mm, page_alloc: move draining pcplists to page isolation users
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
1da177e4 74
7ee3d4e8 75#include <asm/sections.h>
1da177e4 76#include <asm/tlbflush.h>
ac924c60 77#include <asm/div64.h>
1da177e4 78#include "internal.h"
e900a918 79#include "shuffle.h"
36e66c55 80#include "page_reporting.h"
1da177e4 81
f04a5d5d
DH
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
47b6a24a
DH
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
c8e251fa
CS
110/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
111static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 112#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 113
72812019
LS
114#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
115DEFINE_PER_CPU(int, numa_node);
116EXPORT_PER_CPU_SYMBOL(numa_node);
117#endif
118
4518085e
KW
119DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
120
7aac7898
LS
121#ifdef CONFIG_HAVE_MEMORYLESS_NODES
122/*
123 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
124 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
125 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
126 * defined in <linux/topology.h>.
127 */
128DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
129EXPORT_PER_CPU_SYMBOL(_numa_mem_);
130#endif
131
bd233f53 132/* work_structs for global per-cpu drains */
d9367bd0
WY
133struct pcpu_drain {
134 struct zone *zone;
135 struct work_struct work;
136};
8b885f53
JY
137static DEFINE_MUTEX(pcpu_drain_mutex);
138static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 139
38addce8 140#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 141volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
142EXPORT_SYMBOL(latent_entropy);
143#endif
144
1da177e4 145/*
13808910 146 * Array of node states.
1da177e4 147 */
13808910
CL
148nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
149 [N_POSSIBLE] = NODE_MASK_ALL,
150 [N_ONLINE] = { { [0] = 1UL } },
151#ifndef CONFIG_NUMA
152 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
153#ifdef CONFIG_HIGHMEM
154 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 155#endif
20b2f52b 156 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
157 [N_CPU] = { { [0] = 1UL } },
158#endif /* NUMA */
159};
160EXPORT_SYMBOL(node_states);
161
ca79b0c2
AK
162atomic_long_t _totalram_pages __read_mostly;
163EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 164unsigned long totalreserve_pages __read_mostly;
e48322ab 165unsigned long totalcma_pages __read_mostly;
ab8fabd4 166
1b76b02f 167int percpu_pagelist_fraction;
dcce284a 168gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
169#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
170DEFINE_STATIC_KEY_TRUE(init_on_alloc);
171#else
172DEFINE_STATIC_KEY_FALSE(init_on_alloc);
173#endif
174EXPORT_SYMBOL(init_on_alloc);
175
176#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
177DEFINE_STATIC_KEY_TRUE(init_on_free);
178#else
179DEFINE_STATIC_KEY_FALSE(init_on_free);
180#endif
181EXPORT_SYMBOL(init_on_free);
182
183static int __init early_init_on_alloc(char *buf)
184{
185 int ret;
186 bool bool_result;
187
6471384a 188 ret = kstrtobool(buf, &bool_result);
fdd4fa1c
MN
189 if (ret)
190 return ret;
6471384a
AP
191 if (bool_result && page_poisoning_enabled())
192 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
193 if (bool_result)
194 static_branch_enable(&init_on_alloc);
195 else
196 static_branch_disable(&init_on_alloc);
fdd4fa1c 197 return 0;
6471384a
AP
198}
199early_param("init_on_alloc", early_init_on_alloc);
200
201static int __init early_init_on_free(char *buf)
202{
203 int ret;
204 bool bool_result;
205
6471384a 206 ret = kstrtobool(buf, &bool_result);
fdd4fa1c
MN
207 if (ret)
208 return ret;
6471384a
AP
209 if (bool_result && page_poisoning_enabled())
210 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
211 if (bool_result)
212 static_branch_enable(&init_on_free);
213 else
214 static_branch_disable(&init_on_free);
fdd4fa1c 215 return 0;
6471384a
AP
216}
217early_param("init_on_free", early_init_on_free);
1da177e4 218
bb14c2c7
VB
219/*
220 * A cached value of the page's pageblock's migratetype, used when the page is
221 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
222 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
223 * Also the migratetype set in the page does not necessarily match the pcplist
224 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
225 * other index - this ensures that it will be put on the correct CMA freelist.
226 */
227static inline int get_pcppage_migratetype(struct page *page)
228{
229 return page->index;
230}
231
232static inline void set_pcppage_migratetype(struct page *page, int migratetype)
233{
234 page->index = migratetype;
235}
236
452aa699
RW
237#ifdef CONFIG_PM_SLEEP
238/*
239 * The following functions are used by the suspend/hibernate code to temporarily
240 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
241 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
242 * they should always be called with system_transition_mutex held
243 * (gfp_allowed_mask also should only be modified with system_transition_mutex
244 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
245 * with that modification).
452aa699 246 */
c9e664f1
RW
247
248static gfp_t saved_gfp_mask;
249
250void pm_restore_gfp_mask(void)
452aa699 251{
55f2503c 252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
253 if (saved_gfp_mask) {
254 gfp_allowed_mask = saved_gfp_mask;
255 saved_gfp_mask = 0;
256 }
452aa699
RW
257}
258
c9e664f1 259void pm_restrict_gfp_mask(void)
452aa699 260{
55f2503c 261 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
262 WARN_ON(saved_gfp_mask);
263 saved_gfp_mask = gfp_allowed_mask;
d0164adc 264 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 265}
f90ac398
MG
266
267bool pm_suspended_storage(void)
268{
d0164adc 269 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
270 return false;
271 return true;
272}
452aa699
RW
273#endif /* CONFIG_PM_SLEEP */
274
d9c23400 275#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 276unsigned int pageblock_order __read_mostly;
d9c23400
MG
277#endif
278
7fef431b
DH
279static void __free_pages_ok(struct page *page, unsigned int order,
280 fpi_t fpi_flags);
a226f6c8 281
1da177e4
LT
282/*
283 * results with 256, 32 in the lowmem_reserve sysctl:
284 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
285 * 1G machine -> (16M dma, 784M normal, 224M high)
286 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
287 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 288 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
289 *
290 * TBD: should special case ZONE_DMA32 machines here - in those we normally
291 * don't need any ZONE_NORMAL reservation
1da177e4 292 */
d3cda233 293int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 294#ifdef CONFIG_ZONE_DMA
d3cda233 295 [ZONE_DMA] = 256,
4b51d669 296#endif
fb0e7942 297#ifdef CONFIG_ZONE_DMA32
d3cda233 298 [ZONE_DMA32] = 256,
fb0e7942 299#endif
d3cda233 300 [ZONE_NORMAL] = 32,
e53ef38d 301#ifdef CONFIG_HIGHMEM
d3cda233 302 [ZONE_HIGHMEM] = 0,
e53ef38d 303#endif
d3cda233 304 [ZONE_MOVABLE] = 0,
2f1b6248 305};
1da177e4 306
15ad7cdc 307static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 308#ifdef CONFIG_ZONE_DMA
2f1b6248 309 "DMA",
4b51d669 310#endif
fb0e7942 311#ifdef CONFIG_ZONE_DMA32
2f1b6248 312 "DMA32",
fb0e7942 313#endif
2f1b6248 314 "Normal",
e53ef38d 315#ifdef CONFIG_HIGHMEM
2a1e274a 316 "HighMem",
e53ef38d 317#endif
2a1e274a 318 "Movable",
033fbae9
DW
319#ifdef CONFIG_ZONE_DEVICE
320 "Device",
321#endif
2f1b6248
CL
322};
323
c999fbd3 324const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
325 "Unmovable",
326 "Movable",
327 "Reclaimable",
328 "HighAtomic",
329#ifdef CONFIG_CMA
330 "CMA",
331#endif
332#ifdef CONFIG_MEMORY_ISOLATION
333 "Isolate",
334#endif
335};
336
ae70eddd
AK
337compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
338 [NULL_COMPOUND_DTOR] = NULL,
339 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 340#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 341 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 342#endif
9a982250 343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 344 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 345#endif
f1e61557
KS
346};
347
1da177e4 348int min_free_kbytes = 1024;
42aa83cb 349int user_min_free_kbytes = -1;
24512228
MG
350#ifdef CONFIG_DISCONTIGMEM
351/*
352 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
353 * are not on separate NUMA nodes. Functionally this works but with
354 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
355 * quite small. By default, do not boost watermarks on discontigmem as in
356 * many cases very high-order allocations like THP are likely to be
357 * unsupported and the premature reclaim offsets the advantage of long-term
358 * fragmentation avoidance.
359 */
360int watermark_boost_factor __read_mostly;
361#else
1c30844d 362int watermark_boost_factor __read_mostly = 15000;
24512228 363#endif
795ae7a0 364int watermark_scale_factor = 10;
1da177e4 365
bbe5d993
OS
366static unsigned long nr_kernel_pages __initdata;
367static unsigned long nr_all_pages __initdata;
368static unsigned long dma_reserve __initdata;
1da177e4 369
bbe5d993
OS
370static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
371static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 372static unsigned long required_kernelcore __initdata;
a5c6d650 373static unsigned long required_kernelcore_percent __initdata;
7f16f91f 374static unsigned long required_movablecore __initdata;
a5c6d650 375static unsigned long required_movablecore_percent __initdata;
bbe5d993 376static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 377static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
378
379/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
380int movable_zone;
381EXPORT_SYMBOL(movable_zone);
c713216d 382
418508c1 383#if MAX_NUMNODES > 1
b9726c26 384unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 385unsigned int nr_online_nodes __read_mostly = 1;
418508c1 386EXPORT_SYMBOL(nr_node_ids);
62bc62a8 387EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
388#endif
389
9ef9acb0
MG
390int page_group_by_mobility_disabled __read_mostly;
391
3a80a7fa 392#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
393/*
394 * During boot we initialize deferred pages on-demand, as needed, but once
395 * page_alloc_init_late() has finished, the deferred pages are all initialized,
396 * and we can permanently disable that path.
397 */
398static DEFINE_STATIC_KEY_TRUE(deferred_pages);
399
400/*
401 * Calling kasan_free_pages() only after deferred memory initialization
402 * has completed. Poisoning pages during deferred memory init will greatly
403 * lengthen the process and cause problem in large memory systems as the
404 * deferred pages initialization is done with interrupt disabled.
405 *
406 * Assuming that there will be no reference to those newly initialized
407 * pages before they are ever allocated, this should have no effect on
408 * KASAN memory tracking as the poison will be properly inserted at page
409 * allocation time. The only corner case is when pages are allocated by
410 * on-demand allocation and then freed again before the deferred pages
411 * initialization is done, but this is not likely to happen.
412 */
413static inline void kasan_free_nondeferred_pages(struct page *page, int order)
414{
415 if (!static_branch_unlikely(&deferred_pages))
416 kasan_free_pages(page, order);
417}
418
3a80a7fa 419/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 420static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 421{
ef70b6f4
MG
422 int nid = early_pfn_to_nid(pfn);
423
424 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
425 return true;
426
427 return false;
428}
429
430/*
d3035be4 431 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
432 * later in the boot cycle when it can be parallelised.
433 */
d3035be4
PT
434static bool __meminit
435defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 436{
d3035be4
PT
437 static unsigned long prev_end_pfn, nr_initialised;
438
439 /*
440 * prev_end_pfn static that contains the end of previous zone
441 * No need to protect because called very early in boot before smp_init.
442 */
443 if (prev_end_pfn != end_pfn) {
444 prev_end_pfn = end_pfn;
445 nr_initialised = 0;
446 }
447
3c2c6488 448 /* Always populate low zones for address-constrained allocations */
d3035be4 449 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 450 return false;
23b68cfa
WY
451
452 /*
453 * We start only with one section of pages, more pages are added as
454 * needed until the rest of deferred pages are initialized.
455 */
d3035be4 456 nr_initialised++;
23b68cfa 457 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
458 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
459 NODE_DATA(nid)->first_deferred_pfn = pfn;
460 return true;
3a80a7fa 461 }
d3035be4 462 return false;
3a80a7fa
MG
463}
464#else
3c0c12cc
WL
465#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
466
3a80a7fa
MG
467static inline bool early_page_uninitialised(unsigned long pfn)
468{
469 return false;
470}
471
d3035be4 472static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 473{
d3035be4 474 return false;
3a80a7fa
MG
475}
476#endif
477
0b423ca2
MG
478/* Return a pointer to the bitmap storing bits affecting a block of pages */
479static inline unsigned long *get_pageblock_bitmap(struct page *page,
480 unsigned long pfn)
481{
482#ifdef CONFIG_SPARSEMEM
f1eca35a 483 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
484#else
485 return page_zone(page)->pageblock_flags;
486#endif /* CONFIG_SPARSEMEM */
487}
488
489static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
490{
491#ifdef CONFIG_SPARSEMEM
492 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
493#else
494 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 495#endif /* CONFIG_SPARSEMEM */
399b795b 496 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
497}
498
499/**
500 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
501 * @page: The page within the block of interest
502 * @pfn: The target page frame number
0b423ca2
MG
503 * @mask: mask of bits that the caller is interested in
504 *
505 * Return: pageblock_bits flags
506 */
535b81e2
WY
507static __always_inline
508unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 509 unsigned long pfn,
0b423ca2
MG
510 unsigned long mask)
511{
512 unsigned long *bitmap;
513 unsigned long bitidx, word_bitidx;
514 unsigned long word;
515
516 bitmap = get_pageblock_bitmap(page, pfn);
517 bitidx = pfn_to_bitidx(page, pfn);
518 word_bitidx = bitidx / BITS_PER_LONG;
519 bitidx &= (BITS_PER_LONG-1);
520
521 word = bitmap[word_bitidx];
d93d5ab9 522 return (word >> bitidx) & mask;
0b423ca2
MG
523}
524
525unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
526 unsigned long mask)
527{
535b81e2 528 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
529}
530
531static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
532{
535b81e2 533 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
534}
535
536/**
537 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
538 * @page: The page within the block of interest
539 * @flags: The flags to set
540 * @pfn: The target page frame number
0b423ca2
MG
541 * @mask: mask of bits that the caller is interested in
542 */
543void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
544 unsigned long pfn,
0b423ca2
MG
545 unsigned long mask)
546{
547 unsigned long *bitmap;
548 unsigned long bitidx, word_bitidx;
549 unsigned long old_word, word;
550
551 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 552 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
553
554 bitmap = get_pageblock_bitmap(page, pfn);
555 bitidx = pfn_to_bitidx(page, pfn);
556 word_bitidx = bitidx / BITS_PER_LONG;
557 bitidx &= (BITS_PER_LONG-1);
558
559 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
560
d93d5ab9
WY
561 mask <<= bitidx;
562 flags <<= bitidx;
0b423ca2
MG
563
564 word = READ_ONCE(bitmap[word_bitidx]);
565 for (;;) {
566 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
567 if (word == old_word)
568 break;
569 word = old_word;
570 }
571}
3a80a7fa 572
ee6f509c 573void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 574{
5d0f3f72
KM
575 if (unlikely(page_group_by_mobility_disabled &&
576 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
577 migratetype = MIGRATE_UNMOVABLE;
578
d93d5ab9 579 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 580 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
581}
582
13e7444b 583#ifdef CONFIG_DEBUG_VM
c6a57e19 584static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 585{
bdc8cb98
DH
586 int ret = 0;
587 unsigned seq;
588 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 589 unsigned long sp, start_pfn;
c6a57e19 590
bdc8cb98
DH
591 do {
592 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
593 start_pfn = zone->zone_start_pfn;
594 sp = zone->spanned_pages;
108bcc96 595 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
596 ret = 1;
597 } while (zone_span_seqretry(zone, seq));
598
b5e6a5a2 599 if (ret)
613813e8
DH
600 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
601 pfn, zone_to_nid(zone), zone->name,
602 start_pfn, start_pfn + sp);
b5e6a5a2 603
bdc8cb98 604 return ret;
c6a57e19
DH
605}
606
607static int page_is_consistent(struct zone *zone, struct page *page)
608{
14e07298 609 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 610 return 0;
1da177e4 611 if (zone != page_zone(page))
c6a57e19
DH
612 return 0;
613
614 return 1;
615}
616/*
617 * Temporary debugging check for pages not lying within a given zone.
618 */
d73d3c9f 619static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
620{
621 if (page_outside_zone_boundaries(zone, page))
1da177e4 622 return 1;
c6a57e19
DH
623 if (!page_is_consistent(zone, page))
624 return 1;
625
1da177e4
LT
626 return 0;
627}
13e7444b 628#else
d73d3c9f 629static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
630{
631 return 0;
632}
633#endif
634
82a3241a 635static void bad_page(struct page *page, const char *reason)
1da177e4 636{
d936cf9b
HD
637 static unsigned long resume;
638 static unsigned long nr_shown;
639 static unsigned long nr_unshown;
640
641 /*
642 * Allow a burst of 60 reports, then keep quiet for that minute;
643 * or allow a steady drip of one report per second.
644 */
645 if (nr_shown == 60) {
646 if (time_before(jiffies, resume)) {
647 nr_unshown++;
648 goto out;
649 }
650 if (nr_unshown) {
ff8e8116 651 pr_alert(
1e9e6365 652 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
653 nr_unshown);
654 nr_unshown = 0;
655 }
656 nr_shown = 0;
657 }
658 if (nr_shown++ == 0)
659 resume = jiffies + 60 * HZ;
660
ff8e8116 661 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 662 current->comm, page_to_pfn(page));
ff8e8116 663 __dump_page(page, reason);
4e462112 664 dump_page_owner(page);
3dc14741 665
4f31888c 666 print_modules();
1da177e4 667 dump_stack();
d936cf9b 668out:
8cc3b392 669 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 670 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 671 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
672}
673
1da177e4
LT
674/*
675 * Higher-order pages are called "compound pages". They are structured thusly:
676 *
1d798ca3 677 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 678 *
1d798ca3
KS
679 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
680 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 681 *
1d798ca3
KS
682 * The first tail page's ->compound_dtor holds the offset in array of compound
683 * page destructors. See compound_page_dtors.
1da177e4 684 *
1d798ca3 685 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 686 * This usage means that zero-order pages may not be compound.
1da177e4 687 */
d98c7a09 688
9a982250 689void free_compound_page(struct page *page)
d98c7a09 690{
7ae88534 691 mem_cgroup_uncharge(page);
7fef431b 692 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
693}
694
d00181b9 695void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
696{
697 int i;
698 int nr_pages = 1 << order;
699
18229df5
AW
700 __SetPageHead(page);
701 for (i = 1; i < nr_pages; i++) {
702 struct page *p = page + i;
58a84aa9 703 set_page_count(p, 0);
1c290f64 704 p->mapping = TAIL_MAPPING;
1d798ca3 705 set_compound_head(p, page);
18229df5 706 }
1378a5ee
MWO
707
708 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
709 set_compound_order(page, order);
53f9263b 710 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
711 if (hpage_pincount_available(page))
712 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
713}
714
c0a32fc5
SG
715#ifdef CONFIG_DEBUG_PAGEALLOC
716unsigned int _debug_guardpage_minorder;
96a2b03f 717
8e57f8ac
VB
718bool _debug_pagealloc_enabled_early __read_mostly
719 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
720EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 721DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 722EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
723
724DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 725
031bc574
JK
726static int __init early_debug_pagealloc(char *buf)
727{
8e57f8ac 728 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
729}
730early_param("debug_pagealloc", early_debug_pagealloc);
731
8e57f8ac 732void init_debug_pagealloc(void)
e30825f1 733{
031bc574
JK
734 if (!debug_pagealloc_enabled())
735 return;
736
8e57f8ac
VB
737 static_branch_enable(&_debug_pagealloc_enabled);
738
f1c1e9f7
JK
739 if (!debug_guardpage_minorder())
740 return;
741
96a2b03f 742 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
743}
744
c0a32fc5
SG
745static int __init debug_guardpage_minorder_setup(char *buf)
746{
747 unsigned long res;
748
749 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 750 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
751 return 0;
752 }
753 _debug_guardpage_minorder = res;
1170532b 754 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
755 return 0;
756}
f1c1e9f7 757early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 758
acbc15a4 759static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 760 unsigned int order, int migratetype)
c0a32fc5 761{
e30825f1 762 if (!debug_guardpage_enabled())
acbc15a4
JK
763 return false;
764
765 if (order >= debug_guardpage_minorder())
766 return false;
e30825f1 767
3972f6bb 768 __SetPageGuard(page);
2847cf95
JK
769 INIT_LIST_HEAD(&page->lru);
770 set_page_private(page, order);
771 /* Guard pages are not available for any usage */
772 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
773
774 return true;
c0a32fc5
SG
775}
776
2847cf95
JK
777static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype)
c0a32fc5 779{
e30825f1
JK
780 if (!debug_guardpage_enabled())
781 return;
782
3972f6bb 783 __ClearPageGuard(page);
e30825f1 784
2847cf95
JK
785 set_page_private(page, 0);
786 if (!is_migrate_isolate(migratetype))
787 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
788}
789#else
acbc15a4
JK
790static inline bool set_page_guard(struct zone *zone, struct page *page,
791 unsigned int order, int migratetype) { return false; }
2847cf95
JK
792static inline void clear_page_guard(struct zone *zone, struct page *page,
793 unsigned int order, int migratetype) {}
c0a32fc5
SG
794#endif
795
ab130f91 796static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 797{
4c21e2f2 798 set_page_private(page, order);
676165a8 799 __SetPageBuddy(page);
1da177e4
LT
800}
801
1da177e4
LT
802/*
803 * This function checks whether a page is free && is the buddy
6e292b9b 804 * we can coalesce a page and its buddy if
13ad59df 805 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 806 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
807 * (c) a page and its buddy have the same order &&
808 * (d) a page and its buddy are in the same zone.
676165a8 809 *
6e292b9b
MW
810 * For recording whether a page is in the buddy system, we set PageBuddy.
811 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 812 *
676165a8 813 * For recording page's order, we use page_private(page).
1da177e4 814 */
fe925c0c 815static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 816 unsigned int order)
1da177e4 817{
fe925c0c 818 if (!page_is_guard(buddy) && !PageBuddy(buddy))
819 return false;
4c5018ce 820
ab130f91 821 if (buddy_order(buddy) != order)
fe925c0c 822 return false;
c0a32fc5 823
fe925c0c 824 /*
825 * zone check is done late to avoid uselessly calculating
826 * zone/node ids for pages that could never merge.
827 */
828 if (page_zone_id(page) != page_zone_id(buddy))
829 return false;
d34c5fa0 830
fe925c0c 831 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 832
fe925c0c 833 return true;
1da177e4
LT
834}
835
5e1f0f09
MG
836#ifdef CONFIG_COMPACTION
837static inline struct capture_control *task_capc(struct zone *zone)
838{
839 struct capture_control *capc = current->capture_control;
840
deba0487 841 return unlikely(capc) &&
5e1f0f09
MG
842 !(current->flags & PF_KTHREAD) &&
843 !capc->page &&
deba0487 844 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
845}
846
847static inline bool
848compaction_capture(struct capture_control *capc, struct page *page,
849 int order, int migratetype)
850{
851 if (!capc || order != capc->cc->order)
852 return false;
853
854 /* Do not accidentally pollute CMA or isolated regions*/
855 if (is_migrate_cma(migratetype) ||
856 is_migrate_isolate(migratetype))
857 return false;
858
859 /*
860 * Do not let lower order allocations polluate a movable pageblock.
861 * This might let an unmovable request use a reclaimable pageblock
862 * and vice-versa but no more than normal fallback logic which can
863 * have trouble finding a high-order free page.
864 */
865 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
866 return false;
867
868 capc->page = page;
869 return true;
870}
871
872#else
873static inline struct capture_control *task_capc(struct zone *zone)
874{
875 return NULL;
876}
877
878static inline bool
879compaction_capture(struct capture_control *capc, struct page *page,
880 int order, int migratetype)
881{
882 return false;
883}
884#endif /* CONFIG_COMPACTION */
885
6ab01363
AD
886/* Used for pages not on another list */
887static inline void add_to_free_list(struct page *page, struct zone *zone,
888 unsigned int order, int migratetype)
889{
890 struct free_area *area = &zone->free_area[order];
891
892 list_add(&page->lru, &area->free_list[migratetype]);
893 area->nr_free++;
894}
895
896/* Used for pages not on another list */
897static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
898 unsigned int order, int migratetype)
899{
900 struct free_area *area = &zone->free_area[order];
901
902 list_add_tail(&page->lru, &area->free_list[migratetype]);
903 area->nr_free++;
904}
905
293ffa5e
DH
906/*
907 * Used for pages which are on another list. Move the pages to the tail
908 * of the list - so the moved pages won't immediately be considered for
909 * allocation again (e.g., optimization for memory onlining).
910 */
6ab01363
AD
911static inline void move_to_free_list(struct page *page, struct zone *zone,
912 unsigned int order, int migratetype)
913{
914 struct free_area *area = &zone->free_area[order];
915
293ffa5e 916 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
917}
918
919static inline void del_page_from_free_list(struct page *page, struct zone *zone,
920 unsigned int order)
921{
36e66c55
AD
922 /* clear reported state and update reported page count */
923 if (page_reported(page))
924 __ClearPageReported(page);
925
6ab01363
AD
926 list_del(&page->lru);
927 __ClearPageBuddy(page);
928 set_page_private(page, 0);
929 zone->free_area[order].nr_free--;
930}
931
a2129f24
AD
932/*
933 * If this is not the largest possible page, check if the buddy
934 * of the next-highest order is free. If it is, it's possible
935 * that pages are being freed that will coalesce soon. In case,
936 * that is happening, add the free page to the tail of the list
937 * so it's less likely to be used soon and more likely to be merged
938 * as a higher order page
939 */
940static inline bool
941buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
942 struct page *page, unsigned int order)
943{
944 struct page *higher_page, *higher_buddy;
945 unsigned long combined_pfn;
946
947 if (order >= MAX_ORDER - 2)
948 return false;
949
950 if (!pfn_valid_within(buddy_pfn))
951 return false;
952
953 combined_pfn = buddy_pfn & pfn;
954 higher_page = page + (combined_pfn - pfn);
955 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
956 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
957
958 return pfn_valid_within(buddy_pfn) &&
959 page_is_buddy(higher_page, higher_buddy, order + 1);
960}
961
1da177e4
LT
962/*
963 * Freeing function for a buddy system allocator.
964 *
965 * The concept of a buddy system is to maintain direct-mapped table
966 * (containing bit values) for memory blocks of various "orders".
967 * The bottom level table contains the map for the smallest allocatable
968 * units of memory (here, pages), and each level above it describes
969 * pairs of units from the levels below, hence, "buddies".
970 * At a high level, all that happens here is marking the table entry
971 * at the bottom level available, and propagating the changes upward
972 * as necessary, plus some accounting needed to play nicely with other
973 * parts of the VM system.
974 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
975 * free pages of length of (1 << order) and marked with PageBuddy.
976 * Page's order is recorded in page_private(page) field.
1da177e4 977 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
978 * other. That is, if we allocate a small block, and both were
979 * free, the remainder of the region must be split into blocks.
1da177e4 980 * If a block is freed, and its buddy is also free, then this
5f63b720 981 * triggers coalescing into a block of larger size.
1da177e4 982 *
6d49e352 983 * -- nyc
1da177e4
LT
984 */
985
48db57f8 986static inline void __free_one_page(struct page *page,
dc4b0caf 987 unsigned long pfn,
ed0ae21d 988 struct zone *zone, unsigned int order,
f04a5d5d 989 int migratetype, fpi_t fpi_flags)
1da177e4 990{
a2129f24 991 struct capture_control *capc = task_capc(zone);
3f649ab7 992 unsigned long buddy_pfn;
a2129f24 993 unsigned long combined_pfn;
d9dddbf5 994 unsigned int max_order;
a2129f24
AD
995 struct page *buddy;
996 bool to_tail;
d9dddbf5
VB
997
998 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 999
d29bb978 1000 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1001 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1002
ed0ae21d 1003 VM_BUG_ON(migratetype == -1);
d9dddbf5 1004 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1005 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1006
76741e77 1007 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1008 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1009
d9dddbf5 1010continue_merging:
3c605096 1011 while (order < max_order - 1) {
5e1f0f09
MG
1012 if (compaction_capture(capc, page, order, migratetype)) {
1013 __mod_zone_freepage_state(zone, -(1 << order),
1014 migratetype);
1015 return;
1016 }
76741e77
VB
1017 buddy_pfn = __find_buddy_pfn(pfn, order);
1018 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1019
1020 if (!pfn_valid_within(buddy_pfn))
1021 goto done_merging;
cb2b95e1 1022 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1023 goto done_merging;
c0a32fc5
SG
1024 /*
1025 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1026 * merge with it and move up one order.
1027 */
b03641af 1028 if (page_is_guard(buddy))
2847cf95 1029 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1030 else
6ab01363 1031 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1032 combined_pfn = buddy_pfn & pfn;
1033 page = page + (combined_pfn - pfn);
1034 pfn = combined_pfn;
1da177e4
LT
1035 order++;
1036 }
d9dddbf5
VB
1037 if (max_order < MAX_ORDER) {
1038 /* If we are here, it means order is >= pageblock_order.
1039 * We want to prevent merge between freepages on isolate
1040 * pageblock and normal pageblock. Without this, pageblock
1041 * isolation could cause incorrect freepage or CMA accounting.
1042 *
1043 * We don't want to hit this code for the more frequent
1044 * low-order merging.
1045 */
1046 if (unlikely(has_isolate_pageblock(zone))) {
1047 int buddy_mt;
1048
76741e77
VB
1049 buddy_pfn = __find_buddy_pfn(pfn, order);
1050 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1051 buddy_mt = get_pageblock_migratetype(buddy);
1052
1053 if (migratetype != buddy_mt
1054 && (is_migrate_isolate(migratetype) ||
1055 is_migrate_isolate(buddy_mt)))
1056 goto done_merging;
1057 }
1058 max_order++;
1059 goto continue_merging;
1060 }
1061
1062done_merging:
ab130f91 1063 set_buddy_order(page, order);
6dda9d55 1064
47b6a24a
DH
1065 if (fpi_flags & FPI_TO_TAIL)
1066 to_tail = true;
1067 else if (is_shuffle_order(order))
a2129f24 1068 to_tail = shuffle_pick_tail();
97500a4a 1069 else
a2129f24 1070 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1071
a2129f24 1072 if (to_tail)
6ab01363 1073 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1074 else
6ab01363 1075 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1076
1077 /* Notify page reporting subsystem of freed page */
f04a5d5d 1078 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1079 page_reporting_notify_free(order);
1da177e4
LT
1080}
1081
7bfec6f4
MG
1082/*
1083 * A bad page could be due to a number of fields. Instead of multiple branches,
1084 * try and check multiple fields with one check. The caller must do a detailed
1085 * check if necessary.
1086 */
1087static inline bool page_expected_state(struct page *page,
1088 unsigned long check_flags)
1089{
1090 if (unlikely(atomic_read(&page->_mapcount) != -1))
1091 return false;
1092
1093 if (unlikely((unsigned long)page->mapping |
1094 page_ref_count(page) |
1095#ifdef CONFIG_MEMCG
1096 (unsigned long)page->mem_cgroup |
1097#endif
1098 (page->flags & check_flags)))
1099 return false;
1100
1101 return true;
1102}
1103
58b7f119 1104static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1105{
82a3241a 1106 const char *bad_reason = NULL;
f0b791a3 1107
53f9263b 1108 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1109 bad_reason = "nonzero mapcount";
1110 if (unlikely(page->mapping != NULL))
1111 bad_reason = "non-NULL mapping";
fe896d18 1112 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1113 bad_reason = "nonzero _refcount";
58b7f119
WY
1114 if (unlikely(page->flags & flags)) {
1115 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1116 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1117 else
1118 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1119 }
9edad6ea
JW
1120#ifdef CONFIG_MEMCG
1121 if (unlikely(page->mem_cgroup))
1122 bad_reason = "page still charged to cgroup";
1123#endif
58b7f119
WY
1124 return bad_reason;
1125}
1126
1127static void check_free_page_bad(struct page *page)
1128{
1129 bad_page(page,
1130 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1131}
1132
534fe5e3 1133static inline int check_free_page(struct page *page)
bb552ac6 1134{
da838d4f 1135 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1136 return 0;
bb552ac6
MG
1137
1138 /* Something has gone sideways, find it */
0d0c48a2 1139 check_free_page_bad(page);
7bfec6f4 1140 return 1;
1da177e4
LT
1141}
1142
4db7548c
MG
1143static int free_tail_pages_check(struct page *head_page, struct page *page)
1144{
1145 int ret = 1;
1146
1147 /*
1148 * We rely page->lru.next never has bit 0 set, unless the page
1149 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1150 */
1151 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1152
1153 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1154 ret = 0;
1155 goto out;
1156 }
1157 switch (page - head_page) {
1158 case 1:
4da1984e 1159 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1160 if (unlikely(compound_mapcount(page))) {
82a3241a 1161 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1162 goto out;
1163 }
1164 break;
1165 case 2:
1166 /*
1167 * the second tail page: ->mapping is
fa3015b7 1168 * deferred_list.next -- ignore value.
4db7548c
MG
1169 */
1170 break;
1171 default:
1172 if (page->mapping != TAIL_MAPPING) {
82a3241a 1173 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1174 goto out;
1175 }
1176 break;
1177 }
1178 if (unlikely(!PageTail(page))) {
82a3241a 1179 bad_page(page, "PageTail not set");
4db7548c
MG
1180 goto out;
1181 }
1182 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1183 bad_page(page, "compound_head not consistent");
4db7548c
MG
1184 goto out;
1185 }
1186 ret = 0;
1187out:
1188 page->mapping = NULL;
1189 clear_compound_head(page);
1190 return ret;
1191}
1192
6471384a
AP
1193static void kernel_init_free_pages(struct page *page, int numpages)
1194{
1195 int i;
1196
9e15afa5
QC
1197 /* s390's use of memset() could override KASAN redzones. */
1198 kasan_disable_current();
6471384a
AP
1199 for (i = 0; i < numpages; i++)
1200 clear_highpage(page + i);
9e15afa5 1201 kasan_enable_current();
6471384a
AP
1202}
1203
e2769dbd
MG
1204static __always_inline bool free_pages_prepare(struct page *page,
1205 unsigned int order, bool check_free)
4db7548c 1206{
e2769dbd 1207 int bad = 0;
4db7548c 1208
4db7548c
MG
1209 VM_BUG_ON_PAGE(PageTail(page), page);
1210
e2769dbd 1211 trace_mm_page_free(page, order);
e2769dbd 1212
79f5f8fa
OS
1213 if (unlikely(PageHWPoison(page)) && !order) {
1214 /*
1215 * Do not let hwpoison pages hit pcplists/buddy
1216 * Untie memcg state and reset page's owner
1217 */
1218 if (memcg_kmem_enabled() && PageKmemcg(page))
1219 __memcg_kmem_uncharge_page(page, order);
1220 reset_page_owner(page, order);
1221 return false;
1222 }
1223
e2769dbd
MG
1224 /*
1225 * Check tail pages before head page information is cleared to
1226 * avoid checking PageCompound for order-0 pages.
1227 */
1228 if (unlikely(order)) {
1229 bool compound = PageCompound(page);
1230 int i;
1231
1232 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1233
9a73f61b
KS
1234 if (compound)
1235 ClearPageDoubleMap(page);
e2769dbd
MG
1236 for (i = 1; i < (1 << order); i++) {
1237 if (compound)
1238 bad += free_tail_pages_check(page, page + i);
534fe5e3 1239 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1240 bad++;
1241 continue;
1242 }
1243 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1244 }
1245 }
bda807d4 1246 if (PageMappingFlags(page))
4db7548c 1247 page->mapping = NULL;
c4159a75 1248 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1249 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1250 if (check_free)
534fe5e3 1251 bad += check_free_page(page);
e2769dbd
MG
1252 if (bad)
1253 return false;
4db7548c 1254
e2769dbd
MG
1255 page_cpupid_reset_last(page);
1256 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1257 reset_page_owner(page, order);
4db7548c
MG
1258
1259 if (!PageHighMem(page)) {
1260 debug_check_no_locks_freed(page_address(page),
e2769dbd 1261 PAGE_SIZE << order);
4db7548c 1262 debug_check_no_obj_freed(page_address(page),
e2769dbd 1263 PAGE_SIZE << order);
4db7548c 1264 }
6471384a
AP
1265 if (want_init_on_free())
1266 kernel_init_free_pages(page, 1 << order);
1267
e2769dbd 1268 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1269 /*
1270 * arch_free_page() can make the page's contents inaccessible. s390
1271 * does this. So nothing which can access the page's contents should
1272 * happen after this.
1273 */
1274 arch_free_page(page, order);
1275
77bc7fd6 1276 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1277
3c0c12cc 1278 kasan_free_nondeferred_pages(page, order);
4db7548c 1279
4db7548c
MG
1280 return true;
1281}
1282
e2769dbd 1283#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1284/*
1285 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1286 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1287 * moved from pcp lists to free lists.
1288 */
1289static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1290{
1291 return free_pages_prepare(page, 0, true);
1292}
1293
4462b32c 1294static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1295{
8e57f8ac 1296 if (debug_pagealloc_enabled_static())
534fe5e3 1297 return check_free_page(page);
4462b32c
VB
1298 else
1299 return false;
e2769dbd
MG
1300}
1301#else
4462b32c
VB
1302/*
1303 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1304 * moving from pcp lists to free list in order to reduce overhead. With
1305 * debug_pagealloc enabled, they are checked also immediately when being freed
1306 * to the pcp lists.
1307 */
e2769dbd
MG
1308static bool free_pcp_prepare(struct page *page)
1309{
8e57f8ac 1310 if (debug_pagealloc_enabled_static())
4462b32c
VB
1311 return free_pages_prepare(page, 0, true);
1312 else
1313 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1314}
1315
4db7548c
MG
1316static bool bulkfree_pcp_prepare(struct page *page)
1317{
534fe5e3 1318 return check_free_page(page);
4db7548c
MG
1319}
1320#endif /* CONFIG_DEBUG_VM */
1321
97334162
AL
1322static inline void prefetch_buddy(struct page *page)
1323{
1324 unsigned long pfn = page_to_pfn(page);
1325 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1326 struct page *buddy = page + (buddy_pfn - pfn);
1327
1328 prefetch(buddy);
1329}
1330
1da177e4 1331/*
5f8dcc21 1332 * Frees a number of pages from the PCP lists
1da177e4 1333 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1334 * count is the number of pages to free.
1da177e4
LT
1335 *
1336 * If the zone was previously in an "all pages pinned" state then look to
1337 * see if this freeing clears that state.
1338 *
1339 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1340 * pinned" detection logic.
1341 */
5f8dcc21
MG
1342static void free_pcppages_bulk(struct zone *zone, int count,
1343 struct per_cpu_pages *pcp)
1da177e4 1344{
5f8dcc21 1345 int migratetype = 0;
a6f9edd6 1346 int batch_free = 0;
5c3ad2eb 1347 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1348 bool isolated_pageblocks;
0a5f4e5b
AL
1349 struct page *page, *tmp;
1350 LIST_HEAD(head);
f2260e6b 1351
88e8ac11
CTR
1352 /*
1353 * Ensure proper count is passed which otherwise would stuck in the
1354 * below while (list_empty(list)) loop.
1355 */
1356 count = min(pcp->count, count);
e5b31ac2 1357 while (count) {
5f8dcc21
MG
1358 struct list_head *list;
1359
1360 /*
a6f9edd6
MG
1361 * Remove pages from lists in a round-robin fashion. A
1362 * batch_free count is maintained that is incremented when an
1363 * empty list is encountered. This is so more pages are freed
1364 * off fuller lists instead of spinning excessively around empty
1365 * lists
5f8dcc21
MG
1366 */
1367 do {
a6f9edd6 1368 batch_free++;
5f8dcc21
MG
1369 if (++migratetype == MIGRATE_PCPTYPES)
1370 migratetype = 0;
1371 list = &pcp->lists[migratetype];
1372 } while (list_empty(list));
48db57f8 1373
1d16871d
NK
1374 /* This is the only non-empty list. Free them all. */
1375 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1376 batch_free = count;
1d16871d 1377
a6f9edd6 1378 do {
a16601c5 1379 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1380 /* must delete to avoid corrupting pcp list */
a6f9edd6 1381 list_del(&page->lru);
77ba9062 1382 pcp->count--;
aa016d14 1383
4db7548c
MG
1384 if (bulkfree_pcp_prepare(page))
1385 continue;
1386
0a5f4e5b 1387 list_add_tail(&page->lru, &head);
97334162
AL
1388
1389 /*
1390 * We are going to put the page back to the global
1391 * pool, prefetch its buddy to speed up later access
1392 * under zone->lock. It is believed the overhead of
1393 * an additional test and calculating buddy_pfn here
1394 * can be offset by reduced memory latency later. To
1395 * avoid excessive prefetching due to large count, only
1396 * prefetch buddy for the first pcp->batch nr of pages.
1397 */
5c3ad2eb 1398 if (prefetch_nr) {
97334162 1399 prefetch_buddy(page);
5c3ad2eb
VB
1400 prefetch_nr--;
1401 }
e5b31ac2 1402 } while (--count && --batch_free && !list_empty(list));
1da177e4 1403 }
0a5f4e5b
AL
1404
1405 spin_lock(&zone->lock);
1406 isolated_pageblocks = has_isolate_pageblock(zone);
1407
1408 /*
1409 * Use safe version since after __free_one_page(),
1410 * page->lru.next will not point to original list.
1411 */
1412 list_for_each_entry_safe(page, tmp, &head, lru) {
1413 int mt = get_pcppage_migratetype(page);
1414 /* MIGRATE_ISOLATE page should not go to pcplists */
1415 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1416 /* Pageblock could have been isolated meanwhile */
1417 if (unlikely(isolated_pageblocks))
1418 mt = get_pageblock_migratetype(page);
1419
f04a5d5d 1420 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1421 trace_mm_page_pcpu_drain(page, 0, mt);
1422 }
d34b0733 1423 spin_unlock(&zone->lock);
1da177e4
LT
1424}
1425
dc4b0caf
MG
1426static void free_one_page(struct zone *zone,
1427 struct page *page, unsigned long pfn,
7aeb09f9 1428 unsigned int order,
7fef431b 1429 int migratetype, fpi_t fpi_flags)
1da177e4 1430{
d34b0733 1431 spin_lock(&zone->lock);
ad53f92e
JK
1432 if (unlikely(has_isolate_pageblock(zone) ||
1433 is_migrate_isolate(migratetype))) {
1434 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1435 }
7fef431b 1436 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1437 spin_unlock(&zone->lock);
48db57f8
NP
1438}
1439
1e8ce83c 1440static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1441 unsigned long zone, int nid)
1e8ce83c 1442{
d0dc12e8 1443 mm_zero_struct_page(page);
1e8ce83c 1444 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1445 init_page_count(page);
1446 page_mapcount_reset(page);
1447 page_cpupid_reset_last(page);
2813b9c0 1448 page_kasan_tag_reset(page);
1e8ce83c 1449
1e8ce83c
RH
1450 INIT_LIST_HEAD(&page->lru);
1451#ifdef WANT_PAGE_VIRTUAL
1452 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1453 if (!is_highmem_idx(zone))
1454 set_page_address(page, __va(pfn << PAGE_SHIFT));
1455#endif
1456}
1457
7e18adb4 1458#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1459static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1460{
1461 pg_data_t *pgdat;
1462 int nid, zid;
1463
1464 if (!early_page_uninitialised(pfn))
1465 return;
1466
1467 nid = early_pfn_to_nid(pfn);
1468 pgdat = NODE_DATA(nid);
1469
1470 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1471 struct zone *zone = &pgdat->node_zones[zid];
1472
1473 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1474 break;
1475 }
d0dc12e8 1476 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1477}
1478#else
1479static inline void init_reserved_page(unsigned long pfn)
1480{
1481}
1482#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1483
92923ca3
NZ
1484/*
1485 * Initialised pages do not have PageReserved set. This function is
1486 * called for each range allocated by the bootmem allocator and
1487 * marks the pages PageReserved. The remaining valid pages are later
1488 * sent to the buddy page allocator.
1489 */
4b50bcc7 1490void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1491{
1492 unsigned long start_pfn = PFN_DOWN(start);
1493 unsigned long end_pfn = PFN_UP(end);
1494
7e18adb4
MG
1495 for (; start_pfn < end_pfn; start_pfn++) {
1496 if (pfn_valid(start_pfn)) {
1497 struct page *page = pfn_to_page(start_pfn);
1498
1499 init_reserved_page(start_pfn);
1d798ca3
KS
1500
1501 /* Avoid false-positive PageTail() */
1502 INIT_LIST_HEAD(&page->lru);
1503
d483da5b
AD
1504 /*
1505 * no need for atomic set_bit because the struct
1506 * page is not visible yet so nobody should
1507 * access it yet.
1508 */
1509 __SetPageReserved(page);
7e18adb4
MG
1510 }
1511 }
92923ca3
NZ
1512}
1513
7fef431b
DH
1514static void __free_pages_ok(struct page *page, unsigned int order,
1515 fpi_t fpi_flags)
ec95f53a 1516{
d34b0733 1517 unsigned long flags;
95e34412 1518 int migratetype;
dc4b0caf 1519 unsigned long pfn = page_to_pfn(page);
ec95f53a 1520
e2769dbd 1521 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1522 return;
1523
cfc47a28 1524 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1525 local_irq_save(flags);
1526 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1527 free_one_page(page_zone(page), page, pfn, order, migratetype,
1528 fpi_flags);
d34b0733 1529 local_irq_restore(flags);
1da177e4
LT
1530}
1531
a9cd410a 1532void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1533{
c3993076 1534 unsigned int nr_pages = 1 << order;
e2d0bd2b 1535 struct page *p = page;
c3993076 1536 unsigned int loop;
a226f6c8 1537
7fef431b
DH
1538 /*
1539 * When initializing the memmap, __init_single_page() sets the refcount
1540 * of all pages to 1 ("allocated"/"not free"). We have to set the
1541 * refcount of all involved pages to 0.
1542 */
e2d0bd2b
YL
1543 prefetchw(p);
1544 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1545 prefetchw(p + 1);
c3993076
JW
1546 __ClearPageReserved(p);
1547 set_page_count(p, 0);
a226f6c8 1548 }
e2d0bd2b
YL
1549 __ClearPageReserved(p);
1550 set_page_count(p, 0);
c3993076 1551
9705bea5 1552 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1553
1554 /*
1555 * Bypass PCP and place fresh pages right to the tail, primarily
1556 * relevant for memory onlining.
1557 */
1558 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1559}
1560
3f08a302 1561#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1562
03e92a5e
MR
1563/*
1564 * During memory init memblocks map pfns to nids. The search is expensive and
1565 * this caches recent lookups. The implementation of __early_pfn_to_nid
1566 * treats start/end as pfns.
1567 */
1568struct mminit_pfnnid_cache {
1569 unsigned long last_start;
1570 unsigned long last_end;
1571 int last_nid;
1572};
75a592a4 1573
03e92a5e 1574static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1575
1576/*
1577 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1578 */
03e92a5e 1579static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1580 struct mminit_pfnnid_cache *state)
75a592a4 1581{
6f24fbd3 1582 unsigned long start_pfn, end_pfn;
75a592a4
MG
1583 int nid;
1584
6f24fbd3
MR
1585 if (state->last_start <= pfn && pfn < state->last_end)
1586 return state->last_nid;
1587
1588 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1589 if (nid != NUMA_NO_NODE) {
1590 state->last_start = start_pfn;
1591 state->last_end = end_pfn;
1592 state->last_nid = nid;
1593 }
7ace9917
MG
1594
1595 return nid;
75a592a4 1596}
75a592a4 1597
75a592a4 1598int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1599{
7ace9917 1600 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1601 int nid;
1602
7ace9917 1603 spin_lock(&early_pfn_lock);
56ec43d8 1604 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1605 if (nid < 0)
e4568d38 1606 nid = first_online_node;
7ace9917 1607 spin_unlock(&early_pfn_lock);
75a592a4 1608
7ace9917 1609 return nid;
75a592a4 1610}
3f08a302 1611#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1612
7c2ee349 1613void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1614 unsigned int order)
1615{
1616 if (early_page_uninitialised(pfn))
1617 return;
a9cd410a 1618 __free_pages_core(page, order);
3a80a7fa
MG
1619}
1620
7cf91a98
JK
1621/*
1622 * Check that the whole (or subset of) a pageblock given by the interval of
1623 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1624 * with the migration of free compaction scanner. The scanners then need to
1625 * use only pfn_valid_within() check for arches that allow holes within
1626 * pageblocks.
1627 *
1628 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1629 *
1630 * It's possible on some configurations to have a setup like node0 node1 node0
1631 * i.e. it's possible that all pages within a zones range of pages do not
1632 * belong to a single zone. We assume that a border between node0 and node1
1633 * can occur within a single pageblock, but not a node0 node1 node0
1634 * interleaving within a single pageblock. It is therefore sufficient to check
1635 * the first and last page of a pageblock and avoid checking each individual
1636 * page in a pageblock.
1637 */
1638struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1639 unsigned long end_pfn, struct zone *zone)
1640{
1641 struct page *start_page;
1642 struct page *end_page;
1643
1644 /* end_pfn is one past the range we are checking */
1645 end_pfn--;
1646
1647 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1648 return NULL;
1649
2d070eab
MH
1650 start_page = pfn_to_online_page(start_pfn);
1651 if (!start_page)
1652 return NULL;
7cf91a98
JK
1653
1654 if (page_zone(start_page) != zone)
1655 return NULL;
1656
1657 end_page = pfn_to_page(end_pfn);
1658
1659 /* This gives a shorter code than deriving page_zone(end_page) */
1660 if (page_zone_id(start_page) != page_zone_id(end_page))
1661 return NULL;
1662
1663 return start_page;
1664}
1665
1666void set_zone_contiguous(struct zone *zone)
1667{
1668 unsigned long block_start_pfn = zone->zone_start_pfn;
1669 unsigned long block_end_pfn;
1670
1671 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1672 for (; block_start_pfn < zone_end_pfn(zone);
1673 block_start_pfn = block_end_pfn,
1674 block_end_pfn += pageblock_nr_pages) {
1675
1676 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1677
1678 if (!__pageblock_pfn_to_page(block_start_pfn,
1679 block_end_pfn, zone))
1680 return;
e84fe99b 1681 cond_resched();
7cf91a98
JK
1682 }
1683
1684 /* We confirm that there is no hole */
1685 zone->contiguous = true;
1686}
1687
1688void clear_zone_contiguous(struct zone *zone)
1689{
1690 zone->contiguous = false;
1691}
1692
7e18adb4 1693#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1694static void __init deferred_free_range(unsigned long pfn,
1695 unsigned long nr_pages)
a4de83dd 1696{
2f47a91f
PT
1697 struct page *page;
1698 unsigned long i;
a4de83dd 1699
2f47a91f 1700 if (!nr_pages)
a4de83dd
MG
1701 return;
1702
2f47a91f
PT
1703 page = pfn_to_page(pfn);
1704
a4de83dd 1705 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1706 if (nr_pages == pageblock_nr_pages &&
1707 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1708 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1709 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1710 return;
1711 }
1712
e780149b
XQ
1713 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1714 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1715 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1716 __free_pages_core(page, 0);
e780149b 1717 }
a4de83dd
MG
1718}
1719
d3cd131d
NS
1720/* Completion tracking for deferred_init_memmap() threads */
1721static atomic_t pgdat_init_n_undone __initdata;
1722static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1723
1724static inline void __init pgdat_init_report_one_done(void)
1725{
1726 if (atomic_dec_and_test(&pgdat_init_n_undone))
1727 complete(&pgdat_init_all_done_comp);
1728}
0e1cc95b 1729
2f47a91f 1730/*
80b1f41c
PT
1731 * Returns true if page needs to be initialized or freed to buddy allocator.
1732 *
1733 * First we check if pfn is valid on architectures where it is possible to have
1734 * holes within pageblock_nr_pages. On systems where it is not possible, this
1735 * function is optimized out.
1736 *
1737 * Then, we check if a current large page is valid by only checking the validity
1738 * of the head pfn.
2f47a91f 1739 */
56ec43d8 1740static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1741{
80b1f41c
PT
1742 if (!pfn_valid_within(pfn))
1743 return false;
1744 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1745 return false;
80b1f41c
PT
1746 return true;
1747}
2f47a91f 1748
80b1f41c
PT
1749/*
1750 * Free pages to buddy allocator. Try to free aligned pages in
1751 * pageblock_nr_pages sizes.
1752 */
56ec43d8 1753static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1754 unsigned long end_pfn)
1755{
80b1f41c
PT
1756 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1757 unsigned long nr_free = 0;
2f47a91f 1758
80b1f41c 1759 for (; pfn < end_pfn; pfn++) {
56ec43d8 1760 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1761 deferred_free_range(pfn - nr_free, nr_free);
1762 nr_free = 0;
1763 } else if (!(pfn & nr_pgmask)) {
1764 deferred_free_range(pfn - nr_free, nr_free);
1765 nr_free = 1;
80b1f41c
PT
1766 } else {
1767 nr_free++;
1768 }
1769 }
1770 /* Free the last block of pages to allocator */
1771 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1772}
1773
80b1f41c
PT
1774/*
1775 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1776 * by performing it only once every pageblock_nr_pages.
1777 * Return number of pages initialized.
1778 */
56ec43d8 1779static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1780 unsigned long pfn,
1781 unsigned long end_pfn)
2f47a91f 1782{
2f47a91f 1783 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1784 int nid = zone_to_nid(zone);
2f47a91f 1785 unsigned long nr_pages = 0;
56ec43d8 1786 int zid = zone_idx(zone);
2f47a91f 1787 struct page *page = NULL;
2f47a91f 1788
80b1f41c 1789 for (; pfn < end_pfn; pfn++) {
56ec43d8 1790 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1791 page = NULL;
2f47a91f 1792 continue;
80b1f41c 1793 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1794 page = pfn_to_page(pfn);
80b1f41c
PT
1795 } else {
1796 page++;
2f47a91f 1797 }
d0dc12e8 1798 __init_single_page(page, pfn, zid, nid);
80b1f41c 1799 nr_pages++;
2f47a91f 1800 }
80b1f41c 1801 return (nr_pages);
2f47a91f
PT
1802}
1803
0e56acae
AD
1804/*
1805 * This function is meant to pre-load the iterator for the zone init.
1806 * Specifically it walks through the ranges until we are caught up to the
1807 * first_init_pfn value and exits there. If we never encounter the value we
1808 * return false indicating there are no valid ranges left.
1809 */
1810static bool __init
1811deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1812 unsigned long *spfn, unsigned long *epfn,
1813 unsigned long first_init_pfn)
1814{
1815 u64 j;
1816
1817 /*
1818 * Start out by walking through the ranges in this zone that have
1819 * already been initialized. We don't need to do anything with them
1820 * so we just need to flush them out of the system.
1821 */
1822 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1823 if (*epfn <= first_init_pfn)
1824 continue;
1825 if (*spfn < first_init_pfn)
1826 *spfn = first_init_pfn;
1827 *i = j;
1828 return true;
1829 }
1830
1831 return false;
1832}
1833
1834/*
1835 * Initialize and free pages. We do it in two loops: first we initialize
1836 * struct page, then free to buddy allocator, because while we are
1837 * freeing pages we can access pages that are ahead (computing buddy
1838 * page in __free_one_page()).
1839 *
1840 * In order to try and keep some memory in the cache we have the loop
1841 * broken along max page order boundaries. This way we will not cause
1842 * any issues with the buddy page computation.
1843 */
1844static unsigned long __init
1845deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1846 unsigned long *end_pfn)
1847{
1848 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1849 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1850 unsigned long nr_pages = 0;
1851 u64 j = *i;
1852
1853 /* First we loop through and initialize the page values */
1854 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1855 unsigned long t;
1856
1857 if (mo_pfn <= *start_pfn)
1858 break;
1859
1860 t = min(mo_pfn, *end_pfn);
1861 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1862
1863 if (mo_pfn < *end_pfn) {
1864 *start_pfn = mo_pfn;
1865 break;
1866 }
1867 }
1868
1869 /* Reset values and now loop through freeing pages as needed */
1870 swap(j, *i);
1871
1872 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1873 unsigned long t;
1874
1875 if (mo_pfn <= spfn)
1876 break;
1877
1878 t = min(mo_pfn, epfn);
1879 deferred_free_pages(spfn, t);
1880
1881 if (mo_pfn <= epfn)
1882 break;
1883 }
1884
1885 return nr_pages;
1886}
1887
e4443149
DJ
1888static void __init
1889deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1890 void *arg)
1891{
1892 unsigned long spfn, epfn;
1893 struct zone *zone = arg;
1894 u64 i;
1895
1896 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1897
1898 /*
1899 * Initialize and free pages in MAX_ORDER sized increments so that we
1900 * can avoid introducing any issues with the buddy allocator.
1901 */
1902 while (spfn < end_pfn) {
1903 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1904 cond_resched();
1905 }
1906}
1907
ecd09650
DJ
1908/* An arch may override for more concurrency. */
1909__weak int __init
1910deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1911{
1912 return 1;
1913}
1914
7e18adb4 1915/* Initialise remaining memory on a node */
0e1cc95b 1916static int __init deferred_init_memmap(void *data)
7e18adb4 1917{
0e1cc95b 1918 pg_data_t *pgdat = data;
0e56acae 1919 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1920 unsigned long spfn = 0, epfn = 0;
0e56acae 1921 unsigned long first_init_pfn, flags;
7e18adb4 1922 unsigned long start = jiffies;
7e18adb4 1923 struct zone *zone;
e4443149 1924 int zid, max_threads;
2f47a91f 1925 u64 i;
7e18adb4 1926
3a2d7fa8
PT
1927 /* Bind memory initialisation thread to a local node if possible */
1928 if (!cpumask_empty(cpumask))
1929 set_cpus_allowed_ptr(current, cpumask);
1930
1931 pgdat_resize_lock(pgdat, &flags);
1932 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1933 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1934 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1935 pgdat_init_report_one_done();
0e1cc95b
MG
1936 return 0;
1937 }
1938
7e18adb4
MG
1939 /* Sanity check boundaries */
1940 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1941 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1942 pgdat->first_deferred_pfn = ULONG_MAX;
1943
3d060856
PT
1944 /*
1945 * Once we unlock here, the zone cannot be grown anymore, thus if an
1946 * interrupt thread must allocate this early in boot, zone must be
1947 * pre-grown prior to start of deferred page initialization.
1948 */
1949 pgdat_resize_unlock(pgdat, &flags);
1950
7e18adb4
MG
1951 /* Only the highest zone is deferred so find it */
1952 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1953 zone = pgdat->node_zones + zid;
1954 if (first_init_pfn < zone_end_pfn(zone))
1955 break;
1956 }
0e56acae
AD
1957
1958 /* If the zone is empty somebody else may have cleared out the zone */
1959 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1960 first_init_pfn))
1961 goto zone_empty;
7e18adb4 1962
ecd09650 1963 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1964
117003c3 1965 while (spfn < epfn) {
e4443149
DJ
1966 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1967 struct padata_mt_job job = {
1968 .thread_fn = deferred_init_memmap_chunk,
1969 .fn_arg = zone,
1970 .start = spfn,
1971 .size = epfn_align - spfn,
1972 .align = PAGES_PER_SECTION,
1973 .min_chunk = PAGES_PER_SECTION,
1974 .max_threads = max_threads,
1975 };
1976
1977 padata_do_multithreaded(&job);
1978 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1979 epfn_align);
117003c3 1980 }
0e56acae 1981zone_empty:
7e18adb4
MG
1982 /* Sanity check that the next zone really is unpopulated */
1983 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1984
89c7c402
DJ
1985 pr_info("node %d deferred pages initialised in %ums\n",
1986 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1987
1988 pgdat_init_report_one_done();
0e1cc95b
MG
1989 return 0;
1990}
c9e97a19 1991
c9e97a19
PT
1992/*
1993 * If this zone has deferred pages, try to grow it by initializing enough
1994 * deferred pages to satisfy the allocation specified by order, rounded up to
1995 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1996 * of SECTION_SIZE bytes by initializing struct pages in increments of
1997 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1998 *
1999 * Return true when zone was grown, otherwise return false. We return true even
2000 * when we grow less than requested, to let the caller decide if there are
2001 * enough pages to satisfy the allocation.
2002 *
2003 * Note: We use noinline because this function is needed only during boot, and
2004 * it is called from a __ref function _deferred_grow_zone. This way we are
2005 * making sure that it is not inlined into permanent text section.
2006 */
2007static noinline bool __init
2008deferred_grow_zone(struct zone *zone, unsigned int order)
2009{
c9e97a19 2010 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2011 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2012 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2013 unsigned long spfn, epfn, flags;
2014 unsigned long nr_pages = 0;
c9e97a19
PT
2015 u64 i;
2016
2017 /* Only the last zone may have deferred pages */
2018 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2019 return false;
2020
2021 pgdat_resize_lock(pgdat, &flags);
2022
c9e97a19
PT
2023 /*
2024 * If someone grew this zone while we were waiting for spinlock, return
2025 * true, as there might be enough pages already.
2026 */
2027 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2028 pgdat_resize_unlock(pgdat, &flags);
2029 return true;
2030 }
2031
0e56acae
AD
2032 /* If the zone is empty somebody else may have cleared out the zone */
2033 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2034 first_deferred_pfn)) {
2035 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2036 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2037 /* Retry only once. */
2038 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2039 }
2040
0e56acae
AD
2041 /*
2042 * Initialize and free pages in MAX_ORDER sized increments so
2043 * that we can avoid introducing any issues with the buddy
2044 * allocator.
2045 */
2046 while (spfn < epfn) {
2047 /* update our first deferred PFN for this section */
2048 first_deferred_pfn = spfn;
2049
2050 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2051 touch_nmi_watchdog();
c9e97a19 2052
0e56acae
AD
2053 /* We should only stop along section boundaries */
2054 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2055 continue;
c9e97a19 2056
0e56acae 2057 /* If our quota has been met we can stop here */
c9e97a19
PT
2058 if (nr_pages >= nr_pages_needed)
2059 break;
2060 }
2061
0e56acae 2062 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2063 pgdat_resize_unlock(pgdat, &flags);
2064
2065 return nr_pages > 0;
2066}
2067
2068/*
2069 * deferred_grow_zone() is __init, but it is called from
2070 * get_page_from_freelist() during early boot until deferred_pages permanently
2071 * disables this call. This is why we have refdata wrapper to avoid warning,
2072 * and to ensure that the function body gets unloaded.
2073 */
2074static bool __ref
2075_deferred_grow_zone(struct zone *zone, unsigned int order)
2076{
2077 return deferred_grow_zone(zone, order);
2078}
2079
7cf91a98 2080#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2081
2082void __init page_alloc_init_late(void)
2083{
7cf91a98 2084 struct zone *zone;
e900a918 2085 int nid;
7cf91a98
JK
2086
2087#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2088
d3cd131d
NS
2089 /* There will be num_node_state(N_MEMORY) threads */
2090 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2091 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2092 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2093 }
2094
2095 /* Block until all are initialised */
d3cd131d 2096 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2097
3e8fc007
MG
2098 /*
2099 * The number of managed pages has changed due to the initialisation
2100 * so the pcpu batch and high limits needs to be updated or the limits
2101 * will be artificially small.
2102 */
2103 for_each_populated_zone(zone)
2104 zone_pcp_update(zone);
2105
c9e97a19
PT
2106 /*
2107 * We initialized the rest of the deferred pages. Permanently disable
2108 * on-demand struct page initialization.
2109 */
2110 static_branch_disable(&deferred_pages);
2111
4248b0da
MG
2112 /* Reinit limits that are based on free pages after the kernel is up */
2113 files_maxfiles_init();
7cf91a98 2114#endif
350e88ba 2115
3010f876
PT
2116 /* Discard memblock private memory */
2117 memblock_discard();
7cf91a98 2118
e900a918
DW
2119 for_each_node_state(nid, N_MEMORY)
2120 shuffle_free_memory(NODE_DATA(nid));
2121
7cf91a98
JK
2122 for_each_populated_zone(zone)
2123 set_zone_contiguous(zone);
7e18adb4 2124}
7e18adb4 2125
47118af0 2126#ifdef CONFIG_CMA
9cf510a5 2127/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2128void __init init_cma_reserved_pageblock(struct page *page)
2129{
2130 unsigned i = pageblock_nr_pages;
2131 struct page *p = page;
2132
2133 do {
2134 __ClearPageReserved(p);
2135 set_page_count(p, 0);
d883c6cf 2136 } while (++p, --i);
47118af0 2137
47118af0 2138 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2139
2140 if (pageblock_order >= MAX_ORDER) {
2141 i = pageblock_nr_pages;
2142 p = page;
2143 do {
2144 set_page_refcounted(p);
2145 __free_pages(p, MAX_ORDER - 1);
2146 p += MAX_ORDER_NR_PAGES;
2147 } while (i -= MAX_ORDER_NR_PAGES);
2148 } else {
2149 set_page_refcounted(page);
2150 __free_pages(page, pageblock_order);
2151 }
2152
3dcc0571 2153 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2154}
2155#endif
1da177e4
LT
2156
2157/*
2158 * The order of subdivision here is critical for the IO subsystem.
2159 * Please do not alter this order without good reasons and regression
2160 * testing. Specifically, as large blocks of memory are subdivided,
2161 * the order in which smaller blocks are delivered depends on the order
2162 * they're subdivided in this function. This is the primary factor
2163 * influencing the order in which pages are delivered to the IO
2164 * subsystem according to empirical testing, and this is also justified
2165 * by considering the behavior of a buddy system containing a single
2166 * large block of memory acted on by a series of small allocations.
2167 * This behavior is a critical factor in sglist merging's success.
2168 *
6d49e352 2169 * -- nyc
1da177e4 2170 */
085cc7d5 2171static inline void expand(struct zone *zone, struct page *page,
6ab01363 2172 int low, int high, int migratetype)
1da177e4
LT
2173{
2174 unsigned long size = 1 << high;
2175
2176 while (high > low) {
1da177e4
LT
2177 high--;
2178 size >>= 1;
309381fe 2179 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2180
acbc15a4
JK
2181 /*
2182 * Mark as guard pages (or page), that will allow to
2183 * merge back to allocator when buddy will be freed.
2184 * Corresponding page table entries will not be touched,
2185 * pages will stay not present in virtual address space
2186 */
2187 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2188 continue;
acbc15a4 2189
6ab01363 2190 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2191 set_buddy_order(&page[size], high);
1da177e4 2192 }
1da177e4
LT
2193}
2194
4e611801 2195static void check_new_page_bad(struct page *page)
1da177e4 2196{
f4c18e6f 2197 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2198 /* Don't complain about hwpoisoned pages */
2199 page_mapcount_reset(page); /* remove PageBuddy */
2200 return;
f4c18e6f 2201 }
58b7f119
WY
2202
2203 bad_page(page,
2204 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2205}
2206
2207/*
2208 * This page is about to be returned from the page allocator
2209 */
2210static inline int check_new_page(struct page *page)
2211{
2212 if (likely(page_expected_state(page,
2213 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2214 return 0;
2215
2216 check_new_page_bad(page);
2217 return 1;
2a7684a2
WF
2218}
2219
bd33ef36 2220static inline bool free_pages_prezeroed(void)
1414c7f4 2221{
6471384a
AP
2222 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2223 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2224}
2225
479f854a 2226#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2227/*
2228 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2229 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2230 * also checked when pcp lists are refilled from the free lists.
2231 */
2232static inline bool check_pcp_refill(struct page *page)
479f854a 2233{
8e57f8ac 2234 if (debug_pagealloc_enabled_static())
4462b32c
VB
2235 return check_new_page(page);
2236 else
2237 return false;
479f854a
MG
2238}
2239
4462b32c 2240static inline bool check_new_pcp(struct page *page)
479f854a
MG
2241{
2242 return check_new_page(page);
2243}
2244#else
4462b32c
VB
2245/*
2246 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2247 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2248 * enabled, they are also checked when being allocated from the pcp lists.
2249 */
2250static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2251{
2252 return check_new_page(page);
2253}
4462b32c 2254static inline bool check_new_pcp(struct page *page)
479f854a 2255{
8e57f8ac 2256 if (debug_pagealloc_enabled_static())
4462b32c
VB
2257 return check_new_page(page);
2258 else
2259 return false;
479f854a
MG
2260}
2261#endif /* CONFIG_DEBUG_VM */
2262
2263static bool check_new_pages(struct page *page, unsigned int order)
2264{
2265 int i;
2266 for (i = 0; i < (1 << order); i++) {
2267 struct page *p = page + i;
2268
2269 if (unlikely(check_new_page(p)))
2270 return true;
2271 }
2272
2273 return false;
2274}
2275
46f24fd8
JK
2276inline void post_alloc_hook(struct page *page, unsigned int order,
2277 gfp_t gfp_flags)
2278{
2279 set_page_private(page, 0);
2280 set_page_refcounted(page);
2281
2282 arch_alloc_page(page, order);
77bc7fd6 2283 debug_pagealloc_map_pages(page, 1 << order);
46f24fd8 2284 kasan_alloc_pages(page, order);
4117992d 2285 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2286 set_page_owner(page, order, gfp_flags);
2287}
2288
479f854a 2289static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2290 unsigned int alloc_flags)
2a7684a2 2291{
46f24fd8 2292 post_alloc_hook(page, order, gfp_flags);
17cf4406 2293
6471384a
AP
2294 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2295 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2296
2297 if (order && (gfp_flags & __GFP_COMP))
2298 prep_compound_page(page, order);
2299
75379191 2300 /*
2f064f34 2301 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2302 * allocate the page. The expectation is that the caller is taking
2303 * steps that will free more memory. The caller should avoid the page
2304 * being used for !PFMEMALLOC purposes.
2305 */
2f064f34
MH
2306 if (alloc_flags & ALLOC_NO_WATERMARKS)
2307 set_page_pfmemalloc(page);
2308 else
2309 clear_page_pfmemalloc(page);
1da177e4
LT
2310}
2311
56fd56b8
MG
2312/*
2313 * Go through the free lists for the given migratetype and remove
2314 * the smallest available page from the freelists
2315 */
85ccc8fa 2316static __always_inline
728ec980 2317struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2318 int migratetype)
2319{
2320 unsigned int current_order;
b8af2941 2321 struct free_area *area;
56fd56b8
MG
2322 struct page *page;
2323
2324 /* Find a page of the appropriate size in the preferred list */
2325 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2326 area = &(zone->free_area[current_order]);
b03641af 2327 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2328 if (!page)
2329 continue;
6ab01363
AD
2330 del_page_from_free_list(page, zone, current_order);
2331 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2332 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2333 return page;
2334 }
2335
2336 return NULL;
2337}
2338
2339
b2a0ac88
MG
2340/*
2341 * This array describes the order lists are fallen back to when
2342 * the free lists for the desirable migrate type are depleted
2343 */
da415663 2344static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2345 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2346 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2347 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2348#ifdef CONFIG_CMA
974a786e 2349 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2350#endif
194159fb 2351#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2352 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2353#endif
b2a0ac88
MG
2354};
2355
dc67647b 2356#ifdef CONFIG_CMA
85ccc8fa 2357static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2358 unsigned int order)
2359{
2360 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2361}
2362#else
2363static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2364 unsigned int order) { return NULL; }
2365#endif
2366
c361be55 2367/*
293ffa5e 2368 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2369 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2370 * boundary. If alignment is required, use move_freepages_block()
2371 */
02aa0cdd 2372static int move_freepages(struct zone *zone,
b69a7288 2373 struct page *start_page, struct page *end_page,
02aa0cdd 2374 int migratetype, int *num_movable)
c361be55
MG
2375{
2376 struct page *page;
d00181b9 2377 unsigned int order;
d100313f 2378 int pages_moved = 0;
c361be55 2379
c361be55
MG
2380 for (page = start_page; page <= end_page;) {
2381 if (!pfn_valid_within(page_to_pfn(page))) {
2382 page++;
2383 continue;
2384 }
2385
2386 if (!PageBuddy(page)) {
02aa0cdd
VB
2387 /*
2388 * We assume that pages that could be isolated for
2389 * migration are movable. But we don't actually try
2390 * isolating, as that would be expensive.
2391 */
2392 if (num_movable &&
2393 (PageLRU(page) || __PageMovable(page)))
2394 (*num_movable)++;
2395
c361be55
MG
2396 page++;
2397 continue;
2398 }
2399
cd961038
DR
2400 /* Make sure we are not inadvertently changing nodes */
2401 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2402 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2403
ab130f91 2404 order = buddy_order(page);
6ab01363 2405 move_to_free_list(page, zone, order, migratetype);
c361be55 2406 page += 1 << order;
d100313f 2407 pages_moved += 1 << order;
c361be55
MG
2408 }
2409
d100313f 2410 return pages_moved;
c361be55
MG
2411}
2412
ee6f509c 2413int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2414 int migratetype, int *num_movable)
c361be55
MG
2415{
2416 unsigned long start_pfn, end_pfn;
2417 struct page *start_page, *end_page;
2418
4a222127
DR
2419 if (num_movable)
2420 *num_movable = 0;
2421
c361be55 2422 start_pfn = page_to_pfn(page);
d9c23400 2423 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2424 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2425 end_page = start_page + pageblock_nr_pages - 1;
2426 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2427
2428 /* Do not cross zone boundaries */
108bcc96 2429 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2430 start_page = page;
108bcc96 2431 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2432 return 0;
2433
02aa0cdd
VB
2434 return move_freepages(zone, start_page, end_page, migratetype,
2435 num_movable);
c361be55
MG
2436}
2437
2f66a68f
MG
2438static void change_pageblock_range(struct page *pageblock_page,
2439 int start_order, int migratetype)
2440{
2441 int nr_pageblocks = 1 << (start_order - pageblock_order);
2442
2443 while (nr_pageblocks--) {
2444 set_pageblock_migratetype(pageblock_page, migratetype);
2445 pageblock_page += pageblock_nr_pages;
2446 }
2447}
2448
fef903ef 2449/*
9c0415eb
VB
2450 * When we are falling back to another migratetype during allocation, try to
2451 * steal extra free pages from the same pageblocks to satisfy further
2452 * allocations, instead of polluting multiple pageblocks.
2453 *
2454 * If we are stealing a relatively large buddy page, it is likely there will
2455 * be more free pages in the pageblock, so try to steal them all. For
2456 * reclaimable and unmovable allocations, we steal regardless of page size,
2457 * as fragmentation caused by those allocations polluting movable pageblocks
2458 * is worse than movable allocations stealing from unmovable and reclaimable
2459 * pageblocks.
fef903ef 2460 */
4eb7dce6
JK
2461static bool can_steal_fallback(unsigned int order, int start_mt)
2462{
2463 /*
2464 * Leaving this order check is intended, although there is
2465 * relaxed order check in next check. The reason is that
2466 * we can actually steal whole pageblock if this condition met,
2467 * but, below check doesn't guarantee it and that is just heuristic
2468 * so could be changed anytime.
2469 */
2470 if (order >= pageblock_order)
2471 return true;
2472
2473 if (order >= pageblock_order / 2 ||
2474 start_mt == MIGRATE_RECLAIMABLE ||
2475 start_mt == MIGRATE_UNMOVABLE ||
2476 page_group_by_mobility_disabled)
2477 return true;
2478
2479 return false;
2480}
2481
1c30844d
MG
2482static inline void boost_watermark(struct zone *zone)
2483{
2484 unsigned long max_boost;
2485
2486 if (!watermark_boost_factor)
2487 return;
14f69140
HW
2488 /*
2489 * Don't bother in zones that are unlikely to produce results.
2490 * On small machines, including kdump capture kernels running
2491 * in a small area, boosting the watermark can cause an out of
2492 * memory situation immediately.
2493 */
2494 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2495 return;
1c30844d
MG
2496
2497 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2498 watermark_boost_factor, 10000);
94b3334c
MG
2499
2500 /*
2501 * high watermark may be uninitialised if fragmentation occurs
2502 * very early in boot so do not boost. We do not fall
2503 * through and boost by pageblock_nr_pages as failing
2504 * allocations that early means that reclaim is not going
2505 * to help and it may even be impossible to reclaim the
2506 * boosted watermark resulting in a hang.
2507 */
2508 if (!max_boost)
2509 return;
2510
1c30844d
MG
2511 max_boost = max(pageblock_nr_pages, max_boost);
2512
2513 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2514 max_boost);
2515}
2516
4eb7dce6
JK
2517/*
2518 * This function implements actual steal behaviour. If order is large enough,
2519 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2520 * pageblock to our migratetype and determine how many already-allocated pages
2521 * are there in the pageblock with a compatible migratetype. If at least half
2522 * of pages are free or compatible, we can change migratetype of the pageblock
2523 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2524 */
2525static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2526 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2527{
ab130f91 2528 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2529 int free_pages, movable_pages, alike_pages;
2530 int old_block_type;
2531
2532 old_block_type = get_pageblock_migratetype(page);
fef903ef 2533
3bc48f96
VB
2534 /*
2535 * This can happen due to races and we want to prevent broken
2536 * highatomic accounting.
2537 */
02aa0cdd 2538 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2539 goto single_page;
2540
fef903ef
SB
2541 /* Take ownership for orders >= pageblock_order */
2542 if (current_order >= pageblock_order) {
2543 change_pageblock_range(page, current_order, start_type);
3bc48f96 2544 goto single_page;
fef903ef
SB
2545 }
2546
1c30844d
MG
2547 /*
2548 * Boost watermarks to increase reclaim pressure to reduce the
2549 * likelihood of future fallbacks. Wake kswapd now as the node
2550 * may be balanced overall and kswapd will not wake naturally.
2551 */
2552 boost_watermark(zone);
2553 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2554 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2555
3bc48f96
VB
2556 /* We are not allowed to try stealing from the whole block */
2557 if (!whole_block)
2558 goto single_page;
2559
02aa0cdd
VB
2560 free_pages = move_freepages_block(zone, page, start_type,
2561 &movable_pages);
2562 /*
2563 * Determine how many pages are compatible with our allocation.
2564 * For movable allocation, it's the number of movable pages which
2565 * we just obtained. For other types it's a bit more tricky.
2566 */
2567 if (start_type == MIGRATE_MOVABLE) {
2568 alike_pages = movable_pages;
2569 } else {
2570 /*
2571 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2572 * to MOVABLE pageblock, consider all non-movable pages as
2573 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2574 * vice versa, be conservative since we can't distinguish the
2575 * exact migratetype of non-movable pages.
2576 */
2577 if (old_block_type == MIGRATE_MOVABLE)
2578 alike_pages = pageblock_nr_pages
2579 - (free_pages + movable_pages);
2580 else
2581 alike_pages = 0;
2582 }
2583
3bc48f96 2584 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2585 if (!free_pages)
3bc48f96 2586 goto single_page;
fef903ef 2587
02aa0cdd
VB
2588 /*
2589 * If a sufficient number of pages in the block are either free or of
2590 * comparable migratability as our allocation, claim the whole block.
2591 */
2592 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2593 page_group_by_mobility_disabled)
2594 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2595
2596 return;
2597
2598single_page:
6ab01363 2599 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2600}
2601
2149cdae
JK
2602/*
2603 * Check whether there is a suitable fallback freepage with requested order.
2604 * If only_stealable is true, this function returns fallback_mt only if
2605 * we can steal other freepages all together. This would help to reduce
2606 * fragmentation due to mixed migratetype pages in one pageblock.
2607 */
2608int find_suitable_fallback(struct free_area *area, unsigned int order,
2609 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2610{
2611 int i;
2612 int fallback_mt;
2613
2614 if (area->nr_free == 0)
2615 return -1;
2616
2617 *can_steal = false;
2618 for (i = 0;; i++) {
2619 fallback_mt = fallbacks[migratetype][i];
974a786e 2620 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2621 break;
2622
b03641af 2623 if (free_area_empty(area, fallback_mt))
4eb7dce6 2624 continue;
fef903ef 2625
4eb7dce6
JK
2626 if (can_steal_fallback(order, migratetype))
2627 *can_steal = true;
2628
2149cdae
JK
2629 if (!only_stealable)
2630 return fallback_mt;
2631
2632 if (*can_steal)
2633 return fallback_mt;
fef903ef 2634 }
4eb7dce6
JK
2635
2636 return -1;
fef903ef
SB
2637}
2638
0aaa29a5
MG
2639/*
2640 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2641 * there are no empty page blocks that contain a page with a suitable order
2642 */
2643static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2644 unsigned int alloc_order)
2645{
2646 int mt;
2647 unsigned long max_managed, flags;
2648
2649 /*
2650 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2651 * Check is race-prone but harmless.
2652 */
9705bea5 2653 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2654 if (zone->nr_reserved_highatomic >= max_managed)
2655 return;
2656
2657 spin_lock_irqsave(&zone->lock, flags);
2658
2659 /* Recheck the nr_reserved_highatomic limit under the lock */
2660 if (zone->nr_reserved_highatomic >= max_managed)
2661 goto out_unlock;
2662
2663 /* Yoink! */
2664 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2665 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2666 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2667 zone->nr_reserved_highatomic += pageblock_nr_pages;
2668 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2669 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2670 }
2671
2672out_unlock:
2673 spin_unlock_irqrestore(&zone->lock, flags);
2674}
2675
2676/*
2677 * Used when an allocation is about to fail under memory pressure. This
2678 * potentially hurts the reliability of high-order allocations when under
2679 * intense memory pressure but failed atomic allocations should be easier
2680 * to recover from than an OOM.
29fac03b
MK
2681 *
2682 * If @force is true, try to unreserve a pageblock even though highatomic
2683 * pageblock is exhausted.
0aaa29a5 2684 */
29fac03b
MK
2685static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2686 bool force)
0aaa29a5
MG
2687{
2688 struct zonelist *zonelist = ac->zonelist;
2689 unsigned long flags;
2690 struct zoneref *z;
2691 struct zone *zone;
2692 struct page *page;
2693 int order;
04c8716f 2694 bool ret;
0aaa29a5 2695
97a225e6 2696 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2697 ac->nodemask) {
29fac03b
MK
2698 /*
2699 * Preserve at least one pageblock unless memory pressure
2700 * is really high.
2701 */
2702 if (!force && zone->nr_reserved_highatomic <=
2703 pageblock_nr_pages)
0aaa29a5
MG
2704 continue;
2705
2706 spin_lock_irqsave(&zone->lock, flags);
2707 for (order = 0; order < MAX_ORDER; order++) {
2708 struct free_area *area = &(zone->free_area[order]);
2709
b03641af 2710 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2711 if (!page)
0aaa29a5
MG
2712 continue;
2713
0aaa29a5 2714 /*
4855e4a7
MK
2715 * In page freeing path, migratetype change is racy so
2716 * we can counter several free pages in a pageblock
2717 * in this loop althoug we changed the pageblock type
2718 * from highatomic to ac->migratetype. So we should
2719 * adjust the count once.
0aaa29a5 2720 */
a6ffdc07 2721 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2722 /*
2723 * It should never happen but changes to
2724 * locking could inadvertently allow a per-cpu
2725 * drain to add pages to MIGRATE_HIGHATOMIC
2726 * while unreserving so be safe and watch for
2727 * underflows.
2728 */
2729 zone->nr_reserved_highatomic -= min(
2730 pageblock_nr_pages,
2731 zone->nr_reserved_highatomic);
2732 }
0aaa29a5
MG
2733
2734 /*
2735 * Convert to ac->migratetype and avoid the normal
2736 * pageblock stealing heuristics. Minimally, the caller
2737 * is doing the work and needs the pages. More
2738 * importantly, if the block was always converted to
2739 * MIGRATE_UNMOVABLE or another type then the number
2740 * of pageblocks that cannot be completely freed
2741 * may increase.
2742 */
2743 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2744 ret = move_freepages_block(zone, page, ac->migratetype,
2745 NULL);
29fac03b
MK
2746 if (ret) {
2747 spin_unlock_irqrestore(&zone->lock, flags);
2748 return ret;
2749 }
0aaa29a5
MG
2750 }
2751 spin_unlock_irqrestore(&zone->lock, flags);
2752 }
04c8716f
MK
2753
2754 return false;
0aaa29a5
MG
2755}
2756
3bc48f96
VB
2757/*
2758 * Try finding a free buddy page on the fallback list and put it on the free
2759 * list of requested migratetype, possibly along with other pages from the same
2760 * block, depending on fragmentation avoidance heuristics. Returns true if
2761 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2762 *
2763 * The use of signed ints for order and current_order is a deliberate
2764 * deviation from the rest of this file, to make the for loop
2765 * condition simpler.
3bc48f96 2766 */
85ccc8fa 2767static __always_inline bool
6bb15450
MG
2768__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2769 unsigned int alloc_flags)
b2a0ac88 2770{
b8af2941 2771 struct free_area *area;
b002529d 2772 int current_order;
6bb15450 2773 int min_order = order;
b2a0ac88 2774 struct page *page;
4eb7dce6
JK
2775 int fallback_mt;
2776 bool can_steal;
b2a0ac88 2777
6bb15450
MG
2778 /*
2779 * Do not steal pages from freelists belonging to other pageblocks
2780 * i.e. orders < pageblock_order. If there are no local zones free,
2781 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2782 */
2783 if (alloc_flags & ALLOC_NOFRAGMENT)
2784 min_order = pageblock_order;
2785
7a8f58f3
VB
2786 /*
2787 * Find the largest available free page in the other list. This roughly
2788 * approximates finding the pageblock with the most free pages, which
2789 * would be too costly to do exactly.
2790 */
6bb15450 2791 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2792 --current_order) {
4eb7dce6
JK
2793 area = &(zone->free_area[current_order]);
2794 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2795 start_migratetype, false, &can_steal);
4eb7dce6
JK
2796 if (fallback_mt == -1)
2797 continue;
b2a0ac88 2798
7a8f58f3
VB
2799 /*
2800 * We cannot steal all free pages from the pageblock and the
2801 * requested migratetype is movable. In that case it's better to
2802 * steal and split the smallest available page instead of the
2803 * largest available page, because even if the next movable
2804 * allocation falls back into a different pageblock than this
2805 * one, it won't cause permanent fragmentation.
2806 */
2807 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2808 && current_order > order)
2809 goto find_smallest;
b2a0ac88 2810
7a8f58f3
VB
2811 goto do_steal;
2812 }
e0fff1bd 2813
7a8f58f3 2814 return false;
e0fff1bd 2815
7a8f58f3
VB
2816find_smallest:
2817 for (current_order = order; current_order < MAX_ORDER;
2818 current_order++) {
2819 area = &(zone->free_area[current_order]);
2820 fallback_mt = find_suitable_fallback(area, current_order,
2821 start_migratetype, false, &can_steal);
2822 if (fallback_mt != -1)
2823 break;
b2a0ac88
MG
2824 }
2825
7a8f58f3
VB
2826 /*
2827 * This should not happen - we already found a suitable fallback
2828 * when looking for the largest page.
2829 */
2830 VM_BUG_ON(current_order == MAX_ORDER);
2831
2832do_steal:
b03641af 2833 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2834
1c30844d
MG
2835 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2836 can_steal);
7a8f58f3
VB
2837
2838 trace_mm_page_alloc_extfrag(page, order, current_order,
2839 start_migratetype, fallback_mt);
2840
2841 return true;
2842
b2a0ac88
MG
2843}
2844
56fd56b8 2845/*
1da177e4
LT
2846 * Do the hard work of removing an element from the buddy allocator.
2847 * Call me with the zone->lock already held.
2848 */
85ccc8fa 2849static __always_inline struct page *
6bb15450
MG
2850__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2851 unsigned int alloc_flags)
1da177e4 2852{
1da177e4
LT
2853 struct page *page;
2854
16867664
RG
2855#ifdef CONFIG_CMA
2856 /*
2857 * Balance movable allocations between regular and CMA areas by
2858 * allocating from CMA when over half of the zone's free memory
2859 * is in the CMA area.
2860 */
8510e69c 2861 if (alloc_flags & ALLOC_CMA &&
16867664
RG
2862 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2863 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2864 page = __rmqueue_cma_fallback(zone, order);
2865 if (page)
2866 return page;
2867 }
2868#endif
3bc48f96 2869retry:
56fd56b8 2870 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2871 if (unlikely(!page)) {
8510e69c 2872 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2873 page = __rmqueue_cma_fallback(zone, order);
2874
6bb15450
MG
2875 if (!page && __rmqueue_fallback(zone, order, migratetype,
2876 alloc_flags))
3bc48f96 2877 goto retry;
728ec980
MG
2878 }
2879
0d3d062a 2880 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2881 return page;
1da177e4
LT
2882}
2883
5f63b720 2884/*
1da177e4
LT
2885 * Obtain a specified number of elements from the buddy allocator, all under
2886 * a single hold of the lock, for efficiency. Add them to the supplied list.
2887 * Returns the number of new pages which were placed at *list.
2888 */
5f63b720 2889static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2890 unsigned long count, struct list_head *list,
6bb15450 2891 int migratetype, unsigned int alloc_flags)
1da177e4 2892{
a6de734b 2893 int i, alloced = 0;
5f63b720 2894
d34b0733 2895 spin_lock(&zone->lock);
1da177e4 2896 for (i = 0; i < count; ++i) {
6bb15450
MG
2897 struct page *page = __rmqueue(zone, order, migratetype,
2898 alloc_flags);
085cc7d5 2899 if (unlikely(page == NULL))
1da177e4 2900 break;
81eabcbe 2901
479f854a
MG
2902 if (unlikely(check_pcp_refill(page)))
2903 continue;
2904
81eabcbe 2905 /*
0fac3ba5
VB
2906 * Split buddy pages returned by expand() are received here in
2907 * physical page order. The page is added to the tail of
2908 * caller's list. From the callers perspective, the linked list
2909 * is ordered by page number under some conditions. This is
2910 * useful for IO devices that can forward direction from the
2911 * head, thus also in the physical page order. This is useful
2912 * for IO devices that can merge IO requests if the physical
2913 * pages are ordered properly.
81eabcbe 2914 */
0fac3ba5 2915 list_add_tail(&page->lru, list);
a6de734b 2916 alloced++;
bb14c2c7 2917 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2918 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2919 -(1 << order));
1da177e4 2920 }
a6de734b
MG
2921
2922 /*
2923 * i pages were removed from the buddy list even if some leak due
2924 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2925 * on i. Do not confuse with 'alloced' which is the number of
2926 * pages added to the pcp list.
2927 */
f2260e6b 2928 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2929 spin_unlock(&zone->lock);
a6de734b 2930 return alloced;
1da177e4
LT
2931}
2932
4ae7c039 2933#ifdef CONFIG_NUMA
8fce4d8e 2934/*
4037d452
CL
2935 * Called from the vmstat counter updater to drain pagesets of this
2936 * currently executing processor on remote nodes after they have
2937 * expired.
2938 *
879336c3
CL
2939 * Note that this function must be called with the thread pinned to
2940 * a single processor.
8fce4d8e 2941 */
4037d452 2942void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2943{
4ae7c039 2944 unsigned long flags;
7be12fc9 2945 int to_drain, batch;
4ae7c039 2946
4037d452 2947 local_irq_save(flags);
4db0c3c2 2948 batch = READ_ONCE(pcp->batch);
7be12fc9 2949 to_drain = min(pcp->count, batch);
77ba9062 2950 if (to_drain > 0)
2a13515c 2951 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2952 local_irq_restore(flags);
4ae7c039
CL
2953}
2954#endif
2955
9f8f2172 2956/*
93481ff0 2957 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2958 *
2959 * The processor must either be the current processor and the
2960 * thread pinned to the current processor or a processor that
2961 * is not online.
2962 */
93481ff0 2963static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2964{
c54ad30c 2965 unsigned long flags;
93481ff0
VB
2966 struct per_cpu_pageset *pset;
2967 struct per_cpu_pages *pcp;
1da177e4 2968
93481ff0
VB
2969 local_irq_save(flags);
2970 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2971
93481ff0 2972 pcp = &pset->pcp;
77ba9062 2973 if (pcp->count)
93481ff0 2974 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2975 local_irq_restore(flags);
2976}
3dfa5721 2977
93481ff0
VB
2978/*
2979 * Drain pcplists of all zones on the indicated processor.
2980 *
2981 * The processor must either be the current processor and the
2982 * thread pinned to the current processor or a processor that
2983 * is not online.
2984 */
2985static void drain_pages(unsigned int cpu)
2986{
2987 struct zone *zone;
2988
2989 for_each_populated_zone(zone) {
2990 drain_pages_zone(cpu, zone);
1da177e4
LT
2991 }
2992}
1da177e4 2993
9f8f2172
CL
2994/*
2995 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2996 *
2997 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2998 * the single zone's pages.
9f8f2172 2999 */
93481ff0 3000void drain_local_pages(struct zone *zone)
9f8f2172 3001{
93481ff0
VB
3002 int cpu = smp_processor_id();
3003
3004 if (zone)
3005 drain_pages_zone(cpu, zone);
3006 else
3007 drain_pages(cpu);
9f8f2172
CL
3008}
3009
0ccce3b9
MG
3010static void drain_local_pages_wq(struct work_struct *work)
3011{
d9367bd0
WY
3012 struct pcpu_drain *drain;
3013
3014 drain = container_of(work, struct pcpu_drain, work);
3015
a459eeb7
MH
3016 /*
3017 * drain_all_pages doesn't use proper cpu hotplug protection so
3018 * we can race with cpu offline when the WQ can move this from
3019 * a cpu pinned worker to an unbound one. We can operate on a different
3020 * cpu which is allright but we also have to make sure to not move to
3021 * a different one.
3022 */
3023 preempt_disable();
d9367bd0 3024 drain_local_pages(drain->zone);
a459eeb7 3025 preempt_enable();
0ccce3b9
MG
3026}
3027
9f8f2172 3028/*
74046494
GBY
3029 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3030 *
93481ff0
VB
3031 * When zone parameter is non-NULL, spill just the single zone's pages.
3032 *
0ccce3b9 3033 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 3034 */
93481ff0 3035void drain_all_pages(struct zone *zone)
9f8f2172 3036{
74046494 3037 int cpu;
74046494
GBY
3038
3039 /*
3040 * Allocate in the BSS so we wont require allocation in
3041 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3042 */
3043 static cpumask_t cpus_with_pcps;
3044
ce612879
MH
3045 /*
3046 * Make sure nobody triggers this path before mm_percpu_wq is fully
3047 * initialized.
3048 */
3049 if (WARN_ON_ONCE(!mm_percpu_wq))
3050 return;
3051
bd233f53
MG
3052 /*
3053 * Do not drain if one is already in progress unless it's specific to
3054 * a zone. Such callers are primarily CMA and memory hotplug and need
3055 * the drain to be complete when the call returns.
3056 */
3057 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3058 if (!zone)
3059 return;
3060 mutex_lock(&pcpu_drain_mutex);
3061 }
0ccce3b9 3062
74046494
GBY
3063 /*
3064 * We don't care about racing with CPU hotplug event
3065 * as offline notification will cause the notified
3066 * cpu to drain that CPU pcps and on_each_cpu_mask
3067 * disables preemption as part of its processing
3068 */
3069 for_each_online_cpu(cpu) {
93481ff0
VB
3070 struct per_cpu_pageset *pcp;
3071 struct zone *z;
74046494 3072 bool has_pcps = false;
93481ff0
VB
3073
3074 if (zone) {
74046494 3075 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3076 if (pcp->pcp.count)
74046494 3077 has_pcps = true;
93481ff0
VB
3078 } else {
3079 for_each_populated_zone(z) {
3080 pcp = per_cpu_ptr(z->pageset, cpu);
3081 if (pcp->pcp.count) {
3082 has_pcps = true;
3083 break;
3084 }
74046494
GBY
3085 }
3086 }
93481ff0 3087
74046494
GBY
3088 if (has_pcps)
3089 cpumask_set_cpu(cpu, &cpus_with_pcps);
3090 else
3091 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3092 }
0ccce3b9 3093
bd233f53 3094 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3095 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3096
3097 drain->zone = zone;
3098 INIT_WORK(&drain->work, drain_local_pages_wq);
3099 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3100 }
bd233f53 3101 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3102 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3103
3104 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3105}
3106
296699de 3107#ifdef CONFIG_HIBERNATION
1da177e4 3108
556b969a
CY
3109/*
3110 * Touch the watchdog for every WD_PAGE_COUNT pages.
3111 */
3112#define WD_PAGE_COUNT (128*1024)
3113
1da177e4
LT
3114void mark_free_pages(struct zone *zone)
3115{
556b969a 3116 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3117 unsigned long flags;
7aeb09f9 3118 unsigned int order, t;
86760a2c 3119 struct page *page;
1da177e4 3120
8080fc03 3121 if (zone_is_empty(zone))
1da177e4
LT
3122 return;
3123
3124 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3125
108bcc96 3126 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3127 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3128 if (pfn_valid(pfn)) {
86760a2c 3129 page = pfn_to_page(pfn);
ba6b0979 3130
556b969a
CY
3131 if (!--page_count) {
3132 touch_nmi_watchdog();
3133 page_count = WD_PAGE_COUNT;
3134 }
3135
ba6b0979
JK
3136 if (page_zone(page) != zone)
3137 continue;
3138
7be98234
RW
3139 if (!swsusp_page_is_forbidden(page))
3140 swsusp_unset_page_free(page);
f623f0db 3141 }
1da177e4 3142
b2a0ac88 3143 for_each_migratetype_order(order, t) {
86760a2c
GT
3144 list_for_each_entry(page,
3145 &zone->free_area[order].free_list[t], lru) {
f623f0db 3146 unsigned long i;
1da177e4 3147
86760a2c 3148 pfn = page_to_pfn(page);
556b969a
CY
3149 for (i = 0; i < (1UL << order); i++) {
3150 if (!--page_count) {
3151 touch_nmi_watchdog();
3152 page_count = WD_PAGE_COUNT;
3153 }
7be98234 3154 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3155 }
f623f0db 3156 }
b2a0ac88 3157 }
1da177e4
LT
3158 spin_unlock_irqrestore(&zone->lock, flags);
3159}
e2c55dc8 3160#endif /* CONFIG_PM */
1da177e4 3161
2d4894b5 3162static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3163{
5f8dcc21 3164 int migratetype;
1da177e4 3165
4db7548c 3166 if (!free_pcp_prepare(page))
9cca35d4 3167 return false;
689bcebf 3168
dc4b0caf 3169 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3170 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3171 return true;
3172}
3173
2d4894b5 3174static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3175{
3176 struct zone *zone = page_zone(page);
3177 struct per_cpu_pages *pcp;
3178 int migratetype;
3179
3180 migratetype = get_pcppage_migratetype(page);
d34b0733 3181 __count_vm_event(PGFREE);
da456f14 3182
5f8dcc21
MG
3183 /*
3184 * We only track unmovable, reclaimable and movable on pcp lists.
3185 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3186 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3187 * areas back if necessary. Otherwise, we may have to free
3188 * excessively into the page allocator
3189 */
3190 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3191 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3192 free_one_page(zone, page, pfn, 0, migratetype,
3193 FPI_NONE);
9cca35d4 3194 return;
5f8dcc21
MG
3195 }
3196 migratetype = MIGRATE_MOVABLE;
3197 }
3198
99dcc3e5 3199 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3200 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3201 pcp->count++;
5c3ad2eb
VB
3202 if (pcp->count >= READ_ONCE(pcp->high))
3203 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
9cca35d4 3204}
5f8dcc21 3205
9cca35d4
MG
3206/*
3207 * Free a 0-order page
9cca35d4 3208 */
2d4894b5 3209void free_unref_page(struct page *page)
9cca35d4
MG
3210{
3211 unsigned long flags;
3212 unsigned long pfn = page_to_pfn(page);
3213
2d4894b5 3214 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3215 return;
3216
3217 local_irq_save(flags);
2d4894b5 3218 free_unref_page_commit(page, pfn);
d34b0733 3219 local_irq_restore(flags);
1da177e4
LT
3220}
3221
cc59850e
KK
3222/*
3223 * Free a list of 0-order pages
3224 */
2d4894b5 3225void free_unref_page_list(struct list_head *list)
cc59850e
KK
3226{
3227 struct page *page, *next;
9cca35d4 3228 unsigned long flags, pfn;
c24ad77d 3229 int batch_count = 0;
9cca35d4
MG
3230
3231 /* Prepare pages for freeing */
3232 list_for_each_entry_safe(page, next, list, lru) {
3233 pfn = page_to_pfn(page);
2d4894b5 3234 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3235 list_del(&page->lru);
3236 set_page_private(page, pfn);
3237 }
cc59850e 3238
9cca35d4 3239 local_irq_save(flags);
cc59850e 3240 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3241 unsigned long pfn = page_private(page);
3242
3243 set_page_private(page, 0);
2d4894b5
MG
3244 trace_mm_page_free_batched(page);
3245 free_unref_page_commit(page, pfn);
c24ad77d
LS
3246
3247 /*
3248 * Guard against excessive IRQ disabled times when we get
3249 * a large list of pages to free.
3250 */
3251 if (++batch_count == SWAP_CLUSTER_MAX) {
3252 local_irq_restore(flags);
3253 batch_count = 0;
3254 local_irq_save(flags);
3255 }
cc59850e 3256 }
9cca35d4 3257 local_irq_restore(flags);
cc59850e
KK
3258}
3259
8dfcc9ba
NP
3260/*
3261 * split_page takes a non-compound higher-order page, and splits it into
3262 * n (1<<order) sub-pages: page[0..n]
3263 * Each sub-page must be freed individually.
3264 *
3265 * Note: this is probably too low level an operation for use in drivers.
3266 * Please consult with lkml before using this in your driver.
3267 */
3268void split_page(struct page *page, unsigned int order)
3269{
3270 int i;
3271
309381fe
SL
3272 VM_BUG_ON_PAGE(PageCompound(page), page);
3273 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3274
a9627bc5 3275 for (i = 1; i < (1 << order); i++)
7835e98b 3276 set_page_refcounted(page + i);
8fb156c9 3277 split_page_owner(page, 1 << order);
8dfcc9ba 3278}
5853ff23 3279EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3280
3c605096 3281int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3282{
748446bb
MG
3283 unsigned long watermark;
3284 struct zone *zone;
2139cbe6 3285 int mt;
748446bb
MG
3286
3287 BUG_ON(!PageBuddy(page));
3288
3289 zone = page_zone(page);
2e30abd1 3290 mt = get_pageblock_migratetype(page);
748446bb 3291
194159fb 3292 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3293 /*
3294 * Obey watermarks as if the page was being allocated. We can
3295 * emulate a high-order watermark check with a raised order-0
3296 * watermark, because we already know our high-order page
3297 * exists.
3298 */
fd1444b2 3299 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3300 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3301 return 0;
3302
8fb74b9f 3303 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3304 }
748446bb
MG
3305
3306 /* Remove page from free list */
b03641af 3307
6ab01363 3308 del_page_from_free_list(page, zone, order);
2139cbe6 3309
400bc7fd 3310 /*
3311 * Set the pageblock if the isolated page is at least half of a
3312 * pageblock
3313 */
748446bb
MG
3314 if (order >= pageblock_order - 1) {
3315 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3316 for (; page < endpage; page += pageblock_nr_pages) {
3317 int mt = get_pageblock_migratetype(page);
88ed365e 3318 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3319 && !is_migrate_highatomic(mt))
47118af0
MN
3320 set_pageblock_migratetype(page,
3321 MIGRATE_MOVABLE);
3322 }
748446bb
MG
3323 }
3324
f3a14ced 3325
8fb74b9f 3326 return 1UL << order;
1fb3f8ca
MG
3327}
3328
624f58d8
AD
3329/**
3330 * __putback_isolated_page - Return a now-isolated page back where we got it
3331 * @page: Page that was isolated
3332 * @order: Order of the isolated page
e6a0a7ad 3333 * @mt: The page's pageblock's migratetype
624f58d8
AD
3334 *
3335 * This function is meant to return a page pulled from the free lists via
3336 * __isolate_free_page back to the free lists they were pulled from.
3337 */
3338void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3339{
3340 struct zone *zone = page_zone(page);
3341
3342 /* zone lock should be held when this function is called */
3343 lockdep_assert_held(&zone->lock);
3344
3345 /* Return isolated page to tail of freelist. */
f04a5d5d 3346 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3347 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3348}
3349
060e7417
MG
3350/*
3351 * Update NUMA hit/miss statistics
3352 *
3353 * Must be called with interrupts disabled.
060e7417 3354 */
41b6167e 3355static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3356{
3357#ifdef CONFIG_NUMA
3a321d2a 3358 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3359
4518085e
KW
3360 /* skip numa counters update if numa stats is disabled */
3361 if (!static_branch_likely(&vm_numa_stat_key))
3362 return;
3363
c1093b74 3364 if (zone_to_nid(z) != numa_node_id())
060e7417 3365 local_stat = NUMA_OTHER;
060e7417 3366
c1093b74 3367 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3368 __inc_numa_state(z, NUMA_HIT);
2df26639 3369 else {
3a321d2a
KW
3370 __inc_numa_state(z, NUMA_MISS);
3371 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3372 }
3a321d2a 3373 __inc_numa_state(z, local_stat);
060e7417
MG
3374#endif
3375}
3376
066b2393
MG
3377/* Remove page from the per-cpu list, caller must protect the list */
3378static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3379 unsigned int alloc_flags,
453f85d4 3380 struct per_cpu_pages *pcp,
066b2393
MG
3381 struct list_head *list)
3382{
3383 struct page *page;
3384
3385 do {
3386 if (list_empty(list)) {
3387 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3388 READ_ONCE(pcp->batch), list,
6bb15450 3389 migratetype, alloc_flags);
066b2393
MG
3390 if (unlikely(list_empty(list)))
3391 return NULL;
3392 }
3393
453f85d4 3394 page = list_first_entry(list, struct page, lru);
066b2393
MG
3395 list_del(&page->lru);
3396 pcp->count--;
3397 } while (check_new_pcp(page));
3398
3399 return page;
3400}
3401
3402/* Lock and remove page from the per-cpu list */
3403static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3404 struct zone *zone, gfp_t gfp_flags,
3405 int migratetype, unsigned int alloc_flags)
066b2393
MG
3406{
3407 struct per_cpu_pages *pcp;
3408 struct list_head *list;
066b2393 3409 struct page *page;
d34b0733 3410 unsigned long flags;
066b2393 3411
d34b0733 3412 local_irq_save(flags);
066b2393
MG
3413 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3414 list = &pcp->lists[migratetype];
6bb15450 3415 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3416 if (page) {
1c52e6d0 3417 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3418 zone_statistics(preferred_zone, zone);
3419 }
d34b0733 3420 local_irq_restore(flags);
066b2393
MG
3421 return page;
3422}
3423
1da177e4 3424/*
75379191 3425 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3426 */
0a15c3e9 3427static inline
066b2393 3428struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3429 struct zone *zone, unsigned int order,
c603844b
MG
3430 gfp_t gfp_flags, unsigned int alloc_flags,
3431 int migratetype)
1da177e4
LT
3432{
3433 unsigned long flags;
689bcebf 3434 struct page *page;
1da177e4 3435
d34b0733 3436 if (likely(order == 0)) {
1d91df85
JK
3437 /*
3438 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3439 * we need to skip it when CMA area isn't allowed.
3440 */
3441 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3442 migratetype != MIGRATE_MOVABLE) {
3443 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3444 migratetype, alloc_flags);
1d91df85
JK
3445 goto out;
3446 }
066b2393 3447 }
83b9355b 3448
066b2393
MG
3449 /*
3450 * We most definitely don't want callers attempting to
3451 * allocate greater than order-1 page units with __GFP_NOFAIL.
3452 */
3453 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3454 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3455
066b2393
MG
3456 do {
3457 page = NULL;
1d91df85
JK
3458 /*
3459 * order-0 request can reach here when the pcplist is skipped
3460 * due to non-CMA allocation context. HIGHATOMIC area is
3461 * reserved for high-order atomic allocation, so order-0
3462 * request should skip it.
3463 */
3464 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3465 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3466 if (page)
3467 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3468 }
a74609fa 3469 if (!page)
6bb15450 3470 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3471 } while (page && check_new_pages(page, order));
3472 spin_unlock(&zone->lock);
3473 if (!page)
3474 goto failed;
3475 __mod_zone_freepage_state(zone, -(1 << order),
3476 get_pcppage_migratetype(page));
1da177e4 3477
16709d1d 3478 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3479 zone_statistics(preferred_zone, zone);
a74609fa 3480 local_irq_restore(flags);
1da177e4 3481
066b2393 3482out:
73444bc4
MG
3483 /* Separate test+clear to avoid unnecessary atomics */
3484 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3485 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3486 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3487 }
3488
066b2393 3489 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3490 return page;
a74609fa
NP
3491
3492failed:
3493 local_irq_restore(flags);
a74609fa 3494 return NULL;
1da177e4
LT
3495}
3496
933e312e
AM
3497#ifdef CONFIG_FAIL_PAGE_ALLOC
3498
b2588c4b 3499static struct {
933e312e
AM
3500 struct fault_attr attr;
3501
621a5f7a 3502 bool ignore_gfp_highmem;
71baba4b 3503 bool ignore_gfp_reclaim;
54114994 3504 u32 min_order;
933e312e
AM
3505} fail_page_alloc = {
3506 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3507 .ignore_gfp_reclaim = true,
621a5f7a 3508 .ignore_gfp_highmem = true,
54114994 3509 .min_order = 1,
933e312e
AM
3510};
3511
3512static int __init setup_fail_page_alloc(char *str)
3513{
3514 return setup_fault_attr(&fail_page_alloc.attr, str);
3515}
3516__setup("fail_page_alloc=", setup_fail_page_alloc);
3517
af3b8544 3518static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3519{
54114994 3520 if (order < fail_page_alloc.min_order)
deaf386e 3521 return false;
933e312e 3522 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3523 return false;
933e312e 3524 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3525 return false;
71baba4b
MG
3526 if (fail_page_alloc.ignore_gfp_reclaim &&
3527 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3528 return false;
933e312e
AM
3529
3530 return should_fail(&fail_page_alloc.attr, 1 << order);
3531}
3532
3533#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3534
3535static int __init fail_page_alloc_debugfs(void)
3536{
0825a6f9 3537 umode_t mode = S_IFREG | 0600;
933e312e 3538 struct dentry *dir;
933e312e 3539
dd48c085
AM
3540 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3541 &fail_page_alloc.attr);
b2588c4b 3542
d9f7979c
GKH
3543 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3544 &fail_page_alloc.ignore_gfp_reclaim);
3545 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3546 &fail_page_alloc.ignore_gfp_highmem);
3547 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3548
d9f7979c 3549 return 0;
933e312e
AM
3550}
3551
3552late_initcall(fail_page_alloc_debugfs);
3553
3554#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3555
3556#else /* CONFIG_FAIL_PAGE_ALLOC */
3557
af3b8544 3558static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3559{
deaf386e 3560 return false;
933e312e
AM
3561}
3562
3563#endif /* CONFIG_FAIL_PAGE_ALLOC */
3564
76cd6173 3565noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3566{
3567 return __should_fail_alloc_page(gfp_mask, order);
3568}
3569ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3570
f27ce0e1
JK
3571static inline long __zone_watermark_unusable_free(struct zone *z,
3572 unsigned int order, unsigned int alloc_flags)
3573{
3574 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3575 long unusable_free = (1 << order) - 1;
3576
3577 /*
3578 * If the caller does not have rights to ALLOC_HARDER then subtract
3579 * the high-atomic reserves. This will over-estimate the size of the
3580 * atomic reserve but it avoids a search.
3581 */
3582 if (likely(!alloc_harder))
3583 unusable_free += z->nr_reserved_highatomic;
3584
3585#ifdef CONFIG_CMA
3586 /* If allocation can't use CMA areas don't use free CMA pages */
3587 if (!(alloc_flags & ALLOC_CMA))
3588 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3589#endif
3590
3591 return unusable_free;
3592}
3593
1da177e4 3594/*
97a16fc8
MG
3595 * Return true if free base pages are above 'mark'. For high-order checks it
3596 * will return true of the order-0 watermark is reached and there is at least
3597 * one free page of a suitable size. Checking now avoids taking the zone lock
3598 * to check in the allocation paths if no pages are free.
1da177e4 3599 */
86a294a8 3600bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3601 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3602 long free_pages)
1da177e4 3603{
d23ad423 3604 long min = mark;
1da177e4 3605 int o;
cd04ae1e 3606 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3607
0aaa29a5 3608 /* free_pages may go negative - that's OK */
f27ce0e1 3609 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3610
7fb1d9fc 3611 if (alloc_flags & ALLOC_HIGH)
1da177e4 3612 min -= min / 2;
0aaa29a5 3613
f27ce0e1 3614 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3615 /*
3616 * OOM victims can try even harder than normal ALLOC_HARDER
3617 * users on the grounds that it's definitely going to be in
3618 * the exit path shortly and free memory. Any allocation it
3619 * makes during the free path will be small and short-lived.
3620 */
3621 if (alloc_flags & ALLOC_OOM)
3622 min -= min / 2;
3623 else
3624 min -= min / 4;
3625 }
3626
97a16fc8
MG
3627 /*
3628 * Check watermarks for an order-0 allocation request. If these
3629 * are not met, then a high-order request also cannot go ahead
3630 * even if a suitable page happened to be free.
3631 */
97a225e6 3632 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3633 return false;
1da177e4 3634
97a16fc8
MG
3635 /* If this is an order-0 request then the watermark is fine */
3636 if (!order)
3637 return true;
3638
3639 /* For a high-order request, check at least one suitable page is free */
3640 for (o = order; o < MAX_ORDER; o++) {
3641 struct free_area *area = &z->free_area[o];
3642 int mt;
3643
3644 if (!area->nr_free)
3645 continue;
3646
97a16fc8 3647 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3648 if (!free_area_empty(area, mt))
97a16fc8
MG
3649 return true;
3650 }
3651
3652#ifdef CONFIG_CMA
d883c6cf 3653 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3654 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3655 return true;
d883c6cf 3656 }
97a16fc8 3657#endif
76089d00 3658 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3659 return true;
1da177e4 3660 }
97a16fc8 3661 return false;
88f5acf8
MG
3662}
3663
7aeb09f9 3664bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3665 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3666{
97a225e6 3667 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3668 zone_page_state(z, NR_FREE_PAGES));
3669}
3670
48ee5f36 3671static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3672 unsigned long mark, int highest_zoneidx,
f80b08fc 3673 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3674{
f27ce0e1 3675 long free_pages;
d883c6cf 3676
f27ce0e1 3677 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3678
3679 /*
3680 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3681 * need to be calculated.
48ee5f36 3682 */
f27ce0e1
JK
3683 if (!order) {
3684 long fast_free;
3685
3686 fast_free = free_pages;
3687 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3688 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3689 return true;
3690 }
48ee5f36 3691
f80b08fc
CTR
3692 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3693 free_pages))
3694 return true;
3695 /*
3696 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3697 * when checking the min watermark. The min watermark is the
3698 * point where boosting is ignored so that kswapd is woken up
3699 * when below the low watermark.
3700 */
3701 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3702 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3703 mark = z->_watermark[WMARK_MIN];
3704 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3705 alloc_flags, free_pages);
3706 }
3707
3708 return false;
48ee5f36
MG
3709}
3710
7aeb09f9 3711bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3712 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3713{
3714 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3715
3716 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3717 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3718
97a225e6 3719 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3720 free_pages);
1da177e4
LT
3721}
3722
9276b1bc 3723#ifdef CONFIG_NUMA
957f822a
DR
3724static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3725{
e02dc017 3726 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3727 node_reclaim_distance;
957f822a 3728}
9276b1bc 3729#else /* CONFIG_NUMA */
957f822a
DR
3730static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3731{
3732 return true;
3733}
9276b1bc
PJ
3734#endif /* CONFIG_NUMA */
3735
6bb15450
MG
3736/*
3737 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3738 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3739 * premature use of a lower zone may cause lowmem pressure problems that
3740 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3741 * probably too small. It only makes sense to spread allocations to avoid
3742 * fragmentation between the Normal and DMA32 zones.
3743 */
3744static inline unsigned int
0a79cdad 3745alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3746{
736838e9 3747 unsigned int alloc_flags;
0a79cdad 3748
736838e9
MN
3749 /*
3750 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3751 * to save a branch.
3752 */
3753 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3754
3755#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3756 if (!zone)
3757 return alloc_flags;
3758
6bb15450 3759 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3760 return alloc_flags;
6bb15450
MG
3761
3762 /*
3763 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3764 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3765 * on UMA that if Normal is populated then so is DMA32.
3766 */
3767 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3768 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3769 return alloc_flags;
6bb15450 3770
8118b82e 3771 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3772#endif /* CONFIG_ZONE_DMA32 */
3773 return alloc_flags;
6bb15450 3774}
6bb15450 3775
8510e69c
JK
3776static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3777 unsigned int alloc_flags)
3778{
3779#ifdef CONFIG_CMA
3780 unsigned int pflags = current->flags;
3781
3782 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3783 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3784 alloc_flags |= ALLOC_CMA;
3785
3786#endif
3787 return alloc_flags;
3788}
3789
7fb1d9fc 3790/*
0798e519 3791 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3792 * a page.
3793 */
3794static struct page *
a9263751
VB
3795get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3796 const struct alloc_context *ac)
753ee728 3797{
6bb15450 3798 struct zoneref *z;
5117f45d 3799 struct zone *zone;
3b8c0be4 3800 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3801 bool no_fallback;
3b8c0be4 3802
6bb15450 3803retry:
7fb1d9fc 3804 /*
9276b1bc 3805 * Scan zonelist, looking for a zone with enough free.
344736f2 3806 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3807 */
6bb15450
MG
3808 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3809 z = ac->preferred_zoneref;
30d8ec73
MN
3810 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3811 ac->nodemask) {
be06af00 3812 struct page *page;
e085dbc5
JW
3813 unsigned long mark;
3814
664eedde
MG
3815 if (cpusets_enabled() &&
3816 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3817 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3818 continue;
a756cf59
JW
3819 /*
3820 * When allocating a page cache page for writing, we
281e3726
MG
3821 * want to get it from a node that is within its dirty
3822 * limit, such that no single node holds more than its
a756cf59 3823 * proportional share of globally allowed dirty pages.
281e3726 3824 * The dirty limits take into account the node's
a756cf59
JW
3825 * lowmem reserves and high watermark so that kswapd
3826 * should be able to balance it without having to
3827 * write pages from its LRU list.
3828 *
a756cf59 3829 * XXX: For now, allow allocations to potentially
281e3726 3830 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3831 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3832 * which is important when on a NUMA setup the allowed
281e3726 3833 * nodes are together not big enough to reach the
a756cf59 3834 * global limit. The proper fix for these situations
281e3726 3835 * will require awareness of nodes in the
a756cf59
JW
3836 * dirty-throttling and the flusher threads.
3837 */
3b8c0be4
MG
3838 if (ac->spread_dirty_pages) {
3839 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3840 continue;
3841
3842 if (!node_dirty_ok(zone->zone_pgdat)) {
3843 last_pgdat_dirty_limit = zone->zone_pgdat;
3844 continue;
3845 }
3846 }
7fb1d9fc 3847
6bb15450
MG
3848 if (no_fallback && nr_online_nodes > 1 &&
3849 zone != ac->preferred_zoneref->zone) {
3850 int local_nid;
3851
3852 /*
3853 * If moving to a remote node, retry but allow
3854 * fragmenting fallbacks. Locality is more important
3855 * than fragmentation avoidance.
3856 */
3857 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3858 if (zone_to_nid(zone) != local_nid) {
3859 alloc_flags &= ~ALLOC_NOFRAGMENT;
3860 goto retry;
3861 }
3862 }
3863
a9214443 3864 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3865 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3866 ac->highest_zoneidx, alloc_flags,
3867 gfp_mask)) {
fa5e084e
MG
3868 int ret;
3869
c9e97a19
PT
3870#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3871 /*
3872 * Watermark failed for this zone, but see if we can
3873 * grow this zone if it contains deferred pages.
3874 */
3875 if (static_branch_unlikely(&deferred_pages)) {
3876 if (_deferred_grow_zone(zone, order))
3877 goto try_this_zone;
3878 }
3879#endif
5dab2911
MG
3880 /* Checked here to keep the fast path fast */
3881 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3882 if (alloc_flags & ALLOC_NO_WATERMARKS)
3883 goto try_this_zone;
3884
a5f5f91d 3885 if (node_reclaim_mode == 0 ||
c33d6c06 3886 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3887 continue;
3888
a5f5f91d 3889 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3890 switch (ret) {
a5f5f91d 3891 case NODE_RECLAIM_NOSCAN:
fa5e084e 3892 /* did not scan */
cd38b115 3893 continue;
a5f5f91d 3894 case NODE_RECLAIM_FULL:
fa5e084e 3895 /* scanned but unreclaimable */
cd38b115 3896 continue;
fa5e084e
MG
3897 default:
3898 /* did we reclaim enough */
fed2719e 3899 if (zone_watermark_ok(zone, order, mark,
97a225e6 3900 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3901 goto try_this_zone;
3902
fed2719e 3903 continue;
0798e519 3904 }
7fb1d9fc
RS
3905 }
3906
fa5e084e 3907try_this_zone:
066b2393 3908 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3909 gfp_mask, alloc_flags, ac->migratetype);
75379191 3910 if (page) {
479f854a 3911 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3912
3913 /*
3914 * If this is a high-order atomic allocation then check
3915 * if the pageblock should be reserved for the future
3916 */
3917 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3918 reserve_highatomic_pageblock(page, zone, order);
3919
75379191 3920 return page;
c9e97a19
PT
3921 } else {
3922#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3923 /* Try again if zone has deferred pages */
3924 if (static_branch_unlikely(&deferred_pages)) {
3925 if (_deferred_grow_zone(zone, order))
3926 goto try_this_zone;
3927 }
3928#endif
75379191 3929 }
54a6eb5c 3930 }
9276b1bc 3931
6bb15450
MG
3932 /*
3933 * It's possible on a UMA machine to get through all zones that are
3934 * fragmented. If avoiding fragmentation, reset and try again.
3935 */
3936 if (no_fallback) {
3937 alloc_flags &= ~ALLOC_NOFRAGMENT;
3938 goto retry;
3939 }
3940
4ffeaf35 3941 return NULL;
753ee728
MH
3942}
3943
9af744d7 3944static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3945{
a238ab5b 3946 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3947
3948 /*
3949 * This documents exceptions given to allocations in certain
3950 * contexts that are allowed to allocate outside current's set
3951 * of allowed nodes.
3952 */
3953 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3954 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3955 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3956 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3957 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3958 filter &= ~SHOW_MEM_FILTER_NODES;
3959
9af744d7 3960 show_mem(filter, nodemask);
aa187507
MH
3961}
3962
a8e99259 3963void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3964{
3965 struct va_format vaf;
3966 va_list args;
1be334e5 3967 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3968
0f7896f1 3969 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3970 return;
3971
7877cdcc
MH
3972 va_start(args, fmt);
3973 vaf.fmt = fmt;
3974 vaf.va = &args;
ef8444ea 3975 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3976 current->comm, &vaf, gfp_mask, &gfp_mask,
3977 nodemask_pr_args(nodemask));
7877cdcc 3978 va_end(args);
3ee9a4f0 3979
a8e99259 3980 cpuset_print_current_mems_allowed();
ef8444ea 3981 pr_cont("\n");
a238ab5b 3982 dump_stack();
685dbf6f 3983 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3984}
3985
6c18ba7a
MH
3986static inline struct page *
3987__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3988 unsigned int alloc_flags,
3989 const struct alloc_context *ac)
3990{
3991 struct page *page;
3992
3993 page = get_page_from_freelist(gfp_mask, order,
3994 alloc_flags|ALLOC_CPUSET, ac);
3995 /*
3996 * fallback to ignore cpuset restriction if our nodes
3997 * are depleted
3998 */
3999 if (!page)
4000 page = get_page_from_freelist(gfp_mask, order,
4001 alloc_flags, ac);
4002
4003 return page;
4004}
4005
11e33f6a
MG
4006static inline struct page *
4007__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4008 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4009{
6e0fc46d
DR
4010 struct oom_control oc = {
4011 .zonelist = ac->zonelist,
4012 .nodemask = ac->nodemask,
2a966b77 4013 .memcg = NULL,
6e0fc46d
DR
4014 .gfp_mask = gfp_mask,
4015 .order = order,
6e0fc46d 4016 };
11e33f6a
MG
4017 struct page *page;
4018
9879de73
JW
4019 *did_some_progress = 0;
4020
9879de73 4021 /*
dc56401f
JW
4022 * Acquire the oom lock. If that fails, somebody else is
4023 * making progress for us.
9879de73 4024 */
dc56401f 4025 if (!mutex_trylock(&oom_lock)) {
9879de73 4026 *did_some_progress = 1;
11e33f6a 4027 schedule_timeout_uninterruptible(1);
1da177e4
LT
4028 return NULL;
4029 }
6b1de916 4030
11e33f6a
MG
4031 /*
4032 * Go through the zonelist yet one more time, keep very high watermark
4033 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4034 * we're still under heavy pressure. But make sure that this reclaim
4035 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4036 * allocation which will never fail due to oom_lock already held.
11e33f6a 4037 */
e746bf73
TH
4038 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4039 ~__GFP_DIRECT_RECLAIM, order,
4040 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4041 if (page)
11e33f6a
MG
4042 goto out;
4043
06ad276a
MH
4044 /* Coredumps can quickly deplete all memory reserves */
4045 if (current->flags & PF_DUMPCORE)
4046 goto out;
4047 /* The OOM killer will not help higher order allocs */
4048 if (order > PAGE_ALLOC_COSTLY_ORDER)
4049 goto out;
dcda9b04
MH
4050 /*
4051 * We have already exhausted all our reclaim opportunities without any
4052 * success so it is time to admit defeat. We will skip the OOM killer
4053 * because it is very likely that the caller has a more reasonable
4054 * fallback than shooting a random task.
cfb4a541
MN
4055 *
4056 * The OOM killer may not free memory on a specific node.
dcda9b04 4057 */
cfb4a541 4058 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4059 goto out;
06ad276a 4060 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4061 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4062 goto out;
4063 if (pm_suspended_storage())
4064 goto out;
4065 /*
4066 * XXX: GFP_NOFS allocations should rather fail than rely on
4067 * other request to make a forward progress.
4068 * We are in an unfortunate situation where out_of_memory cannot
4069 * do much for this context but let's try it to at least get
4070 * access to memory reserved if the current task is killed (see
4071 * out_of_memory). Once filesystems are ready to handle allocation
4072 * failures more gracefully we should just bail out here.
4073 */
4074
3c2c6488 4075 /* Exhausted what can be done so it's blame time */
5020e285 4076 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4077 *did_some_progress = 1;
5020e285 4078
6c18ba7a
MH
4079 /*
4080 * Help non-failing allocations by giving them access to memory
4081 * reserves
4082 */
4083 if (gfp_mask & __GFP_NOFAIL)
4084 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4085 ALLOC_NO_WATERMARKS, ac);
5020e285 4086 }
11e33f6a 4087out:
dc56401f 4088 mutex_unlock(&oom_lock);
11e33f6a
MG
4089 return page;
4090}
4091
33c2d214
MH
4092/*
4093 * Maximum number of compaction retries wit a progress before OOM
4094 * killer is consider as the only way to move forward.
4095 */
4096#define MAX_COMPACT_RETRIES 16
4097
56de7263
MG
4098#ifdef CONFIG_COMPACTION
4099/* Try memory compaction for high-order allocations before reclaim */
4100static struct page *
4101__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4102 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4103 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4104{
5e1f0f09 4105 struct page *page = NULL;
eb414681 4106 unsigned long pflags;
499118e9 4107 unsigned int noreclaim_flag;
53853e2d
VB
4108
4109 if (!order)
66199712 4110 return NULL;
66199712 4111
eb414681 4112 psi_memstall_enter(&pflags);
499118e9 4113 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4114
c5d01d0d 4115 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4116 prio, &page);
eb414681 4117
499118e9 4118 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4119 psi_memstall_leave(&pflags);
56de7263 4120
98dd3b48
VB
4121 /*
4122 * At least in one zone compaction wasn't deferred or skipped, so let's
4123 * count a compaction stall
4124 */
4125 count_vm_event(COMPACTSTALL);
8fb74b9f 4126
5e1f0f09
MG
4127 /* Prep a captured page if available */
4128 if (page)
4129 prep_new_page(page, order, gfp_mask, alloc_flags);
4130
4131 /* Try get a page from the freelist if available */
4132 if (!page)
4133 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4134
98dd3b48
VB
4135 if (page) {
4136 struct zone *zone = page_zone(page);
53853e2d 4137
98dd3b48
VB
4138 zone->compact_blockskip_flush = false;
4139 compaction_defer_reset(zone, order, true);
4140 count_vm_event(COMPACTSUCCESS);
4141 return page;
4142 }
56de7263 4143
98dd3b48
VB
4144 /*
4145 * It's bad if compaction run occurs and fails. The most likely reason
4146 * is that pages exist, but not enough to satisfy watermarks.
4147 */
4148 count_vm_event(COMPACTFAIL);
66199712 4149
98dd3b48 4150 cond_resched();
56de7263
MG
4151
4152 return NULL;
4153}
33c2d214 4154
3250845d
VB
4155static inline bool
4156should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4157 enum compact_result compact_result,
4158 enum compact_priority *compact_priority,
d9436498 4159 int *compaction_retries)
3250845d
VB
4160{
4161 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4162 int min_priority;
65190cff
MH
4163 bool ret = false;
4164 int retries = *compaction_retries;
4165 enum compact_priority priority = *compact_priority;
3250845d
VB
4166
4167 if (!order)
4168 return false;
4169
d9436498
VB
4170 if (compaction_made_progress(compact_result))
4171 (*compaction_retries)++;
4172
3250845d
VB
4173 /*
4174 * compaction considers all the zone as desperately out of memory
4175 * so it doesn't really make much sense to retry except when the
4176 * failure could be caused by insufficient priority
4177 */
d9436498
VB
4178 if (compaction_failed(compact_result))
4179 goto check_priority;
3250845d 4180
49433085
VB
4181 /*
4182 * compaction was skipped because there are not enough order-0 pages
4183 * to work with, so we retry only if it looks like reclaim can help.
4184 */
4185 if (compaction_needs_reclaim(compact_result)) {
4186 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4187 goto out;
4188 }
4189
3250845d
VB
4190 /*
4191 * make sure the compaction wasn't deferred or didn't bail out early
4192 * due to locks contention before we declare that we should give up.
49433085
VB
4193 * But the next retry should use a higher priority if allowed, so
4194 * we don't just keep bailing out endlessly.
3250845d 4195 */
65190cff 4196 if (compaction_withdrawn(compact_result)) {
49433085 4197 goto check_priority;
65190cff 4198 }
3250845d
VB
4199
4200 /*
dcda9b04 4201 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4202 * costly ones because they are de facto nofail and invoke OOM
4203 * killer to move on while costly can fail and users are ready
4204 * to cope with that. 1/4 retries is rather arbitrary but we
4205 * would need much more detailed feedback from compaction to
4206 * make a better decision.
4207 */
4208 if (order > PAGE_ALLOC_COSTLY_ORDER)
4209 max_retries /= 4;
65190cff
MH
4210 if (*compaction_retries <= max_retries) {
4211 ret = true;
4212 goto out;
4213 }
3250845d 4214
d9436498
VB
4215 /*
4216 * Make sure there are attempts at the highest priority if we exhausted
4217 * all retries or failed at the lower priorities.
4218 */
4219check_priority:
c2033b00
VB
4220 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4221 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4222
c2033b00 4223 if (*compact_priority > min_priority) {
d9436498
VB
4224 (*compact_priority)--;
4225 *compaction_retries = 0;
65190cff 4226 ret = true;
d9436498 4227 }
65190cff
MH
4228out:
4229 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4230 return ret;
3250845d 4231}
56de7263
MG
4232#else
4233static inline struct page *
4234__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4235 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4236 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4237{
33c2d214 4238 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4239 return NULL;
4240}
33c2d214
MH
4241
4242static inline bool
86a294a8
MH
4243should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4244 enum compact_result compact_result,
a5508cd8 4245 enum compact_priority *compact_priority,
d9436498 4246 int *compaction_retries)
33c2d214 4247{
31e49bfd
MH
4248 struct zone *zone;
4249 struct zoneref *z;
4250
4251 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4252 return false;
4253
4254 /*
4255 * There are setups with compaction disabled which would prefer to loop
4256 * inside the allocator rather than hit the oom killer prematurely.
4257 * Let's give them a good hope and keep retrying while the order-0
4258 * watermarks are OK.
4259 */
97a225e6
JK
4260 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4261 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4262 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4263 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4264 return true;
4265 }
33c2d214
MH
4266 return false;
4267}
3250845d 4268#endif /* CONFIG_COMPACTION */
56de7263 4269
d92a8cfc 4270#ifdef CONFIG_LOCKDEP
93781325 4271static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4272 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4273
f920e413 4274static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4275{
d92a8cfc
PZ
4276 /* no reclaim without waiting on it */
4277 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4278 return false;
4279
4280 /* this guy won't enter reclaim */
2e517d68 4281 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4282 return false;
4283
d92a8cfc
PZ
4284 if (gfp_mask & __GFP_NOLOCKDEP)
4285 return false;
4286
4287 return true;
4288}
4289
93781325
OS
4290void __fs_reclaim_acquire(void)
4291{
4292 lock_map_acquire(&__fs_reclaim_map);
4293}
4294
4295void __fs_reclaim_release(void)
4296{
4297 lock_map_release(&__fs_reclaim_map);
4298}
4299
d92a8cfc
PZ
4300void fs_reclaim_acquire(gfp_t gfp_mask)
4301{
f920e413
DV
4302 gfp_mask = current_gfp_context(gfp_mask);
4303
4304 if (__need_reclaim(gfp_mask)) {
4305 if (gfp_mask & __GFP_FS)
4306 __fs_reclaim_acquire();
4307
4308#ifdef CONFIG_MMU_NOTIFIER
4309 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4310 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4311#endif
4312
4313 }
d92a8cfc
PZ
4314}
4315EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4316
4317void fs_reclaim_release(gfp_t gfp_mask)
4318{
f920e413
DV
4319 gfp_mask = current_gfp_context(gfp_mask);
4320
4321 if (__need_reclaim(gfp_mask)) {
4322 if (gfp_mask & __GFP_FS)
4323 __fs_reclaim_release();
4324 }
d92a8cfc
PZ
4325}
4326EXPORT_SYMBOL_GPL(fs_reclaim_release);
4327#endif
4328
bba90710 4329/* Perform direct synchronous page reclaim */
2187e17b 4330static unsigned long
a9263751
VB
4331__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4332 const struct alloc_context *ac)
11e33f6a 4333{
499118e9 4334 unsigned int noreclaim_flag;
2187e17b 4335 unsigned long pflags, progress;
11e33f6a
MG
4336
4337 cond_resched();
4338
4339 /* We now go into synchronous reclaim */
4340 cpuset_memory_pressure_bump();
eb414681 4341 psi_memstall_enter(&pflags);
d92a8cfc 4342 fs_reclaim_acquire(gfp_mask);
93781325 4343 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4344
a9263751
VB
4345 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4346 ac->nodemask);
11e33f6a 4347
499118e9 4348 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4349 fs_reclaim_release(gfp_mask);
eb414681 4350 psi_memstall_leave(&pflags);
11e33f6a
MG
4351
4352 cond_resched();
4353
bba90710
MS
4354 return progress;
4355}
4356
4357/* The really slow allocator path where we enter direct reclaim */
4358static inline struct page *
4359__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4360 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4361 unsigned long *did_some_progress)
bba90710
MS
4362{
4363 struct page *page = NULL;
4364 bool drained = false;
4365
a9263751 4366 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4367 if (unlikely(!(*did_some_progress)))
4368 return NULL;
11e33f6a 4369
9ee493ce 4370retry:
31a6c190 4371 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4372
4373 /*
4374 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4375 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4376 * Shrink them and try again
9ee493ce
MG
4377 */
4378 if (!page && !drained) {
29fac03b 4379 unreserve_highatomic_pageblock(ac, false);
93481ff0 4380 drain_all_pages(NULL);
9ee493ce
MG
4381 drained = true;
4382 goto retry;
4383 }
4384
11e33f6a
MG
4385 return page;
4386}
4387
5ecd9d40
DR
4388static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4389 const struct alloc_context *ac)
3a025760
JW
4390{
4391 struct zoneref *z;
4392 struct zone *zone;
e1a55637 4393 pg_data_t *last_pgdat = NULL;
97a225e6 4394 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4395
97a225e6 4396 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4397 ac->nodemask) {
e1a55637 4398 if (last_pgdat != zone->zone_pgdat)
97a225e6 4399 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4400 last_pgdat = zone->zone_pgdat;
4401 }
3a025760
JW
4402}
4403
c603844b 4404static inline unsigned int
341ce06f
PZ
4405gfp_to_alloc_flags(gfp_t gfp_mask)
4406{
c603844b 4407 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4408
736838e9
MN
4409 /*
4410 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4411 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4412 * to save two branches.
4413 */
e6223a3b 4414 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4415 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4416
341ce06f
PZ
4417 /*
4418 * The caller may dip into page reserves a bit more if the caller
4419 * cannot run direct reclaim, or if the caller has realtime scheduling
4420 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4421 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4422 */
736838e9
MN
4423 alloc_flags |= (__force int)
4424 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4425
d0164adc 4426 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4427 /*
b104a35d
DR
4428 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4429 * if it can't schedule.
5c3240d9 4430 */
b104a35d 4431 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4432 alloc_flags |= ALLOC_HARDER;
523b9458 4433 /*
b104a35d 4434 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4435 * comment for __cpuset_node_allowed().
523b9458 4436 */
341ce06f 4437 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4438 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4439 alloc_flags |= ALLOC_HARDER;
4440
8510e69c
JK
4441 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4442
341ce06f
PZ
4443 return alloc_flags;
4444}
4445
cd04ae1e 4446static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4447{
cd04ae1e
MH
4448 if (!tsk_is_oom_victim(tsk))
4449 return false;
4450
4451 /*
4452 * !MMU doesn't have oom reaper so give access to memory reserves
4453 * only to the thread with TIF_MEMDIE set
4454 */
4455 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4456 return false;
4457
cd04ae1e
MH
4458 return true;
4459}
4460
4461/*
4462 * Distinguish requests which really need access to full memory
4463 * reserves from oom victims which can live with a portion of it
4464 */
4465static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4466{
4467 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4468 return 0;
31a6c190 4469 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4470 return ALLOC_NO_WATERMARKS;
31a6c190 4471 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4472 return ALLOC_NO_WATERMARKS;
4473 if (!in_interrupt()) {
4474 if (current->flags & PF_MEMALLOC)
4475 return ALLOC_NO_WATERMARKS;
4476 else if (oom_reserves_allowed(current))
4477 return ALLOC_OOM;
4478 }
31a6c190 4479
cd04ae1e
MH
4480 return 0;
4481}
4482
4483bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4484{
4485 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4486}
4487
0a0337e0
MH
4488/*
4489 * Checks whether it makes sense to retry the reclaim to make a forward progress
4490 * for the given allocation request.
491d79ae
JW
4491 *
4492 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4493 * without success, or when we couldn't even meet the watermark if we
4494 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4495 *
4496 * Returns true if a retry is viable or false to enter the oom path.
4497 */
4498static inline bool
4499should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4500 struct alloc_context *ac, int alloc_flags,
423b452e 4501 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4502{
4503 struct zone *zone;
4504 struct zoneref *z;
15f570bf 4505 bool ret = false;
0a0337e0 4506
423b452e
VB
4507 /*
4508 * Costly allocations might have made a progress but this doesn't mean
4509 * their order will become available due to high fragmentation so
4510 * always increment the no progress counter for them
4511 */
4512 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4513 *no_progress_loops = 0;
4514 else
4515 (*no_progress_loops)++;
4516
0a0337e0
MH
4517 /*
4518 * Make sure we converge to OOM if we cannot make any progress
4519 * several times in the row.
4520 */
04c8716f
MK
4521 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4522 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4523 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4524 }
0a0337e0 4525
bca67592
MG
4526 /*
4527 * Keep reclaiming pages while there is a chance this will lead
4528 * somewhere. If none of the target zones can satisfy our allocation
4529 * request even if all reclaimable pages are considered then we are
4530 * screwed and have to go OOM.
0a0337e0 4531 */
97a225e6
JK
4532 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4533 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4534 unsigned long available;
ede37713 4535 unsigned long reclaimable;
d379f01d
MH
4536 unsigned long min_wmark = min_wmark_pages(zone);
4537 bool wmark;
0a0337e0 4538
5a1c84b4 4539 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4540 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4541
4542 /*
491d79ae
JW
4543 * Would the allocation succeed if we reclaimed all
4544 * reclaimable pages?
0a0337e0 4545 */
d379f01d 4546 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4547 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4548 trace_reclaim_retry_zone(z, order, reclaimable,
4549 available, min_wmark, *no_progress_loops, wmark);
4550 if (wmark) {
ede37713
MH
4551 /*
4552 * If we didn't make any progress and have a lot of
4553 * dirty + writeback pages then we should wait for
4554 * an IO to complete to slow down the reclaim and
4555 * prevent from pre mature OOM
4556 */
4557 if (!did_some_progress) {
11fb9989 4558 unsigned long write_pending;
ede37713 4559
5a1c84b4
MG
4560 write_pending = zone_page_state_snapshot(zone,
4561 NR_ZONE_WRITE_PENDING);
ede37713 4562
11fb9989 4563 if (2 * write_pending > reclaimable) {
ede37713
MH
4564 congestion_wait(BLK_RW_ASYNC, HZ/10);
4565 return true;
4566 }
4567 }
5a1c84b4 4568
15f570bf
MH
4569 ret = true;
4570 goto out;
0a0337e0
MH
4571 }
4572 }
4573
15f570bf
MH
4574out:
4575 /*
4576 * Memory allocation/reclaim might be called from a WQ context and the
4577 * current implementation of the WQ concurrency control doesn't
4578 * recognize that a particular WQ is congested if the worker thread is
4579 * looping without ever sleeping. Therefore we have to do a short sleep
4580 * here rather than calling cond_resched().
4581 */
4582 if (current->flags & PF_WQ_WORKER)
4583 schedule_timeout_uninterruptible(1);
4584 else
4585 cond_resched();
4586 return ret;
0a0337e0
MH
4587}
4588
902b6281
VB
4589static inline bool
4590check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4591{
4592 /*
4593 * It's possible that cpuset's mems_allowed and the nodemask from
4594 * mempolicy don't intersect. This should be normally dealt with by
4595 * policy_nodemask(), but it's possible to race with cpuset update in
4596 * such a way the check therein was true, and then it became false
4597 * before we got our cpuset_mems_cookie here.
4598 * This assumes that for all allocations, ac->nodemask can come only
4599 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4600 * when it does not intersect with the cpuset restrictions) or the
4601 * caller can deal with a violated nodemask.
4602 */
4603 if (cpusets_enabled() && ac->nodemask &&
4604 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4605 ac->nodemask = NULL;
4606 return true;
4607 }
4608
4609 /*
4610 * When updating a task's mems_allowed or mempolicy nodemask, it is
4611 * possible to race with parallel threads in such a way that our
4612 * allocation can fail while the mask is being updated. If we are about
4613 * to fail, check if the cpuset changed during allocation and if so,
4614 * retry.
4615 */
4616 if (read_mems_allowed_retry(cpuset_mems_cookie))
4617 return true;
4618
4619 return false;
4620}
4621
11e33f6a
MG
4622static inline struct page *
4623__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4624 struct alloc_context *ac)
11e33f6a 4625{
d0164adc 4626 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4627 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4628 struct page *page = NULL;
c603844b 4629 unsigned int alloc_flags;
11e33f6a 4630 unsigned long did_some_progress;
5ce9bfef 4631 enum compact_priority compact_priority;
c5d01d0d 4632 enum compact_result compact_result;
5ce9bfef
VB
4633 int compaction_retries;
4634 int no_progress_loops;
5ce9bfef 4635 unsigned int cpuset_mems_cookie;
cd04ae1e 4636 int reserve_flags;
1da177e4 4637
d0164adc
MG
4638 /*
4639 * We also sanity check to catch abuse of atomic reserves being used by
4640 * callers that are not in atomic context.
4641 */
4642 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4643 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4644 gfp_mask &= ~__GFP_ATOMIC;
4645
5ce9bfef
VB
4646retry_cpuset:
4647 compaction_retries = 0;
4648 no_progress_loops = 0;
4649 compact_priority = DEF_COMPACT_PRIORITY;
4650 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4651
4652 /*
4653 * The fast path uses conservative alloc_flags to succeed only until
4654 * kswapd needs to be woken up, and to avoid the cost of setting up
4655 * alloc_flags precisely. So we do that now.
4656 */
4657 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4658
e47483bc
VB
4659 /*
4660 * We need to recalculate the starting point for the zonelist iterator
4661 * because we might have used different nodemask in the fast path, or
4662 * there was a cpuset modification and we are retrying - otherwise we
4663 * could end up iterating over non-eligible zones endlessly.
4664 */
4665 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4666 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4667 if (!ac->preferred_zoneref->zone)
4668 goto nopage;
4669
0a79cdad 4670 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4671 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4672
4673 /*
4674 * The adjusted alloc_flags might result in immediate success, so try
4675 * that first
4676 */
4677 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4678 if (page)
4679 goto got_pg;
4680
a8161d1e
VB
4681 /*
4682 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4683 * that we have enough base pages and don't need to reclaim. For non-
4684 * movable high-order allocations, do that as well, as compaction will
4685 * try prevent permanent fragmentation by migrating from blocks of the
4686 * same migratetype.
4687 * Don't try this for allocations that are allowed to ignore
4688 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4689 */
282722b0
VB
4690 if (can_direct_reclaim &&
4691 (costly_order ||
4692 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4693 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4694 page = __alloc_pages_direct_compact(gfp_mask, order,
4695 alloc_flags, ac,
a5508cd8 4696 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4697 &compact_result);
4698 if (page)
4699 goto got_pg;
4700
cc638f32
VB
4701 /*
4702 * Checks for costly allocations with __GFP_NORETRY, which
4703 * includes some THP page fault allocations
4704 */
4705 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4706 /*
4707 * If allocating entire pageblock(s) and compaction
4708 * failed because all zones are below low watermarks
4709 * or is prohibited because it recently failed at this
3f36d866
DR
4710 * order, fail immediately unless the allocator has
4711 * requested compaction and reclaim retry.
b39d0ee2
DR
4712 *
4713 * Reclaim is
4714 * - potentially very expensive because zones are far
4715 * below their low watermarks or this is part of very
4716 * bursty high order allocations,
4717 * - not guaranteed to help because isolate_freepages()
4718 * may not iterate over freed pages as part of its
4719 * linear scan, and
4720 * - unlikely to make entire pageblocks free on its
4721 * own.
4722 */
4723 if (compact_result == COMPACT_SKIPPED ||
4724 compact_result == COMPACT_DEFERRED)
4725 goto nopage;
a8161d1e 4726
a8161d1e 4727 /*
3eb2771b
VB
4728 * Looks like reclaim/compaction is worth trying, but
4729 * sync compaction could be very expensive, so keep
25160354 4730 * using async compaction.
a8161d1e 4731 */
a5508cd8 4732 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4733 }
4734 }
23771235 4735
31a6c190 4736retry:
23771235 4737 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4738 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4739 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4740
cd04ae1e
MH
4741 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4742 if (reserve_flags)
8510e69c 4743 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4744
e46e7b77 4745 /*
d6a24df0
VB
4746 * Reset the nodemask and zonelist iterators if memory policies can be
4747 * ignored. These allocations are high priority and system rather than
4748 * user oriented.
e46e7b77 4749 */
cd04ae1e 4750 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4751 ac->nodemask = NULL;
e46e7b77 4752 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4753 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4754 }
4755
23771235 4756 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4757 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4758 if (page)
4759 goto got_pg;
1da177e4 4760
d0164adc 4761 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4762 if (!can_direct_reclaim)
1da177e4
LT
4763 goto nopage;
4764
9a67f648
MH
4765 /* Avoid recursion of direct reclaim */
4766 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4767 goto nopage;
4768
a8161d1e
VB
4769 /* Try direct reclaim and then allocating */
4770 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4771 &did_some_progress);
4772 if (page)
4773 goto got_pg;
4774
4775 /* Try direct compaction and then allocating */
a9263751 4776 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4777 compact_priority, &compact_result);
56de7263
MG
4778 if (page)
4779 goto got_pg;
75f30861 4780
9083905a
JW
4781 /* Do not loop if specifically requested */
4782 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4783 goto nopage;
9083905a 4784
0a0337e0
MH
4785 /*
4786 * Do not retry costly high order allocations unless they are
dcda9b04 4787 * __GFP_RETRY_MAYFAIL
0a0337e0 4788 */
dcda9b04 4789 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4790 goto nopage;
0a0337e0 4791
0a0337e0 4792 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4793 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4794 goto retry;
4795
33c2d214
MH
4796 /*
4797 * It doesn't make any sense to retry for the compaction if the order-0
4798 * reclaim is not able to make any progress because the current
4799 * implementation of the compaction depends on the sufficient amount
4800 * of free memory (see __compaction_suitable)
4801 */
4802 if (did_some_progress > 0 &&
86a294a8 4803 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4804 compact_result, &compact_priority,
d9436498 4805 &compaction_retries))
33c2d214
MH
4806 goto retry;
4807
902b6281
VB
4808
4809 /* Deal with possible cpuset update races before we start OOM killing */
4810 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4811 goto retry_cpuset;
4812
9083905a
JW
4813 /* Reclaim has failed us, start killing things */
4814 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4815 if (page)
4816 goto got_pg;
4817
9a67f648 4818 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4819 if (tsk_is_oom_victim(current) &&
8510e69c 4820 (alloc_flags & ALLOC_OOM ||
c288983d 4821 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4822 goto nopage;
4823
9083905a 4824 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4825 if (did_some_progress) {
4826 no_progress_loops = 0;
9083905a 4827 goto retry;
0a0337e0 4828 }
9083905a 4829
1da177e4 4830nopage:
902b6281
VB
4831 /* Deal with possible cpuset update races before we fail */
4832 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4833 goto retry_cpuset;
4834
9a67f648
MH
4835 /*
4836 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4837 * we always retry
4838 */
4839 if (gfp_mask & __GFP_NOFAIL) {
4840 /*
4841 * All existing users of the __GFP_NOFAIL are blockable, so warn
4842 * of any new users that actually require GFP_NOWAIT
4843 */
4844 if (WARN_ON_ONCE(!can_direct_reclaim))
4845 goto fail;
4846
4847 /*
4848 * PF_MEMALLOC request from this context is rather bizarre
4849 * because we cannot reclaim anything and only can loop waiting
4850 * for somebody to do a work for us
4851 */
4852 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4853
4854 /*
4855 * non failing costly orders are a hard requirement which we
4856 * are not prepared for much so let's warn about these users
4857 * so that we can identify them and convert them to something
4858 * else.
4859 */
4860 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4861
6c18ba7a
MH
4862 /*
4863 * Help non-failing allocations by giving them access to memory
4864 * reserves but do not use ALLOC_NO_WATERMARKS because this
4865 * could deplete whole memory reserves which would just make
4866 * the situation worse
4867 */
4868 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4869 if (page)
4870 goto got_pg;
4871
9a67f648
MH
4872 cond_resched();
4873 goto retry;
4874 }
4875fail:
a8e99259 4876 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4877 "page allocation failure: order:%u", order);
1da177e4 4878got_pg:
072bb0aa 4879 return page;
1da177e4 4880}
11e33f6a 4881
9cd75558 4882static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4883 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4884 struct alloc_context *ac, gfp_t *alloc_mask,
4885 unsigned int *alloc_flags)
11e33f6a 4886{
97a225e6 4887 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4888 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4889 ac->nodemask = nodemask;
01c0bfe0 4890 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4891
682a3385 4892 if (cpusets_enabled()) {
9cd75558 4893 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4894 /*
4895 * When we are in the interrupt context, it is irrelevant
4896 * to the current task context. It means that any node ok.
4897 */
4898 if (!in_interrupt() && !ac->nodemask)
9cd75558 4899 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4900 else
4901 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4902 }
4903
d92a8cfc
PZ
4904 fs_reclaim_acquire(gfp_mask);
4905 fs_reclaim_release(gfp_mask);
11e33f6a 4906
d0164adc 4907 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4908
4909 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4910 return false;
11e33f6a 4911
8510e69c 4912 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4913
c9ab0c4f 4914 /* Dirty zone balancing only done in the fast path */
9cd75558 4915 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4916
e46e7b77
MG
4917 /*
4918 * The preferred zone is used for statistics but crucially it is
4919 * also used as the starting point for the zonelist iterator. It
4920 * may get reset for allocations that ignore memory policies.
4921 */
9cd75558 4922 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4923 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4924
4925 return true;
9cd75558
MG
4926}
4927
4928/*
4929 * This is the 'heart' of the zoned buddy allocator.
4930 */
4931struct page *
04ec6264
VB
4932__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4933 nodemask_t *nodemask)
9cd75558
MG
4934{
4935 struct page *page;
4936 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4937 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4938 struct alloc_context ac = { };
4939
c63ae43b
MH
4940 /*
4941 * There are several places where we assume that the order value is sane
4942 * so bail out early if the request is out of bound.
4943 */
4944 if (unlikely(order >= MAX_ORDER)) {
4945 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4946 return NULL;
4947 }
4948
9cd75558 4949 gfp_mask &= gfp_allowed_mask;
f19360f0 4950 alloc_mask = gfp_mask;
04ec6264 4951 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4952 return NULL;
4953
6bb15450
MG
4954 /*
4955 * Forbid the first pass from falling back to types that fragment
4956 * memory until all local zones are considered.
4957 */
0a79cdad 4958 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4959
5117f45d 4960 /* First allocation attempt */
a9263751 4961 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4962 if (likely(page))
4963 goto out;
11e33f6a 4964
4fcb0971 4965 /*
7dea19f9
MH
4966 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4967 * resp. GFP_NOIO which has to be inherited for all allocation requests
4968 * from a particular context which has been marked by
4969 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4970 */
7dea19f9 4971 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4972 ac.spread_dirty_pages = false;
23f086f9 4973
4741526b
MG
4974 /*
4975 * Restore the original nodemask if it was potentially replaced with
4976 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4977 */
97ce86f9 4978 ac.nodemask = nodemask;
16096c25 4979
4fcb0971 4980 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4981
4fcb0971 4982out:
c4159a75 4983 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4984 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4985 __free_pages(page, order);
4986 page = NULL;
4949148a
VD
4987 }
4988
4fcb0971
MG
4989 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4990
11e33f6a 4991 return page;
1da177e4 4992}
d239171e 4993EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4994
4995/*
9ea9a680
MH
4996 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4997 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4998 * you need to access high mem.
1da177e4 4999 */
920c7a5d 5000unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5001{
945a1113
AM
5002 struct page *page;
5003
9ea9a680 5004 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5005 if (!page)
5006 return 0;
5007 return (unsigned long) page_address(page);
5008}
1da177e4
LT
5009EXPORT_SYMBOL(__get_free_pages);
5010
920c7a5d 5011unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5012{
945a1113 5013 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5014}
1da177e4
LT
5015EXPORT_SYMBOL(get_zeroed_page);
5016
742aa7fb 5017static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5018{
742aa7fb
AL
5019 if (order == 0) /* Via pcp? */
5020 free_unref_page(page);
5021 else
7fef431b 5022 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5023}
5024
742aa7fb
AL
5025void __free_pages(struct page *page, unsigned int order)
5026{
5027 if (put_page_testzero(page))
5028 free_the_page(page, order);
e320d301
MWO
5029 else if (!PageHead(page))
5030 while (order-- > 0)
5031 free_the_page(page + (1 << order), order);
742aa7fb 5032}
1da177e4
LT
5033EXPORT_SYMBOL(__free_pages);
5034
920c7a5d 5035void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5036{
5037 if (addr != 0) {
725d704e 5038 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5039 __free_pages(virt_to_page((void *)addr), order);
5040 }
5041}
5042
5043EXPORT_SYMBOL(free_pages);
5044
b63ae8ca
AD
5045/*
5046 * Page Fragment:
5047 * An arbitrary-length arbitrary-offset area of memory which resides
5048 * within a 0 or higher order page. Multiple fragments within that page
5049 * are individually refcounted, in the page's reference counter.
5050 *
5051 * The page_frag functions below provide a simple allocation framework for
5052 * page fragments. This is used by the network stack and network device
5053 * drivers to provide a backing region of memory for use as either an
5054 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5055 */
2976db80
AD
5056static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5057 gfp_t gfp_mask)
b63ae8ca
AD
5058{
5059 struct page *page = NULL;
5060 gfp_t gfp = gfp_mask;
5061
5062#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5063 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5064 __GFP_NOMEMALLOC;
5065 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5066 PAGE_FRAG_CACHE_MAX_ORDER);
5067 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5068#endif
5069 if (unlikely(!page))
5070 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5071
5072 nc->va = page ? page_address(page) : NULL;
5073
5074 return page;
5075}
5076
2976db80 5077void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5078{
5079 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5080
742aa7fb
AL
5081 if (page_ref_sub_and_test(page, count))
5082 free_the_page(page, compound_order(page));
44fdffd7 5083}
2976db80 5084EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5085
8c2dd3e4
AD
5086void *page_frag_alloc(struct page_frag_cache *nc,
5087 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5088{
5089 unsigned int size = PAGE_SIZE;
5090 struct page *page;
5091 int offset;
5092
5093 if (unlikely(!nc->va)) {
5094refill:
2976db80 5095 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5096 if (!page)
5097 return NULL;
5098
5099#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5100 /* if size can vary use size else just use PAGE_SIZE */
5101 size = nc->size;
5102#endif
5103 /* Even if we own the page, we do not use atomic_set().
5104 * This would break get_page_unless_zero() users.
5105 */
86447726 5106 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5107
5108 /* reset page count bias and offset to start of new frag */
2f064f34 5109 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5110 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5111 nc->offset = size;
5112 }
5113
5114 offset = nc->offset - fragsz;
5115 if (unlikely(offset < 0)) {
5116 page = virt_to_page(nc->va);
5117
fe896d18 5118 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5119 goto refill;
5120
d8c19014
DZ
5121 if (unlikely(nc->pfmemalloc)) {
5122 free_the_page(page, compound_order(page));
5123 goto refill;
5124 }
5125
b63ae8ca
AD
5126#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5127 /* if size can vary use size else just use PAGE_SIZE */
5128 size = nc->size;
5129#endif
5130 /* OK, page count is 0, we can safely set it */
86447726 5131 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5132
5133 /* reset page count bias and offset to start of new frag */
86447726 5134 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5135 offset = size - fragsz;
5136 }
5137
5138 nc->pagecnt_bias--;
5139 nc->offset = offset;
5140
5141 return nc->va + offset;
5142}
8c2dd3e4 5143EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5144
5145/*
5146 * Frees a page fragment allocated out of either a compound or order 0 page.
5147 */
8c2dd3e4 5148void page_frag_free(void *addr)
b63ae8ca
AD
5149{
5150 struct page *page = virt_to_head_page(addr);
5151
742aa7fb
AL
5152 if (unlikely(put_page_testzero(page)))
5153 free_the_page(page, compound_order(page));
b63ae8ca 5154}
8c2dd3e4 5155EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5156
d00181b9
KS
5157static void *make_alloc_exact(unsigned long addr, unsigned int order,
5158 size_t size)
ee85c2e1
AK
5159{
5160 if (addr) {
5161 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5162 unsigned long used = addr + PAGE_ALIGN(size);
5163
5164 split_page(virt_to_page((void *)addr), order);
5165 while (used < alloc_end) {
5166 free_page(used);
5167 used += PAGE_SIZE;
5168 }
5169 }
5170 return (void *)addr;
5171}
5172
2be0ffe2
TT
5173/**
5174 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5175 * @size: the number of bytes to allocate
63931eb9 5176 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5177 *
5178 * This function is similar to alloc_pages(), except that it allocates the
5179 * minimum number of pages to satisfy the request. alloc_pages() can only
5180 * allocate memory in power-of-two pages.
5181 *
5182 * This function is also limited by MAX_ORDER.
5183 *
5184 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5185 *
5186 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5187 */
5188void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5189{
5190 unsigned int order = get_order(size);
5191 unsigned long addr;
5192
63931eb9
VB
5193 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5194 gfp_mask &= ~__GFP_COMP;
5195
2be0ffe2 5196 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5197 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5198}
5199EXPORT_SYMBOL(alloc_pages_exact);
5200
ee85c2e1
AK
5201/**
5202 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5203 * pages on a node.
b5e6ab58 5204 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5205 * @size: the number of bytes to allocate
63931eb9 5206 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5207 *
5208 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5209 * back.
a862f68a
MR
5210 *
5211 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5212 */
e1931811 5213void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5214{
d00181b9 5215 unsigned int order = get_order(size);
63931eb9
VB
5216 struct page *p;
5217
5218 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5219 gfp_mask &= ~__GFP_COMP;
5220
5221 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5222 if (!p)
5223 return NULL;
5224 return make_alloc_exact((unsigned long)page_address(p), order, size);
5225}
ee85c2e1 5226
2be0ffe2
TT
5227/**
5228 * free_pages_exact - release memory allocated via alloc_pages_exact()
5229 * @virt: the value returned by alloc_pages_exact.
5230 * @size: size of allocation, same value as passed to alloc_pages_exact().
5231 *
5232 * Release the memory allocated by a previous call to alloc_pages_exact.
5233 */
5234void free_pages_exact(void *virt, size_t size)
5235{
5236 unsigned long addr = (unsigned long)virt;
5237 unsigned long end = addr + PAGE_ALIGN(size);
5238
5239 while (addr < end) {
5240 free_page(addr);
5241 addr += PAGE_SIZE;
5242 }
5243}
5244EXPORT_SYMBOL(free_pages_exact);
5245
e0fb5815
ZY
5246/**
5247 * nr_free_zone_pages - count number of pages beyond high watermark
5248 * @offset: The zone index of the highest zone
5249 *
a862f68a 5250 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5251 * high watermark within all zones at or below a given zone index. For each
5252 * zone, the number of pages is calculated as:
0e056eb5 5253 *
5254 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5255 *
5256 * Return: number of pages beyond high watermark.
e0fb5815 5257 */
ebec3862 5258static unsigned long nr_free_zone_pages(int offset)
1da177e4 5259{
dd1a239f 5260 struct zoneref *z;
54a6eb5c
MG
5261 struct zone *zone;
5262
e310fd43 5263 /* Just pick one node, since fallback list is circular */
ebec3862 5264 unsigned long sum = 0;
1da177e4 5265
0e88460d 5266 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5267
54a6eb5c 5268 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5269 unsigned long size = zone_managed_pages(zone);
41858966 5270 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5271 if (size > high)
5272 sum += size - high;
1da177e4
LT
5273 }
5274
5275 return sum;
5276}
5277
e0fb5815
ZY
5278/**
5279 * nr_free_buffer_pages - count number of pages beyond high watermark
5280 *
5281 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5282 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5283 *
5284 * Return: number of pages beyond high watermark within ZONE_DMA and
5285 * ZONE_NORMAL.
1da177e4 5286 */
ebec3862 5287unsigned long nr_free_buffer_pages(void)
1da177e4 5288{
af4ca457 5289 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5290}
c2f1a551 5291EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5292
08e0f6a9 5293static inline void show_node(struct zone *zone)
1da177e4 5294{
e5adfffc 5295 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5296 printk("Node %d ", zone_to_nid(zone));
1da177e4 5297}
1da177e4 5298
d02bd27b
IR
5299long si_mem_available(void)
5300{
5301 long available;
5302 unsigned long pagecache;
5303 unsigned long wmark_low = 0;
5304 unsigned long pages[NR_LRU_LISTS];
b29940c1 5305 unsigned long reclaimable;
d02bd27b
IR
5306 struct zone *zone;
5307 int lru;
5308
5309 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5310 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5311
5312 for_each_zone(zone)
a9214443 5313 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5314
5315 /*
5316 * Estimate the amount of memory available for userspace allocations,
5317 * without causing swapping.
5318 */
c41f012a 5319 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5320
5321 /*
5322 * Not all the page cache can be freed, otherwise the system will
5323 * start swapping. Assume at least half of the page cache, or the
5324 * low watermark worth of cache, needs to stay.
5325 */
5326 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5327 pagecache -= min(pagecache / 2, wmark_low);
5328 available += pagecache;
5329
5330 /*
b29940c1
VB
5331 * Part of the reclaimable slab and other kernel memory consists of
5332 * items that are in use, and cannot be freed. Cap this estimate at the
5333 * low watermark.
d02bd27b 5334 */
d42f3245
RG
5335 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5336 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5337 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5338
d02bd27b
IR
5339 if (available < 0)
5340 available = 0;
5341 return available;
5342}
5343EXPORT_SYMBOL_GPL(si_mem_available);
5344
1da177e4
LT
5345void si_meminfo(struct sysinfo *val)
5346{
ca79b0c2 5347 val->totalram = totalram_pages();
11fb9989 5348 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5349 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5350 val->bufferram = nr_blockdev_pages();
ca79b0c2 5351 val->totalhigh = totalhigh_pages();
1da177e4 5352 val->freehigh = nr_free_highpages();
1da177e4
LT
5353 val->mem_unit = PAGE_SIZE;
5354}
5355
5356EXPORT_SYMBOL(si_meminfo);
5357
5358#ifdef CONFIG_NUMA
5359void si_meminfo_node(struct sysinfo *val, int nid)
5360{
cdd91a77
JL
5361 int zone_type; /* needs to be signed */
5362 unsigned long managed_pages = 0;
fc2bd799
JK
5363 unsigned long managed_highpages = 0;
5364 unsigned long free_highpages = 0;
1da177e4
LT
5365 pg_data_t *pgdat = NODE_DATA(nid);
5366
cdd91a77 5367 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5368 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5369 val->totalram = managed_pages;
11fb9989 5370 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5371 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5372#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5373 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5374 struct zone *zone = &pgdat->node_zones[zone_type];
5375
5376 if (is_highmem(zone)) {
9705bea5 5377 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5378 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5379 }
5380 }
5381 val->totalhigh = managed_highpages;
5382 val->freehigh = free_highpages;
98d2b0eb 5383#else
fc2bd799
JK
5384 val->totalhigh = managed_highpages;
5385 val->freehigh = free_highpages;
98d2b0eb 5386#endif
1da177e4
LT
5387 val->mem_unit = PAGE_SIZE;
5388}
5389#endif
5390
ddd588b5 5391/*
7bf02ea2
DR
5392 * Determine whether the node should be displayed or not, depending on whether
5393 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5394 */
9af744d7 5395static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5396{
ddd588b5 5397 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5398 return false;
ddd588b5 5399
9af744d7
MH
5400 /*
5401 * no node mask - aka implicit memory numa policy. Do not bother with
5402 * the synchronization - read_mems_allowed_begin - because we do not
5403 * have to be precise here.
5404 */
5405 if (!nodemask)
5406 nodemask = &cpuset_current_mems_allowed;
5407
5408 return !node_isset(nid, *nodemask);
ddd588b5
DR
5409}
5410
1da177e4
LT
5411#define K(x) ((x) << (PAGE_SHIFT-10))
5412
377e4f16
RV
5413static void show_migration_types(unsigned char type)
5414{
5415 static const char types[MIGRATE_TYPES] = {
5416 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5417 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5418 [MIGRATE_RECLAIMABLE] = 'E',
5419 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5420#ifdef CONFIG_CMA
5421 [MIGRATE_CMA] = 'C',
5422#endif
194159fb 5423#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5424 [MIGRATE_ISOLATE] = 'I',
194159fb 5425#endif
377e4f16
RV
5426 };
5427 char tmp[MIGRATE_TYPES + 1];
5428 char *p = tmp;
5429 int i;
5430
5431 for (i = 0; i < MIGRATE_TYPES; i++) {
5432 if (type & (1 << i))
5433 *p++ = types[i];
5434 }
5435
5436 *p = '\0';
1f84a18f 5437 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5438}
5439
1da177e4
LT
5440/*
5441 * Show free area list (used inside shift_scroll-lock stuff)
5442 * We also calculate the percentage fragmentation. We do this by counting the
5443 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5444 *
5445 * Bits in @filter:
5446 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5447 * cpuset.
1da177e4 5448 */
9af744d7 5449void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5450{
d1bfcdb8 5451 unsigned long free_pcp = 0;
c7241913 5452 int cpu;
1da177e4 5453 struct zone *zone;
599d0c95 5454 pg_data_t *pgdat;
1da177e4 5455
ee99c71c 5456 for_each_populated_zone(zone) {
9af744d7 5457 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5458 continue;
d1bfcdb8 5459
761b0677
KK
5460 for_each_online_cpu(cpu)
5461 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5462 }
5463
a731286d
KM
5464 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5465 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5466 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5467 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5468 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5469 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5470 global_node_page_state(NR_ACTIVE_ANON),
5471 global_node_page_state(NR_INACTIVE_ANON),
5472 global_node_page_state(NR_ISOLATED_ANON),
5473 global_node_page_state(NR_ACTIVE_FILE),
5474 global_node_page_state(NR_INACTIVE_FILE),
5475 global_node_page_state(NR_ISOLATED_FILE),
5476 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5477 global_node_page_state(NR_FILE_DIRTY),
5478 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5479 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5480 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5481 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5482 global_node_page_state(NR_SHMEM),
f0c0c115 5483 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5484 global_zone_page_state(NR_BOUNCE),
5485 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5486 free_pcp,
c41f012a 5487 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5488
599d0c95 5489 for_each_online_pgdat(pgdat) {
9af744d7 5490 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5491 continue;
5492
599d0c95
MG
5493 printk("Node %d"
5494 " active_anon:%lukB"
5495 " inactive_anon:%lukB"
5496 " active_file:%lukB"
5497 " inactive_file:%lukB"
5498 " unevictable:%lukB"
5499 " isolated(anon):%lukB"
5500 " isolated(file):%lukB"
50658e2e 5501 " mapped:%lukB"
11fb9989
MG
5502 " dirty:%lukB"
5503 " writeback:%lukB"
5504 " shmem:%lukB"
5505#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5506 " shmem_thp: %lukB"
5507 " shmem_pmdmapped: %lukB"
5508 " anon_thp: %lukB"
5509#endif
5510 " writeback_tmp:%lukB"
991e7673
SB
5511 " kernel_stack:%lukB"
5512#ifdef CONFIG_SHADOW_CALL_STACK
5513 " shadow_call_stack:%lukB"
5514#endif
f0c0c115 5515 " pagetables:%lukB"
599d0c95
MG
5516 " all_unreclaimable? %s"
5517 "\n",
5518 pgdat->node_id,
5519 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5520 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5521 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5522 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5523 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5524 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5525 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5526 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5527 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5528 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5529 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5531 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5532 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5533 * HPAGE_PMD_NR),
5534 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5535#endif
11fb9989 5536 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5537 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5538#ifdef CONFIG_SHADOW_CALL_STACK
5539 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5540#endif
f0c0c115 5541 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5542 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5543 "yes" : "no");
599d0c95
MG
5544 }
5545
ee99c71c 5546 for_each_populated_zone(zone) {
1da177e4
LT
5547 int i;
5548
9af744d7 5549 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5550 continue;
d1bfcdb8
KK
5551
5552 free_pcp = 0;
5553 for_each_online_cpu(cpu)
5554 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5555
1da177e4 5556 show_node(zone);
1f84a18f
JP
5557 printk(KERN_CONT
5558 "%s"
1da177e4
LT
5559 " free:%lukB"
5560 " min:%lukB"
5561 " low:%lukB"
5562 " high:%lukB"
e47b346a 5563 " reserved_highatomic:%luKB"
71c799f4
MK
5564 " active_anon:%lukB"
5565 " inactive_anon:%lukB"
5566 " active_file:%lukB"
5567 " inactive_file:%lukB"
5568 " unevictable:%lukB"
5a1c84b4 5569 " writepending:%lukB"
1da177e4 5570 " present:%lukB"
9feedc9d 5571 " managed:%lukB"
4a0aa73f 5572 " mlocked:%lukB"
4a0aa73f 5573 " bounce:%lukB"
d1bfcdb8
KK
5574 " free_pcp:%lukB"
5575 " local_pcp:%ukB"
d1ce749a 5576 " free_cma:%lukB"
1da177e4
LT
5577 "\n",
5578 zone->name,
88f5acf8 5579 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5580 K(min_wmark_pages(zone)),
5581 K(low_wmark_pages(zone)),
5582 K(high_wmark_pages(zone)),
e47b346a 5583 K(zone->nr_reserved_highatomic),
71c799f4
MK
5584 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5585 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5586 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5587 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5588 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5589 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5590 K(zone->present_pages),
9705bea5 5591 K(zone_managed_pages(zone)),
4a0aa73f 5592 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5593 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5594 K(free_pcp),
5595 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5596 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5597 printk("lowmem_reserve[]:");
5598 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5599 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5600 printk(KERN_CONT "\n");
1da177e4
LT
5601 }
5602
ee99c71c 5603 for_each_populated_zone(zone) {
d00181b9
KS
5604 unsigned int order;
5605 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5606 unsigned char types[MAX_ORDER];
1da177e4 5607
9af744d7 5608 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5609 continue;
1da177e4 5610 show_node(zone);
1f84a18f 5611 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5612
5613 spin_lock_irqsave(&zone->lock, flags);
5614 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5615 struct free_area *area = &zone->free_area[order];
5616 int type;
5617
5618 nr[order] = area->nr_free;
8f9de51a 5619 total += nr[order] << order;
377e4f16
RV
5620
5621 types[order] = 0;
5622 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5623 if (!free_area_empty(area, type))
377e4f16
RV
5624 types[order] |= 1 << type;
5625 }
1da177e4
LT
5626 }
5627 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5628 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5629 printk(KERN_CONT "%lu*%lukB ",
5630 nr[order], K(1UL) << order);
377e4f16
RV
5631 if (nr[order])
5632 show_migration_types(types[order]);
5633 }
1f84a18f 5634 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5635 }
5636
949f7ec5
DR
5637 hugetlb_show_meminfo();
5638
11fb9989 5639 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5640
1da177e4
LT
5641 show_swap_cache_info();
5642}
5643
19770b32
MG
5644static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5645{
5646 zoneref->zone = zone;
5647 zoneref->zone_idx = zone_idx(zone);
5648}
5649
1da177e4
LT
5650/*
5651 * Builds allocation fallback zone lists.
1a93205b
CL
5652 *
5653 * Add all populated zones of a node to the zonelist.
1da177e4 5654 */
9d3be21b 5655static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5656{
1a93205b 5657 struct zone *zone;
bc732f1d 5658 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5659 int nr_zones = 0;
02a68a5e
CL
5660
5661 do {
2f6726e5 5662 zone_type--;
070f8032 5663 zone = pgdat->node_zones + zone_type;
6aa303de 5664 if (managed_zone(zone)) {
9d3be21b 5665 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5666 check_highest_zone(zone_type);
1da177e4 5667 }
2f6726e5 5668 } while (zone_type);
bc732f1d 5669
070f8032 5670 return nr_zones;
1da177e4
LT
5671}
5672
5673#ifdef CONFIG_NUMA
f0c0b2b8
KH
5674
5675static int __parse_numa_zonelist_order(char *s)
5676{
c9bff3ee
MH
5677 /*
5678 * We used to support different zonlists modes but they turned
5679 * out to be just not useful. Let's keep the warning in place
5680 * if somebody still use the cmd line parameter so that we do
5681 * not fail it silently
5682 */
5683 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5684 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5685 return -EINVAL;
5686 }
5687 return 0;
5688}
5689
c9bff3ee
MH
5690char numa_zonelist_order[] = "Node";
5691
f0c0b2b8
KH
5692/*
5693 * sysctl handler for numa_zonelist_order
5694 */
cccad5b9 5695int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5696 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5697{
32927393
CH
5698 if (write)
5699 return __parse_numa_zonelist_order(buffer);
5700 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5701}
5702
5703
62bc62a8 5704#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5705static int node_load[MAX_NUMNODES];
5706
1da177e4 5707/**
4dc3b16b 5708 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5709 * @node: node whose fallback list we're appending
5710 * @used_node_mask: nodemask_t of already used nodes
5711 *
5712 * We use a number of factors to determine which is the next node that should
5713 * appear on a given node's fallback list. The node should not have appeared
5714 * already in @node's fallback list, and it should be the next closest node
5715 * according to the distance array (which contains arbitrary distance values
5716 * from each node to each node in the system), and should also prefer nodes
5717 * with no CPUs, since presumably they'll have very little allocation pressure
5718 * on them otherwise.
a862f68a
MR
5719 *
5720 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5721 */
f0c0b2b8 5722static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5723{
4cf808eb 5724 int n, val;
1da177e4 5725 int min_val = INT_MAX;
00ef2d2f 5726 int best_node = NUMA_NO_NODE;
1da177e4 5727
4cf808eb
LT
5728 /* Use the local node if we haven't already */
5729 if (!node_isset(node, *used_node_mask)) {
5730 node_set(node, *used_node_mask);
5731 return node;
5732 }
1da177e4 5733
4b0ef1fe 5734 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5735
5736 /* Don't want a node to appear more than once */
5737 if (node_isset(n, *used_node_mask))
5738 continue;
5739
1da177e4
LT
5740 /* Use the distance array to find the distance */
5741 val = node_distance(node, n);
5742
4cf808eb
LT
5743 /* Penalize nodes under us ("prefer the next node") */
5744 val += (n < node);
5745
1da177e4 5746 /* Give preference to headless and unused nodes */
b630749f 5747 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5748 val += PENALTY_FOR_NODE_WITH_CPUS;
5749
5750 /* Slight preference for less loaded node */
5751 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5752 val += node_load[n];
5753
5754 if (val < min_val) {
5755 min_val = val;
5756 best_node = n;
5757 }
5758 }
5759
5760 if (best_node >= 0)
5761 node_set(best_node, *used_node_mask);
5762
5763 return best_node;
5764}
5765
f0c0b2b8
KH
5766
5767/*
5768 * Build zonelists ordered by node and zones within node.
5769 * This results in maximum locality--normal zone overflows into local
5770 * DMA zone, if any--but risks exhausting DMA zone.
5771 */
9d3be21b
MH
5772static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5773 unsigned nr_nodes)
1da177e4 5774{
9d3be21b
MH
5775 struct zoneref *zonerefs;
5776 int i;
5777
5778 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5779
5780 for (i = 0; i < nr_nodes; i++) {
5781 int nr_zones;
5782
5783 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5784
9d3be21b
MH
5785 nr_zones = build_zonerefs_node(node, zonerefs);
5786 zonerefs += nr_zones;
5787 }
5788 zonerefs->zone = NULL;
5789 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5790}
5791
523b9458
CL
5792/*
5793 * Build gfp_thisnode zonelists
5794 */
5795static void build_thisnode_zonelists(pg_data_t *pgdat)
5796{
9d3be21b
MH
5797 struct zoneref *zonerefs;
5798 int nr_zones;
523b9458 5799
9d3be21b
MH
5800 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5801 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5802 zonerefs += nr_zones;
5803 zonerefs->zone = NULL;
5804 zonerefs->zone_idx = 0;
523b9458
CL
5805}
5806
f0c0b2b8
KH
5807/*
5808 * Build zonelists ordered by zone and nodes within zones.
5809 * This results in conserving DMA zone[s] until all Normal memory is
5810 * exhausted, but results in overflowing to remote node while memory
5811 * may still exist in local DMA zone.
5812 */
f0c0b2b8 5813
f0c0b2b8
KH
5814static void build_zonelists(pg_data_t *pgdat)
5815{
9d3be21b
MH
5816 static int node_order[MAX_NUMNODES];
5817 int node, load, nr_nodes = 0;
d0ddf49b 5818 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5819 int local_node, prev_node;
1da177e4
LT
5820
5821 /* NUMA-aware ordering of nodes */
5822 local_node = pgdat->node_id;
62bc62a8 5823 load = nr_online_nodes;
1da177e4 5824 prev_node = local_node;
f0c0b2b8 5825
f0c0b2b8 5826 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5827 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5828 /*
5829 * We don't want to pressure a particular node.
5830 * So adding penalty to the first node in same
5831 * distance group to make it round-robin.
5832 */
957f822a
DR
5833 if (node_distance(local_node, node) !=
5834 node_distance(local_node, prev_node))
f0c0b2b8
KH
5835 node_load[node] = load;
5836
9d3be21b 5837 node_order[nr_nodes++] = node;
1da177e4
LT
5838 prev_node = node;
5839 load--;
1da177e4 5840 }
523b9458 5841
9d3be21b 5842 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5843 build_thisnode_zonelists(pgdat);
1da177e4
LT
5844}
5845
7aac7898
LS
5846#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5847/*
5848 * Return node id of node used for "local" allocations.
5849 * I.e., first node id of first zone in arg node's generic zonelist.
5850 * Used for initializing percpu 'numa_mem', which is used primarily
5851 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5852 */
5853int local_memory_node(int node)
5854{
c33d6c06 5855 struct zoneref *z;
7aac7898 5856
c33d6c06 5857 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5858 gfp_zone(GFP_KERNEL),
c33d6c06 5859 NULL);
c1093b74 5860 return zone_to_nid(z->zone);
7aac7898
LS
5861}
5862#endif
f0c0b2b8 5863
6423aa81
JK
5864static void setup_min_unmapped_ratio(void);
5865static void setup_min_slab_ratio(void);
1da177e4
LT
5866#else /* CONFIG_NUMA */
5867
f0c0b2b8 5868static void build_zonelists(pg_data_t *pgdat)
1da177e4 5869{
19655d34 5870 int node, local_node;
9d3be21b
MH
5871 struct zoneref *zonerefs;
5872 int nr_zones;
1da177e4
LT
5873
5874 local_node = pgdat->node_id;
1da177e4 5875
9d3be21b
MH
5876 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5877 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5878 zonerefs += nr_zones;
1da177e4 5879
54a6eb5c
MG
5880 /*
5881 * Now we build the zonelist so that it contains the zones
5882 * of all the other nodes.
5883 * We don't want to pressure a particular node, so when
5884 * building the zones for node N, we make sure that the
5885 * zones coming right after the local ones are those from
5886 * node N+1 (modulo N)
5887 */
5888 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5889 if (!node_online(node))
5890 continue;
9d3be21b
MH
5891 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5892 zonerefs += nr_zones;
1da177e4 5893 }
54a6eb5c
MG
5894 for (node = 0; node < local_node; node++) {
5895 if (!node_online(node))
5896 continue;
9d3be21b
MH
5897 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5898 zonerefs += nr_zones;
54a6eb5c
MG
5899 }
5900
9d3be21b
MH
5901 zonerefs->zone = NULL;
5902 zonerefs->zone_idx = 0;
1da177e4
LT
5903}
5904
5905#endif /* CONFIG_NUMA */
5906
99dcc3e5
CL
5907/*
5908 * Boot pageset table. One per cpu which is going to be used for all
5909 * zones and all nodes. The parameters will be set in such a way
5910 * that an item put on a list will immediately be handed over to
5911 * the buddy list. This is safe since pageset manipulation is done
5912 * with interrupts disabled.
5913 *
5914 * The boot_pagesets must be kept even after bootup is complete for
5915 * unused processors and/or zones. They do play a role for bootstrapping
5916 * hotplugged processors.
5917 *
5918 * zoneinfo_show() and maybe other functions do
5919 * not check if the processor is online before following the pageset pointer.
5920 * Other parts of the kernel may not check if the zone is available.
5921 */
69a8396a 5922static void pageset_init(struct per_cpu_pageset *p);
952eaf81
VB
5923/* These effectively disable the pcplists in the boot pageset completely */
5924#define BOOT_PAGESET_HIGH 0
5925#define BOOT_PAGESET_BATCH 1
99dcc3e5 5926static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5927static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5928
11cd8638 5929static void __build_all_zonelists(void *data)
1da177e4 5930{
6811378e 5931 int nid;
afb6ebb3 5932 int __maybe_unused cpu;
9adb62a5 5933 pg_data_t *self = data;
b93e0f32
MH
5934 static DEFINE_SPINLOCK(lock);
5935
5936 spin_lock(&lock);
9276b1bc 5937
7f9cfb31
BL
5938#ifdef CONFIG_NUMA
5939 memset(node_load, 0, sizeof(node_load));
5940#endif
9adb62a5 5941
c1152583
WY
5942 /*
5943 * This node is hotadded and no memory is yet present. So just
5944 * building zonelists is fine - no need to touch other nodes.
5945 */
9adb62a5
JL
5946 if (self && !node_online(self->node_id)) {
5947 build_zonelists(self);
c1152583
WY
5948 } else {
5949 for_each_online_node(nid) {
5950 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5951
c1152583
WY
5952 build_zonelists(pgdat);
5953 }
99dcc3e5 5954
7aac7898
LS
5955#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5956 /*
5957 * We now know the "local memory node" for each node--
5958 * i.e., the node of the first zone in the generic zonelist.
5959 * Set up numa_mem percpu variable for on-line cpus. During
5960 * boot, only the boot cpu should be on-line; we'll init the
5961 * secondary cpus' numa_mem as they come on-line. During
5962 * node/memory hotplug, we'll fixup all on-line cpus.
5963 */
d9c9a0b9 5964 for_each_online_cpu(cpu)
7aac7898 5965 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5966#endif
d9c9a0b9 5967 }
b93e0f32
MH
5968
5969 spin_unlock(&lock);
6811378e
YG
5970}
5971
061f67bc
RV
5972static noinline void __init
5973build_all_zonelists_init(void)
5974{
afb6ebb3
MH
5975 int cpu;
5976
061f67bc 5977 __build_all_zonelists(NULL);
afb6ebb3
MH
5978
5979 /*
5980 * Initialize the boot_pagesets that are going to be used
5981 * for bootstrapping processors. The real pagesets for
5982 * each zone will be allocated later when the per cpu
5983 * allocator is available.
5984 *
5985 * boot_pagesets are used also for bootstrapping offline
5986 * cpus if the system is already booted because the pagesets
5987 * are needed to initialize allocators on a specific cpu too.
5988 * F.e. the percpu allocator needs the page allocator which
5989 * needs the percpu allocator in order to allocate its pagesets
5990 * (a chicken-egg dilemma).
5991 */
5992 for_each_possible_cpu(cpu)
69a8396a 5993 pageset_init(&per_cpu(boot_pageset, cpu));
afb6ebb3 5994
061f67bc
RV
5995 mminit_verify_zonelist();
5996 cpuset_init_current_mems_allowed();
5997}
5998
4eaf3f64 5999/*
4eaf3f64 6000 * unless system_state == SYSTEM_BOOTING.
061f67bc 6001 *
72675e13 6002 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6003 * [protected by SYSTEM_BOOTING].
4eaf3f64 6004 */
72675e13 6005void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6006{
0a18e607
DH
6007 unsigned long vm_total_pages;
6008
6811378e 6009 if (system_state == SYSTEM_BOOTING) {
061f67bc 6010 build_all_zonelists_init();
6811378e 6011 } else {
11cd8638 6012 __build_all_zonelists(pgdat);
6811378e
YG
6013 /* cpuset refresh routine should be here */
6014 }
56b9413b
DH
6015 /* Get the number of free pages beyond high watermark in all zones. */
6016 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6017 /*
6018 * Disable grouping by mobility if the number of pages in the
6019 * system is too low to allow the mechanism to work. It would be
6020 * more accurate, but expensive to check per-zone. This check is
6021 * made on memory-hotadd so a system can start with mobility
6022 * disabled and enable it later
6023 */
d9c23400 6024 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6025 page_group_by_mobility_disabled = 1;
6026 else
6027 page_group_by_mobility_disabled = 0;
6028
ce0725f7 6029 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6030 nr_online_nodes,
756a025f
JP
6031 page_group_by_mobility_disabled ? "off" : "on",
6032 vm_total_pages);
f0c0b2b8 6033#ifdef CONFIG_NUMA
f88dfff5 6034 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6035#endif
1da177e4
LT
6036}
6037
a9a9e77f
PT
6038/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6039static bool __meminit
6040overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6041{
a9a9e77f
PT
6042 static struct memblock_region *r;
6043
6044 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6045 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6046 for_each_mem_region(r) {
a9a9e77f
PT
6047 if (*pfn < memblock_region_memory_end_pfn(r))
6048 break;
6049 }
6050 }
6051 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6052 memblock_is_mirror(r)) {
6053 *pfn = memblock_region_memory_end_pfn(r);
6054 return true;
6055 }
6056 }
a9a9e77f
PT
6057 return false;
6058}
6059
1da177e4
LT
6060/*
6061 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6062 * up by memblock_free_all() once the early boot process is
1da177e4 6063 * done. Non-atomic initialization, single-pass.
d882c006
DH
6064 *
6065 * All aligned pageblocks are initialized to the specified migratetype
6066 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6067 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6068 */
c09b4240 6069void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
d882c006
DH
6070 unsigned long start_pfn,
6071 enum meminit_context context,
6072 struct vmem_altmap *altmap, int migratetype)
1da177e4 6073{
a9a9e77f 6074 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6075 struct page *page;
1da177e4 6076
22b31eec
HD
6077 if (highest_memmap_pfn < end_pfn - 1)
6078 highest_memmap_pfn = end_pfn - 1;
6079
966cf44f 6080#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6081 /*
6082 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6083 * memory. We limit the total number of pages to initialize to just
6084 * those that might contain the memory mapping. We will defer the
6085 * ZONE_DEVICE page initialization until after we have released
6086 * the hotplug lock.
4b94ffdc 6087 */
966cf44f
AD
6088 if (zone == ZONE_DEVICE) {
6089 if (!altmap)
6090 return;
6091
6092 if (start_pfn == altmap->base_pfn)
6093 start_pfn += altmap->reserve;
6094 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6095 }
6096#endif
4b94ffdc 6097
948c436e 6098 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6099 /*
b72d0ffb
AM
6100 * There can be holes in boot-time mem_map[]s handed to this
6101 * function. They do not exist on hotplugged memory.
a2f3aa02 6102 */
c1d0da83 6103 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6104 if (overlap_memmap_init(zone, &pfn))
6105 continue;
6106 if (defer_init(nid, pfn, end_pfn))
6107 break;
a2f3aa02 6108 }
ac5d2539 6109
d0dc12e8
PT
6110 page = pfn_to_page(pfn);
6111 __init_single_page(page, pfn, zone, nid);
c1d0da83 6112 if (context == MEMINIT_HOTPLUG)
d483da5b 6113 __SetPageReserved(page);
d0dc12e8 6114
ac5d2539 6115 /*
d882c006
DH
6116 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6117 * such that unmovable allocations won't be scattered all
6118 * over the place during system boot.
ac5d2539 6119 */
4eb29bd9 6120 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6121 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6122 cond_resched();
ac5d2539 6123 }
948c436e 6124 pfn++;
1da177e4
LT
6125 }
6126}
6127
966cf44f
AD
6128#ifdef CONFIG_ZONE_DEVICE
6129void __ref memmap_init_zone_device(struct zone *zone,
6130 unsigned long start_pfn,
1f8d75c1 6131 unsigned long nr_pages,
966cf44f
AD
6132 struct dev_pagemap *pgmap)
6133{
1f8d75c1 6134 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6135 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6136 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6137 unsigned long zone_idx = zone_idx(zone);
6138 unsigned long start = jiffies;
6139 int nid = pgdat->node_id;
6140
46d945ae 6141 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6142 return;
6143
6144 /*
6145 * The call to memmap_init_zone should have already taken care
6146 * of the pages reserved for the memmap, so we can just jump to
6147 * the end of that region and start processing the device pages.
6148 */
514caf23 6149 if (altmap) {
966cf44f 6150 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6151 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6152 }
6153
6154 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6155 struct page *page = pfn_to_page(pfn);
6156
6157 __init_single_page(page, pfn, zone_idx, nid);
6158
6159 /*
6160 * Mark page reserved as it will need to wait for onlining
6161 * phase for it to be fully associated with a zone.
6162 *
6163 * We can use the non-atomic __set_bit operation for setting
6164 * the flag as we are still initializing the pages.
6165 */
6166 __SetPageReserved(page);
6167
6168 /*
8a164fef
CH
6169 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6170 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6171 * ever freed or placed on a driver-private list.
966cf44f
AD
6172 */
6173 page->pgmap = pgmap;
8a164fef 6174 page->zone_device_data = NULL;
966cf44f
AD
6175
6176 /*
6177 * Mark the block movable so that blocks are reserved for
6178 * movable at startup. This will force kernel allocations
6179 * to reserve their blocks rather than leaking throughout
6180 * the address space during boot when many long-lived
6181 * kernel allocations are made.
6182 *
c1d0da83 6183 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6184 * because this is done early in section_activate()
966cf44f 6185 */
4eb29bd9 6186 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6187 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6188 cond_resched();
6189 }
6190 }
6191
fdc029b1 6192 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6193 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6194}
6195
6196#endif
1e548deb 6197static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6198{
7aeb09f9 6199 unsigned int order, t;
b2a0ac88
MG
6200 for_each_migratetype_order(order, t) {
6201 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6202 zone->free_area[order].nr_free = 0;
6203 }
6204}
6205
dfb3ccd0 6206void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6207 unsigned long zone,
6208 unsigned long range_start_pfn)
dfb3ccd0 6209{
73a6e474
BH
6210 unsigned long start_pfn, end_pfn;
6211 unsigned long range_end_pfn = range_start_pfn + size;
6212 int i;
6213
6214 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6215 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6216 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6217
6218 if (end_pfn > start_pfn) {
6219 size = end_pfn - start_pfn;
6220 memmap_init_zone(size, nid, zone, start_pfn,
d882c006 6221 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
73a6e474
BH
6222 }
6223 }
dfb3ccd0 6224}
1da177e4 6225
7cd2b0a3 6226static int zone_batchsize(struct zone *zone)
e7c8d5c9 6227{
3a6be87f 6228#ifdef CONFIG_MMU
e7c8d5c9
CL
6229 int batch;
6230
6231 /*
6232 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6233 * size of the zone.
e7c8d5c9 6234 */
9705bea5 6235 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6236 /* But no more than a meg. */
6237 if (batch * PAGE_SIZE > 1024 * 1024)
6238 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6239 batch /= 4; /* We effectively *= 4 below */
6240 if (batch < 1)
6241 batch = 1;
6242
6243 /*
0ceaacc9
NP
6244 * Clamp the batch to a 2^n - 1 value. Having a power
6245 * of 2 value was found to be more likely to have
6246 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6247 *
0ceaacc9
NP
6248 * For example if 2 tasks are alternately allocating
6249 * batches of pages, one task can end up with a lot
6250 * of pages of one half of the possible page colors
6251 * and the other with pages of the other colors.
e7c8d5c9 6252 */
9155203a 6253 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6254
e7c8d5c9 6255 return batch;
3a6be87f
DH
6256
6257#else
6258 /* The deferral and batching of frees should be suppressed under NOMMU
6259 * conditions.
6260 *
6261 * The problem is that NOMMU needs to be able to allocate large chunks
6262 * of contiguous memory as there's no hardware page translation to
6263 * assemble apparent contiguous memory from discontiguous pages.
6264 *
6265 * Queueing large contiguous runs of pages for batching, however,
6266 * causes the pages to actually be freed in smaller chunks. As there
6267 * can be a significant delay between the individual batches being
6268 * recycled, this leads to the once large chunks of space being
6269 * fragmented and becoming unavailable for high-order allocations.
6270 */
6271 return 0;
6272#endif
e7c8d5c9
CL
6273}
6274
8d7a8fa9 6275/*
5c3ad2eb
VB
6276 * pcp->high and pcp->batch values are related and generally batch is lower
6277 * than high. They are also related to pcp->count such that count is lower
6278 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6279 *
5c3ad2eb
VB
6280 * However, guaranteeing these relations at all times would require e.g. write
6281 * barriers here but also careful usage of read barriers at the read side, and
6282 * thus be prone to error and bad for performance. Thus the update only prevents
6283 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6284 * can cope with those fields changing asynchronously, and fully trust only the
6285 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6286 *
6287 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6288 * outside of boot time (or some other assurance that no concurrent updaters
6289 * exist).
6290 */
6291static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6292 unsigned long batch)
6293{
5c3ad2eb
VB
6294 WRITE_ONCE(pcp->batch, batch);
6295 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6296}
6297
88c90dbc 6298static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6299{
6300 struct per_cpu_pages *pcp;
5f8dcc21 6301 int migratetype;
2caaad41 6302
1c6fe946
MD
6303 memset(p, 0, sizeof(*p));
6304
3dfa5721 6305 pcp = &p->pcp;
5f8dcc21
MG
6306 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6307 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6308
69a8396a
VB
6309 /*
6310 * Set batch and high values safe for a boot pageset. A true percpu
6311 * pageset's initialization will update them subsequently. Here we don't
6312 * need to be as careful as pageset_update() as nobody can access the
6313 * pageset yet.
6314 */
952eaf81
VB
6315 pcp->high = BOOT_PAGESET_HIGH;
6316 pcp->batch = BOOT_PAGESET_BATCH;
88c90dbc
CS
6317}
6318
8ad4b1fb 6319/*
0a8b4f1d 6320 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6321 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6322 */
0a8b4f1d 6323static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6324{
7115ac6e 6325 unsigned long new_high, new_batch;
0a8b4f1d
VB
6326 struct per_cpu_pageset *p;
6327 int cpu;
7115ac6e
VB
6328
6329 if (percpu_pagelist_fraction) {
6330 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6331 new_batch = max(1UL, new_high / 4);
6332 if ((new_high / 4) > (PAGE_SHIFT * 8))
6333 new_batch = PAGE_SHIFT * 8;
6334 } else {
6335 new_batch = zone_batchsize(zone);
6336 new_high = 6 * new_batch;
6337 new_batch = max(1UL, 1 * new_batch);
6338 }
169f6c19 6339
952eaf81
VB
6340 if (zone->pageset_high == new_high &&
6341 zone->pageset_batch == new_batch)
6342 return;
6343
6344 zone->pageset_high = new_high;
6345 zone->pageset_batch = new_batch;
6346
0a8b4f1d
VB
6347 for_each_possible_cpu(cpu) {
6348 p = per_cpu_ptr(zone->pageset, cpu);
6349 pageset_update(&p->pcp, new_high, new_batch);
6350 }
169f6c19
CS
6351}
6352
72675e13 6353void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6354{
0a8b4f1d 6355 struct per_cpu_pageset *p;
319774e2 6356 int cpu;
0a8b4f1d 6357
319774e2 6358 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6359 for_each_possible_cpu(cpu) {
6360 p = per_cpu_ptr(zone->pageset, cpu);
6361 pageset_init(p);
6362 }
6363
6364 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6365}
6366
2caaad41 6367/*
99dcc3e5
CL
6368 * Allocate per cpu pagesets and initialize them.
6369 * Before this call only boot pagesets were available.
e7c8d5c9 6370 */
99dcc3e5 6371void __init setup_per_cpu_pageset(void)
e7c8d5c9 6372{
b4911ea2 6373 struct pglist_data *pgdat;
99dcc3e5 6374 struct zone *zone;
b418a0f9 6375 int __maybe_unused cpu;
e7c8d5c9 6376
319774e2
WF
6377 for_each_populated_zone(zone)
6378 setup_zone_pageset(zone);
b4911ea2 6379
b418a0f9
SD
6380#ifdef CONFIG_NUMA
6381 /*
6382 * Unpopulated zones continue using the boot pagesets.
6383 * The numa stats for these pagesets need to be reset.
6384 * Otherwise, they will end up skewing the stats of
6385 * the nodes these zones are associated with.
6386 */
6387 for_each_possible_cpu(cpu) {
6388 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6389 memset(pcp->vm_numa_stat_diff, 0,
6390 sizeof(pcp->vm_numa_stat_diff));
6391 }
6392#endif
6393
b4911ea2
MG
6394 for_each_online_pgdat(pgdat)
6395 pgdat->per_cpu_nodestats =
6396 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6397}
6398
c09b4240 6399static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6400{
99dcc3e5
CL
6401 /*
6402 * per cpu subsystem is not up at this point. The following code
6403 * relies on the ability of the linker to provide the
6404 * offset of a (static) per cpu variable into the per cpu area.
6405 */
6406 zone->pageset = &boot_pageset;
952eaf81
VB
6407 zone->pageset_high = BOOT_PAGESET_HIGH;
6408 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6409
b38a8725 6410 if (populated_zone(zone))
99dcc3e5
CL
6411 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6412 zone->name, zone->present_pages,
6413 zone_batchsize(zone));
ed8ece2e
DH
6414}
6415
dc0bbf3b 6416void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6417 unsigned long zone_start_pfn,
b171e409 6418 unsigned long size)
ed8ece2e
DH
6419{
6420 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6421 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6422
8f416836
WY
6423 if (zone_idx > pgdat->nr_zones)
6424 pgdat->nr_zones = zone_idx;
ed8ece2e 6425
ed8ece2e
DH
6426 zone->zone_start_pfn = zone_start_pfn;
6427
708614e6
MG
6428 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6429 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6430 pgdat->node_id,
6431 (unsigned long)zone_idx(zone),
6432 zone_start_pfn, (zone_start_pfn + size));
6433
1e548deb 6434 zone_init_free_lists(zone);
9dcb8b68 6435 zone->initialized = 1;
ed8ece2e
DH
6436}
6437
c713216d
MG
6438/**
6439 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6440 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6441 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6442 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6443 *
6444 * It returns the start and end page frame of a node based on information
7d018176 6445 * provided by memblock_set_node(). If called for a node
c713216d 6446 * with no available memory, a warning is printed and the start and end
88ca3b94 6447 * PFNs will be 0.
c713216d 6448 */
bbe5d993 6449void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6450 unsigned long *start_pfn, unsigned long *end_pfn)
6451{
c13291a5 6452 unsigned long this_start_pfn, this_end_pfn;
c713216d 6453 int i;
c13291a5 6454
c713216d
MG
6455 *start_pfn = -1UL;
6456 *end_pfn = 0;
6457
c13291a5
TH
6458 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6459 *start_pfn = min(*start_pfn, this_start_pfn);
6460 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6461 }
6462
633c0666 6463 if (*start_pfn == -1UL)
c713216d 6464 *start_pfn = 0;
c713216d
MG
6465}
6466
2a1e274a
MG
6467/*
6468 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6469 * assumption is made that zones within a node are ordered in monotonic
6470 * increasing memory addresses so that the "highest" populated zone is used
6471 */
b69a7288 6472static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6473{
6474 int zone_index;
6475 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6476 if (zone_index == ZONE_MOVABLE)
6477 continue;
6478
6479 if (arch_zone_highest_possible_pfn[zone_index] >
6480 arch_zone_lowest_possible_pfn[zone_index])
6481 break;
6482 }
6483
6484 VM_BUG_ON(zone_index == -1);
6485 movable_zone = zone_index;
6486}
6487
6488/*
6489 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6490 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6491 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6492 * in each node depending on the size of each node and how evenly kernelcore
6493 * is distributed. This helper function adjusts the zone ranges
6494 * provided by the architecture for a given node by using the end of the
6495 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6496 * zones within a node are in order of monotonic increases memory addresses
6497 */
bbe5d993 6498static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6499 unsigned long zone_type,
6500 unsigned long node_start_pfn,
6501 unsigned long node_end_pfn,
6502 unsigned long *zone_start_pfn,
6503 unsigned long *zone_end_pfn)
6504{
6505 /* Only adjust if ZONE_MOVABLE is on this node */
6506 if (zone_movable_pfn[nid]) {
6507 /* Size ZONE_MOVABLE */
6508 if (zone_type == ZONE_MOVABLE) {
6509 *zone_start_pfn = zone_movable_pfn[nid];
6510 *zone_end_pfn = min(node_end_pfn,
6511 arch_zone_highest_possible_pfn[movable_zone]);
6512
e506b996
XQ
6513 /* Adjust for ZONE_MOVABLE starting within this range */
6514 } else if (!mirrored_kernelcore &&
6515 *zone_start_pfn < zone_movable_pfn[nid] &&
6516 *zone_end_pfn > zone_movable_pfn[nid]) {
6517 *zone_end_pfn = zone_movable_pfn[nid];
6518
2a1e274a
MG
6519 /* Check if this whole range is within ZONE_MOVABLE */
6520 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6521 *zone_start_pfn = *zone_end_pfn;
6522 }
6523}
6524
c713216d
MG
6525/*
6526 * Return the number of pages a zone spans in a node, including holes
6527 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6528 */
bbe5d993 6529static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6530 unsigned long zone_type,
7960aedd
ZY
6531 unsigned long node_start_pfn,
6532 unsigned long node_end_pfn,
d91749c1 6533 unsigned long *zone_start_pfn,
854e8848 6534 unsigned long *zone_end_pfn)
c713216d 6535{
299c83dc
LF
6536 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6537 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6538 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6539 if (!node_start_pfn && !node_end_pfn)
6540 return 0;
6541
7960aedd 6542 /* Get the start and end of the zone */
299c83dc
LF
6543 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6544 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6545 adjust_zone_range_for_zone_movable(nid, zone_type,
6546 node_start_pfn, node_end_pfn,
d91749c1 6547 zone_start_pfn, zone_end_pfn);
c713216d
MG
6548
6549 /* Check that this node has pages within the zone's required range */
d91749c1 6550 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6551 return 0;
6552
6553 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6554 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6555 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6556
6557 /* Return the spanned pages */
d91749c1 6558 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6559}
6560
6561/*
6562 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6563 * then all holes in the requested range will be accounted for.
c713216d 6564 */
bbe5d993 6565unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6566 unsigned long range_start_pfn,
6567 unsigned long range_end_pfn)
6568{
96e907d1
TH
6569 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6570 unsigned long start_pfn, end_pfn;
6571 int i;
c713216d 6572
96e907d1
TH
6573 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6574 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6575 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6576 nr_absent -= end_pfn - start_pfn;
c713216d 6577 }
96e907d1 6578 return nr_absent;
c713216d
MG
6579}
6580
6581/**
6582 * absent_pages_in_range - Return number of page frames in holes within a range
6583 * @start_pfn: The start PFN to start searching for holes
6584 * @end_pfn: The end PFN to stop searching for holes
6585 *
a862f68a 6586 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6587 */
6588unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6589 unsigned long end_pfn)
6590{
6591 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6592}
6593
6594/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6595static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6596 unsigned long zone_type,
7960aedd 6597 unsigned long node_start_pfn,
854e8848 6598 unsigned long node_end_pfn)
c713216d 6599{
96e907d1
TH
6600 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6601 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6602 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6603 unsigned long nr_absent;
9c7cd687 6604
b5685e92 6605 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6606 if (!node_start_pfn && !node_end_pfn)
6607 return 0;
6608
96e907d1
TH
6609 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6610 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6611
2a1e274a
MG
6612 adjust_zone_range_for_zone_movable(nid, zone_type,
6613 node_start_pfn, node_end_pfn,
6614 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6615 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6616
6617 /*
6618 * ZONE_MOVABLE handling.
6619 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6620 * and vice versa.
6621 */
e506b996
XQ
6622 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6623 unsigned long start_pfn, end_pfn;
6624 struct memblock_region *r;
6625
cc6de168 6626 for_each_mem_region(r) {
e506b996
XQ
6627 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6628 zone_start_pfn, zone_end_pfn);
6629 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6630 zone_start_pfn, zone_end_pfn);
6631
6632 if (zone_type == ZONE_MOVABLE &&
6633 memblock_is_mirror(r))
6634 nr_absent += end_pfn - start_pfn;
6635
6636 if (zone_type == ZONE_NORMAL &&
6637 !memblock_is_mirror(r))
6638 nr_absent += end_pfn - start_pfn;
342332e6
TI
6639 }
6640 }
6641
6642 return nr_absent;
c713216d 6643}
0e0b864e 6644
bbe5d993 6645static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6646 unsigned long node_start_pfn,
854e8848 6647 unsigned long node_end_pfn)
c713216d 6648{
febd5949 6649 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6650 enum zone_type i;
6651
febd5949
GZ
6652 for (i = 0; i < MAX_NR_ZONES; i++) {
6653 struct zone *zone = pgdat->node_zones + i;
d91749c1 6654 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6655 unsigned long spanned, absent;
febd5949 6656 unsigned long size, real_size;
c713216d 6657
854e8848
MR
6658 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6659 node_start_pfn,
6660 node_end_pfn,
6661 &zone_start_pfn,
6662 &zone_end_pfn);
6663 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6664 node_start_pfn,
6665 node_end_pfn);
3f08a302
MR
6666
6667 size = spanned;
6668 real_size = size - absent;
6669
d91749c1
TI
6670 if (size)
6671 zone->zone_start_pfn = zone_start_pfn;
6672 else
6673 zone->zone_start_pfn = 0;
febd5949
GZ
6674 zone->spanned_pages = size;
6675 zone->present_pages = real_size;
6676
6677 totalpages += size;
6678 realtotalpages += real_size;
6679 }
6680
6681 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6682 pgdat->node_present_pages = realtotalpages;
6683 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6684 realtotalpages);
6685}
6686
835c134e
MG
6687#ifndef CONFIG_SPARSEMEM
6688/*
6689 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6690 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6691 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6692 * round what is now in bits to nearest long in bits, then return it in
6693 * bytes.
6694 */
7c45512d 6695static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6696{
6697 unsigned long usemapsize;
6698
7c45512d 6699 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6700 usemapsize = roundup(zonesize, pageblock_nr_pages);
6701 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6702 usemapsize *= NR_PAGEBLOCK_BITS;
6703 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6704
6705 return usemapsize / 8;
6706}
6707
7cc2a959 6708static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6709 struct zone *zone,
6710 unsigned long zone_start_pfn,
6711 unsigned long zonesize)
835c134e 6712{
7c45512d 6713 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6714 zone->pageblock_flags = NULL;
23a7052a 6715 if (usemapsize) {
6782832e 6716 zone->pageblock_flags =
26fb3dae
MR
6717 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6718 pgdat->node_id);
23a7052a
MR
6719 if (!zone->pageblock_flags)
6720 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6721 usemapsize, zone->name, pgdat->node_id);
6722 }
835c134e
MG
6723}
6724#else
7c45512d
LT
6725static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6726 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6727#endif /* CONFIG_SPARSEMEM */
6728
d9c23400 6729#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6730
d9c23400 6731/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6732void __init set_pageblock_order(void)
d9c23400 6733{
955c1cd7
AM
6734 unsigned int order;
6735
d9c23400
MG
6736 /* Check that pageblock_nr_pages has not already been setup */
6737 if (pageblock_order)
6738 return;
6739
955c1cd7
AM
6740 if (HPAGE_SHIFT > PAGE_SHIFT)
6741 order = HUGETLB_PAGE_ORDER;
6742 else
6743 order = MAX_ORDER - 1;
6744
d9c23400
MG
6745 /*
6746 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6747 * This value may be variable depending on boot parameters on IA64 and
6748 * powerpc.
d9c23400
MG
6749 */
6750 pageblock_order = order;
6751}
6752#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6753
ba72cb8c
MG
6754/*
6755 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6756 * is unused as pageblock_order is set at compile-time. See
6757 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6758 * the kernel config
ba72cb8c 6759 */
03e85f9d 6760void __init set_pageblock_order(void)
ba72cb8c 6761{
ba72cb8c 6762}
d9c23400
MG
6763
6764#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6765
03e85f9d 6766static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6767 unsigned long present_pages)
01cefaef
JL
6768{
6769 unsigned long pages = spanned_pages;
6770
6771 /*
6772 * Provide a more accurate estimation if there are holes within
6773 * the zone and SPARSEMEM is in use. If there are holes within the
6774 * zone, each populated memory region may cost us one or two extra
6775 * memmap pages due to alignment because memmap pages for each
89d790ab 6776 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6777 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6778 */
6779 if (spanned_pages > present_pages + (present_pages >> 4) &&
6780 IS_ENABLED(CONFIG_SPARSEMEM))
6781 pages = present_pages;
6782
6783 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6784}
6785
ace1db39
OS
6786#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6787static void pgdat_init_split_queue(struct pglist_data *pgdat)
6788{
364c1eeb
YS
6789 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6790
6791 spin_lock_init(&ds_queue->split_queue_lock);
6792 INIT_LIST_HEAD(&ds_queue->split_queue);
6793 ds_queue->split_queue_len = 0;
ace1db39
OS
6794}
6795#else
6796static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6797#endif
6798
6799#ifdef CONFIG_COMPACTION
6800static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6801{
6802 init_waitqueue_head(&pgdat->kcompactd_wait);
6803}
6804#else
6805static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6806#endif
6807
03e85f9d 6808static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6809{
208d54e5 6810 pgdat_resize_init(pgdat);
ace1db39 6811
ace1db39
OS
6812 pgdat_init_split_queue(pgdat);
6813 pgdat_init_kcompactd(pgdat);
6814
1da177e4 6815 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6816 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6817
eefa864b 6818 pgdat_page_ext_init(pgdat);
a52633d8 6819 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6820 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6821}
6822
6823static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6824 unsigned long remaining_pages)
6825{
9705bea5 6826 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6827 zone_set_nid(zone, nid);
6828 zone->name = zone_names[idx];
6829 zone->zone_pgdat = NODE_DATA(nid);
6830 spin_lock_init(&zone->lock);
6831 zone_seqlock_init(zone);
6832 zone_pcp_init(zone);
6833}
6834
6835/*
6836 * Set up the zone data structures
6837 * - init pgdat internals
6838 * - init all zones belonging to this node
6839 *
6840 * NOTE: this function is only called during memory hotplug
6841 */
6842#ifdef CONFIG_MEMORY_HOTPLUG
6843void __ref free_area_init_core_hotplug(int nid)
6844{
6845 enum zone_type z;
6846 pg_data_t *pgdat = NODE_DATA(nid);
6847
6848 pgdat_init_internals(pgdat);
6849 for (z = 0; z < MAX_NR_ZONES; z++)
6850 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6851}
6852#endif
6853
6854/*
6855 * Set up the zone data structures:
6856 * - mark all pages reserved
6857 * - mark all memory queues empty
6858 * - clear the memory bitmaps
6859 *
6860 * NOTE: pgdat should get zeroed by caller.
6861 * NOTE: this function is only called during early init.
6862 */
6863static void __init free_area_init_core(struct pglist_data *pgdat)
6864{
6865 enum zone_type j;
6866 int nid = pgdat->node_id;
5f63b720 6867
03e85f9d 6868 pgdat_init_internals(pgdat);
385386cf
JW
6869 pgdat->per_cpu_nodestats = &boot_nodestats;
6870
1da177e4
LT
6871 for (j = 0; j < MAX_NR_ZONES; j++) {
6872 struct zone *zone = pgdat->node_zones + j;
e6943859 6873 unsigned long size, freesize, memmap_pages;
d91749c1 6874 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6875
febd5949 6876 size = zone->spanned_pages;
e6943859 6877 freesize = zone->present_pages;
1da177e4 6878
0e0b864e 6879 /*
9feedc9d 6880 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6881 * is used by this zone for memmap. This affects the watermark
6882 * and per-cpu initialisations
6883 */
e6943859 6884 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6885 if (!is_highmem_idx(j)) {
6886 if (freesize >= memmap_pages) {
6887 freesize -= memmap_pages;
6888 if (memmap_pages)
6889 printk(KERN_DEBUG
6890 " %s zone: %lu pages used for memmap\n",
6891 zone_names[j], memmap_pages);
6892 } else
1170532b 6893 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6894 zone_names[j], memmap_pages, freesize);
6895 }
0e0b864e 6896
6267276f 6897 /* Account for reserved pages */
9feedc9d
JL
6898 if (j == 0 && freesize > dma_reserve) {
6899 freesize -= dma_reserve;
d903ef9f 6900 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6901 zone_names[0], dma_reserve);
0e0b864e
MG
6902 }
6903
98d2b0eb 6904 if (!is_highmem_idx(j))
9feedc9d 6905 nr_kernel_pages += freesize;
01cefaef
JL
6906 /* Charge for highmem memmap if there are enough kernel pages */
6907 else if (nr_kernel_pages > memmap_pages * 2)
6908 nr_kernel_pages -= memmap_pages;
9feedc9d 6909 nr_all_pages += freesize;
1da177e4 6910
9feedc9d
JL
6911 /*
6912 * Set an approximate value for lowmem here, it will be adjusted
6913 * when the bootmem allocator frees pages into the buddy system.
6914 * And all highmem pages will be managed by the buddy system.
6915 */
03e85f9d 6916 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6917
d883c6cf 6918 if (!size)
1da177e4
LT
6919 continue;
6920
955c1cd7 6921 set_pageblock_order();
d883c6cf
JK
6922 setup_usemap(pgdat, zone, zone_start_pfn, size);
6923 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6924 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6925 }
6926}
6927
0cd842f9 6928#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6929static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6930{
b0aeba74 6931 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6932 unsigned long __maybe_unused offset = 0;
6933
1da177e4
LT
6934 /* Skip empty nodes */
6935 if (!pgdat->node_spanned_pages)
6936 return;
6937
b0aeba74
TL
6938 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6939 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6940 /* ia64 gets its own node_mem_map, before this, without bootmem */
6941 if (!pgdat->node_mem_map) {
b0aeba74 6942 unsigned long size, end;
d41dee36
AW
6943 struct page *map;
6944
e984bb43
BP
6945 /*
6946 * The zone's endpoints aren't required to be MAX_ORDER
6947 * aligned but the node_mem_map endpoints must be in order
6948 * for the buddy allocator to function correctly.
6949 */
108bcc96 6950 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6951 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6952 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6953 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6954 pgdat->node_id);
23a7052a
MR
6955 if (!map)
6956 panic("Failed to allocate %ld bytes for node %d memory map\n",
6957 size, pgdat->node_id);
a1c34a3b 6958 pgdat->node_mem_map = map + offset;
1da177e4 6959 }
0cd842f9
OS
6960 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6961 __func__, pgdat->node_id, (unsigned long)pgdat,
6962 (unsigned long)pgdat->node_mem_map);
12d810c1 6963#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6964 /*
6965 * With no DISCONTIG, the global mem_map is just set as node 0's
6966 */
c713216d 6967 if (pgdat == NODE_DATA(0)) {
1da177e4 6968 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6969 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6970 mem_map -= offset;
c713216d 6971 }
1da177e4
LT
6972#endif
6973}
0cd842f9
OS
6974#else
6975static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6976#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6977
0188dc98
OS
6978#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6979static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6980{
0188dc98
OS
6981 pgdat->first_deferred_pfn = ULONG_MAX;
6982}
6983#else
6984static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6985#endif
6986
854e8848 6987static void __init free_area_init_node(int nid)
1da177e4 6988{
9109fb7b 6989 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6990 unsigned long start_pfn = 0;
6991 unsigned long end_pfn = 0;
9109fb7b 6992
88fdf75d 6993 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 6994 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 6995
854e8848 6996 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 6997
1da177e4 6998 pgdat->node_id = nid;
854e8848 6999 pgdat->node_start_pfn = start_pfn;
75ef7184 7000 pgdat->per_cpu_nodestats = NULL;
854e8848 7001
8d29e18a 7002 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7003 (u64)start_pfn << PAGE_SHIFT,
7004 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7005 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7006
7007 alloc_node_mem_map(pgdat);
0188dc98 7008 pgdat_set_deferred_range(pgdat);
1da177e4 7009
7f3eb55b 7010 free_area_init_core(pgdat);
1da177e4
LT
7011}
7012
bc9331a1 7013void __init free_area_init_memoryless_node(int nid)
3f08a302 7014{
854e8848 7015 free_area_init_node(nid);
3f08a302
MR
7016}
7017
aca52c39 7018#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 7019/*
4b094b78
DH
7020 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7021 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 7022 */
4b094b78 7023static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
7024{
7025 unsigned long pfn;
7026 u64 pgcnt = 0;
7027
7028 for (pfn = spfn; pfn < epfn; pfn++) {
7029 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7030 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7031 + pageblock_nr_pages - 1;
7032 continue;
7033 }
4b094b78
DH
7034 /*
7035 * Use a fake node/zone (0) for now. Some of these pages
7036 * (in memblock.reserved but not in memblock.memory) will
7037 * get re-initialized via reserve_bootmem_region() later.
7038 */
7039 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7040 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
7041 pgcnt++;
7042 }
7043
7044 return pgcnt;
7045}
7046
a4a3ede2
PT
7047/*
7048 * Only struct pages that are backed by physical memory are zeroed and
7049 * initialized by going through __init_single_page(). But, there are some
7050 * struct pages which are reserved in memblock allocator and their fields
7051 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 7052 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
7053 *
7054 * This function also addresses a similar issue where struct pages are left
7055 * uninitialized because the physical address range is not covered by
7056 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
7057 * layout is manually configured via memmap=, or when the highest physical
7058 * address (max_pfn) does not end on a section boundary.
a4a3ede2 7059 */
4b094b78 7060static void __init init_unavailable_mem(void)
a4a3ede2
PT
7061{
7062 phys_addr_t start, end;
a4a3ede2 7063 u64 i, pgcnt;
907ec5fc 7064 phys_addr_t next = 0;
a4a3ede2
PT
7065
7066 /*
907ec5fc 7067 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
7068 */
7069 pgcnt = 0;
6e245ad4 7070 for_each_mem_range(i, &start, &end) {
ec393a0f 7071 if (next < start)
4b094b78
DH
7072 pgcnt += init_unavailable_range(PFN_DOWN(next),
7073 PFN_UP(start));
907ec5fc
NH
7074 next = end;
7075 }
e822969c
DH
7076
7077 /*
7078 * Early sections always have a fully populated memmap for the whole
7079 * section - see pfn_valid(). If the last section has holes at the
7080 * end and that section is marked "online", the memmap will be
7081 * considered initialized. Make sure that memmap has a well defined
7082 * state.
7083 */
4b094b78
DH
7084 pgcnt += init_unavailable_range(PFN_DOWN(next),
7085 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7086
a4a3ede2
PT
7087 /*
7088 * Struct pages that do not have backing memory. This could be because
7089 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7090 */
7091 if (pgcnt)
907ec5fc 7092 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7093}
4b094b78
DH
7094#else
7095static inline void __init init_unavailable_mem(void)
7096{
7097}
aca52c39 7098#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7099
418508c1
MS
7100#if MAX_NUMNODES > 1
7101/*
7102 * Figure out the number of possible node ids.
7103 */
f9872caf 7104void __init setup_nr_node_ids(void)
418508c1 7105{
904a9553 7106 unsigned int highest;
418508c1 7107
904a9553 7108 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7109 nr_node_ids = highest + 1;
7110}
418508c1
MS
7111#endif
7112
1e01979c
TH
7113/**
7114 * node_map_pfn_alignment - determine the maximum internode alignment
7115 *
7116 * This function should be called after node map is populated and sorted.
7117 * It calculates the maximum power of two alignment which can distinguish
7118 * all the nodes.
7119 *
7120 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7121 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7122 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7123 * shifted, 1GiB is enough and this function will indicate so.
7124 *
7125 * This is used to test whether pfn -> nid mapping of the chosen memory
7126 * model has fine enough granularity to avoid incorrect mapping for the
7127 * populated node map.
7128 *
a862f68a 7129 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7130 * requirement (single node).
7131 */
7132unsigned long __init node_map_pfn_alignment(void)
7133{
7134 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7135 unsigned long start, end, mask;
98fa15f3 7136 int last_nid = NUMA_NO_NODE;
c13291a5 7137 int i, nid;
1e01979c 7138
c13291a5 7139 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7140 if (!start || last_nid < 0 || last_nid == nid) {
7141 last_nid = nid;
7142 last_end = end;
7143 continue;
7144 }
7145
7146 /*
7147 * Start with a mask granular enough to pin-point to the
7148 * start pfn and tick off bits one-by-one until it becomes
7149 * too coarse to separate the current node from the last.
7150 */
7151 mask = ~((1 << __ffs(start)) - 1);
7152 while (mask && last_end <= (start & (mask << 1)))
7153 mask <<= 1;
7154
7155 /* accumulate all internode masks */
7156 accl_mask |= mask;
7157 }
7158
7159 /* convert mask to number of pages */
7160 return ~accl_mask + 1;
7161}
7162
c713216d
MG
7163/**
7164 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7165 *
a862f68a 7166 * Return: the minimum PFN based on information provided via
7d018176 7167 * memblock_set_node().
c713216d
MG
7168 */
7169unsigned long __init find_min_pfn_with_active_regions(void)
7170{
8a1b25fe 7171 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7172}
7173
37b07e41
LS
7174/*
7175 * early_calculate_totalpages()
7176 * Sum pages in active regions for movable zone.
4b0ef1fe 7177 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7178 */
484f51f8 7179static unsigned long __init early_calculate_totalpages(void)
7e63efef 7180{
7e63efef 7181 unsigned long totalpages = 0;
c13291a5
TH
7182 unsigned long start_pfn, end_pfn;
7183 int i, nid;
7184
7185 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7186 unsigned long pages = end_pfn - start_pfn;
7e63efef 7187
37b07e41
LS
7188 totalpages += pages;
7189 if (pages)
4b0ef1fe 7190 node_set_state(nid, N_MEMORY);
37b07e41 7191 }
b8af2941 7192 return totalpages;
7e63efef
MG
7193}
7194
2a1e274a
MG
7195/*
7196 * Find the PFN the Movable zone begins in each node. Kernel memory
7197 * is spread evenly between nodes as long as the nodes have enough
7198 * memory. When they don't, some nodes will have more kernelcore than
7199 * others
7200 */
b224ef85 7201static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7202{
7203 int i, nid;
7204 unsigned long usable_startpfn;
7205 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7206 /* save the state before borrow the nodemask */
4b0ef1fe 7207 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7208 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7209 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7210 struct memblock_region *r;
b2f3eebe
TC
7211
7212 /* Need to find movable_zone earlier when movable_node is specified. */
7213 find_usable_zone_for_movable();
7214
7215 /*
7216 * If movable_node is specified, ignore kernelcore and movablecore
7217 * options.
7218 */
7219 if (movable_node_is_enabled()) {
cc6de168 7220 for_each_mem_region(r) {
136199f0 7221 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7222 continue;
7223
d622abf7 7224 nid = memblock_get_region_node(r);
b2f3eebe 7225
136199f0 7226 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7227 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7228 min(usable_startpfn, zone_movable_pfn[nid]) :
7229 usable_startpfn;
7230 }
7231
7232 goto out2;
7233 }
2a1e274a 7234
342332e6
TI
7235 /*
7236 * If kernelcore=mirror is specified, ignore movablecore option
7237 */
7238 if (mirrored_kernelcore) {
7239 bool mem_below_4gb_not_mirrored = false;
7240
cc6de168 7241 for_each_mem_region(r) {
342332e6
TI
7242 if (memblock_is_mirror(r))
7243 continue;
7244
d622abf7 7245 nid = memblock_get_region_node(r);
342332e6
TI
7246
7247 usable_startpfn = memblock_region_memory_base_pfn(r);
7248
7249 if (usable_startpfn < 0x100000) {
7250 mem_below_4gb_not_mirrored = true;
7251 continue;
7252 }
7253
7254 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7255 min(usable_startpfn, zone_movable_pfn[nid]) :
7256 usable_startpfn;
7257 }
7258
7259 if (mem_below_4gb_not_mirrored)
633bf2fe 7260 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7261
7262 goto out2;
7263 }
7264
7e63efef 7265 /*
a5c6d650
DR
7266 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7267 * amount of necessary memory.
7268 */
7269 if (required_kernelcore_percent)
7270 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7271 10000UL;
7272 if (required_movablecore_percent)
7273 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7274 10000UL;
7275
7276 /*
7277 * If movablecore= was specified, calculate what size of
7e63efef
MG
7278 * kernelcore that corresponds so that memory usable for
7279 * any allocation type is evenly spread. If both kernelcore
7280 * and movablecore are specified, then the value of kernelcore
7281 * will be used for required_kernelcore if it's greater than
7282 * what movablecore would have allowed.
7283 */
7284 if (required_movablecore) {
7e63efef
MG
7285 unsigned long corepages;
7286
7287 /*
7288 * Round-up so that ZONE_MOVABLE is at least as large as what
7289 * was requested by the user
7290 */
7291 required_movablecore =
7292 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7293 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7294 corepages = totalpages - required_movablecore;
7295
7296 required_kernelcore = max(required_kernelcore, corepages);
7297 }
7298
bde304bd
XQ
7299 /*
7300 * If kernelcore was not specified or kernelcore size is larger
7301 * than totalpages, there is no ZONE_MOVABLE.
7302 */
7303 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7304 goto out;
2a1e274a
MG
7305
7306 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7307 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7308
7309restart:
7310 /* Spread kernelcore memory as evenly as possible throughout nodes */
7311 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7312 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7313 unsigned long start_pfn, end_pfn;
7314
2a1e274a
MG
7315 /*
7316 * Recalculate kernelcore_node if the division per node
7317 * now exceeds what is necessary to satisfy the requested
7318 * amount of memory for the kernel
7319 */
7320 if (required_kernelcore < kernelcore_node)
7321 kernelcore_node = required_kernelcore / usable_nodes;
7322
7323 /*
7324 * As the map is walked, we track how much memory is usable
7325 * by the kernel using kernelcore_remaining. When it is
7326 * 0, the rest of the node is usable by ZONE_MOVABLE
7327 */
7328 kernelcore_remaining = kernelcore_node;
7329
7330 /* Go through each range of PFNs within this node */
c13291a5 7331 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7332 unsigned long size_pages;
7333
c13291a5 7334 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7335 if (start_pfn >= end_pfn)
7336 continue;
7337
7338 /* Account for what is only usable for kernelcore */
7339 if (start_pfn < usable_startpfn) {
7340 unsigned long kernel_pages;
7341 kernel_pages = min(end_pfn, usable_startpfn)
7342 - start_pfn;
7343
7344 kernelcore_remaining -= min(kernel_pages,
7345 kernelcore_remaining);
7346 required_kernelcore -= min(kernel_pages,
7347 required_kernelcore);
7348
7349 /* Continue if range is now fully accounted */
7350 if (end_pfn <= usable_startpfn) {
7351
7352 /*
7353 * Push zone_movable_pfn to the end so
7354 * that if we have to rebalance
7355 * kernelcore across nodes, we will
7356 * not double account here
7357 */
7358 zone_movable_pfn[nid] = end_pfn;
7359 continue;
7360 }
7361 start_pfn = usable_startpfn;
7362 }
7363
7364 /*
7365 * The usable PFN range for ZONE_MOVABLE is from
7366 * start_pfn->end_pfn. Calculate size_pages as the
7367 * number of pages used as kernelcore
7368 */
7369 size_pages = end_pfn - start_pfn;
7370 if (size_pages > kernelcore_remaining)
7371 size_pages = kernelcore_remaining;
7372 zone_movable_pfn[nid] = start_pfn + size_pages;
7373
7374 /*
7375 * Some kernelcore has been met, update counts and
7376 * break if the kernelcore for this node has been
b8af2941 7377 * satisfied
2a1e274a
MG
7378 */
7379 required_kernelcore -= min(required_kernelcore,
7380 size_pages);
7381 kernelcore_remaining -= size_pages;
7382 if (!kernelcore_remaining)
7383 break;
7384 }
7385 }
7386
7387 /*
7388 * If there is still required_kernelcore, we do another pass with one
7389 * less node in the count. This will push zone_movable_pfn[nid] further
7390 * along on the nodes that still have memory until kernelcore is
b8af2941 7391 * satisfied
2a1e274a
MG
7392 */
7393 usable_nodes--;
7394 if (usable_nodes && required_kernelcore > usable_nodes)
7395 goto restart;
7396
b2f3eebe 7397out2:
2a1e274a
MG
7398 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7399 for (nid = 0; nid < MAX_NUMNODES; nid++)
7400 zone_movable_pfn[nid] =
7401 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7402
20e6926d 7403out:
66918dcd 7404 /* restore the node_state */
4b0ef1fe 7405 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7406}
7407
4b0ef1fe
LJ
7408/* Any regular or high memory on that node ? */
7409static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7410{
37b07e41
LS
7411 enum zone_type zone_type;
7412
4b0ef1fe 7413 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7414 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7415 if (populated_zone(zone)) {
7b0e0c0e
OS
7416 if (IS_ENABLED(CONFIG_HIGHMEM))
7417 node_set_state(nid, N_HIGH_MEMORY);
7418 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7419 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7420 break;
7421 }
37b07e41 7422 }
37b07e41
LS
7423}
7424
51930df5
MR
7425/*
7426 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7427 * such cases we allow max_zone_pfn sorted in the descending order
7428 */
7429bool __weak arch_has_descending_max_zone_pfns(void)
7430{
7431 return false;
7432}
7433
c713216d 7434/**
9691a071 7435 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7436 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7437 *
7438 * This will call free_area_init_node() for each active node in the system.
7d018176 7439 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7440 * zone in each node and their holes is calculated. If the maximum PFN
7441 * between two adjacent zones match, it is assumed that the zone is empty.
7442 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7443 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7444 * starts where the previous one ended. For example, ZONE_DMA32 starts
7445 * at arch_max_dma_pfn.
7446 */
9691a071 7447void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7448{
c13291a5 7449 unsigned long start_pfn, end_pfn;
51930df5
MR
7450 int i, nid, zone;
7451 bool descending;
a6af2bc3 7452
c713216d
MG
7453 /* Record where the zone boundaries are */
7454 memset(arch_zone_lowest_possible_pfn, 0,
7455 sizeof(arch_zone_lowest_possible_pfn));
7456 memset(arch_zone_highest_possible_pfn, 0,
7457 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7458
7459 start_pfn = find_min_pfn_with_active_regions();
51930df5 7460 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7461
7462 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7463 if (descending)
7464 zone = MAX_NR_ZONES - i - 1;
7465 else
7466 zone = i;
7467
7468 if (zone == ZONE_MOVABLE)
2a1e274a 7469 continue;
90cae1fe 7470
51930df5
MR
7471 end_pfn = max(max_zone_pfn[zone], start_pfn);
7472 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7473 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7474
7475 start_pfn = end_pfn;
c713216d 7476 }
2a1e274a
MG
7477
7478 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7479 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7480 find_zone_movable_pfns_for_nodes();
c713216d 7481
c713216d 7482 /* Print out the zone ranges */
f88dfff5 7483 pr_info("Zone ranges:\n");
2a1e274a
MG
7484 for (i = 0; i < MAX_NR_ZONES; i++) {
7485 if (i == ZONE_MOVABLE)
7486 continue;
f88dfff5 7487 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7488 if (arch_zone_lowest_possible_pfn[i] ==
7489 arch_zone_highest_possible_pfn[i])
f88dfff5 7490 pr_cont("empty\n");
72f0ba02 7491 else
8d29e18a
JG
7492 pr_cont("[mem %#018Lx-%#018Lx]\n",
7493 (u64)arch_zone_lowest_possible_pfn[i]
7494 << PAGE_SHIFT,
7495 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7496 << PAGE_SHIFT) - 1);
2a1e274a
MG
7497 }
7498
7499 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7500 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7501 for (i = 0; i < MAX_NUMNODES; i++) {
7502 if (zone_movable_pfn[i])
8d29e18a
JG
7503 pr_info(" Node %d: %#018Lx\n", i,
7504 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7505 }
c713216d 7506
f46edbd1
DW
7507 /*
7508 * Print out the early node map, and initialize the
7509 * subsection-map relative to active online memory ranges to
7510 * enable future "sub-section" extensions of the memory map.
7511 */
f88dfff5 7512 pr_info("Early memory node ranges\n");
f46edbd1 7513 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7514 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7515 (u64)start_pfn << PAGE_SHIFT,
7516 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7517 subsection_map_init(start_pfn, end_pfn - start_pfn);
7518 }
c713216d
MG
7519
7520 /* Initialise every node */
708614e6 7521 mminit_verify_pageflags_layout();
8ef82866 7522 setup_nr_node_ids();
4b094b78 7523 init_unavailable_mem();
c713216d
MG
7524 for_each_online_node(nid) {
7525 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7526 free_area_init_node(nid);
37b07e41
LS
7527
7528 /* Any memory on that node */
7529 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7530 node_set_state(nid, N_MEMORY);
7531 check_for_memory(pgdat, nid);
c713216d
MG
7532 }
7533}
2a1e274a 7534
a5c6d650
DR
7535static int __init cmdline_parse_core(char *p, unsigned long *core,
7536 unsigned long *percent)
2a1e274a
MG
7537{
7538 unsigned long long coremem;
a5c6d650
DR
7539 char *endptr;
7540
2a1e274a
MG
7541 if (!p)
7542 return -EINVAL;
7543
a5c6d650
DR
7544 /* Value may be a percentage of total memory, otherwise bytes */
7545 coremem = simple_strtoull(p, &endptr, 0);
7546 if (*endptr == '%') {
7547 /* Paranoid check for percent values greater than 100 */
7548 WARN_ON(coremem > 100);
2a1e274a 7549
a5c6d650
DR
7550 *percent = coremem;
7551 } else {
7552 coremem = memparse(p, &p);
7553 /* Paranoid check that UL is enough for the coremem value */
7554 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7555
a5c6d650
DR
7556 *core = coremem >> PAGE_SHIFT;
7557 *percent = 0UL;
7558 }
2a1e274a
MG
7559 return 0;
7560}
ed7ed365 7561
7e63efef
MG
7562/*
7563 * kernelcore=size sets the amount of memory for use for allocations that
7564 * cannot be reclaimed or migrated.
7565 */
7566static int __init cmdline_parse_kernelcore(char *p)
7567{
342332e6
TI
7568 /* parse kernelcore=mirror */
7569 if (parse_option_str(p, "mirror")) {
7570 mirrored_kernelcore = true;
7571 return 0;
7572 }
7573
a5c6d650
DR
7574 return cmdline_parse_core(p, &required_kernelcore,
7575 &required_kernelcore_percent);
7e63efef
MG
7576}
7577
7578/*
7579 * movablecore=size sets the amount of memory for use for allocations that
7580 * can be reclaimed or migrated.
7581 */
7582static int __init cmdline_parse_movablecore(char *p)
7583{
a5c6d650
DR
7584 return cmdline_parse_core(p, &required_movablecore,
7585 &required_movablecore_percent);
7e63efef
MG
7586}
7587
ed7ed365 7588early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7589early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7590
c3d5f5f0
JL
7591void adjust_managed_page_count(struct page *page, long count)
7592{
9705bea5 7593 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7594 totalram_pages_add(count);
3dcc0571
JL
7595#ifdef CONFIG_HIGHMEM
7596 if (PageHighMem(page))
ca79b0c2 7597 totalhigh_pages_add(count);
3dcc0571 7598#endif
c3d5f5f0 7599}
3dcc0571 7600EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7601
e5cb113f 7602unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7603{
11199692
JL
7604 void *pos;
7605 unsigned long pages = 0;
69afade7 7606
11199692
JL
7607 start = (void *)PAGE_ALIGN((unsigned long)start);
7608 end = (void *)((unsigned long)end & PAGE_MASK);
7609 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7610 struct page *page = virt_to_page(pos);
7611 void *direct_map_addr;
7612
7613 /*
7614 * 'direct_map_addr' might be different from 'pos'
7615 * because some architectures' virt_to_page()
7616 * work with aliases. Getting the direct map
7617 * address ensures that we get a _writeable_
7618 * alias for the memset().
7619 */
7620 direct_map_addr = page_address(page);
dbe67df4 7621 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7622 memset(direct_map_addr, poison, PAGE_SIZE);
7623
7624 free_reserved_page(page);
69afade7
JL
7625 }
7626
7627 if (pages && s)
adb1fe9a
JP
7628 pr_info("Freeing %s memory: %ldK\n",
7629 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7630
7631 return pages;
7632}
7633
cfa11e08
JL
7634#ifdef CONFIG_HIGHMEM
7635void free_highmem_page(struct page *page)
7636{
7637 __free_reserved_page(page);
ca79b0c2 7638 totalram_pages_inc();
9705bea5 7639 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7640 totalhigh_pages_inc();
cfa11e08
JL
7641}
7642#endif
7643
7ee3d4e8
JL
7644
7645void __init mem_init_print_info(const char *str)
7646{
7647 unsigned long physpages, codesize, datasize, rosize, bss_size;
7648 unsigned long init_code_size, init_data_size;
7649
7650 physpages = get_num_physpages();
7651 codesize = _etext - _stext;
7652 datasize = _edata - _sdata;
7653 rosize = __end_rodata - __start_rodata;
7654 bss_size = __bss_stop - __bss_start;
7655 init_data_size = __init_end - __init_begin;
7656 init_code_size = _einittext - _sinittext;
7657
7658 /*
7659 * Detect special cases and adjust section sizes accordingly:
7660 * 1) .init.* may be embedded into .data sections
7661 * 2) .init.text.* may be out of [__init_begin, __init_end],
7662 * please refer to arch/tile/kernel/vmlinux.lds.S.
7663 * 3) .rodata.* may be embedded into .text or .data sections.
7664 */
7665#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7666 do { \
7667 if (start <= pos && pos < end && size > adj) \
7668 size -= adj; \
7669 } while (0)
7ee3d4e8
JL
7670
7671 adj_init_size(__init_begin, __init_end, init_data_size,
7672 _sinittext, init_code_size);
7673 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7674 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7675 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7676 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7677
7678#undef adj_init_size
7679
756a025f 7680 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7681#ifdef CONFIG_HIGHMEM
756a025f 7682 ", %luK highmem"
7ee3d4e8 7683#endif
756a025f
JP
7684 "%s%s)\n",
7685 nr_free_pages() << (PAGE_SHIFT - 10),
7686 physpages << (PAGE_SHIFT - 10),
7687 codesize >> 10, datasize >> 10, rosize >> 10,
7688 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7689 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7690 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7691#ifdef CONFIG_HIGHMEM
ca79b0c2 7692 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7693#endif
756a025f 7694 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7695}
7696
0e0b864e 7697/**
88ca3b94
RD
7698 * set_dma_reserve - set the specified number of pages reserved in the first zone
7699 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7700 *
013110a7 7701 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7702 * In the DMA zone, a significant percentage may be consumed by kernel image
7703 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7704 * function may optionally be used to account for unfreeable pages in the
7705 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7706 * smaller per-cpu batchsize.
0e0b864e
MG
7707 */
7708void __init set_dma_reserve(unsigned long new_dma_reserve)
7709{
7710 dma_reserve = new_dma_reserve;
7711}
7712
005fd4bb 7713static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7714{
1da177e4 7715
005fd4bb
SAS
7716 lru_add_drain_cpu(cpu);
7717 drain_pages(cpu);
9f8f2172 7718
005fd4bb
SAS
7719 /*
7720 * Spill the event counters of the dead processor
7721 * into the current processors event counters.
7722 * This artificially elevates the count of the current
7723 * processor.
7724 */
7725 vm_events_fold_cpu(cpu);
9f8f2172 7726
005fd4bb
SAS
7727 /*
7728 * Zero the differential counters of the dead processor
7729 * so that the vm statistics are consistent.
7730 *
7731 * This is only okay since the processor is dead and cannot
7732 * race with what we are doing.
7733 */
7734 cpu_vm_stats_fold(cpu);
7735 return 0;
1da177e4 7736}
1da177e4 7737
e03a5125
NP
7738#ifdef CONFIG_NUMA
7739int hashdist = HASHDIST_DEFAULT;
7740
7741static int __init set_hashdist(char *str)
7742{
7743 if (!str)
7744 return 0;
7745 hashdist = simple_strtoul(str, &str, 0);
7746 return 1;
7747}
7748__setup("hashdist=", set_hashdist);
7749#endif
7750
1da177e4
LT
7751void __init page_alloc_init(void)
7752{
005fd4bb
SAS
7753 int ret;
7754
e03a5125
NP
7755#ifdef CONFIG_NUMA
7756 if (num_node_state(N_MEMORY) == 1)
7757 hashdist = 0;
7758#endif
7759
005fd4bb
SAS
7760 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7761 "mm/page_alloc:dead", NULL,
7762 page_alloc_cpu_dead);
7763 WARN_ON(ret < 0);
1da177e4
LT
7764}
7765
cb45b0e9 7766/*
34b10060 7767 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7768 * or min_free_kbytes changes.
7769 */
7770static void calculate_totalreserve_pages(void)
7771{
7772 struct pglist_data *pgdat;
7773 unsigned long reserve_pages = 0;
2f6726e5 7774 enum zone_type i, j;
cb45b0e9
HA
7775
7776 for_each_online_pgdat(pgdat) {
281e3726
MG
7777
7778 pgdat->totalreserve_pages = 0;
7779
cb45b0e9
HA
7780 for (i = 0; i < MAX_NR_ZONES; i++) {
7781 struct zone *zone = pgdat->node_zones + i;
3484b2de 7782 long max = 0;
9705bea5 7783 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7784
7785 /* Find valid and maximum lowmem_reserve in the zone */
7786 for (j = i; j < MAX_NR_ZONES; j++) {
7787 if (zone->lowmem_reserve[j] > max)
7788 max = zone->lowmem_reserve[j];
7789 }
7790
41858966
MG
7791 /* we treat the high watermark as reserved pages. */
7792 max += high_wmark_pages(zone);
cb45b0e9 7793
3d6357de
AK
7794 if (max > managed_pages)
7795 max = managed_pages;
a8d01437 7796
281e3726 7797 pgdat->totalreserve_pages += max;
a8d01437 7798
cb45b0e9
HA
7799 reserve_pages += max;
7800 }
7801 }
7802 totalreserve_pages = reserve_pages;
7803}
7804
1da177e4
LT
7805/*
7806 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7807 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7808 * has a correct pages reserved value, so an adequate number of
7809 * pages are left in the zone after a successful __alloc_pages().
7810 */
7811static void setup_per_zone_lowmem_reserve(void)
7812{
7813 struct pglist_data *pgdat;
2f6726e5 7814 enum zone_type j, idx;
1da177e4 7815
ec936fc5 7816 for_each_online_pgdat(pgdat) {
1da177e4
LT
7817 for (j = 0; j < MAX_NR_ZONES; j++) {
7818 struct zone *zone = pgdat->node_zones + j;
9705bea5 7819 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7820
7821 zone->lowmem_reserve[j] = 0;
7822
2f6726e5
CL
7823 idx = j;
7824 while (idx) {
1da177e4
LT
7825 struct zone *lower_zone;
7826
2f6726e5 7827 idx--;
1da177e4 7828 lower_zone = pgdat->node_zones + idx;
d3cda233 7829
f6366156
BH
7830 if (!sysctl_lowmem_reserve_ratio[idx] ||
7831 !zone_managed_pages(lower_zone)) {
d3cda233 7832 lower_zone->lowmem_reserve[j] = 0;
f6366156 7833 continue;
d3cda233
JK
7834 } else {
7835 lower_zone->lowmem_reserve[j] =
7836 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7837 }
9705bea5 7838 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7839 }
7840 }
7841 }
cb45b0e9
HA
7842
7843 /* update totalreserve_pages */
7844 calculate_totalreserve_pages();
1da177e4
LT
7845}
7846
cfd3da1e 7847static void __setup_per_zone_wmarks(void)
1da177e4
LT
7848{
7849 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7850 unsigned long lowmem_pages = 0;
7851 struct zone *zone;
7852 unsigned long flags;
7853
7854 /* Calculate total number of !ZONE_HIGHMEM pages */
7855 for_each_zone(zone) {
7856 if (!is_highmem(zone))
9705bea5 7857 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7858 }
7859
7860 for_each_zone(zone) {
ac924c60
AM
7861 u64 tmp;
7862
1125b4e3 7863 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7864 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7865 do_div(tmp, lowmem_pages);
1da177e4
LT
7866 if (is_highmem(zone)) {
7867 /*
669ed175
NP
7868 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7869 * need highmem pages, so cap pages_min to a small
7870 * value here.
7871 *
41858966 7872 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7873 * deltas control async page reclaim, and so should
669ed175 7874 * not be capped for highmem.
1da177e4 7875 */
90ae8d67 7876 unsigned long min_pages;
1da177e4 7877
9705bea5 7878 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7879 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7880 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7881 } else {
669ed175
NP
7882 /*
7883 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7884 * proportionate to the zone's size.
7885 */
a9214443 7886 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7887 }
7888
795ae7a0
JW
7889 /*
7890 * Set the kswapd watermarks distance according to the
7891 * scale factor in proportion to available memory, but
7892 * ensure a minimum size on small systems.
7893 */
7894 tmp = max_t(u64, tmp >> 2,
9705bea5 7895 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7896 watermark_scale_factor, 10000));
7897
aa092591 7898 zone->watermark_boost = 0;
a9214443
MG
7899 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7900 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7901
1125b4e3 7902 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7903 }
cb45b0e9
HA
7904
7905 /* update totalreserve_pages */
7906 calculate_totalreserve_pages();
1da177e4
LT
7907}
7908
cfd3da1e
MG
7909/**
7910 * setup_per_zone_wmarks - called when min_free_kbytes changes
7911 * or when memory is hot-{added|removed}
7912 *
7913 * Ensures that the watermark[min,low,high] values for each zone are set
7914 * correctly with respect to min_free_kbytes.
7915 */
7916void setup_per_zone_wmarks(void)
7917{
b93e0f32
MH
7918 static DEFINE_SPINLOCK(lock);
7919
7920 spin_lock(&lock);
cfd3da1e 7921 __setup_per_zone_wmarks();
b93e0f32 7922 spin_unlock(&lock);
cfd3da1e
MG
7923}
7924
1da177e4
LT
7925/*
7926 * Initialise min_free_kbytes.
7927 *
7928 * For small machines we want it small (128k min). For large machines
8beeae86 7929 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7930 * bandwidth does not increase linearly with machine size. We use
7931 *
b8af2941 7932 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7933 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7934 *
7935 * which yields
7936 *
7937 * 16MB: 512k
7938 * 32MB: 724k
7939 * 64MB: 1024k
7940 * 128MB: 1448k
7941 * 256MB: 2048k
7942 * 512MB: 2896k
7943 * 1024MB: 4096k
7944 * 2048MB: 5792k
7945 * 4096MB: 8192k
7946 * 8192MB: 11584k
7947 * 16384MB: 16384k
7948 */
1b79acc9 7949int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7950{
7951 unsigned long lowmem_kbytes;
5f12733e 7952 int new_min_free_kbytes;
1da177e4
LT
7953
7954 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7955 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7956
7957 if (new_min_free_kbytes > user_min_free_kbytes) {
7958 min_free_kbytes = new_min_free_kbytes;
7959 if (min_free_kbytes < 128)
7960 min_free_kbytes = 128;
ee8eb9a5
JS
7961 if (min_free_kbytes > 262144)
7962 min_free_kbytes = 262144;
5f12733e
MH
7963 } else {
7964 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7965 new_min_free_kbytes, user_min_free_kbytes);
7966 }
bc75d33f 7967 setup_per_zone_wmarks();
a6cccdc3 7968 refresh_zone_stat_thresholds();
1da177e4 7969 setup_per_zone_lowmem_reserve();
6423aa81
JK
7970
7971#ifdef CONFIG_NUMA
7972 setup_min_unmapped_ratio();
7973 setup_min_slab_ratio();
7974#endif
7975
4aab2be0
VB
7976 khugepaged_min_free_kbytes_update();
7977
1da177e4
LT
7978 return 0;
7979}
e08d3fdf 7980postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
7981
7982/*
b8af2941 7983 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7984 * that we can call two helper functions whenever min_free_kbytes
7985 * changes.
7986 */
cccad5b9 7987int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 7988 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7989{
da8c757b
HP
7990 int rc;
7991
7992 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7993 if (rc)
7994 return rc;
7995
5f12733e
MH
7996 if (write) {
7997 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7998 setup_per_zone_wmarks();
5f12733e 7999 }
1da177e4
LT
8000 return 0;
8001}
8002
795ae7a0 8003int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8004 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8005{
8006 int rc;
8007
8008 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8009 if (rc)
8010 return rc;
8011
8012 if (write)
8013 setup_per_zone_wmarks();
8014
8015 return 0;
8016}
8017
9614634f 8018#ifdef CONFIG_NUMA
6423aa81 8019static void setup_min_unmapped_ratio(void)
9614634f 8020{
6423aa81 8021 pg_data_t *pgdat;
9614634f 8022 struct zone *zone;
9614634f 8023
a5f5f91d 8024 for_each_online_pgdat(pgdat)
81cbcbc2 8025 pgdat->min_unmapped_pages = 0;
a5f5f91d 8026
9614634f 8027 for_each_zone(zone)
9705bea5
AK
8028 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8029 sysctl_min_unmapped_ratio) / 100;
9614634f 8030}
0ff38490 8031
6423aa81
JK
8032
8033int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8034 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8035{
0ff38490
CL
8036 int rc;
8037
8d65af78 8038 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8039 if (rc)
8040 return rc;
8041
6423aa81
JK
8042 setup_min_unmapped_ratio();
8043
8044 return 0;
8045}
8046
8047static void setup_min_slab_ratio(void)
8048{
8049 pg_data_t *pgdat;
8050 struct zone *zone;
8051
a5f5f91d
MG
8052 for_each_online_pgdat(pgdat)
8053 pgdat->min_slab_pages = 0;
8054
0ff38490 8055 for_each_zone(zone)
9705bea5
AK
8056 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8057 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8058}
8059
8060int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8061 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8062{
8063 int rc;
8064
8065 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8066 if (rc)
8067 return rc;
8068
8069 setup_min_slab_ratio();
8070
0ff38490
CL
8071 return 0;
8072}
9614634f
CL
8073#endif
8074
1da177e4
LT
8075/*
8076 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8077 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8078 * whenever sysctl_lowmem_reserve_ratio changes.
8079 *
8080 * The reserve ratio obviously has absolutely no relation with the
41858966 8081 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8082 * if in function of the boot time zone sizes.
8083 */
cccad5b9 8084int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8085 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8086{
86aaf255
BH
8087 int i;
8088
8d65af78 8089 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8090
8091 for (i = 0; i < MAX_NR_ZONES; i++) {
8092 if (sysctl_lowmem_reserve_ratio[i] < 1)
8093 sysctl_lowmem_reserve_ratio[i] = 0;
8094 }
8095
1da177e4
LT
8096 setup_per_zone_lowmem_reserve();
8097 return 0;
8098}
8099
8ad4b1fb
RS
8100/*
8101 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8102 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8103 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8104 */
cccad5b9 8105int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8106 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8107{
8108 struct zone *zone;
7cd2b0a3 8109 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8110 int ret;
8111
7cd2b0a3
DR
8112 mutex_lock(&pcp_batch_high_lock);
8113 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8114
8d65af78 8115 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8116 if (!write || ret < 0)
8117 goto out;
8118
8119 /* Sanity checking to avoid pcp imbalance */
8120 if (percpu_pagelist_fraction &&
8121 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8122 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8123 ret = -EINVAL;
8124 goto out;
8125 }
8126
8127 /* No change? */
8128 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8129 goto out;
c8e251fa 8130
cb1ef534 8131 for_each_populated_zone(zone)
0a8b4f1d 8132 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8133out:
c8e251fa 8134 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8135 return ret;
8ad4b1fb
RS
8136}
8137
f6f34b43
SD
8138#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8139/*
8140 * Returns the number of pages that arch has reserved but
8141 * is not known to alloc_large_system_hash().
8142 */
8143static unsigned long __init arch_reserved_kernel_pages(void)
8144{
8145 return 0;
8146}
8147#endif
8148
9017217b
PT
8149/*
8150 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8151 * machines. As memory size is increased the scale is also increased but at
8152 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8153 * quadruples the scale is increased by one, which means the size of hash table
8154 * only doubles, instead of quadrupling as well.
8155 * Because 32-bit systems cannot have large physical memory, where this scaling
8156 * makes sense, it is disabled on such platforms.
8157 */
8158#if __BITS_PER_LONG > 32
8159#define ADAPT_SCALE_BASE (64ul << 30)
8160#define ADAPT_SCALE_SHIFT 2
8161#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8162#endif
8163
1da177e4
LT
8164/*
8165 * allocate a large system hash table from bootmem
8166 * - it is assumed that the hash table must contain an exact power-of-2
8167 * quantity of entries
8168 * - limit is the number of hash buckets, not the total allocation size
8169 */
8170void *__init alloc_large_system_hash(const char *tablename,
8171 unsigned long bucketsize,
8172 unsigned long numentries,
8173 int scale,
8174 int flags,
8175 unsigned int *_hash_shift,
8176 unsigned int *_hash_mask,
31fe62b9
TB
8177 unsigned long low_limit,
8178 unsigned long high_limit)
1da177e4 8179{
31fe62b9 8180 unsigned long long max = high_limit;
1da177e4
LT
8181 unsigned long log2qty, size;
8182 void *table = NULL;
3749a8f0 8183 gfp_t gfp_flags;
ec11408a 8184 bool virt;
1da177e4
LT
8185
8186 /* allow the kernel cmdline to have a say */
8187 if (!numentries) {
8188 /* round applicable memory size up to nearest megabyte */
04903664 8189 numentries = nr_kernel_pages;
f6f34b43 8190 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8191
8192 /* It isn't necessary when PAGE_SIZE >= 1MB */
8193 if (PAGE_SHIFT < 20)
8194 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8195
9017217b
PT
8196#if __BITS_PER_LONG > 32
8197 if (!high_limit) {
8198 unsigned long adapt;
8199
8200 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8201 adapt <<= ADAPT_SCALE_SHIFT)
8202 scale++;
8203 }
8204#endif
8205
1da177e4
LT
8206 /* limit to 1 bucket per 2^scale bytes of low memory */
8207 if (scale > PAGE_SHIFT)
8208 numentries >>= (scale - PAGE_SHIFT);
8209 else
8210 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8211
8212 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8213 if (unlikely(flags & HASH_SMALL)) {
8214 /* Makes no sense without HASH_EARLY */
8215 WARN_ON(!(flags & HASH_EARLY));
8216 if (!(numentries >> *_hash_shift)) {
8217 numentries = 1UL << *_hash_shift;
8218 BUG_ON(!numentries);
8219 }
8220 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8221 numentries = PAGE_SIZE / bucketsize;
1da177e4 8222 }
6e692ed3 8223 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8224
8225 /* limit allocation size to 1/16 total memory by default */
8226 if (max == 0) {
8227 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8228 do_div(max, bucketsize);
8229 }
074b8517 8230 max = min(max, 0x80000000ULL);
1da177e4 8231
31fe62b9
TB
8232 if (numentries < low_limit)
8233 numentries = low_limit;
1da177e4
LT
8234 if (numentries > max)
8235 numentries = max;
8236
f0d1b0b3 8237 log2qty = ilog2(numentries);
1da177e4 8238
3749a8f0 8239 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8240 do {
ec11408a 8241 virt = false;
1da177e4 8242 size = bucketsize << log2qty;
ea1f5f37
PT
8243 if (flags & HASH_EARLY) {
8244 if (flags & HASH_ZERO)
26fb3dae 8245 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8246 else
7e1c4e27
MR
8247 table = memblock_alloc_raw(size,
8248 SMP_CACHE_BYTES);
ec11408a 8249 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8250 table = __vmalloc(size, gfp_flags);
ec11408a 8251 virt = true;
ea1f5f37 8252 } else {
1037b83b
ED
8253 /*
8254 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8255 * some pages at the end of hash table which
8256 * alloc_pages_exact() automatically does
1037b83b 8257 */
ec11408a
NP
8258 table = alloc_pages_exact(size, gfp_flags);
8259 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8260 }
8261 } while (!table && size > PAGE_SIZE && --log2qty);
8262
8263 if (!table)
8264 panic("Failed to allocate %s hash table\n", tablename);
8265
ec11408a
NP
8266 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8267 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8268 virt ? "vmalloc" : "linear");
1da177e4
LT
8269
8270 if (_hash_shift)
8271 *_hash_shift = log2qty;
8272 if (_hash_mask)
8273 *_hash_mask = (1 << log2qty) - 1;
8274
8275 return table;
8276}
a117e66e 8277
a5d76b54 8278/*
80934513 8279 * This function checks whether pageblock includes unmovable pages or not.
80934513 8280 *
b8af2941 8281 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8282 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8283 * check without lock_page also may miss some movable non-lru pages at
8284 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8285 *
8286 * Returns a page without holding a reference. If the caller wants to
047b9967 8287 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8288 * cannot get removed (e.g., via memory unplug) concurrently.
8289 *
a5d76b54 8290 */
4a55c047
QC
8291struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8292 int migratetype, int flags)
49ac8255 8293{
1a9f2191
QC
8294 unsigned long iter = 0;
8295 unsigned long pfn = page_to_pfn(page);
6a654e36 8296 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8297
1a9f2191
QC
8298 if (is_migrate_cma_page(page)) {
8299 /*
8300 * CMA allocations (alloc_contig_range) really need to mark
8301 * isolate CMA pageblocks even when they are not movable in fact
8302 * so consider them movable here.
8303 */
8304 if (is_migrate_cma(migratetype))
4a55c047 8305 return NULL;
1a9f2191 8306
3d680bdf 8307 return page;
1a9f2191 8308 }
4da2ce25 8309
6a654e36 8310 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8311 if (!pfn_valid_within(pfn + iter))
49ac8255 8312 continue;
29723fcc 8313
fe4c86c9 8314 page = pfn_to_page(pfn + iter);
c8721bbb 8315
c9c510dc
DH
8316 /*
8317 * Both, bootmem allocations and memory holes are marked
8318 * PG_reserved and are unmovable. We can even have unmovable
8319 * allocations inside ZONE_MOVABLE, for example when
8320 * specifying "movablecore".
8321 */
d7ab3672 8322 if (PageReserved(page))
3d680bdf 8323 return page;
d7ab3672 8324
9d789999
MH
8325 /*
8326 * If the zone is movable and we have ruled out all reserved
8327 * pages then it should be reasonably safe to assume the rest
8328 * is movable.
8329 */
8330 if (zone_idx(zone) == ZONE_MOVABLE)
8331 continue;
8332
c8721bbb
NH
8333 /*
8334 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8335 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8336 * We need not scan over tail pages because we don't
c8721bbb
NH
8337 * handle each tail page individually in migration.
8338 */
1da2f328 8339 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8340 struct page *head = compound_head(page);
8341 unsigned int skip_pages;
464c7ffb 8342
1da2f328
RR
8343 if (PageHuge(page)) {
8344 if (!hugepage_migration_supported(page_hstate(head)))
8345 return page;
8346 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8347 return page;
1da2f328 8348 }
464c7ffb 8349
d8c6546b 8350 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8351 iter += skip_pages - 1;
c8721bbb
NH
8352 continue;
8353 }
8354
97d255c8
MK
8355 /*
8356 * We can't use page_count without pin a page
8357 * because another CPU can free compound page.
8358 * This check already skips compound tails of THP
0139aa7b 8359 * because their page->_refcount is zero at all time.
97d255c8 8360 */
fe896d18 8361 if (!page_ref_count(page)) {
49ac8255 8362 if (PageBuddy(page))
ab130f91 8363 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8364 continue;
8365 }
97d255c8 8366
b023f468
WC
8367 /*
8368 * The HWPoisoned page may be not in buddy system, and
8369 * page_count() is not 0.
8370 */
756d25be 8371 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8372 continue;
8373
aa218795
DH
8374 /*
8375 * We treat all PageOffline() pages as movable when offlining
8376 * to give drivers a chance to decrement their reference count
8377 * in MEM_GOING_OFFLINE in order to indicate that these pages
8378 * can be offlined as there are no direct references anymore.
8379 * For actually unmovable PageOffline() where the driver does
8380 * not support this, we will fail later when trying to actually
8381 * move these pages that still have a reference count > 0.
8382 * (false negatives in this function only)
8383 */
8384 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8385 continue;
8386
fe4c86c9 8387 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8388 continue;
8389
49ac8255 8390 /*
6b4f7799
JW
8391 * If there are RECLAIMABLE pages, we need to check
8392 * it. But now, memory offline itself doesn't call
8393 * shrink_node_slabs() and it still to be fixed.
49ac8255 8394 */
3d680bdf 8395 return page;
49ac8255 8396 }
4a55c047 8397 return NULL;
49ac8255
KH
8398}
8399
8df995f6 8400#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8401static unsigned long pfn_max_align_down(unsigned long pfn)
8402{
8403 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8404 pageblock_nr_pages) - 1);
8405}
8406
8407static unsigned long pfn_max_align_up(unsigned long pfn)
8408{
8409 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8410 pageblock_nr_pages));
8411}
8412
041d3a8c 8413/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8414static int __alloc_contig_migrate_range(struct compact_control *cc,
8415 unsigned long start, unsigned long end)
041d3a8c
MN
8416{
8417 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8418 unsigned int nr_reclaimed;
041d3a8c
MN
8419 unsigned long pfn = start;
8420 unsigned int tries = 0;
8421 int ret = 0;
8b94e0b8
JK
8422 struct migration_target_control mtc = {
8423 .nid = zone_to_nid(cc->zone),
8424 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8425 };
041d3a8c 8426
be49a6e1 8427 migrate_prep();
041d3a8c 8428
bb13ffeb 8429 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8430 if (fatal_signal_pending(current)) {
8431 ret = -EINTR;
8432 break;
8433 }
8434
bb13ffeb
MG
8435 if (list_empty(&cc->migratepages)) {
8436 cc->nr_migratepages = 0;
edc2ca61 8437 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8438 if (!pfn) {
8439 ret = -EINTR;
8440 break;
8441 }
8442 tries = 0;
8443 } else if (++tries == 5) {
8444 ret = ret < 0 ? ret : -EBUSY;
8445 break;
8446 }
8447
beb51eaa
MK
8448 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8449 &cc->migratepages);
8450 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8451
8b94e0b8
JK
8452 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8453 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8454 }
2a6f5124
SP
8455 if (ret < 0) {
8456 putback_movable_pages(&cc->migratepages);
8457 return ret;
8458 }
8459 return 0;
041d3a8c
MN
8460}
8461
8462/**
8463 * alloc_contig_range() -- tries to allocate given range of pages
8464 * @start: start PFN to allocate
8465 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8466 * @migratetype: migratetype of the underlaying pageblocks (either
8467 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8468 * in range must have the same migratetype and it must
8469 * be either of the two.
ca96b625 8470 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8471 *
8472 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8473 * aligned. The PFN range must belong to a single zone.
041d3a8c 8474 *
2c7452a0
MK
8475 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8476 * pageblocks in the range. Once isolated, the pageblocks should not
8477 * be modified by others.
041d3a8c 8478 *
a862f68a 8479 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8480 * pages which PFN is in [start, end) are allocated for the caller and
8481 * need to be freed with free_contig_range().
8482 */
0815f3d8 8483int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8484 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8485{
041d3a8c 8486 unsigned long outer_start, outer_end;
d00181b9
KS
8487 unsigned int order;
8488 int ret = 0;
041d3a8c 8489
bb13ffeb
MG
8490 struct compact_control cc = {
8491 .nr_migratepages = 0,
8492 .order = -1,
8493 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8494 .mode = MIGRATE_SYNC,
bb13ffeb 8495 .ignore_skip_hint = true,
2583d671 8496 .no_set_skip_hint = true,
7dea19f9 8497 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8498 .alloc_contig = true,
bb13ffeb
MG
8499 };
8500 INIT_LIST_HEAD(&cc.migratepages);
8501
041d3a8c
MN
8502 /*
8503 * What we do here is we mark all pageblocks in range as
8504 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8505 * have different sizes, and due to the way page allocator
8506 * work, we align the range to biggest of the two pages so
8507 * that page allocator won't try to merge buddies from
8508 * different pageblocks and change MIGRATE_ISOLATE to some
8509 * other migration type.
8510 *
8511 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8512 * migrate the pages from an unaligned range (ie. pages that
8513 * we are interested in). This will put all the pages in
8514 * range back to page allocator as MIGRATE_ISOLATE.
8515 *
8516 * When this is done, we take the pages in range from page
8517 * allocator removing them from the buddy system. This way
8518 * page allocator will never consider using them.
8519 *
8520 * This lets us mark the pageblocks back as
8521 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8522 * aligned range but not in the unaligned, original range are
8523 * put back to page allocator so that buddy can use them.
8524 */
8525
8526 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8527 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8528 if (ret)
86a595f9 8529 return ret;
041d3a8c 8530
7612921f
VB
8531 drain_all_pages(cc.zone);
8532
8ef5849f
JK
8533 /*
8534 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8535 * So, just fall through. test_pages_isolated() has a tracepoint
8536 * which will report the busy page.
8537 *
8538 * It is possible that busy pages could become available before
8539 * the call to test_pages_isolated, and the range will actually be
8540 * allocated. So, if we fall through be sure to clear ret so that
8541 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8542 */
bb13ffeb 8543 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8544 if (ret && ret != -EBUSY)
041d3a8c 8545 goto done;
63cd4489 8546 ret =0;
041d3a8c
MN
8547
8548 /*
8549 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8550 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8551 * more, all pages in [start, end) are free in page allocator.
8552 * What we are going to do is to allocate all pages from
8553 * [start, end) (that is remove them from page allocator).
8554 *
8555 * The only problem is that pages at the beginning and at the
8556 * end of interesting range may be not aligned with pages that
8557 * page allocator holds, ie. they can be part of higher order
8558 * pages. Because of this, we reserve the bigger range and
8559 * once this is done free the pages we are not interested in.
8560 *
8561 * We don't have to hold zone->lock here because the pages are
8562 * isolated thus they won't get removed from buddy.
8563 */
8564
8565 lru_add_drain_all();
041d3a8c
MN
8566
8567 order = 0;
8568 outer_start = start;
8569 while (!PageBuddy(pfn_to_page(outer_start))) {
8570 if (++order >= MAX_ORDER) {
8ef5849f
JK
8571 outer_start = start;
8572 break;
041d3a8c
MN
8573 }
8574 outer_start &= ~0UL << order;
8575 }
8576
8ef5849f 8577 if (outer_start != start) {
ab130f91 8578 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8579
8580 /*
8581 * outer_start page could be small order buddy page and
8582 * it doesn't include start page. Adjust outer_start
8583 * in this case to report failed page properly
8584 * on tracepoint in test_pages_isolated()
8585 */
8586 if (outer_start + (1UL << order) <= start)
8587 outer_start = start;
8588 }
8589
041d3a8c 8590 /* Make sure the range is really isolated. */
756d25be 8591 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8592 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8593 __func__, outer_start, end);
041d3a8c
MN
8594 ret = -EBUSY;
8595 goto done;
8596 }
8597
49f223a9 8598 /* Grab isolated pages from freelists. */
bb13ffeb 8599 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8600 if (!outer_end) {
8601 ret = -EBUSY;
8602 goto done;
8603 }
8604
8605 /* Free head and tail (if any) */
8606 if (start != outer_start)
8607 free_contig_range(outer_start, start - outer_start);
8608 if (end != outer_end)
8609 free_contig_range(end, outer_end - end);
8610
8611done:
8612 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8613 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8614 return ret;
8615}
255f5985 8616EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8617
8618static int __alloc_contig_pages(unsigned long start_pfn,
8619 unsigned long nr_pages, gfp_t gfp_mask)
8620{
8621 unsigned long end_pfn = start_pfn + nr_pages;
8622
8623 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8624 gfp_mask);
8625}
8626
8627static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8628 unsigned long nr_pages)
8629{
8630 unsigned long i, end_pfn = start_pfn + nr_pages;
8631 struct page *page;
8632
8633 for (i = start_pfn; i < end_pfn; i++) {
8634 page = pfn_to_online_page(i);
8635 if (!page)
8636 return false;
8637
8638 if (page_zone(page) != z)
8639 return false;
8640
8641 if (PageReserved(page))
8642 return false;
8643
8644 if (page_count(page) > 0)
8645 return false;
8646
8647 if (PageHuge(page))
8648 return false;
8649 }
8650 return true;
8651}
8652
8653static bool zone_spans_last_pfn(const struct zone *zone,
8654 unsigned long start_pfn, unsigned long nr_pages)
8655{
8656 unsigned long last_pfn = start_pfn + nr_pages - 1;
8657
8658 return zone_spans_pfn(zone, last_pfn);
8659}
8660
8661/**
8662 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8663 * @nr_pages: Number of contiguous pages to allocate
8664 * @gfp_mask: GFP mask to limit search and used during compaction
8665 * @nid: Target node
8666 * @nodemask: Mask for other possible nodes
8667 *
8668 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8669 * on an applicable zonelist to find a contiguous pfn range which can then be
8670 * tried for allocation with alloc_contig_range(). This routine is intended
8671 * for allocation requests which can not be fulfilled with the buddy allocator.
8672 *
8673 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8674 * power of two then the alignment is guaranteed to be to the given nr_pages
8675 * (e.g. 1GB request would be aligned to 1GB).
8676 *
8677 * Allocated pages can be freed with free_contig_range() or by manually calling
8678 * __free_page() on each allocated page.
8679 *
8680 * Return: pointer to contiguous pages on success, or NULL if not successful.
8681 */
8682struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8683 int nid, nodemask_t *nodemask)
8684{
8685 unsigned long ret, pfn, flags;
8686 struct zonelist *zonelist;
8687 struct zone *zone;
8688 struct zoneref *z;
8689
8690 zonelist = node_zonelist(nid, gfp_mask);
8691 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8692 gfp_zone(gfp_mask), nodemask) {
8693 spin_lock_irqsave(&zone->lock, flags);
8694
8695 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8696 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8697 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8698 /*
8699 * We release the zone lock here because
8700 * alloc_contig_range() will also lock the zone
8701 * at some point. If there's an allocation
8702 * spinning on this lock, it may win the race
8703 * and cause alloc_contig_range() to fail...
8704 */
8705 spin_unlock_irqrestore(&zone->lock, flags);
8706 ret = __alloc_contig_pages(pfn, nr_pages,
8707 gfp_mask);
8708 if (!ret)
8709 return pfn_to_page(pfn);
8710 spin_lock_irqsave(&zone->lock, flags);
8711 }
8712 pfn += nr_pages;
8713 }
8714 spin_unlock_irqrestore(&zone->lock, flags);
8715 }
8716 return NULL;
8717}
4eb0716e 8718#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8719
4eb0716e 8720void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8721{
bcc2b02f
MS
8722 unsigned int count = 0;
8723
8724 for (; nr_pages--; pfn++) {
8725 struct page *page = pfn_to_page(pfn);
8726
8727 count += page_count(page) != 1;
8728 __free_page(page);
8729 }
8730 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8731}
255f5985 8732EXPORT_SYMBOL(free_contig_range);
041d3a8c 8733
0a647f38
CS
8734/*
8735 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8736 * page high values need to be recalulated.
8737 */
4ed7e022
JL
8738void __meminit zone_pcp_update(struct zone *zone)
8739{
c8e251fa 8740 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8741 zone_set_pageset_high_and_batch(zone);
c8e251fa 8742 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8743}
4ed7e022 8744
340175b7
JL
8745void zone_pcp_reset(struct zone *zone)
8746{
8747 unsigned long flags;
5a883813
MK
8748 int cpu;
8749 struct per_cpu_pageset *pset;
340175b7
JL
8750
8751 /* avoid races with drain_pages() */
8752 local_irq_save(flags);
8753 if (zone->pageset != &boot_pageset) {
5a883813
MK
8754 for_each_online_cpu(cpu) {
8755 pset = per_cpu_ptr(zone->pageset, cpu);
8756 drain_zonestat(zone, pset);
8757 }
340175b7
JL
8758 free_percpu(zone->pageset);
8759 zone->pageset = &boot_pageset;
8760 }
8761 local_irq_restore(flags);
8762}
8763
6dcd73d7 8764#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8765/*
257bea71
DH
8766 * All pages in the range must be in a single zone, must not contain holes,
8767 * must span full sections, and must be isolated before calling this function.
0c0e6195 8768 */
257bea71 8769void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8770{
257bea71 8771 unsigned long pfn = start_pfn;
0c0e6195
KH
8772 struct page *page;
8773 struct zone *zone;
0ee5f4f3 8774 unsigned int order;
0c0e6195 8775 unsigned long flags;
5557c766 8776
2d070eab 8777 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8778 zone = page_zone(pfn_to_page(pfn));
8779 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8780 while (pfn < end_pfn) {
0c0e6195 8781 page = pfn_to_page(pfn);
b023f468
WC
8782 /*
8783 * The HWPoisoned page may be not in buddy system, and
8784 * page_count() is not 0.
8785 */
8786 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8787 pfn++;
b023f468
WC
8788 continue;
8789 }
aa218795
DH
8790 /*
8791 * At this point all remaining PageOffline() pages have a
8792 * reference count of 0 and can simply be skipped.
8793 */
8794 if (PageOffline(page)) {
8795 BUG_ON(page_count(page));
8796 BUG_ON(PageBuddy(page));
8797 pfn++;
aa218795
DH
8798 continue;
8799 }
b023f468 8800
0c0e6195
KH
8801 BUG_ON(page_count(page));
8802 BUG_ON(!PageBuddy(page));
ab130f91 8803 order = buddy_order(page);
6ab01363 8804 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8805 pfn += (1 << order);
8806 }
8807 spin_unlock_irqrestore(&zone->lock, flags);
8808}
8809#endif
8d22ba1b 8810
8d22ba1b
WF
8811bool is_free_buddy_page(struct page *page)
8812{
8813 struct zone *zone = page_zone(page);
8814 unsigned long pfn = page_to_pfn(page);
8815 unsigned long flags;
7aeb09f9 8816 unsigned int order;
8d22ba1b
WF
8817
8818 spin_lock_irqsave(&zone->lock, flags);
8819 for (order = 0; order < MAX_ORDER; order++) {
8820 struct page *page_head = page - (pfn & ((1 << order) - 1));
8821
ab130f91 8822 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
8823 break;
8824 }
8825 spin_unlock_irqrestore(&zone->lock, flags);
8826
8827 return order < MAX_ORDER;
8828}
d4ae9916
NH
8829
8830#ifdef CONFIG_MEMORY_FAILURE
8831/*
06be6ff3
OS
8832 * Break down a higher-order page in sub-pages, and keep our target out of
8833 * buddy allocator.
d4ae9916 8834 */
06be6ff3
OS
8835static void break_down_buddy_pages(struct zone *zone, struct page *page,
8836 struct page *target, int low, int high,
8837 int migratetype)
8838{
8839 unsigned long size = 1 << high;
8840 struct page *current_buddy, *next_page;
8841
8842 while (high > low) {
8843 high--;
8844 size >>= 1;
8845
8846 if (target >= &page[size]) {
8847 next_page = page + size;
8848 current_buddy = page;
8849 } else {
8850 next_page = page;
8851 current_buddy = page + size;
8852 }
8853
8854 if (set_page_guard(zone, current_buddy, high, migratetype))
8855 continue;
8856
8857 if (current_buddy != target) {
8858 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 8859 set_buddy_order(current_buddy, high);
06be6ff3
OS
8860 page = next_page;
8861 }
8862 }
8863}
8864
8865/*
8866 * Take a page that will be marked as poisoned off the buddy allocator.
8867 */
8868bool take_page_off_buddy(struct page *page)
d4ae9916
NH
8869{
8870 struct zone *zone = page_zone(page);
8871 unsigned long pfn = page_to_pfn(page);
8872 unsigned long flags;
8873 unsigned int order;
06be6ff3 8874 bool ret = false;
d4ae9916
NH
8875
8876 spin_lock_irqsave(&zone->lock, flags);
8877 for (order = 0; order < MAX_ORDER; order++) {
8878 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 8879 int page_order = buddy_order(page_head);
d4ae9916 8880
ab130f91 8881 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
8882 unsigned long pfn_head = page_to_pfn(page_head);
8883 int migratetype = get_pfnblock_migratetype(page_head,
8884 pfn_head);
8885
ab130f91 8886 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 8887 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 8888 page_order, migratetype);
06be6ff3 8889 ret = true;
d4ae9916
NH
8890 break;
8891 }
06be6ff3
OS
8892 if (page_count(page_head) > 0)
8893 break;
d4ae9916
NH
8894 }
8895 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 8896 return ret;
d4ae9916
NH
8897}
8898#endif