn_alignment - determine the maximum internode alignment
7046 *
7047 * This function should be called after node map is populated and sorted.
7048 * It calculates the maximum power of two alignment which can distinguish
7049 * all the nodes.
7050 *
7051 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7052 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7053 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7054 * shifted, 1GiB is enough and this function will indicate so.
7055 *
7056 * This is used to test whether pfn -> nid mapping of the chosen memory
7057 * model has fine enough granularity to avoid incorrect mapping for the
7058 * populated node map.
7059 *
a862f68a 7060 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7061 * requirement (single node).
7062 */
7063unsigned long __init node_map_pfn_alignment(void)
7064{
7065 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7066 unsigned long start, end, mask;
98fa15f3 7067 int last_nid = NUMA_NO_NODE;
c13291a5 7068 int i, nid;
1e01979c 7069
c13291a5 7070 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7071 if (!start || last_nid < 0 || last_nid == nid) {
7072 last_nid = nid;
7073 last_end = end;
7074 continue;
7075 }
7076
7077 /*
7078 * Start with a mask granular enough to pin-point to the
7079 * start pfn and tick off bits one-by-one until it becomes
7080 * too coarse to separate the current node from the last.
7081 */
7082 mask = ~((1 << __ffs(start)) - 1);
7083 while (mask && last_end <= (start & (mask << 1)))
7084 mask <<= 1;
7085
7086 /* accumulate all internode masks */
7087 accl_mask |= mask;
7088 }
7089
7090 /* convert mask to number of pages */
7091 return ~accl_mask + 1;
7092}
7093
c713216d
MG
7094/**
7095 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7096 *
a862f68a 7097 * Return: the minimum PFN based on information provided via
7d018176 7098 * memblock_set_node().
c713216d
MG
7099 */
7100unsigned long __init find_min_pfn_with_active_regions(void)
7101{
8a1b25fe 7102 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7103}
7104
37b07e41
LS
7105/*
7106 * early_calculate_totalpages()
7107 * Sum pages in active regions for movable zone.
4b0ef1fe 7108 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7109 */
484f51f8 7110static unsigned long __init early_calculate_totalpages(void)
7e63efef 7111{
7e63efef 7112 unsigned long totalpages = 0;
c13291a5
TH
7113 unsigned long start_pfn, end_pfn;
7114 int i, nid;
7115
7116 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7117 unsigned long pages = end_pfn - start_pfn;
7e63efef 7118
37b07e41
LS
7119 totalpages += pages;
7120 if (pages)
4b0ef1fe 7121 node_set_state(nid, N_MEMORY);
37b07e41 7122 }
b8af2941 7123 return totalpages;
7e63efef
MG
7124}
7125
2a1e274a
MG
7126/*
7127 * Find the PFN the Movable zone begins in each node. Kernel memory
7128 * is spread evenly between nodes as long as the nodes have enough
7129 * memory. When they don't, some nodes will have more kernelcore than
7130 * others
7131 */
b224ef85 7132static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7133{
7134 int i, nid;
7135 unsigned long usable_startpfn;
7136 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7137 /* save the state before borrow the nodemask */
4b0ef1fe 7138 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7139 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7140 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7141 struct memblock_region *r;
b2f3eebe
TC
7142
7143 /* Need to find movable_zone earlier when movable_node is specified. */
7144 find_usable_zone_for_movable();
7145
7146 /*
7147 * If movable_node is specified, ignore kernelcore and movablecore
7148 * options.
7149 */
7150 if (movable_node_is_enabled()) {
136199f0
EM
7151 for_each_memblock(memory, r) {
7152 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7153 continue;
7154
d622abf7 7155 nid = memblock_get_region_node(r);
b2f3eebe 7156
136199f0 7157 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7158 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7159 min(usable_startpfn, zone_movable_pfn[nid]) :
7160 usable_startpfn;
7161 }
7162
7163 goto out2;
7164 }
2a1e274a 7165
342332e6
TI
7166 /*
7167 * If kernelcore=mirror is specified, ignore movablecore option
7168 */
7169 if (mirrored_kernelcore) {
7170 bool mem_below_4gb_not_mirrored = false;
7171
7172 for_each_memblock(memory, r) {
7173 if (memblock_is_mirror(r))
7174 continue;
7175
d622abf7 7176 nid = memblock_get_region_node(r);
342332e6
TI
7177
7178 usable_startpfn = memblock_region_memory_base_pfn(r);
7179
7180 if (usable_startpfn < 0x100000) {
7181 mem_below_4gb_not_mirrored = true;
7182 continue;
7183 }
7184
7185 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7186 min(usable_startpfn, zone_movable_pfn[nid]) :
7187 usable_startpfn;
7188 }
7189
7190 if (mem_below_4gb_not_mirrored)
633bf2fe 7191 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7192
7193 goto out2;
7194 }
7195
7e63efef 7196 /*
a5c6d650
DR
7197 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7198 * amount of necessary memory.
7199 */
7200 if (required_kernelcore_percent)
7201 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7202 10000UL;
7203 if (required_movablecore_percent)
7204 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7205 10000UL;
7206
7207 /*
7208 * If movablecore= was specified, calculate what size of
7e63efef
MG
7209 * kernelcore that corresponds so that memory usable for
7210 * any allocation type is evenly spread. If both kernelcore
7211 * and movablecore are specified, then the value of kernelcore
7212 * will be used for required_kernelcore if it's greater than
7213 * what movablecore would have allowed.
7214 */
7215 if (required_movablecore) {
7e63efef
MG
7216 unsigned long corepages;
7217
7218 /*
7219 * Round-up so that ZONE_MOVABLE is at least as large as what
7220 * was requested by the user
7221 */
7222 required_movablecore =
7223 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7224 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7225 corepages = totalpages - required_movablecore;
7226
7227 required_kernelcore = max(required_kernelcore, corepages);
7228 }
7229
bde304bd
XQ
7230 /*
7231 * If kernelcore was not specified or kernelcore size is larger
7232 * than totalpages, there is no ZONE_MOVABLE.
7233 */
7234 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7235 goto out;
2a1e274a
MG
7236
7237 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7238 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7239
7240restart:
7241 /* Spread kernelcore memory as evenly as possible throughout nodes */
7242 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7243 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7244 unsigned long start_pfn, end_pfn;
7245
2a1e274a
MG
7246 /*
7247 * Recalculate kernelcore_node if the division per node
7248 * now exceeds what is necessary to satisfy the requested
7249 * amount of memory for the kernel
7250 */
7251 if (required_kernelcore < kernelcore_node)
7252 kernelcore_node = required_kernelcore / usable_nodes;
7253
7254 /*
7255 * As the map is walked, we track how much memory is usable
7256 * by the kernel using kernelcore_remaining. When it is
7257 * 0, the rest of the node is usable by ZONE_MOVABLE
7258 */
7259 kernelcore_remaining = kernelcore_node;
7260
7261 /* Go through each range of PFNs within this node */
c13291a5 7262 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7263 unsigned long size_pages;
7264
c13291a5 7265 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7266 if (start_pfn >= end_pfn)
7267 continue;
7268
7269 /* Account for what is only usable for kernelcore */
7270 if (start_pfn < usable_startpfn) {
7271 unsigned long kernel_pages;
7272 kernel_pages = min(end_pfn, usable_startpfn)
7273 - start_pfn;
7274
7275 kernelcore_remaining -= min(kernel_pages,
7276 kernelcore_remaining);
7277 required_kernelcore -= min(kernel_pages,
7278 required_kernelcore);
7279
7280 /* Continue if range is now fully accounted */
7281 if (end_pfn <= usable_startpfn) {
7282
7283 /*
7284 * Push zone_movable_pfn to the end so
7285 * that if we have to rebalance
7286 * kernelcore across nodes, we will
7287 * not double account here
7288 */
7289 zone_movable_pfn[nid] = end_pfn;
7290 continue;
7291 }
7292 start_pfn = usable_startpfn;
7293 }
7294
7295 /*
7296 * The usable PFN range for ZONE_MOVABLE is from
7297 * start_pfn->end_pfn. Calculate size_pages as the
7298 * number of pages used as kernelcore
7299 */
7300 size_pages = end_pfn - start_pfn;
7301 if (size_pages > kernelcore_remaining)
7302 size_pages = kernelcore_remaining;
7303 zone_movable_pfn[nid] = start_pfn + size_pages;
7304
7305 /*
7306 * Some kernelcore has been met, update counts and
7307 * break if the kernelcore for this node has been
b8af2941 7308 * satisfied
2a1e274a
MG
7309 */
7310 required_kernelcore -= min(required_kernelcore,
7311 size_pages);
7312 kernelcore_remaining -= size_pages;
7313 if (!kernelcore_remaining)
7314 break;
7315 }
7316 }
7317
7318 /*
7319 * If there is still required_kernelcore, we do another pass with one
7320 * less node in the count. This will push zone_movable_pfn[nid] further
7321 * along on the nodes that still have memory until kernelcore is
b8af2941 7322 * satisfied
2a1e274a
MG
7323 */
7324 usable_nodes--;
7325 if (usable_nodes && required_kernelcore > usable_nodes)
7326 goto restart;
7327
b2f3eebe 7328out2:
2a1e274a
MG
7329 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7330 for (nid = 0; nid < MAX_NUMNODES; nid++)
7331 zone_movable_pfn[nid] =
7332 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7333
20e6926d 7334out:
66918dcd 7335 /* restore the node_state */
4b0ef1fe 7336 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7337}
7338
4b0ef1fe
LJ
7339/* Any regular or high memory on that node ? */
7340static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7341{
37b07e41
LS
7342 enum zone_type zone_type;
7343
4b0ef1fe 7344 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7345 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7346 if (populated_zone(zone)) {
7b0e0c0e
OS
7347 if (IS_ENABLED(CONFIG_HIGHMEM))
7348 node_set_state(nid, N_HIGH_MEMORY);
7349 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7350 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7351 break;
7352 }
37b07e41 7353 }
37b07e41
LS
7354}
7355
51930df5
MR
7356/*
7357 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7358 * such cases we allow max_zone_pfn sorted in the descending order
7359 */
7360bool __weak arch_has_descending_max_zone_pfns(void)
7361{
7362 return false;
7363}
7364
c713216d 7365/**
9691a071 7366 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7367 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7368 *
7369 * This will call free_area_init_node() for each active node in the system.
7d018176 7370 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7371 * zone in each node and their holes is calculated. If the maximum PFN
7372 * between two adjacent zones match, it is assumed that the zone is empty.
7373 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7374 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7375 * starts where the previous one ended. For example, ZONE_DMA32 starts
7376 * at arch_max_dma_pfn.
7377 */
9691a071 7378void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7379{
c13291a5 7380 unsigned long start_pfn, end_pfn;
51930df5
MR
7381 int i, nid, zone;
7382 bool descending;
a6af2bc3 7383
c713216d
MG
7384 /* Record where the zone boundaries are */
7385 memset(arch_zone_lowest_possible_pfn, 0,
7386 sizeof(arch_zone_lowest_possible_pfn));
7387 memset(arch_zone_highest_possible_pfn, 0,
7388 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7389
7390 start_pfn = find_min_pfn_with_active_regions();
51930df5 7391 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7392
7393 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7394 if (descending)
7395 zone = MAX_NR_ZONES - i - 1;
7396 else
7397 zone = i;
7398
7399 if (zone == ZONE_MOVABLE)
2a1e274a 7400 continue;
90cae1fe 7401
51930df5
MR
7402 end_pfn = max(max_zone_pfn[zone], start_pfn);
7403 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7404 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7405
7406 start_pfn = end_pfn;
c713216d 7407 }
2a1e274a
MG
7408
7409 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7410 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7411 find_zone_movable_pfns_for_nodes();
c713216d 7412
c713216d 7413 /* Print out the zone ranges */
f88dfff5 7414 pr_info("Zone ranges:\n");
2a1e274a
MG
7415 for (i = 0; i < MAX_NR_ZONES; i++) {
7416 if (i == ZONE_MOVABLE)
7417 continue;
f88dfff5 7418 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7419 if (arch_zone_lowest_possible_pfn[i] ==
7420 arch_zone_highest_possible_pfn[i])
f88dfff5 7421 pr_cont("empty\n");
72f0ba02 7422 else
8d29e18a
JG
7423 pr_cont("[mem %#018Lx-%#018Lx]\n",
7424 (u64)arch_zone_lowest_possible_pfn[i]
7425 << PAGE_SHIFT,
7426 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7427 << PAGE_SHIFT) - 1);
2a1e274a
MG
7428 }
7429
7430 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7431 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7432 for (i = 0; i < MAX_NUMNODES; i++) {
7433 if (zone_movable_pfn[i])
8d29e18a
JG
7434 pr_info(" Node %d: %#018Lx\n", i,
7435 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7436 }
c713216d 7437
f46edbd1
DW
7438 /*
7439 * Print out the early node map, and initialize the
7440 * subsection-map relative to active online memory ranges to
7441 * enable future "sub-section" extensions of the memory map.
7442 */
f88dfff5 7443 pr_info("Early memory node ranges\n");
f46edbd1 7444 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7445 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7446 (u64)start_pfn << PAGE_SHIFT,
7447 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7448 subsection_map_init(start_pfn, end_pfn - start_pfn);
7449 }
c713216d
MG
7450
7451 /* Initialise every node */
708614e6 7452 mminit_verify_pageflags_layout();
8ef82866 7453 setup_nr_node_ids();
4b094b78 7454 init_unavailable_mem();
c713216d
MG
7455 for_each_online_node(nid) {
7456 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7457 free_area_init_node(nid);
37b07e41
LS
7458
7459 /* Any memory on that node */
7460 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7461 node_set_state(nid, N_MEMORY);
7462 check_for_memory(pgdat, nid);
c713216d
MG
7463 }
7464}
2a1e274a 7465
a5c6d650
DR
7466static int __init cmdline_parse_core(char *p, unsigned long *core,
7467 unsigned long *percent)
2a1e274a
MG
7468{
7469 unsigned long long coremem;
a5c6d650
DR
7470 char *endptr;
7471
2a1e274a
MG
7472 if (!p)
7473 return -EINVAL;
7474
a5c6d650
DR
7475 /* Value may be a percentage of total memory, otherwise bytes */
7476 coremem = simple_strtoull(p, &endptr, 0);
7477 if (*endptr == '%') {
7478 /* Paranoid check for percent values greater than 100 */
7479 WARN_ON(coremem > 100);
2a1e274a 7480
a5c6d650
DR
7481 *percent = coremem;
7482 } else {
7483 coremem = memparse(p, &p);
7484 /* Paranoid check that UL is enough for the coremem value */
7485 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7486
a5c6d650
DR
7487 *core = coremem >> PAGE_SHIFT;
7488 *percent = 0UL;
7489 }
2a1e274a
MG
7490 return 0;
7491}
ed7ed365 7492
7e63efef
MG
7493/*
7494 * kernelcore=size sets the amount of memory for use for allocations that
7495 * cannot be reclaimed or migrated.
7496 */
7497static int __init cmdline_parse_kernelcore(char *p)
7498{
342332e6
TI
7499 /* parse kernelcore=mirror */
7500 if (parse_option_str(p, "mirror")) {
7501 mirrored_kernelcore = true;
7502 return 0;
7503 }
7504
a5c6d650
DR
7505 return cmdline_parse_core(p, &required_kernelcore,
7506 &required_kernelcore_percent);
7e63efef
MG
7507}
7508
7509/*
7510 * movablecore=size sets the amount of memory for use for allocations that
7511 * can be reclaimed or migrated.
7512 */
7513static int __init cmdline_parse_movablecore(char *p)
7514{
a5c6d650
DR
7515 return cmdline_parse_core(p, &required_movablecore,
7516 &required_movablecore_percent);
7e63efef
MG
7517}
7518
ed7ed365 7519early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7520early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7521
c3d5f5f0
JL
7522void adjust_managed_page_count(struct page *page, long count)
7523{
9705bea5 7524 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7525 totalram_pages_add(count);
3dcc0571
JL
7526#ifdef CONFIG_HIGHMEM
7527 if (PageHighMem(page))
ca79b0c2 7528 totalhigh_pages_add(count);
3dcc0571 7529#endif
c3d5f5f0 7530}
3dcc0571 7531EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7532
e5cb113f 7533unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7534{
11199692
JL
7535 void *pos;
7536 unsigned long pages = 0;
69afade7 7537
11199692
JL
7538 start = (void *)PAGE_ALIGN((unsigned long)start);
7539 end = (void *)((unsigned long)end & PAGE_MASK);
7540 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7541 struct page *page = virt_to_page(pos);
7542 void *direct_map_addr;
7543
7544 /*
7545 * 'direct_map_addr' might be different from 'pos'
7546 * because some architectures' virt_to_page()
7547 * work with aliases. Getting the direct map
7548 * address ensures that we get a _writeable_
7549 * alias for the memset().
7550 */
7551 direct_map_addr = page_address(page);
dbe67df4 7552 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7553 memset(direct_map_addr, poison, PAGE_SIZE);
7554
7555 free_reserved_page(page);
69afade7
JL
7556 }
7557
7558 if (pages && s)
adb1fe9a
JP
7559 pr_info("Freeing %s memory: %ldK\n",
7560 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7561
7562 return pages;
7563}
7564
cfa11e08
JL
7565#ifdef CONFIG_HIGHMEM
7566void free_highmem_page(struct page *page)
7567{
7568 __free_reserved_page(page);
ca79b0c2 7569 totalram_pages_inc();
9705bea5 7570 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7571 totalhigh_pages_inc();
cfa11e08
JL
7572}
7573#endif
7574
7ee3d4e8
JL
7575
7576void __init mem_init_print_info(const char *str)
7577{
7578 unsigned long physpages, codesize, datasize, rosize, bss_size;
7579 unsigned long init_code_size, init_data_size;
7580
7581 physpages = get_num_physpages();
7582 codesize = _etext - _stext;
7583 datasize = _edata - _sdata;
7584 rosize = __end_rodata - __start_rodata;
7585 bss_size = __bss_stop - __bss_start;
7586 init_data_size = __init_end - __init_begin;
7587 init_code_size = _einittext - _sinittext;
7588
7589 /*
7590 * Detect special cases and adjust section sizes accordingly:
7591 * 1) .init.* may be embedded into .data sections
7592 * 2) .init.text.* may be out of [__init_begin, __init_end],
7593 * please refer to arch/tile/kernel/vmlinux.lds.S.
7594 * 3) .rodata.* may be embedded into .text or .data sections.
7595 */
7596#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7597 do { \
7598 if (start <= pos && pos < end && size > adj) \
7599 size -= adj; \
7600 } while (0)
7ee3d4e8
JL
7601
7602 adj_init_size(__init_begin, __init_end, init_data_size,
7603 _sinittext, init_code_size);
7604 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7605 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7606 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7607 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7608
7609#undef adj_init_size
7610
756a025f 7611 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7612#ifdef CONFIG_HIGHMEM
756a025f 7613 ", %luK highmem"
7ee3d4e8 7614#endif
756a025f
JP
7615 "%s%s)\n",
7616 nr_free_pages() << (PAGE_SHIFT - 10),
7617 physpages << (PAGE_SHIFT - 10),
7618 codesize >> 10, datasize >> 10, rosize >> 10,
7619 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7620 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7621 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7622#ifdef CONFIG_HIGHMEM
ca79b0c2 7623 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7624#endif
756a025f 7625 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7626}
7627
0e0b864e 7628/**
88ca3b94
RD
7629 * set_dma_reserve - set the specified number of pages reserved in the first zone
7630 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7631 *
013110a7 7632 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7633 * In the DMA zone, a significant percentage may be consumed by kernel image
7634 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7635 * function may optionally be used to account for unfreeable pages in the
7636 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7637 * smaller per-cpu batchsize.
0e0b864e
MG
7638 */
7639void __init set_dma_reserve(unsigned long new_dma_reserve)
7640{
7641 dma_reserve = new_dma_reserve;
7642}
7643
005fd4bb 7644static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7645{
1da177e4 7646
005fd4bb
SAS
7647 lru_add_drain_cpu(cpu);
7648 drain_pages(cpu);
9f8f2172 7649
005fd4bb
SAS
7650 /*
7651 * Spill the event counters of the dead processor
7652 * into the current processors event counters.
7653 * This artificially elevates the count of the current
7654 * processor.
7655 */
7656 vm_events_fold_cpu(cpu);
9f8f2172 7657
005fd4bb
SAS
7658 /*
7659 * Zero the differential counters of the dead processor
7660 * so that the vm statistics are consistent.
7661 *
7662 * This is only okay since the processor is dead and cannot
7663 * race with what we are doing.
7664 */
7665 cpu_vm_stats_fold(cpu);
7666 return 0;
1da177e4 7667}
1da177e4 7668
e03a5125
NP
7669#ifdef CONFIG_NUMA
7670int hashdist = HASHDIST_DEFAULT;
7671
7672static int __init set_hashdist(char *str)
7673{
7674 if (!str)
7675 return 0;
7676 hashdist = simple_strtoul(str, &str, 0);
7677 return 1;
7678}
7679__setup("hashdist=", set_hashdist);
7680#endif
7681
1da177e4
LT
7682void __init page_alloc_init(void)
7683{
005fd4bb
SAS
7684 int ret;
7685
e03a5125
NP
7686#ifdef CONFIG_NUMA
7687 if (num_node_state(N_MEMORY) == 1)
7688 hashdist = 0;
7689#endif
7690
005fd4bb
SAS
7691 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7692 "mm/page_alloc:dead", NULL,
7693 page_alloc_cpu_dead);
7694 WARN_ON(ret < 0);
1da177e4
LT
7695}
7696
cb45b0e9 7697/*
34b10060 7698 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7699 * or min_free_kbytes changes.
7700 */
7701static void calculate_totalreserve_pages(void)
7702{
7703 struct pglist_data *pgdat;
7704 unsigned long reserve_pages = 0;
2f6726e5 7705 enum zone_type i, j;
cb45b0e9
HA
7706
7707 for_each_online_pgdat(pgdat) {
281e3726
MG
7708
7709 pgdat->totalreserve_pages = 0;
7710
cb45b0e9
HA
7711 for (i = 0; i < MAX_NR_ZONES; i++) {
7712 struct zone *zone = pgdat->node_zones + i;
3484b2de 7713 long max = 0;
9705bea5 7714 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7715
7716 /* Find valid and maximum lowmem_reserve in the zone */
7717 for (j = i; j < MAX_NR_ZONES; j++) {
7718 if (zone->lowmem_reserve[j] > max)
7719 max = zone->lowmem_reserve[j];
7720 }
7721
41858966
MG
7722 /* we treat the high watermark as reserved pages. */
7723 max += high_wmark_pages(zone);
cb45b0e9 7724
3d6357de
AK
7725 if (max > managed_pages)
7726 max = managed_pages;
a8d01437 7727
281e3726 7728 pgdat->totalreserve_pages += max;
a8d01437 7729
cb45b0e9
HA
7730 reserve_pages += max;
7731 }
7732 }
7733 totalreserve_pages = reserve_pages;
7734}
7735
1da177e4
LT
7736/*
7737 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7738 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7739 * has a correct pages reserved value, so an adequate number of
7740 * pages are left in the zone after a successful __alloc_pages().
7741 */
7742static void setup_per_zone_lowmem_reserve(void)
7743{
7744 struct pglist_data *pgdat;
2f6726e5 7745 enum zone_type j, idx;
1da177e4 7746
ec936fc5 7747 for_each_online_pgdat(pgdat) {
1da177e4
LT
7748 for (j = 0; j < MAX_NR_ZONES; j++) {
7749 struct zone *zone = pgdat->node_zones + j;
9705bea5 7750 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7751
7752 zone->lowmem_reserve[j] = 0;
7753
2f6726e5
CL
7754 idx = j;
7755 while (idx) {
1da177e4
LT
7756 struct zone *lower_zone;
7757
2f6726e5 7758 idx--;
1da177e4 7759 lower_zone = pgdat->node_zones + idx;
d3cda233 7760
f6366156
BH
7761 if (!sysctl_lowmem_reserve_ratio[idx] ||
7762 !zone_managed_pages(lower_zone)) {
d3cda233 7763 lower_zone->lowmem_reserve[j] = 0;
f6366156 7764 continue;
d3cda233
JK
7765 } else {
7766 lower_zone->lowmem_reserve[j] =
7767 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7768 }
9705bea5 7769 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7770 }
7771 }
7772 }
cb45b0e9
HA
7773
7774 /* update totalreserve_pages */
7775 calculate_totalreserve_pages();
1da177e4
LT
7776}
7777
cfd3da1e 7778static void __setup_per_zone_wmarks(void)
1da177e4
LT
7779{
7780 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7781 unsigned long lowmem_pages = 0;
7782 struct zone *zone;
7783 unsigned long flags;
7784
7785 /* Calculate total number of !ZONE_HIGHMEM pages */
7786 for_each_zone(zone) {
7787 if (!is_highmem(zone))
9705bea5 7788 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7789 }
7790
7791 for_each_zone(zone) {
ac924c60
AM
7792 u64 tmp;
7793
1125b4e3 7794 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7795 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7796 do_div(tmp, lowmem_pages);
1da177e4
LT
7797 if (is_highmem(zone)) {
7798 /*
669ed175
NP
7799 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7800 * need highmem pages, so cap pages_min to a small
7801 * value here.
7802 *
41858966 7803 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7804 * deltas control async page reclaim, and so should
669ed175 7805 * not be capped for highmem.
1da177e4 7806 */
90ae8d67 7807 unsigned long min_pages;
1da177e4 7808
9705bea5 7809 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7810 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7811 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7812 } else {
669ed175
NP
7813 /*
7814 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7815 * proportionate to the zone's size.
7816 */
a9214443 7817 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7818 }
7819
795ae7a0
JW
7820 /*
7821 * Set the kswapd watermarks distance according to the
7822 * scale factor in proportion to available memory, but
7823 * ensure a minimum size on small systems.
7824 */
7825 tmp = max_t(u64, tmp >> 2,
9705bea5 7826 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7827 watermark_scale_factor, 10000));
7828
aa092591 7829 zone->watermark_boost = 0;
a9214443
MG
7830 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7831 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7832
1125b4e3 7833 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7834 }
cb45b0e9
HA
7835
7836 /* update totalreserve_pages */
7837 calculate_totalreserve_pages();
1da177e4
LT
7838}
7839
cfd3da1e
MG
7840/**
7841 * setup_per_zone_wmarks - called when min_free_kbytes changes
7842 * or when memory is hot-{added|removed}
7843 *
7844 * Ensures that the watermark[min,low,high] values for each zone are set
7845 * correctly with respect to min_free_kbytes.
7846 */
7847void setup_per_zone_wmarks(void)
7848{
b93e0f32
MH
7849 static DEFINE_SPINLOCK(lock);
7850
7851 spin_lock(&lock);
cfd3da1e 7852 __setup_per_zone_wmarks();
b93e0f32 7853 spin_unlock(&lock);
cfd3da1e
MG
7854}
7855
1da177e4
LT
7856/*
7857 * Initialise min_free_kbytes.
7858 *
7859 * For small machines we want it small (128k min). For large machines
8beeae86 7860 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7861 * bandwidth does not increase linearly with machine size. We use
7862 *
b8af2941 7863 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7864 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7865 *
7866 * which yields
7867 *
7868 * 16MB: 512k
7869 * 32MB: 724k
7870 * 64MB: 1024k
7871 * 128MB: 1448k
7872 * 256MB: 2048k
7873 * 512MB: 2896k
7874 * 1024MB: 4096k
7875 * 2048MB: 5792k
7876 * 4096MB: 8192k
7877 * 8192MB: 11584k
7878 * 16384MB: 16384k
7879 */
1b79acc9 7880int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7881{
7882 unsigned long lowmem_kbytes;
5f12733e 7883 int new_min_free_kbytes;
1da177e4
LT
7884
7885 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7886 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7887
7888 if (new_min_free_kbytes > user_min_free_kbytes) {
7889 min_free_kbytes = new_min_free_kbytes;
7890 if (min_free_kbytes < 128)
7891 min_free_kbytes = 128;
ee8eb9a5
JS
7892 if (min_free_kbytes > 262144)
7893 min_free_kbytes = 262144;
5f12733e
MH
7894 } else {
7895 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7896 new_min_free_kbytes, user_min_free_kbytes);
7897 }
bc75d33f 7898 setup_per_zone_wmarks();
a6cccdc3 7899 refresh_zone_stat_thresholds();
1da177e4 7900 setup_per_zone_lowmem_reserve();
6423aa81
JK
7901
7902#ifdef CONFIG_NUMA
7903 setup_min_unmapped_ratio();
7904 setup_min_slab_ratio();
7905#endif
7906
1da177e4
LT
7907 return 0;
7908}
e08d3fdf 7909postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
7910
7911/*
b8af2941 7912 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7913 * that we can call two helper functions whenever min_free_kbytes
7914 * changes.
7915 */
cccad5b9 7916int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 7917 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7918{
da8c757b
HP
7919 int rc;
7920
7921 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7922 if (rc)
7923 return rc;
7924
5f12733e
MH
7925 if (write) {
7926 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7927 setup_per_zone_wmarks();
5f12733e 7928 }
1da177e4
LT
7929 return 0;
7930}
7931
795ae7a0 7932int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 7933 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
7934{
7935 int rc;
7936
7937 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7938 if (rc)
7939 return rc;
7940
7941 if (write)
7942 setup_per_zone_wmarks();
7943
7944 return 0;
7945}
7946
9614634f 7947#ifdef CONFIG_NUMA
6423aa81 7948static void setup_min_unmapped_ratio(void)
9614634f 7949{
6423aa81 7950 pg_data_t *pgdat;
9614634f 7951 struct zone *zone;
9614634f 7952
a5f5f91d 7953 for_each_online_pgdat(pgdat)
81cbcbc2 7954 pgdat->min_unmapped_pages = 0;
a5f5f91d 7955
9614634f 7956 for_each_zone(zone)
9705bea5
AK
7957 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7958 sysctl_min_unmapped_ratio) / 100;
9614634f 7959}
0ff38490 7960
6423aa81
JK
7961
7962int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7963 void *buffer, size_t *length, loff_t *ppos)
0ff38490 7964{
0ff38490
CL
7965 int rc;
7966
8d65af78 7967 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7968 if (rc)
7969 return rc;
7970
6423aa81
JK
7971 setup_min_unmapped_ratio();
7972
7973 return 0;
7974}
7975
7976static void setup_min_slab_ratio(void)
7977{
7978 pg_data_t *pgdat;
7979 struct zone *zone;
7980
a5f5f91d
MG
7981 for_each_online_pgdat(pgdat)
7982 pgdat->min_slab_pages = 0;
7983
0ff38490 7984 for_each_zone(zone)
9705bea5
AK
7985 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7986 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7987}
7988
7989int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7990 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
7991{
7992 int rc;
7993
7994 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7995 if (rc)
7996 return rc;
7997
7998 setup_min_slab_ratio();
7999
0ff38490
CL
8000 return 0;
8001}
9614634f
CL
8002#endif
8003
1da177e4
LT
8004/*
8005 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8006 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8007 * whenever sysctl_lowmem_reserve_ratio changes.
8008 *
8009 * The reserve ratio obviously has absolutely no relation with the
41858966 8010 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8011 * if in function of the boot time zone sizes.
8012 */
cccad5b9 8013int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8014 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8015{
86aaf255
BH
8016 int i;
8017
8d65af78 8018 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8019
8020 for (i = 0; i < MAX_NR_ZONES; i++) {
8021 if (sysctl_lowmem_reserve_ratio[i] < 1)
8022 sysctl_lowmem_reserve_ratio[i] = 0;
8023 }
8024
1da177e4
LT
8025 setup_per_zone_lowmem_reserve();
8026 return 0;
8027}
8028
cb1ef534
MG
8029static void __zone_pcp_update(struct zone *zone)
8030{
8031 unsigned int cpu;
8032
8033 for_each_possible_cpu(cpu)
8034 pageset_set_high_and_batch(zone,
8035 per_cpu_ptr(zone->pageset, cpu));
8036}
8037
8ad4b1fb
RS
8038/*
8039 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8040 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8041 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8042 */
cccad5b9 8043int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8044 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8045{
8046 struct zone *zone;
7cd2b0a3 8047 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8048 int ret;
8049
7cd2b0a3
DR
8050 mutex_lock(&pcp_batch_high_lock);
8051 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8052
8d65af78 8053 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8054 if (!write || ret < 0)
8055 goto out;
8056
8057 /* Sanity checking to avoid pcp imbalance */
8058 if (percpu_pagelist_fraction &&
8059 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8060 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8061 ret = -EINVAL;
8062 goto out;
8063 }
8064
8065 /* No change? */
8066 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8067 goto out;
c8e251fa 8068
cb1ef534
MG
8069 for_each_populated_zone(zone)
8070 __zone_pcp_update(zone);
7cd2b0a3 8071out:
c8e251fa 8072 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8073 return ret;
8ad4b1fb
RS
8074}
8075
f6f34b43
SD
8076#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8077/*
8078 * Returns the number of pages that arch has reserved but
8079 * is not known to alloc_large_system_hash().
8080 */
8081static unsigned long __init arch_reserved_kernel_pages(void)
8082{
8083 return 0;
8084}
8085#endif
8086
9017217b
PT
8087/*
8088 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8089 * machines. As memory size is increased the scale is also increased but at
8090 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8091 * quadruples the scale is increased by one, which means the size of hash table
8092 * only doubles, instead of quadrupling as well.
8093 * Because 32-bit systems cannot have large physical memory, where this scaling
8094 * makes sense, it is disabled on such platforms.
8095 */
8096#if __BITS_PER_LONG > 32
8097#define ADAPT_SCALE_BASE (64ul << 30)
8098#define ADAPT_SCALE_SHIFT 2
8099#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8100#endif
8101
1da177e4
LT
8102/*
8103 * allocate a large system hash table from bootmem
8104 * - it is assumed that the hash table must contain an exact power-of-2
8105 * quantity of entries
8106 * - limit is the number of hash buckets, not the total allocation size
8107 */
8108void *__init alloc_large_system_hash(const char *tablename,
8109 unsigned long bucketsize,
8110 unsigned long numentries,
8111 int scale,
8112 int flags,
8113 unsigned int *_hash_shift,
8114 unsigned int *_hash_mask,
31fe62b9
TB
8115 unsigned long low_limit,
8116 unsigned long high_limit)
1da177e4 8117{
31fe62b9 8118 unsigned long long max = high_limit;
1da177e4
LT
8119 unsigned long log2qty, size;
8120 void *table = NULL;
3749a8f0 8121 gfp_t gfp_flags;
ec11408a 8122 bool virt;
1da177e4
LT
8123
8124 /* allow the kernel cmdline to have a say */
8125 if (!numentries) {
8126 /* round applicable memory size up to nearest megabyte */
04903664 8127 numentries = nr_kernel_pages;
f6f34b43 8128 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8129
8130 /* It isn't necessary when PAGE_SIZE >= 1MB */
8131 if (PAGE_SHIFT < 20)
8132 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8133
9017217b
PT
8134#if __BITS_PER_LONG > 32
8135 if (!high_limit) {
8136 unsigned long adapt;
8137
8138 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8139 adapt <<= ADAPT_SCALE_SHIFT)
8140 scale++;
8141 }
8142#endif
8143
1da177e4
LT
8144 /* limit to 1 bucket per 2^scale bytes of low memory */
8145 if (scale > PAGE_SHIFT)
8146 numentries >>= (scale - PAGE_SHIFT);
8147 else
8148 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8149
8150 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8151 if (unlikely(flags & HASH_SMALL)) {
8152 /* Makes no sense without HASH_EARLY */
8153 WARN_ON(!(flags & HASH_EARLY));
8154 if (!(numentries >> *_hash_shift)) {
8155 numentries = 1UL << *_hash_shift;
8156 BUG_ON(!numentries);
8157 }
8158 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8159 numentries = PAGE_SIZE / bucketsize;
1da177e4 8160 }
6e692ed3 8161 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8162
8163 /* limit allocation size to 1/16 total memory by default */
8164 if (max == 0) {
8165 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8166 do_div(max, bucketsize);
8167 }
074b8517 8168 max = min(max, 0x80000000ULL);
1da177e4 8169
31fe62b9
TB
8170 if (numentries < low_limit)
8171 numentries = low_limit;
1da177e4
LT
8172 if (numentries > max)
8173 numentries = max;
8174
f0d1b0b3 8175 log2qty = ilog2(numentries);
1da177e4 8176
3749a8f0 8177 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8178 do {
ec11408a 8179 virt = false;
1da177e4 8180 size = bucketsize << log2qty;
ea1f5f37
PT
8181 if (flags & HASH_EARLY) {
8182 if (flags & HASH_ZERO)
26fb3dae 8183 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8184 else
7e1c4e27
MR
8185 table = memblock_alloc_raw(size,
8186 SMP_CACHE_BYTES);
ec11408a 8187 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8188 table = __vmalloc(size, gfp_flags);
ec11408a 8189 virt = true;
ea1f5f37 8190 } else {
1037b83b
ED
8191 /*
8192 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8193 * some pages at the end of hash table which
8194 * alloc_pages_exact() automatically does
1037b83b 8195 */
ec11408a
NP
8196 table = alloc_pages_exact(size, gfp_flags);
8197 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8198 }
8199 } while (!table && size > PAGE_SIZE && --log2qty);
8200
8201 if (!table)
8202 panic("Failed to allocate %s hash table\n", tablename);
8203
ec11408a
NP
8204 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8205 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8206 virt ? "vmalloc" : "linear");
1da177e4
LT
8207
8208 if (_hash_shift)
8209 *_hash_shift = log2qty;
8210 if (_hash_mask)
8211 *_hash_mask = (1 << log2qty) - 1;
8212
8213 return table;
8214}
a117e66e 8215
a5d76b54 8216/*
80934513 8217 * This function checks whether pageblock includes unmovable pages or not.
80934513 8218 *
b8af2941 8219 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8220 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8221 * check without lock_page also may miss some movable non-lru pages at
8222 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8223 *
8224 * Returns a page without holding a reference. If the caller wants to
047b9967 8225 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8226 * cannot get removed (e.g., via memory unplug) concurrently.
8227 *
a5d76b54 8228 */
4a55c047
QC
8229struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8230 int migratetype, int flags)
49ac8255 8231{
1a9f2191
QC
8232 unsigned long iter = 0;
8233 unsigned long pfn = page_to_pfn(page);
47118af0 8234
49ac8255 8235 /*
15c30bc0
MH
8236 * TODO we could make this much more efficient by not checking every
8237 * page in the range if we know all of them are in MOVABLE_ZONE and
8238 * that the movable zone guarantees that pages are migratable but
8239 * the later is not the case right now unfortunatelly. E.g. movablecore
8240 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8241 */
49ac8255 8242
1a9f2191
QC
8243 if (is_migrate_cma_page(page)) {
8244 /*
8245 * CMA allocations (alloc_contig_range) really need to mark
8246 * isolate CMA pageblocks even when they are not movable in fact
8247 * so consider them movable here.
8248 */
8249 if (is_migrate_cma(migratetype))
4a55c047 8250 return NULL;
1a9f2191 8251
3d680bdf 8252 return page;
1a9f2191 8253 }
4da2ce25 8254
fe4c86c9
DH
8255 for (; iter < pageblock_nr_pages; iter++) {
8256 if (!pfn_valid_within(pfn + iter))
49ac8255 8257 continue;
29723fcc 8258
fe4c86c9 8259 page = pfn_to_page(pfn + iter);
c8721bbb 8260
d7ab3672 8261 if (PageReserved(page))
3d680bdf 8262 return page;
d7ab3672 8263
9d789999
MH
8264 /*
8265 * If the zone is movable and we have ruled out all reserved
8266 * pages then it should be reasonably safe to assume the rest
8267 * is movable.
8268 */
8269 if (zone_idx(zone) == ZONE_MOVABLE)
8270 continue;
8271
c8721bbb
NH
8272 /*
8273 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8274 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8275 * We need not scan over tail pages because we don't
c8721bbb
NH
8276 * handle each tail page individually in migration.
8277 */
1da2f328 8278 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8279 struct page *head = compound_head(page);
8280 unsigned int skip_pages;
464c7ffb 8281
1da2f328
RR
8282 if (PageHuge(page)) {
8283 if (!hugepage_migration_supported(page_hstate(head)))
8284 return page;
8285 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8286 return page;
1da2f328 8287 }
464c7ffb 8288
d8c6546b 8289 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8290 iter += skip_pages - 1;
c8721bbb
NH
8291 continue;
8292 }
8293
97d255c8
MK
8294 /*
8295 * We can't use page_count without pin a page
8296 * because another CPU can free compound page.
8297 * This check already skips compound tails of THP
0139aa7b 8298 * because their page->_refcount is zero at all time.
97d255c8 8299 */
fe896d18 8300 if (!page_ref_count(page)) {
49ac8255
KH
8301 if (PageBuddy(page))
8302 iter += (1 << page_order(page)) - 1;
8303 continue;
8304 }
97d255c8 8305
b023f468
WC
8306 /*
8307 * The HWPoisoned page may be not in buddy system, and
8308 * page_count() is not 0.
8309 */
756d25be 8310 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8311 continue;
8312
aa218795
DH
8313 /*
8314 * We treat all PageOffline() pages as movable when offlining
8315 * to give drivers a chance to decrement their reference count
8316 * in MEM_GOING_OFFLINE in order to indicate that these pages
8317 * can be offlined as there are no direct references anymore.
8318 * For actually unmovable PageOffline() where the driver does
8319 * not support this, we will fail later when trying to actually
8320 * move these pages that still have a reference count > 0.
8321 * (false negatives in this function only)
8322 */
8323 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8324 continue;
8325
fe4c86c9 8326 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8327 continue;
8328
49ac8255 8329 /*
6b4f7799
JW
8330 * If there are RECLAIMABLE pages, we need to check
8331 * it. But now, memory offline itself doesn't call
8332 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8333 */
8334 /*
8335 * If the page is not RAM, page_count()should be 0.
8336 * we don't need more check. This is an _used_ not-movable page.
8337 *
8338 * The problematic thing here is PG_reserved pages. PG_reserved
8339 * is set to both of a memory hole page and a _used_ kernel
8340 * page at boot.
8341 */
3d680bdf 8342 return page;
49ac8255 8343 }
4a55c047 8344 return NULL;
49ac8255
KH
8345}
8346
8df995f6 8347#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8348static unsigned long pfn_max_align_down(unsigned long pfn)
8349{
8350 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8351 pageblock_nr_pages) - 1);
8352}
8353
8354static unsigned long pfn_max_align_up(unsigned long pfn)
8355{
8356 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8357 pageblock_nr_pages));
8358}
8359
041d3a8c 8360/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8361static int __alloc_contig_migrate_range(struct compact_control *cc,
8362 unsigned long start, unsigned long end)
041d3a8c
MN
8363{
8364 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8365 unsigned int nr_reclaimed;
041d3a8c
MN
8366 unsigned long pfn = start;
8367 unsigned int tries = 0;
8368 int ret = 0;
8b94e0b8
JK
8369 struct migration_target_control mtc = {
8370 .nid = zone_to_nid(cc->zone),
8371 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8372 };
041d3a8c 8373
be49a6e1 8374 migrate_prep();
041d3a8c 8375
bb13ffeb 8376 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8377 if (fatal_signal_pending(current)) {
8378 ret = -EINTR;
8379 break;
8380 }
8381
bb13ffeb
MG
8382 if (list_empty(&cc->migratepages)) {
8383 cc->nr_migratepages = 0;
edc2ca61 8384 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8385 if (!pfn) {
8386 ret = -EINTR;
8387 break;
8388 }
8389 tries = 0;
8390 } else if (++tries == 5) {
8391 ret = ret < 0 ? ret : -EBUSY;
8392 break;
8393 }
8394
beb51eaa
MK
8395 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8396 &cc->migratepages);
8397 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8398
8b94e0b8
JK
8399 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8400 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8401 }
2a6f5124
SP
8402 if (ret < 0) {
8403 putback_movable_pages(&cc->migratepages);
8404 return ret;
8405 }
8406 return 0;
041d3a8c
MN
8407}
8408
8409/**
8410 * alloc_contig_range() -- tries to allocate given range of pages
8411 * @start: start PFN to allocate
8412 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8413 * @migratetype: migratetype of the underlaying pageblocks (either
8414 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8415 * in range must have the same migratetype and it must
8416 * be either of the two.
ca96b625 8417 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8418 *
8419 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8420 * aligned. The PFN range must belong to a single zone.
041d3a8c 8421 *
2c7452a0
MK
8422 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8423 * pageblocks in the range. Once isolated, the pageblocks should not
8424 * be modified by others.
041d3a8c 8425 *
a862f68a 8426 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8427 * pages which PFN is in [start, end) are allocated for the caller and
8428 * need to be freed with free_contig_range().
8429 */
0815f3d8 8430int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8431 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8432{
041d3a8c 8433 unsigned long outer_start, outer_end;
d00181b9
KS
8434 unsigned int order;
8435 int ret = 0;
041d3a8c 8436
bb13ffeb
MG
8437 struct compact_control cc = {
8438 .nr_migratepages = 0,
8439 .order = -1,
8440 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8441 .mode = MIGRATE_SYNC,
bb13ffeb 8442 .ignore_skip_hint = true,
2583d671 8443 .no_set_skip_hint = true,
7dea19f9 8444 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8445 .alloc_contig = true,
bb13ffeb
MG
8446 };
8447 INIT_LIST_HEAD(&cc.migratepages);
8448
041d3a8c
MN
8449 /*
8450 * What we do here is we mark all pageblocks in range as
8451 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8452 * have different sizes, and due to the way page allocator
8453 * work, we align the range to biggest of the two pages so
8454 * that page allocator won't try to merge buddies from
8455 * different pageblocks and change MIGRATE_ISOLATE to some
8456 * other migration type.
8457 *
8458 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8459 * migrate the pages from an unaligned range (ie. pages that
8460 * we are interested in). This will put all the pages in
8461 * range back to page allocator as MIGRATE_ISOLATE.
8462 *
8463 * When this is done, we take the pages in range from page
8464 * allocator removing them from the buddy system. This way
8465 * page allocator will never consider using them.
8466 *
8467 * This lets us mark the pageblocks back as
8468 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8469 * aligned range but not in the unaligned, original range are
8470 * put back to page allocator so that buddy can use them.
8471 */
8472
8473 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8474 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8475 if (ret < 0)
86a595f9 8476 return ret;
041d3a8c 8477
8ef5849f
JK
8478 /*
8479 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8480 * So, just fall through. test_pages_isolated() has a tracepoint
8481 * which will report the busy page.
8482 *
8483 * It is possible that busy pages could become available before
8484 * the call to test_pages_isolated, and the range will actually be
8485 * allocated. So, if we fall through be sure to clear ret so that
8486 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8487 */
bb13ffeb 8488 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8489 if (ret && ret != -EBUSY)
041d3a8c 8490 goto done;
63cd4489 8491 ret =0;
041d3a8c
MN
8492
8493 /*
8494 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8495 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8496 * more, all pages in [start, end) are free in page allocator.
8497 * What we are going to do is to allocate all pages from
8498 * [start, end) (that is remove them from page allocator).
8499 *
8500 * The only problem is that pages at the beginning and at the
8501 * end of interesting range may be not aligned with pages that
8502 * page allocator holds, ie. they can be part of higher order
8503 * pages. Because of this, we reserve the bigger range and
8504 * once this is done free the pages we are not interested in.
8505 *
8506 * We don't have to hold zone->lock here because the pages are
8507 * isolated thus they won't get removed from buddy.
8508 */
8509
8510 lru_add_drain_all();
041d3a8c
MN
8511
8512 order = 0;
8513 outer_start = start;
8514 while (!PageBuddy(pfn_to_page(outer_start))) {
8515 if (++order >= MAX_ORDER) {
8ef5849f
JK
8516 outer_start = start;
8517 break;
041d3a8c
MN
8518 }
8519 outer_start &= ~0UL << order;
8520 }
8521
8ef5849f
JK
8522 if (outer_start != start) {
8523 order = page_order(pfn_to_page(outer_start));
8524
8525 /*
8526 * outer_start page could be small order buddy page and
8527 * it doesn't include start page. Adjust outer_start
8528 * in this case to report failed page properly
8529 * on tracepoint in test_pages_isolated()
8530 */
8531 if (outer_start + (1UL << order) <= start)
8532 outer_start = start;
8533 }
8534
041d3a8c 8535 /* Make sure the range is really isolated. */
756d25be 8536 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8537 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8538 __func__, outer_start, end);
041d3a8c
MN
8539 ret = -EBUSY;
8540 goto done;
8541 }
8542
49f223a9 8543 /* Grab isolated pages from freelists. */
bb13ffeb 8544 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8545 if (!outer_end) {
8546 ret = -EBUSY;
8547 goto done;
8548 }
8549
8550 /* Free head and tail (if any) */
8551 if (start != outer_start)
8552 free_contig_range(outer_start, start - outer_start);
8553 if (end != outer_end)
8554 free_contig_range(end, outer_end - end);
8555
8556done:
8557 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8558 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8559 return ret;
8560}
255f5985 8561EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8562
8563static int __alloc_contig_pages(unsigned long start_pfn,
8564 unsigned long nr_pages, gfp_t gfp_mask)
8565{
8566 unsigned long end_pfn = start_pfn + nr_pages;
8567
8568 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8569 gfp_mask);
8570}
8571
8572static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8573 unsigned long nr_pages)
8574{
8575 unsigned long i, end_pfn = start_pfn + nr_pages;
8576 struct page *page;
8577
8578 for (i = start_pfn; i < end_pfn; i++) {
8579 page = pfn_to_online_page(i);
8580 if (!page)
8581 return false;
8582
8583 if (page_zone(page) != z)
8584 return false;
8585
8586 if (PageReserved(page))
8587 return false;
8588
8589 if (page_count(page) > 0)
8590 return false;
8591
8592 if (PageHuge(page))
8593 return false;
8594 }
8595 return true;
8596}
8597
8598static bool zone_spans_last_pfn(const struct zone *zone,
8599 unsigned long start_pfn, unsigned long nr_pages)
8600{
8601 unsigned long last_pfn = start_pfn + nr_pages - 1;
8602
8603 return zone_spans_pfn(zone, last_pfn);
8604}
8605
8606/**
8607 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8608 * @nr_pages: Number of contiguous pages to allocate
8609 * @gfp_mask: GFP mask to limit search and used during compaction
8610 * @nid: Target node
8611 * @nodemask: Mask for other possible nodes
8612 *
8613 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8614 * on an applicable zonelist to find a contiguous pfn range which can then be
8615 * tried for allocation with alloc_contig_range(). This routine is intended
8616 * for allocation requests which can not be fulfilled with the buddy allocator.
8617 *
8618 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8619 * power of two then the alignment is guaranteed to be to the given nr_pages
8620 * (e.g. 1GB request would be aligned to 1GB).
8621 *
8622 * Allocated pages can be freed with free_contig_range() or by manually calling
8623 * __free_page() on each allocated page.
8624 *
8625 * Return: pointer to contiguous pages on success, or NULL if not successful.
8626 */
8627struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8628 int nid, nodemask_t *nodemask)
8629{
8630 unsigned long ret, pfn, flags;
8631 struct zonelist *zonelist;
8632 struct zone *zone;
8633 struct zoneref *z;
8634
8635 zonelist = node_zonelist(nid, gfp_mask);
8636 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8637 gfp_zone(gfp_mask), nodemask) {
8638 spin_lock_irqsave(&zone->lock, flags);
8639
8640 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8641 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8642 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8643 /*
8644 * We release the zone lock here because
8645 * alloc_contig_range() will also lock the zone
8646 * at some point. If there's an allocation
8647 * spinning on this lock, it may win the race
8648 * and cause alloc_contig_range() to fail...
8649 */
8650 spin_unlock_irqrestore(&zone->lock, flags);
8651 ret = __alloc_contig_pages(pfn, nr_pages,
8652 gfp_mask);
8653 if (!ret)
8654 return pfn_to_page(pfn);
8655 spin_lock_irqsave(&zone->lock, flags);
8656 }
8657 pfn += nr_pages;
8658 }
8659 spin_unlock_irqrestore(&zone->lock, flags);
8660 }
8661 return NULL;
8662}
4eb0716e 8663#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8664
4eb0716e 8665void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8666{
bcc2b02f
MS
8667 unsigned int count = 0;
8668
8669 for (; nr_pages--; pfn++) {
8670 struct page *page = pfn_to_page(pfn);
8671
8672 count += page_count(page) != 1;
8673 __free_page(page);
8674 }
8675 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8676}
255f5985 8677EXPORT_SYMBOL(free_contig_range);
041d3a8c 8678
0a647f38
CS
8679/*
8680 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8681 * page high values need to be recalulated.
8682 */
4ed7e022
JL
8683void __meminit zone_pcp_update(struct zone *zone)
8684{
c8e251fa 8685 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8686 __zone_pcp_update(zone);
c8e251fa 8687 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8688}
4ed7e022 8689
340175b7
JL
8690void zone_pcp_reset(struct zone *zone)
8691{
8692 unsigned long flags;
5a883813
MK
8693 int cpu;
8694 struct per_cpu_pageset *pset;
340175b7
JL
8695
8696 /* avoid races with drain_pages() */
8697 local_irq_save(flags);
8698 if (zone->pageset != &boot_pageset) {
5a883813
MK
8699 for_each_online_cpu(cpu) {
8700 pset = per_cpu_ptr(zone->pageset, cpu);
8701 drain_zonestat(zone, pset);
8702 }
340175b7
JL
8703 free_percpu(zone->pageset);
8704 zone->pageset = &boot_pageset;
8705 }
8706 local_irq_restore(flags);
8707}
8708
6dcd73d7 8709#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8710/*
b9eb6319
JK
8711 * All pages in the range must be in a single zone and isolated
8712 * before calling this.
0c0e6195 8713 */
5557c766 8714unsigned long
0c0e6195
KH
8715__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8716{
8717 struct page *page;
8718 struct zone *zone;
0ee5f4f3 8719 unsigned int order;
0c0e6195
KH
8720 unsigned long pfn;
8721 unsigned long flags;
5557c766
MH
8722 unsigned long offlined_pages = 0;
8723
0c0e6195
KH
8724 /* find the first valid pfn */
8725 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8726 if (pfn_valid(pfn))
8727 break;
8728 if (pfn == end_pfn)
5557c766
MH
8729 return offlined_pages;
8730
2d070eab 8731 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8732 zone = page_zone(pfn_to_page(pfn));
8733 spin_lock_irqsave(&zone->lock, flags);
8734 pfn = start_pfn;
8735 while (pfn < end_pfn) {
8736 if (!pfn_valid(pfn)) {
8737 pfn++;
8738 continue;
8739 }
8740 page = pfn_to_page(pfn);
b023f468
WC
8741 /*
8742 * The HWPoisoned page may be not in buddy system, and
8743 * page_count() is not 0.
8744 */
8745 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8746 pfn++;
5557c766 8747 offlined_pages++;
b023f468
WC
8748 continue;
8749 }
aa218795
DH
8750 /*
8751 * At this point all remaining PageOffline() pages have a
8752 * reference count of 0 and can simply be skipped.
8753 */
8754 if (PageOffline(page)) {
8755 BUG_ON(page_count(page));
8756 BUG_ON(PageBuddy(page));
8757 pfn++;
8758 offlined_pages++;
8759 continue;
8760 }
b023f468 8761
0c0e6195
KH
8762 BUG_ON(page_count(page));
8763 BUG_ON(!PageBuddy(page));
8764 order = page_order(page);
5557c766 8765 offlined_pages += 1 << order;
6ab01363 8766 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8767 pfn += (1 << order);
8768 }
8769 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8770
8771 return offlined_pages;
0c0e6195
KH
8772}
8773#endif
8d22ba1b 8774
8d22ba1b
WF
8775bool is_free_buddy_page(struct page *page)
8776{
8777 struct zone *zone = page_zone(page);
8778 unsigned long pfn = page_to_pfn(page);
8779 unsigned long flags;
7aeb09f9 8780 unsigned int order;
8d22ba1b
WF
8781
8782 spin_lock_irqsave(&zone->lock, flags);
8783 for (order = 0; order < MAX_ORDER; order++) {
8784 struct page *page_head = page - (pfn & ((1 << order) - 1));
8785
8786 if (PageBuddy(page_head) && page_order(page_head) >= order)
8787 break;
8788 }
8789 spin_unlock_irqrestore(&zone->lock, flags);
8790
8791 return order < MAX_ORDER;
8792}
d4ae9916
NH
8793
8794#ifdef CONFIG_MEMORY_FAILURE
8795/*
8796 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8797 * test is performed under the zone lock to prevent a race against page
8798 * allocation.
8799 */
8800bool set_hwpoison_free_buddy_page(struct page *page)
8801{
8802 struct zone *zone = page_zone(page);
8803 unsigned long pfn = page_to_pfn(page);
8804 unsigned long flags;
8805 unsigned int order;
8806 bool hwpoisoned = false;
8807
8808 spin_lock_irqsave(&zone->lock, flags);
8809 for (order = 0; order < MAX_ORDER; order++) {
8810 struct page *page_head = page - (pfn & ((1 << order) - 1));
8811
8812 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8813 if (!TestSetPageHWPoison(page))
8814 hwpoisoned = true;
8815 break;
8816 }
8817 }
8818 spin_unlock_irqrestore(&zone->lock, flags);
8819
8820 return hwpoisoned;
8821}
8822#endif