mm, isolation: avoid checking unmovable pages across pageblock boundary
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
e4443149 71#include <linux/padata.h>
4aab2be0 72#include <linux/khugepaged.h>
1da177e4 73
7ee3d4e8 74#include <asm/sections.h>
1da177e4 75#include <asm/tlbflush.h>
ac924c60 76#include <asm/div64.h>
1da177e4 77#include "internal.h"
e900a918 78#include "shuffle.h"
36e66c55 79#include "page_reporting.h"
1da177e4 80
c8e251fa
CS
81/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
82static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 83#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 84
72812019
LS
85#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
86DEFINE_PER_CPU(int, numa_node);
87EXPORT_PER_CPU_SYMBOL(numa_node);
88#endif
89
4518085e
KW
90DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
91
7aac7898
LS
92#ifdef CONFIG_HAVE_MEMORYLESS_NODES
93/*
94 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
95 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
96 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
97 * defined in <linux/topology.h>.
98 */
99DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
100EXPORT_PER_CPU_SYMBOL(_numa_mem_);
101#endif
102
bd233f53 103/* work_structs for global per-cpu drains */
d9367bd0
WY
104struct pcpu_drain {
105 struct zone *zone;
106 struct work_struct work;
107};
8b885f53
JY
108static DEFINE_MUTEX(pcpu_drain_mutex);
109static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 110
38addce8 111#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 112volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
113EXPORT_SYMBOL(latent_entropy);
114#endif
115
1da177e4 116/*
13808910 117 * Array of node states.
1da177e4 118 */
13808910
CL
119nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
120 [N_POSSIBLE] = NODE_MASK_ALL,
121 [N_ONLINE] = { { [0] = 1UL } },
122#ifndef CONFIG_NUMA
123 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
124#ifdef CONFIG_HIGHMEM
125 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 126#endif
20b2f52b 127 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
128 [N_CPU] = { { [0] = 1UL } },
129#endif /* NUMA */
130};
131EXPORT_SYMBOL(node_states);
132
ca79b0c2
AK
133atomic_long_t _totalram_pages __read_mostly;
134EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 135unsigned long totalreserve_pages __read_mostly;
e48322ab 136unsigned long totalcma_pages __read_mostly;
ab8fabd4 137
1b76b02f 138int percpu_pagelist_fraction;
dcce284a 139gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
140#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
141DEFINE_STATIC_KEY_TRUE(init_on_alloc);
142#else
143DEFINE_STATIC_KEY_FALSE(init_on_alloc);
144#endif
145EXPORT_SYMBOL(init_on_alloc);
146
147#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
148DEFINE_STATIC_KEY_TRUE(init_on_free);
149#else
150DEFINE_STATIC_KEY_FALSE(init_on_free);
151#endif
152EXPORT_SYMBOL(init_on_free);
153
154static int __init early_init_on_alloc(char *buf)
155{
156 int ret;
157 bool bool_result;
158
159 if (!buf)
160 return -EINVAL;
161 ret = kstrtobool(buf, &bool_result);
162 if (bool_result && page_poisoning_enabled())
163 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
164 if (bool_result)
165 static_branch_enable(&init_on_alloc);
166 else
167 static_branch_disable(&init_on_alloc);
168 return ret;
169}
170early_param("init_on_alloc", early_init_on_alloc);
171
172static int __init early_init_on_free(char *buf)
173{
174 int ret;
175 bool bool_result;
176
177 if (!buf)
178 return -EINVAL;
179 ret = kstrtobool(buf, &bool_result);
180 if (bool_result && page_poisoning_enabled())
181 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
182 if (bool_result)
183 static_branch_enable(&init_on_free);
184 else
185 static_branch_disable(&init_on_free);
186 return ret;
187}
188early_param("init_on_free", early_init_on_free);
1da177e4 189
bb14c2c7
VB
190/*
191 * A cached value of the page's pageblock's migratetype, used when the page is
192 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
193 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
194 * Also the migratetype set in the page does not necessarily match the pcplist
195 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
196 * other index - this ensures that it will be put on the correct CMA freelist.
197 */
198static inline int get_pcppage_migratetype(struct page *page)
199{
200 return page->index;
201}
202
203static inline void set_pcppage_migratetype(struct page *page, int migratetype)
204{
205 page->index = migratetype;
206}
207
452aa699
RW
208#ifdef CONFIG_PM_SLEEP
209/*
210 * The following functions are used by the suspend/hibernate code to temporarily
211 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
212 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
213 * they should always be called with system_transition_mutex held
214 * (gfp_allowed_mask also should only be modified with system_transition_mutex
215 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
216 * with that modification).
452aa699 217 */
c9e664f1
RW
218
219static gfp_t saved_gfp_mask;
220
221void pm_restore_gfp_mask(void)
452aa699 222{
55f2503c 223 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
224 if (saved_gfp_mask) {
225 gfp_allowed_mask = saved_gfp_mask;
226 saved_gfp_mask = 0;
227 }
452aa699
RW
228}
229
c9e664f1 230void pm_restrict_gfp_mask(void)
452aa699 231{
55f2503c 232 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
233 WARN_ON(saved_gfp_mask);
234 saved_gfp_mask = gfp_allowed_mask;
d0164adc 235 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 236}
f90ac398
MG
237
238bool pm_suspended_storage(void)
239{
d0164adc 240 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
241 return false;
242 return true;
243}
452aa699
RW
244#endif /* CONFIG_PM_SLEEP */
245
d9c23400 246#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 247unsigned int pageblock_order __read_mostly;
d9c23400
MG
248#endif
249
d98c7a09 250static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 251
1da177e4
LT
252/*
253 * results with 256, 32 in the lowmem_reserve sysctl:
254 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
255 * 1G machine -> (16M dma, 784M normal, 224M high)
256 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
257 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 258 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
259 *
260 * TBD: should special case ZONE_DMA32 machines here - in those we normally
261 * don't need any ZONE_NORMAL reservation
1da177e4 262 */
d3cda233 263int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 264#ifdef CONFIG_ZONE_DMA
d3cda233 265 [ZONE_DMA] = 256,
4b51d669 266#endif
fb0e7942 267#ifdef CONFIG_ZONE_DMA32
d3cda233 268 [ZONE_DMA32] = 256,
fb0e7942 269#endif
d3cda233 270 [ZONE_NORMAL] = 32,
e53ef38d 271#ifdef CONFIG_HIGHMEM
d3cda233 272 [ZONE_HIGHMEM] = 0,
e53ef38d 273#endif
d3cda233 274 [ZONE_MOVABLE] = 0,
2f1b6248 275};
1da177e4 276
15ad7cdc 277static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 278#ifdef CONFIG_ZONE_DMA
2f1b6248 279 "DMA",
4b51d669 280#endif
fb0e7942 281#ifdef CONFIG_ZONE_DMA32
2f1b6248 282 "DMA32",
fb0e7942 283#endif
2f1b6248 284 "Normal",
e53ef38d 285#ifdef CONFIG_HIGHMEM
2a1e274a 286 "HighMem",
e53ef38d 287#endif
2a1e274a 288 "Movable",
033fbae9
DW
289#ifdef CONFIG_ZONE_DEVICE
290 "Device",
291#endif
2f1b6248
CL
292};
293
c999fbd3 294const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
295 "Unmovable",
296 "Movable",
297 "Reclaimable",
298 "HighAtomic",
299#ifdef CONFIG_CMA
300 "CMA",
301#endif
302#ifdef CONFIG_MEMORY_ISOLATION
303 "Isolate",
304#endif
305};
306
ae70eddd
AK
307compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
308 [NULL_COMPOUND_DTOR] = NULL,
309 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 310#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 311 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 312#endif
9a982250 313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 314 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 315#endif
f1e61557
KS
316};
317
1da177e4 318int min_free_kbytes = 1024;
42aa83cb 319int user_min_free_kbytes = -1;
24512228
MG
320#ifdef CONFIG_DISCONTIGMEM
321/*
322 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
323 * are not on separate NUMA nodes. Functionally this works but with
324 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
325 * quite small. By default, do not boost watermarks on discontigmem as in
326 * many cases very high-order allocations like THP are likely to be
327 * unsupported and the premature reclaim offsets the advantage of long-term
328 * fragmentation avoidance.
329 */
330int watermark_boost_factor __read_mostly;
331#else
1c30844d 332int watermark_boost_factor __read_mostly = 15000;
24512228 333#endif
795ae7a0 334int watermark_scale_factor = 10;
1da177e4 335
bbe5d993
OS
336static unsigned long nr_kernel_pages __initdata;
337static unsigned long nr_all_pages __initdata;
338static unsigned long dma_reserve __initdata;
1da177e4 339
bbe5d993
OS
340static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
341static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 342static unsigned long required_kernelcore __initdata;
a5c6d650 343static unsigned long required_kernelcore_percent __initdata;
7f16f91f 344static unsigned long required_movablecore __initdata;
a5c6d650 345static unsigned long required_movablecore_percent __initdata;
bbe5d993 346static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 347static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
348
349/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350int movable_zone;
351EXPORT_SYMBOL(movable_zone);
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
f1eca35a 453 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
463#else
464 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 465#endif /* CONFIG_SPARSEMEM */
399b795b 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
467}
468
469/**
470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
471 * @page: The page within the block of interest
472 * @pfn: The target page frame number
0b423ca2
MG
473 * @mask: mask of bits that the caller is interested in
474 *
475 * Return: pageblock_bits flags
476 */
535b81e2
WY
477static __always_inline
478unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 479 unsigned long pfn,
0b423ca2
MG
480 unsigned long mask)
481{
482 unsigned long *bitmap;
483 unsigned long bitidx, word_bitidx;
484 unsigned long word;
485
486 bitmap = get_pageblock_bitmap(page, pfn);
487 bitidx = pfn_to_bitidx(page, pfn);
488 word_bitidx = bitidx / BITS_PER_LONG;
489 bitidx &= (BITS_PER_LONG-1);
490
491 word = bitmap[word_bitidx];
d93d5ab9 492 return (word >> bitidx) & mask;
0b423ca2
MG
493}
494
495unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
496 unsigned long mask)
497{
535b81e2 498 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
499}
500
501static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
502{
535b81e2 503 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
504}
505
506/**
507 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
508 * @page: The page within the block of interest
509 * @flags: The flags to set
510 * @pfn: The target page frame number
0b423ca2
MG
511 * @mask: mask of bits that the caller is interested in
512 */
513void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
514 unsigned long pfn,
0b423ca2
MG
515 unsigned long mask)
516{
517 unsigned long *bitmap;
518 unsigned long bitidx, word_bitidx;
519 unsigned long old_word, word;
520
521 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 522 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
523
524 bitmap = get_pageblock_bitmap(page, pfn);
525 bitidx = pfn_to_bitidx(page, pfn);
526 word_bitidx = bitidx / BITS_PER_LONG;
527 bitidx &= (BITS_PER_LONG-1);
528
529 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
530
d93d5ab9
WY
531 mask <<= bitidx;
532 flags <<= bitidx;
0b423ca2
MG
533
534 word = READ_ONCE(bitmap[word_bitidx]);
535 for (;;) {
536 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
537 if (word == old_word)
538 break;
539 word = old_word;
540 }
541}
3a80a7fa 542
ee6f509c 543void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 544{
5d0f3f72
KM
545 if (unlikely(page_group_by_mobility_disabled &&
546 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
547 migratetype = MIGRATE_UNMOVABLE;
548
d93d5ab9 549 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 550 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
551}
552
13e7444b 553#ifdef CONFIG_DEBUG_VM
c6a57e19 554static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 555{
bdc8cb98
DH
556 int ret = 0;
557 unsigned seq;
558 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 559 unsigned long sp, start_pfn;
c6a57e19 560
bdc8cb98
DH
561 do {
562 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
563 start_pfn = zone->zone_start_pfn;
564 sp = zone->spanned_pages;
108bcc96 565 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
566 ret = 1;
567 } while (zone_span_seqretry(zone, seq));
568
b5e6a5a2 569 if (ret)
613813e8
DH
570 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
571 pfn, zone_to_nid(zone), zone->name,
572 start_pfn, start_pfn + sp);
b5e6a5a2 573
bdc8cb98 574 return ret;
c6a57e19
DH
575}
576
577static int page_is_consistent(struct zone *zone, struct page *page)
578{
14e07298 579 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 580 return 0;
1da177e4 581 if (zone != page_zone(page))
c6a57e19
DH
582 return 0;
583
584 return 1;
585}
586/*
587 * Temporary debugging check for pages not lying within a given zone.
588 */
d73d3c9f 589static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
590{
591 if (page_outside_zone_boundaries(zone, page))
1da177e4 592 return 1;
c6a57e19
DH
593 if (!page_is_consistent(zone, page))
594 return 1;
595
1da177e4
LT
596 return 0;
597}
13e7444b 598#else
d73d3c9f 599static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
600{
601 return 0;
602}
603#endif
604
82a3241a 605static void bad_page(struct page *page, const char *reason)
1da177e4 606{
d936cf9b
HD
607 static unsigned long resume;
608 static unsigned long nr_shown;
609 static unsigned long nr_unshown;
610
611 /*
612 * Allow a burst of 60 reports, then keep quiet for that minute;
613 * or allow a steady drip of one report per second.
614 */
615 if (nr_shown == 60) {
616 if (time_before(jiffies, resume)) {
617 nr_unshown++;
618 goto out;
619 }
620 if (nr_unshown) {
ff8e8116 621 pr_alert(
1e9e6365 622 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
623 nr_unshown);
624 nr_unshown = 0;
625 }
626 nr_shown = 0;
627 }
628 if (nr_shown++ == 0)
629 resume = jiffies + 60 * HZ;
630
ff8e8116 631 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 632 current->comm, page_to_pfn(page));
ff8e8116 633 __dump_page(page, reason);
4e462112 634 dump_page_owner(page);
3dc14741 635
4f31888c 636 print_modules();
1da177e4 637 dump_stack();
d936cf9b 638out:
8cc3b392 639 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 640 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 641 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
642}
643
1da177e4
LT
644/*
645 * Higher-order pages are called "compound pages". They are structured thusly:
646 *
1d798ca3 647 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 648 *
1d798ca3
KS
649 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
650 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 651 *
1d798ca3
KS
652 * The first tail page's ->compound_dtor holds the offset in array of compound
653 * page destructors. See compound_page_dtors.
1da177e4 654 *
1d798ca3 655 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 656 * This usage means that zero-order pages may not be compound.
1da177e4 657 */
d98c7a09 658
9a982250 659void free_compound_page(struct page *page)
d98c7a09 660{
7ae88534 661 mem_cgroup_uncharge(page);
d85f3385 662 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
663}
664
d00181b9 665void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
666{
667 int i;
668 int nr_pages = 1 << order;
669
18229df5
AW
670 __SetPageHead(page);
671 for (i = 1; i < nr_pages; i++) {
672 struct page *p = page + i;
58a84aa9 673 set_page_count(p, 0);
1c290f64 674 p->mapping = TAIL_MAPPING;
1d798ca3 675 set_compound_head(p, page);
18229df5 676 }
1378a5ee
MWO
677
678 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
679 set_compound_order(page, order);
53f9263b 680 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
681 if (hpage_pincount_available(page))
682 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
683}
684
c0a32fc5
SG
685#ifdef CONFIG_DEBUG_PAGEALLOC
686unsigned int _debug_guardpage_minorder;
96a2b03f 687
8e57f8ac
VB
688bool _debug_pagealloc_enabled_early __read_mostly
689 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
690EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 691DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 692EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
693
694DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 695
031bc574
JK
696static int __init early_debug_pagealloc(char *buf)
697{
8e57f8ac 698 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
699}
700early_param("debug_pagealloc", early_debug_pagealloc);
701
8e57f8ac 702void init_debug_pagealloc(void)
e30825f1 703{
031bc574
JK
704 if (!debug_pagealloc_enabled())
705 return;
706
8e57f8ac
VB
707 static_branch_enable(&_debug_pagealloc_enabled);
708
f1c1e9f7
JK
709 if (!debug_guardpage_minorder())
710 return;
711
96a2b03f 712 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
713}
714
c0a32fc5
SG
715static int __init debug_guardpage_minorder_setup(char *buf)
716{
717 unsigned long res;
718
719 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 720 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
721 return 0;
722 }
723 _debug_guardpage_minorder = res;
1170532b 724 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
725 return 0;
726}
f1c1e9f7 727early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 728
acbc15a4 729static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 730 unsigned int order, int migratetype)
c0a32fc5 731{
e30825f1 732 if (!debug_guardpage_enabled())
acbc15a4
JK
733 return false;
734
735 if (order >= debug_guardpage_minorder())
736 return false;
e30825f1 737
3972f6bb 738 __SetPageGuard(page);
2847cf95
JK
739 INIT_LIST_HEAD(&page->lru);
740 set_page_private(page, order);
741 /* Guard pages are not available for any usage */
742 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
743
744 return true;
c0a32fc5
SG
745}
746
2847cf95
JK
747static inline void clear_page_guard(struct zone *zone, struct page *page,
748 unsigned int order, int migratetype)
c0a32fc5 749{
e30825f1
JK
750 if (!debug_guardpage_enabled())
751 return;
752
3972f6bb 753 __ClearPageGuard(page);
e30825f1 754
2847cf95
JK
755 set_page_private(page, 0);
756 if (!is_migrate_isolate(migratetype))
757 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
758}
759#else
acbc15a4
JK
760static inline bool set_page_guard(struct zone *zone, struct page *page,
761 unsigned int order, int migratetype) { return false; }
2847cf95
JK
762static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype) {}
c0a32fc5
SG
764#endif
765
7aeb09f9 766static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 767{
4c21e2f2 768 set_page_private(page, order);
676165a8 769 __SetPageBuddy(page);
1da177e4
LT
770}
771
1da177e4
LT
772/*
773 * This function checks whether a page is free && is the buddy
6e292b9b 774 * we can coalesce a page and its buddy if
13ad59df 775 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 776 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
777 * (c) a page and its buddy have the same order &&
778 * (d) a page and its buddy are in the same zone.
676165a8 779 *
6e292b9b
MW
780 * For recording whether a page is in the buddy system, we set PageBuddy.
781 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 782 *
676165a8 783 * For recording page's order, we use page_private(page).
1da177e4 784 */
fe925c0c 785static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 786 unsigned int order)
1da177e4 787{
fe925c0c 788 if (!page_is_guard(buddy) && !PageBuddy(buddy))
789 return false;
4c5018ce 790
fe925c0c 791 if (page_order(buddy) != order)
792 return false;
c0a32fc5 793
fe925c0c 794 /*
795 * zone check is done late to avoid uselessly calculating
796 * zone/node ids for pages that could never merge.
797 */
798 if (page_zone_id(page) != page_zone_id(buddy))
799 return false;
d34c5fa0 800
fe925c0c 801 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 802
fe925c0c 803 return true;
1da177e4
LT
804}
805
5e1f0f09
MG
806#ifdef CONFIG_COMPACTION
807static inline struct capture_control *task_capc(struct zone *zone)
808{
809 struct capture_control *capc = current->capture_control;
810
deba0487 811 return unlikely(capc) &&
5e1f0f09
MG
812 !(current->flags & PF_KTHREAD) &&
813 !capc->page &&
deba0487 814 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
815}
816
817static inline bool
818compaction_capture(struct capture_control *capc, struct page *page,
819 int order, int migratetype)
820{
821 if (!capc || order != capc->cc->order)
822 return false;
823
824 /* Do not accidentally pollute CMA or isolated regions*/
825 if (is_migrate_cma(migratetype) ||
826 is_migrate_isolate(migratetype))
827 return false;
828
829 /*
830 * Do not let lower order allocations polluate a movable pageblock.
831 * This might let an unmovable request use a reclaimable pageblock
832 * and vice-versa but no more than normal fallback logic which can
833 * have trouble finding a high-order free page.
834 */
835 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
836 return false;
837
838 capc->page = page;
839 return true;
840}
841
842#else
843static inline struct capture_control *task_capc(struct zone *zone)
844{
845 return NULL;
846}
847
848static inline bool
849compaction_capture(struct capture_control *capc, struct page *page,
850 int order, int migratetype)
851{
852 return false;
853}
854#endif /* CONFIG_COMPACTION */
855
6ab01363
AD
856/* Used for pages not on another list */
857static inline void add_to_free_list(struct page *page, struct zone *zone,
858 unsigned int order, int migratetype)
859{
860 struct free_area *area = &zone->free_area[order];
861
862 list_add(&page->lru, &area->free_list[migratetype]);
863 area->nr_free++;
864}
865
866/* Used for pages not on another list */
867static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
868 unsigned int order, int migratetype)
869{
870 struct free_area *area = &zone->free_area[order];
871
872 list_add_tail(&page->lru, &area->free_list[migratetype]);
873 area->nr_free++;
874}
875
876/* Used for pages which are on another list */
877static inline void move_to_free_list(struct page *page, struct zone *zone,
878 unsigned int order, int migratetype)
879{
880 struct free_area *area = &zone->free_area[order];
881
882 list_move(&page->lru, &area->free_list[migratetype]);
883}
884
885static inline void del_page_from_free_list(struct page *page, struct zone *zone,
886 unsigned int order)
887{
36e66c55
AD
888 /* clear reported state and update reported page count */
889 if (page_reported(page))
890 __ClearPageReported(page);
891
6ab01363
AD
892 list_del(&page->lru);
893 __ClearPageBuddy(page);
894 set_page_private(page, 0);
895 zone->free_area[order].nr_free--;
896}
897
a2129f24
AD
898/*
899 * If this is not the largest possible page, check if the buddy
900 * of the next-highest order is free. If it is, it's possible
901 * that pages are being freed that will coalesce soon. In case,
902 * that is happening, add the free page to the tail of the list
903 * so it's less likely to be used soon and more likely to be merged
904 * as a higher order page
905 */
906static inline bool
907buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
908 struct page *page, unsigned int order)
909{
910 struct page *higher_page, *higher_buddy;
911 unsigned long combined_pfn;
912
913 if (order >= MAX_ORDER - 2)
914 return false;
915
916 if (!pfn_valid_within(buddy_pfn))
917 return false;
918
919 combined_pfn = buddy_pfn & pfn;
920 higher_page = page + (combined_pfn - pfn);
921 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
922 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
923
924 return pfn_valid_within(buddy_pfn) &&
925 page_is_buddy(higher_page, higher_buddy, order + 1);
926}
927
1da177e4
LT
928/*
929 * Freeing function for a buddy system allocator.
930 *
931 * The concept of a buddy system is to maintain direct-mapped table
932 * (containing bit values) for memory blocks of various "orders".
933 * The bottom level table contains the map for the smallest allocatable
934 * units of memory (here, pages), and each level above it describes
935 * pairs of units from the levels below, hence, "buddies".
936 * At a high level, all that happens here is marking the table entry
937 * at the bottom level available, and propagating the changes upward
938 * as necessary, plus some accounting needed to play nicely with other
939 * parts of the VM system.
940 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
941 * free pages of length of (1 << order) and marked with PageBuddy.
942 * Page's order is recorded in page_private(page) field.
1da177e4 943 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
944 * other. That is, if we allocate a small block, and both were
945 * free, the remainder of the region must be split into blocks.
1da177e4 946 * If a block is freed, and its buddy is also free, then this
5f63b720 947 * triggers coalescing into a block of larger size.
1da177e4 948 *
6d49e352 949 * -- nyc
1da177e4
LT
950 */
951
48db57f8 952static inline void __free_one_page(struct page *page,
dc4b0caf 953 unsigned long pfn,
ed0ae21d 954 struct zone *zone, unsigned int order,
36e66c55 955 int migratetype, bool report)
1da177e4 956{
a2129f24 957 struct capture_control *capc = task_capc(zone);
3f649ab7 958 unsigned long buddy_pfn;
a2129f24 959 unsigned long combined_pfn;
d9dddbf5 960 unsigned int max_order;
a2129f24
AD
961 struct page *buddy;
962 bool to_tail;
d9dddbf5
VB
963
964 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 965
d29bb978 966 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 967 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 968
ed0ae21d 969 VM_BUG_ON(migratetype == -1);
d9dddbf5 970 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 971 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 972
76741e77 973 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 974 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 975
d9dddbf5 976continue_merging:
3c605096 977 while (order < max_order - 1) {
5e1f0f09
MG
978 if (compaction_capture(capc, page, order, migratetype)) {
979 __mod_zone_freepage_state(zone, -(1 << order),
980 migratetype);
981 return;
982 }
76741e77
VB
983 buddy_pfn = __find_buddy_pfn(pfn, order);
984 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
985
986 if (!pfn_valid_within(buddy_pfn))
987 goto done_merging;
cb2b95e1 988 if (!page_is_buddy(page, buddy, order))
d9dddbf5 989 goto done_merging;
c0a32fc5
SG
990 /*
991 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
992 * merge with it and move up one order.
993 */
b03641af 994 if (page_is_guard(buddy))
2847cf95 995 clear_page_guard(zone, buddy, order, migratetype);
b03641af 996 else
6ab01363 997 del_page_from_free_list(buddy, zone, order);
76741e77
VB
998 combined_pfn = buddy_pfn & pfn;
999 page = page + (combined_pfn - pfn);
1000 pfn = combined_pfn;
1da177e4
LT
1001 order++;
1002 }
d9dddbf5
VB
1003 if (max_order < MAX_ORDER) {
1004 /* If we are here, it means order is >= pageblock_order.
1005 * We want to prevent merge between freepages on isolate
1006 * pageblock and normal pageblock. Without this, pageblock
1007 * isolation could cause incorrect freepage or CMA accounting.
1008 *
1009 * We don't want to hit this code for the more frequent
1010 * low-order merging.
1011 */
1012 if (unlikely(has_isolate_pageblock(zone))) {
1013 int buddy_mt;
1014
76741e77
VB
1015 buddy_pfn = __find_buddy_pfn(pfn, order);
1016 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1017 buddy_mt = get_pageblock_migratetype(buddy);
1018
1019 if (migratetype != buddy_mt
1020 && (is_migrate_isolate(migratetype) ||
1021 is_migrate_isolate(buddy_mt)))
1022 goto done_merging;
1023 }
1024 max_order++;
1025 goto continue_merging;
1026 }
1027
1028done_merging:
1da177e4 1029 set_page_order(page, order);
6dda9d55 1030
97500a4a 1031 if (is_shuffle_order(order))
a2129f24 1032 to_tail = shuffle_pick_tail();
97500a4a 1033 else
a2129f24 1034 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1035
a2129f24 1036 if (to_tail)
6ab01363 1037 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1038 else
6ab01363 1039 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1040
1041 /* Notify page reporting subsystem of freed page */
1042 if (report)
1043 page_reporting_notify_free(order);
1da177e4
LT
1044}
1045
7bfec6f4
MG
1046/*
1047 * A bad page could be due to a number of fields. Instead of multiple branches,
1048 * try and check multiple fields with one check. The caller must do a detailed
1049 * check if necessary.
1050 */
1051static inline bool page_expected_state(struct page *page,
1052 unsigned long check_flags)
1053{
1054 if (unlikely(atomic_read(&page->_mapcount) != -1))
1055 return false;
1056
1057 if (unlikely((unsigned long)page->mapping |
1058 page_ref_count(page) |
1059#ifdef CONFIG_MEMCG
1060 (unsigned long)page->mem_cgroup |
1061#endif
1062 (page->flags & check_flags)))
1063 return false;
1064
1065 return true;
1066}
1067
58b7f119 1068static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1069{
82a3241a 1070 const char *bad_reason = NULL;
f0b791a3 1071
53f9263b 1072 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1073 bad_reason = "nonzero mapcount";
1074 if (unlikely(page->mapping != NULL))
1075 bad_reason = "non-NULL mapping";
fe896d18 1076 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1077 bad_reason = "nonzero _refcount";
58b7f119
WY
1078 if (unlikely(page->flags & flags)) {
1079 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1080 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1081 else
1082 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1083 }
9edad6ea
JW
1084#ifdef CONFIG_MEMCG
1085 if (unlikely(page->mem_cgroup))
1086 bad_reason = "page still charged to cgroup";
1087#endif
58b7f119
WY
1088 return bad_reason;
1089}
1090
1091static void check_free_page_bad(struct page *page)
1092{
1093 bad_page(page,
1094 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1095}
1096
534fe5e3 1097static inline int check_free_page(struct page *page)
bb552ac6 1098{
da838d4f 1099 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1100 return 0;
bb552ac6
MG
1101
1102 /* Something has gone sideways, find it */
0d0c48a2 1103 check_free_page_bad(page);
7bfec6f4 1104 return 1;
1da177e4
LT
1105}
1106
4db7548c
MG
1107static int free_tail_pages_check(struct page *head_page, struct page *page)
1108{
1109 int ret = 1;
1110
1111 /*
1112 * We rely page->lru.next never has bit 0 set, unless the page
1113 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1114 */
1115 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1116
1117 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1118 ret = 0;
1119 goto out;
1120 }
1121 switch (page - head_page) {
1122 case 1:
4da1984e 1123 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1124 if (unlikely(compound_mapcount(page))) {
82a3241a 1125 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1126 goto out;
1127 }
1128 break;
1129 case 2:
1130 /*
1131 * the second tail page: ->mapping is
fa3015b7 1132 * deferred_list.next -- ignore value.
4db7548c
MG
1133 */
1134 break;
1135 default:
1136 if (page->mapping != TAIL_MAPPING) {
82a3241a 1137 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1138 goto out;
1139 }
1140 break;
1141 }
1142 if (unlikely(!PageTail(page))) {
82a3241a 1143 bad_page(page, "PageTail not set");
4db7548c
MG
1144 goto out;
1145 }
1146 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1147 bad_page(page, "compound_head not consistent");
4db7548c
MG
1148 goto out;
1149 }
1150 ret = 0;
1151out:
1152 page->mapping = NULL;
1153 clear_compound_head(page);
1154 return ret;
1155}
1156
6471384a
AP
1157static void kernel_init_free_pages(struct page *page, int numpages)
1158{
1159 int i;
1160
9e15afa5
QC
1161 /* s390's use of memset() could override KASAN redzones. */
1162 kasan_disable_current();
6471384a
AP
1163 for (i = 0; i < numpages; i++)
1164 clear_highpage(page + i);
9e15afa5 1165 kasan_enable_current();
6471384a
AP
1166}
1167
e2769dbd
MG
1168static __always_inline bool free_pages_prepare(struct page *page,
1169 unsigned int order, bool check_free)
4db7548c 1170{
e2769dbd 1171 int bad = 0;
4db7548c 1172
4db7548c
MG
1173 VM_BUG_ON_PAGE(PageTail(page), page);
1174
e2769dbd 1175 trace_mm_page_free(page, order);
e2769dbd
MG
1176
1177 /*
1178 * Check tail pages before head page information is cleared to
1179 * avoid checking PageCompound for order-0 pages.
1180 */
1181 if (unlikely(order)) {
1182 bool compound = PageCompound(page);
1183 int i;
1184
1185 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1186
9a73f61b
KS
1187 if (compound)
1188 ClearPageDoubleMap(page);
e2769dbd
MG
1189 for (i = 1; i < (1 << order); i++) {
1190 if (compound)
1191 bad += free_tail_pages_check(page, page + i);
534fe5e3 1192 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1193 bad++;
1194 continue;
1195 }
1196 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1197 }
1198 }
bda807d4 1199 if (PageMappingFlags(page))
4db7548c 1200 page->mapping = NULL;
c4159a75 1201 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1202 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1203 if (check_free)
534fe5e3 1204 bad += check_free_page(page);
e2769dbd
MG
1205 if (bad)
1206 return false;
4db7548c 1207
e2769dbd
MG
1208 page_cpupid_reset_last(page);
1209 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1210 reset_page_owner(page, order);
4db7548c
MG
1211
1212 if (!PageHighMem(page)) {
1213 debug_check_no_locks_freed(page_address(page),
e2769dbd 1214 PAGE_SIZE << order);
4db7548c 1215 debug_check_no_obj_freed(page_address(page),
e2769dbd 1216 PAGE_SIZE << order);
4db7548c 1217 }
6471384a
AP
1218 if (want_init_on_free())
1219 kernel_init_free_pages(page, 1 << order);
1220
e2769dbd 1221 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1222 /*
1223 * arch_free_page() can make the page's contents inaccessible. s390
1224 * does this. So nothing which can access the page's contents should
1225 * happen after this.
1226 */
1227 arch_free_page(page, order);
1228
8e57f8ac 1229 if (debug_pagealloc_enabled_static())
d6332692
RE
1230 kernel_map_pages(page, 1 << order, 0);
1231
3c0c12cc 1232 kasan_free_nondeferred_pages(page, order);
4db7548c 1233
4db7548c
MG
1234 return true;
1235}
1236
e2769dbd 1237#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1238/*
1239 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1240 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1241 * moved from pcp lists to free lists.
1242 */
1243static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1244{
1245 return free_pages_prepare(page, 0, true);
1246}
1247
4462b32c 1248static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1249{
8e57f8ac 1250 if (debug_pagealloc_enabled_static())
534fe5e3 1251 return check_free_page(page);
4462b32c
VB
1252 else
1253 return false;
e2769dbd
MG
1254}
1255#else
4462b32c
VB
1256/*
1257 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1258 * moving from pcp lists to free list in order to reduce overhead. With
1259 * debug_pagealloc enabled, they are checked also immediately when being freed
1260 * to the pcp lists.
1261 */
e2769dbd
MG
1262static bool free_pcp_prepare(struct page *page)
1263{
8e57f8ac 1264 if (debug_pagealloc_enabled_static())
4462b32c
VB
1265 return free_pages_prepare(page, 0, true);
1266 else
1267 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1268}
1269
4db7548c
MG
1270static bool bulkfree_pcp_prepare(struct page *page)
1271{
534fe5e3 1272 return check_free_page(page);
4db7548c
MG
1273}
1274#endif /* CONFIG_DEBUG_VM */
1275
97334162
AL
1276static inline void prefetch_buddy(struct page *page)
1277{
1278 unsigned long pfn = page_to_pfn(page);
1279 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1280 struct page *buddy = page + (buddy_pfn - pfn);
1281
1282 prefetch(buddy);
1283}
1284
1da177e4 1285/*
5f8dcc21 1286 * Frees a number of pages from the PCP lists
1da177e4 1287 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1288 * count is the number of pages to free.
1da177e4
LT
1289 *
1290 * If the zone was previously in an "all pages pinned" state then look to
1291 * see if this freeing clears that state.
1292 *
1293 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1294 * pinned" detection logic.
1295 */
5f8dcc21
MG
1296static void free_pcppages_bulk(struct zone *zone, int count,
1297 struct per_cpu_pages *pcp)
1da177e4 1298{
5f8dcc21 1299 int migratetype = 0;
a6f9edd6 1300 int batch_free = 0;
97334162 1301 int prefetch_nr = 0;
3777999d 1302 bool isolated_pageblocks;
0a5f4e5b
AL
1303 struct page *page, *tmp;
1304 LIST_HEAD(head);
f2260e6b 1305
88e8ac11
CTR
1306 /*
1307 * Ensure proper count is passed which otherwise would stuck in the
1308 * below while (list_empty(list)) loop.
1309 */
1310 count = min(pcp->count, count);
e5b31ac2 1311 while (count) {
5f8dcc21
MG
1312 struct list_head *list;
1313
1314 /*
a6f9edd6
MG
1315 * Remove pages from lists in a round-robin fashion. A
1316 * batch_free count is maintained that is incremented when an
1317 * empty list is encountered. This is so more pages are freed
1318 * off fuller lists instead of spinning excessively around empty
1319 * lists
5f8dcc21
MG
1320 */
1321 do {
a6f9edd6 1322 batch_free++;
5f8dcc21
MG
1323 if (++migratetype == MIGRATE_PCPTYPES)
1324 migratetype = 0;
1325 list = &pcp->lists[migratetype];
1326 } while (list_empty(list));
48db57f8 1327
1d16871d
NK
1328 /* This is the only non-empty list. Free them all. */
1329 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1330 batch_free = count;
1d16871d 1331
a6f9edd6 1332 do {
a16601c5 1333 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1334 /* must delete to avoid corrupting pcp list */
a6f9edd6 1335 list_del(&page->lru);
77ba9062 1336 pcp->count--;
aa016d14 1337
4db7548c
MG
1338 if (bulkfree_pcp_prepare(page))
1339 continue;
1340
0a5f4e5b 1341 list_add_tail(&page->lru, &head);
97334162
AL
1342
1343 /*
1344 * We are going to put the page back to the global
1345 * pool, prefetch its buddy to speed up later access
1346 * under zone->lock. It is believed the overhead of
1347 * an additional test and calculating buddy_pfn here
1348 * can be offset by reduced memory latency later. To
1349 * avoid excessive prefetching due to large count, only
1350 * prefetch buddy for the first pcp->batch nr of pages.
1351 */
1352 if (prefetch_nr++ < pcp->batch)
1353 prefetch_buddy(page);
e5b31ac2 1354 } while (--count && --batch_free && !list_empty(list));
1da177e4 1355 }
0a5f4e5b
AL
1356
1357 spin_lock(&zone->lock);
1358 isolated_pageblocks = has_isolate_pageblock(zone);
1359
1360 /*
1361 * Use safe version since after __free_one_page(),
1362 * page->lru.next will not point to original list.
1363 */
1364 list_for_each_entry_safe(page, tmp, &head, lru) {
1365 int mt = get_pcppage_migratetype(page);
1366 /* MIGRATE_ISOLATE page should not go to pcplists */
1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368 /* Pageblock could have been isolated meanwhile */
1369 if (unlikely(isolated_pageblocks))
1370 mt = get_pageblock_migratetype(page);
1371
36e66c55 1372 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1373 trace_mm_page_pcpu_drain(page, 0, mt);
1374 }
d34b0733 1375 spin_unlock(&zone->lock);
1da177e4
LT
1376}
1377
dc4b0caf
MG
1378static void free_one_page(struct zone *zone,
1379 struct page *page, unsigned long pfn,
7aeb09f9 1380 unsigned int order,
ed0ae21d 1381 int migratetype)
1da177e4 1382{
d34b0733 1383 spin_lock(&zone->lock);
ad53f92e
JK
1384 if (unlikely(has_isolate_pageblock(zone) ||
1385 is_migrate_isolate(migratetype))) {
1386 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1387 }
36e66c55 1388 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1389 spin_unlock(&zone->lock);
48db57f8
NP
1390}
1391
1e8ce83c 1392static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1393 unsigned long zone, int nid)
1e8ce83c 1394{
d0dc12e8 1395 mm_zero_struct_page(page);
1e8ce83c 1396 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1397 init_page_count(page);
1398 page_mapcount_reset(page);
1399 page_cpupid_reset_last(page);
2813b9c0 1400 page_kasan_tag_reset(page);
1e8ce83c 1401
1e8ce83c
RH
1402 INIT_LIST_HEAD(&page->lru);
1403#ifdef WANT_PAGE_VIRTUAL
1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 if (!is_highmem_idx(zone))
1406 set_page_address(page, __va(pfn << PAGE_SHIFT));
1407#endif
1408}
1409
7e18adb4 1410#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1411static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1412{
1413 pg_data_t *pgdat;
1414 int nid, zid;
1415
1416 if (!early_page_uninitialised(pfn))
1417 return;
1418
1419 nid = early_pfn_to_nid(pfn);
1420 pgdat = NODE_DATA(nid);
1421
1422 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423 struct zone *zone = &pgdat->node_zones[zid];
1424
1425 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426 break;
1427 }
d0dc12e8 1428 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1429}
1430#else
1431static inline void init_reserved_page(unsigned long pfn)
1432{
1433}
1434#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435
92923ca3
NZ
1436/*
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1441 */
4b50bcc7 1442void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1443{
1444 unsigned long start_pfn = PFN_DOWN(start);
1445 unsigned long end_pfn = PFN_UP(end);
1446
7e18adb4
MG
1447 for (; start_pfn < end_pfn; start_pfn++) {
1448 if (pfn_valid(start_pfn)) {
1449 struct page *page = pfn_to_page(start_pfn);
1450
1451 init_reserved_page(start_pfn);
1d798ca3
KS
1452
1453 /* Avoid false-positive PageTail() */
1454 INIT_LIST_HEAD(&page->lru);
1455
d483da5b
AD
1456 /*
1457 * no need for atomic set_bit because the struct
1458 * page is not visible yet so nobody should
1459 * access it yet.
1460 */
1461 __SetPageReserved(page);
7e18adb4
MG
1462 }
1463 }
92923ca3
NZ
1464}
1465
ec95f53a
KM
1466static void __free_pages_ok(struct page *page, unsigned int order)
1467{
d34b0733 1468 unsigned long flags;
95e34412 1469 int migratetype;
dc4b0caf 1470 unsigned long pfn = page_to_pfn(page);
ec95f53a 1471
e2769dbd 1472 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1473 return;
1474
cfc47a28 1475 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1476 local_irq_save(flags);
1477 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1478 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1479 local_irq_restore(flags);
1da177e4
LT
1480}
1481
a9cd410a 1482void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1483{
c3993076 1484 unsigned int nr_pages = 1 << order;
e2d0bd2b 1485 struct page *p = page;
c3993076 1486 unsigned int loop;
a226f6c8 1487
e2d0bd2b
YL
1488 prefetchw(p);
1489 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 prefetchw(p + 1);
c3993076
JW
1491 __ClearPageReserved(p);
1492 set_page_count(p, 0);
a226f6c8 1493 }
e2d0bd2b
YL
1494 __ClearPageReserved(p);
1495 set_page_count(p, 0);
c3993076 1496
9705bea5 1497 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1498 set_page_refcounted(page);
1499 __free_pages(page, order);
a226f6c8
DH
1500}
1501
3f08a302 1502#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1503
75a592a4
MG
1504static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1505
6f24fbd3
MR
1506#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1507
1508/*
1509 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1510 */
1511int __meminit __early_pfn_to_nid(unsigned long pfn,
1512 struct mminit_pfnnid_cache *state)
75a592a4 1513{
6f24fbd3 1514 unsigned long start_pfn, end_pfn;
75a592a4
MG
1515 int nid;
1516
6f24fbd3
MR
1517 if (state->last_start <= pfn && pfn < state->last_end)
1518 return state->last_nid;
1519
1520 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1521 if (nid != NUMA_NO_NODE) {
1522 state->last_start = start_pfn;
1523 state->last_end = end_pfn;
1524 state->last_nid = nid;
1525 }
7ace9917
MG
1526
1527 return nid;
75a592a4 1528}
6f24fbd3 1529#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
75a592a4 1530
75a592a4 1531int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1532{
7ace9917 1533 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1534 int nid;
1535
7ace9917 1536 spin_lock(&early_pfn_lock);
56ec43d8 1537 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1538 if (nid < 0)
e4568d38 1539 nid = first_online_node;
7ace9917 1540 spin_unlock(&early_pfn_lock);
75a592a4 1541
7ace9917 1542 return nid;
75a592a4 1543}
3f08a302 1544#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1545
7c2ee349 1546void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1547 unsigned int order)
1548{
1549 if (early_page_uninitialised(pfn))
1550 return;
a9cd410a 1551 __free_pages_core(page, order);
3a80a7fa
MG
1552}
1553
7cf91a98
JK
1554/*
1555 * Check that the whole (or subset of) a pageblock given by the interval of
1556 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1557 * with the migration of free compaction scanner. The scanners then need to
1558 * use only pfn_valid_within() check for arches that allow holes within
1559 * pageblocks.
1560 *
1561 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1562 *
1563 * It's possible on some configurations to have a setup like node0 node1 node0
1564 * i.e. it's possible that all pages within a zones range of pages do not
1565 * belong to a single zone. We assume that a border between node0 and node1
1566 * can occur within a single pageblock, but not a node0 node1 node0
1567 * interleaving within a single pageblock. It is therefore sufficient to check
1568 * the first and last page of a pageblock and avoid checking each individual
1569 * page in a pageblock.
1570 */
1571struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1572 unsigned long end_pfn, struct zone *zone)
1573{
1574 struct page *start_page;
1575 struct page *end_page;
1576
1577 /* end_pfn is one past the range we are checking */
1578 end_pfn--;
1579
1580 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1581 return NULL;
1582
2d070eab
MH
1583 start_page = pfn_to_online_page(start_pfn);
1584 if (!start_page)
1585 return NULL;
7cf91a98
JK
1586
1587 if (page_zone(start_page) != zone)
1588 return NULL;
1589
1590 end_page = pfn_to_page(end_pfn);
1591
1592 /* This gives a shorter code than deriving page_zone(end_page) */
1593 if (page_zone_id(start_page) != page_zone_id(end_page))
1594 return NULL;
1595
1596 return start_page;
1597}
1598
1599void set_zone_contiguous(struct zone *zone)
1600{
1601 unsigned long block_start_pfn = zone->zone_start_pfn;
1602 unsigned long block_end_pfn;
1603
1604 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1605 for (; block_start_pfn < zone_end_pfn(zone);
1606 block_start_pfn = block_end_pfn,
1607 block_end_pfn += pageblock_nr_pages) {
1608
1609 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1610
1611 if (!__pageblock_pfn_to_page(block_start_pfn,
1612 block_end_pfn, zone))
1613 return;
e84fe99b 1614 cond_resched();
7cf91a98
JK
1615 }
1616
1617 /* We confirm that there is no hole */
1618 zone->contiguous = true;
1619}
1620
1621void clear_zone_contiguous(struct zone *zone)
1622{
1623 zone->contiguous = false;
1624}
1625
7e18adb4 1626#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1627static void __init deferred_free_range(unsigned long pfn,
1628 unsigned long nr_pages)
a4de83dd 1629{
2f47a91f
PT
1630 struct page *page;
1631 unsigned long i;
a4de83dd 1632
2f47a91f 1633 if (!nr_pages)
a4de83dd
MG
1634 return;
1635
2f47a91f
PT
1636 page = pfn_to_page(pfn);
1637
a4de83dd 1638 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1639 if (nr_pages == pageblock_nr_pages &&
1640 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1641 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1642 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1643 return;
1644 }
1645
e780149b
XQ
1646 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1647 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1648 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1649 __free_pages_core(page, 0);
e780149b 1650 }
a4de83dd
MG
1651}
1652
d3cd131d
NS
1653/* Completion tracking for deferred_init_memmap() threads */
1654static atomic_t pgdat_init_n_undone __initdata;
1655static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1656
1657static inline void __init pgdat_init_report_one_done(void)
1658{
1659 if (atomic_dec_and_test(&pgdat_init_n_undone))
1660 complete(&pgdat_init_all_done_comp);
1661}
0e1cc95b 1662
2f47a91f 1663/*
80b1f41c
PT
1664 * Returns true if page needs to be initialized or freed to buddy allocator.
1665 *
1666 * First we check if pfn is valid on architectures where it is possible to have
1667 * holes within pageblock_nr_pages. On systems where it is not possible, this
1668 * function is optimized out.
1669 *
1670 * Then, we check if a current large page is valid by only checking the validity
1671 * of the head pfn.
2f47a91f 1672 */
56ec43d8 1673static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1674{
80b1f41c
PT
1675 if (!pfn_valid_within(pfn))
1676 return false;
1677 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1678 return false;
80b1f41c
PT
1679 return true;
1680}
2f47a91f 1681
80b1f41c
PT
1682/*
1683 * Free pages to buddy allocator. Try to free aligned pages in
1684 * pageblock_nr_pages sizes.
1685 */
56ec43d8 1686static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1687 unsigned long end_pfn)
1688{
80b1f41c
PT
1689 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1690 unsigned long nr_free = 0;
2f47a91f 1691
80b1f41c 1692 for (; pfn < end_pfn; pfn++) {
56ec43d8 1693 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1694 deferred_free_range(pfn - nr_free, nr_free);
1695 nr_free = 0;
1696 } else if (!(pfn & nr_pgmask)) {
1697 deferred_free_range(pfn - nr_free, nr_free);
1698 nr_free = 1;
80b1f41c
PT
1699 } else {
1700 nr_free++;
1701 }
1702 }
1703 /* Free the last block of pages to allocator */
1704 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1705}
1706
80b1f41c
PT
1707/*
1708 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1709 * by performing it only once every pageblock_nr_pages.
1710 * Return number of pages initialized.
1711 */
56ec43d8 1712static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1713 unsigned long pfn,
1714 unsigned long end_pfn)
2f47a91f 1715{
2f47a91f 1716 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1717 int nid = zone_to_nid(zone);
2f47a91f 1718 unsigned long nr_pages = 0;
56ec43d8 1719 int zid = zone_idx(zone);
2f47a91f 1720 struct page *page = NULL;
2f47a91f 1721
80b1f41c 1722 for (; pfn < end_pfn; pfn++) {
56ec43d8 1723 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1724 page = NULL;
2f47a91f 1725 continue;
80b1f41c 1726 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1727 page = pfn_to_page(pfn);
80b1f41c
PT
1728 } else {
1729 page++;
2f47a91f 1730 }
d0dc12e8 1731 __init_single_page(page, pfn, zid, nid);
80b1f41c 1732 nr_pages++;
2f47a91f 1733 }
80b1f41c 1734 return (nr_pages);
2f47a91f
PT
1735}
1736
0e56acae
AD
1737/*
1738 * This function is meant to pre-load the iterator for the zone init.
1739 * Specifically it walks through the ranges until we are caught up to the
1740 * first_init_pfn value and exits there. If we never encounter the value we
1741 * return false indicating there are no valid ranges left.
1742 */
1743static bool __init
1744deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1745 unsigned long *spfn, unsigned long *epfn,
1746 unsigned long first_init_pfn)
1747{
1748 u64 j;
1749
1750 /*
1751 * Start out by walking through the ranges in this zone that have
1752 * already been initialized. We don't need to do anything with them
1753 * so we just need to flush them out of the system.
1754 */
1755 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1756 if (*epfn <= first_init_pfn)
1757 continue;
1758 if (*spfn < first_init_pfn)
1759 *spfn = first_init_pfn;
1760 *i = j;
1761 return true;
1762 }
1763
1764 return false;
1765}
1766
1767/*
1768 * Initialize and free pages. We do it in two loops: first we initialize
1769 * struct page, then free to buddy allocator, because while we are
1770 * freeing pages we can access pages that are ahead (computing buddy
1771 * page in __free_one_page()).
1772 *
1773 * In order to try and keep some memory in the cache we have the loop
1774 * broken along max page order boundaries. This way we will not cause
1775 * any issues with the buddy page computation.
1776 */
1777static unsigned long __init
1778deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1779 unsigned long *end_pfn)
1780{
1781 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1782 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1783 unsigned long nr_pages = 0;
1784 u64 j = *i;
1785
1786 /* First we loop through and initialize the page values */
1787 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1788 unsigned long t;
1789
1790 if (mo_pfn <= *start_pfn)
1791 break;
1792
1793 t = min(mo_pfn, *end_pfn);
1794 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1795
1796 if (mo_pfn < *end_pfn) {
1797 *start_pfn = mo_pfn;
1798 break;
1799 }
1800 }
1801
1802 /* Reset values and now loop through freeing pages as needed */
1803 swap(j, *i);
1804
1805 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1806 unsigned long t;
1807
1808 if (mo_pfn <= spfn)
1809 break;
1810
1811 t = min(mo_pfn, epfn);
1812 deferred_free_pages(spfn, t);
1813
1814 if (mo_pfn <= epfn)
1815 break;
1816 }
1817
1818 return nr_pages;
1819}
1820
e4443149
DJ
1821static void __init
1822deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1823 void *arg)
1824{
1825 unsigned long spfn, epfn;
1826 struct zone *zone = arg;
1827 u64 i;
1828
1829 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1830
1831 /*
1832 * Initialize and free pages in MAX_ORDER sized increments so that we
1833 * can avoid introducing any issues with the buddy allocator.
1834 */
1835 while (spfn < end_pfn) {
1836 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1837 cond_resched();
1838 }
1839}
1840
ecd09650
DJ
1841/* An arch may override for more concurrency. */
1842__weak int __init
1843deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1844{
1845 return 1;
1846}
1847
7e18adb4 1848/* Initialise remaining memory on a node */
0e1cc95b 1849static int __init deferred_init_memmap(void *data)
7e18adb4 1850{
0e1cc95b 1851 pg_data_t *pgdat = data;
0e56acae 1852 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1853 unsigned long spfn = 0, epfn = 0;
0e56acae 1854 unsigned long first_init_pfn, flags;
7e18adb4 1855 unsigned long start = jiffies;
7e18adb4 1856 struct zone *zone;
e4443149 1857 int zid, max_threads;
2f47a91f 1858 u64 i;
7e18adb4 1859
3a2d7fa8
PT
1860 /* Bind memory initialisation thread to a local node if possible */
1861 if (!cpumask_empty(cpumask))
1862 set_cpus_allowed_ptr(current, cpumask);
1863
1864 pgdat_resize_lock(pgdat, &flags);
1865 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1866 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1867 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1868 pgdat_init_report_one_done();
0e1cc95b
MG
1869 return 0;
1870 }
1871
7e18adb4
MG
1872 /* Sanity check boundaries */
1873 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1874 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1875 pgdat->first_deferred_pfn = ULONG_MAX;
1876
3d060856
PT
1877 /*
1878 * Once we unlock here, the zone cannot be grown anymore, thus if an
1879 * interrupt thread must allocate this early in boot, zone must be
1880 * pre-grown prior to start of deferred page initialization.
1881 */
1882 pgdat_resize_unlock(pgdat, &flags);
1883
7e18adb4
MG
1884 /* Only the highest zone is deferred so find it */
1885 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1886 zone = pgdat->node_zones + zid;
1887 if (first_init_pfn < zone_end_pfn(zone))
1888 break;
1889 }
0e56acae
AD
1890
1891 /* If the zone is empty somebody else may have cleared out the zone */
1892 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1893 first_init_pfn))
1894 goto zone_empty;
7e18adb4 1895
ecd09650 1896 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1897
117003c3 1898 while (spfn < epfn) {
e4443149
DJ
1899 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1900 struct padata_mt_job job = {
1901 .thread_fn = deferred_init_memmap_chunk,
1902 .fn_arg = zone,
1903 .start = spfn,
1904 .size = epfn_align - spfn,
1905 .align = PAGES_PER_SECTION,
1906 .min_chunk = PAGES_PER_SECTION,
1907 .max_threads = max_threads,
1908 };
1909
1910 padata_do_multithreaded(&job);
1911 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1912 epfn_align);
117003c3 1913 }
0e56acae 1914zone_empty:
7e18adb4
MG
1915 /* Sanity check that the next zone really is unpopulated */
1916 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1917
89c7c402
DJ
1918 pr_info("node %d deferred pages initialised in %ums\n",
1919 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1920
1921 pgdat_init_report_one_done();
0e1cc95b
MG
1922 return 0;
1923}
c9e97a19 1924
c9e97a19
PT
1925/*
1926 * If this zone has deferred pages, try to grow it by initializing enough
1927 * deferred pages to satisfy the allocation specified by order, rounded up to
1928 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1929 * of SECTION_SIZE bytes by initializing struct pages in increments of
1930 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1931 *
1932 * Return true when zone was grown, otherwise return false. We return true even
1933 * when we grow less than requested, to let the caller decide if there are
1934 * enough pages to satisfy the allocation.
1935 *
1936 * Note: We use noinline because this function is needed only during boot, and
1937 * it is called from a __ref function _deferred_grow_zone. This way we are
1938 * making sure that it is not inlined into permanent text section.
1939 */
1940static noinline bool __init
1941deferred_grow_zone(struct zone *zone, unsigned int order)
1942{
c9e97a19 1943 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1944 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1945 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1946 unsigned long spfn, epfn, flags;
1947 unsigned long nr_pages = 0;
c9e97a19
PT
1948 u64 i;
1949
1950 /* Only the last zone may have deferred pages */
1951 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1952 return false;
1953
1954 pgdat_resize_lock(pgdat, &flags);
1955
c9e97a19
PT
1956 /*
1957 * If someone grew this zone while we were waiting for spinlock, return
1958 * true, as there might be enough pages already.
1959 */
1960 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1961 pgdat_resize_unlock(pgdat, &flags);
1962 return true;
1963 }
1964
0e56acae
AD
1965 /* If the zone is empty somebody else may have cleared out the zone */
1966 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1967 first_deferred_pfn)) {
1968 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1969 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1970 /* Retry only once. */
1971 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1972 }
1973
0e56acae
AD
1974 /*
1975 * Initialize and free pages in MAX_ORDER sized increments so
1976 * that we can avoid introducing any issues with the buddy
1977 * allocator.
1978 */
1979 while (spfn < epfn) {
1980 /* update our first deferred PFN for this section */
1981 first_deferred_pfn = spfn;
1982
1983 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 1984 touch_nmi_watchdog();
c9e97a19 1985
0e56acae
AD
1986 /* We should only stop along section boundaries */
1987 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1988 continue;
c9e97a19 1989
0e56acae 1990 /* If our quota has been met we can stop here */
c9e97a19
PT
1991 if (nr_pages >= nr_pages_needed)
1992 break;
1993 }
1994
0e56acae 1995 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1996 pgdat_resize_unlock(pgdat, &flags);
1997
1998 return nr_pages > 0;
1999}
2000
2001/*
2002 * deferred_grow_zone() is __init, but it is called from
2003 * get_page_from_freelist() during early boot until deferred_pages permanently
2004 * disables this call. This is why we have refdata wrapper to avoid warning,
2005 * and to ensure that the function body gets unloaded.
2006 */
2007static bool __ref
2008_deferred_grow_zone(struct zone *zone, unsigned int order)
2009{
2010 return deferred_grow_zone(zone, order);
2011}
2012
7cf91a98 2013#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2014
2015void __init page_alloc_init_late(void)
2016{
7cf91a98 2017 struct zone *zone;
e900a918 2018 int nid;
7cf91a98
JK
2019
2020#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2021
d3cd131d
NS
2022 /* There will be num_node_state(N_MEMORY) threads */
2023 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2024 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2025 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2026 }
2027
2028 /* Block until all are initialised */
d3cd131d 2029 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2030
3e8fc007
MG
2031 /*
2032 * The number of managed pages has changed due to the initialisation
2033 * so the pcpu batch and high limits needs to be updated or the limits
2034 * will be artificially small.
2035 */
2036 for_each_populated_zone(zone)
2037 zone_pcp_update(zone);
2038
c9e97a19
PT
2039 /*
2040 * We initialized the rest of the deferred pages. Permanently disable
2041 * on-demand struct page initialization.
2042 */
2043 static_branch_disable(&deferred_pages);
2044
4248b0da
MG
2045 /* Reinit limits that are based on free pages after the kernel is up */
2046 files_maxfiles_init();
7cf91a98 2047#endif
350e88ba 2048
3010f876
PT
2049 /* Discard memblock private memory */
2050 memblock_discard();
7cf91a98 2051
e900a918
DW
2052 for_each_node_state(nid, N_MEMORY)
2053 shuffle_free_memory(NODE_DATA(nid));
2054
7cf91a98
JK
2055 for_each_populated_zone(zone)
2056 set_zone_contiguous(zone);
7e18adb4 2057}
7e18adb4 2058
47118af0 2059#ifdef CONFIG_CMA
9cf510a5 2060/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2061void __init init_cma_reserved_pageblock(struct page *page)
2062{
2063 unsigned i = pageblock_nr_pages;
2064 struct page *p = page;
2065
2066 do {
2067 __ClearPageReserved(p);
2068 set_page_count(p, 0);
d883c6cf 2069 } while (++p, --i);
47118af0 2070
47118af0 2071 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2072
2073 if (pageblock_order >= MAX_ORDER) {
2074 i = pageblock_nr_pages;
2075 p = page;
2076 do {
2077 set_page_refcounted(p);
2078 __free_pages(p, MAX_ORDER - 1);
2079 p += MAX_ORDER_NR_PAGES;
2080 } while (i -= MAX_ORDER_NR_PAGES);
2081 } else {
2082 set_page_refcounted(page);
2083 __free_pages(page, pageblock_order);
2084 }
2085
3dcc0571 2086 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2087}
2088#endif
1da177e4
LT
2089
2090/*
2091 * The order of subdivision here is critical for the IO subsystem.
2092 * Please do not alter this order without good reasons and regression
2093 * testing. Specifically, as large blocks of memory are subdivided,
2094 * the order in which smaller blocks are delivered depends on the order
2095 * they're subdivided in this function. This is the primary factor
2096 * influencing the order in which pages are delivered to the IO
2097 * subsystem according to empirical testing, and this is also justified
2098 * by considering the behavior of a buddy system containing a single
2099 * large block of memory acted on by a series of small allocations.
2100 * This behavior is a critical factor in sglist merging's success.
2101 *
6d49e352 2102 * -- nyc
1da177e4 2103 */
085cc7d5 2104static inline void expand(struct zone *zone, struct page *page,
6ab01363 2105 int low, int high, int migratetype)
1da177e4
LT
2106{
2107 unsigned long size = 1 << high;
2108
2109 while (high > low) {
1da177e4
LT
2110 high--;
2111 size >>= 1;
309381fe 2112 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2113
acbc15a4
JK
2114 /*
2115 * Mark as guard pages (or page), that will allow to
2116 * merge back to allocator when buddy will be freed.
2117 * Corresponding page table entries will not be touched,
2118 * pages will stay not present in virtual address space
2119 */
2120 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2121 continue;
acbc15a4 2122
6ab01363 2123 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2124 set_page_order(&page[size], high);
2125 }
1da177e4
LT
2126}
2127
4e611801 2128static void check_new_page_bad(struct page *page)
1da177e4 2129{
f4c18e6f 2130 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2131 /* Don't complain about hwpoisoned pages */
2132 page_mapcount_reset(page); /* remove PageBuddy */
2133 return;
f4c18e6f 2134 }
58b7f119
WY
2135
2136 bad_page(page,
2137 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2138}
2139
2140/*
2141 * This page is about to be returned from the page allocator
2142 */
2143static inline int check_new_page(struct page *page)
2144{
2145 if (likely(page_expected_state(page,
2146 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2147 return 0;
2148
2149 check_new_page_bad(page);
2150 return 1;
2a7684a2
WF
2151}
2152
bd33ef36 2153static inline bool free_pages_prezeroed(void)
1414c7f4 2154{
6471384a
AP
2155 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2156 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2157}
2158
479f854a 2159#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2160/*
2161 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2162 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2163 * also checked when pcp lists are refilled from the free lists.
2164 */
2165static inline bool check_pcp_refill(struct page *page)
479f854a 2166{
8e57f8ac 2167 if (debug_pagealloc_enabled_static())
4462b32c
VB
2168 return check_new_page(page);
2169 else
2170 return false;
479f854a
MG
2171}
2172
4462b32c 2173static inline bool check_new_pcp(struct page *page)
479f854a
MG
2174{
2175 return check_new_page(page);
2176}
2177#else
4462b32c
VB
2178/*
2179 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2180 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2181 * enabled, they are also checked when being allocated from the pcp lists.
2182 */
2183static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2184{
2185 return check_new_page(page);
2186}
4462b32c 2187static inline bool check_new_pcp(struct page *page)
479f854a 2188{
8e57f8ac 2189 if (debug_pagealloc_enabled_static())
4462b32c
VB
2190 return check_new_page(page);
2191 else
2192 return false;
479f854a
MG
2193}
2194#endif /* CONFIG_DEBUG_VM */
2195
2196static bool check_new_pages(struct page *page, unsigned int order)
2197{
2198 int i;
2199 for (i = 0; i < (1 << order); i++) {
2200 struct page *p = page + i;
2201
2202 if (unlikely(check_new_page(p)))
2203 return true;
2204 }
2205
2206 return false;
2207}
2208
46f24fd8
JK
2209inline void post_alloc_hook(struct page *page, unsigned int order,
2210 gfp_t gfp_flags)
2211{
2212 set_page_private(page, 0);
2213 set_page_refcounted(page);
2214
2215 arch_alloc_page(page, order);
8e57f8ac 2216 if (debug_pagealloc_enabled_static())
d6332692 2217 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2218 kasan_alloc_pages(page, order);
4117992d 2219 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2220 set_page_owner(page, order, gfp_flags);
2221}
2222
479f854a 2223static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2224 unsigned int alloc_flags)
2a7684a2 2225{
46f24fd8 2226 post_alloc_hook(page, order, gfp_flags);
17cf4406 2227
6471384a
AP
2228 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2229 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2230
2231 if (order && (gfp_flags & __GFP_COMP))
2232 prep_compound_page(page, order);
2233
75379191 2234 /*
2f064f34 2235 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2236 * allocate the page. The expectation is that the caller is taking
2237 * steps that will free more memory. The caller should avoid the page
2238 * being used for !PFMEMALLOC purposes.
2239 */
2f064f34
MH
2240 if (alloc_flags & ALLOC_NO_WATERMARKS)
2241 set_page_pfmemalloc(page);
2242 else
2243 clear_page_pfmemalloc(page);
1da177e4
LT
2244}
2245
56fd56b8
MG
2246/*
2247 * Go through the free lists for the given migratetype and remove
2248 * the smallest available page from the freelists
2249 */
85ccc8fa 2250static __always_inline
728ec980 2251struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2252 int migratetype)
2253{
2254 unsigned int current_order;
b8af2941 2255 struct free_area *area;
56fd56b8
MG
2256 struct page *page;
2257
2258 /* Find a page of the appropriate size in the preferred list */
2259 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2260 area = &(zone->free_area[current_order]);
b03641af 2261 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2262 if (!page)
2263 continue;
6ab01363
AD
2264 del_page_from_free_list(page, zone, current_order);
2265 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2266 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2267 return page;
2268 }
2269
2270 return NULL;
2271}
2272
2273
b2a0ac88
MG
2274/*
2275 * This array describes the order lists are fallen back to when
2276 * the free lists for the desirable migrate type are depleted
2277 */
da415663 2278static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2279 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2280 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2281 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2282#ifdef CONFIG_CMA
974a786e 2283 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2284#endif
194159fb 2285#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2286 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2287#endif
b2a0ac88
MG
2288};
2289
dc67647b 2290#ifdef CONFIG_CMA
85ccc8fa 2291static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2292 unsigned int order)
2293{
2294 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2295}
2296#else
2297static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2298 unsigned int order) { return NULL; }
2299#endif
2300
c361be55
MG
2301/*
2302 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2303 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2304 * boundary. If alignment is required, use move_freepages_block()
2305 */
02aa0cdd 2306static int move_freepages(struct zone *zone,
b69a7288 2307 struct page *start_page, struct page *end_page,
02aa0cdd 2308 int migratetype, int *num_movable)
c361be55
MG
2309{
2310 struct page *page;
d00181b9 2311 unsigned int order;
d100313f 2312 int pages_moved = 0;
c361be55 2313
c361be55
MG
2314 for (page = start_page; page <= end_page;) {
2315 if (!pfn_valid_within(page_to_pfn(page))) {
2316 page++;
2317 continue;
2318 }
2319
2320 if (!PageBuddy(page)) {
02aa0cdd
VB
2321 /*
2322 * We assume that pages that could be isolated for
2323 * migration are movable. But we don't actually try
2324 * isolating, as that would be expensive.
2325 */
2326 if (num_movable &&
2327 (PageLRU(page) || __PageMovable(page)))
2328 (*num_movable)++;
2329
c361be55
MG
2330 page++;
2331 continue;
2332 }
2333
cd961038
DR
2334 /* Make sure we are not inadvertently changing nodes */
2335 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2336 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2337
c361be55 2338 order = page_order(page);
6ab01363 2339 move_to_free_list(page, zone, order, migratetype);
c361be55 2340 page += 1 << order;
d100313f 2341 pages_moved += 1 << order;
c361be55
MG
2342 }
2343
d100313f 2344 return pages_moved;
c361be55
MG
2345}
2346
ee6f509c 2347int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2348 int migratetype, int *num_movable)
c361be55
MG
2349{
2350 unsigned long start_pfn, end_pfn;
2351 struct page *start_page, *end_page;
2352
4a222127
DR
2353 if (num_movable)
2354 *num_movable = 0;
2355
c361be55 2356 start_pfn = page_to_pfn(page);
d9c23400 2357 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2358 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2359 end_page = start_page + pageblock_nr_pages - 1;
2360 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2361
2362 /* Do not cross zone boundaries */
108bcc96 2363 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2364 start_page = page;
108bcc96 2365 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2366 return 0;
2367
02aa0cdd
VB
2368 return move_freepages(zone, start_page, end_page, migratetype,
2369 num_movable);
c361be55
MG
2370}
2371
2f66a68f
MG
2372static void change_pageblock_range(struct page *pageblock_page,
2373 int start_order, int migratetype)
2374{
2375 int nr_pageblocks = 1 << (start_order - pageblock_order);
2376
2377 while (nr_pageblocks--) {
2378 set_pageblock_migratetype(pageblock_page, migratetype);
2379 pageblock_page += pageblock_nr_pages;
2380 }
2381}
2382
fef903ef 2383/*
9c0415eb
VB
2384 * When we are falling back to another migratetype during allocation, try to
2385 * steal extra free pages from the same pageblocks to satisfy further
2386 * allocations, instead of polluting multiple pageblocks.
2387 *
2388 * If we are stealing a relatively large buddy page, it is likely there will
2389 * be more free pages in the pageblock, so try to steal them all. For
2390 * reclaimable and unmovable allocations, we steal regardless of page size,
2391 * as fragmentation caused by those allocations polluting movable pageblocks
2392 * is worse than movable allocations stealing from unmovable and reclaimable
2393 * pageblocks.
fef903ef 2394 */
4eb7dce6
JK
2395static bool can_steal_fallback(unsigned int order, int start_mt)
2396{
2397 /*
2398 * Leaving this order check is intended, although there is
2399 * relaxed order check in next check. The reason is that
2400 * we can actually steal whole pageblock if this condition met,
2401 * but, below check doesn't guarantee it and that is just heuristic
2402 * so could be changed anytime.
2403 */
2404 if (order >= pageblock_order)
2405 return true;
2406
2407 if (order >= pageblock_order / 2 ||
2408 start_mt == MIGRATE_RECLAIMABLE ||
2409 start_mt == MIGRATE_UNMOVABLE ||
2410 page_group_by_mobility_disabled)
2411 return true;
2412
2413 return false;
2414}
2415
1c30844d
MG
2416static inline void boost_watermark(struct zone *zone)
2417{
2418 unsigned long max_boost;
2419
2420 if (!watermark_boost_factor)
2421 return;
14f69140
HW
2422 /*
2423 * Don't bother in zones that are unlikely to produce results.
2424 * On small machines, including kdump capture kernels running
2425 * in a small area, boosting the watermark can cause an out of
2426 * memory situation immediately.
2427 */
2428 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2429 return;
1c30844d
MG
2430
2431 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2432 watermark_boost_factor, 10000);
94b3334c
MG
2433
2434 /*
2435 * high watermark may be uninitialised if fragmentation occurs
2436 * very early in boot so do not boost. We do not fall
2437 * through and boost by pageblock_nr_pages as failing
2438 * allocations that early means that reclaim is not going
2439 * to help and it may even be impossible to reclaim the
2440 * boosted watermark resulting in a hang.
2441 */
2442 if (!max_boost)
2443 return;
2444
1c30844d
MG
2445 max_boost = max(pageblock_nr_pages, max_boost);
2446
2447 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2448 max_boost);
2449}
2450
4eb7dce6
JK
2451/*
2452 * This function implements actual steal behaviour. If order is large enough,
2453 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2454 * pageblock to our migratetype and determine how many already-allocated pages
2455 * are there in the pageblock with a compatible migratetype. If at least half
2456 * of pages are free or compatible, we can change migratetype of the pageblock
2457 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2458 */
2459static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2460 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2461{
d00181b9 2462 unsigned int current_order = page_order(page);
02aa0cdd
VB
2463 int free_pages, movable_pages, alike_pages;
2464 int old_block_type;
2465
2466 old_block_type = get_pageblock_migratetype(page);
fef903ef 2467
3bc48f96
VB
2468 /*
2469 * This can happen due to races and we want to prevent broken
2470 * highatomic accounting.
2471 */
02aa0cdd 2472 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2473 goto single_page;
2474
fef903ef
SB
2475 /* Take ownership for orders >= pageblock_order */
2476 if (current_order >= pageblock_order) {
2477 change_pageblock_range(page, current_order, start_type);
3bc48f96 2478 goto single_page;
fef903ef
SB
2479 }
2480
1c30844d
MG
2481 /*
2482 * Boost watermarks to increase reclaim pressure to reduce the
2483 * likelihood of future fallbacks. Wake kswapd now as the node
2484 * may be balanced overall and kswapd will not wake naturally.
2485 */
2486 boost_watermark(zone);
2487 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2488 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2489
3bc48f96
VB
2490 /* We are not allowed to try stealing from the whole block */
2491 if (!whole_block)
2492 goto single_page;
2493
02aa0cdd
VB
2494 free_pages = move_freepages_block(zone, page, start_type,
2495 &movable_pages);
2496 /*
2497 * Determine how many pages are compatible with our allocation.
2498 * For movable allocation, it's the number of movable pages which
2499 * we just obtained. For other types it's a bit more tricky.
2500 */
2501 if (start_type == MIGRATE_MOVABLE) {
2502 alike_pages = movable_pages;
2503 } else {
2504 /*
2505 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2506 * to MOVABLE pageblock, consider all non-movable pages as
2507 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2508 * vice versa, be conservative since we can't distinguish the
2509 * exact migratetype of non-movable pages.
2510 */
2511 if (old_block_type == MIGRATE_MOVABLE)
2512 alike_pages = pageblock_nr_pages
2513 - (free_pages + movable_pages);
2514 else
2515 alike_pages = 0;
2516 }
2517
3bc48f96 2518 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2519 if (!free_pages)
3bc48f96 2520 goto single_page;
fef903ef 2521
02aa0cdd
VB
2522 /*
2523 * If a sufficient number of pages in the block are either free or of
2524 * comparable migratability as our allocation, claim the whole block.
2525 */
2526 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2527 page_group_by_mobility_disabled)
2528 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2529
2530 return;
2531
2532single_page:
6ab01363 2533 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2534}
2535
2149cdae
JK
2536/*
2537 * Check whether there is a suitable fallback freepage with requested order.
2538 * If only_stealable is true, this function returns fallback_mt only if
2539 * we can steal other freepages all together. This would help to reduce
2540 * fragmentation due to mixed migratetype pages in one pageblock.
2541 */
2542int find_suitable_fallback(struct free_area *area, unsigned int order,
2543 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2544{
2545 int i;
2546 int fallback_mt;
2547
2548 if (area->nr_free == 0)
2549 return -1;
2550
2551 *can_steal = false;
2552 for (i = 0;; i++) {
2553 fallback_mt = fallbacks[migratetype][i];
974a786e 2554 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2555 break;
2556
b03641af 2557 if (free_area_empty(area, fallback_mt))
4eb7dce6 2558 continue;
fef903ef 2559
4eb7dce6
JK
2560 if (can_steal_fallback(order, migratetype))
2561 *can_steal = true;
2562
2149cdae
JK
2563 if (!only_stealable)
2564 return fallback_mt;
2565
2566 if (*can_steal)
2567 return fallback_mt;
fef903ef 2568 }
4eb7dce6
JK
2569
2570 return -1;
fef903ef
SB
2571}
2572
0aaa29a5
MG
2573/*
2574 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2575 * there are no empty page blocks that contain a page with a suitable order
2576 */
2577static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2578 unsigned int alloc_order)
2579{
2580 int mt;
2581 unsigned long max_managed, flags;
2582
2583 /*
2584 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2585 * Check is race-prone but harmless.
2586 */
9705bea5 2587 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2588 if (zone->nr_reserved_highatomic >= max_managed)
2589 return;
2590
2591 spin_lock_irqsave(&zone->lock, flags);
2592
2593 /* Recheck the nr_reserved_highatomic limit under the lock */
2594 if (zone->nr_reserved_highatomic >= max_managed)
2595 goto out_unlock;
2596
2597 /* Yoink! */
2598 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2599 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2600 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2601 zone->nr_reserved_highatomic += pageblock_nr_pages;
2602 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2603 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2604 }
2605
2606out_unlock:
2607 spin_unlock_irqrestore(&zone->lock, flags);
2608}
2609
2610/*
2611 * Used when an allocation is about to fail under memory pressure. This
2612 * potentially hurts the reliability of high-order allocations when under
2613 * intense memory pressure but failed atomic allocations should be easier
2614 * to recover from than an OOM.
29fac03b
MK
2615 *
2616 * If @force is true, try to unreserve a pageblock even though highatomic
2617 * pageblock is exhausted.
0aaa29a5 2618 */
29fac03b
MK
2619static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2620 bool force)
0aaa29a5
MG
2621{
2622 struct zonelist *zonelist = ac->zonelist;
2623 unsigned long flags;
2624 struct zoneref *z;
2625 struct zone *zone;
2626 struct page *page;
2627 int order;
04c8716f 2628 bool ret;
0aaa29a5 2629
97a225e6 2630 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2631 ac->nodemask) {
29fac03b
MK
2632 /*
2633 * Preserve at least one pageblock unless memory pressure
2634 * is really high.
2635 */
2636 if (!force && zone->nr_reserved_highatomic <=
2637 pageblock_nr_pages)
0aaa29a5
MG
2638 continue;
2639
2640 spin_lock_irqsave(&zone->lock, flags);
2641 for (order = 0; order < MAX_ORDER; order++) {
2642 struct free_area *area = &(zone->free_area[order]);
2643
b03641af 2644 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2645 if (!page)
0aaa29a5
MG
2646 continue;
2647
0aaa29a5 2648 /*
4855e4a7
MK
2649 * In page freeing path, migratetype change is racy so
2650 * we can counter several free pages in a pageblock
2651 * in this loop althoug we changed the pageblock type
2652 * from highatomic to ac->migratetype. So we should
2653 * adjust the count once.
0aaa29a5 2654 */
a6ffdc07 2655 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2656 /*
2657 * It should never happen but changes to
2658 * locking could inadvertently allow a per-cpu
2659 * drain to add pages to MIGRATE_HIGHATOMIC
2660 * while unreserving so be safe and watch for
2661 * underflows.
2662 */
2663 zone->nr_reserved_highatomic -= min(
2664 pageblock_nr_pages,
2665 zone->nr_reserved_highatomic);
2666 }
0aaa29a5
MG
2667
2668 /*
2669 * Convert to ac->migratetype and avoid the normal
2670 * pageblock stealing heuristics. Minimally, the caller
2671 * is doing the work and needs the pages. More
2672 * importantly, if the block was always converted to
2673 * MIGRATE_UNMOVABLE or another type then the number
2674 * of pageblocks that cannot be completely freed
2675 * may increase.
2676 */
2677 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2678 ret = move_freepages_block(zone, page, ac->migratetype,
2679 NULL);
29fac03b
MK
2680 if (ret) {
2681 spin_unlock_irqrestore(&zone->lock, flags);
2682 return ret;
2683 }
0aaa29a5
MG
2684 }
2685 spin_unlock_irqrestore(&zone->lock, flags);
2686 }
04c8716f
MK
2687
2688 return false;
0aaa29a5
MG
2689}
2690
3bc48f96
VB
2691/*
2692 * Try finding a free buddy page on the fallback list and put it on the free
2693 * list of requested migratetype, possibly along with other pages from the same
2694 * block, depending on fragmentation avoidance heuristics. Returns true if
2695 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2696 *
2697 * The use of signed ints for order and current_order is a deliberate
2698 * deviation from the rest of this file, to make the for loop
2699 * condition simpler.
3bc48f96 2700 */
85ccc8fa 2701static __always_inline bool
6bb15450
MG
2702__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2703 unsigned int alloc_flags)
b2a0ac88 2704{
b8af2941 2705 struct free_area *area;
b002529d 2706 int current_order;
6bb15450 2707 int min_order = order;
b2a0ac88 2708 struct page *page;
4eb7dce6
JK
2709 int fallback_mt;
2710 bool can_steal;
b2a0ac88 2711
6bb15450
MG
2712 /*
2713 * Do not steal pages from freelists belonging to other pageblocks
2714 * i.e. orders < pageblock_order. If there are no local zones free,
2715 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2716 */
2717 if (alloc_flags & ALLOC_NOFRAGMENT)
2718 min_order = pageblock_order;
2719
7a8f58f3
VB
2720 /*
2721 * Find the largest available free page in the other list. This roughly
2722 * approximates finding the pageblock with the most free pages, which
2723 * would be too costly to do exactly.
2724 */
6bb15450 2725 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2726 --current_order) {
4eb7dce6
JK
2727 area = &(zone->free_area[current_order]);
2728 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2729 start_migratetype, false, &can_steal);
4eb7dce6
JK
2730 if (fallback_mt == -1)
2731 continue;
b2a0ac88 2732
7a8f58f3
VB
2733 /*
2734 * We cannot steal all free pages from the pageblock and the
2735 * requested migratetype is movable. In that case it's better to
2736 * steal and split the smallest available page instead of the
2737 * largest available page, because even if the next movable
2738 * allocation falls back into a different pageblock than this
2739 * one, it won't cause permanent fragmentation.
2740 */
2741 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2742 && current_order > order)
2743 goto find_smallest;
b2a0ac88 2744
7a8f58f3
VB
2745 goto do_steal;
2746 }
e0fff1bd 2747
7a8f58f3 2748 return false;
e0fff1bd 2749
7a8f58f3
VB
2750find_smallest:
2751 for (current_order = order; current_order < MAX_ORDER;
2752 current_order++) {
2753 area = &(zone->free_area[current_order]);
2754 fallback_mt = find_suitable_fallback(area, current_order,
2755 start_migratetype, false, &can_steal);
2756 if (fallback_mt != -1)
2757 break;
b2a0ac88
MG
2758 }
2759
7a8f58f3
VB
2760 /*
2761 * This should not happen - we already found a suitable fallback
2762 * when looking for the largest page.
2763 */
2764 VM_BUG_ON(current_order == MAX_ORDER);
2765
2766do_steal:
b03641af 2767 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2768
1c30844d
MG
2769 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2770 can_steal);
7a8f58f3
VB
2771
2772 trace_mm_page_alloc_extfrag(page, order, current_order,
2773 start_migratetype, fallback_mt);
2774
2775 return true;
2776
b2a0ac88
MG
2777}
2778
56fd56b8 2779/*
1da177e4
LT
2780 * Do the hard work of removing an element from the buddy allocator.
2781 * Call me with the zone->lock already held.
2782 */
85ccc8fa 2783static __always_inline struct page *
6bb15450
MG
2784__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2785 unsigned int alloc_flags)
1da177e4 2786{
1da177e4
LT
2787 struct page *page;
2788
16867664
RG
2789#ifdef CONFIG_CMA
2790 /*
2791 * Balance movable allocations between regular and CMA areas by
2792 * allocating from CMA when over half of the zone's free memory
2793 * is in the CMA area.
2794 */
8510e69c 2795 if (alloc_flags & ALLOC_CMA &&
16867664
RG
2796 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2797 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2798 page = __rmqueue_cma_fallback(zone, order);
2799 if (page)
2800 return page;
2801 }
2802#endif
3bc48f96 2803retry:
56fd56b8 2804 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2805 if (unlikely(!page)) {
8510e69c 2806 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2807 page = __rmqueue_cma_fallback(zone, order);
2808
6bb15450
MG
2809 if (!page && __rmqueue_fallback(zone, order, migratetype,
2810 alloc_flags))
3bc48f96 2811 goto retry;
728ec980
MG
2812 }
2813
0d3d062a 2814 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2815 return page;
1da177e4
LT
2816}
2817
5f63b720 2818/*
1da177e4
LT
2819 * Obtain a specified number of elements from the buddy allocator, all under
2820 * a single hold of the lock, for efficiency. Add them to the supplied list.
2821 * Returns the number of new pages which were placed at *list.
2822 */
5f63b720 2823static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2824 unsigned long count, struct list_head *list,
6bb15450 2825 int migratetype, unsigned int alloc_flags)
1da177e4 2826{
a6de734b 2827 int i, alloced = 0;
5f63b720 2828
d34b0733 2829 spin_lock(&zone->lock);
1da177e4 2830 for (i = 0; i < count; ++i) {
6bb15450
MG
2831 struct page *page = __rmqueue(zone, order, migratetype,
2832 alloc_flags);
085cc7d5 2833 if (unlikely(page == NULL))
1da177e4 2834 break;
81eabcbe 2835
479f854a
MG
2836 if (unlikely(check_pcp_refill(page)))
2837 continue;
2838
81eabcbe 2839 /*
0fac3ba5
VB
2840 * Split buddy pages returned by expand() are received here in
2841 * physical page order. The page is added to the tail of
2842 * caller's list. From the callers perspective, the linked list
2843 * is ordered by page number under some conditions. This is
2844 * useful for IO devices that can forward direction from the
2845 * head, thus also in the physical page order. This is useful
2846 * for IO devices that can merge IO requests if the physical
2847 * pages are ordered properly.
81eabcbe 2848 */
0fac3ba5 2849 list_add_tail(&page->lru, list);
a6de734b 2850 alloced++;
bb14c2c7 2851 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2852 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2853 -(1 << order));
1da177e4 2854 }
a6de734b
MG
2855
2856 /*
2857 * i pages were removed from the buddy list even if some leak due
2858 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2859 * on i. Do not confuse with 'alloced' which is the number of
2860 * pages added to the pcp list.
2861 */
f2260e6b 2862 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2863 spin_unlock(&zone->lock);
a6de734b 2864 return alloced;
1da177e4
LT
2865}
2866
4ae7c039 2867#ifdef CONFIG_NUMA
8fce4d8e 2868/*
4037d452
CL
2869 * Called from the vmstat counter updater to drain pagesets of this
2870 * currently executing processor on remote nodes after they have
2871 * expired.
2872 *
879336c3
CL
2873 * Note that this function must be called with the thread pinned to
2874 * a single processor.
8fce4d8e 2875 */
4037d452 2876void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2877{
4ae7c039 2878 unsigned long flags;
7be12fc9 2879 int to_drain, batch;
4ae7c039 2880
4037d452 2881 local_irq_save(flags);
4db0c3c2 2882 batch = READ_ONCE(pcp->batch);
7be12fc9 2883 to_drain = min(pcp->count, batch);
77ba9062 2884 if (to_drain > 0)
2a13515c 2885 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2886 local_irq_restore(flags);
4ae7c039
CL
2887}
2888#endif
2889
9f8f2172 2890/*
93481ff0 2891 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2892 *
2893 * The processor must either be the current processor and the
2894 * thread pinned to the current processor or a processor that
2895 * is not online.
2896 */
93481ff0 2897static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2898{
c54ad30c 2899 unsigned long flags;
93481ff0
VB
2900 struct per_cpu_pageset *pset;
2901 struct per_cpu_pages *pcp;
1da177e4 2902
93481ff0
VB
2903 local_irq_save(flags);
2904 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2905
93481ff0 2906 pcp = &pset->pcp;
77ba9062 2907 if (pcp->count)
93481ff0 2908 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2909 local_irq_restore(flags);
2910}
3dfa5721 2911
93481ff0
VB
2912/*
2913 * Drain pcplists of all zones on the indicated processor.
2914 *
2915 * The processor must either be the current processor and the
2916 * thread pinned to the current processor or a processor that
2917 * is not online.
2918 */
2919static void drain_pages(unsigned int cpu)
2920{
2921 struct zone *zone;
2922
2923 for_each_populated_zone(zone) {
2924 drain_pages_zone(cpu, zone);
1da177e4
LT
2925 }
2926}
1da177e4 2927
9f8f2172
CL
2928/*
2929 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2930 *
2931 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2932 * the single zone's pages.
9f8f2172 2933 */
93481ff0 2934void drain_local_pages(struct zone *zone)
9f8f2172 2935{
93481ff0
VB
2936 int cpu = smp_processor_id();
2937
2938 if (zone)
2939 drain_pages_zone(cpu, zone);
2940 else
2941 drain_pages(cpu);
9f8f2172
CL
2942}
2943
0ccce3b9
MG
2944static void drain_local_pages_wq(struct work_struct *work)
2945{
d9367bd0
WY
2946 struct pcpu_drain *drain;
2947
2948 drain = container_of(work, struct pcpu_drain, work);
2949
a459eeb7
MH
2950 /*
2951 * drain_all_pages doesn't use proper cpu hotplug protection so
2952 * we can race with cpu offline when the WQ can move this from
2953 * a cpu pinned worker to an unbound one. We can operate on a different
2954 * cpu which is allright but we also have to make sure to not move to
2955 * a different one.
2956 */
2957 preempt_disable();
d9367bd0 2958 drain_local_pages(drain->zone);
a459eeb7 2959 preempt_enable();
0ccce3b9
MG
2960}
2961
9f8f2172 2962/*
74046494
GBY
2963 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2964 *
93481ff0
VB
2965 * When zone parameter is non-NULL, spill just the single zone's pages.
2966 *
0ccce3b9 2967 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2968 */
93481ff0 2969void drain_all_pages(struct zone *zone)
9f8f2172 2970{
74046494 2971 int cpu;
74046494
GBY
2972
2973 /*
2974 * Allocate in the BSS so we wont require allocation in
2975 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2976 */
2977 static cpumask_t cpus_with_pcps;
2978
ce612879
MH
2979 /*
2980 * Make sure nobody triggers this path before mm_percpu_wq is fully
2981 * initialized.
2982 */
2983 if (WARN_ON_ONCE(!mm_percpu_wq))
2984 return;
2985
bd233f53
MG
2986 /*
2987 * Do not drain if one is already in progress unless it's specific to
2988 * a zone. Such callers are primarily CMA and memory hotplug and need
2989 * the drain to be complete when the call returns.
2990 */
2991 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2992 if (!zone)
2993 return;
2994 mutex_lock(&pcpu_drain_mutex);
2995 }
0ccce3b9 2996
74046494
GBY
2997 /*
2998 * We don't care about racing with CPU hotplug event
2999 * as offline notification will cause the notified
3000 * cpu to drain that CPU pcps and on_each_cpu_mask
3001 * disables preemption as part of its processing
3002 */
3003 for_each_online_cpu(cpu) {
93481ff0
VB
3004 struct per_cpu_pageset *pcp;
3005 struct zone *z;
74046494 3006 bool has_pcps = false;
93481ff0
VB
3007
3008 if (zone) {
74046494 3009 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3010 if (pcp->pcp.count)
74046494 3011 has_pcps = true;
93481ff0
VB
3012 } else {
3013 for_each_populated_zone(z) {
3014 pcp = per_cpu_ptr(z->pageset, cpu);
3015 if (pcp->pcp.count) {
3016 has_pcps = true;
3017 break;
3018 }
74046494
GBY
3019 }
3020 }
93481ff0 3021
74046494
GBY
3022 if (has_pcps)
3023 cpumask_set_cpu(cpu, &cpus_with_pcps);
3024 else
3025 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3026 }
0ccce3b9 3027
bd233f53 3028 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3029 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3030
3031 drain->zone = zone;
3032 INIT_WORK(&drain->work, drain_local_pages_wq);
3033 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3034 }
bd233f53 3035 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3036 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3037
3038 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3039}
3040
296699de 3041#ifdef CONFIG_HIBERNATION
1da177e4 3042
556b969a
CY
3043/*
3044 * Touch the watchdog for every WD_PAGE_COUNT pages.
3045 */
3046#define WD_PAGE_COUNT (128*1024)
3047
1da177e4
LT
3048void mark_free_pages(struct zone *zone)
3049{
556b969a 3050 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3051 unsigned long flags;
7aeb09f9 3052 unsigned int order, t;
86760a2c 3053 struct page *page;
1da177e4 3054
8080fc03 3055 if (zone_is_empty(zone))
1da177e4
LT
3056 return;
3057
3058 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3059
108bcc96 3060 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3061 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3062 if (pfn_valid(pfn)) {
86760a2c 3063 page = pfn_to_page(pfn);
ba6b0979 3064
556b969a
CY
3065 if (!--page_count) {
3066 touch_nmi_watchdog();
3067 page_count = WD_PAGE_COUNT;
3068 }
3069
ba6b0979
JK
3070 if (page_zone(page) != zone)
3071 continue;
3072
7be98234
RW
3073 if (!swsusp_page_is_forbidden(page))
3074 swsusp_unset_page_free(page);
f623f0db 3075 }
1da177e4 3076
b2a0ac88 3077 for_each_migratetype_order(order, t) {
86760a2c
GT
3078 list_for_each_entry(page,
3079 &zone->free_area[order].free_list[t], lru) {
f623f0db 3080 unsigned long i;
1da177e4 3081
86760a2c 3082 pfn = page_to_pfn(page);
556b969a
CY
3083 for (i = 0; i < (1UL << order); i++) {
3084 if (!--page_count) {
3085 touch_nmi_watchdog();
3086 page_count = WD_PAGE_COUNT;
3087 }
7be98234 3088 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3089 }
f623f0db 3090 }
b2a0ac88 3091 }
1da177e4
LT
3092 spin_unlock_irqrestore(&zone->lock, flags);
3093}
e2c55dc8 3094#endif /* CONFIG_PM */
1da177e4 3095
2d4894b5 3096static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3097{
5f8dcc21 3098 int migratetype;
1da177e4 3099
4db7548c 3100 if (!free_pcp_prepare(page))
9cca35d4 3101 return false;
689bcebf 3102
dc4b0caf 3103 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3104 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3105 return true;
3106}
3107
2d4894b5 3108static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3109{
3110 struct zone *zone = page_zone(page);
3111 struct per_cpu_pages *pcp;
3112 int migratetype;
3113
3114 migratetype = get_pcppage_migratetype(page);
d34b0733 3115 __count_vm_event(PGFREE);
da456f14 3116
5f8dcc21
MG
3117 /*
3118 * We only track unmovable, reclaimable and movable on pcp lists.
3119 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3120 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3121 * areas back if necessary. Otherwise, we may have to free
3122 * excessively into the page allocator
3123 */
3124 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3125 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3126 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3127 return;
5f8dcc21
MG
3128 }
3129 migratetype = MIGRATE_MOVABLE;
3130 }
3131
99dcc3e5 3132 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3133 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3134 pcp->count++;
48db57f8 3135 if (pcp->count >= pcp->high) {
4db0c3c2 3136 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3137 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3138 }
9cca35d4 3139}
5f8dcc21 3140
9cca35d4
MG
3141/*
3142 * Free a 0-order page
9cca35d4 3143 */
2d4894b5 3144void free_unref_page(struct page *page)
9cca35d4
MG
3145{
3146 unsigned long flags;
3147 unsigned long pfn = page_to_pfn(page);
3148
2d4894b5 3149 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3150 return;
3151
3152 local_irq_save(flags);
2d4894b5 3153 free_unref_page_commit(page, pfn);
d34b0733 3154 local_irq_restore(flags);
1da177e4
LT
3155}
3156
cc59850e
KK
3157/*
3158 * Free a list of 0-order pages
3159 */
2d4894b5 3160void free_unref_page_list(struct list_head *list)
cc59850e
KK
3161{
3162 struct page *page, *next;
9cca35d4 3163 unsigned long flags, pfn;
c24ad77d 3164 int batch_count = 0;
9cca35d4
MG
3165
3166 /* Prepare pages for freeing */
3167 list_for_each_entry_safe(page, next, list, lru) {
3168 pfn = page_to_pfn(page);
2d4894b5 3169 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3170 list_del(&page->lru);
3171 set_page_private(page, pfn);
3172 }
cc59850e 3173
9cca35d4 3174 local_irq_save(flags);
cc59850e 3175 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3176 unsigned long pfn = page_private(page);
3177
3178 set_page_private(page, 0);
2d4894b5
MG
3179 trace_mm_page_free_batched(page);
3180 free_unref_page_commit(page, pfn);
c24ad77d
LS
3181
3182 /*
3183 * Guard against excessive IRQ disabled times when we get
3184 * a large list of pages to free.
3185 */
3186 if (++batch_count == SWAP_CLUSTER_MAX) {
3187 local_irq_restore(flags);
3188 batch_count = 0;
3189 local_irq_save(flags);
3190 }
cc59850e 3191 }
9cca35d4 3192 local_irq_restore(flags);
cc59850e
KK
3193}
3194
8dfcc9ba
NP
3195/*
3196 * split_page takes a non-compound higher-order page, and splits it into
3197 * n (1<<order) sub-pages: page[0..n]
3198 * Each sub-page must be freed individually.
3199 *
3200 * Note: this is probably too low level an operation for use in drivers.
3201 * Please consult with lkml before using this in your driver.
3202 */
3203void split_page(struct page *page, unsigned int order)
3204{
3205 int i;
3206
309381fe
SL
3207 VM_BUG_ON_PAGE(PageCompound(page), page);
3208 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3209
a9627bc5 3210 for (i = 1; i < (1 << order); i++)
7835e98b 3211 set_page_refcounted(page + i);
a9627bc5 3212 split_page_owner(page, order);
8dfcc9ba 3213}
5853ff23 3214EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3215
3c605096 3216int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3217{
748446bb
MG
3218 unsigned long watermark;
3219 struct zone *zone;
2139cbe6 3220 int mt;
748446bb
MG
3221
3222 BUG_ON(!PageBuddy(page));
3223
3224 zone = page_zone(page);
2e30abd1 3225 mt = get_pageblock_migratetype(page);
748446bb 3226
194159fb 3227 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3228 /*
3229 * Obey watermarks as if the page was being allocated. We can
3230 * emulate a high-order watermark check with a raised order-0
3231 * watermark, because we already know our high-order page
3232 * exists.
3233 */
fd1444b2 3234 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3235 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3236 return 0;
3237
8fb74b9f 3238 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3239 }
748446bb
MG
3240
3241 /* Remove page from free list */
b03641af 3242
6ab01363 3243 del_page_from_free_list(page, zone, order);
2139cbe6 3244
400bc7fd 3245 /*
3246 * Set the pageblock if the isolated page is at least half of a
3247 * pageblock
3248 */
748446bb
MG
3249 if (order >= pageblock_order - 1) {
3250 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3251 for (; page < endpage; page += pageblock_nr_pages) {
3252 int mt = get_pageblock_migratetype(page);
88ed365e 3253 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3254 && !is_migrate_highatomic(mt))
47118af0
MN
3255 set_pageblock_migratetype(page,
3256 MIGRATE_MOVABLE);
3257 }
748446bb
MG
3258 }
3259
f3a14ced 3260
8fb74b9f 3261 return 1UL << order;
1fb3f8ca
MG
3262}
3263
624f58d8
AD
3264/**
3265 * __putback_isolated_page - Return a now-isolated page back where we got it
3266 * @page: Page that was isolated
3267 * @order: Order of the isolated page
e6a0a7ad 3268 * @mt: The page's pageblock's migratetype
624f58d8
AD
3269 *
3270 * This function is meant to return a page pulled from the free lists via
3271 * __isolate_free_page back to the free lists they were pulled from.
3272 */
3273void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3274{
3275 struct zone *zone = page_zone(page);
3276
3277 /* zone lock should be held when this function is called */
3278 lockdep_assert_held(&zone->lock);
3279
3280 /* Return isolated page to tail of freelist. */
36e66c55 3281 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3282}
3283
060e7417
MG
3284/*
3285 * Update NUMA hit/miss statistics
3286 *
3287 * Must be called with interrupts disabled.
060e7417 3288 */
41b6167e 3289static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3290{
3291#ifdef CONFIG_NUMA
3a321d2a 3292 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3293
4518085e
KW
3294 /* skip numa counters update if numa stats is disabled */
3295 if (!static_branch_likely(&vm_numa_stat_key))
3296 return;
3297
c1093b74 3298 if (zone_to_nid(z) != numa_node_id())
060e7417 3299 local_stat = NUMA_OTHER;
060e7417 3300
c1093b74 3301 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3302 __inc_numa_state(z, NUMA_HIT);
2df26639 3303 else {
3a321d2a
KW
3304 __inc_numa_state(z, NUMA_MISS);
3305 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3306 }
3a321d2a 3307 __inc_numa_state(z, local_stat);
060e7417
MG
3308#endif
3309}
3310
066b2393
MG
3311/* Remove page from the per-cpu list, caller must protect the list */
3312static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3313 unsigned int alloc_flags,
453f85d4 3314 struct per_cpu_pages *pcp,
066b2393
MG
3315 struct list_head *list)
3316{
3317 struct page *page;
3318
3319 do {
3320 if (list_empty(list)) {
3321 pcp->count += rmqueue_bulk(zone, 0,
3322 pcp->batch, list,
6bb15450 3323 migratetype, alloc_flags);
066b2393
MG
3324 if (unlikely(list_empty(list)))
3325 return NULL;
3326 }
3327
453f85d4 3328 page = list_first_entry(list, struct page, lru);
066b2393
MG
3329 list_del(&page->lru);
3330 pcp->count--;
3331 } while (check_new_pcp(page));
3332
3333 return page;
3334}
3335
3336/* Lock and remove page from the per-cpu list */
3337static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3338 struct zone *zone, gfp_t gfp_flags,
3339 int migratetype, unsigned int alloc_flags)
066b2393
MG
3340{
3341 struct per_cpu_pages *pcp;
3342 struct list_head *list;
066b2393 3343 struct page *page;
d34b0733 3344 unsigned long flags;
066b2393 3345
d34b0733 3346 local_irq_save(flags);
066b2393
MG
3347 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3348 list = &pcp->lists[migratetype];
6bb15450 3349 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3350 if (page) {
1c52e6d0 3351 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3352 zone_statistics(preferred_zone, zone);
3353 }
d34b0733 3354 local_irq_restore(flags);
066b2393
MG
3355 return page;
3356}
3357
1da177e4 3358/*
75379191 3359 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3360 */
0a15c3e9 3361static inline
066b2393 3362struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3363 struct zone *zone, unsigned int order,
c603844b
MG
3364 gfp_t gfp_flags, unsigned int alloc_flags,
3365 int migratetype)
1da177e4
LT
3366{
3367 unsigned long flags;
689bcebf 3368 struct page *page;
1da177e4 3369
d34b0733 3370 if (likely(order == 0)) {
1d91df85
JK
3371 /*
3372 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3373 * we need to skip it when CMA area isn't allowed.
3374 */
3375 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3376 migratetype != MIGRATE_MOVABLE) {
3377 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3378 migratetype, alloc_flags);
1d91df85
JK
3379 goto out;
3380 }
066b2393 3381 }
83b9355b 3382
066b2393
MG
3383 /*
3384 * We most definitely don't want callers attempting to
3385 * allocate greater than order-1 page units with __GFP_NOFAIL.
3386 */
3387 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3388 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3389
066b2393
MG
3390 do {
3391 page = NULL;
1d91df85
JK
3392 /*
3393 * order-0 request can reach here when the pcplist is skipped
3394 * due to non-CMA allocation context. HIGHATOMIC area is
3395 * reserved for high-order atomic allocation, so order-0
3396 * request should skip it.
3397 */
3398 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3399 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3400 if (page)
3401 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3402 }
a74609fa 3403 if (!page)
6bb15450 3404 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3405 } while (page && check_new_pages(page, order));
3406 spin_unlock(&zone->lock);
3407 if (!page)
3408 goto failed;
3409 __mod_zone_freepage_state(zone, -(1 << order),
3410 get_pcppage_migratetype(page));
1da177e4 3411
16709d1d 3412 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3413 zone_statistics(preferred_zone, zone);
a74609fa 3414 local_irq_restore(flags);
1da177e4 3415
066b2393 3416out:
73444bc4
MG
3417 /* Separate test+clear to avoid unnecessary atomics */
3418 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3419 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3420 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3421 }
3422
066b2393 3423 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3424 return page;
a74609fa
NP
3425
3426failed:
3427 local_irq_restore(flags);
a74609fa 3428 return NULL;
1da177e4
LT
3429}
3430
933e312e
AM
3431#ifdef CONFIG_FAIL_PAGE_ALLOC
3432
b2588c4b 3433static struct {
933e312e
AM
3434 struct fault_attr attr;
3435
621a5f7a 3436 bool ignore_gfp_highmem;
71baba4b 3437 bool ignore_gfp_reclaim;
54114994 3438 u32 min_order;
933e312e
AM
3439} fail_page_alloc = {
3440 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3441 .ignore_gfp_reclaim = true,
621a5f7a 3442 .ignore_gfp_highmem = true,
54114994 3443 .min_order = 1,
933e312e
AM
3444};
3445
3446static int __init setup_fail_page_alloc(char *str)
3447{
3448 return setup_fault_attr(&fail_page_alloc.attr, str);
3449}
3450__setup("fail_page_alloc=", setup_fail_page_alloc);
3451
af3b8544 3452static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3453{
54114994 3454 if (order < fail_page_alloc.min_order)
deaf386e 3455 return false;
933e312e 3456 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3457 return false;
933e312e 3458 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3459 return false;
71baba4b
MG
3460 if (fail_page_alloc.ignore_gfp_reclaim &&
3461 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3462 return false;
933e312e
AM
3463
3464 return should_fail(&fail_page_alloc.attr, 1 << order);
3465}
3466
3467#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3468
3469static int __init fail_page_alloc_debugfs(void)
3470{
0825a6f9 3471 umode_t mode = S_IFREG | 0600;
933e312e 3472 struct dentry *dir;
933e312e 3473
dd48c085
AM
3474 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3475 &fail_page_alloc.attr);
b2588c4b 3476
d9f7979c
GKH
3477 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3478 &fail_page_alloc.ignore_gfp_reclaim);
3479 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3480 &fail_page_alloc.ignore_gfp_highmem);
3481 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3482
d9f7979c 3483 return 0;
933e312e
AM
3484}
3485
3486late_initcall(fail_page_alloc_debugfs);
3487
3488#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3489
3490#else /* CONFIG_FAIL_PAGE_ALLOC */
3491
af3b8544 3492static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3493{
deaf386e 3494 return false;
933e312e
AM
3495}
3496
3497#endif /* CONFIG_FAIL_PAGE_ALLOC */
3498
af3b8544
BP
3499static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3500{
3501 return __should_fail_alloc_page(gfp_mask, order);
3502}
3503ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3504
f27ce0e1
JK
3505static inline long __zone_watermark_unusable_free(struct zone *z,
3506 unsigned int order, unsigned int alloc_flags)
3507{
3508 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3509 long unusable_free = (1 << order) - 1;
3510
3511 /*
3512 * If the caller does not have rights to ALLOC_HARDER then subtract
3513 * the high-atomic reserves. This will over-estimate the size of the
3514 * atomic reserve but it avoids a search.
3515 */
3516 if (likely(!alloc_harder))
3517 unusable_free += z->nr_reserved_highatomic;
3518
3519#ifdef CONFIG_CMA
3520 /* If allocation can't use CMA areas don't use free CMA pages */
3521 if (!(alloc_flags & ALLOC_CMA))
3522 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3523#endif
3524
3525 return unusable_free;
3526}
3527
1da177e4 3528/*
97a16fc8
MG
3529 * Return true if free base pages are above 'mark'. For high-order checks it
3530 * will return true of the order-0 watermark is reached and there is at least
3531 * one free page of a suitable size. Checking now avoids taking the zone lock
3532 * to check in the allocation paths if no pages are free.
1da177e4 3533 */
86a294a8 3534bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3535 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3536 long free_pages)
1da177e4 3537{
d23ad423 3538 long min = mark;
1da177e4 3539 int o;
cd04ae1e 3540 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3541
0aaa29a5 3542 /* free_pages may go negative - that's OK */
f27ce0e1 3543 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3544
7fb1d9fc 3545 if (alloc_flags & ALLOC_HIGH)
1da177e4 3546 min -= min / 2;
0aaa29a5 3547
f27ce0e1 3548 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3549 /*
3550 * OOM victims can try even harder than normal ALLOC_HARDER
3551 * users on the grounds that it's definitely going to be in
3552 * the exit path shortly and free memory. Any allocation it
3553 * makes during the free path will be small and short-lived.
3554 */
3555 if (alloc_flags & ALLOC_OOM)
3556 min -= min / 2;
3557 else
3558 min -= min / 4;
3559 }
3560
97a16fc8
MG
3561 /*
3562 * Check watermarks for an order-0 allocation request. If these
3563 * are not met, then a high-order request also cannot go ahead
3564 * even if a suitable page happened to be free.
3565 */
97a225e6 3566 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3567 return false;
1da177e4 3568
97a16fc8
MG
3569 /* If this is an order-0 request then the watermark is fine */
3570 if (!order)
3571 return true;
3572
3573 /* For a high-order request, check at least one suitable page is free */
3574 for (o = order; o < MAX_ORDER; o++) {
3575 struct free_area *area = &z->free_area[o];
3576 int mt;
3577
3578 if (!area->nr_free)
3579 continue;
3580
97a16fc8 3581 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3582 if (!free_area_empty(area, mt))
97a16fc8
MG
3583 return true;
3584 }
3585
3586#ifdef CONFIG_CMA
d883c6cf 3587 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3588 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3589 return true;
d883c6cf 3590 }
97a16fc8 3591#endif
76089d00 3592 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3593 return true;
1da177e4 3594 }
97a16fc8 3595 return false;
88f5acf8
MG
3596}
3597
7aeb09f9 3598bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3599 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3600{
97a225e6 3601 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3602 zone_page_state(z, NR_FREE_PAGES));
3603}
3604
48ee5f36 3605static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3606 unsigned long mark, int highest_zoneidx,
f80b08fc 3607 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3608{
f27ce0e1 3609 long free_pages;
d883c6cf 3610
f27ce0e1 3611 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3612
3613 /*
3614 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3615 * need to be calculated.
48ee5f36 3616 */
f27ce0e1
JK
3617 if (!order) {
3618 long fast_free;
3619
3620 fast_free = free_pages;
3621 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3622 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3623 return true;
3624 }
48ee5f36 3625
f80b08fc
CTR
3626 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3627 free_pages))
3628 return true;
3629 /*
3630 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3631 * when checking the min watermark. The min watermark is the
3632 * point where boosting is ignored so that kswapd is woken up
3633 * when below the low watermark.
3634 */
3635 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3636 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3637 mark = z->_watermark[WMARK_MIN];
3638 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3639 alloc_flags, free_pages);
3640 }
3641
3642 return false;
48ee5f36
MG
3643}
3644
7aeb09f9 3645bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3646 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3647{
3648 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3649
3650 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3651 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3652
97a225e6 3653 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3654 free_pages);
1da177e4
LT
3655}
3656
9276b1bc 3657#ifdef CONFIG_NUMA
957f822a
DR
3658static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3659{
e02dc017 3660 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3661 node_reclaim_distance;
957f822a 3662}
9276b1bc 3663#else /* CONFIG_NUMA */
957f822a
DR
3664static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3665{
3666 return true;
3667}
9276b1bc
PJ
3668#endif /* CONFIG_NUMA */
3669
6bb15450
MG
3670/*
3671 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3672 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3673 * premature use of a lower zone may cause lowmem pressure problems that
3674 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3675 * probably too small. It only makes sense to spread allocations to avoid
3676 * fragmentation between the Normal and DMA32 zones.
3677 */
3678static inline unsigned int
0a79cdad 3679alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3680{
736838e9 3681 unsigned int alloc_flags;
0a79cdad 3682
736838e9
MN
3683 /*
3684 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3685 * to save a branch.
3686 */
3687 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3688
3689#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3690 if (!zone)
3691 return alloc_flags;
3692
6bb15450 3693 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3694 return alloc_flags;
6bb15450
MG
3695
3696 /*
3697 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3698 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3699 * on UMA that if Normal is populated then so is DMA32.
3700 */
3701 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3702 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3703 return alloc_flags;
6bb15450 3704
8118b82e 3705 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3706#endif /* CONFIG_ZONE_DMA32 */
3707 return alloc_flags;
6bb15450 3708}
6bb15450 3709
8510e69c
JK
3710static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3711 unsigned int alloc_flags)
3712{
3713#ifdef CONFIG_CMA
3714 unsigned int pflags = current->flags;
3715
3716 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3717 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3718 alloc_flags |= ALLOC_CMA;
3719
3720#endif
3721 return alloc_flags;
3722}
3723
7fb1d9fc 3724/*
0798e519 3725 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3726 * a page.
3727 */
3728static struct page *
a9263751
VB
3729get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3730 const struct alloc_context *ac)
753ee728 3731{
6bb15450 3732 struct zoneref *z;
5117f45d 3733 struct zone *zone;
3b8c0be4 3734 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3735 bool no_fallback;
3b8c0be4 3736
6bb15450 3737retry:
7fb1d9fc 3738 /*
9276b1bc 3739 * Scan zonelist, looking for a zone with enough free.
344736f2 3740 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3741 */
6bb15450
MG
3742 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3743 z = ac->preferred_zoneref;
97a225e6
JK
3744 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3745 ac->highest_zoneidx, ac->nodemask) {
be06af00 3746 struct page *page;
e085dbc5
JW
3747 unsigned long mark;
3748
664eedde
MG
3749 if (cpusets_enabled() &&
3750 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3751 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3752 continue;
a756cf59
JW
3753 /*
3754 * When allocating a page cache page for writing, we
281e3726
MG
3755 * want to get it from a node that is within its dirty
3756 * limit, such that no single node holds more than its
a756cf59 3757 * proportional share of globally allowed dirty pages.
281e3726 3758 * The dirty limits take into account the node's
a756cf59
JW
3759 * lowmem reserves and high watermark so that kswapd
3760 * should be able to balance it without having to
3761 * write pages from its LRU list.
3762 *
a756cf59 3763 * XXX: For now, allow allocations to potentially
281e3726 3764 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3765 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3766 * which is important when on a NUMA setup the allowed
281e3726 3767 * nodes are together not big enough to reach the
a756cf59 3768 * global limit. The proper fix for these situations
281e3726 3769 * will require awareness of nodes in the
a756cf59
JW
3770 * dirty-throttling and the flusher threads.
3771 */
3b8c0be4
MG
3772 if (ac->spread_dirty_pages) {
3773 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3774 continue;
3775
3776 if (!node_dirty_ok(zone->zone_pgdat)) {
3777 last_pgdat_dirty_limit = zone->zone_pgdat;
3778 continue;
3779 }
3780 }
7fb1d9fc 3781
6bb15450
MG
3782 if (no_fallback && nr_online_nodes > 1 &&
3783 zone != ac->preferred_zoneref->zone) {
3784 int local_nid;
3785
3786 /*
3787 * If moving to a remote node, retry but allow
3788 * fragmenting fallbacks. Locality is more important
3789 * than fragmentation avoidance.
3790 */
3791 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3792 if (zone_to_nid(zone) != local_nid) {
3793 alloc_flags &= ~ALLOC_NOFRAGMENT;
3794 goto retry;
3795 }
3796 }
3797
a9214443 3798 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3799 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3800 ac->highest_zoneidx, alloc_flags,
3801 gfp_mask)) {
fa5e084e
MG
3802 int ret;
3803
c9e97a19
PT
3804#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3805 /*
3806 * Watermark failed for this zone, but see if we can
3807 * grow this zone if it contains deferred pages.
3808 */
3809 if (static_branch_unlikely(&deferred_pages)) {
3810 if (_deferred_grow_zone(zone, order))
3811 goto try_this_zone;
3812 }
3813#endif
5dab2911
MG
3814 /* Checked here to keep the fast path fast */
3815 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3816 if (alloc_flags & ALLOC_NO_WATERMARKS)
3817 goto try_this_zone;
3818
a5f5f91d 3819 if (node_reclaim_mode == 0 ||
c33d6c06 3820 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3821 continue;
3822
a5f5f91d 3823 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3824 switch (ret) {
a5f5f91d 3825 case NODE_RECLAIM_NOSCAN:
fa5e084e 3826 /* did not scan */
cd38b115 3827 continue;
a5f5f91d 3828 case NODE_RECLAIM_FULL:
fa5e084e 3829 /* scanned but unreclaimable */
cd38b115 3830 continue;
fa5e084e
MG
3831 default:
3832 /* did we reclaim enough */
fed2719e 3833 if (zone_watermark_ok(zone, order, mark,
97a225e6 3834 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3835 goto try_this_zone;
3836
fed2719e 3837 continue;
0798e519 3838 }
7fb1d9fc
RS
3839 }
3840
fa5e084e 3841try_this_zone:
066b2393 3842 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3843 gfp_mask, alloc_flags, ac->migratetype);
75379191 3844 if (page) {
479f854a 3845 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3846
3847 /*
3848 * If this is a high-order atomic allocation then check
3849 * if the pageblock should be reserved for the future
3850 */
3851 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3852 reserve_highatomic_pageblock(page, zone, order);
3853
75379191 3854 return page;
c9e97a19
PT
3855 } else {
3856#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3857 /* Try again if zone has deferred pages */
3858 if (static_branch_unlikely(&deferred_pages)) {
3859 if (_deferred_grow_zone(zone, order))
3860 goto try_this_zone;
3861 }
3862#endif
75379191 3863 }
54a6eb5c 3864 }
9276b1bc 3865
6bb15450
MG
3866 /*
3867 * It's possible on a UMA machine to get through all zones that are
3868 * fragmented. If avoiding fragmentation, reset and try again.
3869 */
3870 if (no_fallback) {
3871 alloc_flags &= ~ALLOC_NOFRAGMENT;
3872 goto retry;
3873 }
3874
4ffeaf35 3875 return NULL;
753ee728
MH
3876}
3877
9af744d7 3878static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3879{
a238ab5b 3880 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3881
3882 /*
3883 * This documents exceptions given to allocations in certain
3884 * contexts that are allowed to allocate outside current's set
3885 * of allowed nodes.
3886 */
3887 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3888 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3889 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3890 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3891 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3892 filter &= ~SHOW_MEM_FILTER_NODES;
3893
9af744d7 3894 show_mem(filter, nodemask);
aa187507
MH
3895}
3896
a8e99259 3897void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3898{
3899 struct va_format vaf;
3900 va_list args;
1be334e5 3901 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3902
0f7896f1 3903 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3904 return;
3905
7877cdcc
MH
3906 va_start(args, fmt);
3907 vaf.fmt = fmt;
3908 vaf.va = &args;
ef8444ea 3909 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3910 current->comm, &vaf, gfp_mask, &gfp_mask,
3911 nodemask_pr_args(nodemask));
7877cdcc 3912 va_end(args);
3ee9a4f0 3913
a8e99259 3914 cpuset_print_current_mems_allowed();
ef8444ea 3915 pr_cont("\n");
a238ab5b 3916 dump_stack();
685dbf6f 3917 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3918}
3919
6c18ba7a
MH
3920static inline struct page *
3921__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3922 unsigned int alloc_flags,
3923 const struct alloc_context *ac)
3924{
3925 struct page *page;
3926
3927 page = get_page_from_freelist(gfp_mask, order,
3928 alloc_flags|ALLOC_CPUSET, ac);
3929 /*
3930 * fallback to ignore cpuset restriction if our nodes
3931 * are depleted
3932 */
3933 if (!page)
3934 page = get_page_from_freelist(gfp_mask, order,
3935 alloc_flags, ac);
3936
3937 return page;
3938}
3939
11e33f6a
MG
3940static inline struct page *
3941__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3942 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3943{
6e0fc46d
DR
3944 struct oom_control oc = {
3945 .zonelist = ac->zonelist,
3946 .nodemask = ac->nodemask,
2a966b77 3947 .memcg = NULL,
6e0fc46d
DR
3948 .gfp_mask = gfp_mask,
3949 .order = order,
6e0fc46d 3950 };
11e33f6a
MG
3951 struct page *page;
3952
9879de73
JW
3953 *did_some_progress = 0;
3954
9879de73 3955 /*
dc56401f
JW
3956 * Acquire the oom lock. If that fails, somebody else is
3957 * making progress for us.
9879de73 3958 */
dc56401f 3959 if (!mutex_trylock(&oom_lock)) {
9879de73 3960 *did_some_progress = 1;
11e33f6a 3961 schedule_timeout_uninterruptible(1);
1da177e4
LT
3962 return NULL;
3963 }
6b1de916 3964
11e33f6a
MG
3965 /*
3966 * Go through the zonelist yet one more time, keep very high watermark
3967 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3968 * we're still under heavy pressure. But make sure that this reclaim
3969 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3970 * allocation which will never fail due to oom_lock already held.
11e33f6a 3971 */
e746bf73
TH
3972 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3973 ~__GFP_DIRECT_RECLAIM, order,
3974 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3975 if (page)
11e33f6a
MG
3976 goto out;
3977
06ad276a
MH
3978 /* Coredumps can quickly deplete all memory reserves */
3979 if (current->flags & PF_DUMPCORE)
3980 goto out;
3981 /* The OOM killer will not help higher order allocs */
3982 if (order > PAGE_ALLOC_COSTLY_ORDER)
3983 goto out;
dcda9b04
MH
3984 /*
3985 * We have already exhausted all our reclaim opportunities without any
3986 * success so it is time to admit defeat. We will skip the OOM killer
3987 * because it is very likely that the caller has a more reasonable
3988 * fallback than shooting a random task.
3989 */
3990 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3991 goto out;
06ad276a 3992 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3993 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3994 goto out;
3995 if (pm_suspended_storage())
3996 goto out;
3997 /*
3998 * XXX: GFP_NOFS allocations should rather fail than rely on
3999 * other request to make a forward progress.
4000 * We are in an unfortunate situation where out_of_memory cannot
4001 * do much for this context but let's try it to at least get
4002 * access to memory reserved if the current task is killed (see
4003 * out_of_memory). Once filesystems are ready to handle allocation
4004 * failures more gracefully we should just bail out here.
4005 */
4006
4007 /* The OOM killer may not free memory on a specific node */
4008 if (gfp_mask & __GFP_THISNODE)
4009 goto out;
3da88fb3 4010
3c2c6488 4011 /* Exhausted what can be done so it's blame time */
5020e285 4012 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4013 *did_some_progress = 1;
5020e285 4014
6c18ba7a
MH
4015 /*
4016 * Help non-failing allocations by giving them access to memory
4017 * reserves
4018 */
4019 if (gfp_mask & __GFP_NOFAIL)
4020 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4021 ALLOC_NO_WATERMARKS, ac);
5020e285 4022 }
11e33f6a 4023out:
dc56401f 4024 mutex_unlock(&oom_lock);
11e33f6a
MG
4025 return page;
4026}
4027
33c2d214
MH
4028/*
4029 * Maximum number of compaction retries wit a progress before OOM
4030 * killer is consider as the only way to move forward.
4031 */
4032#define MAX_COMPACT_RETRIES 16
4033
56de7263
MG
4034#ifdef CONFIG_COMPACTION
4035/* Try memory compaction for high-order allocations before reclaim */
4036static struct page *
4037__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4038 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4039 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4040{
5e1f0f09 4041 struct page *page = NULL;
eb414681 4042 unsigned long pflags;
499118e9 4043 unsigned int noreclaim_flag;
53853e2d
VB
4044
4045 if (!order)
66199712 4046 return NULL;
66199712 4047
eb414681 4048 psi_memstall_enter(&pflags);
499118e9 4049 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4050
c5d01d0d 4051 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4052 prio, &page);
eb414681 4053
499118e9 4054 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4055 psi_memstall_leave(&pflags);
56de7263 4056
98dd3b48
VB
4057 /*
4058 * At least in one zone compaction wasn't deferred or skipped, so let's
4059 * count a compaction stall
4060 */
4061 count_vm_event(COMPACTSTALL);
8fb74b9f 4062
5e1f0f09
MG
4063 /* Prep a captured page if available */
4064 if (page)
4065 prep_new_page(page, order, gfp_mask, alloc_flags);
4066
4067 /* Try get a page from the freelist if available */
4068 if (!page)
4069 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4070
98dd3b48
VB
4071 if (page) {
4072 struct zone *zone = page_zone(page);
53853e2d 4073
98dd3b48
VB
4074 zone->compact_blockskip_flush = false;
4075 compaction_defer_reset(zone, order, true);
4076 count_vm_event(COMPACTSUCCESS);
4077 return page;
4078 }
56de7263 4079
98dd3b48
VB
4080 /*
4081 * It's bad if compaction run occurs and fails. The most likely reason
4082 * is that pages exist, but not enough to satisfy watermarks.
4083 */
4084 count_vm_event(COMPACTFAIL);
66199712 4085
98dd3b48 4086 cond_resched();
56de7263
MG
4087
4088 return NULL;
4089}
33c2d214 4090
3250845d
VB
4091static inline bool
4092should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4093 enum compact_result compact_result,
4094 enum compact_priority *compact_priority,
d9436498 4095 int *compaction_retries)
3250845d
VB
4096{
4097 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4098 int min_priority;
65190cff
MH
4099 bool ret = false;
4100 int retries = *compaction_retries;
4101 enum compact_priority priority = *compact_priority;
3250845d
VB
4102
4103 if (!order)
4104 return false;
4105
d9436498
VB
4106 if (compaction_made_progress(compact_result))
4107 (*compaction_retries)++;
4108
3250845d
VB
4109 /*
4110 * compaction considers all the zone as desperately out of memory
4111 * so it doesn't really make much sense to retry except when the
4112 * failure could be caused by insufficient priority
4113 */
d9436498
VB
4114 if (compaction_failed(compact_result))
4115 goto check_priority;
3250845d 4116
49433085
VB
4117 /*
4118 * compaction was skipped because there are not enough order-0 pages
4119 * to work with, so we retry only if it looks like reclaim can help.
4120 */
4121 if (compaction_needs_reclaim(compact_result)) {
4122 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4123 goto out;
4124 }
4125
3250845d
VB
4126 /*
4127 * make sure the compaction wasn't deferred or didn't bail out early
4128 * due to locks contention before we declare that we should give up.
49433085
VB
4129 * But the next retry should use a higher priority if allowed, so
4130 * we don't just keep bailing out endlessly.
3250845d 4131 */
65190cff 4132 if (compaction_withdrawn(compact_result)) {
49433085 4133 goto check_priority;
65190cff 4134 }
3250845d
VB
4135
4136 /*
dcda9b04 4137 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4138 * costly ones because they are de facto nofail and invoke OOM
4139 * killer to move on while costly can fail and users are ready
4140 * to cope with that. 1/4 retries is rather arbitrary but we
4141 * would need much more detailed feedback from compaction to
4142 * make a better decision.
4143 */
4144 if (order > PAGE_ALLOC_COSTLY_ORDER)
4145 max_retries /= 4;
65190cff
MH
4146 if (*compaction_retries <= max_retries) {
4147 ret = true;
4148 goto out;
4149 }
3250845d 4150
d9436498
VB
4151 /*
4152 * Make sure there are attempts at the highest priority if we exhausted
4153 * all retries or failed at the lower priorities.
4154 */
4155check_priority:
c2033b00
VB
4156 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4157 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4158
c2033b00 4159 if (*compact_priority > min_priority) {
d9436498
VB
4160 (*compact_priority)--;
4161 *compaction_retries = 0;
65190cff 4162 ret = true;
d9436498 4163 }
65190cff
MH
4164out:
4165 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4166 return ret;
3250845d 4167}
56de7263
MG
4168#else
4169static inline struct page *
4170__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4171 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4172 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4173{
33c2d214 4174 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4175 return NULL;
4176}
33c2d214
MH
4177
4178static inline bool
86a294a8
MH
4179should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4180 enum compact_result compact_result,
a5508cd8 4181 enum compact_priority *compact_priority,
d9436498 4182 int *compaction_retries)
33c2d214 4183{
31e49bfd
MH
4184 struct zone *zone;
4185 struct zoneref *z;
4186
4187 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4188 return false;
4189
4190 /*
4191 * There are setups with compaction disabled which would prefer to loop
4192 * inside the allocator rather than hit the oom killer prematurely.
4193 * Let's give them a good hope and keep retrying while the order-0
4194 * watermarks are OK.
4195 */
97a225e6
JK
4196 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4197 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4198 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4199 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4200 return true;
4201 }
33c2d214
MH
4202 return false;
4203}
3250845d 4204#endif /* CONFIG_COMPACTION */
56de7263 4205
d92a8cfc 4206#ifdef CONFIG_LOCKDEP
93781325 4207static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4208 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4209
4210static bool __need_fs_reclaim(gfp_t gfp_mask)
4211{
4212 gfp_mask = current_gfp_context(gfp_mask);
4213
4214 /* no reclaim without waiting on it */
4215 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4216 return false;
4217
4218 /* this guy won't enter reclaim */
2e517d68 4219 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4220 return false;
4221
4222 /* We're only interested __GFP_FS allocations for now */
4223 if (!(gfp_mask & __GFP_FS))
4224 return false;
4225
4226 if (gfp_mask & __GFP_NOLOCKDEP)
4227 return false;
4228
4229 return true;
4230}
4231
93781325
OS
4232void __fs_reclaim_acquire(void)
4233{
4234 lock_map_acquire(&__fs_reclaim_map);
4235}
4236
4237void __fs_reclaim_release(void)
4238{
4239 lock_map_release(&__fs_reclaim_map);
4240}
4241
d92a8cfc
PZ
4242void fs_reclaim_acquire(gfp_t gfp_mask)
4243{
4244 if (__need_fs_reclaim(gfp_mask))
93781325 4245 __fs_reclaim_acquire();
d92a8cfc
PZ
4246}
4247EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4248
4249void fs_reclaim_release(gfp_t gfp_mask)
4250{
4251 if (__need_fs_reclaim(gfp_mask))
93781325 4252 __fs_reclaim_release();
d92a8cfc
PZ
4253}
4254EXPORT_SYMBOL_GPL(fs_reclaim_release);
4255#endif
4256
bba90710
MS
4257/* Perform direct synchronous page reclaim */
4258static int
a9263751
VB
4259__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4260 const struct alloc_context *ac)
11e33f6a 4261{
bba90710 4262 int progress;
499118e9 4263 unsigned int noreclaim_flag;
eb414681 4264 unsigned long pflags;
11e33f6a
MG
4265
4266 cond_resched();
4267
4268 /* We now go into synchronous reclaim */
4269 cpuset_memory_pressure_bump();
eb414681 4270 psi_memstall_enter(&pflags);
d92a8cfc 4271 fs_reclaim_acquire(gfp_mask);
93781325 4272 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4273
a9263751
VB
4274 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4275 ac->nodemask);
11e33f6a 4276
499118e9 4277 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4278 fs_reclaim_release(gfp_mask);
eb414681 4279 psi_memstall_leave(&pflags);
11e33f6a
MG
4280
4281 cond_resched();
4282
bba90710
MS
4283 return progress;
4284}
4285
4286/* The really slow allocator path where we enter direct reclaim */
4287static inline struct page *
4288__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4289 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4290 unsigned long *did_some_progress)
bba90710
MS
4291{
4292 struct page *page = NULL;
4293 bool drained = false;
4294
a9263751 4295 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4296 if (unlikely(!(*did_some_progress)))
4297 return NULL;
11e33f6a 4298
9ee493ce 4299retry:
31a6c190 4300 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4301
4302 /*
4303 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4304 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4305 * Shrink them and try again
9ee493ce
MG
4306 */
4307 if (!page && !drained) {
29fac03b 4308 unreserve_highatomic_pageblock(ac, false);
93481ff0 4309 drain_all_pages(NULL);
9ee493ce
MG
4310 drained = true;
4311 goto retry;
4312 }
4313
11e33f6a
MG
4314 return page;
4315}
4316
5ecd9d40
DR
4317static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4318 const struct alloc_context *ac)
3a025760
JW
4319{
4320 struct zoneref *z;
4321 struct zone *zone;
e1a55637 4322 pg_data_t *last_pgdat = NULL;
97a225e6 4323 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4324
97a225e6 4325 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4326 ac->nodemask) {
e1a55637 4327 if (last_pgdat != zone->zone_pgdat)
97a225e6 4328 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4329 last_pgdat = zone->zone_pgdat;
4330 }
3a025760
JW
4331}
4332
c603844b 4333static inline unsigned int
341ce06f
PZ
4334gfp_to_alloc_flags(gfp_t gfp_mask)
4335{
c603844b 4336 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4337
736838e9
MN
4338 /*
4339 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4340 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4341 * to save two branches.
4342 */
e6223a3b 4343 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4344 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4345
341ce06f
PZ
4346 /*
4347 * The caller may dip into page reserves a bit more if the caller
4348 * cannot run direct reclaim, or if the caller has realtime scheduling
4349 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4350 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4351 */
736838e9
MN
4352 alloc_flags |= (__force int)
4353 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4354
d0164adc 4355 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4356 /*
b104a35d
DR
4357 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4358 * if it can't schedule.
5c3240d9 4359 */
b104a35d 4360 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4361 alloc_flags |= ALLOC_HARDER;
523b9458 4362 /*
b104a35d 4363 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4364 * comment for __cpuset_node_allowed().
523b9458 4365 */
341ce06f 4366 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4367 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4368 alloc_flags |= ALLOC_HARDER;
4369
8510e69c
JK
4370 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4371
341ce06f
PZ
4372 return alloc_flags;
4373}
4374
cd04ae1e 4375static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4376{
cd04ae1e
MH
4377 if (!tsk_is_oom_victim(tsk))
4378 return false;
4379
4380 /*
4381 * !MMU doesn't have oom reaper so give access to memory reserves
4382 * only to the thread with TIF_MEMDIE set
4383 */
4384 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4385 return false;
4386
cd04ae1e
MH
4387 return true;
4388}
4389
4390/*
4391 * Distinguish requests which really need access to full memory
4392 * reserves from oom victims which can live with a portion of it
4393 */
4394static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4395{
4396 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4397 return 0;
31a6c190 4398 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4399 return ALLOC_NO_WATERMARKS;
31a6c190 4400 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4401 return ALLOC_NO_WATERMARKS;
4402 if (!in_interrupt()) {
4403 if (current->flags & PF_MEMALLOC)
4404 return ALLOC_NO_WATERMARKS;
4405 else if (oom_reserves_allowed(current))
4406 return ALLOC_OOM;
4407 }
31a6c190 4408
cd04ae1e
MH
4409 return 0;
4410}
4411
4412bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4413{
4414 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4415}
4416
0a0337e0
MH
4417/*
4418 * Checks whether it makes sense to retry the reclaim to make a forward progress
4419 * for the given allocation request.
491d79ae
JW
4420 *
4421 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4422 * without success, or when we couldn't even meet the watermark if we
4423 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4424 *
4425 * Returns true if a retry is viable or false to enter the oom path.
4426 */
4427static inline bool
4428should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4429 struct alloc_context *ac, int alloc_flags,
423b452e 4430 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4431{
4432 struct zone *zone;
4433 struct zoneref *z;
15f570bf 4434 bool ret = false;
0a0337e0 4435
423b452e
VB
4436 /*
4437 * Costly allocations might have made a progress but this doesn't mean
4438 * their order will become available due to high fragmentation so
4439 * always increment the no progress counter for them
4440 */
4441 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4442 *no_progress_loops = 0;
4443 else
4444 (*no_progress_loops)++;
4445
0a0337e0
MH
4446 /*
4447 * Make sure we converge to OOM if we cannot make any progress
4448 * several times in the row.
4449 */
04c8716f
MK
4450 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4451 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4452 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4453 }
0a0337e0 4454
bca67592
MG
4455 /*
4456 * Keep reclaiming pages while there is a chance this will lead
4457 * somewhere. If none of the target zones can satisfy our allocation
4458 * request even if all reclaimable pages are considered then we are
4459 * screwed and have to go OOM.
0a0337e0 4460 */
97a225e6
JK
4461 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4462 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4463 unsigned long available;
ede37713 4464 unsigned long reclaimable;
d379f01d
MH
4465 unsigned long min_wmark = min_wmark_pages(zone);
4466 bool wmark;
0a0337e0 4467
5a1c84b4 4468 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4469 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4470
4471 /*
491d79ae
JW
4472 * Would the allocation succeed if we reclaimed all
4473 * reclaimable pages?
0a0337e0 4474 */
d379f01d 4475 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4476 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4477 trace_reclaim_retry_zone(z, order, reclaimable,
4478 available, min_wmark, *no_progress_loops, wmark);
4479 if (wmark) {
ede37713
MH
4480 /*
4481 * If we didn't make any progress and have a lot of
4482 * dirty + writeback pages then we should wait for
4483 * an IO to complete to slow down the reclaim and
4484 * prevent from pre mature OOM
4485 */
4486 if (!did_some_progress) {
11fb9989 4487 unsigned long write_pending;
ede37713 4488
5a1c84b4
MG
4489 write_pending = zone_page_state_snapshot(zone,
4490 NR_ZONE_WRITE_PENDING);
ede37713 4491
11fb9989 4492 if (2 * write_pending > reclaimable) {
ede37713
MH
4493 congestion_wait(BLK_RW_ASYNC, HZ/10);
4494 return true;
4495 }
4496 }
5a1c84b4 4497
15f570bf
MH
4498 ret = true;
4499 goto out;
0a0337e0
MH
4500 }
4501 }
4502
15f570bf
MH
4503out:
4504 /*
4505 * Memory allocation/reclaim might be called from a WQ context and the
4506 * current implementation of the WQ concurrency control doesn't
4507 * recognize that a particular WQ is congested if the worker thread is
4508 * looping without ever sleeping. Therefore we have to do a short sleep
4509 * here rather than calling cond_resched().
4510 */
4511 if (current->flags & PF_WQ_WORKER)
4512 schedule_timeout_uninterruptible(1);
4513 else
4514 cond_resched();
4515 return ret;
0a0337e0
MH
4516}
4517
902b6281
VB
4518static inline bool
4519check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4520{
4521 /*
4522 * It's possible that cpuset's mems_allowed and the nodemask from
4523 * mempolicy don't intersect. This should be normally dealt with by
4524 * policy_nodemask(), but it's possible to race with cpuset update in
4525 * such a way the check therein was true, and then it became false
4526 * before we got our cpuset_mems_cookie here.
4527 * This assumes that for all allocations, ac->nodemask can come only
4528 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4529 * when it does not intersect with the cpuset restrictions) or the
4530 * caller can deal with a violated nodemask.
4531 */
4532 if (cpusets_enabled() && ac->nodemask &&
4533 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4534 ac->nodemask = NULL;
4535 return true;
4536 }
4537
4538 /*
4539 * When updating a task's mems_allowed or mempolicy nodemask, it is
4540 * possible to race with parallel threads in such a way that our
4541 * allocation can fail while the mask is being updated. If we are about
4542 * to fail, check if the cpuset changed during allocation and if so,
4543 * retry.
4544 */
4545 if (read_mems_allowed_retry(cpuset_mems_cookie))
4546 return true;
4547
4548 return false;
4549}
4550
11e33f6a
MG
4551static inline struct page *
4552__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4553 struct alloc_context *ac)
11e33f6a 4554{
d0164adc 4555 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4556 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4557 struct page *page = NULL;
c603844b 4558 unsigned int alloc_flags;
11e33f6a 4559 unsigned long did_some_progress;
5ce9bfef 4560 enum compact_priority compact_priority;
c5d01d0d 4561 enum compact_result compact_result;
5ce9bfef
VB
4562 int compaction_retries;
4563 int no_progress_loops;
5ce9bfef 4564 unsigned int cpuset_mems_cookie;
cd04ae1e 4565 int reserve_flags;
1da177e4 4566
d0164adc
MG
4567 /*
4568 * We also sanity check to catch abuse of atomic reserves being used by
4569 * callers that are not in atomic context.
4570 */
4571 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4572 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4573 gfp_mask &= ~__GFP_ATOMIC;
4574
5ce9bfef
VB
4575retry_cpuset:
4576 compaction_retries = 0;
4577 no_progress_loops = 0;
4578 compact_priority = DEF_COMPACT_PRIORITY;
4579 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4580
4581 /*
4582 * The fast path uses conservative alloc_flags to succeed only until
4583 * kswapd needs to be woken up, and to avoid the cost of setting up
4584 * alloc_flags precisely. So we do that now.
4585 */
4586 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4587
e47483bc
VB
4588 /*
4589 * We need to recalculate the starting point for the zonelist iterator
4590 * because we might have used different nodemask in the fast path, or
4591 * there was a cpuset modification and we are retrying - otherwise we
4592 * could end up iterating over non-eligible zones endlessly.
4593 */
4594 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4595 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4596 if (!ac->preferred_zoneref->zone)
4597 goto nopage;
4598
0a79cdad 4599 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4600 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4601
4602 /*
4603 * The adjusted alloc_flags might result in immediate success, so try
4604 * that first
4605 */
4606 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4607 if (page)
4608 goto got_pg;
4609
a8161d1e
VB
4610 /*
4611 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4612 * that we have enough base pages and don't need to reclaim. For non-
4613 * movable high-order allocations, do that as well, as compaction will
4614 * try prevent permanent fragmentation by migrating from blocks of the
4615 * same migratetype.
4616 * Don't try this for allocations that are allowed to ignore
4617 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4618 */
282722b0
VB
4619 if (can_direct_reclaim &&
4620 (costly_order ||
4621 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4622 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4623 page = __alloc_pages_direct_compact(gfp_mask, order,
4624 alloc_flags, ac,
a5508cd8 4625 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4626 &compact_result);
4627 if (page)
4628 goto got_pg;
4629
cc638f32
VB
4630 /*
4631 * Checks for costly allocations with __GFP_NORETRY, which
4632 * includes some THP page fault allocations
4633 */
4634 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4635 /*
4636 * If allocating entire pageblock(s) and compaction
4637 * failed because all zones are below low watermarks
4638 * or is prohibited because it recently failed at this
3f36d866
DR
4639 * order, fail immediately unless the allocator has
4640 * requested compaction and reclaim retry.
b39d0ee2
DR
4641 *
4642 * Reclaim is
4643 * - potentially very expensive because zones are far
4644 * below their low watermarks or this is part of very
4645 * bursty high order allocations,
4646 * - not guaranteed to help because isolate_freepages()
4647 * may not iterate over freed pages as part of its
4648 * linear scan, and
4649 * - unlikely to make entire pageblocks free on its
4650 * own.
4651 */
4652 if (compact_result == COMPACT_SKIPPED ||
4653 compact_result == COMPACT_DEFERRED)
4654 goto nopage;
a8161d1e 4655
a8161d1e 4656 /*
3eb2771b
VB
4657 * Looks like reclaim/compaction is worth trying, but
4658 * sync compaction could be very expensive, so keep
25160354 4659 * using async compaction.
a8161d1e 4660 */
a5508cd8 4661 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4662 }
4663 }
23771235 4664
31a6c190 4665retry:
23771235 4666 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4667 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4668 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4669
cd04ae1e
MH
4670 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4671 if (reserve_flags)
8510e69c 4672 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4673
e46e7b77 4674 /*
d6a24df0
VB
4675 * Reset the nodemask and zonelist iterators if memory policies can be
4676 * ignored. These allocations are high priority and system rather than
4677 * user oriented.
e46e7b77 4678 */
cd04ae1e 4679 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4680 ac->nodemask = NULL;
e46e7b77 4681 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4682 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4683 }
4684
23771235 4685 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4686 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4687 if (page)
4688 goto got_pg;
1da177e4 4689
d0164adc 4690 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4691 if (!can_direct_reclaim)
1da177e4
LT
4692 goto nopage;
4693
9a67f648
MH
4694 /* Avoid recursion of direct reclaim */
4695 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4696 goto nopage;
4697
a8161d1e
VB
4698 /* Try direct reclaim and then allocating */
4699 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4700 &did_some_progress);
4701 if (page)
4702 goto got_pg;
4703
4704 /* Try direct compaction and then allocating */
a9263751 4705 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4706 compact_priority, &compact_result);
56de7263
MG
4707 if (page)
4708 goto got_pg;
75f30861 4709
9083905a
JW
4710 /* Do not loop if specifically requested */
4711 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4712 goto nopage;
9083905a 4713
0a0337e0
MH
4714 /*
4715 * Do not retry costly high order allocations unless they are
dcda9b04 4716 * __GFP_RETRY_MAYFAIL
0a0337e0 4717 */
dcda9b04 4718 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4719 goto nopage;
0a0337e0 4720
0a0337e0 4721 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4722 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4723 goto retry;
4724
33c2d214
MH
4725 /*
4726 * It doesn't make any sense to retry for the compaction if the order-0
4727 * reclaim is not able to make any progress because the current
4728 * implementation of the compaction depends on the sufficient amount
4729 * of free memory (see __compaction_suitable)
4730 */
4731 if (did_some_progress > 0 &&
86a294a8 4732 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4733 compact_result, &compact_priority,
d9436498 4734 &compaction_retries))
33c2d214
MH
4735 goto retry;
4736
902b6281
VB
4737
4738 /* Deal with possible cpuset update races before we start OOM killing */
4739 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4740 goto retry_cpuset;
4741
9083905a
JW
4742 /* Reclaim has failed us, start killing things */
4743 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4744 if (page)
4745 goto got_pg;
4746
9a67f648 4747 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4748 if (tsk_is_oom_victim(current) &&
8510e69c 4749 (alloc_flags & ALLOC_OOM ||
c288983d 4750 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4751 goto nopage;
4752
9083905a 4753 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4754 if (did_some_progress) {
4755 no_progress_loops = 0;
9083905a 4756 goto retry;
0a0337e0 4757 }
9083905a 4758
1da177e4 4759nopage:
902b6281
VB
4760 /* Deal with possible cpuset update races before we fail */
4761 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4762 goto retry_cpuset;
4763
9a67f648
MH
4764 /*
4765 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4766 * we always retry
4767 */
4768 if (gfp_mask & __GFP_NOFAIL) {
4769 /*
4770 * All existing users of the __GFP_NOFAIL are blockable, so warn
4771 * of any new users that actually require GFP_NOWAIT
4772 */
4773 if (WARN_ON_ONCE(!can_direct_reclaim))
4774 goto fail;
4775
4776 /*
4777 * PF_MEMALLOC request from this context is rather bizarre
4778 * because we cannot reclaim anything and only can loop waiting
4779 * for somebody to do a work for us
4780 */
4781 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4782
4783 /*
4784 * non failing costly orders are a hard requirement which we
4785 * are not prepared for much so let's warn about these users
4786 * so that we can identify them and convert them to something
4787 * else.
4788 */
4789 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4790
6c18ba7a
MH
4791 /*
4792 * Help non-failing allocations by giving them access to memory
4793 * reserves but do not use ALLOC_NO_WATERMARKS because this
4794 * could deplete whole memory reserves which would just make
4795 * the situation worse
4796 */
4797 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4798 if (page)
4799 goto got_pg;
4800
9a67f648
MH
4801 cond_resched();
4802 goto retry;
4803 }
4804fail:
a8e99259 4805 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4806 "page allocation failure: order:%u", order);
1da177e4 4807got_pg:
072bb0aa 4808 return page;
1da177e4 4809}
11e33f6a 4810
9cd75558 4811static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4812 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4813 struct alloc_context *ac, gfp_t *alloc_mask,
4814 unsigned int *alloc_flags)
11e33f6a 4815{
97a225e6 4816 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4817 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4818 ac->nodemask = nodemask;
01c0bfe0 4819 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4820
682a3385 4821 if (cpusets_enabled()) {
9cd75558 4822 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4823 /*
4824 * When we are in the interrupt context, it is irrelevant
4825 * to the current task context. It means that any node ok.
4826 */
4827 if (!in_interrupt() && !ac->nodemask)
9cd75558 4828 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4829 else
4830 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4831 }
4832
d92a8cfc
PZ
4833 fs_reclaim_acquire(gfp_mask);
4834 fs_reclaim_release(gfp_mask);
11e33f6a 4835
d0164adc 4836 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4837
4838 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4839 return false;
11e33f6a 4840
8510e69c 4841 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4842
9cd75558
MG
4843 return true;
4844}
21bb9bd1 4845
9cd75558 4846/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4847static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4848{
c9ab0c4f 4849 /* Dirty zone balancing only done in the fast path */
9cd75558 4850 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4851
e46e7b77
MG
4852 /*
4853 * The preferred zone is used for statistics but crucially it is
4854 * also used as the starting point for the zonelist iterator. It
4855 * may get reset for allocations that ignore memory policies.
4856 */
9cd75558 4857 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4858 ac->highest_zoneidx, ac->nodemask);
9cd75558
MG
4859}
4860
4861/*
4862 * This is the 'heart' of the zoned buddy allocator.
4863 */
4864struct page *
04ec6264
VB
4865__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4866 nodemask_t *nodemask)
9cd75558
MG
4867{
4868 struct page *page;
4869 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4870 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4871 struct alloc_context ac = { };
4872
c63ae43b
MH
4873 /*
4874 * There are several places where we assume that the order value is sane
4875 * so bail out early if the request is out of bound.
4876 */
4877 if (unlikely(order >= MAX_ORDER)) {
4878 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4879 return NULL;
4880 }
4881
9cd75558 4882 gfp_mask &= gfp_allowed_mask;
f19360f0 4883 alloc_mask = gfp_mask;
04ec6264 4884 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4885 return NULL;
4886
a380b40a 4887 finalise_ac(gfp_mask, &ac);
5bb1b169 4888
6bb15450
MG
4889 /*
4890 * Forbid the first pass from falling back to types that fragment
4891 * memory until all local zones are considered.
4892 */
0a79cdad 4893 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4894
5117f45d 4895 /* First allocation attempt */
a9263751 4896 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4897 if (likely(page))
4898 goto out;
11e33f6a 4899
4fcb0971 4900 /*
7dea19f9
MH
4901 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4902 * resp. GFP_NOIO which has to be inherited for all allocation requests
4903 * from a particular context which has been marked by
4904 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4905 */
7dea19f9 4906 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4907 ac.spread_dirty_pages = false;
23f086f9 4908
4741526b
MG
4909 /*
4910 * Restore the original nodemask if it was potentially replaced with
4911 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4912 */
97ce86f9 4913 ac.nodemask = nodemask;
16096c25 4914
4fcb0971 4915 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4916
4fcb0971 4917out:
c4159a75 4918 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4919 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4920 __free_pages(page, order);
4921 page = NULL;
4949148a
VD
4922 }
4923
4fcb0971
MG
4924 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4925
11e33f6a 4926 return page;
1da177e4 4927}
d239171e 4928EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4929
4930/*
9ea9a680
MH
4931 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4932 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4933 * you need to access high mem.
1da177e4 4934 */
920c7a5d 4935unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4936{
945a1113
AM
4937 struct page *page;
4938
9ea9a680 4939 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4940 if (!page)
4941 return 0;
4942 return (unsigned long) page_address(page);
4943}
1da177e4
LT
4944EXPORT_SYMBOL(__get_free_pages);
4945
920c7a5d 4946unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4947{
945a1113 4948 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4949}
1da177e4
LT
4950EXPORT_SYMBOL(get_zeroed_page);
4951
742aa7fb 4952static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4953{
742aa7fb
AL
4954 if (order == 0) /* Via pcp? */
4955 free_unref_page(page);
4956 else
4957 __free_pages_ok(page, order);
1da177e4
LT
4958}
4959
742aa7fb
AL
4960void __free_pages(struct page *page, unsigned int order)
4961{
4962 if (put_page_testzero(page))
4963 free_the_page(page, order);
4964}
1da177e4
LT
4965EXPORT_SYMBOL(__free_pages);
4966
920c7a5d 4967void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4968{
4969 if (addr != 0) {
725d704e 4970 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4971 __free_pages(virt_to_page((void *)addr), order);
4972 }
4973}
4974
4975EXPORT_SYMBOL(free_pages);
4976
b63ae8ca
AD
4977/*
4978 * Page Fragment:
4979 * An arbitrary-length arbitrary-offset area of memory which resides
4980 * within a 0 or higher order page. Multiple fragments within that page
4981 * are individually refcounted, in the page's reference counter.
4982 *
4983 * The page_frag functions below provide a simple allocation framework for
4984 * page fragments. This is used by the network stack and network device
4985 * drivers to provide a backing region of memory for use as either an
4986 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4987 */
2976db80
AD
4988static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4989 gfp_t gfp_mask)
b63ae8ca
AD
4990{
4991 struct page *page = NULL;
4992 gfp_t gfp = gfp_mask;
4993
4994#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4995 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4996 __GFP_NOMEMALLOC;
4997 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4998 PAGE_FRAG_CACHE_MAX_ORDER);
4999 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5000#endif
5001 if (unlikely(!page))
5002 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5003
5004 nc->va = page ? page_address(page) : NULL;
5005
5006 return page;
5007}
5008
2976db80 5009void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5010{
5011 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5012
742aa7fb
AL
5013 if (page_ref_sub_and_test(page, count))
5014 free_the_page(page, compound_order(page));
44fdffd7 5015}
2976db80 5016EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5017
8c2dd3e4
AD
5018void *page_frag_alloc(struct page_frag_cache *nc,
5019 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5020{
5021 unsigned int size = PAGE_SIZE;
5022 struct page *page;
5023 int offset;
5024
5025 if (unlikely(!nc->va)) {
5026refill:
2976db80 5027 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5028 if (!page)
5029 return NULL;
5030
5031#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5032 /* if size can vary use size else just use PAGE_SIZE */
5033 size = nc->size;
5034#endif
5035 /* Even if we own the page, we do not use atomic_set().
5036 * This would break get_page_unless_zero() users.
5037 */
86447726 5038 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5039
5040 /* reset page count bias and offset to start of new frag */
2f064f34 5041 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5042 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5043 nc->offset = size;
5044 }
5045
5046 offset = nc->offset - fragsz;
5047 if (unlikely(offset < 0)) {
5048 page = virt_to_page(nc->va);
5049
fe896d18 5050 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5051 goto refill;
5052
5053#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5054 /* if size can vary use size else just use PAGE_SIZE */
5055 size = nc->size;
5056#endif
5057 /* OK, page count is 0, we can safely set it */
86447726 5058 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5059
5060 /* reset page count bias and offset to start of new frag */
86447726 5061 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5062 offset = size - fragsz;
5063 }
5064
5065 nc->pagecnt_bias--;
5066 nc->offset = offset;
5067
5068 return nc->va + offset;
5069}
8c2dd3e4 5070EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5071
5072/*
5073 * Frees a page fragment allocated out of either a compound or order 0 page.
5074 */
8c2dd3e4 5075void page_frag_free(void *addr)
b63ae8ca
AD
5076{
5077 struct page *page = virt_to_head_page(addr);
5078
742aa7fb
AL
5079 if (unlikely(put_page_testzero(page)))
5080 free_the_page(page, compound_order(page));
b63ae8ca 5081}
8c2dd3e4 5082EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5083
d00181b9
KS
5084static void *make_alloc_exact(unsigned long addr, unsigned int order,
5085 size_t size)
ee85c2e1
AK
5086{
5087 if (addr) {
5088 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5089 unsigned long used = addr + PAGE_ALIGN(size);
5090
5091 split_page(virt_to_page((void *)addr), order);
5092 while (used < alloc_end) {
5093 free_page(used);
5094 used += PAGE_SIZE;
5095 }
5096 }
5097 return (void *)addr;
5098}
5099
2be0ffe2
TT
5100/**
5101 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5102 * @size: the number of bytes to allocate
63931eb9 5103 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5104 *
5105 * This function is similar to alloc_pages(), except that it allocates the
5106 * minimum number of pages to satisfy the request. alloc_pages() can only
5107 * allocate memory in power-of-two pages.
5108 *
5109 * This function is also limited by MAX_ORDER.
5110 *
5111 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5112 *
5113 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5114 */
5115void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5116{
5117 unsigned int order = get_order(size);
5118 unsigned long addr;
5119
63931eb9
VB
5120 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5121 gfp_mask &= ~__GFP_COMP;
5122
2be0ffe2 5123 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5124 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5125}
5126EXPORT_SYMBOL(alloc_pages_exact);
5127
ee85c2e1
AK
5128/**
5129 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5130 * pages on a node.
b5e6ab58 5131 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5132 * @size: the number of bytes to allocate
63931eb9 5133 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5134 *
5135 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5136 * back.
a862f68a
MR
5137 *
5138 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5139 */
e1931811 5140void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5141{
d00181b9 5142 unsigned int order = get_order(size);
63931eb9
VB
5143 struct page *p;
5144
5145 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5146 gfp_mask &= ~__GFP_COMP;
5147
5148 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5149 if (!p)
5150 return NULL;
5151 return make_alloc_exact((unsigned long)page_address(p), order, size);
5152}
ee85c2e1 5153
2be0ffe2
TT
5154/**
5155 * free_pages_exact - release memory allocated via alloc_pages_exact()
5156 * @virt: the value returned by alloc_pages_exact.
5157 * @size: size of allocation, same value as passed to alloc_pages_exact().
5158 *
5159 * Release the memory allocated by a previous call to alloc_pages_exact.
5160 */
5161void free_pages_exact(void *virt, size_t size)
5162{
5163 unsigned long addr = (unsigned long)virt;
5164 unsigned long end = addr + PAGE_ALIGN(size);
5165
5166 while (addr < end) {
5167 free_page(addr);
5168 addr += PAGE_SIZE;
5169 }
5170}
5171EXPORT_SYMBOL(free_pages_exact);
5172
e0fb5815
ZY
5173/**
5174 * nr_free_zone_pages - count number of pages beyond high watermark
5175 * @offset: The zone index of the highest zone
5176 *
a862f68a 5177 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5178 * high watermark within all zones at or below a given zone index. For each
5179 * zone, the number of pages is calculated as:
0e056eb5 5180 *
5181 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5182 *
5183 * Return: number of pages beyond high watermark.
e0fb5815 5184 */
ebec3862 5185static unsigned long nr_free_zone_pages(int offset)
1da177e4 5186{
dd1a239f 5187 struct zoneref *z;
54a6eb5c
MG
5188 struct zone *zone;
5189
e310fd43 5190 /* Just pick one node, since fallback list is circular */
ebec3862 5191 unsigned long sum = 0;
1da177e4 5192
0e88460d 5193 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5194
54a6eb5c 5195 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5196 unsigned long size = zone_managed_pages(zone);
41858966 5197 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5198 if (size > high)
5199 sum += size - high;
1da177e4
LT
5200 }
5201
5202 return sum;
5203}
5204
e0fb5815
ZY
5205/**
5206 * nr_free_buffer_pages - count number of pages beyond high watermark
5207 *
5208 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5209 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5210 *
5211 * Return: number of pages beyond high watermark within ZONE_DMA and
5212 * ZONE_NORMAL.
1da177e4 5213 */
ebec3862 5214unsigned long nr_free_buffer_pages(void)
1da177e4 5215{
af4ca457 5216 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5217}
c2f1a551 5218EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5219
08e0f6a9 5220static inline void show_node(struct zone *zone)
1da177e4 5221{
e5adfffc 5222 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5223 printk("Node %d ", zone_to_nid(zone));
1da177e4 5224}
1da177e4 5225
d02bd27b
IR
5226long si_mem_available(void)
5227{
5228 long available;
5229 unsigned long pagecache;
5230 unsigned long wmark_low = 0;
5231 unsigned long pages[NR_LRU_LISTS];
b29940c1 5232 unsigned long reclaimable;
d02bd27b
IR
5233 struct zone *zone;
5234 int lru;
5235
5236 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5237 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5238
5239 for_each_zone(zone)
a9214443 5240 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5241
5242 /*
5243 * Estimate the amount of memory available for userspace allocations,
5244 * without causing swapping.
5245 */
c41f012a 5246 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5247
5248 /*
5249 * Not all the page cache can be freed, otherwise the system will
5250 * start swapping. Assume at least half of the page cache, or the
5251 * low watermark worth of cache, needs to stay.
5252 */
5253 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5254 pagecache -= min(pagecache / 2, wmark_low);
5255 available += pagecache;
5256
5257 /*
b29940c1
VB
5258 * Part of the reclaimable slab and other kernel memory consists of
5259 * items that are in use, and cannot be freed. Cap this estimate at the
5260 * low watermark.
d02bd27b 5261 */
d42f3245
RG
5262 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5263 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5264 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5265
d02bd27b
IR
5266 if (available < 0)
5267 available = 0;
5268 return available;
5269}
5270EXPORT_SYMBOL_GPL(si_mem_available);
5271
1da177e4
LT
5272void si_meminfo(struct sysinfo *val)
5273{
ca79b0c2 5274 val->totalram = totalram_pages();
11fb9989 5275 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5276 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5277 val->bufferram = nr_blockdev_pages();
ca79b0c2 5278 val->totalhigh = totalhigh_pages();
1da177e4 5279 val->freehigh = nr_free_highpages();
1da177e4
LT
5280 val->mem_unit = PAGE_SIZE;
5281}
5282
5283EXPORT_SYMBOL(si_meminfo);
5284
5285#ifdef CONFIG_NUMA
5286void si_meminfo_node(struct sysinfo *val, int nid)
5287{
cdd91a77
JL
5288 int zone_type; /* needs to be signed */
5289 unsigned long managed_pages = 0;
fc2bd799
JK
5290 unsigned long managed_highpages = 0;
5291 unsigned long free_highpages = 0;
1da177e4
LT
5292 pg_data_t *pgdat = NODE_DATA(nid);
5293
cdd91a77 5294 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5295 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5296 val->totalram = managed_pages;
11fb9989 5297 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5298 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5299#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5300 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5301 struct zone *zone = &pgdat->node_zones[zone_type];
5302
5303 if (is_highmem(zone)) {
9705bea5 5304 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5305 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5306 }
5307 }
5308 val->totalhigh = managed_highpages;
5309 val->freehigh = free_highpages;
98d2b0eb 5310#else
fc2bd799
JK
5311 val->totalhigh = managed_highpages;
5312 val->freehigh = free_highpages;
98d2b0eb 5313#endif
1da177e4
LT
5314 val->mem_unit = PAGE_SIZE;
5315}
5316#endif
5317
ddd588b5 5318/*
7bf02ea2
DR
5319 * Determine whether the node should be displayed or not, depending on whether
5320 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5321 */
9af744d7 5322static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5323{
ddd588b5 5324 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5325 return false;
ddd588b5 5326
9af744d7
MH
5327 /*
5328 * no node mask - aka implicit memory numa policy. Do not bother with
5329 * the synchronization - read_mems_allowed_begin - because we do not
5330 * have to be precise here.
5331 */
5332 if (!nodemask)
5333 nodemask = &cpuset_current_mems_allowed;
5334
5335 return !node_isset(nid, *nodemask);
ddd588b5
DR
5336}
5337
1da177e4
LT
5338#define K(x) ((x) << (PAGE_SHIFT-10))
5339
377e4f16
RV
5340static void show_migration_types(unsigned char type)
5341{
5342 static const char types[MIGRATE_TYPES] = {
5343 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5344 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5345 [MIGRATE_RECLAIMABLE] = 'E',
5346 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5347#ifdef CONFIG_CMA
5348 [MIGRATE_CMA] = 'C',
5349#endif
194159fb 5350#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5351 [MIGRATE_ISOLATE] = 'I',
194159fb 5352#endif
377e4f16
RV
5353 };
5354 char tmp[MIGRATE_TYPES + 1];
5355 char *p = tmp;
5356 int i;
5357
5358 for (i = 0; i < MIGRATE_TYPES; i++) {
5359 if (type & (1 << i))
5360 *p++ = types[i];
5361 }
5362
5363 *p = '\0';
1f84a18f 5364 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5365}
5366
1da177e4
LT
5367/*
5368 * Show free area list (used inside shift_scroll-lock stuff)
5369 * We also calculate the percentage fragmentation. We do this by counting the
5370 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5371 *
5372 * Bits in @filter:
5373 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5374 * cpuset.
1da177e4 5375 */
9af744d7 5376void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5377{
d1bfcdb8 5378 unsigned long free_pcp = 0;
c7241913 5379 int cpu;
1da177e4 5380 struct zone *zone;
599d0c95 5381 pg_data_t *pgdat;
1da177e4 5382
ee99c71c 5383 for_each_populated_zone(zone) {
9af744d7 5384 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5385 continue;
d1bfcdb8 5386
761b0677
KK
5387 for_each_online_cpu(cpu)
5388 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5389 }
5390
a731286d
KM
5391 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5392 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5393 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5394 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5395 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5396 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5397 global_node_page_state(NR_ACTIVE_ANON),
5398 global_node_page_state(NR_INACTIVE_ANON),
5399 global_node_page_state(NR_ISOLATED_ANON),
5400 global_node_page_state(NR_ACTIVE_FILE),
5401 global_node_page_state(NR_INACTIVE_FILE),
5402 global_node_page_state(NR_ISOLATED_FILE),
5403 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5404 global_node_page_state(NR_FILE_DIRTY),
5405 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5406 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5407 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5408 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5409 global_node_page_state(NR_SHMEM),
c41f012a
MH
5410 global_zone_page_state(NR_PAGETABLE),
5411 global_zone_page_state(NR_BOUNCE),
5412 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5413 free_pcp,
c41f012a 5414 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5415
599d0c95 5416 for_each_online_pgdat(pgdat) {
9af744d7 5417 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5418 continue;
5419
599d0c95
MG
5420 printk("Node %d"
5421 " active_anon:%lukB"
5422 " inactive_anon:%lukB"
5423 " active_file:%lukB"
5424 " inactive_file:%lukB"
5425 " unevictable:%lukB"
5426 " isolated(anon):%lukB"
5427 " isolated(file):%lukB"
50658e2e 5428 " mapped:%lukB"
11fb9989
MG
5429 " dirty:%lukB"
5430 " writeback:%lukB"
5431 " shmem:%lukB"
5432#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5433 " shmem_thp: %lukB"
5434 " shmem_pmdmapped: %lukB"
5435 " anon_thp: %lukB"
5436#endif
5437 " writeback_tmp:%lukB"
991e7673
SB
5438 " kernel_stack:%lukB"
5439#ifdef CONFIG_SHADOW_CALL_STACK
5440 " shadow_call_stack:%lukB"
5441#endif
599d0c95
MG
5442 " all_unreclaimable? %s"
5443 "\n",
5444 pgdat->node_id,
5445 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5446 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5447 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5448 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5449 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5450 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5451 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5452 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5453 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5454 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5455 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5456#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5457 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5458 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5459 * HPAGE_PMD_NR),
5460 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5461#endif
11fb9989 5462 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5463 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5464#ifdef CONFIG_SHADOW_CALL_STACK
5465 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5466#endif
c73322d0
JW
5467 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5468 "yes" : "no");
599d0c95
MG
5469 }
5470
ee99c71c 5471 for_each_populated_zone(zone) {
1da177e4
LT
5472 int i;
5473
9af744d7 5474 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5475 continue;
d1bfcdb8
KK
5476
5477 free_pcp = 0;
5478 for_each_online_cpu(cpu)
5479 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5480
1da177e4 5481 show_node(zone);
1f84a18f
JP
5482 printk(KERN_CONT
5483 "%s"
1da177e4
LT
5484 " free:%lukB"
5485 " min:%lukB"
5486 " low:%lukB"
5487 " high:%lukB"
e47b346a 5488 " reserved_highatomic:%luKB"
71c799f4
MK
5489 " active_anon:%lukB"
5490 " inactive_anon:%lukB"
5491 " active_file:%lukB"
5492 " inactive_file:%lukB"
5493 " unevictable:%lukB"
5a1c84b4 5494 " writepending:%lukB"
1da177e4 5495 " present:%lukB"
9feedc9d 5496 " managed:%lukB"
4a0aa73f 5497 " mlocked:%lukB"
4a0aa73f 5498 " pagetables:%lukB"
4a0aa73f 5499 " bounce:%lukB"
d1bfcdb8
KK
5500 " free_pcp:%lukB"
5501 " local_pcp:%ukB"
d1ce749a 5502 " free_cma:%lukB"
1da177e4
LT
5503 "\n",
5504 zone->name,
88f5acf8 5505 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5506 K(min_wmark_pages(zone)),
5507 K(low_wmark_pages(zone)),
5508 K(high_wmark_pages(zone)),
e47b346a 5509 K(zone->nr_reserved_highatomic),
71c799f4
MK
5510 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5511 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5512 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5513 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5514 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5515 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5516 K(zone->present_pages),
9705bea5 5517 K(zone_managed_pages(zone)),
4a0aa73f 5518 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5519 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5520 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5521 K(free_pcp),
5522 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5523 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5524 printk("lowmem_reserve[]:");
5525 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5526 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5527 printk(KERN_CONT "\n");
1da177e4
LT
5528 }
5529
ee99c71c 5530 for_each_populated_zone(zone) {
d00181b9
KS
5531 unsigned int order;
5532 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5533 unsigned char types[MAX_ORDER];
1da177e4 5534
9af744d7 5535 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5536 continue;
1da177e4 5537 show_node(zone);
1f84a18f 5538 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5539
5540 spin_lock_irqsave(&zone->lock, flags);
5541 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5542 struct free_area *area = &zone->free_area[order];
5543 int type;
5544
5545 nr[order] = area->nr_free;
8f9de51a 5546 total += nr[order] << order;
377e4f16
RV
5547
5548 types[order] = 0;
5549 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5550 if (!free_area_empty(area, type))
377e4f16
RV
5551 types[order] |= 1 << type;
5552 }
1da177e4
LT
5553 }
5554 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5555 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5556 printk(KERN_CONT "%lu*%lukB ",
5557 nr[order], K(1UL) << order);
377e4f16
RV
5558 if (nr[order])
5559 show_migration_types(types[order]);
5560 }
1f84a18f 5561 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5562 }
5563
949f7ec5
DR
5564 hugetlb_show_meminfo();
5565
11fb9989 5566 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5567
1da177e4
LT
5568 show_swap_cache_info();
5569}
5570
19770b32
MG
5571static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5572{
5573 zoneref->zone = zone;
5574 zoneref->zone_idx = zone_idx(zone);
5575}
5576
1da177e4
LT
5577/*
5578 * Builds allocation fallback zone lists.
1a93205b
CL
5579 *
5580 * Add all populated zones of a node to the zonelist.
1da177e4 5581 */
9d3be21b 5582static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5583{
1a93205b 5584 struct zone *zone;
bc732f1d 5585 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5586 int nr_zones = 0;
02a68a5e
CL
5587
5588 do {
2f6726e5 5589 zone_type--;
070f8032 5590 zone = pgdat->node_zones + zone_type;
6aa303de 5591 if (managed_zone(zone)) {
9d3be21b 5592 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5593 check_highest_zone(zone_type);
1da177e4 5594 }
2f6726e5 5595 } while (zone_type);
bc732f1d 5596
070f8032 5597 return nr_zones;
1da177e4
LT
5598}
5599
5600#ifdef CONFIG_NUMA
f0c0b2b8
KH
5601
5602static int __parse_numa_zonelist_order(char *s)
5603{
c9bff3ee
MH
5604 /*
5605 * We used to support different zonlists modes but they turned
5606 * out to be just not useful. Let's keep the warning in place
5607 * if somebody still use the cmd line parameter so that we do
5608 * not fail it silently
5609 */
5610 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5611 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5612 return -EINVAL;
5613 }
5614 return 0;
5615}
5616
c9bff3ee
MH
5617char numa_zonelist_order[] = "Node";
5618
f0c0b2b8
KH
5619/*
5620 * sysctl handler for numa_zonelist_order
5621 */
cccad5b9 5622int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5623 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5624{
32927393
CH
5625 if (write)
5626 return __parse_numa_zonelist_order(buffer);
5627 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5628}
5629
5630
62bc62a8 5631#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5632static int node_load[MAX_NUMNODES];
5633
1da177e4 5634/**
4dc3b16b 5635 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5636 * @node: node whose fallback list we're appending
5637 * @used_node_mask: nodemask_t of already used nodes
5638 *
5639 * We use a number of factors to determine which is the next node that should
5640 * appear on a given node's fallback list. The node should not have appeared
5641 * already in @node's fallback list, and it should be the next closest node
5642 * according to the distance array (which contains arbitrary distance values
5643 * from each node to each node in the system), and should also prefer nodes
5644 * with no CPUs, since presumably they'll have very little allocation pressure
5645 * on them otherwise.
a862f68a
MR
5646 *
5647 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5648 */
f0c0b2b8 5649static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5650{
4cf808eb 5651 int n, val;
1da177e4 5652 int min_val = INT_MAX;
00ef2d2f 5653 int best_node = NUMA_NO_NODE;
a70f7302 5654 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5655
4cf808eb
LT
5656 /* Use the local node if we haven't already */
5657 if (!node_isset(node, *used_node_mask)) {
5658 node_set(node, *used_node_mask);
5659 return node;
5660 }
1da177e4 5661
4b0ef1fe 5662 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5663
5664 /* Don't want a node to appear more than once */
5665 if (node_isset(n, *used_node_mask))
5666 continue;
5667
1da177e4
LT
5668 /* Use the distance array to find the distance */
5669 val = node_distance(node, n);
5670
4cf808eb
LT
5671 /* Penalize nodes under us ("prefer the next node") */
5672 val += (n < node);
5673
1da177e4 5674 /* Give preference to headless and unused nodes */
a70f7302
RR
5675 tmp = cpumask_of_node(n);
5676 if (!cpumask_empty(tmp))
1da177e4
LT
5677 val += PENALTY_FOR_NODE_WITH_CPUS;
5678
5679 /* Slight preference for less loaded node */
5680 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5681 val += node_load[n];
5682
5683 if (val < min_val) {
5684 min_val = val;
5685 best_node = n;
5686 }
5687 }
5688
5689 if (best_node >= 0)
5690 node_set(best_node, *used_node_mask);
5691
5692 return best_node;
5693}
5694
f0c0b2b8
KH
5695
5696/*
5697 * Build zonelists ordered by node and zones within node.
5698 * This results in maximum locality--normal zone overflows into local
5699 * DMA zone, if any--but risks exhausting DMA zone.
5700 */
9d3be21b
MH
5701static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5702 unsigned nr_nodes)
1da177e4 5703{
9d3be21b
MH
5704 struct zoneref *zonerefs;
5705 int i;
5706
5707 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5708
5709 for (i = 0; i < nr_nodes; i++) {
5710 int nr_zones;
5711
5712 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5713
9d3be21b
MH
5714 nr_zones = build_zonerefs_node(node, zonerefs);
5715 zonerefs += nr_zones;
5716 }
5717 zonerefs->zone = NULL;
5718 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5719}
5720
523b9458
CL
5721/*
5722 * Build gfp_thisnode zonelists
5723 */
5724static void build_thisnode_zonelists(pg_data_t *pgdat)
5725{
9d3be21b
MH
5726 struct zoneref *zonerefs;
5727 int nr_zones;
523b9458 5728
9d3be21b
MH
5729 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5730 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5731 zonerefs += nr_zones;
5732 zonerefs->zone = NULL;
5733 zonerefs->zone_idx = 0;
523b9458
CL
5734}
5735
f0c0b2b8
KH
5736/*
5737 * Build zonelists ordered by zone and nodes within zones.
5738 * This results in conserving DMA zone[s] until all Normal memory is
5739 * exhausted, but results in overflowing to remote node while memory
5740 * may still exist in local DMA zone.
5741 */
f0c0b2b8 5742
f0c0b2b8
KH
5743static void build_zonelists(pg_data_t *pgdat)
5744{
9d3be21b
MH
5745 static int node_order[MAX_NUMNODES];
5746 int node, load, nr_nodes = 0;
d0ddf49b 5747 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5748 int local_node, prev_node;
1da177e4
LT
5749
5750 /* NUMA-aware ordering of nodes */
5751 local_node = pgdat->node_id;
62bc62a8 5752 load = nr_online_nodes;
1da177e4 5753 prev_node = local_node;
f0c0b2b8 5754
f0c0b2b8 5755 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5756 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5757 /*
5758 * We don't want to pressure a particular node.
5759 * So adding penalty to the first node in same
5760 * distance group to make it round-robin.
5761 */
957f822a
DR
5762 if (node_distance(local_node, node) !=
5763 node_distance(local_node, prev_node))
f0c0b2b8
KH
5764 node_load[node] = load;
5765
9d3be21b 5766 node_order[nr_nodes++] = node;
1da177e4
LT
5767 prev_node = node;
5768 load--;
1da177e4 5769 }
523b9458 5770
9d3be21b 5771 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5772 build_thisnode_zonelists(pgdat);
1da177e4
LT
5773}
5774
7aac7898
LS
5775#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5776/*
5777 * Return node id of node used for "local" allocations.
5778 * I.e., first node id of first zone in arg node's generic zonelist.
5779 * Used for initializing percpu 'numa_mem', which is used primarily
5780 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5781 */
5782int local_memory_node(int node)
5783{
c33d6c06 5784 struct zoneref *z;
7aac7898 5785
c33d6c06 5786 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5787 gfp_zone(GFP_KERNEL),
c33d6c06 5788 NULL);
c1093b74 5789 return zone_to_nid(z->zone);
7aac7898
LS
5790}
5791#endif
f0c0b2b8 5792
6423aa81
JK
5793static void setup_min_unmapped_ratio(void);
5794static void setup_min_slab_ratio(void);
1da177e4
LT
5795#else /* CONFIG_NUMA */
5796
f0c0b2b8 5797static void build_zonelists(pg_data_t *pgdat)
1da177e4 5798{
19655d34 5799 int node, local_node;
9d3be21b
MH
5800 struct zoneref *zonerefs;
5801 int nr_zones;
1da177e4
LT
5802
5803 local_node = pgdat->node_id;
1da177e4 5804
9d3be21b
MH
5805 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5806 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5807 zonerefs += nr_zones;
1da177e4 5808
54a6eb5c
MG
5809 /*
5810 * Now we build the zonelist so that it contains the zones
5811 * of all the other nodes.
5812 * We don't want to pressure a particular node, so when
5813 * building the zones for node N, we make sure that the
5814 * zones coming right after the local ones are those from
5815 * node N+1 (modulo N)
5816 */
5817 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5818 if (!node_online(node))
5819 continue;
9d3be21b
MH
5820 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5821 zonerefs += nr_zones;
1da177e4 5822 }
54a6eb5c
MG
5823 for (node = 0; node < local_node; node++) {
5824 if (!node_online(node))
5825 continue;
9d3be21b
MH
5826 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5827 zonerefs += nr_zones;
54a6eb5c
MG
5828 }
5829
9d3be21b
MH
5830 zonerefs->zone = NULL;
5831 zonerefs->zone_idx = 0;
1da177e4
LT
5832}
5833
5834#endif /* CONFIG_NUMA */
5835
99dcc3e5
CL
5836/*
5837 * Boot pageset table. One per cpu which is going to be used for all
5838 * zones and all nodes. The parameters will be set in such a way
5839 * that an item put on a list will immediately be handed over to
5840 * the buddy list. This is safe since pageset manipulation is done
5841 * with interrupts disabled.
5842 *
5843 * The boot_pagesets must be kept even after bootup is complete for
5844 * unused processors and/or zones. They do play a role for bootstrapping
5845 * hotplugged processors.
5846 *
5847 * zoneinfo_show() and maybe other functions do
5848 * not check if the processor is online before following the pageset pointer.
5849 * Other parts of the kernel may not check if the zone is available.
5850 */
5851static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5852static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5853static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5854
11cd8638 5855static void __build_all_zonelists(void *data)
1da177e4 5856{
6811378e 5857 int nid;
afb6ebb3 5858 int __maybe_unused cpu;
9adb62a5 5859 pg_data_t *self = data;
b93e0f32
MH
5860 static DEFINE_SPINLOCK(lock);
5861
5862 spin_lock(&lock);
9276b1bc 5863
7f9cfb31
BL
5864#ifdef CONFIG_NUMA
5865 memset(node_load, 0, sizeof(node_load));
5866#endif
9adb62a5 5867
c1152583
WY
5868 /*
5869 * This node is hotadded and no memory is yet present. So just
5870 * building zonelists is fine - no need to touch other nodes.
5871 */
9adb62a5
JL
5872 if (self && !node_online(self->node_id)) {
5873 build_zonelists(self);
c1152583
WY
5874 } else {
5875 for_each_online_node(nid) {
5876 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5877
c1152583
WY
5878 build_zonelists(pgdat);
5879 }
99dcc3e5 5880
7aac7898
LS
5881#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5882 /*
5883 * We now know the "local memory node" for each node--
5884 * i.e., the node of the first zone in the generic zonelist.
5885 * Set up numa_mem percpu variable for on-line cpus. During
5886 * boot, only the boot cpu should be on-line; we'll init the
5887 * secondary cpus' numa_mem as they come on-line. During
5888 * node/memory hotplug, we'll fixup all on-line cpus.
5889 */
d9c9a0b9 5890 for_each_online_cpu(cpu)
7aac7898 5891 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5892#endif
d9c9a0b9 5893 }
b93e0f32
MH
5894
5895 spin_unlock(&lock);
6811378e
YG
5896}
5897
061f67bc
RV
5898static noinline void __init
5899build_all_zonelists_init(void)
5900{
afb6ebb3
MH
5901 int cpu;
5902
061f67bc 5903 __build_all_zonelists(NULL);
afb6ebb3
MH
5904
5905 /*
5906 * Initialize the boot_pagesets that are going to be used
5907 * for bootstrapping processors. The real pagesets for
5908 * each zone will be allocated later when the per cpu
5909 * allocator is available.
5910 *
5911 * boot_pagesets are used also for bootstrapping offline
5912 * cpus if the system is already booted because the pagesets
5913 * are needed to initialize allocators on a specific cpu too.
5914 * F.e. the percpu allocator needs the page allocator which
5915 * needs the percpu allocator in order to allocate its pagesets
5916 * (a chicken-egg dilemma).
5917 */
5918 for_each_possible_cpu(cpu)
5919 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5920
061f67bc
RV
5921 mminit_verify_zonelist();
5922 cpuset_init_current_mems_allowed();
5923}
5924
4eaf3f64 5925/*
4eaf3f64 5926 * unless system_state == SYSTEM_BOOTING.
061f67bc 5927 *
72675e13 5928 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5929 * [protected by SYSTEM_BOOTING].
4eaf3f64 5930 */
72675e13 5931void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5932{
0a18e607
DH
5933 unsigned long vm_total_pages;
5934
6811378e 5935 if (system_state == SYSTEM_BOOTING) {
061f67bc 5936 build_all_zonelists_init();
6811378e 5937 } else {
11cd8638 5938 __build_all_zonelists(pgdat);
6811378e
YG
5939 /* cpuset refresh routine should be here */
5940 }
56b9413b
DH
5941 /* Get the number of free pages beyond high watermark in all zones. */
5942 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5943 /*
5944 * Disable grouping by mobility if the number of pages in the
5945 * system is too low to allow the mechanism to work. It would be
5946 * more accurate, but expensive to check per-zone. This check is
5947 * made on memory-hotadd so a system can start with mobility
5948 * disabled and enable it later
5949 */
d9c23400 5950 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5951 page_group_by_mobility_disabled = 1;
5952 else
5953 page_group_by_mobility_disabled = 0;
5954
ce0725f7 5955 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5956 nr_online_nodes,
756a025f
JP
5957 page_group_by_mobility_disabled ? "off" : "on",
5958 vm_total_pages);
f0c0b2b8 5959#ifdef CONFIG_NUMA
f88dfff5 5960 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5961#endif
1da177e4
LT
5962}
5963
a9a9e77f
PT
5964/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5965static bool __meminit
5966overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5967{
a9a9e77f
PT
5968 static struct memblock_region *r;
5969
5970 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5971 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5972 for_each_memblock(memory, r) {
5973 if (*pfn < memblock_region_memory_end_pfn(r))
5974 break;
5975 }
5976 }
5977 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5978 memblock_is_mirror(r)) {
5979 *pfn = memblock_region_memory_end_pfn(r);
5980 return true;
5981 }
5982 }
a9a9e77f
PT
5983 return false;
5984}
5985
1da177e4
LT
5986/*
5987 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5988 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5989 * done. Non-atomic initialization, single-pass.
5990 */
c09b4240 5991void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
c1d0da83 5992 unsigned long start_pfn, enum meminit_context context,
a99583e7 5993 struct vmem_altmap *altmap)
1da177e4 5994{
a9a9e77f 5995 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5996 struct page *page;
1da177e4 5997
22b31eec
HD
5998 if (highest_memmap_pfn < end_pfn - 1)
5999 highest_memmap_pfn = end_pfn - 1;
6000
966cf44f 6001#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6002 /*
6003 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6004 * memory. We limit the total number of pages to initialize to just
6005 * those that might contain the memory mapping. We will defer the
6006 * ZONE_DEVICE page initialization until after we have released
6007 * the hotplug lock.
4b94ffdc 6008 */
966cf44f
AD
6009 if (zone == ZONE_DEVICE) {
6010 if (!altmap)
6011 return;
6012
6013 if (start_pfn == altmap->base_pfn)
6014 start_pfn += altmap->reserve;
6015 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6016 }
6017#endif
4b94ffdc 6018
948c436e 6019 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6020 /*
b72d0ffb
AM
6021 * There can be holes in boot-time mem_map[]s handed to this
6022 * function. They do not exist on hotplugged memory.
a2f3aa02 6023 */
c1d0da83 6024 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6025 if (overlap_memmap_init(zone, &pfn))
6026 continue;
6027 if (defer_init(nid, pfn, end_pfn))
6028 break;
a2f3aa02 6029 }
ac5d2539 6030
d0dc12e8
PT
6031 page = pfn_to_page(pfn);
6032 __init_single_page(page, pfn, zone, nid);
c1d0da83 6033 if (context == MEMINIT_HOTPLUG)
d483da5b 6034 __SetPageReserved(page);
d0dc12e8 6035
ac5d2539
MG
6036 /*
6037 * Mark the block movable so that blocks are reserved for
6038 * movable at startup. This will force kernel allocations
6039 * to reserve their blocks rather than leaking throughout
6040 * the address space during boot when many long-lived
974a786e 6041 * kernel allocations are made.
ac5d2539
MG
6042 *
6043 * bitmap is created for zone's valid pfn range. but memmap
6044 * can be created for invalid pages (for alignment)
6045 * check here not to call set_pageblock_migratetype() against
6046 * pfn out of zone.
6047 */
6048 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 6049 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 6050 cond_resched();
ac5d2539 6051 }
948c436e 6052 pfn++;
1da177e4
LT
6053 }
6054}
6055
966cf44f
AD
6056#ifdef CONFIG_ZONE_DEVICE
6057void __ref memmap_init_zone_device(struct zone *zone,
6058 unsigned long start_pfn,
1f8d75c1 6059 unsigned long nr_pages,
966cf44f
AD
6060 struct dev_pagemap *pgmap)
6061{
1f8d75c1 6062 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6063 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6064 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6065 unsigned long zone_idx = zone_idx(zone);
6066 unsigned long start = jiffies;
6067 int nid = pgdat->node_id;
6068
46d945ae 6069 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6070 return;
6071
6072 /*
6073 * The call to memmap_init_zone should have already taken care
6074 * of the pages reserved for the memmap, so we can just jump to
6075 * the end of that region and start processing the device pages.
6076 */
514caf23 6077 if (altmap) {
966cf44f 6078 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6079 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6080 }
6081
6082 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6083 struct page *page = pfn_to_page(pfn);
6084
6085 __init_single_page(page, pfn, zone_idx, nid);
6086
6087 /*
6088 * Mark page reserved as it will need to wait for onlining
6089 * phase for it to be fully associated with a zone.
6090 *
6091 * We can use the non-atomic __set_bit operation for setting
6092 * the flag as we are still initializing the pages.
6093 */
6094 __SetPageReserved(page);
6095
6096 /*
8a164fef
CH
6097 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6098 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6099 * ever freed or placed on a driver-private list.
966cf44f
AD
6100 */
6101 page->pgmap = pgmap;
8a164fef 6102 page->zone_device_data = NULL;
966cf44f
AD
6103
6104 /*
6105 * Mark the block movable so that blocks are reserved for
6106 * movable at startup. This will force kernel allocations
6107 * to reserve their blocks rather than leaking throughout
6108 * the address space during boot when many long-lived
6109 * kernel allocations are made.
6110 *
6111 * bitmap is created for zone's valid pfn range. but memmap
6112 * can be created for invalid pages (for alignment)
6113 * check here not to call set_pageblock_migratetype() against
6114 * pfn out of zone.
6115 *
c1d0da83 6116 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6117 * because this is done early in section_activate()
966cf44f
AD
6118 */
6119 if (!(pfn & (pageblock_nr_pages - 1))) {
6120 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6121 cond_resched();
6122 }
6123 }
6124
fdc029b1 6125 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6126 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6127}
6128
6129#endif
1e548deb 6130static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6131{
7aeb09f9 6132 unsigned int order, t;
b2a0ac88
MG
6133 for_each_migratetype_order(order, t) {
6134 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6135 zone->free_area[order].nr_free = 0;
6136 }
6137}
6138
dfb3ccd0 6139void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6140 unsigned long zone,
6141 unsigned long range_start_pfn)
dfb3ccd0 6142{
73a6e474
BH
6143 unsigned long start_pfn, end_pfn;
6144 unsigned long range_end_pfn = range_start_pfn + size;
6145 int i;
6146
6147 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6148 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6149 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6150
6151 if (end_pfn > start_pfn) {
6152 size = end_pfn - start_pfn;
6153 memmap_init_zone(size, nid, zone, start_pfn,
c1d0da83 6154 MEMINIT_EARLY, NULL);
73a6e474
BH
6155 }
6156 }
dfb3ccd0 6157}
1da177e4 6158
7cd2b0a3 6159static int zone_batchsize(struct zone *zone)
e7c8d5c9 6160{
3a6be87f 6161#ifdef CONFIG_MMU
e7c8d5c9
CL
6162 int batch;
6163
6164 /*
6165 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6166 * size of the zone.
e7c8d5c9 6167 */
9705bea5 6168 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6169 /* But no more than a meg. */
6170 if (batch * PAGE_SIZE > 1024 * 1024)
6171 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6172 batch /= 4; /* We effectively *= 4 below */
6173 if (batch < 1)
6174 batch = 1;
6175
6176 /*
0ceaacc9
NP
6177 * Clamp the batch to a 2^n - 1 value. Having a power
6178 * of 2 value was found to be more likely to have
6179 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6180 *
0ceaacc9
NP
6181 * For example if 2 tasks are alternately allocating
6182 * batches of pages, one task can end up with a lot
6183 * of pages of one half of the possible page colors
6184 * and the other with pages of the other colors.
e7c8d5c9 6185 */
9155203a 6186 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6187
e7c8d5c9 6188 return batch;
3a6be87f
DH
6189
6190#else
6191 /* The deferral and batching of frees should be suppressed under NOMMU
6192 * conditions.
6193 *
6194 * The problem is that NOMMU needs to be able to allocate large chunks
6195 * of contiguous memory as there's no hardware page translation to
6196 * assemble apparent contiguous memory from discontiguous pages.
6197 *
6198 * Queueing large contiguous runs of pages for batching, however,
6199 * causes the pages to actually be freed in smaller chunks. As there
6200 * can be a significant delay between the individual batches being
6201 * recycled, this leads to the once large chunks of space being
6202 * fragmented and becoming unavailable for high-order allocations.
6203 */
6204 return 0;
6205#endif
e7c8d5c9
CL
6206}
6207
8d7a8fa9
CS
6208/*
6209 * pcp->high and pcp->batch values are related and dependent on one another:
6210 * ->batch must never be higher then ->high.
6211 * The following function updates them in a safe manner without read side
6212 * locking.
6213 *
6214 * Any new users of pcp->batch and pcp->high should ensure they can cope with
047b9967 6215 * those fields changing asynchronously (acording to the above rule).
8d7a8fa9
CS
6216 *
6217 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6218 * outside of boot time (or some other assurance that no concurrent updaters
6219 * exist).
6220 */
6221static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6222 unsigned long batch)
6223{
6224 /* start with a fail safe value for batch */
6225 pcp->batch = 1;
6226 smp_wmb();
6227
6228 /* Update high, then batch, in order */
6229 pcp->high = high;
6230 smp_wmb();
6231
6232 pcp->batch = batch;
6233}
6234
3664033c 6235/* a companion to pageset_set_high() */
4008bab7
CS
6236static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6237{
8d7a8fa9 6238 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6239}
6240
88c90dbc 6241static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6242{
6243 struct per_cpu_pages *pcp;
5f8dcc21 6244 int migratetype;
2caaad41 6245
1c6fe946
MD
6246 memset(p, 0, sizeof(*p));
6247
3dfa5721 6248 pcp = &p->pcp;
5f8dcc21
MG
6249 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6250 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6251}
6252
88c90dbc
CS
6253static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6254{
6255 pageset_init(p);
6256 pageset_set_batch(p, batch);
6257}
6258
8ad4b1fb 6259/*
3664033c 6260 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6261 * to the value high for the pageset p.
6262 */
3664033c 6263static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6264 unsigned long high)
6265{
8d7a8fa9
CS
6266 unsigned long batch = max(1UL, high / 4);
6267 if ((high / 4) > (PAGE_SHIFT * 8))
6268 batch = PAGE_SHIFT * 8;
8ad4b1fb 6269
8d7a8fa9 6270 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6271}
6272
7cd2b0a3
DR
6273static void pageset_set_high_and_batch(struct zone *zone,
6274 struct per_cpu_pageset *pcp)
56cef2b8 6275{
56cef2b8 6276 if (percpu_pagelist_fraction)
3664033c 6277 pageset_set_high(pcp,
9705bea5 6278 (zone_managed_pages(zone) /
56cef2b8
CS
6279 percpu_pagelist_fraction));
6280 else
6281 pageset_set_batch(pcp, zone_batchsize(zone));
6282}
6283
169f6c19
CS
6284static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6285{
6286 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6287
6288 pageset_init(pcp);
6289 pageset_set_high_and_batch(zone, pcp);
6290}
6291
72675e13 6292void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6293{
6294 int cpu;
319774e2 6295 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6296 for_each_possible_cpu(cpu)
6297 zone_pageset_init(zone, cpu);
319774e2
WF
6298}
6299
2caaad41 6300/*
99dcc3e5
CL
6301 * Allocate per cpu pagesets and initialize them.
6302 * Before this call only boot pagesets were available.
e7c8d5c9 6303 */
99dcc3e5 6304void __init setup_per_cpu_pageset(void)
e7c8d5c9 6305{
b4911ea2 6306 struct pglist_data *pgdat;
99dcc3e5 6307 struct zone *zone;
b418a0f9 6308 int __maybe_unused cpu;
e7c8d5c9 6309
319774e2
WF
6310 for_each_populated_zone(zone)
6311 setup_zone_pageset(zone);
b4911ea2 6312
b418a0f9
SD
6313#ifdef CONFIG_NUMA
6314 /*
6315 * Unpopulated zones continue using the boot pagesets.
6316 * The numa stats for these pagesets need to be reset.
6317 * Otherwise, they will end up skewing the stats of
6318 * the nodes these zones are associated with.
6319 */
6320 for_each_possible_cpu(cpu) {
6321 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6322 memset(pcp->vm_numa_stat_diff, 0,
6323 sizeof(pcp->vm_numa_stat_diff));
6324 }
6325#endif
6326
b4911ea2
MG
6327 for_each_online_pgdat(pgdat)
6328 pgdat->per_cpu_nodestats =
6329 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6330}
6331
c09b4240 6332static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6333{
99dcc3e5
CL
6334 /*
6335 * per cpu subsystem is not up at this point. The following code
6336 * relies on the ability of the linker to provide the
6337 * offset of a (static) per cpu variable into the per cpu area.
6338 */
6339 zone->pageset = &boot_pageset;
ed8ece2e 6340
b38a8725 6341 if (populated_zone(zone))
99dcc3e5
CL
6342 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6343 zone->name, zone->present_pages,
6344 zone_batchsize(zone));
ed8ece2e
DH
6345}
6346
dc0bbf3b 6347void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6348 unsigned long zone_start_pfn,
b171e409 6349 unsigned long size)
ed8ece2e
DH
6350{
6351 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6352 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6353
8f416836
WY
6354 if (zone_idx > pgdat->nr_zones)
6355 pgdat->nr_zones = zone_idx;
ed8ece2e 6356
ed8ece2e
DH
6357 zone->zone_start_pfn = zone_start_pfn;
6358
708614e6
MG
6359 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6360 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6361 pgdat->node_id,
6362 (unsigned long)zone_idx(zone),
6363 zone_start_pfn, (zone_start_pfn + size));
6364
1e548deb 6365 zone_init_free_lists(zone);
9dcb8b68 6366 zone->initialized = 1;
ed8ece2e
DH
6367}
6368
c713216d
MG
6369/**
6370 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6371 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6372 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6373 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6374 *
6375 * It returns the start and end page frame of a node based on information
7d018176 6376 * provided by memblock_set_node(). If called for a node
c713216d 6377 * with no available memory, a warning is printed and the start and end
88ca3b94 6378 * PFNs will be 0.
c713216d 6379 */
bbe5d993 6380void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6381 unsigned long *start_pfn, unsigned long *end_pfn)
6382{
c13291a5 6383 unsigned long this_start_pfn, this_end_pfn;
c713216d 6384 int i;
c13291a5 6385
c713216d
MG
6386 *start_pfn = -1UL;
6387 *end_pfn = 0;
6388
c13291a5
TH
6389 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6390 *start_pfn = min(*start_pfn, this_start_pfn);
6391 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6392 }
6393
633c0666 6394 if (*start_pfn == -1UL)
c713216d 6395 *start_pfn = 0;
c713216d
MG
6396}
6397
2a1e274a
MG
6398/*
6399 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6400 * assumption is made that zones within a node are ordered in monotonic
6401 * increasing memory addresses so that the "highest" populated zone is used
6402 */
b69a7288 6403static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6404{
6405 int zone_index;
6406 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6407 if (zone_index == ZONE_MOVABLE)
6408 continue;
6409
6410 if (arch_zone_highest_possible_pfn[zone_index] >
6411 arch_zone_lowest_possible_pfn[zone_index])
6412 break;
6413 }
6414
6415 VM_BUG_ON(zone_index == -1);
6416 movable_zone = zone_index;
6417}
6418
6419/*
6420 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6421 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6422 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6423 * in each node depending on the size of each node and how evenly kernelcore
6424 * is distributed. This helper function adjusts the zone ranges
6425 * provided by the architecture for a given node by using the end of the
6426 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6427 * zones within a node are in order of monotonic increases memory addresses
6428 */
bbe5d993 6429static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6430 unsigned long zone_type,
6431 unsigned long node_start_pfn,
6432 unsigned long node_end_pfn,
6433 unsigned long *zone_start_pfn,
6434 unsigned long *zone_end_pfn)
6435{
6436 /* Only adjust if ZONE_MOVABLE is on this node */
6437 if (zone_movable_pfn[nid]) {
6438 /* Size ZONE_MOVABLE */
6439 if (zone_type == ZONE_MOVABLE) {
6440 *zone_start_pfn = zone_movable_pfn[nid];
6441 *zone_end_pfn = min(node_end_pfn,
6442 arch_zone_highest_possible_pfn[movable_zone]);
6443
e506b996
XQ
6444 /* Adjust for ZONE_MOVABLE starting within this range */
6445 } else if (!mirrored_kernelcore &&
6446 *zone_start_pfn < zone_movable_pfn[nid] &&
6447 *zone_end_pfn > zone_movable_pfn[nid]) {
6448 *zone_end_pfn = zone_movable_pfn[nid];
6449
2a1e274a
MG
6450 /* Check if this whole range is within ZONE_MOVABLE */
6451 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6452 *zone_start_pfn = *zone_end_pfn;
6453 }
6454}
6455
c713216d
MG
6456/*
6457 * Return the number of pages a zone spans in a node, including holes
6458 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6459 */
bbe5d993 6460static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6461 unsigned long zone_type,
7960aedd
ZY
6462 unsigned long node_start_pfn,
6463 unsigned long node_end_pfn,
d91749c1 6464 unsigned long *zone_start_pfn,
854e8848 6465 unsigned long *zone_end_pfn)
c713216d 6466{
299c83dc
LF
6467 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6468 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6469 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6470 if (!node_start_pfn && !node_end_pfn)
6471 return 0;
6472
7960aedd 6473 /* Get the start and end of the zone */
299c83dc
LF
6474 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6475 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6476 adjust_zone_range_for_zone_movable(nid, zone_type,
6477 node_start_pfn, node_end_pfn,
d91749c1 6478 zone_start_pfn, zone_end_pfn);
c713216d
MG
6479
6480 /* Check that this node has pages within the zone's required range */
d91749c1 6481 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6482 return 0;
6483
6484 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6485 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6486 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6487
6488 /* Return the spanned pages */
d91749c1 6489 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6490}
6491
6492/*
6493 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6494 * then all holes in the requested range will be accounted for.
c713216d 6495 */
bbe5d993 6496unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6497 unsigned long range_start_pfn,
6498 unsigned long range_end_pfn)
6499{
96e907d1
TH
6500 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6501 unsigned long start_pfn, end_pfn;
6502 int i;
c713216d 6503
96e907d1
TH
6504 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6505 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6506 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6507 nr_absent -= end_pfn - start_pfn;
c713216d 6508 }
96e907d1 6509 return nr_absent;
c713216d
MG
6510}
6511
6512/**
6513 * absent_pages_in_range - Return number of page frames in holes within a range
6514 * @start_pfn: The start PFN to start searching for holes
6515 * @end_pfn: The end PFN to stop searching for holes
6516 *
a862f68a 6517 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6518 */
6519unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6520 unsigned long end_pfn)
6521{
6522 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6523}
6524
6525/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6526static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6527 unsigned long zone_type,
7960aedd 6528 unsigned long node_start_pfn,
854e8848 6529 unsigned long node_end_pfn)
c713216d 6530{
96e907d1
TH
6531 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6532 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6533 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6534 unsigned long nr_absent;
9c7cd687 6535
b5685e92 6536 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6537 if (!node_start_pfn && !node_end_pfn)
6538 return 0;
6539
96e907d1
TH
6540 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6541 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6542
2a1e274a
MG
6543 adjust_zone_range_for_zone_movable(nid, zone_type,
6544 node_start_pfn, node_end_pfn,
6545 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6546 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6547
6548 /*
6549 * ZONE_MOVABLE handling.
6550 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6551 * and vice versa.
6552 */
e506b996
XQ
6553 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6554 unsigned long start_pfn, end_pfn;
6555 struct memblock_region *r;
6556
6557 for_each_memblock(memory, r) {
6558 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6559 zone_start_pfn, zone_end_pfn);
6560 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6561 zone_start_pfn, zone_end_pfn);
6562
6563 if (zone_type == ZONE_MOVABLE &&
6564 memblock_is_mirror(r))
6565 nr_absent += end_pfn - start_pfn;
6566
6567 if (zone_type == ZONE_NORMAL &&
6568 !memblock_is_mirror(r))
6569 nr_absent += end_pfn - start_pfn;
342332e6
TI
6570 }
6571 }
6572
6573 return nr_absent;
c713216d 6574}
0e0b864e 6575
bbe5d993 6576static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6577 unsigned long node_start_pfn,
854e8848 6578 unsigned long node_end_pfn)
c713216d 6579{
febd5949 6580 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6581 enum zone_type i;
6582
febd5949
GZ
6583 for (i = 0; i < MAX_NR_ZONES; i++) {
6584 struct zone *zone = pgdat->node_zones + i;
d91749c1 6585 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6586 unsigned long spanned, absent;
febd5949 6587 unsigned long size, real_size;
c713216d 6588
854e8848
MR
6589 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6590 node_start_pfn,
6591 node_end_pfn,
6592 &zone_start_pfn,
6593 &zone_end_pfn);
6594 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6595 node_start_pfn,
6596 node_end_pfn);
3f08a302
MR
6597
6598 size = spanned;
6599 real_size = size - absent;
6600
d91749c1
TI
6601 if (size)
6602 zone->zone_start_pfn = zone_start_pfn;
6603 else
6604 zone->zone_start_pfn = 0;
febd5949
GZ
6605 zone->spanned_pages = size;
6606 zone->present_pages = real_size;
6607
6608 totalpages += size;
6609 realtotalpages += real_size;
6610 }
6611
6612 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6613 pgdat->node_present_pages = realtotalpages;
6614 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6615 realtotalpages);
6616}
6617
835c134e
MG
6618#ifndef CONFIG_SPARSEMEM
6619/*
6620 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6621 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6622 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6623 * round what is now in bits to nearest long in bits, then return it in
6624 * bytes.
6625 */
7c45512d 6626static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6627{
6628 unsigned long usemapsize;
6629
7c45512d 6630 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6631 usemapsize = roundup(zonesize, pageblock_nr_pages);
6632 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6633 usemapsize *= NR_PAGEBLOCK_BITS;
6634 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6635
6636 return usemapsize / 8;
6637}
6638
7cc2a959 6639static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6640 struct zone *zone,
6641 unsigned long zone_start_pfn,
6642 unsigned long zonesize)
835c134e 6643{
7c45512d 6644 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6645 zone->pageblock_flags = NULL;
23a7052a 6646 if (usemapsize) {
6782832e 6647 zone->pageblock_flags =
26fb3dae
MR
6648 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6649 pgdat->node_id);
23a7052a
MR
6650 if (!zone->pageblock_flags)
6651 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6652 usemapsize, zone->name, pgdat->node_id);
6653 }
835c134e
MG
6654}
6655#else
7c45512d
LT
6656static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6657 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6658#endif /* CONFIG_SPARSEMEM */
6659
d9c23400 6660#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6661
d9c23400 6662/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6663void __init set_pageblock_order(void)
d9c23400 6664{
955c1cd7
AM
6665 unsigned int order;
6666
d9c23400
MG
6667 /* Check that pageblock_nr_pages has not already been setup */
6668 if (pageblock_order)
6669 return;
6670
955c1cd7
AM
6671 if (HPAGE_SHIFT > PAGE_SHIFT)
6672 order = HUGETLB_PAGE_ORDER;
6673 else
6674 order = MAX_ORDER - 1;
6675
d9c23400
MG
6676 /*
6677 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6678 * This value may be variable depending on boot parameters on IA64 and
6679 * powerpc.
d9c23400
MG
6680 */
6681 pageblock_order = order;
6682}
6683#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6684
ba72cb8c
MG
6685/*
6686 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6687 * is unused as pageblock_order is set at compile-time. See
6688 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6689 * the kernel config
ba72cb8c 6690 */
03e85f9d 6691void __init set_pageblock_order(void)
ba72cb8c 6692{
ba72cb8c 6693}
d9c23400
MG
6694
6695#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6696
03e85f9d 6697static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6698 unsigned long present_pages)
01cefaef
JL
6699{
6700 unsigned long pages = spanned_pages;
6701
6702 /*
6703 * Provide a more accurate estimation if there are holes within
6704 * the zone and SPARSEMEM is in use. If there are holes within the
6705 * zone, each populated memory region may cost us one or two extra
6706 * memmap pages due to alignment because memmap pages for each
89d790ab 6707 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6708 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6709 */
6710 if (spanned_pages > present_pages + (present_pages >> 4) &&
6711 IS_ENABLED(CONFIG_SPARSEMEM))
6712 pages = present_pages;
6713
6714 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6715}
6716
ace1db39
OS
6717#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6718static void pgdat_init_split_queue(struct pglist_data *pgdat)
6719{
364c1eeb
YS
6720 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6721
6722 spin_lock_init(&ds_queue->split_queue_lock);
6723 INIT_LIST_HEAD(&ds_queue->split_queue);
6724 ds_queue->split_queue_len = 0;
ace1db39
OS
6725}
6726#else
6727static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6728#endif
6729
6730#ifdef CONFIG_COMPACTION
6731static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6732{
6733 init_waitqueue_head(&pgdat->kcompactd_wait);
6734}
6735#else
6736static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6737#endif
6738
03e85f9d 6739static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6740{
208d54e5 6741 pgdat_resize_init(pgdat);
ace1db39 6742
ace1db39
OS
6743 pgdat_init_split_queue(pgdat);
6744 pgdat_init_kcompactd(pgdat);
6745
1da177e4 6746 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6747 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6748
eefa864b 6749 pgdat_page_ext_init(pgdat);
a52633d8 6750 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6751 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6752}
6753
6754static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6755 unsigned long remaining_pages)
6756{
9705bea5 6757 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6758 zone_set_nid(zone, nid);
6759 zone->name = zone_names[idx];
6760 zone->zone_pgdat = NODE_DATA(nid);
6761 spin_lock_init(&zone->lock);
6762 zone_seqlock_init(zone);
6763 zone_pcp_init(zone);
6764}
6765
6766/*
6767 * Set up the zone data structures
6768 * - init pgdat internals
6769 * - init all zones belonging to this node
6770 *
6771 * NOTE: this function is only called during memory hotplug
6772 */
6773#ifdef CONFIG_MEMORY_HOTPLUG
6774void __ref free_area_init_core_hotplug(int nid)
6775{
6776 enum zone_type z;
6777 pg_data_t *pgdat = NODE_DATA(nid);
6778
6779 pgdat_init_internals(pgdat);
6780 for (z = 0; z < MAX_NR_ZONES; z++)
6781 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6782}
6783#endif
6784
6785/*
6786 * Set up the zone data structures:
6787 * - mark all pages reserved
6788 * - mark all memory queues empty
6789 * - clear the memory bitmaps
6790 *
6791 * NOTE: pgdat should get zeroed by caller.
6792 * NOTE: this function is only called during early init.
6793 */
6794static void __init free_area_init_core(struct pglist_data *pgdat)
6795{
6796 enum zone_type j;
6797 int nid = pgdat->node_id;
5f63b720 6798
03e85f9d 6799 pgdat_init_internals(pgdat);
385386cf
JW
6800 pgdat->per_cpu_nodestats = &boot_nodestats;
6801
1da177e4
LT
6802 for (j = 0; j < MAX_NR_ZONES; j++) {
6803 struct zone *zone = pgdat->node_zones + j;
e6943859 6804 unsigned long size, freesize, memmap_pages;
d91749c1 6805 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6806
febd5949 6807 size = zone->spanned_pages;
e6943859 6808 freesize = zone->present_pages;
1da177e4 6809
0e0b864e 6810 /*
9feedc9d 6811 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6812 * is used by this zone for memmap. This affects the watermark
6813 * and per-cpu initialisations
6814 */
e6943859 6815 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6816 if (!is_highmem_idx(j)) {
6817 if (freesize >= memmap_pages) {
6818 freesize -= memmap_pages;
6819 if (memmap_pages)
6820 printk(KERN_DEBUG
6821 " %s zone: %lu pages used for memmap\n",
6822 zone_names[j], memmap_pages);
6823 } else
1170532b 6824 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6825 zone_names[j], memmap_pages, freesize);
6826 }
0e0b864e 6827
6267276f 6828 /* Account for reserved pages */
9feedc9d
JL
6829 if (j == 0 && freesize > dma_reserve) {
6830 freesize -= dma_reserve;
d903ef9f 6831 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6832 zone_names[0], dma_reserve);
0e0b864e
MG
6833 }
6834
98d2b0eb 6835 if (!is_highmem_idx(j))
9feedc9d 6836 nr_kernel_pages += freesize;
01cefaef
JL
6837 /* Charge for highmem memmap if there are enough kernel pages */
6838 else if (nr_kernel_pages > memmap_pages * 2)
6839 nr_kernel_pages -= memmap_pages;
9feedc9d 6840 nr_all_pages += freesize;
1da177e4 6841
9feedc9d
JL
6842 /*
6843 * Set an approximate value for lowmem here, it will be adjusted
6844 * when the bootmem allocator frees pages into the buddy system.
6845 * And all highmem pages will be managed by the buddy system.
6846 */
03e85f9d 6847 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6848
d883c6cf 6849 if (!size)
1da177e4
LT
6850 continue;
6851
955c1cd7 6852 set_pageblock_order();
d883c6cf
JK
6853 setup_usemap(pgdat, zone, zone_start_pfn, size);
6854 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6855 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6856 }
6857}
6858
0cd842f9 6859#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6860static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6861{
b0aeba74 6862 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6863 unsigned long __maybe_unused offset = 0;
6864
1da177e4
LT
6865 /* Skip empty nodes */
6866 if (!pgdat->node_spanned_pages)
6867 return;
6868
b0aeba74
TL
6869 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6870 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6871 /* ia64 gets its own node_mem_map, before this, without bootmem */
6872 if (!pgdat->node_mem_map) {
b0aeba74 6873 unsigned long size, end;
d41dee36
AW
6874 struct page *map;
6875
e984bb43
BP
6876 /*
6877 * The zone's endpoints aren't required to be MAX_ORDER
6878 * aligned but the node_mem_map endpoints must be in order
6879 * for the buddy allocator to function correctly.
6880 */
108bcc96 6881 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6882 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6883 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6884 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6885 pgdat->node_id);
23a7052a
MR
6886 if (!map)
6887 panic("Failed to allocate %ld bytes for node %d memory map\n",
6888 size, pgdat->node_id);
a1c34a3b 6889 pgdat->node_mem_map = map + offset;
1da177e4 6890 }
0cd842f9
OS
6891 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6892 __func__, pgdat->node_id, (unsigned long)pgdat,
6893 (unsigned long)pgdat->node_mem_map);
12d810c1 6894#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6895 /*
6896 * With no DISCONTIG, the global mem_map is just set as node 0's
6897 */
c713216d 6898 if (pgdat == NODE_DATA(0)) {
1da177e4 6899 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6900 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6901 mem_map -= offset;
c713216d 6902 }
1da177e4
LT
6903#endif
6904}
0cd842f9
OS
6905#else
6906static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6907#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6908
0188dc98
OS
6909#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6910static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6911{
0188dc98
OS
6912 pgdat->first_deferred_pfn = ULONG_MAX;
6913}
6914#else
6915static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6916#endif
6917
854e8848 6918static void __init free_area_init_node(int nid)
1da177e4 6919{
9109fb7b 6920 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6921 unsigned long start_pfn = 0;
6922 unsigned long end_pfn = 0;
9109fb7b 6923
88fdf75d 6924 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 6925 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 6926
854e8848 6927 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 6928
1da177e4 6929 pgdat->node_id = nid;
854e8848 6930 pgdat->node_start_pfn = start_pfn;
75ef7184 6931 pgdat->per_cpu_nodestats = NULL;
854e8848 6932
8d29e18a 6933 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6934 (u64)start_pfn << PAGE_SHIFT,
6935 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 6936 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
6937
6938 alloc_node_mem_map(pgdat);
0188dc98 6939 pgdat_set_deferred_range(pgdat);
1da177e4 6940
7f3eb55b 6941 free_area_init_core(pgdat);
1da177e4
LT
6942}
6943
bc9331a1 6944void __init free_area_init_memoryless_node(int nid)
3f08a302 6945{
854e8848 6946 free_area_init_node(nid);
3f08a302
MR
6947}
6948
aca52c39 6949#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6950/*
4b094b78
DH
6951 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6952 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6953 */
4b094b78 6954static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6955{
6956 unsigned long pfn;
6957 u64 pgcnt = 0;
6958
6959 for (pfn = spfn; pfn < epfn; pfn++) {
6960 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6961 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6962 + pageblock_nr_pages - 1;
6963 continue;
6964 }
4b094b78
DH
6965 /*
6966 * Use a fake node/zone (0) for now. Some of these pages
6967 * (in memblock.reserved but not in memblock.memory) will
6968 * get re-initialized via reserve_bootmem_region() later.
6969 */
6970 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6971 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
6972 pgcnt++;
6973 }
6974
6975 return pgcnt;
6976}
6977
a4a3ede2
PT
6978/*
6979 * Only struct pages that are backed by physical memory are zeroed and
6980 * initialized by going through __init_single_page(). But, there are some
6981 * struct pages which are reserved in memblock allocator and their fields
6982 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 6983 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
6984 *
6985 * This function also addresses a similar issue where struct pages are left
6986 * uninitialized because the physical address range is not covered by
6987 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
6988 * layout is manually configured via memmap=, or when the highest physical
6989 * address (max_pfn) does not end on a section boundary.
a4a3ede2 6990 */
4b094b78 6991static void __init init_unavailable_mem(void)
a4a3ede2
PT
6992{
6993 phys_addr_t start, end;
a4a3ede2 6994 u64 i, pgcnt;
907ec5fc 6995 phys_addr_t next = 0;
a4a3ede2
PT
6996
6997 /*
907ec5fc 6998 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6999 */
7000 pgcnt = 0;
907ec5fc
NH
7001 for_each_mem_range(i, &memblock.memory, NULL,
7002 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 7003 if (next < start)
4b094b78
DH
7004 pgcnt += init_unavailable_range(PFN_DOWN(next),
7005 PFN_UP(start));
907ec5fc
NH
7006 next = end;
7007 }
e822969c
DH
7008
7009 /*
7010 * Early sections always have a fully populated memmap for the whole
7011 * section - see pfn_valid(). If the last section has holes at the
7012 * end and that section is marked "online", the memmap will be
7013 * considered initialized. Make sure that memmap has a well defined
7014 * state.
7015 */
4b094b78
DH
7016 pgcnt += init_unavailable_range(PFN_DOWN(next),
7017 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7018
a4a3ede2
PT
7019 /*
7020 * Struct pages that do not have backing memory. This could be because
7021 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7022 */
7023 if (pgcnt)
907ec5fc 7024 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7025}
4b094b78
DH
7026#else
7027static inline void __init init_unavailable_mem(void)
7028{
7029}
aca52c39 7030#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7031
418508c1
MS
7032#if MAX_NUMNODES > 1
7033/*
7034 * Figure out the number of possible node ids.
7035 */
f9872caf 7036void __init setup_nr_node_ids(void)
418508c1 7037{
904a9553 7038 unsigned int highest;
418508c1 7039
904a9553 7040 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7041 nr_node_ids = highest + 1;
7042}
418508c1
MS
7043#endif
7044
1e01979c
TH
7045/**
7046 * node_map_pfn_alignment - determine the maximum internode alignment
7047 *
7048 * This function should be called after node map is populated and sorted.
7049 * It calculates the maximum power of two alignment which can distinguish
7050 * all the nodes.
7051 *
7052 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7053 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7054 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7055 * shifted, 1GiB is enough and this function will indicate so.
7056 *
7057 * This is used to test whether pfn -> nid mapping of the chosen memory
7058 * model has fine enough granularity to avoid incorrect mapping for the
7059 * populated node map.
7060 *
a862f68a 7061 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7062 * requirement (single node).
7063 */
7064unsigned long __init node_map_pfn_alignment(void)
7065{
7066 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7067 unsigned long start, end, mask;
98fa15f3 7068 int last_nid = NUMA_NO_NODE;
c13291a5 7069 int i, nid;
1e01979c 7070
c13291a5 7071 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7072 if (!start || last_nid < 0 || last_nid == nid) {
7073 last_nid = nid;
7074 last_end = end;
7075 continue;
7076 }
7077
7078 /*
7079 * Start with a mask granular enough to pin-point to the
7080 * start pfn and tick off bits one-by-one until it becomes
7081 * too coarse to separate the current node from the last.
7082 */
7083 mask = ~((1 << __ffs(start)) - 1);
7084 while (mask && last_end <= (start & (mask << 1)))
7085 mask <<= 1;
7086
7087 /* accumulate all internode masks */
7088 accl_mask |= mask;
7089 }
7090
7091 /* convert mask to number of pages */
7092 return ~accl_mask + 1;
7093}
7094
c713216d
MG
7095/**
7096 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7097 *
a862f68a 7098 * Return: the minimum PFN based on information provided via
7d018176 7099 * memblock_set_node().
c713216d
MG
7100 */
7101unsigned long __init find_min_pfn_with_active_regions(void)
7102{
8a1b25fe 7103 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7104}
7105
37b07e41
LS
7106/*
7107 * early_calculate_totalpages()
7108 * Sum pages in active regions for movable zone.
4b0ef1fe 7109 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7110 */
484f51f8 7111static unsigned long __init early_calculate_totalpages(void)
7e63efef 7112{
7e63efef 7113 unsigned long totalpages = 0;
c13291a5
TH
7114 unsigned long start_pfn, end_pfn;
7115 int i, nid;
7116
7117 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7118 unsigned long pages = end_pfn - start_pfn;
7e63efef 7119
37b07e41
LS
7120 totalpages += pages;
7121 if (pages)
4b0ef1fe 7122 node_set_state(nid, N_MEMORY);
37b07e41 7123 }
b8af2941 7124 return totalpages;
7e63efef
MG
7125}
7126
2a1e274a
MG
7127/*
7128 * Find the PFN the Movable zone begins in each node. Kernel memory
7129 * is spread evenly between nodes as long as the nodes have enough
7130 * memory. When they don't, some nodes will have more kernelcore than
7131 * others
7132 */
b224ef85 7133static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7134{
7135 int i, nid;
7136 unsigned long usable_startpfn;
7137 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7138 /* save the state before borrow the nodemask */
4b0ef1fe 7139 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7140 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7141 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7142 struct memblock_region *r;
b2f3eebe
TC
7143
7144 /* Need to find movable_zone earlier when movable_node is specified. */
7145 find_usable_zone_for_movable();
7146
7147 /*
7148 * If movable_node is specified, ignore kernelcore and movablecore
7149 * options.
7150 */
7151 if (movable_node_is_enabled()) {
136199f0
EM
7152 for_each_memblock(memory, r) {
7153 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7154 continue;
7155
d622abf7 7156 nid = memblock_get_region_node(r);
b2f3eebe 7157
136199f0 7158 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7159 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7160 min(usable_startpfn, zone_movable_pfn[nid]) :
7161 usable_startpfn;
7162 }
7163
7164 goto out2;
7165 }
2a1e274a 7166
342332e6
TI
7167 /*
7168 * If kernelcore=mirror is specified, ignore movablecore option
7169 */
7170 if (mirrored_kernelcore) {
7171 bool mem_below_4gb_not_mirrored = false;
7172
7173 for_each_memblock(memory, r) {
7174 if (memblock_is_mirror(r))
7175 continue;
7176
d622abf7 7177 nid = memblock_get_region_node(r);
342332e6
TI
7178
7179 usable_startpfn = memblock_region_memory_base_pfn(r);
7180
7181 if (usable_startpfn < 0x100000) {
7182 mem_below_4gb_not_mirrored = true;
7183 continue;
7184 }
7185
7186 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7187 min(usable_startpfn, zone_movable_pfn[nid]) :
7188 usable_startpfn;
7189 }
7190
7191 if (mem_below_4gb_not_mirrored)
633bf2fe 7192 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7193
7194 goto out2;
7195 }
7196
7e63efef 7197 /*
a5c6d650
DR
7198 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7199 * amount of necessary memory.
7200 */
7201 if (required_kernelcore_percent)
7202 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7203 10000UL;
7204 if (required_movablecore_percent)
7205 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7206 10000UL;
7207
7208 /*
7209 * If movablecore= was specified, calculate what size of
7e63efef
MG
7210 * kernelcore that corresponds so that memory usable for
7211 * any allocation type is evenly spread. If both kernelcore
7212 * and movablecore are specified, then the value of kernelcore
7213 * will be used for required_kernelcore if it's greater than
7214 * what movablecore would have allowed.
7215 */
7216 if (required_movablecore) {
7e63efef
MG
7217 unsigned long corepages;
7218
7219 /*
7220 * Round-up so that ZONE_MOVABLE is at least as large as what
7221 * was requested by the user
7222 */
7223 required_movablecore =
7224 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7225 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7226 corepages = totalpages - required_movablecore;
7227
7228 required_kernelcore = max(required_kernelcore, corepages);
7229 }
7230
bde304bd
XQ
7231 /*
7232 * If kernelcore was not specified or kernelcore size is larger
7233 * than totalpages, there is no ZONE_MOVABLE.
7234 */
7235 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7236 goto out;
2a1e274a
MG
7237
7238 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7239 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7240
7241restart:
7242 /* Spread kernelcore memory as evenly as possible throughout nodes */
7243 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7244 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7245 unsigned long start_pfn, end_pfn;
7246
2a1e274a
MG
7247 /*
7248 * Recalculate kernelcore_node if the division per node
7249 * now exceeds what is necessary to satisfy the requested
7250 * amount of memory for the kernel
7251 */
7252 if (required_kernelcore < kernelcore_node)
7253 kernelcore_node = required_kernelcore / usable_nodes;
7254
7255 /*
7256 * As the map is walked, we track how much memory is usable
7257 * by the kernel using kernelcore_remaining. When it is
7258 * 0, the rest of the node is usable by ZONE_MOVABLE
7259 */
7260 kernelcore_remaining = kernelcore_node;
7261
7262 /* Go through each range of PFNs within this node */
c13291a5 7263 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7264 unsigned long size_pages;
7265
c13291a5 7266 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7267 if (start_pfn >= end_pfn)
7268 continue;
7269
7270 /* Account for what is only usable for kernelcore */
7271 if (start_pfn < usable_startpfn) {
7272 unsigned long kernel_pages;
7273 kernel_pages = min(end_pfn, usable_startpfn)
7274 - start_pfn;
7275
7276 kernelcore_remaining -= min(kernel_pages,
7277 kernelcore_remaining);
7278 required_kernelcore -= min(kernel_pages,
7279 required_kernelcore);
7280
7281 /* Continue if range is now fully accounted */
7282 if (end_pfn <= usable_startpfn) {
7283
7284 /*
7285 * Push zone_movable_pfn to the end so
7286 * that if we have to rebalance
7287 * kernelcore across nodes, we will
7288 * not double account here
7289 */
7290 zone_movable_pfn[nid] = end_pfn;
7291 continue;
7292 }
7293 start_pfn = usable_startpfn;
7294 }
7295
7296 /*
7297 * The usable PFN range for ZONE_MOVABLE is from
7298 * start_pfn->end_pfn. Calculate size_pages as the
7299 * number of pages used as kernelcore
7300 */
7301 size_pages = end_pfn - start_pfn;
7302 if (size_pages > kernelcore_remaining)
7303 size_pages = kernelcore_remaining;
7304 zone_movable_pfn[nid] = start_pfn + size_pages;
7305
7306 /*
7307 * Some kernelcore has been met, update counts and
7308 * break if the kernelcore for this node has been
b8af2941 7309 * satisfied
2a1e274a
MG
7310 */
7311 required_kernelcore -= min(required_kernelcore,
7312 size_pages);
7313 kernelcore_remaining -= size_pages;
7314 if (!kernelcore_remaining)
7315 break;
7316 }
7317 }
7318
7319 /*
7320 * If there is still required_kernelcore, we do another pass with one
7321 * less node in the count. This will push zone_movable_pfn[nid] further
7322 * along on the nodes that still have memory until kernelcore is
b8af2941 7323 * satisfied
2a1e274a
MG
7324 */
7325 usable_nodes--;
7326 if (usable_nodes && required_kernelcore > usable_nodes)
7327 goto restart;
7328
b2f3eebe 7329out2:
2a1e274a
MG
7330 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7331 for (nid = 0; nid < MAX_NUMNODES; nid++)
7332 zone_movable_pfn[nid] =
7333 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7334
20e6926d 7335out:
66918dcd 7336 /* restore the node_state */
4b0ef1fe 7337 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7338}
7339
4b0ef1fe
LJ
7340/* Any regular or high memory on that node ? */
7341static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7342{
37b07e41
LS
7343 enum zone_type zone_type;
7344
4b0ef1fe 7345 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7346 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7347 if (populated_zone(zone)) {
7b0e0c0e
OS
7348 if (IS_ENABLED(CONFIG_HIGHMEM))
7349 node_set_state(nid, N_HIGH_MEMORY);
7350 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7351 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7352 break;
7353 }
37b07e41 7354 }
37b07e41
LS
7355}
7356
51930df5
MR
7357/*
7358 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7359 * such cases we allow max_zone_pfn sorted in the descending order
7360 */
7361bool __weak arch_has_descending_max_zone_pfns(void)
7362{
7363 return false;
7364}
7365
c713216d 7366/**
9691a071 7367 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7368 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7369 *
7370 * This will call free_area_init_node() for each active node in the system.
7d018176 7371 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7372 * zone in each node and their holes is calculated. If the maximum PFN
7373 * between two adjacent zones match, it is assumed that the zone is empty.
7374 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7375 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7376 * starts where the previous one ended. For example, ZONE_DMA32 starts
7377 * at arch_max_dma_pfn.
7378 */
9691a071 7379void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7380{
c13291a5 7381 unsigned long start_pfn, end_pfn;
51930df5
MR
7382 int i, nid, zone;
7383 bool descending;
a6af2bc3 7384
c713216d
MG
7385 /* Record where the zone boundaries are */
7386 memset(arch_zone_lowest_possible_pfn, 0,
7387 sizeof(arch_zone_lowest_possible_pfn));
7388 memset(arch_zone_highest_possible_pfn, 0,
7389 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7390
7391 start_pfn = find_min_pfn_with_active_regions();
51930df5 7392 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7393
7394 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7395 if (descending)
7396 zone = MAX_NR_ZONES - i - 1;
7397 else
7398 zone = i;
7399
7400 if (zone == ZONE_MOVABLE)
2a1e274a 7401 continue;
90cae1fe 7402
51930df5
MR
7403 end_pfn = max(max_zone_pfn[zone], start_pfn);
7404 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7405 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7406
7407 start_pfn = end_pfn;
c713216d 7408 }
2a1e274a
MG
7409
7410 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7411 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7412 find_zone_movable_pfns_for_nodes();
c713216d 7413
c713216d 7414 /* Print out the zone ranges */
f88dfff5 7415 pr_info("Zone ranges:\n");
2a1e274a
MG
7416 for (i = 0; i < MAX_NR_ZONES; i++) {
7417 if (i == ZONE_MOVABLE)
7418 continue;
f88dfff5 7419 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7420 if (arch_zone_lowest_possible_pfn[i] ==
7421 arch_zone_highest_possible_pfn[i])
f88dfff5 7422 pr_cont("empty\n");
72f0ba02 7423 else
8d29e18a
JG
7424 pr_cont("[mem %#018Lx-%#018Lx]\n",
7425 (u64)arch_zone_lowest_possible_pfn[i]
7426 << PAGE_SHIFT,
7427 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7428 << PAGE_SHIFT) - 1);
2a1e274a
MG
7429 }
7430
7431 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7432 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7433 for (i = 0; i < MAX_NUMNODES; i++) {
7434 if (zone_movable_pfn[i])
8d29e18a
JG
7435 pr_info(" Node %d: %#018Lx\n", i,
7436 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7437 }
c713216d 7438
f46edbd1
DW
7439 /*
7440 * Print out the early node map, and initialize the
7441 * subsection-map relative to active online memory ranges to
7442 * enable future "sub-section" extensions of the memory map.
7443 */
f88dfff5 7444 pr_info("Early memory node ranges\n");
f46edbd1 7445 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7446 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7447 (u64)start_pfn << PAGE_SHIFT,
7448 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7449 subsection_map_init(start_pfn, end_pfn - start_pfn);
7450 }
c713216d
MG
7451
7452 /* Initialise every node */
708614e6 7453 mminit_verify_pageflags_layout();
8ef82866 7454 setup_nr_node_ids();
4b094b78 7455 init_unavailable_mem();
c713216d
MG
7456 for_each_online_node(nid) {
7457 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7458 free_area_init_node(nid);
37b07e41
LS
7459
7460 /* Any memory on that node */
7461 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7462 node_set_state(nid, N_MEMORY);
7463 check_for_memory(pgdat, nid);
c713216d
MG
7464 }
7465}
2a1e274a 7466
a5c6d650
DR
7467static int __init cmdline_parse_core(char *p, unsigned long *core,
7468 unsigned long *percent)
2a1e274a
MG
7469{
7470 unsigned long long coremem;
a5c6d650
DR
7471 char *endptr;
7472
2a1e274a
MG
7473 if (!p)
7474 return -EINVAL;
7475
a5c6d650
DR
7476 /* Value may be a percentage of total memory, otherwise bytes */
7477 coremem = simple_strtoull(p, &endptr, 0);
7478 if (*endptr == '%') {
7479 /* Paranoid check for percent values greater than 100 */
7480 WARN_ON(coremem > 100);
2a1e274a 7481
a5c6d650
DR
7482 *percent = coremem;
7483 } else {
7484 coremem = memparse(p, &p);
7485 /* Paranoid check that UL is enough for the coremem value */
7486 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7487
a5c6d650
DR
7488 *core = coremem >> PAGE_SHIFT;
7489 *percent = 0UL;
7490 }
2a1e274a
MG
7491 return 0;
7492}
ed7ed365 7493
7e63efef
MG
7494/*
7495 * kernelcore=size sets the amount of memory for use for allocations that
7496 * cannot be reclaimed or migrated.
7497 */
7498static int __init cmdline_parse_kernelcore(char *p)
7499{
342332e6
TI
7500 /* parse kernelcore=mirror */
7501 if (parse_option_str(p, "mirror")) {
7502 mirrored_kernelcore = true;
7503 return 0;
7504 }
7505
a5c6d650
DR
7506 return cmdline_parse_core(p, &required_kernelcore,
7507 &required_kernelcore_percent);
7e63efef
MG
7508}
7509
7510/*
7511 * movablecore=size sets the amount of memory for use for allocations that
7512 * can be reclaimed or migrated.
7513 */
7514static int __init cmdline_parse_movablecore(char *p)
7515{
a5c6d650
DR
7516 return cmdline_parse_core(p, &required_movablecore,
7517 &required_movablecore_percent);
7e63efef
MG
7518}
7519
ed7ed365 7520early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7521early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7522
c3d5f5f0
JL
7523void adjust_managed_page_count(struct page *page, long count)
7524{
9705bea5 7525 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7526 totalram_pages_add(count);
3dcc0571
JL
7527#ifdef CONFIG_HIGHMEM
7528 if (PageHighMem(page))
ca79b0c2 7529 totalhigh_pages_add(count);
3dcc0571 7530#endif
c3d5f5f0 7531}
3dcc0571 7532EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7533
e5cb113f 7534unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7535{
11199692
JL
7536 void *pos;
7537 unsigned long pages = 0;
69afade7 7538
11199692
JL
7539 start = (void *)PAGE_ALIGN((unsigned long)start);
7540 end = (void *)((unsigned long)end & PAGE_MASK);
7541 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7542 struct page *page = virt_to_page(pos);
7543 void *direct_map_addr;
7544
7545 /*
7546 * 'direct_map_addr' might be different from 'pos'
7547 * because some architectures' virt_to_page()
7548 * work with aliases. Getting the direct map
7549 * address ensures that we get a _writeable_
7550 * alias for the memset().
7551 */
7552 direct_map_addr = page_address(page);
dbe67df4 7553 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7554 memset(direct_map_addr, poison, PAGE_SIZE);
7555
7556 free_reserved_page(page);
69afade7
JL
7557 }
7558
7559 if (pages && s)
adb1fe9a
JP
7560 pr_info("Freeing %s memory: %ldK\n",
7561 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7562
7563 return pages;
7564}
7565
cfa11e08
JL
7566#ifdef CONFIG_HIGHMEM
7567void free_highmem_page(struct page *page)
7568{
7569 __free_reserved_page(page);
ca79b0c2 7570 totalram_pages_inc();
9705bea5 7571 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7572 totalhigh_pages_inc();
cfa11e08
JL
7573}
7574#endif
7575
7ee3d4e8
JL
7576
7577void __init mem_init_print_info(const char *str)
7578{
7579 unsigned long physpages, codesize, datasize, rosize, bss_size;
7580 unsigned long init_code_size, init_data_size;
7581
7582 physpages = get_num_physpages();
7583 codesize = _etext - _stext;
7584 datasize = _edata - _sdata;
7585 rosize = __end_rodata - __start_rodata;
7586 bss_size = __bss_stop - __bss_start;
7587 init_data_size = __init_end - __init_begin;
7588 init_code_size = _einittext - _sinittext;
7589
7590 /*
7591 * Detect special cases and adjust section sizes accordingly:
7592 * 1) .init.* may be embedded into .data sections
7593 * 2) .init.text.* may be out of [__init_begin, __init_end],
7594 * please refer to arch/tile/kernel/vmlinux.lds.S.
7595 * 3) .rodata.* may be embedded into .text or .data sections.
7596 */
7597#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7598 do { \
7599 if (start <= pos && pos < end && size > adj) \
7600 size -= adj; \
7601 } while (0)
7ee3d4e8
JL
7602
7603 adj_init_size(__init_begin, __init_end, init_data_size,
7604 _sinittext, init_code_size);
7605 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7606 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7607 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7608 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7609
7610#undef adj_init_size
7611
756a025f 7612 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7613#ifdef CONFIG_HIGHMEM
756a025f 7614 ", %luK highmem"
7ee3d4e8 7615#endif
756a025f
JP
7616 "%s%s)\n",
7617 nr_free_pages() << (PAGE_SHIFT - 10),
7618 physpages << (PAGE_SHIFT - 10),
7619 codesize >> 10, datasize >> 10, rosize >> 10,
7620 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7621 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7622 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7623#ifdef CONFIG_HIGHMEM
ca79b0c2 7624 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7625#endif
756a025f 7626 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7627}
7628
0e0b864e 7629/**
88ca3b94
RD
7630 * set_dma_reserve - set the specified number of pages reserved in the first zone
7631 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7632 *
013110a7 7633 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7634 * In the DMA zone, a significant percentage may be consumed by kernel image
7635 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7636 * function may optionally be used to account for unfreeable pages in the
7637 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7638 * smaller per-cpu batchsize.
0e0b864e
MG
7639 */
7640void __init set_dma_reserve(unsigned long new_dma_reserve)
7641{
7642 dma_reserve = new_dma_reserve;
7643}
7644
005fd4bb 7645static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7646{
1da177e4 7647
005fd4bb
SAS
7648 lru_add_drain_cpu(cpu);
7649 drain_pages(cpu);
9f8f2172 7650
005fd4bb
SAS
7651 /*
7652 * Spill the event counters of the dead processor
7653 * into the current processors event counters.
7654 * This artificially elevates the count of the current
7655 * processor.
7656 */
7657 vm_events_fold_cpu(cpu);
9f8f2172 7658
005fd4bb
SAS
7659 /*
7660 * Zero the differential counters of the dead processor
7661 * so that the vm statistics are consistent.
7662 *
7663 * This is only okay since the processor is dead and cannot
7664 * race with what we are doing.
7665 */
7666 cpu_vm_stats_fold(cpu);
7667 return 0;
1da177e4 7668}
1da177e4 7669
e03a5125
NP
7670#ifdef CONFIG_NUMA
7671int hashdist = HASHDIST_DEFAULT;
7672
7673static int __init set_hashdist(char *str)
7674{
7675 if (!str)
7676 return 0;
7677 hashdist = simple_strtoul(str, &str, 0);
7678 return 1;
7679}
7680__setup("hashdist=", set_hashdist);
7681#endif
7682
1da177e4
LT
7683void __init page_alloc_init(void)
7684{
005fd4bb
SAS
7685 int ret;
7686
e03a5125
NP
7687#ifdef CONFIG_NUMA
7688 if (num_node_state(N_MEMORY) == 1)
7689 hashdist = 0;
7690#endif
7691
005fd4bb
SAS
7692 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7693 "mm/page_alloc:dead", NULL,
7694 page_alloc_cpu_dead);
7695 WARN_ON(ret < 0);
1da177e4
LT
7696}
7697
cb45b0e9 7698/*
34b10060 7699 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7700 * or min_free_kbytes changes.
7701 */
7702static void calculate_totalreserve_pages(void)
7703{
7704 struct pglist_data *pgdat;
7705 unsigned long reserve_pages = 0;
2f6726e5 7706 enum zone_type i, j;
cb45b0e9
HA
7707
7708 for_each_online_pgdat(pgdat) {
281e3726
MG
7709
7710 pgdat->totalreserve_pages = 0;
7711
cb45b0e9
HA
7712 for (i = 0; i < MAX_NR_ZONES; i++) {
7713 struct zone *zone = pgdat->node_zones + i;
3484b2de 7714 long max = 0;
9705bea5 7715 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7716
7717 /* Find valid and maximum lowmem_reserve in the zone */
7718 for (j = i; j < MAX_NR_ZONES; j++) {
7719 if (zone->lowmem_reserve[j] > max)
7720 max = zone->lowmem_reserve[j];
7721 }
7722
41858966
MG
7723 /* we treat the high watermark as reserved pages. */
7724 max += high_wmark_pages(zone);
cb45b0e9 7725
3d6357de
AK
7726 if (max > managed_pages)
7727 max = managed_pages;
a8d01437 7728
281e3726 7729 pgdat->totalreserve_pages += max;
a8d01437 7730
cb45b0e9
HA
7731 reserve_pages += max;
7732 }
7733 }
7734 totalreserve_pages = reserve_pages;
7735}
7736
1da177e4
LT
7737/*
7738 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7739 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7740 * has a correct pages reserved value, so an adequate number of
7741 * pages are left in the zone after a successful __alloc_pages().
7742 */
7743static void setup_per_zone_lowmem_reserve(void)
7744{
7745 struct pglist_data *pgdat;
2f6726e5 7746 enum zone_type j, idx;
1da177e4 7747
ec936fc5 7748 for_each_online_pgdat(pgdat) {
1da177e4
LT
7749 for (j = 0; j < MAX_NR_ZONES; j++) {
7750 struct zone *zone = pgdat->node_zones + j;
9705bea5 7751 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7752
7753 zone->lowmem_reserve[j] = 0;
7754
2f6726e5
CL
7755 idx = j;
7756 while (idx) {
1da177e4
LT
7757 struct zone *lower_zone;
7758
2f6726e5 7759 idx--;
1da177e4 7760 lower_zone = pgdat->node_zones + idx;
d3cda233 7761
f6366156
BH
7762 if (!sysctl_lowmem_reserve_ratio[idx] ||
7763 !zone_managed_pages(lower_zone)) {
d3cda233 7764 lower_zone->lowmem_reserve[j] = 0;
f6366156 7765 continue;
d3cda233
JK
7766 } else {
7767 lower_zone->lowmem_reserve[j] =
7768 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7769 }
9705bea5 7770 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7771 }
7772 }
7773 }
cb45b0e9
HA
7774
7775 /* update totalreserve_pages */
7776 calculate_totalreserve_pages();
1da177e4
LT
7777}
7778
cfd3da1e 7779static void __setup_per_zone_wmarks(void)
1da177e4
LT
7780{
7781 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7782 unsigned long lowmem_pages = 0;
7783 struct zone *zone;
7784 unsigned long flags;
7785
7786 /* Calculate total number of !ZONE_HIGHMEM pages */
7787 for_each_zone(zone) {
7788 if (!is_highmem(zone))
9705bea5 7789 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7790 }
7791
7792 for_each_zone(zone) {
ac924c60
AM
7793 u64 tmp;
7794
1125b4e3 7795 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7796 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7797 do_div(tmp, lowmem_pages);
1da177e4
LT
7798 if (is_highmem(zone)) {
7799 /*
669ed175
NP
7800 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7801 * need highmem pages, so cap pages_min to a small
7802 * value here.
7803 *
41858966 7804 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7805 * deltas control async page reclaim, and so should
669ed175 7806 * not be capped for highmem.
1da177e4 7807 */
90ae8d67 7808 unsigned long min_pages;
1da177e4 7809
9705bea5 7810 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7811 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7812 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7813 } else {
669ed175
NP
7814 /*
7815 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7816 * proportionate to the zone's size.
7817 */
a9214443 7818 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7819 }
7820
795ae7a0
JW
7821 /*
7822 * Set the kswapd watermarks distance according to the
7823 * scale factor in proportion to available memory, but
7824 * ensure a minimum size on small systems.
7825 */
7826 tmp = max_t(u64, tmp >> 2,
9705bea5 7827 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7828 watermark_scale_factor, 10000));
7829
aa092591 7830 zone->watermark_boost = 0;
a9214443
MG
7831 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7832 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7833
1125b4e3 7834 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7835 }
cb45b0e9
HA
7836
7837 /* update totalreserve_pages */
7838 calculate_totalreserve_pages();
1da177e4
LT
7839}
7840
cfd3da1e
MG
7841/**
7842 * setup_per_zone_wmarks - called when min_free_kbytes changes
7843 * or when memory is hot-{added|removed}
7844 *
7845 * Ensures that the watermark[min,low,high] values for each zone are set
7846 * correctly with respect to min_free_kbytes.
7847 */
7848void setup_per_zone_wmarks(void)
7849{
b93e0f32
MH
7850 static DEFINE_SPINLOCK(lock);
7851
7852 spin_lock(&lock);
cfd3da1e 7853 __setup_per_zone_wmarks();
b93e0f32 7854 spin_unlock(&lock);
cfd3da1e
MG
7855}
7856
1da177e4
LT
7857/*
7858 * Initialise min_free_kbytes.
7859 *
7860 * For small machines we want it small (128k min). For large machines
8beeae86 7861 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7862 * bandwidth does not increase linearly with machine size. We use
7863 *
b8af2941 7864 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7865 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7866 *
7867 * which yields
7868 *
7869 * 16MB: 512k
7870 * 32MB: 724k
7871 * 64MB: 1024k
7872 * 128MB: 1448k
7873 * 256MB: 2048k
7874 * 512MB: 2896k
7875 * 1024MB: 4096k
7876 * 2048MB: 5792k
7877 * 4096MB: 8192k
7878 * 8192MB: 11584k
7879 * 16384MB: 16384k
7880 */
1b79acc9 7881int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7882{
7883 unsigned long lowmem_kbytes;
5f12733e 7884 int new_min_free_kbytes;
1da177e4
LT
7885
7886 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7887 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7888
7889 if (new_min_free_kbytes > user_min_free_kbytes) {
7890 min_free_kbytes = new_min_free_kbytes;
7891 if (min_free_kbytes < 128)
7892 min_free_kbytes = 128;
ee8eb9a5
JS
7893 if (min_free_kbytes > 262144)
7894 min_free_kbytes = 262144;
5f12733e
MH
7895 } else {
7896 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7897 new_min_free_kbytes, user_min_free_kbytes);
7898 }
bc75d33f 7899 setup_per_zone_wmarks();
a6cccdc3 7900 refresh_zone_stat_thresholds();
1da177e4 7901 setup_per_zone_lowmem_reserve();
6423aa81
JK
7902
7903#ifdef CONFIG_NUMA
7904 setup_min_unmapped_ratio();
7905 setup_min_slab_ratio();
7906#endif
7907
4aab2be0
VB
7908 khugepaged_min_free_kbytes_update();
7909
1da177e4
LT
7910 return 0;
7911}
e08d3fdf 7912postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
7913
7914/*
b8af2941 7915 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7916 * that we can call two helper functions whenever min_free_kbytes
7917 * changes.
7918 */
cccad5b9 7919int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 7920 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7921{
da8c757b
HP
7922 int rc;
7923
7924 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7925 if (rc)
7926 return rc;
7927
5f12733e
MH
7928 if (write) {
7929 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7930 setup_per_zone_wmarks();
5f12733e 7931 }
1da177e4
LT
7932 return 0;
7933}
7934
795ae7a0 7935int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 7936 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
7937{
7938 int rc;
7939
7940 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7941 if (rc)
7942 return rc;
7943
7944 if (write)
7945 setup_per_zone_wmarks();
7946
7947 return 0;
7948}
7949
9614634f 7950#ifdef CONFIG_NUMA
6423aa81 7951static void setup_min_unmapped_ratio(void)
9614634f 7952{
6423aa81 7953 pg_data_t *pgdat;
9614634f 7954 struct zone *zone;
9614634f 7955
a5f5f91d 7956 for_each_online_pgdat(pgdat)
81cbcbc2 7957 pgdat->min_unmapped_pages = 0;
a5f5f91d 7958
9614634f 7959 for_each_zone(zone)
9705bea5
AK
7960 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7961 sysctl_min_unmapped_ratio) / 100;
9614634f 7962}
0ff38490 7963
6423aa81
JK
7964
7965int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7966 void *buffer, size_t *length, loff_t *ppos)
0ff38490 7967{
0ff38490
CL
7968 int rc;
7969
8d65af78 7970 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7971 if (rc)
7972 return rc;
7973
6423aa81
JK
7974 setup_min_unmapped_ratio();
7975
7976 return 0;
7977}
7978
7979static void setup_min_slab_ratio(void)
7980{
7981 pg_data_t *pgdat;
7982 struct zone *zone;
7983
a5f5f91d
MG
7984 for_each_online_pgdat(pgdat)
7985 pgdat->min_slab_pages = 0;
7986
0ff38490 7987 for_each_zone(zone)
9705bea5
AK
7988 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7989 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7990}
7991
7992int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7993 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
7994{
7995 int rc;
7996
7997 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7998 if (rc)
7999 return rc;
8000
8001 setup_min_slab_ratio();
8002
0ff38490
CL
8003 return 0;
8004}
9614634f
CL
8005#endif
8006
1da177e4
LT
8007/*
8008 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8009 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8010 * whenever sysctl_lowmem_reserve_ratio changes.
8011 *
8012 * The reserve ratio obviously has absolutely no relation with the
41858966 8013 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8014 * if in function of the boot time zone sizes.
8015 */
cccad5b9 8016int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8017 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8018{
86aaf255
BH
8019 int i;
8020
8d65af78 8021 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8022
8023 for (i = 0; i < MAX_NR_ZONES; i++) {
8024 if (sysctl_lowmem_reserve_ratio[i] < 1)
8025 sysctl_lowmem_reserve_ratio[i] = 0;
8026 }
8027
1da177e4
LT
8028 setup_per_zone_lowmem_reserve();
8029 return 0;
8030}
8031
cb1ef534
MG
8032static void __zone_pcp_update(struct zone *zone)
8033{
8034 unsigned int cpu;
8035
8036 for_each_possible_cpu(cpu)
8037 pageset_set_high_and_batch(zone,
8038 per_cpu_ptr(zone->pageset, cpu));
8039}
8040
8ad4b1fb
RS
8041/*
8042 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8043 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8044 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8045 */
cccad5b9 8046int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8047 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8048{
8049 struct zone *zone;
7cd2b0a3 8050 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8051 int ret;
8052
7cd2b0a3
DR
8053 mutex_lock(&pcp_batch_high_lock);
8054 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8055
8d65af78 8056 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8057 if (!write || ret < 0)
8058 goto out;
8059
8060 /* Sanity checking to avoid pcp imbalance */
8061 if (percpu_pagelist_fraction &&
8062 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8063 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8064 ret = -EINVAL;
8065 goto out;
8066 }
8067
8068 /* No change? */
8069 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8070 goto out;
c8e251fa 8071
cb1ef534
MG
8072 for_each_populated_zone(zone)
8073 __zone_pcp_update(zone);
7cd2b0a3 8074out:
c8e251fa 8075 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8076 return ret;
8ad4b1fb
RS
8077}
8078
f6f34b43
SD
8079#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8080/*
8081 * Returns the number of pages that arch has reserved but
8082 * is not known to alloc_large_system_hash().
8083 */
8084static unsigned long __init arch_reserved_kernel_pages(void)
8085{
8086 return 0;
8087}
8088#endif
8089
9017217b
PT
8090/*
8091 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8092 * machines. As memory size is increased the scale is also increased but at
8093 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8094 * quadruples the scale is increased by one, which means the size of hash table
8095 * only doubles, instead of quadrupling as well.
8096 * Because 32-bit systems cannot have large physical memory, where this scaling
8097 * makes sense, it is disabled on such platforms.
8098 */
8099#if __BITS_PER_LONG > 32
8100#define ADAPT_SCALE_BASE (64ul << 30)
8101#define ADAPT_SCALE_SHIFT 2
8102#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8103#endif
8104
1da177e4
LT
8105/*
8106 * allocate a large system hash table from bootmem
8107 * - it is assumed that the hash table must contain an exact power-of-2
8108 * quantity of entries
8109 * - limit is the number of hash buckets, not the total allocation size
8110 */
8111void *__init alloc_large_system_hash(const char *tablename,
8112 unsigned long bucketsize,
8113 unsigned long numentries,
8114 int scale,
8115 int flags,
8116 unsigned int *_hash_shift,
8117 unsigned int *_hash_mask,
31fe62b9
TB
8118 unsigned long low_limit,
8119 unsigned long high_limit)
1da177e4 8120{
31fe62b9 8121 unsigned long long max = high_limit;
1da177e4
LT
8122 unsigned long log2qty, size;
8123 void *table = NULL;
3749a8f0 8124 gfp_t gfp_flags;
ec11408a 8125 bool virt;
1da177e4
LT
8126
8127 /* allow the kernel cmdline to have a say */
8128 if (!numentries) {
8129 /* round applicable memory size up to nearest megabyte */
04903664 8130 numentries = nr_kernel_pages;
f6f34b43 8131 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8132
8133 /* It isn't necessary when PAGE_SIZE >= 1MB */
8134 if (PAGE_SHIFT < 20)
8135 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8136
9017217b
PT
8137#if __BITS_PER_LONG > 32
8138 if (!high_limit) {
8139 unsigned long adapt;
8140
8141 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8142 adapt <<= ADAPT_SCALE_SHIFT)
8143 scale++;
8144 }
8145#endif
8146
1da177e4
LT
8147 /* limit to 1 bucket per 2^scale bytes of low memory */
8148 if (scale > PAGE_SHIFT)
8149 numentries >>= (scale - PAGE_SHIFT);
8150 else
8151 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8152
8153 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8154 if (unlikely(flags & HASH_SMALL)) {
8155 /* Makes no sense without HASH_EARLY */
8156 WARN_ON(!(flags & HASH_EARLY));
8157 if (!(numentries >> *_hash_shift)) {
8158 numentries = 1UL << *_hash_shift;
8159 BUG_ON(!numentries);
8160 }
8161 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8162 numentries = PAGE_SIZE / bucketsize;
1da177e4 8163 }
6e692ed3 8164 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8165
8166 /* limit allocation size to 1/16 total memory by default */
8167 if (max == 0) {
8168 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8169 do_div(max, bucketsize);
8170 }
074b8517 8171 max = min(max, 0x80000000ULL);
1da177e4 8172
31fe62b9
TB
8173 if (numentries < low_limit)
8174 numentries = low_limit;
1da177e4
LT
8175 if (numentries > max)
8176 numentries = max;
8177
f0d1b0b3 8178 log2qty = ilog2(numentries);
1da177e4 8179
3749a8f0 8180 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8181 do {
ec11408a 8182 virt = false;
1da177e4 8183 size = bucketsize << log2qty;
ea1f5f37
PT
8184 if (flags & HASH_EARLY) {
8185 if (flags & HASH_ZERO)
26fb3dae 8186 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8187 else
7e1c4e27
MR
8188 table = memblock_alloc_raw(size,
8189 SMP_CACHE_BYTES);
ec11408a 8190 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8191 table = __vmalloc(size, gfp_flags);
ec11408a 8192 virt = true;
ea1f5f37 8193 } else {
1037b83b
ED
8194 /*
8195 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8196 * some pages at the end of hash table which
8197 * alloc_pages_exact() automatically does
1037b83b 8198 */
ec11408a
NP
8199 table = alloc_pages_exact(size, gfp_flags);
8200 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8201 }
8202 } while (!table && size > PAGE_SIZE && --log2qty);
8203
8204 if (!table)
8205 panic("Failed to allocate %s hash table\n", tablename);
8206
ec11408a
NP
8207 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8208 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8209 virt ? "vmalloc" : "linear");
1da177e4
LT
8210
8211 if (_hash_shift)
8212 *_hash_shift = log2qty;
8213 if (_hash_mask)
8214 *_hash_mask = (1 << log2qty) - 1;
8215
8216 return table;
8217}
a117e66e 8218
a5d76b54 8219/*
80934513 8220 * This function checks whether pageblock includes unmovable pages or not.
80934513 8221 *
b8af2941 8222 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8223 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8224 * check without lock_page also may miss some movable non-lru pages at
8225 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8226 *
8227 * Returns a page without holding a reference. If the caller wants to
047b9967 8228 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8229 * cannot get removed (e.g., via memory unplug) concurrently.
8230 *
a5d76b54 8231 */
4a55c047
QC
8232struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8233 int migratetype, int flags)
49ac8255 8234{
1a9f2191
QC
8235 unsigned long iter = 0;
8236 unsigned long pfn = page_to_pfn(page);
6a654e36 8237 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8238
1a9f2191
QC
8239 if (is_migrate_cma_page(page)) {
8240 /*
8241 * CMA allocations (alloc_contig_range) really need to mark
8242 * isolate CMA pageblocks even when they are not movable in fact
8243 * so consider them movable here.
8244 */
8245 if (is_migrate_cma(migratetype))
4a55c047 8246 return NULL;
1a9f2191 8247
3d680bdf 8248 return page;
1a9f2191 8249 }
4da2ce25 8250
6a654e36 8251 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8252 if (!pfn_valid_within(pfn + iter))
49ac8255 8253 continue;
29723fcc 8254
fe4c86c9 8255 page = pfn_to_page(pfn + iter);
c8721bbb 8256
c9c510dc
DH
8257 /*
8258 * Both, bootmem allocations and memory holes are marked
8259 * PG_reserved and are unmovable. We can even have unmovable
8260 * allocations inside ZONE_MOVABLE, for example when
8261 * specifying "movablecore".
8262 */
d7ab3672 8263 if (PageReserved(page))
3d680bdf 8264 return page;
d7ab3672 8265
9d789999
MH
8266 /*
8267 * If the zone is movable and we have ruled out all reserved
8268 * pages then it should be reasonably safe to assume the rest
8269 * is movable.
8270 */
8271 if (zone_idx(zone) == ZONE_MOVABLE)
8272 continue;
8273
c8721bbb
NH
8274 /*
8275 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8276 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8277 * We need not scan over tail pages because we don't
c8721bbb
NH
8278 * handle each tail page individually in migration.
8279 */
1da2f328 8280 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8281 struct page *head = compound_head(page);
8282 unsigned int skip_pages;
464c7ffb 8283
1da2f328
RR
8284 if (PageHuge(page)) {
8285 if (!hugepage_migration_supported(page_hstate(head)))
8286 return page;
8287 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8288 return page;
1da2f328 8289 }
464c7ffb 8290
d8c6546b 8291 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8292 iter += skip_pages - 1;
c8721bbb
NH
8293 continue;
8294 }
8295
97d255c8
MK
8296 /*
8297 * We can't use page_count without pin a page
8298 * because another CPU can free compound page.
8299 * This check already skips compound tails of THP
0139aa7b 8300 * because their page->_refcount is zero at all time.
97d255c8 8301 */
fe896d18 8302 if (!page_ref_count(page)) {
49ac8255
KH
8303 if (PageBuddy(page))
8304 iter += (1 << page_order(page)) - 1;
8305 continue;
8306 }
97d255c8 8307
b023f468
WC
8308 /*
8309 * The HWPoisoned page may be not in buddy system, and
8310 * page_count() is not 0.
8311 */
756d25be 8312 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8313 continue;
8314
aa218795
DH
8315 /*
8316 * We treat all PageOffline() pages as movable when offlining
8317 * to give drivers a chance to decrement their reference count
8318 * in MEM_GOING_OFFLINE in order to indicate that these pages
8319 * can be offlined as there are no direct references anymore.
8320 * For actually unmovable PageOffline() where the driver does
8321 * not support this, we will fail later when trying to actually
8322 * move these pages that still have a reference count > 0.
8323 * (false negatives in this function only)
8324 */
8325 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8326 continue;
8327
fe4c86c9 8328 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8329 continue;
8330
49ac8255 8331 /*
6b4f7799
JW
8332 * If there are RECLAIMABLE pages, we need to check
8333 * it. But now, memory offline itself doesn't call
8334 * shrink_node_slabs() and it still to be fixed.
49ac8255 8335 */
3d680bdf 8336 return page;
49ac8255 8337 }
4a55c047 8338 return NULL;
49ac8255
KH
8339}
8340
8df995f6 8341#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8342static unsigned long pfn_max_align_down(unsigned long pfn)
8343{
8344 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8345 pageblock_nr_pages) - 1);
8346}
8347
8348static unsigned long pfn_max_align_up(unsigned long pfn)
8349{
8350 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8351 pageblock_nr_pages));
8352}
8353
041d3a8c 8354/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8355static int __alloc_contig_migrate_range(struct compact_control *cc,
8356 unsigned long start, unsigned long end)
041d3a8c
MN
8357{
8358 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8359 unsigned int nr_reclaimed;
041d3a8c
MN
8360 unsigned long pfn = start;
8361 unsigned int tries = 0;
8362 int ret = 0;
8b94e0b8
JK
8363 struct migration_target_control mtc = {
8364 .nid = zone_to_nid(cc->zone),
8365 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8366 };
041d3a8c 8367
be49a6e1 8368 migrate_prep();
041d3a8c 8369
bb13ffeb 8370 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8371 if (fatal_signal_pending(current)) {
8372 ret = -EINTR;
8373 break;
8374 }
8375
bb13ffeb
MG
8376 if (list_empty(&cc->migratepages)) {
8377 cc->nr_migratepages = 0;
edc2ca61 8378 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8379 if (!pfn) {
8380 ret = -EINTR;
8381 break;
8382 }
8383 tries = 0;
8384 } else if (++tries == 5) {
8385 ret = ret < 0 ? ret : -EBUSY;
8386 break;
8387 }
8388
beb51eaa
MK
8389 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8390 &cc->migratepages);
8391 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8392
8b94e0b8
JK
8393 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8394 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8395 }
2a6f5124
SP
8396 if (ret < 0) {
8397 putback_movable_pages(&cc->migratepages);
8398 return ret;
8399 }
8400 return 0;
041d3a8c
MN
8401}
8402
8403/**
8404 * alloc_contig_range() -- tries to allocate given range of pages
8405 * @start: start PFN to allocate
8406 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8407 * @migratetype: migratetype of the underlaying pageblocks (either
8408 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8409 * in range must have the same migratetype and it must
8410 * be either of the two.
ca96b625 8411 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8412 *
8413 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8414 * aligned. The PFN range must belong to a single zone.
041d3a8c 8415 *
2c7452a0
MK
8416 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8417 * pageblocks in the range. Once isolated, the pageblocks should not
8418 * be modified by others.
041d3a8c 8419 *
a862f68a 8420 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8421 * pages which PFN is in [start, end) are allocated for the caller and
8422 * need to be freed with free_contig_range().
8423 */
0815f3d8 8424int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8425 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8426{
041d3a8c 8427 unsigned long outer_start, outer_end;
d00181b9
KS
8428 unsigned int order;
8429 int ret = 0;
041d3a8c 8430
bb13ffeb
MG
8431 struct compact_control cc = {
8432 .nr_migratepages = 0,
8433 .order = -1,
8434 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8435 .mode = MIGRATE_SYNC,
bb13ffeb 8436 .ignore_skip_hint = true,
2583d671 8437 .no_set_skip_hint = true,
7dea19f9 8438 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8439 .alloc_contig = true,
bb13ffeb
MG
8440 };
8441 INIT_LIST_HEAD(&cc.migratepages);
8442
041d3a8c
MN
8443 /*
8444 * What we do here is we mark all pageblocks in range as
8445 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8446 * have different sizes, and due to the way page allocator
8447 * work, we align the range to biggest of the two pages so
8448 * that page allocator won't try to merge buddies from
8449 * different pageblocks and change MIGRATE_ISOLATE to some
8450 * other migration type.
8451 *
8452 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8453 * migrate the pages from an unaligned range (ie. pages that
8454 * we are interested in). This will put all the pages in
8455 * range back to page allocator as MIGRATE_ISOLATE.
8456 *
8457 * When this is done, we take the pages in range from page
8458 * allocator removing them from the buddy system. This way
8459 * page allocator will never consider using them.
8460 *
8461 * This lets us mark the pageblocks back as
8462 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8463 * aligned range but not in the unaligned, original range are
8464 * put back to page allocator so that buddy can use them.
8465 */
8466
8467 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8468 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8469 if (ret < 0)
86a595f9 8470 return ret;
041d3a8c 8471
8ef5849f
JK
8472 /*
8473 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8474 * So, just fall through. test_pages_isolated() has a tracepoint
8475 * which will report the busy page.
8476 *
8477 * It is possible that busy pages could become available before
8478 * the call to test_pages_isolated, and the range will actually be
8479 * allocated. So, if we fall through be sure to clear ret so that
8480 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8481 */
bb13ffeb 8482 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8483 if (ret && ret != -EBUSY)
041d3a8c 8484 goto done;
63cd4489 8485 ret =0;
041d3a8c
MN
8486
8487 /*
8488 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8489 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8490 * more, all pages in [start, end) are free in page allocator.
8491 * What we are going to do is to allocate all pages from
8492 * [start, end) (that is remove them from page allocator).
8493 *
8494 * The only problem is that pages at the beginning and at the
8495 * end of interesting range may be not aligned with pages that
8496 * page allocator holds, ie. they can be part of higher order
8497 * pages. Because of this, we reserve the bigger range and
8498 * once this is done free the pages we are not interested in.
8499 *
8500 * We don't have to hold zone->lock here because the pages are
8501 * isolated thus they won't get removed from buddy.
8502 */
8503
8504 lru_add_drain_all();
041d3a8c
MN
8505
8506 order = 0;
8507 outer_start = start;
8508 while (!PageBuddy(pfn_to_page(outer_start))) {
8509 if (++order >= MAX_ORDER) {
8ef5849f
JK
8510 outer_start = start;
8511 break;
041d3a8c
MN
8512 }
8513 outer_start &= ~0UL << order;
8514 }
8515
8ef5849f
JK
8516 if (outer_start != start) {
8517 order = page_order(pfn_to_page(outer_start));
8518
8519 /*
8520 * outer_start page could be small order buddy page and
8521 * it doesn't include start page. Adjust outer_start
8522 * in this case to report failed page properly
8523 * on tracepoint in test_pages_isolated()
8524 */
8525 if (outer_start + (1UL << order) <= start)
8526 outer_start = start;
8527 }
8528
041d3a8c 8529 /* Make sure the range is really isolated. */
756d25be 8530 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8531 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8532 __func__, outer_start, end);
041d3a8c
MN
8533 ret = -EBUSY;
8534 goto done;
8535 }
8536
49f223a9 8537 /* Grab isolated pages from freelists. */
bb13ffeb 8538 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8539 if (!outer_end) {
8540 ret = -EBUSY;
8541 goto done;
8542 }
8543
8544 /* Free head and tail (if any) */
8545 if (start != outer_start)
8546 free_contig_range(outer_start, start - outer_start);
8547 if (end != outer_end)
8548 free_contig_range(end, outer_end - end);
8549
8550done:
8551 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8552 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8553 return ret;
8554}
255f5985 8555EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8556
8557static int __alloc_contig_pages(unsigned long start_pfn,
8558 unsigned long nr_pages, gfp_t gfp_mask)
8559{
8560 unsigned long end_pfn = start_pfn + nr_pages;
8561
8562 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8563 gfp_mask);
8564}
8565
8566static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8567 unsigned long nr_pages)
8568{
8569 unsigned long i, end_pfn = start_pfn + nr_pages;
8570 struct page *page;
8571
8572 for (i = start_pfn; i < end_pfn; i++) {
8573 page = pfn_to_online_page(i);
8574 if (!page)
8575 return false;
8576
8577 if (page_zone(page) != z)
8578 return false;
8579
8580 if (PageReserved(page))
8581 return false;
8582
8583 if (page_count(page) > 0)
8584 return false;
8585
8586 if (PageHuge(page))
8587 return false;
8588 }
8589 return true;
8590}
8591
8592static bool zone_spans_last_pfn(const struct zone *zone,
8593 unsigned long start_pfn, unsigned long nr_pages)
8594{
8595 unsigned long last_pfn = start_pfn + nr_pages - 1;
8596
8597 return zone_spans_pfn(zone, last_pfn);
8598}
8599
8600/**
8601 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8602 * @nr_pages: Number of contiguous pages to allocate
8603 * @gfp_mask: GFP mask to limit search and used during compaction
8604 * @nid: Target node
8605 * @nodemask: Mask for other possible nodes
8606 *
8607 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8608 * on an applicable zonelist to find a contiguous pfn range which can then be
8609 * tried for allocation with alloc_contig_range(). This routine is intended
8610 * for allocation requests which can not be fulfilled with the buddy allocator.
8611 *
8612 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8613 * power of two then the alignment is guaranteed to be to the given nr_pages
8614 * (e.g. 1GB request would be aligned to 1GB).
8615 *
8616 * Allocated pages can be freed with free_contig_range() or by manually calling
8617 * __free_page() on each allocated page.
8618 *
8619 * Return: pointer to contiguous pages on success, or NULL if not successful.
8620 */
8621struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8622 int nid, nodemask_t *nodemask)
8623{
8624 unsigned long ret, pfn, flags;
8625 struct zonelist *zonelist;
8626 struct zone *zone;
8627 struct zoneref *z;
8628
8629 zonelist = node_zonelist(nid, gfp_mask);
8630 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8631 gfp_zone(gfp_mask), nodemask) {
8632 spin_lock_irqsave(&zone->lock, flags);
8633
8634 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8635 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8636 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8637 /*
8638 * We release the zone lock here because
8639 * alloc_contig_range() will also lock the zone
8640 * at some point. If there's an allocation
8641 * spinning on this lock, it may win the race
8642 * and cause alloc_contig_range() to fail...
8643 */
8644 spin_unlock_irqrestore(&zone->lock, flags);
8645 ret = __alloc_contig_pages(pfn, nr_pages,
8646 gfp_mask);
8647 if (!ret)
8648 return pfn_to_page(pfn);
8649 spin_lock_irqsave(&zone->lock, flags);
8650 }
8651 pfn += nr_pages;
8652 }
8653 spin_unlock_irqrestore(&zone->lock, flags);
8654 }
8655 return NULL;
8656}
4eb0716e 8657#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8658
4eb0716e 8659void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8660{
bcc2b02f
MS
8661 unsigned int count = 0;
8662
8663 for (; nr_pages--; pfn++) {
8664 struct page *page = pfn_to_page(pfn);
8665
8666 count += page_count(page) != 1;
8667 __free_page(page);
8668 }
8669 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8670}
255f5985 8671EXPORT_SYMBOL(free_contig_range);
041d3a8c 8672
0a647f38
CS
8673/*
8674 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8675 * page high values need to be recalulated.
8676 */
4ed7e022
JL
8677void __meminit zone_pcp_update(struct zone *zone)
8678{
c8e251fa 8679 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8680 __zone_pcp_update(zone);
c8e251fa 8681 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8682}
4ed7e022 8683
340175b7
JL
8684void zone_pcp_reset(struct zone *zone)
8685{
8686 unsigned long flags;
5a883813
MK
8687 int cpu;
8688 struct per_cpu_pageset *pset;
340175b7
JL
8689
8690 /* avoid races with drain_pages() */
8691 local_irq_save(flags);
8692 if (zone->pageset != &boot_pageset) {
5a883813
MK
8693 for_each_online_cpu(cpu) {
8694 pset = per_cpu_ptr(zone->pageset, cpu);
8695 drain_zonestat(zone, pset);
8696 }
340175b7
JL
8697 free_percpu(zone->pageset);
8698 zone->pageset = &boot_pageset;
8699 }
8700 local_irq_restore(flags);
8701}
8702
6dcd73d7 8703#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8704/*
b9eb6319
JK
8705 * All pages in the range must be in a single zone and isolated
8706 * before calling this.
0c0e6195 8707 */
5557c766 8708unsigned long
0c0e6195
KH
8709__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8710{
8711 struct page *page;
8712 struct zone *zone;
0ee5f4f3 8713 unsigned int order;
0c0e6195
KH
8714 unsigned long pfn;
8715 unsigned long flags;
5557c766
MH
8716 unsigned long offlined_pages = 0;
8717
0c0e6195
KH
8718 /* find the first valid pfn */
8719 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8720 if (pfn_valid(pfn))
8721 break;
8722 if (pfn == end_pfn)
5557c766
MH
8723 return offlined_pages;
8724
2d070eab 8725 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8726 zone = page_zone(pfn_to_page(pfn));
8727 spin_lock_irqsave(&zone->lock, flags);
8728 pfn = start_pfn;
8729 while (pfn < end_pfn) {
8730 if (!pfn_valid(pfn)) {
8731 pfn++;
8732 continue;
8733 }
8734 page = pfn_to_page(pfn);
b023f468
WC
8735 /*
8736 * The HWPoisoned page may be not in buddy system, and
8737 * page_count() is not 0.
8738 */
8739 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8740 pfn++;
5557c766 8741 offlined_pages++;
b023f468
WC
8742 continue;
8743 }
aa218795
DH
8744 /*
8745 * At this point all remaining PageOffline() pages have a
8746 * reference count of 0 and can simply be skipped.
8747 */
8748 if (PageOffline(page)) {
8749 BUG_ON(page_count(page));
8750 BUG_ON(PageBuddy(page));
8751 pfn++;
8752 offlined_pages++;
8753 continue;
8754 }
b023f468 8755
0c0e6195
KH
8756 BUG_ON(page_count(page));
8757 BUG_ON(!PageBuddy(page));
8758 order = page_order(page);
5557c766 8759 offlined_pages += 1 << order;
6ab01363 8760 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8761 pfn += (1 << order);
8762 }
8763 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8764
8765 return offlined_pages;
0c0e6195
KH
8766}
8767#endif
8d22ba1b 8768
8d22ba1b
WF
8769bool is_free_buddy_page(struct page *page)
8770{
8771 struct zone *zone = page_zone(page);
8772 unsigned long pfn = page_to_pfn(page);
8773 unsigned long flags;
7aeb09f9 8774 unsigned int order;
8d22ba1b
WF
8775
8776 spin_lock_irqsave(&zone->lock, flags);
8777 for (order = 0; order < MAX_ORDER; order++) {
8778 struct page *page_head = page - (pfn & ((1 << order) - 1));
8779
8780 if (PageBuddy(page_head) && page_order(page_head) >= order)
8781 break;
8782 }
8783 spin_unlock_irqrestore(&zone->lock, flags);
8784
8785 return order < MAX_ORDER;
8786}
d4ae9916
NH
8787
8788#ifdef CONFIG_MEMORY_FAILURE
8789/*
8790 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8791 * test is performed under the zone lock to prevent a race against page
8792 * allocation.
8793 */
8794bool set_hwpoison_free_buddy_page(struct page *page)
8795{
8796 struct zone *zone = page_zone(page);
8797 unsigned long pfn = page_to_pfn(page);
8798 unsigned long flags;
8799 unsigned int order;
8800 bool hwpoisoned = false;
8801
8802 spin_lock_irqsave(&zone->lock, flags);
8803 for (order = 0; order < MAX_ORDER; order++) {
8804 struct page *page_head = page - (pfn & ((1 << order) - 1));
8805
8806 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8807 if (!TestSetPageHWPoison(page))
8808 hwpoisoned = true;
8809 break;
8810 }
8811 }
8812 spin_unlock_irqrestore(&zone->lock, flags);
8813
8814 return hwpoisoned;
8815}
8816#endif