mm/page_alloc.c: remove unused free_bootmem_with_active_regions
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
36e66c55 77#include "page_reporting.h"
1da177e4 78
c8e251fa
CS
79/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 81#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 82
72812019
LS
83#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84DEFINE_PER_CPU(int, numa_node);
85EXPORT_PER_CPU_SYMBOL(numa_node);
86#endif
87
4518085e
KW
88DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
7aac7898
LS
90#ifdef CONFIG_HAVE_MEMORYLESS_NODES
91/*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
8b885f53
JY
106static DEFINE_MUTEX(pcpu_drain_mutex);
107static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
bbe5d993
OS
338static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
339static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 340static unsigned long required_kernelcore __initdata;
a5c6d650 341static unsigned long required_kernelcore_percent __initdata;
7f16f91f 342static unsigned long required_movablecore __initdata;
a5c6d650 343static unsigned long required_movablecore_percent __initdata;
bbe5d993 344static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 345static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
346
347/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
348int movable_zone;
349EXPORT_SYMBOL(movable_zone);
c713216d 350
418508c1 351#if MAX_NUMNODES > 1
b9726c26 352unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 353unsigned int nr_online_nodes __read_mostly = 1;
418508c1 354EXPORT_SYMBOL(nr_node_ids);
62bc62a8 355EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
356#endif
357
9ef9acb0
MG
358int page_group_by_mobility_disabled __read_mostly;
359
3a80a7fa 360#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
361/*
362 * During boot we initialize deferred pages on-demand, as needed, but once
363 * page_alloc_init_late() has finished, the deferred pages are all initialized,
364 * and we can permanently disable that path.
365 */
366static DEFINE_STATIC_KEY_TRUE(deferred_pages);
367
368/*
369 * Calling kasan_free_pages() only after deferred memory initialization
370 * has completed. Poisoning pages during deferred memory init will greatly
371 * lengthen the process and cause problem in large memory systems as the
372 * deferred pages initialization is done with interrupt disabled.
373 *
374 * Assuming that there will be no reference to those newly initialized
375 * pages before they are ever allocated, this should have no effect on
376 * KASAN memory tracking as the poison will be properly inserted at page
377 * allocation time. The only corner case is when pages are allocated by
378 * on-demand allocation and then freed again before the deferred pages
379 * initialization is done, but this is not likely to happen.
380 */
381static inline void kasan_free_nondeferred_pages(struct page *page, int order)
382{
383 if (!static_branch_unlikely(&deferred_pages))
384 kasan_free_pages(page, order);
385}
386
3a80a7fa 387/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 388static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 389{
ef70b6f4
MG
390 int nid = early_pfn_to_nid(pfn);
391
392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
393 return true;
394
395 return false;
396}
397
398/*
d3035be4 399 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
400 * later in the boot cycle when it can be parallelised.
401 */
d3035be4
PT
402static bool __meminit
403defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 404{
d3035be4
PT
405 static unsigned long prev_end_pfn, nr_initialised;
406
407 /*
408 * prev_end_pfn static that contains the end of previous zone
409 * No need to protect because called very early in boot before smp_init.
410 */
411 if (prev_end_pfn != end_pfn) {
412 prev_end_pfn = end_pfn;
413 nr_initialised = 0;
414 }
415
3c2c6488 416 /* Always populate low zones for address-constrained allocations */
d3035be4 417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 418 return false;
23b68cfa
WY
419
420 /*
421 * We start only with one section of pages, more pages are added as
422 * needed until the rest of deferred pages are initialized.
423 */
d3035be4 424 nr_initialised++;
23b68cfa 425 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
426 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
427 NODE_DATA(nid)->first_deferred_pfn = pfn;
428 return true;
3a80a7fa 429 }
d3035be4 430 return false;
3a80a7fa
MG
431}
432#else
3c0c12cc
WL
433#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
434
3a80a7fa
MG
435static inline bool early_page_uninitialised(unsigned long pfn)
436{
437 return false;
438}
439
d3035be4 440static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 441{
d3035be4 442 return false;
3a80a7fa
MG
443}
444#endif
445
0b423ca2
MG
446/* Return a pointer to the bitmap storing bits affecting a block of pages */
447static inline unsigned long *get_pageblock_bitmap(struct page *page,
448 unsigned long pfn)
449{
450#ifdef CONFIG_SPARSEMEM
f1eca35a 451 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
452#else
453 return page_zone(page)->pageblock_flags;
454#endif /* CONFIG_SPARSEMEM */
455}
456
457static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
458{
459#ifdef CONFIG_SPARSEMEM
460 pfn &= (PAGES_PER_SECTION-1);
461 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
462#else
463 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
464 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
465#endif /* CONFIG_SPARSEMEM */
466}
467
468/**
469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470 * @page: The page within the block of interest
471 * @pfn: The target page frame number
472 * @end_bitidx: The last bit of interest to retrieve
473 * @mask: mask of bits that the caller is interested in
474 *
475 * Return: pageblock_bits flags
476 */
477static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
478 unsigned long pfn,
479 unsigned long end_bitidx,
480 unsigned long mask)
481{
482 unsigned long *bitmap;
483 unsigned long bitidx, word_bitidx;
484 unsigned long word;
485
486 bitmap = get_pageblock_bitmap(page, pfn);
487 bitidx = pfn_to_bitidx(page, pfn);
488 word_bitidx = bitidx / BITS_PER_LONG;
489 bitidx &= (BITS_PER_LONG-1);
490
491 word = bitmap[word_bitidx];
492 bitidx += end_bitidx;
493 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
494}
495
496unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
497 unsigned long end_bitidx,
498 unsigned long mask)
499{
500 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
501}
502
503static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
504{
505 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
506}
507
508/**
509 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
510 * @page: The page within the block of interest
511 * @flags: The flags to set
512 * @pfn: The target page frame number
513 * @end_bitidx: The last bit of interest
514 * @mask: mask of bits that the caller is interested in
515 */
516void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
517 unsigned long pfn,
518 unsigned long end_bitidx,
519 unsigned long mask)
520{
521 unsigned long *bitmap;
522 unsigned long bitidx, word_bitidx;
523 unsigned long old_word, word;
524
525 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 526 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
527
528 bitmap = get_pageblock_bitmap(page, pfn);
529 bitidx = pfn_to_bitidx(page, pfn);
530 word_bitidx = bitidx / BITS_PER_LONG;
531 bitidx &= (BITS_PER_LONG-1);
532
533 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534
535 bitidx += end_bitidx;
536 mask <<= (BITS_PER_LONG - bitidx - 1);
537 flags <<= (BITS_PER_LONG - bitidx - 1);
538
539 word = READ_ONCE(bitmap[word_bitidx]);
540 for (;;) {
541 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
542 if (word == old_word)
543 break;
544 word = old_word;
545 }
546}
3a80a7fa 547
ee6f509c 548void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 549{
5d0f3f72
KM
550 if (unlikely(page_group_by_mobility_disabled &&
551 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
552 migratetype = MIGRATE_UNMOVABLE;
553
b2a0ac88
MG
554 set_pageblock_flags_group(page, (unsigned long)migratetype,
555 PB_migrate, PB_migrate_end);
556}
557
13e7444b 558#ifdef CONFIG_DEBUG_VM
c6a57e19 559static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 560{
bdc8cb98
DH
561 int ret = 0;
562 unsigned seq;
563 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 564 unsigned long sp, start_pfn;
c6a57e19 565
bdc8cb98
DH
566 do {
567 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
568 start_pfn = zone->zone_start_pfn;
569 sp = zone->spanned_pages;
108bcc96 570 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
571 ret = 1;
572 } while (zone_span_seqretry(zone, seq));
573
b5e6a5a2 574 if (ret)
613813e8
DH
575 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
576 pfn, zone_to_nid(zone), zone->name,
577 start_pfn, start_pfn + sp);
b5e6a5a2 578
bdc8cb98 579 return ret;
c6a57e19
DH
580}
581
582static int page_is_consistent(struct zone *zone, struct page *page)
583{
14e07298 584 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 585 return 0;
1da177e4 586 if (zone != page_zone(page))
c6a57e19
DH
587 return 0;
588
589 return 1;
590}
591/*
592 * Temporary debugging check for pages not lying within a given zone.
593 */
d73d3c9f 594static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
595{
596 if (page_outside_zone_boundaries(zone, page))
1da177e4 597 return 1;
c6a57e19
DH
598 if (!page_is_consistent(zone, page))
599 return 1;
600
1da177e4
LT
601 return 0;
602}
13e7444b 603#else
d73d3c9f 604static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
605{
606 return 0;
607}
608#endif
609
82a3241a 610static void bad_page(struct page *page, const char *reason)
1da177e4 611{
d936cf9b
HD
612 static unsigned long resume;
613 static unsigned long nr_shown;
614 static unsigned long nr_unshown;
615
616 /*
617 * Allow a burst of 60 reports, then keep quiet for that minute;
618 * or allow a steady drip of one report per second.
619 */
620 if (nr_shown == 60) {
621 if (time_before(jiffies, resume)) {
622 nr_unshown++;
623 goto out;
624 }
625 if (nr_unshown) {
ff8e8116 626 pr_alert(
1e9e6365 627 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
628 nr_unshown);
629 nr_unshown = 0;
630 }
631 nr_shown = 0;
632 }
633 if (nr_shown++ == 0)
634 resume = jiffies + 60 * HZ;
635
ff8e8116 636 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 637 current->comm, page_to_pfn(page));
ff8e8116 638 __dump_page(page, reason);
4e462112 639 dump_page_owner(page);
3dc14741 640
4f31888c 641 print_modules();
1da177e4 642 dump_stack();
d936cf9b 643out:
8cc3b392 644 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 645 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
647}
648
1da177e4
LT
649/*
650 * Higher-order pages are called "compound pages". They are structured thusly:
651 *
1d798ca3 652 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 653 *
1d798ca3
KS
654 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
655 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 656 *
1d798ca3
KS
657 * The first tail page's ->compound_dtor holds the offset in array of compound
658 * page destructors. See compound_page_dtors.
1da177e4 659 *
1d798ca3 660 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 661 * This usage means that zero-order pages may not be compound.
1da177e4 662 */
d98c7a09 663
9a982250 664void free_compound_page(struct page *page)
d98c7a09 665{
7ae88534 666 mem_cgroup_uncharge(page);
d85f3385 667 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
668}
669
d00181b9 670void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
671{
672 int i;
673 int nr_pages = 1 << order;
674
f1e61557 675 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
676 set_compound_order(page, order);
677 __SetPageHead(page);
678 for (i = 1; i < nr_pages; i++) {
679 struct page *p = page + i;
58a84aa9 680 set_page_count(p, 0);
1c290f64 681 p->mapping = TAIL_MAPPING;
1d798ca3 682 set_compound_head(p, page);
18229df5 683 }
53f9263b 684 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
685 if (hpage_pincount_available(page))
686 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
687}
688
c0a32fc5
SG
689#ifdef CONFIG_DEBUG_PAGEALLOC
690unsigned int _debug_guardpage_minorder;
96a2b03f 691
8e57f8ac
VB
692bool _debug_pagealloc_enabled_early __read_mostly
693 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
694EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 695DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 696EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
697
698DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 699
031bc574
JK
700static int __init early_debug_pagealloc(char *buf)
701{
8e57f8ac 702 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
703}
704early_param("debug_pagealloc", early_debug_pagealloc);
705
8e57f8ac 706void init_debug_pagealloc(void)
e30825f1 707{
031bc574
JK
708 if (!debug_pagealloc_enabled())
709 return;
710
8e57f8ac
VB
711 static_branch_enable(&_debug_pagealloc_enabled);
712
f1c1e9f7
JK
713 if (!debug_guardpage_minorder())
714 return;
715
96a2b03f 716 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
717}
718
c0a32fc5
SG
719static int __init debug_guardpage_minorder_setup(char *buf)
720{
721 unsigned long res;
722
723 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 724 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
725 return 0;
726 }
727 _debug_guardpage_minorder = res;
1170532b 728 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
729 return 0;
730}
f1c1e9f7 731early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 732
acbc15a4 733static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 734 unsigned int order, int migratetype)
c0a32fc5 735{
e30825f1 736 if (!debug_guardpage_enabled())
acbc15a4
JK
737 return false;
738
739 if (order >= debug_guardpage_minorder())
740 return false;
e30825f1 741
3972f6bb 742 __SetPageGuard(page);
2847cf95
JK
743 INIT_LIST_HEAD(&page->lru);
744 set_page_private(page, order);
745 /* Guard pages are not available for any usage */
746 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
747
748 return true;
c0a32fc5
SG
749}
750
2847cf95
JK
751static inline void clear_page_guard(struct zone *zone, struct page *page,
752 unsigned int order, int migratetype)
c0a32fc5 753{
e30825f1
JK
754 if (!debug_guardpage_enabled())
755 return;
756
3972f6bb 757 __ClearPageGuard(page);
e30825f1 758
2847cf95
JK
759 set_page_private(page, 0);
760 if (!is_migrate_isolate(migratetype))
761 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
762}
763#else
acbc15a4
JK
764static inline bool set_page_guard(struct zone *zone, struct page *page,
765 unsigned int order, int migratetype) { return false; }
2847cf95
JK
766static inline void clear_page_guard(struct zone *zone, struct page *page,
767 unsigned int order, int migratetype) {}
c0a32fc5
SG
768#endif
769
7aeb09f9 770static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 771{
4c21e2f2 772 set_page_private(page, order);
676165a8 773 __SetPageBuddy(page);
1da177e4
LT
774}
775
1da177e4
LT
776/*
777 * This function checks whether a page is free && is the buddy
6e292b9b 778 * we can coalesce a page and its buddy if
13ad59df 779 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 780 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
781 * (c) a page and its buddy have the same order &&
782 * (d) a page and its buddy are in the same zone.
676165a8 783 *
6e292b9b
MW
784 * For recording whether a page is in the buddy system, we set PageBuddy.
785 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 786 *
676165a8 787 * For recording page's order, we use page_private(page).
1da177e4 788 */
fe925c0c 789static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 790 unsigned int order)
1da177e4 791{
fe925c0c 792 if (!page_is_guard(buddy) && !PageBuddy(buddy))
793 return false;
4c5018ce 794
fe925c0c 795 if (page_order(buddy) != order)
796 return false;
c0a32fc5 797
fe925c0c 798 /*
799 * zone check is done late to avoid uselessly calculating
800 * zone/node ids for pages that could never merge.
801 */
802 if (page_zone_id(page) != page_zone_id(buddy))
803 return false;
d34c5fa0 804
fe925c0c 805 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 806
fe925c0c 807 return true;
1da177e4
LT
808}
809
5e1f0f09
MG
810#ifdef CONFIG_COMPACTION
811static inline struct capture_control *task_capc(struct zone *zone)
812{
813 struct capture_control *capc = current->capture_control;
814
815 return capc &&
816 !(current->flags & PF_KTHREAD) &&
817 !capc->page &&
818 capc->cc->zone == zone &&
819 capc->cc->direct_compaction ? capc : NULL;
820}
821
822static inline bool
823compaction_capture(struct capture_control *capc, struct page *page,
824 int order, int migratetype)
825{
826 if (!capc || order != capc->cc->order)
827 return false;
828
829 /* Do not accidentally pollute CMA or isolated regions*/
830 if (is_migrate_cma(migratetype) ||
831 is_migrate_isolate(migratetype))
832 return false;
833
834 /*
835 * Do not let lower order allocations polluate a movable pageblock.
836 * This might let an unmovable request use a reclaimable pageblock
837 * and vice-versa but no more than normal fallback logic which can
838 * have trouble finding a high-order free page.
839 */
840 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
841 return false;
842
843 capc->page = page;
844 return true;
845}
846
847#else
848static inline struct capture_control *task_capc(struct zone *zone)
849{
850 return NULL;
851}
852
853static inline bool
854compaction_capture(struct capture_control *capc, struct page *page,
855 int order, int migratetype)
856{
857 return false;
858}
859#endif /* CONFIG_COMPACTION */
860
6ab01363
AD
861/* Used for pages not on another list */
862static inline void add_to_free_list(struct page *page, struct zone *zone,
863 unsigned int order, int migratetype)
864{
865 struct free_area *area = &zone->free_area[order];
866
867 list_add(&page->lru, &area->free_list[migratetype]);
868 area->nr_free++;
869}
870
871/* Used for pages not on another list */
872static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
873 unsigned int order, int migratetype)
874{
875 struct free_area *area = &zone->free_area[order];
876
877 list_add_tail(&page->lru, &area->free_list[migratetype]);
878 area->nr_free++;
879}
880
881/* Used for pages which are on another list */
882static inline void move_to_free_list(struct page *page, struct zone *zone,
883 unsigned int order, int migratetype)
884{
885 struct free_area *area = &zone->free_area[order];
886
887 list_move(&page->lru, &area->free_list[migratetype]);
888}
889
890static inline void del_page_from_free_list(struct page *page, struct zone *zone,
891 unsigned int order)
892{
36e66c55
AD
893 /* clear reported state and update reported page count */
894 if (page_reported(page))
895 __ClearPageReported(page);
896
6ab01363
AD
897 list_del(&page->lru);
898 __ClearPageBuddy(page);
899 set_page_private(page, 0);
900 zone->free_area[order].nr_free--;
901}
902
a2129f24
AD
903/*
904 * If this is not the largest possible page, check if the buddy
905 * of the next-highest order is free. If it is, it's possible
906 * that pages are being freed that will coalesce soon. In case,
907 * that is happening, add the free page to the tail of the list
908 * so it's less likely to be used soon and more likely to be merged
909 * as a higher order page
910 */
911static inline bool
912buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
913 struct page *page, unsigned int order)
914{
915 struct page *higher_page, *higher_buddy;
916 unsigned long combined_pfn;
917
918 if (order >= MAX_ORDER - 2)
919 return false;
920
921 if (!pfn_valid_within(buddy_pfn))
922 return false;
923
924 combined_pfn = buddy_pfn & pfn;
925 higher_page = page + (combined_pfn - pfn);
926 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
927 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
928
929 return pfn_valid_within(buddy_pfn) &&
930 page_is_buddy(higher_page, higher_buddy, order + 1);
931}
932
1da177e4
LT
933/*
934 * Freeing function for a buddy system allocator.
935 *
936 * The concept of a buddy system is to maintain direct-mapped table
937 * (containing bit values) for memory blocks of various "orders".
938 * The bottom level table contains the map for the smallest allocatable
939 * units of memory (here, pages), and each level above it describes
940 * pairs of units from the levels below, hence, "buddies".
941 * At a high level, all that happens here is marking the table entry
942 * at the bottom level available, and propagating the changes upward
943 * as necessary, plus some accounting needed to play nicely with other
944 * parts of the VM system.
945 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
946 * free pages of length of (1 << order) and marked with PageBuddy.
947 * Page's order is recorded in page_private(page) field.
1da177e4 948 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
949 * other. That is, if we allocate a small block, and both were
950 * free, the remainder of the region must be split into blocks.
1da177e4 951 * If a block is freed, and its buddy is also free, then this
5f63b720 952 * triggers coalescing into a block of larger size.
1da177e4 953 *
6d49e352 954 * -- nyc
1da177e4
LT
955 */
956
48db57f8 957static inline void __free_one_page(struct page *page,
dc4b0caf 958 unsigned long pfn,
ed0ae21d 959 struct zone *zone, unsigned int order,
36e66c55 960 int migratetype, bool report)
1da177e4 961{
a2129f24 962 struct capture_control *capc = task_capc(zone);
76741e77 963 unsigned long uninitialized_var(buddy_pfn);
a2129f24 964 unsigned long combined_pfn;
d9dddbf5 965 unsigned int max_order;
a2129f24
AD
966 struct page *buddy;
967 bool to_tail;
d9dddbf5
VB
968
969 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 970
d29bb978 971 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 972 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 973
ed0ae21d 974 VM_BUG_ON(migratetype == -1);
d9dddbf5 975 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 976 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 977
76741e77 978 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 979 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 980
d9dddbf5 981continue_merging:
3c605096 982 while (order < max_order - 1) {
5e1f0f09
MG
983 if (compaction_capture(capc, page, order, migratetype)) {
984 __mod_zone_freepage_state(zone, -(1 << order),
985 migratetype);
986 return;
987 }
76741e77
VB
988 buddy_pfn = __find_buddy_pfn(pfn, order);
989 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
990
991 if (!pfn_valid_within(buddy_pfn))
992 goto done_merging;
cb2b95e1 993 if (!page_is_buddy(page, buddy, order))
d9dddbf5 994 goto done_merging;
c0a32fc5
SG
995 /*
996 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
997 * merge with it and move up one order.
998 */
b03641af 999 if (page_is_guard(buddy))
2847cf95 1000 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1001 else
6ab01363 1002 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1003 combined_pfn = buddy_pfn & pfn;
1004 page = page + (combined_pfn - pfn);
1005 pfn = combined_pfn;
1da177e4
LT
1006 order++;
1007 }
d9dddbf5
VB
1008 if (max_order < MAX_ORDER) {
1009 /* If we are here, it means order is >= pageblock_order.
1010 * We want to prevent merge between freepages on isolate
1011 * pageblock and normal pageblock. Without this, pageblock
1012 * isolation could cause incorrect freepage or CMA accounting.
1013 *
1014 * We don't want to hit this code for the more frequent
1015 * low-order merging.
1016 */
1017 if (unlikely(has_isolate_pageblock(zone))) {
1018 int buddy_mt;
1019
76741e77
VB
1020 buddy_pfn = __find_buddy_pfn(pfn, order);
1021 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1022 buddy_mt = get_pageblock_migratetype(buddy);
1023
1024 if (migratetype != buddy_mt
1025 && (is_migrate_isolate(migratetype) ||
1026 is_migrate_isolate(buddy_mt)))
1027 goto done_merging;
1028 }
1029 max_order++;
1030 goto continue_merging;
1031 }
1032
1033done_merging:
1da177e4 1034 set_page_order(page, order);
6dda9d55 1035
97500a4a 1036 if (is_shuffle_order(order))
a2129f24 1037 to_tail = shuffle_pick_tail();
97500a4a 1038 else
a2129f24 1039 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1040
a2129f24 1041 if (to_tail)
6ab01363 1042 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1043 else
6ab01363 1044 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1045
1046 /* Notify page reporting subsystem of freed page */
1047 if (report)
1048 page_reporting_notify_free(order);
1da177e4
LT
1049}
1050
7bfec6f4
MG
1051/*
1052 * A bad page could be due to a number of fields. Instead of multiple branches,
1053 * try and check multiple fields with one check. The caller must do a detailed
1054 * check if necessary.
1055 */
1056static inline bool page_expected_state(struct page *page,
1057 unsigned long check_flags)
1058{
1059 if (unlikely(atomic_read(&page->_mapcount) != -1))
1060 return false;
1061
1062 if (unlikely((unsigned long)page->mapping |
1063 page_ref_count(page) |
1064#ifdef CONFIG_MEMCG
1065 (unsigned long)page->mem_cgroup |
1066#endif
1067 (page->flags & check_flags)))
1068 return false;
1069
1070 return true;
1071}
1072
58b7f119 1073static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1074{
82a3241a 1075 const char *bad_reason = NULL;
f0b791a3 1076
53f9263b 1077 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1078 bad_reason = "nonzero mapcount";
1079 if (unlikely(page->mapping != NULL))
1080 bad_reason = "non-NULL mapping";
fe896d18 1081 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1082 bad_reason = "nonzero _refcount";
58b7f119
WY
1083 if (unlikely(page->flags & flags)) {
1084 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1085 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1086 else
1087 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1088 }
9edad6ea
JW
1089#ifdef CONFIG_MEMCG
1090 if (unlikely(page->mem_cgroup))
1091 bad_reason = "page still charged to cgroup";
1092#endif
58b7f119
WY
1093 return bad_reason;
1094}
1095
1096static void check_free_page_bad(struct page *page)
1097{
1098 bad_page(page,
1099 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1100}
1101
534fe5e3 1102static inline int check_free_page(struct page *page)
bb552ac6 1103{
da838d4f 1104 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1105 return 0;
bb552ac6
MG
1106
1107 /* Something has gone sideways, find it */
0d0c48a2 1108 check_free_page_bad(page);
7bfec6f4 1109 return 1;
1da177e4
LT
1110}
1111
4db7548c
MG
1112static int free_tail_pages_check(struct page *head_page, struct page *page)
1113{
1114 int ret = 1;
1115
1116 /*
1117 * We rely page->lru.next never has bit 0 set, unless the page
1118 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1119 */
1120 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1121
1122 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1123 ret = 0;
1124 goto out;
1125 }
1126 switch (page - head_page) {
1127 case 1:
4da1984e 1128 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1129 if (unlikely(compound_mapcount(page))) {
82a3241a 1130 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1131 goto out;
1132 }
1133 break;
1134 case 2:
1135 /*
1136 * the second tail page: ->mapping is
fa3015b7 1137 * deferred_list.next -- ignore value.
4db7548c
MG
1138 */
1139 break;
1140 default:
1141 if (page->mapping != TAIL_MAPPING) {
82a3241a 1142 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1143 goto out;
1144 }
1145 break;
1146 }
1147 if (unlikely(!PageTail(page))) {
82a3241a 1148 bad_page(page, "PageTail not set");
4db7548c
MG
1149 goto out;
1150 }
1151 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1152 bad_page(page, "compound_head not consistent");
4db7548c
MG
1153 goto out;
1154 }
1155 ret = 0;
1156out:
1157 page->mapping = NULL;
1158 clear_compound_head(page);
1159 return ret;
1160}
1161
6471384a
AP
1162static void kernel_init_free_pages(struct page *page, int numpages)
1163{
1164 int i;
1165
1166 for (i = 0; i < numpages; i++)
1167 clear_highpage(page + i);
1168}
1169
e2769dbd
MG
1170static __always_inline bool free_pages_prepare(struct page *page,
1171 unsigned int order, bool check_free)
4db7548c 1172{
e2769dbd 1173 int bad = 0;
4db7548c 1174
4db7548c
MG
1175 VM_BUG_ON_PAGE(PageTail(page), page);
1176
e2769dbd 1177 trace_mm_page_free(page, order);
e2769dbd
MG
1178
1179 /*
1180 * Check tail pages before head page information is cleared to
1181 * avoid checking PageCompound for order-0 pages.
1182 */
1183 if (unlikely(order)) {
1184 bool compound = PageCompound(page);
1185 int i;
1186
1187 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1188
9a73f61b
KS
1189 if (compound)
1190 ClearPageDoubleMap(page);
e2769dbd
MG
1191 for (i = 1; i < (1 << order); i++) {
1192 if (compound)
1193 bad += free_tail_pages_check(page, page + i);
534fe5e3 1194 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1195 bad++;
1196 continue;
1197 }
1198 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1199 }
1200 }
bda807d4 1201 if (PageMappingFlags(page))
4db7548c 1202 page->mapping = NULL;
c4159a75 1203 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1204 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1205 if (check_free)
534fe5e3 1206 bad += check_free_page(page);
e2769dbd
MG
1207 if (bad)
1208 return false;
4db7548c 1209
e2769dbd
MG
1210 page_cpupid_reset_last(page);
1211 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1212 reset_page_owner(page, order);
4db7548c
MG
1213
1214 if (!PageHighMem(page)) {
1215 debug_check_no_locks_freed(page_address(page),
e2769dbd 1216 PAGE_SIZE << order);
4db7548c 1217 debug_check_no_obj_freed(page_address(page),
e2769dbd 1218 PAGE_SIZE << order);
4db7548c 1219 }
6471384a
AP
1220 if (want_init_on_free())
1221 kernel_init_free_pages(page, 1 << order);
1222
e2769dbd 1223 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1224 /*
1225 * arch_free_page() can make the page's contents inaccessible. s390
1226 * does this. So nothing which can access the page's contents should
1227 * happen after this.
1228 */
1229 arch_free_page(page, order);
1230
8e57f8ac 1231 if (debug_pagealloc_enabled_static())
d6332692
RE
1232 kernel_map_pages(page, 1 << order, 0);
1233
3c0c12cc 1234 kasan_free_nondeferred_pages(page, order);
4db7548c 1235
4db7548c
MG
1236 return true;
1237}
1238
e2769dbd 1239#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1240/*
1241 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1242 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1243 * moved from pcp lists to free lists.
1244 */
1245static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1246{
1247 return free_pages_prepare(page, 0, true);
1248}
1249
4462b32c 1250static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1251{
8e57f8ac 1252 if (debug_pagealloc_enabled_static())
534fe5e3 1253 return check_free_page(page);
4462b32c
VB
1254 else
1255 return false;
e2769dbd
MG
1256}
1257#else
4462b32c
VB
1258/*
1259 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1260 * moving from pcp lists to free list in order to reduce overhead. With
1261 * debug_pagealloc enabled, they are checked also immediately when being freed
1262 * to the pcp lists.
1263 */
e2769dbd
MG
1264static bool free_pcp_prepare(struct page *page)
1265{
8e57f8ac 1266 if (debug_pagealloc_enabled_static())
4462b32c
VB
1267 return free_pages_prepare(page, 0, true);
1268 else
1269 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1270}
1271
4db7548c
MG
1272static bool bulkfree_pcp_prepare(struct page *page)
1273{
534fe5e3 1274 return check_free_page(page);
4db7548c
MG
1275}
1276#endif /* CONFIG_DEBUG_VM */
1277
97334162
AL
1278static inline void prefetch_buddy(struct page *page)
1279{
1280 unsigned long pfn = page_to_pfn(page);
1281 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1282 struct page *buddy = page + (buddy_pfn - pfn);
1283
1284 prefetch(buddy);
1285}
1286
1da177e4 1287/*
5f8dcc21 1288 * Frees a number of pages from the PCP lists
1da177e4 1289 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1290 * count is the number of pages to free.
1da177e4
LT
1291 *
1292 * If the zone was previously in an "all pages pinned" state then look to
1293 * see if this freeing clears that state.
1294 *
1295 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1296 * pinned" detection logic.
1297 */
5f8dcc21
MG
1298static void free_pcppages_bulk(struct zone *zone, int count,
1299 struct per_cpu_pages *pcp)
1da177e4 1300{
5f8dcc21 1301 int migratetype = 0;
a6f9edd6 1302 int batch_free = 0;
97334162 1303 int prefetch_nr = 0;
3777999d 1304 bool isolated_pageblocks;
0a5f4e5b
AL
1305 struct page *page, *tmp;
1306 LIST_HEAD(head);
f2260e6b 1307
e5b31ac2 1308 while (count) {
5f8dcc21
MG
1309 struct list_head *list;
1310
1311 /*
a6f9edd6
MG
1312 * Remove pages from lists in a round-robin fashion. A
1313 * batch_free count is maintained that is incremented when an
1314 * empty list is encountered. This is so more pages are freed
1315 * off fuller lists instead of spinning excessively around empty
1316 * lists
5f8dcc21
MG
1317 */
1318 do {
a6f9edd6 1319 batch_free++;
5f8dcc21
MG
1320 if (++migratetype == MIGRATE_PCPTYPES)
1321 migratetype = 0;
1322 list = &pcp->lists[migratetype];
1323 } while (list_empty(list));
48db57f8 1324
1d16871d
NK
1325 /* This is the only non-empty list. Free them all. */
1326 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1327 batch_free = count;
1d16871d 1328
a6f9edd6 1329 do {
a16601c5 1330 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1331 /* must delete to avoid corrupting pcp list */
a6f9edd6 1332 list_del(&page->lru);
77ba9062 1333 pcp->count--;
aa016d14 1334
4db7548c
MG
1335 if (bulkfree_pcp_prepare(page))
1336 continue;
1337
0a5f4e5b 1338 list_add_tail(&page->lru, &head);
97334162
AL
1339
1340 /*
1341 * We are going to put the page back to the global
1342 * pool, prefetch its buddy to speed up later access
1343 * under zone->lock. It is believed the overhead of
1344 * an additional test and calculating buddy_pfn here
1345 * can be offset by reduced memory latency later. To
1346 * avoid excessive prefetching due to large count, only
1347 * prefetch buddy for the first pcp->batch nr of pages.
1348 */
1349 if (prefetch_nr++ < pcp->batch)
1350 prefetch_buddy(page);
e5b31ac2 1351 } while (--count && --batch_free && !list_empty(list));
1da177e4 1352 }
0a5f4e5b
AL
1353
1354 spin_lock(&zone->lock);
1355 isolated_pageblocks = has_isolate_pageblock(zone);
1356
1357 /*
1358 * Use safe version since after __free_one_page(),
1359 * page->lru.next will not point to original list.
1360 */
1361 list_for_each_entry_safe(page, tmp, &head, lru) {
1362 int mt = get_pcppage_migratetype(page);
1363 /* MIGRATE_ISOLATE page should not go to pcplists */
1364 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1365 /* Pageblock could have been isolated meanwhile */
1366 if (unlikely(isolated_pageblocks))
1367 mt = get_pageblock_migratetype(page);
1368
36e66c55 1369 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1370 trace_mm_page_pcpu_drain(page, 0, mt);
1371 }
d34b0733 1372 spin_unlock(&zone->lock);
1da177e4
LT
1373}
1374
dc4b0caf
MG
1375static void free_one_page(struct zone *zone,
1376 struct page *page, unsigned long pfn,
7aeb09f9 1377 unsigned int order,
ed0ae21d 1378 int migratetype)
1da177e4 1379{
d34b0733 1380 spin_lock(&zone->lock);
ad53f92e
JK
1381 if (unlikely(has_isolate_pageblock(zone) ||
1382 is_migrate_isolate(migratetype))) {
1383 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1384 }
36e66c55 1385 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1386 spin_unlock(&zone->lock);
48db57f8
NP
1387}
1388
1e8ce83c 1389static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1390 unsigned long zone, int nid)
1e8ce83c 1391{
d0dc12e8 1392 mm_zero_struct_page(page);
1e8ce83c 1393 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1394 init_page_count(page);
1395 page_mapcount_reset(page);
1396 page_cpupid_reset_last(page);
2813b9c0 1397 page_kasan_tag_reset(page);
1e8ce83c 1398
1e8ce83c
RH
1399 INIT_LIST_HEAD(&page->lru);
1400#ifdef WANT_PAGE_VIRTUAL
1401 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1402 if (!is_highmem_idx(zone))
1403 set_page_address(page, __va(pfn << PAGE_SHIFT));
1404#endif
1405}
1406
7e18adb4 1407#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1408static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1409{
1410 pg_data_t *pgdat;
1411 int nid, zid;
1412
1413 if (!early_page_uninitialised(pfn))
1414 return;
1415
1416 nid = early_pfn_to_nid(pfn);
1417 pgdat = NODE_DATA(nid);
1418
1419 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1420 struct zone *zone = &pgdat->node_zones[zid];
1421
1422 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1423 break;
1424 }
d0dc12e8 1425 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1426}
1427#else
1428static inline void init_reserved_page(unsigned long pfn)
1429{
1430}
1431#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1432
92923ca3
NZ
1433/*
1434 * Initialised pages do not have PageReserved set. This function is
1435 * called for each range allocated by the bootmem allocator and
1436 * marks the pages PageReserved. The remaining valid pages are later
1437 * sent to the buddy page allocator.
1438 */
4b50bcc7 1439void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1440{
1441 unsigned long start_pfn = PFN_DOWN(start);
1442 unsigned long end_pfn = PFN_UP(end);
1443
7e18adb4
MG
1444 for (; start_pfn < end_pfn; start_pfn++) {
1445 if (pfn_valid(start_pfn)) {
1446 struct page *page = pfn_to_page(start_pfn);
1447
1448 init_reserved_page(start_pfn);
1d798ca3
KS
1449
1450 /* Avoid false-positive PageTail() */
1451 INIT_LIST_HEAD(&page->lru);
1452
d483da5b
AD
1453 /*
1454 * no need for atomic set_bit because the struct
1455 * page is not visible yet so nobody should
1456 * access it yet.
1457 */
1458 __SetPageReserved(page);
7e18adb4
MG
1459 }
1460 }
92923ca3
NZ
1461}
1462
ec95f53a
KM
1463static void __free_pages_ok(struct page *page, unsigned int order)
1464{
d34b0733 1465 unsigned long flags;
95e34412 1466 int migratetype;
dc4b0caf 1467 unsigned long pfn = page_to_pfn(page);
ec95f53a 1468
e2769dbd 1469 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1470 return;
1471
cfc47a28 1472 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1473 local_irq_save(flags);
1474 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1475 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1476 local_irq_restore(flags);
1da177e4
LT
1477}
1478
a9cd410a 1479void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1480{
c3993076 1481 unsigned int nr_pages = 1 << order;
e2d0bd2b 1482 struct page *p = page;
c3993076 1483 unsigned int loop;
a226f6c8 1484
e2d0bd2b
YL
1485 prefetchw(p);
1486 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1487 prefetchw(p + 1);
c3993076
JW
1488 __ClearPageReserved(p);
1489 set_page_count(p, 0);
a226f6c8 1490 }
e2d0bd2b
YL
1491 __ClearPageReserved(p);
1492 set_page_count(p, 0);
c3993076 1493
9705bea5 1494 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1495 set_page_refcounted(page);
1496 __free_pages(page, order);
a226f6c8
DH
1497}
1498
3f08a302 1499#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1500
75a592a4
MG
1501static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1502
6f24fbd3
MR
1503#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1504
1505/*
1506 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1507 */
1508int __meminit __early_pfn_to_nid(unsigned long pfn,
1509 struct mminit_pfnnid_cache *state)
1510{
1511 unsigned long start_pfn, end_pfn;
1512 int nid;
1513
1514 if (state->last_start <= pfn && pfn < state->last_end)
1515 return state->last_nid;
1516
1517 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1518 if (nid != NUMA_NO_NODE) {
1519 state->last_start = start_pfn;
1520 state->last_end = end_pfn;
1521 state->last_nid = nid;
1522 }
1523
1524 return nid;
1525}
1526#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1527
75a592a4
MG
1528int __meminit early_pfn_to_nid(unsigned long pfn)
1529{
7ace9917 1530 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1531 int nid;
1532
7ace9917 1533 spin_lock(&early_pfn_lock);
75a592a4 1534 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1535 if (nid < 0)
e4568d38 1536 nid = first_online_node;
7ace9917
MG
1537 spin_unlock(&early_pfn_lock);
1538
1539 return nid;
75a592a4 1540}
3f08a302 1541#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1542
7c2ee349 1543void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1544 unsigned int order)
1545{
1546 if (early_page_uninitialised(pfn))
1547 return;
a9cd410a 1548 __free_pages_core(page, order);
3a80a7fa
MG
1549}
1550
7cf91a98
JK
1551/*
1552 * Check that the whole (or subset of) a pageblock given by the interval of
1553 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1554 * with the migration of free compaction scanner. The scanners then need to
1555 * use only pfn_valid_within() check for arches that allow holes within
1556 * pageblocks.
1557 *
1558 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1559 *
1560 * It's possible on some configurations to have a setup like node0 node1 node0
1561 * i.e. it's possible that all pages within a zones range of pages do not
1562 * belong to a single zone. We assume that a border between node0 and node1
1563 * can occur within a single pageblock, but not a node0 node1 node0
1564 * interleaving within a single pageblock. It is therefore sufficient to check
1565 * the first and last page of a pageblock and avoid checking each individual
1566 * page in a pageblock.
1567 */
1568struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1569 unsigned long end_pfn, struct zone *zone)
1570{
1571 struct page *start_page;
1572 struct page *end_page;
1573
1574 /* end_pfn is one past the range we are checking */
1575 end_pfn--;
1576
1577 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1578 return NULL;
1579
2d070eab
MH
1580 start_page = pfn_to_online_page(start_pfn);
1581 if (!start_page)
1582 return NULL;
7cf91a98
JK
1583
1584 if (page_zone(start_page) != zone)
1585 return NULL;
1586
1587 end_page = pfn_to_page(end_pfn);
1588
1589 /* This gives a shorter code than deriving page_zone(end_page) */
1590 if (page_zone_id(start_page) != page_zone_id(end_page))
1591 return NULL;
1592
1593 return start_page;
1594}
1595
1596void set_zone_contiguous(struct zone *zone)
1597{
1598 unsigned long block_start_pfn = zone->zone_start_pfn;
1599 unsigned long block_end_pfn;
1600
1601 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1602 for (; block_start_pfn < zone_end_pfn(zone);
1603 block_start_pfn = block_end_pfn,
1604 block_end_pfn += pageblock_nr_pages) {
1605
1606 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1607
1608 if (!__pageblock_pfn_to_page(block_start_pfn,
1609 block_end_pfn, zone))
1610 return;
e84fe99b 1611 cond_resched();
7cf91a98
JK
1612 }
1613
1614 /* We confirm that there is no hole */
1615 zone->contiguous = true;
1616}
1617
1618void clear_zone_contiguous(struct zone *zone)
1619{
1620 zone->contiguous = false;
1621}
1622
7e18adb4 1623#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1624static void __init deferred_free_range(unsigned long pfn,
1625 unsigned long nr_pages)
a4de83dd 1626{
2f47a91f
PT
1627 struct page *page;
1628 unsigned long i;
a4de83dd 1629
2f47a91f 1630 if (!nr_pages)
a4de83dd
MG
1631 return;
1632
2f47a91f
PT
1633 page = pfn_to_page(pfn);
1634
a4de83dd 1635 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1636 if (nr_pages == pageblock_nr_pages &&
1637 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1638 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1639 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1640 return;
1641 }
1642
e780149b
XQ
1643 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1644 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1645 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1646 __free_pages_core(page, 0);
e780149b 1647 }
a4de83dd
MG
1648}
1649
d3cd131d
NS
1650/* Completion tracking for deferred_init_memmap() threads */
1651static atomic_t pgdat_init_n_undone __initdata;
1652static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1653
1654static inline void __init pgdat_init_report_one_done(void)
1655{
1656 if (atomic_dec_and_test(&pgdat_init_n_undone))
1657 complete(&pgdat_init_all_done_comp);
1658}
0e1cc95b 1659
2f47a91f 1660/*
80b1f41c
PT
1661 * Returns true if page needs to be initialized or freed to buddy allocator.
1662 *
1663 * First we check if pfn is valid on architectures where it is possible to have
1664 * holes within pageblock_nr_pages. On systems where it is not possible, this
1665 * function is optimized out.
1666 *
1667 * Then, we check if a current large page is valid by only checking the validity
1668 * of the head pfn.
2f47a91f 1669 */
56ec43d8 1670static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1671{
80b1f41c
PT
1672 if (!pfn_valid_within(pfn))
1673 return false;
1674 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1675 return false;
80b1f41c
PT
1676 return true;
1677}
2f47a91f 1678
80b1f41c
PT
1679/*
1680 * Free pages to buddy allocator. Try to free aligned pages in
1681 * pageblock_nr_pages sizes.
1682 */
56ec43d8 1683static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1684 unsigned long end_pfn)
1685{
80b1f41c
PT
1686 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1687 unsigned long nr_free = 0;
2f47a91f 1688
80b1f41c 1689 for (; pfn < end_pfn; pfn++) {
56ec43d8 1690 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1691 deferred_free_range(pfn - nr_free, nr_free);
1692 nr_free = 0;
1693 } else if (!(pfn & nr_pgmask)) {
1694 deferred_free_range(pfn - nr_free, nr_free);
1695 nr_free = 1;
3a2d7fa8 1696 touch_nmi_watchdog();
80b1f41c
PT
1697 } else {
1698 nr_free++;
1699 }
1700 }
1701 /* Free the last block of pages to allocator */
1702 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1703}
1704
80b1f41c
PT
1705/*
1706 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1707 * by performing it only once every pageblock_nr_pages.
1708 * Return number of pages initialized.
1709 */
56ec43d8 1710static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1711 unsigned long pfn,
1712 unsigned long end_pfn)
2f47a91f 1713{
2f47a91f 1714 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1715 int nid = zone_to_nid(zone);
2f47a91f 1716 unsigned long nr_pages = 0;
56ec43d8 1717 int zid = zone_idx(zone);
2f47a91f 1718 struct page *page = NULL;
2f47a91f 1719
80b1f41c 1720 for (; pfn < end_pfn; pfn++) {
56ec43d8 1721 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1722 page = NULL;
2f47a91f 1723 continue;
80b1f41c 1724 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1725 page = pfn_to_page(pfn);
3a2d7fa8 1726 touch_nmi_watchdog();
80b1f41c
PT
1727 } else {
1728 page++;
2f47a91f 1729 }
d0dc12e8 1730 __init_single_page(page, pfn, zid, nid);
80b1f41c 1731 nr_pages++;
2f47a91f 1732 }
80b1f41c 1733 return (nr_pages);
2f47a91f
PT
1734}
1735
0e56acae
AD
1736/*
1737 * This function is meant to pre-load the iterator for the zone init.
1738 * Specifically it walks through the ranges until we are caught up to the
1739 * first_init_pfn value and exits there. If we never encounter the value we
1740 * return false indicating there are no valid ranges left.
1741 */
1742static bool __init
1743deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1744 unsigned long *spfn, unsigned long *epfn,
1745 unsigned long first_init_pfn)
1746{
1747 u64 j;
1748
1749 /*
1750 * Start out by walking through the ranges in this zone that have
1751 * already been initialized. We don't need to do anything with them
1752 * so we just need to flush them out of the system.
1753 */
1754 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1755 if (*epfn <= first_init_pfn)
1756 continue;
1757 if (*spfn < first_init_pfn)
1758 *spfn = first_init_pfn;
1759 *i = j;
1760 return true;
1761 }
1762
1763 return false;
1764}
1765
1766/*
1767 * Initialize and free pages. We do it in two loops: first we initialize
1768 * struct page, then free to buddy allocator, because while we are
1769 * freeing pages we can access pages that are ahead (computing buddy
1770 * page in __free_one_page()).
1771 *
1772 * In order to try and keep some memory in the cache we have the loop
1773 * broken along max page order boundaries. This way we will not cause
1774 * any issues with the buddy page computation.
1775 */
1776static unsigned long __init
1777deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1778 unsigned long *end_pfn)
1779{
1780 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1781 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1782 unsigned long nr_pages = 0;
1783 u64 j = *i;
1784
1785 /* First we loop through and initialize the page values */
1786 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1787 unsigned long t;
1788
1789 if (mo_pfn <= *start_pfn)
1790 break;
1791
1792 t = min(mo_pfn, *end_pfn);
1793 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1794
1795 if (mo_pfn < *end_pfn) {
1796 *start_pfn = mo_pfn;
1797 break;
1798 }
1799 }
1800
1801 /* Reset values and now loop through freeing pages as needed */
1802 swap(j, *i);
1803
1804 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1805 unsigned long t;
1806
1807 if (mo_pfn <= spfn)
1808 break;
1809
1810 t = min(mo_pfn, epfn);
1811 deferred_free_pages(spfn, t);
1812
1813 if (mo_pfn <= epfn)
1814 break;
1815 }
1816
1817 return nr_pages;
1818}
1819
7e18adb4 1820/* Initialise remaining memory on a node */
0e1cc95b 1821static int __init deferred_init_memmap(void *data)
7e18adb4 1822{
0e1cc95b 1823 pg_data_t *pgdat = data;
0e56acae
AD
1824 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1825 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1826 unsigned long first_init_pfn, flags;
7e18adb4 1827 unsigned long start = jiffies;
7e18adb4 1828 struct zone *zone;
0e56acae 1829 int zid;
2f47a91f 1830 u64 i;
7e18adb4 1831
3a2d7fa8
PT
1832 /* Bind memory initialisation thread to a local node if possible */
1833 if (!cpumask_empty(cpumask))
1834 set_cpus_allowed_ptr(current, cpumask);
1835
1836 pgdat_resize_lock(pgdat, &flags);
1837 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1838 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1839 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1840 pgdat_init_report_one_done();
0e1cc95b
MG
1841 return 0;
1842 }
1843
7e18adb4
MG
1844 /* Sanity check boundaries */
1845 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1846 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1847 pgdat->first_deferred_pfn = ULONG_MAX;
1848
1849 /* Only the highest zone is deferred so find it */
1850 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1851 zone = pgdat->node_zones + zid;
1852 if (first_init_pfn < zone_end_pfn(zone))
1853 break;
1854 }
0e56acae
AD
1855
1856 /* If the zone is empty somebody else may have cleared out the zone */
1857 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1858 first_init_pfn))
1859 goto zone_empty;
7e18adb4 1860
80b1f41c 1861 /*
0e56acae
AD
1862 * Initialize and free pages in MAX_ORDER sized increments so
1863 * that we can avoid introducing any issues with the buddy
1864 * allocator.
80b1f41c 1865 */
0e56acae
AD
1866 while (spfn < epfn)
1867 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1868zone_empty:
3a2d7fa8 1869 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1870
1871 /* Sanity check that the next zone really is unpopulated */
1872 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1873
837566e7
AD
1874 pr_info("node %d initialised, %lu pages in %ums\n",
1875 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1876
1877 pgdat_init_report_one_done();
0e1cc95b
MG
1878 return 0;
1879}
c9e97a19 1880
c9e97a19
PT
1881/*
1882 * If this zone has deferred pages, try to grow it by initializing enough
1883 * deferred pages to satisfy the allocation specified by order, rounded up to
1884 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1885 * of SECTION_SIZE bytes by initializing struct pages in increments of
1886 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1887 *
1888 * Return true when zone was grown, otherwise return false. We return true even
1889 * when we grow less than requested, to let the caller decide if there are
1890 * enough pages to satisfy the allocation.
1891 *
1892 * Note: We use noinline because this function is needed only during boot, and
1893 * it is called from a __ref function _deferred_grow_zone. This way we are
1894 * making sure that it is not inlined into permanent text section.
1895 */
1896static noinline bool __init
1897deferred_grow_zone(struct zone *zone, unsigned int order)
1898{
c9e97a19 1899 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1900 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1901 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1902 unsigned long spfn, epfn, flags;
1903 unsigned long nr_pages = 0;
c9e97a19
PT
1904 u64 i;
1905
1906 /* Only the last zone may have deferred pages */
1907 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1908 return false;
1909
1910 pgdat_resize_lock(pgdat, &flags);
1911
1912 /*
1913 * If deferred pages have been initialized while we were waiting for
1914 * the lock, return true, as the zone was grown. The caller will retry
1915 * this zone. We won't return to this function since the caller also
1916 * has this static branch.
1917 */
1918 if (!static_branch_unlikely(&deferred_pages)) {
1919 pgdat_resize_unlock(pgdat, &flags);
1920 return true;
1921 }
1922
1923 /*
1924 * If someone grew this zone while we were waiting for spinlock, return
1925 * true, as there might be enough pages already.
1926 */
1927 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1928 pgdat_resize_unlock(pgdat, &flags);
1929 return true;
1930 }
1931
0e56acae
AD
1932 /* If the zone is empty somebody else may have cleared out the zone */
1933 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1934 first_deferred_pfn)) {
1935 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1936 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1937 /* Retry only once. */
1938 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1939 }
1940
0e56acae
AD
1941 /*
1942 * Initialize and free pages in MAX_ORDER sized increments so
1943 * that we can avoid introducing any issues with the buddy
1944 * allocator.
1945 */
1946 while (spfn < epfn) {
1947 /* update our first deferred PFN for this section */
1948 first_deferred_pfn = spfn;
1949
1950 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1951
0e56acae
AD
1952 /* We should only stop along section boundaries */
1953 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1954 continue;
c9e97a19 1955
0e56acae 1956 /* If our quota has been met we can stop here */
c9e97a19
PT
1957 if (nr_pages >= nr_pages_needed)
1958 break;
1959 }
1960
0e56acae 1961 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1962 pgdat_resize_unlock(pgdat, &flags);
1963
1964 return nr_pages > 0;
1965}
1966
1967/*
1968 * deferred_grow_zone() is __init, but it is called from
1969 * get_page_from_freelist() during early boot until deferred_pages permanently
1970 * disables this call. This is why we have refdata wrapper to avoid warning,
1971 * and to ensure that the function body gets unloaded.
1972 */
1973static bool __ref
1974_deferred_grow_zone(struct zone *zone, unsigned int order)
1975{
1976 return deferred_grow_zone(zone, order);
1977}
1978
7cf91a98 1979#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1980
1981void __init page_alloc_init_late(void)
1982{
7cf91a98 1983 struct zone *zone;
e900a918 1984 int nid;
7cf91a98
JK
1985
1986#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1987
d3cd131d
NS
1988 /* There will be num_node_state(N_MEMORY) threads */
1989 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1990 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1991 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1992 }
1993
1994 /* Block until all are initialised */
d3cd131d 1995 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1996
3e8fc007
MG
1997 /*
1998 * The number of managed pages has changed due to the initialisation
1999 * so the pcpu batch and high limits needs to be updated or the limits
2000 * will be artificially small.
2001 */
2002 for_each_populated_zone(zone)
2003 zone_pcp_update(zone);
2004
c9e97a19
PT
2005 /*
2006 * We initialized the rest of the deferred pages. Permanently disable
2007 * on-demand struct page initialization.
2008 */
2009 static_branch_disable(&deferred_pages);
2010
4248b0da
MG
2011 /* Reinit limits that are based on free pages after the kernel is up */
2012 files_maxfiles_init();
7cf91a98 2013#endif
350e88ba 2014
3010f876
PT
2015 /* Discard memblock private memory */
2016 memblock_discard();
7cf91a98 2017
e900a918
DW
2018 for_each_node_state(nid, N_MEMORY)
2019 shuffle_free_memory(NODE_DATA(nid));
2020
7cf91a98
JK
2021 for_each_populated_zone(zone)
2022 set_zone_contiguous(zone);
7e18adb4 2023}
7e18adb4 2024
47118af0 2025#ifdef CONFIG_CMA
9cf510a5 2026/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2027void __init init_cma_reserved_pageblock(struct page *page)
2028{
2029 unsigned i = pageblock_nr_pages;
2030 struct page *p = page;
2031
2032 do {
2033 __ClearPageReserved(p);
2034 set_page_count(p, 0);
d883c6cf 2035 } while (++p, --i);
47118af0 2036
47118af0 2037 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2038
2039 if (pageblock_order >= MAX_ORDER) {
2040 i = pageblock_nr_pages;
2041 p = page;
2042 do {
2043 set_page_refcounted(p);
2044 __free_pages(p, MAX_ORDER - 1);
2045 p += MAX_ORDER_NR_PAGES;
2046 } while (i -= MAX_ORDER_NR_PAGES);
2047 } else {
2048 set_page_refcounted(page);
2049 __free_pages(page, pageblock_order);
2050 }
2051
3dcc0571 2052 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2053}
2054#endif
1da177e4
LT
2055
2056/*
2057 * The order of subdivision here is critical for the IO subsystem.
2058 * Please do not alter this order without good reasons and regression
2059 * testing. Specifically, as large blocks of memory are subdivided,
2060 * the order in which smaller blocks are delivered depends on the order
2061 * they're subdivided in this function. This is the primary factor
2062 * influencing the order in which pages are delivered to the IO
2063 * subsystem according to empirical testing, and this is also justified
2064 * by considering the behavior of a buddy system containing a single
2065 * large block of memory acted on by a series of small allocations.
2066 * This behavior is a critical factor in sglist merging's success.
2067 *
6d49e352 2068 * -- nyc
1da177e4 2069 */
085cc7d5 2070static inline void expand(struct zone *zone, struct page *page,
6ab01363 2071 int low, int high, int migratetype)
1da177e4
LT
2072{
2073 unsigned long size = 1 << high;
2074
2075 while (high > low) {
1da177e4
LT
2076 high--;
2077 size >>= 1;
309381fe 2078 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2079
acbc15a4
JK
2080 /*
2081 * Mark as guard pages (or page), that will allow to
2082 * merge back to allocator when buddy will be freed.
2083 * Corresponding page table entries will not be touched,
2084 * pages will stay not present in virtual address space
2085 */
2086 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2087 continue;
acbc15a4 2088
6ab01363 2089 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2090 set_page_order(&page[size], high);
2091 }
1da177e4
LT
2092}
2093
4e611801 2094static void check_new_page_bad(struct page *page)
1da177e4 2095{
833d8a42
WY
2096 if (unlikely(page->flags & __PG_HWPOISON)) {
2097 /* Don't complain about hwpoisoned pages */
2098 page_mapcount_reset(page); /* remove PageBuddy */
2099 return;
2100 }
58b7f119
WY
2101
2102 bad_page(page,
2103 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2104}
2105
2106/*
2107 * This page is about to be returned from the page allocator
2108 */
2109static inline int check_new_page(struct page *page)
2110{
2111 if (likely(page_expected_state(page,
2112 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2113 return 0;
2114
2115 check_new_page_bad(page);
2116 return 1;
2a7684a2
WF
2117}
2118
bd33ef36 2119static inline bool free_pages_prezeroed(void)
1414c7f4 2120{
6471384a
AP
2121 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2122 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2123}
2124
479f854a 2125#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2126/*
2127 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2128 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2129 * also checked when pcp lists are refilled from the free lists.
2130 */
2131static inline bool check_pcp_refill(struct page *page)
479f854a 2132{
8e57f8ac 2133 if (debug_pagealloc_enabled_static())
4462b32c
VB
2134 return check_new_page(page);
2135 else
2136 return false;
479f854a
MG
2137}
2138
4462b32c 2139static inline bool check_new_pcp(struct page *page)
479f854a
MG
2140{
2141 return check_new_page(page);
2142}
2143#else
4462b32c
VB
2144/*
2145 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2146 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2147 * enabled, they are also checked when being allocated from the pcp lists.
2148 */
2149static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2150{
2151 return check_new_page(page);
2152}
4462b32c 2153static inline bool check_new_pcp(struct page *page)
479f854a 2154{
8e57f8ac 2155 if (debug_pagealloc_enabled_static())
4462b32c
VB
2156 return check_new_page(page);
2157 else
2158 return false;
479f854a
MG
2159}
2160#endif /* CONFIG_DEBUG_VM */
2161
2162static bool check_new_pages(struct page *page, unsigned int order)
2163{
2164 int i;
2165 for (i = 0; i < (1 << order); i++) {
2166 struct page *p = page + i;
2167
2168 if (unlikely(check_new_page(p)))
2169 return true;
2170 }
2171
2172 return false;
2173}
2174
46f24fd8
JK
2175inline void post_alloc_hook(struct page *page, unsigned int order,
2176 gfp_t gfp_flags)
2177{
2178 set_page_private(page, 0);
2179 set_page_refcounted(page);
2180
2181 arch_alloc_page(page, order);
8e57f8ac 2182 if (debug_pagealloc_enabled_static())
d6332692 2183 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2184 kasan_alloc_pages(page, order);
4117992d 2185 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2186 set_page_owner(page, order, gfp_flags);
2187}
2188
479f854a 2189static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2190 unsigned int alloc_flags)
2a7684a2 2191{
46f24fd8 2192 post_alloc_hook(page, order, gfp_flags);
17cf4406 2193
6471384a
AP
2194 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2195 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2196
2197 if (order && (gfp_flags & __GFP_COMP))
2198 prep_compound_page(page, order);
2199
75379191 2200 /*
2f064f34 2201 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2202 * allocate the page. The expectation is that the caller is taking
2203 * steps that will free more memory. The caller should avoid the page
2204 * being used for !PFMEMALLOC purposes.
2205 */
2f064f34
MH
2206 if (alloc_flags & ALLOC_NO_WATERMARKS)
2207 set_page_pfmemalloc(page);
2208 else
2209 clear_page_pfmemalloc(page);
1da177e4
LT
2210}
2211
56fd56b8
MG
2212/*
2213 * Go through the free lists for the given migratetype and remove
2214 * the smallest available page from the freelists
2215 */
85ccc8fa 2216static __always_inline
728ec980 2217struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2218 int migratetype)
2219{
2220 unsigned int current_order;
b8af2941 2221 struct free_area *area;
56fd56b8
MG
2222 struct page *page;
2223
2224 /* Find a page of the appropriate size in the preferred list */
2225 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2226 area = &(zone->free_area[current_order]);
b03641af 2227 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2228 if (!page)
2229 continue;
6ab01363
AD
2230 del_page_from_free_list(page, zone, current_order);
2231 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2232 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2233 return page;
2234 }
2235
2236 return NULL;
2237}
2238
2239
b2a0ac88
MG
2240/*
2241 * This array describes the order lists are fallen back to when
2242 * the free lists for the desirable migrate type are depleted
2243 */
47118af0 2244static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2245 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2246 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2247 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2248#ifdef CONFIG_CMA
974a786e 2249 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2250#endif
194159fb 2251#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2252 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2253#endif
b2a0ac88
MG
2254};
2255
dc67647b 2256#ifdef CONFIG_CMA
85ccc8fa 2257static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2258 unsigned int order)
2259{
2260 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2261}
2262#else
2263static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2264 unsigned int order) { return NULL; }
2265#endif
2266
c361be55
MG
2267/*
2268 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2269 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2270 * boundary. If alignment is required, use move_freepages_block()
2271 */
02aa0cdd 2272static int move_freepages(struct zone *zone,
b69a7288 2273 struct page *start_page, struct page *end_page,
02aa0cdd 2274 int migratetype, int *num_movable)
c361be55
MG
2275{
2276 struct page *page;
d00181b9 2277 unsigned int order;
d100313f 2278 int pages_moved = 0;
c361be55 2279
c361be55
MG
2280 for (page = start_page; page <= end_page;) {
2281 if (!pfn_valid_within(page_to_pfn(page))) {
2282 page++;
2283 continue;
2284 }
2285
2286 if (!PageBuddy(page)) {
02aa0cdd
VB
2287 /*
2288 * We assume that pages that could be isolated for
2289 * migration are movable. But we don't actually try
2290 * isolating, as that would be expensive.
2291 */
2292 if (num_movable &&
2293 (PageLRU(page) || __PageMovable(page)))
2294 (*num_movable)++;
2295
c361be55
MG
2296 page++;
2297 continue;
2298 }
2299
cd961038
DR
2300 /* Make sure we are not inadvertently changing nodes */
2301 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2302 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2303
c361be55 2304 order = page_order(page);
6ab01363 2305 move_to_free_list(page, zone, order, migratetype);
c361be55 2306 page += 1 << order;
d100313f 2307 pages_moved += 1 << order;
c361be55
MG
2308 }
2309
d100313f 2310 return pages_moved;
c361be55
MG
2311}
2312
ee6f509c 2313int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2314 int migratetype, int *num_movable)
c361be55
MG
2315{
2316 unsigned long start_pfn, end_pfn;
2317 struct page *start_page, *end_page;
2318
4a222127
DR
2319 if (num_movable)
2320 *num_movable = 0;
2321
c361be55 2322 start_pfn = page_to_pfn(page);
d9c23400 2323 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2324 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2325 end_page = start_page + pageblock_nr_pages - 1;
2326 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2327
2328 /* Do not cross zone boundaries */
108bcc96 2329 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2330 start_page = page;
108bcc96 2331 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2332 return 0;
2333
02aa0cdd
VB
2334 return move_freepages(zone, start_page, end_page, migratetype,
2335 num_movable);
c361be55
MG
2336}
2337
2f66a68f
MG
2338static void change_pageblock_range(struct page *pageblock_page,
2339 int start_order, int migratetype)
2340{
2341 int nr_pageblocks = 1 << (start_order - pageblock_order);
2342
2343 while (nr_pageblocks--) {
2344 set_pageblock_migratetype(pageblock_page, migratetype);
2345 pageblock_page += pageblock_nr_pages;
2346 }
2347}
2348
fef903ef 2349/*
9c0415eb
VB
2350 * When we are falling back to another migratetype during allocation, try to
2351 * steal extra free pages from the same pageblocks to satisfy further
2352 * allocations, instead of polluting multiple pageblocks.
2353 *
2354 * If we are stealing a relatively large buddy page, it is likely there will
2355 * be more free pages in the pageblock, so try to steal them all. For
2356 * reclaimable and unmovable allocations, we steal regardless of page size,
2357 * as fragmentation caused by those allocations polluting movable pageblocks
2358 * is worse than movable allocations stealing from unmovable and reclaimable
2359 * pageblocks.
fef903ef 2360 */
4eb7dce6
JK
2361static bool can_steal_fallback(unsigned int order, int start_mt)
2362{
2363 /*
2364 * Leaving this order check is intended, although there is
2365 * relaxed order check in next check. The reason is that
2366 * we can actually steal whole pageblock if this condition met,
2367 * but, below check doesn't guarantee it and that is just heuristic
2368 * so could be changed anytime.
2369 */
2370 if (order >= pageblock_order)
2371 return true;
2372
2373 if (order >= pageblock_order / 2 ||
2374 start_mt == MIGRATE_RECLAIMABLE ||
2375 start_mt == MIGRATE_UNMOVABLE ||
2376 page_group_by_mobility_disabled)
2377 return true;
2378
2379 return false;
2380}
2381
1c30844d
MG
2382static inline void boost_watermark(struct zone *zone)
2383{
2384 unsigned long max_boost;
2385
2386 if (!watermark_boost_factor)
2387 return;
14f69140
HW
2388 /*
2389 * Don't bother in zones that are unlikely to produce results.
2390 * On small machines, including kdump capture kernels running
2391 * in a small area, boosting the watermark can cause an out of
2392 * memory situation immediately.
2393 */
2394 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2395 return;
1c30844d
MG
2396
2397 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2398 watermark_boost_factor, 10000);
94b3334c
MG
2399
2400 /*
2401 * high watermark may be uninitialised if fragmentation occurs
2402 * very early in boot so do not boost. We do not fall
2403 * through and boost by pageblock_nr_pages as failing
2404 * allocations that early means that reclaim is not going
2405 * to help and it may even be impossible to reclaim the
2406 * boosted watermark resulting in a hang.
2407 */
2408 if (!max_boost)
2409 return;
2410
1c30844d
MG
2411 max_boost = max(pageblock_nr_pages, max_boost);
2412
2413 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2414 max_boost);
2415}
2416
4eb7dce6
JK
2417/*
2418 * This function implements actual steal behaviour. If order is large enough,
2419 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2420 * pageblock to our migratetype and determine how many already-allocated pages
2421 * are there in the pageblock with a compatible migratetype. If at least half
2422 * of pages are free or compatible, we can change migratetype of the pageblock
2423 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2424 */
2425static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2426 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2427{
d00181b9 2428 unsigned int current_order = page_order(page);
02aa0cdd
VB
2429 int free_pages, movable_pages, alike_pages;
2430 int old_block_type;
2431
2432 old_block_type = get_pageblock_migratetype(page);
fef903ef 2433
3bc48f96
VB
2434 /*
2435 * This can happen due to races and we want to prevent broken
2436 * highatomic accounting.
2437 */
02aa0cdd 2438 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2439 goto single_page;
2440
fef903ef
SB
2441 /* Take ownership for orders >= pageblock_order */
2442 if (current_order >= pageblock_order) {
2443 change_pageblock_range(page, current_order, start_type);
3bc48f96 2444 goto single_page;
fef903ef
SB
2445 }
2446
1c30844d
MG
2447 /*
2448 * Boost watermarks to increase reclaim pressure to reduce the
2449 * likelihood of future fallbacks. Wake kswapd now as the node
2450 * may be balanced overall and kswapd will not wake naturally.
2451 */
2452 boost_watermark(zone);
2453 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2454 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2455
3bc48f96
VB
2456 /* We are not allowed to try stealing from the whole block */
2457 if (!whole_block)
2458 goto single_page;
2459
02aa0cdd
VB
2460 free_pages = move_freepages_block(zone, page, start_type,
2461 &movable_pages);
2462 /*
2463 * Determine how many pages are compatible with our allocation.
2464 * For movable allocation, it's the number of movable pages which
2465 * we just obtained. For other types it's a bit more tricky.
2466 */
2467 if (start_type == MIGRATE_MOVABLE) {
2468 alike_pages = movable_pages;
2469 } else {
2470 /*
2471 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2472 * to MOVABLE pageblock, consider all non-movable pages as
2473 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2474 * vice versa, be conservative since we can't distinguish the
2475 * exact migratetype of non-movable pages.
2476 */
2477 if (old_block_type == MIGRATE_MOVABLE)
2478 alike_pages = pageblock_nr_pages
2479 - (free_pages + movable_pages);
2480 else
2481 alike_pages = 0;
2482 }
2483
3bc48f96 2484 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2485 if (!free_pages)
3bc48f96 2486 goto single_page;
fef903ef 2487
02aa0cdd
VB
2488 /*
2489 * If a sufficient number of pages in the block are either free or of
2490 * comparable migratability as our allocation, claim the whole block.
2491 */
2492 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2493 page_group_by_mobility_disabled)
2494 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2495
2496 return;
2497
2498single_page:
6ab01363 2499 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2500}
2501
2149cdae
JK
2502/*
2503 * Check whether there is a suitable fallback freepage with requested order.
2504 * If only_stealable is true, this function returns fallback_mt only if
2505 * we can steal other freepages all together. This would help to reduce
2506 * fragmentation due to mixed migratetype pages in one pageblock.
2507 */
2508int find_suitable_fallback(struct free_area *area, unsigned int order,
2509 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2510{
2511 int i;
2512 int fallback_mt;
2513
2514 if (area->nr_free == 0)
2515 return -1;
2516
2517 *can_steal = false;
2518 for (i = 0;; i++) {
2519 fallback_mt = fallbacks[migratetype][i];
974a786e 2520 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2521 break;
2522
b03641af 2523 if (free_area_empty(area, fallback_mt))
4eb7dce6 2524 continue;
fef903ef 2525
4eb7dce6
JK
2526 if (can_steal_fallback(order, migratetype))
2527 *can_steal = true;
2528
2149cdae
JK
2529 if (!only_stealable)
2530 return fallback_mt;
2531
2532 if (*can_steal)
2533 return fallback_mt;
fef903ef 2534 }
4eb7dce6
JK
2535
2536 return -1;
fef903ef
SB
2537}
2538
0aaa29a5
MG
2539/*
2540 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2541 * there are no empty page blocks that contain a page with a suitable order
2542 */
2543static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2544 unsigned int alloc_order)
2545{
2546 int mt;
2547 unsigned long max_managed, flags;
2548
2549 /*
2550 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2551 * Check is race-prone but harmless.
2552 */
9705bea5 2553 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2554 if (zone->nr_reserved_highatomic >= max_managed)
2555 return;
2556
2557 spin_lock_irqsave(&zone->lock, flags);
2558
2559 /* Recheck the nr_reserved_highatomic limit under the lock */
2560 if (zone->nr_reserved_highatomic >= max_managed)
2561 goto out_unlock;
2562
2563 /* Yoink! */
2564 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2565 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2566 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2567 zone->nr_reserved_highatomic += pageblock_nr_pages;
2568 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2569 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2570 }
2571
2572out_unlock:
2573 spin_unlock_irqrestore(&zone->lock, flags);
2574}
2575
2576/*
2577 * Used when an allocation is about to fail under memory pressure. This
2578 * potentially hurts the reliability of high-order allocations when under
2579 * intense memory pressure but failed atomic allocations should be easier
2580 * to recover from than an OOM.
29fac03b
MK
2581 *
2582 * If @force is true, try to unreserve a pageblock even though highatomic
2583 * pageblock is exhausted.
0aaa29a5 2584 */
29fac03b
MK
2585static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2586 bool force)
0aaa29a5
MG
2587{
2588 struct zonelist *zonelist = ac->zonelist;
2589 unsigned long flags;
2590 struct zoneref *z;
2591 struct zone *zone;
2592 struct page *page;
2593 int order;
04c8716f 2594 bool ret;
0aaa29a5
MG
2595
2596 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2597 ac->nodemask) {
29fac03b
MK
2598 /*
2599 * Preserve at least one pageblock unless memory pressure
2600 * is really high.
2601 */
2602 if (!force && zone->nr_reserved_highatomic <=
2603 pageblock_nr_pages)
0aaa29a5
MG
2604 continue;
2605
2606 spin_lock_irqsave(&zone->lock, flags);
2607 for (order = 0; order < MAX_ORDER; order++) {
2608 struct free_area *area = &(zone->free_area[order]);
2609
b03641af 2610 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2611 if (!page)
0aaa29a5
MG
2612 continue;
2613
0aaa29a5 2614 /*
4855e4a7
MK
2615 * In page freeing path, migratetype change is racy so
2616 * we can counter several free pages in a pageblock
2617 * in this loop althoug we changed the pageblock type
2618 * from highatomic to ac->migratetype. So we should
2619 * adjust the count once.
0aaa29a5 2620 */
a6ffdc07 2621 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2622 /*
2623 * It should never happen but changes to
2624 * locking could inadvertently allow a per-cpu
2625 * drain to add pages to MIGRATE_HIGHATOMIC
2626 * while unreserving so be safe and watch for
2627 * underflows.
2628 */
2629 zone->nr_reserved_highatomic -= min(
2630 pageblock_nr_pages,
2631 zone->nr_reserved_highatomic);
2632 }
0aaa29a5
MG
2633
2634 /*
2635 * Convert to ac->migratetype and avoid the normal
2636 * pageblock stealing heuristics. Minimally, the caller
2637 * is doing the work and needs the pages. More
2638 * importantly, if the block was always converted to
2639 * MIGRATE_UNMOVABLE or another type then the number
2640 * of pageblocks that cannot be completely freed
2641 * may increase.
2642 */
2643 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2644 ret = move_freepages_block(zone, page, ac->migratetype,
2645 NULL);
29fac03b
MK
2646 if (ret) {
2647 spin_unlock_irqrestore(&zone->lock, flags);
2648 return ret;
2649 }
0aaa29a5
MG
2650 }
2651 spin_unlock_irqrestore(&zone->lock, flags);
2652 }
04c8716f
MK
2653
2654 return false;
0aaa29a5
MG
2655}
2656
3bc48f96
VB
2657/*
2658 * Try finding a free buddy page on the fallback list and put it on the free
2659 * list of requested migratetype, possibly along with other pages from the same
2660 * block, depending on fragmentation avoidance heuristics. Returns true if
2661 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2662 *
2663 * The use of signed ints for order and current_order is a deliberate
2664 * deviation from the rest of this file, to make the for loop
2665 * condition simpler.
3bc48f96 2666 */
85ccc8fa 2667static __always_inline bool
6bb15450
MG
2668__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2669 unsigned int alloc_flags)
b2a0ac88 2670{
b8af2941 2671 struct free_area *area;
b002529d 2672 int current_order;
6bb15450 2673 int min_order = order;
b2a0ac88 2674 struct page *page;
4eb7dce6
JK
2675 int fallback_mt;
2676 bool can_steal;
b2a0ac88 2677
6bb15450
MG
2678 /*
2679 * Do not steal pages from freelists belonging to other pageblocks
2680 * i.e. orders < pageblock_order. If there are no local zones free,
2681 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2682 */
2683 if (alloc_flags & ALLOC_NOFRAGMENT)
2684 min_order = pageblock_order;
2685
7a8f58f3
VB
2686 /*
2687 * Find the largest available free page in the other list. This roughly
2688 * approximates finding the pageblock with the most free pages, which
2689 * would be too costly to do exactly.
2690 */
6bb15450 2691 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2692 --current_order) {
4eb7dce6
JK
2693 area = &(zone->free_area[current_order]);
2694 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2695 start_migratetype, false, &can_steal);
4eb7dce6
JK
2696 if (fallback_mt == -1)
2697 continue;
b2a0ac88 2698
7a8f58f3
VB
2699 /*
2700 * We cannot steal all free pages from the pageblock and the
2701 * requested migratetype is movable. In that case it's better to
2702 * steal and split the smallest available page instead of the
2703 * largest available page, because even if the next movable
2704 * allocation falls back into a different pageblock than this
2705 * one, it won't cause permanent fragmentation.
2706 */
2707 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2708 && current_order > order)
2709 goto find_smallest;
b2a0ac88 2710
7a8f58f3
VB
2711 goto do_steal;
2712 }
e0fff1bd 2713
7a8f58f3 2714 return false;
e0fff1bd 2715
7a8f58f3
VB
2716find_smallest:
2717 for (current_order = order; current_order < MAX_ORDER;
2718 current_order++) {
2719 area = &(zone->free_area[current_order]);
2720 fallback_mt = find_suitable_fallback(area, current_order,
2721 start_migratetype, false, &can_steal);
2722 if (fallback_mt != -1)
2723 break;
b2a0ac88
MG
2724 }
2725
7a8f58f3
VB
2726 /*
2727 * This should not happen - we already found a suitable fallback
2728 * when looking for the largest page.
2729 */
2730 VM_BUG_ON(current_order == MAX_ORDER);
2731
2732do_steal:
b03641af 2733 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2734
1c30844d
MG
2735 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2736 can_steal);
7a8f58f3
VB
2737
2738 trace_mm_page_alloc_extfrag(page, order, current_order,
2739 start_migratetype, fallback_mt);
2740
2741 return true;
2742
b2a0ac88
MG
2743}
2744
56fd56b8 2745/*
1da177e4
LT
2746 * Do the hard work of removing an element from the buddy allocator.
2747 * Call me with the zone->lock already held.
2748 */
85ccc8fa 2749static __always_inline struct page *
6bb15450
MG
2750__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2751 unsigned int alloc_flags)
1da177e4 2752{
1da177e4
LT
2753 struct page *page;
2754
16867664
RG
2755#ifdef CONFIG_CMA
2756 /*
2757 * Balance movable allocations between regular and CMA areas by
2758 * allocating from CMA when over half of the zone's free memory
2759 * is in the CMA area.
2760 */
2761 if (migratetype == MIGRATE_MOVABLE &&
2762 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2763 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2764 page = __rmqueue_cma_fallback(zone, order);
2765 if (page)
2766 return page;
2767 }
2768#endif
3bc48f96 2769retry:
56fd56b8 2770 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2771 if (unlikely(!page)) {
dc67647b
JK
2772 if (migratetype == MIGRATE_MOVABLE)
2773 page = __rmqueue_cma_fallback(zone, order);
2774
6bb15450
MG
2775 if (!page && __rmqueue_fallback(zone, order, migratetype,
2776 alloc_flags))
3bc48f96 2777 goto retry;
728ec980
MG
2778 }
2779
0d3d062a 2780 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2781 return page;
1da177e4
LT
2782}
2783
5f63b720 2784/*
1da177e4
LT
2785 * Obtain a specified number of elements from the buddy allocator, all under
2786 * a single hold of the lock, for efficiency. Add them to the supplied list.
2787 * Returns the number of new pages which were placed at *list.
2788 */
5f63b720 2789static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2790 unsigned long count, struct list_head *list,
6bb15450 2791 int migratetype, unsigned int alloc_flags)
1da177e4 2792{
a6de734b 2793 int i, alloced = 0;
5f63b720 2794
d34b0733 2795 spin_lock(&zone->lock);
1da177e4 2796 for (i = 0; i < count; ++i) {
6bb15450
MG
2797 struct page *page = __rmqueue(zone, order, migratetype,
2798 alloc_flags);
085cc7d5 2799 if (unlikely(page == NULL))
1da177e4 2800 break;
81eabcbe 2801
479f854a
MG
2802 if (unlikely(check_pcp_refill(page)))
2803 continue;
2804
81eabcbe 2805 /*
0fac3ba5
VB
2806 * Split buddy pages returned by expand() are received here in
2807 * physical page order. The page is added to the tail of
2808 * caller's list. From the callers perspective, the linked list
2809 * is ordered by page number under some conditions. This is
2810 * useful for IO devices that can forward direction from the
2811 * head, thus also in the physical page order. This is useful
2812 * for IO devices that can merge IO requests if the physical
2813 * pages are ordered properly.
81eabcbe 2814 */
0fac3ba5 2815 list_add_tail(&page->lru, list);
a6de734b 2816 alloced++;
bb14c2c7 2817 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2818 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2819 -(1 << order));
1da177e4 2820 }
a6de734b
MG
2821
2822 /*
2823 * i pages were removed from the buddy list even if some leak due
2824 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2825 * on i. Do not confuse with 'alloced' which is the number of
2826 * pages added to the pcp list.
2827 */
f2260e6b 2828 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2829 spin_unlock(&zone->lock);
a6de734b 2830 return alloced;
1da177e4
LT
2831}
2832
4ae7c039 2833#ifdef CONFIG_NUMA
8fce4d8e 2834/*
4037d452
CL
2835 * Called from the vmstat counter updater to drain pagesets of this
2836 * currently executing processor on remote nodes after they have
2837 * expired.
2838 *
879336c3
CL
2839 * Note that this function must be called with the thread pinned to
2840 * a single processor.
8fce4d8e 2841 */
4037d452 2842void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2843{
4ae7c039 2844 unsigned long flags;
7be12fc9 2845 int to_drain, batch;
4ae7c039 2846
4037d452 2847 local_irq_save(flags);
4db0c3c2 2848 batch = READ_ONCE(pcp->batch);
7be12fc9 2849 to_drain = min(pcp->count, batch);
77ba9062 2850 if (to_drain > 0)
2a13515c 2851 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2852 local_irq_restore(flags);
4ae7c039
CL
2853}
2854#endif
2855
9f8f2172 2856/*
93481ff0 2857 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2858 *
2859 * The processor must either be the current processor and the
2860 * thread pinned to the current processor or a processor that
2861 * is not online.
2862 */
93481ff0 2863static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2864{
c54ad30c 2865 unsigned long flags;
93481ff0
VB
2866 struct per_cpu_pageset *pset;
2867 struct per_cpu_pages *pcp;
1da177e4 2868
93481ff0
VB
2869 local_irq_save(flags);
2870 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2871
93481ff0 2872 pcp = &pset->pcp;
77ba9062 2873 if (pcp->count)
93481ff0 2874 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2875 local_irq_restore(flags);
2876}
3dfa5721 2877
93481ff0
VB
2878/*
2879 * Drain pcplists of all zones on the indicated processor.
2880 *
2881 * The processor must either be the current processor and the
2882 * thread pinned to the current processor or a processor that
2883 * is not online.
2884 */
2885static void drain_pages(unsigned int cpu)
2886{
2887 struct zone *zone;
2888
2889 for_each_populated_zone(zone) {
2890 drain_pages_zone(cpu, zone);
1da177e4
LT
2891 }
2892}
1da177e4 2893
9f8f2172
CL
2894/*
2895 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2896 *
2897 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2898 * the single zone's pages.
9f8f2172 2899 */
93481ff0 2900void drain_local_pages(struct zone *zone)
9f8f2172 2901{
93481ff0
VB
2902 int cpu = smp_processor_id();
2903
2904 if (zone)
2905 drain_pages_zone(cpu, zone);
2906 else
2907 drain_pages(cpu);
9f8f2172
CL
2908}
2909
0ccce3b9
MG
2910static void drain_local_pages_wq(struct work_struct *work)
2911{
d9367bd0
WY
2912 struct pcpu_drain *drain;
2913
2914 drain = container_of(work, struct pcpu_drain, work);
2915
a459eeb7
MH
2916 /*
2917 * drain_all_pages doesn't use proper cpu hotplug protection so
2918 * we can race with cpu offline when the WQ can move this from
2919 * a cpu pinned worker to an unbound one. We can operate on a different
2920 * cpu which is allright but we also have to make sure to not move to
2921 * a different one.
2922 */
2923 preempt_disable();
d9367bd0 2924 drain_local_pages(drain->zone);
a459eeb7 2925 preempt_enable();
0ccce3b9
MG
2926}
2927
9f8f2172 2928/*
74046494
GBY
2929 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2930 *
93481ff0
VB
2931 * When zone parameter is non-NULL, spill just the single zone's pages.
2932 *
0ccce3b9 2933 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2934 */
93481ff0 2935void drain_all_pages(struct zone *zone)
9f8f2172 2936{
74046494 2937 int cpu;
74046494
GBY
2938
2939 /*
2940 * Allocate in the BSS so we wont require allocation in
2941 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2942 */
2943 static cpumask_t cpus_with_pcps;
2944
ce612879
MH
2945 /*
2946 * Make sure nobody triggers this path before mm_percpu_wq is fully
2947 * initialized.
2948 */
2949 if (WARN_ON_ONCE(!mm_percpu_wq))
2950 return;
2951
bd233f53
MG
2952 /*
2953 * Do not drain if one is already in progress unless it's specific to
2954 * a zone. Such callers are primarily CMA and memory hotplug and need
2955 * the drain to be complete when the call returns.
2956 */
2957 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2958 if (!zone)
2959 return;
2960 mutex_lock(&pcpu_drain_mutex);
2961 }
0ccce3b9 2962
74046494
GBY
2963 /*
2964 * We don't care about racing with CPU hotplug event
2965 * as offline notification will cause the notified
2966 * cpu to drain that CPU pcps and on_each_cpu_mask
2967 * disables preemption as part of its processing
2968 */
2969 for_each_online_cpu(cpu) {
93481ff0
VB
2970 struct per_cpu_pageset *pcp;
2971 struct zone *z;
74046494 2972 bool has_pcps = false;
93481ff0
VB
2973
2974 if (zone) {
74046494 2975 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2976 if (pcp->pcp.count)
74046494 2977 has_pcps = true;
93481ff0
VB
2978 } else {
2979 for_each_populated_zone(z) {
2980 pcp = per_cpu_ptr(z->pageset, cpu);
2981 if (pcp->pcp.count) {
2982 has_pcps = true;
2983 break;
2984 }
74046494
GBY
2985 }
2986 }
93481ff0 2987
74046494
GBY
2988 if (has_pcps)
2989 cpumask_set_cpu(cpu, &cpus_with_pcps);
2990 else
2991 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2992 }
0ccce3b9 2993
bd233f53 2994 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2995 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2996
2997 drain->zone = zone;
2998 INIT_WORK(&drain->work, drain_local_pages_wq);
2999 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3000 }
bd233f53 3001 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3002 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3003
3004 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3005}
3006
296699de 3007#ifdef CONFIG_HIBERNATION
1da177e4 3008
556b969a
CY
3009/*
3010 * Touch the watchdog for every WD_PAGE_COUNT pages.
3011 */
3012#define WD_PAGE_COUNT (128*1024)
3013
1da177e4
LT
3014void mark_free_pages(struct zone *zone)
3015{
556b969a 3016 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3017 unsigned long flags;
7aeb09f9 3018 unsigned int order, t;
86760a2c 3019 struct page *page;
1da177e4 3020
8080fc03 3021 if (zone_is_empty(zone))
1da177e4
LT
3022 return;
3023
3024 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3025
108bcc96 3026 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3027 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3028 if (pfn_valid(pfn)) {
86760a2c 3029 page = pfn_to_page(pfn);
ba6b0979 3030
556b969a
CY
3031 if (!--page_count) {
3032 touch_nmi_watchdog();
3033 page_count = WD_PAGE_COUNT;
3034 }
3035
ba6b0979
JK
3036 if (page_zone(page) != zone)
3037 continue;
3038
7be98234
RW
3039 if (!swsusp_page_is_forbidden(page))
3040 swsusp_unset_page_free(page);
f623f0db 3041 }
1da177e4 3042
b2a0ac88 3043 for_each_migratetype_order(order, t) {
86760a2c
GT
3044 list_for_each_entry(page,
3045 &zone->free_area[order].free_list[t], lru) {
f623f0db 3046 unsigned long i;
1da177e4 3047
86760a2c 3048 pfn = page_to_pfn(page);
556b969a
CY
3049 for (i = 0; i < (1UL << order); i++) {
3050 if (!--page_count) {
3051 touch_nmi_watchdog();
3052 page_count = WD_PAGE_COUNT;
3053 }
7be98234 3054 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3055 }
f623f0db 3056 }
b2a0ac88 3057 }
1da177e4
LT
3058 spin_unlock_irqrestore(&zone->lock, flags);
3059}
e2c55dc8 3060#endif /* CONFIG_PM */
1da177e4 3061
2d4894b5 3062static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3063{
5f8dcc21 3064 int migratetype;
1da177e4 3065
4db7548c 3066 if (!free_pcp_prepare(page))
9cca35d4 3067 return false;
689bcebf 3068
dc4b0caf 3069 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3070 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3071 return true;
3072}
3073
2d4894b5 3074static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3075{
3076 struct zone *zone = page_zone(page);
3077 struct per_cpu_pages *pcp;
3078 int migratetype;
3079
3080 migratetype = get_pcppage_migratetype(page);
d34b0733 3081 __count_vm_event(PGFREE);
da456f14 3082
5f8dcc21
MG
3083 /*
3084 * We only track unmovable, reclaimable and movable on pcp lists.
3085 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3086 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3087 * areas back if necessary. Otherwise, we may have to free
3088 * excessively into the page allocator
3089 */
3090 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3091 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3092 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3093 return;
5f8dcc21
MG
3094 }
3095 migratetype = MIGRATE_MOVABLE;
3096 }
3097
99dcc3e5 3098 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3099 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3100 pcp->count++;
48db57f8 3101 if (pcp->count >= pcp->high) {
4db0c3c2 3102 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3103 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3104 }
9cca35d4 3105}
5f8dcc21 3106
9cca35d4
MG
3107/*
3108 * Free a 0-order page
9cca35d4 3109 */
2d4894b5 3110void free_unref_page(struct page *page)
9cca35d4
MG
3111{
3112 unsigned long flags;
3113 unsigned long pfn = page_to_pfn(page);
3114
2d4894b5 3115 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3116 return;
3117
3118 local_irq_save(flags);
2d4894b5 3119 free_unref_page_commit(page, pfn);
d34b0733 3120 local_irq_restore(flags);
1da177e4
LT
3121}
3122
cc59850e
KK
3123/*
3124 * Free a list of 0-order pages
3125 */
2d4894b5 3126void free_unref_page_list(struct list_head *list)
cc59850e
KK
3127{
3128 struct page *page, *next;
9cca35d4 3129 unsigned long flags, pfn;
c24ad77d 3130 int batch_count = 0;
9cca35d4
MG
3131
3132 /* Prepare pages for freeing */
3133 list_for_each_entry_safe(page, next, list, lru) {
3134 pfn = page_to_pfn(page);
2d4894b5 3135 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3136 list_del(&page->lru);
3137 set_page_private(page, pfn);
3138 }
cc59850e 3139
9cca35d4 3140 local_irq_save(flags);
cc59850e 3141 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3142 unsigned long pfn = page_private(page);
3143
3144 set_page_private(page, 0);
2d4894b5
MG
3145 trace_mm_page_free_batched(page);
3146 free_unref_page_commit(page, pfn);
c24ad77d
LS
3147
3148 /*
3149 * Guard against excessive IRQ disabled times when we get
3150 * a large list of pages to free.
3151 */
3152 if (++batch_count == SWAP_CLUSTER_MAX) {
3153 local_irq_restore(flags);
3154 batch_count = 0;
3155 local_irq_save(flags);
3156 }
cc59850e 3157 }
9cca35d4 3158 local_irq_restore(flags);
cc59850e
KK
3159}
3160
8dfcc9ba
NP
3161/*
3162 * split_page takes a non-compound higher-order page, and splits it into
3163 * n (1<<order) sub-pages: page[0..n]
3164 * Each sub-page must be freed individually.
3165 *
3166 * Note: this is probably too low level an operation for use in drivers.
3167 * Please consult with lkml before using this in your driver.
3168 */
3169void split_page(struct page *page, unsigned int order)
3170{
3171 int i;
3172
309381fe
SL
3173 VM_BUG_ON_PAGE(PageCompound(page), page);
3174 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3175
a9627bc5 3176 for (i = 1; i < (1 << order); i++)
7835e98b 3177 set_page_refcounted(page + i);
a9627bc5 3178 split_page_owner(page, order);
8dfcc9ba 3179}
5853ff23 3180EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3181
3c605096 3182int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3183{
748446bb
MG
3184 unsigned long watermark;
3185 struct zone *zone;
2139cbe6 3186 int mt;
748446bb
MG
3187
3188 BUG_ON(!PageBuddy(page));
3189
3190 zone = page_zone(page);
2e30abd1 3191 mt = get_pageblock_migratetype(page);
748446bb 3192
194159fb 3193 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3194 /*
3195 * Obey watermarks as if the page was being allocated. We can
3196 * emulate a high-order watermark check with a raised order-0
3197 * watermark, because we already know our high-order page
3198 * exists.
3199 */
fd1444b2 3200 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3201 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3202 return 0;
3203
8fb74b9f 3204 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3205 }
748446bb
MG
3206
3207 /* Remove page from free list */
b03641af 3208
6ab01363 3209 del_page_from_free_list(page, zone, order);
2139cbe6 3210
400bc7fd 3211 /*
3212 * Set the pageblock if the isolated page is at least half of a
3213 * pageblock
3214 */
748446bb
MG
3215 if (order >= pageblock_order - 1) {
3216 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3217 for (; page < endpage; page += pageblock_nr_pages) {
3218 int mt = get_pageblock_migratetype(page);
88ed365e 3219 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3220 && !is_migrate_highatomic(mt))
47118af0
MN
3221 set_pageblock_migratetype(page,
3222 MIGRATE_MOVABLE);
3223 }
748446bb
MG
3224 }
3225
f3a14ced 3226
8fb74b9f 3227 return 1UL << order;
1fb3f8ca
MG
3228}
3229
624f58d8
AD
3230/**
3231 * __putback_isolated_page - Return a now-isolated page back where we got it
3232 * @page: Page that was isolated
3233 * @order: Order of the isolated page
e6a0a7ad 3234 * @mt: The page's pageblock's migratetype
624f58d8
AD
3235 *
3236 * This function is meant to return a page pulled from the free lists via
3237 * __isolate_free_page back to the free lists they were pulled from.
3238 */
3239void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3240{
3241 struct zone *zone = page_zone(page);
3242
3243 /* zone lock should be held when this function is called */
3244 lockdep_assert_held(&zone->lock);
3245
3246 /* Return isolated page to tail of freelist. */
36e66c55 3247 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3248}
3249
060e7417
MG
3250/*
3251 * Update NUMA hit/miss statistics
3252 *
3253 * Must be called with interrupts disabled.
060e7417 3254 */
41b6167e 3255static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3256{
3257#ifdef CONFIG_NUMA
3a321d2a 3258 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3259
4518085e
KW
3260 /* skip numa counters update if numa stats is disabled */
3261 if (!static_branch_likely(&vm_numa_stat_key))
3262 return;
3263
c1093b74 3264 if (zone_to_nid(z) != numa_node_id())
060e7417 3265 local_stat = NUMA_OTHER;
060e7417 3266
c1093b74 3267 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3268 __inc_numa_state(z, NUMA_HIT);
2df26639 3269 else {
3a321d2a
KW
3270 __inc_numa_state(z, NUMA_MISS);
3271 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3272 }
3a321d2a 3273 __inc_numa_state(z, local_stat);
060e7417
MG
3274#endif
3275}
3276
066b2393
MG
3277/* Remove page from the per-cpu list, caller must protect the list */
3278static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3279 unsigned int alloc_flags,
453f85d4 3280 struct per_cpu_pages *pcp,
066b2393
MG
3281 struct list_head *list)
3282{
3283 struct page *page;
3284
3285 do {
3286 if (list_empty(list)) {
3287 pcp->count += rmqueue_bulk(zone, 0,
3288 pcp->batch, list,
6bb15450 3289 migratetype, alloc_flags);
066b2393
MG
3290 if (unlikely(list_empty(list)))
3291 return NULL;
3292 }
3293
453f85d4 3294 page = list_first_entry(list, struct page, lru);
066b2393
MG
3295 list_del(&page->lru);
3296 pcp->count--;
3297 } while (check_new_pcp(page));
3298
3299 return page;
3300}
3301
3302/* Lock and remove page from the per-cpu list */
3303static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3304 struct zone *zone, gfp_t gfp_flags,
3305 int migratetype, unsigned int alloc_flags)
066b2393
MG
3306{
3307 struct per_cpu_pages *pcp;
3308 struct list_head *list;
066b2393 3309 struct page *page;
d34b0733 3310 unsigned long flags;
066b2393 3311
d34b0733 3312 local_irq_save(flags);
066b2393
MG
3313 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3314 list = &pcp->lists[migratetype];
6bb15450 3315 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3316 if (page) {
1c52e6d0 3317 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3318 zone_statistics(preferred_zone, zone);
3319 }
d34b0733 3320 local_irq_restore(flags);
066b2393
MG
3321 return page;
3322}
3323
1da177e4 3324/*
75379191 3325 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3326 */
0a15c3e9 3327static inline
066b2393 3328struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3329 struct zone *zone, unsigned int order,
c603844b
MG
3330 gfp_t gfp_flags, unsigned int alloc_flags,
3331 int migratetype)
1da177e4
LT
3332{
3333 unsigned long flags;
689bcebf 3334 struct page *page;
1da177e4 3335
d34b0733 3336 if (likely(order == 0)) {
1c52e6d0
YS
3337 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3338 migratetype, alloc_flags);
066b2393
MG
3339 goto out;
3340 }
83b9355b 3341
066b2393
MG
3342 /*
3343 * We most definitely don't want callers attempting to
3344 * allocate greater than order-1 page units with __GFP_NOFAIL.
3345 */
3346 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3347 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3348
066b2393
MG
3349 do {
3350 page = NULL;
3351 if (alloc_flags & ALLOC_HARDER) {
3352 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3353 if (page)
3354 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3355 }
a74609fa 3356 if (!page)
6bb15450 3357 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3358 } while (page && check_new_pages(page, order));
3359 spin_unlock(&zone->lock);
3360 if (!page)
3361 goto failed;
3362 __mod_zone_freepage_state(zone, -(1 << order),
3363 get_pcppage_migratetype(page));
1da177e4 3364
16709d1d 3365 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3366 zone_statistics(preferred_zone, zone);
a74609fa 3367 local_irq_restore(flags);
1da177e4 3368
066b2393 3369out:
73444bc4
MG
3370 /* Separate test+clear to avoid unnecessary atomics */
3371 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3372 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3373 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3374 }
3375
066b2393 3376 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3377 return page;
a74609fa
NP
3378
3379failed:
3380 local_irq_restore(flags);
a74609fa 3381 return NULL;
1da177e4
LT
3382}
3383
933e312e
AM
3384#ifdef CONFIG_FAIL_PAGE_ALLOC
3385
b2588c4b 3386static struct {
933e312e
AM
3387 struct fault_attr attr;
3388
621a5f7a 3389 bool ignore_gfp_highmem;
71baba4b 3390 bool ignore_gfp_reclaim;
54114994 3391 u32 min_order;
933e312e
AM
3392} fail_page_alloc = {
3393 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3394 .ignore_gfp_reclaim = true,
621a5f7a 3395 .ignore_gfp_highmem = true,
54114994 3396 .min_order = 1,
933e312e
AM
3397};
3398
3399static int __init setup_fail_page_alloc(char *str)
3400{
3401 return setup_fault_attr(&fail_page_alloc.attr, str);
3402}
3403__setup("fail_page_alloc=", setup_fail_page_alloc);
3404
af3b8544 3405static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3406{
54114994 3407 if (order < fail_page_alloc.min_order)
deaf386e 3408 return false;
933e312e 3409 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3410 return false;
933e312e 3411 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3412 return false;
71baba4b
MG
3413 if (fail_page_alloc.ignore_gfp_reclaim &&
3414 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3415 return false;
933e312e
AM
3416
3417 return should_fail(&fail_page_alloc.attr, 1 << order);
3418}
3419
3420#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3421
3422static int __init fail_page_alloc_debugfs(void)
3423{
0825a6f9 3424 umode_t mode = S_IFREG | 0600;
933e312e 3425 struct dentry *dir;
933e312e 3426
dd48c085
AM
3427 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3428 &fail_page_alloc.attr);
b2588c4b 3429
d9f7979c
GKH
3430 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3431 &fail_page_alloc.ignore_gfp_reclaim);
3432 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3433 &fail_page_alloc.ignore_gfp_highmem);
3434 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3435
d9f7979c 3436 return 0;
933e312e
AM
3437}
3438
3439late_initcall(fail_page_alloc_debugfs);
3440
3441#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3442
3443#else /* CONFIG_FAIL_PAGE_ALLOC */
3444
af3b8544 3445static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3446{
deaf386e 3447 return false;
933e312e
AM
3448}
3449
3450#endif /* CONFIG_FAIL_PAGE_ALLOC */
3451
af3b8544
BP
3452static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3453{
3454 return __should_fail_alloc_page(gfp_mask, order);
3455}
3456ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3457
1da177e4 3458/*
97a16fc8
MG
3459 * Return true if free base pages are above 'mark'. For high-order checks it
3460 * will return true of the order-0 watermark is reached and there is at least
3461 * one free page of a suitable size. Checking now avoids taking the zone lock
3462 * to check in the allocation paths if no pages are free.
1da177e4 3463 */
86a294a8
MH
3464bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3465 int classzone_idx, unsigned int alloc_flags,
3466 long free_pages)
1da177e4 3467{
d23ad423 3468 long min = mark;
1da177e4 3469 int o;
cd04ae1e 3470 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3471
0aaa29a5 3472 /* free_pages may go negative - that's OK */
df0a6daa 3473 free_pages -= (1 << order) - 1;
0aaa29a5 3474
7fb1d9fc 3475 if (alloc_flags & ALLOC_HIGH)
1da177e4 3476 min -= min / 2;
0aaa29a5
MG
3477
3478 /*
3479 * If the caller does not have rights to ALLOC_HARDER then subtract
3480 * the high-atomic reserves. This will over-estimate the size of the
3481 * atomic reserve but it avoids a search.
3482 */
cd04ae1e 3483 if (likely(!alloc_harder)) {
0aaa29a5 3484 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3485 } else {
3486 /*
3487 * OOM victims can try even harder than normal ALLOC_HARDER
3488 * users on the grounds that it's definitely going to be in
3489 * the exit path shortly and free memory. Any allocation it
3490 * makes during the free path will be small and short-lived.
3491 */
3492 if (alloc_flags & ALLOC_OOM)
3493 min -= min / 2;
3494 else
3495 min -= min / 4;
3496 }
3497
e2b19197 3498
d883c6cf
JK
3499#ifdef CONFIG_CMA
3500 /* If allocation can't use CMA areas don't use free CMA pages */
3501 if (!(alloc_flags & ALLOC_CMA))
3502 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3503#endif
3504
97a16fc8
MG
3505 /*
3506 * Check watermarks for an order-0 allocation request. If these
3507 * are not met, then a high-order request also cannot go ahead
3508 * even if a suitable page happened to be free.
3509 */
3510 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3511 return false;
1da177e4 3512
97a16fc8
MG
3513 /* If this is an order-0 request then the watermark is fine */
3514 if (!order)
3515 return true;
3516
3517 /* For a high-order request, check at least one suitable page is free */
3518 for (o = order; o < MAX_ORDER; o++) {
3519 struct free_area *area = &z->free_area[o];
3520 int mt;
3521
3522 if (!area->nr_free)
3523 continue;
3524
97a16fc8 3525 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3526 if (!free_area_empty(area, mt))
97a16fc8
MG
3527 return true;
3528 }
3529
3530#ifdef CONFIG_CMA
d883c6cf 3531 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3532 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3533 return true;
d883c6cf 3534 }
97a16fc8 3535#endif
76089d00 3536 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3537 return true;
1da177e4 3538 }
97a16fc8 3539 return false;
88f5acf8
MG
3540}
3541
7aeb09f9 3542bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3543 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3544{
3545 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3546 zone_page_state(z, NR_FREE_PAGES));
3547}
3548
48ee5f36
MG
3549static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3550 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3551{
3552 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3553 long cma_pages = 0;
3554
3555#ifdef CONFIG_CMA
3556 /* If allocation can't use CMA areas don't use free CMA pages */
3557 if (!(alloc_flags & ALLOC_CMA))
3558 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3559#endif
48ee5f36
MG
3560
3561 /*
3562 * Fast check for order-0 only. If this fails then the reserves
3563 * need to be calculated. There is a corner case where the check
3564 * passes but only the high-order atomic reserve are free. If
3565 * the caller is !atomic then it'll uselessly search the free
3566 * list. That corner case is then slower but it is harmless.
3567 */
d883c6cf 3568 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3569 return true;
3570
3571 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3572 free_pages);
3573}
3574
7aeb09f9 3575bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3576 unsigned long mark, int classzone_idx)
88f5acf8
MG
3577{
3578 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3579
3580 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3581 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3582
e2b19197 3583 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3584 free_pages);
1da177e4
LT
3585}
3586
9276b1bc 3587#ifdef CONFIG_NUMA
957f822a
DR
3588static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3589{
e02dc017 3590 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3591 node_reclaim_distance;
957f822a 3592}
9276b1bc 3593#else /* CONFIG_NUMA */
957f822a
DR
3594static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3595{
3596 return true;
3597}
9276b1bc
PJ
3598#endif /* CONFIG_NUMA */
3599
6bb15450
MG
3600/*
3601 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3602 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3603 * premature use of a lower zone may cause lowmem pressure problems that
3604 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3605 * probably too small. It only makes sense to spread allocations to avoid
3606 * fragmentation between the Normal and DMA32 zones.
3607 */
3608static inline unsigned int
0a79cdad 3609alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3610{
736838e9 3611 unsigned int alloc_flags;
0a79cdad 3612
736838e9
MN
3613 /*
3614 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3615 * to save a branch.
3616 */
3617 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3618
3619#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3620 if (!zone)
3621 return alloc_flags;
3622
6bb15450 3623 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3624 return alloc_flags;
6bb15450
MG
3625
3626 /*
3627 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3628 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3629 * on UMA that if Normal is populated then so is DMA32.
3630 */
3631 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3632 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3633 return alloc_flags;
6bb15450 3634
8118b82e 3635 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3636#endif /* CONFIG_ZONE_DMA32 */
3637 return alloc_flags;
6bb15450 3638}
6bb15450 3639
7fb1d9fc 3640/*
0798e519 3641 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3642 * a page.
3643 */
3644static struct page *
a9263751
VB
3645get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3646 const struct alloc_context *ac)
753ee728 3647{
6bb15450 3648 struct zoneref *z;
5117f45d 3649 struct zone *zone;
3b8c0be4 3650 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3651 bool no_fallback;
3b8c0be4 3652
6bb15450 3653retry:
7fb1d9fc 3654 /*
9276b1bc 3655 * Scan zonelist, looking for a zone with enough free.
344736f2 3656 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3657 */
6bb15450
MG
3658 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3659 z = ac->preferred_zoneref;
c33d6c06 3660 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3661 ac->nodemask) {
be06af00 3662 struct page *page;
e085dbc5
JW
3663 unsigned long mark;
3664
664eedde
MG
3665 if (cpusets_enabled() &&
3666 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3667 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3668 continue;
a756cf59
JW
3669 /*
3670 * When allocating a page cache page for writing, we
281e3726
MG
3671 * want to get it from a node that is within its dirty
3672 * limit, such that no single node holds more than its
a756cf59 3673 * proportional share of globally allowed dirty pages.
281e3726 3674 * The dirty limits take into account the node's
a756cf59
JW
3675 * lowmem reserves and high watermark so that kswapd
3676 * should be able to balance it without having to
3677 * write pages from its LRU list.
3678 *
a756cf59 3679 * XXX: For now, allow allocations to potentially
281e3726 3680 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3681 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3682 * which is important when on a NUMA setup the allowed
281e3726 3683 * nodes are together not big enough to reach the
a756cf59 3684 * global limit. The proper fix for these situations
281e3726 3685 * will require awareness of nodes in the
a756cf59
JW
3686 * dirty-throttling and the flusher threads.
3687 */
3b8c0be4
MG
3688 if (ac->spread_dirty_pages) {
3689 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3690 continue;
3691
3692 if (!node_dirty_ok(zone->zone_pgdat)) {
3693 last_pgdat_dirty_limit = zone->zone_pgdat;
3694 continue;
3695 }
3696 }
7fb1d9fc 3697
6bb15450
MG
3698 if (no_fallback && nr_online_nodes > 1 &&
3699 zone != ac->preferred_zoneref->zone) {
3700 int local_nid;
3701
3702 /*
3703 * If moving to a remote node, retry but allow
3704 * fragmenting fallbacks. Locality is more important
3705 * than fragmentation avoidance.
3706 */
3707 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3708 if (zone_to_nid(zone) != local_nid) {
3709 alloc_flags &= ~ALLOC_NOFRAGMENT;
3710 goto retry;
3711 }
3712 }
3713
a9214443 3714 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3715 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3716 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3717 int ret;
3718
c9e97a19
PT
3719#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3720 /*
3721 * Watermark failed for this zone, but see if we can
3722 * grow this zone if it contains deferred pages.
3723 */
3724 if (static_branch_unlikely(&deferred_pages)) {
3725 if (_deferred_grow_zone(zone, order))
3726 goto try_this_zone;
3727 }
3728#endif
5dab2911
MG
3729 /* Checked here to keep the fast path fast */
3730 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3731 if (alloc_flags & ALLOC_NO_WATERMARKS)
3732 goto try_this_zone;
3733
a5f5f91d 3734 if (node_reclaim_mode == 0 ||
c33d6c06 3735 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3736 continue;
3737
a5f5f91d 3738 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3739 switch (ret) {
a5f5f91d 3740 case NODE_RECLAIM_NOSCAN:
fa5e084e 3741 /* did not scan */
cd38b115 3742 continue;
a5f5f91d 3743 case NODE_RECLAIM_FULL:
fa5e084e 3744 /* scanned but unreclaimable */
cd38b115 3745 continue;
fa5e084e
MG
3746 default:
3747 /* did we reclaim enough */
fed2719e 3748 if (zone_watermark_ok(zone, order, mark,
93ea9964 3749 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3750 goto try_this_zone;
3751
fed2719e 3752 continue;
0798e519 3753 }
7fb1d9fc
RS
3754 }
3755
fa5e084e 3756try_this_zone:
066b2393 3757 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3758 gfp_mask, alloc_flags, ac->migratetype);
75379191 3759 if (page) {
479f854a 3760 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3761
3762 /*
3763 * If this is a high-order atomic allocation then check
3764 * if the pageblock should be reserved for the future
3765 */
3766 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3767 reserve_highatomic_pageblock(page, zone, order);
3768
75379191 3769 return page;
c9e97a19
PT
3770 } else {
3771#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3772 /* Try again if zone has deferred pages */
3773 if (static_branch_unlikely(&deferred_pages)) {
3774 if (_deferred_grow_zone(zone, order))
3775 goto try_this_zone;
3776 }
3777#endif
75379191 3778 }
54a6eb5c 3779 }
9276b1bc 3780
6bb15450
MG
3781 /*
3782 * It's possible on a UMA machine to get through all zones that are
3783 * fragmented. If avoiding fragmentation, reset and try again.
3784 */
3785 if (no_fallback) {
3786 alloc_flags &= ~ALLOC_NOFRAGMENT;
3787 goto retry;
3788 }
3789
4ffeaf35 3790 return NULL;
753ee728
MH
3791}
3792
9af744d7 3793static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3794{
a238ab5b 3795 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3796
3797 /*
3798 * This documents exceptions given to allocations in certain
3799 * contexts that are allowed to allocate outside current's set
3800 * of allowed nodes.
3801 */
3802 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3803 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3804 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3805 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3806 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3807 filter &= ~SHOW_MEM_FILTER_NODES;
3808
9af744d7 3809 show_mem(filter, nodemask);
aa187507
MH
3810}
3811
a8e99259 3812void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3813{
3814 struct va_format vaf;
3815 va_list args;
1be334e5 3816 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3817
0f7896f1 3818 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3819 return;
3820
7877cdcc
MH
3821 va_start(args, fmt);
3822 vaf.fmt = fmt;
3823 vaf.va = &args;
ef8444ea 3824 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3825 current->comm, &vaf, gfp_mask, &gfp_mask,
3826 nodemask_pr_args(nodemask));
7877cdcc 3827 va_end(args);
3ee9a4f0 3828
a8e99259 3829 cpuset_print_current_mems_allowed();
ef8444ea 3830 pr_cont("\n");
a238ab5b 3831 dump_stack();
685dbf6f 3832 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3833}
3834
6c18ba7a
MH
3835static inline struct page *
3836__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3837 unsigned int alloc_flags,
3838 const struct alloc_context *ac)
3839{
3840 struct page *page;
3841
3842 page = get_page_from_freelist(gfp_mask, order,
3843 alloc_flags|ALLOC_CPUSET, ac);
3844 /*
3845 * fallback to ignore cpuset restriction if our nodes
3846 * are depleted
3847 */
3848 if (!page)
3849 page = get_page_from_freelist(gfp_mask, order,
3850 alloc_flags, ac);
3851
3852 return page;
3853}
3854
11e33f6a
MG
3855static inline struct page *
3856__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3857 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3858{
6e0fc46d
DR
3859 struct oom_control oc = {
3860 .zonelist = ac->zonelist,
3861 .nodemask = ac->nodemask,
2a966b77 3862 .memcg = NULL,
6e0fc46d
DR
3863 .gfp_mask = gfp_mask,
3864 .order = order,
6e0fc46d 3865 };
11e33f6a
MG
3866 struct page *page;
3867
9879de73
JW
3868 *did_some_progress = 0;
3869
9879de73 3870 /*
dc56401f
JW
3871 * Acquire the oom lock. If that fails, somebody else is
3872 * making progress for us.
9879de73 3873 */
dc56401f 3874 if (!mutex_trylock(&oom_lock)) {
9879de73 3875 *did_some_progress = 1;
11e33f6a 3876 schedule_timeout_uninterruptible(1);
1da177e4
LT
3877 return NULL;
3878 }
6b1de916 3879
11e33f6a
MG
3880 /*
3881 * Go through the zonelist yet one more time, keep very high watermark
3882 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3883 * we're still under heavy pressure. But make sure that this reclaim
3884 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3885 * allocation which will never fail due to oom_lock already held.
11e33f6a 3886 */
e746bf73
TH
3887 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3888 ~__GFP_DIRECT_RECLAIM, order,
3889 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3890 if (page)
11e33f6a
MG
3891 goto out;
3892
06ad276a
MH
3893 /* Coredumps can quickly deplete all memory reserves */
3894 if (current->flags & PF_DUMPCORE)
3895 goto out;
3896 /* The OOM killer will not help higher order allocs */
3897 if (order > PAGE_ALLOC_COSTLY_ORDER)
3898 goto out;
dcda9b04
MH
3899 /*
3900 * We have already exhausted all our reclaim opportunities without any
3901 * success so it is time to admit defeat. We will skip the OOM killer
3902 * because it is very likely that the caller has a more reasonable
3903 * fallback than shooting a random task.
3904 */
3905 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3906 goto out;
06ad276a
MH
3907 /* The OOM killer does not needlessly kill tasks for lowmem */
3908 if (ac->high_zoneidx < ZONE_NORMAL)
3909 goto out;
3910 if (pm_suspended_storage())
3911 goto out;
3912 /*
3913 * XXX: GFP_NOFS allocations should rather fail than rely on
3914 * other request to make a forward progress.
3915 * We are in an unfortunate situation where out_of_memory cannot
3916 * do much for this context but let's try it to at least get
3917 * access to memory reserved if the current task is killed (see
3918 * out_of_memory). Once filesystems are ready to handle allocation
3919 * failures more gracefully we should just bail out here.
3920 */
3921
3922 /* The OOM killer may not free memory on a specific node */
3923 if (gfp_mask & __GFP_THISNODE)
3924 goto out;
3da88fb3 3925
3c2c6488 3926 /* Exhausted what can be done so it's blame time */
5020e285 3927 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3928 *did_some_progress = 1;
5020e285 3929
6c18ba7a
MH
3930 /*
3931 * Help non-failing allocations by giving them access to memory
3932 * reserves
3933 */
3934 if (gfp_mask & __GFP_NOFAIL)
3935 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3936 ALLOC_NO_WATERMARKS, ac);
5020e285 3937 }
11e33f6a 3938out:
dc56401f 3939 mutex_unlock(&oom_lock);
11e33f6a
MG
3940 return page;
3941}
3942
33c2d214
MH
3943/*
3944 * Maximum number of compaction retries wit a progress before OOM
3945 * killer is consider as the only way to move forward.
3946 */
3947#define MAX_COMPACT_RETRIES 16
3948
56de7263
MG
3949#ifdef CONFIG_COMPACTION
3950/* Try memory compaction for high-order allocations before reclaim */
3951static struct page *
3952__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3953 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3954 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3955{
5e1f0f09 3956 struct page *page = NULL;
eb414681 3957 unsigned long pflags;
499118e9 3958 unsigned int noreclaim_flag;
53853e2d
VB
3959
3960 if (!order)
66199712 3961 return NULL;
66199712 3962
eb414681 3963 psi_memstall_enter(&pflags);
499118e9 3964 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3965
c5d01d0d 3966 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3967 prio, &page);
eb414681 3968
499118e9 3969 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3970 psi_memstall_leave(&pflags);
56de7263 3971
98dd3b48
VB
3972 /*
3973 * At least in one zone compaction wasn't deferred or skipped, so let's
3974 * count a compaction stall
3975 */
3976 count_vm_event(COMPACTSTALL);
8fb74b9f 3977
5e1f0f09
MG
3978 /* Prep a captured page if available */
3979 if (page)
3980 prep_new_page(page, order, gfp_mask, alloc_flags);
3981
3982 /* Try get a page from the freelist if available */
3983 if (!page)
3984 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3985
98dd3b48
VB
3986 if (page) {
3987 struct zone *zone = page_zone(page);
53853e2d 3988
98dd3b48
VB
3989 zone->compact_blockskip_flush = false;
3990 compaction_defer_reset(zone, order, true);
3991 count_vm_event(COMPACTSUCCESS);
3992 return page;
3993 }
56de7263 3994
98dd3b48
VB
3995 /*
3996 * It's bad if compaction run occurs and fails. The most likely reason
3997 * is that pages exist, but not enough to satisfy watermarks.
3998 */
3999 count_vm_event(COMPACTFAIL);
66199712 4000
98dd3b48 4001 cond_resched();
56de7263
MG
4002
4003 return NULL;
4004}
33c2d214 4005
3250845d
VB
4006static inline bool
4007should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4008 enum compact_result compact_result,
4009 enum compact_priority *compact_priority,
d9436498 4010 int *compaction_retries)
3250845d
VB
4011{
4012 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4013 int min_priority;
65190cff
MH
4014 bool ret = false;
4015 int retries = *compaction_retries;
4016 enum compact_priority priority = *compact_priority;
3250845d
VB
4017
4018 if (!order)
4019 return false;
4020
d9436498
VB
4021 if (compaction_made_progress(compact_result))
4022 (*compaction_retries)++;
4023
3250845d
VB
4024 /*
4025 * compaction considers all the zone as desperately out of memory
4026 * so it doesn't really make much sense to retry except when the
4027 * failure could be caused by insufficient priority
4028 */
d9436498
VB
4029 if (compaction_failed(compact_result))
4030 goto check_priority;
3250845d 4031
49433085
VB
4032 /*
4033 * compaction was skipped because there are not enough order-0 pages
4034 * to work with, so we retry only if it looks like reclaim can help.
4035 */
4036 if (compaction_needs_reclaim(compact_result)) {
4037 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4038 goto out;
4039 }
4040
3250845d
VB
4041 /*
4042 * make sure the compaction wasn't deferred or didn't bail out early
4043 * due to locks contention before we declare that we should give up.
49433085
VB
4044 * But the next retry should use a higher priority if allowed, so
4045 * we don't just keep bailing out endlessly.
3250845d 4046 */
65190cff 4047 if (compaction_withdrawn(compact_result)) {
49433085 4048 goto check_priority;
65190cff 4049 }
3250845d
VB
4050
4051 /*
dcda9b04 4052 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4053 * costly ones because they are de facto nofail and invoke OOM
4054 * killer to move on while costly can fail and users are ready
4055 * to cope with that. 1/4 retries is rather arbitrary but we
4056 * would need much more detailed feedback from compaction to
4057 * make a better decision.
4058 */
4059 if (order > PAGE_ALLOC_COSTLY_ORDER)
4060 max_retries /= 4;
65190cff
MH
4061 if (*compaction_retries <= max_retries) {
4062 ret = true;
4063 goto out;
4064 }
3250845d 4065
d9436498
VB
4066 /*
4067 * Make sure there are attempts at the highest priority if we exhausted
4068 * all retries or failed at the lower priorities.
4069 */
4070check_priority:
c2033b00
VB
4071 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4072 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4073
c2033b00 4074 if (*compact_priority > min_priority) {
d9436498
VB
4075 (*compact_priority)--;
4076 *compaction_retries = 0;
65190cff 4077 ret = true;
d9436498 4078 }
65190cff
MH
4079out:
4080 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4081 return ret;
3250845d 4082}
56de7263
MG
4083#else
4084static inline struct page *
4085__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4086 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4087 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4088{
33c2d214 4089 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4090 return NULL;
4091}
33c2d214
MH
4092
4093static inline bool
86a294a8
MH
4094should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4095 enum compact_result compact_result,
a5508cd8 4096 enum compact_priority *compact_priority,
d9436498 4097 int *compaction_retries)
33c2d214 4098{
31e49bfd
MH
4099 struct zone *zone;
4100 struct zoneref *z;
4101
4102 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4103 return false;
4104
4105 /*
4106 * There are setups with compaction disabled which would prefer to loop
4107 * inside the allocator rather than hit the oom killer prematurely.
4108 * Let's give them a good hope and keep retrying while the order-0
4109 * watermarks are OK.
4110 */
4111 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4112 ac->nodemask) {
4113 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4114 ac_classzone_idx(ac), alloc_flags))
4115 return true;
4116 }
33c2d214
MH
4117 return false;
4118}
3250845d 4119#endif /* CONFIG_COMPACTION */
56de7263 4120
d92a8cfc 4121#ifdef CONFIG_LOCKDEP
93781325 4122static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4123 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4124
4125static bool __need_fs_reclaim(gfp_t gfp_mask)
4126{
4127 gfp_mask = current_gfp_context(gfp_mask);
4128
4129 /* no reclaim without waiting on it */
4130 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4131 return false;
4132
4133 /* this guy won't enter reclaim */
2e517d68 4134 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4135 return false;
4136
4137 /* We're only interested __GFP_FS allocations for now */
4138 if (!(gfp_mask & __GFP_FS))
4139 return false;
4140
4141 if (gfp_mask & __GFP_NOLOCKDEP)
4142 return false;
4143
4144 return true;
4145}
4146
93781325
OS
4147void __fs_reclaim_acquire(void)
4148{
4149 lock_map_acquire(&__fs_reclaim_map);
4150}
4151
4152void __fs_reclaim_release(void)
4153{
4154 lock_map_release(&__fs_reclaim_map);
4155}
4156
d92a8cfc
PZ
4157void fs_reclaim_acquire(gfp_t gfp_mask)
4158{
4159 if (__need_fs_reclaim(gfp_mask))
93781325 4160 __fs_reclaim_acquire();
d92a8cfc
PZ
4161}
4162EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4163
4164void fs_reclaim_release(gfp_t gfp_mask)
4165{
4166 if (__need_fs_reclaim(gfp_mask))
93781325 4167 __fs_reclaim_release();
d92a8cfc
PZ
4168}
4169EXPORT_SYMBOL_GPL(fs_reclaim_release);
4170#endif
4171
bba90710
MS
4172/* Perform direct synchronous page reclaim */
4173static int
a9263751
VB
4174__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4175 const struct alloc_context *ac)
11e33f6a 4176{
bba90710 4177 int progress;
499118e9 4178 unsigned int noreclaim_flag;
eb414681 4179 unsigned long pflags;
11e33f6a
MG
4180
4181 cond_resched();
4182
4183 /* We now go into synchronous reclaim */
4184 cpuset_memory_pressure_bump();
eb414681 4185 psi_memstall_enter(&pflags);
d92a8cfc 4186 fs_reclaim_acquire(gfp_mask);
93781325 4187 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4188
a9263751
VB
4189 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4190 ac->nodemask);
11e33f6a 4191
499118e9 4192 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4193 fs_reclaim_release(gfp_mask);
eb414681 4194 psi_memstall_leave(&pflags);
11e33f6a
MG
4195
4196 cond_resched();
4197
bba90710
MS
4198 return progress;
4199}
4200
4201/* The really slow allocator path where we enter direct reclaim */
4202static inline struct page *
4203__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4204 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4205 unsigned long *did_some_progress)
bba90710
MS
4206{
4207 struct page *page = NULL;
4208 bool drained = false;
4209
a9263751 4210 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4211 if (unlikely(!(*did_some_progress)))
4212 return NULL;
11e33f6a 4213
9ee493ce 4214retry:
31a6c190 4215 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4216
4217 /*
4218 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4219 * pages are pinned on the per-cpu lists or in high alloc reserves.
4220 * Shrink them them and try again
9ee493ce
MG
4221 */
4222 if (!page && !drained) {
29fac03b 4223 unreserve_highatomic_pageblock(ac, false);
93481ff0 4224 drain_all_pages(NULL);
9ee493ce
MG
4225 drained = true;
4226 goto retry;
4227 }
4228
11e33f6a
MG
4229 return page;
4230}
4231
5ecd9d40
DR
4232static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4233 const struct alloc_context *ac)
3a025760
JW
4234{
4235 struct zoneref *z;
4236 struct zone *zone;
e1a55637 4237 pg_data_t *last_pgdat = NULL;
5ecd9d40 4238 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4239
5ecd9d40
DR
4240 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4241 ac->nodemask) {
e1a55637 4242 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4243 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4244 last_pgdat = zone->zone_pgdat;
4245 }
3a025760
JW
4246}
4247
c603844b 4248static inline unsigned int
341ce06f
PZ
4249gfp_to_alloc_flags(gfp_t gfp_mask)
4250{
c603844b 4251 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4252
736838e9
MN
4253 /*
4254 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4255 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4256 * to save two branches.
4257 */
e6223a3b 4258 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4259 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4260
341ce06f
PZ
4261 /*
4262 * The caller may dip into page reserves a bit more if the caller
4263 * cannot run direct reclaim, or if the caller has realtime scheduling
4264 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4265 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4266 */
736838e9
MN
4267 alloc_flags |= (__force int)
4268 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4269
d0164adc 4270 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4271 /*
b104a35d
DR
4272 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4273 * if it can't schedule.
5c3240d9 4274 */
b104a35d 4275 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4276 alloc_flags |= ALLOC_HARDER;
523b9458 4277 /*
b104a35d 4278 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4279 * comment for __cpuset_node_allowed().
523b9458 4280 */
341ce06f 4281 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4282 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4283 alloc_flags |= ALLOC_HARDER;
4284
d883c6cf
JK
4285#ifdef CONFIG_CMA
4286 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4287 alloc_flags |= ALLOC_CMA;
4288#endif
341ce06f
PZ
4289 return alloc_flags;
4290}
4291
cd04ae1e 4292static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4293{
cd04ae1e
MH
4294 if (!tsk_is_oom_victim(tsk))
4295 return false;
4296
4297 /*
4298 * !MMU doesn't have oom reaper so give access to memory reserves
4299 * only to the thread with TIF_MEMDIE set
4300 */
4301 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4302 return false;
4303
cd04ae1e
MH
4304 return true;
4305}
4306
4307/*
4308 * Distinguish requests which really need access to full memory
4309 * reserves from oom victims which can live with a portion of it
4310 */
4311static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4312{
4313 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4314 return 0;
31a6c190 4315 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4316 return ALLOC_NO_WATERMARKS;
31a6c190 4317 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4318 return ALLOC_NO_WATERMARKS;
4319 if (!in_interrupt()) {
4320 if (current->flags & PF_MEMALLOC)
4321 return ALLOC_NO_WATERMARKS;
4322 else if (oom_reserves_allowed(current))
4323 return ALLOC_OOM;
4324 }
31a6c190 4325
cd04ae1e
MH
4326 return 0;
4327}
4328
4329bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4330{
4331 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4332}
4333
0a0337e0
MH
4334/*
4335 * Checks whether it makes sense to retry the reclaim to make a forward progress
4336 * for the given allocation request.
491d79ae
JW
4337 *
4338 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4339 * without success, or when we couldn't even meet the watermark if we
4340 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4341 *
4342 * Returns true if a retry is viable or false to enter the oom path.
4343 */
4344static inline bool
4345should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4346 struct alloc_context *ac, int alloc_flags,
423b452e 4347 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4348{
4349 struct zone *zone;
4350 struct zoneref *z;
15f570bf 4351 bool ret = false;
0a0337e0 4352
423b452e
VB
4353 /*
4354 * Costly allocations might have made a progress but this doesn't mean
4355 * their order will become available due to high fragmentation so
4356 * always increment the no progress counter for them
4357 */
4358 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4359 *no_progress_loops = 0;
4360 else
4361 (*no_progress_loops)++;
4362
0a0337e0
MH
4363 /*
4364 * Make sure we converge to OOM if we cannot make any progress
4365 * several times in the row.
4366 */
04c8716f
MK
4367 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4368 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4369 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4370 }
0a0337e0 4371
bca67592
MG
4372 /*
4373 * Keep reclaiming pages while there is a chance this will lead
4374 * somewhere. If none of the target zones can satisfy our allocation
4375 * request even if all reclaimable pages are considered then we are
4376 * screwed and have to go OOM.
0a0337e0
MH
4377 */
4378 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4379 ac->nodemask) {
4380 unsigned long available;
ede37713 4381 unsigned long reclaimable;
d379f01d
MH
4382 unsigned long min_wmark = min_wmark_pages(zone);
4383 bool wmark;
0a0337e0 4384
5a1c84b4 4385 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4386 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4387
4388 /*
491d79ae
JW
4389 * Would the allocation succeed if we reclaimed all
4390 * reclaimable pages?
0a0337e0 4391 */
d379f01d
MH
4392 wmark = __zone_watermark_ok(zone, order, min_wmark,
4393 ac_classzone_idx(ac), alloc_flags, available);
4394 trace_reclaim_retry_zone(z, order, reclaimable,
4395 available, min_wmark, *no_progress_loops, wmark);
4396 if (wmark) {
ede37713
MH
4397 /*
4398 * If we didn't make any progress and have a lot of
4399 * dirty + writeback pages then we should wait for
4400 * an IO to complete to slow down the reclaim and
4401 * prevent from pre mature OOM
4402 */
4403 if (!did_some_progress) {
11fb9989 4404 unsigned long write_pending;
ede37713 4405
5a1c84b4
MG
4406 write_pending = zone_page_state_snapshot(zone,
4407 NR_ZONE_WRITE_PENDING);
ede37713 4408
11fb9989 4409 if (2 * write_pending > reclaimable) {
ede37713
MH
4410 congestion_wait(BLK_RW_ASYNC, HZ/10);
4411 return true;
4412 }
4413 }
5a1c84b4 4414
15f570bf
MH
4415 ret = true;
4416 goto out;
0a0337e0
MH
4417 }
4418 }
4419
15f570bf
MH
4420out:
4421 /*
4422 * Memory allocation/reclaim might be called from a WQ context and the
4423 * current implementation of the WQ concurrency control doesn't
4424 * recognize that a particular WQ is congested if the worker thread is
4425 * looping without ever sleeping. Therefore we have to do a short sleep
4426 * here rather than calling cond_resched().
4427 */
4428 if (current->flags & PF_WQ_WORKER)
4429 schedule_timeout_uninterruptible(1);
4430 else
4431 cond_resched();
4432 return ret;
0a0337e0
MH
4433}
4434
902b6281
VB
4435static inline bool
4436check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4437{
4438 /*
4439 * It's possible that cpuset's mems_allowed and the nodemask from
4440 * mempolicy don't intersect. This should be normally dealt with by
4441 * policy_nodemask(), but it's possible to race with cpuset update in
4442 * such a way the check therein was true, and then it became false
4443 * before we got our cpuset_mems_cookie here.
4444 * This assumes that for all allocations, ac->nodemask can come only
4445 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4446 * when it does not intersect with the cpuset restrictions) or the
4447 * caller can deal with a violated nodemask.
4448 */
4449 if (cpusets_enabled() && ac->nodemask &&
4450 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4451 ac->nodemask = NULL;
4452 return true;
4453 }
4454
4455 /*
4456 * When updating a task's mems_allowed or mempolicy nodemask, it is
4457 * possible to race with parallel threads in such a way that our
4458 * allocation can fail while the mask is being updated. If we are about
4459 * to fail, check if the cpuset changed during allocation and if so,
4460 * retry.
4461 */
4462 if (read_mems_allowed_retry(cpuset_mems_cookie))
4463 return true;
4464
4465 return false;
4466}
4467
11e33f6a
MG
4468static inline struct page *
4469__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4470 struct alloc_context *ac)
11e33f6a 4471{
d0164adc 4472 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4473 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4474 struct page *page = NULL;
c603844b 4475 unsigned int alloc_flags;
11e33f6a 4476 unsigned long did_some_progress;
5ce9bfef 4477 enum compact_priority compact_priority;
c5d01d0d 4478 enum compact_result compact_result;
5ce9bfef
VB
4479 int compaction_retries;
4480 int no_progress_loops;
5ce9bfef 4481 unsigned int cpuset_mems_cookie;
cd04ae1e 4482 int reserve_flags;
1da177e4 4483
d0164adc
MG
4484 /*
4485 * We also sanity check to catch abuse of atomic reserves being used by
4486 * callers that are not in atomic context.
4487 */
4488 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4489 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4490 gfp_mask &= ~__GFP_ATOMIC;
4491
5ce9bfef
VB
4492retry_cpuset:
4493 compaction_retries = 0;
4494 no_progress_loops = 0;
4495 compact_priority = DEF_COMPACT_PRIORITY;
4496 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4497
4498 /*
4499 * The fast path uses conservative alloc_flags to succeed only until
4500 * kswapd needs to be woken up, and to avoid the cost of setting up
4501 * alloc_flags precisely. So we do that now.
4502 */
4503 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4504
e47483bc
VB
4505 /*
4506 * We need to recalculate the starting point for the zonelist iterator
4507 * because we might have used different nodemask in the fast path, or
4508 * there was a cpuset modification and we are retrying - otherwise we
4509 * could end up iterating over non-eligible zones endlessly.
4510 */
4511 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4512 ac->high_zoneidx, ac->nodemask);
4513 if (!ac->preferred_zoneref->zone)
4514 goto nopage;
4515
0a79cdad 4516 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4517 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4518
4519 /*
4520 * The adjusted alloc_flags might result in immediate success, so try
4521 * that first
4522 */
4523 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4524 if (page)
4525 goto got_pg;
4526
a8161d1e
VB
4527 /*
4528 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4529 * that we have enough base pages and don't need to reclaim. For non-
4530 * movable high-order allocations, do that as well, as compaction will
4531 * try prevent permanent fragmentation by migrating from blocks of the
4532 * same migratetype.
4533 * Don't try this for allocations that are allowed to ignore
4534 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4535 */
282722b0
VB
4536 if (can_direct_reclaim &&
4537 (costly_order ||
4538 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4539 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4540 page = __alloc_pages_direct_compact(gfp_mask, order,
4541 alloc_flags, ac,
a5508cd8 4542 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4543 &compact_result);
4544 if (page)
4545 goto got_pg;
4546
cc638f32
VB
4547 /*
4548 * Checks for costly allocations with __GFP_NORETRY, which
4549 * includes some THP page fault allocations
4550 */
4551 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4552 /*
4553 * If allocating entire pageblock(s) and compaction
4554 * failed because all zones are below low watermarks
4555 * or is prohibited because it recently failed at this
3f36d866
DR
4556 * order, fail immediately unless the allocator has
4557 * requested compaction and reclaim retry.
b39d0ee2
DR
4558 *
4559 * Reclaim is
4560 * - potentially very expensive because zones are far
4561 * below their low watermarks or this is part of very
4562 * bursty high order allocations,
4563 * - not guaranteed to help because isolate_freepages()
4564 * may not iterate over freed pages as part of its
4565 * linear scan, and
4566 * - unlikely to make entire pageblocks free on its
4567 * own.
4568 */
4569 if (compact_result == COMPACT_SKIPPED ||
4570 compact_result == COMPACT_DEFERRED)
4571 goto nopage;
a8161d1e 4572
a8161d1e 4573 /*
3eb2771b
VB
4574 * Looks like reclaim/compaction is worth trying, but
4575 * sync compaction could be very expensive, so keep
25160354 4576 * using async compaction.
a8161d1e 4577 */
a5508cd8 4578 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4579 }
4580 }
23771235 4581
31a6c190 4582retry:
23771235 4583 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4584 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4585 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4586
cd04ae1e
MH
4587 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4588 if (reserve_flags)
4589 alloc_flags = reserve_flags;
23771235 4590
e46e7b77 4591 /*
d6a24df0
VB
4592 * Reset the nodemask and zonelist iterators if memory policies can be
4593 * ignored. These allocations are high priority and system rather than
4594 * user oriented.
e46e7b77 4595 */
cd04ae1e 4596 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4597 ac->nodemask = NULL;
e46e7b77
MG
4598 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4599 ac->high_zoneidx, ac->nodemask);
4600 }
4601
23771235 4602 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4603 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4604 if (page)
4605 goto got_pg;
1da177e4 4606
d0164adc 4607 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4608 if (!can_direct_reclaim)
1da177e4
LT
4609 goto nopage;
4610
9a67f648
MH
4611 /* Avoid recursion of direct reclaim */
4612 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4613 goto nopage;
4614
a8161d1e
VB
4615 /* Try direct reclaim and then allocating */
4616 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4617 &did_some_progress);
4618 if (page)
4619 goto got_pg;
4620
4621 /* Try direct compaction and then allocating */
a9263751 4622 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4623 compact_priority, &compact_result);
56de7263
MG
4624 if (page)
4625 goto got_pg;
75f30861 4626
9083905a
JW
4627 /* Do not loop if specifically requested */
4628 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4629 goto nopage;
9083905a 4630
0a0337e0
MH
4631 /*
4632 * Do not retry costly high order allocations unless they are
dcda9b04 4633 * __GFP_RETRY_MAYFAIL
0a0337e0 4634 */
dcda9b04 4635 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4636 goto nopage;
0a0337e0 4637
0a0337e0 4638 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4639 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4640 goto retry;
4641
33c2d214
MH
4642 /*
4643 * It doesn't make any sense to retry for the compaction if the order-0
4644 * reclaim is not able to make any progress because the current
4645 * implementation of the compaction depends on the sufficient amount
4646 * of free memory (see __compaction_suitable)
4647 */
4648 if (did_some_progress > 0 &&
86a294a8 4649 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4650 compact_result, &compact_priority,
d9436498 4651 &compaction_retries))
33c2d214
MH
4652 goto retry;
4653
902b6281
VB
4654
4655 /* Deal with possible cpuset update races before we start OOM killing */
4656 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4657 goto retry_cpuset;
4658
9083905a
JW
4659 /* Reclaim has failed us, start killing things */
4660 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4661 if (page)
4662 goto got_pg;
4663
9a67f648 4664 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4665 if (tsk_is_oom_victim(current) &&
4666 (alloc_flags == ALLOC_OOM ||
c288983d 4667 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4668 goto nopage;
4669
9083905a 4670 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4671 if (did_some_progress) {
4672 no_progress_loops = 0;
9083905a 4673 goto retry;
0a0337e0 4674 }
9083905a 4675
1da177e4 4676nopage:
902b6281
VB
4677 /* Deal with possible cpuset update races before we fail */
4678 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4679 goto retry_cpuset;
4680
9a67f648
MH
4681 /*
4682 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4683 * we always retry
4684 */
4685 if (gfp_mask & __GFP_NOFAIL) {
4686 /*
4687 * All existing users of the __GFP_NOFAIL are blockable, so warn
4688 * of any new users that actually require GFP_NOWAIT
4689 */
4690 if (WARN_ON_ONCE(!can_direct_reclaim))
4691 goto fail;
4692
4693 /*
4694 * PF_MEMALLOC request from this context is rather bizarre
4695 * because we cannot reclaim anything and only can loop waiting
4696 * for somebody to do a work for us
4697 */
4698 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4699
4700 /*
4701 * non failing costly orders are a hard requirement which we
4702 * are not prepared for much so let's warn about these users
4703 * so that we can identify them and convert them to something
4704 * else.
4705 */
4706 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4707
6c18ba7a
MH
4708 /*
4709 * Help non-failing allocations by giving them access to memory
4710 * reserves but do not use ALLOC_NO_WATERMARKS because this
4711 * could deplete whole memory reserves which would just make
4712 * the situation worse
4713 */
4714 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4715 if (page)
4716 goto got_pg;
4717
9a67f648
MH
4718 cond_resched();
4719 goto retry;
4720 }
4721fail:
a8e99259 4722 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4723 "page allocation failure: order:%u", order);
1da177e4 4724got_pg:
072bb0aa 4725 return page;
1da177e4 4726}
11e33f6a 4727
9cd75558 4728static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4729 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4730 struct alloc_context *ac, gfp_t *alloc_mask,
4731 unsigned int *alloc_flags)
11e33f6a 4732{
9cd75558 4733 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4734 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4735 ac->nodemask = nodemask;
4736 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4737
682a3385 4738 if (cpusets_enabled()) {
9cd75558 4739 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4740 if (!ac->nodemask)
4741 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4742 else
4743 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4744 }
4745
d92a8cfc
PZ
4746 fs_reclaim_acquire(gfp_mask);
4747 fs_reclaim_release(gfp_mask);
11e33f6a 4748
d0164adc 4749 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4750
4751 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4752 return false;
11e33f6a 4753
d883c6cf
JK
4754 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4755 *alloc_flags |= ALLOC_CMA;
4756
9cd75558
MG
4757 return true;
4758}
21bb9bd1 4759
9cd75558 4760/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4761static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4762{
c9ab0c4f 4763 /* Dirty zone balancing only done in the fast path */
9cd75558 4764 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4765
e46e7b77
MG
4766 /*
4767 * The preferred zone is used for statistics but crucially it is
4768 * also used as the starting point for the zonelist iterator. It
4769 * may get reset for allocations that ignore memory policies.
4770 */
9cd75558
MG
4771 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4772 ac->high_zoneidx, ac->nodemask);
4773}
4774
4775/*
4776 * This is the 'heart' of the zoned buddy allocator.
4777 */
4778struct page *
04ec6264
VB
4779__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4780 nodemask_t *nodemask)
9cd75558
MG
4781{
4782 struct page *page;
4783 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4784 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4785 struct alloc_context ac = { };
4786
c63ae43b
MH
4787 /*
4788 * There are several places where we assume that the order value is sane
4789 * so bail out early if the request is out of bound.
4790 */
4791 if (unlikely(order >= MAX_ORDER)) {
4792 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4793 return NULL;
4794 }
4795
9cd75558 4796 gfp_mask &= gfp_allowed_mask;
f19360f0 4797 alloc_mask = gfp_mask;
04ec6264 4798 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4799 return NULL;
4800
a380b40a 4801 finalise_ac(gfp_mask, &ac);
5bb1b169 4802
6bb15450
MG
4803 /*
4804 * Forbid the first pass from falling back to types that fragment
4805 * memory until all local zones are considered.
4806 */
0a79cdad 4807 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4808
5117f45d 4809 /* First allocation attempt */
a9263751 4810 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4811 if (likely(page))
4812 goto out;
11e33f6a 4813
4fcb0971 4814 /*
7dea19f9
MH
4815 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4816 * resp. GFP_NOIO which has to be inherited for all allocation requests
4817 * from a particular context which has been marked by
4818 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4819 */
7dea19f9 4820 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4821 ac.spread_dirty_pages = false;
23f086f9 4822
4741526b
MG
4823 /*
4824 * Restore the original nodemask if it was potentially replaced with
4825 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4826 */
97ce86f9 4827 ac.nodemask = nodemask;
16096c25 4828
4fcb0971 4829 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4830
4fcb0971 4831out:
c4159a75 4832 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4833 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4834 __free_pages(page, order);
4835 page = NULL;
4949148a
VD
4836 }
4837
4fcb0971
MG
4838 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4839
11e33f6a 4840 return page;
1da177e4 4841}
d239171e 4842EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4843
4844/*
9ea9a680
MH
4845 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4846 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4847 * you need to access high mem.
1da177e4 4848 */
920c7a5d 4849unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4850{
945a1113
AM
4851 struct page *page;
4852
9ea9a680 4853 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4854 if (!page)
4855 return 0;
4856 return (unsigned long) page_address(page);
4857}
1da177e4
LT
4858EXPORT_SYMBOL(__get_free_pages);
4859
920c7a5d 4860unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4861{
945a1113 4862 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4863}
1da177e4
LT
4864EXPORT_SYMBOL(get_zeroed_page);
4865
742aa7fb 4866static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4867{
742aa7fb
AL
4868 if (order == 0) /* Via pcp? */
4869 free_unref_page(page);
4870 else
4871 __free_pages_ok(page, order);
1da177e4
LT
4872}
4873
742aa7fb
AL
4874void __free_pages(struct page *page, unsigned int order)
4875{
4876 if (put_page_testzero(page))
4877 free_the_page(page, order);
4878}
1da177e4
LT
4879EXPORT_SYMBOL(__free_pages);
4880
920c7a5d 4881void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4882{
4883 if (addr != 0) {
725d704e 4884 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4885 __free_pages(virt_to_page((void *)addr), order);
4886 }
4887}
4888
4889EXPORT_SYMBOL(free_pages);
4890
b63ae8ca
AD
4891/*
4892 * Page Fragment:
4893 * An arbitrary-length arbitrary-offset area of memory which resides
4894 * within a 0 or higher order page. Multiple fragments within that page
4895 * are individually refcounted, in the page's reference counter.
4896 *
4897 * The page_frag functions below provide a simple allocation framework for
4898 * page fragments. This is used by the network stack and network device
4899 * drivers to provide a backing region of memory for use as either an
4900 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4901 */
2976db80
AD
4902static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4903 gfp_t gfp_mask)
b63ae8ca
AD
4904{
4905 struct page *page = NULL;
4906 gfp_t gfp = gfp_mask;
4907
4908#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4909 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4910 __GFP_NOMEMALLOC;
4911 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4912 PAGE_FRAG_CACHE_MAX_ORDER);
4913 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4914#endif
4915 if (unlikely(!page))
4916 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4917
4918 nc->va = page ? page_address(page) : NULL;
4919
4920 return page;
4921}
4922
2976db80 4923void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4924{
4925 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4926
742aa7fb
AL
4927 if (page_ref_sub_and_test(page, count))
4928 free_the_page(page, compound_order(page));
44fdffd7 4929}
2976db80 4930EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4931
8c2dd3e4
AD
4932void *page_frag_alloc(struct page_frag_cache *nc,
4933 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4934{
4935 unsigned int size = PAGE_SIZE;
4936 struct page *page;
4937 int offset;
4938
4939 if (unlikely(!nc->va)) {
4940refill:
2976db80 4941 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4942 if (!page)
4943 return NULL;
4944
4945#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4946 /* if size can vary use size else just use PAGE_SIZE */
4947 size = nc->size;
4948#endif
4949 /* Even if we own the page, we do not use atomic_set().
4950 * This would break get_page_unless_zero() users.
4951 */
86447726 4952 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4953
4954 /* reset page count bias and offset to start of new frag */
2f064f34 4955 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4956 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4957 nc->offset = size;
4958 }
4959
4960 offset = nc->offset - fragsz;
4961 if (unlikely(offset < 0)) {
4962 page = virt_to_page(nc->va);
4963
fe896d18 4964 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4965 goto refill;
4966
4967#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4968 /* if size can vary use size else just use PAGE_SIZE */
4969 size = nc->size;
4970#endif
4971 /* OK, page count is 0, we can safely set it */
86447726 4972 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4973
4974 /* reset page count bias and offset to start of new frag */
86447726 4975 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4976 offset = size - fragsz;
4977 }
4978
4979 nc->pagecnt_bias--;
4980 nc->offset = offset;
4981
4982 return nc->va + offset;
4983}
8c2dd3e4 4984EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4985
4986/*
4987 * Frees a page fragment allocated out of either a compound or order 0 page.
4988 */
8c2dd3e4 4989void page_frag_free(void *addr)
b63ae8ca
AD
4990{
4991 struct page *page = virt_to_head_page(addr);
4992
742aa7fb
AL
4993 if (unlikely(put_page_testzero(page)))
4994 free_the_page(page, compound_order(page));
b63ae8ca 4995}
8c2dd3e4 4996EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4997
d00181b9
KS
4998static void *make_alloc_exact(unsigned long addr, unsigned int order,
4999 size_t size)
ee85c2e1
AK
5000{
5001 if (addr) {
5002 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5003 unsigned long used = addr + PAGE_ALIGN(size);
5004
5005 split_page(virt_to_page((void *)addr), order);
5006 while (used < alloc_end) {
5007 free_page(used);
5008 used += PAGE_SIZE;
5009 }
5010 }
5011 return (void *)addr;
5012}
5013
2be0ffe2
TT
5014/**
5015 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5016 * @size: the number of bytes to allocate
63931eb9 5017 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5018 *
5019 * This function is similar to alloc_pages(), except that it allocates the
5020 * minimum number of pages to satisfy the request. alloc_pages() can only
5021 * allocate memory in power-of-two pages.
5022 *
5023 * This function is also limited by MAX_ORDER.
5024 *
5025 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5026 *
5027 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5028 */
5029void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5030{
5031 unsigned int order = get_order(size);
5032 unsigned long addr;
5033
63931eb9
VB
5034 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5035 gfp_mask &= ~__GFP_COMP;
5036
2be0ffe2 5037 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5038 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5039}
5040EXPORT_SYMBOL(alloc_pages_exact);
5041
ee85c2e1
AK
5042/**
5043 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5044 * pages on a node.
b5e6ab58 5045 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5046 * @size: the number of bytes to allocate
63931eb9 5047 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5048 *
5049 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5050 * back.
a862f68a
MR
5051 *
5052 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5053 */
e1931811 5054void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5055{
d00181b9 5056 unsigned int order = get_order(size);
63931eb9
VB
5057 struct page *p;
5058
5059 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5060 gfp_mask &= ~__GFP_COMP;
5061
5062 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5063 if (!p)
5064 return NULL;
5065 return make_alloc_exact((unsigned long)page_address(p), order, size);
5066}
ee85c2e1 5067
2be0ffe2
TT
5068/**
5069 * free_pages_exact - release memory allocated via alloc_pages_exact()
5070 * @virt: the value returned by alloc_pages_exact.
5071 * @size: size of allocation, same value as passed to alloc_pages_exact().
5072 *
5073 * Release the memory allocated by a previous call to alloc_pages_exact.
5074 */
5075void free_pages_exact(void *virt, size_t size)
5076{
5077 unsigned long addr = (unsigned long)virt;
5078 unsigned long end = addr + PAGE_ALIGN(size);
5079
5080 while (addr < end) {
5081 free_page(addr);
5082 addr += PAGE_SIZE;
5083 }
5084}
5085EXPORT_SYMBOL(free_pages_exact);
5086
e0fb5815
ZY
5087/**
5088 * nr_free_zone_pages - count number of pages beyond high watermark
5089 * @offset: The zone index of the highest zone
5090 *
a862f68a 5091 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5092 * high watermark within all zones at or below a given zone index. For each
5093 * zone, the number of pages is calculated as:
0e056eb5 5094 *
5095 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5096 *
5097 * Return: number of pages beyond high watermark.
e0fb5815 5098 */
ebec3862 5099static unsigned long nr_free_zone_pages(int offset)
1da177e4 5100{
dd1a239f 5101 struct zoneref *z;
54a6eb5c
MG
5102 struct zone *zone;
5103
e310fd43 5104 /* Just pick one node, since fallback list is circular */
ebec3862 5105 unsigned long sum = 0;
1da177e4 5106
0e88460d 5107 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5108
54a6eb5c 5109 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5110 unsigned long size = zone_managed_pages(zone);
41858966 5111 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5112 if (size > high)
5113 sum += size - high;
1da177e4
LT
5114 }
5115
5116 return sum;
5117}
5118
e0fb5815
ZY
5119/**
5120 * nr_free_buffer_pages - count number of pages beyond high watermark
5121 *
5122 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5123 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5124 *
5125 * Return: number of pages beyond high watermark within ZONE_DMA and
5126 * ZONE_NORMAL.
1da177e4 5127 */
ebec3862 5128unsigned long nr_free_buffer_pages(void)
1da177e4 5129{
af4ca457 5130 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5131}
c2f1a551 5132EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5133
e0fb5815
ZY
5134/**
5135 * nr_free_pagecache_pages - count number of pages beyond high watermark
5136 *
5137 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5138 * high watermark within all zones.
a862f68a
MR
5139 *
5140 * Return: number of pages beyond high watermark within all zones.
1da177e4 5141 */
ebec3862 5142unsigned long nr_free_pagecache_pages(void)
1da177e4 5143{
2a1e274a 5144 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5145}
08e0f6a9
CL
5146
5147static inline void show_node(struct zone *zone)
1da177e4 5148{
e5adfffc 5149 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5150 printk("Node %d ", zone_to_nid(zone));
1da177e4 5151}
1da177e4 5152
d02bd27b
IR
5153long si_mem_available(void)
5154{
5155 long available;
5156 unsigned long pagecache;
5157 unsigned long wmark_low = 0;
5158 unsigned long pages[NR_LRU_LISTS];
b29940c1 5159 unsigned long reclaimable;
d02bd27b
IR
5160 struct zone *zone;
5161 int lru;
5162
5163 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5164 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5165
5166 for_each_zone(zone)
a9214443 5167 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5168
5169 /*
5170 * Estimate the amount of memory available for userspace allocations,
5171 * without causing swapping.
5172 */
c41f012a 5173 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5174
5175 /*
5176 * Not all the page cache can be freed, otherwise the system will
5177 * start swapping. Assume at least half of the page cache, or the
5178 * low watermark worth of cache, needs to stay.
5179 */
5180 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5181 pagecache -= min(pagecache / 2, wmark_low);
5182 available += pagecache;
5183
5184 /*
b29940c1
VB
5185 * Part of the reclaimable slab and other kernel memory consists of
5186 * items that are in use, and cannot be freed. Cap this estimate at the
5187 * low watermark.
d02bd27b 5188 */
b29940c1
VB
5189 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5190 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5191 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5192
d02bd27b
IR
5193 if (available < 0)
5194 available = 0;
5195 return available;
5196}
5197EXPORT_SYMBOL_GPL(si_mem_available);
5198
1da177e4
LT
5199void si_meminfo(struct sysinfo *val)
5200{
ca79b0c2 5201 val->totalram = totalram_pages();
11fb9989 5202 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5203 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5204 val->bufferram = nr_blockdev_pages();
ca79b0c2 5205 val->totalhigh = totalhigh_pages();
1da177e4 5206 val->freehigh = nr_free_highpages();
1da177e4
LT
5207 val->mem_unit = PAGE_SIZE;
5208}
5209
5210EXPORT_SYMBOL(si_meminfo);
5211
5212#ifdef CONFIG_NUMA
5213void si_meminfo_node(struct sysinfo *val, int nid)
5214{
cdd91a77
JL
5215 int zone_type; /* needs to be signed */
5216 unsigned long managed_pages = 0;
fc2bd799
JK
5217 unsigned long managed_highpages = 0;
5218 unsigned long free_highpages = 0;
1da177e4
LT
5219 pg_data_t *pgdat = NODE_DATA(nid);
5220
cdd91a77 5221 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5222 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5223 val->totalram = managed_pages;
11fb9989 5224 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5225 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5226#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5227 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5228 struct zone *zone = &pgdat->node_zones[zone_type];
5229
5230 if (is_highmem(zone)) {
9705bea5 5231 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5232 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5233 }
5234 }
5235 val->totalhigh = managed_highpages;
5236 val->freehigh = free_highpages;
98d2b0eb 5237#else
fc2bd799
JK
5238 val->totalhigh = managed_highpages;
5239 val->freehigh = free_highpages;
98d2b0eb 5240#endif
1da177e4
LT
5241 val->mem_unit = PAGE_SIZE;
5242}
5243#endif
5244
ddd588b5 5245/*
7bf02ea2
DR
5246 * Determine whether the node should be displayed or not, depending on whether
5247 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5248 */
9af744d7 5249static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5250{
ddd588b5 5251 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5252 return false;
ddd588b5 5253
9af744d7
MH
5254 /*
5255 * no node mask - aka implicit memory numa policy. Do not bother with
5256 * the synchronization - read_mems_allowed_begin - because we do not
5257 * have to be precise here.
5258 */
5259 if (!nodemask)
5260 nodemask = &cpuset_current_mems_allowed;
5261
5262 return !node_isset(nid, *nodemask);
ddd588b5
DR
5263}
5264
1da177e4
LT
5265#define K(x) ((x) << (PAGE_SHIFT-10))
5266
377e4f16
RV
5267static void show_migration_types(unsigned char type)
5268{
5269 static const char types[MIGRATE_TYPES] = {
5270 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5271 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5272 [MIGRATE_RECLAIMABLE] = 'E',
5273 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5274#ifdef CONFIG_CMA
5275 [MIGRATE_CMA] = 'C',
5276#endif
194159fb 5277#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5278 [MIGRATE_ISOLATE] = 'I',
194159fb 5279#endif
377e4f16
RV
5280 };
5281 char tmp[MIGRATE_TYPES + 1];
5282 char *p = tmp;
5283 int i;
5284
5285 for (i = 0; i < MIGRATE_TYPES; i++) {
5286 if (type & (1 << i))
5287 *p++ = types[i];
5288 }
5289
5290 *p = '\0';
1f84a18f 5291 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5292}
5293
1da177e4
LT
5294/*
5295 * Show free area list (used inside shift_scroll-lock stuff)
5296 * We also calculate the percentage fragmentation. We do this by counting the
5297 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5298 *
5299 * Bits in @filter:
5300 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5301 * cpuset.
1da177e4 5302 */
9af744d7 5303void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5304{
d1bfcdb8 5305 unsigned long free_pcp = 0;
c7241913 5306 int cpu;
1da177e4 5307 struct zone *zone;
599d0c95 5308 pg_data_t *pgdat;
1da177e4 5309
ee99c71c 5310 for_each_populated_zone(zone) {
9af744d7 5311 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5312 continue;
d1bfcdb8 5313
761b0677
KK
5314 for_each_online_cpu(cpu)
5315 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5316 }
5317
a731286d
KM
5318 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5319 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5320 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5321 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5322 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5323 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5324 global_node_page_state(NR_ACTIVE_ANON),
5325 global_node_page_state(NR_INACTIVE_ANON),
5326 global_node_page_state(NR_ISOLATED_ANON),
5327 global_node_page_state(NR_ACTIVE_FILE),
5328 global_node_page_state(NR_INACTIVE_FILE),
5329 global_node_page_state(NR_ISOLATED_FILE),
5330 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5331 global_node_page_state(NR_FILE_DIRTY),
5332 global_node_page_state(NR_WRITEBACK),
d507e2eb
JW
5333 global_node_page_state(NR_SLAB_RECLAIMABLE),
5334 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5335 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5336 global_node_page_state(NR_SHMEM),
c41f012a
MH
5337 global_zone_page_state(NR_PAGETABLE),
5338 global_zone_page_state(NR_BOUNCE),
5339 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5340 free_pcp,
c41f012a 5341 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5342
599d0c95 5343 for_each_online_pgdat(pgdat) {
9af744d7 5344 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5345 continue;
5346
599d0c95
MG
5347 printk("Node %d"
5348 " active_anon:%lukB"
5349 " inactive_anon:%lukB"
5350 " active_file:%lukB"
5351 " inactive_file:%lukB"
5352 " unevictable:%lukB"
5353 " isolated(anon):%lukB"
5354 " isolated(file):%lukB"
50658e2e 5355 " mapped:%lukB"
11fb9989
MG
5356 " dirty:%lukB"
5357 " writeback:%lukB"
5358 " shmem:%lukB"
5359#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5360 " shmem_thp: %lukB"
5361 " shmem_pmdmapped: %lukB"
5362 " anon_thp: %lukB"
5363#endif
5364 " writeback_tmp:%lukB"
599d0c95
MG
5365 " all_unreclaimable? %s"
5366 "\n",
5367 pgdat->node_id,
5368 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5369 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5370 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5371 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5372 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5373 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5374 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5375 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5376 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5377 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5378 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5380 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5381 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5382 * HPAGE_PMD_NR),
5383 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5384#endif
11fb9989 5385 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
c73322d0
JW
5386 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5387 "yes" : "no");
599d0c95
MG
5388 }
5389
ee99c71c 5390 for_each_populated_zone(zone) {
1da177e4
LT
5391 int i;
5392
9af744d7 5393 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5394 continue;
d1bfcdb8
KK
5395
5396 free_pcp = 0;
5397 for_each_online_cpu(cpu)
5398 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5399
1da177e4 5400 show_node(zone);
1f84a18f
JP
5401 printk(KERN_CONT
5402 "%s"
1da177e4
LT
5403 " free:%lukB"
5404 " min:%lukB"
5405 " low:%lukB"
5406 " high:%lukB"
e47b346a 5407 " reserved_highatomic:%luKB"
71c799f4
MK
5408 " active_anon:%lukB"
5409 " inactive_anon:%lukB"
5410 " active_file:%lukB"
5411 " inactive_file:%lukB"
5412 " unevictable:%lukB"
5a1c84b4 5413 " writepending:%lukB"
1da177e4 5414 " present:%lukB"
9feedc9d 5415 " managed:%lukB"
4a0aa73f 5416 " mlocked:%lukB"
c6a7f572 5417 " kernel_stack:%lukB"
628d06a4
ST
5418#ifdef CONFIG_SHADOW_CALL_STACK
5419 " shadow_call_stack:%lukB"
5420#endif
4a0aa73f 5421 " pagetables:%lukB"
4a0aa73f 5422 " bounce:%lukB"
d1bfcdb8
KK
5423 " free_pcp:%lukB"
5424 " local_pcp:%ukB"
d1ce749a 5425 " free_cma:%lukB"
1da177e4
LT
5426 "\n",
5427 zone->name,
88f5acf8 5428 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5429 K(min_wmark_pages(zone)),
5430 K(low_wmark_pages(zone)),
5431 K(high_wmark_pages(zone)),
e47b346a 5432 K(zone->nr_reserved_highatomic),
71c799f4
MK
5433 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5434 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5435 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5436 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5437 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5438 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5439 K(zone->present_pages),
9705bea5 5440 K(zone_managed_pages(zone)),
4a0aa73f 5441 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5442 zone_page_state(zone, NR_KERNEL_STACK_KB),
628d06a4
ST
5443#ifdef CONFIG_SHADOW_CALL_STACK
5444 zone_page_state(zone, NR_KERNEL_SCS_KB),
5445#endif
4a0aa73f 5446 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5447 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5448 K(free_pcp),
5449 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5450 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5451 printk("lowmem_reserve[]:");
5452 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5453 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5454 printk(KERN_CONT "\n");
1da177e4
LT
5455 }
5456
ee99c71c 5457 for_each_populated_zone(zone) {
d00181b9
KS
5458 unsigned int order;
5459 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5460 unsigned char types[MAX_ORDER];
1da177e4 5461
9af744d7 5462 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5463 continue;
1da177e4 5464 show_node(zone);
1f84a18f 5465 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5466
5467 spin_lock_irqsave(&zone->lock, flags);
5468 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5469 struct free_area *area = &zone->free_area[order];
5470 int type;
5471
5472 nr[order] = area->nr_free;
8f9de51a 5473 total += nr[order] << order;
377e4f16
RV
5474
5475 types[order] = 0;
5476 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5477 if (!free_area_empty(area, type))
377e4f16
RV
5478 types[order] |= 1 << type;
5479 }
1da177e4
LT
5480 }
5481 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5482 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5483 printk(KERN_CONT "%lu*%lukB ",
5484 nr[order], K(1UL) << order);
377e4f16
RV
5485 if (nr[order])
5486 show_migration_types(types[order]);
5487 }
1f84a18f 5488 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5489 }
5490
949f7ec5
DR
5491 hugetlb_show_meminfo();
5492
11fb9989 5493 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5494
1da177e4
LT
5495 show_swap_cache_info();
5496}
5497
19770b32
MG
5498static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5499{
5500 zoneref->zone = zone;
5501 zoneref->zone_idx = zone_idx(zone);
5502}
5503
1da177e4
LT
5504/*
5505 * Builds allocation fallback zone lists.
1a93205b
CL
5506 *
5507 * Add all populated zones of a node to the zonelist.
1da177e4 5508 */
9d3be21b 5509static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5510{
1a93205b 5511 struct zone *zone;
bc732f1d 5512 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5513 int nr_zones = 0;
02a68a5e
CL
5514
5515 do {
2f6726e5 5516 zone_type--;
070f8032 5517 zone = pgdat->node_zones + zone_type;
6aa303de 5518 if (managed_zone(zone)) {
9d3be21b 5519 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5520 check_highest_zone(zone_type);
1da177e4 5521 }
2f6726e5 5522 } while (zone_type);
bc732f1d 5523
070f8032 5524 return nr_zones;
1da177e4
LT
5525}
5526
5527#ifdef CONFIG_NUMA
f0c0b2b8
KH
5528
5529static int __parse_numa_zonelist_order(char *s)
5530{
c9bff3ee
MH
5531 /*
5532 * We used to support different zonlists modes but they turned
5533 * out to be just not useful. Let's keep the warning in place
5534 * if somebody still use the cmd line parameter so that we do
5535 * not fail it silently
5536 */
5537 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5538 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5539 return -EINVAL;
5540 }
5541 return 0;
5542}
5543
5544static __init int setup_numa_zonelist_order(char *s)
5545{
ecb256f8
VL
5546 if (!s)
5547 return 0;
5548
c9bff3ee 5549 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5550}
5551early_param("numa_zonelist_order", setup_numa_zonelist_order);
5552
c9bff3ee
MH
5553char numa_zonelist_order[] = "Node";
5554
f0c0b2b8
KH
5555/*
5556 * sysctl handler for numa_zonelist_order
5557 */
cccad5b9 5558int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5559 void __user *buffer, size_t *length,
f0c0b2b8
KH
5560 loff_t *ppos)
5561{
c9bff3ee 5562 char *str;
f0c0b2b8
KH
5563 int ret;
5564
c9bff3ee
MH
5565 if (!write)
5566 return proc_dostring(table, write, buffer, length, ppos);
5567 str = memdup_user_nul(buffer, 16);
5568 if (IS_ERR(str))
5569 return PTR_ERR(str);
dacbde09 5570
c9bff3ee
MH
5571 ret = __parse_numa_zonelist_order(str);
5572 kfree(str);
443c6f14 5573 return ret;
f0c0b2b8
KH
5574}
5575
5576
62bc62a8 5577#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5578static int node_load[MAX_NUMNODES];
5579
1da177e4 5580/**
4dc3b16b 5581 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5582 * @node: node whose fallback list we're appending
5583 * @used_node_mask: nodemask_t of already used nodes
5584 *
5585 * We use a number of factors to determine which is the next node that should
5586 * appear on a given node's fallback list. The node should not have appeared
5587 * already in @node's fallback list, and it should be the next closest node
5588 * according to the distance array (which contains arbitrary distance values
5589 * from each node to each node in the system), and should also prefer nodes
5590 * with no CPUs, since presumably they'll have very little allocation pressure
5591 * on them otherwise.
a862f68a
MR
5592 *
5593 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5594 */
f0c0b2b8 5595static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5596{
4cf808eb 5597 int n, val;
1da177e4 5598 int min_val = INT_MAX;
00ef2d2f 5599 int best_node = NUMA_NO_NODE;
a70f7302 5600 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5601
4cf808eb
LT
5602 /* Use the local node if we haven't already */
5603 if (!node_isset(node, *used_node_mask)) {
5604 node_set(node, *used_node_mask);
5605 return node;
5606 }
1da177e4 5607
4b0ef1fe 5608 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5609
5610 /* Don't want a node to appear more than once */
5611 if (node_isset(n, *used_node_mask))
5612 continue;
5613
1da177e4
LT
5614 /* Use the distance array to find the distance */
5615 val = node_distance(node, n);
5616
4cf808eb
LT
5617 /* Penalize nodes under us ("prefer the next node") */
5618 val += (n < node);
5619
1da177e4 5620 /* Give preference to headless and unused nodes */
a70f7302
RR
5621 tmp = cpumask_of_node(n);
5622 if (!cpumask_empty(tmp))
1da177e4
LT
5623 val += PENALTY_FOR_NODE_WITH_CPUS;
5624
5625 /* Slight preference for less loaded node */
5626 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5627 val += node_load[n];
5628
5629 if (val < min_val) {
5630 min_val = val;
5631 best_node = n;
5632 }
5633 }
5634
5635 if (best_node >= 0)
5636 node_set(best_node, *used_node_mask);
5637
5638 return best_node;
5639}
5640
f0c0b2b8
KH
5641
5642/*
5643 * Build zonelists ordered by node and zones within node.
5644 * This results in maximum locality--normal zone overflows into local
5645 * DMA zone, if any--but risks exhausting DMA zone.
5646 */
9d3be21b
MH
5647static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5648 unsigned nr_nodes)
1da177e4 5649{
9d3be21b
MH
5650 struct zoneref *zonerefs;
5651 int i;
5652
5653 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5654
5655 for (i = 0; i < nr_nodes; i++) {
5656 int nr_zones;
5657
5658 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5659
9d3be21b
MH
5660 nr_zones = build_zonerefs_node(node, zonerefs);
5661 zonerefs += nr_zones;
5662 }
5663 zonerefs->zone = NULL;
5664 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5665}
5666
523b9458
CL
5667/*
5668 * Build gfp_thisnode zonelists
5669 */
5670static void build_thisnode_zonelists(pg_data_t *pgdat)
5671{
9d3be21b
MH
5672 struct zoneref *zonerefs;
5673 int nr_zones;
523b9458 5674
9d3be21b
MH
5675 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5676 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5677 zonerefs += nr_zones;
5678 zonerefs->zone = NULL;
5679 zonerefs->zone_idx = 0;
523b9458
CL
5680}
5681
f0c0b2b8
KH
5682/*
5683 * Build zonelists ordered by zone and nodes within zones.
5684 * This results in conserving DMA zone[s] until all Normal memory is
5685 * exhausted, but results in overflowing to remote node while memory
5686 * may still exist in local DMA zone.
5687 */
f0c0b2b8 5688
f0c0b2b8
KH
5689static void build_zonelists(pg_data_t *pgdat)
5690{
9d3be21b
MH
5691 static int node_order[MAX_NUMNODES];
5692 int node, load, nr_nodes = 0;
1da177e4 5693 nodemask_t used_mask;
f0c0b2b8 5694 int local_node, prev_node;
1da177e4
LT
5695
5696 /* NUMA-aware ordering of nodes */
5697 local_node = pgdat->node_id;
62bc62a8 5698 load = nr_online_nodes;
1da177e4
LT
5699 prev_node = local_node;
5700 nodes_clear(used_mask);
f0c0b2b8 5701
f0c0b2b8 5702 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5703 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5704 /*
5705 * We don't want to pressure a particular node.
5706 * So adding penalty to the first node in same
5707 * distance group to make it round-robin.
5708 */
957f822a
DR
5709 if (node_distance(local_node, node) !=
5710 node_distance(local_node, prev_node))
f0c0b2b8
KH
5711 node_load[node] = load;
5712
9d3be21b 5713 node_order[nr_nodes++] = node;
1da177e4
LT
5714 prev_node = node;
5715 load--;
1da177e4 5716 }
523b9458 5717
9d3be21b 5718 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5719 build_thisnode_zonelists(pgdat);
1da177e4
LT
5720}
5721
7aac7898
LS
5722#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5723/*
5724 * Return node id of node used for "local" allocations.
5725 * I.e., first node id of first zone in arg node's generic zonelist.
5726 * Used for initializing percpu 'numa_mem', which is used primarily
5727 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5728 */
5729int local_memory_node(int node)
5730{
c33d6c06 5731 struct zoneref *z;
7aac7898 5732
c33d6c06 5733 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5734 gfp_zone(GFP_KERNEL),
c33d6c06 5735 NULL);
c1093b74 5736 return zone_to_nid(z->zone);
7aac7898
LS
5737}
5738#endif
f0c0b2b8 5739
6423aa81
JK
5740static void setup_min_unmapped_ratio(void);
5741static void setup_min_slab_ratio(void);
1da177e4
LT
5742#else /* CONFIG_NUMA */
5743
f0c0b2b8 5744static void build_zonelists(pg_data_t *pgdat)
1da177e4 5745{
19655d34 5746 int node, local_node;
9d3be21b
MH
5747 struct zoneref *zonerefs;
5748 int nr_zones;
1da177e4
LT
5749
5750 local_node = pgdat->node_id;
1da177e4 5751
9d3be21b
MH
5752 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5753 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5754 zonerefs += nr_zones;
1da177e4 5755
54a6eb5c
MG
5756 /*
5757 * Now we build the zonelist so that it contains the zones
5758 * of all the other nodes.
5759 * We don't want to pressure a particular node, so when
5760 * building the zones for node N, we make sure that the
5761 * zones coming right after the local ones are those from
5762 * node N+1 (modulo N)
5763 */
5764 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5765 if (!node_online(node))
5766 continue;
9d3be21b
MH
5767 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5768 zonerefs += nr_zones;
1da177e4 5769 }
54a6eb5c
MG
5770 for (node = 0; node < local_node; node++) {
5771 if (!node_online(node))
5772 continue;
9d3be21b
MH
5773 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5774 zonerefs += nr_zones;
54a6eb5c
MG
5775 }
5776
9d3be21b
MH
5777 zonerefs->zone = NULL;
5778 zonerefs->zone_idx = 0;
1da177e4
LT
5779}
5780
5781#endif /* CONFIG_NUMA */
5782
99dcc3e5
CL
5783/*
5784 * Boot pageset table. One per cpu which is going to be used for all
5785 * zones and all nodes. The parameters will be set in such a way
5786 * that an item put on a list will immediately be handed over to
5787 * the buddy list. This is safe since pageset manipulation is done
5788 * with interrupts disabled.
5789 *
5790 * The boot_pagesets must be kept even after bootup is complete for
5791 * unused processors and/or zones. They do play a role for bootstrapping
5792 * hotplugged processors.
5793 *
5794 * zoneinfo_show() and maybe other functions do
5795 * not check if the processor is online before following the pageset pointer.
5796 * Other parts of the kernel may not check if the zone is available.
5797 */
5798static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5799static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5800static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5801
11cd8638 5802static void __build_all_zonelists(void *data)
1da177e4 5803{
6811378e 5804 int nid;
afb6ebb3 5805 int __maybe_unused cpu;
9adb62a5 5806 pg_data_t *self = data;
b93e0f32
MH
5807 static DEFINE_SPINLOCK(lock);
5808
5809 spin_lock(&lock);
9276b1bc 5810
7f9cfb31
BL
5811#ifdef CONFIG_NUMA
5812 memset(node_load, 0, sizeof(node_load));
5813#endif
9adb62a5 5814
c1152583
WY
5815 /*
5816 * This node is hotadded and no memory is yet present. So just
5817 * building zonelists is fine - no need to touch other nodes.
5818 */
9adb62a5
JL
5819 if (self && !node_online(self->node_id)) {
5820 build_zonelists(self);
c1152583
WY
5821 } else {
5822 for_each_online_node(nid) {
5823 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5824
c1152583
WY
5825 build_zonelists(pgdat);
5826 }
99dcc3e5 5827
7aac7898
LS
5828#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5829 /*
5830 * We now know the "local memory node" for each node--
5831 * i.e., the node of the first zone in the generic zonelist.
5832 * Set up numa_mem percpu variable for on-line cpus. During
5833 * boot, only the boot cpu should be on-line; we'll init the
5834 * secondary cpus' numa_mem as they come on-line. During
5835 * node/memory hotplug, we'll fixup all on-line cpus.
5836 */
d9c9a0b9 5837 for_each_online_cpu(cpu)
7aac7898 5838 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5839#endif
d9c9a0b9 5840 }
b93e0f32
MH
5841
5842 spin_unlock(&lock);
6811378e
YG
5843}
5844
061f67bc
RV
5845static noinline void __init
5846build_all_zonelists_init(void)
5847{
afb6ebb3
MH
5848 int cpu;
5849
061f67bc 5850 __build_all_zonelists(NULL);
afb6ebb3
MH
5851
5852 /*
5853 * Initialize the boot_pagesets that are going to be used
5854 * for bootstrapping processors. The real pagesets for
5855 * each zone will be allocated later when the per cpu
5856 * allocator is available.
5857 *
5858 * boot_pagesets are used also for bootstrapping offline
5859 * cpus if the system is already booted because the pagesets
5860 * are needed to initialize allocators on a specific cpu too.
5861 * F.e. the percpu allocator needs the page allocator which
5862 * needs the percpu allocator in order to allocate its pagesets
5863 * (a chicken-egg dilemma).
5864 */
5865 for_each_possible_cpu(cpu)
5866 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5867
061f67bc
RV
5868 mminit_verify_zonelist();
5869 cpuset_init_current_mems_allowed();
5870}
5871
4eaf3f64 5872/*
4eaf3f64 5873 * unless system_state == SYSTEM_BOOTING.
061f67bc 5874 *
72675e13 5875 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5876 * [protected by SYSTEM_BOOTING].
4eaf3f64 5877 */
72675e13 5878void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5879{
5880 if (system_state == SYSTEM_BOOTING) {
061f67bc 5881 build_all_zonelists_init();
6811378e 5882 } else {
11cd8638 5883 __build_all_zonelists(pgdat);
6811378e
YG
5884 /* cpuset refresh routine should be here */
5885 }
bd1e22b8 5886 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5887 /*
5888 * Disable grouping by mobility if the number of pages in the
5889 * system is too low to allow the mechanism to work. It would be
5890 * more accurate, but expensive to check per-zone. This check is
5891 * made on memory-hotadd so a system can start with mobility
5892 * disabled and enable it later
5893 */
d9c23400 5894 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5895 page_group_by_mobility_disabled = 1;
5896 else
5897 page_group_by_mobility_disabled = 0;
5898
ce0725f7 5899 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5900 nr_online_nodes,
756a025f
JP
5901 page_group_by_mobility_disabled ? "off" : "on",
5902 vm_total_pages);
f0c0b2b8 5903#ifdef CONFIG_NUMA
f88dfff5 5904 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5905#endif
1da177e4
LT
5906}
5907
a9a9e77f
PT
5908/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5909static bool __meminit
5910overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5911{
a9a9e77f
PT
5912 static struct memblock_region *r;
5913
5914 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5915 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5916 for_each_memblock(memory, r) {
5917 if (*pfn < memblock_region_memory_end_pfn(r))
5918 break;
5919 }
5920 }
5921 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5922 memblock_is_mirror(r)) {
5923 *pfn = memblock_region_memory_end_pfn(r);
5924 return true;
5925 }
5926 }
a9a9e77f
PT
5927 return false;
5928}
5929
1da177e4
LT
5930/*
5931 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5932 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5933 * done. Non-atomic initialization, single-pass.
5934 */
c09b4240 5935void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5936 unsigned long start_pfn, enum memmap_context context,
5937 struct vmem_altmap *altmap)
1da177e4 5938{
a9a9e77f 5939 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5940 struct page *page;
1da177e4 5941
22b31eec
HD
5942 if (highest_memmap_pfn < end_pfn - 1)
5943 highest_memmap_pfn = end_pfn - 1;
5944
966cf44f 5945#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5946 /*
5947 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5948 * memory. We limit the total number of pages to initialize to just
5949 * those that might contain the memory mapping. We will defer the
5950 * ZONE_DEVICE page initialization until after we have released
5951 * the hotplug lock.
4b94ffdc 5952 */
966cf44f
AD
5953 if (zone == ZONE_DEVICE) {
5954 if (!altmap)
5955 return;
5956
5957 if (start_pfn == altmap->base_pfn)
5958 start_pfn += altmap->reserve;
5959 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5960 }
5961#endif
4b94ffdc 5962
948c436e 5963 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 5964 /*
b72d0ffb
AM
5965 * There can be holes in boot-time mem_map[]s handed to this
5966 * function. They do not exist on hotplugged memory.
a2f3aa02 5967 */
a9a9e77f 5968 if (context == MEMMAP_EARLY) {
a9a9e77f
PT
5969 if (overlap_memmap_init(zone, &pfn))
5970 continue;
5971 if (defer_init(nid, pfn, end_pfn))
5972 break;
a2f3aa02 5973 }
ac5d2539 5974
d0dc12e8
PT
5975 page = pfn_to_page(pfn);
5976 __init_single_page(page, pfn, zone, nid);
5977 if (context == MEMMAP_HOTPLUG)
d483da5b 5978 __SetPageReserved(page);
d0dc12e8 5979
ac5d2539
MG
5980 /*
5981 * Mark the block movable so that blocks are reserved for
5982 * movable at startup. This will force kernel allocations
5983 * to reserve their blocks rather than leaking throughout
5984 * the address space during boot when many long-lived
974a786e 5985 * kernel allocations are made.
ac5d2539
MG
5986 *
5987 * bitmap is created for zone's valid pfn range. but memmap
5988 * can be created for invalid pages (for alignment)
5989 * check here not to call set_pageblock_migratetype() against
5990 * pfn out of zone.
5991 */
5992 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5993 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5994 cond_resched();
ac5d2539 5995 }
948c436e 5996 pfn++;
1da177e4
LT
5997 }
5998}
5999
966cf44f
AD
6000#ifdef CONFIG_ZONE_DEVICE
6001void __ref memmap_init_zone_device(struct zone *zone,
6002 unsigned long start_pfn,
1f8d75c1 6003 unsigned long nr_pages,
966cf44f
AD
6004 struct dev_pagemap *pgmap)
6005{
1f8d75c1 6006 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6007 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6008 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6009 unsigned long zone_idx = zone_idx(zone);
6010 unsigned long start = jiffies;
6011 int nid = pgdat->node_id;
6012
46d945ae 6013 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6014 return;
6015
6016 /*
6017 * The call to memmap_init_zone should have already taken care
6018 * of the pages reserved for the memmap, so we can just jump to
6019 * the end of that region and start processing the device pages.
6020 */
514caf23 6021 if (altmap) {
966cf44f 6022 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6023 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6024 }
6025
6026 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6027 struct page *page = pfn_to_page(pfn);
6028
6029 __init_single_page(page, pfn, zone_idx, nid);
6030
6031 /*
6032 * Mark page reserved as it will need to wait for onlining
6033 * phase for it to be fully associated with a zone.
6034 *
6035 * We can use the non-atomic __set_bit operation for setting
6036 * the flag as we are still initializing the pages.
6037 */
6038 __SetPageReserved(page);
6039
6040 /*
8a164fef
CH
6041 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6042 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6043 * ever freed or placed on a driver-private list.
966cf44f
AD
6044 */
6045 page->pgmap = pgmap;
8a164fef 6046 page->zone_device_data = NULL;
966cf44f
AD
6047
6048 /*
6049 * Mark the block movable so that blocks are reserved for
6050 * movable at startup. This will force kernel allocations
6051 * to reserve their blocks rather than leaking throughout
6052 * the address space during boot when many long-lived
6053 * kernel allocations are made.
6054 *
6055 * bitmap is created for zone's valid pfn range. but memmap
6056 * can be created for invalid pages (for alignment)
6057 * check here not to call set_pageblock_migratetype() against
6058 * pfn out of zone.
6059 *
6060 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 6061 * because this is done early in section_activate()
966cf44f
AD
6062 */
6063 if (!(pfn & (pageblock_nr_pages - 1))) {
6064 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6065 cond_resched();
6066 }
6067 }
6068
fdc029b1 6069 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6070 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6071}
6072
6073#endif
1e548deb 6074static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6075{
7aeb09f9 6076 unsigned int order, t;
b2a0ac88
MG
6077 for_each_migratetype_order(order, t) {
6078 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6079 zone->free_area[order].nr_free = 0;
6080 }
6081}
6082
dfb3ccd0 6083void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6084 unsigned long zone,
6085 unsigned long range_start_pfn)
dfb3ccd0 6086{
73a6e474
BH
6087 unsigned long start_pfn, end_pfn;
6088 unsigned long range_end_pfn = range_start_pfn + size;
6089 int i;
6090
6091 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6092 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6093 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6094
6095 if (end_pfn > start_pfn) {
6096 size = end_pfn - start_pfn;
6097 memmap_init_zone(size, nid, zone, start_pfn,
6098 MEMMAP_EARLY, NULL);
6099 }
6100 }
dfb3ccd0 6101}
1da177e4 6102
7cd2b0a3 6103static int zone_batchsize(struct zone *zone)
e7c8d5c9 6104{
3a6be87f 6105#ifdef CONFIG_MMU
e7c8d5c9
CL
6106 int batch;
6107
6108 /*
6109 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6110 * size of the zone.
e7c8d5c9 6111 */
9705bea5 6112 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6113 /* But no more than a meg. */
6114 if (batch * PAGE_SIZE > 1024 * 1024)
6115 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6116 batch /= 4; /* We effectively *= 4 below */
6117 if (batch < 1)
6118 batch = 1;
6119
6120 /*
0ceaacc9
NP
6121 * Clamp the batch to a 2^n - 1 value. Having a power
6122 * of 2 value was found to be more likely to have
6123 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6124 *
0ceaacc9
NP
6125 * For example if 2 tasks are alternately allocating
6126 * batches of pages, one task can end up with a lot
6127 * of pages of one half of the possible page colors
6128 * and the other with pages of the other colors.
e7c8d5c9 6129 */
9155203a 6130 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6131
e7c8d5c9 6132 return batch;
3a6be87f
DH
6133
6134#else
6135 /* The deferral and batching of frees should be suppressed under NOMMU
6136 * conditions.
6137 *
6138 * The problem is that NOMMU needs to be able to allocate large chunks
6139 * of contiguous memory as there's no hardware page translation to
6140 * assemble apparent contiguous memory from discontiguous pages.
6141 *
6142 * Queueing large contiguous runs of pages for batching, however,
6143 * causes the pages to actually be freed in smaller chunks. As there
6144 * can be a significant delay between the individual batches being
6145 * recycled, this leads to the once large chunks of space being
6146 * fragmented and becoming unavailable for high-order allocations.
6147 */
6148 return 0;
6149#endif
e7c8d5c9
CL
6150}
6151
8d7a8fa9
CS
6152/*
6153 * pcp->high and pcp->batch values are related and dependent on one another:
6154 * ->batch must never be higher then ->high.
6155 * The following function updates them in a safe manner without read side
6156 * locking.
6157 *
6158 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6159 * those fields changing asynchronously (acording the the above rule).
6160 *
6161 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6162 * outside of boot time (or some other assurance that no concurrent updaters
6163 * exist).
6164 */
6165static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6166 unsigned long batch)
6167{
6168 /* start with a fail safe value for batch */
6169 pcp->batch = 1;
6170 smp_wmb();
6171
6172 /* Update high, then batch, in order */
6173 pcp->high = high;
6174 smp_wmb();
6175
6176 pcp->batch = batch;
6177}
6178
3664033c 6179/* a companion to pageset_set_high() */
4008bab7
CS
6180static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6181{
8d7a8fa9 6182 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6183}
6184
88c90dbc 6185static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6186{
6187 struct per_cpu_pages *pcp;
5f8dcc21 6188 int migratetype;
2caaad41 6189
1c6fe946
MD
6190 memset(p, 0, sizeof(*p));
6191
3dfa5721 6192 pcp = &p->pcp;
5f8dcc21
MG
6193 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6194 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6195}
6196
88c90dbc
CS
6197static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6198{
6199 pageset_init(p);
6200 pageset_set_batch(p, batch);
6201}
6202
8ad4b1fb 6203/*
3664033c 6204 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6205 * to the value high for the pageset p.
6206 */
3664033c 6207static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6208 unsigned long high)
6209{
8d7a8fa9
CS
6210 unsigned long batch = max(1UL, high / 4);
6211 if ((high / 4) > (PAGE_SHIFT * 8))
6212 batch = PAGE_SHIFT * 8;
8ad4b1fb 6213
8d7a8fa9 6214 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6215}
6216
7cd2b0a3
DR
6217static void pageset_set_high_and_batch(struct zone *zone,
6218 struct per_cpu_pageset *pcp)
56cef2b8 6219{
56cef2b8 6220 if (percpu_pagelist_fraction)
3664033c 6221 pageset_set_high(pcp,
9705bea5 6222 (zone_managed_pages(zone) /
56cef2b8
CS
6223 percpu_pagelist_fraction));
6224 else
6225 pageset_set_batch(pcp, zone_batchsize(zone));
6226}
6227
169f6c19
CS
6228static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6229{
6230 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6231
6232 pageset_init(pcp);
6233 pageset_set_high_and_batch(zone, pcp);
6234}
6235
72675e13 6236void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6237{
6238 int cpu;
319774e2 6239 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6240 for_each_possible_cpu(cpu)
6241 zone_pageset_init(zone, cpu);
319774e2
WF
6242}
6243
2caaad41 6244/*
99dcc3e5
CL
6245 * Allocate per cpu pagesets and initialize them.
6246 * Before this call only boot pagesets were available.
e7c8d5c9 6247 */
99dcc3e5 6248void __init setup_per_cpu_pageset(void)
e7c8d5c9 6249{
b4911ea2 6250 struct pglist_data *pgdat;
99dcc3e5 6251 struct zone *zone;
e7c8d5c9 6252
319774e2
WF
6253 for_each_populated_zone(zone)
6254 setup_zone_pageset(zone);
b4911ea2
MG
6255
6256 for_each_online_pgdat(pgdat)
6257 pgdat->per_cpu_nodestats =
6258 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6259}
6260
c09b4240 6261static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6262{
99dcc3e5
CL
6263 /*
6264 * per cpu subsystem is not up at this point. The following code
6265 * relies on the ability of the linker to provide the
6266 * offset of a (static) per cpu variable into the per cpu area.
6267 */
6268 zone->pageset = &boot_pageset;
ed8ece2e 6269
b38a8725 6270 if (populated_zone(zone))
99dcc3e5
CL
6271 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6272 zone->name, zone->present_pages,
6273 zone_batchsize(zone));
ed8ece2e
DH
6274}
6275
dc0bbf3b 6276void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6277 unsigned long zone_start_pfn,
b171e409 6278 unsigned long size)
ed8ece2e
DH
6279{
6280 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6281 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6282
8f416836
WY
6283 if (zone_idx > pgdat->nr_zones)
6284 pgdat->nr_zones = zone_idx;
ed8ece2e 6285
ed8ece2e
DH
6286 zone->zone_start_pfn = zone_start_pfn;
6287
708614e6
MG
6288 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6289 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6290 pgdat->node_id,
6291 (unsigned long)zone_idx(zone),
6292 zone_start_pfn, (zone_start_pfn + size));
6293
1e548deb 6294 zone_init_free_lists(zone);
9dcb8b68 6295 zone->initialized = 1;
ed8ece2e
DH
6296}
6297
c713216d
MG
6298/**
6299 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6300 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6301 *
7d018176
ZZ
6302 * If an architecture guarantees that all ranges registered contain no holes and may
6303 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6304 */
6305void __init sparse_memory_present_with_active_regions(int nid)
6306{
c13291a5
TH
6307 unsigned long start_pfn, end_pfn;
6308 int i, this_nid;
c713216d 6309
c13291a5
TH
6310 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6311 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6312}
6313
6314/**
6315 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6316 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6317 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6318 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6319 *
6320 * It returns the start and end page frame of a node based on information
7d018176 6321 * provided by memblock_set_node(). If called for a node
c713216d 6322 * with no available memory, a warning is printed and the start and end
88ca3b94 6323 * PFNs will be 0.
c713216d 6324 */
bbe5d993 6325void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6326 unsigned long *start_pfn, unsigned long *end_pfn)
6327{
c13291a5 6328 unsigned long this_start_pfn, this_end_pfn;
c713216d 6329 int i;
c13291a5 6330
c713216d
MG
6331 *start_pfn = -1UL;
6332 *end_pfn = 0;
6333
c13291a5
TH
6334 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6335 *start_pfn = min(*start_pfn, this_start_pfn);
6336 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6337 }
6338
633c0666 6339 if (*start_pfn == -1UL)
c713216d 6340 *start_pfn = 0;
c713216d
MG
6341}
6342
2a1e274a
MG
6343/*
6344 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6345 * assumption is made that zones within a node are ordered in monotonic
6346 * increasing memory addresses so that the "highest" populated zone is used
6347 */
b69a7288 6348static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6349{
6350 int zone_index;
6351 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6352 if (zone_index == ZONE_MOVABLE)
6353 continue;
6354
6355 if (arch_zone_highest_possible_pfn[zone_index] >
6356 arch_zone_lowest_possible_pfn[zone_index])
6357 break;
6358 }
6359
6360 VM_BUG_ON(zone_index == -1);
6361 movable_zone = zone_index;
6362}
6363
6364/*
6365 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6366 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6367 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6368 * in each node depending on the size of each node and how evenly kernelcore
6369 * is distributed. This helper function adjusts the zone ranges
6370 * provided by the architecture for a given node by using the end of the
6371 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6372 * zones within a node are in order of monotonic increases memory addresses
6373 */
bbe5d993 6374static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6375 unsigned long zone_type,
6376 unsigned long node_start_pfn,
6377 unsigned long node_end_pfn,
6378 unsigned long *zone_start_pfn,
6379 unsigned long *zone_end_pfn)
6380{
6381 /* Only adjust if ZONE_MOVABLE is on this node */
6382 if (zone_movable_pfn[nid]) {
6383 /* Size ZONE_MOVABLE */
6384 if (zone_type == ZONE_MOVABLE) {
6385 *zone_start_pfn = zone_movable_pfn[nid];
6386 *zone_end_pfn = min(node_end_pfn,
6387 arch_zone_highest_possible_pfn[movable_zone]);
6388
e506b996
XQ
6389 /* Adjust for ZONE_MOVABLE starting within this range */
6390 } else if (!mirrored_kernelcore &&
6391 *zone_start_pfn < zone_movable_pfn[nid] &&
6392 *zone_end_pfn > zone_movable_pfn[nid]) {
6393 *zone_end_pfn = zone_movable_pfn[nid];
6394
2a1e274a
MG
6395 /* Check if this whole range is within ZONE_MOVABLE */
6396 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6397 *zone_start_pfn = *zone_end_pfn;
6398 }
6399}
6400
c713216d
MG
6401/*
6402 * Return the number of pages a zone spans in a node, including holes
6403 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6404 */
bbe5d993 6405static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6406 unsigned long zone_type,
7960aedd
ZY
6407 unsigned long node_start_pfn,
6408 unsigned long node_end_pfn,
d91749c1 6409 unsigned long *zone_start_pfn,
854e8848 6410 unsigned long *zone_end_pfn)
c713216d 6411{
299c83dc
LF
6412 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6413 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6414 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6415 if (!node_start_pfn && !node_end_pfn)
6416 return 0;
6417
7960aedd 6418 /* Get the start and end of the zone */
299c83dc
LF
6419 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6420 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6421 adjust_zone_range_for_zone_movable(nid, zone_type,
6422 node_start_pfn, node_end_pfn,
d91749c1 6423 zone_start_pfn, zone_end_pfn);
c713216d
MG
6424
6425 /* Check that this node has pages within the zone's required range */
d91749c1 6426 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6427 return 0;
6428
6429 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6430 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6431 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6432
6433 /* Return the spanned pages */
d91749c1 6434 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6435}
6436
6437/*
6438 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6439 * then all holes in the requested range will be accounted for.
c713216d 6440 */
bbe5d993 6441unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6442 unsigned long range_start_pfn,
6443 unsigned long range_end_pfn)
6444{
96e907d1
TH
6445 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6446 unsigned long start_pfn, end_pfn;
6447 int i;
c713216d 6448
96e907d1
TH
6449 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6450 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6451 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6452 nr_absent -= end_pfn - start_pfn;
c713216d 6453 }
96e907d1 6454 return nr_absent;
c713216d
MG
6455}
6456
6457/**
6458 * absent_pages_in_range - Return number of page frames in holes within a range
6459 * @start_pfn: The start PFN to start searching for holes
6460 * @end_pfn: The end PFN to stop searching for holes
6461 *
a862f68a 6462 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6463 */
6464unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6465 unsigned long end_pfn)
6466{
6467 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6468}
6469
6470/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6471static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6472 unsigned long zone_type,
7960aedd 6473 unsigned long node_start_pfn,
854e8848 6474 unsigned long node_end_pfn)
c713216d 6475{
96e907d1
TH
6476 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6477 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6478 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6479 unsigned long nr_absent;
9c7cd687 6480
b5685e92 6481 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6482 if (!node_start_pfn && !node_end_pfn)
6483 return 0;
6484
96e907d1
TH
6485 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6486 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6487
2a1e274a
MG
6488 adjust_zone_range_for_zone_movable(nid, zone_type,
6489 node_start_pfn, node_end_pfn,
6490 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6491 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6492
6493 /*
6494 * ZONE_MOVABLE handling.
6495 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6496 * and vice versa.
6497 */
e506b996
XQ
6498 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6499 unsigned long start_pfn, end_pfn;
6500 struct memblock_region *r;
6501
6502 for_each_memblock(memory, r) {
6503 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6504 zone_start_pfn, zone_end_pfn);
6505 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6506 zone_start_pfn, zone_end_pfn);
6507
6508 if (zone_type == ZONE_MOVABLE &&
6509 memblock_is_mirror(r))
6510 nr_absent += end_pfn - start_pfn;
6511
6512 if (zone_type == ZONE_NORMAL &&
6513 !memblock_is_mirror(r))
6514 nr_absent += end_pfn - start_pfn;
342332e6
TI
6515 }
6516 }
6517
6518 return nr_absent;
c713216d 6519}
0e0b864e 6520
bbe5d993 6521static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6522 unsigned long node_start_pfn,
854e8848 6523 unsigned long node_end_pfn)
c713216d 6524{
febd5949 6525 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6526 enum zone_type i;
6527
febd5949
GZ
6528 for (i = 0; i < MAX_NR_ZONES; i++) {
6529 struct zone *zone = pgdat->node_zones + i;
d91749c1 6530 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6531 unsigned long spanned, absent;
febd5949 6532 unsigned long size, real_size;
c713216d 6533
854e8848
MR
6534 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6535 node_start_pfn,
6536 node_end_pfn,
6537 &zone_start_pfn,
6538 &zone_end_pfn);
6539 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6540 node_start_pfn,
6541 node_end_pfn);
3f08a302
MR
6542
6543 size = spanned;
6544 real_size = size - absent;
6545
d91749c1
TI
6546 if (size)
6547 zone->zone_start_pfn = zone_start_pfn;
6548 else
6549 zone->zone_start_pfn = 0;
febd5949
GZ
6550 zone->spanned_pages = size;
6551 zone->present_pages = real_size;
6552
6553 totalpages += size;
6554 realtotalpages += real_size;
6555 }
6556
6557 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6558 pgdat->node_present_pages = realtotalpages;
6559 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6560 realtotalpages);
6561}
6562
835c134e
MG
6563#ifndef CONFIG_SPARSEMEM
6564/*
6565 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6566 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6567 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6568 * round what is now in bits to nearest long in bits, then return it in
6569 * bytes.
6570 */
7c45512d 6571static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6572{
6573 unsigned long usemapsize;
6574
7c45512d 6575 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6576 usemapsize = roundup(zonesize, pageblock_nr_pages);
6577 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6578 usemapsize *= NR_PAGEBLOCK_BITS;
6579 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6580
6581 return usemapsize / 8;
6582}
6583
7cc2a959 6584static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6585 struct zone *zone,
6586 unsigned long zone_start_pfn,
6587 unsigned long zonesize)
835c134e 6588{
7c45512d 6589 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6590 zone->pageblock_flags = NULL;
23a7052a 6591 if (usemapsize) {
6782832e 6592 zone->pageblock_flags =
26fb3dae
MR
6593 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6594 pgdat->node_id);
23a7052a
MR
6595 if (!zone->pageblock_flags)
6596 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6597 usemapsize, zone->name, pgdat->node_id);
6598 }
835c134e
MG
6599}
6600#else
7c45512d
LT
6601static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6602 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6603#endif /* CONFIG_SPARSEMEM */
6604
d9c23400 6605#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6606
d9c23400 6607/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6608void __init set_pageblock_order(void)
d9c23400 6609{
955c1cd7
AM
6610 unsigned int order;
6611
d9c23400
MG
6612 /* Check that pageblock_nr_pages has not already been setup */
6613 if (pageblock_order)
6614 return;
6615
955c1cd7
AM
6616 if (HPAGE_SHIFT > PAGE_SHIFT)
6617 order = HUGETLB_PAGE_ORDER;
6618 else
6619 order = MAX_ORDER - 1;
6620
d9c23400
MG
6621 /*
6622 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6623 * This value may be variable depending on boot parameters on IA64 and
6624 * powerpc.
d9c23400
MG
6625 */
6626 pageblock_order = order;
6627}
6628#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6629
ba72cb8c
MG
6630/*
6631 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6632 * is unused as pageblock_order is set at compile-time. See
6633 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6634 * the kernel config
ba72cb8c 6635 */
03e85f9d 6636void __init set_pageblock_order(void)
ba72cb8c 6637{
ba72cb8c 6638}
d9c23400
MG
6639
6640#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6641
03e85f9d 6642static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6643 unsigned long present_pages)
01cefaef
JL
6644{
6645 unsigned long pages = spanned_pages;
6646
6647 /*
6648 * Provide a more accurate estimation if there are holes within
6649 * the zone and SPARSEMEM is in use. If there are holes within the
6650 * zone, each populated memory region may cost us one or two extra
6651 * memmap pages due to alignment because memmap pages for each
89d790ab 6652 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6653 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6654 */
6655 if (spanned_pages > present_pages + (present_pages >> 4) &&
6656 IS_ENABLED(CONFIG_SPARSEMEM))
6657 pages = present_pages;
6658
6659 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6660}
6661
ace1db39
OS
6662#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6663static void pgdat_init_split_queue(struct pglist_data *pgdat)
6664{
364c1eeb
YS
6665 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6666
6667 spin_lock_init(&ds_queue->split_queue_lock);
6668 INIT_LIST_HEAD(&ds_queue->split_queue);
6669 ds_queue->split_queue_len = 0;
ace1db39
OS
6670}
6671#else
6672static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6673#endif
6674
6675#ifdef CONFIG_COMPACTION
6676static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6677{
6678 init_waitqueue_head(&pgdat->kcompactd_wait);
6679}
6680#else
6681static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6682#endif
6683
03e85f9d 6684static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6685{
208d54e5 6686 pgdat_resize_init(pgdat);
ace1db39 6687
ace1db39
OS
6688 pgdat_init_split_queue(pgdat);
6689 pgdat_init_kcompactd(pgdat);
6690
1da177e4 6691 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6692 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6693
eefa864b 6694 pgdat_page_ext_init(pgdat);
a52633d8 6695 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6696 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6697}
6698
6699static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6700 unsigned long remaining_pages)
6701{
9705bea5 6702 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6703 zone_set_nid(zone, nid);
6704 zone->name = zone_names[idx];
6705 zone->zone_pgdat = NODE_DATA(nid);
6706 spin_lock_init(&zone->lock);
6707 zone_seqlock_init(zone);
6708 zone_pcp_init(zone);
6709}
6710
6711/*
6712 * Set up the zone data structures
6713 * - init pgdat internals
6714 * - init all zones belonging to this node
6715 *
6716 * NOTE: this function is only called during memory hotplug
6717 */
6718#ifdef CONFIG_MEMORY_HOTPLUG
6719void __ref free_area_init_core_hotplug(int nid)
6720{
6721 enum zone_type z;
6722 pg_data_t *pgdat = NODE_DATA(nid);
6723
6724 pgdat_init_internals(pgdat);
6725 for (z = 0; z < MAX_NR_ZONES; z++)
6726 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6727}
6728#endif
6729
6730/*
6731 * Set up the zone data structures:
6732 * - mark all pages reserved
6733 * - mark all memory queues empty
6734 * - clear the memory bitmaps
6735 *
6736 * NOTE: pgdat should get zeroed by caller.
6737 * NOTE: this function is only called during early init.
6738 */
6739static void __init free_area_init_core(struct pglist_data *pgdat)
6740{
6741 enum zone_type j;
6742 int nid = pgdat->node_id;
5f63b720 6743
03e85f9d 6744 pgdat_init_internals(pgdat);
385386cf
JW
6745 pgdat->per_cpu_nodestats = &boot_nodestats;
6746
1da177e4
LT
6747 for (j = 0; j < MAX_NR_ZONES; j++) {
6748 struct zone *zone = pgdat->node_zones + j;
e6943859 6749 unsigned long size, freesize, memmap_pages;
d91749c1 6750 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6751
febd5949 6752 size = zone->spanned_pages;
e6943859 6753 freesize = zone->present_pages;
1da177e4 6754
0e0b864e 6755 /*
9feedc9d 6756 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6757 * is used by this zone for memmap. This affects the watermark
6758 * and per-cpu initialisations
6759 */
e6943859 6760 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6761 if (!is_highmem_idx(j)) {
6762 if (freesize >= memmap_pages) {
6763 freesize -= memmap_pages;
6764 if (memmap_pages)
6765 printk(KERN_DEBUG
6766 " %s zone: %lu pages used for memmap\n",
6767 zone_names[j], memmap_pages);
6768 } else
1170532b 6769 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6770 zone_names[j], memmap_pages, freesize);
6771 }
0e0b864e 6772
6267276f 6773 /* Account for reserved pages */
9feedc9d
JL
6774 if (j == 0 && freesize > dma_reserve) {
6775 freesize -= dma_reserve;
d903ef9f 6776 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6777 zone_names[0], dma_reserve);
0e0b864e
MG
6778 }
6779
98d2b0eb 6780 if (!is_highmem_idx(j))
9feedc9d 6781 nr_kernel_pages += freesize;
01cefaef
JL
6782 /* Charge for highmem memmap if there are enough kernel pages */
6783 else if (nr_kernel_pages > memmap_pages * 2)
6784 nr_kernel_pages -= memmap_pages;
9feedc9d 6785 nr_all_pages += freesize;
1da177e4 6786
9feedc9d
JL
6787 /*
6788 * Set an approximate value for lowmem here, it will be adjusted
6789 * when the bootmem allocator frees pages into the buddy system.
6790 * And all highmem pages will be managed by the buddy system.
6791 */
03e85f9d 6792 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6793
d883c6cf 6794 if (!size)
1da177e4
LT
6795 continue;
6796
955c1cd7 6797 set_pageblock_order();
d883c6cf
JK
6798 setup_usemap(pgdat, zone, zone_start_pfn, size);
6799 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6800 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6801 }
6802}
6803
0cd842f9 6804#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6805static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6806{
b0aeba74 6807 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6808 unsigned long __maybe_unused offset = 0;
6809
1da177e4
LT
6810 /* Skip empty nodes */
6811 if (!pgdat->node_spanned_pages)
6812 return;
6813
b0aeba74
TL
6814 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6815 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6816 /* ia64 gets its own node_mem_map, before this, without bootmem */
6817 if (!pgdat->node_mem_map) {
b0aeba74 6818 unsigned long size, end;
d41dee36
AW
6819 struct page *map;
6820
e984bb43
BP
6821 /*
6822 * The zone's endpoints aren't required to be MAX_ORDER
6823 * aligned but the node_mem_map endpoints must be in order
6824 * for the buddy allocator to function correctly.
6825 */
108bcc96 6826 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6827 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6828 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6829 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6830 pgdat->node_id);
23a7052a
MR
6831 if (!map)
6832 panic("Failed to allocate %ld bytes for node %d memory map\n",
6833 size, pgdat->node_id);
a1c34a3b 6834 pgdat->node_mem_map = map + offset;
1da177e4 6835 }
0cd842f9
OS
6836 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6837 __func__, pgdat->node_id, (unsigned long)pgdat,
6838 (unsigned long)pgdat->node_mem_map);
12d810c1 6839#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6840 /*
6841 * With no DISCONTIG, the global mem_map is just set as node 0's
6842 */
c713216d 6843 if (pgdat == NODE_DATA(0)) {
1da177e4 6844 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6845 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6846 mem_map -= offset;
c713216d 6847 }
1da177e4
LT
6848#endif
6849}
0cd842f9
OS
6850#else
6851static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6852#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6853
0188dc98
OS
6854#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6855static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6856{
0188dc98
OS
6857 pgdat->first_deferred_pfn = ULONG_MAX;
6858}
6859#else
6860static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6861#endif
6862
854e8848 6863static void __init free_area_init_node(int nid)
1da177e4 6864{
9109fb7b 6865 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6866 unsigned long start_pfn = 0;
6867 unsigned long end_pfn = 0;
9109fb7b 6868
88fdf75d 6869 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6870 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6871
854e8848
MR
6872 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6873
1da177e4 6874 pgdat->node_id = nid;
854e8848 6875 pgdat->node_start_pfn = start_pfn;
75ef7184 6876 pgdat->per_cpu_nodestats = NULL;
854e8848
MR
6877
6878 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6879 (u64)start_pfn << PAGE_SHIFT,
6880 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6881 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
6882
6883 alloc_node_mem_map(pgdat);
0188dc98 6884 pgdat_set_deferred_range(pgdat);
1da177e4 6885
7f3eb55b 6886 free_area_init_core(pgdat);
1da177e4
LT
6887}
6888
bc9331a1 6889void __init free_area_init_memoryless_node(int nid)
3f08a302 6890{
854e8848 6891 free_area_init_node(nid);
3f08a302
MR
6892}
6893
aca52c39 6894#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6895/*
4b094b78
DH
6896 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6897 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6898 */
4b094b78 6899static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6900{
6901 unsigned long pfn;
6902 u64 pgcnt = 0;
6903
6904 for (pfn = spfn; pfn < epfn; pfn++) {
6905 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6906 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6907 + pageblock_nr_pages - 1;
6908 continue;
6909 }
4b094b78
DH
6910 /*
6911 * Use a fake node/zone (0) for now. Some of these pages
6912 * (in memblock.reserved but not in memblock.memory) will
6913 * get re-initialized via reserve_bootmem_region() later.
6914 */
6915 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6916 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
6917 pgcnt++;
6918 }
6919
6920 return pgcnt;
6921}
6922
a4a3ede2
PT
6923/*
6924 * Only struct pages that are backed by physical memory are zeroed and
6925 * initialized by going through __init_single_page(). But, there are some
6926 * struct pages which are reserved in memblock allocator and their fields
6927 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 6928 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
6929 *
6930 * This function also addresses a similar issue where struct pages are left
6931 * uninitialized because the physical address range is not covered by
6932 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
6933 * layout is manually configured via memmap=, or when the highest physical
6934 * address (max_pfn) does not end on a section boundary.
a4a3ede2 6935 */
4b094b78 6936static void __init init_unavailable_mem(void)
a4a3ede2
PT
6937{
6938 phys_addr_t start, end;
a4a3ede2 6939 u64 i, pgcnt;
907ec5fc 6940 phys_addr_t next = 0;
a4a3ede2
PT
6941
6942 /*
907ec5fc 6943 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6944 */
6945 pgcnt = 0;
907ec5fc
NH
6946 for_each_mem_range(i, &memblock.memory, NULL,
6947 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 6948 if (next < start)
4b094b78
DH
6949 pgcnt += init_unavailable_range(PFN_DOWN(next),
6950 PFN_UP(start));
907ec5fc
NH
6951 next = end;
6952 }
e822969c
DH
6953
6954 /*
6955 * Early sections always have a fully populated memmap for the whole
6956 * section - see pfn_valid(). If the last section has holes at the
6957 * end and that section is marked "online", the memmap will be
6958 * considered initialized. Make sure that memmap has a well defined
6959 * state.
6960 */
4b094b78
DH
6961 pgcnt += init_unavailable_range(PFN_DOWN(next),
6962 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 6963
a4a3ede2
PT
6964 /*
6965 * Struct pages that do not have backing memory. This could be because
6966 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6967 */
6968 if (pgcnt)
907ec5fc 6969 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6970}
4b094b78
DH
6971#else
6972static inline void __init init_unavailable_mem(void)
6973{
6974}
aca52c39 6975#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6976
418508c1
MS
6977#if MAX_NUMNODES > 1
6978/*
6979 * Figure out the number of possible node ids.
6980 */
f9872caf 6981void __init setup_nr_node_ids(void)
418508c1 6982{
904a9553 6983 unsigned int highest;
418508c1 6984
904a9553 6985 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6986 nr_node_ids = highest + 1;
6987}
418508c1
MS
6988#endif
6989
1e01979c
TH
6990/**
6991 * node_map_pfn_alignment - determine the maximum internode alignment
6992 *
6993 * This function should be called after node map is populated and sorted.
6994 * It calculates the maximum power of two alignment which can distinguish
6995 * all the nodes.
6996 *
6997 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6998 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6999 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7000 * shifted, 1GiB is enough and this function will indicate so.
7001 *
7002 * This is used to test whether pfn -> nid mapping of the chosen memory
7003 * model has fine enough granularity to avoid incorrect mapping for the
7004 * populated node map.
7005 *
a862f68a 7006 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7007 * requirement (single node).
7008 */
7009unsigned long __init node_map_pfn_alignment(void)
7010{
7011 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7012 unsigned long start, end, mask;
98fa15f3 7013 int last_nid = NUMA_NO_NODE;
c13291a5 7014 int i, nid;
1e01979c 7015
c13291a5 7016 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7017 if (!start || last_nid < 0 || last_nid == nid) {
7018 last_nid = nid;
7019 last_end = end;
7020 continue;
7021 }
7022
7023 /*
7024 * Start with a mask granular enough to pin-point to the
7025 * start pfn and tick off bits one-by-one until it becomes
7026 * too coarse to separate the current node from the last.
7027 */
7028 mask = ~((1 << __ffs(start)) - 1);
7029 while (mask && last_end <= (start & (mask << 1)))
7030 mask <<= 1;
7031
7032 /* accumulate all internode masks */
7033 accl_mask |= mask;
7034 }
7035
7036 /* convert mask to number of pages */
7037 return ~accl_mask + 1;
7038}
7039
c713216d
MG
7040/**
7041 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7042 *
a862f68a 7043 * Return: the minimum PFN based on information provided via
7d018176 7044 * memblock_set_node().
c713216d
MG
7045 */
7046unsigned long __init find_min_pfn_with_active_regions(void)
7047{
8a1b25fe 7048 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7049}
7050
37b07e41
LS
7051/*
7052 * early_calculate_totalpages()
7053 * Sum pages in active regions for movable zone.
4b0ef1fe 7054 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7055 */
484f51f8 7056static unsigned long __init early_calculate_totalpages(void)
7e63efef 7057{
7e63efef 7058 unsigned long totalpages = 0;
c13291a5
TH
7059 unsigned long start_pfn, end_pfn;
7060 int i, nid;
7061
7062 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7063 unsigned long pages = end_pfn - start_pfn;
7e63efef 7064
37b07e41
LS
7065 totalpages += pages;
7066 if (pages)
4b0ef1fe 7067 node_set_state(nid, N_MEMORY);
37b07e41 7068 }
b8af2941 7069 return totalpages;
7e63efef
MG
7070}
7071
2a1e274a
MG
7072/*
7073 * Find the PFN the Movable zone begins in each node. Kernel memory
7074 * is spread evenly between nodes as long as the nodes have enough
7075 * memory. When they don't, some nodes will have more kernelcore than
7076 * others
7077 */
b224ef85 7078static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7079{
7080 int i, nid;
7081 unsigned long usable_startpfn;
7082 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7083 /* save the state before borrow the nodemask */
4b0ef1fe 7084 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7085 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7086 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7087 struct memblock_region *r;
b2f3eebe
TC
7088
7089 /* Need to find movable_zone earlier when movable_node is specified. */
7090 find_usable_zone_for_movable();
7091
7092 /*
7093 * If movable_node is specified, ignore kernelcore and movablecore
7094 * options.
7095 */
7096 if (movable_node_is_enabled()) {
136199f0
EM
7097 for_each_memblock(memory, r) {
7098 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7099 continue;
7100
d622abf7 7101 nid = memblock_get_region_node(r);
b2f3eebe 7102
136199f0 7103 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7104 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7105 min(usable_startpfn, zone_movable_pfn[nid]) :
7106 usable_startpfn;
7107 }
7108
7109 goto out2;
7110 }
2a1e274a 7111
342332e6
TI
7112 /*
7113 * If kernelcore=mirror is specified, ignore movablecore option
7114 */
7115 if (mirrored_kernelcore) {
7116 bool mem_below_4gb_not_mirrored = false;
7117
7118 for_each_memblock(memory, r) {
7119 if (memblock_is_mirror(r))
7120 continue;
7121
d622abf7 7122 nid = memblock_get_region_node(r);
342332e6
TI
7123
7124 usable_startpfn = memblock_region_memory_base_pfn(r);
7125
7126 if (usable_startpfn < 0x100000) {
7127 mem_below_4gb_not_mirrored = true;
7128 continue;
7129 }
7130
7131 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7132 min(usable_startpfn, zone_movable_pfn[nid]) :
7133 usable_startpfn;
7134 }
7135
7136 if (mem_below_4gb_not_mirrored)
7137 pr_warn("This configuration results in unmirrored kernel memory.");
7138
7139 goto out2;
7140 }
7141
7e63efef 7142 /*
a5c6d650
DR
7143 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7144 * amount of necessary memory.
7145 */
7146 if (required_kernelcore_percent)
7147 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7148 10000UL;
7149 if (required_movablecore_percent)
7150 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7151 10000UL;
7152
7153 /*
7154 * If movablecore= was specified, calculate what size of
7e63efef
MG
7155 * kernelcore that corresponds so that memory usable for
7156 * any allocation type is evenly spread. If both kernelcore
7157 * and movablecore are specified, then the value of kernelcore
7158 * will be used for required_kernelcore if it's greater than
7159 * what movablecore would have allowed.
7160 */
7161 if (required_movablecore) {
7e63efef
MG
7162 unsigned long corepages;
7163
7164 /*
7165 * Round-up so that ZONE_MOVABLE is at least as large as what
7166 * was requested by the user
7167 */
7168 required_movablecore =
7169 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7170 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7171 corepages = totalpages - required_movablecore;
7172
7173 required_kernelcore = max(required_kernelcore, corepages);
7174 }
7175
bde304bd
XQ
7176 /*
7177 * If kernelcore was not specified or kernelcore size is larger
7178 * than totalpages, there is no ZONE_MOVABLE.
7179 */
7180 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7181 goto out;
2a1e274a
MG
7182
7183 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7184 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7185
7186restart:
7187 /* Spread kernelcore memory as evenly as possible throughout nodes */
7188 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7189 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7190 unsigned long start_pfn, end_pfn;
7191
2a1e274a
MG
7192 /*
7193 * Recalculate kernelcore_node if the division per node
7194 * now exceeds what is necessary to satisfy the requested
7195 * amount of memory for the kernel
7196 */
7197 if (required_kernelcore < kernelcore_node)
7198 kernelcore_node = required_kernelcore / usable_nodes;
7199
7200 /*
7201 * As the map is walked, we track how much memory is usable
7202 * by the kernel using kernelcore_remaining. When it is
7203 * 0, the rest of the node is usable by ZONE_MOVABLE
7204 */
7205 kernelcore_remaining = kernelcore_node;
7206
7207 /* Go through each range of PFNs within this node */
c13291a5 7208 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7209 unsigned long size_pages;
7210
c13291a5 7211 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7212 if (start_pfn >= end_pfn)
7213 continue;
7214
7215 /* Account for what is only usable for kernelcore */
7216 if (start_pfn < usable_startpfn) {
7217 unsigned long kernel_pages;
7218 kernel_pages = min(end_pfn, usable_startpfn)
7219 - start_pfn;
7220
7221 kernelcore_remaining -= min(kernel_pages,
7222 kernelcore_remaining);
7223 required_kernelcore -= min(kernel_pages,
7224 required_kernelcore);
7225
7226 /* Continue if range is now fully accounted */
7227 if (end_pfn <= usable_startpfn) {
7228
7229 /*
7230 * Push zone_movable_pfn to the end so
7231 * that if we have to rebalance
7232 * kernelcore across nodes, we will
7233 * not double account here
7234 */
7235 zone_movable_pfn[nid] = end_pfn;
7236 continue;
7237 }
7238 start_pfn = usable_startpfn;
7239 }
7240
7241 /*
7242 * The usable PFN range for ZONE_MOVABLE is from
7243 * start_pfn->end_pfn. Calculate size_pages as the
7244 * number of pages used as kernelcore
7245 */
7246 size_pages = end_pfn - start_pfn;
7247 if (size_pages > kernelcore_remaining)
7248 size_pages = kernelcore_remaining;
7249 zone_movable_pfn[nid] = start_pfn + size_pages;
7250
7251 /*
7252 * Some kernelcore has been met, update counts and
7253 * break if the kernelcore for this node has been
b8af2941 7254 * satisfied
2a1e274a
MG
7255 */
7256 required_kernelcore -= min(required_kernelcore,
7257 size_pages);
7258 kernelcore_remaining -= size_pages;
7259 if (!kernelcore_remaining)
7260 break;
7261 }
7262 }
7263
7264 /*
7265 * If there is still required_kernelcore, we do another pass with one
7266 * less node in the count. This will push zone_movable_pfn[nid] further
7267 * along on the nodes that still have memory until kernelcore is
b8af2941 7268 * satisfied
2a1e274a
MG
7269 */
7270 usable_nodes--;
7271 if (usable_nodes && required_kernelcore > usable_nodes)
7272 goto restart;
7273
b2f3eebe 7274out2:
2a1e274a
MG
7275 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7276 for (nid = 0; nid < MAX_NUMNODES; nid++)
7277 zone_movable_pfn[nid] =
7278 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7279
20e6926d 7280out:
66918dcd 7281 /* restore the node_state */
4b0ef1fe 7282 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7283}
7284
4b0ef1fe
LJ
7285/* Any regular or high memory on that node ? */
7286static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7287{
37b07e41
LS
7288 enum zone_type zone_type;
7289
4b0ef1fe 7290 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7291 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7292 if (populated_zone(zone)) {
7b0e0c0e
OS
7293 if (IS_ENABLED(CONFIG_HIGHMEM))
7294 node_set_state(nid, N_HIGH_MEMORY);
7295 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7296 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7297 break;
7298 }
37b07e41 7299 }
37b07e41
LS
7300}
7301
51930df5
MR
7302/*
7303 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7304 * such cases we allow max_zone_pfn sorted in the descending order
7305 */
7306bool __weak arch_has_descending_max_zone_pfns(void)
7307{
7308 return false;
7309}
7310
c713216d 7311/**
9691a071 7312 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7313 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7314 *
7315 * This will call free_area_init_node() for each active node in the system.
7d018176 7316 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7317 * zone in each node and their holes is calculated. If the maximum PFN
7318 * between two adjacent zones match, it is assumed that the zone is empty.
7319 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7320 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7321 * starts where the previous one ended. For example, ZONE_DMA32 starts
7322 * at arch_max_dma_pfn.
7323 */
9691a071 7324void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7325{
c13291a5 7326 unsigned long start_pfn, end_pfn;
51930df5
MR
7327 int i, nid, zone;
7328 bool descending;
a6af2bc3 7329
c713216d
MG
7330 /* Record where the zone boundaries are */
7331 memset(arch_zone_lowest_possible_pfn, 0,
7332 sizeof(arch_zone_lowest_possible_pfn));
7333 memset(arch_zone_highest_possible_pfn, 0,
7334 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7335
7336 start_pfn = find_min_pfn_with_active_regions();
51930df5 7337 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7338
7339 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7340 if (descending)
7341 zone = MAX_NR_ZONES - i - 1;
7342 else
7343 zone = i;
7344
7345 if (zone == ZONE_MOVABLE)
2a1e274a 7346 continue;
90cae1fe 7347
51930df5
MR
7348 end_pfn = max(max_zone_pfn[zone], start_pfn);
7349 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7350 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7351
7352 start_pfn = end_pfn;
c713216d 7353 }
2a1e274a
MG
7354
7355 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7356 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7357 find_zone_movable_pfns_for_nodes();
c713216d 7358
c713216d 7359 /* Print out the zone ranges */
f88dfff5 7360 pr_info("Zone ranges:\n");
2a1e274a
MG
7361 for (i = 0; i < MAX_NR_ZONES; i++) {
7362 if (i == ZONE_MOVABLE)
7363 continue;
f88dfff5 7364 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7365 if (arch_zone_lowest_possible_pfn[i] ==
7366 arch_zone_highest_possible_pfn[i])
f88dfff5 7367 pr_cont("empty\n");
72f0ba02 7368 else
8d29e18a
JG
7369 pr_cont("[mem %#018Lx-%#018Lx]\n",
7370 (u64)arch_zone_lowest_possible_pfn[i]
7371 << PAGE_SHIFT,
7372 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7373 << PAGE_SHIFT) - 1);
2a1e274a
MG
7374 }
7375
7376 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7377 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7378 for (i = 0; i < MAX_NUMNODES; i++) {
7379 if (zone_movable_pfn[i])
8d29e18a
JG
7380 pr_info(" Node %d: %#018Lx\n", i,
7381 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7382 }
c713216d 7383
f46edbd1
DW
7384 /*
7385 * Print out the early node map, and initialize the
7386 * subsection-map relative to active online memory ranges to
7387 * enable future "sub-section" extensions of the memory map.
7388 */
f88dfff5 7389 pr_info("Early memory node ranges\n");
f46edbd1 7390 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7391 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7392 (u64)start_pfn << PAGE_SHIFT,
7393 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7394 subsection_map_init(start_pfn, end_pfn - start_pfn);
7395 }
c713216d
MG
7396
7397 /* Initialise every node */
708614e6 7398 mminit_verify_pageflags_layout();
8ef82866 7399 setup_nr_node_ids();
4b094b78 7400 init_unavailable_mem();
c713216d
MG
7401 for_each_online_node(nid) {
7402 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7403 free_area_init_node(nid);
37b07e41
LS
7404
7405 /* Any memory on that node */
7406 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7407 node_set_state(nid, N_MEMORY);
7408 check_for_memory(pgdat, nid);
c713216d
MG
7409 }
7410}
2a1e274a 7411
a5c6d650
DR
7412static int __init cmdline_parse_core(char *p, unsigned long *core,
7413 unsigned long *percent)
2a1e274a
MG
7414{
7415 unsigned long long coremem;
a5c6d650
DR
7416 char *endptr;
7417
2a1e274a
MG
7418 if (!p)
7419 return -EINVAL;
7420
a5c6d650
DR
7421 /* Value may be a percentage of total memory, otherwise bytes */
7422 coremem = simple_strtoull(p, &endptr, 0);
7423 if (*endptr == '%') {
7424 /* Paranoid check for percent values greater than 100 */
7425 WARN_ON(coremem > 100);
2a1e274a 7426
a5c6d650
DR
7427 *percent = coremem;
7428 } else {
7429 coremem = memparse(p, &p);
7430 /* Paranoid check that UL is enough for the coremem value */
7431 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7432
a5c6d650
DR
7433 *core = coremem >> PAGE_SHIFT;
7434 *percent = 0UL;
7435 }
2a1e274a
MG
7436 return 0;
7437}
ed7ed365 7438
7e63efef
MG
7439/*
7440 * kernelcore=size sets the amount of memory for use for allocations that
7441 * cannot be reclaimed or migrated.
7442 */
7443static int __init cmdline_parse_kernelcore(char *p)
7444{
342332e6
TI
7445 /* parse kernelcore=mirror */
7446 if (parse_option_str(p, "mirror")) {
7447 mirrored_kernelcore = true;
7448 return 0;
7449 }
7450
a5c6d650
DR
7451 return cmdline_parse_core(p, &required_kernelcore,
7452 &required_kernelcore_percent);
7e63efef
MG
7453}
7454
7455/*
7456 * movablecore=size sets the amount of memory for use for allocations that
7457 * can be reclaimed or migrated.
7458 */
7459static int __init cmdline_parse_movablecore(char *p)
7460{
a5c6d650
DR
7461 return cmdline_parse_core(p, &required_movablecore,
7462 &required_movablecore_percent);
7e63efef
MG
7463}
7464
ed7ed365 7465early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7466early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7467
c3d5f5f0
JL
7468void adjust_managed_page_count(struct page *page, long count)
7469{
9705bea5 7470 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7471 totalram_pages_add(count);
3dcc0571
JL
7472#ifdef CONFIG_HIGHMEM
7473 if (PageHighMem(page))
ca79b0c2 7474 totalhigh_pages_add(count);
3dcc0571 7475#endif
c3d5f5f0 7476}
3dcc0571 7477EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7478
e5cb113f 7479unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7480{
11199692
JL
7481 void *pos;
7482 unsigned long pages = 0;
69afade7 7483
11199692
JL
7484 start = (void *)PAGE_ALIGN((unsigned long)start);
7485 end = (void *)((unsigned long)end & PAGE_MASK);
7486 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7487 struct page *page = virt_to_page(pos);
7488 void *direct_map_addr;
7489
7490 /*
7491 * 'direct_map_addr' might be different from 'pos'
7492 * because some architectures' virt_to_page()
7493 * work with aliases. Getting the direct map
7494 * address ensures that we get a _writeable_
7495 * alias for the memset().
7496 */
7497 direct_map_addr = page_address(page);
dbe67df4 7498 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7499 memset(direct_map_addr, poison, PAGE_SIZE);
7500
7501 free_reserved_page(page);
69afade7
JL
7502 }
7503
7504 if (pages && s)
adb1fe9a
JP
7505 pr_info("Freeing %s memory: %ldK\n",
7506 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7507
7508 return pages;
7509}
7510
cfa11e08
JL
7511#ifdef CONFIG_HIGHMEM
7512void free_highmem_page(struct page *page)
7513{
7514 __free_reserved_page(page);
ca79b0c2 7515 totalram_pages_inc();
9705bea5 7516 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7517 totalhigh_pages_inc();
cfa11e08
JL
7518}
7519#endif
7520
7ee3d4e8
JL
7521
7522void __init mem_init_print_info(const char *str)
7523{
7524 unsigned long physpages, codesize, datasize, rosize, bss_size;
7525 unsigned long init_code_size, init_data_size;
7526
7527 physpages = get_num_physpages();
7528 codesize = _etext - _stext;
7529 datasize = _edata - _sdata;
7530 rosize = __end_rodata - __start_rodata;
7531 bss_size = __bss_stop - __bss_start;
7532 init_data_size = __init_end - __init_begin;
7533 init_code_size = _einittext - _sinittext;
7534
7535 /*
7536 * Detect special cases and adjust section sizes accordingly:
7537 * 1) .init.* may be embedded into .data sections
7538 * 2) .init.text.* may be out of [__init_begin, __init_end],
7539 * please refer to arch/tile/kernel/vmlinux.lds.S.
7540 * 3) .rodata.* may be embedded into .text or .data sections.
7541 */
7542#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7543 do { \
7544 if (start <= pos && pos < end && size > adj) \
7545 size -= adj; \
7546 } while (0)
7ee3d4e8
JL
7547
7548 adj_init_size(__init_begin, __init_end, init_data_size,
7549 _sinittext, init_code_size);
7550 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7551 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7552 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7553 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7554
7555#undef adj_init_size
7556
756a025f 7557 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7558#ifdef CONFIG_HIGHMEM
756a025f 7559 ", %luK highmem"
7ee3d4e8 7560#endif
756a025f
JP
7561 "%s%s)\n",
7562 nr_free_pages() << (PAGE_SHIFT - 10),
7563 physpages << (PAGE_SHIFT - 10),
7564 codesize >> 10, datasize >> 10, rosize >> 10,
7565 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7566 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7567 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7568#ifdef CONFIG_HIGHMEM
ca79b0c2 7569 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7570#endif
756a025f 7571 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7572}
7573
0e0b864e 7574/**
88ca3b94
RD
7575 * set_dma_reserve - set the specified number of pages reserved in the first zone
7576 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7577 *
013110a7 7578 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7579 * In the DMA zone, a significant percentage may be consumed by kernel image
7580 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7581 * function may optionally be used to account for unfreeable pages in the
7582 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7583 * smaller per-cpu batchsize.
0e0b864e
MG
7584 */
7585void __init set_dma_reserve(unsigned long new_dma_reserve)
7586{
7587 dma_reserve = new_dma_reserve;
7588}
7589
005fd4bb 7590static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7591{
1da177e4 7592
005fd4bb
SAS
7593 lru_add_drain_cpu(cpu);
7594 drain_pages(cpu);
9f8f2172 7595
005fd4bb
SAS
7596 /*
7597 * Spill the event counters of the dead processor
7598 * into the current processors event counters.
7599 * This artificially elevates the count of the current
7600 * processor.
7601 */
7602 vm_events_fold_cpu(cpu);
9f8f2172 7603
005fd4bb
SAS
7604 /*
7605 * Zero the differential counters of the dead processor
7606 * so that the vm statistics are consistent.
7607 *
7608 * This is only okay since the processor is dead and cannot
7609 * race with what we are doing.
7610 */
7611 cpu_vm_stats_fold(cpu);
7612 return 0;
1da177e4 7613}
1da177e4 7614
e03a5125
NP
7615#ifdef CONFIG_NUMA
7616int hashdist = HASHDIST_DEFAULT;
7617
7618static int __init set_hashdist(char *str)
7619{
7620 if (!str)
7621 return 0;
7622 hashdist = simple_strtoul(str, &str, 0);
7623 return 1;
7624}
7625__setup("hashdist=", set_hashdist);
7626#endif
7627
1da177e4
LT
7628void __init page_alloc_init(void)
7629{
005fd4bb
SAS
7630 int ret;
7631
e03a5125
NP
7632#ifdef CONFIG_NUMA
7633 if (num_node_state(N_MEMORY) == 1)
7634 hashdist = 0;
7635#endif
7636
005fd4bb
SAS
7637 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7638 "mm/page_alloc:dead", NULL,
7639 page_alloc_cpu_dead);
7640 WARN_ON(ret < 0);
1da177e4
LT
7641}
7642
cb45b0e9 7643/*
34b10060 7644 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7645 * or min_free_kbytes changes.
7646 */
7647static void calculate_totalreserve_pages(void)
7648{
7649 struct pglist_data *pgdat;
7650 unsigned long reserve_pages = 0;
2f6726e5 7651 enum zone_type i, j;
cb45b0e9
HA
7652
7653 for_each_online_pgdat(pgdat) {
281e3726
MG
7654
7655 pgdat->totalreserve_pages = 0;
7656
cb45b0e9
HA
7657 for (i = 0; i < MAX_NR_ZONES; i++) {
7658 struct zone *zone = pgdat->node_zones + i;
3484b2de 7659 long max = 0;
9705bea5 7660 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7661
7662 /* Find valid and maximum lowmem_reserve in the zone */
7663 for (j = i; j < MAX_NR_ZONES; j++) {
7664 if (zone->lowmem_reserve[j] > max)
7665 max = zone->lowmem_reserve[j];
7666 }
7667
41858966
MG
7668 /* we treat the high watermark as reserved pages. */
7669 max += high_wmark_pages(zone);
cb45b0e9 7670
3d6357de
AK
7671 if (max > managed_pages)
7672 max = managed_pages;
a8d01437 7673
281e3726 7674 pgdat->totalreserve_pages += max;
a8d01437 7675
cb45b0e9
HA
7676 reserve_pages += max;
7677 }
7678 }
7679 totalreserve_pages = reserve_pages;
7680}
7681
1da177e4
LT
7682/*
7683 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7684 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7685 * has a correct pages reserved value, so an adequate number of
7686 * pages are left in the zone after a successful __alloc_pages().
7687 */
7688static void setup_per_zone_lowmem_reserve(void)
7689{
7690 struct pglist_data *pgdat;
2f6726e5 7691 enum zone_type j, idx;
1da177e4 7692
ec936fc5 7693 for_each_online_pgdat(pgdat) {
1da177e4
LT
7694 for (j = 0; j < MAX_NR_ZONES; j++) {
7695 struct zone *zone = pgdat->node_zones + j;
9705bea5 7696 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7697
7698 zone->lowmem_reserve[j] = 0;
7699
2f6726e5
CL
7700 idx = j;
7701 while (idx) {
1da177e4
LT
7702 struct zone *lower_zone;
7703
2f6726e5 7704 idx--;
1da177e4 7705 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7706
7707 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7708 sysctl_lowmem_reserve_ratio[idx] = 0;
7709 lower_zone->lowmem_reserve[j] = 0;
7710 } else {
7711 lower_zone->lowmem_reserve[j] =
7712 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7713 }
9705bea5 7714 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7715 }
7716 }
7717 }
cb45b0e9
HA
7718
7719 /* update totalreserve_pages */
7720 calculate_totalreserve_pages();
1da177e4
LT
7721}
7722
cfd3da1e 7723static void __setup_per_zone_wmarks(void)
1da177e4
LT
7724{
7725 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7726 unsigned long lowmem_pages = 0;
7727 struct zone *zone;
7728 unsigned long flags;
7729
7730 /* Calculate total number of !ZONE_HIGHMEM pages */
7731 for_each_zone(zone) {
7732 if (!is_highmem(zone))
9705bea5 7733 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7734 }
7735
7736 for_each_zone(zone) {
ac924c60
AM
7737 u64 tmp;
7738
1125b4e3 7739 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7740 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7741 do_div(tmp, lowmem_pages);
1da177e4
LT
7742 if (is_highmem(zone)) {
7743 /*
669ed175
NP
7744 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7745 * need highmem pages, so cap pages_min to a small
7746 * value here.
7747 *
41858966 7748 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7749 * deltas control async page reclaim, and so should
669ed175 7750 * not be capped for highmem.
1da177e4 7751 */
90ae8d67 7752 unsigned long min_pages;
1da177e4 7753
9705bea5 7754 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7755 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7756 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7757 } else {
669ed175
NP
7758 /*
7759 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7760 * proportionate to the zone's size.
7761 */
a9214443 7762 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7763 }
7764
795ae7a0
JW
7765 /*
7766 * Set the kswapd watermarks distance according to the
7767 * scale factor in proportion to available memory, but
7768 * ensure a minimum size on small systems.
7769 */
7770 tmp = max_t(u64, tmp >> 2,
9705bea5 7771 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7772 watermark_scale_factor, 10000));
7773
a9214443
MG
7774 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7775 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7776 zone->watermark_boost = 0;
49f223a9 7777
1125b4e3 7778 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7779 }
cb45b0e9
HA
7780
7781 /* update totalreserve_pages */
7782 calculate_totalreserve_pages();
1da177e4
LT
7783}
7784
cfd3da1e
MG
7785/**
7786 * setup_per_zone_wmarks - called when min_free_kbytes changes
7787 * or when memory is hot-{added|removed}
7788 *
7789 * Ensures that the watermark[min,low,high] values for each zone are set
7790 * correctly with respect to min_free_kbytes.
7791 */
7792void setup_per_zone_wmarks(void)
7793{
b93e0f32
MH
7794 static DEFINE_SPINLOCK(lock);
7795
7796 spin_lock(&lock);
cfd3da1e 7797 __setup_per_zone_wmarks();
b93e0f32 7798 spin_unlock(&lock);
cfd3da1e
MG
7799}
7800
1da177e4
LT
7801/*
7802 * Initialise min_free_kbytes.
7803 *
7804 * For small machines we want it small (128k min). For large machines
7805 * we want it large (64MB max). But it is not linear, because network
7806 * bandwidth does not increase linearly with machine size. We use
7807 *
b8af2941 7808 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7809 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7810 *
7811 * which yields
7812 *
7813 * 16MB: 512k
7814 * 32MB: 724k
7815 * 64MB: 1024k
7816 * 128MB: 1448k
7817 * 256MB: 2048k
7818 * 512MB: 2896k
7819 * 1024MB: 4096k
7820 * 2048MB: 5792k
7821 * 4096MB: 8192k
7822 * 8192MB: 11584k
7823 * 16384MB: 16384k
7824 */
1b79acc9 7825int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7826{
7827 unsigned long lowmem_kbytes;
5f12733e 7828 int new_min_free_kbytes;
1da177e4
LT
7829
7830 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7831 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7832
7833 if (new_min_free_kbytes > user_min_free_kbytes) {
7834 min_free_kbytes = new_min_free_kbytes;
7835 if (min_free_kbytes < 128)
7836 min_free_kbytes = 128;
ee8eb9a5
JS
7837 if (min_free_kbytes > 262144)
7838 min_free_kbytes = 262144;
5f12733e
MH
7839 } else {
7840 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7841 new_min_free_kbytes, user_min_free_kbytes);
7842 }
bc75d33f 7843 setup_per_zone_wmarks();
a6cccdc3 7844 refresh_zone_stat_thresholds();
1da177e4 7845 setup_per_zone_lowmem_reserve();
6423aa81
JK
7846
7847#ifdef CONFIG_NUMA
7848 setup_min_unmapped_ratio();
7849 setup_min_slab_ratio();
7850#endif
7851
1da177e4
LT
7852 return 0;
7853}
bc22af74 7854core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7855
7856/*
b8af2941 7857 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7858 * that we can call two helper functions whenever min_free_kbytes
7859 * changes.
7860 */
cccad5b9 7861int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7862 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7863{
da8c757b
HP
7864 int rc;
7865
7866 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7867 if (rc)
7868 return rc;
7869
5f12733e
MH
7870 if (write) {
7871 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7872 setup_per_zone_wmarks();
5f12733e 7873 }
1da177e4
LT
7874 return 0;
7875}
7876
1c30844d
MG
7877int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7878 void __user *buffer, size_t *length, loff_t *ppos)
7879{
7880 int rc;
7881
7882 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7883 if (rc)
7884 return rc;
7885
7886 return 0;
7887}
7888
795ae7a0
JW
7889int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7890 void __user *buffer, size_t *length, loff_t *ppos)
7891{
7892 int rc;
7893
7894 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7895 if (rc)
7896 return rc;
7897
7898 if (write)
7899 setup_per_zone_wmarks();
7900
7901 return 0;
7902}
7903
9614634f 7904#ifdef CONFIG_NUMA
6423aa81 7905static void setup_min_unmapped_ratio(void)
9614634f 7906{
6423aa81 7907 pg_data_t *pgdat;
9614634f 7908 struct zone *zone;
9614634f 7909
a5f5f91d 7910 for_each_online_pgdat(pgdat)
81cbcbc2 7911 pgdat->min_unmapped_pages = 0;
a5f5f91d 7912
9614634f 7913 for_each_zone(zone)
9705bea5
AK
7914 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7915 sysctl_min_unmapped_ratio) / 100;
9614634f 7916}
0ff38490 7917
6423aa81
JK
7918
7919int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7920 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7921{
0ff38490
CL
7922 int rc;
7923
8d65af78 7924 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7925 if (rc)
7926 return rc;
7927
6423aa81
JK
7928 setup_min_unmapped_ratio();
7929
7930 return 0;
7931}
7932
7933static void setup_min_slab_ratio(void)
7934{
7935 pg_data_t *pgdat;
7936 struct zone *zone;
7937
a5f5f91d
MG
7938 for_each_online_pgdat(pgdat)
7939 pgdat->min_slab_pages = 0;
7940
0ff38490 7941 for_each_zone(zone)
9705bea5
AK
7942 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7943 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7944}
7945
7946int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7947 void __user *buffer, size_t *length, loff_t *ppos)
7948{
7949 int rc;
7950
7951 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7952 if (rc)
7953 return rc;
7954
7955 setup_min_slab_ratio();
7956
0ff38490
CL
7957 return 0;
7958}
9614634f
CL
7959#endif
7960
1da177e4
LT
7961/*
7962 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7963 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7964 * whenever sysctl_lowmem_reserve_ratio changes.
7965 *
7966 * The reserve ratio obviously has absolutely no relation with the
41858966 7967 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7968 * if in function of the boot time zone sizes.
7969 */
cccad5b9 7970int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7971 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7972{
8d65af78 7973 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7974 setup_per_zone_lowmem_reserve();
7975 return 0;
7976}
7977
cb1ef534
MG
7978static void __zone_pcp_update(struct zone *zone)
7979{
7980 unsigned int cpu;
7981
7982 for_each_possible_cpu(cpu)
7983 pageset_set_high_and_batch(zone,
7984 per_cpu_ptr(zone->pageset, cpu));
7985}
7986
8ad4b1fb
RS
7987/*
7988 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7989 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7990 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7991 */
cccad5b9 7992int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7993 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7994{
7995 struct zone *zone;
7cd2b0a3 7996 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7997 int ret;
7998
7cd2b0a3
DR
7999 mutex_lock(&pcp_batch_high_lock);
8000 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8001
8d65af78 8002 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8003 if (!write || ret < 0)
8004 goto out;
8005
8006 /* Sanity checking to avoid pcp imbalance */
8007 if (percpu_pagelist_fraction &&
8008 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8009 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8010 ret = -EINVAL;
8011 goto out;
8012 }
8013
8014 /* No change? */
8015 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8016 goto out;
c8e251fa 8017
cb1ef534
MG
8018 for_each_populated_zone(zone)
8019 __zone_pcp_update(zone);
7cd2b0a3 8020out:
c8e251fa 8021 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8022 return ret;
8ad4b1fb
RS
8023}
8024
f6f34b43
SD
8025#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8026/*
8027 * Returns the number of pages that arch has reserved but
8028 * is not known to alloc_large_system_hash().
8029 */
8030static unsigned long __init arch_reserved_kernel_pages(void)
8031{
8032 return 0;
8033}
8034#endif
8035
9017217b
PT
8036/*
8037 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8038 * machines. As memory size is increased the scale is also increased but at
8039 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8040 * quadruples the scale is increased by one, which means the size of hash table
8041 * only doubles, instead of quadrupling as well.
8042 * Because 32-bit systems cannot have large physical memory, where this scaling
8043 * makes sense, it is disabled on such platforms.
8044 */
8045#if __BITS_PER_LONG > 32
8046#define ADAPT_SCALE_BASE (64ul << 30)
8047#define ADAPT_SCALE_SHIFT 2
8048#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8049#endif
8050
1da177e4
LT
8051/*
8052 * allocate a large system hash table from bootmem
8053 * - it is assumed that the hash table must contain an exact power-of-2
8054 * quantity of entries
8055 * - limit is the number of hash buckets, not the total allocation size
8056 */
8057void *__init alloc_large_system_hash(const char *tablename,
8058 unsigned long bucketsize,
8059 unsigned long numentries,
8060 int scale,
8061 int flags,
8062 unsigned int *_hash_shift,
8063 unsigned int *_hash_mask,
31fe62b9
TB
8064 unsigned long low_limit,
8065 unsigned long high_limit)
1da177e4 8066{
31fe62b9 8067 unsigned long long max = high_limit;
1da177e4
LT
8068 unsigned long log2qty, size;
8069 void *table = NULL;
3749a8f0 8070 gfp_t gfp_flags;
ec11408a 8071 bool virt;
1da177e4
LT
8072
8073 /* allow the kernel cmdline to have a say */
8074 if (!numentries) {
8075 /* round applicable memory size up to nearest megabyte */
04903664 8076 numentries = nr_kernel_pages;
f6f34b43 8077 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8078
8079 /* It isn't necessary when PAGE_SIZE >= 1MB */
8080 if (PAGE_SHIFT < 20)
8081 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8082
9017217b
PT
8083#if __BITS_PER_LONG > 32
8084 if (!high_limit) {
8085 unsigned long adapt;
8086
8087 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8088 adapt <<= ADAPT_SCALE_SHIFT)
8089 scale++;
8090 }
8091#endif
8092
1da177e4
LT
8093 /* limit to 1 bucket per 2^scale bytes of low memory */
8094 if (scale > PAGE_SHIFT)
8095 numentries >>= (scale - PAGE_SHIFT);
8096 else
8097 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8098
8099 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8100 if (unlikely(flags & HASH_SMALL)) {
8101 /* Makes no sense without HASH_EARLY */
8102 WARN_ON(!(flags & HASH_EARLY));
8103 if (!(numentries >> *_hash_shift)) {
8104 numentries = 1UL << *_hash_shift;
8105 BUG_ON(!numentries);
8106 }
8107 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8108 numentries = PAGE_SIZE / bucketsize;
1da177e4 8109 }
6e692ed3 8110 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8111
8112 /* limit allocation size to 1/16 total memory by default */
8113 if (max == 0) {
8114 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8115 do_div(max, bucketsize);
8116 }
074b8517 8117 max = min(max, 0x80000000ULL);
1da177e4 8118
31fe62b9
TB
8119 if (numentries < low_limit)
8120 numentries = low_limit;
1da177e4
LT
8121 if (numentries > max)
8122 numentries = max;
8123
f0d1b0b3 8124 log2qty = ilog2(numentries);
1da177e4 8125
3749a8f0 8126 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8127 do {
ec11408a 8128 virt = false;
1da177e4 8129 size = bucketsize << log2qty;
ea1f5f37
PT
8130 if (flags & HASH_EARLY) {
8131 if (flags & HASH_ZERO)
26fb3dae 8132 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8133 else
7e1c4e27
MR
8134 table = memblock_alloc_raw(size,
8135 SMP_CACHE_BYTES);
ec11408a 8136 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8137 table = __vmalloc(size, gfp_flags);
ec11408a 8138 virt = true;
ea1f5f37 8139 } else {
1037b83b
ED
8140 /*
8141 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8142 * some pages at the end of hash table which
8143 * alloc_pages_exact() automatically does
1037b83b 8144 */
ec11408a
NP
8145 table = alloc_pages_exact(size, gfp_flags);
8146 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8147 }
8148 } while (!table && size > PAGE_SIZE && --log2qty);
8149
8150 if (!table)
8151 panic("Failed to allocate %s hash table\n", tablename);
8152
ec11408a
NP
8153 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8154 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8155 virt ? "vmalloc" : "linear");
1da177e4
LT
8156
8157 if (_hash_shift)
8158 *_hash_shift = log2qty;
8159 if (_hash_mask)
8160 *_hash_mask = (1 << log2qty) - 1;
8161
8162 return table;
8163}
a117e66e 8164
a5d76b54 8165/*
80934513 8166 * This function checks whether pageblock includes unmovable pages or not.
80934513 8167 *
b8af2941 8168 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8169 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8170 * check without lock_page also may miss some movable non-lru pages at
8171 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8172 *
8173 * Returns a page without holding a reference. If the caller wants to
8174 * dereference that page (e.g., dumping), it has to make sure that that it
8175 * cannot get removed (e.g., via memory unplug) concurrently.
8176 *
a5d76b54 8177 */
4a55c047
QC
8178struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8179 int migratetype, int flags)
49ac8255 8180{
1a9f2191
QC
8181 unsigned long iter = 0;
8182 unsigned long pfn = page_to_pfn(page);
47118af0 8183
49ac8255 8184 /*
15c30bc0
MH
8185 * TODO we could make this much more efficient by not checking every
8186 * page in the range if we know all of them are in MOVABLE_ZONE and
8187 * that the movable zone guarantees that pages are migratable but
8188 * the later is not the case right now unfortunatelly. E.g. movablecore
8189 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8190 */
49ac8255 8191
1a9f2191
QC
8192 if (is_migrate_cma_page(page)) {
8193 /*
8194 * CMA allocations (alloc_contig_range) really need to mark
8195 * isolate CMA pageblocks even when they are not movable in fact
8196 * so consider them movable here.
8197 */
8198 if (is_migrate_cma(migratetype))
4a55c047 8199 return NULL;
1a9f2191 8200
3d680bdf 8201 return page;
1a9f2191 8202 }
4da2ce25 8203
fe4c86c9
DH
8204 for (; iter < pageblock_nr_pages; iter++) {
8205 if (!pfn_valid_within(pfn + iter))
49ac8255 8206 continue;
29723fcc 8207
fe4c86c9 8208 page = pfn_to_page(pfn + iter);
c8721bbb 8209
d7ab3672 8210 if (PageReserved(page))
3d680bdf 8211 return page;
d7ab3672 8212
9d789999
MH
8213 /*
8214 * If the zone is movable and we have ruled out all reserved
8215 * pages then it should be reasonably safe to assume the rest
8216 * is movable.
8217 */
8218 if (zone_idx(zone) == ZONE_MOVABLE)
8219 continue;
8220
c8721bbb
NH
8221 /*
8222 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8223 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8224 * We need not scan over tail pages because we don't
c8721bbb
NH
8225 * handle each tail page individually in migration.
8226 */
1da2f328 8227 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8228 struct page *head = compound_head(page);
8229 unsigned int skip_pages;
464c7ffb 8230
1da2f328
RR
8231 if (PageHuge(page)) {
8232 if (!hugepage_migration_supported(page_hstate(head)))
8233 return page;
8234 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8235 return page;
1da2f328 8236 }
464c7ffb 8237
d8c6546b 8238 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8239 iter += skip_pages - 1;
c8721bbb
NH
8240 continue;
8241 }
8242
97d255c8
MK
8243 /*
8244 * We can't use page_count without pin a page
8245 * because another CPU can free compound page.
8246 * This check already skips compound tails of THP
0139aa7b 8247 * because their page->_refcount is zero at all time.
97d255c8 8248 */
fe896d18 8249 if (!page_ref_count(page)) {
49ac8255
KH
8250 if (PageBuddy(page))
8251 iter += (1 << page_order(page)) - 1;
8252 continue;
8253 }
97d255c8 8254
b023f468
WC
8255 /*
8256 * The HWPoisoned page may be not in buddy system, and
8257 * page_count() is not 0.
8258 */
756d25be 8259 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8260 continue;
8261
fe4c86c9 8262 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8263 continue;
8264
49ac8255 8265 /*
6b4f7799
JW
8266 * If there are RECLAIMABLE pages, we need to check
8267 * it. But now, memory offline itself doesn't call
8268 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8269 */
8270 /*
8271 * If the page is not RAM, page_count()should be 0.
8272 * we don't need more check. This is an _used_ not-movable page.
8273 *
8274 * The problematic thing here is PG_reserved pages. PG_reserved
8275 * is set to both of a memory hole page and a _used_ kernel
8276 * page at boot.
8277 */
3d680bdf 8278 return page;
49ac8255 8279 }
4a55c047 8280 return NULL;
49ac8255
KH
8281}
8282
8df995f6 8283#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8284static unsigned long pfn_max_align_down(unsigned long pfn)
8285{
8286 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8287 pageblock_nr_pages) - 1);
8288}
8289
8290static unsigned long pfn_max_align_up(unsigned long pfn)
8291{
8292 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8293 pageblock_nr_pages));
8294}
8295
041d3a8c 8296/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8297static int __alloc_contig_migrate_range(struct compact_control *cc,
8298 unsigned long start, unsigned long end)
041d3a8c
MN
8299{
8300 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8301 unsigned long nr_reclaimed;
041d3a8c
MN
8302 unsigned long pfn = start;
8303 unsigned int tries = 0;
8304 int ret = 0;
8305
be49a6e1 8306 migrate_prep();
041d3a8c 8307
bb13ffeb 8308 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8309 if (fatal_signal_pending(current)) {
8310 ret = -EINTR;
8311 break;
8312 }
8313
bb13ffeb
MG
8314 if (list_empty(&cc->migratepages)) {
8315 cc->nr_migratepages = 0;
edc2ca61 8316 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8317 if (!pfn) {
8318 ret = -EINTR;
8319 break;
8320 }
8321 tries = 0;
8322 } else if (++tries == 5) {
8323 ret = ret < 0 ? ret : -EBUSY;
8324 break;
8325 }
8326
beb51eaa
MK
8327 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8328 &cc->migratepages);
8329 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8330
9c620e2b 8331 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8332 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8333 }
2a6f5124
SP
8334 if (ret < 0) {
8335 putback_movable_pages(&cc->migratepages);
8336 return ret;
8337 }
8338 return 0;
041d3a8c
MN
8339}
8340
8341/**
8342 * alloc_contig_range() -- tries to allocate given range of pages
8343 * @start: start PFN to allocate
8344 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8345 * @migratetype: migratetype of the underlaying pageblocks (either
8346 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8347 * in range must have the same migratetype and it must
8348 * be either of the two.
ca96b625 8349 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8350 *
8351 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8352 * aligned. The PFN range must belong to a single zone.
041d3a8c 8353 *
2c7452a0
MK
8354 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8355 * pageblocks in the range. Once isolated, the pageblocks should not
8356 * be modified by others.
041d3a8c 8357 *
a862f68a 8358 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8359 * pages which PFN is in [start, end) are allocated for the caller and
8360 * need to be freed with free_contig_range().
8361 */
0815f3d8 8362int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8363 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8364{
041d3a8c 8365 unsigned long outer_start, outer_end;
d00181b9
KS
8366 unsigned int order;
8367 int ret = 0;
041d3a8c 8368
bb13ffeb
MG
8369 struct compact_control cc = {
8370 .nr_migratepages = 0,
8371 .order = -1,
8372 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8373 .mode = MIGRATE_SYNC,
bb13ffeb 8374 .ignore_skip_hint = true,
2583d671 8375 .no_set_skip_hint = true,
7dea19f9 8376 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8377 .alloc_contig = true,
bb13ffeb
MG
8378 };
8379 INIT_LIST_HEAD(&cc.migratepages);
8380
041d3a8c
MN
8381 /*
8382 * What we do here is we mark all pageblocks in range as
8383 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8384 * have different sizes, and due to the way page allocator
8385 * work, we align the range to biggest of the two pages so
8386 * that page allocator won't try to merge buddies from
8387 * different pageblocks and change MIGRATE_ISOLATE to some
8388 * other migration type.
8389 *
8390 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8391 * migrate the pages from an unaligned range (ie. pages that
8392 * we are interested in). This will put all the pages in
8393 * range back to page allocator as MIGRATE_ISOLATE.
8394 *
8395 * When this is done, we take the pages in range from page
8396 * allocator removing them from the buddy system. This way
8397 * page allocator will never consider using them.
8398 *
8399 * This lets us mark the pageblocks back as
8400 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8401 * aligned range but not in the unaligned, original range are
8402 * put back to page allocator so that buddy can use them.
8403 */
8404
8405 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8406 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8407 if (ret < 0)
86a595f9 8408 return ret;
041d3a8c 8409
8ef5849f
JK
8410 /*
8411 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8412 * So, just fall through. test_pages_isolated() has a tracepoint
8413 * which will report the busy page.
8414 *
8415 * It is possible that busy pages could become available before
8416 * the call to test_pages_isolated, and the range will actually be
8417 * allocated. So, if we fall through be sure to clear ret so that
8418 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8419 */
bb13ffeb 8420 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8421 if (ret && ret != -EBUSY)
041d3a8c 8422 goto done;
63cd4489 8423 ret =0;
041d3a8c
MN
8424
8425 /*
8426 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8427 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8428 * more, all pages in [start, end) are free in page allocator.
8429 * What we are going to do is to allocate all pages from
8430 * [start, end) (that is remove them from page allocator).
8431 *
8432 * The only problem is that pages at the beginning and at the
8433 * end of interesting range may be not aligned with pages that
8434 * page allocator holds, ie. they can be part of higher order
8435 * pages. Because of this, we reserve the bigger range and
8436 * once this is done free the pages we are not interested in.
8437 *
8438 * We don't have to hold zone->lock here because the pages are
8439 * isolated thus they won't get removed from buddy.
8440 */
8441
8442 lru_add_drain_all();
041d3a8c
MN
8443
8444 order = 0;
8445 outer_start = start;
8446 while (!PageBuddy(pfn_to_page(outer_start))) {
8447 if (++order >= MAX_ORDER) {
8ef5849f
JK
8448 outer_start = start;
8449 break;
041d3a8c
MN
8450 }
8451 outer_start &= ~0UL << order;
8452 }
8453
8ef5849f
JK
8454 if (outer_start != start) {
8455 order = page_order(pfn_to_page(outer_start));
8456
8457 /*
8458 * outer_start page could be small order buddy page and
8459 * it doesn't include start page. Adjust outer_start
8460 * in this case to report failed page properly
8461 * on tracepoint in test_pages_isolated()
8462 */
8463 if (outer_start + (1UL << order) <= start)
8464 outer_start = start;
8465 }
8466
041d3a8c 8467 /* Make sure the range is really isolated. */
756d25be 8468 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8469 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8470 __func__, outer_start, end);
041d3a8c
MN
8471 ret = -EBUSY;
8472 goto done;
8473 }
8474
49f223a9 8475 /* Grab isolated pages from freelists. */
bb13ffeb 8476 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8477 if (!outer_end) {
8478 ret = -EBUSY;
8479 goto done;
8480 }
8481
8482 /* Free head and tail (if any) */
8483 if (start != outer_start)
8484 free_contig_range(outer_start, start - outer_start);
8485 if (end != outer_end)
8486 free_contig_range(end, outer_end - end);
8487
8488done:
8489 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8490 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8491 return ret;
8492}
5e27a2df
AK
8493
8494static int __alloc_contig_pages(unsigned long start_pfn,
8495 unsigned long nr_pages, gfp_t gfp_mask)
8496{
8497 unsigned long end_pfn = start_pfn + nr_pages;
8498
8499 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8500 gfp_mask);
8501}
8502
8503static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8504 unsigned long nr_pages)
8505{
8506 unsigned long i, end_pfn = start_pfn + nr_pages;
8507 struct page *page;
8508
8509 for (i = start_pfn; i < end_pfn; i++) {
8510 page = pfn_to_online_page(i);
8511 if (!page)
8512 return false;
8513
8514 if (page_zone(page) != z)
8515 return false;
8516
8517 if (PageReserved(page))
8518 return false;
8519
8520 if (page_count(page) > 0)
8521 return false;
8522
8523 if (PageHuge(page))
8524 return false;
8525 }
8526 return true;
8527}
8528
8529static bool zone_spans_last_pfn(const struct zone *zone,
8530 unsigned long start_pfn, unsigned long nr_pages)
8531{
8532 unsigned long last_pfn = start_pfn + nr_pages - 1;
8533
8534 return zone_spans_pfn(zone, last_pfn);
8535}
8536
8537/**
8538 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8539 * @nr_pages: Number of contiguous pages to allocate
8540 * @gfp_mask: GFP mask to limit search and used during compaction
8541 * @nid: Target node
8542 * @nodemask: Mask for other possible nodes
8543 *
8544 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8545 * on an applicable zonelist to find a contiguous pfn range which can then be
8546 * tried for allocation with alloc_contig_range(). This routine is intended
8547 * for allocation requests which can not be fulfilled with the buddy allocator.
8548 *
8549 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8550 * power of two then the alignment is guaranteed to be to the given nr_pages
8551 * (e.g. 1GB request would be aligned to 1GB).
8552 *
8553 * Allocated pages can be freed with free_contig_range() or by manually calling
8554 * __free_page() on each allocated page.
8555 *
8556 * Return: pointer to contiguous pages on success, or NULL if not successful.
8557 */
8558struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8559 int nid, nodemask_t *nodemask)
8560{
8561 unsigned long ret, pfn, flags;
8562 struct zonelist *zonelist;
8563 struct zone *zone;
8564 struct zoneref *z;
8565
8566 zonelist = node_zonelist(nid, gfp_mask);
8567 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8568 gfp_zone(gfp_mask), nodemask) {
8569 spin_lock_irqsave(&zone->lock, flags);
8570
8571 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8572 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8573 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8574 /*
8575 * We release the zone lock here because
8576 * alloc_contig_range() will also lock the zone
8577 * at some point. If there's an allocation
8578 * spinning on this lock, it may win the race
8579 * and cause alloc_contig_range() to fail...
8580 */
8581 spin_unlock_irqrestore(&zone->lock, flags);
8582 ret = __alloc_contig_pages(pfn, nr_pages,
8583 gfp_mask);
8584 if (!ret)
8585 return pfn_to_page(pfn);
8586 spin_lock_irqsave(&zone->lock, flags);
8587 }
8588 pfn += nr_pages;
8589 }
8590 spin_unlock_irqrestore(&zone->lock, flags);
8591 }
8592 return NULL;
8593}
4eb0716e 8594#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8595
4eb0716e 8596void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8597{
bcc2b02f
MS
8598 unsigned int count = 0;
8599
8600 for (; nr_pages--; pfn++) {
8601 struct page *page = pfn_to_page(pfn);
8602
8603 count += page_count(page) != 1;
8604 __free_page(page);
8605 }
8606 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8607}
041d3a8c 8608
0a647f38
CS
8609/*
8610 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8611 * page high values need to be recalulated.
8612 */
4ed7e022
JL
8613void __meminit zone_pcp_update(struct zone *zone)
8614{
c8e251fa 8615 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8616 __zone_pcp_update(zone);
c8e251fa 8617 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8618}
4ed7e022 8619
340175b7
JL
8620void zone_pcp_reset(struct zone *zone)
8621{
8622 unsigned long flags;
5a883813
MK
8623 int cpu;
8624 struct per_cpu_pageset *pset;
340175b7
JL
8625
8626 /* avoid races with drain_pages() */
8627 local_irq_save(flags);
8628 if (zone->pageset != &boot_pageset) {
5a883813
MK
8629 for_each_online_cpu(cpu) {
8630 pset = per_cpu_ptr(zone->pageset, cpu);
8631 drain_zonestat(zone, pset);
8632 }
340175b7
JL
8633 free_percpu(zone->pageset);
8634 zone->pageset = &boot_pageset;
8635 }
8636 local_irq_restore(flags);
8637}
8638
6dcd73d7 8639#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8640/*
b9eb6319
JK
8641 * All pages in the range must be in a single zone and isolated
8642 * before calling this.
0c0e6195 8643 */
5557c766 8644unsigned long
0c0e6195
KH
8645__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8646{
8647 struct page *page;
8648 struct zone *zone;
0ee5f4f3 8649 unsigned int order;
0c0e6195
KH
8650 unsigned long pfn;
8651 unsigned long flags;
5557c766
MH
8652 unsigned long offlined_pages = 0;
8653
0c0e6195
KH
8654 /* find the first valid pfn */
8655 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8656 if (pfn_valid(pfn))
8657 break;
8658 if (pfn == end_pfn)
5557c766
MH
8659 return offlined_pages;
8660
2d070eab 8661 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8662 zone = page_zone(pfn_to_page(pfn));
8663 spin_lock_irqsave(&zone->lock, flags);
8664 pfn = start_pfn;
8665 while (pfn < end_pfn) {
8666 if (!pfn_valid(pfn)) {
8667 pfn++;
8668 continue;
8669 }
8670 page = pfn_to_page(pfn);
b023f468
WC
8671 /*
8672 * The HWPoisoned page may be not in buddy system, and
8673 * page_count() is not 0.
8674 */
8675 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8676 pfn++;
5557c766 8677 offlined_pages++;
b023f468
WC
8678 continue;
8679 }
8680
0c0e6195
KH
8681 BUG_ON(page_count(page));
8682 BUG_ON(!PageBuddy(page));
8683 order = page_order(page);
5557c766 8684 offlined_pages += 1 << order;
6ab01363 8685 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8686 pfn += (1 << order);
8687 }
8688 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8689
8690 return offlined_pages;
0c0e6195
KH
8691}
8692#endif
8d22ba1b 8693
8d22ba1b
WF
8694bool is_free_buddy_page(struct page *page)
8695{
8696 struct zone *zone = page_zone(page);
8697 unsigned long pfn = page_to_pfn(page);
8698 unsigned long flags;
7aeb09f9 8699 unsigned int order;
8d22ba1b
WF
8700
8701 spin_lock_irqsave(&zone->lock, flags);
8702 for (order = 0; order < MAX_ORDER; order++) {
8703 struct page *page_head = page - (pfn & ((1 << order) - 1));
8704
8705 if (PageBuddy(page_head) && page_order(page_head) >= order)
8706 break;
8707 }
8708 spin_unlock_irqrestore(&zone->lock, flags);
8709
8710 return order < MAX_ORDER;
8711}
d4ae9916
NH
8712
8713#ifdef CONFIG_MEMORY_FAILURE
8714/*
8715 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8716 * test is performed under the zone lock to prevent a race against page
8717 * allocation.
8718 */
8719bool set_hwpoison_free_buddy_page(struct page *page)
8720{
8721 struct zone *zone = page_zone(page);
8722 unsigned long pfn = page_to_pfn(page);
8723 unsigned long flags;
8724 unsigned int order;
8725 bool hwpoisoned = false;
8726
8727 spin_lock_irqsave(&zone->lock, flags);
8728 for (order = 0; order < MAX_ORDER; order++) {
8729 struct page *page_head = page - (pfn & ((1 << order) - 1));
8730
8731 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8732 if (!TestSetPageHWPoison(page))
8733 hwpoisoned = true;
8734 break;
8735 }
8736 }
8737 spin_unlock_irqrestore(&zone->lock, flags);
8738
8739 return hwpoisoned;
8740}
8741#endif