mm, page_owner: track and print last migrate reason
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
1da177e4 252
2c85f51d
JB
253static unsigned long __meminitdata nr_kernel_pages;
254static unsigned long __meminitdata nr_all_pages;
a3142c8e 255static unsigned long __meminitdata dma_reserve;
1da177e4 256
0ee332c1
TH
257#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
258static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
259static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __initdata required_kernelcore;
261static unsigned long __initdata required_movablecore;
262static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 263static bool mirrored_kernelcore;
0ee332c1
TH
264
265/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
266int movable_zone;
267EXPORT_SYMBOL(movable_zone);
268#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 269
418508c1
MS
270#if MAX_NUMNODES > 1
271int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 272int nr_online_nodes __read_mostly = 1;
418508c1 273EXPORT_SYMBOL(nr_node_ids);
62bc62a8 274EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
275#endif
276
9ef9acb0
MG
277int page_group_by_mobility_disabled __read_mostly;
278
3a80a7fa
MG
279#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
280static inline void reset_deferred_meminit(pg_data_t *pgdat)
281{
282 pgdat->first_deferred_pfn = ULONG_MAX;
283}
284
285/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 286static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 287{
ae026b2a 288 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
289 return true;
290
291 return false;
292}
293
7e18adb4
MG
294static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295{
296 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
297 return true;
298
299 return false;
300}
301
3a80a7fa
MG
302/*
303 * Returns false when the remaining initialisation should be deferred until
304 * later in the boot cycle when it can be parallelised.
305 */
306static inline bool update_defer_init(pg_data_t *pgdat,
307 unsigned long pfn, unsigned long zone_end,
308 unsigned long *nr_initialised)
309{
310 /* Always populate low zones for address-contrained allocations */
311 if (zone_end < pgdat_end_pfn(pgdat))
312 return true;
313
314 /* Initialise at least 2G of the highest zone */
315 (*nr_initialised)++;
316 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
317 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
318 pgdat->first_deferred_pfn = pfn;
319 return false;
320 }
321
322 return true;
323}
324#else
325static inline void reset_deferred_meminit(pg_data_t *pgdat)
326{
327}
328
329static inline bool early_page_uninitialised(unsigned long pfn)
330{
331 return false;
332}
333
7e18adb4
MG
334static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
335{
336 return false;
337}
338
3a80a7fa
MG
339static inline bool update_defer_init(pg_data_t *pgdat,
340 unsigned long pfn, unsigned long zone_end,
341 unsigned long *nr_initialised)
342{
343 return true;
344}
345#endif
346
347
ee6f509c 348void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 349{
5d0f3f72
KM
350 if (unlikely(page_group_by_mobility_disabled &&
351 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
352 migratetype = MIGRATE_UNMOVABLE;
353
b2a0ac88
MG
354 set_pageblock_flags_group(page, (unsigned long)migratetype,
355 PB_migrate, PB_migrate_end);
356}
357
13e7444b 358#ifdef CONFIG_DEBUG_VM
c6a57e19 359static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 360{
bdc8cb98
DH
361 int ret = 0;
362 unsigned seq;
363 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 364 unsigned long sp, start_pfn;
c6a57e19 365
bdc8cb98
DH
366 do {
367 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
368 start_pfn = zone->zone_start_pfn;
369 sp = zone->spanned_pages;
108bcc96 370 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
371 ret = 1;
372 } while (zone_span_seqretry(zone, seq));
373
b5e6a5a2 374 if (ret)
613813e8
DH
375 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
376 pfn, zone_to_nid(zone), zone->name,
377 start_pfn, start_pfn + sp);
b5e6a5a2 378
bdc8cb98 379 return ret;
c6a57e19
DH
380}
381
382static int page_is_consistent(struct zone *zone, struct page *page)
383{
14e07298 384 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 385 return 0;
1da177e4 386 if (zone != page_zone(page))
c6a57e19
DH
387 return 0;
388
389 return 1;
390}
391/*
392 * Temporary debugging check for pages not lying within a given zone.
393 */
394static int bad_range(struct zone *zone, struct page *page)
395{
396 if (page_outside_zone_boundaries(zone, page))
1da177e4 397 return 1;
c6a57e19
DH
398 if (!page_is_consistent(zone, page))
399 return 1;
400
1da177e4
LT
401 return 0;
402}
13e7444b
NP
403#else
404static inline int bad_range(struct zone *zone, struct page *page)
405{
406 return 0;
407}
408#endif
409
d230dec1
KS
410static void bad_page(struct page *page, const char *reason,
411 unsigned long bad_flags)
1da177e4 412{
d936cf9b
HD
413 static unsigned long resume;
414 static unsigned long nr_shown;
415 static unsigned long nr_unshown;
416
2a7684a2
WF
417 /* Don't complain about poisoned pages */
418 if (PageHWPoison(page)) {
22b751c3 419 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
420 return;
421 }
422
d936cf9b
HD
423 /*
424 * Allow a burst of 60 reports, then keep quiet for that minute;
425 * or allow a steady drip of one report per second.
426 */
427 if (nr_shown == 60) {
428 if (time_before(jiffies, resume)) {
429 nr_unshown++;
430 goto out;
431 }
432 if (nr_unshown) {
1e9e6365
HD
433 printk(KERN_ALERT
434 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
435 nr_unshown);
436 nr_unshown = 0;
437 }
438 nr_shown = 0;
439 }
440 if (nr_shown++ == 0)
441 resume = jiffies + 60 * HZ;
442
1e9e6365 443 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 444 current->comm, page_to_pfn(page));
f0b791a3 445 dump_page_badflags(page, reason, bad_flags);
3dc14741 446
4f31888c 447 print_modules();
1da177e4 448 dump_stack();
d936cf9b 449out:
8cc3b392 450 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 451 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 452 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
453}
454
1da177e4
LT
455/*
456 * Higher-order pages are called "compound pages". They are structured thusly:
457 *
1d798ca3 458 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 459 *
1d798ca3
KS
460 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
461 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 462 *
1d798ca3
KS
463 * The first tail page's ->compound_dtor holds the offset in array of compound
464 * page destructors. See compound_page_dtors.
1da177e4 465 *
1d798ca3 466 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 467 * This usage means that zero-order pages may not be compound.
1da177e4 468 */
d98c7a09 469
9a982250 470void free_compound_page(struct page *page)
d98c7a09 471{
d85f3385 472 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
473}
474
d00181b9 475void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
476{
477 int i;
478 int nr_pages = 1 << order;
479
f1e61557 480 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
481 set_compound_order(page, order);
482 __SetPageHead(page);
483 for (i = 1; i < nr_pages; i++) {
484 struct page *p = page + i;
58a84aa9 485 set_page_count(p, 0);
1c290f64 486 p->mapping = TAIL_MAPPING;
1d798ca3 487 set_compound_head(p, page);
18229df5 488 }
53f9263b 489 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
490}
491
c0a32fc5
SG
492#ifdef CONFIG_DEBUG_PAGEALLOC
493unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
494bool _debug_pagealloc_enabled __read_mostly
495 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
e30825f1
JK
496bool _debug_guardpage_enabled __read_mostly;
497
031bc574
JK
498static int __init early_debug_pagealloc(char *buf)
499{
500 if (!buf)
501 return -EINVAL;
502
503 if (strcmp(buf, "on") == 0)
504 _debug_pagealloc_enabled = true;
505
ea6eabb0
CB
506 if (strcmp(buf, "off") == 0)
507 _debug_pagealloc_enabled = false;
508
031bc574
JK
509 return 0;
510}
511early_param("debug_pagealloc", early_debug_pagealloc);
512
e30825f1
JK
513static bool need_debug_guardpage(void)
514{
031bc574
JK
515 /* If we don't use debug_pagealloc, we don't need guard page */
516 if (!debug_pagealloc_enabled())
517 return false;
518
e30825f1
JK
519 return true;
520}
521
522static void init_debug_guardpage(void)
523{
031bc574
JK
524 if (!debug_pagealloc_enabled())
525 return;
526
e30825f1
JK
527 _debug_guardpage_enabled = true;
528}
529
530struct page_ext_operations debug_guardpage_ops = {
531 .need = need_debug_guardpage,
532 .init = init_debug_guardpage,
533};
c0a32fc5
SG
534
535static int __init debug_guardpage_minorder_setup(char *buf)
536{
537 unsigned long res;
538
539 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
540 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
541 return 0;
542 }
543 _debug_guardpage_minorder = res;
544 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
545 return 0;
546}
547__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
548
2847cf95
JK
549static inline void set_page_guard(struct zone *zone, struct page *page,
550 unsigned int order, int migratetype)
c0a32fc5 551{
e30825f1
JK
552 struct page_ext *page_ext;
553
554 if (!debug_guardpage_enabled())
555 return;
556
557 page_ext = lookup_page_ext(page);
558 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
559
2847cf95
JK
560 INIT_LIST_HEAD(&page->lru);
561 set_page_private(page, order);
562 /* Guard pages are not available for any usage */
563 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
564}
565
2847cf95
JK
566static inline void clear_page_guard(struct zone *zone, struct page *page,
567 unsigned int order, int migratetype)
c0a32fc5 568{
e30825f1
JK
569 struct page_ext *page_ext;
570
571 if (!debug_guardpage_enabled())
572 return;
573
574 page_ext = lookup_page_ext(page);
575 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
576
2847cf95
JK
577 set_page_private(page, 0);
578 if (!is_migrate_isolate(migratetype))
579 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
580}
581#else
e30825f1 582struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
583static inline void set_page_guard(struct zone *zone, struct page *page,
584 unsigned int order, int migratetype) {}
585static inline void clear_page_guard(struct zone *zone, struct page *page,
586 unsigned int order, int migratetype) {}
c0a32fc5
SG
587#endif
588
7aeb09f9 589static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 590{
4c21e2f2 591 set_page_private(page, order);
676165a8 592 __SetPageBuddy(page);
1da177e4
LT
593}
594
595static inline void rmv_page_order(struct page *page)
596{
676165a8 597 __ClearPageBuddy(page);
4c21e2f2 598 set_page_private(page, 0);
1da177e4
LT
599}
600
1da177e4
LT
601/*
602 * This function checks whether a page is free && is the buddy
603 * we can do coalesce a page and its buddy if
13e7444b 604 * (a) the buddy is not in a hole &&
676165a8 605 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
606 * (c) a page and its buddy have the same order &&
607 * (d) a page and its buddy are in the same zone.
676165a8 608 *
cf6fe945
WSH
609 * For recording whether a page is in the buddy system, we set ->_mapcount
610 * PAGE_BUDDY_MAPCOUNT_VALUE.
611 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
612 * serialized by zone->lock.
1da177e4 613 *
676165a8 614 * For recording page's order, we use page_private(page).
1da177e4 615 */
cb2b95e1 616static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 617 unsigned int order)
1da177e4 618{
14e07298 619 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 620 return 0;
13e7444b 621
c0a32fc5 622 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
623 if (page_zone_id(page) != page_zone_id(buddy))
624 return 0;
625
4c5018ce
WY
626 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
627
c0a32fc5
SG
628 return 1;
629 }
630
cb2b95e1 631 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
632 /*
633 * zone check is done late to avoid uselessly
634 * calculating zone/node ids for pages that could
635 * never merge.
636 */
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
6aa3001b 642 return 1;
676165a8 643 }
6aa3001b 644 return 0;
1da177e4
LT
645}
646
647/*
648 * Freeing function for a buddy system allocator.
649 *
650 * The concept of a buddy system is to maintain direct-mapped table
651 * (containing bit values) for memory blocks of various "orders".
652 * The bottom level table contains the map for the smallest allocatable
653 * units of memory (here, pages), and each level above it describes
654 * pairs of units from the levels below, hence, "buddies".
655 * At a high level, all that happens here is marking the table entry
656 * at the bottom level available, and propagating the changes upward
657 * as necessary, plus some accounting needed to play nicely with other
658 * parts of the VM system.
659 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
660 * free pages of length of (1 << order) and marked with _mapcount
661 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
662 * field.
1da177e4 663 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
664 * other. That is, if we allocate a small block, and both were
665 * free, the remainder of the region must be split into blocks.
1da177e4 666 * If a block is freed, and its buddy is also free, then this
5f63b720 667 * triggers coalescing into a block of larger size.
1da177e4 668 *
6d49e352 669 * -- nyc
1da177e4
LT
670 */
671
48db57f8 672static inline void __free_one_page(struct page *page,
dc4b0caf 673 unsigned long pfn,
ed0ae21d
MG
674 struct zone *zone, unsigned int order,
675 int migratetype)
1da177e4
LT
676{
677 unsigned long page_idx;
6dda9d55 678 unsigned long combined_idx;
43506fad 679 unsigned long uninitialized_var(buddy_idx);
6dda9d55 680 struct page *buddy;
d00181b9 681 unsigned int max_order = MAX_ORDER;
1da177e4 682
d29bb978 683 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 684 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 685
ed0ae21d 686 VM_BUG_ON(migratetype == -1);
3c605096
JK
687 if (is_migrate_isolate(migratetype)) {
688 /*
689 * We restrict max order of merging to prevent merge
690 * between freepages on isolate pageblock and normal
691 * pageblock. Without this, pageblock isolation
692 * could cause incorrect freepage accounting.
693 */
d00181b9 694 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 695 } else {
8f82b55d 696 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 697 }
ed0ae21d 698
3c605096 699 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 700
309381fe
SL
701 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
702 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 703
3c605096 704 while (order < max_order - 1) {
43506fad
KC
705 buddy_idx = __find_buddy_index(page_idx, order);
706 buddy = page + (buddy_idx - page_idx);
cb2b95e1 707 if (!page_is_buddy(page, buddy, order))
3c82d0ce 708 break;
c0a32fc5
SG
709 /*
710 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
711 * merge with it and move up one order.
712 */
713 if (page_is_guard(buddy)) {
2847cf95 714 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
715 } else {
716 list_del(&buddy->lru);
717 zone->free_area[order].nr_free--;
718 rmv_page_order(buddy);
719 }
43506fad 720 combined_idx = buddy_idx & page_idx;
1da177e4
LT
721 page = page + (combined_idx - page_idx);
722 page_idx = combined_idx;
723 order++;
724 }
725 set_page_order(page, order);
6dda9d55
CZ
726
727 /*
728 * If this is not the largest possible page, check if the buddy
729 * of the next-highest order is free. If it is, it's possible
730 * that pages are being freed that will coalesce soon. In case,
731 * that is happening, add the free page to the tail of the list
732 * so it's less likely to be used soon and more likely to be merged
733 * as a higher order page
734 */
b7f50cfa 735 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 736 struct page *higher_page, *higher_buddy;
43506fad
KC
737 combined_idx = buddy_idx & page_idx;
738 higher_page = page + (combined_idx - page_idx);
739 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 740 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
741 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
742 list_add_tail(&page->lru,
743 &zone->free_area[order].free_list[migratetype]);
744 goto out;
745 }
746 }
747
748 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
749out:
1da177e4
LT
750 zone->free_area[order].nr_free++;
751}
752
224abf92 753static inline int free_pages_check(struct page *page)
1da177e4 754{
d230dec1 755 const char *bad_reason = NULL;
f0b791a3
DH
756 unsigned long bad_flags = 0;
757
53f9263b 758 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
759 bad_reason = "nonzero mapcount";
760 if (unlikely(page->mapping != NULL))
761 bad_reason = "non-NULL mapping";
762 if (unlikely(atomic_read(&page->_count) != 0))
763 bad_reason = "nonzero _count";
764 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
765 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
766 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
767 }
9edad6ea
JW
768#ifdef CONFIG_MEMCG
769 if (unlikely(page->mem_cgroup))
770 bad_reason = "page still charged to cgroup";
771#endif
f0b791a3
DH
772 if (unlikely(bad_reason)) {
773 bad_page(page, bad_reason, bad_flags);
79f4b7bf 774 return 1;
8cc3b392 775 }
90572890 776 page_cpupid_reset_last(page);
79f4b7bf
HD
777 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
778 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
779 return 0;
1da177e4
LT
780}
781
782/*
5f8dcc21 783 * Frees a number of pages from the PCP lists
1da177e4 784 * Assumes all pages on list are in same zone, and of same order.
207f36ee 785 * count is the number of pages to free.
1da177e4
LT
786 *
787 * If the zone was previously in an "all pages pinned" state then look to
788 * see if this freeing clears that state.
789 *
790 * And clear the zone's pages_scanned counter, to hold off the "all pages are
791 * pinned" detection logic.
792 */
5f8dcc21
MG
793static void free_pcppages_bulk(struct zone *zone, int count,
794 struct per_cpu_pages *pcp)
1da177e4 795{
5f8dcc21 796 int migratetype = 0;
a6f9edd6 797 int batch_free = 0;
72853e29 798 int to_free = count;
0d5d823a 799 unsigned long nr_scanned;
5f8dcc21 800
c54ad30c 801 spin_lock(&zone->lock);
0d5d823a
MG
802 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
803 if (nr_scanned)
804 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 805
72853e29 806 while (to_free) {
48db57f8 807 struct page *page;
5f8dcc21
MG
808 struct list_head *list;
809
810 /*
a6f9edd6
MG
811 * Remove pages from lists in a round-robin fashion. A
812 * batch_free count is maintained that is incremented when an
813 * empty list is encountered. This is so more pages are freed
814 * off fuller lists instead of spinning excessively around empty
815 * lists
5f8dcc21
MG
816 */
817 do {
a6f9edd6 818 batch_free++;
5f8dcc21
MG
819 if (++migratetype == MIGRATE_PCPTYPES)
820 migratetype = 0;
821 list = &pcp->lists[migratetype];
822 } while (list_empty(list));
48db57f8 823
1d16871d
NK
824 /* This is the only non-empty list. Free them all. */
825 if (batch_free == MIGRATE_PCPTYPES)
826 batch_free = to_free;
827
a6f9edd6 828 do {
770c8aaa
BZ
829 int mt; /* migratetype of the to-be-freed page */
830
a16601c5 831 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
832 /* must delete as __free_one_page list manipulates */
833 list_del(&page->lru);
aa016d14 834
bb14c2c7 835 mt = get_pcppage_migratetype(page);
aa016d14
VB
836 /* MIGRATE_ISOLATE page should not go to pcplists */
837 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
838 /* Pageblock could have been isolated meanwhile */
8f82b55d 839 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 840 mt = get_pageblock_migratetype(page);
51bb1a40 841
dc4b0caf 842 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 843 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 844 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 845 }
c54ad30c 846 spin_unlock(&zone->lock);
1da177e4
LT
847}
848
dc4b0caf
MG
849static void free_one_page(struct zone *zone,
850 struct page *page, unsigned long pfn,
7aeb09f9 851 unsigned int order,
ed0ae21d 852 int migratetype)
1da177e4 853{
0d5d823a 854 unsigned long nr_scanned;
006d22d9 855 spin_lock(&zone->lock);
0d5d823a
MG
856 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
857 if (nr_scanned)
858 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 859
ad53f92e
JK
860 if (unlikely(has_isolate_pageblock(zone) ||
861 is_migrate_isolate(migratetype))) {
862 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 863 }
dc4b0caf 864 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 865 spin_unlock(&zone->lock);
48db57f8
NP
866}
867
81422f29
KS
868static int free_tail_pages_check(struct page *head_page, struct page *page)
869{
1d798ca3
KS
870 int ret = 1;
871
872 /*
873 * We rely page->lru.next never has bit 0 set, unless the page
874 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
875 */
876 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
877
878 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
879 ret = 0;
880 goto out;
881 }
9a982250
KS
882 switch (page - head_page) {
883 case 1:
884 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
885 if (unlikely(compound_mapcount(page))) {
886 bad_page(page, "nonzero compound_mapcount", 0);
887 goto out;
888 }
9a982250
KS
889 break;
890 case 2:
891 /*
892 * the second tail page: ->mapping is
893 * page_deferred_list().next -- ignore value.
894 */
895 break;
896 default:
897 if (page->mapping != TAIL_MAPPING) {
898 bad_page(page, "corrupted mapping in tail page", 0);
899 goto out;
900 }
901 break;
1c290f64 902 }
81422f29
KS
903 if (unlikely(!PageTail(page))) {
904 bad_page(page, "PageTail not set", 0);
1d798ca3 905 goto out;
81422f29 906 }
1d798ca3
KS
907 if (unlikely(compound_head(page) != head_page)) {
908 bad_page(page, "compound_head not consistent", 0);
909 goto out;
81422f29 910 }
1d798ca3
KS
911 ret = 0;
912out:
1c290f64 913 page->mapping = NULL;
1d798ca3
KS
914 clear_compound_head(page);
915 return ret;
81422f29
KS
916}
917
1e8ce83c
RH
918static void __meminit __init_single_page(struct page *page, unsigned long pfn,
919 unsigned long zone, int nid)
920{
1e8ce83c 921 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
922 init_page_count(page);
923 page_mapcount_reset(page);
924 page_cpupid_reset_last(page);
1e8ce83c 925
1e8ce83c
RH
926 INIT_LIST_HEAD(&page->lru);
927#ifdef WANT_PAGE_VIRTUAL
928 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
929 if (!is_highmem_idx(zone))
930 set_page_address(page, __va(pfn << PAGE_SHIFT));
931#endif
932}
933
934static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
935 int nid)
936{
937 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
938}
939
7e18adb4
MG
940#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
941static void init_reserved_page(unsigned long pfn)
942{
943 pg_data_t *pgdat;
944 int nid, zid;
945
946 if (!early_page_uninitialised(pfn))
947 return;
948
949 nid = early_pfn_to_nid(pfn);
950 pgdat = NODE_DATA(nid);
951
952 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
953 struct zone *zone = &pgdat->node_zones[zid];
954
955 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
956 break;
957 }
958 __init_single_pfn(pfn, zid, nid);
959}
960#else
961static inline void init_reserved_page(unsigned long pfn)
962{
963}
964#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
965
92923ca3
NZ
966/*
967 * Initialised pages do not have PageReserved set. This function is
968 * called for each range allocated by the bootmem allocator and
969 * marks the pages PageReserved. The remaining valid pages are later
970 * sent to the buddy page allocator.
971 */
7e18adb4 972void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
973{
974 unsigned long start_pfn = PFN_DOWN(start);
975 unsigned long end_pfn = PFN_UP(end);
976
7e18adb4
MG
977 for (; start_pfn < end_pfn; start_pfn++) {
978 if (pfn_valid(start_pfn)) {
979 struct page *page = pfn_to_page(start_pfn);
980
981 init_reserved_page(start_pfn);
1d798ca3
KS
982
983 /* Avoid false-positive PageTail() */
984 INIT_LIST_HEAD(&page->lru);
985
7e18adb4
MG
986 SetPageReserved(page);
987 }
988 }
92923ca3
NZ
989}
990
ec95f53a 991static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 992{
81422f29
KS
993 bool compound = PageCompound(page);
994 int i, bad = 0;
1da177e4 995
ab1f306f 996 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 997 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 998
b413d48a 999 trace_mm_page_free(page, order);
b1eeab67 1000 kmemcheck_free_shadow(page, order);
b8c73fc2 1001 kasan_free_pages(page, order);
b1eeab67 1002
8dd60a3a
AA
1003 if (PageAnon(page))
1004 page->mapping = NULL;
81422f29
KS
1005 bad += free_pages_check(page);
1006 for (i = 1; i < (1 << order); i++) {
1007 if (compound)
1008 bad += free_tail_pages_check(page, page + i);
8dd60a3a 1009 bad += free_pages_check(page + i);
81422f29 1010 }
8cc3b392 1011 if (bad)
ec95f53a 1012 return false;
689bcebf 1013
48c96a36
JK
1014 reset_page_owner(page, order);
1015
3ac7fe5a 1016 if (!PageHighMem(page)) {
b8af2941
PK
1017 debug_check_no_locks_freed(page_address(page),
1018 PAGE_SIZE << order);
3ac7fe5a
TG
1019 debug_check_no_obj_freed(page_address(page),
1020 PAGE_SIZE << order);
1021 }
dafb1367 1022 arch_free_page(page, order);
48db57f8 1023 kernel_map_pages(page, 1 << order, 0);
dafb1367 1024
ec95f53a
KM
1025 return true;
1026}
1027
1028static void __free_pages_ok(struct page *page, unsigned int order)
1029{
1030 unsigned long flags;
95e34412 1031 int migratetype;
dc4b0caf 1032 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1033
1034 if (!free_pages_prepare(page, order))
1035 return;
1036
cfc47a28 1037 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1038 local_irq_save(flags);
f8891e5e 1039 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1040 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1041 local_irq_restore(flags);
1da177e4
LT
1042}
1043
0e1cc95b 1044static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1045 unsigned long pfn, unsigned int order)
a226f6c8 1046{
c3993076 1047 unsigned int nr_pages = 1 << order;
e2d0bd2b 1048 struct page *p = page;
c3993076 1049 unsigned int loop;
a226f6c8 1050
e2d0bd2b
YL
1051 prefetchw(p);
1052 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1053 prefetchw(p + 1);
c3993076
JW
1054 __ClearPageReserved(p);
1055 set_page_count(p, 0);
a226f6c8 1056 }
e2d0bd2b
YL
1057 __ClearPageReserved(p);
1058 set_page_count(p, 0);
c3993076 1059
e2d0bd2b 1060 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1061 set_page_refcounted(page);
1062 __free_pages(page, order);
a226f6c8
DH
1063}
1064
75a592a4
MG
1065#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1066 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1067
75a592a4
MG
1068static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1069
1070int __meminit early_pfn_to_nid(unsigned long pfn)
1071{
7ace9917 1072 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1073 int nid;
1074
7ace9917 1075 spin_lock(&early_pfn_lock);
75a592a4 1076 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1077 if (nid < 0)
1078 nid = 0;
1079 spin_unlock(&early_pfn_lock);
1080
1081 return nid;
75a592a4
MG
1082}
1083#endif
1084
1085#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1086static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1087 struct mminit_pfnnid_cache *state)
1088{
1089 int nid;
1090
1091 nid = __early_pfn_to_nid(pfn, state);
1092 if (nid >= 0 && nid != node)
1093 return false;
1094 return true;
1095}
1096
1097/* Only safe to use early in boot when initialisation is single-threaded */
1098static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1099{
1100 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1101}
1102
1103#else
1104
1105static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1106{
1107 return true;
1108}
1109static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1110 struct mminit_pfnnid_cache *state)
1111{
1112 return true;
1113}
1114#endif
1115
1116
0e1cc95b 1117void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1118 unsigned int order)
1119{
1120 if (early_page_uninitialised(pfn))
1121 return;
1122 return __free_pages_boot_core(page, pfn, order);
1123}
1124
7e18adb4 1125#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1126static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1127 unsigned long pfn, int nr_pages)
1128{
1129 int i;
1130
1131 if (!page)
1132 return;
1133
1134 /* Free a large naturally-aligned chunk if possible */
1135 if (nr_pages == MAX_ORDER_NR_PAGES &&
1136 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1137 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1138 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1139 return;
1140 }
1141
1142 for (i = 0; i < nr_pages; i++, page++, pfn++)
1143 __free_pages_boot_core(page, pfn, 0);
1144}
1145
d3cd131d
NS
1146/* Completion tracking for deferred_init_memmap() threads */
1147static atomic_t pgdat_init_n_undone __initdata;
1148static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1149
1150static inline void __init pgdat_init_report_one_done(void)
1151{
1152 if (atomic_dec_and_test(&pgdat_init_n_undone))
1153 complete(&pgdat_init_all_done_comp);
1154}
0e1cc95b 1155
7e18adb4 1156/* Initialise remaining memory on a node */
0e1cc95b 1157static int __init deferred_init_memmap(void *data)
7e18adb4 1158{
0e1cc95b
MG
1159 pg_data_t *pgdat = data;
1160 int nid = pgdat->node_id;
7e18adb4
MG
1161 struct mminit_pfnnid_cache nid_init_state = { };
1162 unsigned long start = jiffies;
1163 unsigned long nr_pages = 0;
1164 unsigned long walk_start, walk_end;
1165 int i, zid;
1166 struct zone *zone;
7e18adb4 1167 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1168 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1169
0e1cc95b 1170 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1171 pgdat_init_report_one_done();
0e1cc95b
MG
1172 return 0;
1173 }
1174
1175 /* Bind memory initialisation thread to a local node if possible */
1176 if (!cpumask_empty(cpumask))
1177 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1178
1179 /* Sanity check boundaries */
1180 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1181 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1182 pgdat->first_deferred_pfn = ULONG_MAX;
1183
1184 /* Only the highest zone is deferred so find it */
1185 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1186 zone = pgdat->node_zones + zid;
1187 if (first_init_pfn < zone_end_pfn(zone))
1188 break;
1189 }
1190
1191 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1192 unsigned long pfn, end_pfn;
54608c3f 1193 struct page *page = NULL;
a4de83dd
MG
1194 struct page *free_base_page = NULL;
1195 unsigned long free_base_pfn = 0;
1196 int nr_to_free = 0;
7e18adb4
MG
1197
1198 end_pfn = min(walk_end, zone_end_pfn(zone));
1199 pfn = first_init_pfn;
1200 if (pfn < walk_start)
1201 pfn = walk_start;
1202 if (pfn < zone->zone_start_pfn)
1203 pfn = zone->zone_start_pfn;
1204
1205 for (; pfn < end_pfn; pfn++) {
54608c3f 1206 if (!pfn_valid_within(pfn))
a4de83dd 1207 goto free_range;
7e18adb4 1208
54608c3f
MG
1209 /*
1210 * Ensure pfn_valid is checked every
1211 * MAX_ORDER_NR_PAGES for memory holes
1212 */
1213 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1214 if (!pfn_valid(pfn)) {
1215 page = NULL;
a4de83dd 1216 goto free_range;
54608c3f
MG
1217 }
1218 }
1219
1220 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1221 page = NULL;
a4de83dd 1222 goto free_range;
54608c3f
MG
1223 }
1224
1225 /* Minimise pfn page lookups and scheduler checks */
1226 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1227 page++;
1228 } else {
a4de83dd
MG
1229 nr_pages += nr_to_free;
1230 deferred_free_range(free_base_page,
1231 free_base_pfn, nr_to_free);
1232 free_base_page = NULL;
1233 free_base_pfn = nr_to_free = 0;
1234
54608c3f
MG
1235 page = pfn_to_page(pfn);
1236 cond_resched();
1237 }
7e18adb4
MG
1238
1239 if (page->flags) {
1240 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1241 goto free_range;
7e18adb4
MG
1242 }
1243
1244 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1245 if (!free_base_page) {
1246 free_base_page = page;
1247 free_base_pfn = pfn;
1248 nr_to_free = 0;
1249 }
1250 nr_to_free++;
1251
1252 /* Where possible, batch up pages for a single free */
1253 continue;
1254free_range:
1255 /* Free the current block of pages to allocator */
1256 nr_pages += nr_to_free;
1257 deferred_free_range(free_base_page, free_base_pfn,
1258 nr_to_free);
1259 free_base_page = NULL;
1260 free_base_pfn = nr_to_free = 0;
7e18adb4 1261 }
a4de83dd 1262
7e18adb4
MG
1263 first_init_pfn = max(end_pfn, first_init_pfn);
1264 }
1265
1266 /* Sanity check that the next zone really is unpopulated */
1267 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1268
0e1cc95b 1269 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1270 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1271
1272 pgdat_init_report_one_done();
0e1cc95b
MG
1273 return 0;
1274}
1275
1276void __init page_alloc_init_late(void)
1277{
1278 int nid;
1279
d3cd131d
NS
1280 /* There will be num_node_state(N_MEMORY) threads */
1281 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1282 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1283 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1284 }
1285
1286 /* Block until all are initialised */
d3cd131d 1287 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1288
1289 /* Reinit limits that are based on free pages after the kernel is up */
1290 files_maxfiles_init();
7e18adb4
MG
1291}
1292#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1293
47118af0 1294#ifdef CONFIG_CMA
9cf510a5 1295/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1296void __init init_cma_reserved_pageblock(struct page *page)
1297{
1298 unsigned i = pageblock_nr_pages;
1299 struct page *p = page;
1300
1301 do {
1302 __ClearPageReserved(p);
1303 set_page_count(p, 0);
1304 } while (++p, --i);
1305
47118af0 1306 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1307
1308 if (pageblock_order >= MAX_ORDER) {
1309 i = pageblock_nr_pages;
1310 p = page;
1311 do {
1312 set_page_refcounted(p);
1313 __free_pages(p, MAX_ORDER - 1);
1314 p += MAX_ORDER_NR_PAGES;
1315 } while (i -= MAX_ORDER_NR_PAGES);
1316 } else {
1317 set_page_refcounted(page);
1318 __free_pages(page, pageblock_order);
1319 }
1320
3dcc0571 1321 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1322}
1323#endif
1da177e4
LT
1324
1325/*
1326 * The order of subdivision here is critical for the IO subsystem.
1327 * Please do not alter this order without good reasons and regression
1328 * testing. Specifically, as large blocks of memory are subdivided,
1329 * the order in which smaller blocks are delivered depends on the order
1330 * they're subdivided in this function. This is the primary factor
1331 * influencing the order in which pages are delivered to the IO
1332 * subsystem according to empirical testing, and this is also justified
1333 * by considering the behavior of a buddy system containing a single
1334 * large block of memory acted on by a series of small allocations.
1335 * This behavior is a critical factor in sglist merging's success.
1336 *
6d49e352 1337 * -- nyc
1da177e4 1338 */
085cc7d5 1339static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1340 int low, int high, struct free_area *area,
1341 int migratetype)
1da177e4
LT
1342{
1343 unsigned long size = 1 << high;
1344
1345 while (high > low) {
1346 area--;
1347 high--;
1348 size >>= 1;
309381fe 1349 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1350
2847cf95 1351 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1352 debug_guardpage_enabled() &&
2847cf95 1353 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1354 /*
1355 * Mark as guard pages (or page), that will allow to
1356 * merge back to allocator when buddy will be freed.
1357 * Corresponding page table entries will not be touched,
1358 * pages will stay not present in virtual address space
1359 */
2847cf95 1360 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1361 continue;
1362 }
b2a0ac88 1363 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1364 area->nr_free++;
1365 set_page_order(&page[size], high);
1366 }
1da177e4
LT
1367}
1368
1da177e4
LT
1369/*
1370 * This page is about to be returned from the page allocator
1371 */
2a7684a2 1372static inline int check_new_page(struct page *page)
1da177e4 1373{
d230dec1 1374 const char *bad_reason = NULL;
f0b791a3
DH
1375 unsigned long bad_flags = 0;
1376
53f9263b 1377 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1378 bad_reason = "nonzero mapcount";
1379 if (unlikely(page->mapping != NULL))
1380 bad_reason = "non-NULL mapping";
1381 if (unlikely(atomic_read(&page->_count) != 0))
1382 bad_reason = "nonzero _count";
f4c18e6f
NH
1383 if (unlikely(page->flags & __PG_HWPOISON)) {
1384 bad_reason = "HWPoisoned (hardware-corrupted)";
1385 bad_flags = __PG_HWPOISON;
1386 }
f0b791a3
DH
1387 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1388 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1389 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1390 }
9edad6ea
JW
1391#ifdef CONFIG_MEMCG
1392 if (unlikely(page->mem_cgroup))
1393 bad_reason = "page still charged to cgroup";
1394#endif
f0b791a3
DH
1395 if (unlikely(bad_reason)) {
1396 bad_page(page, bad_reason, bad_flags);
689bcebf 1397 return 1;
8cc3b392 1398 }
2a7684a2
WF
1399 return 0;
1400}
1401
75379191
VB
1402static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1403 int alloc_flags)
2a7684a2
WF
1404{
1405 int i;
1406
1407 for (i = 0; i < (1 << order); i++) {
1408 struct page *p = page + i;
1409 if (unlikely(check_new_page(p)))
1410 return 1;
1411 }
689bcebf 1412
4c21e2f2 1413 set_page_private(page, 0);
7835e98b 1414 set_page_refcounted(page);
cc102509
NP
1415
1416 arch_alloc_page(page, order);
1da177e4 1417 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1418 kasan_alloc_pages(page, order);
17cf4406
NP
1419
1420 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1421 for (i = 0; i < (1 << order); i++)
1422 clear_highpage(page + i);
17cf4406
NP
1423
1424 if (order && (gfp_flags & __GFP_COMP))
1425 prep_compound_page(page, order);
1426
48c96a36
JK
1427 set_page_owner(page, order, gfp_flags);
1428
75379191 1429 /*
2f064f34 1430 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1431 * allocate the page. The expectation is that the caller is taking
1432 * steps that will free more memory. The caller should avoid the page
1433 * being used for !PFMEMALLOC purposes.
1434 */
2f064f34
MH
1435 if (alloc_flags & ALLOC_NO_WATERMARKS)
1436 set_page_pfmemalloc(page);
1437 else
1438 clear_page_pfmemalloc(page);
75379191 1439
689bcebf 1440 return 0;
1da177e4
LT
1441}
1442
56fd56b8
MG
1443/*
1444 * Go through the free lists for the given migratetype and remove
1445 * the smallest available page from the freelists
1446 */
728ec980
MG
1447static inline
1448struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1449 int migratetype)
1450{
1451 unsigned int current_order;
b8af2941 1452 struct free_area *area;
56fd56b8
MG
1453 struct page *page;
1454
1455 /* Find a page of the appropriate size in the preferred list */
1456 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1457 area = &(zone->free_area[current_order]);
a16601c5 1458 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1459 struct page, lru);
a16601c5
GT
1460 if (!page)
1461 continue;
56fd56b8
MG
1462 list_del(&page->lru);
1463 rmv_page_order(page);
1464 area->nr_free--;
56fd56b8 1465 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1466 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1467 return page;
1468 }
1469
1470 return NULL;
1471}
1472
1473
b2a0ac88
MG
1474/*
1475 * This array describes the order lists are fallen back to when
1476 * the free lists for the desirable migrate type are depleted
1477 */
47118af0 1478static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1479 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1480 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1481 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1482#ifdef CONFIG_CMA
974a786e 1483 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1484#endif
194159fb 1485#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1486 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1487#endif
b2a0ac88
MG
1488};
1489
dc67647b
JK
1490#ifdef CONFIG_CMA
1491static struct page *__rmqueue_cma_fallback(struct zone *zone,
1492 unsigned int order)
1493{
1494 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1495}
1496#else
1497static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1498 unsigned int order) { return NULL; }
1499#endif
1500
c361be55
MG
1501/*
1502 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1503 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1504 * boundary. If alignment is required, use move_freepages_block()
1505 */
435b405c 1506int move_freepages(struct zone *zone,
b69a7288
AB
1507 struct page *start_page, struct page *end_page,
1508 int migratetype)
c361be55
MG
1509{
1510 struct page *page;
d00181b9 1511 unsigned int order;
d100313f 1512 int pages_moved = 0;
c361be55
MG
1513
1514#ifndef CONFIG_HOLES_IN_ZONE
1515 /*
1516 * page_zone is not safe to call in this context when
1517 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1518 * anyway as we check zone boundaries in move_freepages_block().
1519 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1520 * grouping pages by mobility
c361be55 1521 */
97ee4ba7 1522 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1523#endif
1524
1525 for (page = start_page; page <= end_page;) {
344c790e 1526 /* Make sure we are not inadvertently changing nodes */
309381fe 1527 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1528
c361be55
MG
1529 if (!pfn_valid_within(page_to_pfn(page))) {
1530 page++;
1531 continue;
1532 }
1533
1534 if (!PageBuddy(page)) {
1535 page++;
1536 continue;
1537 }
1538
1539 order = page_order(page);
84be48d8
KS
1540 list_move(&page->lru,
1541 &zone->free_area[order].free_list[migratetype]);
c361be55 1542 page += 1 << order;
d100313f 1543 pages_moved += 1 << order;
c361be55
MG
1544 }
1545
d100313f 1546 return pages_moved;
c361be55
MG
1547}
1548
ee6f509c 1549int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1550 int migratetype)
c361be55
MG
1551{
1552 unsigned long start_pfn, end_pfn;
1553 struct page *start_page, *end_page;
1554
1555 start_pfn = page_to_pfn(page);
d9c23400 1556 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1557 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1558 end_page = start_page + pageblock_nr_pages - 1;
1559 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1560
1561 /* Do not cross zone boundaries */
108bcc96 1562 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1563 start_page = page;
108bcc96 1564 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1565 return 0;
1566
1567 return move_freepages(zone, start_page, end_page, migratetype);
1568}
1569
2f66a68f
MG
1570static void change_pageblock_range(struct page *pageblock_page,
1571 int start_order, int migratetype)
1572{
1573 int nr_pageblocks = 1 << (start_order - pageblock_order);
1574
1575 while (nr_pageblocks--) {
1576 set_pageblock_migratetype(pageblock_page, migratetype);
1577 pageblock_page += pageblock_nr_pages;
1578 }
1579}
1580
fef903ef 1581/*
9c0415eb
VB
1582 * When we are falling back to another migratetype during allocation, try to
1583 * steal extra free pages from the same pageblocks to satisfy further
1584 * allocations, instead of polluting multiple pageblocks.
1585 *
1586 * If we are stealing a relatively large buddy page, it is likely there will
1587 * be more free pages in the pageblock, so try to steal them all. For
1588 * reclaimable and unmovable allocations, we steal regardless of page size,
1589 * as fragmentation caused by those allocations polluting movable pageblocks
1590 * is worse than movable allocations stealing from unmovable and reclaimable
1591 * pageblocks.
fef903ef 1592 */
4eb7dce6
JK
1593static bool can_steal_fallback(unsigned int order, int start_mt)
1594{
1595 /*
1596 * Leaving this order check is intended, although there is
1597 * relaxed order check in next check. The reason is that
1598 * we can actually steal whole pageblock if this condition met,
1599 * but, below check doesn't guarantee it and that is just heuristic
1600 * so could be changed anytime.
1601 */
1602 if (order >= pageblock_order)
1603 return true;
1604
1605 if (order >= pageblock_order / 2 ||
1606 start_mt == MIGRATE_RECLAIMABLE ||
1607 start_mt == MIGRATE_UNMOVABLE ||
1608 page_group_by_mobility_disabled)
1609 return true;
1610
1611 return false;
1612}
1613
1614/*
1615 * This function implements actual steal behaviour. If order is large enough,
1616 * we can steal whole pageblock. If not, we first move freepages in this
1617 * pageblock and check whether half of pages are moved or not. If half of
1618 * pages are moved, we can change migratetype of pageblock and permanently
1619 * use it's pages as requested migratetype in the future.
1620 */
1621static void steal_suitable_fallback(struct zone *zone, struct page *page,
1622 int start_type)
fef903ef 1623{
d00181b9 1624 unsigned int current_order = page_order(page);
4eb7dce6 1625 int pages;
fef903ef 1626
fef903ef
SB
1627 /* Take ownership for orders >= pageblock_order */
1628 if (current_order >= pageblock_order) {
1629 change_pageblock_range(page, current_order, start_type);
3a1086fb 1630 return;
fef903ef
SB
1631 }
1632
4eb7dce6 1633 pages = move_freepages_block(zone, page, start_type);
fef903ef 1634
4eb7dce6
JK
1635 /* Claim the whole block if over half of it is free */
1636 if (pages >= (1 << (pageblock_order-1)) ||
1637 page_group_by_mobility_disabled)
1638 set_pageblock_migratetype(page, start_type);
1639}
1640
2149cdae
JK
1641/*
1642 * Check whether there is a suitable fallback freepage with requested order.
1643 * If only_stealable is true, this function returns fallback_mt only if
1644 * we can steal other freepages all together. This would help to reduce
1645 * fragmentation due to mixed migratetype pages in one pageblock.
1646 */
1647int find_suitable_fallback(struct free_area *area, unsigned int order,
1648 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1649{
1650 int i;
1651 int fallback_mt;
1652
1653 if (area->nr_free == 0)
1654 return -1;
1655
1656 *can_steal = false;
1657 for (i = 0;; i++) {
1658 fallback_mt = fallbacks[migratetype][i];
974a786e 1659 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1660 break;
1661
1662 if (list_empty(&area->free_list[fallback_mt]))
1663 continue;
fef903ef 1664
4eb7dce6
JK
1665 if (can_steal_fallback(order, migratetype))
1666 *can_steal = true;
1667
2149cdae
JK
1668 if (!only_stealable)
1669 return fallback_mt;
1670
1671 if (*can_steal)
1672 return fallback_mt;
fef903ef 1673 }
4eb7dce6
JK
1674
1675 return -1;
fef903ef
SB
1676}
1677
0aaa29a5
MG
1678/*
1679 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1680 * there are no empty page blocks that contain a page with a suitable order
1681 */
1682static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1683 unsigned int alloc_order)
1684{
1685 int mt;
1686 unsigned long max_managed, flags;
1687
1688 /*
1689 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1690 * Check is race-prone but harmless.
1691 */
1692 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1693 if (zone->nr_reserved_highatomic >= max_managed)
1694 return;
1695
1696 spin_lock_irqsave(&zone->lock, flags);
1697
1698 /* Recheck the nr_reserved_highatomic limit under the lock */
1699 if (zone->nr_reserved_highatomic >= max_managed)
1700 goto out_unlock;
1701
1702 /* Yoink! */
1703 mt = get_pageblock_migratetype(page);
1704 if (mt != MIGRATE_HIGHATOMIC &&
1705 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1706 zone->nr_reserved_highatomic += pageblock_nr_pages;
1707 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1708 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1709 }
1710
1711out_unlock:
1712 spin_unlock_irqrestore(&zone->lock, flags);
1713}
1714
1715/*
1716 * Used when an allocation is about to fail under memory pressure. This
1717 * potentially hurts the reliability of high-order allocations when under
1718 * intense memory pressure but failed atomic allocations should be easier
1719 * to recover from than an OOM.
1720 */
1721static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1722{
1723 struct zonelist *zonelist = ac->zonelist;
1724 unsigned long flags;
1725 struct zoneref *z;
1726 struct zone *zone;
1727 struct page *page;
1728 int order;
1729
1730 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1731 ac->nodemask) {
1732 /* Preserve at least one pageblock */
1733 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1734 continue;
1735
1736 spin_lock_irqsave(&zone->lock, flags);
1737 for (order = 0; order < MAX_ORDER; order++) {
1738 struct free_area *area = &(zone->free_area[order]);
1739
a16601c5
GT
1740 page = list_first_entry_or_null(
1741 &area->free_list[MIGRATE_HIGHATOMIC],
1742 struct page, lru);
1743 if (!page)
0aaa29a5
MG
1744 continue;
1745
0aaa29a5
MG
1746 /*
1747 * It should never happen but changes to locking could
1748 * inadvertently allow a per-cpu drain to add pages
1749 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1750 * and watch for underflows.
1751 */
1752 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1753 zone->nr_reserved_highatomic);
1754
1755 /*
1756 * Convert to ac->migratetype and avoid the normal
1757 * pageblock stealing heuristics. Minimally, the caller
1758 * is doing the work and needs the pages. More
1759 * importantly, if the block was always converted to
1760 * MIGRATE_UNMOVABLE or another type then the number
1761 * of pageblocks that cannot be completely freed
1762 * may increase.
1763 */
1764 set_pageblock_migratetype(page, ac->migratetype);
1765 move_freepages_block(zone, page, ac->migratetype);
1766 spin_unlock_irqrestore(&zone->lock, flags);
1767 return;
1768 }
1769 spin_unlock_irqrestore(&zone->lock, flags);
1770 }
1771}
1772
b2a0ac88 1773/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1774static inline struct page *
7aeb09f9 1775__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1776{
b8af2941 1777 struct free_area *area;
7aeb09f9 1778 unsigned int current_order;
b2a0ac88 1779 struct page *page;
4eb7dce6
JK
1780 int fallback_mt;
1781 bool can_steal;
b2a0ac88
MG
1782
1783 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1784 for (current_order = MAX_ORDER-1;
1785 current_order >= order && current_order <= MAX_ORDER-1;
1786 --current_order) {
4eb7dce6
JK
1787 area = &(zone->free_area[current_order]);
1788 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1789 start_migratetype, false, &can_steal);
4eb7dce6
JK
1790 if (fallback_mt == -1)
1791 continue;
b2a0ac88 1792
a16601c5 1793 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1794 struct page, lru);
1795 if (can_steal)
1796 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1797
4eb7dce6
JK
1798 /* Remove the page from the freelists */
1799 area->nr_free--;
1800 list_del(&page->lru);
1801 rmv_page_order(page);
3a1086fb 1802
4eb7dce6
JK
1803 expand(zone, page, order, current_order, area,
1804 start_migratetype);
1805 /*
bb14c2c7 1806 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1807 * migratetype depending on the decisions in
bb14c2c7
VB
1808 * find_suitable_fallback(). This is OK as long as it does not
1809 * differ for MIGRATE_CMA pageblocks. Those can be used as
1810 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1811 */
bb14c2c7 1812 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1813
4eb7dce6
JK
1814 trace_mm_page_alloc_extfrag(page, order, current_order,
1815 start_migratetype, fallback_mt);
e0fff1bd 1816
4eb7dce6 1817 return page;
b2a0ac88
MG
1818 }
1819
728ec980 1820 return NULL;
b2a0ac88
MG
1821}
1822
56fd56b8 1823/*
1da177e4
LT
1824 * Do the hard work of removing an element from the buddy allocator.
1825 * Call me with the zone->lock already held.
1826 */
b2a0ac88 1827static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1828 int migratetype)
1da177e4 1829{
1da177e4
LT
1830 struct page *page;
1831
56fd56b8 1832 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1833 if (unlikely(!page)) {
dc67647b
JK
1834 if (migratetype == MIGRATE_MOVABLE)
1835 page = __rmqueue_cma_fallback(zone, order);
1836
1837 if (!page)
1838 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1839 }
1840
0d3d062a 1841 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1842 return page;
1da177e4
LT
1843}
1844
5f63b720 1845/*
1da177e4
LT
1846 * Obtain a specified number of elements from the buddy allocator, all under
1847 * a single hold of the lock, for efficiency. Add them to the supplied list.
1848 * Returns the number of new pages which were placed at *list.
1849 */
5f63b720 1850static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1851 unsigned long count, struct list_head *list,
b745bc85 1852 int migratetype, bool cold)
1da177e4 1853{
5bcc9f86 1854 int i;
5f63b720 1855
c54ad30c 1856 spin_lock(&zone->lock);
1da177e4 1857 for (i = 0; i < count; ++i) {
6ac0206b 1858 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1859 if (unlikely(page == NULL))
1da177e4 1860 break;
81eabcbe
MG
1861
1862 /*
1863 * Split buddy pages returned by expand() are received here
1864 * in physical page order. The page is added to the callers and
1865 * list and the list head then moves forward. From the callers
1866 * perspective, the linked list is ordered by page number in
1867 * some conditions. This is useful for IO devices that can
1868 * merge IO requests if the physical pages are ordered
1869 * properly.
1870 */
b745bc85 1871 if (likely(!cold))
e084b2d9
MG
1872 list_add(&page->lru, list);
1873 else
1874 list_add_tail(&page->lru, list);
81eabcbe 1875 list = &page->lru;
bb14c2c7 1876 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1877 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1878 -(1 << order));
1da177e4 1879 }
f2260e6b 1880 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1881 spin_unlock(&zone->lock);
085cc7d5 1882 return i;
1da177e4
LT
1883}
1884
4ae7c039 1885#ifdef CONFIG_NUMA
8fce4d8e 1886/*
4037d452
CL
1887 * Called from the vmstat counter updater to drain pagesets of this
1888 * currently executing processor on remote nodes after they have
1889 * expired.
1890 *
879336c3
CL
1891 * Note that this function must be called with the thread pinned to
1892 * a single processor.
8fce4d8e 1893 */
4037d452 1894void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1895{
4ae7c039 1896 unsigned long flags;
7be12fc9 1897 int to_drain, batch;
4ae7c039 1898
4037d452 1899 local_irq_save(flags);
4db0c3c2 1900 batch = READ_ONCE(pcp->batch);
7be12fc9 1901 to_drain = min(pcp->count, batch);
2a13515c
KM
1902 if (to_drain > 0) {
1903 free_pcppages_bulk(zone, to_drain, pcp);
1904 pcp->count -= to_drain;
1905 }
4037d452 1906 local_irq_restore(flags);
4ae7c039
CL
1907}
1908#endif
1909
9f8f2172 1910/*
93481ff0 1911 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1912 *
1913 * The processor must either be the current processor and the
1914 * thread pinned to the current processor or a processor that
1915 * is not online.
1916 */
93481ff0 1917static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1918{
c54ad30c 1919 unsigned long flags;
93481ff0
VB
1920 struct per_cpu_pageset *pset;
1921 struct per_cpu_pages *pcp;
1da177e4 1922
93481ff0
VB
1923 local_irq_save(flags);
1924 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1925
93481ff0
VB
1926 pcp = &pset->pcp;
1927 if (pcp->count) {
1928 free_pcppages_bulk(zone, pcp->count, pcp);
1929 pcp->count = 0;
1930 }
1931 local_irq_restore(flags);
1932}
3dfa5721 1933
93481ff0
VB
1934/*
1935 * Drain pcplists of all zones on the indicated processor.
1936 *
1937 * The processor must either be the current processor and the
1938 * thread pinned to the current processor or a processor that
1939 * is not online.
1940 */
1941static void drain_pages(unsigned int cpu)
1942{
1943 struct zone *zone;
1944
1945 for_each_populated_zone(zone) {
1946 drain_pages_zone(cpu, zone);
1da177e4
LT
1947 }
1948}
1da177e4 1949
9f8f2172
CL
1950/*
1951 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1952 *
1953 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1954 * the single zone's pages.
9f8f2172 1955 */
93481ff0 1956void drain_local_pages(struct zone *zone)
9f8f2172 1957{
93481ff0
VB
1958 int cpu = smp_processor_id();
1959
1960 if (zone)
1961 drain_pages_zone(cpu, zone);
1962 else
1963 drain_pages(cpu);
9f8f2172
CL
1964}
1965
1966/*
74046494
GBY
1967 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1968 *
93481ff0
VB
1969 * When zone parameter is non-NULL, spill just the single zone's pages.
1970 *
74046494
GBY
1971 * Note that this code is protected against sending an IPI to an offline
1972 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1973 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1974 * nothing keeps CPUs from showing up after we populated the cpumask and
1975 * before the call to on_each_cpu_mask().
9f8f2172 1976 */
93481ff0 1977void drain_all_pages(struct zone *zone)
9f8f2172 1978{
74046494 1979 int cpu;
74046494
GBY
1980
1981 /*
1982 * Allocate in the BSS so we wont require allocation in
1983 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1984 */
1985 static cpumask_t cpus_with_pcps;
1986
1987 /*
1988 * We don't care about racing with CPU hotplug event
1989 * as offline notification will cause the notified
1990 * cpu to drain that CPU pcps and on_each_cpu_mask
1991 * disables preemption as part of its processing
1992 */
1993 for_each_online_cpu(cpu) {
93481ff0
VB
1994 struct per_cpu_pageset *pcp;
1995 struct zone *z;
74046494 1996 bool has_pcps = false;
93481ff0
VB
1997
1998 if (zone) {
74046494 1999 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2000 if (pcp->pcp.count)
74046494 2001 has_pcps = true;
93481ff0
VB
2002 } else {
2003 for_each_populated_zone(z) {
2004 pcp = per_cpu_ptr(z->pageset, cpu);
2005 if (pcp->pcp.count) {
2006 has_pcps = true;
2007 break;
2008 }
74046494
GBY
2009 }
2010 }
93481ff0 2011
74046494
GBY
2012 if (has_pcps)
2013 cpumask_set_cpu(cpu, &cpus_with_pcps);
2014 else
2015 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2016 }
93481ff0
VB
2017 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2018 zone, 1);
9f8f2172
CL
2019}
2020
296699de 2021#ifdef CONFIG_HIBERNATION
1da177e4
LT
2022
2023void mark_free_pages(struct zone *zone)
2024{
f623f0db
RW
2025 unsigned long pfn, max_zone_pfn;
2026 unsigned long flags;
7aeb09f9 2027 unsigned int order, t;
86760a2c 2028 struct page *page;
1da177e4 2029
8080fc03 2030 if (zone_is_empty(zone))
1da177e4
LT
2031 return;
2032
2033 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2034
108bcc96 2035 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2036 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2037 if (pfn_valid(pfn)) {
86760a2c 2038 page = pfn_to_page(pfn);
7be98234
RW
2039 if (!swsusp_page_is_forbidden(page))
2040 swsusp_unset_page_free(page);
f623f0db 2041 }
1da177e4 2042
b2a0ac88 2043 for_each_migratetype_order(order, t) {
86760a2c
GT
2044 list_for_each_entry(page,
2045 &zone->free_area[order].free_list[t], lru) {
f623f0db 2046 unsigned long i;
1da177e4 2047
86760a2c 2048 pfn = page_to_pfn(page);
f623f0db 2049 for (i = 0; i < (1UL << order); i++)
7be98234 2050 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2051 }
b2a0ac88 2052 }
1da177e4
LT
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054}
e2c55dc8 2055#endif /* CONFIG_PM */
1da177e4 2056
1da177e4
LT
2057/*
2058 * Free a 0-order page
b745bc85 2059 * cold == true ? free a cold page : free a hot page
1da177e4 2060 */
b745bc85 2061void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2062{
2063 struct zone *zone = page_zone(page);
2064 struct per_cpu_pages *pcp;
2065 unsigned long flags;
dc4b0caf 2066 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2067 int migratetype;
1da177e4 2068
ec95f53a 2069 if (!free_pages_prepare(page, 0))
689bcebf
HD
2070 return;
2071
dc4b0caf 2072 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2073 set_pcppage_migratetype(page, migratetype);
1da177e4 2074 local_irq_save(flags);
f8891e5e 2075 __count_vm_event(PGFREE);
da456f14 2076
5f8dcc21
MG
2077 /*
2078 * We only track unmovable, reclaimable and movable on pcp lists.
2079 * Free ISOLATE pages back to the allocator because they are being
2080 * offlined but treat RESERVE as movable pages so we can get those
2081 * areas back if necessary. Otherwise, we may have to free
2082 * excessively into the page allocator
2083 */
2084 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2085 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2086 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2087 goto out;
2088 }
2089 migratetype = MIGRATE_MOVABLE;
2090 }
2091
99dcc3e5 2092 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2093 if (!cold)
5f8dcc21 2094 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2095 else
2096 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2097 pcp->count++;
48db57f8 2098 if (pcp->count >= pcp->high) {
4db0c3c2 2099 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2100 free_pcppages_bulk(zone, batch, pcp);
2101 pcp->count -= batch;
48db57f8 2102 }
5f8dcc21
MG
2103
2104out:
1da177e4 2105 local_irq_restore(flags);
1da177e4
LT
2106}
2107
cc59850e
KK
2108/*
2109 * Free a list of 0-order pages
2110 */
b745bc85 2111void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2112{
2113 struct page *page, *next;
2114
2115 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2116 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2117 free_hot_cold_page(page, cold);
2118 }
2119}
2120
8dfcc9ba
NP
2121/*
2122 * split_page takes a non-compound higher-order page, and splits it into
2123 * n (1<<order) sub-pages: page[0..n]
2124 * Each sub-page must be freed individually.
2125 *
2126 * Note: this is probably too low level an operation for use in drivers.
2127 * Please consult with lkml before using this in your driver.
2128 */
2129void split_page(struct page *page, unsigned int order)
2130{
2131 int i;
e2cfc911 2132 gfp_t gfp_mask;
8dfcc9ba 2133
309381fe
SL
2134 VM_BUG_ON_PAGE(PageCompound(page), page);
2135 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2136
2137#ifdef CONFIG_KMEMCHECK
2138 /*
2139 * Split shadow pages too, because free(page[0]) would
2140 * otherwise free the whole shadow.
2141 */
2142 if (kmemcheck_page_is_tracked(page))
2143 split_page(virt_to_page(page[0].shadow), order);
2144#endif
2145
e2cfc911
JK
2146 gfp_mask = get_page_owner_gfp(page);
2147 set_page_owner(page, 0, gfp_mask);
48c96a36 2148 for (i = 1; i < (1 << order); i++) {
7835e98b 2149 set_page_refcounted(page + i);
e2cfc911 2150 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2151 }
8dfcc9ba 2152}
5853ff23 2153EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2154
3c605096 2155int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2156{
748446bb
MG
2157 unsigned long watermark;
2158 struct zone *zone;
2139cbe6 2159 int mt;
748446bb
MG
2160
2161 BUG_ON(!PageBuddy(page));
2162
2163 zone = page_zone(page);
2e30abd1 2164 mt = get_pageblock_migratetype(page);
748446bb 2165
194159fb 2166 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2167 /* Obey watermarks as if the page was being allocated */
2168 watermark = low_wmark_pages(zone) + (1 << order);
2169 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2170 return 0;
2171
8fb74b9f 2172 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2173 }
748446bb
MG
2174
2175 /* Remove page from free list */
2176 list_del(&page->lru);
2177 zone->free_area[order].nr_free--;
2178 rmv_page_order(page);
2139cbe6 2179
e2cfc911 2180 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2181
8fb74b9f 2182 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2183 if (order >= pageblock_order - 1) {
2184 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2185 for (; page < endpage; page += pageblock_nr_pages) {
2186 int mt = get_pageblock_migratetype(page);
194159fb 2187 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2188 set_pageblock_migratetype(page,
2189 MIGRATE_MOVABLE);
2190 }
748446bb
MG
2191 }
2192
f3a14ced 2193
8fb74b9f 2194 return 1UL << order;
1fb3f8ca
MG
2195}
2196
2197/*
2198 * Similar to split_page except the page is already free. As this is only
2199 * being used for migration, the migratetype of the block also changes.
2200 * As this is called with interrupts disabled, the caller is responsible
2201 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2202 * are enabled.
2203 *
2204 * Note: this is probably too low level an operation for use in drivers.
2205 * Please consult with lkml before using this in your driver.
2206 */
2207int split_free_page(struct page *page)
2208{
2209 unsigned int order;
2210 int nr_pages;
2211
1fb3f8ca
MG
2212 order = page_order(page);
2213
8fb74b9f 2214 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2215 if (!nr_pages)
2216 return 0;
2217
2218 /* Split into individual pages */
2219 set_page_refcounted(page);
2220 split_page(page, order);
2221 return nr_pages;
748446bb
MG
2222}
2223
1da177e4 2224/*
75379191 2225 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2226 */
0a15c3e9
MG
2227static inline
2228struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2229 struct zone *zone, unsigned int order,
0aaa29a5 2230 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2231{
2232 unsigned long flags;
689bcebf 2233 struct page *page;
b745bc85 2234 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2235
48db57f8 2236 if (likely(order == 0)) {
1da177e4 2237 struct per_cpu_pages *pcp;
5f8dcc21 2238 struct list_head *list;
1da177e4 2239
1da177e4 2240 local_irq_save(flags);
99dcc3e5
CL
2241 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2242 list = &pcp->lists[migratetype];
5f8dcc21 2243 if (list_empty(list)) {
535131e6 2244 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2245 pcp->batch, list,
e084b2d9 2246 migratetype, cold);
5f8dcc21 2247 if (unlikely(list_empty(list)))
6fb332fa 2248 goto failed;
535131e6 2249 }
b92a6edd 2250
5f8dcc21 2251 if (cold)
a16601c5 2252 page = list_last_entry(list, struct page, lru);
5f8dcc21 2253 else
a16601c5 2254 page = list_first_entry(list, struct page, lru);
5f8dcc21 2255
b92a6edd
MG
2256 list_del(&page->lru);
2257 pcp->count--;
7fb1d9fc 2258 } else {
dab48dab
AM
2259 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2260 /*
2261 * __GFP_NOFAIL is not to be used in new code.
2262 *
2263 * All __GFP_NOFAIL callers should be fixed so that they
2264 * properly detect and handle allocation failures.
2265 *
2266 * We most definitely don't want callers attempting to
4923abf9 2267 * allocate greater than order-1 page units with
dab48dab
AM
2268 * __GFP_NOFAIL.
2269 */
4923abf9 2270 WARN_ON_ONCE(order > 1);
dab48dab 2271 }
1da177e4 2272 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2273
2274 page = NULL;
2275 if (alloc_flags & ALLOC_HARDER) {
2276 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2277 if (page)
2278 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2279 }
2280 if (!page)
6ac0206b 2281 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2282 spin_unlock(&zone->lock);
2283 if (!page)
2284 goto failed;
d1ce749a 2285 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2286 get_pcppage_migratetype(page));
1da177e4
LT
2287 }
2288
3a025760 2289 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2290 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2291 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2292 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2293
f8891e5e 2294 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2295 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2296 local_irq_restore(flags);
1da177e4 2297
309381fe 2298 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2299 return page;
a74609fa
NP
2300
2301failed:
2302 local_irq_restore(flags);
a74609fa 2303 return NULL;
1da177e4
LT
2304}
2305
933e312e
AM
2306#ifdef CONFIG_FAIL_PAGE_ALLOC
2307
b2588c4b 2308static struct {
933e312e
AM
2309 struct fault_attr attr;
2310
621a5f7a 2311 bool ignore_gfp_highmem;
71baba4b 2312 bool ignore_gfp_reclaim;
54114994 2313 u32 min_order;
933e312e
AM
2314} fail_page_alloc = {
2315 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2316 .ignore_gfp_reclaim = true,
621a5f7a 2317 .ignore_gfp_highmem = true,
54114994 2318 .min_order = 1,
933e312e
AM
2319};
2320
2321static int __init setup_fail_page_alloc(char *str)
2322{
2323 return setup_fault_attr(&fail_page_alloc.attr, str);
2324}
2325__setup("fail_page_alloc=", setup_fail_page_alloc);
2326
deaf386e 2327static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2328{
54114994 2329 if (order < fail_page_alloc.min_order)
deaf386e 2330 return false;
933e312e 2331 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2332 return false;
933e312e 2333 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2334 return false;
71baba4b
MG
2335 if (fail_page_alloc.ignore_gfp_reclaim &&
2336 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2337 return false;
933e312e
AM
2338
2339 return should_fail(&fail_page_alloc.attr, 1 << order);
2340}
2341
2342#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2343
2344static int __init fail_page_alloc_debugfs(void)
2345{
f4ae40a6 2346 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2347 struct dentry *dir;
933e312e 2348
dd48c085
AM
2349 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2350 &fail_page_alloc.attr);
2351 if (IS_ERR(dir))
2352 return PTR_ERR(dir);
933e312e 2353
b2588c4b 2354 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2355 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2356 goto fail;
2357 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2358 &fail_page_alloc.ignore_gfp_highmem))
2359 goto fail;
2360 if (!debugfs_create_u32("min-order", mode, dir,
2361 &fail_page_alloc.min_order))
2362 goto fail;
2363
2364 return 0;
2365fail:
dd48c085 2366 debugfs_remove_recursive(dir);
933e312e 2367
b2588c4b 2368 return -ENOMEM;
933e312e
AM
2369}
2370
2371late_initcall(fail_page_alloc_debugfs);
2372
2373#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2374
2375#else /* CONFIG_FAIL_PAGE_ALLOC */
2376
deaf386e 2377static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2378{
deaf386e 2379 return false;
933e312e
AM
2380}
2381
2382#endif /* CONFIG_FAIL_PAGE_ALLOC */
2383
1da177e4 2384/*
97a16fc8
MG
2385 * Return true if free base pages are above 'mark'. For high-order checks it
2386 * will return true of the order-0 watermark is reached and there is at least
2387 * one free page of a suitable size. Checking now avoids taking the zone lock
2388 * to check in the allocation paths if no pages are free.
1da177e4 2389 */
7aeb09f9
MG
2390static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2391 unsigned long mark, int classzone_idx, int alloc_flags,
2392 long free_pages)
1da177e4 2393{
d23ad423 2394 long min = mark;
1da177e4 2395 int o;
97a16fc8 2396 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2397
0aaa29a5 2398 /* free_pages may go negative - that's OK */
df0a6daa 2399 free_pages -= (1 << order) - 1;
0aaa29a5 2400
7fb1d9fc 2401 if (alloc_flags & ALLOC_HIGH)
1da177e4 2402 min -= min / 2;
0aaa29a5
MG
2403
2404 /*
2405 * If the caller does not have rights to ALLOC_HARDER then subtract
2406 * the high-atomic reserves. This will over-estimate the size of the
2407 * atomic reserve but it avoids a search.
2408 */
97a16fc8 2409 if (likely(!alloc_harder))
0aaa29a5
MG
2410 free_pages -= z->nr_reserved_highatomic;
2411 else
1da177e4 2412 min -= min / 4;
e2b19197 2413
d95ea5d1
BZ
2414#ifdef CONFIG_CMA
2415 /* If allocation can't use CMA areas don't use free CMA pages */
2416 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2417 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2418#endif
026b0814 2419
97a16fc8
MG
2420 /*
2421 * Check watermarks for an order-0 allocation request. If these
2422 * are not met, then a high-order request also cannot go ahead
2423 * even if a suitable page happened to be free.
2424 */
2425 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2426 return false;
1da177e4 2427
97a16fc8
MG
2428 /* If this is an order-0 request then the watermark is fine */
2429 if (!order)
2430 return true;
2431
2432 /* For a high-order request, check at least one suitable page is free */
2433 for (o = order; o < MAX_ORDER; o++) {
2434 struct free_area *area = &z->free_area[o];
2435 int mt;
2436
2437 if (!area->nr_free)
2438 continue;
2439
2440 if (alloc_harder)
2441 return true;
1da177e4 2442
97a16fc8
MG
2443 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2444 if (!list_empty(&area->free_list[mt]))
2445 return true;
2446 }
2447
2448#ifdef CONFIG_CMA
2449 if ((alloc_flags & ALLOC_CMA) &&
2450 !list_empty(&area->free_list[MIGRATE_CMA])) {
2451 return true;
2452 }
2453#endif
1da177e4 2454 }
97a16fc8 2455 return false;
88f5acf8
MG
2456}
2457
7aeb09f9 2458bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2459 int classzone_idx, int alloc_flags)
2460{
2461 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2462 zone_page_state(z, NR_FREE_PAGES));
2463}
2464
7aeb09f9 2465bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2466 unsigned long mark, int classzone_idx)
88f5acf8
MG
2467{
2468 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2469
2470 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2471 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2472
e2b19197 2473 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2474 free_pages);
1da177e4
LT
2475}
2476
9276b1bc 2477#ifdef CONFIG_NUMA
81c0a2bb
JW
2478static bool zone_local(struct zone *local_zone, struct zone *zone)
2479{
fff4068c 2480 return local_zone->node == zone->node;
81c0a2bb
JW
2481}
2482
957f822a
DR
2483static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2484{
5f7a75ac
MG
2485 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2486 RECLAIM_DISTANCE;
957f822a 2487}
9276b1bc 2488#else /* CONFIG_NUMA */
81c0a2bb
JW
2489static bool zone_local(struct zone *local_zone, struct zone *zone)
2490{
2491 return true;
2492}
2493
957f822a
DR
2494static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2495{
2496 return true;
2497}
9276b1bc
PJ
2498#endif /* CONFIG_NUMA */
2499
4ffeaf35
MG
2500static void reset_alloc_batches(struct zone *preferred_zone)
2501{
2502 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2503
2504 do {
2505 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2506 high_wmark_pages(zone) - low_wmark_pages(zone) -
2507 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2508 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2509 } while (zone++ != preferred_zone);
2510}
2511
7fb1d9fc 2512/*
0798e519 2513 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2514 * a page.
2515 */
2516static struct page *
a9263751
VB
2517get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2518 const struct alloc_context *ac)
753ee728 2519{
a9263751 2520 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2521 struct zoneref *z;
7fb1d9fc 2522 struct page *page = NULL;
5117f45d 2523 struct zone *zone;
4ffeaf35
MG
2524 int nr_fair_skipped = 0;
2525 bool zonelist_rescan;
54a6eb5c 2526
9276b1bc 2527zonelist_scan:
4ffeaf35
MG
2528 zonelist_rescan = false;
2529
7fb1d9fc 2530 /*
9276b1bc 2531 * Scan zonelist, looking for a zone with enough free.
344736f2 2532 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2533 */
a9263751
VB
2534 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2535 ac->nodemask) {
e085dbc5
JW
2536 unsigned long mark;
2537
664eedde
MG
2538 if (cpusets_enabled() &&
2539 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2540 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2541 continue;
81c0a2bb
JW
2542 /*
2543 * Distribute pages in proportion to the individual
2544 * zone size to ensure fair page aging. The zone a
2545 * page was allocated in should have no effect on the
2546 * time the page has in memory before being reclaimed.
81c0a2bb 2547 */
3a025760 2548 if (alloc_flags & ALLOC_FAIR) {
a9263751 2549 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2550 break;
57054651 2551 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2552 nr_fair_skipped++;
3a025760 2553 continue;
4ffeaf35 2554 }
81c0a2bb 2555 }
a756cf59
JW
2556 /*
2557 * When allocating a page cache page for writing, we
2558 * want to get it from a zone that is within its dirty
2559 * limit, such that no single zone holds more than its
2560 * proportional share of globally allowed dirty pages.
2561 * The dirty limits take into account the zone's
2562 * lowmem reserves and high watermark so that kswapd
2563 * should be able to balance it without having to
2564 * write pages from its LRU list.
2565 *
2566 * This may look like it could increase pressure on
2567 * lower zones by failing allocations in higher zones
2568 * before they are full. But the pages that do spill
2569 * over are limited as the lower zones are protected
2570 * by this very same mechanism. It should not become
2571 * a practical burden to them.
2572 *
2573 * XXX: For now, allow allocations to potentially
2574 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2575 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2576 * which is important when on a NUMA setup the allowed
2577 * zones are together not big enough to reach the
2578 * global limit. The proper fix for these situations
2579 * will require awareness of zones in the
2580 * dirty-throttling and the flusher threads.
2581 */
c9ab0c4f 2582 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2583 continue;
7fb1d9fc 2584
e085dbc5
JW
2585 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2586 if (!zone_watermark_ok(zone, order, mark,
a9263751 2587 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2588 int ret;
2589
5dab2911
MG
2590 /* Checked here to keep the fast path fast */
2591 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2592 if (alloc_flags & ALLOC_NO_WATERMARKS)
2593 goto try_this_zone;
2594
957f822a 2595 if (zone_reclaim_mode == 0 ||
a9263751 2596 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2597 continue;
2598
fa5e084e
MG
2599 ret = zone_reclaim(zone, gfp_mask, order);
2600 switch (ret) {
2601 case ZONE_RECLAIM_NOSCAN:
2602 /* did not scan */
cd38b115 2603 continue;
fa5e084e
MG
2604 case ZONE_RECLAIM_FULL:
2605 /* scanned but unreclaimable */
cd38b115 2606 continue;
fa5e084e
MG
2607 default:
2608 /* did we reclaim enough */
fed2719e 2609 if (zone_watermark_ok(zone, order, mark,
a9263751 2610 ac->classzone_idx, alloc_flags))
fed2719e
MG
2611 goto try_this_zone;
2612
fed2719e 2613 continue;
0798e519 2614 }
7fb1d9fc
RS
2615 }
2616
fa5e084e 2617try_this_zone:
a9263751 2618 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2619 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2620 if (page) {
2621 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2622 goto try_this_zone;
0aaa29a5
MG
2623
2624 /*
2625 * If this is a high-order atomic allocation then check
2626 * if the pageblock should be reserved for the future
2627 */
2628 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2629 reserve_highatomic_pageblock(page, zone, order);
2630
75379191
VB
2631 return page;
2632 }
54a6eb5c 2633 }
9276b1bc 2634
4ffeaf35
MG
2635 /*
2636 * The first pass makes sure allocations are spread fairly within the
2637 * local node. However, the local node might have free pages left
2638 * after the fairness batches are exhausted, and remote zones haven't
2639 * even been considered yet. Try once more without fairness, and
2640 * include remote zones now, before entering the slowpath and waking
2641 * kswapd: prefer spilling to a remote zone over swapping locally.
2642 */
2643 if (alloc_flags & ALLOC_FAIR) {
2644 alloc_flags &= ~ALLOC_FAIR;
2645 if (nr_fair_skipped) {
2646 zonelist_rescan = true;
a9263751 2647 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2648 }
2649 if (nr_online_nodes > 1)
2650 zonelist_rescan = true;
2651 }
2652
4ffeaf35
MG
2653 if (zonelist_rescan)
2654 goto zonelist_scan;
2655
2656 return NULL;
753ee728
MH
2657}
2658
29423e77
DR
2659/*
2660 * Large machines with many possible nodes should not always dump per-node
2661 * meminfo in irq context.
2662 */
2663static inline bool should_suppress_show_mem(void)
2664{
2665 bool ret = false;
2666
2667#if NODES_SHIFT > 8
2668 ret = in_interrupt();
2669#endif
2670 return ret;
2671}
2672
a238ab5b
DH
2673static DEFINE_RATELIMIT_STATE(nopage_rs,
2674 DEFAULT_RATELIMIT_INTERVAL,
2675 DEFAULT_RATELIMIT_BURST);
2676
d00181b9 2677void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2678{
a238ab5b
DH
2679 unsigned int filter = SHOW_MEM_FILTER_NODES;
2680
c0a32fc5
SG
2681 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2682 debug_guardpage_minorder() > 0)
a238ab5b
DH
2683 return;
2684
2685 /*
2686 * This documents exceptions given to allocations in certain
2687 * contexts that are allowed to allocate outside current's set
2688 * of allowed nodes.
2689 */
2690 if (!(gfp_mask & __GFP_NOMEMALLOC))
2691 if (test_thread_flag(TIF_MEMDIE) ||
2692 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2693 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2694 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2695 filter &= ~SHOW_MEM_FILTER_NODES;
2696
2697 if (fmt) {
3ee9a4f0
JP
2698 struct va_format vaf;
2699 va_list args;
2700
a238ab5b 2701 va_start(args, fmt);
3ee9a4f0
JP
2702
2703 vaf.fmt = fmt;
2704 vaf.va = &args;
2705
2706 pr_warn("%pV", &vaf);
2707
a238ab5b
DH
2708 va_end(args);
2709 }
2710
c5c990e8
VB
2711 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2712 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2713 dump_stack();
2714 if (!should_suppress_show_mem())
2715 show_mem(filter);
2716}
2717
11e33f6a
MG
2718static inline struct page *
2719__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2720 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2721{
6e0fc46d
DR
2722 struct oom_control oc = {
2723 .zonelist = ac->zonelist,
2724 .nodemask = ac->nodemask,
2725 .gfp_mask = gfp_mask,
2726 .order = order,
6e0fc46d 2727 };
11e33f6a
MG
2728 struct page *page;
2729
9879de73
JW
2730 *did_some_progress = 0;
2731
9879de73 2732 /*
dc56401f
JW
2733 * Acquire the oom lock. If that fails, somebody else is
2734 * making progress for us.
9879de73 2735 */
dc56401f 2736 if (!mutex_trylock(&oom_lock)) {
9879de73 2737 *did_some_progress = 1;
11e33f6a 2738 schedule_timeout_uninterruptible(1);
1da177e4
LT
2739 return NULL;
2740 }
6b1de916 2741
11e33f6a
MG
2742 /*
2743 * Go through the zonelist yet one more time, keep very high watermark
2744 * here, this is only to catch a parallel oom killing, we must fail if
2745 * we're still under heavy pressure.
2746 */
a9263751
VB
2747 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2748 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2749 if (page)
11e33f6a
MG
2750 goto out;
2751
4365a567 2752 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2753 /* Coredumps can quickly deplete all memory reserves */
2754 if (current->flags & PF_DUMPCORE)
2755 goto out;
4365a567
KH
2756 /* The OOM killer will not help higher order allocs */
2757 if (order > PAGE_ALLOC_COSTLY_ORDER)
2758 goto out;
03668b3c 2759 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2760 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2761 goto out;
9083905a 2762 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2763 if (!(gfp_mask & __GFP_FS)) {
2764 /*
2765 * XXX: Page reclaim didn't yield anything,
2766 * and the OOM killer can't be invoked, but
9083905a 2767 * keep looping as per tradition.
cc873177
JW
2768 */
2769 *did_some_progress = 1;
9879de73 2770 goto out;
cc873177 2771 }
9083905a
JW
2772 if (pm_suspended_storage())
2773 goto out;
4167e9b2 2774 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2775 if (gfp_mask & __GFP_THISNODE)
2776 goto out;
2777 }
11e33f6a 2778 /* Exhausted what can be done so it's blamo time */
5020e285 2779 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2780 *did_some_progress = 1;
5020e285
MH
2781
2782 if (gfp_mask & __GFP_NOFAIL) {
2783 page = get_page_from_freelist(gfp_mask, order,
2784 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2785 /*
2786 * fallback to ignore cpuset restriction if our nodes
2787 * are depleted
2788 */
2789 if (!page)
2790 page = get_page_from_freelist(gfp_mask, order,
2791 ALLOC_NO_WATERMARKS, ac);
2792 }
2793 }
11e33f6a 2794out:
dc56401f 2795 mutex_unlock(&oom_lock);
11e33f6a
MG
2796 return page;
2797}
2798
56de7263
MG
2799#ifdef CONFIG_COMPACTION
2800/* Try memory compaction for high-order allocations before reclaim */
2801static struct page *
2802__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2803 int alloc_flags, const struct alloc_context *ac,
2804 enum migrate_mode mode, int *contended_compaction,
2805 bool *deferred_compaction)
56de7263 2806{
53853e2d 2807 unsigned long compact_result;
98dd3b48 2808 struct page *page;
53853e2d
VB
2809
2810 if (!order)
66199712 2811 return NULL;
66199712 2812
c06b1fca 2813 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2814 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2815 mode, contended_compaction);
c06b1fca 2816 current->flags &= ~PF_MEMALLOC;
56de7263 2817
98dd3b48
VB
2818 switch (compact_result) {
2819 case COMPACT_DEFERRED:
53853e2d 2820 *deferred_compaction = true;
98dd3b48
VB
2821 /* fall-through */
2822 case COMPACT_SKIPPED:
2823 return NULL;
2824 default:
2825 break;
2826 }
53853e2d 2827
98dd3b48
VB
2828 /*
2829 * At least in one zone compaction wasn't deferred or skipped, so let's
2830 * count a compaction stall
2831 */
2832 count_vm_event(COMPACTSTALL);
8fb74b9f 2833
a9263751
VB
2834 page = get_page_from_freelist(gfp_mask, order,
2835 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2836
98dd3b48
VB
2837 if (page) {
2838 struct zone *zone = page_zone(page);
53853e2d 2839
98dd3b48
VB
2840 zone->compact_blockskip_flush = false;
2841 compaction_defer_reset(zone, order, true);
2842 count_vm_event(COMPACTSUCCESS);
2843 return page;
2844 }
56de7263 2845
98dd3b48
VB
2846 /*
2847 * It's bad if compaction run occurs and fails. The most likely reason
2848 * is that pages exist, but not enough to satisfy watermarks.
2849 */
2850 count_vm_event(COMPACTFAIL);
66199712 2851
98dd3b48 2852 cond_resched();
56de7263
MG
2853
2854 return NULL;
2855}
2856#else
2857static inline struct page *
2858__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2859 int alloc_flags, const struct alloc_context *ac,
2860 enum migrate_mode mode, int *contended_compaction,
2861 bool *deferred_compaction)
56de7263
MG
2862{
2863 return NULL;
2864}
2865#endif /* CONFIG_COMPACTION */
2866
bba90710
MS
2867/* Perform direct synchronous page reclaim */
2868static int
a9263751
VB
2869__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2870 const struct alloc_context *ac)
11e33f6a 2871{
11e33f6a 2872 struct reclaim_state reclaim_state;
bba90710 2873 int progress;
11e33f6a
MG
2874
2875 cond_resched();
2876
2877 /* We now go into synchronous reclaim */
2878 cpuset_memory_pressure_bump();
c06b1fca 2879 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2880 lockdep_set_current_reclaim_state(gfp_mask);
2881 reclaim_state.reclaimed_slab = 0;
c06b1fca 2882 current->reclaim_state = &reclaim_state;
11e33f6a 2883
a9263751
VB
2884 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2885 ac->nodemask);
11e33f6a 2886
c06b1fca 2887 current->reclaim_state = NULL;
11e33f6a 2888 lockdep_clear_current_reclaim_state();
c06b1fca 2889 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2890
2891 cond_resched();
2892
bba90710
MS
2893 return progress;
2894}
2895
2896/* The really slow allocator path where we enter direct reclaim */
2897static inline struct page *
2898__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2899 int alloc_flags, const struct alloc_context *ac,
2900 unsigned long *did_some_progress)
bba90710
MS
2901{
2902 struct page *page = NULL;
2903 bool drained = false;
2904
a9263751 2905 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2906 if (unlikely(!(*did_some_progress)))
2907 return NULL;
11e33f6a 2908
9ee493ce 2909retry:
a9263751
VB
2910 page = get_page_from_freelist(gfp_mask, order,
2911 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2912
2913 /*
2914 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
2915 * pages are pinned on the per-cpu lists or in high alloc reserves.
2916 * Shrink them them and try again
9ee493ce
MG
2917 */
2918 if (!page && !drained) {
0aaa29a5 2919 unreserve_highatomic_pageblock(ac);
93481ff0 2920 drain_all_pages(NULL);
9ee493ce
MG
2921 drained = true;
2922 goto retry;
2923 }
2924
11e33f6a
MG
2925 return page;
2926}
2927
a9263751 2928static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2929{
2930 struct zoneref *z;
2931 struct zone *zone;
2932
a9263751
VB
2933 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2934 ac->high_zoneidx, ac->nodemask)
2935 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2936}
2937
341ce06f
PZ
2938static inline int
2939gfp_to_alloc_flags(gfp_t gfp_mask)
2940{
341ce06f 2941 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 2942
a56f57ff 2943 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2944 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2945
341ce06f
PZ
2946 /*
2947 * The caller may dip into page reserves a bit more if the caller
2948 * cannot run direct reclaim, or if the caller has realtime scheduling
2949 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 2950 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2951 */
e6223a3b 2952 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2953
d0164adc 2954 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 2955 /*
b104a35d
DR
2956 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2957 * if it can't schedule.
5c3240d9 2958 */
b104a35d 2959 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2960 alloc_flags |= ALLOC_HARDER;
523b9458 2961 /*
b104a35d 2962 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2963 * comment for __cpuset_node_allowed().
523b9458 2964 */
341ce06f 2965 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2966 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2967 alloc_flags |= ALLOC_HARDER;
2968
b37f1dd0
MG
2969 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2970 if (gfp_mask & __GFP_MEMALLOC)
2971 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2972 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2973 alloc_flags |= ALLOC_NO_WATERMARKS;
2974 else if (!in_interrupt() &&
2975 ((current->flags & PF_MEMALLOC) ||
2976 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2977 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2978 }
d95ea5d1 2979#ifdef CONFIG_CMA
43e7a34d 2980 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2981 alloc_flags |= ALLOC_CMA;
2982#endif
341ce06f
PZ
2983 return alloc_flags;
2984}
2985
072bb0aa
MG
2986bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2987{
b37f1dd0 2988 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2989}
2990
d0164adc
MG
2991static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2992{
2993 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2994}
2995
11e33f6a
MG
2996static inline struct page *
2997__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2998 struct alloc_context *ac)
11e33f6a 2999{
d0164adc 3000 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3001 struct page *page = NULL;
3002 int alloc_flags;
3003 unsigned long pages_reclaimed = 0;
3004 unsigned long did_some_progress;
e0b9daeb 3005 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3006 bool deferred_compaction = false;
1f9efdef 3007 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3008
72807a74
MG
3009 /*
3010 * In the slowpath, we sanity check order to avoid ever trying to
3011 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3012 * be using allocators in order of preference for an area that is
3013 * too large.
3014 */
1fc28b70
MG
3015 if (order >= MAX_ORDER) {
3016 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3017 return NULL;
1fc28b70 3018 }
1da177e4 3019
d0164adc
MG
3020 /*
3021 * We also sanity check to catch abuse of atomic reserves being used by
3022 * callers that are not in atomic context.
3023 */
3024 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3025 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3026 gfp_mask &= ~__GFP_ATOMIC;
3027
952f3b51 3028 /*
4167e9b2
DR
3029 * If this allocation cannot block and it is for a specific node, then
3030 * fail early. There's no need to wakeup kswapd or retry for a
3031 * speculative node-specific allocation.
952f3b51 3032 */
d0164adc 3033 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
3034 goto nopage;
3035
9879de73 3036retry:
d0164adc 3037 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3038 wake_all_kswapds(order, ac);
1da177e4 3039
9bf2229f 3040 /*
7fb1d9fc
RS
3041 * OK, we're below the kswapd watermark and have kicked background
3042 * reclaim. Now things get more complex, so set up alloc_flags according
3043 * to how we want to proceed.
9bf2229f 3044 */
341ce06f 3045 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3046
f33261d7
DR
3047 /*
3048 * Find the true preferred zone if the allocation is unconstrained by
3049 * cpusets.
3050 */
a9263751 3051 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3052 struct zoneref *preferred_zoneref;
a9263751
VB
3053 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3054 ac->high_zoneidx, NULL, &ac->preferred_zone);
3055 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3056 }
f33261d7 3057
341ce06f 3058 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3059 page = get_page_from_freelist(gfp_mask, order,
3060 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3061 if (page)
3062 goto got_pg;
1da177e4 3063
11e33f6a 3064 /* Allocate without watermarks if the context allows */
341ce06f 3065 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3066 /*
3067 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3068 * the allocation is high priority and these type of
3069 * allocations are system rather than user orientated
3070 */
a9263751 3071 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3072 page = get_page_from_freelist(gfp_mask, order,
3073 ALLOC_NO_WATERMARKS, ac);
3074 if (page)
3075 goto got_pg;
1da177e4
LT
3076 }
3077
d0164adc
MG
3078 /* Caller is not willing to reclaim, we can't balance anything */
3079 if (!can_direct_reclaim) {
aed0a0e3 3080 /*
33d53103
MH
3081 * All existing users of the __GFP_NOFAIL are blockable, so warn
3082 * of any new users that actually allow this type of allocation
3083 * to fail.
aed0a0e3
DR
3084 */
3085 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3086 goto nopage;
aed0a0e3 3087 }
1da177e4 3088
341ce06f 3089 /* Avoid recursion of direct reclaim */
33d53103
MH
3090 if (current->flags & PF_MEMALLOC) {
3091 /*
3092 * __GFP_NOFAIL request from this context is rather bizarre
3093 * because we cannot reclaim anything and only can loop waiting
3094 * for somebody to do a work for us.
3095 */
3096 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3097 cond_resched();
3098 goto retry;
3099 }
341ce06f 3100 goto nopage;
33d53103 3101 }
341ce06f 3102
6583bb64
DR
3103 /* Avoid allocations with no watermarks from looping endlessly */
3104 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3105 goto nopage;
3106
77f1fe6b
MG
3107 /*
3108 * Try direct compaction. The first pass is asynchronous. Subsequent
3109 * attempts after direct reclaim are synchronous
3110 */
a9263751
VB
3111 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3112 migration_mode,
3113 &contended_compaction,
53853e2d 3114 &deferred_compaction);
56de7263
MG
3115 if (page)
3116 goto got_pg;
75f30861 3117
1f9efdef 3118 /* Checks for THP-specific high-order allocations */
d0164adc 3119 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3120 /*
3121 * If compaction is deferred for high-order allocations, it is
3122 * because sync compaction recently failed. If this is the case
3123 * and the caller requested a THP allocation, we do not want
3124 * to heavily disrupt the system, so we fail the allocation
3125 * instead of entering direct reclaim.
3126 */
3127 if (deferred_compaction)
3128 goto nopage;
3129
3130 /*
3131 * In all zones where compaction was attempted (and not
3132 * deferred or skipped), lock contention has been detected.
3133 * For THP allocation we do not want to disrupt the others
3134 * so we fallback to base pages instead.
3135 */
3136 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3137 goto nopage;
3138
3139 /*
3140 * If compaction was aborted due to need_resched(), we do not
3141 * want to further increase allocation latency, unless it is
3142 * khugepaged trying to collapse.
3143 */
3144 if (contended_compaction == COMPACT_CONTENDED_SCHED
3145 && !(current->flags & PF_KTHREAD))
3146 goto nopage;
3147 }
66199712 3148
8fe78048
DR
3149 /*
3150 * It can become very expensive to allocate transparent hugepages at
3151 * fault, so use asynchronous memory compaction for THP unless it is
3152 * khugepaged trying to collapse.
3153 */
d0164adc 3154 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3155 migration_mode = MIGRATE_SYNC_LIGHT;
3156
11e33f6a 3157 /* Try direct reclaim and then allocating */
a9263751
VB
3158 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3159 &did_some_progress);
11e33f6a
MG
3160 if (page)
3161 goto got_pg;
1da177e4 3162
9083905a
JW
3163 /* Do not loop if specifically requested */
3164 if (gfp_mask & __GFP_NORETRY)
3165 goto noretry;
3166
3167 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3168 pages_reclaimed += did_some_progress;
9083905a
JW
3169 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3170 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3171 /* Wait for some write requests to complete then retry */
a9263751 3172 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3173 goto retry;
1da177e4
LT
3174 }
3175
9083905a
JW
3176 /* Reclaim has failed us, start killing things */
3177 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3178 if (page)
3179 goto got_pg;
3180
3181 /* Retry as long as the OOM killer is making progress */
3182 if (did_some_progress)
3183 goto retry;
3184
3185noretry:
3186 /*
3187 * High-order allocations do not necessarily loop after
3188 * direct reclaim and reclaim/compaction depends on compaction
3189 * being called after reclaim so call directly if necessary
3190 */
3191 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3192 ac, migration_mode,
3193 &contended_compaction,
3194 &deferred_compaction);
3195 if (page)
3196 goto got_pg;
1da177e4 3197nopage:
a238ab5b 3198 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3199got_pg:
072bb0aa 3200 return page;
1da177e4 3201}
11e33f6a
MG
3202
3203/*
3204 * This is the 'heart' of the zoned buddy allocator.
3205 */
3206struct page *
3207__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3208 struct zonelist *zonelist, nodemask_t *nodemask)
3209{
d8846374 3210 struct zoneref *preferred_zoneref;
cc9a6c87 3211 struct page *page = NULL;
cc9a6c87 3212 unsigned int cpuset_mems_cookie;
3a025760 3213 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3214 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3215 struct alloc_context ac = {
3216 .high_zoneidx = gfp_zone(gfp_mask),
3217 .nodemask = nodemask,
3218 .migratetype = gfpflags_to_migratetype(gfp_mask),
3219 };
11e33f6a 3220
dcce284a
BH
3221 gfp_mask &= gfp_allowed_mask;
3222
11e33f6a
MG
3223 lockdep_trace_alloc(gfp_mask);
3224
d0164adc 3225 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3226
3227 if (should_fail_alloc_page(gfp_mask, order))
3228 return NULL;
3229
3230 /*
3231 * Check the zones suitable for the gfp_mask contain at least one
3232 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3233 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3234 */
3235 if (unlikely(!zonelist->_zonerefs->zone))
3236 return NULL;
3237
a9263751 3238 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3239 alloc_flags |= ALLOC_CMA;
3240
cc9a6c87 3241retry_cpuset:
d26914d1 3242 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3243
a9263751
VB
3244 /* We set it here, as __alloc_pages_slowpath might have changed it */
3245 ac.zonelist = zonelist;
c9ab0c4f
MG
3246
3247 /* Dirty zone balancing only done in the fast path */
3248 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3249
5117f45d 3250 /* The preferred zone is used for statistics later */
a9263751
VB
3251 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3252 ac.nodemask ? : &cpuset_current_mems_allowed,
3253 &ac.preferred_zone);
3254 if (!ac.preferred_zone)
cc9a6c87 3255 goto out;
a9263751 3256 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3257
3258 /* First allocation attempt */
91fbdc0f 3259 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3260 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3261 if (unlikely(!page)) {
3262 /*
3263 * Runtime PM, block IO and its error handling path
3264 * can deadlock because I/O on the device might not
3265 * complete.
3266 */
91fbdc0f 3267 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3268 ac.spread_dirty_pages = false;
91fbdc0f 3269
a9263751 3270 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3271 }
11e33f6a 3272
23f086f9
XQ
3273 if (kmemcheck_enabled && page)
3274 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3275
a9263751 3276 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3277
3278out:
3279 /*
3280 * When updating a task's mems_allowed, it is possible to race with
3281 * parallel threads in such a way that an allocation can fail while
3282 * the mask is being updated. If a page allocation is about to fail,
3283 * check if the cpuset changed during allocation and if so, retry.
3284 */
d26914d1 3285 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3286 goto retry_cpuset;
3287
11e33f6a 3288 return page;
1da177e4 3289}
d239171e 3290EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3291
3292/*
3293 * Common helper functions.
3294 */
920c7a5d 3295unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3296{
945a1113
AM
3297 struct page *page;
3298
3299 /*
3300 * __get_free_pages() returns a 32-bit address, which cannot represent
3301 * a highmem page
3302 */
3303 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3304
1da177e4
LT
3305 page = alloc_pages(gfp_mask, order);
3306 if (!page)
3307 return 0;
3308 return (unsigned long) page_address(page);
3309}
1da177e4
LT
3310EXPORT_SYMBOL(__get_free_pages);
3311
920c7a5d 3312unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3313{
945a1113 3314 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3315}
1da177e4
LT
3316EXPORT_SYMBOL(get_zeroed_page);
3317
920c7a5d 3318void __free_pages(struct page *page, unsigned int order)
1da177e4 3319{
b5810039 3320 if (put_page_testzero(page)) {
1da177e4 3321 if (order == 0)
b745bc85 3322 free_hot_cold_page(page, false);
1da177e4
LT
3323 else
3324 __free_pages_ok(page, order);
3325 }
3326}
3327
3328EXPORT_SYMBOL(__free_pages);
3329
920c7a5d 3330void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3331{
3332 if (addr != 0) {
725d704e 3333 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3334 __free_pages(virt_to_page((void *)addr), order);
3335 }
3336}
3337
3338EXPORT_SYMBOL(free_pages);
3339
b63ae8ca
AD
3340/*
3341 * Page Fragment:
3342 * An arbitrary-length arbitrary-offset area of memory which resides
3343 * within a 0 or higher order page. Multiple fragments within that page
3344 * are individually refcounted, in the page's reference counter.
3345 *
3346 * The page_frag functions below provide a simple allocation framework for
3347 * page fragments. This is used by the network stack and network device
3348 * drivers to provide a backing region of memory for use as either an
3349 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3350 */
3351static struct page *__page_frag_refill(struct page_frag_cache *nc,
3352 gfp_t gfp_mask)
3353{
3354 struct page *page = NULL;
3355 gfp_t gfp = gfp_mask;
3356
3357#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3358 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3359 __GFP_NOMEMALLOC;
3360 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3361 PAGE_FRAG_CACHE_MAX_ORDER);
3362 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3363#endif
3364 if (unlikely(!page))
3365 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3366
3367 nc->va = page ? page_address(page) : NULL;
3368
3369 return page;
3370}
3371
3372void *__alloc_page_frag(struct page_frag_cache *nc,
3373 unsigned int fragsz, gfp_t gfp_mask)
3374{
3375 unsigned int size = PAGE_SIZE;
3376 struct page *page;
3377 int offset;
3378
3379 if (unlikely(!nc->va)) {
3380refill:
3381 page = __page_frag_refill(nc, gfp_mask);
3382 if (!page)
3383 return NULL;
3384
3385#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3386 /* if size can vary use size else just use PAGE_SIZE */
3387 size = nc->size;
3388#endif
3389 /* Even if we own the page, we do not use atomic_set().
3390 * This would break get_page_unless_zero() users.
3391 */
3392 atomic_add(size - 1, &page->_count);
3393
3394 /* reset page count bias and offset to start of new frag */
2f064f34 3395 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3396 nc->pagecnt_bias = size;
3397 nc->offset = size;
3398 }
3399
3400 offset = nc->offset - fragsz;
3401 if (unlikely(offset < 0)) {
3402 page = virt_to_page(nc->va);
3403
3404 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3405 goto refill;
3406
3407#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3408 /* if size can vary use size else just use PAGE_SIZE */
3409 size = nc->size;
3410#endif
3411 /* OK, page count is 0, we can safely set it */
3412 atomic_set(&page->_count, size);
3413
3414 /* reset page count bias and offset to start of new frag */
3415 nc->pagecnt_bias = size;
3416 offset = size - fragsz;
3417 }
3418
3419 nc->pagecnt_bias--;
3420 nc->offset = offset;
3421
3422 return nc->va + offset;
3423}
3424EXPORT_SYMBOL(__alloc_page_frag);
3425
3426/*
3427 * Frees a page fragment allocated out of either a compound or order 0 page.
3428 */
3429void __free_page_frag(void *addr)
3430{
3431 struct page *page = virt_to_head_page(addr);
3432
3433 if (unlikely(put_page_testzero(page)))
3434 __free_pages_ok(page, compound_order(page));
3435}
3436EXPORT_SYMBOL(__free_page_frag);
3437
6a1a0d3b 3438/*
52383431 3439 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3440 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3441 * equivalent to alloc_pages.
6a1a0d3b 3442 *
52383431
VD
3443 * It should be used when the caller would like to use kmalloc, but since the
3444 * allocation is large, it has to fall back to the page allocator.
3445 */
3446struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3447{
3448 struct page *page;
52383431 3449
52383431 3450 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3451 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3452 __free_pages(page, order);
3453 page = NULL;
3454 }
52383431
VD
3455 return page;
3456}
3457
3458struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3459{
3460 struct page *page;
52383431 3461
52383431 3462 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3463 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3464 __free_pages(page, order);
3465 page = NULL;
3466 }
52383431
VD
3467 return page;
3468}
3469
3470/*
3471 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3472 * alloc_kmem_pages.
6a1a0d3b 3473 */
52383431 3474void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3475{
d05e83a6 3476 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3477 __free_pages(page, order);
3478}
3479
52383431 3480void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3481{
3482 if (addr != 0) {
3483 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3484 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3485 }
3486}
3487
d00181b9
KS
3488static void *make_alloc_exact(unsigned long addr, unsigned int order,
3489 size_t size)
ee85c2e1
AK
3490{
3491 if (addr) {
3492 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3493 unsigned long used = addr + PAGE_ALIGN(size);
3494
3495 split_page(virt_to_page((void *)addr), order);
3496 while (used < alloc_end) {
3497 free_page(used);
3498 used += PAGE_SIZE;
3499 }
3500 }
3501 return (void *)addr;
3502}
3503
2be0ffe2
TT
3504/**
3505 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3506 * @size: the number of bytes to allocate
3507 * @gfp_mask: GFP flags for the allocation
3508 *
3509 * This function is similar to alloc_pages(), except that it allocates the
3510 * minimum number of pages to satisfy the request. alloc_pages() can only
3511 * allocate memory in power-of-two pages.
3512 *
3513 * This function is also limited by MAX_ORDER.
3514 *
3515 * Memory allocated by this function must be released by free_pages_exact().
3516 */
3517void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3518{
3519 unsigned int order = get_order(size);
3520 unsigned long addr;
3521
3522 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3523 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3524}
3525EXPORT_SYMBOL(alloc_pages_exact);
3526
ee85c2e1
AK
3527/**
3528 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3529 * pages on a node.
b5e6ab58 3530 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3531 * @size: the number of bytes to allocate
3532 * @gfp_mask: GFP flags for the allocation
3533 *
3534 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3535 * back.
ee85c2e1 3536 */
e1931811 3537void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3538{
d00181b9 3539 unsigned int order = get_order(size);
ee85c2e1
AK
3540 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3541 if (!p)
3542 return NULL;
3543 return make_alloc_exact((unsigned long)page_address(p), order, size);
3544}
ee85c2e1 3545
2be0ffe2
TT
3546/**
3547 * free_pages_exact - release memory allocated via alloc_pages_exact()
3548 * @virt: the value returned by alloc_pages_exact.
3549 * @size: size of allocation, same value as passed to alloc_pages_exact().
3550 *
3551 * Release the memory allocated by a previous call to alloc_pages_exact.
3552 */
3553void free_pages_exact(void *virt, size_t size)
3554{
3555 unsigned long addr = (unsigned long)virt;
3556 unsigned long end = addr + PAGE_ALIGN(size);
3557
3558 while (addr < end) {
3559 free_page(addr);
3560 addr += PAGE_SIZE;
3561 }
3562}
3563EXPORT_SYMBOL(free_pages_exact);
3564
e0fb5815
ZY
3565/**
3566 * nr_free_zone_pages - count number of pages beyond high watermark
3567 * @offset: The zone index of the highest zone
3568 *
3569 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3570 * high watermark within all zones at or below a given zone index. For each
3571 * zone, the number of pages is calculated as:
834405c3 3572 * managed_pages - high_pages
e0fb5815 3573 */
ebec3862 3574static unsigned long nr_free_zone_pages(int offset)
1da177e4 3575{
dd1a239f 3576 struct zoneref *z;
54a6eb5c
MG
3577 struct zone *zone;
3578
e310fd43 3579 /* Just pick one node, since fallback list is circular */
ebec3862 3580 unsigned long sum = 0;
1da177e4 3581
0e88460d 3582 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3583
54a6eb5c 3584 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3585 unsigned long size = zone->managed_pages;
41858966 3586 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3587 if (size > high)
3588 sum += size - high;
1da177e4
LT
3589 }
3590
3591 return sum;
3592}
3593
e0fb5815
ZY
3594/**
3595 * nr_free_buffer_pages - count number of pages beyond high watermark
3596 *
3597 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3598 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3599 */
ebec3862 3600unsigned long nr_free_buffer_pages(void)
1da177e4 3601{
af4ca457 3602 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3603}
c2f1a551 3604EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3605
e0fb5815
ZY
3606/**
3607 * nr_free_pagecache_pages - count number of pages beyond high watermark
3608 *
3609 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3610 * high watermark within all zones.
1da177e4 3611 */
ebec3862 3612unsigned long nr_free_pagecache_pages(void)
1da177e4 3613{
2a1e274a 3614 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3615}
08e0f6a9
CL
3616
3617static inline void show_node(struct zone *zone)
1da177e4 3618{
e5adfffc 3619 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3620 printk("Node %d ", zone_to_nid(zone));
1da177e4 3621}
1da177e4 3622
1da177e4
LT
3623void si_meminfo(struct sysinfo *val)
3624{
3625 val->totalram = totalram_pages;
cc7452b6 3626 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3627 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3628 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3629 val->totalhigh = totalhigh_pages;
3630 val->freehigh = nr_free_highpages();
1da177e4
LT
3631 val->mem_unit = PAGE_SIZE;
3632}
3633
3634EXPORT_SYMBOL(si_meminfo);
3635
3636#ifdef CONFIG_NUMA
3637void si_meminfo_node(struct sysinfo *val, int nid)
3638{
cdd91a77
JL
3639 int zone_type; /* needs to be signed */
3640 unsigned long managed_pages = 0;
1da177e4
LT
3641 pg_data_t *pgdat = NODE_DATA(nid);
3642
cdd91a77
JL
3643 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3644 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3645 val->totalram = managed_pages;
cc7452b6 3646 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3647 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3648#ifdef CONFIG_HIGHMEM
b40da049 3649 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3650 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3651 NR_FREE_PAGES);
98d2b0eb
CL
3652#else
3653 val->totalhigh = 0;
3654 val->freehigh = 0;
3655#endif
1da177e4
LT
3656 val->mem_unit = PAGE_SIZE;
3657}
3658#endif
3659
ddd588b5 3660/*
7bf02ea2
DR
3661 * Determine whether the node should be displayed or not, depending on whether
3662 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3663 */
7bf02ea2 3664bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3665{
3666 bool ret = false;
cc9a6c87 3667 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3668
3669 if (!(flags & SHOW_MEM_FILTER_NODES))
3670 goto out;
3671
cc9a6c87 3672 do {
d26914d1 3673 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3674 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3675 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3676out:
3677 return ret;
3678}
3679
1da177e4
LT
3680#define K(x) ((x) << (PAGE_SHIFT-10))
3681
377e4f16
RV
3682static void show_migration_types(unsigned char type)
3683{
3684 static const char types[MIGRATE_TYPES] = {
3685 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3686 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3687 [MIGRATE_RECLAIMABLE] = 'E',
3688 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3689#ifdef CONFIG_CMA
3690 [MIGRATE_CMA] = 'C',
3691#endif
194159fb 3692#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3693 [MIGRATE_ISOLATE] = 'I',
194159fb 3694#endif
377e4f16
RV
3695 };
3696 char tmp[MIGRATE_TYPES + 1];
3697 char *p = tmp;
3698 int i;
3699
3700 for (i = 0; i < MIGRATE_TYPES; i++) {
3701 if (type & (1 << i))
3702 *p++ = types[i];
3703 }
3704
3705 *p = '\0';
3706 printk("(%s) ", tmp);
3707}
3708
1da177e4
LT
3709/*
3710 * Show free area list (used inside shift_scroll-lock stuff)
3711 * We also calculate the percentage fragmentation. We do this by counting the
3712 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3713 *
3714 * Bits in @filter:
3715 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3716 * cpuset.
1da177e4 3717 */
7bf02ea2 3718void show_free_areas(unsigned int filter)
1da177e4 3719{
d1bfcdb8 3720 unsigned long free_pcp = 0;
c7241913 3721 int cpu;
1da177e4
LT
3722 struct zone *zone;
3723
ee99c71c 3724 for_each_populated_zone(zone) {
7bf02ea2 3725 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3726 continue;
d1bfcdb8 3727
761b0677
KK
3728 for_each_online_cpu(cpu)
3729 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3730 }
3731
a731286d
KM
3732 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3733 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3734 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3735 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3736 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3737 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3738 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3739 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3740 global_page_state(NR_ISOLATED_ANON),
3741 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3742 global_page_state(NR_INACTIVE_FILE),
a731286d 3743 global_page_state(NR_ISOLATED_FILE),
7b854121 3744 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3745 global_page_state(NR_FILE_DIRTY),
ce866b34 3746 global_page_state(NR_WRITEBACK),
fd39fc85 3747 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3748 global_page_state(NR_SLAB_RECLAIMABLE),
3749 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3750 global_page_state(NR_FILE_MAPPED),
4b02108a 3751 global_page_state(NR_SHMEM),
a25700a5 3752 global_page_state(NR_PAGETABLE),
d1ce749a 3753 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3754 global_page_state(NR_FREE_PAGES),
3755 free_pcp,
d1ce749a 3756 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3757
ee99c71c 3758 for_each_populated_zone(zone) {
1da177e4
LT
3759 int i;
3760
7bf02ea2 3761 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3762 continue;
d1bfcdb8
KK
3763
3764 free_pcp = 0;
3765 for_each_online_cpu(cpu)
3766 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3767
1da177e4
LT
3768 show_node(zone);
3769 printk("%s"
3770 " free:%lukB"
3771 " min:%lukB"
3772 " low:%lukB"
3773 " high:%lukB"
4f98a2fe
RR
3774 " active_anon:%lukB"
3775 " inactive_anon:%lukB"
3776 " active_file:%lukB"
3777 " inactive_file:%lukB"
7b854121 3778 " unevictable:%lukB"
a731286d
KM
3779 " isolated(anon):%lukB"
3780 " isolated(file):%lukB"
1da177e4 3781 " present:%lukB"
9feedc9d 3782 " managed:%lukB"
4a0aa73f
KM
3783 " mlocked:%lukB"
3784 " dirty:%lukB"
3785 " writeback:%lukB"
3786 " mapped:%lukB"
4b02108a 3787 " shmem:%lukB"
4a0aa73f
KM
3788 " slab_reclaimable:%lukB"
3789 " slab_unreclaimable:%lukB"
c6a7f572 3790 " kernel_stack:%lukB"
4a0aa73f
KM
3791 " pagetables:%lukB"
3792 " unstable:%lukB"
3793 " bounce:%lukB"
d1bfcdb8
KK
3794 " free_pcp:%lukB"
3795 " local_pcp:%ukB"
d1ce749a 3796 " free_cma:%lukB"
4a0aa73f 3797 " writeback_tmp:%lukB"
1da177e4
LT
3798 " pages_scanned:%lu"
3799 " all_unreclaimable? %s"
3800 "\n",
3801 zone->name,
88f5acf8 3802 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3803 K(min_wmark_pages(zone)),
3804 K(low_wmark_pages(zone)),
3805 K(high_wmark_pages(zone)),
4f98a2fe
RR
3806 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3807 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3808 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3809 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3810 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3811 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3812 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3813 K(zone->present_pages),
9feedc9d 3814 K(zone->managed_pages),
4a0aa73f
KM
3815 K(zone_page_state(zone, NR_MLOCK)),
3816 K(zone_page_state(zone, NR_FILE_DIRTY)),
3817 K(zone_page_state(zone, NR_WRITEBACK)),
3818 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3819 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3820 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3821 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3822 zone_page_state(zone, NR_KERNEL_STACK) *
3823 THREAD_SIZE / 1024,
4a0aa73f
KM
3824 K(zone_page_state(zone, NR_PAGETABLE)),
3825 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3826 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3827 K(free_pcp),
3828 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3829 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3830 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3831 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3832 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3833 );
3834 printk("lowmem_reserve[]:");
3835 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3836 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3837 printk("\n");
3838 }
3839
ee99c71c 3840 for_each_populated_zone(zone) {
d00181b9
KS
3841 unsigned int order;
3842 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3843 unsigned char types[MAX_ORDER];
1da177e4 3844
7bf02ea2 3845 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3846 continue;
1da177e4
LT
3847 show_node(zone);
3848 printk("%s: ", zone->name);
1da177e4
LT
3849
3850 spin_lock_irqsave(&zone->lock, flags);
3851 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3852 struct free_area *area = &zone->free_area[order];
3853 int type;
3854
3855 nr[order] = area->nr_free;
8f9de51a 3856 total += nr[order] << order;
377e4f16
RV
3857
3858 types[order] = 0;
3859 for (type = 0; type < MIGRATE_TYPES; type++) {
3860 if (!list_empty(&area->free_list[type]))
3861 types[order] |= 1 << type;
3862 }
1da177e4
LT
3863 }
3864 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3865 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3866 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3867 if (nr[order])
3868 show_migration_types(types[order]);
3869 }
1da177e4
LT
3870 printk("= %lukB\n", K(total));
3871 }
3872
949f7ec5
DR
3873 hugetlb_show_meminfo();
3874
e6f3602d
LW
3875 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3876
1da177e4
LT
3877 show_swap_cache_info();
3878}
3879
19770b32
MG
3880static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3881{
3882 zoneref->zone = zone;
3883 zoneref->zone_idx = zone_idx(zone);
3884}
3885
1da177e4
LT
3886/*
3887 * Builds allocation fallback zone lists.
1a93205b
CL
3888 *
3889 * Add all populated zones of a node to the zonelist.
1da177e4 3890 */
f0c0b2b8 3891static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3892 int nr_zones)
1da177e4 3893{
1a93205b 3894 struct zone *zone;
bc732f1d 3895 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3896
3897 do {
2f6726e5 3898 zone_type--;
070f8032 3899 zone = pgdat->node_zones + zone_type;
1a93205b 3900 if (populated_zone(zone)) {
dd1a239f
MG
3901 zoneref_set_zone(zone,
3902 &zonelist->_zonerefs[nr_zones++]);
070f8032 3903 check_highest_zone(zone_type);
1da177e4 3904 }
2f6726e5 3905 } while (zone_type);
bc732f1d 3906
070f8032 3907 return nr_zones;
1da177e4
LT
3908}
3909
f0c0b2b8
KH
3910
3911/*
3912 * zonelist_order:
3913 * 0 = automatic detection of better ordering.
3914 * 1 = order by ([node] distance, -zonetype)
3915 * 2 = order by (-zonetype, [node] distance)
3916 *
3917 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3918 * the same zonelist. So only NUMA can configure this param.
3919 */
3920#define ZONELIST_ORDER_DEFAULT 0
3921#define ZONELIST_ORDER_NODE 1
3922#define ZONELIST_ORDER_ZONE 2
3923
3924/* zonelist order in the kernel.
3925 * set_zonelist_order() will set this to NODE or ZONE.
3926 */
3927static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3928static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3929
3930
1da177e4 3931#ifdef CONFIG_NUMA
f0c0b2b8
KH
3932/* The value user specified ....changed by config */
3933static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3934/* string for sysctl */
3935#define NUMA_ZONELIST_ORDER_LEN 16
3936char numa_zonelist_order[16] = "default";
3937
3938/*
3939 * interface for configure zonelist ordering.
3940 * command line option "numa_zonelist_order"
3941 * = "[dD]efault - default, automatic configuration.
3942 * = "[nN]ode - order by node locality, then by zone within node
3943 * = "[zZ]one - order by zone, then by locality within zone
3944 */
3945
3946static int __parse_numa_zonelist_order(char *s)
3947{
3948 if (*s == 'd' || *s == 'D') {
3949 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3950 } else if (*s == 'n' || *s == 'N') {
3951 user_zonelist_order = ZONELIST_ORDER_NODE;
3952 } else if (*s == 'z' || *s == 'Z') {
3953 user_zonelist_order = ZONELIST_ORDER_ZONE;
3954 } else {
3955 printk(KERN_WARNING
3956 "Ignoring invalid numa_zonelist_order value: "
3957 "%s\n", s);
3958 return -EINVAL;
3959 }
3960 return 0;
3961}
3962
3963static __init int setup_numa_zonelist_order(char *s)
3964{
ecb256f8
VL
3965 int ret;
3966
3967 if (!s)
3968 return 0;
3969
3970 ret = __parse_numa_zonelist_order(s);
3971 if (ret == 0)
3972 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3973
3974 return ret;
f0c0b2b8
KH
3975}
3976early_param("numa_zonelist_order", setup_numa_zonelist_order);
3977
3978/*
3979 * sysctl handler for numa_zonelist_order
3980 */
cccad5b9 3981int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3982 void __user *buffer, size_t *length,
f0c0b2b8
KH
3983 loff_t *ppos)
3984{
3985 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3986 int ret;
443c6f14 3987 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3988
443c6f14 3989 mutex_lock(&zl_order_mutex);
dacbde09
CG
3990 if (write) {
3991 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3992 ret = -EINVAL;
3993 goto out;
3994 }
3995 strcpy(saved_string, (char *)table->data);
3996 }
8d65af78 3997 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3998 if (ret)
443c6f14 3999 goto out;
f0c0b2b8
KH
4000 if (write) {
4001 int oldval = user_zonelist_order;
dacbde09
CG
4002
4003 ret = __parse_numa_zonelist_order((char *)table->data);
4004 if (ret) {
f0c0b2b8
KH
4005 /*
4006 * bogus value. restore saved string
4007 */
dacbde09 4008 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4009 NUMA_ZONELIST_ORDER_LEN);
4010 user_zonelist_order = oldval;
4eaf3f64
HL
4011 } else if (oldval != user_zonelist_order) {
4012 mutex_lock(&zonelists_mutex);
9adb62a5 4013 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4014 mutex_unlock(&zonelists_mutex);
4015 }
f0c0b2b8 4016 }
443c6f14
AK
4017out:
4018 mutex_unlock(&zl_order_mutex);
4019 return ret;
f0c0b2b8
KH
4020}
4021
4022
62bc62a8 4023#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4024static int node_load[MAX_NUMNODES];
4025
1da177e4 4026/**
4dc3b16b 4027 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4028 * @node: node whose fallback list we're appending
4029 * @used_node_mask: nodemask_t of already used nodes
4030 *
4031 * We use a number of factors to determine which is the next node that should
4032 * appear on a given node's fallback list. The node should not have appeared
4033 * already in @node's fallback list, and it should be the next closest node
4034 * according to the distance array (which contains arbitrary distance values
4035 * from each node to each node in the system), and should also prefer nodes
4036 * with no CPUs, since presumably they'll have very little allocation pressure
4037 * on them otherwise.
4038 * It returns -1 if no node is found.
4039 */
f0c0b2b8 4040static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4041{
4cf808eb 4042 int n, val;
1da177e4 4043 int min_val = INT_MAX;
00ef2d2f 4044 int best_node = NUMA_NO_NODE;
a70f7302 4045 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4046
4cf808eb
LT
4047 /* Use the local node if we haven't already */
4048 if (!node_isset(node, *used_node_mask)) {
4049 node_set(node, *used_node_mask);
4050 return node;
4051 }
1da177e4 4052
4b0ef1fe 4053 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4054
4055 /* Don't want a node to appear more than once */
4056 if (node_isset(n, *used_node_mask))
4057 continue;
4058
1da177e4
LT
4059 /* Use the distance array to find the distance */
4060 val = node_distance(node, n);
4061
4cf808eb
LT
4062 /* Penalize nodes under us ("prefer the next node") */
4063 val += (n < node);
4064
1da177e4 4065 /* Give preference to headless and unused nodes */
a70f7302
RR
4066 tmp = cpumask_of_node(n);
4067 if (!cpumask_empty(tmp))
1da177e4
LT
4068 val += PENALTY_FOR_NODE_WITH_CPUS;
4069
4070 /* Slight preference for less loaded node */
4071 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4072 val += node_load[n];
4073
4074 if (val < min_val) {
4075 min_val = val;
4076 best_node = n;
4077 }
4078 }
4079
4080 if (best_node >= 0)
4081 node_set(best_node, *used_node_mask);
4082
4083 return best_node;
4084}
4085
f0c0b2b8
KH
4086
4087/*
4088 * Build zonelists ordered by node and zones within node.
4089 * This results in maximum locality--normal zone overflows into local
4090 * DMA zone, if any--but risks exhausting DMA zone.
4091 */
4092static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4093{
f0c0b2b8 4094 int j;
1da177e4 4095 struct zonelist *zonelist;
f0c0b2b8 4096
54a6eb5c 4097 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4098 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4099 ;
bc732f1d 4100 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4101 zonelist->_zonerefs[j].zone = NULL;
4102 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4103}
4104
523b9458
CL
4105/*
4106 * Build gfp_thisnode zonelists
4107 */
4108static void build_thisnode_zonelists(pg_data_t *pgdat)
4109{
523b9458
CL
4110 int j;
4111 struct zonelist *zonelist;
4112
54a6eb5c 4113 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4114 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4115 zonelist->_zonerefs[j].zone = NULL;
4116 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4117}
4118
f0c0b2b8
KH
4119/*
4120 * Build zonelists ordered by zone and nodes within zones.
4121 * This results in conserving DMA zone[s] until all Normal memory is
4122 * exhausted, but results in overflowing to remote node while memory
4123 * may still exist in local DMA zone.
4124 */
4125static int node_order[MAX_NUMNODES];
4126
4127static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4128{
f0c0b2b8
KH
4129 int pos, j, node;
4130 int zone_type; /* needs to be signed */
4131 struct zone *z;
4132 struct zonelist *zonelist;
4133
54a6eb5c
MG
4134 zonelist = &pgdat->node_zonelists[0];
4135 pos = 0;
4136 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4137 for (j = 0; j < nr_nodes; j++) {
4138 node = node_order[j];
4139 z = &NODE_DATA(node)->node_zones[zone_type];
4140 if (populated_zone(z)) {
dd1a239f
MG
4141 zoneref_set_zone(z,
4142 &zonelist->_zonerefs[pos++]);
54a6eb5c 4143 check_highest_zone(zone_type);
f0c0b2b8
KH
4144 }
4145 }
f0c0b2b8 4146 }
dd1a239f
MG
4147 zonelist->_zonerefs[pos].zone = NULL;
4148 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4149}
4150
3193913c
MG
4151#if defined(CONFIG_64BIT)
4152/*
4153 * Devices that require DMA32/DMA are relatively rare and do not justify a
4154 * penalty to every machine in case the specialised case applies. Default
4155 * to Node-ordering on 64-bit NUMA machines
4156 */
4157static int default_zonelist_order(void)
4158{
4159 return ZONELIST_ORDER_NODE;
4160}
4161#else
4162/*
4163 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4164 * by the kernel. If processes running on node 0 deplete the low memory zone
4165 * then reclaim will occur more frequency increasing stalls and potentially
4166 * be easier to OOM if a large percentage of the zone is under writeback or
4167 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4168 * Hence, default to zone ordering on 32-bit.
4169 */
f0c0b2b8
KH
4170static int default_zonelist_order(void)
4171{
f0c0b2b8
KH
4172 return ZONELIST_ORDER_ZONE;
4173}
3193913c 4174#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4175
4176static void set_zonelist_order(void)
4177{
4178 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4179 current_zonelist_order = default_zonelist_order();
4180 else
4181 current_zonelist_order = user_zonelist_order;
4182}
4183
4184static void build_zonelists(pg_data_t *pgdat)
4185{
c00eb15a 4186 int i, node, load;
1da177e4 4187 nodemask_t used_mask;
f0c0b2b8
KH
4188 int local_node, prev_node;
4189 struct zonelist *zonelist;
d00181b9 4190 unsigned int order = current_zonelist_order;
1da177e4
LT
4191
4192 /* initialize zonelists */
523b9458 4193 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4194 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4195 zonelist->_zonerefs[0].zone = NULL;
4196 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4197 }
4198
4199 /* NUMA-aware ordering of nodes */
4200 local_node = pgdat->node_id;
62bc62a8 4201 load = nr_online_nodes;
1da177e4
LT
4202 prev_node = local_node;
4203 nodes_clear(used_mask);
f0c0b2b8 4204
f0c0b2b8 4205 memset(node_order, 0, sizeof(node_order));
c00eb15a 4206 i = 0;
f0c0b2b8 4207
1da177e4
LT
4208 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4209 /*
4210 * We don't want to pressure a particular node.
4211 * So adding penalty to the first node in same
4212 * distance group to make it round-robin.
4213 */
957f822a
DR
4214 if (node_distance(local_node, node) !=
4215 node_distance(local_node, prev_node))
f0c0b2b8
KH
4216 node_load[node] = load;
4217
1da177e4
LT
4218 prev_node = node;
4219 load--;
f0c0b2b8
KH
4220 if (order == ZONELIST_ORDER_NODE)
4221 build_zonelists_in_node_order(pgdat, node);
4222 else
c00eb15a 4223 node_order[i++] = node; /* remember order */
f0c0b2b8 4224 }
1da177e4 4225
f0c0b2b8
KH
4226 if (order == ZONELIST_ORDER_ZONE) {
4227 /* calculate node order -- i.e., DMA last! */
c00eb15a 4228 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4229 }
523b9458
CL
4230
4231 build_thisnode_zonelists(pgdat);
1da177e4
LT
4232}
4233
7aac7898
LS
4234#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4235/*
4236 * Return node id of node used for "local" allocations.
4237 * I.e., first node id of first zone in arg node's generic zonelist.
4238 * Used for initializing percpu 'numa_mem', which is used primarily
4239 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4240 */
4241int local_memory_node(int node)
4242{
4243 struct zone *zone;
4244
4245 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4246 gfp_zone(GFP_KERNEL),
4247 NULL,
4248 &zone);
4249 return zone->node;
4250}
4251#endif
f0c0b2b8 4252
1da177e4
LT
4253#else /* CONFIG_NUMA */
4254
f0c0b2b8
KH
4255static void set_zonelist_order(void)
4256{
4257 current_zonelist_order = ZONELIST_ORDER_ZONE;
4258}
4259
4260static void build_zonelists(pg_data_t *pgdat)
1da177e4 4261{
19655d34 4262 int node, local_node;
54a6eb5c
MG
4263 enum zone_type j;
4264 struct zonelist *zonelist;
1da177e4
LT
4265
4266 local_node = pgdat->node_id;
1da177e4 4267
54a6eb5c 4268 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4269 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4270
54a6eb5c
MG
4271 /*
4272 * Now we build the zonelist so that it contains the zones
4273 * of all the other nodes.
4274 * We don't want to pressure a particular node, so when
4275 * building the zones for node N, we make sure that the
4276 * zones coming right after the local ones are those from
4277 * node N+1 (modulo N)
4278 */
4279 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4280 if (!node_online(node))
4281 continue;
bc732f1d 4282 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4283 }
54a6eb5c
MG
4284 for (node = 0; node < local_node; node++) {
4285 if (!node_online(node))
4286 continue;
bc732f1d 4287 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4288 }
4289
dd1a239f
MG
4290 zonelist->_zonerefs[j].zone = NULL;
4291 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4292}
4293
4294#endif /* CONFIG_NUMA */
4295
99dcc3e5
CL
4296/*
4297 * Boot pageset table. One per cpu which is going to be used for all
4298 * zones and all nodes. The parameters will be set in such a way
4299 * that an item put on a list will immediately be handed over to
4300 * the buddy list. This is safe since pageset manipulation is done
4301 * with interrupts disabled.
4302 *
4303 * The boot_pagesets must be kept even after bootup is complete for
4304 * unused processors and/or zones. They do play a role for bootstrapping
4305 * hotplugged processors.
4306 *
4307 * zoneinfo_show() and maybe other functions do
4308 * not check if the processor is online before following the pageset pointer.
4309 * Other parts of the kernel may not check if the zone is available.
4310 */
4311static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4312static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4313static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4314
4eaf3f64
HL
4315/*
4316 * Global mutex to protect against size modification of zonelists
4317 * as well as to serialize pageset setup for the new populated zone.
4318 */
4319DEFINE_MUTEX(zonelists_mutex);
4320
9b1a4d38 4321/* return values int ....just for stop_machine() */
4ed7e022 4322static int __build_all_zonelists(void *data)
1da177e4 4323{
6811378e 4324 int nid;
99dcc3e5 4325 int cpu;
9adb62a5 4326 pg_data_t *self = data;
9276b1bc 4327
7f9cfb31
BL
4328#ifdef CONFIG_NUMA
4329 memset(node_load, 0, sizeof(node_load));
4330#endif
9adb62a5
JL
4331
4332 if (self && !node_online(self->node_id)) {
4333 build_zonelists(self);
9adb62a5
JL
4334 }
4335
9276b1bc 4336 for_each_online_node(nid) {
7ea1530a
CL
4337 pg_data_t *pgdat = NODE_DATA(nid);
4338
4339 build_zonelists(pgdat);
9276b1bc 4340 }
99dcc3e5
CL
4341
4342 /*
4343 * Initialize the boot_pagesets that are going to be used
4344 * for bootstrapping processors. The real pagesets for
4345 * each zone will be allocated later when the per cpu
4346 * allocator is available.
4347 *
4348 * boot_pagesets are used also for bootstrapping offline
4349 * cpus if the system is already booted because the pagesets
4350 * are needed to initialize allocators on a specific cpu too.
4351 * F.e. the percpu allocator needs the page allocator which
4352 * needs the percpu allocator in order to allocate its pagesets
4353 * (a chicken-egg dilemma).
4354 */
7aac7898 4355 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4356 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4357
7aac7898
LS
4358#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4359 /*
4360 * We now know the "local memory node" for each node--
4361 * i.e., the node of the first zone in the generic zonelist.
4362 * Set up numa_mem percpu variable for on-line cpus. During
4363 * boot, only the boot cpu should be on-line; we'll init the
4364 * secondary cpus' numa_mem as they come on-line. During
4365 * node/memory hotplug, we'll fixup all on-line cpus.
4366 */
4367 if (cpu_online(cpu))
4368 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4369#endif
4370 }
4371
6811378e
YG
4372 return 0;
4373}
4374
061f67bc
RV
4375static noinline void __init
4376build_all_zonelists_init(void)
4377{
4378 __build_all_zonelists(NULL);
4379 mminit_verify_zonelist();
4380 cpuset_init_current_mems_allowed();
4381}
4382
4eaf3f64
HL
4383/*
4384 * Called with zonelists_mutex held always
4385 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4386 *
4387 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4388 * [we're only called with non-NULL zone through __meminit paths] and
4389 * (2) call of __init annotated helper build_all_zonelists_init
4390 * [protected by SYSTEM_BOOTING].
4eaf3f64 4391 */
9adb62a5 4392void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4393{
f0c0b2b8
KH
4394 set_zonelist_order();
4395
6811378e 4396 if (system_state == SYSTEM_BOOTING) {
061f67bc 4397 build_all_zonelists_init();
6811378e 4398 } else {
e9959f0f 4399#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4400 if (zone)
4401 setup_zone_pageset(zone);
e9959f0f 4402#endif
dd1895e2
CS
4403 /* we have to stop all cpus to guarantee there is no user
4404 of zonelist */
9adb62a5 4405 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4406 /* cpuset refresh routine should be here */
4407 }
bd1e22b8 4408 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4409 /*
4410 * Disable grouping by mobility if the number of pages in the
4411 * system is too low to allow the mechanism to work. It would be
4412 * more accurate, but expensive to check per-zone. This check is
4413 * made on memory-hotadd so a system can start with mobility
4414 * disabled and enable it later
4415 */
d9c23400 4416 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4417 page_group_by_mobility_disabled = 1;
4418 else
4419 page_group_by_mobility_disabled = 0;
4420
f88dfff5 4421 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4422 "Total pages: %ld\n",
62bc62a8 4423 nr_online_nodes,
f0c0b2b8 4424 zonelist_order_name[current_zonelist_order],
9ef9acb0 4425 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4426 vm_total_pages);
4427#ifdef CONFIG_NUMA
f88dfff5 4428 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4429#endif
1da177e4
LT
4430}
4431
4432/*
4433 * Helper functions to size the waitqueue hash table.
4434 * Essentially these want to choose hash table sizes sufficiently
4435 * large so that collisions trying to wait on pages are rare.
4436 * But in fact, the number of active page waitqueues on typical
4437 * systems is ridiculously low, less than 200. So this is even
4438 * conservative, even though it seems large.
4439 *
4440 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4441 * waitqueues, i.e. the size of the waitq table given the number of pages.
4442 */
4443#define PAGES_PER_WAITQUEUE 256
4444
cca448fe 4445#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4446static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4447{
4448 unsigned long size = 1;
4449
4450 pages /= PAGES_PER_WAITQUEUE;
4451
4452 while (size < pages)
4453 size <<= 1;
4454
4455 /*
4456 * Once we have dozens or even hundreds of threads sleeping
4457 * on IO we've got bigger problems than wait queue collision.
4458 * Limit the size of the wait table to a reasonable size.
4459 */
4460 size = min(size, 4096UL);
4461
4462 return max(size, 4UL);
4463}
cca448fe
YG
4464#else
4465/*
4466 * A zone's size might be changed by hot-add, so it is not possible to determine
4467 * a suitable size for its wait_table. So we use the maximum size now.
4468 *
4469 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4470 *
4471 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4472 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4473 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4474 *
4475 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4476 * or more by the traditional way. (See above). It equals:
4477 *
4478 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4479 * ia64(16K page size) : = ( 8G + 4M)byte.
4480 * powerpc (64K page size) : = (32G +16M)byte.
4481 */
4482static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4483{
4484 return 4096UL;
4485}
4486#endif
1da177e4
LT
4487
4488/*
4489 * This is an integer logarithm so that shifts can be used later
4490 * to extract the more random high bits from the multiplicative
4491 * hash function before the remainder is taken.
4492 */
4493static inline unsigned long wait_table_bits(unsigned long size)
4494{
4495 return ffz(~size);
4496}
4497
1da177e4
LT
4498/*
4499 * Initially all pages are reserved - free ones are freed
4500 * up by free_all_bootmem() once the early boot process is
4501 * done. Non-atomic initialization, single-pass.
4502 */
c09b4240 4503void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4504 unsigned long start_pfn, enum memmap_context context)
1da177e4 4505{
4b94ffdc 4506 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4507 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4508 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4509 unsigned long pfn;
3a80a7fa 4510 unsigned long nr_initialised = 0;
342332e6
TI
4511#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4512 struct memblock_region *r = NULL, *tmp;
4513#endif
1da177e4 4514
22b31eec
HD
4515 if (highest_memmap_pfn < end_pfn - 1)
4516 highest_memmap_pfn = end_pfn - 1;
4517
4b94ffdc
DW
4518 /*
4519 * Honor reservation requested by the driver for this ZONE_DEVICE
4520 * memory
4521 */
4522 if (altmap && start_pfn == altmap->base_pfn)
4523 start_pfn += altmap->reserve;
4524
cbe8dd4a 4525 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4526 /*
b72d0ffb
AM
4527 * There can be holes in boot-time mem_map[]s handed to this
4528 * function. They do not exist on hotplugged memory.
a2f3aa02 4529 */
b72d0ffb
AM
4530 if (context != MEMMAP_EARLY)
4531 goto not_early;
4532
4533 if (!early_pfn_valid(pfn))
4534 continue;
4535 if (!early_pfn_in_nid(pfn, nid))
4536 continue;
4537 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4538 break;
342332e6
TI
4539
4540#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4541 /*
4542 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4543 * from zone_movable_pfn[nid] to end of each node should be
4544 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4545 */
4546 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4547 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4548 continue;
342332e6 4549
b72d0ffb
AM
4550 /*
4551 * Check given memblock attribute by firmware which can affect
4552 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4553 * mirrored, it's an overlapped memmap init. skip it.
4554 */
4555 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4556 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4557 for_each_memblock(memory, tmp)
4558 if (pfn < memblock_region_memory_end_pfn(tmp))
4559 break;
4560 r = tmp;
4561 }
4562 if (pfn >= memblock_region_memory_base_pfn(r) &&
4563 memblock_is_mirror(r)) {
4564 /* already initialized as NORMAL */
4565 pfn = memblock_region_memory_end_pfn(r);
4566 continue;
342332e6 4567 }
a2f3aa02 4568 }
b72d0ffb 4569#endif
ac5d2539 4570
b72d0ffb 4571not_early:
ac5d2539
MG
4572 /*
4573 * Mark the block movable so that blocks are reserved for
4574 * movable at startup. This will force kernel allocations
4575 * to reserve their blocks rather than leaking throughout
4576 * the address space during boot when many long-lived
974a786e 4577 * kernel allocations are made.
ac5d2539
MG
4578 *
4579 * bitmap is created for zone's valid pfn range. but memmap
4580 * can be created for invalid pages (for alignment)
4581 * check here not to call set_pageblock_migratetype() against
4582 * pfn out of zone.
4583 */
4584 if (!(pfn & (pageblock_nr_pages - 1))) {
4585 struct page *page = pfn_to_page(pfn);
4586
4587 __init_single_page(page, pfn, zone, nid);
4588 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4589 } else {
4590 __init_single_pfn(pfn, zone, nid);
4591 }
1da177e4
LT
4592 }
4593}
4594
1e548deb 4595static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4596{
7aeb09f9 4597 unsigned int order, t;
b2a0ac88
MG
4598 for_each_migratetype_order(order, t) {
4599 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4600 zone->free_area[order].nr_free = 0;
4601 }
4602}
4603
4604#ifndef __HAVE_ARCH_MEMMAP_INIT
4605#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4606 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4607#endif
4608
7cd2b0a3 4609static int zone_batchsize(struct zone *zone)
e7c8d5c9 4610{
3a6be87f 4611#ifdef CONFIG_MMU
e7c8d5c9
CL
4612 int batch;
4613
4614 /*
4615 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4616 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4617 *
4618 * OK, so we don't know how big the cache is. So guess.
4619 */
b40da049 4620 batch = zone->managed_pages / 1024;
ba56e91c
SR
4621 if (batch * PAGE_SIZE > 512 * 1024)
4622 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4623 batch /= 4; /* We effectively *= 4 below */
4624 if (batch < 1)
4625 batch = 1;
4626
4627 /*
0ceaacc9
NP
4628 * Clamp the batch to a 2^n - 1 value. Having a power
4629 * of 2 value was found to be more likely to have
4630 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4631 *
0ceaacc9
NP
4632 * For example if 2 tasks are alternately allocating
4633 * batches of pages, one task can end up with a lot
4634 * of pages of one half of the possible page colors
4635 * and the other with pages of the other colors.
e7c8d5c9 4636 */
9155203a 4637 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4638
e7c8d5c9 4639 return batch;
3a6be87f
DH
4640
4641#else
4642 /* The deferral and batching of frees should be suppressed under NOMMU
4643 * conditions.
4644 *
4645 * The problem is that NOMMU needs to be able to allocate large chunks
4646 * of contiguous memory as there's no hardware page translation to
4647 * assemble apparent contiguous memory from discontiguous pages.
4648 *
4649 * Queueing large contiguous runs of pages for batching, however,
4650 * causes the pages to actually be freed in smaller chunks. As there
4651 * can be a significant delay between the individual batches being
4652 * recycled, this leads to the once large chunks of space being
4653 * fragmented and becoming unavailable for high-order allocations.
4654 */
4655 return 0;
4656#endif
e7c8d5c9
CL
4657}
4658
8d7a8fa9
CS
4659/*
4660 * pcp->high and pcp->batch values are related and dependent on one another:
4661 * ->batch must never be higher then ->high.
4662 * The following function updates them in a safe manner without read side
4663 * locking.
4664 *
4665 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4666 * those fields changing asynchronously (acording the the above rule).
4667 *
4668 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4669 * outside of boot time (or some other assurance that no concurrent updaters
4670 * exist).
4671 */
4672static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4673 unsigned long batch)
4674{
4675 /* start with a fail safe value for batch */
4676 pcp->batch = 1;
4677 smp_wmb();
4678
4679 /* Update high, then batch, in order */
4680 pcp->high = high;
4681 smp_wmb();
4682
4683 pcp->batch = batch;
4684}
4685
3664033c 4686/* a companion to pageset_set_high() */
4008bab7
CS
4687static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4688{
8d7a8fa9 4689 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4690}
4691
88c90dbc 4692static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4693{
4694 struct per_cpu_pages *pcp;
5f8dcc21 4695 int migratetype;
2caaad41 4696
1c6fe946
MD
4697 memset(p, 0, sizeof(*p));
4698
3dfa5721 4699 pcp = &p->pcp;
2caaad41 4700 pcp->count = 0;
5f8dcc21
MG
4701 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4702 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4703}
4704
88c90dbc
CS
4705static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4706{
4707 pageset_init(p);
4708 pageset_set_batch(p, batch);
4709}
4710
8ad4b1fb 4711/*
3664033c 4712 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4713 * to the value high for the pageset p.
4714 */
3664033c 4715static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4716 unsigned long high)
4717{
8d7a8fa9
CS
4718 unsigned long batch = max(1UL, high / 4);
4719 if ((high / 4) > (PAGE_SHIFT * 8))
4720 batch = PAGE_SHIFT * 8;
8ad4b1fb 4721
8d7a8fa9 4722 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4723}
4724
7cd2b0a3
DR
4725static void pageset_set_high_and_batch(struct zone *zone,
4726 struct per_cpu_pageset *pcp)
56cef2b8 4727{
56cef2b8 4728 if (percpu_pagelist_fraction)
3664033c 4729 pageset_set_high(pcp,
56cef2b8
CS
4730 (zone->managed_pages /
4731 percpu_pagelist_fraction));
4732 else
4733 pageset_set_batch(pcp, zone_batchsize(zone));
4734}
4735
169f6c19
CS
4736static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4737{
4738 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4739
4740 pageset_init(pcp);
4741 pageset_set_high_and_batch(zone, pcp);
4742}
4743
4ed7e022 4744static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4745{
4746 int cpu;
319774e2 4747 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4748 for_each_possible_cpu(cpu)
4749 zone_pageset_init(zone, cpu);
319774e2
WF
4750}
4751
2caaad41 4752/*
99dcc3e5
CL
4753 * Allocate per cpu pagesets and initialize them.
4754 * Before this call only boot pagesets were available.
e7c8d5c9 4755 */
99dcc3e5 4756void __init setup_per_cpu_pageset(void)
e7c8d5c9 4757{
99dcc3e5 4758 struct zone *zone;
e7c8d5c9 4759
319774e2
WF
4760 for_each_populated_zone(zone)
4761 setup_zone_pageset(zone);
e7c8d5c9
CL
4762}
4763
577a32f6 4764static noinline __init_refok
cca448fe 4765int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4766{
4767 int i;
cca448fe 4768 size_t alloc_size;
ed8ece2e
DH
4769
4770 /*
4771 * The per-page waitqueue mechanism uses hashed waitqueues
4772 * per zone.
4773 */
02b694de
YG
4774 zone->wait_table_hash_nr_entries =
4775 wait_table_hash_nr_entries(zone_size_pages);
4776 zone->wait_table_bits =
4777 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4778 alloc_size = zone->wait_table_hash_nr_entries
4779 * sizeof(wait_queue_head_t);
4780
cd94b9db 4781 if (!slab_is_available()) {
cca448fe 4782 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4783 memblock_virt_alloc_node_nopanic(
4784 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4785 } else {
4786 /*
4787 * This case means that a zone whose size was 0 gets new memory
4788 * via memory hot-add.
4789 * But it may be the case that a new node was hot-added. In
4790 * this case vmalloc() will not be able to use this new node's
4791 * memory - this wait_table must be initialized to use this new
4792 * node itself as well.
4793 * To use this new node's memory, further consideration will be
4794 * necessary.
4795 */
8691f3a7 4796 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4797 }
4798 if (!zone->wait_table)
4799 return -ENOMEM;
ed8ece2e 4800
b8af2941 4801 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4802 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4803
4804 return 0;
ed8ece2e
DH
4805}
4806
c09b4240 4807static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4808{
99dcc3e5
CL
4809 /*
4810 * per cpu subsystem is not up at this point. The following code
4811 * relies on the ability of the linker to provide the
4812 * offset of a (static) per cpu variable into the per cpu area.
4813 */
4814 zone->pageset = &boot_pageset;
ed8ece2e 4815
b38a8725 4816 if (populated_zone(zone))
99dcc3e5
CL
4817 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4818 zone->name, zone->present_pages,
4819 zone_batchsize(zone));
ed8ece2e
DH
4820}
4821
4ed7e022 4822int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4823 unsigned long zone_start_pfn,
b171e409 4824 unsigned long size)
ed8ece2e
DH
4825{
4826 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4827 int ret;
4828 ret = zone_wait_table_init(zone, size);
4829 if (ret)
4830 return ret;
ed8ece2e
DH
4831 pgdat->nr_zones = zone_idx(zone) + 1;
4832
ed8ece2e
DH
4833 zone->zone_start_pfn = zone_start_pfn;
4834
708614e6
MG
4835 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4836 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4837 pgdat->node_id,
4838 (unsigned long)zone_idx(zone),
4839 zone_start_pfn, (zone_start_pfn + size));
4840
1e548deb 4841 zone_init_free_lists(zone);
718127cc
YG
4842
4843 return 0;
ed8ece2e
DH
4844}
4845
0ee332c1 4846#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4847#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4848
c713216d
MG
4849/*
4850 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4851 */
8a942fde
MG
4852int __meminit __early_pfn_to_nid(unsigned long pfn,
4853 struct mminit_pfnnid_cache *state)
c713216d 4854{
c13291a5 4855 unsigned long start_pfn, end_pfn;
e76b63f8 4856 int nid;
7c243c71 4857
8a942fde
MG
4858 if (state->last_start <= pfn && pfn < state->last_end)
4859 return state->last_nid;
c713216d 4860
e76b63f8
YL
4861 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4862 if (nid != -1) {
8a942fde
MG
4863 state->last_start = start_pfn;
4864 state->last_end = end_pfn;
4865 state->last_nid = nid;
e76b63f8
YL
4866 }
4867
4868 return nid;
c713216d
MG
4869}
4870#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4871
c713216d 4872/**
6782832e 4873 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4874 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4875 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4876 *
7d018176
ZZ
4877 * If an architecture guarantees that all ranges registered contain no holes
4878 * and may be freed, this this function may be used instead of calling
4879 * memblock_free_early_nid() manually.
c713216d 4880 */
c13291a5 4881void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4882{
c13291a5
TH
4883 unsigned long start_pfn, end_pfn;
4884 int i, this_nid;
edbe7d23 4885
c13291a5
TH
4886 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4887 start_pfn = min(start_pfn, max_low_pfn);
4888 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4889
c13291a5 4890 if (start_pfn < end_pfn)
6782832e
SS
4891 memblock_free_early_nid(PFN_PHYS(start_pfn),
4892 (end_pfn - start_pfn) << PAGE_SHIFT,
4893 this_nid);
edbe7d23 4894 }
edbe7d23 4895}
edbe7d23 4896
c713216d
MG
4897/**
4898 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4899 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4900 *
7d018176
ZZ
4901 * If an architecture guarantees that all ranges registered contain no holes and may
4902 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4903 */
4904void __init sparse_memory_present_with_active_regions(int nid)
4905{
c13291a5
TH
4906 unsigned long start_pfn, end_pfn;
4907 int i, this_nid;
c713216d 4908
c13291a5
TH
4909 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4910 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4911}
4912
4913/**
4914 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4915 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4916 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4917 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4918 *
4919 * It returns the start and end page frame of a node based on information
7d018176 4920 * provided by memblock_set_node(). If called for a node
c713216d 4921 * with no available memory, a warning is printed and the start and end
88ca3b94 4922 * PFNs will be 0.
c713216d 4923 */
a3142c8e 4924void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4925 unsigned long *start_pfn, unsigned long *end_pfn)
4926{
c13291a5 4927 unsigned long this_start_pfn, this_end_pfn;
c713216d 4928 int i;
c13291a5 4929
c713216d
MG
4930 *start_pfn = -1UL;
4931 *end_pfn = 0;
4932
c13291a5
TH
4933 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4934 *start_pfn = min(*start_pfn, this_start_pfn);
4935 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4936 }
4937
633c0666 4938 if (*start_pfn == -1UL)
c713216d 4939 *start_pfn = 0;
c713216d
MG
4940}
4941
2a1e274a
MG
4942/*
4943 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4944 * assumption is made that zones within a node are ordered in monotonic
4945 * increasing memory addresses so that the "highest" populated zone is used
4946 */
b69a7288 4947static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4948{
4949 int zone_index;
4950 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4951 if (zone_index == ZONE_MOVABLE)
4952 continue;
4953
4954 if (arch_zone_highest_possible_pfn[zone_index] >
4955 arch_zone_lowest_possible_pfn[zone_index])
4956 break;
4957 }
4958
4959 VM_BUG_ON(zone_index == -1);
4960 movable_zone = zone_index;
4961}
4962
4963/*
4964 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4965 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4966 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4967 * in each node depending on the size of each node and how evenly kernelcore
4968 * is distributed. This helper function adjusts the zone ranges
4969 * provided by the architecture for a given node by using the end of the
4970 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4971 * zones within a node are in order of monotonic increases memory addresses
4972 */
b69a7288 4973static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4974 unsigned long zone_type,
4975 unsigned long node_start_pfn,
4976 unsigned long node_end_pfn,
4977 unsigned long *zone_start_pfn,
4978 unsigned long *zone_end_pfn)
4979{
4980 /* Only adjust if ZONE_MOVABLE is on this node */
4981 if (zone_movable_pfn[nid]) {
4982 /* Size ZONE_MOVABLE */
4983 if (zone_type == ZONE_MOVABLE) {
4984 *zone_start_pfn = zone_movable_pfn[nid];
4985 *zone_end_pfn = min(node_end_pfn,
4986 arch_zone_highest_possible_pfn[movable_zone]);
4987
2a1e274a
MG
4988 /* Check if this whole range is within ZONE_MOVABLE */
4989 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4990 *zone_start_pfn = *zone_end_pfn;
4991 }
4992}
4993
c713216d
MG
4994/*
4995 * Return the number of pages a zone spans in a node, including holes
4996 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4997 */
6ea6e688 4998static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4999 unsigned long zone_type,
7960aedd
ZY
5000 unsigned long node_start_pfn,
5001 unsigned long node_end_pfn,
d91749c1
TI
5002 unsigned long *zone_start_pfn,
5003 unsigned long *zone_end_pfn,
c713216d
MG
5004 unsigned long *ignored)
5005{
b5685e92 5006 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5007 if (!node_start_pfn && !node_end_pfn)
5008 return 0;
5009
7960aedd 5010 /* Get the start and end of the zone */
d91749c1
TI
5011 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5012 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5013 adjust_zone_range_for_zone_movable(nid, zone_type,
5014 node_start_pfn, node_end_pfn,
d91749c1 5015 zone_start_pfn, zone_end_pfn);
c713216d
MG
5016
5017 /* Check that this node has pages within the zone's required range */
d91749c1 5018 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5019 return 0;
5020
5021 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5022 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5023 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5024
5025 /* Return the spanned pages */
d91749c1 5026 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5027}
5028
5029/*
5030 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5031 * then all holes in the requested range will be accounted for.
c713216d 5032 */
32996250 5033unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5034 unsigned long range_start_pfn,
5035 unsigned long range_end_pfn)
5036{
96e907d1
TH
5037 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5038 unsigned long start_pfn, end_pfn;
5039 int i;
c713216d 5040
96e907d1
TH
5041 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5042 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5043 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5044 nr_absent -= end_pfn - start_pfn;
c713216d 5045 }
96e907d1 5046 return nr_absent;
c713216d
MG
5047}
5048
5049/**
5050 * absent_pages_in_range - Return number of page frames in holes within a range
5051 * @start_pfn: The start PFN to start searching for holes
5052 * @end_pfn: The end PFN to stop searching for holes
5053 *
88ca3b94 5054 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5055 */
5056unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5057 unsigned long end_pfn)
5058{
5059 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5060}
5061
5062/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5063static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5064 unsigned long zone_type,
7960aedd
ZY
5065 unsigned long node_start_pfn,
5066 unsigned long node_end_pfn,
c713216d
MG
5067 unsigned long *ignored)
5068{
96e907d1
TH
5069 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5070 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5071 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5072 unsigned long nr_absent;
9c7cd687 5073
b5685e92 5074 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5075 if (!node_start_pfn && !node_end_pfn)
5076 return 0;
5077
96e907d1
TH
5078 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5079 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5080
2a1e274a
MG
5081 adjust_zone_range_for_zone_movable(nid, zone_type,
5082 node_start_pfn, node_end_pfn,
5083 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5084 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5085
5086 /*
5087 * ZONE_MOVABLE handling.
5088 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5089 * and vice versa.
5090 */
5091 if (zone_movable_pfn[nid]) {
5092 if (mirrored_kernelcore) {
5093 unsigned long start_pfn, end_pfn;
5094 struct memblock_region *r;
5095
5096 for_each_memblock(memory, r) {
5097 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5098 zone_start_pfn, zone_end_pfn);
5099 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5100 zone_start_pfn, zone_end_pfn);
5101
5102 if (zone_type == ZONE_MOVABLE &&
5103 memblock_is_mirror(r))
5104 nr_absent += end_pfn - start_pfn;
5105
5106 if (zone_type == ZONE_NORMAL &&
5107 !memblock_is_mirror(r))
5108 nr_absent += end_pfn - start_pfn;
5109 }
5110 } else {
5111 if (zone_type == ZONE_NORMAL)
5112 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5113 }
5114 }
5115
5116 return nr_absent;
c713216d 5117}
0e0b864e 5118
0ee332c1 5119#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5120static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5121 unsigned long zone_type,
7960aedd
ZY
5122 unsigned long node_start_pfn,
5123 unsigned long node_end_pfn,
d91749c1
TI
5124 unsigned long *zone_start_pfn,
5125 unsigned long *zone_end_pfn,
c713216d
MG
5126 unsigned long *zones_size)
5127{
d91749c1
TI
5128 unsigned int zone;
5129
5130 *zone_start_pfn = node_start_pfn;
5131 for (zone = 0; zone < zone_type; zone++)
5132 *zone_start_pfn += zones_size[zone];
5133
5134 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5135
c713216d
MG
5136 return zones_size[zone_type];
5137}
5138
6ea6e688 5139static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5140 unsigned long zone_type,
7960aedd
ZY
5141 unsigned long node_start_pfn,
5142 unsigned long node_end_pfn,
c713216d
MG
5143 unsigned long *zholes_size)
5144{
5145 if (!zholes_size)
5146 return 0;
5147
5148 return zholes_size[zone_type];
5149}
20e6926d 5150
0ee332c1 5151#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5152
a3142c8e 5153static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5154 unsigned long node_start_pfn,
5155 unsigned long node_end_pfn,
5156 unsigned long *zones_size,
5157 unsigned long *zholes_size)
c713216d 5158{
febd5949 5159 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5160 enum zone_type i;
5161
febd5949
GZ
5162 for (i = 0; i < MAX_NR_ZONES; i++) {
5163 struct zone *zone = pgdat->node_zones + i;
d91749c1 5164 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5165 unsigned long size, real_size;
c713216d 5166
febd5949
GZ
5167 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5168 node_start_pfn,
5169 node_end_pfn,
d91749c1
TI
5170 &zone_start_pfn,
5171 &zone_end_pfn,
febd5949
GZ
5172 zones_size);
5173 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5174 node_start_pfn, node_end_pfn,
5175 zholes_size);
d91749c1
TI
5176 if (size)
5177 zone->zone_start_pfn = zone_start_pfn;
5178 else
5179 zone->zone_start_pfn = 0;
febd5949
GZ
5180 zone->spanned_pages = size;
5181 zone->present_pages = real_size;
5182
5183 totalpages += size;
5184 realtotalpages += real_size;
5185 }
5186
5187 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5188 pgdat->node_present_pages = realtotalpages;
5189 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5190 realtotalpages);
5191}
5192
835c134e
MG
5193#ifndef CONFIG_SPARSEMEM
5194/*
5195 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5196 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5197 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5198 * round what is now in bits to nearest long in bits, then return it in
5199 * bytes.
5200 */
7c45512d 5201static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5202{
5203 unsigned long usemapsize;
5204
7c45512d 5205 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5206 usemapsize = roundup(zonesize, pageblock_nr_pages);
5207 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5208 usemapsize *= NR_PAGEBLOCK_BITS;
5209 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5210
5211 return usemapsize / 8;
5212}
5213
5214static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5215 struct zone *zone,
5216 unsigned long zone_start_pfn,
5217 unsigned long zonesize)
835c134e 5218{
7c45512d 5219 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5220 zone->pageblock_flags = NULL;
58a01a45 5221 if (usemapsize)
6782832e
SS
5222 zone->pageblock_flags =
5223 memblock_virt_alloc_node_nopanic(usemapsize,
5224 pgdat->node_id);
835c134e
MG
5225}
5226#else
7c45512d
LT
5227static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5228 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5229#endif /* CONFIG_SPARSEMEM */
5230
d9c23400 5231#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5232
d9c23400 5233/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5234void __paginginit set_pageblock_order(void)
d9c23400 5235{
955c1cd7
AM
5236 unsigned int order;
5237
d9c23400
MG
5238 /* Check that pageblock_nr_pages has not already been setup */
5239 if (pageblock_order)
5240 return;
5241
955c1cd7
AM
5242 if (HPAGE_SHIFT > PAGE_SHIFT)
5243 order = HUGETLB_PAGE_ORDER;
5244 else
5245 order = MAX_ORDER - 1;
5246
d9c23400
MG
5247 /*
5248 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5249 * This value may be variable depending on boot parameters on IA64 and
5250 * powerpc.
d9c23400
MG
5251 */
5252 pageblock_order = order;
5253}
5254#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5255
ba72cb8c
MG
5256/*
5257 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5258 * is unused as pageblock_order is set at compile-time. See
5259 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5260 * the kernel config
ba72cb8c 5261 */
15ca220e 5262void __paginginit set_pageblock_order(void)
ba72cb8c 5263{
ba72cb8c 5264}
d9c23400
MG
5265
5266#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5267
01cefaef
JL
5268static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5269 unsigned long present_pages)
5270{
5271 unsigned long pages = spanned_pages;
5272
5273 /*
5274 * Provide a more accurate estimation if there are holes within
5275 * the zone and SPARSEMEM is in use. If there are holes within the
5276 * zone, each populated memory region may cost us one or two extra
5277 * memmap pages due to alignment because memmap pages for each
5278 * populated regions may not naturally algined on page boundary.
5279 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5280 */
5281 if (spanned_pages > present_pages + (present_pages >> 4) &&
5282 IS_ENABLED(CONFIG_SPARSEMEM))
5283 pages = present_pages;
5284
5285 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5286}
5287
1da177e4
LT
5288/*
5289 * Set up the zone data structures:
5290 * - mark all pages reserved
5291 * - mark all memory queues empty
5292 * - clear the memory bitmaps
6527af5d
MK
5293 *
5294 * NOTE: pgdat should get zeroed by caller.
1da177e4 5295 */
7f3eb55b 5296static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5297{
2f1b6248 5298 enum zone_type j;
ed8ece2e 5299 int nid = pgdat->node_id;
718127cc 5300 int ret;
1da177e4 5301
208d54e5 5302 pgdat_resize_init(pgdat);
8177a420
AA
5303#ifdef CONFIG_NUMA_BALANCING
5304 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5305 pgdat->numabalancing_migrate_nr_pages = 0;
5306 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5307#endif
5308#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5309 spin_lock_init(&pgdat->split_queue_lock);
5310 INIT_LIST_HEAD(&pgdat->split_queue);
5311 pgdat->split_queue_len = 0;
8177a420 5312#endif
1da177e4 5313 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5314 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5315 pgdat_page_ext_init(pgdat);
5f63b720 5316
1da177e4
LT
5317 for (j = 0; j < MAX_NR_ZONES; j++) {
5318 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5319 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5320 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5321
febd5949
GZ
5322 size = zone->spanned_pages;
5323 realsize = freesize = zone->present_pages;
1da177e4 5324
0e0b864e 5325 /*
9feedc9d 5326 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5327 * is used by this zone for memmap. This affects the watermark
5328 * and per-cpu initialisations
5329 */
01cefaef 5330 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5331 if (!is_highmem_idx(j)) {
5332 if (freesize >= memmap_pages) {
5333 freesize -= memmap_pages;
5334 if (memmap_pages)
5335 printk(KERN_DEBUG
5336 " %s zone: %lu pages used for memmap\n",
5337 zone_names[j], memmap_pages);
5338 } else
5339 printk(KERN_WARNING
5340 " %s zone: %lu pages exceeds freesize %lu\n",
5341 zone_names[j], memmap_pages, freesize);
5342 }
0e0b864e 5343
6267276f 5344 /* Account for reserved pages */
9feedc9d
JL
5345 if (j == 0 && freesize > dma_reserve) {
5346 freesize -= dma_reserve;
d903ef9f 5347 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5348 zone_names[0], dma_reserve);
0e0b864e
MG
5349 }
5350
98d2b0eb 5351 if (!is_highmem_idx(j))
9feedc9d 5352 nr_kernel_pages += freesize;
01cefaef
JL
5353 /* Charge for highmem memmap if there are enough kernel pages */
5354 else if (nr_kernel_pages > memmap_pages * 2)
5355 nr_kernel_pages -= memmap_pages;
9feedc9d 5356 nr_all_pages += freesize;
1da177e4 5357
9feedc9d
JL
5358 /*
5359 * Set an approximate value for lowmem here, it will be adjusted
5360 * when the bootmem allocator frees pages into the buddy system.
5361 * And all highmem pages will be managed by the buddy system.
5362 */
5363 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5364#ifdef CONFIG_NUMA
d5f541ed 5365 zone->node = nid;
9feedc9d 5366 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5367 / 100;
9feedc9d 5368 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5369#endif
1da177e4
LT
5370 zone->name = zone_names[j];
5371 spin_lock_init(&zone->lock);
5372 spin_lock_init(&zone->lru_lock);
bdc8cb98 5373 zone_seqlock_init(zone);
1da177e4 5374 zone->zone_pgdat = pgdat;
ed8ece2e 5375 zone_pcp_init(zone);
81c0a2bb
JW
5376
5377 /* For bootup, initialized properly in watermark setup */
5378 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5379
bea8c150 5380 lruvec_init(&zone->lruvec);
1da177e4
LT
5381 if (!size)
5382 continue;
5383
955c1cd7 5384 set_pageblock_order();
7c45512d 5385 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5386 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5387 BUG_ON(ret);
76cdd58e 5388 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5389 }
5390}
5391
577a32f6 5392static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5393{
b0aeba74 5394 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5395 unsigned long __maybe_unused offset = 0;
5396
1da177e4
LT
5397 /* Skip empty nodes */
5398 if (!pgdat->node_spanned_pages)
5399 return;
5400
d41dee36 5401#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5402 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5403 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5404 /* ia64 gets its own node_mem_map, before this, without bootmem */
5405 if (!pgdat->node_mem_map) {
b0aeba74 5406 unsigned long size, end;
d41dee36
AW
5407 struct page *map;
5408
e984bb43
BP
5409 /*
5410 * The zone's endpoints aren't required to be MAX_ORDER
5411 * aligned but the node_mem_map endpoints must be in order
5412 * for the buddy allocator to function correctly.
5413 */
108bcc96 5414 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5415 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5416 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5417 map = alloc_remap(pgdat->node_id, size);
5418 if (!map)
6782832e
SS
5419 map = memblock_virt_alloc_node_nopanic(size,
5420 pgdat->node_id);
a1c34a3b 5421 pgdat->node_mem_map = map + offset;
1da177e4 5422 }
12d810c1 5423#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5424 /*
5425 * With no DISCONTIG, the global mem_map is just set as node 0's
5426 */
c713216d 5427 if (pgdat == NODE_DATA(0)) {
1da177e4 5428 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5429#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5430 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5431 mem_map -= offset;
0ee332c1 5432#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5433 }
1da177e4 5434#endif
d41dee36 5435#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5436}
5437
9109fb7b
JW
5438void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5439 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5440{
9109fb7b 5441 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5442 unsigned long start_pfn = 0;
5443 unsigned long end_pfn = 0;
9109fb7b 5444
88fdf75d 5445 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5446 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5447
3a80a7fa 5448 reset_deferred_meminit(pgdat);
1da177e4
LT
5449 pgdat->node_id = nid;
5450 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5451#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5452 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5453 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5454 (u64)start_pfn << PAGE_SHIFT,
5455 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5456#else
5457 start_pfn = node_start_pfn;
7960aedd
ZY
5458#endif
5459 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5460 zones_size, zholes_size);
1da177e4
LT
5461
5462 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5463#ifdef CONFIG_FLAT_NODE_MEM_MAP
5464 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5465 nid, (unsigned long)pgdat,
5466 (unsigned long)pgdat->node_mem_map);
5467#endif
1da177e4 5468
7f3eb55b 5469 free_area_init_core(pgdat);
1da177e4
LT
5470}
5471
0ee332c1 5472#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5473
5474#if MAX_NUMNODES > 1
5475/*
5476 * Figure out the number of possible node ids.
5477 */
f9872caf 5478void __init setup_nr_node_ids(void)
418508c1 5479{
904a9553 5480 unsigned int highest;
418508c1 5481
904a9553 5482 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5483 nr_node_ids = highest + 1;
5484}
418508c1
MS
5485#endif
5486
1e01979c
TH
5487/**
5488 * node_map_pfn_alignment - determine the maximum internode alignment
5489 *
5490 * This function should be called after node map is populated and sorted.
5491 * It calculates the maximum power of two alignment which can distinguish
5492 * all the nodes.
5493 *
5494 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5495 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5496 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5497 * shifted, 1GiB is enough and this function will indicate so.
5498 *
5499 * This is used to test whether pfn -> nid mapping of the chosen memory
5500 * model has fine enough granularity to avoid incorrect mapping for the
5501 * populated node map.
5502 *
5503 * Returns the determined alignment in pfn's. 0 if there is no alignment
5504 * requirement (single node).
5505 */
5506unsigned long __init node_map_pfn_alignment(void)
5507{
5508 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5509 unsigned long start, end, mask;
1e01979c 5510 int last_nid = -1;
c13291a5 5511 int i, nid;
1e01979c 5512
c13291a5 5513 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5514 if (!start || last_nid < 0 || last_nid == nid) {
5515 last_nid = nid;
5516 last_end = end;
5517 continue;
5518 }
5519
5520 /*
5521 * Start with a mask granular enough to pin-point to the
5522 * start pfn and tick off bits one-by-one until it becomes
5523 * too coarse to separate the current node from the last.
5524 */
5525 mask = ~((1 << __ffs(start)) - 1);
5526 while (mask && last_end <= (start & (mask << 1)))
5527 mask <<= 1;
5528
5529 /* accumulate all internode masks */
5530 accl_mask |= mask;
5531 }
5532
5533 /* convert mask to number of pages */
5534 return ~accl_mask + 1;
5535}
5536
a6af2bc3 5537/* Find the lowest pfn for a node */
b69a7288 5538static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5539{
a6af2bc3 5540 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5541 unsigned long start_pfn;
5542 int i;
1abbfb41 5543
c13291a5
TH
5544 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5545 min_pfn = min(min_pfn, start_pfn);
c713216d 5546
a6af2bc3
MG
5547 if (min_pfn == ULONG_MAX) {
5548 printk(KERN_WARNING
2bc0d261 5549 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5550 return 0;
5551 }
5552
5553 return min_pfn;
c713216d
MG
5554}
5555
5556/**
5557 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5558 *
5559 * It returns the minimum PFN based on information provided via
7d018176 5560 * memblock_set_node().
c713216d
MG
5561 */
5562unsigned long __init find_min_pfn_with_active_regions(void)
5563{
5564 return find_min_pfn_for_node(MAX_NUMNODES);
5565}
5566
37b07e41
LS
5567/*
5568 * early_calculate_totalpages()
5569 * Sum pages in active regions for movable zone.
4b0ef1fe 5570 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5571 */
484f51f8 5572static unsigned long __init early_calculate_totalpages(void)
7e63efef 5573{
7e63efef 5574 unsigned long totalpages = 0;
c13291a5
TH
5575 unsigned long start_pfn, end_pfn;
5576 int i, nid;
5577
5578 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5579 unsigned long pages = end_pfn - start_pfn;
7e63efef 5580
37b07e41
LS
5581 totalpages += pages;
5582 if (pages)
4b0ef1fe 5583 node_set_state(nid, N_MEMORY);
37b07e41 5584 }
b8af2941 5585 return totalpages;
7e63efef
MG
5586}
5587
2a1e274a
MG
5588/*
5589 * Find the PFN the Movable zone begins in each node. Kernel memory
5590 * is spread evenly between nodes as long as the nodes have enough
5591 * memory. When they don't, some nodes will have more kernelcore than
5592 * others
5593 */
b224ef85 5594static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5595{
5596 int i, nid;
5597 unsigned long usable_startpfn;
5598 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5599 /* save the state before borrow the nodemask */
4b0ef1fe 5600 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5601 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5602 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5603 struct memblock_region *r;
b2f3eebe
TC
5604
5605 /* Need to find movable_zone earlier when movable_node is specified. */
5606 find_usable_zone_for_movable();
5607
5608 /*
5609 * If movable_node is specified, ignore kernelcore and movablecore
5610 * options.
5611 */
5612 if (movable_node_is_enabled()) {
136199f0
EM
5613 for_each_memblock(memory, r) {
5614 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5615 continue;
5616
136199f0 5617 nid = r->nid;
b2f3eebe 5618
136199f0 5619 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5620 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5621 min(usable_startpfn, zone_movable_pfn[nid]) :
5622 usable_startpfn;
5623 }
5624
5625 goto out2;
5626 }
2a1e274a 5627
342332e6
TI
5628 /*
5629 * If kernelcore=mirror is specified, ignore movablecore option
5630 */
5631 if (mirrored_kernelcore) {
5632 bool mem_below_4gb_not_mirrored = false;
5633
5634 for_each_memblock(memory, r) {
5635 if (memblock_is_mirror(r))
5636 continue;
5637
5638 nid = r->nid;
5639
5640 usable_startpfn = memblock_region_memory_base_pfn(r);
5641
5642 if (usable_startpfn < 0x100000) {
5643 mem_below_4gb_not_mirrored = true;
5644 continue;
5645 }
5646
5647 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5648 min(usable_startpfn, zone_movable_pfn[nid]) :
5649 usable_startpfn;
5650 }
5651
5652 if (mem_below_4gb_not_mirrored)
5653 pr_warn("This configuration results in unmirrored kernel memory.");
5654
5655 goto out2;
5656 }
5657
7e63efef 5658 /*
b2f3eebe 5659 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5660 * kernelcore that corresponds so that memory usable for
5661 * any allocation type is evenly spread. If both kernelcore
5662 * and movablecore are specified, then the value of kernelcore
5663 * will be used for required_kernelcore if it's greater than
5664 * what movablecore would have allowed.
5665 */
5666 if (required_movablecore) {
7e63efef
MG
5667 unsigned long corepages;
5668
5669 /*
5670 * Round-up so that ZONE_MOVABLE is at least as large as what
5671 * was requested by the user
5672 */
5673 required_movablecore =
5674 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5675 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5676 corepages = totalpages - required_movablecore;
5677
5678 required_kernelcore = max(required_kernelcore, corepages);
5679 }
5680
bde304bd
XQ
5681 /*
5682 * If kernelcore was not specified or kernelcore size is larger
5683 * than totalpages, there is no ZONE_MOVABLE.
5684 */
5685 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5686 goto out;
2a1e274a
MG
5687
5688 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5689 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5690
5691restart:
5692 /* Spread kernelcore memory as evenly as possible throughout nodes */
5693 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5694 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5695 unsigned long start_pfn, end_pfn;
5696
2a1e274a
MG
5697 /*
5698 * Recalculate kernelcore_node if the division per node
5699 * now exceeds what is necessary to satisfy the requested
5700 * amount of memory for the kernel
5701 */
5702 if (required_kernelcore < kernelcore_node)
5703 kernelcore_node = required_kernelcore / usable_nodes;
5704
5705 /*
5706 * As the map is walked, we track how much memory is usable
5707 * by the kernel using kernelcore_remaining. When it is
5708 * 0, the rest of the node is usable by ZONE_MOVABLE
5709 */
5710 kernelcore_remaining = kernelcore_node;
5711
5712 /* Go through each range of PFNs within this node */
c13291a5 5713 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5714 unsigned long size_pages;
5715
c13291a5 5716 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5717 if (start_pfn >= end_pfn)
5718 continue;
5719
5720 /* Account for what is only usable for kernelcore */
5721 if (start_pfn < usable_startpfn) {
5722 unsigned long kernel_pages;
5723 kernel_pages = min(end_pfn, usable_startpfn)
5724 - start_pfn;
5725
5726 kernelcore_remaining -= min(kernel_pages,
5727 kernelcore_remaining);
5728 required_kernelcore -= min(kernel_pages,
5729 required_kernelcore);
5730
5731 /* Continue if range is now fully accounted */
5732 if (end_pfn <= usable_startpfn) {
5733
5734 /*
5735 * Push zone_movable_pfn to the end so
5736 * that if we have to rebalance
5737 * kernelcore across nodes, we will
5738 * not double account here
5739 */
5740 zone_movable_pfn[nid] = end_pfn;
5741 continue;
5742 }
5743 start_pfn = usable_startpfn;
5744 }
5745
5746 /*
5747 * The usable PFN range for ZONE_MOVABLE is from
5748 * start_pfn->end_pfn. Calculate size_pages as the
5749 * number of pages used as kernelcore
5750 */
5751 size_pages = end_pfn - start_pfn;
5752 if (size_pages > kernelcore_remaining)
5753 size_pages = kernelcore_remaining;
5754 zone_movable_pfn[nid] = start_pfn + size_pages;
5755
5756 /*
5757 * Some kernelcore has been met, update counts and
5758 * break if the kernelcore for this node has been
b8af2941 5759 * satisfied
2a1e274a
MG
5760 */
5761 required_kernelcore -= min(required_kernelcore,
5762 size_pages);
5763 kernelcore_remaining -= size_pages;
5764 if (!kernelcore_remaining)
5765 break;
5766 }
5767 }
5768
5769 /*
5770 * If there is still required_kernelcore, we do another pass with one
5771 * less node in the count. This will push zone_movable_pfn[nid] further
5772 * along on the nodes that still have memory until kernelcore is
b8af2941 5773 * satisfied
2a1e274a
MG
5774 */
5775 usable_nodes--;
5776 if (usable_nodes && required_kernelcore > usable_nodes)
5777 goto restart;
5778
b2f3eebe 5779out2:
2a1e274a
MG
5780 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5781 for (nid = 0; nid < MAX_NUMNODES; nid++)
5782 zone_movable_pfn[nid] =
5783 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5784
20e6926d 5785out:
66918dcd 5786 /* restore the node_state */
4b0ef1fe 5787 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5788}
5789
4b0ef1fe
LJ
5790/* Any regular or high memory on that node ? */
5791static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5792{
37b07e41
LS
5793 enum zone_type zone_type;
5794
4b0ef1fe
LJ
5795 if (N_MEMORY == N_NORMAL_MEMORY)
5796 return;
5797
5798 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5799 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5800 if (populated_zone(zone)) {
4b0ef1fe
LJ
5801 node_set_state(nid, N_HIGH_MEMORY);
5802 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5803 zone_type <= ZONE_NORMAL)
5804 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5805 break;
5806 }
37b07e41 5807 }
37b07e41
LS
5808}
5809
c713216d
MG
5810/**
5811 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5812 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5813 *
5814 * This will call free_area_init_node() for each active node in the system.
7d018176 5815 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5816 * zone in each node and their holes is calculated. If the maximum PFN
5817 * between two adjacent zones match, it is assumed that the zone is empty.
5818 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5819 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5820 * starts where the previous one ended. For example, ZONE_DMA32 starts
5821 * at arch_max_dma_pfn.
5822 */
5823void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5824{
c13291a5
TH
5825 unsigned long start_pfn, end_pfn;
5826 int i, nid;
a6af2bc3 5827
c713216d
MG
5828 /* Record where the zone boundaries are */
5829 memset(arch_zone_lowest_possible_pfn, 0,
5830 sizeof(arch_zone_lowest_possible_pfn));
5831 memset(arch_zone_highest_possible_pfn, 0,
5832 sizeof(arch_zone_highest_possible_pfn));
5833 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5834 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5835 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5836 if (i == ZONE_MOVABLE)
5837 continue;
c713216d
MG
5838 arch_zone_lowest_possible_pfn[i] =
5839 arch_zone_highest_possible_pfn[i-1];
5840 arch_zone_highest_possible_pfn[i] =
5841 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5842 }
2a1e274a
MG
5843 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5844 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5845
5846 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5847 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5848 find_zone_movable_pfns_for_nodes();
c713216d 5849
c713216d 5850 /* Print out the zone ranges */
f88dfff5 5851 pr_info("Zone ranges:\n");
2a1e274a
MG
5852 for (i = 0; i < MAX_NR_ZONES; i++) {
5853 if (i == ZONE_MOVABLE)
5854 continue;
f88dfff5 5855 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5856 if (arch_zone_lowest_possible_pfn[i] ==
5857 arch_zone_highest_possible_pfn[i])
f88dfff5 5858 pr_cont("empty\n");
72f0ba02 5859 else
8d29e18a
JG
5860 pr_cont("[mem %#018Lx-%#018Lx]\n",
5861 (u64)arch_zone_lowest_possible_pfn[i]
5862 << PAGE_SHIFT,
5863 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5864 << PAGE_SHIFT) - 1);
2a1e274a
MG
5865 }
5866
5867 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5868 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5869 for (i = 0; i < MAX_NUMNODES; i++) {
5870 if (zone_movable_pfn[i])
8d29e18a
JG
5871 pr_info(" Node %d: %#018Lx\n", i,
5872 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5873 }
c713216d 5874
f2d52fe5 5875 /* Print out the early node map */
f88dfff5 5876 pr_info("Early memory node ranges\n");
c13291a5 5877 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5878 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5879 (u64)start_pfn << PAGE_SHIFT,
5880 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5881
5882 /* Initialise every node */
708614e6 5883 mminit_verify_pageflags_layout();
8ef82866 5884 setup_nr_node_ids();
c713216d
MG
5885 for_each_online_node(nid) {
5886 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5887 free_area_init_node(nid, NULL,
c713216d 5888 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5889
5890 /* Any memory on that node */
5891 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5892 node_set_state(nid, N_MEMORY);
5893 check_for_memory(pgdat, nid);
c713216d
MG
5894 }
5895}
2a1e274a 5896
7e63efef 5897static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5898{
5899 unsigned long long coremem;
5900 if (!p)
5901 return -EINVAL;
5902
5903 coremem = memparse(p, &p);
7e63efef 5904 *core = coremem >> PAGE_SHIFT;
2a1e274a 5905
7e63efef 5906 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5907 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5908
5909 return 0;
5910}
ed7ed365 5911
7e63efef
MG
5912/*
5913 * kernelcore=size sets the amount of memory for use for allocations that
5914 * cannot be reclaimed or migrated.
5915 */
5916static int __init cmdline_parse_kernelcore(char *p)
5917{
342332e6
TI
5918 /* parse kernelcore=mirror */
5919 if (parse_option_str(p, "mirror")) {
5920 mirrored_kernelcore = true;
5921 return 0;
5922 }
5923
7e63efef
MG
5924 return cmdline_parse_core(p, &required_kernelcore);
5925}
5926
5927/*
5928 * movablecore=size sets the amount of memory for use for allocations that
5929 * can be reclaimed or migrated.
5930 */
5931static int __init cmdline_parse_movablecore(char *p)
5932{
5933 return cmdline_parse_core(p, &required_movablecore);
5934}
5935
ed7ed365 5936early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5937early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5938
0ee332c1 5939#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5940
c3d5f5f0
JL
5941void adjust_managed_page_count(struct page *page, long count)
5942{
5943 spin_lock(&managed_page_count_lock);
5944 page_zone(page)->managed_pages += count;
5945 totalram_pages += count;
3dcc0571
JL
5946#ifdef CONFIG_HIGHMEM
5947 if (PageHighMem(page))
5948 totalhigh_pages += count;
5949#endif
c3d5f5f0
JL
5950 spin_unlock(&managed_page_count_lock);
5951}
3dcc0571 5952EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5953
11199692 5954unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5955{
11199692
JL
5956 void *pos;
5957 unsigned long pages = 0;
69afade7 5958
11199692
JL
5959 start = (void *)PAGE_ALIGN((unsigned long)start);
5960 end = (void *)((unsigned long)end & PAGE_MASK);
5961 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5962 if ((unsigned int)poison <= 0xFF)
11199692
JL
5963 memset(pos, poison, PAGE_SIZE);
5964 free_reserved_page(virt_to_page(pos));
69afade7
JL
5965 }
5966
5967 if (pages && s)
11199692 5968 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5969 s, pages << (PAGE_SHIFT - 10), start, end);
5970
5971 return pages;
5972}
11199692 5973EXPORT_SYMBOL(free_reserved_area);
69afade7 5974
cfa11e08
JL
5975#ifdef CONFIG_HIGHMEM
5976void free_highmem_page(struct page *page)
5977{
5978 __free_reserved_page(page);
5979 totalram_pages++;
7b4b2a0d 5980 page_zone(page)->managed_pages++;
cfa11e08
JL
5981 totalhigh_pages++;
5982}
5983#endif
5984
7ee3d4e8
JL
5985
5986void __init mem_init_print_info(const char *str)
5987{
5988 unsigned long physpages, codesize, datasize, rosize, bss_size;
5989 unsigned long init_code_size, init_data_size;
5990
5991 physpages = get_num_physpages();
5992 codesize = _etext - _stext;
5993 datasize = _edata - _sdata;
5994 rosize = __end_rodata - __start_rodata;
5995 bss_size = __bss_stop - __bss_start;
5996 init_data_size = __init_end - __init_begin;
5997 init_code_size = _einittext - _sinittext;
5998
5999 /*
6000 * Detect special cases and adjust section sizes accordingly:
6001 * 1) .init.* may be embedded into .data sections
6002 * 2) .init.text.* may be out of [__init_begin, __init_end],
6003 * please refer to arch/tile/kernel/vmlinux.lds.S.
6004 * 3) .rodata.* may be embedded into .text or .data sections.
6005 */
6006#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6007 do { \
6008 if (start <= pos && pos < end && size > adj) \
6009 size -= adj; \
6010 } while (0)
7ee3d4e8
JL
6011
6012 adj_init_size(__init_begin, __init_end, init_data_size,
6013 _sinittext, init_code_size);
6014 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6015 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6016 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6017 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6018
6019#undef adj_init_size
6020
f88dfff5 6021 pr_info("Memory: %luK/%luK available "
7ee3d4e8 6022 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 6023 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
6024#ifdef CONFIG_HIGHMEM
6025 ", %luK highmem"
6026#endif
6027 "%s%s)\n",
6028 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6029 codesize >> 10, datasize >> 10, rosize >> 10,
6030 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
6031 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6032 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
6033#ifdef CONFIG_HIGHMEM
6034 totalhigh_pages << (PAGE_SHIFT-10),
6035#endif
6036 str ? ", " : "", str ? str : "");
6037}
6038
0e0b864e 6039/**
88ca3b94
RD
6040 * set_dma_reserve - set the specified number of pages reserved in the first zone
6041 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6042 *
013110a7 6043 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6044 * In the DMA zone, a significant percentage may be consumed by kernel image
6045 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6046 * function may optionally be used to account for unfreeable pages in the
6047 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6048 * smaller per-cpu batchsize.
0e0b864e
MG
6049 */
6050void __init set_dma_reserve(unsigned long new_dma_reserve)
6051{
6052 dma_reserve = new_dma_reserve;
6053}
6054
1da177e4
LT
6055void __init free_area_init(unsigned long *zones_size)
6056{
9109fb7b 6057 free_area_init_node(0, zones_size,
1da177e4
LT
6058 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6059}
1da177e4 6060
1da177e4
LT
6061static int page_alloc_cpu_notify(struct notifier_block *self,
6062 unsigned long action, void *hcpu)
6063{
6064 int cpu = (unsigned long)hcpu;
1da177e4 6065
8bb78442 6066 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6067 lru_add_drain_cpu(cpu);
9f8f2172
CL
6068 drain_pages(cpu);
6069
6070 /*
6071 * Spill the event counters of the dead processor
6072 * into the current processors event counters.
6073 * This artificially elevates the count of the current
6074 * processor.
6075 */
f8891e5e 6076 vm_events_fold_cpu(cpu);
9f8f2172
CL
6077
6078 /*
6079 * Zero the differential counters of the dead processor
6080 * so that the vm statistics are consistent.
6081 *
6082 * This is only okay since the processor is dead and cannot
6083 * race with what we are doing.
6084 */
2bb921e5 6085 cpu_vm_stats_fold(cpu);
1da177e4
LT
6086 }
6087 return NOTIFY_OK;
6088}
1da177e4
LT
6089
6090void __init page_alloc_init(void)
6091{
6092 hotcpu_notifier(page_alloc_cpu_notify, 0);
6093}
6094
cb45b0e9 6095/*
34b10060 6096 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6097 * or min_free_kbytes changes.
6098 */
6099static void calculate_totalreserve_pages(void)
6100{
6101 struct pglist_data *pgdat;
6102 unsigned long reserve_pages = 0;
2f6726e5 6103 enum zone_type i, j;
cb45b0e9
HA
6104
6105 for_each_online_pgdat(pgdat) {
6106 for (i = 0; i < MAX_NR_ZONES; i++) {
6107 struct zone *zone = pgdat->node_zones + i;
3484b2de 6108 long max = 0;
cb45b0e9
HA
6109
6110 /* Find valid and maximum lowmem_reserve in the zone */
6111 for (j = i; j < MAX_NR_ZONES; j++) {
6112 if (zone->lowmem_reserve[j] > max)
6113 max = zone->lowmem_reserve[j];
6114 }
6115
41858966
MG
6116 /* we treat the high watermark as reserved pages. */
6117 max += high_wmark_pages(zone);
cb45b0e9 6118
b40da049
JL
6119 if (max > zone->managed_pages)
6120 max = zone->managed_pages;
a8d01437
JW
6121
6122 zone->totalreserve_pages = max;
6123
cb45b0e9
HA
6124 reserve_pages += max;
6125 }
6126 }
6127 totalreserve_pages = reserve_pages;
6128}
6129
1da177e4
LT
6130/*
6131 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6132 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6133 * has a correct pages reserved value, so an adequate number of
6134 * pages are left in the zone after a successful __alloc_pages().
6135 */
6136static void setup_per_zone_lowmem_reserve(void)
6137{
6138 struct pglist_data *pgdat;
2f6726e5 6139 enum zone_type j, idx;
1da177e4 6140
ec936fc5 6141 for_each_online_pgdat(pgdat) {
1da177e4
LT
6142 for (j = 0; j < MAX_NR_ZONES; j++) {
6143 struct zone *zone = pgdat->node_zones + j;
b40da049 6144 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6145
6146 zone->lowmem_reserve[j] = 0;
6147
2f6726e5
CL
6148 idx = j;
6149 while (idx) {
1da177e4
LT
6150 struct zone *lower_zone;
6151
2f6726e5
CL
6152 idx--;
6153
1da177e4
LT
6154 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6155 sysctl_lowmem_reserve_ratio[idx] = 1;
6156
6157 lower_zone = pgdat->node_zones + idx;
b40da049 6158 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6159 sysctl_lowmem_reserve_ratio[idx];
b40da049 6160 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6161 }
6162 }
6163 }
cb45b0e9
HA
6164
6165 /* update totalreserve_pages */
6166 calculate_totalreserve_pages();
1da177e4
LT
6167}
6168
cfd3da1e 6169static void __setup_per_zone_wmarks(void)
1da177e4
LT
6170{
6171 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6172 unsigned long lowmem_pages = 0;
6173 struct zone *zone;
6174 unsigned long flags;
6175
6176 /* Calculate total number of !ZONE_HIGHMEM pages */
6177 for_each_zone(zone) {
6178 if (!is_highmem(zone))
b40da049 6179 lowmem_pages += zone->managed_pages;
1da177e4
LT
6180 }
6181
6182 for_each_zone(zone) {
ac924c60
AM
6183 u64 tmp;
6184
1125b4e3 6185 spin_lock_irqsave(&zone->lock, flags);
b40da049 6186 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6187 do_div(tmp, lowmem_pages);
1da177e4
LT
6188 if (is_highmem(zone)) {
6189 /*
669ed175
NP
6190 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6191 * need highmem pages, so cap pages_min to a small
6192 * value here.
6193 *
41858966 6194 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6195 * deltas control asynch page reclaim, and so should
669ed175 6196 * not be capped for highmem.
1da177e4 6197 */
90ae8d67 6198 unsigned long min_pages;
1da177e4 6199
b40da049 6200 min_pages = zone->managed_pages / 1024;
90ae8d67 6201 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6202 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6203 } else {
669ed175
NP
6204 /*
6205 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6206 * proportionate to the zone's size.
6207 */
41858966 6208 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6209 }
6210
41858966
MG
6211 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6212 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6213
81c0a2bb 6214 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6215 high_wmark_pages(zone) - low_wmark_pages(zone) -
6216 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6217
1125b4e3 6218 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6219 }
cb45b0e9
HA
6220
6221 /* update totalreserve_pages */
6222 calculate_totalreserve_pages();
1da177e4
LT
6223}
6224
cfd3da1e
MG
6225/**
6226 * setup_per_zone_wmarks - called when min_free_kbytes changes
6227 * or when memory is hot-{added|removed}
6228 *
6229 * Ensures that the watermark[min,low,high] values for each zone are set
6230 * correctly with respect to min_free_kbytes.
6231 */
6232void setup_per_zone_wmarks(void)
6233{
6234 mutex_lock(&zonelists_mutex);
6235 __setup_per_zone_wmarks();
6236 mutex_unlock(&zonelists_mutex);
6237}
6238
55a4462a 6239/*
556adecb
RR
6240 * The inactive anon list should be small enough that the VM never has to
6241 * do too much work, but large enough that each inactive page has a chance
6242 * to be referenced again before it is swapped out.
6243 *
6244 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6245 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6246 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6247 * the anonymous pages are kept on the inactive list.
6248 *
6249 * total target max
6250 * memory ratio inactive anon
6251 * -------------------------------------
6252 * 10MB 1 5MB
6253 * 100MB 1 50MB
6254 * 1GB 3 250MB
6255 * 10GB 10 0.9GB
6256 * 100GB 31 3GB
6257 * 1TB 101 10GB
6258 * 10TB 320 32GB
6259 */
1b79acc9 6260static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6261{
96cb4df5 6262 unsigned int gb, ratio;
556adecb 6263
96cb4df5 6264 /* Zone size in gigabytes */
b40da049 6265 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6266 if (gb)
556adecb 6267 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6268 else
6269 ratio = 1;
556adecb 6270
96cb4df5
MK
6271 zone->inactive_ratio = ratio;
6272}
556adecb 6273
839a4fcc 6274static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6275{
6276 struct zone *zone;
6277
6278 for_each_zone(zone)
6279 calculate_zone_inactive_ratio(zone);
556adecb
RR
6280}
6281
1da177e4
LT
6282/*
6283 * Initialise min_free_kbytes.
6284 *
6285 * For small machines we want it small (128k min). For large machines
6286 * we want it large (64MB max). But it is not linear, because network
6287 * bandwidth does not increase linearly with machine size. We use
6288 *
b8af2941 6289 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6290 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6291 *
6292 * which yields
6293 *
6294 * 16MB: 512k
6295 * 32MB: 724k
6296 * 64MB: 1024k
6297 * 128MB: 1448k
6298 * 256MB: 2048k
6299 * 512MB: 2896k
6300 * 1024MB: 4096k
6301 * 2048MB: 5792k
6302 * 4096MB: 8192k
6303 * 8192MB: 11584k
6304 * 16384MB: 16384k
6305 */
1b79acc9 6306int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6307{
6308 unsigned long lowmem_kbytes;
5f12733e 6309 int new_min_free_kbytes;
1da177e4
LT
6310
6311 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6312 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6313
6314 if (new_min_free_kbytes > user_min_free_kbytes) {
6315 min_free_kbytes = new_min_free_kbytes;
6316 if (min_free_kbytes < 128)
6317 min_free_kbytes = 128;
6318 if (min_free_kbytes > 65536)
6319 min_free_kbytes = 65536;
6320 } else {
6321 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6322 new_min_free_kbytes, user_min_free_kbytes);
6323 }
bc75d33f 6324 setup_per_zone_wmarks();
a6cccdc3 6325 refresh_zone_stat_thresholds();
1da177e4 6326 setup_per_zone_lowmem_reserve();
556adecb 6327 setup_per_zone_inactive_ratio();
1da177e4
LT
6328 return 0;
6329}
bc75d33f 6330module_init(init_per_zone_wmark_min)
1da177e4
LT
6331
6332/*
b8af2941 6333 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6334 * that we can call two helper functions whenever min_free_kbytes
6335 * changes.
6336 */
cccad5b9 6337int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6338 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6339{
da8c757b
HP
6340 int rc;
6341
6342 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6343 if (rc)
6344 return rc;
6345
5f12733e
MH
6346 if (write) {
6347 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6348 setup_per_zone_wmarks();
5f12733e 6349 }
1da177e4
LT
6350 return 0;
6351}
6352
9614634f 6353#ifdef CONFIG_NUMA
cccad5b9 6354int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6355 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6356{
6357 struct zone *zone;
6358 int rc;
6359
8d65af78 6360 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6361 if (rc)
6362 return rc;
6363
6364 for_each_zone(zone)
b40da049 6365 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6366 sysctl_min_unmapped_ratio) / 100;
6367 return 0;
6368}
0ff38490 6369
cccad5b9 6370int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6371 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6372{
6373 struct zone *zone;
6374 int rc;
6375
8d65af78 6376 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6377 if (rc)
6378 return rc;
6379
6380 for_each_zone(zone)
b40da049 6381 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6382 sysctl_min_slab_ratio) / 100;
6383 return 0;
6384}
9614634f
CL
6385#endif
6386
1da177e4
LT
6387/*
6388 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6389 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6390 * whenever sysctl_lowmem_reserve_ratio changes.
6391 *
6392 * The reserve ratio obviously has absolutely no relation with the
41858966 6393 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6394 * if in function of the boot time zone sizes.
6395 */
cccad5b9 6396int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6397 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6398{
8d65af78 6399 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6400 setup_per_zone_lowmem_reserve();
6401 return 0;
6402}
6403
8ad4b1fb
RS
6404/*
6405 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6406 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6407 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6408 */
cccad5b9 6409int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6410 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6411{
6412 struct zone *zone;
7cd2b0a3 6413 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6414 int ret;
6415
7cd2b0a3
DR
6416 mutex_lock(&pcp_batch_high_lock);
6417 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6418
8d65af78 6419 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6420 if (!write || ret < 0)
6421 goto out;
6422
6423 /* Sanity checking to avoid pcp imbalance */
6424 if (percpu_pagelist_fraction &&
6425 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6426 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6427 ret = -EINVAL;
6428 goto out;
6429 }
6430
6431 /* No change? */
6432 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6433 goto out;
c8e251fa 6434
364df0eb 6435 for_each_populated_zone(zone) {
7cd2b0a3
DR
6436 unsigned int cpu;
6437
22a7f12b 6438 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6439 pageset_set_high_and_batch(zone,
6440 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6441 }
7cd2b0a3 6442out:
c8e251fa 6443 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6444 return ret;
8ad4b1fb
RS
6445}
6446
a9919c79 6447#ifdef CONFIG_NUMA
f034b5d4 6448int hashdist = HASHDIST_DEFAULT;
1da177e4 6449
1da177e4
LT
6450static int __init set_hashdist(char *str)
6451{
6452 if (!str)
6453 return 0;
6454 hashdist = simple_strtoul(str, &str, 0);
6455 return 1;
6456}
6457__setup("hashdist=", set_hashdist);
6458#endif
6459
6460/*
6461 * allocate a large system hash table from bootmem
6462 * - it is assumed that the hash table must contain an exact power-of-2
6463 * quantity of entries
6464 * - limit is the number of hash buckets, not the total allocation size
6465 */
6466void *__init alloc_large_system_hash(const char *tablename,
6467 unsigned long bucketsize,
6468 unsigned long numentries,
6469 int scale,
6470 int flags,
6471 unsigned int *_hash_shift,
6472 unsigned int *_hash_mask,
31fe62b9
TB
6473 unsigned long low_limit,
6474 unsigned long high_limit)
1da177e4 6475{
31fe62b9 6476 unsigned long long max = high_limit;
1da177e4
LT
6477 unsigned long log2qty, size;
6478 void *table = NULL;
6479
6480 /* allow the kernel cmdline to have a say */
6481 if (!numentries) {
6482 /* round applicable memory size up to nearest megabyte */
04903664 6483 numentries = nr_kernel_pages;
a7e83318
JZ
6484
6485 /* It isn't necessary when PAGE_SIZE >= 1MB */
6486 if (PAGE_SHIFT < 20)
6487 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6488
6489 /* limit to 1 bucket per 2^scale bytes of low memory */
6490 if (scale > PAGE_SHIFT)
6491 numentries >>= (scale - PAGE_SHIFT);
6492 else
6493 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6494
6495 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6496 if (unlikely(flags & HASH_SMALL)) {
6497 /* Makes no sense without HASH_EARLY */
6498 WARN_ON(!(flags & HASH_EARLY));
6499 if (!(numentries >> *_hash_shift)) {
6500 numentries = 1UL << *_hash_shift;
6501 BUG_ON(!numentries);
6502 }
6503 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6504 numentries = PAGE_SIZE / bucketsize;
1da177e4 6505 }
6e692ed3 6506 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6507
6508 /* limit allocation size to 1/16 total memory by default */
6509 if (max == 0) {
6510 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6511 do_div(max, bucketsize);
6512 }
074b8517 6513 max = min(max, 0x80000000ULL);
1da177e4 6514
31fe62b9
TB
6515 if (numentries < low_limit)
6516 numentries = low_limit;
1da177e4
LT
6517 if (numentries > max)
6518 numentries = max;
6519
f0d1b0b3 6520 log2qty = ilog2(numentries);
1da177e4
LT
6521
6522 do {
6523 size = bucketsize << log2qty;
6524 if (flags & HASH_EARLY)
6782832e 6525 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6526 else if (hashdist)
6527 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6528 else {
1037b83b
ED
6529 /*
6530 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6531 * some pages at the end of hash table which
6532 * alloc_pages_exact() automatically does
1037b83b 6533 */
264ef8a9 6534 if (get_order(size) < MAX_ORDER) {
a1dd268c 6535 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6536 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6537 }
1da177e4
LT
6538 }
6539 } while (!table && size > PAGE_SIZE && --log2qty);
6540
6541 if (!table)
6542 panic("Failed to allocate %s hash table\n", tablename);
6543
f241e660 6544 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6545 tablename,
f241e660 6546 (1UL << log2qty),
f0d1b0b3 6547 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6548 size);
6549
6550 if (_hash_shift)
6551 *_hash_shift = log2qty;
6552 if (_hash_mask)
6553 *_hash_mask = (1 << log2qty) - 1;
6554
6555 return table;
6556}
a117e66e 6557
835c134e
MG
6558/* Return a pointer to the bitmap storing bits affecting a block of pages */
6559static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6560 unsigned long pfn)
6561{
6562#ifdef CONFIG_SPARSEMEM
6563 return __pfn_to_section(pfn)->pageblock_flags;
6564#else
6565 return zone->pageblock_flags;
6566#endif /* CONFIG_SPARSEMEM */
6567}
6568
6569static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6570{
6571#ifdef CONFIG_SPARSEMEM
6572 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6573 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6574#else
c060f943 6575 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6576 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6577#endif /* CONFIG_SPARSEMEM */
6578}
6579
6580/**
1aab4d77 6581 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6582 * @page: The page within the block of interest
1aab4d77
RD
6583 * @pfn: The target page frame number
6584 * @end_bitidx: The last bit of interest to retrieve
6585 * @mask: mask of bits that the caller is interested in
6586 *
6587 * Return: pageblock_bits flags
835c134e 6588 */
dc4b0caf 6589unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6590 unsigned long end_bitidx,
6591 unsigned long mask)
835c134e
MG
6592{
6593 struct zone *zone;
6594 unsigned long *bitmap;
dc4b0caf 6595 unsigned long bitidx, word_bitidx;
e58469ba 6596 unsigned long word;
835c134e
MG
6597
6598 zone = page_zone(page);
835c134e
MG
6599 bitmap = get_pageblock_bitmap(zone, pfn);
6600 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6601 word_bitidx = bitidx / BITS_PER_LONG;
6602 bitidx &= (BITS_PER_LONG-1);
835c134e 6603
e58469ba
MG
6604 word = bitmap[word_bitidx];
6605 bitidx += end_bitidx;
6606 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6607}
6608
6609/**
dc4b0caf 6610 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6611 * @page: The page within the block of interest
835c134e 6612 * @flags: The flags to set
1aab4d77
RD
6613 * @pfn: The target page frame number
6614 * @end_bitidx: The last bit of interest
6615 * @mask: mask of bits that the caller is interested in
835c134e 6616 */
dc4b0caf
MG
6617void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6618 unsigned long pfn,
e58469ba
MG
6619 unsigned long end_bitidx,
6620 unsigned long mask)
835c134e
MG
6621{
6622 struct zone *zone;
6623 unsigned long *bitmap;
dc4b0caf 6624 unsigned long bitidx, word_bitidx;
e58469ba
MG
6625 unsigned long old_word, word;
6626
6627 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6628
6629 zone = page_zone(page);
835c134e
MG
6630 bitmap = get_pageblock_bitmap(zone, pfn);
6631 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6632 word_bitidx = bitidx / BITS_PER_LONG;
6633 bitidx &= (BITS_PER_LONG-1);
6634
309381fe 6635 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6636
e58469ba
MG
6637 bitidx += end_bitidx;
6638 mask <<= (BITS_PER_LONG - bitidx - 1);
6639 flags <<= (BITS_PER_LONG - bitidx - 1);
6640
4db0c3c2 6641 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6642 for (;;) {
6643 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6644 if (word == old_word)
6645 break;
6646 word = old_word;
6647 }
835c134e 6648}
a5d76b54
KH
6649
6650/*
80934513
MK
6651 * This function checks whether pageblock includes unmovable pages or not.
6652 * If @count is not zero, it is okay to include less @count unmovable pages
6653 *
b8af2941 6654 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6655 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6656 * expect this function should be exact.
a5d76b54 6657 */
b023f468
WC
6658bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6659 bool skip_hwpoisoned_pages)
49ac8255
KH
6660{
6661 unsigned long pfn, iter, found;
47118af0
MN
6662 int mt;
6663
49ac8255
KH
6664 /*
6665 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6666 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6667 */
6668 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6669 return false;
47118af0
MN
6670 mt = get_pageblock_migratetype(page);
6671 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6672 return false;
49ac8255
KH
6673
6674 pfn = page_to_pfn(page);
6675 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6676 unsigned long check = pfn + iter;
6677
29723fcc 6678 if (!pfn_valid_within(check))
49ac8255 6679 continue;
29723fcc 6680
49ac8255 6681 page = pfn_to_page(check);
c8721bbb
NH
6682
6683 /*
6684 * Hugepages are not in LRU lists, but they're movable.
6685 * We need not scan over tail pages bacause we don't
6686 * handle each tail page individually in migration.
6687 */
6688 if (PageHuge(page)) {
6689 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6690 continue;
6691 }
6692
97d255c8
MK
6693 /*
6694 * We can't use page_count without pin a page
6695 * because another CPU can free compound page.
6696 * This check already skips compound tails of THP
6697 * because their page->_count is zero at all time.
6698 */
6699 if (!atomic_read(&page->_count)) {
49ac8255
KH
6700 if (PageBuddy(page))
6701 iter += (1 << page_order(page)) - 1;
6702 continue;
6703 }
97d255c8 6704
b023f468
WC
6705 /*
6706 * The HWPoisoned page may be not in buddy system, and
6707 * page_count() is not 0.
6708 */
6709 if (skip_hwpoisoned_pages && PageHWPoison(page))
6710 continue;
6711
49ac8255
KH
6712 if (!PageLRU(page))
6713 found++;
6714 /*
6b4f7799
JW
6715 * If there are RECLAIMABLE pages, we need to check
6716 * it. But now, memory offline itself doesn't call
6717 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6718 */
6719 /*
6720 * If the page is not RAM, page_count()should be 0.
6721 * we don't need more check. This is an _used_ not-movable page.
6722 *
6723 * The problematic thing here is PG_reserved pages. PG_reserved
6724 * is set to both of a memory hole page and a _used_ kernel
6725 * page at boot.
6726 */
6727 if (found > count)
80934513 6728 return true;
49ac8255 6729 }
80934513 6730 return false;
49ac8255
KH
6731}
6732
6733bool is_pageblock_removable_nolock(struct page *page)
6734{
656a0706
MH
6735 struct zone *zone;
6736 unsigned long pfn;
687875fb
MH
6737
6738 /*
6739 * We have to be careful here because we are iterating over memory
6740 * sections which are not zone aware so we might end up outside of
6741 * the zone but still within the section.
656a0706
MH
6742 * We have to take care about the node as well. If the node is offline
6743 * its NODE_DATA will be NULL - see page_zone.
687875fb 6744 */
656a0706
MH
6745 if (!node_online(page_to_nid(page)))
6746 return false;
6747
6748 zone = page_zone(page);
6749 pfn = page_to_pfn(page);
108bcc96 6750 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6751 return false;
6752
b023f468 6753 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6754}
0c0e6195 6755
080fe206 6756#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6757
6758static unsigned long pfn_max_align_down(unsigned long pfn)
6759{
6760 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6761 pageblock_nr_pages) - 1);
6762}
6763
6764static unsigned long pfn_max_align_up(unsigned long pfn)
6765{
6766 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6767 pageblock_nr_pages));
6768}
6769
041d3a8c 6770/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6771static int __alloc_contig_migrate_range(struct compact_control *cc,
6772 unsigned long start, unsigned long end)
041d3a8c
MN
6773{
6774 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6775 unsigned long nr_reclaimed;
041d3a8c
MN
6776 unsigned long pfn = start;
6777 unsigned int tries = 0;
6778 int ret = 0;
6779
be49a6e1 6780 migrate_prep();
041d3a8c 6781
bb13ffeb 6782 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6783 if (fatal_signal_pending(current)) {
6784 ret = -EINTR;
6785 break;
6786 }
6787
bb13ffeb
MG
6788 if (list_empty(&cc->migratepages)) {
6789 cc->nr_migratepages = 0;
edc2ca61 6790 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6791 if (!pfn) {
6792 ret = -EINTR;
6793 break;
6794 }
6795 tries = 0;
6796 } else if (++tries == 5) {
6797 ret = ret < 0 ? ret : -EBUSY;
6798 break;
6799 }
6800
beb51eaa
MK
6801 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6802 &cc->migratepages);
6803 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6804
9c620e2b 6805 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6806 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6807 }
2a6f5124
SP
6808 if (ret < 0) {
6809 putback_movable_pages(&cc->migratepages);
6810 return ret;
6811 }
6812 return 0;
041d3a8c
MN
6813}
6814
6815/**
6816 * alloc_contig_range() -- tries to allocate given range of pages
6817 * @start: start PFN to allocate
6818 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6819 * @migratetype: migratetype of the underlaying pageblocks (either
6820 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6821 * in range must have the same migratetype and it must
6822 * be either of the two.
041d3a8c
MN
6823 *
6824 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6825 * aligned, however it's the caller's responsibility to guarantee that
6826 * we are the only thread that changes migrate type of pageblocks the
6827 * pages fall in.
6828 *
6829 * The PFN range must belong to a single zone.
6830 *
6831 * Returns zero on success or negative error code. On success all
6832 * pages which PFN is in [start, end) are allocated for the caller and
6833 * need to be freed with free_contig_range().
6834 */
0815f3d8
MN
6835int alloc_contig_range(unsigned long start, unsigned long end,
6836 unsigned migratetype)
041d3a8c 6837{
041d3a8c 6838 unsigned long outer_start, outer_end;
d00181b9
KS
6839 unsigned int order;
6840 int ret = 0;
041d3a8c 6841
bb13ffeb
MG
6842 struct compact_control cc = {
6843 .nr_migratepages = 0,
6844 .order = -1,
6845 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6846 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6847 .ignore_skip_hint = true,
6848 };
6849 INIT_LIST_HEAD(&cc.migratepages);
6850
041d3a8c
MN
6851 /*
6852 * What we do here is we mark all pageblocks in range as
6853 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6854 * have different sizes, and due to the way page allocator
6855 * work, we align the range to biggest of the two pages so
6856 * that page allocator won't try to merge buddies from
6857 * different pageblocks and change MIGRATE_ISOLATE to some
6858 * other migration type.
6859 *
6860 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6861 * migrate the pages from an unaligned range (ie. pages that
6862 * we are interested in). This will put all the pages in
6863 * range back to page allocator as MIGRATE_ISOLATE.
6864 *
6865 * When this is done, we take the pages in range from page
6866 * allocator removing them from the buddy system. This way
6867 * page allocator will never consider using them.
6868 *
6869 * This lets us mark the pageblocks back as
6870 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6871 * aligned range but not in the unaligned, original range are
6872 * put back to page allocator so that buddy can use them.
6873 */
6874
6875 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6876 pfn_max_align_up(end), migratetype,
6877 false);
041d3a8c 6878 if (ret)
86a595f9 6879 return ret;
041d3a8c 6880
8ef5849f
JK
6881 /*
6882 * In case of -EBUSY, we'd like to know which page causes problem.
6883 * So, just fall through. We will check it in test_pages_isolated().
6884 */
bb13ffeb 6885 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6886 if (ret && ret != -EBUSY)
041d3a8c
MN
6887 goto done;
6888
6889 /*
6890 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6891 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6892 * more, all pages in [start, end) are free in page allocator.
6893 * What we are going to do is to allocate all pages from
6894 * [start, end) (that is remove them from page allocator).
6895 *
6896 * The only problem is that pages at the beginning and at the
6897 * end of interesting range may be not aligned with pages that
6898 * page allocator holds, ie. they can be part of higher order
6899 * pages. Because of this, we reserve the bigger range and
6900 * once this is done free the pages we are not interested in.
6901 *
6902 * We don't have to hold zone->lock here because the pages are
6903 * isolated thus they won't get removed from buddy.
6904 */
6905
6906 lru_add_drain_all();
510f5507 6907 drain_all_pages(cc.zone);
041d3a8c
MN
6908
6909 order = 0;
6910 outer_start = start;
6911 while (!PageBuddy(pfn_to_page(outer_start))) {
6912 if (++order >= MAX_ORDER) {
8ef5849f
JK
6913 outer_start = start;
6914 break;
041d3a8c
MN
6915 }
6916 outer_start &= ~0UL << order;
6917 }
6918
8ef5849f
JK
6919 if (outer_start != start) {
6920 order = page_order(pfn_to_page(outer_start));
6921
6922 /*
6923 * outer_start page could be small order buddy page and
6924 * it doesn't include start page. Adjust outer_start
6925 * in this case to report failed page properly
6926 * on tracepoint in test_pages_isolated()
6927 */
6928 if (outer_start + (1UL << order) <= start)
6929 outer_start = start;
6930 }
6931
041d3a8c 6932 /* Make sure the range is really isolated. */
b023f468 6933 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6934 pr_info("%s: [%lx, %lx) PFNs busy\n",
6935 __func__, outer_start, end);
041d3a8c
MN
6936 ret = -EBUSY;
6937 goto done;
6938 }
6939
49f223a9 6940 /* Grab isolated pages from freelists. */
bb13ffeb 6941 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6942 if (!outer_end) {
6943 ret = -EBUSY;
6944 goto done;
6945 }
6946
6947 /* Free head and tail (if any) */
6948 if (start != outer_start)
6949 free_contig_range(outer_start, start - outer_start);
6950 if (end != outer_end)
6951 free_contig_range(end, outer_end - end);
6952
6953done:
6954 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6955 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6956 return ret;
6957}
6958
6959void free_contig_range(unsigned long pfn, unsigned nr_pages)
6960{
bcc2b02f
MS
6961 unsigned int count = 0;
6962
6963 for (; nr_pages--; pfn++) {
6964 struct page *page = pfn_to_page(pfn);
6965
6966 count += page_count(page) != 1;
6967 __free_page(page);
6968 }
6969 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6970}
6971#endif
6972
4ed7e022 6973#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6974/*
6975 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6976 * page high values need to be recalulated.
6977 */
4ed7e022
JL
6978void __meminit zone_pcp_update(struct zone *zone)
6979{
0a647f38 6980 unsigned cpu;
c8e251fa 6981 mutex_lock(&pcp_batch_high_lock);
0a647f38 6982 for_each_possible_cpu(cpu)
169f6c19
CS
6983 pageset_set_high_and_batch(zone,
6984 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6985 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6986}
6987#endif
6988
340175b7
JL
6989void zone_pcp_reset(struct zone *zone)
6990{
6991 unsigned long flags;
5a883813
MK
6992 int cpu;
6993 struct per_cpu_pageset *pset;
340175b7
JL
6994
6995 /* avoid races with drain_pages() */
6996 local_irq_save(flags);
6997 if (zone->pageset != &boot_pageset) {
5a883813
MK
6998 for_each_online_cpu(cpu) {
6999 pset = per_cpu_ptr(zone->pageset, cpu);
7000 drain_zonestat(zone, pset);
7001 }
340175b7
JL
7002 free_percpu(zone->pageset);
7003 zone->pageset = &boot_pageset;
7004 }
7005 local_irq_restore(flags);
7006}
7007
6dcd73d7 7008#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
7009/*
7010 * All pages in the range must be isolated before calling this.
7011 */
7012void
7013__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7014{
7015 struct page *page;
7016 struct zone *zone;
7aeb09f9 7017 unsigned int order, i;
0c0e6195
KH
7018 unsigned long pfn;
7019 unsigned long flags;
7020 /* find the first valid pfn */
7021 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7022 if (pfn_valid(pfn))
7023 break;
7024 if (pfn == end_pfn)
7025 return;
7026 zone = page_zone(pfn_to_page(pfn));
7027 spin_lock_irqsave(&zone->lock, flags);
7028 pfn = start_pfn;
7029 while (pfn < end_pfn) {
7030 if (!pfn_valid(pfn)) {
7031 pfn++;
7032 continue;
7033 }
7034 page = pfn_to_page(pfn);
b023f468
WC
7035 /*
7036 * The HWPoisoned page may be not in buddy system, and
7037 * page_count() is not 0.
7038 */
7039 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7040 pfn++;
7041 SetPageReserved(page);
7042 continue;
7043 }
7044
0c0e6195
KH
7045 BUG_ON(page_count(page));
7046 BUG_ON(!PageBuddy(page));
7047 order = page_order(page);
7048#ifdef CONFIG_DEBUG_VM
7049 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7050 pfn, 1 << order, end_pfn);
7051#endif
7052 list_del(&page->lru);
7053 rmv_page_order(page);
7054 zone->free_area[order].nr_free--;
0c0e6195
KH
7055 for (i = 0; i < (1 << order); i++)
7056 SetPageReserved((page+i));
7057 pfn += (1 << order);
7058 }
7059 spin_unlock_irqrestore(&zone->lock, flags);
7060}
7061#endif
8d22ba1b
WF
7062
7063#ifdef CONFIG_MEMORY_FAILURE
7064bool is_free_buddy_page(struct page *page)
7065{
7066 struct zone *zone = page_zone(page);
7067 unsigned long pfn = page_to_pfn(page);
7068 unsigned long flags;
7aeb09f9 7069 unsigned int order;
8d22ba1b
WF
7070
7071 spin_lock_irqsave(&zone->lock, flags);
7072 for (order = 0; order < MAX_ORDER; order++) {
7073 struct page *page_head = page - (pfn & ((1 << order) - 1));
7074
7075 if (PageBuddy(page_head) && page_order(page_head) >= order)
7076 break;
7077 }
7078 spin_unlock_irqrestore(&zone->lock, flags);
7079
7080 return order < MAX_ORDER;
7081}
7082#endif