mm: simplify parameter of setup_usemap()
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
1da177e4 75
7ee3d4e8 76#include <asm/sections.h>
1da177e4 77#include <asm/tlbflush.h>
ac924c60 78#include <asm/div64.h>
1da177e4 79#include "internal.h"
e900a918 80#include "shuffle.h"
36e66c55 81#include "page_reporting.h"
1da177e4 82
f04a5d5d
DH
83/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84typedef int __bitwise fpi_t;
85
86/* No special request */
87#define FPI_NONE ((__force fpi_t)0)
88
89/*
90 * Skip free page reporting notification for the (possibly merged) page.
91 * This does not hinder free page reporting from grabbing the page,
92 * reporting it and marking it "reported" - it only skips notifying
93 * the free page reporting infrastructure about a newly freed page. For
94 * example, used when temporarily pulling a page from a freelist and
95 * putting it back unmodified.
96 */
97#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
98
47b6a24a
DH
99/*
100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
101 * page shuffling (relevant code - e.g., memory onlining - is expected to
102 * shuffle the whole zone).
103 *
104 * Note: No code should rely on this flag for correctness - it's purely
105 * to allow for optimizations when handing back either fresh pages
106 * (memory onlining) or untouched pages (page isolation, free page
107 * reporting).
108 */
109#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
110
c8e251fa
CS
111/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 113#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 114
72812019
LS
115#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116DEFINE_PER_CPU(int, numa_node);
117EXPORT_PER_CPU_SYMBOL(numa_node);
118#endif
119
4518085e
KW
120DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121
7aac7898
LS
122#ifdef CONFIG_HAVE_MEMORYLESS_NODES
123/*
124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127 * defined in <linux/topology.h>.
128 */
129DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
130EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131#endif
132
bd233f53 133/* work_structs for global per-cpu drains */
d9367bd0
WY
134struct pcpu_drain {
135 struct zone *zone;
136 struct work_struct work;
137};
8b885f53
JY
138static DEFINE_MUTEX(pcpu_drain_mutex);
139static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 140
38addce8 141#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 142volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
143EXPORT_SYMBOL(latent_entropy);
144#endif
145
1da177e4 146/*
13808910 147 * Array of node states.
1da177e4 148 */
13808910
CL
149nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 [N_POSSIBLE] = NODE_MASK_ALL,
151 [N_ONLINE] = { { [0] = 1UL } },
152#ifndef CONFIG_NUMA
153 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
154#ifdef CONFIG_HIGHMEM
155 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 156#endif
20b2f52b 157 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
158 [N_CPU] = { { [0] = 1UL } },
159#endif /* NUMA */
160};
161EXPORT_SYMBOL(node_states);
162
ca79b0c2
AK
163atomic_long_t _totalram_pages __read_mostly;
164EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 165unsigned long totalreserve_pages __read_mostly;
e48322ab 166unsigned long totalcma_pages __read_mostly;
ab8fabd4 167
1b76b02f 168int percpu_pagelist_fraction;
dcce284a 169gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a 170DEFINE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
171EXPORT_SYMBOL(init_on_alloc);
172
6471384a 173DEFINE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
174EXPORT_SYMBOL(init_on_free);
175
04013513
VB
176static bool _init_on_alloc_enabled_early __read_mostly
177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
178static int __init early_init_on_alloc(char *buf)
179{
6471384a 180
04013513 181 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
182}
183early_param("init_on_alloc", early_init_on_alloc);
184
04013513
VB
185static bool _init_on_free_enabled_early __read_mostly
186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
187static int __init early_init_on_free(char *buf)
188{
04013513 189 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
190}
191early_param("init_on_free", early_init_on_free);
1da177e4 192
bb14c2c7
VB
193/*
194 * A cached value of the page's pageblock's migratetype, used when the page is
195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197 * Also the migratetype set in the page does not necessarily match the pcplist
198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199 * other index - this ensures that it will be put on the correct CMA freelist.
200 */
201static inline int get_pcppage_migratetype(struct page *page)
202{
203 return page->index;
204}
205
206static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207{
208 page->index = migratetype;
209}
210
452aa699
RW
211#ifdef CONFIG_PM_SLEEP
212/*
213 * The following functions are used by the suspend/hibernate code to temporarily
214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
216 * they should always be called with system_transition_mutex held
217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219 * with that modification).
452aa699 220 */
c9e664f1
RW
221
222static gfp_t saved_gfp_mask;
223
224void pm_restore_gfp_mask(void)
452aa699 225{
55f2503c 226 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
227 if (saved_gfp_mask) {
228 gfp_allowed_mask = saved_gfp_mask;
229 saved_gfp_mask = 0;
230 }
452aa699
RW
231}
232
c9e664f1 233void pm_restrict_gfp_mask(void)
452aa699 234{
55f2503c 235 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
236 WARN_ON(saved_gfp_mask);
237 saved_gfp_mask = gfp_allowed_mask;
d0164adc 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 239}
f90ac398
MG
240
241bool pm_suspended_storage(void)
242{
d0164adc 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
244 return false;
245 return true;
246}
452aa699
RW
247#endif /* CONFIG_PM_SLEEP */
248
d9c23400 249#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 250unsigned int pageblock_order __read_mostly;
d9c23400
MG
251#endif
252
7fef431b
DH
253static void __free_pages_ok(struct page *page, unsigned int order,
254 fpi_t fpi_flags);
a226f6c8 255
1da177e4
LT
256/*
257 * results with 256, 32 in the lowmem_reserve sysctl:
258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259 * 1G machine -> (16M dma, 784M normal, 224M high)
260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
263 *
264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
265 * don't need any ZONE_NORMAL reservation
1da177e4 266 */
d3cda233 267int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 268#ifdef CONFIG_ZONE_DMA
d3cda233 269 [ZONE_DMA] = 256,
4b51d669 270#endif
fb0e7942 271#ifdef CONFIG_ZONE_DMA32
d3cda233 272 [ZONE_DMA32] = 256,
fb0e7942 273#endif
d3cda233 274 [ZONE_NORMAL] = 32,
e53ef38d 275#ifdef CONFIG_HIGHMEM
d3cda233 276 [ZONE_HIGHMEM] = 0,
e53ef38d 277#endif
d3cda233 278 [ZONE_MOVABLE] = 0,
2f1b6248 279};
1da177e4 280
15ad7cdc 281static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 282#ifdef CONFIG_ZONE_DMA
2f1b6248 283 "DMA",
4b51d669 284#endif
fb0e7942 285#ifdef CONFIG_ZONE_DMA32
2f1b6248 286 "DMA32",
fb0e7942 287#endif
2f1b6248 288 "Normal",
e53ef38d 289#ifdef CONFIG_HIGHMEM
2a1e274a 290 "HighMem",
e53ef38d 291#endif
2a1e274a 292 "Movable",
033fbae9
DW
293#ifdef CONFIG_ZONE_DEVICE
294 "Device",
295#endif
2f1b6248
CL
296};
297
c999fbd3 298const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
299 "Unmovable",
300 "Movable",
301 "Reclaimable",
302 "HighAtomic",
303#ifdef CONFIG_CMA
304 "CMA",
305#endif
306#ifdef CONFIG_MEMORY_ISOLATION
307 "Isolate",
308#endif
309};
310
ae70eddd
AK
311compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 [NULL_COMPOUND_DTOR] = NULL,
313 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 314#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 315 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 316#endif
9a982250 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 319#endif
f1e61557
KS
320};
321
1da177e4 322int min_free_kbytes = 1024;
42aa83cb 323int user_min_free_kbytes = -1;
24512228
MG
324#ifdef CONFIG_DISCONTIGMEM
325/*
326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327 * are not on separate NUMA nodes. Functionally this works but with
328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329 * quite small. By default, do not boost watermarks on discontigmem as in
330 * many cases very high-order allocations like THP are likely to be
331 * unsupported and the premature reclaim offsets the advantage of long-term
332 * fragmentation avoidance.
333 */
334int watermark_boost_factor __read_mostly;
335#else
1c30844d 336int watermark_boost_factor __read_mostly = 15000;
24512228 337#endif
795ae7a0 338int watermark_scale_factor = 10;
1da177e4 339
bbe5d993
OS
340static unsigned long nr_kernel_pages __initdata;
341static unsigned long nr_all_pages __initdata;
342static unsigned long dma_reserve __initdata;
1da177e4 343
bbe5d993
OS
344static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 346static unsigned long required_kernelcore __initdata;
a5c6d650 347static unsigned long required_kernelcore_percent __initdata;
7f16f91f 348static unsigned long required_movablecore __initdata;
a5c6d650 349static unsigned long required_movablecore_percent __initdata;
bbe5d993 350static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 351static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
352
353/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354int movable_zone;
355EXPORT_SYMBOL(movable_zone);
c713216d 356
418508c1 357#if MAX_NUMNODES > 1
b9726c26 358unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 359unsigned int nr_online_nodes __read_mostly = 1;
418508c1 360EXPORT_SYMBOL(nr_node_ids);
62bc62a8 361EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
362#endif
363
9ef9acb0
MG
364int page_group_by_mobility_disabled __read_mostly;
365
3a80a7fa 366#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
367/*
368 * During boot we initialize deferred pages on-demand, as needed, but once
369 * page_alloc_init_late() has finished, the deferred pages are all initialized,
370 * and we can permanently disable that path.
371 */
372static DEFINE_STATIC_KEY_TRUE(deferred_pages);
373
374/*
375 * Calling kasan_free_pages() only after deferred memory initialization
376 * has completed. Poisoning pages during deferred memory init will greatly
377 * lengthen the process and cause problem in large memory systems as the
378 * deferred pages initialization is done with interrupt disabled.
379 *
380 * Assuming that there will be no reference to those newly initialized
381 * pages before they are ever allocated, this should have no effect on
382 * KASAN memory tracking as the poison will be properly inserted at page
383 * allocation time. The only corner case is when pages are allocated by
384 * on-demand allocation and then freed again before the deferred pages
385 * initialization is done, but this is not likely to happen.
386 */
387static inline void kasan_free_nondeferred_pages(struct page *page, int order)
388{
389 if (!static_branch_unlikely(&deferred_pages))
390 kasan_free_pages(page, order);
391}
392
3a80a7fa 393/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 394static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 395{
ef70b6f4
MG
396 int nid = early_pfn_to_nid(pfn);
397
398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
399 return true;
400
401 return false;
402}
403
404/*
d3035be4 405 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
406 * later in the boot cycle when it can be parallelised.
407 */
d3035be4
PT
408static bool __meminit
409defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 410{
d3035be4
PT
411 static unsigned long prev_end_pfn, nr_initialised;
412
413 /*
414 * prev_end_pfn static that contains the end of previous zone
415 * No need to protect because called very early in boot before smp_init.
416 */
417 if (prev_end_pfn != end_pfn) {
418 prev_end_pfn = end_pfn;
419 nr_initialised = 0;
420 }
421
3c2c6488 422 /* Always populate low zones for address-constrained allocations */
d3035be4 423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 424 return false;
23b68cfa 425
dc2da7b4
BH
426 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
427 return true;
23b68cfa
WY
428 /*
429 * We start only with one section of pages, more pages are added as
430 * needed until the rest of deferred pages are initialized.
431 */
d3035be4 432 nr_initialised++;
23b68cfa 433 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
434 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
435 NODE_DATA(nid)->first_deferred_pfn = pfn;
436 return true;
3a80a7fa 437 }
d3035be4 438 return false;
3a80a7fa
MG
439}
440#else
3c0c12cc
WL
441#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
442
3a80a7fa
MG
443static inline bool early_page_uninitialised(unsigned long pfn)
444{
445 return false;
446}
447
d3035be4 448static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 449{
d3035be4 450 return false;
3a80a7fa
MG
451}
452#endif
453
0b423ca2
MG
454/* Return a pointer to the bitmap storing bits affecting a block of pages */
455static inline unsigned long *get_pageblock_bitmap(struct page *page,
456 unsigned long pfn)
457{
458#ifdef CONFIG_SPARSEMEM
f1eca35a 459 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
460#else
461 return page_zone(page)->pageblock_flags;
462#endif /* CONFIG_SPARSEMEM */
463}
464
465static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
466{
467#ifdef CONFIG_SPARSEMEM
468 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
469#else
470 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 471#endif /* CONFIG_SPARSEMEM */
399b795b 472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
473}
474
535b81e2
WY
475static __always_inline
476unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 477 unsigned long pfn,
0b423ca2
MG
478 unsigned long mask)
479{
480 unsigned long *bitmap;
481 unsigned long bitidx, word_bitidx;
482 unsigned long word;
483
484 bitmap = get_pageblock_bitmap(page, pfn);
485 bitidx = pfn_to_bitidx(page, pfn);
486 word_bitidx = bitidx / BITS_PER_LONG;
487 bitidx &= (BITS_PER_LONG-1);
488
489 word = bitmap[word_bitidx];
d93d5ab9 490 return (word >> bitidx) & mask;
0b423ca2
MG
491}
492
a00cda3f
MCC
493/**
494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
495 * @page: The page within the block of interest
496 * @pfn: The target page frame number
497 * @mask: mask of bits that the caller is interested in
498 *
499 * Return: pageblock_bits flags
500 */
0b423ca2 501unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
502 unsigned long mask)
503{
535b81e2 504 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
505}
506
507static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
508{
535b81e2 509 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
510}
511
512/**
513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
514 * @page: The page within the block of interest
515 * @flags: The flags to set
516 * @pfn: The target page frame number
0b423ca2
MG
517 * @mask: mask of bits that the caller is interested in
518 */
519void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
520 unsigned long pfn,
0b423ca2
MG
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
d93d5ab9
WY
537 mask <<= bitidx;
538 flags <<= bitidx;
0b423ca2
MG
539
540 word = READ_ONCE(bitmap[word_bitidx]);
541 for (;;) {
542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 if (word == old_word)
544 break;
545 word = old_word;
546 }
547}
3a80a7fa 548
ee6f509c 549void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 550{
5d0f3f72
KM
551 if (unlikely(page_group_by_mobility_disabled &&
552 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
553 migratetype = MIGRATE_UNMOVABLE;
554
d93d5ab9 555 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 556 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
557}
558
13e7444b 559#ifdef CONFIG_DEBUG_VM
c6a57e19 560static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 561{
bdc8cb98
DH
562 int ret = 0;
563 unsigned seq;
564 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 565 unsigned long sp, start_pfn;
c6a57e19 566
bdc8cb98
DH
567 do {
568 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
569 start_pfn = zone->zone_start_pfn;
570 sp = zone->spanned_pages;
108bcc96 571 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
572 ret = 1;
573 } while (zone_span_seqretry(zone, seq));
574
b5e6a5a2 575 if (ret)
613813e8
DH
576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 pfn, zone_to_nid(zone), zone->name,
578 start_pfn, start_pfn + sp);
b5e6a5a2 579
bdc8cb98 580 return ret;
c6a57e19
DH
581}
582
583static int page_is_consistent(struct zone *zone, struct page *page)
584{
14e07298 585 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 586 return 0;
1da177e4 587 if (zone != page_zone(page))
c6a57e19
DH
588 return 0;
589
590 return 1;
591}
592/*
593 * Temporary debugging check for pages not lying within a given zone.
594 */
d73d3c9f 595static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
596{
597 if (page_outside_zone_boundaries(zone, page))
1da177e4 598 return 1;
c6a57e19
DH
599 if (!page_is_consistent(zone, page))
600 return 1;
601
1da177e4
LT
602 return 0;
603}
13e7444b 604#else
d73d3c9f 605static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
606{
607 return 0;
608}
609#endif
610
82a3241a 611static void bad_page(struct page *page, const char *reason)
1da177e4 612{
d936cf9b
HD
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
616
617 /*
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
620 */
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
623 nr_unshown++;
624 goto out;
625 }
626 if (nr_unshown) {
ff8e8116 627 pr_alert(
1e9e6365 628 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
629 nr_unshown);
630 nr_unshown = 0;
631 }
632 nr_shown = 0;
633 }
634 if (nr_shown++ == 0)
635 resume = jiffies + 60 * HZ;
636
ff8e8116 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 638 current->comm, page_to_pfn(page));
ff8e8116 639 __dump_page(page, reason);
4e462112 640 dump_page_owner(page);
3dc14741 641
4f31888c 642 print_modules();
1da177e4 643 dump_stack();
d936cf9b 644out:
8cc3b392 645 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 646 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
648}
649
1da177e4
LT
650/*
651 * Higher-order pages are called "compound pages". They are structured thusly:
652 *
1d798ca3 653 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 654 *
1d798ca3
KS
655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 657 *
1d798ca3
KS
658 * The first tail page's ->compound_dtor holds the offset in array of compound
659 * page destructors. See compound_page_dtors.
1da177e4 660 *
1d798ca3 661 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 662 * This usage means that zero-order pages may not be compound.
1da177e4 663 */
d98c7a09 664
9a982250 665void free_compound_page(struct page *page)
d98c7a09 666{
7ae88534 667 mem_cgroup_uncharge(page);
7fef431b 668 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
669}
670
d00181b9 671void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
672{
673 int i;
674 int nr_pages = 1 << order;
675
18229df5
AW
676 __SetPageHead(page);
677 for (i = 1; i < nr_pages; i++) {
678 struct page *p = page + i;
58a84aa9 679 set_page_count(p, 0);
1c290f64 680 p->mapping = TAIL_MAPPING;
1d798ca3 681 set_compound_head(p, page);
18229df5 682 }
1378a5ee
MWO
683
684 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
685 set_compound_order(page, order);
53f9263b 686 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
687 if (hpage_pincount_available(page))
688 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
689}
690
c0a32fc5
SG
691#ifdef CONFIG_DEBUG_PAGEALLOC
692unsigned int _debug_guardpage_minorder;
96a2b03f 693
8e57f8ac
VB
694bool _debug_pagealloc_enabled_early __read_mostly
695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
696EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 697DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 698EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
699
700DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 701
031bc574
JK
702static int __init early_debug_pagealloc(char *buf)
703{
8e57f8ac 704 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
705}
706early_param("debug_pagealloc", early_debug_pagealloc);
707
c0a32fc5
SG
708static int __init debug_guardpage_minorder_setup(char *buf)
709{
710 unsigned long res;
711
712 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 713 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
714 return 0;
715 }
716 _debug_guardpage_minorder = res;
1170532b 717 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
718 return 0;
719}
f1c1e9f7 720early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 721
acbc15a4 722static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 723 unsigned int order, int migratetype)
c0a32fc5 724{
e30825f1 725 if (!debug_guardpage_enabled())
acbc15a4
JK
726 return false;
727
728 if (order >= debug_guardpage_minorder())
729 return false;
e30825f1 730
3972f6bb 731 __SetPageGuard(page);
2847cf95
JK
732 INIT_LIST_HEAD(&page->lru);
733 set_page_private(page, order);
734 /* Guard pages are not available for any usage */
735 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
736
737 return true;
c0a32fc5
SG
738}
739
2847cf95
JK
740static inline void clear_page_guard(struct zone *zone, struct page *page,
741 unsigned int order, int migratetype)
c0a32fc5 742{
e30825f1
JK
743 if (!debug_guardpage_enabled())
744 return;
745
3972f6bb 746 __ClearPageGuard(page);
e30825f1 747
2847cf95
JK
748 set_page_private(page, 0);
749 if (!is_migrate_isolate(migratetype))
750 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
751}
752#else
acbc15a4
JK
753static inline bool set_page_guard(struct zone *zone, struct page *page,
754 unsigned int order, int migratetype) { return false; }
2847cf95
JK
755static inline void clear_page_guard(struct zone *zone, struct page *page,
756 unsigned int order, int migratetype) {}
c0a32fc5
SG
757#endif
758
04013513
VB
759/*
760 * Enable static keys related to various memory debugging and hardening options.
761 * Some override others, and depend on early params that are evaluated in the
762 * order of appearance. So we need to first gather the full picture of what was
763 * enabled, and then make decisions.
764 */
765void init_mem_debugging_and_hardening(void)
766{
767 if (_init_on_alloc_enabled_early) {
768 if (page_poisoning_enabled())
769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
770 "will take precedence over init_on_alloc\n");
771 else
772 static_branch_enable(&init_on_alloc);
773 }
774 if (_init_on_free_enabled_early) {
775 if (page_poisoning_enabled())
776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
777 "will take precedence over init_on_free\n");
778 else
779 static_branch_enable(&init_on_free);
780 }
781
8db26a3d
VB
782#ifdef CONFIG_PAGE_POISONING
783 /*
784 * Page poisoning is debug page alloc for some arches. If
785 * either of those options are enabled, enable poisoning.
786 */
787 if (page_poisoning_enabled() ||
788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
789 debug_pagealloc_enabled()))
790 static_branch_enable(&_page_poisoning_enabled);
791#endif
792
04013513
VB
793#ifdef CONFIG_DEBUG_PAGEALLOC
794 if (!debug_pagealloc_enabled())
795 return;
796
797 static_branch_enable(&_debug_pagealloc_enabled);
798
799 if (!debug_guardpage_minorder())
800 return;
801
802 static_branch_enable(&_debug_guardpage_enabled);
803#endif
804}
805
ab130f91 806static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 807{
4c21e2f2 808 set_page_private(page, order);
676165a8 809 __SetPageBuddy(page);
1da177e4
LT
810}
811
1da177e4
LT
812/*
813 * This function checks whether a page is free && is the buddy
6e292b9b 814 * we can coalesce a page and its buddy if
13ad59df 815 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 816 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
817 * (c) a page and its buddy have the same order &&
818 * (d) a page and its buddy are in the same zone.
676165a8 819 *
6e292b9b
MW
820 * For recording whether a page is in the buddy system, we set PageBuddy.
821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 822 *
676165a8 823 * For recording page's order, we use page_private(page).
1da177e4 824 */
fe925c0c 825static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 826 unsigned int order)
1da177e4 827{
fe925c0c 828 if (!page_is_guard(buddy) && !PageBuddy(buddy))
829 return false;
4c5018ce 830
ab130f91 831 if (buddy_order(buddy) != order)
fe925c0c 832 return false;
c0a32fc5 833
fe925c0c 834 /*
835 * zone check is done late to avoid uselessly calculating
836 * zone/node ids for pages that could never merge.
837 */
838 if (page_zone_id(page) != page_zone_id(buddy))
839 return false;
d34c5fa0 840
fe925c0c 841 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 842
fe925c0c 843 return true;
1da177e4
LT
844}
845
5e1f0f09
MG
846#ifdef CONFIG_COMPACTION
847static inline struct capture_control *task_capc(struct zone *zone)
848{
849 struct capture_control *capc = current->capture_control;
850
deba0487 851 return unlikely(capc) &&
5e1f0f09
MG
852 !(current->flags & PF_KTHREAD) &&
853 !capc->page &&
deba0487 854 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
855}
856
857static inline bool
858compaction_capture(struct capture_control *capc, struct page *page,
859 int order, int migratetype)
860{
861 if (!capc || order != capc->cc->order)
862 return false;
863
864 /* Do not accidentally pollute CMA or isolated regions*/
865 if (is_migrate_cma(migratetype) ||
866 is_migrate_isolate(migratetype))
867 return false;
868
869 /*
870 * Do not let lower order allocations polluate a movable pageblock.
871 * This might let an unmovable request use a reclaimable pageblock
872 * and vice-versa but no more than normal fallback logic which can
873 * have trouble finding a high-order free page.
874 */
875 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
876 return false;
877
878 capc->page = page;
879 return true;
880}
881
882#else
883static inline struct capture_control *task_capc(struct zone *zone)
884{
885 return NULL;
886}
887
888static inline bool
889compaction_capture(struct capture_control *capc, struct page *page,
890 int order, int migratetype)
891{
892 return false;
893}
894#endif /* CONFIG_COMPACTION */
895
6ab01363
AD
896/* Used for pages not on another list */
897static inline void add_to_free_list(struct page *page, struct zone *zone,
898 unsigned int order, int migratetype)
899{
900 struct free_area *area = &zone->free_area[order];
901
902 list_add(&page->lru, &area->free_list[migratetype]);
903 area->nr_free++;
904}
905
906/* Used for pages not on another list */
907static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
908 unsigned int order, int migratetype)
909{
910 struct free_area *area = &zone->free_area[order];
911
912 list_add_tail(&page->lru, &area->free_list[migratetype]);
913 area->nr_free++;
914}
915
293ffa5e
DH
916/*
917 * Used for pages which are on another list. Move the pages to the tail
918 * of the list - so the moved pages won't immediately be considered for
919 * allocation again (e.g., optimization for memory onlining).
920 */
6ab01363
AD
921static inline void move_to_free_list(struct page *page, struct zone *zone,
922 unsigned int order, int migratetype)
923{
924 struct free_area *area = &zone->free_area[order];
925
293ffa5e 926 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
927}
928
929static inline void del_page_from_free_list(struct page *page, struct zone *zone,
930 unsigned int order)
931{
36e66c55
AD
932 /* clear reported state and update reported page count */
933 if (page_reported(page))
934 __ClearPageReported(page);
935
6ab01363
AD
936 list_del(&page->lru);
937 __ClearPageBuddy(page);
938 set_page_private(page, 0);
939 zone->free_area[order].nr_free--;
940}
941
a2129f24
AD
942/*
943 * If this is not the largest possible page, check if the buddy
944 * of the next-highest order is free. If it is, it's possible
945 * that pages are being freed that will coalesce soon. In case,
946 * that is happening, add the free page to the tail of the list
947 * so it's less likely to be used soon and more likely to be merged
948 * as a higher order page
949 */
950static inline bool
951buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
952 struct page *page, unsigned int order)
953{
954 struct page *higher_page, *higher_buddy;
955 unsigned long combined_pfn;
956
957 if (order >= MAX_ORDER - 2)
958 return false;
959
960 if (!pfn_valid_within(buddy_pfn))
961 return false;
962
963 combined_pfn = buddy_pfn & pfn;
964 higher_page = page + (combined_pfn - pfn);
965 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
966 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
967
968 return pfn_valid_within(buddy_pfn) &&
969 page_is_buddy(higher_page, higher_buddy, order + 1);
970}
971
1da177e4
LT
972/*
973 * Freeing function for a buddy system allocator.
974 *
975 * The concept of a buddy system is to maintain direct-mapped table
976 * (containing bit values) for memory blocks of various "orders".
977 * The bottom level table contains the map for the smallest allocatable
978 * units of memory (here, pages), and each level above it describes
979 * pairs of units from the levels below, hence, "buddies".
980 * At a high level, all that happens here is marking the table entry
981 * at the bottom level available, and propagating the changes upward
982 * as necessary, plus some accounting needed to play nicely with other
983 * parts of the VM system.
984 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
985 * free pages of length of (1 << order) and marked with PageBuddy.
986 * Page's order is recorded in page_private(page) field.
1da177e4 987 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
988 * other. That is, if we allocate a small block, and both were
989 * free, the remainder of the region must be split into blocks.
1da177e4 990 * If a block is freed, and its buddy is also free, then this
5f63b720 991 * triggers coalescing into a block of larger size.
1da177e4 992 *
6d49e352 993 * -- nyc
1da177e4
LT
994 */
995
48db57f8 996static inline void __free_one_page(struct page *page,
dc4b0caf 997 unsigned long pfn,
ed0ae21d 998 struct zone *zone, unsigned int order,
f04a5d5d 999 int migratetype, fpi_t fpi_flags)
1da177e4 1000{
a2129f24 1001 struct capture_control *capc = task_capc(zone);
3f649ab7 1002 unsigned long buddy_pfn;
a2129f24 1003 unsigned long combined_pfn;
d9dddbf5 1004 unsigned int max_order;
a2129f24
AD
1005 struct page *buddy;
1006 bool to_tail;
d9dddbf5 1007
7ad69832 1008 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1009
d29bb978 1010 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1011 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1012
ed0ae21d 1013 VM_BUG_ON(migratetype == -1);
d9dddbf5 1014 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1015 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1016
76741e77 1017 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1018 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1019
d9dddbf5 1020continue_merging:
7ad69832 1021 while (order < max_order) {
5e1f0f09
MG
1022 if (compaction_capture(capc, page, order, migratetype)) {
1023 __mod_zone_freepage_state(zone, -(1 << order),
1024 migratetype);
1025 return;
1026 }
76741e77
VB
1027 buddy_pfn = __find_buddy_pfn(pfn, order);
1028 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1029
1030 if (!pfn_valid_within(buddy_pfn))
1031 goto done_merging;
cb2b95e1 1032 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1033 goto done_merging;
c0a32fc5
SG
1034 /*
1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1036 * merge with it and move up one order.
1037 */
b03641af 1038 if (page_is_guard(buddy))
2847cf95 1039 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1040 else
6ab01363 1041 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1042 combined_pfn = buddy_pfn & pfn;
1043 page = page + (combined_pfn - pfn);
1044 pfn = combined_pfn;
1da177e4
LT
1045 order++;
1046 }
7ad69832 1047 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1048 /* If we are here, it means order is >= pageblock_order.
1049 * We want to prevent merge between freepages on isolate
1050 * pageblock and normal pageblock. Without this, pageblock
1051 * isolation could cause incorrect freepage or CMA accounting.
1052 *
1053 * We don't want to hit this code for the more frequent
1054 * low-order merging.
1055 */
1056 if (unlikely(has_isolate_pageblock(zone))) {
1057 int buddy_mt;
1058
76741e77
VB
1059 buddy_pfn = __find_buddy_pfn(pfn, order);
1060 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1061 buddy_mt = get_pageblock_migratetype(buddy);
1062
1063 if (migratetype != buddy_mt
1064 && (is_migrate_isolate(migratetype) ||
1065 is_migrate_isolate(buddy_mt)))
1066 goto done_merging;
1067 }
7ad69832 1068 max_order = order + 1;
d9dddbf5
VB
1069 goto continue_merging;
1070 }
1071
1072done_merging:
ab130f91 1073 set_buddy_order(page, order);
6dda9d55 1074
47b6a24a
DH
1075 if (fpi_flags & FPI_TO_TAIL)
1076 to_tail = true;
1077 else if (is_shuffle_order(order))
a2129f24 1078 to_tail = shuffle_pick_tail();
97500a4a 1079 else
a2129f24 1080 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1081
a2129f24 1082 if (to_tail)
6ab01363 1083 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1084 else
6ab01363 1085 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1086
1087 /* Notify page reporting subsystem of freed page */
f04a5d5d 1088 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1089 page_reporting_notify_free(order);
1da177e4
LT
1090}
1091
7bfec6f4
MG
1092/*
1093 * A bad page could be due to a number of fields. Instead of multiple branches,
1094 * try and check multiple fields with one check. The caller must do a detailed
1095 * check if necessary.
1096 */
1097static inline bool page_expected_state(struct page *page,
1098 unsigned long check_flags)
1099{
1100 if (unlikely(atomic_read(&page->_mapcount) != -1))
1101 return false;
1102
1103 if (unlikely((unsigned long)page->mapping |
1104 page_ref_count(page) |
1105#ifdef CONFIG_MEMCG
bcfe06bf 1106 (unsigned long)page_memcg(page) |
7bfec6f4
MG
1107#endif
1108 (page->flags & check_flags)))
1109 return false;
1110
1111 return true;
1112}
1113
58b7f119 1114static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1115{
82a3241a 1116 const char *bad_reason = NULL;
f0b791a3 1117
53f9263b 1118 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1119 bad_reason = "nonzero mapcount";
1120 if (unlikely(page->mapping != NULL))
1121 bad_reason = "non-NULL mapping";
fe896d18 1122 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1123 bad_reason = "nonzero _refcount";
58b7f119
WY
1124 if (unlikely(page->flags & flags)) {
1125 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1126 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1127 else
1128 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1129 }
9edad6ea 1130#ifdef CONFIG_MEMCG
bcfe06bf 1131 if (unlikely(page_memcg(page)))
9edad6ea
JW
1132 bad_reason = "page still charged to cgroup";
1133#endif
58b7f119
WY
1134 return bad_reason;
1135}
1136
1137static void check_free_page_bad(struct page *page)
1138{
1139 bad_page(page,
1140 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1141}
1142
534fe5e3 1143static inline int check_free_page(struct page *page)
bb552ac6 1144{
da838d4f 1145 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1146 return 0;
bb552ac6
MG
1147
1148 /* Something has gone sideways, find it */
0d0c48a2 1149 check_free_page_bad(page);
7bfec6f4 1150 return 1;
1da177e4
LT
1151}
1152
4db7548c
MG
1153static int free_tail_pages_check(struct page *head_page, struct page *page)
1154{
1155 int ret = 1;
1156
1157 /*
1158 * We rely page->lru.next never has bit 0 set, unless the page
1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1160 */
1161 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1162
1163 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1164 ret = 0;
1165 goto out;
1166 }
1167 switch (page - head_page) {
1168 case 1:
4da1984e 1169 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1170 if (unlikely(compound_mapcount(page))) {
82a3241a 1171 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1172 goto out;
1173 }
1174 break;
1175 case 2:
1176 /*
1177 * the second tail page: ->mapping is
fa3015b7 1178 * deferred_list.next -- ignore value.
4db7548c
MG
1179 */
1180 break;
1181 default:
1182 if (page->mapping != TAIL_MAPPING) {
82a3241a 1183 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1184 goto out;
1185 }
1186 break;
1187 }
1188 if (unlikely(!PageTail(page))) {
82a3241a 1189 bad_page(page, "PageTail not set");
4db7548c
MG
1190 goto out;
1191 }
1192 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1193 bad_page(page, "compound_head not consistent");
4db7548c
MG
1194 goto out;
1195 }
1196 ret = 0;
1197out:
1198 page->mapping = NULL;
1199 clear_compound_head(page);
1200 return ret;
1201}
1202
6471384a
AP
1203static void kernel_init_free_pages(struct page *page, int numpages)
1204{
1205 int i;
1206
9e15afa5
QC
1207 /* s390's use of memset() could override KASAN redzones. */
1208 kasan_disable_current();
aa1ef4d7 1209 for (i = 0; i < numpages; i++) {
acb35b17 1210 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1211 page_kasan_tag_reset(page + i);
6471384a 1212 clear_highpage(page + i);
acb35b17 1213 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1214 }
9e15afa5 1215 kasan_enable_current();
6471384a
AP
1216}
1217
e2769dbd
MG
1218static __always_inline bool free_pages_prepare(struct page *page,
1219 unsigned int order, bool check_free)
4db7548c 1220{
e2769dbd 1221 int bad = 0;
4db7548c 1222
4db7548c
MG
1223 VM_BUG_ON_PAGE(PageTail(page), page);
1224
e2769dbd 1225 trace_mm_page_free(page, order);
e2769dbd 1226
79f5f8fa
OS
1227 if (unlikely(PageHWPoison(page)) && !order) {
1228 /*
1229 * Do not let hwpoison pages hit pcplists/buddy
1230 * Untie memcg state and reset page's owner
1231 */
18b2db3b 1232 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1233 __memcg_kmem_uncharge_page(page, order);
1234 reset_page_owner(page, order);
1235 return false;
1236 }
1237
e2769dbd
MG
1238 /*
1239 * Check tail pages before head page information is cleared to
1240 * avoid checking PageCompound for order-0 pages.
1241 */
1242 if (unlikely(order)) {
1243 bool compound = PageCompound(page);
1244 int i;
1245
1246 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1247
9a73f61b
KS
1248 if (compound)
1249 ClearPageDoubleMap(page);
e2769dbd
MG
1250 for (i = 1; i < (1 << order); i++) {
1251 if (compound)
1252 bad += free_tail_pages_check(page, page + i);
534fe5e3 1253 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1254 bad++;
1255 continue;
1256 }
1257 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 }
1259 }
bda807d4 1260 if (PageMappingFlags(page))
4db7548c 1261 page->mapping = NULL;
18b2db3b 1262 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1263 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1264 if (check_free)
534fe5e3 1265 bad += check_free_page(page);
e2769dbd
MG
1266 if (bad)
1267 return false;
4db7548c 1268
e2769dbd
MG
1269 page_cpupid_reset_last(page);
1270 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1271 reset_page_owner(page, order);
4db7548c
MG
1272
1273 if (!PageHighMem(page)) {
1274 debug_check_no_locks_freed(page_address(page),
e2769dbd 1275 PAGE_SIZE << order);
4db7548c 1276 debug_check_no_obj_freed(page_address(page),
e2769dbd 1277 PAGE_SIZE << order);
4db7548c 1278 }
6471384a
AP
1279 if (want_init_on_free())
1280 kernel_init_free_pages(page, 1 << order);
1281
8db26a3d
VB
1282 kernel_poison_pages(page, 1 << order);
1283
234fdce8
QC
1284 /*
1285 * arch_free_page() can make the page's contents inaccessible. s390
1286 * does this. So nothing which can access the page's contents should
1287 * happen after this.
1288 */
1289 arch_free_page(page, order);
1290
77bc7fd6 1291 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1292
3c0c12cc 1293 kasan_free_nondeferred_pages(page, order);
4db7548c 1294
4db7548c
MG
1295 return true;
1296}
1297
e2769dbd 1298#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1299/*
1300 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1301 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1302 * moved from pcp lists to free lists.
1303 */
1304static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1305{
1306 return free_pages_prepare(page, 0, true);
1307}
1308
4462b32c 1309static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1310{
8e57f8ac 1311 if (debug_pagealloc_enabled_static())
534fe5e3 1312 return check_free_page(page);
4462b32c
VB
1313 else
1314 return false;
e2769dbd
MG
1315}
1316#else
4462b32c
VB
1317/*
1318 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1319 * moving from pcp lists to free list in order to reduce overhead. With
1320 * debug_pagealloc enabled, they are checked also immediately when being freed
1321 * to the pcp lists.
1322 */
e2769dbd
MG
1323static bool free_pcp_prepare(struct page *page)
1324{
8e57f8ac 1325 if (debug_pagealloc_enabled_static())
4462b32c
VB
1326 return free_pages_prepare(page, 0, true);
1327 else
1328 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1329}
1330
4db7548c
MG
1331static bool bulkfree_pcp_prepare(struct page *page)
1332{
534fe5e3 1333 return check_free_page(page);
4db7548c
MG
1334}
1335#endif /* CONFIG_DEBUG_VM */
1336
97334162
AL
1337static inline void prefetch_buddy(struct page *page)
1338{
1339 unsigned long pfn = page_to_pfn(page);
1340 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1341 struct page *buddy = page + (buddy_pfn - pfn);
1342
1343 prefetch(buddy);
1344}
1345
1da177e4 1346/*
5f8dcc21 1347 * Frees a number of pages from the PCP lists
1da177e4 1348 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1349 * count is the number of pages to free.
1da177e4
LT
1350 *
1351 * If the zone was previously in an "all pages pinned" state then look to
1352 * see if this freeing clears that state.
1353 *
1354 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1355 * pinned" detection logic.
1356 */
5f8dcc21
MG
1357static void free_pcppages_bulk(struct zone *zone, int count,
1358 struct per_cpu_pages *pcp)
1da177e4 1359{
5f8dcc21 1360 int migratetype = 0;
a6f9edd6 1361 int batch_free = 0;
5c3ad2eb 1362 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1363 bool isolated_pageblocks;
0a5f4e5b
AL
1364 struct page *page, *tmp;
1365 LIST_HEAD(head);
f2260e6b 1366
88e8ac11
CTR
1367 /*
1368 * Ensure proper count is passed which otherwise would stuck in the
1369 * below while (list_empty(list)) loop.
1370 */
1371 count = min(pcp->count, count);
e5b31ac2 1372 while (count) {
5f8dcc21
MG
1373 struct list_head *list;
1374
1375 /*
a6f9edd6
MG
1376 * Remove pages from lists in a round-robin fashion. A
1377 * batch_free count is maintained that is incremented when an
1378 * empty list is encountered. This is so more pages are freed
1379 * off fuller lists instead of spinning excessively around empty
1380 * lists
5f8dcc21
MG
1381 */
1382 do {
a6f9edd6 1383 batch_free++;
5f8dcc21
MG
1384 if (++migratetype == MIGRATE_PCPTYPES)
1385 migratetype = 0;
1386 list = &pcp->lists[migratetype];
1387 } while (list_empty(list));
48db57f8 1388
1d16871d
NK
1389 /* This is the only non-empty list. Free them all. */
1390 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1391 batch_free = count;
1d16871d 1392
a6f9edd6 1393 do {
a16601c5 1394 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1395 /* must delete to avoid corrupting pcp list */
a6f9edd6 1396 list_del(&page->lru);
77ba9062 1397 pcp->count--;
aa016d14 1398
4db7548c
MG
1399 if (bulkfree_pcp_prepare(page))
1400 continue;
1401
0a5f4e5b 1402 list_add_tail(&page->lru, &head);
97334162
AL
1403
1404 /*
1405 * We are going to put the page back to the global
1406 * pool, prefetch its buddy to speed up later access
1407 * under zone->lock. It is believed the overhead of
1408 * an additional test and calculating buddy_pfn here
1409 * can be offset by reduced memory latency later. To
1410 * avoid excessive prefetching due to large count, only
1411 * prefetch buddy for the first pcp->batch nr of pages.
1412 */
5c3ad2eb 1413 if (prefetch_nr) {
97334162 1414 prefetch_buddy(page);
5c3ad2eb
VB
1415 prefetch_nr--;
1416 }
e5b31ac2 1417 } while (--count && --batch_free && !list_empty(list));
1da177e4 1418 }
0a5f4e5b
AL
1419
1420 spin_lock(&zone->lock);
1421 isolated_pageblocks = has_isolate_pageblock(zone);
1422
1423 /*
1424 * Use safe version since after __free_one_page(),
1425 * page->lru.next will not point to original list.
1426 */
1427 list_for_each_entry_safe(page, tmp, &head, lru) {
1428 int mt = get_pcppage_migratetype(page);
1429 /* MIGRATE_ISOLATE page should not go to pcplists */
1430 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1431 /* Pageblock could have been isolated meanwhile */
1432 if (unlikely(isolated_pageblocks))
1433 mt = get_pageblock_migratetype(page);
1434
f04a5d5d 1435 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1436 trace_mm_page_pcpu_drain(page, 0, mt);
1437 }
d34b0733 1438 spin_unlock(&zone->lock);
1da177e4
LT
1439}
1440
dc4b0caf
MG
1441static void free_one_page(struct zone *zone,
1442 struct page *page, unsigned long pfn,
7aeb09f9 1443 unsigned int order,
7fef431b 1444 int migratetype, fpi_t fpi_flags)
1da177e4 1445{
d34b0733 1446 spin_lock(&zone->lock);
ad53f92e
JK
1447 if (unlikely(has_isolate_pageblock(zone) ||
1448 is_migrate_isolate(migratetype))) {
1449 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1450 }
7fef431b 1451 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1452 spin_unlock(&zone->lock);
48db57f8
NP
1453}
1454
1e8ce83c 1455static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1456 unsigned long zone, int nid)
1e8ce83c 1457{
d0dc12e8 1458 mm_zero_struct_page(page);
1e8ce83c 1459 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1460 init_page_count(page);
1461 page_mapcount_reset(page);
1462 page_cpupid_reset_last(page);
2813b9c0 1463 page_kasan_tag_reset(page);
1e8ce83c 1464
1e8ce83c
RH
1465 INIT_LIST_HEAD(&page->lru);
1466#ifdef WANT_PAGE_VIRTUAL
1467 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1468 if (!is_highmem_idx(zone))
1469 set_page_address(page, __va(pfn << PAGE_SHIFT));
1470#endif
1471}
1472
7e18adb4 1473#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1474static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1475{
1476 pg_data_t *pgdat;
1477 int nid, zid;
1478
1479 if (!early_page_uninitialised(pfn))
1480 return;
1481
1482 nid = early_pfn_to_nid(pfn);
1483 pgdat = NODE_DATA(nid);
1484
1485 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1486 struct zone *zone = &pgdat->node_zones[zid];
1487
1488 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1489 break;
1490 }
d0dc12e8 1491 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1492}
1493#else
1494static inline void init_reserved_page(unsigned long pfn)
1495{
1496}
1497#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1498
92923ca3
NZ
1499/*
1500 * Initialised pages do not have PageReserved set. This function is
1501 * called for each range allocated by the bootmem allocator and
1502 * marks the pages PageReserved. The remaining valid pages are later
1503 * sent to the buddy page allocator.
1504 */
4b50bcc7 1505void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1506{
1507 unsigned long start_pfn = PFN_DOWN(start);
1508 unsigned long end_pfn = PFN_UP(end);
1509
7e18adb4
MG
1510 for (; start_pfn < end_pfn; start_pfn++) {
1511 if (pfn_valid(start_pfn)) {
1512 struct page *page = pfn_to_page(start_pfn);
1513
1514 init_reserved_page(start_pfn);
1d798ca3
KS
1515
1516 /* Avoid false-positive PageTail() */
1517 INIT_LIST_HEAD(&page->lru);
1518
d483da5b
AD
1519 /*
1520 * no need for atomic set_bit because the struct
1521 * page is not visible yet so nobody should
1522 * access it yet.
1523 */
1524 __SetPageReserved(page);
7e18adb4
MG
1525 }
1526 }
92923ca3
NZ
1527}
1528
7fef431b
DH
1529static void __free_pages_ok(struct page *page, unsigned int order,
1530 fpi_t fpi_flags)
ec95f53a 1531{
d34b0733 1532 unsigned long flags;
95e34412 1533 int migratetype;
dc4b0caf 1534 unsigned long pfn = page_to_pfn(page);
ec95f53a 1535
e2769dbd 1536 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1537 return;
1538
cfc47a28 1539 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1540 local_irq_save(flags);
1541 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1542 free_one_page(page_zone(page), page, pfn, order, migratetype,
1543 fpi_flags);
d34b0733 1544 local_irq_restore(flags);
1da177e4
LT
1545}
1546
a9cd410a 1547void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1548{
c3993076 1549 unsigned int nr_pages = 1 << order;
e2d0bd2b 1550 struct page *p = page;
c3993076 1551 unsigned int loop;
a226f6c8 1552
7fef431b
DH
1553 /*
1554 * When initializing the memmap, __init_single_page() sets the refcount
1555 * of all pages to 1 ("allocated"/"not free"). We have to set the
1556 * refcount of all involved pages to 0.
1557 */
e2d0bd2b
YL
1558 prefetchw(p);
1559 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1560 prefetchw(p + 1);
c3993076
JW
1561 __ClearPageReserved(p);
1562 set_page_count(p, 0);
a226f6c8 1563 }
e2d0bd2b
YL
1564 __ClearPageReserved(p);
1565 set_page_count(p, 0);
c3993076 1566
9705bea5 1567 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1568
1569 /*
1570 * Bypass PCP and place fresh pages right to the tail, primarily
1571 * relevant for memory onlining.
1572 */
1573 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1574}
1575
3f08a302 1576#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1577
03e92a5e
MR
1578/*
1579 * During memory init memblocks map pfns to nids. The search is expensive and
1580 * this caches recent lookups. The implementation of __early_pfn_to_nid
1581 * treats start/end as pfns.
1582 */
1583struct mminit_pfnnid_cache {
1584 unsigned long last_start;
1585 unsigned long last_end;
1586 int last_nid;
1587};
75a592a4 1588
03e92a5e 1589static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1590
1591/*
1592 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1593 */
03e92a5e 1594static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1595 struct mminit_pfnnid_cache *state)
75a592a4 1596{
6f24fbd3 1597 unsigned long start_pfn, end_pfn;
75a592a4
MG
1598 int nid;
1599
6f24fbd3
MR
1600 if (state->last_start <= pfn && pfn < state->last_end)
1601 return state->last_nid;
1602
1603 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1604 if (nid != NUMA_NO_NODE) {
1605 state->last_start = start_pfn;
1606 state->last_end = end_pfn;
1607 state->last_nid = nid;
1608 }
7ace9917
MG
1609
1610 return nid;
75a592a4 1611}
75a592a4 1612
75a592a4 1613int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1614{
7ace9917 1615 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1616 int nid;
1617
7ace9917 1618 spin_lock(&early_pfn_lock);
56ec43d8 1619 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1620 if (nid < 0)
e4568d38 1621 nid = first_online_node;
7ace9917 1622 spin_unlock(&early_pfn_lock);
75a592a4 1623
7ace9917 1624 return nid;
75a592a4 1625}
3f08a302 1626#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1627
7c2ee349 1628void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1629 unsigned int order)
1630{
1631 if (early_page_uninitialised(pfn))
1632 return;
a9cd410a 1633 __free_pages_core(page, order);
3a80a7fa
MG
1634}
1635
7cf91a98
JK
1636/*
1637 * Check that the whole (or subset of) a pageblock given by the interval of
1638 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1639 * with the migration of free compaction scanner. The scanners then need to
1640 * use only pfn_valid_within() check for arches that allow holes within
1641 * pageblocks.
1642 *
1643 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1644 *
1645 * It's possible on some configurations to have a setup like node0 node1 node0
1646 * i.e. it's possible that all pages within a zones range of pages do not
1647 * belong to a single zone. We assume that a border between node0 and node1
1648 * can occur within a single pageblock, but not a node0 node1 node0
1649 * interleaving within a single pageblock. It is therefore sufficient to check
1650 * the first and last page of a pageblock and avoid checking each individual
1651 * page in a pageblock.
1652 */
1653struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1654 unsigned long end_pfn, struct zone *zone)
1655{
1656 struct page *start_page;
1657 struct page *end_page;
1658
1659 /* end_pfn is one past the range we are checking */
1660 end_pfn--;
1661
1662 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1663 return NULL;
1664
2d070eab
MH
1665 start_page = pfn_to_online_page(start_pfn);
1666 if (!start_page)
1667 return NULL;
7cf91a98
JK
1668
1669 if (page_zone(start_page) != zone)
1670 return NULL;
1671
1672 end_page = pfn_to_page(end_pfn);
1673
1674 /* This gives a shorter code than deriving page_zone(end_page) */
1675 if (page_zone_id(start_page) != page_zone_id(end_page))
1676 return NULL;
1677
1678 return start_page;
1679}
1680
1681void set_zone_contiguous(struct zone *zone)
1682{
1683 unsigned long block_start_pfn = zone->zone_start_pfn;
1684 unsigned long block_end_pfn;
1685
1686 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1687 for (; block_start_pfn < zone_end_pfn(zone);
1688 block_start_pfn = block_end_pfn,
1689 block_end_pfn += pageblock_nr_pages) {
1690
1691 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1692
1693 if (!__pageblock_pfn_to_page(block_start_pfn,
1694 block_end_pfn, zone))
1695 return;
e84fe99b 1696 cond_resched();
7cf91a98
JK
1697 }
1698
1699 /* We confirm that there is no hole */
1700 zone->contiguous = true;
1701}
1702
1703void clear_zone_contiguous(struct zone *zone)
1704{
1705 zone->contiguous = false;
1706}
1707
7e18adb4 1708#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1709static void __init deferred_free_range(unsigned long pfn,
1710 unsigned long nr_pages)
a4de83dd 1711{
2f47a91f
PT
1712 struct page *page;
1713 unsigned long i;
a4de83dd 1714
2f47a91f 1715 if (!nr_pages)
a4de83dd
MG
1716 return;
1717
2f47a91f
PT
1718 page = pfn_to_page(pfn);
1719
a4de83dd 1720 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1721 if (nr_pages == pageblock_nr_pages &&
1722 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1723 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1724 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1725 return;
1726 }
1727
e780149b
XQ
1728 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1729 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1730 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1731 __free_pages_core(page, 0);
e780149b 1732 }
a4de83dd
MG
1733}
1734
d3cd131d
NS
1735/* Completion tracking for deferred_init_memmap() threads */
1736static atomic_t pgdat_init_n_undone __initdata;
1737static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1738
1739static inline void __init pgdat_init_report_one_done(void)
1740{
1741 if (atomic_dec_and_test(&pgdat_init_n_undone))
1742 complete(&pgdat_init_all_done_comp);
1743}
0e1cc95b 1744
2f47a91f 1745/*
80b1f41c
PT
1746 * Returns true if page needs to be initialized or freed to buddy allocator.
1747 *
1748 * First we check if pfn is valid on architectures where it is possible to have
1749 * holes within pageblock_nr_pages. On systems where it is not possible, this
1750 * function is optimized out.
1751 *
1752 * Then, we check if a current large page is valid by only checking the validity
1753 * of the head pfn.
2f47a91f 1754 */
56ec43d8 1755static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1756{
80b1f41c
PT
1757 if (!pfn_valid_within(pfn))
1758 return false;
1759 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1760 return false;
80b1f41c
PT
1761 return true;
1762}
2f47a91f 1763
80b1f41c
PT
1764/*
1765 * Free pages to buddy allocator. Try to free aligned pages in
1766 * pageblock_nr_pages sizes.
1767 */
56ec43d8 1768static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1769 unsigned long end_pfn)
1770{
80b1f41c
PT
1771 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1772 unsigned long nr_free = 0;
2f47a91f 1773
80b1f41c 1774 for (; pfn < end_pfn; pfn++) {
56ec43d8 1775 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1776 deferred_free_range(pfn - nr_free, nr_free);
1777 nr_free = 0;
1778 } else if (!(pfn & nr_pgmask)) {
1779 deferred_free_range(pfn - nr_free, nr_free);
1780 nr_free = 1;
80b1f41c
PT
1781 } else {
1782 nr_free++;
1783 }
1784 }
1785 /* Free the last block of pages to allocator */
1786 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1787}
1788
80b1f41c
PT
1789/*
1790 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1791 * by performing it only once every pageblock_nr_pages.
1792 * Return number of pages initialized.
1793 */
56ec43d8 1794static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1795 unsigned long pfn,
1796 unsigned long end_pfn)
2f47a91f 1797{
2f47a91f 1798 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1799 int nid = zone_to_nid(zone);
2f47a91f 1800 unsigned long nr_pages = 0;
56ec43d8 1801 int zid = zone_idx(zone);
2f47a91f 1802 struct page *page = NULL;
2f47a91f 1803
80b1f41c 1804 for (; pfn < end_pfn; pfn++) {
56ec43d8 1805 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1806 page = NULL;
2f47a91f 1807 continue;
80b1f41c 1808 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1809 page = pfn_to_page(pfn);
80b1f41c
PT
1810 } else {
1811 page++;
2f47a91f 1812 }
d0dc12e8 1813 __init_single_page(page, pfn, zid, nid);
80b1f41c 1814 nr_pages++;
2f47a91f 1815 }
80b1f41c 1816 return (nr_pages);
2f47a91f
PT
1817}
1818
0e56acae
AD
1819/*
1820 * This function is meant to pre-load the iterator for the zone init.
1821 * Specifically it walks through the ranges until we are caught up to the
1822 * first_init_pfn value and exits there. If we never encounter the value we
1823 * return false indicating there are no valid ranges left.
1824 */
1825static bool __init
1826deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1827 unsigned long *spfn, unsigned long *epfn,
1828 unsigned long first_init_pfn)
1829{
1830 u64 j;
1831
1832 /*
1833 * Start out by walking through the ranges in this zone that have
1834 * already been initialized. We don't need to do anything with them
1835 * so we just need to flush them out of the system.
1836 */
1837 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1838 if (*epfn <= first_init_pfn)
1839 continue;
1840 if (*spfn < first_init_pfn)
1841 *spfn = first_init_pfn;
1842 *i = j;
1843 return true;
1844 }
1845
1846 return false;
1847}
1848
1849/*
1850 * Initialize and free pages. We do it in two loops: first we initialize
1851 * struct page, then free to buddy allocator, because while we are
1852 * freeing pages we can access pages that are ahead (computing buddy
1853 * page in __free_one_page()).
1854 *
1855 * In order to try and keep some memory in the cache we have the loop
1856 * broken along max page order boundaries. This way we will not cause
1857 * any issues with the buddy page computation.
1858 */
1859static unsigned long __init
1860deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1861 unsigned long *end_pfn)
1862{
1863 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1864 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1865 unsigned long nr_pages = 0;
1866 u64 j = *i;
1867
1868 /* First we loop through and initialize the page values */
1869 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1870 unsigned long t;
1871
1872 if (mo_pfn <= *start_pfn)
1873 break;
1874
1875 t = min(mo_pfn, *end_pfn);
1876 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1877
1878 if (mo_pfn < *end_pfn) {
1879 *start_pfn = mo_pfn;
1880 break;
1881 }
1882 }
1883
1884 /* Reset values and now loop through freeing pages as needed */
1885 swap(j, *i);
1886
1887 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1888 unsigned long t;
1889
1890 if (mo_pfn <= spfn)
1891 break;
1892
1893 t = min(mo_pfn, epfn);
1894 deferred_free_pages(spfn, t);
1895
1896 if (mo_pfn <= epfn)
1897 break;
1898 }
1899
1900 return nr_pages;
1901}
1902
e4443149
DJ
1903static void __init
1904deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1905 void *arg)
1906{
1907 unsigned long spfn, epfn;
1908 struct zone *zone = arg;
1909 u64 i;
1910
1911 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1912
1913 /*
1914 * Initialize and free pages in MAX_ORDER sized increments so that we
1915 * can avoid introducing any issues with the buddy allocator.
1916 */
1917 while (spfn < end_pfn) {
1918 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1919 cond_resched();
1920 }
1921}
1922
ecd09650
DJ
1923/* An arch may override for more concurrency. */
1924__weak int __init
1925deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1926{
1927 return 1;
1928}
1929
7e18adb4 1930/* Initialise remaining memory on a node */
0e1cc95b 1931static int __init deferred_init_memmap(void *data)
7e18adb4 1932{
0e1cc95b 1933 pg_data_t *pgdat = data;
0e56acae 1934 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1935 unsigned long spfn = 0, epfn = 0;
0e56acae 1936 unsigned long first_init_pfn, flags;
7e18adb4 1937 unsigned long start = jiffies;
7e18adb4 1938 struct zone *zone;
e4443149 1939 int zid, max_threads;
2f47a91f 1940 u64 i;
7e18adb4 1941
3a2d7fa8
PT
1942 /* Bind memory initialisation thread to a local node if possible */
1943 if (!cpumask_empty(cpumask))
1944 set_cpus_allowed_ptr(current, cpumask);
1945
1946 pgdat_resize_lock(pgdat, &flags);
1947 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1948 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1949 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1950 pgdat_init_report_one_done();
0e1cc95b
MG
1951 return 0;
1952 }
1953
7e18adb4
MG
1954 /* Sanity check boundaries */
1955 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1956 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1957 pgdat->first_deferred_pfn = ULONG_MAX;
1958
3d060856
PT
1959 /*
1960 * Once we unlock here, the zone cannot be grown anymore, thus if an
1961 * interrupt thread must allocate this early in boot, zone must be
1962 * pre-grown prior to start of deferred page initialization.
1963 */
1964 pgdat_resize_unlock(pgdat, &flags);
1965
7e18adb4
MG
1966 /* Only the highest zone is deferred so find it */
1967 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1968 zone = pgdat->node_zones + zid;
1969 if (first_init_pfn < zone_end_pfn(zone))
1970 break;
1971 }
0e56acae
AD
1972
1973 /* If the zone is empty somebody else may have cleared out the zone */
1974 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1975 first_init_pfn))
1976 goto zone_empty;
7e18adb4 1977
ecd09650 1978 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1979
117003c3 1980 while (spfn < epfn) {
e4443149
DJ
1981 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1982 struct padata_mt_job job = {
1983 .thread_fn = deferred_init_memmap_chunk,
1984 .fn_arg = zone,
1985 .start = spfn,
1986 .size = epfn_align - spfn,
1987 .align = PAGES_PER_SECTION,
1988 .min_chunk = PAGES_PER_SECTION,
1989 .max_threads = max_threads,
1990 };
1991
1992 padata_do_multithreaded(&job);
1993 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1994 epfn_align);
117003c3 1995 }
0e56acae 1996zone_empty:
7e18adb4
MG
1997 /* Sanity check that the next zone really is unpopulated */
1998 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1999
89c7c402
DJ
2000 pr_info("node %d deferred pages initialised in %ums\n",
2001 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2002
2003 pgdat_init_report_one_done();
0e1cc95b
MG
2004 return 0;
2005}
c9e97a19 2006
c9e97a19
PT
2007/*
2008 * If this zone has deferred pages, try to grow it by initializing enough
2009 * deferred pages to satisfy the allocation specified by order, rounded up to
2010 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2011 * of SECTION_SIZE bytes by initializing struct pages in increments of
2012 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2013 *
2014 * Return true when zone was grown, otherwise return false. We return true even
2015 * when we grow less than requested, to let the caller decide if there are
2016 * enough pages to satisfy the allocation.
2017 *
2018 * Note: We use noinline because this function is needed only during boot, and
2019 * it is called from a __ref function _deferred_grow_zone. This way we are
2020 * making sure that it is not inlined into permanent text section.
2021 */
2022static noinline bool __init
2023deferred_grow_zone(struct zone *zone, unsigned int order)
2024{
c9e97a19 2025 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2026 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2027 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2028 unsigned long spfn, epfn, flags;
2029 unsigned long nr_pages = 0;
c9e97a19
PT
2030 u64 i;
2031
2032 /* Only the last zone may have deferred pages */
2033 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2034 return false;
2035
2036 pgdat_resize_lock(pgdat, &flags);
2037
c9e97a19
PT
2038 /*
2039 * If someone grew this zone while we were waiting for spinlock, return
2040 * true, as there might be enough pages already.
2041 */
2042 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2043 pgdat_resize_unlock(pgdat, &flags);
2044 return true;
2045 }
2046
0e56acae
AD
2047 /* If the zone is empty somebody else may have cleared out the zone */
2048 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2049 first_deferred_pfn)) {
2050 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2051 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2052 /* Retry only once. */
2053 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2054 }
2055
0e56acae
AD
2056 /*
2057 * Initialize and free pages in MAX_ORDER sized increments so
2058 * that we can avoid introducing any issues with the buddy
2059 * allocator.
2060 */
2061 while (spfn < epfn) {
2062 /* update our first deferred PFN for this section */
2063 first_deferred_pfn = spfn;
2064
2065 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2066 touch_nmi_watchdog();
c9e97a19 2067
0e56acae
AD
2068 /* We should only stop along section boundaries */
2069 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2070 continue;
c9e97a19 2071
0e56acae 2072 /* If our quota has been met we can stop here */
c9e97a19
PT
2073 if (nr_pages >= nr_pages_needed)
2074 break;
2075 }
2076
0e56acae 2077 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2078 pgdat_resize_unlock(pgdat, &flags);
2079
2080 return nr_pages > 0;
2081}
2082
2083/*
2084 * deferred_grow_zone() is __init, but it is called from
2085 * get_page_from_freelist() during early boot until deferred_pages permanently
2086 * disables this call. This is why we have refdata wrapper to avoid warning,
2087 * and to ensure that the function body gets unloaded.
2088 */
2089static bool __ref
2090_deferred_grow_zone(struct zone *zone, unsigned int order)
2091{
2092 return deferred_grow_zone(zone, order);
2093}
2094
7cf91a98 2095#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2096
2097void __init page_alloc_init_late(void)
2098{
7cf91a98 2099 struct zone *zone;
e900a918 2100 int nid;
7cf91a98
JK
2101
2102#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2103
d3cd131d
NS
2104 /* There will be num_node_state(N_MEMORY) threads */
2105 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2106 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2107 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2108 }
2109
2110 /* Block until all are initialised */
d3cd131d 2111 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2112
3e8fc007
MG
2113 /*
2114 * The number of managed pages has changed due to the initialisation
2115 * so the pcpu batch and high limits needs to be updated or the limits
2116 * will be artificially small.
2117 */
2118 for_each_populated_zone(zone)
2119 zone_pcp_update(zone);
2120
c9e97a19
PT
2121 /*
2122 * We initialized the rest of the deferred pages. Permanently disable
2123 * on-demand struct page initialization.
2124 */
2125 static_branch_disable(&deferred_pages);
2126
4248b0da
MG
2127 /* Reinit limits that are based on free pages after the kernel is up */
2128 files_maxfiles_init();
7cf91a98 2129#endif
350e88ba 2130
ba8f3587
LF
2131 buffer_init();
2132
3010f876
PT
2133 /* Discard memblock private memory */
2134 memblock_discard();
7cf91a98 2135
e900a918
DW
2136 for_each_node_state(nid, N_MEMORY)
2137 shuffle_free_memory(NODE_DATA(nid));
2138
7cf91a98
JK
2139 for_each_populated_zone(zone)
2140 set_zone_contiguous(zone);
7e18adb4 2141}
7e18adb4 2142
47118af0 2143#ifdef CONFIG_CMA
9cf510a5 2144/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2145void __init init_cma_reserved_pageblock(struct page *page)
2146{
2147 unsigned i = pageblock_nr_pages;
2148 struct page *p = page;
2149
2150 do {
2151 __ClearPageReserved(p);
2152 set_page_count(p, 0);
d883c6cf 2153 } while (++p, --i);
47118af0 2154
47118af0 2155 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2156
2157 if (pageblock_order >= MAX_ORDER) {
2158 i = pageblock_nr_pages;
2159 p = page;
2160 do {
2161 set_page_refcounted(p);
2162 __free_pages(p, MAX_ORDER - 1);
2163 p += MAX_ORDER_NR_PAGES;
2164 } while (i -= MAX_ORDER_NR_PAGES);
2165 } else {
2166 set_page_refcounted(page);
2167 __free_pages(page, pageblock_order);
2168 }
2169
3dcc0571 2170 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2171}
2172#endif
1da177e4
LT
2173
2174/*
2175 * The order of subdivision here is critical for the IO subsystem.
2176 * Please do not alter this order without good reasons and regression
2177 * testing. Specifically, as large blocks of memory are subdivided,
2178 * the order in which smaller blocks are delivered depends on the order
2179 * they're subdivided in this function. This is the primary factor
2180 * influencing the order in which pages are delivered to the IO
2181 * subsystem according to empirical testing, and this is also justified
2182 * by considering the behavior of a buddy system containing a single
2183 * large block of memory acted on by a series of small allocations.
2184 * This behavior is a critical factor in sglist merging's success.
2185 *
6d49e352 2186 * -- nyc
1da177e4 2187 */
085cc7d5 2188static inline void expand(struct zone *zone, struct page *page,
6ab01363 2189 int low, int high, int migratetype)
1da177e4
LT
2190{
2191 unsigned long size = 1 << high;
2192
2193 while (high > low) {
1da177e4
LT
2194 high--;
2195 size >>= 1;
309381fe 2196 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2197
acbc15a4
JK
2198 /*
2199 * Mark as guard pages (or page), that will allow to
2200 * merge back to allocator when buddy will be freed.
2201 * Corresponding page table entries will not be touched,
2202 * pages will stay not present in virtual address space
2203 */
2204 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2205 continue;
acbc15a4 2206
6ab01363 2207 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2208 set_buddy_order(&page[size], high);
1da177e4 2209 }
1da177e4
LT
2210}
2211
4e611801 2212static void check_new_page_bad(struct page *page)
1da177e4 2213{
f4c18e6f 2214 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2215 /* Don't complain about hwpoisoned pages */
2216 page_mapcount_reset(page); /* remove PageBuddy */
2217 return;
f4c18e6f 2218 }
58b7f119
WY
2219
2220 bad_page(page,
2221 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2222}
2223
2224/*
2225 * This page is about to be returned from the page allocator
2226 */
2227static inline int check_new_page(struct page *page)
2228{
2229 if (likely(page_expected_state(page,
2230 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2231 return 0;
2232
2233 check_new_page_bad(page);
2234 return 1;
2a7684a2
WF
2235}
2236
479f854a 2237#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2238/*
2239 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2240 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2241 * also checked when pcp lists are refilled from the free lists.
2242 */
2243static inline bool check_pcp_refill(struct page *page)
479f854a 2244{
8e57f8ac 2245 if (debug_pagealloc_enabled_static())
4462b32c
VB
2246 return check_new_page(page);
2247 else
2248 return false;
479f854a
MG
2249}
2250
4462b32c 2251static inline bool check_new_pcp(struct page *page)
479f854a
MG
2252{
2253 return check_new_page(page);
2254}
2255#else
4462b32c
VB
2256/*
2257 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2258 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2259 * enabled, they are also checked when being allocated from the pcp lists.
2260 */
2261static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2262{
2263 return check_new_page(page);
2264}
4462b32c 2265static inline bool check_new_pcp(struct page *page)
479f854a 2266{
8e57f8ac 2267 if (debug_pagealloc_enabled_static())
4462b32c
VB
2268 return check_new_page(page);
2269 else
2270 return false;
479f854a
MG
2271}
2272#endif /* CONFIG_DEBUG_VM */
2273
2274static bool check_new_pages(struct page *page, unsigned int order)
2275{
2276 int i;
2277 for (i = 0; i < (1 << order); i++) {
2278 struct page *p = page + i;
2279
2280 if (unlikely(check_new_page(p)))
2281 return true;
2282 }
2283
2284 return false;
2285}
2286
46f24fd8
JK
2287inline void post_alloc_hook(struct page *page, unsigned int order,
2288 gfp_t gfp_flags)
2289{
2290 set_page_private(page, 0);
2291 set_page_refcounted(page);
2292
2293 arch_alloc_page(page, order);
77bc7fd6 2294 debug_pagealloc_map_pages(page, 1 << order);
46f24fd8 2295 kasan_alloc_pages(page, order);
8db26a3d 2296 kernel_unpoison_pages(page, 1 << order);
46f24fd8 2297 set_page_owner(page, order, gfp_flags);
862b6dee 2298
f289041e 2299 if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
862b6dee 2300 kernel_init_free_pages(page, 1 << order);
46f24fd8
JK
2301}
2302
479f854a 2303static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2304 unsigned int alloc_flags)
2a7684a2 2305{
46f24fd8 2306 post_alloc_hook(page, order, gfp_flags);
17cf4406 2307
17cf4406
NP
2308 if (order && (gfp_flags & __GFP_COMP))
2309 prep_compound_page(page, order);
2310
75379191 2311 /*
2f064f34 2312 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2313 * allocate the page. The expectation is that the caller is taking
2314 * steps that will free more memory. The caller should avoid the page
2315 * being used for !PFMEMALLOC purposes.
2316 */
2f064f34
MH
2317 if (alloc_flags & ALLOC_NO_WATERMARKS)
2318 set_page_pfmemalloc(page);
2319 else
2320 clear_page_pfmemalloc(page);
1da177e4
LT
2321}
2322
56fd56b8
MG
2323/*
2324 * Go through the free lists for the given migratetype and remove
2325 * the smallest available page from the freelists
2326 */
85ccc8fa 2327static __always_inline
728ec980 2328struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2329 int migratetype)
2330{
2331 unsigned int current_order;
b8af2941 2332 struct free_area *area;
56fd56b8
MG
2333 struct page *page;
2334
2335 /* Find a page of the appropriate size in the preferred list */
2336 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2337 area = &(zone->free_area[current_order]);
b03641af 2338 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2339 if (!page)
2340 continue;
6ab01363
AD
2341 del_page_from_free_list(page, zone, current_order);
2342 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2343 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2344 return page;
2345 }
2346
2347 return NULL;
2348}
2349
2350
b2a0ac88
MG
2351/*
2352 * This array describes the order lists are fallen back to when
2353 * the free lists for the desirable migrate type are depleted
2354 */
da415663 2355static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2356 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2357 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2358 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2359#ifdef CONFIG_CMA
974a786e 2360 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2361#endif
194159fb 2362#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2363 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2364#endif
b2a0ac88
MG
2365};
2366
dc67647b 2367#ifdef CONFIG_CMA
85ccc8fa 2368static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2369 unsigned int order)
2370{
2371 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2372}
2373#else
2374static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2375 unsigned int order) { return NULL; }
2376#endif
2377
c361be55 2378/*
293ffa5e 2379 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2380 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2381 * boundary. If alignment is required, use move_freepages_block()
2382 */
02aa0cdd 2383static int move_freepages(struct zone *zone,
b69a7288 2384 struct page *start_page, struct page *end_page,
02aa0cdd 2385 int migratetype, int *num_movable)
c361be55
MG
2386{
2387 struct page *page;
d00181b9 2388 unsigned int order;
d100313f 2389 int pages_moved = 0;
c361be55 2390
c361be55
MG
2391 for (page = start_page; page <= end_page;) {
2392 if (!pfn_valid_within(page_to_pfn(page))) {
2393 page++;
2394 continue;
2395 }
2396
2397 if (!PageBuddy(page)) {
02aa0cdd
VB
2398 /*
2399 * We assume that pages that could be isolated for
2400 * migration are movable. But we don't actually try
2401 * isolating, as that would be expensive.
2402 */
2403 if (num_movable &&
2404 (PageLRU(page) || __PageMovable(page)))
2405 (*num_movable)++;
2406
c361be55
MG
2407 page++;
2408 continue;
2409 }
2410
cd961038
DR
2411 /* Make sure we are not inadvertently changing nodes */
2412 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2413 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2414
ab130f91 2415 order = buddy_order(page);
6ab01363 2416 move_to_free_list(page, zone, order, migratetype);
c361be55 2417 page += 1 << order;
d100313f 2418 pages_moved += 1 << order;
c361be55
MG
2419 }
2420
d100313f 2421 return pages_moved;
c361be55
MG
2422}
2423
ee6f509c 2424int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2425 int migratetype, int *num_movable)
c361be55
MG
2426{
2427 unsigned long start_pfn, end_pfn;
2428 struct page *start_page, *end_page;
2429
4a222127
DR
2430 if (num_movable)
2431 *num_movable = 0;
2432
c361be55 2433 start_pfn = page_to_pfn(page);
d9c23400 2434 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2435 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2436 end_page = start_page + pageblock_nr_pages - 1;
2437 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2438
2439 /* Do not cross zone boundaries */
108bcc96 2440 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2441 start_page = page;
108bcc96 2442 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2443 return 0;
2444
02aa0cdd
VB
2445 return move_freepages(zone, start_page, end_page, migratetype,
2446 num_movable);
c361be55
MG
2447}
2448
2f66a68f
MG
2449static void change_pageblock_range(struct page *pageblock_page,
2450 int start_order, int migratetype)
2451{
2452 int nr_pageblocks = 1 << (start_order - pageblock_order);
2453
2454 while (nr_pageblocks--) {
2455 set_pageblock_migratetype(pageblock_page, migratetype);
2456 pageblock_page += pageblock_nr_pages;
2457 }
2458}
2459
fef903ef 2460/*
9c0415eb
VB
2461 * When we are falling back to another migratetype during allocation, try to
2462 * steal extra free pages from the same pageblocks to satisfy further
2463 * allocations, instead of polluting multiple pageblocks.
2464 *
2465 * If we are stealing a relatively large buddy page, it is likely there will
2466 * be more free pages in the pageblock, so try to steal them all. For
2467 * reclaimable and unmovable allocations, we steal regardless of page size,
2468 * as fragmentation caused by those allocations polluting movable pageblocks
2469 * is worse than movable allocations stealing from unmovable and reclaimable
2470 * pageblocks.
fef903ef 2471 */
4eb7dce6
JK
2472static bool can_steal_fallback(unsigned int order, int start_mt)
2473{
2474 /*
2475 * Leaving this order check is intended, although there is
2476 * relaxed order check in next check. The reason is that
2477 * we can actually steal whole pageblock if this condition met,
2478 * but, below check doesn't guarantee it and that is just heuristic
2479 * so could be changed anytime.
2480 */
2481 if (order >= pageblock_order)
2482 return true;
2483
2484 if (order >= pageblock_order / 2 ||
2485 start_mt == MIGRATE_RECLAIMABLE ||
2486 start_mt == MIGRATE_UNMOVABLE ||
2487 page_group_by_mobility_disabled)
2488 return true;
2489
2490 return false;
2491}
2492
597c8920 2493static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2494{
2495 unsigned long max_boost;
2496
2497 if (!watermark_boost_factor)
597c8920 2498 return false;
14f69140
HW
2499 /*
2500 * Don't bother in zones that are unlikely to produce results.
2501 * On small machines, including kdump capture kernels running
2502 * in a small area, boosting the watermark can cause an out of
2503 * memory situation immediately.
2504 */
2505 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2506 return false;
1c30844d
MG
2507
2508 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2509 watermark_boost_factor, 10000);
94b3334c
MG
2510
2511 /*
2512 * high watermark may be uninitialised if fragmentation occurs
2513 * very early in boot so do not boost. We do not fall
2514 * through and boost by pageblock_nr_pages as failing
2515 * allocations that early means that reclaim is not going
2516 * to help and it may even be impossible to reclaim the
2517 * boosted watermark resulting in a hang.
2518 */
2519 if (!max_boost)
597c8920 2520 return false;
94b3334c 2521
1c30844d
MG
2522 max_boost = max(pageblock_nr_pages, max_boost);
2523
2524 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2525 max_boost);
597c8920
JW
2526
2527 return true;
1c30844d
MG
2528}
2529
4eb7dce6
JK
2530/*
2531 * This function implements actual steal behaviour. If order is large enough,
2532 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2533 * pageblock to our migratetype and determine how many already-allocated pages
2534 * are there in the pageblock with a compatible migratetype. If at least half
2535 * of pages are free or compatible, we can change migratetype of the pageblock
2536 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2537 */
2538static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2539 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2540{
ab130f91 2541 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2542 int free_pages, movable_pages, alike_pages;
2543 int old_block_type;
2544
2545 old_block_type = get_pageblock_migratetype(page);
fef903ef 2546
3bc48f96
VB
2547 /*
2548 * This can happen due to races and we want to prevent broken
2549 * highatomic accounting.
2550 */
02aa0cdd 2551 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2552 goto single_page;
2553
fef903ef
SB
2554 /* Take ownership for orders >= pageblock_order */
2555 if (current_order >= pageblock_order) {
2556 change_pageblock_range(page, current_order, start_type);
3bc48f96 2557 goto single_page;
fef903ef
SB
2558 }
2559
1c30844d
MG
2560 /*
2561 * Boost watermarks to increase reclaim pressure to reduce the
2562 * likelihood of future fallbacks. Wake kswapd now as the node
2563 * may be balanced overall and kswapd will not wake naturally.
2564 */
597c8920 2565 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2566 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2567
3bc48f96
VB
2568 /* We are not allowed to try stealing from the whole block */
2569 if (!whole_block)
2570 goto single_page;
2571
02aa0cdd
VB
2572 free_pages = move_freepages_block(zone, page, start_type,
2573 &movable_pages);
2574 /*
2575 * Determine how many pages are compatible with our allocation.
2576 * For movable allocation, it's the number of movable pages which
2577 * we just obtained. For other types it's a bit more tricky.
2578 */
2579 if (start_type == MIGRATE_MOVABLE) {
2580 alike_pages = movable_pages;
2581 } else {
2582 /*
2583 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2584 * to MOVABLE pageblock, consider all non-movable pages as
2585 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2586 * vice versa, be conservative since we can't distinguish the
2587 * exact migratetype of non-movable pages.
2588 */
2589 if (old_block_type == MIGRATE_MOVABLE)
2590 alike_pages = pageblock_nr_pages
2591 - (free_pages + movable_pages);
2592 else
2593 alike_pages = 0;
2594 }
2595
3bc48f96 2596 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2597 if (!free_pages)
3bc48f96 2598 goto single_page;
fef903ef 2599
02aa0cdd
VB
2600 /*
2601 * If a sufficient number of pages in the block are either free or of
2602 * comparable migratability as our allocation, claim the whole block.
2603 */
2604 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2605 page_group_by_mobility_disabled)
2606 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2607
2608 return;
2609
2610single_page:
6ab01363 2611 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2612}
2613
2149cdae
JK
2614/*
2615 * Check whether there is a suitable fallback freepage with requested order.
2616 * If only_stealable is true, this function returns fallback_mt only if
2617 * we can steal other freepages all together. This would help to reduce
2618 * fragmentation due to mixed migratetype pages in one pageblock.
2619 */
2620int find_suitable_fallback(struct free_area *area, unsigned int order,
2621 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2622{
2623 int i;
2624 int fallback_mt;
2625
2626 if (area->nr_free == 0)
2627 return -1;
2628
2629 *can_steal = false;
2630 for (i = 0;; i++) {
2631 fallback_mt = fallbacks[migratetype][i];
974a786e 2632 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2633 break;
2634
b03641af 2635 if (free_area_empty(area, fallback_mt))
4eb7dce6 2636 continue;
fef903ef 2637
4eb7dce6
JK
2638 if (can_steal_fallback(order, migratetype))
2639 *can_steal = true;
2640
2149cdae
JK
2641 if (!only_stealable)
2642 return fallback_mt;
2643
2644 if (*can_steal)
2645 return fallback_mt;
fef903ef 2646 }
4eb7dce6
JK
2647
2648 return -1;
fef903ef
SB
2649}
2650
0aaa29a5
MG
2651/*
2652 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2653 * there are no empty page blocks that contain a page with a suitable order
2654 */
2655static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2656 unsigned int alloc_order)
2657{
2658 int mt;
2659 unsigned long max_managed, flags;
2660
2661 /*
2662 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2663 * Check is race-prone but harmless.
2664 */
9705bea5 2665 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2666 if (zone->nr_reserved_highatomic >= max_managed)
2667 return;
2668
2669 spin_lock_irqsave(&zone->lock, flags);
2670
2671 /* Recheck the nr_reserved_highatomic limit under the lock */
2672 if (zone->nr_reserved_highatomic >= max_managed)
2673 goto out_unlock;
2674
2675 /* Yoink! */
2676 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2677 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2678 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2679 zone->nr_reserved_highatomic += pageblock_nr_pages;
2680 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2681 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2682 }
2683
2684out_unlock:
2685 spin_unlock_irqrestore(&zone->lock, flags);
2686}
2687
2688/*
2689 * Used when an allocation is about to fail under memory pressure. This
2690 * potentially hurts the reliability of high-order allocations when under
2691 * intense memory pressure but failed atomic allocations should be easier
2692 * to recover from than an OOM.
29fac03b
MK
2693 *
2694 * If @force is true, try to unreserve a pageblock even though highatomic
2695 * pageblock is exhausted.
0aaa29a5 2696 */
29fac03b
MK
2697static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2698 bool force)
0aaa29a5
MG
2699{
2700 struct zonelist *zonelist = ac->zonelist;
2701 unsigned long flags;
2702 struct zoneref *z;
2703 struct zone *zone;
2704 struct page *page;
2705 int order;
04c8716f 2706 bool ret;
0aaa29a5 2707
97a225e6 2708 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2709 ac->nodemask) {
29fac03b
MK
2710 /*
2711 * Preserve at least one pageblock unless memory pressure
2712 * is really high.
2713 */
2714 if (!force && zone->nr_reserved_highatomic <=
2715 pageblock_nr_pages)
0aaa29a5
MG
2716 continue;
2717
2718 spin_lock_irqsave(&zone->lock, flags);
2719 for (order = 0; order < MAX_ORDER; order++) {
2720 struct free_area *area = &(zone->free_area[order]);
2721
b03641af 2722 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2723 if (!page)
0aaa29a5
MG
2724 continue;
2725
0aaa29a5 2726 /*
4855e4a7
MK
2727 * In page freeing path, migratetype change is racy so
2728 * we can counter several free pages in a pageblock
2729 * in this loop althoug we changed the pageblock type
2730 * from highatomic to ac->migratetype. So we should
2731 * adjust the count once.
0aaa29a5 2732 */
a6ffdc07 2733 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2734 /*
2735 * It should never happen but changes to
2736 * locking could inadvertently allow a per-cpu
2737 * drain to add pages to MIGRATE_HIGHATOMIC
2738 * while unreserving so be safe and watch for
2739 * underflows.
2740 */
2741 zone->nr_reserved_highatomic -= min(
2742 pageblock_nr_pages,
2743 zone->nr_reserved_highatomic);
2744 }
0aaa29a5
MG
2745
2746 /*
2747 * Convert to ac->migratetype and avoid the normal
2748 * pageblock stealing heuristics. Minimally, the caller
2749 * is doing the work and needs the pages. More
2750 * importantly, if the block was always converted to
2751 * MIGRATE_UNMOVABLE or another type then the number
2752 * of pageblocks that cannot be completely freed
2753 * may increase.
2754 */
2755 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2756 ret = move_freepages_block(zone, page, ac->migratetype,
2757 NULL);
29fac03b
MK
2758 if (ret) {
2759 spin_unlock_irqrestore(&zone->lock, flags);
2760 return ret;
2761 }
0aaa29a5
MG
2762 }
2763 spin_unlock_irqrestore(&zone->lock, flags);
2764 }
04c8716f
MK
2765
2766 return false;
0aaa29a5
MG
2767}
2768
3bc48f96
VB
2769/*
2770 * Try finding a free buddy page on the fallback list and put it on the free
2771 * list of requested migratetype, possibly along with other pages from the same
2772 * block, depending on fragmentation avoidance heuristics. Returns true if
2773 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2774 *
2775 * The use of signed ints for order and current_order is a deliberate
2776 * deviation from the rest of this file, to make the for loop
2777 * condition simpler.
3bc48f96 2778 */
85ccc8fa 2779static __always_inline bool
6bb15450
MG
2780__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2781 unsigned int alloc_flags)
b2a0ac88 2782{
b8af2941 2783 struct free_area *area;
b002529d 2784 int current_order;
6bb15450 2785 int min_order = order;
b2a0ac88 2786 struct page *page;
4eb7dce6
JK
2787 int fallback_mt;
2788 bool can_steal;
b2a0ac88 2789
6bb15450
MG
2790 /*
2791 * Do not steal pages from freelists belonging to other pageblocks
2792 * i.e. orders < pageblock_order. If there are no local zones free,
2793 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2794 */
2795 if (alloc_flags & ALLOC_NOFRAGMENT)
2796 min_order = pageblock_order;
2797
7a8f58f3
VB
2798 /*
2799 * Find the largest available free page in the other list. This roughly
2800 * approximates finding the pageblock with the most free pages, which
2801 * would be too costly to do exactly.
2802 */
6bb15450 2803 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2804 --current_order) {
4eb7dce6
JK
2805 area = &(zone->free_area[current_order]);
2806 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2807 start_migratetype, false, &can_steal);
4eb7dce6
JK
2808 if (fallback_mt == -1)
2809 continue;
b2a0ac88 2810
7a8f58f3
VB
2811 /*
2812 * We cannot steal all free pages from the pageblock and the
2813 * requested migratetype is movable. In that case it's better to
2814 * steal and split the smallest available page instead of the
2815 * largest available page, because even if the next movable
2816 * allocation falls back into a different pageblock than this
2817 * one, it won't cause permanent fragmentation.
2818 */
2819 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2820 && current_order > order)
2821 goto find_smallest;
b2a0ac88 2822
7a8f58f3
VB
2823 goto do_steal;
2824 }
e0fff1bd 2825
7a8f58f3 2826 return false;
e0fff1bd 2827
7a8f58f3
VB
2828find_smallest:
2829 for (current_order = order; current_order < MAX_ORDER;
2830 current_order++) {
2831 area = &(zone->free_area[current_order]);
2832 fallback_mt = find_suitable_fallback(area, current_order,
2833 start_migratetype, false, &can_steal);
2834 if (fallback_mt != -1)
2835 break;
b2a0ac88
MG
2836 }
2837
7a8f58f3
VB
2838 /*
2839 * This should not happen - we already found a suitable fallback
2840 * when looking for the largest page.
2841 */
2842 VM_BUG_ON(current_order == MAX_ORDER);
2843
2844do_steal:
b03641af 2845 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2846
1c30844d
MG
2847 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2848 can_steal);
7a8f58f3
VB
2849
2850 trace_mm_page_alloc_extfrag(page, order, current_order,
2851 start_migratetype, fallback_mt);
2852
2853 return true;
2854
b2a0ac88
MG
2855}
2856
56fd56b8 2857/*
1da177e4
LT
2858 * Do the hard work of removing an element from the buddy allocator.
2859 * Call me with the zone->lock already held.
2860 */
85ccc8fa 2861static __always_inline struct page *
6bb15450
MG
2862__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2863 unsigned int alloc_flags)
1da177e4 2864{
1da177e4
LT
2865 struct page *page;
2866
ce8f86ee
H
2867 if (IS_ENABLED(CONFIG_CMA)) {
2868 /*
2869 * Balance movable allocations between regular and CMA areas by
2870 * allocating from CMA when over half of the zone's free memory
2871 * is in the CMA area.
2872 */
2873 if (alloc_flags & ALLOC_CMA &&
2874 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2875 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2876 page = __rmqueue_cma_fallback(zone, order);
2877 if (page)
2878 goto out;
2879 }
16867664 2880 }
3bc48f96 2881retry:
56fd56b8 2882 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2883 if (unlikely(!page)) {
8510e69c 2884 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2885 page = __rmqueue_cma_fallback(zone, order);
2886
6bb15450
MG
2887 if (!page && __rmqueue_fallback(zone, order, migratetype,
2888 alloc_flags))
3bc48f96 2889 goto retry;
728ec980 2890 }
ce8f86ee
H
2891out:
2892 if (page)
2893 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2894 return page;
1da177e4
LT
2895}
2896
5f63b720 2897/*
1da177e4
LT
2898 * Obtain a specified number of elements from the buddy allocator, all under
2899 * a single hold of the lock, for efficiency. Add them to the supplied list.
2900 * Returns the number of new pages which were placed at *list.
2901 */
5f63b720 2902static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2903 unsigned long count, struct list_head *list,
6bb15450 2904 int migratetype, unsigned int alloc_flags)
1da177e4 2905{
a6de734b 2906 int i, alloced = 0;
5f63b720 2907
d34b0733 2908 spin_lock(&zone->lock);
1da177e4 2909 for (i = 0; i < count; ++i) {
6bb15450
MG
2910 struct page *page = __rmqueue(zone, order, migratetype,
2911 alloc_flags);
085cc7d5 2912 if (unlikely(page == NULL))
1da177e4 2913 break;
81eabcbe 2914
479f854a
MG
2915 if (unlikely(check_pcp_refill(page)))
2916 continue;
2917
81eabcbe 2918 /*
0fac3ba5
VB
2919 * Split buddy pages returned by expand() are received here in
2920 * physical page order. The page is added to the tail of
2921 * caller's list. From the callers perspective, the linked list
2922 * is ordered by page number under some conditions. This is
2923 * useful for IO devices that can forward direction from the
2924 * head, thus also in the physical page order. This is useful
2925 * for IO devices that can merge IO requests if the physical
2926 * pages are ordered properly.
81eabcbe 2927 */
0fac3ba5 2928 list_add_tail(&page->lru, list);
a6de734b 2929 alloced++;
bb14c2c7 2930 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2931 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2932 -(1 << order));
1da177e4 2933 }
a6de734b
MG
2934
2935 /*
2936 * i pages were removed from the buddy list even if some leak due
2937 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2938 * on i. Do not confuse with 'alloced' which is the number of
2939 * pages added to the pcp list.
2940 */
f2260e6b 2941 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2942 spin_unlock(&zone->lock);
a6de734b 2943 return alloced;
1da177e4
LT
2944}
2945
4ae7c039 2946#ifdef CONFIG_NUMA
8fce4d8e 2947/*
4037d452
CL
2948 * Called from the vmstat counter updater to drain pagesets of this
2949 * currently executing processor on remote nodes after they have
2950 * expired.
2951 *
879336c3
CL
2952 * Note that this function must be called with the thread pinned to
2953 * a single processor.
8fce4d8e 2954 */
4037d452 2955void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2956{
4ae7c039 2957 unsigned long flags;
7be12fc9 2958 int to_drain, batch;
4ae7c039 2959
4037d452 2960 local_irq_save(flags);
4db0c3c2 2961 batch = READ_ONCE(pcp->batch);
7be12fc9 2962 to_drain = min(pcp->count, batch);
77ba9062 2963 if (to_drain > 0)
2a13515c 2964 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2965 local_irq_restore(flags);
4ae7c039
CL
2966}
2967#endif
2968
9f8f2172 2969/*
93481ff0 2970 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2971 *
2972 * The processor must either be the current processor and the
2973 * thread pinned to the current processor or a processor that
2974 * is not online.
2975 */
93481ff0 2976static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2977{
c54ad30c 2978 unsigned long flags;
93481ff0
VB
2979 struct per_cpu_pageset *pset;
2980 struct per_cpu_pages *pcp;
1da177e4 2981
93481ff0
VB
2982 local_irq_save(flags);
2983 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2984
93481ff0 2985 pcp = &pset->pcp;
77ba9062 2986 if (pcp->count)
93481ff0 2987 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2988 local_irq_restore(flags);
2989}
3dfa5721 2990
93481ff0
VB
2991/*
2992 * Drain pcplists of all zones on the indicated processor.
2993 *
2994 * The processor must either be the current processor and the
2995 * thread pinned to the current processor or a processor that
2996 * is not online.
2997 */
2998static void drain_pages(unsigned int cpu)
2999{
3000 struct zone *zone;
3001
3002 for_each_populated_zone(zone) {
3003 drain_pages_zone(cpu, zone);
1da177e4
LT
3004 }
3005}
1da177e4 3006
9f8f2172
CL
3007/*
3008 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3009 *
3010 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3011 * the single zone's pages.
9f8f2172 3012 */
93481ff0 3013void drain_local_pages(struct zone *zone)
9f8f2172 3014{
93481ff0
VB
3015 int cpu = smp_processor_id();
3016
3017 if (zone)
3018 drain_pages_zone(cpu, zone);
3019 else
3020 drain_pages(cpu);
9f8f2172
CL
3021}
3022
0ccce3b9
MG
3023static void drain_local_pages_wq(struct work_struct *work)
3024{
d9367bd0
WY
3025 struct pcpu_drain *drain;
3026
3027 drain = container_of(work, struct pcpu_drain, work);
3028
a459eeb7
MH
3029 /*
3030 * drain_all_pages doesn't use proper cpu hotplug protection so
3031 * we can race with cpu offline when the WQ can move this from
3032 * a cpu pinned worker to an unbound one. We can operate on a different
3033 * cpu which is allright but we also have to make sure to not move to
3034 * a different one.
3035 */
3036 preempt_disable();
d9367bd0 3037 drain_local_pages(drain->zone);
a459eeb7 3038 preempt_enable();
0ccce3b9
MG
3039}
3040
9f8f2172 3041/*
ec6e8c7e
VB
3042 * The implementation of drain_all_pages(), exposing an extra parameter to
3043 * drain on all cpus.
93481ff0 3044 *
ec6e8c7e
VB
3045 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3046 * not empty. The check for non-emptiness can however race with a free to
3047 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3048 * that need the guarantee that every CPU has drained can disable the
3049 * optimizing racy check.
9f8f2172 3050 */
3b1f3658 3051static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3052{
74046494 3053 int cpu;
74046494
GBY
3054
3055 /*
3056 * Allocate in the BSS so we wont require allocation in
3057 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3058 */
3059 static cpumask_t cpus_with_pcps;
3060
ce612879
MH
3061 /*
3062 * Make sure nobody triggers this path before mm_percpu_wq is fully
3063 * initialized.
3064 */
3065 if (WARN_ON_ONCE(!mm_percpu_wq))
3066 return;
3067
bd233f53
MG
3068 /*
3069 * Do not drain if one is already in progress unless it's specific to
3070 * a zone. Such callers are primarily CMA and memory hotplug and need
3071 * the drain to be complete when the call returns.
3072 */
3073 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3074 if (!zone)
3075 return;
3076 mutex_lock(&pcpu_drain_mutex);
3077 }
0ccce3b9 3078
74046494
GBY
3079 /*
3080 * We don't care about racing with CPU hotplug event
3081 * as offline notification will cause the notified
3082 * cpu to drain that CPU pcps and on_each_cpu_mask
3083 * disables preemption as part of its processing
3084 */
3085 for_each_online_cpu(cpu) {
93481ff0
VB
3086 struct per_cpu_pageset *pcp;
3087 struct zone *z;
74046494 3088 bool has_pcps = false;
93481ff0 3089
ec6e8c7e
VB
3090 if (force_all_cpus) {
3091 /*
3092 * The pcp.count check is racy, some callers need a
3093 * guarantee that no cpu is missed.
3094 */
3095 has_pcps = true;
3096 } else if (zone) {
74046494 3097 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3098 if (pcp->pcp.count)
74046494 3099 has_pcps = true;
93481ff0
VB
3100 } else {
3101 for_each_populated_zone(z) {
3102 pcp = per_cpu_ptr(z->pageset, cpu);
3103 if (pcp->pcp.count) {
3104 has_pcps = true;
3105 break;
3106 }
74046494
GBY
3107 }
3108 }
93481ff0 3109
74046494
GBY
3110 if (has_pcps)
3111 cpumask_set_cpu(cpu, &cpus_with_pcps);
3112 else
3113 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3114 }
0ccce3b9 3115
bd233f53 3116 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3117 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3118
3119 drain->zone = zone;
3120 INIT_WORK(&drain->work, drain_local_pages_wq);
3121 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3122 }
bd233f53 3123 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3124 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3125
3126 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3127}
3128
ec6e8c7e
VB
3129/*
3130 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3131 *
3132 * When zone parameter is non-NULL, spill just the single zone's pages.
3133 *
3134 * Note that this can be extremely slow as the draining happens in a workqueue.
3135 */
3136void drain_all_pages(struct zone *zone)
3137{
3138 __drain_all_pages(zone, false);
3139}
3140
296699de 3141#ifdef CONFIG_HIBERNATION
1da177e4 3142
556b969a
CY
3143/*
3144 * Touch the watchdog for every WD_PAGE_COUNT pages.
3145 */
3146#define WD_PAGE_COUNT (128*1024)
3147
1da177e4
LT
3148void mark_free_pages(struct zone *zone)
3149{
556b969a 3150 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3151 unsigned long flags;
7aeb09f9 3152 unsigned int order, t;
86760a2c 3153 struct page *page;
1da177e4 3154
8080fc03 3155 if (zone_is_empty(zone))
1da177e4
LT
3156 return;
3157
3158 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3159
108bcc96 3160 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3161 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3162 if (pfn_valid(pfn)) {
86760a2c 3163 page = pfn_to_page(pfn);
ba6b0979 3164
556b969a
CY
3165 if (!--page_count) {
3166 touch_nmi_watchdog();
3167 page_count = WD_PAGE_COUNT;
3168 }
3169
ba6b0979
JK
3170 if (page_zone(page) != zone)
3171 continue;
3172
7be98234
RW
3173 if (!swsusp_page_is_forbidden(page))
3174 swsusp_unset_page_free(page);
f623f0db 3175 }
1da177e4 3176
b2a0ac88 3177 for_each_migratetype_order(order, t) {
86760a2c
GT
3178 list_for_each_entry(page,
3179 &zone->free_area[order].free_list[t], lru) {
f623f0db 3180 unsigned long i;
1da177e4 3181
86760a2c 3182 pfn = page_to_pfn(page);
556b969a
CY
3183 for (i = 0; i < (1UL << order); i++) {
3184 if (!--page_count) {
3185 touch_nmi_watchdog();
3186 page_count = WD_PAGE_COUNT;
3187 }
7be98234 3188 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3189 }
f623f0db 3190 }
b2a0ac88 3191 }
1da177e4
LT
3192 spin_unlock_irqrestore(&zone->lock, flags);
3193}
e2c55dc8 3194#endif /* CONFIG_PM */
1da177e4 3195
2d4894b5 3196static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3197{
5f8dcc21 3198 int migratetype;
1da177e4 3199
4db7548c 3200 if (!free_pcp_prepare(page))
9cca35d4 3201 return false;
689bcebf 3202
dc4b0caf 3203 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3204 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3205 return true;
3206}
3207
2d4894b5 3208static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3209{
3210 struct zone *zone = page_zone(page);
3211 struct per_cpu_pages *pcp;
3212 int migratetype;
3213
3214 migratetype = get_pcppage_migratetype(page);
d34b0733 3215 __count_vm_event(PGFREE);
da456f14 3216
5f8dcc21
MG
3217 /*
3218 * We only track unmovable, reclaimable and movable on pcp lists.
3219 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3220 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3221 * areas back if necessary. Otherwise, we may have to free
3222 * excessively into the page allocator
3223 */
3224 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3225 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3226 free_one_page(zone, page, pfn, 0, migratetype,
3227 FPI_NONE);
9cca35d4 3228 return;
5f8dcc21
MG
3229 }
3230 migratetype = MIGRATE_MOVABLE;
3231 }
3232
99dcc3e5 3233 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3234 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3235 pcp->count++;
5c3ad2eb
VB
3236 if (pcp->count >= READ_ONCE(pcp->high))
3237 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
9cca35d4 3238}
5f8dcc21 3239
9cca35d4
MG
3240/*
3241 * Free a 0-order page
9cca35d4 3242 */
2d4894b5 3243void free_unref_page(struct page *page)
9cca35d4
MG
3244{
3245 unsigned long flags;
3246 unsigned long pfn = page_to_pfn(page);
3247
2d4894b5 3248 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3249 return;
3250
3251 local_irq_save(flags);
2d4894b5 3252 free_unref_page_commit(page, pfn);
d34b0733 3253 local_irq_restore(flags);
1da177e4
LT
3254}
3255
cc59850e
KK
3256/*
3257 * Free a list of 0-order pages
3258 */
2d4894b5 3259void free_unref_page_list(struct list_head *list)
cc59850e
KK
3260{
3261 struct page *page, *next;
9cca35d4 3262 unsigned long flags, pfn;
c24ad77d 3263 int batch_count = 0;
9cca35d4
MG
3264
3265 /* Prepare pages for freeing */
3266 list_for_each_entry_safe(page, next, list, lru) {
3267 pfn = page_to_pfn(page);
2d4894b5 3268 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3269 list_del(&page->lru);
3270 set_page_private(page, pfn);
3271 }
cc59850e 3272
9cca35d4 3273 local_irq_save(flags);
cc59850e 3274 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3275 unsigned long pfn = page_private(page);
3276
3277 set_page_private(page, 0);
2d4894b5
MG
3278 trace_mm_page_free_batched(page);
3279 free_unref_page_commit(page, pfn);
c24ad77d
LS
3280
3281 /*
3282 * Guard against excessive IRQ disabled times when we get
3283 * a large list of pages to free.
3284 */
3285 if (++batch_count == SWAP_CLUSTER_MAX) {
3286 local_irq_restore(flags);
3287 batch_count = 0;
3288 local_irq_save(flags);
3289 }
cc59850e 3290 }
9cca35d4 3291 local_irq_restore(flags);
cc59850e
KK
3292}
3293
8dfcc9ba
NP
3294/*
3295 * split_page takes a non-compound higher-order page, and splits it into
3296 * n (1<<order) sub-pages: page[0..n]
3297 * Each sub-page must be freed individually.
3298 *
3299 * Note: this is probably too low level an operation for use in drivers.
3300 * Please consult with lkml before using this in your driver.
3301 */
3302void split_page(struct page *page, unsigned int order)
3303{
3304 int i;
3305
309381fe
SL
3306 VM_BUG_ON_PAGE(PageCompound(page), page);
3307 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3308
a9627bc5 3309 for (i = 1; i < (1 << order); i++)
7835e98b 3310 set_page_refcounted(page + i);
8fb156c9 3311 split_page_owner(page, 1 << order);
8dfcc9ba 3312}
5853ff23 3313EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3314
3c605096 3315int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3316{
748446bb
MG
3317 unsigned long watermark;
3318 struct zone *zone;
2139cbe6 3319 int mt;
748446bb
MG
3320
3321 BUG_ON(!PageBuddy(page));
3322
3323 zone = page_zone(page);
2e30abd1 3324 mt = get_pageblock_migratetype(page);
748446bb 3325
194159fb 3326 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3327 /*
3328 * Obey watermarks as if the page was being allocated. We can
3329 * emulate a high-order watermark check with a raised order-0
3330 * watermark, because we already know our high-order page
3331 * exists.
3332 */
fd1444b2 3333 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3334 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3335 return 0;
3336
8fb74b9f 3337 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3338 }
748446bb
MG
3339
3340 /* Remove page from free list */
b03641af 3341
6ab01363 3342 del_page_from_free_list(page, zone, order);
2139cbe6 3343
400bc7fd 3344 /*
3345 * Set the pageblock if the isolated page is at least half of a
3346 * pageblock
3347 */
748446bb
MG
3348 if (order >= pageblock_order - 1) {
3349 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3350 for (; page < endpage; page += pageblock_nr_pages) {
3351 int mt = get_pageblock_migratetype(page);
88ed365e 3352 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3353 && !is_migrate_highatomic(mt))
47118af0
MN
3354 set_pageblock_migratetype(page,
3355 MIGRATE_MOVABLE);
3356 }
748446bb
MG
3357 }
3358
f3a14ced 3359
8fb74b9f 3360 return 1UL << order;
1fb3f8ca
MG
3361}
3362
624f58d8
AD
3363/**
3364 * __putback_isolated_page - Return a now-isolated page back where we got it
3365 * @page: Page that was isolated
3366 * @order: Order of the isolated page
e6a0a7ad 3367 * @mt: The page's pageblock's migratetype
624f58d8
AD
3368 *
3369 * This function is meant to return a page pulled from the free lists via
3370 * __isolate_free_page back to the free lists they were pulled from.
3371 */
3372void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3373{
3374 struct zone *zone = page_zone(page);
3375
3376 /* zone lock should be held when this function is called */
3377 lockdep_assert_held(&zone->lock);
3378
3379 /* Return isolated page to tail of freelist. */
f04a5d5d 3380 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3381 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3382}
3383
060e7417
MG
3384/*
3385 * Update NUMA hit/miss statistics
3386 *
3387 * Must be called with interrupts disabled.
060e7417 3388 */
41b6167e 3389static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3390{
3391#ifdef CONFIG_NUMA
3a321d2a 3392 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3393
4518085e
KW
3394 /* skip numa counters update if numa stats is disabled */
3395 if (!static_branch_likely(&vm_numa_stat_key))
3396 return;
3397
c1093b74 3398 if (zone_to_nid(z) != numa_node_id())
060e7417 3399 local_stat = NUMA_OTHER;
060e7417 3400
c1093b74 3401 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3402 __inc_numa_state(z, NUMA_HIT);
2df26639 3403 else {
3a321d2a
KW
3404 __inc_numa_state(z, NUMA_MISS);
3405 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3406 }
3a321d2a 3407 __inc_numa_state(z, local_stat);
060e7417
MG
3408#endif
3409}
3410
066b2393
MG
3411/* Remove page from the per-cpu list, caller must protect the list */
3412static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3413 unsigned int alloc_flags,
453f85d4 3414 struct per_cpu_pages *pcp,
066b2393
MG
3415 struct list_head *list)
3416{
3417 struct page *page;
3418
3419 do {
3420 if (list_empty(list)) {
3421 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3422 READ_ONCE(pcp->batch), list,
6bb15450 3423 migratetype, alloc_flags);
066b2393
MG
3424 if (unlikely(list_empty(list)))
3425 return NULL;
3426 }
3427
453f85d4 3428 page = list_first_entry(list, struct page, lru);
066b2393
MG
3429 list_del(&page->lru);
3430 pcp->count--;
3431 } while (check_new_pcp(page));
3432
3433 return page;
3434}
3435
3436/* Lock and remove page from the per-cpu list */
3437static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3438 struct zone *zone, gfp_t gfp_flags,
3439 int migratetype, unsigned int alloc_flags)
066b2393
MG
3440{
3441 struct per_cpu_pages *pcp;
3442 struct list_head *list;
066b2393 3443 struct page *page;
d34b0733 3444 unsigned long flags;
066b2393 3445
d34b0733 3446 local_irq_save(flags);
066b2393
MG
3447 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3448 list = &pcp->lists[migratetype];
6bb15450 3449 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3450 if (page) {
1c52e6d0 3451 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3452 zone_statistics(preferred_zone, zone);
3453 }
d34b0733 3454 local_irq_restore(flags);
066b2393
MG
3455 return page;
3456}
3457
1da177e4 3458/*
75379191 3459 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3460 */
0a15c3e9 3461static inline
066b2393 3462struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3463 struct zone *zone, unsigned int order,
c603844b
MG
3464 gfp_t gfp_flags, unsigned int alloc_flags,
3465 int migratetype)
1da177e4
LT
3466{
3467 unsigned long flags;
689bcebf 3468 struct page *page;
1da177e4 3469
d34b0733 3470 if (likely(order == 0)) {
1d91df85
JK
3471 /*
3472 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3473 * we need to skip it when CMA area isn't allowed.
3474 */
3475 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3476 migratetype != MIGRATE_MOVABLE) {
3477 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3478 migratetype, alloc_flags);
1d91df85
JK
3479 goto out;
3480 }
066b2393 3481 }
83b9355b 3482
066b2393
MG
3483 /*
3484 * We most definitely don't want callers attempting to
3485 * allocate greater than order-1 page units with __GFP_NOFAIL.
3486 */
3487 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3488 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3489
066b2393
MG
3490 do {
3491 page = NULL;
1d91df85
JK
3492 /*
3493 * order-0 request can reach here when the pcplist is skipped
3494 * due to non-CMA allocation context. HIGHATOMIC area is
3495 * reserved for high-order atomic allocation, so order-0
3496 * request should skip it.
3497 */
3498 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3499 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3500 if (page)
3501 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3502 }
a74609fa 3503 if (!page)
6bb15450 3504 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3505 } while (page && check_new_pages(page, order));
3506 spin_unlock(&zone->lock);
3507 if (!page)
3508 goto failed;
3509 __mod_zone_freepage_state(zone, -(1 << order),
3510 get_pcppage_migratetype(page));
1da177e4 3511
16709d1d 3512 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3513 zone_statistics(preferred_zone, zone);
a74609fa 3514 local_irq_restore(flags);
1da177e4 3515
066b2393 3516out:
73444bc4
MG
3517 /* Separate test+clear to avoid unnecessary atomics */
3518 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3519 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3520 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3521 }
3522
066b2393 3523 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3524 return page;
a74609fa
NP
3525
3526failed:
3527 local_irq_restore(flags);
a74609fa 3528 return NULL;
1da177e4
LT
3529}
3530
933e312e
AM
3531#ifdef CONFIG_FAIL_PAGE_ALLOC
3532
b2588c4b 3533static struct {
933e312e
AM
3534 struct fault_attr attr;
3535
621a5f7a 3536 bool ignore_gfp_highmem;
71baba4b 3537 bool ignore_gfp_reclaim;
54114994 3538 u32 min_order;
933e312e
AM
3539} fail_page_alloc = {
3540 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3541 .ignore_gfp_reclaim = true,
621a5f7a 3542 .ignore_gfp_highmem = true,
54114994 3543 .min_order = 1,
933e312e
AM
3544};
3545
3546static int __init setup_fail_page_alloc(char *str)
3547{
3548 return setup_fault_attr(&fail_page_alloc.attr, str);
3549}
3550__setup("fail_page_alloc=", setup_fail_page_alloc);
3551
af3b8544 3552static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3553{
54114994 3554 if (order < fail_page_alloc.min_order)
deaf386e 3555 return false;
933e312e 3556 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3557 return false;
933e312e 3558 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3559 return false;
71baba4b
MG
3560 if (fail_page_alloc.ignore_gfp_reclaim &&
3561 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3562 return false;
933e312e
AM
3563
3564 return should_fail(&fail_page_alloc.attr, 1 << order);
3565}
3566
3567#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3568
3569static int __init fail_page_alloc_debugfs(void)
3570{
0825a6f9 3571 umode_t mode = S_IFREG | 0600;
933e312e 3572 struct dentry *dir;
933e312e 3573
dd48c085
AM
3574 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3575 &fail_page_alloc.attr);
b2588c4b 3576
d9f7979c
GKH
3577 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3578 &fail_page_alloc.ignore_gfp_reclaim);
3579 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3580 &fail_page_alloc.ignore_gfp_highmem);
3581 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3582
d9f7979c 3583 return 0;
933e312e
AM
3584}
3585
3586late_initcall(fail_page_alloc_debugfs);
3587
3588#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3589
3590#else /* CONFIG_FAIL_PAGE_ALLOC */
3591
af3b8544 3592static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3593{
deaf386e 3594 return false;
933e312e
AM
3595}
3596
3597#endif /* CONFIG_FAIL_PAGE_ALLOC */
3598
76cd6173 3599noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3600{
3601 return __should_fail_alloc_page(gfp_mask, order);
3602}
3603ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3604
f27ce0e1
JK
3605static inline long __zone_watermark_unusable_free(struct zone *z,
3606 unsigned int order, unsigned int alloc_flags)
3607{
3608 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3609 long unusable_free = (1 << order) - 1;
3610
3611 /*
3612 * If the caller does not have rights to ALLOC_HARDER then subtract
3613 * the high-atomic reserves. This will over-estimate the size of the
3614 * atomic reserve but it avoids a search.
3615 */
3616 if (likely(!alloc_harder))
3617 unusable_free += z->nr_reserved_highatomic;
3618
3619#ifdef CONFIG_CMA
3620 /* If allocation can't use CMA areas don't use free CMA pages */
3621 if (!(alloc_flags & ALLOC_CMA))
3622 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3623#endif
3624
3625 return unusable_free;
3626}
3627
1da177e4 3628/*
97a16fc8
MG
3629 * Return true if free base pages are above 'mark'. For high-order checks it
3630 * will return true of the order-0 watermark is reached and there is at least
3631 * one free page of a suitable size. Checking now avoids taking the zone lock
3632 * to check in the allocation paths if no pages are free.
1da177e4 3633 */
86a294a8 3634bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3635 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3636 long free_pages)
1da177e4 3637{
d23ad423 3638 long min = mark;
1da177e4 3639 int o;
cd04ae1e 3640 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3641
0aaa29a5 3642 /* free_pages may go negative - that's OK */
f27ce0e1 3643 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3644
7fb1d9fc 3645 if (alloc_flags & ALLOC_HIGH)
1da177e4 3646 min -= min / 2;
0aaa29a5 3647
f27ce0e1 3648 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3649 /*
3650 * OOM victims can try even harder than normal ALLOC_HARDER
3651 * users on the grounds that it's definitely going to be in
3652 * the exit path shortly and free memory. Any allocation it
3653 * makes during the free path will be small and short-lived.
3654 */
3655 if (alloc_flags & ALLOC_OOM)
3656 min -= min / 2;
3657 else
3658 min -= min / 4;
3659 }
3660
97a16fc8
MG
3661 /*
3662 * Check watermarks for an order-0 allocation request. If these
3663 * are not met, then a high-order request also cannot go ahead
3664 * even if a suitable page happened to be free.
3665 */
97a225e6 3666 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3667 return false;
1da177e4 3668
97a16fc8
MG
3669 /* If this is an order-0 request then the watermark is fine */
3670 if (!order)
3671 return true;
3672
3673 /* For a high-order request, check at least one suitable page is free */
3674 for (o = order; o < MAX_ORDER; o++) {
3675 struct free_area *area = &z->free_area[o];
3676 int mt;
3677
3678 if (!area->nr_free)
3679 continue;
3680
97a16fc8 3681 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3682 if (!free_area_empty(area, mt))
97a16fc8
MG
3683 return true;
3684 }
3685
3686#ifdef CONFIG_CMA
d883c6cf 3687 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3688 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3689 return true;
d883c6cf 3690 }
97a16fc8 3691#endif
76089d00 3692 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3693 return true;
1da177e4 3694 }
97a16fc8 3695 return false;
88f5acf8
MG
3696}
3697
7aeb09f9 3698bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3699 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3700{
97a225e6 3701 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3702 zone_page_state(z, NR_FREE_PAGES));
3703}
3704
48ee5f36 3705static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3706 unsigned long mark, int highest_zoneidx,
f80b08fc 3707 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3708{
f27ce0e1 3709 long free_pages;
d883c6cf 3710
f27ce0e1 3711 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3712
3713 /*
3714 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3715 * need to be calculated.
48ee5f36 3716 */
f27ce0e1
JK
3717 if (!order) {
3718 long fast_free;
3719
3720 fast_free = free_pages;
3721 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3722 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3723 return true;
3724 }
48ee5f36 3725
f80b08fc
CTR
3726 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3727 free_pages))
3728 return true;
3729 /*
3730 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3731 * when checking the min watermark. The min watermark is the
3732 * point where boosting is ignored so that kswapd is woken up
3733 * when below the low watermark.
3734 */
3735 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3736 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3737 mark = z->_watermark[WMARK_MIN];
3738 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3739 alloc_flags, free_pages);
3740 }
3741
3742 return false;
48ee5f36
MG
3743}
3744
7aeb09f9 3745bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3746 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3747{
3748 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3749
3750 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3751 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3752
97a225e6 3753 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3754 free_pages);
1da177e4
LT
3755}
3756
9276b1bc 3757#ifdef CONFIG_NUMA
957f822a
DR
3758static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3759{
e02dc017 3760 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3761 node_reclaim_distance;
957f822a 3762}
9276b1bc 3763#else /* CONFIG_NUMA */
957f822a
DR
3764static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3765{
3766 return true;
3767}
9276b1bc
PJ
3768#endif /* CONFIG_NUMA */
3769
6bb15450
MG
3770/*
3771 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3772 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3773 * premature use of a lower zone may cause lowmem pressure problems that
3774 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3775 * probably too small. It only makes sense to spread allocations to avoid
3776 * fragmentation between the Normal and DMA32 zones.
3777 */
3778static inline unsigned int
0a79cdad 3779alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3780{
736838e9 3781 unsigned int alloc_flags;
0a79cdad 3782
736838e9
MN
3783 /*
3784 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3785 * to save a branch.
3786 */
3787 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3788
3789#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3790 if (!zone)
3791 return alloc_flags;
3792
6bb15450 3793 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3794 return alloc_flags;
6bb15450
MG
3795
3796 /*
3797 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3798 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3799 * on UMA that if Normal is populated then so is DMA32.
3800 */
3801 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3802 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3803 return alloc_flags;
6bb15450 3804
8118b82e 3805 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3806#endif /* CONFIG_ZONE_DMA32 */
3807 return alloc_flags;
6bb15450 3808}
6bb15450 3809
8510e69c
JK
3810static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3811 unsigned int alloc_flags)
3812{
3813#ifdef CONFIG_CMA
3814 unsigned int pflags = current->flags;
3815
3816 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3817 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3818 alloc_flags |= ALLOC_CMA;
3819
3820#endif
3821 return alloc_flags;
3822}
3823
7fb1d9fc 3824/*
0798e519 3825 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3826 * a page.
3827 */
3828static struct page *
a9263751
VB
3829get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3830 const struct alloc_context *ac)
753ee728 3831{
6bb15450 3832 struct zoneref *z;
5117f45d 3833 struct zone *zone;
3b8c0be4 3834 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3835 bool no_fallback;
3b8c0be4 3836
6bb15450 3837retry:
7fb1d9fc 3838 /*
9276b1bc 3839 * Scan zonelist, looking for a zone with enough free.
344736f2 3840 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3841 */
6bb15450
MG
3842 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3843 z = ac->preferred_zoneref;
30d8ec73
MN
3844 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3845 ac->nodemask) {
be06af00 3846 struct page *page;
e085dbc5
JW
3847 unsigned long mark;
3848
664eedde
MG
3849 if (cpusets_enabled() &&
3850 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3851 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3852 continue;
a756cf59
JW
3853 /*
3854 * When allocating a page cache page for writing, we
281e3726
MG
3855 * want to get it from a node that is within its dirty
3856 * limit, such that no single node holds more than its
a756cf59 3857 * proportional share of globally allowed dirty pages.
281e3726 3858 * The dirty limits take into account the node's
a756cf59
JW
3859 * lowmem reserves and high watermark so that kswapd
3860 * should be able to balance it without having to
3861 * write pages from its LRU list.
3862 *
a756cf59 3863 * XXX: For now, allow allocations to potentially
281e3726 3864 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3865 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3866 * which is important when on a NUMA setup the allowed
281e3726 3867 * nodes are together not big enough to reach the
a756cf59 3868 * global limit. The proper fix for these situations
281e3726 3869 * will require awareness of nodes in the
a756cf59
JW
3870 * dirty-throttling and the flusher threads.
3871 */
3b8c0be4
MG
3872 if (ac->spread_dirty_pages) {
3873 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3874 continue;
3875
3876 if (!node_dirty_ok(zone->zone_pgdat)) {
3877 last_pgdat_dirty_limit = zone->zone_pgdat;
3878 continue;
3879 }
3880 }
7fb1d9fc 3881
6bb15450
MG
3882 if (no_fallback && nr_online_nodes > 1 &&
3883 zone != ac->preferred_zoneref->zone) {
3884 int local_nid;
3885
3886 /*
3887 * If moving to a remote node, retry but allow
3888 * fragmenting fallbacks. Locality is more important
3889 * than fragmentation avoidance.
3890 */
3891 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3892 if (zone_to_nid(zone) != local_nid) {
3893 alloc_flags &= ~ALLOC_NOFRAGMENT;
3894 goto retry;
3895 }
3896 }
3897
a9214443 3898 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3899 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3900 ac->highest_zoneidx, alloc_flags,
3901 gfp_mask)) {
fa5e084e
MG
3902 int ret;
3903
c9e97a19
PT
3904#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3905 /*
3906 * Watermark failed for this zone, but see if we can
3907 * grow this zone if it contains deferred pages.
3908 */
3909 if (static_branch_unlikely(&deferred_pages)) {
3910 if (_deferred_grow_zone(zone, order))
3911 goto try_this_zone;
3912 }
3913#endif
5dab2911
MG
3914 /* Checked here to keep the fast path fast */
3915 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3916 if (alloc_flags & ALLOC_NO_WATERMARKS)
3917 goto try_this_zone;
3918
a5f5f91d 3919 if (node_reclaim_mode == 0 ||
c33d6c06 3920 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3921 continue;
3922
a5f5f91d 3923 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3924 switch (ret) {
a5f5f91d 3925 case NODE_RECLAIM_NOSCAN:
fa5e084e 3926 /* did not scan */
cd38b115 3927 continue;
a5f5f91d 3928 case NODE_RECLAIM_FULL:
fa5e084e 3929 /* scanned but unreclaimable */
cd38b115 3930 continue;
fa5e084e
MG
3931 default:
3932 /* did we reclaim enough */
fed2719e 3933 if (zone_watermark_ok(zone, order, mark,
97a225e6 3934 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3935 goto try_this_zone;
3936
fed2719e 3937 continue;
0798e519 3938 }
7fb1d9fc
RS
3939 }
3940
fa5e084e 3941try_this_zone:
066b2393 3942 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3943 gfp_mask, alloc_flags, ac->migratetype);
75379191 3944 if (page) {
479f854a 3945 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3946
3947 /*
3948 * If this is a high-order atomic allocation then check
3949 * if the pageblock should be reserved for the future
3950 */
3951 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3952 reserve_highatomic_pageblock(page, zone, order);
3953
75379191 3954 return page;
c9e97a19
PT
3955 } else {
3956#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3957 /* Try again if zone has deferred pages */
3958 if (static_branch_unlikely(&deferred_pages)) {
3959 if (_deferred_grow_zone(zone, order))
3960 goto try_this_zone;
3961 }
3962#endif
75379191 3963 }
54a6eb5c 3964 }
9276b1bc 3965
6bb15450
MG
3966 /*
3967 * It's possible on a UMA machine to get through all zones that are
3968 * fragmented. If avoiding fragmentation, reset and try again.
3969 */
3970 if (no_fallback) {
3971 alloc_flags &= ~ALLOC_NOFRAGMENT;
3972 goto retry;
3973 }
3974
4ffeaf35 3975 return NULL;
753ee728
MH
3976}
3977
9af744d7 3978static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3979{
a238ab5b 3980 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3981
3982 /*
3983 * This documents exceptions given to allocations in certain
3984 * contexts that are allowed to allocate outside current's set
3985 * of allowed nodes.
3986 */
3987 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3988 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3989 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3990 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3991 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3992 filter &= ~SHOW_MEM_FILTER_NODES;
3993
9af744d7 3994 show_mem(filter, nodemask);
aa187507
MH
3995}
3996
a8e99259 3997void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3998{
3999 struct va_format vaf;
4000 va_list args;
1be334e5 4001 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4002
0f7896f1 4003 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
4004 return;
4005
7877cdcc
MH
4006 va_start(args, fmt);
4007 vaf.fmt = fmt;
4008 vaf.va = &args;
ef8444ea 4009 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4010 current->comm, &vaf, gfp_mask, &gfp_mask,
4011 nodemask_pr_args(nodemask));
7877cdcc 4012 va_end(args);
3ee9a4f0 4013
a8e99259 4014 cpuset_print_current_mems_allowed();
ef8444ea 4015 pr_cont("\n");
a238ab5b 4016 dump_stack();
685dbf6f 4017 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4018}
4019
6c18ba7a
MH
4020static inline struct page *
4021__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4022 unsigned int alloc_flags,
4023 const struct alloc_context *ac)
4024{
4025 struct page *page;
4026
4027 page = get_page_from_freelist(gfp_mask, order,
4028 alloc_flags|ALLOC_CPUSET, ac);
4029 /*
4030 * fallback to ignore cpuset restriction if our nodes
4031 * are depleted
4032 */
4033 if (!page)
4034 page = get_page_from_freelist(gfp_mask, order,
4035 alloc_flags, ac);
4036
4037 return page;
4038}
4039
11e33f6a
MG
4040static inline struct page *
4041__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4042 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4043{
6e0fc46d
DR
4044 struct oom_control oc = {
4045 .zonelist = ac->zonelist,
4046 .nodemask = ac->nodemask,
2a966b77 4047 .memcg = NULL,
6e0fc46d
DR
4048 .gfp_mask = gfp_mask,
4049 .order = order,
6e0fc46d 4050 };
11e33f6a
MG
4051 struct page *page;
4052
9879de73
JW
4053 *did_some_progress = 0;
4054
9879de73 4055 /*
dc56401f
JW
4056 * Acquire the oom lock. If that fails, somebody else is
4057 * making progress for us.
9879de73 4058 */
dc56401f 4059 if (!mutex_trylock(&oom_lock)) {
9879de73 4060 *did_some_progress = 1;
11e33f6a 4061 schedule_timeout_uninterruptible(1);
1da177e4
LT
4062 return NULL;
4063 }
6b1de916 4064
11e33f6a
MG
4065 /*
4066 * Go through the zonelist yet one more time, keep very high watermark
4067 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4068 * we're still under heavy pressure. But make sure that this reclaim
4069 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4070 * allocation which will never fail due to oom_lock already held.
11e33f6a 4071 */
e746bf73
TH
4072 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4073 ~__GFP_DIRECT_RECLAIM, order,
4074 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4075 if (page)
11e33f6a
MG
4076 goto out;
4077
06ad276a
MH
4078 /* Coredumps can quickly deplete all memory reserves */
4079 if (current->flags & PF_DUMPCORE)
4080 goto out;
4081 /* The OOM killer will not help higher order allocs */
4082 if (order > PAGE_ALLOC_COSTLY_ORDER)
4083 goto out;
dcda9b04
MH
4084 /*
4085 * We have already exhausted all our reclaim opportunities without any
4086 * success so it is time to admit defeat. We will skip the OOM killer
4087 * because it is very likely that the caller has a more reasonable
4088 * fallback than shooting a random task.
cfb4a541
MN
4089 *
4090 * The OOM killer may not free memory on a specific node.
dcda9b04 4091 */
cfb4a541 4092 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4093 goto out;
06ad276a 4094 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4095 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4096 goto out;
4097 if (pm_suspended_storage())
4098 goto out;
4099 /*
4100 * XXX: GFP_NOFS allocations should rather fail than rely on
4101 * other request to make a forward progress.
4102 * We are in an unfortunate situation where out_of_memory cannot
4103 * do much for this context but let's try it to at least get
4104 * access to memory reserved if the current task is killed (see
4105 * out_of_memory). Once filesystems are ready to handle allocation
4106 * failures more gracefully we should just bail out here.
4107 */
4108
3c2c6488 4109 /* Exhausted what can be done so it's blame time */
5020e285 4110 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4111 *did_some_progress = 1;
5020e285 4112
6c18ba7a
MH
4113 /*
4114 * Help non-failing allocations by giving them access to memory
4115 * reserves
4116 */
4117 if (gfp_mask & __GFP_NOFAIL)
4118 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4119 ALLOC_NO_WATERMARKS, ac);
5020e285 4120 }
11e33f6a 4121out:
dc56401f 4122 mutex_unlock(&oom_lock);
11e33f6a
MG
4123 return page;
4124}
4125
33c2d214
MH
4126/*
4127 * Maximum number of compaction retries wit a progress before OOM
4128 * killer is consider as the only way to move forward.
4129 */
4130#define MAX_COMPACT_RETRIES 16
4131
56de7263
MG
4132#ifdef CONFIG_COMPACTION
4133/* Try memory compaction for high-order allocations before reclaim */
4134static struct page *
4135__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4136 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4137 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4138{
5e1f0f09 4139 struct page *page = NULL;
eb414681 4140 unsigned long pflags;
499118e9 4141 unsigned int noreclaim_flag;
53853e2d
VB
4142
4143 if (!order)
66199712 4144 return NULL;
66199712 4145
eb414681 4146 psi_memstall_enter(&pflags);
499118e9 4147 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4148
c5d01d0d 4149 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4150 prio, &page);
eb414681 4151
499118e9 4152 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4153 psi_memstall_leave(&pflags);
56de7263 4154
98dd3b48
VB
4155 /*
4156 * At least in one zone compaction wasn't deferred or skipped, so let's
4157 * count a compaction stall
4158 */
4159 count_vm_event(COMPACTSTALL);
8fb74b9f 4160
5e1f0f09
MG
4161 /* Prep a captured page if available */
4162 if (page)
4163 prep_new_page(page, order, gfp_mask, alloc_flags);
4164
4165 /* Try get a page from the freelist if available */
4166 if (!page)
4167 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4168
98dd3b48
VB
4169 if (page) {
4170 struct zone *zone = page_zone(page);
53853e2d 4171
98dd3b48
VB
4172 zone->compact_blockskip_flush = false;
4173 compaction_defer_reset(zone, order, true);
4174 count_vm_event(COMPACTSUCCESS);
4175 return page;
4176 }
56de7263 4177
98dd3b48
VB
4178 /*
4179 * It's bad if compaction run occurs and fails. The most likely reason
4180 * is that pages exist, but not enough to satisfy watermarks.
4181 */
4182 count_vm_event(COMPACTFAIL);
66199712 4183
98dd3b48 4184 cond_resched();
56de7263
MG
4185
4186 return NULL;
4187}
33c2d214 4188
3250845d
VB
4189static inline bool
4190should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4191 enum compact_result compact_result,
4192 enum compact_priority *compact_priority,
d9436498 4193 int *compaction_retries)
3250845d
VB
4194{
4195 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4196 int min_priority;
65190cff
MH
4197 bool ret = false;
4198 int retries = *compaction_retries;
4199 enum compact_priority priority = *compact_priority;
3250845d
VB
4200
4201 if (!order)
4202 return false;
4203
d9436498
VB
4204 if (compaction_made_progress(compact_result))
4205 (*compaction_retries)++;
4206
3250845d
VB
4207 /*
4208 * compaction considers all the zone as desperately out of memory
4209 * so it doesn't really make much sense to retry except when the
4210 * failure could be caused by insufficient priority
4211 */
d9436498
VB
4212 if (compaction_failed(compact_result))
4213 goto check_priority;
3250845d 4214
49433085
VB
4215 /*
4216 * compaction was skipped because there are not enough order-0 pages
4217 * to work with, so we retry only if it looks like reclaim can help.
4218 */
4219 if (compaction_needs_reclaim(compact_result)) {
4220 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4221 goto out;
4222 }
4223
3250845d
VB
4224 /*
4225 * make sure the compaction wasn't deferred or didn't bail out early
4226 * due to locks contention before we declare that we should give up.
49433085
VB
4227 * But the next retry should use a higher priority if allowed, so
4228 * we don't just keep bailing out endlessly.
3250845d 4229 */
65190cff 4230 if (compaction_withdrawn(compact_result)) {
49433085 4231 goto check_priority;
65190cff 4232 }
3250845d
VB
4233
4234 /*
dcda9b04 4235 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4236 * costly ones because they are de facto nofail and invoke OOM
4237 * killer to move on while costly can fail and users are ready
4238 * to cope with that. 1/4 retries is rather arbitrary but we
4239 * would need much more detailed feedback from compaction to
4240 * make a better decision.
4241 */
4242 if (order > PAGE_ALLOC_COSTLY_ORDER)
4243 max_retries /= 4;
65190cff
MH
4244 if (*compaction_retries <= max_retries) {
4245 ret = true;
4246 goto out;
4247 }
3250845d 4248
d9436498
VB
4249 /*
4250 * Make sure there are attempts at the highest priority if we exhausted
4251 * all retries or failed at the lower priorities.
4252 */
4253check_priority:
c2033b00
VB
4254 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4255 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4256
c2033b00 4257 if (*compact_priority > min_priority) {
d9436498
VB
4258 (*compact_priority)--;
4259 *compaction_retries = 0;
65190cff 4260 ret = true;
d9436498 4261 }
65190cff
MH
4262out:
4263 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4264 return ret;
3250845d 4265}
56de7263
MG
4266#else
4267static inline struct page *
4268__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4269 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4270 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4271{
33c2d214 4272 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4273 return NULL;
4274}
33c2d214
MH
4275
4276static inline bool
86a294a8
MH
4277should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4278 enum compact_result compact_result,
a5508cd8 4279 enum compact_priority *compact_priority,
d9436498 4280 int *compaction_retries)
33c2d214 4281{
31e49bfd
MH
4282 struct zone *zone;
4283 struct zoneref *z;
4284
4285 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4286 return false;
4287
4288 /*
4289 * There are setups with compaction disabled which would prefer to loop
4290 * inside the allocator rather than hit the oom killer prematurely.
4291 * Let's give them a good hope and keep retrying while the order-0
4292 * watermarks are OK.
4293 */
97a225e6
JK
4294 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4295 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4296 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4297 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4298 return true;
4299 }
33c2d214
MH
4300 return false;
4301}
3250845d 4302#endif /* CONFIG_COMPACTION */
56de7263 4303
d92a8cfc 4304#ifdef CONFIG_LOCKDEP
93781325 4305static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4306 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4307
f920e413 4308static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4309{
d92a8cfc
PZ
4310 /* no reclaim without waiting on it */
4311 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4312 return false;
4313
4314 /* this guy won't enter reclaim */
2e517d68 4315 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4316 return false;
4317
d92a8cfc
PZ
4318 if (gfp_mask & __GFP_NOLOCKDEP)
4319 return false;
4320
4321 return true;
4322}
4323
93781325
OS
4324void __fs_reclaim_acquire(void)
4325{
4326 lock_map_acquire(&__fs_reclaim_map);
4327}
4328
4329void __fs_reclaim_release(void)
4330{
4331 lock_map_release(&__fs_reclaim_map);
4332}
4333
d92a8cfc
PZ
4334void fs_reclaim_acquire(gfp_t gfp_mask)
4335{
f920e413
DV
4336 gfp_mask = current_gfp_context(gfp_mask);
4337
4338 if (__need_reclaim(gfp_mask)) {
4339 if (gfp_mask & __GFP_FS)
4340 __fs_reclaim_acquire();
4341
4342#ifdef CONFIG_MMU_NOTIFIER
4343 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4344 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4345#endif
4346
4347 }
d92a8cfc
PZ
4348}
4349EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4350
4351void fs_reclaim_release(gfp_t gfp_mask)
4352{
f920e413
DV
4353 gfp_mask = current_gfp_context(gfp_mask);
4354
4355 if (__need_reclaim(gfp_mask)) {
4356 if (gfp_mask & __GFP_FS)
4357 __fs_reclaim_release();
4358 }
d92a8cfc
PZ
4359}
4360EXPORT_SYMBOL_GPL(fs_reclaim_release);
4361#endif
4362
bba90710 4363/* Perform direct synchronous page reclaim */
2187e17b 4364static unsigned long
a9263751
VB
4365__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4366 const struct alloc_context *ac)
11e33f6a 4367{
499118e9 4368 unsigned int noreclaim_flag;
2187e17b 4369 unsigned long pflags, progress;
11e33f6a
MG
4370
4371 cond_resched();
4372
4373 /* We now go into synchronous reclaim */
4374 cpuset_memory_pressure_bump();
eb414681 4375 psi_memstall_enter(&pflags);
d92a8cfc 4376 fs_reclaim_acquire(gfp_mask);
93781325 4377 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4378
a9263751
VB
4379 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4380 ac->nodemask);
11e33f6a 4381
499118e9 4382 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4383 fs_reclaim_release(gfp_mask);
eb414681 4384 psi_memstall_leave(&pflags);
11e33f6a
MG
4385
4386 cond_resched();
4387
bba90710
MS
4388 return progress;
4389}
4390
4391/* The really slow allocator path where we enter direct reclaim */
4392static inline struct page *
4393__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4394 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4395 unsigned long *did_some_progress)
bba90710
MS
4396{
4397 struct page *page = NULL;
4398 bool drained = false;
4399
a9263751 4400 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4401 if (unlikely(!(*did_some_progress)))
4402 return NULL;
11e33f6a 4403
9ee493ce 4404retry:
31a6c190 4405 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4406
4407 /*
4408 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4409 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4410 * Shrink them and try again
9ee493ce
MG
4411 */
4412 if (!page && !drained) {
29fac03b 4413 unreserve_highatomic_pageblock(ac, false);
93481ff0 4414 drain_all_pages(NULL);
9ee493ce
MG
4415 drained = true;
4416 goto retry;
4417 }
4418
11e33f6a
MG
4419 return page;
4420}
4421
5ecd9d40
DR
4422static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4423 const struct alloc_context *ac)
3a025760
JW
4424{
4425 struct zoneref *z;
4426 struct zone *zone;
e1a55637 4427 pg_data_t *last_pgdat = NULL;
97a225e6 4428 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4429
97a225e6 4430 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4431 ac->nodemask) {
e1a55637 4432 if (last_pgdat != zone->zone_pgdat)
97a225e6 4433 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4434 last_pgdat = zone->zone_pgdat;
4435 }
3a025760
JW
4436}
4437
c603844b 4438static inline unsigned int
341ce06f
PZ
4439gfp_to_alloc_flags(gfp_t gfp_mask)
4440{
c603844b 4441 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4442
736838e9
MN
4443 /*
4444 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4445 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4446 * to save two branches.
4447 */
e6223a3b 4448 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4449 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4450
341ce06f
PZ
4451 /*
4452 * The caller may dip into page reserves a bit more if the caller
4453 * cannot run direct reclaim, or if the caller has realtime scheduling
4454 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4455 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4456 */
736838e9
MN
4457 alloc_flags |= (__force int)
4458 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4459
d0164adc 4460 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4461 /*
b104a35d
DR
4462 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4463 * if it can't schedule.
5c3240d9 4464 */
b104a35d 4465 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4466 alloc_flags |= ALLOC_HARDER;
523b9458 4467 /*
b104a35d 4468 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4469 * comment for __cpuset_node_allowed().
523b9458 4470 */
341ce06f 4471 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4472 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4473 alloc_flags |= ALLOC_HARDER;
4474
8510e69c
JK
4475 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4476
341ce06f
PZ
4477 return alloc_flags;
4478}
4479
cd04ae1e 4480static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4481{
cd04ae1e
MH
4482 if (!tsk_is_oom_victim(tsk))
4483 return false;
4484
4485 /*
4486 * !MMU doesn't have oom reaper so give access to memory reserves
4487 * only to the thread with TIF_MEMDIE set
4488 */
4489 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4490 return false;
4491
cd04ae1e
MH
4492 return true;
4493}
4494
4495/*
4496 * Distinguish requests which really need access to full memory
4497 * reserves from oom victims which can live with a portion of it
4498 */
4499static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4500{
4501 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4502 return 0;
31a6c190 4503 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4504 return ALLOC_NO_WATERMARKS;
31a6c190 4505 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4506 return ALLOC_NO_WATERMARKS;
4507 if (!in_interrupt()) {
4508 if (current->flags & PF_MEMALLOC)
4509 return ALLOC_NO_WATERMARKS;
4510 else if (oom_reserves_allowed(current))
4511 return ALLOC_OOM;
4512 }
31a6c190 4513
cd04ae1e
MH
4514 return 0;
4515}
4516
4517bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4518{
4519 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4520}
4521
0a0337e0
MH
4522/*
4523 * Checks whether it makes sense to retry the reclaim to make a forward progress
4524 * for the given allocation request.
491d79ae
JW
4525 *
4526 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4527 * without success, or when we couldn't even meet the watermark if we
4528 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4529 *
4530 * Returns true if a retry is viable or false to enter the oom path.
4531 */
4532static inline bool
4533should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4534 struct alloc_context *ac, int alloc_flags,
423b452e 4535 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4536{
4537 struct zone *zone;
4538 struct zoneref *z;
15f570bf 4539 bool ret = false;
0a0337e0 4540
423b452e
VB
4541 /*
4542 * Costly allocations might have made a progress but this doesn't mean
4543 * their order will become available due to high fragmentation so
4544 * always increment the no progress counter for them
4545 */
4546 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4547 *no_progress_loops = 0;
4548 else
4549 (*no_progress_loops)++;
4550
0a0337e0
MH
4551 /*
4552 * Make sure we converge to OOM if we cannot make any progress
4553 * several times in the row.
4554 */
04c8716f
MK
4555 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4556 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4557 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4558 }
0a0337e0 4559
bca67592
MG
4560 /*
4561 * Keep reclaiming pages while there is a chance this will lead
4562 * somewhere. If none of the target zones can satisfy our allocation
4563 * request even if all reclaimable pages are considered then we are
4564 * screwed and have to go OOM.
0a0337e0 4565 */
97a225e6
JK
4566 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4567 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4568 unsigned long available;
ede37713 4569 unsigned long reclaimable;
d379f01d
MH
4570 unsigned long min_wmark = min_wmark_pages(zone);
4571 bool wmark;
0a0337e0 4572
5a1c84b4 4573 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4574 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4575
4576 /*
491d79ae
JW
4577 * Would the allocation succeed if we reclaimed all
4578 * reclaimable pages?
0a0337e0 4579 */
d379f01d 4580 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4581 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4582 trace_reclaim_retry_zone(z, order, reclaimable,
4583 available, min_wmark, *no_progress_loops, wmark);
4584 if (wmark) {
ede37713
MH
4585 /*
4586 * If we didn't make any progress and have a lot of
4587 * dirty + writeback pages then we should wait for
4588 * an IO to complete to slow down the reclaim and
4589 * prevent from pre mature OOM
4590 */
4591 if (!did_some_progress) {
11fb9989 4592 unsigned long write_pending;
ede37713 4593
5a1c84b4
MG
4594 write_pending = zone_page_state_snapshot(zone,
4595 NR_ZONE_WRITE_PENDING);
ede37713 4596
11fb9989 4597 if (2 * write_pending > reclaimable) {
ede37713
MH
4598 congestion_wait(BLK_RW_ASYNC, HZ/10);
4599 return true;
4600 }
4601 }
5a1c84b4 4602
15f570bf
MH
4603 ret = true;
4604 goto out;
0a0337e0
MH
4605 }
4606 }
4607
15f570bf
MH
4608out:
4609 /*
4610 * Memory allocation/reclaim might be called from a WQ context and the
4611 * current implementation of the WQ concurrency control doesn't
4612 * recognize that a particular WQ is congested if the worker thread is
4613 * looping without ever sleeping. Therefore we have to do a short sleep
4614 * here rather than calling cond_resched().
4615 */
4616 if (current->flags & PF_WQ_WORKER)
4617 schedule_timeout_uninterruptible(1);
4618 else
4619 cond_resched();
4620 return ret;
0a0337e0
MH
4621}
4622
902b6281
VB
4623static inline bool
4624check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4625{
4626 /*
4627 * It's possible that cpuset's mems_allowed and the nodemask from
4628 * mempolicy don't intersect. This should be normally dealt with by
4629 * policy_nodemask(), but it's possible to race with cpuset update in
4630 * such a way the check therein was true, and then it became false
4631 * before we got our cpuset_mems_cookie here.
4632 * This assumes that for all allocations, ac->nodemask can come only
4633 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4634 * when it does not intersect with the cpuset restrictions) or the
4635 * caller can deal with a violated nodemask.
4636 */
4637 if (cpusets_enabled() && ac->nodemask &&
4638 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4639 ac->nodemask = NULL;
4640 return true;
4641 }
4642
4643 /*
4644 * When updating a task's mems_allowed or mempolicy nodemask, it is
4645 * possible to race with parallel threads in such a way that our
4646 * allocation can fail while the mask is being updated. If we are about
4647 * to fail, check if the cpuset changed during allocation and if so,
4648 * retry.
4649 */
4650 if (read_mems_allowed_retry(cpuset_mems_cookie))
4651 return true;
4652
4653 return false;
4654}
4655
11e33f6a
MG
4656static inline struct page *
4657__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4658 struct alloc_context *ac)
11e33f6a 4659{
d0164adc 4660 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4661 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4662 struct page *page = NULL;
c603844b 4663 unsigned int alloc_flags;
11e33f6a 4664 unsigned long did_some_progress;
5ce9bfef 4665 enum compact_priority compact_priority;
c5d01d0d 4666 enum compact_result compact_result;
5ce9bfef
VB
4667 int compaction_retries;
4668 int no_progress_loops;
5ce9bfef 4669 unsigned int cpuset_mems_cookie;
cd04ae1e 4670 int reserve_flags;
1da177e4 4671
d0164adc
MG
4672 /*
4673 * We also sanity check to catch abuse of atomic reserves being used by
4674 * callers that are not in atomic context.
4675 */
4676 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4677 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4678 gfp_mask &= ~__GFP_ATOMIC;
4679
5ce9bfef
VB
4680retry_cpuset:
4681 compaction_retries = 0;
4682 no_progress_loops = 0;
4683 compact_priority = DEF_COMPACT_PRIORITY;
4684 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4685
4686 /*
4687 * The fast path uses conservative alloc_flags to succeed only until
4688 * kswapd needs to be woken up, and to avoid the cost of setting up
4689 * alloc_flags precisely. So we do that now.
4690 */
4691 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4692
e47483bc
VB
4693 /*
4694 * We need to recalculate the starting point for the zonelist iterator
4695 * because we might have used different nodemask in the fast path, or
4696 * there was a cpuset modification and we are retrying - otherwise we
4697 * could end up iterating over non-eligible zones endlessly.
4698 */
4699 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4700 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4701 if (!ac->preferred_zoneref->zone)
4702 goto nopage;
4703
0a79cdad 4704 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4705 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4706
4707 /*
4708 * The adjusted alloc_flags might result in immediate success, so try
4709 * that first
4710 */
4711 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4712 if (page)
4713 goto got_pg;
4714
a8161d1e
VB
4715 /*
4716 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4717 * that we have enough base pages and don't need to reclaim. For non-
4718 * movable high-order allocations, do that as well, as compaction will
4719 * try prevent permanent fragmentation by migrating from blocks of the
4720 * same migratetype.
4721 * Don't try this for allocations that are allowed to ignore
4722 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4723 */
282722b0
VB
4724 if (can_direct_reclaim &&
4725 (costly_order ||
4726 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4727 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4728 page = __alloc_pages_direct_compact(gfp_mask, order,
4729 alloc_flags, ac,
a5508cd8 4730 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4731 &compact_result);
4732 if (page)
4733 goto got_pg;
4734
cc638f32
VB
4735 /*
4736 * Checks for costly allocations with __GFP_NORETRY, which
4737 * includes some THP page fault allocations
4738 */
4739 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4740 /*
4741 * If allocating entire pageblock(s) and compaction
4742 * failed because all zones are below low watermarks
4743 * or is prohibited because it recently failed at this
3f36d866
DR
4744 * order, fail immediately unless the allocator has
4745 * requested compaction and reclaim retry.
b39d0ee2
DR
4746 *
4747 * Reclaim is
4748 * - potentially very expensive because zones are far
4749 * below their low watermarks or this is part of very
4750 * bursty high order allocations,
4751 * - not guaranteed to help because isolate_freepages()
4752 * may not iterate over freed pages as part of its
4753 * linear scan, and
4754 * - unlikely to make entire pageblocks free on its
4755 * own.
4756 */
4757 if (compact_result == COMPACT_SKIPPED ||
4758 compact_result == COMPACT_DEFERRED)
4759 goto nopage;
a8161d1e 4760
a8161d1e 4761 /*
3eb2771b
VB
4762 * Looks like reclaim/compaction is worth trying, but
4763 * sync compaction could be very expensive, so keep
25160354 4764 * using async compaction.
a8161d1e 4765 */
a5508cd8 4766 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4767 }
4768 }
23771235 4769
31a6c190 4770retry:
23771235 4771 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4772 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4773 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4774
cd04ae1e
MH
4775 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4776 if (reserve_flags)
8510e69c 4777 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4778
e46e7b77 4779 /*
d6a24df0
VB
4780 * Reset the nodemask and zonelist iterators if memory policies can be
4781 * ignored. These allocations are high priority and system rather than
4782 * user oriented.
e46e7b77 4783 */
cd04ae1e 4784 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4785 ac->nodemask = NULL;
e46e7b77 4786 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4787 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4788 }
4789
23771235 4790 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4791 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4792 if (page)
4793 goto got_pg;
1da177e4 4794
d0164adc 4795 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4796 if (!can_direct_reclaim)
1da177e4
LT
4797 goto nopage;
4798
9a67f648
MH
4799 /* Avoid recursion of direct reclaim */
4800 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4801 goto nopage;
4802
a8161d1e
VB
4803 /* Try direct reclaim and then allocating */
4804 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4805 &did_some_progress);
4806 if (page)
4807 goto got_pg;
4808
4809 /* Try direct compaction and then allocating */
a9263751 4810 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4811 compact_priority, &compact_result);
56de7263
MG
4812 if (page)
4813 goto got_pg;
75f30861 4814
9083905a
JW
4815 /* Do not loop if specifically requested */
4816 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4817 goto nopage;
9083905a 4818
0a0337e0
MH
4819 /*
4820 * Do not retry costly high order allocations unless they are
dcda9b04 4821 * __GFP_RETRY_MAYFAIL
0a0337e0 4822 */
dcda9b04 4823 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4824 goto nopage;
0a0337e0 4825
0a0337e0 4826 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4827 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4828 goto retry;
4829
33c2d214
MH
4830 /*
4831 * It doesn't make any sense to retry for the compaction if the order-0
4832 * reclaim is not able to make any progress because the current
4833 * implementation of the compaction depends on the sufficient amount
4834 * of free memory (see __compaction_suitable)
4835 */
4836 if (did_some_progress > 0 &&
86a294a8 4837 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4838 compact_result, &compact_priority,
d9436498 4839 &compaction_retries))
33c2d214
MH
4840 goto retry;
4841
902b6281
VB
4842
4843 /* Deal with possible cpuset update races before we start OOM killing */
4844 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4845 goto retry_cpuset;
4846
9083905a
JW
4847 /* Reclaim has failed us, start killing things */
4848 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4849 if (page)
4850 goto got_pg;
4851
9a67f648 4852 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4853 if (tsk_is_oom_victim(current) &&
8510e69c 4854 (alloc_flags & ALLOC_OOM ||
c288983d 4855 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4856 goto nopage;
4857
9083905a 4858 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4859 if (did_some_progress) {
4860 no_progress_loops = 0;
9083905a 4861 goto retry;
0a0337e0 4862 }
9083905a 4863
1da177e4 4864nopage:
902b6281
VB
4865 /* Deal with possible cpuset update races before we fail */
4866 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4867 goto retry_cpuset;
4868
9a67f648
MH
4869 /*
4870 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4871 * we always retry
4872 */
4873 if (gfp_mask & __GFP_NOFAIL) {
4874 /*
4875 * All existing users of the __GFP_NOFAIL are blockable, so warn
4876 * of any new users that actually require GFP_NOWAIT
4877 */
4878 if (WARN_ON_ONCE(!can_direct_reclaim))
4879 goto fail;
4880
4881 /*
4882 * PF_MEMALLOC request from this context is rather bizarre
4883 * because we cannot reclaim anything and only can loop waiting
4884 * for somebody to do a work for us
4885 */
4886 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4887
4888 /*
4889 * non failing costly orders are a hard requirement which we
4890 * are not prepared for much so let's warn about these users
4891 * so that we can identify them and convert them to something
4892 * else.
4893 */
4894 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4895
6c18ba7a
MH
4896 /*
4897 * Help non-failing allocations by giving them access to memory
4898 * reserves but do not use ALLOC_NO_WATERMARKS because this
4899 * could deplete whole memory reserves which would just make
4900 * the situation worse
4901 */
4902 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4903 if (page)
4904 goto got_pg;
4905
9a67f648
MH
4906 cond_resched();
4907 goto retry;
4908 }
4909fail:
a8e99259 4910 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4911 "page allocation failure: order:%u", order);
1da177e4 4912got_pg:
072bb0aa 4913 return page;
1da177e4 4914}
11e33f6a 4915
9cd75558 4916static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4917 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4918 struct alloc_context *ac, gfp_t *alloc_mask,
4919 unsigned int *alloc_flags)
11e33f6a 4920{
97a225e6 4921 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4922 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4923 ac->nodemask = nodemask;
01c0bfe0 4924 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4925
682a3385 4926 if (cpusets_enabled()) {
9cd75558 4927 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4928 /*
4929 * When we are in the interrupt context, it is irrelevant
4930 * to the current task context. It means that any node ok.
4931 */
4932 if (!in_interrupt() && !ac->nodemask)
9cd75558 4933 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4934 else
4935 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4936 }
4937
d92a8cfc
PZ
4938 fs_reclaim_acquire(gfp_mask);
4939 fs_reclaim_release(gfp_mask);
11e33f6a 4940
d0164adc 4941 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4942
4943 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4944 return false;
11e33f6a 4945
8510e69c 4946 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4947
c9ab0c4f 4948 /* Dirty zone balancing only done in the fast path */
9cd75558 4949 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4950
e46e7b77
MG
4951 /*
4952 * The preferred zone is used for statistics but crucially it is
4953 * also used as the starting point for the zonelist iterator. It
4954 * may get reset for allocations that ignore memory policies.
4955 */
9cd75558 4956 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4957 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4958
4959 return true;
9cd75558
MG
4960}
4961
4962/*
4963 * This is the 'heart' of the zoned buddy allocator.
4964 */
4965struct page *
04ec6264
VB
4966__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4967 nodemask_t *nodemask)
9cd75558
MG
4968{
4969 struct page *page;
4970 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4971 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4972 struct alloc_context ac = { };
4973
c63ae43b
MH
4974 /*
4975 * There are several places where we assume that the order value is sane
4976 * so bail out early if the request is out of bound.
4977 */
4978 if (unlikely(order >= MAX_ORDER)) {
4979 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4980 return NULL;
4981 }
4982
9cd75558 4983 gfp_mask &= gfp_allowed_mask;
f19360f0 4984 alloc_mask = gfp_mask;
04ec6264 4985 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4986 return NULL;
4987
6bb15450
MG
4988 /*
4989 * Forbid the first pass from falling back to types that fragment
4990 * memory until all local zones are considered.
4991 */
0a79cdad 4992 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4993
5117f45d 4994 /* First allocation attempt */
a9263751 4995 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4996 if (likely(page))
4997 goto out;
11e33f6a 4998
4fcb0971 4999 /*
7dea19f9
MH
5000 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5001 * resp. GFP_NOIO which has to be inherited for all allocation requests
5002 * from a particular context which has been marked by
5003 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 5004 */
7dea19f9 5005 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 5006 ac.spread_dirty_pages = false;
23f086f9 5007
4741526b
MG
5008 /*
5009 * Restore the original nodemask if it was potentially replaced with
5010 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5011 */
97ce86f9 5012 ac.nodemask = nodemask;
16096c25 5013
4fcb0971 5014 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 5015
4fcb0971 5016out:
c4159a75 5017 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 5018 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
5019 __free_pages(page, order);
5020 page = NULL;
4949148a
VD
5021 }
5022
4fcb0971
MG
5023 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5024
11e33f6a 5025 return page;
1da177e4 5026}
d239171e 5027EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
5028
5029/*
9ea9a680
MH
5030 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5031 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5032 * you need to access high mem.
1da177e4 5033 */
920c7a5d 5034unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5035{
945a1113
AM
5036 struct page *page;
5037
9ea9a680 5038 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5039 if (!page)
5040 return 0;
5041 return (unsigned long) page_address(page);
5042}
1da177e4
LT
5043EXPORT_SYMBOL(__get_free_pages);
5044
920c7a5d 5045unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5046{
945a1113 5047 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5048}
1da177e4
LT
5049EXPORT_SYMBOL(get_zeroed_page);
5050
742aa7fb 5051static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5052{
742aa7fb
AL
5053 if (order == 0) /* Via pcp? */
5054 free_unref_page(page);
5055 else
7fef431b 5056 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5057}
5058
7f194fbb
MWO
5059/**
5060 * __free_pages - Free pages allocated with alloc_pages().
5061 * @page: The page pointer returned from alloc_pages().
5062 * @order: The order of the allocation.
5063 *
5064 * This function can free multi-page allocations that are not compound
5065 * pages. It does not check that the @order passed in matches that of
5066 * the allocation, so it is easy to leak memory. Freeing more memory
5067 * than was allocated will probably emit a warning.
5068 *
5069 * If the last reference to this page is speculative, it will be released
5070 * by put_page() which only frees the first page of a non-compound
5071 * allocation. To prevent the remaining pages from being leaked, we free
5072 * the subsequent pages here. If you want to use the page's reference
5073 * count to decide when to free the allocation, you should allocate a
5074 * compound page, and use put_page() instead of __free_pages().
5075 *
5076 * Context: May be called in interrupt context or while holding a normal
5077 * spinlock, but not in NMI context or while holding a raw spinlock.
5078 */
742aa7fb
AL
5079void __free_pages(struct page *page, unsigned int order)
5080{
5081 if (put_page_testzero(page))
5082 free_the_page(page, order);
e320d301
MWO
5083 else if (!PageHead(page))
5084 while (order-- > 0)
5085 free_the_page(page + (1 << order), order);
742aa7fb 5086}
1da177e4
LT
5087EXPORT_SYMBOL(__free_pages);
5088
920c7a5d 5089void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5090{
5091 if (addr != 0) {
725d704e 5092 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5093 __free_pages(virt_to_page((void *)addr), order);
5094 }
5095}
5096
5097EXPORT_SYMBOL(free_pages);
5098
b63ae8ca
AD
5099/*
5100 * Page Fragment:
5101 * An arbitrary-length arbitrary-offset area of memory which resides
5102 * within a 0 or higher order page. Multiple fragments within that page
5103 * are individually refcounted, in the page's reference counter.
5104 *
5105 * The page_frag functions below provide a simple allocation framework for
5106 * page fragments. This is used by the network stack and network device
5107 * drivers to provide a backing region of memory for use as either an
5108 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5109 */
2976db80
AD
5110static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5111 gfp_t gfp_mask)
b63ae8ca
AD
5112{
5113 struct page *page = NULL;
5114 gfp_t gfp = gfp_mask;
5115
5116#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5117 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5118 __GFP_NOMEMALLOC;
5119 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5120 PAGE_FRAG_CACHE_MAX_ORDER);
5121 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5122#endif
5123 if (unlikely(!page))
5124 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5125
5126 nc->va = page ? page_address(page) : NULL;
5127
5128 return page;
5129}
5130
2976db80 5131void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5132{
5133 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5134
742aa7fb
AL
5135 if (page_ref_sub_and_test(page, count))
5136 free_the_page(page, compound_order(page));
44fdffd7 5137}
2976db80 5138EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5139
b358e212
KH
5140void *page_frag_alloc_align(struct page_frag_cache *nc,
5141 unsigned int fragsz, gfp_t gfp_mask,
5142 unsigned int align_mask)
b63ae8ca
AD
5143{
5144 unsigned int size = PAGE_SIZE;
5145 struct page *page;
5146 int offset;
5147
5148 if (unlikely(!nc->va)) {
5149refill:
2976db80 5150 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5151 if (!page)
5152 return NULL;
5153
5154#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5155 /* if size can vary use size else just use PAGE_SIZE */
5156 size = nc->size;
5157#endif
5158 /* Even if we own the page, we do not use atomic_set().
5159 * This would break get_page_unless_zero() users.
5160 */
86447726 5161 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5162
5163 /* reset page count bias and offset to start of new frag */
2f064f34 5164 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5165 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5166 nc->offset = size;
5167 }
5168
5169 offset = nc->offset - fragsz;
5170 if (unlikely(offset < 0)) {
5171 page = virt_to_page(nc->va);
5172
fe896d18 5173 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5174 goto refill;
5175
d8c19014
DZ
5176 if (unlikely(nc->pfmemalloc)) {
5177 free_the_page(page, compound_order(page));
5178 goto refill;
5179 }
5180
b63ae8ca
AD
5181#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5182 /* if size can vary use size else just use PAGE_SIZE */
5183 size = nc->size;
5184#endif
5185 /* OK, page count is 0, we can safely set it */
86447726 5186 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5187
5188 /* reset page count bias and offset to start of new frag */
86447726 5189 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5190 offset = size - fragsz;
5191 }
5192
5193 nc->pagecnt_bias--;
b358e212 5194 offset &= align_mask;
b63ae8ca
AD
5195 nc->offset = offset;
5196
5197 return nc->va + offset;
5198}
b358e212 5199EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5200
5201/*
5202 * Frees a page fragment allocated out of either a compound or order 0 page.
5203 */
8c2dd3e4 5204void page_frag_free(void *addr)
b63ae8ca
AD
5205{
5206 struct page *page = virt_to_head_page(addr);
5207
742aa7fb
AL
5208 if (unlikely(put_page_testzero(page)))
5209 free_the_page(page, compound_order(page));
b63ae8ca 5210}
8c2dd3e4 5211EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5212
d00181b9
KS
5213static void *make_alloc_exact(unsigned long addr, unsigned int order,
5214 size_t size)
ee85c2e1
AK
5215{
5216 if (addr) {
5217 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5218 unsigned long used = addr + PAGE_ALIGN(size);
5219
5220 split_page(virt_to_page((void *)addr), order);
5221 while (used < alloc_end) {
5222 free_page(used);
5223 used += PAGE_SIZE;
5224 }
5225 }
5226 return (void *)addr;
5227}
5228
2be0ffe2
TT
5229/**
5230 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5231 * @size: the number of bytes to allocate
63931eb9 5232 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5233 *
5234 * This function is similar to alloc_pages(), except that it allocates the
5235 * minimum number of pages to satisfy the request. alloc_pages() can only
5236 * allocate memory in power-of-two pages.
5237 *
5238 * This function is also limited by MAX_ORDER.
5239 *
5240 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5241 *
5242 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5243 */
5244void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5245{
5246 unsigned int order = get_order(size);
5247 unsigned long addr;
5248
63931eb9
VB
5249 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5250 gfp_mask &= ~__GFP_COMP;
5251
2be0ffe2 5252 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5253 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5254}
5255EXPORT_SYMBOL(alloc_pages_exact);
5256
ee85c2e1
AK
5257/**
5258 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5259 * pages on a node.
b5e6ab58 5260 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5261 * @size: the number of bytes to allocate
63931eb9 5262 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5263 *
5264 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5265 * back.
a862f68a
MR
5266 *
5267 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5268 */
e1931811 5269void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5270{
d00181b9 5271 unsigned int order = get_order(size);
63931eb9
VB
5272 struct page *p;
5273
5274 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5275 gfp_mask &= ~__GFP_COMP;
5276
5277 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5278 if (!p)
5279 return NULL;
5280 return make_alloc_exact((unsigned long)page_address(p), order, size);
5281}
ee85c2e1 5282
2be0ffe2
TT
5283/**
5284 * free_pages_exact - release memory allocated via alloc_pages_exact()
5285 * @virt: the value returned by alloc_pages_exact.
5286 * @size: size of allocation, same value as passed to alloc_pages_exact().
5287 *
5288 * Release the memory allocated by a previous call to alloc_pages_exact.
5289 */
5290void free_pages_exact(void *virt, size_t size)
5291{
5292 unsigned long addr = (unsigned long)virt;
5293 unsigned long end = addr + PAGE_ALIGN(size);
5294
5295 while (addr < end) {
5296 free_page(addr);
5297 addr += PAGE_SIZE;
5298 }
5299}
5300EXPORT_SYMBOL(free_pages_exact);
5301
e0fb5815
ZY
5302/**
5303 * nr_free_zone_pages - count number of pages beyond high watermark
5304 * @offset: The zone index of the highest zone
5305 *
a862f68a 5306 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5307 * high watermark within all zones at or below a given zone index. For each
5308 * zone, the number of pages is calculated as:
0e056eb5 5309 *
5310 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5311 *
5312 * Return: number of pages beyond high watermark.
e0fb5815 5313 */
ebec3862 5314static unsigned long nr_free_zone_pages(int offset)
1da177e4 5315{
dd1a239f 5316 struct zoneref *z;
54a6eb5c
MG
5317 struct zone *zone;
5318
e310fd43 5319 /* Just pick one node, since fallback list is circular */
ebec3862 5320 unsigned long sum = 0;
1da177e4 5321
0e88460d 5322 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5323
54a6eb5c 5324 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5325 unsigned long size = zone_managed_pages(zone);
41858966 5326 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5327 if (size > high)
5328 sum += size - high;
1da177e4
LT
5329 }
5330
5331 return sum;
5332}
5333
e0fb5815
ZY
5334/**
5335 * nr_free_buffer_pages - count number of pages beyond high watermark
5336 *
5337 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5338 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5339 *
5340 * Return: number of pages beyond high watermark within ZONE_DMA and
5341 * ZONE_NORMAL.
1da177e4 5342 */
ebec3862 5343unsigned long nr_free_buffer_pages(void)
1da177e4 5344{
af4ca457 5345 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5346}
c2f1a551 5347EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5348
08e0f6a9 5349static inline void show_node(struct zone *zone)
1da177e4 5350{
e5adfffc 5351 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5352 printk("Node %d ", zone_to_nid(zone));
1da177e4 5353}
1da177e4 5354
d02bd27b
IR
5355long si_mem_available(void)
5356{
5357 long available;
5358 unsigned long pagecache;
5359 unsigned long wmark_low = 0;
5360 unsigned long pages[NR_LRU_LISTS];
b29940c1 5361 unsigned long reclaimable;
d02bd27b
IR
5362 struct zone *zone;
5363 int lru;
5364
5365 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5366 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5367
5368 for_each_zone(zone)
a9214443 5369 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5370
5371 /*
5372 * Estimate the amount of memory available for userspace allocations,
5373 * without causing swapping.
5374 */
c41f012a 5375 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5376
5377 /*
5378 * Not all the page cache can be freed, otherwise the system will
5379 * start swapping. Assume at least half of the page cache, or the
5380 * low watermark worth of cache, needs to stay.
5381 */
5382 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5383 pagecache -= min(pagecache / 2, wmark_low);
5384 available += pagecache;
5385
5386 /*
b29940c1
VB
5387 * Part of the reclaimable slab and other kernel memory consists of
5388 * items that are in use, and cannot be freed. Cap this estimate at the
5389 * low watermark.
d02bd27b 5390 */
d42f3245
RG
5391 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5392 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5393 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5394
d02bd27b
IR
5395 if (available < 0)
5396 available = 0;
5397 return available;
5398}
5399EXPORT_SYMBOL_GPL(si_mem_available);
5400
1da177e4
LT
5401void si_meminfo(struct sysinfo *val)
5402{
ca79b0c2 5403 val->totalram = totalram_pages();
11fb9989 5404 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5405 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5406 val->bufferram = nr_blockdev_pages();
ca79b0c2 5407 val->totalhigh = totalhigh_pages();
1da177e4 5408 val->freehigh = nr_free_highpages();
1da177e4
LT
5409 val->mem_unit = PAGE_SIZE;
5410}
5411
5412EXPORT_SYMBOL(si_meminfo);
5413
5414#ifdef CONFIG_NUMA
5415void si_meminfo_node(struct sysinfo *val, int nid)
5416{
cdd91a77
JL
5417 int zone_type; /* needs to be signed */
5418 unsigned long managed_pages = 0;
fc2bd799
JK
5419 unsigned long managed_highpages = 0;
5420 unsigned long free_highpages = 0;
1da177e4
LT
5421 pg_data_t *pgdat = NODE_DATA(nid);
5422
cdd91a77 5423 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5424 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5425 val->totalram = managed_pages;
11fb9989 5426 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5427 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5428#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5429 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5430 struct zone *zone = &pgdat->node_zones[zone_type];
5431
5432 if (is_highmem(zone)) {
9705bea5 5433 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5434 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5435 }
5436 }
5437 val->totalhigh = managed_highpages;
5438 val->freehigh = free_highpages;
98d2b0eb 5439#else
fc2bd799
JK
5440 val->totalhigh = managed_highpages;
5441 val->freehigh = free_highpages;
98d2b0eb 5442#endif
1da177e4
LT
5443 val->mem_unit = PAGE_SIZE;
5444}
5445#endif
5446
ddd588b5 5447/*
7bf02ea2
DR
5448 * Determine whether the node should be displayed or not, depending on whether
5449 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5450 */
9af744d7 5451static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5452{
ddd588b5 5453 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5454 return false;
ddd588b5 5455
9af744d7
MH
5456 /*
5457 * no node mask - aka implicit memory numa policy. Do not bother with
5458 * the synchronization - read_mems_allowed_begin - because we do not
5459 * have to be precise here.
5460 */
5461 if (!nodemask)
5462 nodemask = &cpuset_current_mems_allowed;
5463
5464 return !node_isset(nid, *nodemask);
ddd588b5
DR
5465}
5466
1da177e4
LT
5467#define K(x) ((x) << (PAGE_SHIFT-10))
5468
377e4f16
RV
5469static void show_migration_types(unsigned char type)
5470{
5471 static const char types[MIGRATE_TYPES] = {
5472 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5473 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5474 [MIGRATE_RECLAIMABLE] = 'E',
5475 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5476#ifdef CONFIG_CMA
5477 [MIGRATE_CMA] = 'C',
5478#endif
194159fb 5479#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5480 [MIGRATE_ISOLATE] = 'I',
194159fb 5481#endif
377e4f16
RV
5482 };
5483 char tmp[MIGRATE_TYPES + 1];
5484 char *p = tmp;
5485 int i;
5486
5487 for (i = 0; i < MIGRATE_TYPES; i++) {
5488 if (type & (1 << i))
5489 *p++ = types[i];
5490 }
5491
5492 *p = '\0';
1f84a18f 5493 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5494}
5495
1da177e4
LT
5496/*
5497 * Show free area list (used inside shift_scroll-lock stuff)
5498 * We also calculate the percentage fragmentation. We do this by counting the
5499 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5500 *
5501 * Bits in @filter:
5502 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5503 * cpuset.
1da177e4 5504 */
9af744d7 5505void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5506{
d1bfcdb8 5507 unsigned long free_pcp = 0;
c7241913 5508 int cpu;
1da177e4 5509 struct zone *zone;
599d0c95 5510 pg_data_t *pgdat;
1da177e4 5511
ee99c71c 5512 for_each_populated_zone(zone) {
9af744d7 5513 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5514 continue;
d1bfcdb8 5515
761b0677
KK
5516 for_each_online_cpu(cpu)
5517 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5518 }
5519
a731286d
KM
5520 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5521 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5522 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5523 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5524 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5525 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5526 global_node_page_state(NR_ACTIVE_ANON),
5527 global_node_page_state(NR_INACTIVE_ANON),
5528 global_node_page_state(NR_ISOLATED_ANON),
5529 global_node_page_state(NR_ACTIVE_FILE),
5530 global_node_page_state(NR_INACTIVE_FILE),
5531 global_node_page_state(NR_ISOLATED_FILE),
5532 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5533 global_node_page_state(NR_FILE_DIRTY),
5534 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5535 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5536 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5537 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5538 global_node_page_state(NR_SHMEM),
f0c0c115 5539 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5540 global_zone_page_state(NR_BOUNCE),
5541 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5542 free_pcp,
c41f012a 5543 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5544
599d0c95 5545 for_each_online_pgdat(pgdat) {
9af744d7 5546 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5547 continue;
5548
599d0c95
MG
5549 printk("Node %d"
5550 " active_anon:%lukB"
5551 " inactive_anon:%lukB"
5552 " active_file:%lukB"
5553 " inactive_file:%lukB"
5554 " unevictable:%lukB"
5555 " isolated(anon):%lukB"
5556 " isolated(file):%lukB"
50658e2e 5557 " mapped:%lukB"
11fb9989
MG
5558 " dirty:%lukB"
5559 " writeback:%lukB"
5560 " shmem:%lukB"
5561#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5562 " shmem_thp: %lukB"
5563 " shmem_pmdmapped: %lukB"
5564 " anon_thp: %lukB"
5565#endif
5566 " writeback_tmp:%lukB"
991e7673
SB
5567 " kernel_stack:%lukB"
5568#ifdef CONFIG_SHADOW_CALL_STACK
5569 " shadow_call_stack:%lukB"
5570#endif
f0c0c115 5571 " pagetables:%lukB"
599d0c95
MG
5572 " all_unreclaimable? %s"
5573 "\n",
5574 pgdat->node_id,
5575 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5576 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5577 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5578 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5579 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5580 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5581 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5582 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5583 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5584 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5585 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5586#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5587 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5588 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5589 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5590#endif
11fb9989 5591 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5592 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5593#ifdef CONFIG_SHADOW_CALL_STACK
5594 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5595#endif
f0c0c115 5596 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5597 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5598 "yes" : "no");
599d0c95
MG
5599 }
5600
ee99c71c 5601 for_each_populated_zone(zone) {
1da177e4
LT
5602 int i;
5603
9af744d7 5604 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5605 continue;
d1bfcdb8
KK
5606
5607 free_pcp = 0;
5608 for_each_online_cpu(cpu)
5609 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5610
1da177e4 5611 show_node(zone);
1f84a18f
JP
5612 printk(KERN_CONT
5613 "%s"
1da177e4
LT
5614 " free:%lukB"
5615 " min:%lukB"
5616 " low:%lukB"
5617 " high:%lukB"
e47b346a 5618 " reserved_highatomic:%luKB"
71c799f4
MK
5619 " active_anon:%lukB"
5620 " inactive_anon:%lukB"
5621 " active_file:%lukB"
5622 " inactive_file:%lukB"
5623 " unevictable:%lukB"
5a1c84b4 5624 " writepending:%lukB"
1da177e4 5625 " present:%lukB"
9feedc9d 5626 " managed:%lukB"
4a0aa73f 5627 " mlocked:%lukB"
4a0aa73f 5628 " bounce:%lukB"
d1bfcdb8
KK
5629 " free_pcp:%lukB"
5630 " local_pcp:%ukB"
d1ce749a 5631 " free_cma:%lukB"
1da177e4
LT
5632 "\n",
5633 zone->name,
88f5acf8 5634 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5635 K(min_wmark_pages(zone)),
5636 K(low_wmark_pages(zone)),
5637 K(high_wmark_pages(zone)),
e47b346a 5638 K(zone->nr_reserved_highatomic),
71c799f4
MK
5639 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5640 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5641 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5642 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5643 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5644 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5645 K(zone->present_pages),
9705bea5 5646 K(zone_managed_pages(zone)),
4a0aa73f 5647 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5648 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5649 K(free_pcp),
5650 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5651 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5652 printk("lowmem_reserve[]:");
5653 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5654 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5655 printk(KERN_CONT "\n");
1da177e4
LT
5656 }
5657
ee99c71c 5658 for_each_populated_zone(zone) {
d00181b9
KS
5659 unsigned int order;
5660 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5661 unsigned char types[MAX_ORDER];
1da177e4 5662
9af744d7 5663 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5664 continue;
1da177e4 5665 show_node(zone);
1f84a18f 5666 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5667
5668 spin_lock_irqsave(&zone->lock, flags);
5669 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5670 struct free_area *area = &zone->free_area[order];
5671 int type;
5672
5673 nr[order] = area->nr_free;
8f9de51a 5674 total += nr[order] << order;
377e4f16
RV
5675
5676 types[order] = 0;
5677 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5678 if (!free_area_empty(area, type))
377e4f16
RV
5679 types[order] |= 1 << type;
5680 }
1da177e4
LT
5681 }
5682 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5683 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5684 printk(KERN_CONT "%lu*%lukB ",
5685 nr[order], K(1UL) << order);
377e4f16
RV
5686 if (nr[order])
5687 show_migration_types(types[order]);
5688 }
1f84a18f 5689 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5690 }
5691
949f7ec5
DR
5692 hugetlb_show_meminfo();
5693
11fb9989 5694 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5695
1da177e4
LT
5696 show_swap_cache_info();
5697}
5698
19770b32
MG
5699static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5700{
5701 zoneref->zone = zone;
5702 zoneref->zone_idx = zone_idx(zone);
5703}
5704
1da177e4
LT
5705/*
5706 * Builds allocation fallback zone lists.
1a93205b
CL
5707 *
5708 * Add all populated zones of a node to the zonelist.
1da177e4 5709 */
9d3be21b 5710static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5711{
1a93205b 5712 struct zone *zone;
bc732f1d 5713 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5714 int nr_zones = 0;
02a68a5e
CL
5715
5716 do {
2f6726e5 5717 zone_type--;
070f8032 5718 zone = pgdat->node_zones + zone_type;
6aa303de 5719 if (managed_zone(zone)) {
9d3be21b 5720 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5721 check_highest_zone(zone_type);
1da177e4 5722 }
2f6726e5 5723 } while (zone_type);
bc732f1d 5724
070f8032 5725 return nr_zones;
1da177e4
LT
5726}
5727
5728#ifdef CONFIG_NUMA
f0c0b2b8
KH
5729
5730static int __parse_numa_zonelist_order(char *s)
5731{
c9bff3ee
MH
5732 /*
5733 * We used to support different zonlists modes but they turned
5734 * out to be just not useful. Let's keep the warning in place
5735 * if somebody still use the cmd line parameter so that we do
5736 * not fail it silently
5737 */
5738 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5739 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5740 return -EINVAL;
5741 }
5742 return 0;
5743}
5744
c9bff3ee
MH
5745char numa_zonelist_order[] = "Node";
5746
f0c0b2b8
KH
5747/*
5748 * sysctl handler for numa_zonelist_order
5749 */
cccad5b9 5750int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5751 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5752{
32927393
CH
5753 if (write)
5754 return __parse_numa_zonelist_order(buffer);
5755 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5756}
5757
5758
62bc62a8 5759#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5760static int node_load[MAX_NUMNODES];
5761
1da177e4 5762/**
4dc3b16b 5763 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5764 * @node: node whose fallback list we're appending
5765 * @used_node_mask: nodemask_t of already used nodes
5766 *
5767 * We use a number of factors to determine which is the next node that should
5768 * appear on a given node's fallback list. The node should not have appeared
5769 * already in @node's fallback list, and it should be the next closest node
5770 * according to the distance array (which contains arbitrary distance values
5771 * from each node to each node in the system), and should also prefer nodes
5772 * with no CPUs, since presumably they'll have very little allocation pressure
5773 * on them otherwise.
a862f68a
MR
5774 *
5775 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5776 */
f0c0b2b8 5777static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5778{
4cf808eb 5779 int n, val;
1da177e4 5780 int min_val = INT_MAX;
00ef2d2f 5781 int best_node = NUMA_NO_NODE;
1da177e4 5782
4cf808eb
LT
5783 /* Use the local node if we haven't already */
5784 if (!node_isset(node, *used_node_mask)) {
5785 node_set(node, *used_node_mask);
5786 return node;
5787 }
1da177e4 5788
4b0ef1fe 5789 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5790
5791 /* Don't want a node to appear more than once */
5792 if (node_isset(n, *used_node_mask))
5793 continue;
5794
1da177e4
LT
5795 /* Use the distance array to find the distance */
5796 val = node_distance(node, n);
5797
4cf808eb
LT
5798 /* Penalize nodes under us ("prefer the next node") */
5799 val += (n < node);
5800
1da177e4 5801 /* Give preference to headless and unused nodes */
b630749f 5802 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5803 val += PENALTY_FOR_NODE_WITH_CPUS;
5804
5805 /* Slight preference for less loaded node */
5806 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5807 val += node_load[n];
5808
5809 if (val < min_val) {
5810 min_val = val;
5811 best_node = n;
5812 }
5813 }
5814
5815 if (best_node >= 0)
5816 node_set(best_node, *used_node_mask);
5817
5818 return best_node;
5819}
5820
f0c0b2b8
KH
5821
5822/*
5823 * Build zonelists ordered by node and zones within node.
5824 * This results in maximum locality--normal zone overflows into local
5825 * DMA zone, if any--but risks exhausting DMA zone.
5826 */
9d3be21b
MH
5827static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5828 unsigned nr_nodes)
1da177e4 5829{
9d3be21b
MH
5830 struct zoneref *zonerefs;
5831 int i;
5832
5833 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5834
5835 for (i = 0; i < nr_nodes; i++) {
5836 int nr_zones;
5837
5838 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5839
9d3be21b
MH
5840 nr_zones = build_zonerefs_node(node, zonerefs);
5841 zonerefs += nr_zones;
5842 }
5843 zonerefs->zone = NULL;
5844 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5845}
5846
523b9458
CL
5847/*
5848 * Build gfp_thisnode zonelists
5849 */
5850static void build_thisnode_zonelists(pg_data_t *pgdat)
5851{
9d3be21b
MH
5852 struct zoneref *zonerefs;
5853 int nr_zones;
523b9458 5854
9d3be21b
MH
5855 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5856 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5857 zonerefs += nr_zones;
5858 zonerefs->zone = NULL;
5859 zonerefs->zone_idx = 0;
523b9458
CL
5860}
5861
f0c0b2b8
KH
5862/*
5863 * Build zonelists ordered by zone and nodes within zones.
5864 * This results in conserving DMA zone[s] until all Normal memory is
5865 * exhausted, but results in overflowing to remote node while memory
5866 * may still exist in local DMA zone.
5867 */
f0c0b2b8 5868
f0c0b2b8
KH
5869static void build_zonelists(pg_data_t *pgdat)
5870{
9d3be21b
MH
5871 static int node_order[MAX_NUMNODES];
5872 int node, load, nr_nodes = 0;
d0ddf49b 5873 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5874 int local_node, prev_node;
1da177e4
LT
5875
5876 /* NUMA-aware ordering of nodes */
5877 local_node = pgdat->node_id;
62bc62a8 5878 load = nr_online_nodes;
1da177e4 5879 prev_node = local_node;
f0c0b2b8 5880
f0c0b2b8 5881 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5882 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5883 /*
5884 * We don't want to pressure a particular node.
5885 * So adding penalty to the first node in same
5886 * distance group to make it round-robin.
5887 */
957f822a
DR
5888 if (node_distance(local_node, node) !=
5889 node_distance(local_node, prev_node))
f0c0b2b8
KH
5890 node_load[node] = load;
5891
9d3be21b 5892 node_order[nr_nodes++] = node;
1da177e4
LT
5893 prev_node = node;
5894 load--;
1da177e4 5895 }
523b9458 5896
9d3be21b 5897 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5898 build_thisnode_zonelists(pgdat);
1da177e4
LT
5899}
5900
7aac7898
LS
5901#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5902/*
5903 * Return node id of node used for "local" allocations.
5904 * I.e., first node id of first zone in arg node's generic zonelist.
5905 * Used for initializing percpu 'numa_mem', which is used primarily
5906 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5907 */
5908int local_memory_node(int node)
5909{
c33d6c06 5910 struct zoneref *z;
7aac7898 5911
c33d6c06 5912 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5913 gfp_zone(GFP_KERNEL),
c33d6c06 5914 NULL);
c1093b74 5915 return zone_to_nid(z->zone);
7aac7898
LS
5916}
5917#endif
f0c0b2b8 5918
6423aa81
JK
5919static void setup_min_unmapped_ratio(void);
5920static void setup_min_slab_ratio(void);
1da177e4
LT
5921#else /* CONFIG_NUMA */
5922
f0c0b2b8 5923static void build_zonelists(pg_data_t *pgdat)
1da177e4 5924{
19655d34 5925 int node, local_node;
9d3be21b
MH
5926 struct zoneref *zonerefs;
5927 int nr_zones;
1da177e4
LT
5928
5929 local_node = pgdat->node_id;
1da177e4 5930
9d3be21b
MH
5931 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5932 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5933 zonerefs += nr_zones;
1da177e4 5934
54a6eb5c
MG
5935 /*
5936 * Now we build the zonelist so that it contains the zones
5937 * of all the other nodes.
5938 * We don't want to pressure a particular node, so when
5939 * building the zones for node N, we make sure that the
5940 * zones coming right after the local ones are those from
5941 * node N+1 (modulo N)
5942 */
5943 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5944 if (!node_online(node))
5945 continue;
9d3be21b
MH
5946 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5947 zonerefs += nr_zones;
1da177e4 5948 }
54a6eb5c
MG
5949 for (node = 0; node < local_node; node++) {
5950 if (!node_online(node))
5951 continue;
9d3be21b
MH
5952 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5953 zonerefs += nr_zones;
54a6eb5c
MG
5954 }
5955
9d3be21b
MH
5956 zonerefs->zone = NULL;
5957 zonerefs->zone_idx = 0;
1da177e4
LT
5958}
5959
5960#endif /* CONFIG_NUMA */
5961
99dcc3e5
CL
5962/*
5963 * Boot pageset table. One per cpu which is going to be used for all
5964 * zones and all nodes. The parameters will be set in such a way
5965 * that an item put on a list will immediately be handed over to
5966 * the buddy list. This is safe since pageset manipulation is done
5967 * with interrupts disabled.
5968 *
5969 * The boot_pagesets must be kept even after bootup is complete for
5970 * unused processors and/or zones. They do play a role for bootstrapping
5971 * hotplugged processors.
5972 *
5973 * zoneinfo_show() and maybe other functions do
5974 * not check if the processor is online before following the pageset pointer.
5975 * Other parts of the kernel may not check if the zone is available.
5976 */
69a8396a 5977static void pageset_init(struct per_cpu_pageset *p);
952eaf81
VB
5978/* These effectively disable the pcplists in the boot pageset completely */
5979#define BOOT_PAGESET_HIGH 0
5980#define BOOT_PAGESET_BATCH 1
99dcc3e5 5981static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5982static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5983
11cd8638 5984static void __build_all_zonelists(void *data)
1da177e4 5985{
6811378e 5986 int nid;
afb6ebb3 5987 int __maybe_unused cpu;
9adb62a5 5988 pg_data_t *self = data;
b93e0f32
MH
5989 static DEFINE_SPINLOCK(lock);
5990
5991 spin_lock(&lock);
9276b1bc 5992
7f9cfb31
BL
5993#ifdef CONFIG_NUMA
5994 memset(node_load, 0, sizeof(node_load));
5995#endif
9adb62a5 5996
c1152583
WY
5997 /*
5998 * This node is hotadded and no memory is yet present. So just
5999 * building zonelists is fine - no need to touch other nodes.
6000 */
9adb62a5
JL
6001 if (self && !node_online(self->node_id)) {
6002 build_zonelists(self);
c1152583
WY
6003 } else {
6004 for_each_online_node(nid) {
6005 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6006
c1152583
WY
6007 build_zonelists(pgdat);
6008 }
99dcc3e5 6009
7aac7898
LS
6010#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6011 /*
6012 * We now know the "local memory node" for each node--
6013 * i.e., the node of the first zone in the generic zonelist.
6014 * Set up numa_mem percpu variable for on-line cpus. During
6015 * boot, only the boot cpu should be on-line; we'll init the
6016 * secondary cpus' numa_mem as they come on-line. During
6017 * node/memory hotplug, we'll fixup all on-line cpus.
6018 */
d9c9a0b9 6019 for_each_online_cpu(cpu)
7aac7898 6020 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6021#endif
d9c9a0b9 6022 }
b93e0f32
MH
6023
6024 spin_unlock(&lock);
6811378e
YG
6025}
6026
061f67bc
RV
6027static noinline void __init
6028build_all_zonelists_init(void)
6029{
afb6ebb3
MH
6030 int cpu;
6031
061f67bc 6032 __build_all_zonelists(NULL);
afb6ebb3
MH
6033
6034 /*
6035 * Initialize the boot_pagesets that are going to be used
6036 * for bootstrapping processors. The real pagesets for
6037 * each zone will be allocated later when the per cpu
6038 * allocator is available.
6039 *
6040 * boot_pagesets are used also for bootstrapping offline
6041 * cpus if the system is already booted because the pagesets
6042 * are needed to initialize allocators on a specific cpu too.
6043 * F.e. the percpu allocator needs the page allocator which
6044 * needs the percpu allocator in order to allocate its pagesets
6045 * (a chicken-egg dilemma).
6046 */
6047 for_each_possible_cpu(cpu)
69a8396a 6048 pageset_init(&per_cpu(boot_pageset, cpu));
afb6ebb3 6049
061f67bc
RV
6050 mminit_verify_zonelist();
6051 cpuset_init_current_mems_allowed();
6052}
6053
4eaf3f64 6054/*
4eaf3f64 6055 * unless system_state == SYSTEM_BOOTING.
061f67bc 6056 *
72675e13 6057 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6058 * [protected by SYSTEM_BOOTING].
4eaf3f64 6059 */
72675e13 6060void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6061{
0a18e607
DH
6062 unsigned long vm_total_pages;
6063
6811378e 6064 if (system_state == SYSTEM_BOOTING) {
061f67bc 6065 build_all_zonelists_init();
6811378e 6066 } else {
11cd8638 6067 __build_all_zonelists(pgdat);
6811378e
YG
6068 /* cpuset refresh routine should be here */
6069 }
56b9413b
DH
6070 /* Get the number of free pages beyond high watermark in all zones. */
6071 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6072 /*
6073 * Disable grouping by mobility if the number of pages in the
6074 * system is too low to allow the mechanism to work. It would be
6075 * more accurate, but expensive to check per-zone. This check is
6076 * made on memory-hotadd so a system can start with mobility
6077 * disabled and enable it later
6078 */
d9c23400 6079 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6080 page_group_by_mobility_disabled = 1;
6081 else
6082 page_group_by_mobility_disabled = 0;
6083
ce0725f7 6084 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6085 nr_online_nodes,
756a025f
JP
6086 page_group_by_mobility_disabled ? "off" : "on",
6087 vm_total_pages);
f0c0b2b8 6088#ifdef CONFIG_NUMA
f88dfff5 6089 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6090#endif
1da177e4
LT
6091}
6092
a9a9e77f
PT
6093/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6094static bool __meminit
6095overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6096{
a9a9e77f
PT
6097 static struct memblock_region *r;
6098
6099 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6100 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6101 for_each_mem_region(r) {
a9a9e77f
PT
6102 if (*pfn < memblock_region_memory_end_pfn(r))
6103 break;
6104 }
6105 }
6106 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6107 memblock_is_mirror(r)) {
6108 *pfn = memblock_region_memory_end_pfn(r);
6109 return true;
6110 }
6111 }
a9a9e77f
PT
6112 return false;
6113}
6114
1da177e4
LT
6115/*
6116 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6117 * up by memblock_free_all() once the early boot process is
1da177e4 6118 * done. Non-atomic initialization, single-pass.
d882c006
DH
6119 *
6120 * All aligned pageblocks are initialized to the specified migratetype
6121 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6122 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6123 */
ab28cb6e 6124void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6125 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6126 enum meminit_context context,
6127 struct vmem_altmap *altmap, int migratetype)
1da177e4 6128{
a9a9e77f 6129 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6130 struct page *page;
1da177e4 6131
22b31eec
HD
6132 if (highest_memmap_pfn < end_pfn - 1)
6133 highest_memmap_pfn = end_pfn - 1;
6134
966cf44f 6135#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6136 /*
6137 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6138 * memory. We limit the total number of pages to initialize to just
6139 * those that might contain the memory mapping. We will defer the
6140 * ZONE_DEVICE page initialization until after we have released
6141 * the hotplug lock.
4b94ffdc 6142 */
966cf44f
AD
6143 if (zone == ZONE_DEVICE) {
6144 if (!altmap)
6145 return;
6146
6147 if (start_pfn == altmap->base_pfn)
6148 start_pfn += altmap->reserve;
6149 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6150 }
6151#endif
4b94ffdc 6152
948c436e 6153 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6154 /*
b72d0ffb
AM
6155 * There can be holes in boot-time mem_map[]s handed to this
6156 * function. They do not exist on hotplugged memory.
a2f3aa02 6157 */
c1d0da83 6158 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6159 if (overlap_memmap_init(zone, &pfn))
6160 continue;
dc2da7b4 6161 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6162 break;
a2f3aa02 6163 }
ac5d2539 6164
d0dc12e8
PT
6165 page = pfn_to_page(pfn);
6166 __init_single_page(page, pfn, zone, nid);
c1d0da83 6167 if (context == MEMINIT_HOTPLUG)
d483da5b 6168 __SetPageReserved(page);
d0dc12e8 6169
ac5d2539 6170 /*
d882c006
DH
6171 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6172 * such that unmovable allocations won't be scattered all
6173 * over the place during system boot.
ac5d2539 6174 */
4eb29bd9 6175 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6176 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6177 cond_resched();
ac5d2539 6178 }
948c436e 6179 pfn++;
1da177e4
LT
6180 }
6181}
6182
966cf44f
AD
6183#ifdef CONFIG_ZONE_DEVICE
6184void __ref memmap_init_zone_device(struct zone *zone,
6185 unsigned long start_pfn,
1f8d75c1 6186 unsigned long nr_pages,
966cf44f
AD
6187 struct dev_pagemap *pgmap)
6188{
1f8d75c1 6189 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6190 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6191 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6192 unsigned long zone_idx = zone_idx(zone);
6193 unsigned long start = jiffies;
6194 int nid = pgdat->node_id;
6195
46d945ae 6196 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6197 return;
6198
6199 /*
6200 * The call to memmap_init_zone should have already taken care
6201 * of the pages reserved for the memmap, so we can just jump to
6202 * the end of that region and start processing the device pages.
6203 */
514caf23 6204 if (altmap) {
966cf44f 6205 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6206 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6207 }
6208
6209 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6210 struct page *page = pfn_to_page(pfn);
6211
6212 __init_single_page(page, pfn, zone_idx, nid);
6213
6214 /*
6215 * Mark page reserved as it will need to wait for onlining
6216 * phase for it to be fully associated with a zone.
6217 *
6218 * We can use the non-atomic __set_bit operation for setting
6219 * the flag as we are still initializing the pages.
6220 */
6221 __SetPageReserved(page);
6222
6223 /*
8a164fef
CH
6224 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6225 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6226 * ever freed or placed on a driver-private list.
966cf44f
AD
6227 */
6228 page->pgmap = pgmap;
8a164fef 6229 page->zone_device_data = NULL;
966cf44f
AD
6230
6231 /*
6232 * Mark the block movable so that blocks are reserved for
6233 * movable at startup. This will force kernel allocations
6234 * to reserve their blocks rather than leaking throughout
6235 * the address space during boot when many long-lived
6236 * kernel allocations are made.
6237 *
c1d0da83 6238 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6239 * because this is done early in section_activate()
966cf44f 6240 */
4eb29bd9 6241 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6242 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6243 cond_resched();
6244 }
6245 }
6246
fdc029b1 6247 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6248 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6249}
6250
6251#endif
1e548deb 6252static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6253{
7aeb09f9 6254 unsigned int order, t;
b2a0ac88
MG
6255 for_each_migratetype_order(order, t) {
6256 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6257 zone->free_area[order].nr_free = 0;
6258 }
6259}
6260
3256ff83 6261void __meminit __weak memmap_init_zone(struct zone *zone)
dfb3ccd0 6262{
3256ff83
BH
6263 unsigned long zone_start_pfn = zone->zone_start_pfn;
6264 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6265 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
73a6e474 6266 unsigned long start_pfn, end_pfn;
73a6e474
BH
6267
6268 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
3256ff83
BH
6269 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6270 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
73a6e474 6271
3256ff83
BH
6272 if (end_pfn > start_pfn)
6273 memmap_init_range(end_pfn - start_pfn, nid,
6274 zone_id, start_pfn, zone_end_pfn,
6275 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
73a6e474 6276 }
dfb3ccd0 6277}
1da177e4 6278
7cd2b0a3 6279static int zone_batchsize(struct zone *zone)
e7c8d5c9 6280{
3a6be87f 6281#ifdef CONFIG_MMU
e7c8d5c9
CL
6282 int batch;
6283
6284 /*
6285 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6286 * size of the zone.
e7c8d5c9 6287 */
9705bea5 6288 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6289 /* But no more than a meg. */
6290 if (batch * PAGE_SIZE > 1024 * 1024)
6291 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6292 batch /= 4; /* We effectively *= 4 below */
6293 if (batch < 1)
6294 batch = 1;
6295
6296 /*
0ceaacc9
NP
6297 * Clamp the batch to a 2^n - 1 value. Having a power
6298 * of 2 value was found to be more likely to have
6299 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6300 *
0ceaacc9
NP
6301 * For example if 2 tasks are alternately allocating
6302 * batches of pages, one task can end up with a lot
6303 * of pages of one half of the possible page colors
6304 * and the other with pages of the other colors.
e7c8d5c9 6305 */
9155203a 6306 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6307
e7c8d5c9 6308 return batch;
3a6be87f
DH
6309
6310#else
6311 /* The deferral and batching of frees should be suppressed under NOMMU
6312 * conditions.
6313 *
6314 * The problem is that NOMMU needs to be able to allocate large chunks
6315 * of contiguous memory as there's no hardware page translation to
6316 * assemble apparent contiguous memory from discontiguous pages.
6317 *
6318 * Queueing large contiguous runs of pages for batching, however,
6319 * causes the pages to actually be freed in smaller chunks. As there
6320 * can be a significant delay between the individual batches being
6321 * recycled, this leads to the once large chunks of space being
6322 * fragmented and becoming unavailable for high-order allocations.
6323 */
6324 return 0;
6325#endif
e7c8d5c9
CL
6326}
6327
8d7a8fa9 6328/*
5c3ad2eb
VB
6329 * pcp->high and pcp->batch values are related and generally batch is lower
6330 * than high. They are also related to pcp->count such that count is lower
6331 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6332 *
5c3ad2eb
VB
6333 * However, guaranteeing these relations at all times would require e.g. write
6334 * barriers here but also careful usage of read barriers at the read side, and
6335 * thus be prone to error and bad for performance. Thus the update only prevents
6336 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6337 * can cope with those fields changing asynchronously, and fully trust only the
6338 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6339 *
6340 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6341 * outside of boot time (or some other assurance that no concurrent updaters
6342 * exist).
6343 */
6344static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6345 unsigned long batch)
6346{
5c3ad2eb
VB
6347 WRITE_ONCE(pcp->batch, batch);
6348 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6349}
6350
88c90dbc 6351static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6352{
6353 struct per_cpu_pages *pcp;
5f8dcc21 6354 int migratetype;
2caaad41 6355
1c6fe946
MD
6356 memset(p, 0, sizeof(*p));
6357
3dfa5721 6358 pcp = &p->pcp;
5f8dcc21
MG
6359 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6360 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6361
69a8396a
VB
6362 /*
6363 * Set batch and high values safe for a boot pageset. A true percpu
6364 * pageset's initialization will update them subsequently. Here we don't
6365 * need to be as careful as pageset_update() as nobody can access the
6366 * pageset yet.
6367 */
952eaf81
VB
6368 pcp->high = BOOT_PAGESET_HIGH;
6369 pcp->batch = BOOT_PAGESET_BATCH;
88c90dbc
CS
6370}
6371
3b1f3658 6372static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6373 unsigned long batch)
6374{
6375 struct per_cpu_pageset *p;
6376 int cpu;
6377
6378 for_each_possible_cpu(cpu) {
6379 p = per_cpu_ptr(zone->pageset, cpu);
6380 pageset_update(&p->pcp, high, batch);
6381 }
6382}
6383
8ad4b1fb 6384/*
0a8b4f1d 6385 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6386 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6387 */
0a8b4f1d 6388static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6389{
7115ac6e
VB
6390 unsigned long new_high, new_batch;
6391
6392 if (percpu_pagelist_fraction) {
6393 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6394 new_batch = max(1UL, new_high / 4);
6395 if ((new_high / 4) > (PAGE_SHIFT * 8))
6396 new_batch = PAGE_SHIFT * 8;
6397 } else {
6398 new_batch = zone_batchsize(zone);
6399 new_high = 6 * new_batch;
6400 new_batch = max(1UL, 1 * new_batch);
6401 }
169f6c19 6402
952eaf81
VB
6403 if (zone->pageset_high == new_high &&
6404 zone->pageset_batch == new_batch)
6405 return;
6406
6407 zone->pageset_high = new_high;
6408 zone->pageset_batch = new_batch;
6409
ec6e8c7e 6410 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6411}
6412
72675e13 6413void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6414{
0a8b4f1d 6415 struct per_cpu_pageset *p;
319774e2 6416 int cpu;
0a8b4f1d 6417
319774e2 6418 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6419 for_each_possible_cpu(cpu) {
6420 p = per_cpu_ptr(zone->pageset, cpu);
6421 pageset_init(p);
6422 }
6423
6424 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6425}
6426
2caaad41 6427/*
99dcc3e5
CL
6428 * Allocate per cpu pagesets and initialize them.
6429 * Before this call only boot pagesets were available.
e7c8d5c9 6430 */
99dcc3e5 6431void __init setup_per_cpu_pageset(void)
e7c8d5c9 6432{
b4911ea2 6433 struct pglist_data *pgdat;
99dcc3e5 6434 struct zone *zone;
b418a0f9 6435 int __maybe_unused cpu;
e7c8d5c9 6436
319774e2
WF
6437 for_each_populated_zone(zone)
6438 setup_zone_pageset(zone);
b4911ea2 6439
b418a0f9
SD
6440#ifdef CONFIG_NUMA
6441 /*
6442 * Unpopulated zones continue using the boot pagesets.
6443 * The numa stats for these pagesets need to be reset.
6444 * Otherwise, they will end up skewing the stats of
6445 * the nodes these zones are associated with.
6446 */
6447 for_each_possible_cpu(cpu) {
6448 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6449 memset(pcp->vm_numa_stat_diff, 0,
6450 sizeof(pcp->vm_numa_stat_diff));
6451 }
6452#endif
6453
b4911ea2
MG
6454 for_each_online_pgdat(pgdat)
6455 pgdat->per_cpu_nodestats =
6456 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6457}
6458
c09b4240 6459static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6460{
99dcc3e5
CL
6461 /*
6462 * per cpu subsystem is not up at this point. The following code
6463 * relies on the ability of the linker to provide the
6464 * offset of a (static) per cpu variable into the per cpu area.
6465 */
6466 zone->pageset = &boot_pageset;
952eaf81
VB
6467 zone->pageset_high = BOOT_PAGESET_HIGH;
6468 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6469
b38a8725 6470 if (populated_zone(zone))
99dcc3e5
CL
6471 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6472 zone->name, zone->present_pages,
6473 zone_batchsize(zone));
ed8ece2e
DH
6474}
6475
dc0bbf3b 6476void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6477 unsigned long zone_start_pfn,
b171e409 6478 unsigned long size)
ed8ece2e
DH
6479{
6480 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6481 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6482
8f416836
WY
6483 if (zone_idx > pgdat->nr_zones)
6484 pgdat->nr_zones = zone_idx;
ed8ece2e 6485
ed8ece2e
DH
6486 zone->zone_start_pfn = zone_start_pfn;
6487
708614e6
MG
6488 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6489 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6490 pgdat->node_id,
6491 (unsigned long)zone_idx(zone),
6492 zone_start_pfn, (zone_start_pfn + size));
6493
1e548deb 6494 zone_init_free_lists(zone);
9dcb8b68 6495 zone->initialized = 1;
ed8ece2e
DH
6496}
6497
c713216d
MG
6498/**
6499 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6500 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6501 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6502 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6503 *
6504 * It returns the start and end page frame of a node based on information
7d018176 6505 * provided by memblock_set_node(). If called for a node
c713216d 6506 * with no available memory, a warning is printed and the start and end
88ca3b94 6507 * PFNs will be 0.
c713216d 6508 */
bbe5d993 6509void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6510 unsigned long *start_pfn, unsigned long *end_pfn)
6511{
c13291a5 6512 unsigned long this_start_pfn, this_end_pfn;
c713216d 6513 int i;
c13291a5 6514
c713216d
MG
6515 *start_pfn = -1UL;
6516 *end_pfn = 0;
6517
c13291a5
TH
6518 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6519 *start_pfn = min(*start_pfn, this_start_pfn);
6520 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6521 }
6522
633c0666 6523 if (*start_pfn == -1UL)
c713216d 6524 *start_pfn = 0;
c713216d
MG
6525}
6526
2a1e274a
MG
6527/*
6528 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6529 * assumption is made that zones within a node are ordered in monotonic
6530 * increasing memory addresses so that the "highest" populated zone is used
6531 */
b69a7288 6532static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6533{
6534 int zone_index;
6535 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6536 if (zone_index == ZONE_MOVABLE)
6537 continue;
6538
6539 if (arch_zone_highest_possible_pfn[zone_index] >
6540 arch_zone_lowest_possible_pfn[zone_index])
6541 break;
6542 }
6543
6544 VM_BUG_ON(zone_index == -1);
6545 movable_zone = zone_index;
6546}
6547
6548/*
6549 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6550 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6551 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6552 * in each node depending on the size of each node and how evenly kernelcore
6553 * is distributed. This helper function adjusts the zone ranges
6554 * provided by the architecture for a given node by using the end of the
6555 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6556 * zones within a node are in order of monotonic increases memory addresses
6557 */
bbe5d993 6558static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6559 unsigned long zone_type,
6560 unsigned long node_start_pfn,
6561 unsigned long node_end_pfn,
6562 unsigned long *zone_start_pfn,
6563 unsigned long *zone_end_pfn)
6564{
6565 /* Only adjust if ZONE_MOVABLE is on this node */
6566 if (zone_movable_pfn[nid]) {
6567 /* Size ZONE_MOVABLE */
6568 if (zone_type == ZONE_MOVABLE) {
6569 *zone_start_pfn = zone_movable_pfn[nid];
6570 *zone_end_pfn = min(node_end_pfn,
6571 arch_zone_highest_possible_pfn[movable_zone]);
6572
e506b996
XQ
6573 /* Adjust for ZONE_MOVABLE starting within this range */
6574 } else if (!mirrored_kernelcore &&
6575 *zone_start_pfn < zone_movable_pfn[nid] &&
6576 *zone_end_pfn > zone_movable_pfn[nid]) {
6577 *zone_end_pfn = zone_movable_pfn[nid];
6578
2a1e274a
MG
6579 /* Check if this whole range is within ZONE_MOVABLE */
6580 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6581 *zone_start_pfn = *zone_end_pfn;
6582 }
6583}
6584
c713216d
MG
6585/*
6586 * Return the number of pages a zone spans in a node, including holes
6587 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6588 */
bbe5d993 6589static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6590 unsigned long zone_type,
7960aedd
ZY
6591 unsigned long node_start_pfn,
6592 unsigned long node_end_pfn,
d91749c1 6593 unsigned long *zone_start_pfn,
854e8848 6594 unsigned long *zone_end_pfn)
c713216d 6595{
299c83dc
LF
6596 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6597 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6598 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6599 if (!node_start_pfn && !node_end_pfn)
6600 return 0;
6601
7960aedd 6602 /* Get the start and end of the zone */
299c83dc
LF
6603 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6604 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6605 adjust_zone_range_for_zone_movable(nid, zone_type,
6606 node_start_pfn, node_end_pfn,
d91749c1 6607 zone_start_pfn, zone_end_pfn);
c713216d
MG
6608
6609 /* Check that this node has pages within the zone's required range */
d91749c1 6610 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6611 return 0;
6612
6613 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6614 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6615 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6616
6617 /* Return the spanned pages */
d91749c1 6618 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6619}
6620
6621/*
6622 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6623 * then all holes in the requested range will be accounted for.
c713216d 6624 */
bbe5d993 6625unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6626 unsigned long range_start_pfn,
6627 unsigned long range_end_pfn)
6628{
96e907d1
TH
6629 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6630 unsigned long start_pfn, end_pfn;
6631 int i;
c713216d 6632
96e907d1
TH
6633 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6634 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6635 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6636 nr_absent -= end_pfn - start_pfn;
c713216d 6637 }
96e907d1 6638 return nr_absent;
c713216d
MG
6639}
6640
6641/**
6642 * absent_pages_in_range - Return number of page frames in holes within a range
6643 * @start_pfn: The start PFN to start searching for holes
6644 * @end_pfn: The end PFN to stop searching for holes
6645 *
a862f68a 6646 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6647 */
6648unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6649 unsigned long end_pfn)
6650{
6651 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6652}
6653
6654/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6655static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6656 unsigned long zone_type,
7960aedd 6657 unsigned long node_start_pfn,
854e8848 6658 unsigned long node_end_pfn)
c713216d 6659{
96e907d1
TH
6660 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6661 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6662 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6663 unsigned long nr_absent;
9c7cd687 6664
b5685e92 6665 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6666 if (!node_start_pfn && !node_end_pfn)
6667 return 0;
6668
96e907d1
TH
6669 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6670 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6671
2a1e274a
MG
6672 adjust_zone_range_for_zone_movable(nid, zone_type,
6673 node_start_pfn, node_end_pfn,
6674 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6675 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6676
6677 /*
6678 * ZONE_MOVABLE handling.
6679 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6680 * and vice versa.
6681 */
e506b996
XQ
6682 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6683 unsigned long start_pfn, end_pfn;
6684 struct memblock_region *r;
6685
cc6de168 6686 for_each_mem_region(r) {
e506b996
XQ
6687 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6688 zone_start_pfn, zone_end_pfn);
6689 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6690 zone_start_pfn, zone_end_pfn);
6691
6692 if (zone_type == ZONE_MOVABLE &&
6693 memblock_is_mirror(r))
6694 nr_absent += end_pfn - start_pfn;
6695
6696 if (zone_type == ZONE_NORMAL &&
6697 !memblock_is_mirror(r))
6698 nr_absent += end_pfn - start_pfn;
342332e6
TI
6699 }
6700 }
6701
6702 return nr_absent;
c713216d 6703}
0e0b864e 6704
bbe5d993 6705static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6706 unsigned long node_start_pfn,
854e8848 6707 unsigned long node_end_pfn)
c713216d 6708{
febd5949 6709 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6710 enum zone_type i;
6711
febd5949
GZ
6712 for (i = 0; i < MAX_NR_ZONES; i++) {
6713 struct zone *zone = pgdat->node_zones + i;
d91749c1 6714 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6715 unsigned long spanned, absent;
febd5949 6716 unsigned long size, real_size;
c713216d 6717
854e8848
MR
6718 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6719 node_start_pfn,
6720 node_end_pfn,
6721 &zone_start_pfn,
6722 &zone_end_pfn);
6723 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6724 node_start_pfn,
6725 node_end_pfn);
3f08a302
MR
6726
6727 size = spanned;
6728 real_size = size - absent;
6729
d91749c1
TI
6730 if (size)
6731 zone->zone_start_pfn = zone_start_pfn;
6732 else
6733 zone->zone_start_pfn = 0;
febd5949
GZ
6734 zone->spanned_pages = size;
6735 zone->present_pages = real_size;
6736
6737 totalpages += size;
6738 realtotalpages += real_size;
6739 }
6740
6741 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6742 pgdat->node_present_pages = realtotalpages;
6743 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6744 realtotalpages);
6745}
6746
835c134e
MG
6747#ifndef CONFIG_SPARSEMEM
6748/*
6749 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6750 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6751 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6752 * round what is now in bits to nearest long in bits, then return it in
6753 * bytes.
6754 */
7c45512d 6755static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6756{
6757 unsigned long usemapsize;
6758
7c45512d 6759 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6760 usemapsize = roundup(zonesize, pageblock_nr_pages);
6761 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6762 usemapsize *= NR_PAGEBLOCK_BITS;
6763 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6764
6765 return usemapsize / 8;
6766}
6767
7010a6ec 6768static void __ref setup_usemap(struct zone *zone)
835c134e 6769{
7010a6ec
BH
6770 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
6771 zone->spanned_pages);
835c134e 6772 zone->pageblock_flags = NULL;
23a7052a 6773 if (usemapsize) {
6782832e 6774 zone->pageblock_flags =
26fb3dae 6775 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 6776 zone_to_nid(zone));
23a7052a
MR
6777 if (!zone->pageblock_flags)
6778 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 6779 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 6780 }
835c134e
MG
6781}
6782#else
7010a6ec 6783static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
6784#endif /* CONFIG_SPARSEMEM */
6785
d9c23400 6786#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6787
d9c23400 6788/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6789void __init set_pageblock_order(void)
d9c23400 6790{
955c1cd7
AM
6791 unsigned int order;
6792
d9c23400
MG
6793 /* Check that pageblock_nr_pages has not already been setup */
6794 if (pageblock_order)
6795 return;
6796
955c1cd7
AM
6797 if (HPAGE_SHIFT > PAGE_SHIFT)
6798 order = HUGETLB_PAGE_ORDER;
6799 else
6800 order = MAX_ORDER - 1;
6801
d9c23400
MG
6802 /*
6803 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6804 * This value may be variable depending on boot parameters on IA64 and
6805 * powerpc.
d9c23400
MG
6806 */
6807 pageblock_order = order;
6808}
6809#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6810
ba72cb8c
MG
6811/*
6812 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6813 * is unused as pageblock_order is set at compile-time. See
6814 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6815 * the kernel config
ba72cb8c 6816 */
03e85f9d 6817void __init set_pageblock_order(void)
ba72cb8c 6818{
ba72cb8c 6819}
d9c23400
MG
6820
6821#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6822
03e85f9d 6823static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6824 unsigned long present_pages)
01cefaef
JL
6825{
6826 unsigned long pages = spanned_pages;
6827
6828 /*
6829 * Provide a more accurate estimation if there are holes within
6830 * the zone and SPARSEMEM is in use. If there are holes within the
6831 * zone, each populated memory region may cost us one or two extra
6832 * memmap pages due to alignment because memmap pages for each
89d790ab 6833 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6834 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6835 */
6836 if (spanned_pages > present_pages + (present_pages >> 4) &&
6837 IS_ENABLED(CONFIG_SPARSEMEM))
6838 pages = present_pages;
6839
6840 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6841}
6842
ace1db39
OS
6843#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6844static void pgdat_init_split_queue(struct pglist_data *pgdat)
6845{
364c1eeb
YS
6846 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6847
6848 spin_lock_init(&ds_queue->split_queue_lock);
6849 INIT_LIST_HEAD(&ds_queue->split_queue);
6850 ds_queue->split_queue_len = 0;
ace1db39
OS
6851}
6852#else
6853static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6854#endif
6855
6856#ifdef CONFIG_COMPACTION
6857static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6858{
6859 init_waitqueue_head(&pgdat->kcompactd_wait);
6860}
6861#else
6862static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6863#endif
6864
03e85f9d 6865static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6866{
208d54e5 6867 pgdat_resize_init(pgdat);
ace1db39 6868
ace1db39
OS
6869 pgdat_init_split_queue(pgdat);
6870 pgdat_init_kcompactd(pgdat);
6871
1da177e4 6872 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6873 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6874
eefa864b 6875 pgdat_page_ext_init(pgdat);
867e5e1d 6876 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6877}
6878
6879static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6880 unsigned long remaining_pages)
6881{
9705bea5 6882 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6883 zone_set_nid(zone, nid);
6884 zone->name = zone_names[idx];
6885 zone->zone_pgdat = NODE_DATA(nid);
6886 spin_lock_init(&zone->lock);
6887 zone_seqlock_init(zone);
6888 zone_pcp_init(zone);
6889}
6890
6891/*
6892 * Set up the zone data structures
6893 * - init pgdat internals
6894 * - init all zones belonging to this node
6895 *
6896 * NOTE: this function is only called during memory hotplug
6897 */
6898#ifdef CONFIG_MEMORY_HOTPLUG
6899void __ref free_area_init_core_hotplug(int nid)
6900{
6901 enum zone_type z;
6902 pg_data_t *pgdat = NODE_DATA(nid);
6903
6904 pgdat_init_internals(pgdat);
6905 for (z = 0; z < MAX_NR_ZONES; z++)
6906 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6907}
6908#endif
6909
6910/*
6911 * Set up the zone data structures:
6912 * - mark all pages reserved
6913 * - mark all memory queues empty
6914 * - clear the memory bitmaps
6915 *
6916 * NOTE: pgdat should get zeroed by caller.
6917 * NOTE: this function is only called during early init.
6918 */
6919static void __init free_area_init_core(struct pglist_data *pgdat)
6920{
6921 enum zone_type j;
6922 int nid = pgdat->node_id;
5f63b720 6923
03e85f9d 6924 pgdat_init_internals(pgdat);
385386cf
JW
6925 pgdat->per_cpu_nodestats = &boot_nodestats;
6926
1da177e4
LT
6927 for (j = 0; j < MAX_NR_ZONES; j++) {
6928 struct zone *zone = pgdat->node_zones + j;
e6943859 6929 unsigned long size, freesize, memmap_pages;
d91749c1 6930 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6931
febd5949 6932 size = zone->spanned_pages;
e6943859 6933 freesize = zone->present_pages;
1da177e4 6934
0e0b864e 6935 /*
9feedc9d 6936 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6937 * is used by this zone for memmap. This affects the watermark
6938 * and per-cpu initialisations
6939 */
e6943859 6940 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6941 if (!is_highmem_idx(j)) {
6942 if (freesize >= memmap_pages) {
6943 freesize -= memmap_pages;
6944 if (memmap_pages)
6945 printk(KERN_DEBUG
6946 " %s zone: %lu pages used for memmap\n",
6947 zone_names[j], memmap_pages);
6948 } else
1170532b 6949 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6950 zone_names[j], memmap_pages, freesize);
6951 }
0e0b864e 6952
6267276f 6953 /* Account for reserved pages */
9feedc9d
JL
6954 if (j == 0 && freesize > dma_reserve) {
6955 freesize -= dma_reserve;
d903ef9f 6956 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6957 zone_names[0], dma_reserve);
0e0b864e
MG
6958 }
6959
98d2b0eb 6960 if (!is_highmem_idx(j))
9feedc9d 6961 nr_kernel_pages += freesize;
01cefaef
JL
6962 /* Charge for highmem memmap if there are enough kernel pages */
6963 else if (nr_kernel_pages > memmap_pages * 2)
6964 nr_kernel_pages -= memmap_pages;
9feedc9d 6965 nr_all_pages += freesize;
1da177e4 6966
9feedc9d
JL
6967 /*
6968 * Set an approximate value for lowmem here, it will be adjusted
6969 * when the bootmem allocator frees pages into the buddy system.
6970 * And all highmem pages will be managed by the buddy system.
6971 */
03e85f9d 6972 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6973
d883c6cf 6974 if (!size)
1da177e4
LT
6975 continue;
6976
955c1cd7 6977 set_pageblock_order();
7010a6ec 6978 setup_usemap(zone);
d883c6cf 6979 init_currently_empty_zone(zone, zone_start_pfn, size);
3256ff83 6980 memmap_init_zone(zone);
1da177e4
LT
6981 }
6982}
6983
0cd842f9 6984#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6985static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6986{
b0aeba74 6987 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6988 unsigned long __maybe_unused offset = 0;
6989
1da177e4
LT
6990 /* Skip empty nodes */
6991 if (!pgdat->node_spanned_pages)
6992 return;
6993
b0aeba74
TL
6994 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6995 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6996 /* ia64 gets its own node_mem_map, before this, without bootmem */
6997 if (!pgdat->node_mem_map) {
b0aeba74 6998 unsigned long size, end;
d41dee36
AW
6999 struct page *map;
7000
e984bb43
BP
7001 /*
7002 * The zone's endpoints aren't required to be MAX_ORDER
7003 * aligned but the node_mem_map endpoints must be in order
7004 * for the buddy allocator to function correctly.
7005 */
108bcc96 7006 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7007 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7008 size = (end - start) * sizeof(struct page);
26fb3dae
MR
7009 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7010 pgdat->node_id);
23a7052a
MR
7011 if (!map)
7012 panic("Failed to allocate %ld bytes for node %d memory map\n",
7013 size, pgdat->node_id);
a1c34a3b 7014 pgdat->node_mem_map = map + offset;
1da177e4 7015 }
0cd842f9
OS
7016 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7017 __func__, pgdat->node_id, (unsigned long)pgdat,
7018 (unsigned long)pgdat->node_mem_map);
12d810c1 7019#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
7020 /*
7021 * With no DISCONTIG, the global mem_map is just set as node 0's
7022 */
c713216d 7023 if (pgdat == NODE_DATA(0)) {
1da177e4 7024 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7025 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7026 mem_map -= offset;
c713216d 7027 }
1da177e4
LT
7028#endif
7029}
0cd842f9
OS
7030#else
7031static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7032#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 7033
0188dc98
OS
7034#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7035static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7036{
0188dc98
OS
7037 pgdat->first_deferred_pfn = ULONG_MAX;
7038}
7039#else
7040static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7041#endif
7042
854e8848 7043static void __init free_area_init_node(int nid)
1da177e4 7044{
9109fb7b 7045 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7046 unsigned long start_pfn = 0;
7047 unsigned long end_pfn = 0;
9109fb7b 7048
88fdf75d 7049 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7050 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7051
854e8848 7052 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7053
1da177e4 7054 pgdat->node_id = nid;
854e8848 7055 pgdat->node_start_pfn = start_pfn;
75ef7184 7056 pgdat->per_cpu_nodestats = NULL;
854e8848 7057
8d29e18a 7058 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7059 (u64)start_pfn << PAGE_SHIFT,
7060 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7061 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7062
7063 alloc_node_mem_map(pgdat);
0188dc98 7064 pgdat_set_deferred_range(pgdat);
1da177e4 7065
7f3eb55b 7066 free_area_init_core(pgdat);
1da177e4
LT
7067}
7068
bc9331a1 7069void __init free_area_init_memoryless_node(int nid)
3f08a302 7070{
854e8848 7071 free_area_init_node(nid);
3f08a302
MR
7072}
7073
aca52c39 7074#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 7075/*
4b094b78
DH
7076 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7077 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 7078 */
377bf660 7079static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f 7080{
377bf660 7081 unsigned long pfn;
ec393a0f
PT
7082 u64 pgcnt = 0;
7083
7084 for (pfn = spfn; pfn < epfn; pfn++) {
7085 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7086 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7087 + pageblock_nr_pages - 1;
7088 continue;
7089 }
377bf660
LT
7090 /*
7091 * Use a fake node/zone (0) for now. Some of these pages
7092 * (in memblock.reserved but not in memblock.memory) will
7093 * get re-initialized via reserve_bootmem_region() later.
7094 */
7095 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
4b094b78 7096 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
7097 pgcnt++;
7098 }
7099
7100 return pgcnt;
7101}
7102
a4a3ede2 7103/*
377bf660
LT
7104 * Only struct pages that are backed by physical memory are zeroed and
7105 * initialized by going through __init_single_page(). But, there are some
7106 * struct pages which are reserved in memblock allocator and their fields
7107 * may be accessed (for example page_to_pfn() on some configuration accesses
7108 * flags). We must explicitly initialize those struct pages.
907ec5fc 7109 *
377bf660
LT
7110 * This function also addresses a similar issue where struct pages are left
7111 * uninitialized because the physical address range is not covered by
7112 * memblock.memory or memblock.reserved. That could happen when memblock
7113 * layout is manually configured via memmap=, or when the highest physical
7114 * address (max_pfn) does not end on a section boundary.
a4a3ede2 7115 */
377bf660 7116static void __init init_unavailable_mem(void)
a4a3ede2 7117{
377bf660
LT
7118 phys_addr_t start, end;
7119 u64 i, pgcnt;
7120 phys_addr_t next = 0;
a4a3ede2
PT
7121
7122 /*
377bf660 7123 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
7124 */
7125 pgcnt = 0;
377bf660 7126 for_each_mem_range(i, &start, &end) {
ec393a0f 7127 if (next < start)
377bf660
LT
7128 pgcnt += init_unavailable_range(PFN_DOWN(next),
7129 PFN_UP(start));
907ec5fc
NH
7130 next = end;
7131 }
e822969c
DH
7132
7133 /*
377bf660
LT
7134 * Early sections always have a fully populated memmap for the whole
7135 * section - see pfn_valid(). If the last section has holes at the
7136 * end and that section is marked "online", the memmap will be
7137 * considered initialized. Make sure that memmap has a well defined
7138 * state.
e822969c 7139 */
377bf660
LT
7140 pgcnt += init_unavailable_range(PFN_DOWN(next),
7141 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7142
a4a3ede2
PT
7143 /*
7144 * Struct pages that do not have backing memory. This could be because
7145 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7146 */
7147 if (pgcnt)
377bf660 7148 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7149}
4b094b78
DH
7150#else
7151static inline void __init init_unavailable_mem(void)
7152{
7153}
aca52c39 7154#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7155
418508c1
MS
7156#if MAX_NUMNODES > 1
7157/*
7158 * Figure out the number of possible node ids.
7159 */
f9872caf 7160void __init setup_nr_node_ids(void)
418508c1 7161{
904a9553 7162 unsigned int highest;
418508c1 7163
904a9553 7164 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7165 nr_node_ids = highest + 1;
7166}
418508c1
MS
7167#endif
7168
1e01979c
TH
7169/**
7170 * node_map_pfn_alignment - determine the maximum internode alignment
7171 *
7172 * This function should be called after node map is populated and sorted.
7173 * It calculates the maximum power of two alignment which can distinguish
7174 * all the nodes.
7175 *
7176 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7177 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7178 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7179 * shifted, 1GiB is enough and this function will indicate so.
7180 *
7181 * This is used to test whether pfn -> nid mapping of the chosen memory
7182 * model has fine enough granularity to avoid incorrect mapping for the
7183 * populated node map.
7184 *
a862f68a 7185 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7186 * requirement (single node).
7187 */
7188unsigned long __init node_map_pfn_alignment(void)
7189{
7190 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7191 unsigned long start, end, mask;
98fa15f3 7192 int last_nid = NUMA_NO_NODE;
c13291a5 7193 int i, nid;
1e01979c 7194
c13291a5 7195 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7196 if (!start || last_nid < 0 || last_nid == nid) {
7197 last_nid = nid;
7198 last_end = end;
7199 continue;
7200 }
7201
7202 /*
7203 * Start with a mask granular enough to pin-point to the
7204 * start pfn and tick off bits one-by-one until it becomes
7205 * too coarse to separate the current node from the last.
7206 */
7207 mask = ~((1 << __ffs(start)) - 1);
7208 while (mask && last_end <= (start & (mask << 1)))
7209 mask <<= 1;
7210
7211 /* accumulate all internode masks */
7212 accl_mask |= mask;
7213 }
7214
7215 /* convert mask to number of pages */
7216 return ~accl_mask + 1;
7217}
7218
c713216d
MG
7219/**
7220 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7221 *
a862f68a 7222 * Return: the minimum PFN based on information provided via
7d018176 7223 * memblock_set_node().
c713216d
MG
7224 */
7225unsigned long __init find_min_pfn_with_active_regions(void)
7226{
8a1b25fe 7227 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7228}
7229
37b07e41
LS
7230/*
7231 * early_calculate_totalpages()
7232 * Sum pages in active regions for movable zone.
4b0ef1fe 7233 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7234 */
484f51f8 7235static unsigned long __init early_calculate_totalpages(void)
7e63efef 7236{
7e63efef 7237 unsigned long totalpages = 0;
c13291a5
TH
7238 unsigned long start_pfn, end_pfn;
7239 int i, nid;
7240
7241 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7242 unsigned long pages = end_pfn - start_pfn;
7e63efef 7243
37b07e41
LS
7244 totalpages += pages;
7245 if (pages)
4b0ef1fe 7246 node_set_state(nid, N_MEMORY);
37b07e41 7247 }
b8af2941 7248 return totalpages;
7e63efef
MG
7249}
7250
2a1e274a
MG
7251/*
7252 * Find the PFN the Movable zone begins in each node. Kernel memory
7253 * is spread evenly between nodes as long as the nodes have enough
7254 * memory. When they don't, some nodes will have more kernelcore than
7255 * others
7256 */
b224ef85 7257static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7258{
7259 int i, nid;
7260 unsigned long usable_startpfn;
7261 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7262 /* save the state before borrow the nodemask */
4b0ef1fe 7263 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7264 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7265 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7266 struct memblock_region *r;
b2f3eebe
TC
7267
7268 /* Need to find movable_zone earlier when movable_node is specified. */
7269 find_usable_zone_for_movable();
7270
7271 /*
7272 * If movable_node is specified, ignore kernelcore and movablecore
7273 * options.
7274 */
7275 if (movable_node_is_enabled()) {
cc6de168 7276 for_each_mem_region(r) {
136199f0 7277 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7278 continue;
7279
d622abf7 7280 nid = memblock_get_region_node(r);
b2f3eebe 7281
136199f0 7282 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7283 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7284 min(usable_startpfn, zone_movable_pfn[nid]) :
7285 usable_startpfn;
7286 }
7287
7288 goto out2;
7289 }
2a1e274a 7290
342332e6
TI
7291 /*
7292 * If kernelcore=mirror is specified, ignore movablecore option
7293 */
7294 if (mirrored_kernelcore) {
7295 bool mem_below_4gb_not_mirrored = false;
7296
cc6de168 7297 for_each_mem_region(r) {
342332e6
TI
7298 if (memblock_is_mirror(r))
7299 continue;
7300
d622abf7 7301 nid = memblock_get_region_node(r);
342332e6
TI
7302
7303 usable_startpfn = memblock_region_memory_base_pfn(r);
7304
7305 if (usable_startpfn < 0x100000) {
7306 mem_below_4gb_not_mirrored = true;
7307 continue;
7308 }
7309
7310 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7311 min(usable_startpfn, zone_movable_pfn[nid]) :
7312 usable_startpfn;
7313 }
7314
7315 if (mem_below_4gb_not_mirrored)
633bf2fe 7316 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7317
7318 goto out2;
7319 }
7320
7e63efef 7321 /*
a5c6d650
DR
7322 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7323 * amount of necessary memory.
7324 */
7325 if (required_kernelcore_percent)
7326 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7327 10000UL;
7328 if (required_movablecore_percent)
7329 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7330 10000UL;
7331
7332 /*
7333 * If movablecore= was specified, calculate what size of
7e63efef
MG
7334 * kernelcore that corresponds so that memory usable for
7335 * any allocation type is evenly spread. If both kernelcore
7336 * and movablecore are specified, then the value of kernelcore
7337 * will be used for required_kernelcore if it's greater than
7338 * what movablecore would have allowed.
7339 */
7340 if (required_movablecore) {
7e63efef
MG
7341 unsigned long corepages;
7342
7343 /*
7344 * Round-up so that ZONE_MOVABLE is at least as large as what
7345 * was requested by the user
7346 */
7347 required_movablecore =
7348 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7349 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7350 corepages = totalpages - required_movablecore;
7351
7352 required_kernelcore = max(required_kernelcore, corepages);
7353 }
7354
bde304bd
XQ
7355 /*
7356 * If kernelcore was not specified or kernelcore size is larger
7357 * than totalpages, there is no ZONE_MOVABLE.
7358 */
7359 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7360 goto out;
2a1e274a
MG
7361
7362 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7363 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7364
7365restart:
7366 /* Spread kernelcore memory as evenly as possible throughout nodes */
7367 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7368 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7369 unsigned long start_pfn, end_pfn;
7370
2a1e274a
MG
7371 /*
7372 * Recalculate kernelcore_node if the division per node
7373 * now exceeds what is necessary to satisfy the requested
7374 * amount of memory for the kernel
7375 */
7376 if (required_kernelcore < kernelcore_node)
7377 kernelcore_node = required_kernelcore / usable_nodes;
7378
7379 /*
7380 * As the map is walked, we track how much memory is usable
7381 * by the kernel using kernelcore_remaining. When it is
7382 * 0, the rest of the node is usable by ZONE_MOVABLE
7383 */
7384 kernelcore_remaining = kernelcore_node;
7385
7386 /* Go through each range of PFNs within this node */
c13291a5 7387 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7388 unsigned long size_pages;
7389
c13291a5 7390 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7391 if (start_pfn >= end_pfn)
7392 continue;
7393
7394 /* Account for what is only usable for kernelcore */
7395 if (start_pfn < usable_startpfn) {
7396 unsigned long kernel_pages;
7397 kernel_pages = min(end_pfn, usable_startpfn)
7398 - start_pfn;
7399
7400 kernelcore_remaining -= min(kernel_pages,
7401 kernelcore_remaining);
7402 required_kernelcore -= min(kernel_pages,
7403 required_kernelcore);
7404
7405 /* Continue if range is now fully accounted */
7406 if (end_pfn <= usable_startpfn) {
7407
7408 /*
7409 * Push zone_movable_pfn to the end so
7410 * that if we have to rebalance
7411 * kernelcore across nodes, we will
7412 * not double account here
7413 */
7414 zone_movable_pfn[nid] = end_pfn;
7415 continue;
7416 }
7417 start_pfn = usable_startpfn;
7418 }
7419
7420 /*
7421 * The usable PFN range for ZONE_MOVABLE is from
7422 * start_pfn->end_pfn. Calculate size_pages as the
7423 * number of pages used as kernelcore
7424 */
7425 size_pages = end_pfn - start_pfn;
7426 if (size_pages > kernelcore_remaining)
7427 size_pages = kernelcore_remaining;
7428 zone_movable_pfn[nid] = start_pfn + size_pages;
7429
7430 /*
7431 * Some kernelcore has been met, update counts and
7432 * break if the kernelcore for this node has been
b8af2941 7433 * satisfied
2a1e274a
MG
7434 */
7435 required_kernelcore -= min(required_kernelcore,
7436 size_pages);
7437 kernelcore_remaining -= size_pages;
7438 if (!kernelcore_remaining)
7439 break;
7440 }
7441 }
7442
7443 /*
7444 * If there is still required_kernelcore, we do another pass with one
7445 * less node in the count. This will push zone_movable_pfn[nid] further
7446 * along on the nodes that still have memory until kernelcore is
b8af2941 7447 * satisfied
2a1e274a
MG
7448 */
7449 usable_nodes--;
7450 if (usable_nodes && required_kernelcore > usable_nodes)
7451 goto restart;
7452
b2f3eebe 7453out2:
2a1e274a
MG
7454 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7455 for (nid = 0; nid < MAX_NUMNODES; nid++)
7456 zone_movable_pfn[nid] =
7457 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7458
20e6926d 7459out:
66918dcd 7460 /* restore the node_state */
4b0ef1fe 7461 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7462}
7463
4b0ef1fe
LJ
7464/* Any regular or high memory on that node ? */
7465static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7466{
37b07e41
LS
7467 enum zone_type zone_type;
7468
4b0ef1fe 7469 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7470 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7471 if (populated_zone(zone)) {
7b0e0c0e
OS
7472 if (IS_ENABLED(CONFIG_HIGHMEM))
7473 node_set_state(nid, N_HIGH_MEMORY);
7474 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7475 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7476 break;
7477 }
37b07e41 7478 }
37b07e41
LS
7479}
7480
51930df5
MR
7481/*
7482 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7483 * such cases we allow max_zone_pfn sorted in the descending order
7484 */
7485bool __weak arch_has_descending_max_zone_pfns(void)
7486{
7487 return false;
7488}
7489
c713216d 7490/**
9691a071 7491 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7492 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7493 *
7494 * This will call free_area_init_node() for each active node in the system.
7d018176 7495 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7496 * zone in each node and their holes is calculated. If the maximum PFN
7497 * between two adjacent zones match, it is assumed that the zone is empty.
7498 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7499 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7500 * starts where the previous one ended. For example, ZONE_DMA32 starts
7501 * at arch_max_dma_pfn.
7502 */
9691a071 7503void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7504{
c13291a5 7505 unsigned long start_pfn, end_pfn;
51930df5
MR
7506 int i, nid, zone;
7507 bool descending;
a6af2bc3 7508
c713216d
MG
7509 /* Record where the zone boundaries are */
7510 memset(arch_zone_lowest_possible_pfn, 0,
7511 sizeof(arch_zone_lowest_possible_pfn));
7512 memset(arch_zone_highest_possible_pfn, 0,
7513 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7514
7515 start_pfn = find_min_pfn_with_active_regions();
51930df5 7516 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7517
7518 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7519 if (descending)
7520 zone = MAX_NR_ZONES - i - 1;
7521 else
7522 zone = i;
7523
7524 if (zone == ZONE_MOVABLE)
2a1e274a 7525 continue;
90cae1fe 7526
51930df5
MR
7527 end_pfn = max(max_zone_pfn[zone], start_pfn);
7528 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7529 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7530
7531 start_pfn = end_pfn;
c713216d 7532 }
2a1e274a
MG
7533
7534 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7535 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7536 find_zone_movable_pfns_for_nodes();
c713216d 7537
c713216d 7538 /* Print out the zone ranges */
f88dfff5 7539 pr_info("Zone ranges:\n");
2a1e274a
MG
7540 for (i = 0; i < MAX_NR_ZONES; i++) {
7541 if (i == ZONE_MOVABLE)
7542 continue;
f88dfff5 7543 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7544 if (arch_zone_lowest_possible_pfn[i] ==
7545 arch_zone_highest_possible_pfn[i])
f88dfff5 7546 pr_cont("empty\n");
72f0ba02 7547 else
8d29e18a
JG
7548 pr_cont("[mem %#018Lx-%#018Lx]\n",
7549 (u64)arch_zone_lowest_possible_pfn[i]
7550 << PAGE_SHIFT,
7551 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7552 << PAGE_SHIFT) - 1);
2a1e274a
MG
7553 }
7554
7555 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7556 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7557 for (i = 0; i < MAX_NUMNODES; i++) {
7558 if (zone_movable_pfn[i])
8d29e18a
JG
7559 pr_info(" Node %d: %#018Lx\n", i,
7560 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7561 }
c713216d 7562
f46edbd1
DW
7563 /*
7564 * Print out the early node map, and initialize the
7565 * subsection-map relative to active online memory ranges to
7566 * enable future "sub-section" extensions of the memory map.
7567 */
f88dfff5 7568 pr_info("Early memory node ranges\n");
f46edbd1 7569 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7570 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7571 (u64)start_pfn << PAGE_SHIFT,
7572 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7573 subsection_map_init(start_pfn, end_pfn - start_pfn);
7574 }
c713216d
MG
7575
7576 /* Initialise every node */
708614e6 7577 mminit_verify_pageflags_layout();
8ef82866 7578 setup_nr_node_ids();
4b094b78 7579 init_unavailable_mem();
c713216d
MG
7580 for_each_online_node(nid) {
7581 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7582 free_area_init_node(nid);
37b07e41
LS
7583
7584 /* Any memory on that node */
7585 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7586 node_set_state(nid, N_MEMORY);
7587 check_for_memory(pgdat, nid);
c713216d
MG
7588 }
7589}
2a1e274a 7590
a5c6d650
DR
7591static int __init cmdline_parse_core(char *p, unsigned long *core,
7592 unsigned long *percent)
2a1e274a
MG
7593{
7594 unsigned long long coremem;
a5c6d650
DR
7595 char *endptr;
7596
2a1e274a
MG
7597 if (!p)
7598 return -EINVAL;
7599
a5c6d650
DR
7600 /* Value may be a percentage of total memory, otherwise bytes */
7601 coremem = simple_strtoull(p, &endptr, 0);
7602 if (*endptr == '%') {
7603 /* Paranoid check for percent values greater than 100 */
7604 WARN_ON(coremem > 100);
2a1e274a 7605
a5c6d650
DR
7606 *percent = coremem;
7607 } else {
7608 coremem = memparse(p, &p);
7609 /* Paranoid check that UL is enough for the coremem value */
7610 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7611
a5c6d650
DR
7612 *core = coremem >> PAGE_SHIFT;
7613 *percent = 0UL;
7614 }
2a1e274a
MG
7615 return 0;
7616}
ed7ed365 7617
7e63efef
MG
7618/*
7619 * kernelcore=size sets the amount of memory for use for allocations that
7620 * cannot be reclaimed or migrated.
7621 */
7622static int __init cmdline_parse_kernelcore(char *p)
7623{
342332e6
TI
7624 /* parse kernelcore=mirror */
7625 if (parse_option_str(p, "mirror")) {
7626 mirrored_kernelcore = true;
7627 return 0;
7628 }
7629
a5c6d650
DR
7630 return cmdline_parse_core(p, &required_kernelcore,
7631 &required_kernelcore_percent);
7e63efef
MG
7632}
7633
7634/*
7635 * movablecore=size sets the amount of memory for use for allocations that
7636 * can be reclaimed or migrated.
7637 */
7638static int __init cmdline_parse_movablecore(char *p)
7639{
a5c6d650
DR
7640 return cmdline_parse_core(p, &required_movablecore,
7641 &required_movablecore_percent);
7e63efef
MG
7642}
7643
ed7ed365 7644early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7645early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7646
c3d5f5f0
JL
7647void adjust_managed_page_count(struct page *page, long count)
7648{
9705bea5 7649 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7650 totalram_pages_add(count);
3dcc0571
JL
7651#ifdef CONFIG_HIGHMEM
7652 if (PageHighMem(page))
ca79b0c2 7653 totalhigh_pages_add(count);
3dcc0571 7654#endif
c3d5f5f0 7655}
3dcc0571 7656EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7657
e5cb113f 7658unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7659{
11199692
JL
7660 void *pos;
7661 unsigned long pages = 0;
69afade7 7662
11199692
JL
7663 start = (void *)PAGE_ALIGN((unsigned long)start);
7664 end = (void *)((unsigned long)end & PAGE_MASK);
7665 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7666 struct page *page = virt_to_page(pos);
7667 void *direct_map_addr;
7668
7669 /*
7670 * 'direct_map_addr' might be different from 'pos'
7671 * because some architectures' virt_to_page()
7672 * work with aliases. Getting the direct map
7673 * address ensures that we get a _writeable_
7674 * alias for the memset().
7675 */
7676 direct_map_addr = page_address(page);
c746170d
VF
7677 /*
7678 * Perform a kasan-unchecked memset() since this memory
7679 * has not been initialized.
7680 */
7681 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 7682 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7683 memset(direct_map_addr, poison, PAGE_SIZE);
7684
7685 free_reserved_page(page);
69afade7
JL
7686 }
7687
7688 if (pages && s)
adb1fe9a
JP
7689 pr_info("Freeing %s memory: %ldK\n",
7690 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7691
7692 return pages;
7693}
7694
cfa11e08
JL
7695#ifdef CONFIG_HIGHMEM
7696void free_highmem_page(struct page *page)
7697{
7698 __free_reserved_page(page);
ca79b0c2 7699 totalram_pages_inc();
9705bea5 7700 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7701 totalhigh_pages_inc();
cfa11e08
JL
7702}
7703#endif
7704
7ee3d4e8
JL
7705
7706void __init mem_init_print_info(const char *str)
7707{
7708 unsigned long physpages, codesize, datasize, rosize, bss_size;
7709 unsigned long init_code_size, init_data_size;
7710
7711 physpages = get_num_physpages();
7712 codesize = _etext - _stext;
7713 datasize = _edata - _sdata;
7714 rosize = __end_rodata - __start_rodata;
7715 bss_size = __bss_stop - __bss_start;
7716 init_data_size = __init_end - __init_begin;
7717 init_code_size = _einittext - _sinittext;
7718
7719 /*
7720 * Detect special cases and adjust section sizes accordingly:
7721 * 1) .init.* may be embedded into .data sections
7722 * 2) .init.text.* may be out of [__init_begin, __init_end],
7723 * please refer to arch/tile/kernel/vmlinux.lds.S.
7724 * 3) .rodata.* may be embedded into .text or .data sections.
7725 */
7726#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7727 do { \
7728 if (start <= pos && pos < end && size > adj) \
7729 size -= adj; \
7730 } while (0)
7ee3d4e8
JL
7731
7732 adj_init_size(__init_begin, __init_end, init_data_size,
7733 _sinittext, init_code_size);
7734 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7735 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7736 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7737 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7738
7739#undef adj_init_size
7740
756a025f 7741 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7742#ifdef CONFIG_HIGHMEM
756a025f 7743 ", %luK highmem"
7ee3d4e8 7744#endif
756a025f
JP
7745 "%s%s)\n",
7746 nr_free_pages() << (PAGE_SHIFT - 10),
7747 physpages << (PAGE_SHIFT - 10),
7748 codesize >> 10, datasize >> 10, rosize >> 10,
7749 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7750 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7751 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7752#ifdef CONFIG_HIGHMEM
ca79b0c2 7753 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7754#endif
756a025f 7755 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7756}
7757
0e0b864e 7758/**
88ca3b94
RD
7759 * set_dma_reserve - set the specified number of pages reserved in the first zone
7760 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7761 *
013110a7 7762 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7763 * In the DMA zone, a significant percentage may be consumed by kernel image
7764 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7765 * function may optionally be used to account for unfreeable pages in the
7766 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7767 * smaller per-cpu batchsize.
0e0b864e
MG
7768 */
7769void __init set_dma_reserve(unsigned long new_dma_reserve)
7770{
7771 dma_reserve = new_dma_reserve;
7772}
7773
005fd4bb 7774static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7775{
1da177e4 7776
005fd4bb
SAS
7777 lru_add_drain_cpu(cpu);
7778 drain_pages(cpu);
9f8f2172 7779
005fd4bb
SAS
7780 /*
7781 * Spill the event counters of the dead processor
7782 * into the current processors event counters.
7783 * This artificially elevates the count of the current
7784 * processor.
7785 */
7786 vm_events_fold_cpu(cpu);
9f8f2172 7787
005fd4bb
SAS
7788 /*
7789 * Zero the differential counters of the dead processor
7790 * so that the vm statistics are consistent.
7791 *
7792 * This is only okay since the processor is dead and cannot
7793 * race with what we are doing.
7794 */
7795 cpu_vm_stats_fold(cpu);
7796 return 0;
1da177e4 7797}
1da177e4 7798
e03a5125
NP
7799#ifdef CONFIG_NUMA
7800int hashdist = HASHDIST_DEFAULT;
7801
7802static int __init set_hashdist(char *str)
7803{
7804 if (!str)
7805 return 0;
7806 hashdist = simple_strtoul(str, &str, 0);
7807 return 1;
7808}
7809__setup("hashdist=", set_hashdist);
7810#endif
7811
1da177e4
LT
7812void __init page_alloc_init(void)
7813{
005fd4bb
SAS
7814 int ret;
7815
e03a5125
NP
7816#ifdef CONFIG_NUMA
7817 if (num_node_state(N_MEMORY) == 1)
7818 hashdist = 0;
7819#endif
7820
005fd4bb
SAS
7821 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7822 "mm/page_alloc:dead", NULL,
7823 page_alloc_cpu_dead);
7824 WARN_ON(ret < 0);
1da177e4
LT
7825}
7826
cb45b0e9 7827/*
34b10060 7828 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7829 * or min_free_kbytes changes.
7830 */
7831static void calculate_totalreserve_pages(void)
7832{
7833 struct pglist_data *pgdat;
7834 unsigned long reserve_pages = 0;
2f6726e5 7835 enum zone_type i, j;
cb45b0e9
HA
7836
7837 for_each_online_pgdat(pgdat) {
281e3726
MG
7838
7839 pgdat->totalreserve_pages = 0;
7840
cb45b0e9
HA
7841 for (i = 0; i < MAX_NR_ZONES; i++) {
7842 struct zone *zone = pgdat->node_zones + i;
3484b2de 7843 long max = 0;
9705bea5 7844 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7845
7846 /* Find valid and maximum lowmem_reserve in the zone */
7847 for (j = i; j < MAX_NR_ZONES; j++) {
7848 if (zone->lowmem_reserve[j] > max)
7849 max = zone->lowmem_reserve[j];
7850 }
7851
41858966
MG
7852 /* we treat the high watermark as reserved pages. */
7853 max += high_wmark_pages(zone);
cb45b0e9 7854
3d6357de
AK
7855 if (max > managed_pages)
7856 max = managed_pages;
a8d01437 7857
281e3726 7858 pgdat->totalreserve_pages += max;
a8d01437 7859
cb45b0e9
HA
7860 reserve_pages += max;
7861 }
7862 }
7863 totalreserve_pages = reserve_pages;
7864}
7865
1da177e4
LT
7866/*
7867 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7868 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7869 * has a correct pages reserved value, so an adequate number of
7870 * pages are left in the zone after a successful __alloc_pages().
7871 */
7872static void setup_per_zone_lowmem_reserve(void)
7873{
7874 struct pglist_data *pgdat;
470c61d7 7875 enum zone_type i, j;
1da177e4 7876
ec936fc5 7877 for_each_online_pgdat(pgdat) {
470c61d7
LS
7878 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7879 struct zone *zone = &pgdat->node_zones[i];
7880 int ratio = sysctl_lowmem_reserve_ratio[i];
7881 bool clear = !ratio || !zone_managed_pages(zone);
7882 unsigned long managed_pages = 0;
7883
7884 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7885 if (clear) {
7886 zone->lowmem_reserve[j] = 0;
d3cda233 7887 } else {
470c61d7
LS
7888 struct zone *upper_zone = &pgdat->node_zones[j];
7889
7890 managed_pages += zone_managed_pages(upper_zone);
7891 zone->lowmem_reserve[j] = managed_pages / ratio;
d3cda233 7892 }
1da177e4
LT
7893 }
7894 }
7895 }
cb45b0e9
HA
7896
7897 /* update totalreserve_pages */
7898 calculate_totalreserve_pages();
1da177e4
LT
7899}
7900
cfd3da1e 7901static void __setup_per_zone_wmarks(void)
1da177e4
LT
7902{
7903 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7904 unsigned long lowmem_pages = 0;
7905 struct zone *zone;
7906 unsigned long flags;
7907
7908 /* Calculate total number of !ZONE_HIGHMEM pages */
7909 for_each_zone(zone) {
7910 if (!is_highmem(zone))
9705bea5 7911 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7912 }
7913
7914 for_each_zone(zone) {
ac924c60
AM
7915 u64 tmp;
7916
1125b4e3 7917 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7918 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7919 do_div(tmp, lowmem_pages);
1da177e4
LT
7920 if (is_highmem(zone)) {
7921 /*
669ed175
NP
7922 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7923 * need highmem pages, so cap pages_min to a small
7924 * value here.
7925 *
41858966 7926 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7927 * deltas control async page reclaim, and so should
669ed175 7928 * not be capped for highmem.
1da177e4 7929 */
90ae8d67 7930 unsigned long min_pages;
1da177e4 7931
9705bea5 7932 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7933 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7934 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7935 } else {
669ed175
NP
7936 /*
7937 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7938 * proportionate to the zone's size.
7939 */
a9214443 7940 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7941 }
7942
795ae7a0
JW
7943 /*
7944 * Set the kswapd watermarks distance according to the
7945 * scale factor in proportion to available memory, but
7946 * ensure a minimum size on small systems.
7947 */
7948 tmp = max_t(u64, tmp >> 2,
9705bea5 7949 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7950 watermark_scale_factor, 10000));
7951
aa092591 7952 zone->watermark_boost = 0;
a9214443
MG
7953 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7954 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7955
1125b4e3 7956 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7957 }
cb45b0e9
HA
7958
7959 /* update totalreserve_pages */
7960 calculate_totalreserve_pages();
1da177e4
LT
7961}
7962
cfd3da1e
MG
7963/**
7964 * setup_per_zone_wmarks - called when min_free_kbytes changes
7965 * or when memory is hot-{added|removed}
7966 *
7967 * Ensures that the watermark[min,low,high] values for each zone are set
7968 * correctly with respect to min_free_kbytes.
7969 */
7970void setup_per_zone_wmarks(void)
7971{
b93e0f32
MH
7972 static DEFINE_SPINLOCK(lock);
7973
7974 spin_lock(&lock);
cfd3da1e 7975 __setup_per_zone_wmarks();
b93e0f32 7976 spin_unlock(&lock);
cfd3da1e
MG
7977}
7978
1da177e4
LT
7979/*
7980 * Initialise min_free_kbytes.
7981 *
7982 * For small machines we want it small (128k min). For large machines
8beeae86 7983 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7984 * bandwidth does not increase linearly with machine size. We use
7985 *
b8af2941 7986 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7987 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7988 *
7989 * which yields
7990 *
7991 * 16MB: 512k
7992 * 32MB: 724k
7993 * 64MB: 1024k
7994 * 128MB: 1448k
7995 * 256MB: 2048k
7996 * 512MB: 2896k
7997 * 1024MB: 4096k
7998 * 2048MB: 5792k
7999 * 4096MB: 8192k
8000 * 8192MB: 11584k
8001 * 16384MB: 16384k
8002 */
1b79acc9 8003int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
8004{
8005 unsigned long lowmem_kbytes;
5f12733e 8006 int new_min_free_kbytes;
1da177e4
LT
8007
8008 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8009 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8010
8011 if (new_min_free_kbytes > user_min_free_kbytes) {
8012 min_free_kbytes = new_min_free_kbytes;
8013 if (min_free_kbytes < 128)
8014 min_free_kbytes = 128;
ee8eb9a5
JS
8015 if (min_free_kbytes > 262144)
8016 min_free_kbytes = 262144;
5f12733e
MH
8017 } else {
8018 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8019 new_min_free_kbytes, user_min_free_kbytes);
8020 }
bc75d33f 8021 setup_per_zone_wmarks();
a6cccdc3 8022 refresh_zone_stat_thresholds();
1da177e4 8023 setup_per_zone_lowmem_reserve();
6423aa81
JK
8024
8025#ifdef CONFIG_NUMA
8026 setup_min_unmapped_ratio();
8027 setup_min_slab_ratio();
8028#endif
8029
4aab2be0
VB
8030 khugepaged_min_free_kbytes_update();
8031
1da177e4
LT
8032 return 0;
8033}
e08d3fdf 8034postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8035
8036/*
b8af2941 8037 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8038 * that we can call two helper functions whenever min_free_kbytes
8039 * changes.
8040 */
cccad5b9 8041int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8042 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8043{
da8c757b
HP
8044 int rc;
8045
8046 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8047 if (rc)
8048 return rc;
8049
5f12733e
MH
8050 if (write) {
8051 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8052 setup_per_zone_wmarks();
5f12733e 8053 }
1da177e4
LT
8054 return 0;
8055}
8056
795ae7a0 8057int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8058 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8059{
8060 int rc;
8061
8062 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8063 if (rc)
8064 return rc;
8065
8066 if (write)
8067 setup_per_zone_wmarks();
8068
8069 return 0;
8070}
8071
9614634f 8072#ifdef CONFIG_NUMA
6423aa81 8073static void setup_min_unmapped_ratio(void)
9614634f 8074{
6423aa81 8075 pg_data_t *pgdat;
9614634f 8076 struct zone *zone;
9614634f 8077
a5f5f91d 8078 for_each_online_pgdat(pgdat)
81cbcbc2 8079 pgdat->min_unmapped_pages = 0;
a5f5f91d 8080
9614634f 8081 for_each_zone(zone)
9705bea5
AK
8082 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8083 sysctl_min_unmapped_ratio) / 100;
9614634f 8084}
0ff38490 8085
6423aa81
JK
8086
8087int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8088 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8089{
0ff38490
CL
8090 int rc;
8091
8d65af78 8092 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8093 if (rc)
8094 return rc;
8095
6423aa81
JK
8096 setup_min_unmapped_ratio();
8097
8098 return 0;
8099}
8100
8101static void setup_min_slab_ratio(void)
8102{
8103 pg_data_t *pgdat;
8104 struct zone *zone;
8105
a5f5f91d
MG
8106 for_each_online_pgdat(pgdat)
8107 pgdat->min_slab_pages = 0;
8108
0ff38490 8109 for_each_zone(zone)
9705bea5
AK
8110 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8111 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8112}
8113
8114int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8115 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8116{
8117 int rc;
8118
8119 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8120 if (rc)
8121 return rc;
8122
8123 setup_min_slab_ratio();
8124
0ff38490
CL
8125 return 0;
8126}
9614634f
CL
8127#endif
8128
1da177e4
LT
8129/*
8130 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8131 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8132 * whenever sysctl_lowmem_reserve_ratio changes.
8133 *
8134 * The reserve ratio obviously has absolutely no relation with the
41858966 8135 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8136 * if in function of the boot time zone sizes.
8137 */
cccad5b9 8138int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8139 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8140{
86aaf255
BH
8141 int i;
8142
8d65af78 8143 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8144
8145 for (i = 0; i < MAX_NR_ZONES; i++) {
8146 if (sysctl_lowmem_reserve_ratio[i] < 1)
8147 sysctl_lowmem_reserve_ratio[i] = 0;
8148 }
8149
1da177e4
LT
8150 setup_per_zone_lowmem_reserve();
8151 return 0;
8152}
8153
8ad4b1fb
RS
8154/*
8155 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8156 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8157 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8158 */
cccad5b9 8159int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8160 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8161{
8162 struct zone *zone;
7cd2b0a3 8163 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8164 int ret;
8165
7cd2b0a3
DR
8166 mutex_lock(&pcp_batch_high_lock);
8167 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8168
8d65af78 8169 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8170 if (!write || ret < 0)
8171 goto out;
8172
8173 /* Sanity checking to avoid pcp imbalance */
8174 if (percpu_pagelist_fraction &&
8175 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8176 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8177 ret = -EINVAL;
8178 goto out;
8179 }
8180
8181 /* No change? */
8182 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8183 goto out;
c8e251fa 8184
cb1ef534 8185 for_each_populated_zone(zone)
0a8b4f1d 8186 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8187out:
c8e251fa 8188 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8189 return ret;
8ad4b1fb
RS
8190}
8191
f6f34b43
SD
8192#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8193/*
8194 * Returns the number of pages that arch has reserved but
8195 * is not known to alloc_large_system_hash().
8196 */
8197static unsigned long __init arch_reserved_kernel_pages(void)
8198{
8199 return 0;
8200}
8201#endif
8202
9017217b
PT
8203/*
8204 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8205 * machines. As memory size is increased the scale is also increased but at
8206 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8207 * quadruples the scale is increased by one, which means the size of hash table
8208 * only doubles, instead of quadrupling as well.
8209 * Because 32-bit systems cannot have large physical memory, where this scaling
8210 * makes sense, it is disabled on such platforms.
8211 */
8212#if __BITS_PER_LONG > 32
8213#define ADAPT_SCALE_BASE (64ul << 30)
8214#define ADAPT_SCALE_SHIFT 2
8215#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8216#endif
8217
1da177e4
LT
8218/*
8219 * allocate a large system hash table from bootmem
8220 * - it is assumed that the hash table must contain an exact power-of-2
8221 * quantity of entries
8222 * - limit is the number of hash buckets, not the total allocation size
8223 */
8224void *__init alloc_large_system_hash(const char *tablename,
8225 unsigned long bucketsize,
8226 unsigned long numentries,
8227 int scale,
8228 int flags,
8229 unsigned int *_hash_shift,
8230 unsigned int *_hash_mask,
31fe62b9
TB
8231 unsigned long low_limit,
8232 unsigned long high_limit)
1da177e4 8233{
31fe62b9 8234 unsigned long long max = high_limit;
1da177e4
LT
8235 unsigned long log2qty, size;
8236 void *table = NULL;
3749a8f0 8237 gfp_t gfp_flags;
ec11408a 8238 bool virt;
1da177e4
LT
8239
8240 /* allow the kernel cmdline to have a say */
8241 if (!numentries) {
8242 /* round applicable memory size up to nearest megabyte */
04903664 8243 numentries = nr_kernel_pages;
f6f34b43 8244 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8245
8246 /* It isn't necessary when PAGE_SIZE >= 1MB */
8247 if (PAGE_SHIFT < 20)
8248 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8249
9017217b
PT
8250#if __BITS_PER_LONG > 32
8251 if (!high_limit) {
8252 unsigned long adapt;
8253
8254 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8255 adapt <<= ADAPT_SCALE_SHIFT)
8256 scale++;
8257 }
8258#endif
8259
1da177e4
LT
8260 /* limit to 1 bucket per 2^scale bytes of low memory */
8261 if (scale > PAGE_SHIFT)
8262 numentries >>= (scale - PAGE_SHIFT);
8263 else
8264 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8265
8266 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8267 if (unlikely(flags & HASH_SMALL)) {
8268 /* Makes no sense without HASH_EARLY */
8269 WARN_ON(!(flags & HASH_EARLY));
8270 if (!(numentries >> *_hash_shift)) {
8271 numentries = 1UL << *_hash_shift;
8272 BUG_ON(!numentries);
8273 }
8274 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8275 numentries = PAGE_SIZE / bucketsize;
1da177e4 8276 }
6e692ed3 8277 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8278
8279 /* limit allocation size to 1/16 total memory by default */
8280 if (max == 0) {
8281 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8282 do_div(max, bucketsize);
8283 }
074b8517 8284 max = min(max, 0x80000000ULL);
1da177e4 8285
31fe62b9
TB
8286 if (numentries < low_limit)
8287 numentries = low_limit;
1da177e4
LT
8288 if (numentries > max)
8289 numentries = max;
8290
f0d1b0b3 8291 log2qty = ilog2(numentries);
1da177e4 8292
3749a8f0 8293 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8294 do {
ec11408a 8295 virt = false;
1da177e4 8296 size = bucketsize << log2qty;
ea1f5f37
PT
8297 if (flags & HASH_EARLY) {
8298 if (flags & HASH_ZERO)
26fb3dae 8299 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8300 else
7e1c4e27
MR
8301 table = memblock_alloc_raw(size,
8302 SMP_CACHE_BYTES);
ec11408a 8303 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8304 table = __vmalloc(size, gfp_flags);
ec11408a 8305 virt = true;
ea1f5f37 8306 } else {
1037b83b
ED
8307 /*
8308 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8309 * some pages at the end of hash table which
8310 * alloc_pages_exact() automatically does
1037b83b 8311 */
ec11408a
NP
8312 table = alloc_pages_exact(size, gfp_flags);
8313 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8314 }
8315 } while (!table && size > PAGE_SIZE && --log2qty);
8316
8317 if (!table)
8318 panic("Failed to allocate %s hash table\n", tablename);
8319
ec11408a
NP
8320 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8321 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8322 virt ? "vmalloc" : "linear");
1da177e4
LT
8323
8324 if (_hash_shift)
8325 *_hash_shift = log2qty;
8326 if (_hash_mask)
8327 *_hash_mask = (1 << log2qty) - 1;
8328
8329 return table;
8330}
a117e66e 8331
a5d76b54 8332/*
80934513 8333 * This function checks whether pageblock includes unmovable pages or not.
80934513 8334 *
b8af2941 8335 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8336 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8337 * check without lock_page also may miss some movable non-lru pages at
8338 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8339 *
8340 * Returns a page without holding a reference. If the caller wants to
047b9967 8341 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8342 * cannot get removed (e.g., via memory unplug) concurrently.
8343 *
a5d76b54 8344 */
4a55c047
QC
8345struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8346 int migratetype, int flags)
49ac8255 8347{
1a9f2191
QC
8348 unsigned long iter = 0;
8349 unsigned long pfn = page_to_pfn(page);
6a654e36 8350 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8351
1a9f2191
QC
8352 if (is_migrate_cma_page(page)) {
8353 /*
8354 * CMA allocations (alloc_contig_range) really need to mark
8355 * isolate CMA pageblocks even when they are not movable in fact
8356 * so consider them movable here.
8357 */
8358 if (is_migrate_cma(migratetype))
4a55c047 8359 return NULL;
1a9f2191 8360
3d680bdf 8361 return page;
1a9f2191 8362 }
4da2ce25 8363
6a654e36 8364 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8365 if (!pfn_valid_within(pfn + iter))
49ac8255 8366 continue;
29723fcc 8367
fe4c86c9 8368 page = pfn_to_page(pfn + iter);
c8721bbb 8369
c9c510dc
DH
8370 /*
8371 * Both, bootmem allocations and memory holes are marked
8372 * PG_reserved and are unmovable. We can even have unmovable
8373 * allocations inside ZONE_MOVABLE, for example when
8374 * specifying "movablecore".
8375 */
d7ab3672 8376 if (PageReserved(page))
3d680bdf 8377 return page;
d7ab3672 8378
9d789999
MH
8379 /*
8380 * If the zone is movable and we have ruled out all reserved
8381 * pages then it should be reasonably safe to assume the rest
8382 * is movable.
8383 */
8384 if (zone_idx(zone) == ZONE_MOVABLE)
8385 continue;
8386
c8721bbb
NH
8387 /*
8388 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8389 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8390 * We need not scan over tail pages because we don't
c8721bbb
NH
8391 * handle each tail page individually in migration.
8392 */
1da2f328 8393 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8394 struct page *head = compound_head(page);
8395 unsigned int skip_pages;
464c7ffb 8396
1da2f328
RR
8397 if (PageHuge(page)) {
8398 if (!hugepage_migration_supported(page_hstate(head)))
8399 return page;
8400 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8401 return page;
1da2f328 8402 }
464c7ffb 8403
d8c6546b 8404 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8405 iter += skip_pages - 1;
c8721bbb
NH
8406 continue;
8407 }
8408
97d255c8
MK
8409 /*
8410 * We can't use page_count without pin a page
8411 * because another CPU can free compound page.
8412 * This check already skips compound tails of THP
0139aa7b 8413 * because their page->_refcount is zero at all time.
97d255c8 8414 */
fe896d18 8415 if (!page_ref_count(page)) {
49ac8255 8416 if (PageBuddy(page))
ab130f91 8417 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8418 continue;
8419 }
97d255c8 8420
b023f468
WC
8421 /*
8422 * The HWPoisoned page may be not in buddy system, and
8423 * page_count() is not 0.
8424 */
756d25be 8425 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8426 continue;
8427
aa218795
DH
8428 /*
8429 * We treat all PageOffline() pages as movable when offlining
8430 * to give drivers a chance to decrement their reference count
8431 * in MEM_GOING_OFFLINE in order to indicate that these pages
8432 * can be offlined as there are no direct references anymore.
8433 * For actually unmovable PageOffline() where the driver does
8434 * not support this, we will fail later when trying to actually
8435 * move these pages that still have a reference count > 0.
8436 * (false negatives in this function only)
8437 */
8438 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8439 continue;
8440
fe4c86c9 8441 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8442 continue;
8443
49ac8255 8444 /*
6b4f7799
JW
8445 * If there are RECLAIMABLE pages, we need to check
8446 * it. But now, memory offline itself doesn't call
8447 * shrink_node_slabs() and it still to be fixed.
49ac8255 8448 */
3d680bdf 8449 return page;
49ac8255 8450 }
4a55c047 8451 return NULL;
49ac8255
KH
8452}
8453
8df995f6 8454#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8455static unsigned long pfn_max_align_down(unsigned long pfn)
8456{
8457 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8458 pageblock_nr_pages) - 1);
8459}
8460
8461static unsigned long pfn_max_align_up(unsigned long pfn)
8462{
8463 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8464 pageblock_nr_pages));
8465}
8466
041d3a8c 8467/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8468static int __alloc_contig_migrate_range(struct compact_control *cc,
8469 unsigned long start, unsigned long end)
041d3a8c
MN
8470{
8471 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8472 unsigned int nr_reclaimed;
041d3a8c
MN
8473 unsigned long pfn = start;
8474 unsigned int tries = 0;
8475 int ret = 0;
8b94e0b8
JK
8476 struct migration_target_control mtc = {
8477 .nid = zone_to_nid(cc->zone),
8478 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8479 };
041d3a8c 8480
be49a6e1 8481 migrate_prep();
041d3a8c 8482
bb13ffeb 8483 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8484 if (fatal_signal_pending(current)) {
8485 ret = -EINTR;
8486 break;
8487 }
8488
bb13ffeb
MG
8489 if (list_empty(&cc->migratepages)) {
8490 cc->nr_migratepages = 0;
edc2ca61 8491 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8492 if (!pfn) {
8493 ret = -EINTR;
8494 break;
8495 }
8496 tries = 0;
8497 } else if (++tries == 5) {
8498 ret = ret < 0 ? ret : -EBUSY;
8499 break;
8500 }
8501
beb51eaa
MK
8502 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8503 &cc->migratepages);
8504 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8505
8b94e0b8
JK
8506 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8507 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8508 }
2a6f5124
SP
8509 if (ret < 0) {
8510 putback_movable_pages(&cc->migratepages);
8511 return ret;
8512 }
8513 return 0;
041d3a8c
MN
8514}
8515
8516/**
8517 * alloc_contig_range() -- tries to allocate given range of pages
8518 * @start: start PFN to allocate
8519 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8520 * @migratetype: migratetype of the underlaying pageblocks (either
8521 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8522 * in range must have the same migratetype and it must
8523 * be either of the two.
ca96b625 8524 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8525 *
8526 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8527 * aligned. The PFN range must belong to a single zone.
041d3a8c 8528 *
2c7452a0
MK
8529 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8530 * pageblocks in the range. Once isolated, the pageblocks should not
8531 * be modified by others.
041d3a8c 8532 *
a862f68a 8533 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8534 * pages which PFN is in [start, end) are allocated for the caller and
8535 * need to be freed with free_contig_range().
8536 */
0815f3d8 8537int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8538 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8539{
041d3a8c 8540 unsigned long outer_start, outer_end;
d00181b9
KS
8541 unsigned int order;
8542 int ret = 0;
041d3a8c 8543
bb13ffeb
MG
8544 struct compact_control cc = {
8545 .nr_migratepages = 0,
8546 .order = -1,
8547 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8548 .mode = MIGRATE_SYNC,
bb13ffeb 8549 .ignore_skip_hint = true,
2583d671 8550 .no_set_skip_hint = true,
7dea19f9 8551 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8552 .alloc_contig = true,
bb13ffeb
MG
8553 };
8554 INIT_LIST_HEAD(&cc.migratepages);
8555
041d3a8c
MN
8556 /*
8557 * What we do here is we mark all pageblocks in range as
8558 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8559 * have different sizes, and due to the way page allocator
8560 * work, we align the range to biggest of the two pages so
8561 * that page allocator won't try to merge buddies from
8562 * different pageblocks and change MIGRATE_ISOLATE to some
8563 * other migration type.
8564 *
8565 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8566 * migrate the pages from an unaligned range (ie. pages that
8567 * we are interested in). This will put all the pages in
8568 * range back to page allocator as MIGRATE_ISOLATE.
8569 *
8570 * When this is done, we take the pages in range from page
8571 * allocator removing them from the buddy system. This way
8572 * page allocator will never consider using them.
8573 *
8574 * This lets us mark the pageblocks back as
8575 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8576 * aligned range but not in the unaligned, original range are
8577 * put back to page allocator so that buddy can use them.
8578 */
8579
8580 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8581 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8582 if (ret)
86a595f9 8583 return ret;
041d3a8c 8584
7612921f
VB
8585 drain_all_pages(cc.zone);
8586
8ef5849f
JK
8587 /*
8588 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8589 * So, just fall through. test_pages_isolated() has a tracepoint
8590 * which will report the busy page.
8591 *
8592 * It is possible that busy pages could become available before
8593 * the call to test_pages_isolated, and the range will actually be
8594 * allocated. So, if we fall through be sure to clear ret so that
8595 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8596 */
bb13ffeb 8597 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8598 if (ret && ret != -EBUSY)
041d3a8c 8599 goto done;
63cd4489 8600 ret =0;
041d3a8c
MN
8601
8602 /*
8603 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8604 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8605 * more, all pages in [start, end) are free in page allocator.
8606 * What we are going to do is to allocate all pages from
8607 * [start, end) (that is remove them from page allocator).
8608 *
8609 * The only problem is that pages at the beginning and at the
8610 * end of interesting range may be not aligned with pages that
8611 * page allocator holds, ie. they can be part of higher order
8612 * pages. Because of this, we reserve the bigger range and
8613 * once this is done free the pages we are not interested in.
8614 *
8615 * We don't have to hold zone->lock here because the pages are
8616 * isolated thus they won't get removed from buddy.
8617 */
8618
8619 lru_add_drain_all();
041d3a8c
MN
8620
8621 order = 0;
8622 outer_start = start;
8623 while (!PageBuddy(pfn_to_page(outer_start))) {
8624 if (++order >= MAX_ORDER) {
8ef5849f
JK
8625 outer_start = start;
8626 break;
041d3a8c
MN
8627 }
8628 outer_start &= ~0UL << order;
8629 }
8630
8ef5849f 8631 if (outer_start != start) {
ab130f91 8632 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8633
8634 /*
8635 * outer_start page could be small order buddy page and
8636 * it doesn't include start page. Adjust outer_start
8637 * in this case to report failed page properly
8638 * on tracepoint in test_pages_isolated()
8639 */
8640 if (outer_start + (1UL << order) <= start)
8641 outer_start = start;
8642 }
8643
041d3a8c 8644 /* Make sure the range is really isolated. */
756d25be 8645 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8646 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8647 __func__, outer_start, end);
041d3a8c
MN
8648 ret = -EBUSY;
8649 goto done;
8650 }
8651
49f223a9 8652 /* Grab isolated pages from freelists. */
bb13ffeb 8653 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8654 if (!outer_end) {
8655 ret = -EBUSY;
8656 goto done;
8657 }
8658
8659 /* Free head and tail (if any) */
8660 if (start != outer_start)
8661 free_contig_range(outer_start, start - outer_start);
8662 if (end != outer_end)
8663 free_contig_range(end, outer_end - end);
8664
8665done:
8666 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8667 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8668 return ret;
8669}
255f5985 8670EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8671
8672static int __alloc_contig_pages(unsigned long start_pfn,
8673 unsigned long nr_pages, gfp_t gfp_mask)
8674{
8675 unsigned long end_pfn = start_pfn + nr_pages;
8676
8677 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8678 gfp_mask);
8679}
8680
8681static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8682 unsigned long nr_pages)
8683{
8684 unsigned long i, end_pfn = start_pfn + nr_pages;
8685 struct page *page;
8686
8687 for (i = start_pfn; i < end_pfn; i++) {
8688 page = pfn_to_online_page(i);
8689 if (!page)
8690 return false;
8691
8692 if (page_zone(page) != z)
8693 return false;
8694
8695 if (PageReserved(page))
8696 return false;
8697
8698 if (page_count(page) > 0)
8699 return false;
8700
8701 if (PageHuge(page))
8702 return false;
8703 }
8704 return true;
8705}
8706
8707static bool zone_spans_last_pfn(const struct zone *zone,
8708 unsigned long start_pfn, unsigned long nr_pages)
8709{
8710 unsigned long last_pfn = start_pfn + nr_pages - 1;
8711
8712 return zone_spans_pfn(zone, last_pfn);
8713}
8714
8715/**
8716 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8717 * @nr_pages: Number of contiguous pages to allocate
8718 * @gfp_mask: GFP mask to limit search and used during compaction
8719 * @nid: Target node
8720 * @nodemask: Mask for other possible nodes
8721 *
8722 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8723 * on an applicable zonelist to find a contiguous pfn range which can then be
8724 * tried for allocation with alloc_contig_range(). This routine is intended
8725 * for allocation requests which can not be fulfilled with the buddy allocator.
8726 *
8727 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8728 * power of two then the alignment is guaranteed to be to the given nr_pages
8729 * (e.g. 1GB request would be aligned to 1GB).
8730 *
8731 * Allocated pages can be freed with free_contig_range() or by manually calling
8732 * __free_page() on each allocated page.
8733 *
8734 * Return: pointer to contiguous pages on success, or NULL if not successful.
8735 */
8736struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8737 int nid, nodemask_t *nodemask)
8738{
8739 unsigned long ret, pfn, flags;
8740 struct zonelist *zonelist;
8741 struct zone *zone;
8742 struct zoneref *z;
8743
8744 zonelist = node_zonelist(nid, gfp_mask);
8745 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8746 gfp_zone(gfp_mask), nodemask) {
8747 spin_lock_irqsave(&zone->lock, flags);
8748
8749 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8750 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8751 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8752 /*
8753 * We release the zone lock here because
8754 * alloc_contig_range() will also lock the zone
8755 * at some point. If there's an allocation
8756 * spinning on this lock, it may win the race
8757 * and cause alloc_contig_range() to fail...
8758 */
8759 spin_unlock_irqrestore(&zone->lock, flags);
8760 ret = __alloc_contig_pages(pfn, nr_pages,
8761 gfp_mask);
8762 if (!ret)
8763 return pfn_to_page(pfn);
8764 spin_lock_irqsave(&zone->lock, flags);
8765 }
8766 pfn += nr_pages;
8767 }
8768 spin_unlock_irqrestore(&zone->lock, flags);
8769 }
8770 return NULL;
8771}
4eb0716e 8772#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8773
4eb0716e 8774void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8775{
bcc2b02f
MS
8776 unsigned int count = 0;
8777
8778 for (; nr_pages--; pfn++) {
8779 struct page *page = pfn_to_page(pfn);
8780
8781 count += page_count(page) != 1;
8782 __free_page(page);
8783 }
8784 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8785}
255f5985 8786EXPORT_SYMBOL(free_contig_range);
041d3a8c 8787
0a647f38
CS
8788/*
8789 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8790 * page high values need to be recalulated.
8791 */
4ed7e022
JL
8792void __meminit zone_pcp_update(struct zone *zone)
8793{
c8e251fa 8794 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8795 zone_set_pageset_high_and_batch(zone);
c8e251fa 8796 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8797}
4ed7e022 8798
ec6e8c7e
VB
8799/*
8800 * Effectively disable pcplists for the zone by setting the high limit to 0
8801 * and draining all cpus. A concurrent page freeing on another CPU that's about
8802 * to put the page on pcplist will either finish before the drain and the page
8803 * will be drained, or observe the new high limit and skip the pcplist.
8804 *
8805 * Must be paired with a call to zone_pcp_enable().
8806 */
8807void zone_pcp_disable(struct zone *zone)
8808{
8809 mutex_lock(&pcp_batch_high_lock);
8810 __zone_set_pageset_high_and_batch(zone, 0, 1);
8811 __drain_all_pages(zone, true);
8812}
8813
8814void zone_pcp_enable(struct zone *zone)
8815{
8816 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8817 mutex_unlock(&pcp_batch_high_lock);
8818}
8819
340175b7
JL
8820void zone_pcp_reset(struct zone *zone)
8821{
8822 unsigned long flags;
5a883813
MK
8823 int cpu;
8824 struct per_cpu_pageset *pset;
340175b7
JL
8825
8826 /* avoid races with drain_pages() */
8827 local_irq_save(flags);
8828 if (zone->pageset != &boot_pageset) {
5a883813
MK
8829 for_each_online_cpu(cpu) {
8830 pset = per_cpu_ptr(zone->pageset, cpu);
8831 drain_zonestat(zone, pset);
8832 }
340175b7
JL
8833 free_percpu(zone->pageset);
8834 zone->pageset = &boot_pageset;
8835 }
8836 local_irq_restore(flags);
8837}
8838
6dcd73d7 8839#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8840/*
257bea71
DH
8841 * All pages in the range must be in a single zone, must not contain holes,
8842 * must span full sections, and must be isolated before calling this function.
0c0e6195 8843 */
257bea71 8844void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8845{
257bea71 8846 unsigned long pfn = start_pfn;
0c0e6195
KH
8847 struct page *page;
8848 struct zone *zone;
0ee5f4f3 8849 unsigned int order;
0c0e6195 8850 unsigned long flags;
5557c766 8851
2d070eab 8852 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8853 zone = page_zone(pfn_to_page(pfn));
8854 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8855 while (pfn < end_pfn) {
0c0e6195 8856 page = pfn_to_page(pfn);
b023f468
WC
8857 /*
8858 * The HWPoisoned page may be not in buddy system, and
8859 * page_count() is not 0.
8860 */
8861 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8862 pfn++;
b023f468
WC
8863 continue;
8864 }
aa218795
DH
8865 /*
8866 * At this point all remaining PageOffline() pages have a
8867 * reference count of 0 and can simply be skipped.
8868 */
8869 if (PageOffline(page)) {
8870 BUG_ON(page_count(page));
8871 BUG_ON(PageBuddy(page));
8872 pfn++;
aa218795
DH
8873 continue;
8874 }
b023f468 8875
0c0e6195
KH
8876 BUG_ON(page_count(page));
8877 BUG_ON(!PageBuddy(page));
ab130f91 8878 order = buddy_order(page);
6ab01363 8879 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8880 pfn += (1 << order);
8881 }
8882 spin_unlock_irqrestore(&zone->lock, flags);
8883}
8884#endif
8d22ba1b 8885
8d22ba1b
WF
8886bool is_free_buddy_page(struct page *page)
8887{
8888 struct zone *zone = page_zone(page);
8889 unsigned long pfn = page_to_pfn(page);
8890 unsigned long flags;
7aeb09f9 8891 unsigned int order;
8d22ba1b
WF
8892
8893 spin_lock_irqsave(&zone->lock, flags);
8894 for (order = 0; order < MAX_ORDER; order++) {
8895 struct page *page_head = page - (pfn & ((1 << order) - 1));
8896
ab130f91 8897 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
8898 break;
8899 }
8900 spin_unlock_irqrestore(&zone->lock, flags);
8901
8902 return order < MAX_ORDER;
8903}
d4ae9916
NH
8904
8905#ifdef CONFIG_MEMORY_FAILURE
8906/*
06be6ff3
OS
8907 * Break down a higher-order page in sub-pages, and keep our target out of
8908 * buddy allocator.
d4ae9916 8909 */
06be6ff3
OS
8910static void break_down_buddy_pages(struct zone *zone, struct page *page,
8911 struct page *target, int low, int high,
8912 int migratetype)
8913{
8914 unsigned long size = 1 << high;
8915 struct page *current_buddy, *next_page;
8916
8917 while (high > low) {
8918 high--;
8919 size >>= 1;
8920
8921 if (target >= &page[size]) {
8922 next_page = page + size;
8923 current_buddy = page;
8924 } else {
8925 next_page = page;
8926 current_buddy = page + size;
8927 }
8928
8929 if (set_page_guard(zone, current_buddy, high, migratetype))
8930 continue;
8931
8932 if (current_buddy != target) {
8933 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 8934 set_buddy_order(current_buddy, high);
06be6ff3
OS
8935 page = next_page;
8936 }
8937 }
8938}
8939
8940/*
8941 * Take a page that will be marked as poisoned off the buddy allocator.
8942 */
8943bool take_page_off_buddy(struct page *page)
d4ae9916
NH
8944{
8945 struct zone *zone = page_zone(page);
8946 unsigned long pfn = page_to_pfn(page);
8947 unsigned long flags;
8948 unsigned int order;
06be6ff3 8949 bool ret = false;
d4ae9916
NH
8950
8951 spin_lock_irqsave(&zone->lock, flags);
8952 for (order = 0; order < MAX_ORDER; order++) {
8953 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 8954 int page_order = buddy_order(page_head);
d4ae9916 8955
ab130f91 8956 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
8957 unsigned long pfn_head = page_to_pfn(page_head);
8958 int migratetype = get_pfnblock_migratetype(page_head,
8959 pfn_head);
8960
ab130f91 8961 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 8962 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 8963 page_order, migratetype);
06be6ff3 8964 ret = true;
d4ae9916
NH
8965 break;
8966 }
06be6ff3
OS
8967 if (page_count(page_head) > 0)
8968 break;
d4ae9916
NH
8969 }
8970 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 8971 return ret;
d4ae9916
NH
8972}
8973#endif