mm, thp: remove infrastructure for handling splitting PMDs
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
1da177e4 65
7ee3d4e8 66#include <asm/sections.h>
1da177e4 67#include <asm/tlbflush.h>
ac924c60 68#include <asm/div64.h>
1da177e4
LT
69#include "internal.h"
70
c8e251fa
CS
71/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 73#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 74
72812019
LS
75#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76DEFINE_PER_CPU(int, numa_node);
77EXPORT_PER_CPU_SYMBOL(numa_node);
78#endif
79
7aac7898
LS
80#ifdef CONFIG_HAVE_MEMORYLESS_NODES
81/*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 89int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
90#endif
91
1da177e4 92/*
13808910 93 * Array of node states.
1da177e4 94 */
13808910
CL
95nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98#ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100#ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
102#endif
103#ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
105#endif
106 [N_CPU] = { { [0] = 1UL } },
107#endif /* NUMA */
108};
109EXPORT_SYMBOL(node_states);
110
c3d5f5f0
JL
111/* Protect totalram_pages and zone->managed_pages */
112static DEFINE_SPINLOCK(managed_page_count_lock);
113
6c231b7b 114unsigned long totalram_pages __read_mostly;
cb45b0e9 115unsigned long totalreserve_pages __read_mostly;
e48322ab 116unsigned long totalcma_pages __read_mostly;
ab8fabd4 117
1b76b02f 118int percpu_pagelist_fraction;
dcce284a 119gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 120
bb14c2c7
VB
121/*
122 * A cached value of the page's pageblock's migratetype, used when the page is
123 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
124 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
125 * Also the migratetype set in the page does not necessarily match the pcplist
126 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
127 * other index - this ensures that it will be put on the correct CMA freelist.
128 */
129static inline int get_pcppage_migratetype(struct page *page)
130{
131 return page->index;
132}
133
134static inline void set_pcppage_migratetype(struct page *page, int migratetype)
135{
136 page->index = migratetype;
137}
138
452aa699
RW
139#ifdef CONFIG_PM_SLEEP
140/*
141 * The following functions are used by the suspend/hibernate code to temporarily
142 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
143 * while devices are suspended. To avoid races with the suspend/hibernate code,
144 * they should always be called with pm_mutex held (gfp_allowed_mask also should
145 * only be modified with pm_mutex held, unless the suspend/hibernate code is
146 * guaranteed not to run in parallel with that modification).
147 */
c9e664f1
RW
148
149static gfp_t saved_gfp_mask;
150
151void pm_restore_gfp_mask(void)
452aa699
RW
152{
153 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
154 if (saved_gfp_mask) {
155 gfp_allowed_mask = saved_gfp_mask;
156 saved_gfp_mask = 0;
157 }
452aa699
RW
158}
159
c9e664f1 160void pm_restrict_gfp_mask(void)
452aa699 161{
452aa699 162 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
163 WARN_ON(saved_gfp_mask);
164 saved_gfp_mask = gfp_allowed_mask;
d0164adc 165 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 166}
f90ac398
MG
167
168bool pm_suspended_storage(void)
169{
d0164adc 170 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
171 return false;
172 return true;
173}
452aa699
RW
174#endif /* CONFIG_PM_SLEEP */
175
d9c23400 176#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 177unsigned int pageblock_order __read_mostly;
d9c23400
MG
178#endif
179
d98c7a09 180static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 181
1da177e4
LT
182/*
183 * results with 256, 32 in the lowmem_reserve sysctl:
184 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
185 * 1G machine -> (16M dma, 784M normal, 224M high)
186 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
187 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 188 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
189 *
190 * TBD: should special case ZONE_DMA32 machines here - in those we normally
191 * don't need any ZONE_NORMAL reservation
1da177e4 192 */
2f1b6248 193int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248 195 256,
4b51d669 196#endif
fb0e7942 197#ifdef CONFIG_ZONE_DMA32
2f1b6248 198 256,
fb0e7942 199#endif
e53ef38d 200#ifdef CONFIG_HIGHMEM
2a1e274a 201 32,
e53ef38d 202#endif
2a1e274a 203 32,
2f1b6248 204};
1da177e4
LT
205
206EXPORT_SYMBOL(totalram_pages);
1da177e4 207
15ad7cdc 208static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 209#ifdef CONFIG_ZONE_DMA
2f1b6248 210 "DMA",
4b51d669 211#endif
fb0e7942 212#ifdef CONFIG_ZONE_DMA32
2f1b6248 213 "DMA32",
fb0e7942 214#endif
2f1b6248 215 "Normal",
e53ef38d 216#ifdef CONFIG_HIGHMEM
2a1e274a 217 "HighMem",
e53ef38d 218#endif
2a1e274a 219 "Movable",
033fbae9
DW
220#ifdef CONFIG_ZONE_DEVICE
221 "Device",
222#endif
2f1b6248
CL
223};
224
f1e61557
KS
225static void free_compound_page(struct page *page);
226compound_page_dtor * const compound_page_dtors[] = {
227 NULL,
228 free_compound_page,
229#ifdef CONFIG_HUGETLB_PAGE
230 free_huge_page,
231#endif
232};
233
1da177e4 234int min_free_kbytes = 1024;
42aa83cb 235int user_min_free_kbytes = -1;
1da177e4 236
2c85f51d
JB
237static unsigned long __meminitdata nr_kernel_pages;
238static unsigned long __meminitdata nr_all_pages;
a3142c8e 239static unsigned long __meminitdata dma_reserve;
1da177e4 240
0ee332c1
TH
241#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
242static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
243static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
244static unsigned long __initdata required_kernelcore;
245static unsigned long __initdata required_movablecore;
246static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
247
248/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
249int movable_zone;
250EXPORT_SYMBOL(movable_zone);
251#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 252
418508c1
MS
253#if MAX_NUMNODES > 1
254int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 255int nr_online_nodes __read_mostly = 1;
418508c1 256EXPORT_SYMBOL(nr_node_ids);
62bc62a8 257EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
258#endif
259
9ef9acb0
MG
260int page_group_by_mobility_disabled __read_mostly;
261
3a80a7fa
MG
262#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
263static inline void reset_deferred_meminit(pg_data_t *pgdat)
264{
265 pgdat->first_deferred_pfn = ULONG_MAX;
266}
267
268/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 269static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 270{
ae026b2a 271 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
272 return true;
273
274 return false;
275}
276
7e18adb4
MG
277static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
278{
279 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
280 return true;
281
282 return false;
283}
284
3a80a7fa
MG
285/*
286 * Returns false when the remaining initialisation should be deferred until
287 * later in the boot cycle when it can be parallelised.
288 */
289static inline bool update_defer_init(pg_data_t *pgdat,
290 unsigned long pfn, unsigned long zone_end,
291 unsigned long *nr_initialised)
292{
293 /* Always populate low zones for address-contrained allocations */
294 if (zone_end < pgdat_end_pfn(pgdat))
295 return true;
296
297 /* Initialise at least 2G of the highest zone */
298 (*nr_initialised)++;
299 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
300 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
301 pgdat->first_deferred_pfn = pfn;
302 return false;
303 }
304
305 return true;
306}
307#else
308static inline void reset_deferred_meminit(pg_data_t *pgdat)
309{
310}
311
312static inline bool early_page_uninitialised(unsigned long pfn)
313{
314 return false;
315}
316
7e18adb4
MG
317static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
318{
319 return false;
320}
321
3a80a7fa
MG
322static inline bool update_defer_init(pg_data_t *pgdat,
323 unsigned long pfn, unsigned long zone_end,
324 unsigned long *nr_initialised)
325{
326 return true;
327}
328#endif
329
330
ee6f509c 331void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 332{
5d0f3f72
KM
333 if (unlikely(page_group_by_mobility_disabled &&
334 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
335 migratetype = MIGRATE_UNMOVABLE;
336
b2a0ac88
MG
337 set_pageblock_flags_group(page, (unsigned long)migratetype,
338 PB_migrate, PB_migrate_end);
339}
340
13e7444b 341#ifdef CONFIG_DEBUG_VM
c6a57e19 342static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 343{
bdc8cb98
DH
344 int ret = 0;
345 unsigned seq;
346 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 347 unsigned long sp, start_pfn;
c6a57e19 348
bdc8cb98
DH
349 do {
350 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
351 start_pfn = zone->zone_start_pfn;
352 sp = zone->spanned_pages;
108bcc96 353 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
354 ret = 1;
355 } while (zone_span_seqretry(zone, seq));
356
b5e6a5a2 357 if (ret)
613813e8
DH
358 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
359 pfn, zone_to_nid(zone), zone->name,
360 start_pfn, start_pfn + sp);
b5e6a5a2 361
bdc8cb98 362 return ret;
c6a57e19
DH
363}
364
365static int page_is_consistent(struct zone *zone, struct page *page)
366{
14e07298 367 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 368 return 0;
1da177e4 369 if (zone != page_zone(page))
c6a57e19
DH
370 return 0;
371
372 return 1;
373}
374/*
375 * Temporary debugging check for pages not lying within a given zone.
376 */
377static int bad_range(struct zone *zone, struct page *page)
378{
379 if (page_outside_zone_boundaries(zone, page))
1da177e4 380 return 1;
c6a57e19
DH
381 if (!page_is_consistent(zone, page))
382 return 1;
383
1da177e4
LT
384 return 0;
385}
13e7444b
NP
386#else
387static inline int bad_range(struct zone *zone, struct page *page)
388{
389 return 0;
390}
391#endif
392
d230dec1
KS
393static void bad_page(struct page *page, const char *reason,
394 unsigned long bad_flags)
1da177e4 395{
d936cf9b
HD
396 static unsigned long resume;
397 static unsigned long nr_shown;
398 static unsigned long nr_unshown;
399
2a7684a2
WF
400 /* Don't complain about poisoned pages */
401 if (PageHWPoison(page)) {
22b751c3 402 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
403 return;
404 }
405
d936cf9b
HD
406 /*
407 * Allow a burst of 60 reports, then keep quiet for that minute;
408 * or allow a steady drip of one report per second.
409 */
410 if (nr_shown == 60) {
411 if (time_before(jiffies, resume)) {
412 nr_unshown++;
413 goto out;
414 }
415 if (nr_unshown) {
1e9e6365
HD
416 printk(KERN_ALERT
417 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
418 nr_unshown);
419 nr_unshown = 0;
420 }
421 nr_shown = 0;
422 }
423 if (nr_shown++ == 0)
424 resume = jiffies + 60 * HZ;
425
1e9e6365 426 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 427 current->comm, page_to_pfn(page));
f0b791a3 428 dump_page_badflags(page, reason, bad_flags);
3dc14741 429
4f31888c 430 print_modules();
1da177e4 431 dump_stack();
d936cf9b 432out:
8cc3b392 433 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 434 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 435 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
436}
437
1da177e4
LT
438/*
439 * Higher-order pages are called "compound pages". They are structured thusly:
440 *
1d798ca3 441 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 442 *
1d798ca3
KS
443 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
444 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 445 *
1d798ca3
KS
446 * The first tail page's ->compound_dtor holds the offset in array of compound
447 * page destructors. See compound_page_dtors.
1da177e4 448 *
1d798ca3 449 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 450 * This usage means that zero-order pages may not be compound.
1da177e4 451 */
d98c7a09
HD
452
453static void free_compound_page(struct page *page)
454{
d85f3385 455 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
456}
457
d00181b9 458void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
459{
460 int i;
461 int nr_pages = 1 << order;
462
f1e61557 463 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
464 set_compound_order(page, order);
465 __SetPageHead(page);
466 for (i = 1; i < nr_pages; i++) {
467 struct page *p = page + i;
58a84aa9 468 set_page_count(p, 0);
1c290f64 469 p->mapping = TAIL_MAPPING;
1d798ca3 470 set_compound_head(p, page);
18229df5
AW
471 }
472}
473
c0a32fc5
SG
474#ifdef CONFIG_DEBUG_PAGEALLOC
475unsigned int _debug_guardpage_minorder;
031bc574 476bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
477bool _debug_guardpage_enabled __read_mostly;
478
031bc574
JK
479static int __init early_debug_pagealloc(char *buf)
480{
481 if (!buf)
482 return -EINVAL;
483
484 if (strcmp(buf, "on") == 0)
485 _debug_pagealloc_enabled = true;
486
487 return 0;
488}
489early_param("debug_pagealloc", early_debug_pagealloc);
490
e30825f1
JK
491static bool need_debug_guardpage(void)
492{
031bc574
JK
493 /* If we don't use debug_pagealloc, we don't need guard page */
494 if (!debug_pagealloc_enabled())
495 return false;
496
e30825f1
JK
497 return true;
498}
499
500static void init_debug_guardpage(void)
501{
031bc574
JK
502 if (!debug_pagealloc_enabled())
503 return;
504
e30825f1
JK
505 _debug_guardpage_enabled = true;
506}
507
508struct page_ext_operations debug_guardpage_ops = {
509 .need = need_debug_guardpage,
510 .init = init_debug_guardpage,
511};
c0a32fc5
SG
512
513static int __init debug_guardpage_minorder_setup(char *buf)
514{
515 unsigned long res;
516
517 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
518 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
519 return 0;
520 }
521 _debug_guardpage_minorder = res;
522 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
523 return 0;
524}
525__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
526
2847cf95
JK
527static inline void set_page_guard(struct zone *zone, struct page *page,
528 unsigned int order, int migratetype)
c0a32fc5 529{
e30825f1
JK
530 struct page_ext *page_ext;
531
532 if (!debug_guardpage_enabled())
533 return;
534
535 page_ext = lookup_page_ext(page);
536 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
537
2847cf95
JK
538 INIT_LIST_HEAD(&page->lru);
539 set_page_private(page, order);
540 /* Guard pages are not available for any usage */
541 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
542}
543
2847cf95
JK
544static inline void clear_page_guard(struct zone *zone, struct page *page,
545 unsigned int order, int migratetype)
c0a32fc5 546{
e30825f1
JK
547 struct page_ext *page_ext;
548
549 if (!debug_guardpage_enabled())
550 return;
551
552 page_ext = lookup_page_ext(page);
553 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
554
2847cf95
JK
555 set_page_private(page, 0);
556 if (!is_migrate_isolate(migratetype))
557 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
558}
559#else
e30825f1 560struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
561static inline void set_page_guard(struct zone *zone, struct page *page,
562 unsigned int order, int migratetype) {}
563static inline void clear_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype) {}
c0a32fc5
SG
565#endif
566
7aeb09f9 567static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 568{
4c21e2f2 569 set_page_private(page, order);
676165a8 570 __SetPageBuddy(page);
1da177e4
LT
571}
572
573static inline void rmv_page_order(struct page *page)
574{
676165a8 575 __ClearPageBuddy(page);
4c21e2f2 576 set_page_private(page, 0);
1da177e4
LT
577}
578
1da177e4
LT
579/*
580 * This function checks whether a page is free && is the buddy
581 * we can do coalesce a page and its buddy if
13e7444b 582 * (a) the buddy is not in a hole &&
676165a8 583 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
584 * (c) a page and its buddy have the same order &&
585 * (d) a page and its buddy are in the same zone.
676165a8 586 *
cf6fe945
WSH
587 * For recording whether a page is in the buddy system, we set ->_mapcount
588 * PAGE_BUDDY_MAPCOUNT_VALUE.
589 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
590 * serialized by zone->lock.
1da177e4 591 *
676165a8 592 * For recording page's order, we use page_private(page).
1da177e4 593 */
cb2b95e1 594static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 595 unsigned int order)
1da177e4 596{
14e07298 597 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 598 return 0;
13e7444b 599
c0a32fc5 600 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
601 if (page_zone_id(page) != page_zone_id(buddy))
602 return 0;
603
4c5018ce
WY
604 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
605
c0a32fc5
SG
606 return 1;
607 }
608
cb2b95e1 609 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
610 /*
611 * zone check is done late to avoid uselessly
612 * calculating zone/node ids for pages that could
613 * never merge.
614 */
615 if (page_zone_id(page) != page_zone_id(buddy))
616 return 0;
617
4c5018ce
WY
618 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
619
6aa3001b 620 return 1;
676165a8 621 }
6aa3001b 622 return 0;
1da177e4
LT
623}
624
625/*
626 * Freeing function for a buddy system allocator.
627 *
628 * The concept of a buddy system is to maintain direct-mapped table
629 * (containing bit values) for memory blocks of various "orders".
630 * The bottom level table contains the map for the smallest allocatable
631 * units of memory (here, pages), and each level above it describes
632 * pairs of units from the levels below, hence, "buddies".
633 * At a high level, all that happens here is marking the table entry
634 * at the bottom level available, and propagating the changes upward
635 * as necessary, plus some accounting needed to play nicely with other
636 * parts of the VM system.
637 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
638 * free pages of length of (1 << order) and marked with _mapcount
639 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
640 * field.
1da177e4 641 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
642 * other. That is, if we allocate a small block, and both were
643 * free, the remainder of the region must be split into blocks.
1da177e4 644 * If a block is freed, and its buddy is also free, then this
5f63b720 645 * triggers coalescing into a block of larger size.
1da177e4 646 *
6d49e352 647 * -- nyc
1da177e4
LT
648 */
649
48db57f8 650static inline void __free_one_page(struct page *page,
dc4b0caf 651 unsigned long pfn,
ed0ae21d
MG
652 struct zone *zone, unsigned int order,
653 int migratetype)
1da177e4
LT
654{
655 unsigned long page_idx;
6dda9d55 656 unsigned long combined_idx;
43506fad 657 unsigned long uninitialized_var(buddy_idx);
6dda9d55 658 struct page *buddy;
d00181b9 659 unsigned int max_order = MAX_ORDER;
1da177e4 660
d29bb978 661 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 662 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 663
ed0ae21d 664 VM_BUG_ON(migratetype == -1);
3c605096
JK
665 if (is_migrate_isolate(migratetype)) {
666 /*
667 * We restrict max order of merging to prevent merge
668 * between freepages on isolate pageblock and normal
669 * pageblock. Without this, pageblock isolation
670 * could cause incorrect freepage accounting.
671 */
d00181b9 672 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 673 } else {
8f82b55d 674 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 675 }
ed0ae21d 676
3c605096 677 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 678
309381fe
SL
679 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
680 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 681
3c605096 682 while (order < max_order - 1) {
43506fad
KC
683 buddy_idx = __find_buddy_index(page_idx, order);
684 buddy = page + (buddy_idx - page_idx);
cb2b95e1 685 if (!page_is_buddy(page, buddy, order))
3c82d0ce 686 break;
c0a32fc5
SG
687 /*
688 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
689 * merge with it and move up one order.
690 */
691 if (page_is_guard(buddy)) {
2847cf95 692 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
693 } else {
694 list_del(&buddy->lru);
695 zone->free_area[order].nr_free--;
696 rmv_page_order(buddy);
697 }
43506fad 698 combined_idx = buddy_idx & page_idx;
1da177e4
LT
699 page = page + (combined_idx - page_idx);
700 page_idx = combined_idx;
701 order++;
702 }
703 set_page_order(page, order);
6dda9d55
CZ
704
705 /*
706 * If this is not the largest possible page, check if the buddy
707 * of the next-highest order is free. If it is, it's possible
708 * that pages are being freed that will coalesce soon. In case,
709 * that is happening, add the free page to the tail of the list
710 * so it's less likely to be used soon and more likely to be merged
711 * as a higher order page
712 */
b7f50cfa 713 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 714 struct page *higher_page, *higher_buddy;
43506fad
KC
715 combined_idx = buddy_idx & page_idx;
716 higher_page = page + (combined_idx - page_idx);
717 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 718 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
719 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
720 list_add_tail(&page->lru,
721 &zone->free_area[order].free_list[migratetype]);
722 goto out;
723 }
724 }
725
726 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
727out:
1da177e4
LT
728 zone->free_area[order].nr_free++;
729}
730
224abf92 731static inline int free_pages_check(struct page *page)
1da177e4 732{
d230dec1 733 const char *bad_reason = NULL;
f0b791a3
DH
734 unsigned long bad_flags = 0;
735
736 if (unlikely(page_mapcount(page)))
737 bad_reason = "nonzero mapcount";
738 if (unlikely(page->mapping != NULL))
739 bad_reason = "non-NULL mapping";
740 if (unlikely(atomic_read(&page->_count) != 0))
741 bad_reason = "nonzero _count";
742 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
743 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
744 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
745 }
9edad6ea
JW
746#ifdef CONFIG_MEMCG
747 if (unlikely(page->mem_cgroup))
748 bad_reason = "page still charged to cgroup";
749#endif
f0b791a3
DH
750 if (unlikely(bad_reason)) {
751 bad_page(page, bad_reason, bad_flags);
79f4b7bf 752 return 1;
8cc3b392 753 }
90572890 754 page_cpupid_reset_last(page);
79f4b7bf
HD
755 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
756 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
757 return 0;
1da177e4
LT
758}
759
760/*
5f8dcc21 761 * Frees a number of pages from the PCP lists
1da177e4 762 * Assumes all pages on list are in same zone, and of same order.
207f36ee 763 * count is the number of pages to free.
1da177e4
LT
764 *
765 * If the zone was previously in an "all pages pinned" state then look to
766 * see if this freeing clears that state.
767 *
768 * And clear the zone's pages_scanned counter, to hold off the "all pages are
769 * pinned" detection logic.
770 */
5f8dcc21
MG
771static void free_pcppages_bulk(struct zone *zone, int count,
772 struct per_cpu_pages *pcp)
1da177e4 773{
5f8dcc21 774 int migratetype = 0;
a6f9edd6 775 int batch_free = 0;
72853e29 776 int to_free = count;
0d5d823a 777 unsigned long nr_scanned;
5f8dcc21 778
c54ad30c 779 spin_lock(&zone->lock);
0d5d823a
MG
780 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
781 if (nr_scanned)
782 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 783
72853e29 784 while (to_free) {
48db57f8 785 struct page *page;
5f8dcc21
MG
786 struct list_head *list;
787
788 /*
a6f9edd6
MG
789 * Remove pages from lists in a round-robin fashion. A
790 * batch_free count is maintained that is incremented when an
791 * empty list is encountered. This is so more pages are freed
792 * off fuller lists instead of spinning excessively around empty
793 * lists
5f8dcc21
MG
794 */
795 do {
a6f9edd6 796 batch_free++;
5f8dcc21
MG
797 if (++migratetype == MIGRATE_PCPTYPES)
798 migratetype = 0;
799 list = &pcp->lists[migratetype];
800 } while (list_empty(list));
48db57f8 801
1d16871d
NK
802 /* This is the only non-empty list. Free them all. */
803 if (batch_free == MIGRATE_PCPTYPES)
804 batch_free = to_free;
805
a6f9edd6 806 do {
770c8aaa
BZ
807 int mt; /* migratetype of the to-be-freed page */
808
a16601c5 809 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
810 /* must delete as __free_one_page list manipulates */
811 list_del(&page->lru);
aa016d14 812
bb14c2c7 813 mt = get_pcppage_migratetype(page);
aa016d14
VB
814 /* MIGRATE_ISOLATE page should not go to pcplists */
815 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
816 /* Pageblock could have been isolated meanwhile */
8f82b55d 817 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 818 mt = get_pageblock_migratetype(page);
51bb1a40 819
dc4b0caf 820 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 821 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 822 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 823 }
c54ad30c 824 spin_unlock(&zone->lock);
1da177e4
LT
825}
826
dc4b0caf
MG
827static void free_one_page(struct zone *zone,
828 struct page *page, unsigned long pfn,
7aeb09f9 829 unsigned int order,
ed0ae21d 830 int migratetype)
1da177e4 831{
0d5d823a 832 unsigned long nr_scanned;
006d22d9 833 spin_lock(&zone->lock);
0d5d823a
MG
834 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
835 if (nr_scanned)
836 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 837
ad53f92e
JK
838 if (unlikely(has_isolate_pageblock(zone) ||
839 is_migrate_isolate(migratetype))) {
840 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 841 }
dc4b0caf 842 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 843 spin_unlock(&zone->lock);
48db57f8
NP
844}
845
81422f29
KS
846static int free_tail_pages_check(struct page *head_page, struct page *page)
847{
1d798ca3
KS
848 int ret = 1;
849
850 /*
851 * We rely page->lru.next never has bit 0 set, unless the page
852 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
853 */
854 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
855
856 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
857 ret = 0;
858 goto out;
859 }
1c290f64
KS
860 if (page->mapping != TAIL_MAPPING) {
861 bad_page(page, "corrupted mapping in tail page", 0);
862 goto out;
863 }
81422f29
KS
864 if (unlikely(!PageTail(page))) {
865 bad_page(page, "PageTail not set", 0);
1d798ca3 866 goto out;
81422f29 867 }
1d798ca3
KS
868 if (unlikely(compound_head(page) != head_page)) {
869 bad_page(page, "compound_head not consistent", 0);
870 goto out;
81422f29 871 }
1d798ca3
KS
872 ret = 0;
873out:
1c290f64 874 page->mapping = NULL;
1d798ca3
KS
875 clear_compound_head(page);
876 return ret;
81422f29
KS
877}
878
1e8ce83c
RH
879static void __meminit __init_single_page(struct page *page, unsigned long pfn,
880 unsigned long zone, int nid)
881{
1e8ce83c 882 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
883 init_page_count(page);
884 page_mapcount_reset(page);
885 page_cpupid_reset_last(page);
1e8ce83c 886
1e8ce83c
RH
887 INIT_LIST_HEAD(&page->lru);
888#ifdef WANT_PAGE_VIRTUAL
889 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
890 if (!is_highmem_idx(zone))
891 set_page_address(page, __va(pfn << PAGE_SHIFT));
892#endif
893}
894
895static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
896 int nid)
897{
898 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
899}
900
7e18adb4
MG
901#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
902static void init_reserved_page(unsigned long pfn)
903{
904 pg_data_t *pgdat;
905 int nid, zid;
906
907 if (!early_page_uninitialised(pfn))
908 return;
909
910 nid = early_pfn_to_nid(pfn);
911 pgdat = NODE_DATA(nid);
912
913 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
914 struct zone *zone = &pgdat->node_zones[zid];
915
916 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
917 break;
918 }
919 __init_single_pfn(pfn, zid, nid);
920}
921#else
922static inline void init_reserved_page(unsigned long pfn)
923{
924}
925#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
926
92923ca3
NZ
927/*
928 * Initialised pages do not have PageReserved set. This function is
929 * called for each range allocated by the bootmem allocator and
930 * marks the pages PageReserved. The remaining valid pages are later
931 * sent to the buddy page allocator.
932 */
7e18adb4 933void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
934{
935 unsigned long start_pfn = PFN_DOWN(start);
936 unsigned long end_pfn = PFN_UP(end);
937
7e18adb4
MG
938 for (; start_pfn < end_pfn; start_pfn++) {
939 if (pfn_valid(start_pfn)) {
940 struct page *page = pfn_to_page(start_pfn);
941
942 init_reserved_page(start_pfn);
1d798ca3
KS
943
944 /* Avoid false-positive PageTail() */
945 INIT_LIST_HEAD(&page->lru);
946
7e18adb4
MG
947 SetPageReserved(page);
948 }
949 }
92923ca3
NZ
950}
951
ec95f53a 952static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 953{
81422f29
KS
954 bool compound = PageCompound(page);
955 int i, bad = 0;
1da177e4 956
ab1f306f 957 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 958 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 959
b413d48a 960 trace_mm_page_free(page, order);
b1eeab67 961 kmemcheck_free_shadow(page, order);
b8c73fc2 962 kasan_free_pages(page, order);
b1eeab67 963
8dd60a3a
AA
964 if (PageAnon(page))
965 page->mapping = NULL;
81422f29
KS
966 bad += free_pages_check(page);
967 for (i = 1; i < (1 << order); i++) {
968 if (compound)
969 bad += free_tail_pages_check(page, page + i);
8dd60a3a 970 bad += free_pages_check(page + i);
81422f29 971 }
8cc3b392 972 if (bad)
ec95f53a 973 return false;
689bcebf 974
48c96a36
JK
975 reset_page_owner(page, order);
976
3ac7fe5a 977 if (!PageHighMem(page)) {
b8af2941
PK
978 debug_check_no_locks_freed(page_address(page),
979 PAGE_SIZE << order);
3ac7fe5a
TG
980 debug_check_no_obj_freed(page_address(page),
981 PAGE_SIZE << order);
982 }
dafb1367 983 arch_free_page(page, order);
48db57f8 984 kernel_map_pages(page, 1 << order, 0);
dafb1367 985
ec95f53a
KM
986 return true;
987}
988
989static void __free_pages_ok(struct page *page, unsigned int order)
990{
991 unsigned long flags;
95e34412 992 int migratetype;
dc4b0caf 993 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
994
995 if (!free_pages_prepare(page, order))
996 return;
997
cfc47a28 998 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 999 local_irq_save(flags);
f8891e5e 1000 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1001 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1002 local_irq_restore(flags);
1da177e4
LT
1003}
1004
0e1cc95b 1005static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1006 unsigned long pfn, unsigned int order)
a226f6c8 1007{
c3993076 1008 unsigned int nr_pages = 1 << order;
e2d0bd2b 1009 struct page *p = page;
c3993076 1010 unsigned int loop;
a226f6c8 1011
e2d0bd2b
YL
1012 prefetchw(p);
1013 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1014 prefetchw(p + 1);
c3993076
JW
1015 __ClearPageReserved(p);
1016 set_page_count(p, 0);
a226f6c8 1017 }
e2d0bd2b
YL
1018 __ClearPageReserved(p);
1019 set_page_count(p, 0);
c3993076 1020
e2d0bd2b 1021 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1022 set_page_refcounted(page);
1023 __free_pages(page, order);
a226f6c8
DH
1024}
1025
75a592a4
MG
1026#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1027 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1028
75a592a4
MG
1029static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1030
1031int __meminit early_pfn_to_nid(unsigned long pfn)
1032{
7ace9917 1033 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1034 int nid;
1035
7ace9917 1036 spin_lock(&early_pfn_lock);
75a592a4 1037 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1038 if (nid < 0)
1039 nid = 0;
1040 spin_unlock(&early_pfn_lock);
1041
1042 return nid;
75a592a4
MG
1043}
1044#endif
1045
1046#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1047static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1048 struct mminit_pfnnid_cache *state)
1049{
1050 int nid;
1051
1052 nid = __early_pfn_to_nid(pfn, state);
1053 if (nid >= 0 && nid != node)
1054 return false;
1055 return true;
1056}
1057
1058/* Only safe to use early in boot when initialisation is single-threaded */
1059static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1060{
1061 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1062}
1063
1064#else
1065
1066static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1067{
1068 return true;
1069}
1070static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1071 struct mminit_pfnnid_cache *state)
1072{
1073 return true;
1074}
1075#endif
1076
1077
0e1cc95b 1078void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1079 unsigned int order)
1080{
1081 if (early_page_uninitialised(pfn))
1082 return;
1083 return __free_pages_boot_core(page, pfn, order);
1084}
1085
7e18adb4 1086#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1087static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1088 unsigned long pfn, int nr_pages)
1089{
1090 int i;
1091
1092 if (!page)
1093 return;
1094
1095 /* Free a large naturally-aligned chunk if possible */
1096 if (nr_pages == MAX_ORDER_NR_PAGES &&
1097 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1098 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1099 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1100 return;
1101 }
1102
1103 for (i = 0; i < nr_pages; i++, page++, pfn++)
1104 __free_pages_boot_core(page, pfn, 0);
1105}
1106
d3cd131d
NS
1107/* Completion tracking for deferred_init_memmap() threads */
1108static atomic_t pgdat_init_n_undone __initdata;
1109static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1110
1111static inline void __init pgdat_init_report_one_done(void)
1112{
1113 if (atomic_dec_and_test(&pgdat_init_n_undone))
1114 complete(&pgdat_init_all_done_comp);
1115}
0e1cc95b 1116
7e18adb4 1117/* Initialise remaining memory on a node */
0e1cc95b 1118static int __init deferred_init_memmap(void *data)
7e18adb4 1119{
0e1cc95b
MG
1120 pg_data_t *pgdat = data;
1121 int nid = pgdat->node_id;
7e18adb4
MG
1122 struct mminit_pfnnid_cache nid_init_state = { };
1123 unsigned long start = jiffies;
1124 unsigned long nr_pages = 0;
1125 unsigned long walk_start, walk_end;
1126 int i, zid;
1127 struct zone *zone;
7e18adb4 1128 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1129 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1130
0e1cc95b 1131 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1132 pgdat_init_report_one_done();
0e1cc95b
MG
1133 return 0;
1134 }
1135
1136 /* Bind memory initialisation thread to a local node if possible */
1137 if (!cpumask_empty(cpumask))
1138 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1139
1140 /* Sanity check boundaries */
1141 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1142 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1143 pgdat->first_deferred_pfn = ULONG_MAX;
1144
1145 /* Only the highest zone is deferred so find it */
1146 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1147 zone = pgdat->node_zones + zid;
1148 if (first_init_pfn < zone_end_pfn(zone))
1149 break;
1150 }
1151
1152 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1153 unsigned long pfn, end_pfn;
54608c3f 1154 struct page *page = NULL;
a4de83dd
MG
1155 struct page *free_base_page = NULL;
1156 unsigned long free_base_pfn = 0;
1157 int nr_to_free = 0;
7e18adb4
MG
1158
1159 end_pfn = min(walk_end, zone_end_pfn(zone));
1160 pfn = first_init_pfn;
1161 if (pfn < walk_start)
1162 pfn = walk_start;
1163 if (pfn < zone->zone_start_pfn)
1164 pfn = zone->zone_start_pfn;
1165
1166 for (; pfn < end_pfn; pfn++) {
54608c3f 1167 if (!pfn_valid_within(pfn))
a4de83dd 1168 goto free_range;
7e18adb4 1169
54608c3f
MG
1170 /*
1171 * Ensure pfn_valid is checked every
1172 * MAX_ORDER_NR_PAGES for memory holes
1173 */
1174 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1175 if (!pfn_valid(pfn)) {
1176 page = NULL;
a4de83dd 1177 goto free_range;
54608c3f
MG
1178 }
1179 }
1180
1181 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1182 page = NULL;
a4de83dd 1183 goto free_range;
54608c3f
MG
1184 }
1185
1186 /* Minimise pfn page lookups and scheduler checks */
1187 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1188 page++;
1189 } else {
a4de83dd
MG
1190 nr_pages += nr_to_free;
1191 deferred_free_range(free_base_page,
1192 free_base_pfn, nr_to_free);
1193 free_base_page = NULL;
1194 free_base_pfn = nr_to_free = 0;
1195
54608c3f
MG
1196 page = pfn_to_page(pfn);
1197 cond_resched();
1198 }
7e18adb4
MG
1199
1200 if (page->flags) {
1201 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1202 goto free_range;
7e18adb4
MG
1203 }
1204
1205 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1206 if (!free_base_page) {
1207 free_base_page = page;
1208 free_base_pfn = pfn;
1209 nr_to_free = 0;
1210 }
1211 nr_to_free++;
1212
1213 /* Where possible, batch up pages for a single free */
1214 continue;
1215free_range:
1216 /* Free the current block of pages to allocator */
1217 nr_pages += nr_to_free;
1218 deferred_free_range(free_base_page, free_base_pfn,
1219 nr_to_free);
1220 free_base_page = NULL;
1221 free_base_pfn = nr_to_free = 0;
7e18adb4 1222 }
a4de83dd 1223
7e18adb4
MG
1224 first_init_pfn = max(end_pfn, first_init_pfn);
1225 }
1226
1227 /* Sanity check that the next zone really is unpopulated */
1228 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1229
0e1cc95b 1230 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1231 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1232
1233 pgdat_init_report_one_done();
0e1cc95b
MG
1234 return 0;
1235}
1236
1237void __init page_alloc_init_late(void)
1238{
1239 int nid;
1240
d3cd131d
NS
1241 /* There will be num_node_state(N_MEMORY) threads */
1242 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1243 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1244 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1245 }
1246
1247 /* Block until all are initialised */
d3cd131d 1248 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1249
1250 /* Reinit limits that are based on free pages after the kernel is up */
1251 files_maxfiles_init();
7e18adb4
MG
1252}
1253#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1254
47118af0 1255#ifdef CONFIG_CMA
9cf510a5 1256/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1257void __init init_cma_reserved_pageblock(struct page *page)
1258{
1259 unsigned i = pageblock_nr_pages;
1260 struct page *p = page;
1261
1262 do {
1263 __ClearPageReserved(p);
1264 set_page_count(p, 0);
1265 } while (++p, --i);
1266
47118af0 1267 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1268
1269 if (pageblock_order >= MAX_ORDER) {
1270 i = pageblock_nr_pages;
1271 p = page;
1272 do {
1273 set_page_refcounted(p);
1274 __free_pages(p, MAX_ORDER - 1);
1275 p += MAX_ORDER_NR_PAGES;
1276 } while (i -= MAX_ORDER_NR_PAGES);
1277 } else {
1278 set_page_refcounted(page);
1279 __free_pages(page, pageblock_order);
1280 }
1281
3dcc0571 1282 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1283}
1284#endif
1da177e4
LT
1285
1286/*
1287 * The order of subdivision here is critical for the IO subsystem.
1288 * Please do not alter this order without good reasons and regression
1289 * testing. Specifically, as large blocks of memory are subdivided,
1290 * the order in which smaller blocks are delivered depends on the order
1291 * they're subdivided in this function. This is the primary factor
1292 * influencing the order in which pages are delivered to the IO
1293 * subsystem according to empirical testing, and this is also justified
1294 * by considering the behavior of a buddy system containing a single
1295 * large block of memory acted on by a series of small allocations.
1296 * This behavior is a critical factor in sglist merging's success.
1297 *
6d49e352 1298 * -- nyc
1da177e4 1299 */
085cc7d5 1300static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1301 int low, int high, struct free_area *area,
1302 int migratetype)
1da177e4
LT
1303{
1304 unsigned long size = 1 << high;
1305
1306 while (high > low) {
1307 area--;
1308 high--;
1309 size >>= 1;
309381fe 1310 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1311
2847cf95 1312 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1313 debug_guardpage_enabled() &&
2847cf95 1314 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1315 /*
1316 * Mark as guard pages (or page), that will allow to
1317 * merge back to allocator when buddy will be freed.
1318 * Corresponding page table entries will not be touched,
1319 * pages will stay not present in virtual address space
1320 */
2847cf95 1321 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1322 continue;
1323 }
b2a0ac88 1324 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1325 area->nr_free++;
1326 set_page_order(&page[size], high);
1327 }
1da177e4
LT
1328}
1329
1da177e4
LT
1330/*
1331 * This page is about to be returned from the page allocator
1332 */
2a7684a2 1333static inline int check_new_page(struct page *page)
1da177e4 1334{
d230dec1 1335 const char *bad_reason = NULL;
f0b791a3
DH
1336 unsigned long bad_flags = 0;
1337
1338 if (unlikely(page_mapcount(page)))
1339 bad_reason = "nonzero mapcount";
1340 if (unlikely(page->mapping != NULL))
1341 bad_reason = "non-NULL mapping";
1342 if (unlikely(atomic_read(&page->_count) != 0))
1343 bad_reason = "nonzero _count";
f4c18e6f
NH
1344 if (unlikely(page->flags & __PG_HWPOISON)) {
1345 bad_reason = "HWPoisoned (hardware-corrupted)";
1346 bad_flags = __PG_HWPOISON;
1347 }
f0b791a3
DH
1348 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1349 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1350 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1351 }
9edad6ea
JW
1352#ifdef CONFIG_MEMCG
1353 if (unlikely(page->mem_cgroup))
1354 bad_reason = "page still charged to cgroup";
1355#endif
f0b791a3
DH
1356 if (unlikely(bad_reason)) {
1357 bad_page(page, bad_reason, bad_flags);
689bcebf 1358 return 1;
8cc3b392 1359 }
2a7684a2
WF
1360 return 0;
1361}
1362
75379191
VB
1363static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1364 int alloc_flags)
2a7684a2
WF
1365{
1366 int i;
1367
1368 for (i = 0; i < (1 << order); i++) {
1369 struct page *p = page + i;
1370 if (unlikely(check_new_page(p)))
1371 return 1;
1372 }
689bcebf 1373
4c21e2f2 1374 set_page_private(page, 0);
7835e98b 1375 set_page_refcounted(page);
cc102509
NP
1376
1377 arch_alloc_page(page, order);
1da177e4 1378 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1379 kasan_alloc_pages(page, order);
17cf4406
NP
1380
1381 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1382 for (i = 0; i < (1 << order); i++)
1383 clear_highpage(page + i);
17cf4406
NP
1384
1385 if (order && (gfp_flags & __GFP_COMP))
1386 prep_compound_page(page, order);
1387
48c96a36
JK
1388 set_page_owner(page, order, gfp_flags);
1389
75379191 1390 /*
2f064f34 1391 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1392 * allocate the page. The expectation is that the caller is taking
1393 * steps that will free more memory. The caller should avoid the page
1394 * being used for !PFMEMALLOC purposes.
1395 */
2f064f34
MH
1396 if (alloc_flags & ALLOC_NO_WATERMARKS)
1397 set_page_pfmemalloc(page);
1398 else
1399 clear_page_pfmemalloc(page);
75379191 1400
689bcebf 1401 return 0;
1da177e4
LT
1402}
1403
56fd56b8
MG
1404/*
1405 * Go through the free lists for the given migratetype and remove
1406 * the smallest available page from the freelists
1407 */
728ec980
MG
1408static inline
1409struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1410 int migratetype)
1411{
1412 unsigned int current_order;
b8af2941 1413 struct free_area *area;
56fd56b8
MG
1414 struct page *page;
1415
1416 /* Find a page of the appropriate size in the preferred list */
1417 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1418 area = &(zone->free_area[current_order]);
a16601c5 1419 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1420 struct page, lru);
a16601c5
GT
1421 if (!page)
1422 continue;
56fd56b8
MG
1423 list_del(&page->lru);
1424 rmv_page_order(page);
1425 area->nr_free--;
56fd56b8 1426 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1427 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1428 return page;
1429 }
1430
1431 return NULL;
1432}
1433
1434
b2a0ac88
MG
1435/*
1436 * This array describes the order lists are fallen back to when
1437 * the free lists for the desirable migrate type are depleted
1438 */
47118af0 1439static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1440 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1441 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1442 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1443#ifdef CONFIG_CMA
974a786e 1444 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1445#endif
194159fb 1446#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1447 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1448#endif
b2a0ac88
MG
1449};
1450
dc67647b
JK
1451#ifdef CONFIG_CMA
1452static struct page *__rmqueue_cma_fallback(struct zone *zone,
1453 unsigned int order)
1454{
1455 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1456}
1457#else
1458static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1459 unsigned int order) { return NULL; }
1460#endif
1461
c361be55
MG
1462/*
1463 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1464 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1465 * boundary. If alignment is required, use move_freepages_block()
1466 */
435b405c 1467int move_freepages(struct zone *zone,
b69a7288
AB
1468 struct page *start_page, struct page *end_page,
1469 int migratetype)
c361be55
MG
1470{
1471 struct page *page;
d00181b9 1472 unsigned int order;
d100313f 1473 int pages_moved = 0;
c361be55
MG
1474
1475#ifndef CONFIG_HOLES_IN_ZONE
1476 /*
1477 * page_zone is not safe to call in this context when
1478 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1479 * anyway as we check zone boundaries in move_freepages_block().
1480 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1481 * grouping pages by mobility
c361be55 1482 */
97ee4ba7 1483 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1484#endif
1485
1486 for (page = start_page; page <= end_page;) {
344c790e 1487 /* Make sure we are not inadvertently changing nodes */
309381fe 1488 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1489
c361be55
MG
1490 if (!pfn_valid_within(page_to_pfn(page))) {
1491 page++;
1492 continue;
1493 }
1494
1495 if (!PageBuddy(page)) {
1496 page++;
1497 continue;
1498 }
1499
1500 order = page_order(page);
84be48d8
KS
1501 list_move(&page->lru,
1502 &zone->free_area[order].free_list[migratetype]);
c361be55 1503 page += 1 << order;
d100313f 1504 pages_moved += 1 << order;
c361be55
MG
1505 }
1506
d100313f 1507 return pages_moved;
c361be55
MG
1508}
1509
ee6f509c 1510int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1511 int migratetype)
c361be55
MG
1512{
1513 unsigned long start_pfn, end_pfn;
1514 struct page *start_page, *end_page;
1515
1516 start_pfn = page_to_pfn(page);
d9c23400 1517 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1518 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1519 end_page = start_page + pageblock_nr_pages - 1;
1520 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1521
1522 /* Do not cross zone boundaries */
108bcc96 1523 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1524 start_page = page;
108bcc96 1525 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1526 return 0;
1527
1528 return move_freepages(zone, start_page, end_page, migratetype);
1529}
1530
2f66a68f
MG
1531static void change_pageblock_range(struct page *pageblock_page,
1532 int start_order, int migratetype)
1533{
1534 int nr_pageblocks = 1 << (start_order - pageblock_order);
1535
1536 while (nr_pageblocks--) {
1537 set_pageblock_migratetype(pageblock_page, migratetype);
1538 pageblock_page += pageblock_nr_pages;
1539 }
1540}
1541
fef903ef 1542/*
9c0415eb
VB
1543 * When we are falling back to another migratetype during allocation, try to
1544 * steal extra free pages from the same pageblocks to satisfy further
1545 * allocations, instead of polluting multiple pageblocks.
1546 *
1547 * If we are stealing a relatively large buddy page, it is likely there will
1548 * be more free pages in the pageblock, so try to steal them all. For
1549 * reclaimable and unmovable allocations, we steal regardless of page size,
1550 * as fragmentation caused by those allocations polluting movable pageblocks
1551 * is worse than movable allocations stealing from unmovable and reclaimable
1552 * pageblocks.
fef903ef 1553 */
4eb7dce6
JK
1554static bool can_steal_fallback(unsigned int order, int start_mt)
1555{
1556 /*
1557 * Leaving this order check is intended, although there is
1558 * relaxed order check in next check. The reason is that
1559 * we can actually steal whole pageblock if this condition met,
1560 * but, below check doesn't guarantee it and that is just heuristic
1561 * so could be changed anytime.
1562 */
1563 if (order >= pageblock_order)
1564 return true;
1565
1566 if (order >= pageblock_order / 2 ||
1567 start_mt == MIGRATE_RECLAIMABLE ||
1568 start_mt == MIGRATE_UNMOVABLE ||
1569 page_group_by_mobility_disabled)
1570 return true;
1571
1572 return false;
1573}
1574
1575/*
1576 * This function implements actual steal behaviour. If order is large enough,
1577 * we can steal whole pageblock. If not, we first move freepages in this
1578 * pageblock and check whether half of pages are moved or not. If half of
1579 * pages are moved, we can change migratetype of pageblock and permanently
1580 * use it's pages as requested migratetype in the future.
1581 */
1582static void steal_suitable_fallback(struct zone *zone, struct page *page,
1583 int start_type)
fef903ef 1584{
d00181b9 1585 unsigned int current_order = page_order(page);
4eb7dce6 1586 int pages;
fef903ef 1587
fef903ef
SB
1588 /* Take ownership for orders >= pageblock_order */
1589 if (current_order >= pageblock_order) {
1590 change_pageblock_range(page, current_order, start_type);
3a1086fb 1591 return;
fef903ef
SB
1592 }
1593
4eb7dce6 1594 pages = move_freepages_block(zone, page, start_type);
fef903ef 1595
4eb7dce6
JK
1596 /* Claim the whole block if over half of it is free */
1597 if (pages >= (1 << (pageblock_order-1)) ||
1598 page_group_by_mobility_disabled)
1599 set_pageblock_migratetype(page, start_type);
1600}
1601
2149cdae
JK
1602/*
1603 * Check whether there is a suitable fallback freepage with requested order.
1604 * If only_stealable is true, this function returns fallback_mt only if
1605 * we can steal other freepages all together. This would help to reduce
1606 * fragmentation due to mixed migratetype pages in one pageblock.
1607 */
1608int find_suitable_fallback(struct free_area *area, unsigned int order,
1609 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1610{
1611 int i;
1612 int fallback_mt;
1613
1614 if (area->nr_free == 0)
1615 return -1;
1616
1617 *can_steal = false;
1618 for (i = 0;; i++) {
1619 fallback_mt = fallbacks[migratetype][i];
974a786e 1620 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1621 break;
1622
1623 if (list_empty(&area->free_list[fallback_mt]))
1624 continue;
fef903ef 1625
4eb7dce6
JK
1626 if (can_steal_fallback(order, migratetype))
1627 *can_steal = true;
1628
2149cdae
JK
1629 if (!only_stealable)
1630 return fallback_mt;
1631
1632 if (*can_steal)
1633 return fallback_mt;
fef903ef 1634 }
4eb7dce6
JK
1635
1636 return -1;
fef903ef
SB
1637}
1638
0aaa29a5
MG
1639/*
1640 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1641 * there are no empty page blocks that contain a page with a suitable order
1642 */
1643static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1644 unsigned int alloc_order)
1645{
1646 int mt;
1647 unsigned long max_managed, flags;
1648
1649 /*
1650 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1651 * Check is race-prone but harmless.
1652 */
1653 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1654 if (zone->nr_reserved_highatomic >= max_managed)
1655 return;
1656
1657 spin_lock_irqsave(&zone->lock, flags);
1658
1659 /* Recheck the nr_reserved_highatomic limit under the lock */
1660 if (zone->nr_reserved_highatomic >= max_managed)
1661 goto out_unlock;
1662
1663 /* Yoink! */
1664 mt = get_pageblock_migratetype(page);
1665 if (mt != MIGRATE_HIGHATOMIC &&
1666 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1667 zone->nr_reserved_highatomic += pageblock_nr_pages;
1668 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1669 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1670 }
1671
1672out_unlock:
1673 spin_unlock_irqrestore(&zone->lock, flags);
1674}
1675
1676/*
1677 * Used when an allocation is about to fail under memory pressure. This
1678 * potentially hurts the reliability of high-order allocations when under
1679 * intense memory pressure but failed atomic allocations should be easier
1680 * to recover from than an OOM.
1681 */
1682static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1683{
1684 struct zonelist *zonelist = ac->zonelist;
1685 unsigned long flags;
1686 struct zoneref *z;
1687 struct zone *zone;
1688 struct page *page;
1689 int order;
1690
1691 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1692 ac->nodemask) {
1693 /* Preserve at least one pageblock */
1694 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1695 continue;
1696
1697 spin_lock_irqsave(&zone->lock, flags);
1698 for (order = 0; order < MAX_ORDER; order++) {
1699 struct free_area *area = &(zone->free_area[order]);
1700
a16601c5
GT
1701 page = list_first_entry_or_null(
1702 &area->free_list[MIGRATE_HIGHATOMIC],
1703 struct page, lru);
1704 if (!page)
0aaa29a5
MG
1705 continue;
1706
0aaa29a5
MG
1707 /*
1708 * It should never happen but changes to locking could
1709 * inadvertently allow a per-cpu drain to add pages
1710 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1711 * and watch for underflows.
1712 */
1713 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1714 zone->nr_reserved_highatomic);
1715
1716 /*
1717 * Convert to ac->migratetype and avoid the normal
1718 * pageblock stealing heuristics. Minimally, the caller
1719 * is doing the work and needs the pages. More
1720 * importantly, if the block was always converted to
1721 * MIGRATE_UNMOVABLE or another type then the number
1722 * of pageblocks that cannot be completely freed
1723 * may increase.
1724 */
1725 set_pageblock_migratetype(page, ac->migratetype);
1726 move_freepages_block(zone, page, ac->migratetype);
1727 spin_unlock_irqrestore(&zone->lock, flags);
1728 return;
1729 }
1730 spin_unlock_irqrestore(&zone->lock, flags);
1731 }
1732}
1733
b2a0ac88 1734/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1735static inline struct page *
7aeb09f9 1736__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1737{
b8af2941 1738 struct free_area *area;
7aeb09f9 1739 unsigned int current_order;
b2a0ac88 1740 struct page *page;
4eb7dce6
JK
1741 int fallback_mt;
1742 bool can_steal;
b2a0ac88
MG
1743
1744 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1745 for (current_order = MAX_ORDER-1;
1746 current_order >= order && current_order <= MAX_ORDER-1;
1747 --current_order) {
4eb7dce6
JK
1748 area = &(zone->free_area[current_order]);
1749 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1750 start_migratetype, false, &can_steal);
4eb7dce6
JK
1751 if (fallback_mt == -1)
1752 continue;
b2a0ac88 1753
a16601c5 1754 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1755 struct page, lru);
1756 if (can_steal)
1757 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1758
4eb7dce6
JK
1759 /* Remove the page from the freelists */
1760 area->nr_free--;
1761 list_del(&page->lru);
1762 rmv_page_order(page);
3a1086fb 1763
4eb7dce6
JK
1764 expand(zone, page, order, current_order, area,
1765 start_migratetype);
1766 /*
bb14c2c7 1767 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1768 * migratetype depending on the decisions in
bb14c2c7
VB
1769 * find_suitable_fallback(). This is OK as long as it does not
1770 * differ for MIGRATE_CMA pageblocks. Those can be used as
1771 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1772 */
bb14c2c7 1773 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1774
4eb7dce6
JK
1775 trace_mm_page_alloc_extfrag(page, order, current_order,
1776 start_migratetype, fallback_mt);
e0fff1bd 1777
4eb7dce6 1778 return page;
b2a0ac88
MG
1779 }
1780
728ec980 1781 return NULL;
b2a0ac88
MG
1782}
1783
56fd56b8 1784/*
1da177e4
LT
1785 * Do the hard work of removing an element from the buddy allocator.
1786 * Call me with the zone->lock already held.
1787 */
b2a0ac88 1788static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1789 int migratetype)
1da177e4 1790{
1da177e4
LT
1791 struct page *page;
1792
56fd56b8 1793 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1794 if (unlikely(!page)) {
dc67647b
JK
1795 if (migratetype == MIGRATE_MOVABLE)
1796 page = __rmqueue_cma_fallback(zone, order);
1797
1798 if (!page)
1799 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1800 }
1801
0d3d062a 1802 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1803 return page;
1da177e4
LT
1804}
1805
5f63b720 1806/*
1da177e4
LT
1807 * Obtain a specified number of elements from the buddy allocator, all under
1808 * a single hold of the lock, for efficiency. Add them to the supplied list.
1809 * Returns the number of new pages which were placed at *list.
1810 */
5f63b720 1811static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1812 unsigned long count, struct list_head *list,
b745bc85 1813 int migratetype, bool cold)
1da177e4 1814{
5bcc9f86 1815 int i;
5f63b720 1816
c54ad30c 1817 spin_lock(&zone->lock);
1da177e4 1818 for (i = 0; i < count; ++i) {
6ac0206b 1819 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1820 if (unlikely(page == NULL))
1da177e4 1821 break;
81eabcbe
MG
1822
1823 /*
1824 * Split buddy pages returned by expand() are received here
1825 * in physical page order. The page is added to the callers and
1826 * list and the list head then moves forward. From the callers
1827 * perspective, the linked list is ordered by page number in
1828 * some conditions. This is useful for IO devices that can
1829 * merge IO requests if the physical pages are ordered
1830 * properly.
1831 */
b745bc85 1832 if (likely(!cold))
e084b2d9
MG
1833 list_add(&page->lru, list);
1834 else
1835 list_add_tail(&page->lru, list);
81eabcbe 1836 list = &page->lru;
bb14c2c7 1837 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1838 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1839 -(1 << order));
1da177e4 1840 }
f2260e6b 1841 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1842 spin_unlock(&zone->lock);
085cc7d5 1843 return i;
1da177e4
LT
1844}
1845
4ae7c039 1846#ifdef CONFIG_NUMA
8fce4d8e 1847/*
4037d452
CL
1848 * Called from the vmstat counter updater to drain pagesets of this
1849 * currently executing processor on remote nodes after they have
1850 * expired.
1851 *
879336c3
CL
1852 * Note that this function must be called with the thread pinned to
1853 * a single processor.
8fce4d8e 1854 */
4037d452 1855void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1856{
4ae7c039 1857 unsigned long flags;
7be12fc9 1858 int to_drain, batch;
4ae7c039 1859
4037d452 1860 local_irq_save(flags);
4db0c3c2 1861 batch = READ_ONCE(pcp->batch);
7be12fc9 1862 to_drain = min(pcp->count, batch);
2a13515c
KM
1863 if (to_drain > 0) {
1864 free_pcppages_bulk(zone, to_drain, pcp);
1865 pcp->count -= to_drain;
1866 }
4037d452 1867 local_irq_restore(flags);
4ae7c039
CL
1868}
1869#endif
1870
9f8f2172 1871/*
93481ff0 1872 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1873 *
1874 * The processor must either be the current processor and the
1875 * thread pinned to the current processor or a processor that
1876 * is not online.
1877 */
93481ff0 1878static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1879{
c54ad30c 1880 unsigned long flags;
93481ff0
VB
1881 struct per_cpu_pageset *pset;
1882 struct per_cpu_pages *pcp;
1da177e4 1883
93481ff0
VB
1884 local_irq_save(flags);
1885 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1886
93481ff0
VB
1887 pcp = &pset->pcp;
1888 if (pcp->count) {
1889 free_pcppages_bulk(zone, pcp->count, pcp);
1890 pcp->count = 0;
1891 }
1892 local_irq_restore(flags);
1893}
3dfa5721 1894
93481ff0
VB
1895/*
1896 * Drain pcplists of all zones on the indicated processor.
1897 *
1898 * The processor must either be the current processor and the
1899 * thread pinned to the current processor or a processor that
1900 * is not online.
1901 */
1902static void drain_pages(unsigned int cpu)
1903{
1904 struct zone *zone;
1905
1906 for_each_populated_zone(zone) {
1907 drain_pages_zone(cpu, zone);
1da177e4
LT
1908 }
1909}
1da177e4 1910
9f8f2172
CL
1911/*
1912 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1913 *
1914 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1915 * the single zone's pages.
9f8f2172 1916 */
93481ff0 1917void drain_local_pages(struct zone *zone)
9f8f2172 1918{
93481ff0
VB
1919 int cpu = smp_processor_id();
1920
1921 if (zone)
1922 drain_pages_zone(cpu, zone);
1923 else
1924 drain_pages(cpu);
9f8f2172
CL
1925}
1926
1927/*
74046494
GBY
1928 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1929 *
93481ff0
VB
1930 * When zone parameter is non-NULL, spill just the single zone's pages.
1931 *
74046494
GBY
1932 * Note that this code is protected against sending an IPI to an offline
1933 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1934 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1935 * nothing keeps CPUs from showing up after we populated the cpumask and
1936 * before the call to on_each_cpu_mask().
9f8f2172 1937 */
93481ff0 1938void drain_all_pages(struct zone *zone)
9f8f2172 1939{
74046494 1940 int cpu;
74046494
GBY
1941
1942 /*
1943 * Allocate in the BSS so we wont require allocation in
1944 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1945 */
1946 static cpumask_t cpus_with_pcps;
1947
1948 /*
1949 * We don't care about racing with CPU hotplug event
1950 * as offline notification will cause the notified
1951 * cpu to drain that CPU pcps and on_each_cpu_mask
1952 * disables preemption as part of its processing
1953 */
1954 for_each_online_cpu(cpu) {
93481ff0
VB
1955 struct per_cpu_pageset *pcp;
1956 struct zone *z;
74046494 1957 bool has_pcps = false;
93481ff0
VB
1958
1959 if (zone) {
74046494 1960 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1961 if (pcp->pcp.count)
74046494 1962 has_pcps = true;
93481ff0
VB
1963 } else {
1964 for_each_populated_zone(z) {
1965 pcp = per_cpu_ptr(z->pageset, cpu);
1966 if (pcp->pcp.count) {
1967 has_pcps = true;
1968 break;
1969 }
74046494
GBY
1970 }
1971 }
93481ff0 1972
74046494
GBY
1973 if (has_pcps)
1974 cpumask_set_cpu(cpu, &cpus_with_pcps);
1975 else
1976 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1977 }
93481ff0
VB
1978 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1979 zone, 1);
9f8f2172
CL
1980}
1981
296699de 1982#ifdef CONFIG_HIBERNATION
1da177e4
LT
1983
1984void mark_free_pages(struct zone *zone)
1985{
f623f0db
RW
1986 unsigned long pfn, max_zone_pfn;
1987 unsigned long flags;
7aeb09f9 1988 unsigned int order, t;
86760a2c 1989 struct page *page;
1da177e4 1990
8080fc03 1991 if (zone_is_empty(zone))
1da177e4
LT
1992 return;
1993
1994 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1995
108bcc96 1996 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1997 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1998 if (pfn_valid(pfn)) {
86760a2c 1999 page = pfn_to_page(pfn);
7be98234
RW
2000 if (!swsusp_page_is_forbidden(page))
2001 swsusp_unset_page_free(page);
f623f0db 2002 }
1da177e4 2003
b2a0ac88 2004 for_each_migratetype_order(order, t) {
86760a2c
GT
2005 list_for_each_entry(page,
2006 &zone->free_area[order].free_list[t], lru) {
f623f0db 2007 unsigned long i;
1da177e4 2008
86760a2c 2009 pfn = page_to_pfn(page);
f623f0db 2010 for (i = 0; i < (1UL << order); i++)
7be98234 2011 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2012 }
b2a0ac88 2013 }
1da177e4
LT
2014 spin_unlock_irqrestore(&zone->lock, flags);
2015}
e2c55dc8 2016#endif /* CONFIG_PM */
1da177e4 2017
1da177e4
LT
2018/*
2019 * Free a 0-order page
b745bc85 2020 * cold == true ? free a cold page : free a hot page
1da177e4 2021 */
b745bc85 2022void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2023{
2024 struct zone *zone = page_zone(page);
2025 struct per_cpu_pages *pcp;
2026 unsigned long flags;
dc4b0caf 2027 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2028 int migratetype;
1da177e4 2029
ec95f53a 2030 if (!free_pages_prepare(page, 0))
689bcebf
HD
2031 return;
2032
dc4b0caf 2033 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2034 set_pcppage_migratetype(page, migratetype);
1da177e4 2035 local_irq_save(flags);
f8891e5e 2036 __count_vm_event(PGFREE);
da456f14 2037
5f8dcc21
MG
2038 /*
2039 * We only track unmovable, reclaimable and movable on pcp lists.
2040 * Free ISOLATE pages back to the allocator because they are being
2041 * offlined but treat RESERVE as movable pages so we can get those
2042 * areas back if necessary. Otherwise, we may have to free
2043 * excessively into the page allocator
2044 */
2045 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2046 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2047 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2048 goto out;
2049 }
2050 migratetype = MIGRATE_MOVABLE;
2051 }
2052
99dcc3e5 2053 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2054 if (!cold)
5f8dcc21 2055 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2056 else
2057 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2058 pcp->count++;
48db57f8 2059 if (pcp->count >= pcp->high) {
4db0c3c2 2060 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2061 free_pcppages_bulk(zone, batch, pcp);
2062 pcp->count -= batch;
48db57f8 2063 }
5f8dcc21
MG
2064
2065out:
1da177e4 2066 local_irq_restore(flags);
1da177e4
LT
2067}
2068
cc59850e
KK
2069/*
2070 * Free a list of 0-order pages
2071 */
b745bc85 2072void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2073{
2074 struct page *page, *next;
2075
2076 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2077 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2078 free_hot_cold_page(page, cold);
2079 }
2080}
2081
8dfcc9ba
NP
2082/*
2083 * split_page takes a non-compound higher-order page, and splits it into
2084 * n (1<<order) sub-pages: page[0..n]
2085 * Each sub-page must be freed individually.
2086 *
2087 * Note: this is probably too low level an operation for use in drivers.
2088 * Please consult with lkml before using this in your driver.
2089 */
2090void split_page(struct page *page, unsigned int order)
2091{
2092 int i;
e2cfc911 2093 gfp_t gfp_mask;
8dfcc9ba 2094
309381fe
SL
2095 VM_BUG_ON_PAGE(PageCompound(page), page);
2096 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2097
2098#ifdef CONFIG_KMEMCHECK
2099 /*
2100 * Split shadow pages too, because free(page[0]) would
2101 * otherwise free the whole shadow.
2102 */
2103 if (kmemcheck_page_is_tracked(page))
2104 split_page(virt_to_page(page[0].shadow), order);
2105#endif
2106
e2cfc911
JK
2107 gfp_mask = get_page_owner_gfp(page);
2108 set_page_owner(page, 0, gfp_mask);
48c96a36 2109 for (i = 1; i < (1 << order); i++) {
7835e98b 2110 set_page_refcounted(page + i);
e2cfc911 2111 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2112 }
8dfcc9ba 2113}
5853ff23 2114EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2115
3c605096 2116int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2117{
748446bb
MG
2118 unsigned long watermark;
2119 struct zone *zone;
2139cbe6 2120 int mt;
748446bb
MG
2121
2122 BUG_ON(!PageBuddy(page));
2123
2124 zone = page_zone(page);
2e30abd1 2125 mt = get_pageblock_migratetype(page);
748446bb 2126
194159fb 2127 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2128 /* Obey watermarks as if the page was being allocated */
2129 watermark = low_wmark_pages(zone) + (1 << order);
2130 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2131 return 0;
2132
8fb74b9f 2133 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2134 }
748446bb
MG
2135
2136 /* Remove page from free list */
2137 list_del(&page->lru);
2138 zone->free_area[order].nr_free--;
2139 rmv_page_order(page);
2139cbe6 2140
e2cfc911 2141 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2142
8fb74b9f 2143 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2144 if (order >= pageblock_order - 1) {
2145 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2146 for (; page < endpage; page += pageblock_nr_pages) {
2147 int mt = get_pageblock_migratetype(page);
194159fb 2148 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2149 set_pageblock_migratetype(page,
2150 MIGRATE_MOVABLE);
2151 }
748446bb
MG
2152 }
2153
f3a14ced 2154
8fb74b9f 2155 return 1UL << order;
1fb3f8ca
MG
2156}
2157
2158/*
2159 * Similar to split_page except the page is already free. As this is only
2160 * being used for migration, the migratetype of the block also changes.
2161 * As this is called with interrupts disabled, the caller is responsible
2162 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2163 * are enabled.
2164 *
2165 * Note: this is probably too low level an operation for use in drivers.
2166 * Please consult with lkml before using this in your driver.
2167 */
2168int split_free_page(struct page *page)
2169{
2170 unsigned int order;
2171 int nr_pages;
2172
1fb3f8ca
MG
2173 order = page_order(page);
2174
8fb74b9f 2175 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2176 if (!nr_pages)
2177 return 0;
2178
2179 /* Split into individual pages */
2180 set_page_refcounted(page);
2181 split_page(page, order);
2182 return nr_pages;
748446bb
MG
2183}
2184
1da177e4 2185/*
75379191 2186 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2187 */
0a15c3e9
MG
2188static inline
2189struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2190 struct zone *zone, unsigned int order,
0aaa29a5 2191 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2192{
2193 unsigned long flags;
689bcebf 2194 struct page *page;
b745bc85 2195 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2196
48db57f8 2197 if (likely(order == 0)) {
1da177e4 2198 struct per_cpu_pages *pcp;
5f8dcc21 2199 struct list_head *list;
1da177e4 2200
1da177e4 2201 local_irq_save(flags);
99dcc3e5
CL
2202 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2203 list = &pcp->lists[migratetype];
5f8dcc21 2204 if (list_empty(list)) {
535131e6 2205 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2206 pcp->batch, list,
e084b2d9 2207 migratetype, cold);
5f8dcc21 2208 if (unlikely(list_empty(list)))
6fb332fa 2209 goto failed;
535131e6 2210 }
b92a6edd 2211
5f8dcc21 2212 if (cold)
a16601c5 2213 page = list_last_entry(list, struct page, lru);
5f8dcc21 2214 else
a16601c5 2215 page = list_first_entry(list, struct page, lru);
5f8dcc21 2216
b92a6edd
MG
2217 list_del(&page->lru);
2218 pcp->count--;
7fb1d9fc 2219 } else {
dab48dab
AM
2220 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2221 /*
2222 * __GFP_NOFAIL is not to be used in new code.
2223 *
2224 * All __GFP_NOFAIL callers should be fixed so that they
2225 * properly detect and handle allocation failures.
2226 *
2227 * We most definitely don't want callers attempting to
4923abf9 2228 * allocate greater than order-1 page units with
dab48dab
AM
2229 * __GFP_NOFAIL.
2230 */
4923abf9 2231 WARN_ON_ONCE(order > 1);
dab48dab 2232 }
1da177e4 2233 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2234
2235 page = NULL;
2236 if (alloc_flags & ALLOC_HARDER) {
2237 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2238 if (page)
2239 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2240 }
2241 if (!page)
6ac0206b 2242 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2243 spin_unlock(&zone->lock);
2244 if (!page)
2245 goto failed;
d1ce749a 2246 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2247 get_pcppage_migratetype(page));
1da177e4
LT
2248 }
2249
3a025760 2250 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2251 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2252 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2253 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2254
f8891e5e 2255 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2256 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2257 local_irq_restore(flags);
1da177e4 2258
309381fe 2259 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2260 return page;
a74609fa
NP
2261
2262failed:
2263 local_irq_restore(flags);
a74609fa 2264 return NULL;
1da177e4
LT
2265}
2266
933e312e
AM
2267#ifdef CONFIG_FAIL_PAGE_ALLOC
2268
b2588c4b 2269static struct {
933e312e
AM
2270 struct fault_attr attr;
2271
621a5f7a 2272 bool ignore_gfp_highmem;
71baba4b 2273 bool ignore_gfp_reclaim;
54114994 2274 u32 min_order;
933e312e
AM
2275} fail_page_alloc = {
2276 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2277 .ignore_gfp_reclaim = true,
621a5f7a 2278 .ignore_gfp_highmem = true,
54114994 2279 .min_order = 1,
933e312e
AM
2280};
2281
2282static int __init setup_fail_page_alloc(char *str)
2283{
2284 return setup_fault_attr(&fail_page_alloc.attr, str);
2285}
2286__setup("fail_page_alloc=", setup_fail_page_alloc);
2287
deaf386e 2288static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2289{
54114994 2290 if (order < fail_page_alloc.min_order)
deaf386e 2291 return false;
933e312e 2292 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2293 return false;
933e312e 2294 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2295 return false;
71baba4b
MG
2296 if (fail_page_alloc.ignore_gfp_reclaim &&
2297 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2298 return false;
933e312e
AM
2299
2300 return should_fail(&fail_page_alloc.attr, 1 << order);
2301}
2302
2303#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2304
2305static int __init fail_page_alloc_debugfs(void)
2306{
f4ae40a6 2307 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2308 struct dentry *dir;
933e312e 2309
dd48c085
AM
2310 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2311 &fail_page_alloc.attr);
2312 if (IS_ERR(dir))
2313 return PTR_ERR(dir);
933e312e 2314
b2588c4b 2315 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2316 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2317 goto fail;
2318 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2319 &fail_page_alloc.ignore_gfp_highmem))
2320 goto fail;
2321 if (!debugfs_create_u32("min-order", mode, dir,
2322 &fail_page_alloc.min_order))
2323 goto fail;
2324
2325 return 0;
2326fail:
dd48c085 2327 debugfs_remove_recursive(dir);
933e312e 2328
b2588c4b 2329 return -ENOMEM;
933e312e
AM
2330}
2331
2332late_initcall(fail_page_alloc_debugfs);
2333
2334#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2335
2336#else /* CONFIG_FAIL_PAGE_ALLOC */
2337
deaf386e 2338static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2339{
deaf386e 2340 return false;
933e312e
AM
2341}
2342
2343#endif /* CONFIG_FAIL_PAGE_ALLOC */
2344
1da177e4 2345/*
97a16fc8
MG
2346 * Return true if free base pages are above 'mark'. For high-order checks it
2347 * will return true of the order-0 watermark is reached and there is at least
2348 * one free page of a suitable size. Checking now avoids taking the zone lock
2349 * to check in the allocation paths if no pages are free.
1da177e4 2350 */
7aeb09f9
MG
2351static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2352 unsigned long mark, int classzone_idx, int alloc_flags,
2353 long free_pages)
1da177e4 2354{
d23ad423 2355 long min = mark;
1da177e4 2356 int o;
97a16fc8 2357 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2358
0aaa29a5 2359 /* free_pages may go negative - that's OK */
df0a6daa 2360 free_pages -= (1 << order) - 1;
0aaa29a5 2361
7fb1d9fc 2362 if (alloc_flags & ALLOC_HIGH)
1da177e4 2363 min -= min / 2;
0aaa29a5
MG
2364
2365 /*
2366 * If the caller does not have rights to ALLOC_HARDER then subtract
2367 * the high-atomic reserves. This will over-estimate the size of the
2368 * atomic reserve but it avoids a search.
2369 */
97a16fc8 2370 if (likely(!alloc_harder))
0aaa29a5
MG
2371 free_pages -= z->nr_reserved_highatomic;
2372 else
1da177e4 2373 min -= min / 4;
e2b19197 2374
d95ea5d1
BZ
2375#ifdef CONFIG_CMA
2376 /* If allocation can't use CMA areas don't use free CMA pages */
2377 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2378 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2379#endif
026b0814 2380
97a16fc8
MG
2381 /*
2382 * Check watermarks for an order-0 allocation request. If these
2383 * are not met, then a high-order request also cannot go ahead
2384 * even if a suitable page happened to be free.
2385 */
2386 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2387 return false;
1da177e4 2388
97a16fc8
MG
2389 /* If this is an order-0 request then the watermark is fine */
2390 if (!order)
2391 return true;
2392
2393 /* For a high-order request, check at least one suitable page is free */
2394 for (o = order; o < MAX_ORDER; o++) {
2395 struct free_area *area = &z->free_area[o];
2396 int mt;
2397
2398 if (!area->nr_free)
2399 continue;
2400
2401 if (alloc_harder)
2402 return true;
1da177e4 2403
97a16fc8
MG
2404 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2405 if (!list_empty(&area->free_list[mt]))
2406 return true;
2407 }
2408
2409#ifdef CONFIG_CMA
2410 if ((alloc_flags & ALLOC_CMA) &&
2411 !list_empty(&area->free_list[MIGRATE_CMA])) {
2412 return true;
2413 }
2414#endif
1da177e4 2415 }
97a16fc8 2416 return false;
88f5acf8
MG
2417}
2418
7aeb09f9 2419bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2420 int classzone_idx, int alloc_flags)
2421{
2422 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2423 zone_page_state(z, NR_FREE_PAGES));
2424}
2425
7aeb09f9 2426bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2427 unsigned long mark, int classzone_idx)
88f5acf8
MG
2428{
2429 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2430
2431 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2432 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2433
e2b19197 2434 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2435 free_pages);
1da177e4
LT
2436}
2437
9276b1bc 2438#ifdef CONFIG_NUMA
81c0a2bb
JW
2439static bool zone_local(struct zone *local_zone, struct zone *zone)
2440{
fff4068c 2441 return local_zone->node == zone->node;
81c0a2bb
JW
2442}
2443
957f822a
DR
2444static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2445{
5f7a75ac
MG
2446 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2447 RECLAIM_DISTANCE;
957f822a 2448}
9276b1bc 2449#else /* CONFIG_NUMA */
81c0a2bb
JW
2450static bool zone_local(struct zone *local_zone, struct zone *zone)
2451{
2452 return true;
2453}
2454
957f822a
DR
2455static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2456{
2457 return true;
2458}
9276b1bc
PJ
2459#endif /* CONFIG_NUMA */
2460
4ffeaf35
MG
2461static void reset_alloc_batches(struct zone *preferred_zone)
2462{
2463 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2464
2465 do {
2466 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2467 high_wmark_pages(zone) - low_wmark_pages(zone) -
2468 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2469 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2470 } while (zone++ != preferred_zone);
2471}
2472
7fb1d9fc 2473/*
0798e519 2474 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2475 * a page.
2476 */
2477static struct page *
a9263751
VB
2478get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2479 const struct alloc_context *ac)
753ee728 2480{
a9263751 2481 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2482 struct zoneref *z;
7fb1d9fc 2483 struct page *page = NULL;
5117f45d 2484 struct zone *zone;
4ffeaf35
MG
2485 int nr_fair_skipped = 0;
2486 bool zonelist_rescan;
54a6eb5c 2487
9276b1bc 2488zonelist_scan:
4ffeaf35
MG
2489 zonelist_rescan = false;
2490
7fb1d9fc 2491 /*
9276b1bc 2492 * Scan zonelist, looking for a zone with enough free.
344736f2 2493 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2494 */
a9263751
VB
2495 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2496 ac->nodemask) {
e085dbc5
JW
2497 unsigned long mark;
2498
664eedde
MG
2499 if (cpusets_enabled() &&
2500 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2501 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2502 continue;
81c0a2bb
JW
2503 /*
2504 * Distribute pages in proportion to the individual
2505 * zone size to ensure fair page aging. The zone a
2506 * page was allocated in should have no effect on the
2507 * time the page has in memory before being reclaimed.
81c0a2bb 2508 */
3a025760 2509 if (alloc_flags & ALLOC_FAIR) {
a9263751 2510 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2511 break;
57054651 2512 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2513 nr_fair_skipped++;
3a025760 2514 continue;
4ffeaf35 2515 }
81c0a2bb 2516 }
a756cf59
JW
2517 /*
2518 * When allocating a page cache page for writing, we
2519 * want to get it from a zone that is within its dirty
2520 * limit, such that no single zone holds more than its
2521 * proportional share of globally allowed dirty pages.
2522 * The dirty limits take into account the zone's
2523 * lowmem reserves and high watermark so that kswapd
2524 * should be able to balance it without having to
2525 * write pages from its LRU list.
2526 *
2527 * This may look like it could increase pressure on
2528 * lower zones by failing allocations in higher zones
2529 * before they are full. But the pages that do spill
2530 * over are limited as the lower zones are protected
2531 * by this very same mechanism. It should not become
2532 * a practical burden to them.
2533 *
2534 * XXX: For now, allow allocations to potentially
2535 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2536 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2537 * which is important when on a NUMA setup the allowed
2538 * zones are together not big enough to reach the
2539 * global limit. The proper fix for these situations
2540 * will require awareness of zones in the
2541 * dirty-throttling and the flusher threads.
2542 */
c9ab0c4f 2543 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2544 continue;
7fb1d9fc 2545
e085dbc5
JW
2546 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2547 if (!zone_watermark_ok(zone, order, mark,
a9263751 2548 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2549 int ret;
2550
5dab2911
MG
2551 /* Checked here to keep the fast path fast */
2552 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2553 if (alloc_flags & ALLOC_NO_WATERMARKS)
2554 goto try_this_zone;
2555
957f822a 2556 if (zone_reclaim_mode == 0 ||
a9263751 2557 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2558 continue;
2559
fa5e084e
MG
2560 ret = zone_reclaim(zone, gfp_mask, order);
2561 switch (ret) {
2562 case ZONE_RECLAIM_NOSCAN:
2563 /* did not scan */
cd38b115 2564 continue;
fa5e084e
MG
2565 case ZONE_RECLAIM_FULL:
2566 /* scanned but unreclaimable */
cd38b115 2567 continue;
fa5e084e
MG
2568 default:
2569 /* did we reclaim enough */
fed2719e 2570 if (zone_watermark_ok(zone, order, mark,
a9263751 2571 ac->classzone_idx, alloc_flags))
fed2719e
MG
2572 goto try_this_zone;
2573
fed2719e 2574 continue;
0798e519 2575 }
7fb1d9fc
RS
2576 }
2577
fa5e084e 2578try_this_zone:
a9263751 2579 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2580 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2581 if (page) {
2582 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2583 goto try_this_zone;
0aaa29a5
MG
2584
2585 /*
2586 * If this is a high-order atomic allocation then check
2587 * if the pageblock should be reserved for the future
2588 */
2589 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2590 reserve_highatomic_pageblock(page, zone, order);
2591
75379191
VB
2592 return page;
2593 }
54a6eb5c 2594 }
9276b1bc 2595
4ffeaf35
MG
2596 /*
2597 * The first pass makes sure allocations are spread fairly within the
2598 * local node. However, the local node might have free pages left
2599 * after the fairness batches are exhausted, and remote zones haven't
2600 * even been considered yet. Try once more without fairness, and
2601 * include remote zones now, before entering the slowpath and waking
2602 * kswapd: prefer spilling to a remote zone over swapping locally.
2603 */
2604 if (alloc_flags & ALLOC_FAIR) {
2605 alloc_flags &= ~ALLOC_FAIR;
2606 if (nr_fair_skipped) {
2607 zonelist_rescan = true;
a9263751 2608 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2609 }
2610 if (nr_online_nodes > 1)
2611 zonelist_rescan = true;
2612 }
2613
4ffeaf35
MG
2614 if (zonelist_rescan)
2615 goto zonelist_scan;
2616
2617 return NULL;
753ee728
MH
2618}
2619
29423e77
DR
2620/*
2621 * Large machines with many possible nodes should not always dump per-node
2622 * meminfo in irq context.
2623 */
2624static inline bool should_suppress_show_mem(void)
2625{
2626 bool ret = false;
2627
2628#if NODES_SHIFT > 8
2629 ret = in_interrupt();
2630#endif
2631 return ret;
2632}
2633
a238ab5b
DH
2634static DEFINE_RATELIMIT_STATE(nopage_rs,
2635 DEFAULT_RATELIMIT_INTERVAL,
2636 DEFAULT_RATELIMIT_BURST);
2637
d00181b9 2638void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2639{
a238ab5b
DH
2640 unsigned int filter = SHOW_MEM_FILTER_NODES;
2641
c0a32fc5
SG
2642 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2643 debug_guardpage_minorder() > 0)
a238ab5b
DH
2644 return;
2645
2646 /*
2647 * This documents exceptions given to allocations in certain
2648 * contexts that are allowed to allocate outside current's set
2649 * of allowed nodes.
2650 */
2651 if (!(gfp_mask & __GFP_NOMEMALLOC))
2652 if (test_thread_flag(TIF_MEMDIE) ||
2653 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2654 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2655 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2656 filter &= ~SHOW_MEM_FILTER_NODES;
2657
2658 if (fmt) {
3ee9a4f0
JP
2659 struct va_format vaf;
2660 va_list args;
2661
a238ab5b 2662 va_start(args, fmt);
3ee9a4f0
JP
2663
2664 vaf.fmt = fmt;
2665 vaf.va = &args;
2666
2667 pr_warn("%pV", &vaf);
2668
a238ab5b
DH
2669 va_end(args);
2670 }
2671
d00181b9 2672 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
3ee9a4f0 2673 current->comm, order, gfp_mask);
a238ab5b
DH
2674
2675 dump_stack();
2676 if (!should_suppress_show_mem())
2677 show_mem(filter);
2678}
2679
11e33f6a
MG
2680static inline struct page *
2681__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2682 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2683{
6e0fc46d
DR
2684 struct oom_control oc = {
2685 .zonelist = ac->zonelist,
2686 .nodemask = ac->nodemask,
2687 .gfp_mask = gfp_mask,
2688 .order = order,
6e0fc46d 2689 };
11e33f6a
MG
2690 struct page *page;
2691
9879de73
JW
2692 *did_some_progress = 0;
2693
9879de73 2694 /*
dc56401f
JW
2695 * Acquire the oom lock. If that fails, somebody else is
2696 * making progress for us.
9879de73 2697 */
dc56401f 2698 if (!mutex_trylock(&oom_lock)) {
9879de73 2699 *did_some_progress = 1;
11e33f6a 2700 schedule_timeout_uninterruptible(1);
1da177e4
LT
2701 return NULL;
2702 }
6b1de916 2703
11e33f6a
MG
2704 /*
2705 * Go through the zonelist yet one more time, keep very high watermark
2706 * here, this is only to catch a parallel oom killing, we must fail if
2707 * we're still under heavy pressure.
2708 */
a9263751
VB
2709 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2710 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2711 if (page)
11e33f6a
MG
2712 goto out;
2713
4365a567 2714 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2715 /* Coredumps can quickly deplete all memory reserves */
2716 if (current->flags & PF_DUMPCORE)
2717 goto out;
4365a567
KH
2718 /* The OOM killer will not help higher order allocs */
2719 if (order > PAGE_ALLOC_COSTLY_ORDER)
2720 goto out;
03668b3c 2721 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2722 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2723 goto out;
9083905a 2724 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2725 if (!(gfp_mask & __GFP_FS)) {
2726 /*
2727 * XXX: Page reclaim didn't yield anything,
2728 * and the OOM killer can't be invoked, but
9083905a 2729 * keep looping as per tradition.
cc873177
JW
2730 */
2731 *did_some_progress = 1;
9879de73 2732 goto out;
cc873177 2733 }
9083905a
JW
2734 if (pm_suspended_storage())
2735 goto out;
4167e9b2 2736 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2737 if (gfp_mask & __GFP_THISNODE)
2738 goto out;
2739 }
11e33f6a 2740 /* Exhausted what can be done so it's blamo time */
5020e285 2741 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2742 *did_some_progress = 1;
5020e285
MH
2743
2744 if (gfp_mask & __GFP_NOFAIL) {
2745 page = get_page_from_freelist(gfp_mask, order,
2746 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2747 /*
2748 * fallback to ignore cpuset restriction if our nodes
2749 * are depleted
2750 */
2751 if (!page)
2752 page = get_page_from_freelist(gfp_mask, order,
2753 ALLOC_NO_WATERMARKS, ac);
2754 }
2755 }
11e33f6a 2756out:
dc56401f 2757 mutex_unlock(&oom_lock);
11e33f6a
MG
2758 return page;
2759}
2760
56de7263
MG
2761#ifdef CONFIG_COMPACTION
2762/* Try memory compaction for high-order allocations before reclaim */
2763static struct page *
2764__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2765 int alloc_flags, const struct alloc_context *ac,
2766 enum migrate_mode mode, int *contended_compaction,
2767 bool *deferred_compaction)
56de7263 2768{
53853e2d 2769 unsigned long compact_result;
98dd3b48 2770 struct page *page;
53853e2d
VB
2771
2772 if (!order)
66199712 2773 return NULL;
66199712 2774
c06b1fca 2775 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2776 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2777 mode, contended_compaction);
c06b1fca 2778 current->flags &= ~PF_MEMALLOC;
56de7263 2779
98dd3b48
VB
2780 switch (compact_result) {
2781 case COMPACT_DEFERRED:
53853e2d 2782 *deferred_compaction = true;
98dd3b48
VB
2783 /* fall-through */
2784 case COMPACT_SKIPPED:
2785 return NULL;
2786 default:
2787 break;
2788 }
53853e2d 2789
98dd3b48
VB
2790 /*
2791 * At least in one zone compaction wasn't deferred or skipped, so let's
2792 * count a compaction stall
2793 */
2794 count_vm_event(COMPACTSTALL);
8fb74b9f 2795
a9263751
VB
2796 page = get_page_from_freelist(gfp_mask, order,
2797 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2798
98dd3b48
VB
2799 if (page) {
2800 struct zone *zone = page_zone(page);
53853e2d 2801
98dd3b48
VB
2802 zone->compact_blockskip_flush = false;
2803 compaction_defer_reset(zone, order, true);
2804 count_vm_event(COMPACTSUCCESS);
2805 return page;
2806 }
56de7263 2807
98dd3b48
VB
2808 /*
2809 * It's bad if compaction run occurs and fails. The most likely reason
2810 * is that pages exist, but not enough to satisfy watermarks.
2811 */
2812 count_vm_event(COMPACTFAIL);
66199712 2813
98dd3b48 2814 cond_resched();
56de7263
MG
2815
2816 return NULL;
2817}
2818#else
2819static inline struct page *
2820__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2821 int alloc_flags, const struct alloc_context *ac,
2822 enum migrate_mode mode, int *contended_compaction,
2823 bool *deferred_compaction)
56de7263
MG
2824{
2825 return NULL;
2826}
2827#endif /* CONFIG_COMPACTION */
2828
bba90710
MS
2829/* Perform direct synchronous page reclaim */
2830static int
a9263751
VB
2831__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2832 const struct alloc_context *ac)
11e33f6a 2833{
11e33f6a 2834 struct reclaim_state reclaim_state;
bba90710 2835 int progress;
11e33f6a
MG
2836
2837 cond_resched();
2838
2839 /* We now go into synchronous reclaim */
2840 cpuset_memory_pressure_bump();
c06b1fca 2841 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2842 lockdep_set_current_reclaim_state(gfp_mask);
2843 reclaim_state.reclaimed_slab = 0;
c06b1fca 2844 current->reclaim_state = &reclaim_state;
11e33f6a 2845
a9263751
VB
2846 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2847 ac->nodemask);
11e33f6a 2848
c06b1fca 2849 current->reclaim_state = NULL;
11e33f6a 2850 lockdep_clear_current_reclaim_state();
c06b1fca 2851 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2852
2853 cond_resched();
2854
bba90710
MS
2855 return progress;
2856}
2857
2858/* The really slow allocator path where we enter direct reclaim */
2859static inline struct page *
2860__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2861 int alloc_flags, const struct alloc_context *ac,
2862 unsigned long *did_some_progress)
bba90710
MS
2863{
2864 struct page *page = NULL;
2865 bool drained = false;
2866
a9263751 2867 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2868 if (unlikely(!(*did_some_progress)))
2869 return NULL;
11e33f6a 2870
9ee493ce 2871retry:
a9263751
VB
2872 page = get_page_from_freelist(gfp_mask, order,
2873 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2874
2875 /*
2876 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
2877 * pages are pinned on the per-cpu lists or in high alloc reserves.
2878 * Shrink them them and try again
9ee493ce
MG
2879 */
2880 if (!page && !drained) {
0aaa29a5 2881 unreserve_highatomic_pageblock(ac);
93481ff0 2882 drain_all_pages(NULL);
9ee493ce
MG
2883 drained = true;
2884 goto retry;
2885 }
2886
11e33f6a
MG
2887 return page;
2888}
2889
a9263751 2890static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2891{
2892 struct zoneref *z;
2893 struct zone *zone;
2894
a9263751
VB
2895 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2896 ac->high_zoneidx, ac->nodemask)
2897 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2898}
2899
341ce06f
PZ
2900static inline int
2901gfp_to_alloc_flags(gfp_t gfp_mask)
2902{
341ce06f 2903 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 2904
a56f57ff 2905 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2906 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2907
341ce06f
PZ
2908 /*
2909 * The caller may dip into page reserves a bit more if the caller
2910 * cannot run direct reclaim, or if the caller has realtime scheduling
2911 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 2912 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2913 */
e6223a3b 2914 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2915
d0164adc 2916 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 2917 /*
b104a35d
DR
2918 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2919 * if it can't schedule.
5c3240d9 2920 */
b104a35d 2921 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2922 alloc_flags |= ALLOC_HARDER;
523b9458 2923 /*
b104a35d 2924 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2925 * comment for __cpuset_node_allowed().
523b9458 2926 */
341ce06f 2927 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2928 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2929 alloc_flags |= ALLOC_HARDER;
2930
b37f1dd0
MG
2931 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2932 if (gfp_mask & __GFP_MEMALLOC)
2933 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2934 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2935 alloc_flags |= ALLOC_NO_WATERMARKS;
2936 else if (!in_interrupt() &&
2937 ((current->flags & PF_MEMALLOC) ||
2938 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2939 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2940 }
d95ea5d1 2941#ifdef CONFIG_CMA
43e7a34d 2942 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2943 alloc_flags |= ALLOC_CMA;
2944#endif
341ce06f
PZ
2945 return alloc_flags;
2946}
2947
072bb0aa
MG
2948bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2949{
b37f1dd0 2950 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2951}
2952
d0164adc
MG
2953static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2954{
2955 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2956}
2957
11e33f6a
MG
2958static inline struct page *
2959__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2960 struct alloc_context *ac)
11e33f6a 2961{
d0164adc 2962 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
2963 struct page *page = NULL;
2964 int alloc_flags;
2965 unsigned long pages_reclaimed = 0;
2966 unsigned long did_some_progress;
e0b9daeb 2967 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2968 bool deferred_compaction = false;
1f9efdef 2969 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2970
72807a74
MG
2971 /*
2972 * In the slowpath, we sanity check order to avoid ever trying to
2973 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2974 * be using allocators in order of preference for an area that is
2975 * too large.
2976 */
1fc28b70
MG
2977 if (order >= MAX_ORDER) {
2978 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2979 return NULL;
1fc28b70 2980 }
1da177e4 2981
d0164adc
MG
2982 /*
2983 * We also sanity check to catch abuse of atomic reserves being used by
2984 * callers that are not in atomic context.
2985 */
2986 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
2987 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
2988 gfp_mask &= ~__GFP_ATOMIC;
2989
952f3b51 2990 /*
4167e9b2
DR
2991 * If this allocation cannot block and it is for a specific node, then
2992 * fail early. There's no need to wakeup kswapd or retry for a
2993 * speculative node-specific allocation.
952f3b51 2994 */
d0164adc 2995 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
2996 goto nopage;
2997
9879de73 2998retry:
d0164adc 2999 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3000 wake_all_kswapds(order, ac);
1da177e4 3001
9bf2229f 3002 /*
7fb1d9fc
RS
3003 * OK, we're below the kswapd watermark and have kicked background
3004 * reclaim. Now things get more complex, so set up alloc_flags according
3005 * to how we want to proceed.
9bf2229f 3006 */
341ce06f 3007 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3008
f33261d7
DR
3009 /*
3010 * Find the true preferred zone if the allocation is unconstrained by
3011 * cpusets.
3012 */
a9263751 3013 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3014 struct zoneref *preferred_zoneref;
a9263751
VB
3015 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3016 ac->high_zoneidx, NULL, &ac->preferred_zone);
3017 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3018 }
f33261d7 3019
341ce06f 3020 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3021 page = get_page_from_freelist(gfp_mask, order,
3022 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3023 if (page)
3024 goto got_pg;
1da177e4 3025
11e33f6a 3026 /* Allocate without watermarks if the context allows */
341ce06f 3027 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3028 /*
3029 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3030 * the allocation is high priority and these type of
3031 * allocations are system rather than user orientated
3032 */
a9263751 3033 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3034 page = get_page_from_freelist(gfp_mask, order,
3035 ALLOC_NO_WATERMARKS, ac);
3036 if (page)
3037 goto got_pg;
1da177e4
LT
3038 }
3039
d0164adc
MG
3040 /* Caller is not willing to reclaim, we can't balance anything */
3041 if (!can_direct_reclaim) {
aed0a0e3 3042 /*
33d53103
MH
3043 * All existing users of the __GFP_NOFAIL are blockable, so warn
3044 * of any new users that actually allow this type of allocation
3045 * to fail.
aed0a0e3
DR
3046 */
3047 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3048 goto nopage;
aed0a0e3 3049 }
1da177e4 3050
341ce06f 3051 /* Avoid recursion of direct reclaim */
33d53103
MH
3052 if (current->flags & PF_MEMALLOC) {
3053 /*
3054 * __GFP_NOFAIL request from this context is rather bizarre
3055 * because we cannot reclaim anything and only can loop waiting
3056 * for somebody to do a work for us.
3057 */
3058 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3059 cond_resched();
3060 goto retry;
3061 }
341ce06f 3062 goto nopage;
33d53103 3063 }
341ce06f 3064
6583bb64
DR
3065 /* Avoid allocations with no watermarks from looping endlessly */
3066 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3067 goto nopage;
3068
77f1fe6b
MG
3069 /*
3070 * Try direct compaction. The first pass is asynchronous. Subsequent
3071 * attempts after direct reclaim are synchronous
3072 */
a9263751
VB
3073 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3074 migration_mode,
3075 &contended_compaction,
53853e2d 3076 &deferred_compaction);
56de7263
MG
3077 if (page)
3078 goto got_pg;
75f30861 3079
1f9efdef 3080 /* Checks for THP-specific high-order allocations */
d0164adc 3081 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3082 /*
3083 * If compaction is deferred for high-order allocations, it is
3084 * because sync compaction recently failed. If this is the case
3085 * and the caller requested a THP allocation, we do not want
3086 * to heavily disrupt the system, so we fail the allocation
3087 * instead of entering direct reclaim.
3088 */
3089 if (deferred_compaction)
3090 goto nopage;
3091
3092 /*
3093 * In all zones where compaction was attempted (and not
3094 * deferred or skipped), lock contention has been detected.
3095 * For THP allocation we do not want to disrupt the others
3096 * so we fallback to base pages instead.
3097 */
3098 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3099 goto nopage;
3100
3101 /*
3102 * If compaction was aborted due to need_resched(), we do not
3103 * want to further increase allocation latency, unless it is
3104 * khugepaged trying to collapse.
3105 */
3106 if (contended_compaction == COMPACT_CONTENDED_SCHED
3107 && !(current->flags & PF_KTHREAD))
3108 goto nopage;
3109 }
66199712 3110
8fe78048
DR
3111 /*
3112 * It can become very expensive to allocate transparent hugepages at
3113 * fault, so use asynchronous memory compaction for THP unless it is
3114 * khugepaged trying to collapse.
3115 */
d0164adc 3116 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3117 migration_mode = MIGRATE_SYNC_LIGHT;
3118
11e33f6a 3119 /* Try direct reclaim and then allocating */
a9263751
VB
3120 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3121 &did_some_progress);
11e33f6a
MG
3122 if (page)
3123 goto got_pg;
1da177e4 3124
9083905a
JW
3125 /* Do not loop if specifically requested */
3126 if (gfp_mask & __GFP_NORETRY)
3127 goto noretry;
3128
3129 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3130 pages_reclaimed += did_some_progress;
9083905a
JW
3131 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3132 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3133 /* Wait for some write requests to complete then retry */
a9263751 3134 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3135 goto retry;
1da177e4
LT
3136 }
3137
9083905a
JW
3138 /* Reclaim has failed us, start killing things */
3139 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3140 if (page)
3141 goto got_pg;
3142
3143 /* Retry as long as the OOM killer is making progress */
3144 if (did_some_progress)
3145 goto retry;
3146
3147noretry:
3148 /*
3149 * High-order allocations do not necessarily loop after
3150 * direct reclaim and reclaim/compaction depends on compaction
3151 * being called after reclaim so call directly if necessary
3152 */
3153 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3154 ac, migration_mode,
3155 &contended_compaction,
3156 &deferred_compaction);
3157 if (page)
3158 goto got_pg;
1da177e4 3159nopage:
a238ab5b 3160 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3161got_pg:
072bb0aa 3162 return page;
1da177e4 3163}
11e33f6a
MG
3164
3165/*
3166 * This is the 'heart' of the zoned buddy allocator.
3167 */
3168struct page *
3169__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3170 struct zonelist *zonelist, nodemask_t *nodemask)
3171{
d8846374 3172 struct zoneref *preferred_zoneref;
cc9a6c87 3173 struct page *page = NULL;
cc9a6c87 3174 unsigned int cpuset_mems_cookie;
3a025760 3175 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3176 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3177 struct alloc_context ac = {
3178 .high_zoneidx = gfp_zone(gfp_mask),
3179 .nodemask = nodemask,
3180 .migratetype = gfpflags_to_migratetype(gfp_mask),
3181 };
11e33f6a 3182
dcce284a
BH
3183 gfp_mask &= gfp_allowed_mask;
3184
11e33f6a
MG
3185 lockdep_trace_alloc(gfp_mask);
3186
d0164adc 3187 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3188
3189 if (should_fail_alloc_page(gfp_mask, order))
3190 return NULL;
3191
3192 /*
3193 * Check the zones suitable for the gfp_mask contain at least one
3194 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3195 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3196 */
3197 if (unlikely(!zonelist->_zonerefs->zone))
3198 return NULL;
3199
a9263751 3200 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3201 alloc_flags |= ALLOC_CMA;
3202
cc9a6c87 3203retry_cpuset:
d26914d1 3204 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3205
a9263751
VB
3206 /* We set it here, as __alloc_pages_slowpath might have changed it */
3207 ac.zonelist = zonelist;
c9ab0c4f
MG
3208
3209 /* Dirty zone balancing only done in the fast path */
3210 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3211
5117f45d 3212 /* The preferred zone is used for statistics later */
a9263751
VB
3213 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3214 ac.nodemask ? : &cpuset_current_mems_allowed,
3215 &ac.preferred_zone);
3216 if (!ac.preferred_zone)
cc9a6c87 3217 goto out;
a9263751 3218 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3219
3220 /* First allocation attempt */
91fbdc0f 3221 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3222 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3223 if (unlikely(!page)) {
3224 /*
3225 * Runtime PM, block IO and its error handling path
3226 * can deadlock because I/O on the device might not
3227 * complete.
3228 */
91fbdc0f 3229 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3230 ac.spread_dirty_pages = false;
91fbdc0f 3231
a9263751 3232 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3233 }
11e33f6a 3234
23f086f9
XQ
3235 if (kmemcheck_enabled && page)
3236 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3237
a9263751 3238 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3239
3240out:
3241 /*
3242 * When updating a task's mems_allowed, it is possible to race with
3243 * parallel threads in such a way that an allocation can fail while
3244 * the mask is being updated. If a page allocation is about to fail,
3245 * check if the cpuset changed during allocation and if so, retry.
3246 */
d26914d1 3247 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3248 goto retry_cpuset;
3249
11e33f6a 3250 return page;
1da177e4 3251}
d239171e 3252EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3253
3254/*
3255 * Common helper functions.
3256 */
920c7a5d 3257unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3258{
945a1113
AM
3259 struct page *page;
3260
3261 /*
3262 * __get_free_pages() returns a 32-bit address, which cannot represent
3263 * a highmem page
3264 */
3265 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3266
1da177e4
LT
3267 page = alloc_pages(gfp_mask, order);
3268 if (!page)
3269 return 0;
3270 return (unsigned long) page_address(page);
3271}
1da177e4
LT
3272EXPORT_SYMBOL(__get_free_pages);
3273
920c7a5d 3274unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3275{
945a1113 3276 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3277}
1da177e4
LT
3278EXPORT_SYMBOL(get_zeroed_page);
3279
920c7a5d 3280void __free_pages(struct page *page, unsigned int order)
1da177e4 3281{
b5810039 3282 if (put_page_testzero(page)) {
1da177e4 3283 if (order == 0)
b745bc85 3284 free_hot_cold_page(page, false);
1da177e4
LT
3285 else
3286 __free_pages_ok(page, order);
3287 }
3288}
3289
3290EXPORT_SYMBOL(__free_pages);
3291
920c7a5d 3292void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3293{
3294 if (addr != 0) {
725d704e 3295 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3296 __free_pages(virt_to_page((void *)addr), order);
3297 }
3298}
3299
3300EXPORT_SYMBOL(free_pages);
3301
b63ae8ca
AD
3302/*
3303 * Page Fragment:
3304 * An arbitrary-length arbitrary-offset area of memory which resides
3305 * within a 0 or higher order page. Multiple fragments within that page
3306 * are individually refcounted, in the page's reference counter.
3307 *
3308 * The page_frag functions below provide a simple allocation framework for
3309 * page fragments. This is used by the network stack and network device
3310 * drivers to provide a backing region of memory for use as either an
3311 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3312 */
3313static struct page *__page_frag_refill(struct page_frag_cache *nc,
3314 gfp_t gfp_mask)
3315{
3316 struct page *page = NULL;
3317 gfp_t gfp = gfp_mask;
3318
3319#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3320 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3321 __GFP_NOMEMALLOC;
3322 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3323 PAGE_FRAG_CACHE_MAX_ORDER);
3324 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3325#endif
3326 if (unlikely(!page))
3327 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3328
3329 nc->va = page ? page_address(page) : NULL;
3330
3331 return page;
3332}
3333
3334void *__alloc_page_frag(struct page_frag_cache *nc,
3335 unsigned int fragsz, gfp_t gfp_mask)
3336{
3337 unsigned int size = PAGE_SIZE;
3338 struct page *page;
3339 int offset;
3340
3341 if (unlikely(!nc->va)) {
3342refill:
3343 page = __page_frag_refill(nc, gfp_mask);
3344 if (!page)
3345 return NULL;
3346
3347#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3348 /* if size can vary use size else just use PAGE_SIZE */
3349 size = nc->size;
3350#endif
3351 /* Even if we own the page, we do not use atomic_set().
3352 * This would break get_page_unless_zero() users.
3353 */
3354 atomic_add(size - 1, &page->_count);
3355
3356 /* reset page count bias and offset to start of new frag */
2f064f34 3357 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3358 nc->pagecnt_bias = size;
3359 nc->offset = size;
3360 }
3361
3362 offset = nc->offset - fragsz;
3363 if (unlikely(offset < 0)) {
3364 page = virt_to_page(nc->va);
3365
3366 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3367 goto refill;
3368
3369#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3370 /* if size can vary use size else just use PAGE_SIZE */
3371 size = nc->size;
3372#endif
3373 /* OK, page count is 0, we can safely set it */
3374 atomic_set(&page->_count, size);
3375
3376 /* reset page count bias and offset to start of new frag */
3377 nc->pagecnt_bias = size;
3378 offset = size - fragsz;
3379 }
3380
3381 nc->pagecnt_bias--;
3382 nc->offset = offset;
3383
3384 return nc->va + offset;
3385}
3386EXPORT_SYMBOL(__alloc_page_frag);
3387
3388/*
3389 * Frees a page fragment allocated out of either a compound or order 0 page.
3390 */
3391void __free_page_frag(void *addr)
3392{
3393 struct page *page = virt_to_head_page(addr);
3394
3395 if (unlikely(put_page_testzero(page)))
3396 __free_pages_ok(page, compound_order(page));
3397}
3398EXPORT_SYMBOL(__free_page_frag);
3399
6a1a0d3b 3400/*
52383431 3401 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3402 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3403 * equivalent to alloc_pages.
6a1a0d3b 3404 *
52383431
VD
3405 * It should be used when the caller would like to use kmalloc, but since the
3406 * allocation is large, it has to fall back to the page allocator.
3407 */
3408struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3409{
3410 struct page *page;
52383431 3411
52383431 3412 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3413 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3414 __free_pages(page, order);
3415 page = NULL;
3416 }
52383431
VD
3417 return page;
3418}
3419
3420struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3421{
3422 struct page *page;
52383431 3423
52383431 3424 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3425 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3426 __free_pages(page, order);
3427 page = NULL;
3428 }
52383431
VD
3429 return page;
3430}
3431
3432/*
3433 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3434 * alloc_kmem_pages.
6a1a0d3b 3435 */
52383431 3436void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3437{
d05e83a6 3438 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3439 __free_pages(page, order);
3440}
3441
52383431 3442void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3443{
3444 if (addr != 0) {
3445 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3446 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3447 }
3448}
3449
d00181b9
KS
3450static void *make_alloc_exact(unsigned long addr, unsigned int order,
3451 size_t size)
ee85c2e1
AK
3452{
3453 if (addr) {
3454 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3455 unsigned long used = addr + PAGE_ALIGN(size);
3456
3457 split_page(virt_to_page((void *)addr), order);
3458 while (used < alloc_end) {
3459 free_page(used);
3460 used += PAGE_SIZE;
3461 }
3462 }
3463 return (void *)addr;
3464}
3465
2be0ffe2
TT
3466/**
3467 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3468 * @size: the number of bytes to allocate
3469 * @gfp_mask: GFP flags for the allocation
3470 *
3471 * This function is similar to alloc_pages(), except that it allocates the
3472 * minimum number of pages to satisfy the request. alloc_pages() can only
3473 * allocate memory in power-of-two pages.
3474 *
3475 * This function is also limited by MAX_ORDER.
3476 *
3477 * Memory allocated by this function must be released by free_pages_exact().
3478 */
3479void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3480{
3481 unsigned int order = get_order(size);
3482 unsigned long addr;
3483
3484 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3485 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3486}
3487EXPORT_SYMBOL(alloc_pages_exact);
3488
ee85c2e1
AK
3489/**
3490 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3491 * pages on a node.
b5e6ab58 3492 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3493 * @size: the number of bytes to allocate
3494 * @gfp_mask: GFP flags for the allocation
3495 *
3496 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3497 * back.
ee85c2e1 3498 */
e1931811 3499void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3500{
d00181b9 3501 unsigned int order = get_order(size);
ee85c2e1
AK
3502 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3503 if (!p)
3504 return NULL;
3505 return make_alloc_exact((unsigned long)page_address(p), order, size);
3506}
ee85c2e1 3507
2be0ffe2
TT
3508/**
3509 * free_pages_exact - release memory allocated via alloc_pages_exact()
3510 * @virt: the value returned by alloc_pages_exact.
3511 * @size: size of allocation, same value as passed to alloc_pages_exact().
3512 *
3513 * Release the memory allocated by a previous call to alloc_pages_exact.
3514 */
3515void free_pages_exact(void *virt, size_t size)
3516{
3517 unsigned long addr = (unsigned long)virt;
3518 unsigned long end = addr + PAGE_ALIGN(size);
3519
3520 while (addr < end) {
3521 free_page(addr);
3522 addr += PAGE_SIZE;
3523 }
3524}
3525EXPORT_SYMBOL(free_pages_exact);
3526
e0fb5815
ZY
3527/**
3528 * nr_free_zone_pages - count number of pages beyond high watermark
3529 * @offset: The zone index of the highest zone
3530 *
3531 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3532 * high watermark within all zones at or below a given zone index. For each
3533 * zone, the number of pages is calculated as:
834405c3 3534 * managed_pages - high_pages
e0fb5815 3535 */
ebec3862 3536static unsigned long nr_free_zone_pages(int offset)
1da177e4 3537{
dd1a239f 3538 struct zoneref *z;
54a6eb5c
MG
3539 struct zone *zone;
3540
e310fd43 3541 /* Just pick one node, since fallback list is circular */
ebec3862 3542 unsigned long sum = 0;
1da177e4 3543
0e88460d 3544 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3545
54a6eb5c 3546 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3547 unsigned long size = zone->managed_pages;
41858966 3548 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3549 if (size > high)
3550 sum += size - high;
1da177e4
LT
3551 }
3552
3553 return sum;
3554}
3555
e0fb5815
ZY
3556/**
3557 * nr_free_buffer_pages - count number of pages beyond high watermark
3558 *
3559 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3560 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3561 */
ebec3862 3562unsigned long nr_free_buffer_pages(void)
1da177e4 3563{
af4ca457 3564 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3565}
c2f1a551 3566EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3567
e0fb5815
ZY
3568/**
3569 * nr_free_pagecache_pages - count number of pages beyond high watermark
3570 *
3571 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3572 * high watermark within all zones.
1da177e4 3573 */
ebec3862 3574unsigned long nr_free_pagecache_pages(void)
1da177e4 3575{
2a1e274a 3576 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3577}
08e0f6a9
CL
3578
3579static inline void show_node(struct zone *zone)
1da177e4 3580{
e5adfffc 3581 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3582 printk("Node %d ", zone_to_nid(zone));
1da177e4 3583}
1da177e4 3584
1da177e4
LT
3585void si_meminfo(struct sysinfo *val)
3586{
3587 val->totalram = totalram_pages;
cc7452b6 3588 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3589 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3590 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3591 val->totalhigh = totalhigh_pages;
3592 val->freehigh = nr_free_highpages();
1da177e4
LT
3593 val->mem_unit = PAGE_SIZE;
3594}
3595
3596EXPORT_SYMBOL(si_meminfo);
3597
3598#ifdef CONFIG_NUMA
3599void si_meminfo_node(struct sysinfo *val, int nid)
3600{
cdd91a77
JL
3601 int zone_type; /* needs to be signed */
3602 unsigned long managed_pages = 0;
1da177e4
LT
3603 pg_data_t *pgdat = NODE_DATA(nid);
3604
cdd91a77
JL
3605 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3606 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3607 val->totalram = managed_pages;
cc7452b6 3608 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3609 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3610#ifdef CONFIG_HIGHMEM
b40da049 3611 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3612 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3613 NR_FREE_PAGES);
98d2b0eb
CL
3614#else
3615 val->totalhigh = 0;
3616 val->freehigh = 0;
3617#endif
1da177e4
LT
3618 val->mem_unit = PAGE_SIZE;
3619}
3620#endif
3621
ddd588b5 3622/*
7bf02ea2
DR
3623 * Determine whether the node should be displayed or not, depending on whether
3624 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3625 */
7bf02ea2 3626bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3627{
3628 bool ret = false;
cc9a6c87 3629 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3630
3631 if (!(flags & SHOW_MEM_FILTER_NODES))
3632 goto out;
3633
cc9a6c87 3634 do {
d26914d1 3635 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3636 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3637 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3638out:
3639 return ret;
3640}
3641
1da177e4
LT
3642#define K(x) ((x) << (PAGE_SHIFT-10))
3643
377e4f16
RV
3644static void show_migration_types(unsigned char type)
3645{
3646 static const char types[MIGRATE_TYPES] = {
3647 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3648 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3649 [MIGRATE_RECLAIMABLE] = 'E',
3650 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3651#ifdef CONFIG_CMA
3652 [MIGRATE_CMA] = 'C',
3653#endif
194159fb 3654#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3655 [MIGRATE_ISOLATE] = 'I',
194159fb 3656#endif
377e4f16
RV
3657 };
3658 char tmp[MIGRATE_TYPES + 1];
3659 char *p = tmp;
3660 int i;
3661
3662 for (i = 0; i < MIGRATE_TYPES; i++) {
3663 if (type & (1 << i))
3664 *p++ = types[i];
3665 }
3666
3667 *p = '\0';
3668 printk("(%s) ", tmp);
3669}
3670
1da177e4
LT
3671/*
3672 * Show free area list (used inside shift_scroll-lock stuff)
3673 * We also calculate the percentage fragmentation. We do this by counting the
3674 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3675 *
3676 * Bits in @filter:
3677 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3678 * cpuset.
1da177e4 3679 */
7bf02ea2 3680void show_free_areas(unsigned int filter)
1da177e4 3681{
d1bfcdb8 3682 unsigned long free_pcp = 0;
c7241913 3683 int cpu;
1da177e4
LT
3684 struct zone *zone;
3685
ee99c71c 3686 for_each_populated_zone(zone) {
7bf02ea2 3687 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3688 continue;
d1bfcdb8 3689
761b0677
KK
3690 for_each_online_cpu(cpu)
3691 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3692 }
3693
a731286d
KM
3694 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3695 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3696 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3697 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3698 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3699 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3700 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3701 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3702 global_page_state(NR_ISOLATED_ANON),
3703 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3704 global_page_state(NR_INACTIVE_FILE),
a731286d 3705 global_page_state(NR_ISOLATED_FILE),
7b854121 3706 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3707 global_page_state(NR_FILE_DIRTY),
ce866b34 3708 global_page_state(NR_WRITEBACK),
fd39fc85 3709 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3710 global_page_state(NR_SLAB_RECLAIMABLE),
3711 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3712 global_page_state(NR_FILE_MAPPED),
4b02108a 3713 global_page_state(NR_SHMEM),
a25700a5 3714 global_page_state(NR_PAGETABLE),
d1ce749a 3715 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3716 global_page_state(NR_FREE_PAGES),
3717 free_pcp,
d1ce749a 3718 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3719
ee99c71c 3720 for_each_populated_zone(zone) {
1da177e4
LT
3721 int i;
3722
7bf02ea2 3723 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3724 continue;
d1bfcdb8
KK
3725
3726 free_pcp = 0;
3727 for_each_online_cpu(cpu)
3728 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3729
1da177e4
LT
3730 show_node(zone);
3731 printk("%s"
3732 " free:%lukB"
3733 " min:%lukB"
3734 " low:%lukB"
3735 " high:%lukB"
4f98a2fe
RR
3736 " active_anon:%lukB"
3737 " inactive_anon:%lukB"
3738 " active_file:%lukB"
3739 " inactive_file:%lukB"
7b854121 3740 " unevictable:%lukB"
a731286d
KM
3741 " isolated(anon):%lukB"
3742 " isolated(file):%lukB"
1da177e4 3743 " present:%lukB"
9feedc9d 3744 " managed:%lukB"
4a0aa73f
KM
3745 " mlocked:%lukB"
3746 " dirty:%lukB"
3747 " writeback:%lukB"
3748 " mapped:%lukB"
4b02108a 3749 " shmem:%lukB"
4a0aa73f
KM
3750 " slab_reclaimable:%lukB"
3751 " slab_unreclaimable:%lukB"
c6a7f572 3752 " kernel_stack:%lukB"
4a0aa73f
KM
3753 " pagetables:%lukB"
3754 " unstable:%lukB"
3755 " bounce:%lukB"
d1bfcdb8
KK
3756 " free_pcp:%lukB"
3757 " local_pcp:%ukB"
d1ce749a 3758 " free_cma:%lukB"
4a0aa73f 3759 " writeback_tmp:%lukB"
1da177e4
LT
3760 " pages_scanned:%lu"
3761 " all_unreclaimable? %s"
3762 "\n",
3763 zone->name,
88f5acf8 3764 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3765 K(min_wmark_pages(zone)),
3766 K(low_wmark_pages(zone)),
3767 K(high_wmark_pages(zone)),
4f98a2fe
RR
3768 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3769 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3770 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3771 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3772 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3773 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3774 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3775 K(zone->present_pages),
9feedc9d 3776 K(zone->managed_pages),
4a0aa73f
KM
3777 K(zone_page_state(zone, NR_MLOCK)),
3778 K(zone_page_state(zone, NR_FILE_DIRTY)),
3779 K(zone_page_state(zone, NR_WRITEBACK)),
3780 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3781 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3782 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3783 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3784 zone_page_state(zone, NR_KERNEL_STACK) *
3785 THREAD_SIZE / 1024,
4a0aa73f
KM
3786 K(zone_page_state(zone, NR_PAGETABLE)),
3787 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3788 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3789 K(free_pcp),
3790 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3791 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3792 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3793 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3794 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3795 );
3796 printk("lowmem_reserve[]:");
3797 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3798 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3799 printk("\n");
3800 }
3801
ee99c71c 3802 for_each_populated_zone(zone) {
d00181b9
KS
3803 unsigned int order;
3804 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3805 unsigned char types[MAX_ORDER];
1da177e4 3806
7bf02ea2 3807 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3808 continue;
1da177e4
LT
3809 show_node(zone);
3810 printk("%s: ", zone->name);
1da177e4
LT
3811
3812 spin_lock_irqsave(&zone->lock, flags);
3813 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3814 struct free_area *area = &zone->free_area[order];
3815 int type;
3816
3817 nr[order] = area->nr_free;
8f9de51a 3818 total += nr[order] << order;
377e4f16
RV
3819
3820 types[order] = 0;
3821 for (type = 0; type < MIGRATE_TYPES; type++) {
3822 if (!list_empty(&area->free_list[type]))
3823 types[order] |= 1 << type;
3824 }
1da177e4
LT
3825 }
3826 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3827 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3828 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3829 if (nr[order])
3830 show_migration_types(types[order]);
3831 }
1da177e4
LT
3832 printk("= %lukB\n", K(total));
3833 }
3834
949f7ec5
DR
3835 hugetlb_show_meminfo();
3836
e6f3602d
LW
3837 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3838
1da177e4
LT
3839 show_swap_cache_info();
3840}
3841
19770b32
MG
3842static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3843{
3844 zoneref->zone = zone;
3845 zoneref->zone_idx = zone_idx(zone);
3846}
3847
1da177e4
LT
3848/*
3849 * Builds allocation fallback zone lists.
1a93205b
CL
3850 *
3851 * Add all populated zones of a node to the zonelist.
1da177e4 3852 */
f0c0b2b8 3853static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3854 int nr_zones)
1da177e4 3855{
1a93205b 3856 struct zone *zone;
bc732f1d 3857 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3858
3859 do {
2f6726e5 3860 zone_type--;
070f8032 3861 zone = pgdat->node_zones + zone_type;
1a93205b 3862 if (populated_zone(zone)) {
dd1a239f
MG
3863 zoneref_set_zone(zone,
3864 &zonelist->_zonerefs[nr_zones++]);
070f8032 3865 check_highest_zone(zone_type);
1da177e4 3866 }
2f6726e5 3867 } while (zone_type);
bc732f1d 3868
070f8032 3869 return nr_zones;
1da177e4
LT
3870}
3871
f0c0b2b8
KH
3872
3873/*
3874 * zonelist_order:
3875 * 0 = automatic detection of better ordering.
3876 * 1 = order by ([node] distance, -zonetype)
3877 * 2 = order by (-zonetype, [node] distance)
3878 *
3879 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3880 * the same zonelist. So only NUMA can configure this param.
3881 */
3882#define ZONELIST_ORDER_DEFAULT 0
3883#define ZONELIST_ORDER_NODE 1
3884#define ZONELIST_ORDER_ZONE 2
3885
3886/* zonelist order in the kernel.
3887 * set_zonelist_order() will set this to NODE or ZONE.
3888 */
3889static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3890static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3891
3892
1da177e4 3893#ifdef CONFIG_NUMA
f0c0b2b8
KH
3894/* The value user specified ....changed by config */
3895static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3896/* string for sysctl */
3897#define NUMA_ZONELIST_ORDER_LEN 16
3898char numa_zonelist_order[16] = "default";
3899
3900/*
3901 * interface for configure zonelist ordering.
3902 * command line option "numa_zonelist_order"
3903 * = "[dD]efault - default, automatic configuration.
3904 * = "[nN]ode - order by node locality, then by zone within node
3905 * = "[zZ]one - order by zone, then by locality within zone
3906 */
3907
3908static int __parse_numa_zonelist_order(char *s)
3909{
3910 if (*s == 'd' || *s == 'D') {
3911 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3912 } else if (*s == 'n' || *s == 'N') {
3913 user_zonelist_order = ZONELIST_ORDER_NODE;
3914 } else if (*s == 'z' || *s == 'Z') {
3915 user_zonelist_order = ZONELIST_ORDER_ZONE;
3916 } else {
3917 printk(KERN_WARNING
3918 "Ignoring invalid numa_zonelist_order value: "
3919 "%s\n", s);
3920 return -EINVAL;
3921 }
3922 return 0;
3923}
3924
3925static __init int setup_numa_zonelist_order(char *s)
3926{
ecb256f8
VL
3927 int ret;
3928
3929 if (!s)
3930 return 0;
3931
3932 ret = __parse_numa_zonelist_order(s);
3933 if (ret == 0)
3934 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3935
3936 return ret;
f0c0b2b8
KH
3937}
3938early_param("numa_zonelist_order", setup_numa_zonelist_order);
3939
3940/*
3941 * sysctl handler for numa_zonelist_order
3942 */
cccad5b9 3943int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3944 void __user *buffer, size_t *length,
f0c0b2b8
KH
3945 loff_t *ppos)
3946{
3947 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3948 int ret;
443c6f14 3949 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3950
443c6f14 3951 mutex_lock(&zl_order_mutex);
dacbde09
CG
3952 if (write) {
3953 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3954 ret = -EINVAL;
3955 goto out;
3956 }
3957 strcpy(saved_string, (char *)table->data);
3958 }
8d65af78 3959 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3960 if (ret)
443c6f14 3961 goto out;
f0c0b2b8
KH
3962 if (write) {
3963 int oldval = user_zonelist_order;
dacbde09
CG
3964
3965 ret = __parse_numa_zonelist_order((char *)table->data);
3966 if (ret) {
f0c0b2b8
KH
3967 /*
3968 * bogus value. restore saved string
3969 */
dacbde09 3970 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3971 NUMA_ZONELIST_ORDER_LEN);
3972 user_zonelist_order = oldval;
4eaf3f64
HL
3973 } else if (oldval != user_zonelist_order) {
3974 mutex_lock(&zonelists_mutex);
9adb62a5 3975 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3976 mutex_unlock(&zonelists_mutex);
3977 }
f0c0b2b8 3978 }
443c6f14
AK
3979out:
3980 mutex_unlock(&zl_order_mutex);
3981 return ret;
f0c0b2b8
KH
3982}
3983
3984
62bc62a8 3985#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3986static int node_load[MAX_NUMNODES];
3987
1da177e4 3988/**
4dc3b16b 3989 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3990 * @node: node whose fallback list we're appending
3991 * @used_node_mask: nodemask_t of already used nodes
3992 *
3993 * We use a number of factors to determine which is the next node that should
3994 * appear on a given node's fallback list. The node should not have appeared
3995 * already in @node's fallback list, and it should be the next closest node
3996 * according to the distance array (which contains arbitrary distance values
3997 * from each node to each node in the system), and should also prefer nodes
3998 * with no CPUs, since presumably they'll have very little allocation pressure
3999 * on them otherwise.
4000 * It returns -1 if no node is found.
4001 */
f0c0b2b8 4002static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4003{
4cf808eb 4004 int n, val;
1da177e4 4005 int min_val = INT_MAX;
00ef2d2f 4006 int best_node = NUMA_NO_NODE;
a70f7302 4007 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4008
4cf808eb
LT
4009 /* Use the local node if we haven't already */
4010 if (!node_isset(node, *used_node_mask)) {
4011 node_set(node, *used_node_mask);
4012 return node;
4013 }
1da177e4 4014
4b0ef1fe 4015 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4016
4017 /* Don't want a node to appear more than once */
4018 if (node_isset(n, *used_node_mask))
4019 continue;
4020
1da177e4
LT
4021 /* Use the distance array to find the distance */
4022 val = node_distance(node, n);
4023
4cf808eb
LT
4024 /* Penalize nodes under us ("prefer the next node") */
4025 val += (n < node);
4026
1da177e4 4027 /* Give preference to headless and unused nodes */
a70f7302
RR
4028 tmp = cpumask_of_node(n);
4029 if (!cpumask_empty(tmp))
1da177e4
LT
4030 val += PENALTY_FOR_NODE_WITH_CPUS;
4031
4032 /* Slight preference for less loaded node */
4033 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4034 val += node_load[n];
4035
4036 if (val < min_val) {
4037 min_val = val;
4038 best_node = n;
4039 }
4040 }
4041
4042 if (best_node >= 0)
4043 node_set(best_node, *used_node_mask);
4044
4045 return best_node;
4046}
4047
f0c0b2b8
KH
4048
4049/*
4050 * Build zonelists ordered by node and zones within node.
4051 * This results in maximum locality--normal zone overflows into local
4052 * DMA zone, if any--but risks exhausting DMA zone.
4053 */
4054static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4055{
f0c0b2b8 4056 int j;
1da177e4 4057 struct zonelist *zonelist;
f0c0b2b8 4058
54a6eb5c 4059 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4060 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4061 ;
bc732f1d 4062 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4063 zonelist->_zonerefs[j].zone = NULL;
4064 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4065}
4066
523b9458
CL
4067/*
4068 * Build gfp_thisnode zonelists
4069 */
4070static void build_thisnode_zonelists(pg_data_t *pgdat)
4071{
523b9458
CL
4072 int j;
4073 struct zonelist *zonelist;
4074
54a6eb5c 4075 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4076 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4077 zonelist->_zonerefs[j].zone = NULL;
4078 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4079}
4080
f0c0b2b8
KH
4081/*
4082 * Build zonelists ordered by zone and nodes within zones.
4083 * This results in conserving DMA zone[s] until all Normal memory is
4084 * exhausted, but results in overflowing to remote node while memory
4085 * may still exist in local DMA zone.
4086 */
4087static int node_order[MAX_NUMNODES];
4088
4089static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4090{
f0c0b2b8
KH
4091 int pos, j, node;
4092 int zone_type; /* needs to be signed */
4093 struct zone *z;
4094 struct zonelist *zonelist;
4095
54a6eb5c
MG
4096 zonelist = &pgdat->node_zonelists[0];
4097 pos = 0;
4098 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4099 for (j = 0; j < nr_nodes; j++) {
4100 node = node_order[j];
4101 z = &NODE_DATA(node)->node_zones[zone_type];
4102 if (populated_zone(z)) {
dd1a239f
MG
4103 zoneref_set_zone(z,
4104 &zonelist->_zonerefs[pos++]);
54a6eb5c 4105 check_highest_zone(zone_type);
f0c0b2b8
KH
4106 }
4107 }
f0c0b2b8 4108 }
dd1a239f
MG
4109 zonelist->_zonerefs[pos].zone = NULL;
4110 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4111}
4112
3193913c
MG
4113#if defined(CONFIG_64BIT)
4114/*
4115 * Devices that require DMA32/DMA are relatively rare and do not justify a
4116 * penalty to every machine in case the specialised case applies. Default
4117 * to Node-ordering on 64-bit NUMA machines
4118 */
4119static int default_zonelist_order(void)
4120{
4121 return ZONELIST_ORDER_NODE;
4122}
4123#else
4124/*
4125 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4126 * by the kernel. If processes running on node 0 deplete the low memory zone
4127 * then reclaim will occur more frequency increasing stalls and potentially
4128 * be easier to OOM if a large percentage of the zone is under writeback or
4129 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4130 * Hence, default to zone ordering on 32-bit.
4131 */
f0c0b2b8
KH
4132static int default_zonelist_order(void)
4133{
f0c0b2b8
KH
4134 return ZONELIST_ORDER_ZONE;
4135}
3193913c 4136#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4137
4138static void set_zonelist_order(void)
4139{
4140 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4141 current_zonelist_order = default_zonelist_order();
4142 else
4143 current_zonelist_order = user_zonelist_order;
4144}
4145
4146static void build_zonelists(pg_data_t *pgdat)
4147{
c00eb15a 4148 int i, node, load;
1da177e4 4149 nodemask_t used_mask;
f0c0b2b8
KH
4150 int local_node, prev_node;
4151 struct zonelist *zonelist;
d00181b9 4152 unsigned int order = current_zonelist_order;
1da177e4
LT
4153
4154 /* initialize zonelists */
523b9458 4155 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4156 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4157 zonelist->_zonerefs[0].zone = NULL;
4158 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4159 }
4160
4161 /* NUMA-aware ordering of nodes */
4162 local_node = pgdat->node_id;
62bc62a8 4163 load = nr_online_nodes;
1da177e4
LT
4164 prev_node = local_node;
4165 nodes_clear(used_mask);
f0c0b2b8 4166
f0c0b2b8 4167 memset(node_order, 0, sizeof(node_order));
c00eb15a 4168 i = 0;
f0c0b2b8 4169
1da177e4
LT
4170 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4171 /*
4172 * We don't want to pressure a particular node.
4173 * So adding penalty to the first node in same
4174 * distance group to make it round-robin.
4175 */
957f822a
DR
4176 if (node_distance(local_node, node) !=
4177 node_distance(local_node, prev_node))
f0c0b2b8
KH
4178 node_load[node] = load;
4179
1da177e4
LT
4180 prev_node = node;
4181 load--;
f0c0b2b8
KH
4182 if (order == ZONELIST_ORDER_NODE)
4183 build_zonelists_in_node_order(pgdat, node);
4184 else
c00eb15a 4185 node_order[i++] = node; /* remember order */
f0c0b2b8 4186 }
1da177e4 4187
f0c0b2b8
KH
4188 if (order == ZONELIST_ORDER_ZONE) {
4189 /* calculate node order -- i.e., DMA last! */
c00eb15a 4190 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4191 }
523b9458
CL
4192
4193 build_thisnode_zonelists(pgdat);
1da177e4
LT
4194}
4195
7aac7898
LS
4196#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4197/*
4198 * Return node id of node used for "local" allocations.
4199 * I.e., first node id of first zone in arg node's generic zonelist.
4200 * Used for initializing percpu 'numa_mem', which is used primarily
4201 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4202 */
4203int local_memory_node(int node)
4204{
4205 struct zone *zone;
4206
4207 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4208 gfp_zone(GFP_KERNEL),
4209 NULL,
4210 &zone);
4211 return zone->node;
4212}
4213#endif
f0c0b2b8 4214
1da177e4
LT
4215#else /* CONFIG_NUMA */
4216
f0c0b2b8
KH
4217static void set_zonelist_order(void)
4218{
4219 current_zonelist_order = ZONELIST_ORDER_ZONE;
4220}
4221
4222static void build_zonelists(pg_data_t *pgdat)
1da177e4 4223{
19655d34 4224 int node, local_node;
54a6eb5c
MG
4225 enum zone_type j;
4226 struct zonelist *zonelist;
1da177e4
LT
4227
4228 local_node = pgdat->node_id;
1da177e4 4229
54a6eb5c 4230 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4231 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4232
54a6eb5c
MG
4233 /*
4234 * Now we build the zonelist so that it contains the zones
4235 * of all the other nodes.
4236 * We don't want to pressure a particular node, so when
4237 * building the zones for node N, we make sure that the
4238 * zones coming right after the local ones are those from
4239 * node N+1 (modulo N)
4240 */
4241 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4242 if (!node_online(node))
4243 continue;
bc732f1d 4244 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4245 }
54a6eb5c
MG
4246 for (node = 0; node < local_node; node++) {
4247 if (!node_online(node))
4248 continue;
bc732f1d 4249 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4250 }
4251
dd1a239f
MG
4252 zonelist->_zonerefs[j].zone = NULL;
4253 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4254}
4255
4256#endif /* CONFIG_NUMA */
4257
99dcc3e5
CL
4258/*
4259 * Boot pageset table. One per cpu which is going to be used for all
4260 * zones and all nodes. The parameters will be set in such a way
4261 * that an item put on a list will immediately be handed over to
4262 * the buddy list. This is safe since pageset manipulation is done
4263 * with interrupts disabled.
4264 *
4265 * The boot_pagesets must be kept even after bootup is complete for
4266 * unused processors and/or zones. They do play a role for bootstrapping
4267 * hotplugged processors.
4268 *
4269 * zoneinfo_show() and maybe other functions do
4270 * not check if the processor is online before following the pageset pointer.
4271 * Other parts of the kernel may not check if the zone is available.
4272 */
4273static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4274static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4275static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4276
4eaf3f64
HL
4277/*
4278 * Global mutex to protect against size modification of zonelists
4279 * as well as to serialize pageset setup for the new populated zone.
4280 */
4281DEFINE_MUTEX(zonelists_mutex);
4282
9b1a4d38 4283/* return values int ....just for stop_machine() */
4ed7e022 4284static int __build_all_zonelists(void *data)
1da177e4 4285{
6811378e 4286 int nid;
99dcc3e5 4287 int cpu;
9adb62a5 4288 pg_data_t *self = data;
9276b1bc 4289
7f9cfb31
BL
4290#ifdef CONFIG_NUMA
4291 memset(node_load, 0, sizeof(node_load));
4292#endif
9adb62a5
JL
4293
4294 if (self && !node_online(self->node_id)) {
4295 build_zonelists(self);
9adb62a5
JL
4296 }
4297
9276b1bc 4298 for_each_online_node(nid) {
7ea1530a
CL
4299 pg_data_t *pgdat = NODE_DATA(nid);
4300
4301 build_zonelists(pgdat);
9276b1bc 4302 }
99dcc3e5
CL
4303
4304 /*
4305 * Initialize the boot_pagesets that are going to be used
4306 * for bootstrapping processors. The real pagesets for
4307 * each zone will be allocated later when the per cpu
4308 * allocator is available.
4309 *
4310 * boot_pagesets are used also for bootstrapping offline
4311 * cpus if the system is already booted because the pagesets
4312 * are needed to initialize allocators on a specific cpu too.
4313 * F.e. the percpu allocator needs the page allocator which
4314 * needs the percpu allocator in order to allocate its pagesets
4315 * (a chicken-egg dilemma).
4316 */
7aac7898 4317 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4318 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4319
7aac7898
LS
4320#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4321 /*
4322 * We now know the "local memory node" for each node--
4323 * i.e., the node of the first zone in the generic zonelist.
4324 * Set up numa_mem percpu variable for on-line cpus. During
4325 * boot, only the boot cpu should be on-line; we'll init the
4326 * secondary cpus' numa_mem as they come on-line. During
4327 * node/memory hotplug, we'll fixup all on-line cpus.
4328 */
4329 if (cpu_online(cpu))
4330 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4331#endif
4332 }
4333
6811378e
YG
4334 return 0;
4335}
4336
061f67bc
RV
4337static noinline void __init
4338build_all_zonelists_init(void)
4339{
4340 __build_all_zonelists(NULL);
4341 mminit_verify_zonelist();
4342 cpuset_init_current_mems_allowed();
4343}
4344
4eaf3f64
HL
4345/*
4346 * Called with zonelists_mutex held always
4347 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4348 *
4349 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4350 * [we're only called with non-NULL zone through __meminit paths] and
4351 * (2) call of __init annotated helper build_all_zonelists_init
4352 * [protected by SYSTEM_BOOTING].
4eaf3f64 4353 */
9adb62a5 4354void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4355{
f0c0b2b8
KH
4356 set_zonelist_order();
4357
6811378e 4358 if (system_state == SYSTEM_BOOTING) {
061f67bc 4359 build_all_zonelists_init();
6811378e 4360 } else {
e9959f0f 4361#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4362 if (zone)
4363 setup_zone_pageset(zone);
e9959f0f 4364#endif
dd1895e2
CS
4365 /* we have to stop all cpus to guarantee there is no user
4366 of zonelist */
9adb62a5 4367 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4368 /* cpuset refresh routine should be here */
4369 }
bd1e22b8 4370 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4371 /*
4372 * Disable grouping by mobility if the number of pages in the
4373 * system is too low to allow the mechanism to work. It would be
4374 * more accurate, but expensive to check per-zone. This check is
4375 * made on memory-hotadd so a system can start with mobility
4376 * disabled and enable it later
4377 */
d9c23400 4378 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4379 page_group_by_mobility_disabled = 1;
4380 else
4381 page_group_by_mobility_disabled = 0;
4382
f88dfff5 4383 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4384 "Total pages: %ld\n",
62bc62a8 4385 nr_online_nodes,
f0c0b2b8 4386 zonelist_order_name[current_zonelist_order],
9ef9acb0 4387 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4388 vm_total_pages);
4389#ifdef CONFIG_NUMA
f88dfff5 4390 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4391#endif
1da177e4
LT
4392}
4393
4394/*
4395 * Helper functions to size the waitqueue hash table.
4396 * Essentially these want to choose hash table sizes sufficiently
4397 * large so that collisions trying to wait on pages are rare.
4398 * But in fact, the number of active page waitqueues on typical
4399 * systems is ridiculously low, less than 200. So this is even
4400 * conservative, even though it seems large.
4401 *
4402 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4403 * waitqueues, i.e. the size of the waitq table given the number of pages.
4404 */
4405#define PAGES_PER_WAITQUEUE 256
4406
cca448fe 4407#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4408static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4409{
4410 unsigned long size = 1;
4411
4412 pages /= PAGES_PER_WAITQUEUE;
4413
4414 while (size < pages)
4415 size <<= 1;
4416
4417 /*
4418 * Once we have dozens or even hundreds of threads sleeping
4419 * on IO we've got bigger problems than wait queue collision.
4420 * Limit the size of the wait table to a reasonable size.
4421 */
4422 size = min(size, 4096UL);
4423
4424 return max(size, 4UL);
4425}
cca448fe
YG
4426#else
4427/*
4428 * A zone's size might be changed by hot-add, so it is not possible to determine
4429 * a suitable size for its wait_table. So we use the maximum size now.
4430 *
4431 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4432 *
4433 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4434 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4435 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4436 *
4437 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4438 * or more by the traditional way. (See above). It equals:
4439 *
4440 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4441 * ia64(16K page size) : = ( 8G + 4M)byte.
4442 * powerpc (64K page size) : = (32G +16M)byte.
4443 */
4444static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4445{
4446 return 4096UL;
4447}
4448#endif
1da177e4
LT
4449
4450/*
4451 * This is an integer logarithm so that shifts can be used later
4452 * to extract the more random high bits from the multiplicative
4453 * hash function before the remainder is taken.
4454 */
4455static inline unsigned long wait_table_bits(unsigned long size)
4456{
4457 return ffz(~size);
4458}
4459
1da177e4
LT
4460/*
4461 * Initially all pages are reserved - free ones are freed
4462 * up by free_all_bootmem() once the early boot process is
4463 * done. Non-atomic initialization, single-pass.
4464 */
c09b4240 4465void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4466 unsigned long start_pfn, enum memmap_context context)
1da177e4 4467{
3a80a7fa 4468 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4469 unsigned long end_pfn = start_pfn + size;
4470 unsigned long pfn;
86051ca5 4471 struct zone *z;
3a80a7fa 4472 unsigned long nr_initialised = 0;
1da177e4 4473
22b31eec
HD
4474 if (highest_memmap_pfn < end_pfn - 1)
4475 highest_memmap_pfn = end_pfn - 1;
4476
3a80a7fa 4477 z = &pgdat->node_zones[zone];
cbe8dd4a 4478 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4479 /*
4480 * There can be holes in boot-time mem_map[]s
4481 * handed to this function. They do not
4482 * exist on hotplugged memory.
4483 */
4484 if (context == MEMMAP_EARLY) {
4485 if (!early_pfn_valid(pfn))
4486 continue;
4487 if (!early_pfn_in_nid(pfn, nid))
4488 continue;
3a80a7fa
MG
4489 if (!update_defer_init(pgdat, pfn, end_pfn,
4490 &nr_initialised))
4491 break;
a2f3aa02 4492 }
ac5d2539
MG
4493
4494 /*
4495 * Mark the block movable so that blocks are reserved for
4496 * movable at startup. This will force kernel allocations
4497 * to reserve their blocks rather than leaking throughout
4498 * the address space during boot when many long-lived
974a786e 4499 * kernel allocations are made.
ac5d2539
MG
4500 *
4501 * bitmap is created for zone's valid pfn range. but memmap
4502 * can be created for invalid pages (for alignment)
4503 * check here not to call set_pageblock_migratetype() against
4504 * pfn out of zone.
4505 */
4506 if (!(pfn & (pageblock_nr_pages - 1))) {
4507 struct page *page = pfn_to_page(pfn);
4508
4509 __init_single_page(page, pfn, zone, nid);
4510 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4511 } else {
4512 __init_single_pfn(pfn, zone, nid);
4513 }
1da177e4
LT
4514 }
4515}
4516
1e548deb 4517static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4518{
7aeb09f9 4519 unsigned int order, t;
b2a0ac88
MG
4520 for_each_migratetype_order(order, t) {
4521 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4522 zone->free_area[order].nr_free = 0;
4523 }
4524}
4525
4526#ifndef __HAVE_ARCH_MEMMAP_INIT
4527#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4528 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4529#endif
4530
7cd2b0a3 4531static int zone_batchsize(struct zone *zone)
e7c8d5c9 4532{
3a6be87f 4533#ifdef CONFIG_MMU
e7c8d5c9
CL
4534 int batch;
4535
4536 /*
4537 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4538 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4539 *
4540 * OK, so we don't know how big the cache is. So guess.
4541 */
b40da049 4542 batch = zone->managed_pages / 1024;
ba56e91c
SR
4543 if (batch * PAGE_SIZE > 512 * 1024)
4544 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4545 batch /= 4; /* We effectively *= 4 below */
4546 if (batch < 1)
4547 batch = 1;
4548
4549 /*
0ceaacc9
NP
4550 * Clamp the batch to a 2^n - 1 value. Having a power
4551 * of 2 value was found to be more likely to have
4552 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4553 *
0ceaacc9
NP
4554 * For example if 2 tasks are alternately allocating
4555 * batches of pages, one task can end up with a lot
4556 * of pages of one half of the possible page colors
4557 * and the other with pages of the other colors.
e7c8d5c9 4558 */
9155203a 4559 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4560
e7c8d5c9 4561 return batch;
3a6be87f
DH
4562
4563#else
4564 /* The deferral and batching of frees should be suppressed under NOMMU
4565 * conditions.
4566 *
4567 * The problem is that NOMMU needs to be able to allocate large chunks
4568 * of contiguous memory as there's no hardware page translation to
4569 * assemble apparent contiguous memory from discontiguous pages.
4570 *
4571 * Queueing large contiguous runs of pages for batching, however,
4572 * causes the pages to actually be freed in smaller chunks. As there
4573 * can be a significant delay between the individual batches being
4574 * recycled, this leads to the once large chunks of space being
4575 * fragmented and becoming unavailable for high-order allocations.
4576 */
4577 return 0;
4578#endif
e7c8d5c9
CL
4579}
4580
8d7a8fa9
CS
4581/*
4582 * pcp->high and pcp->batch values are related and dependent on one another:
4583 * ->batch must never be higher then ->high.
4584 * The following function updates them in a safe manner without read side
4585 * locking.
4586 *
4587 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4588 * those fields changing asynchronously (acording the the above rule).
4589 *
4590 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4591 * outside of boot time (or some other assurance that no concurrent updaters
4592 * exist).
4593 */
4594static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4595 unsigned long batch)
4596{
4597 /* start with a fail safe value for batch */
4598 pcp->batch = 1;
4599 smp_wmb();
4600
4601 /* Update high, then batch, in order */
4602 pcp->high = high;
4603 smp_wmb();
4604
4605 pcp->batch = batch;
4606}
4607
3664033c 4608/* a companion to pageset_set_high() */
4008bab7
CS
4609static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4610{
8d7a8fa9 4611 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4612}
4613
88c90dbc 4614static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4615{
4616 struct per_cpu_pages *pcp;
5f8dcc21 4617 int migratetype;
2caaad41 4618
1c6fe946
MD
4619 memset(p, 0, sizeof(*p));
4620
3dfa5721 4621 pcp = &p->pcp;
2caaad41 4622 pcp->count = 0;
5f8dcc21
MG
4623 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4624 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4625}
4626
88c90dbc
CS
4627static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4628{
4629 pageset_init(p);
4630 pageset_set_batch(p, batch);
4631}
4632
8ad4b1fb 4633/*
3664033c 4634 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4635 * to the value high for the pageset p.
4636 */
3664033c 4637static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4638 unsigned long high)
4639{
8d7a8fa9
CS
4640 unsigned long batch = max(1UL, high / 4);
4641 if ((high / 4) > (PAGE_SHIFT * 8))
4642 batch = PAGE_SHIFT * 8;
8ad4b1fb 4643
8d7a8fa9 4644 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4645}
4646
7cd2b0a3
DR
4647static void pageset_set_high_and_batch(struct zone *zone,
4648 struct per_cpu_pageset *pcp)
56cef2b8 4649{
56cef2b8 4650 if (percpu_pagelist_fraction)
3664033c 4651 pageset_set_high(pcp,
56cef2b8
CS
4652 (zone->managed_pages /
4653 percpu_pagelist_fraction));
4654 else
4655 pageset_set_batch(pcp, zone_batchsize(zone));
4656}
4657
169f6c19
CS
4658static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4659{
4660 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4661
4662 pageset_init(pcp);
4663 pageset_set_high_and_batch(zone, pcp);
4664}
4665
4ed7e022 4666static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4667{
4668 int cpu;
319774e2 4669 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4670 for_each_possible_cpu(cpu)
4671 zone_pageset_init(zone, cpu);
319774e2
WF
4672}
4673
2caaad41 4674/*
99dcc3e5
CL
4675 * Allocate per cpu pagesets and initialize them.
4676 * Before this call only boot pagesets were available.
e7c8d5c9 4677 */
99dcc3e5 4678void __init setup_per_cpu_pageset(void)
e7c8d5c9 4679{
99dcc3e5 4680 struct zone *zone;
e7c8d5c9 4681
319774e2
WF
4682 for_each_populated_zone(zone)
4683 setup_zone_pageset(zone);
e7c8d5c9
CL
4684}
4685
577a32f6 4686static noinline __init_refok
cca448fe 4687int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4688{
4689 int i;
cca448fe 4690 size_t alloc_size;
ed8ece2e
DH
4691
4692 /*
4693 * The per-page waitqueue mechanism uses hashed waitqueues
4694 * per zone.
4695 */
02b694de
YG
4696 zone->wait_table_hash_nr_entries =
4697 wait_table_hash_nr_entries(zone_size_pages);
4698 zone->wait_table_bits =
4699 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4700 alloc_size = zone->wait_table_hash_nr_entries
4701 * sizeof(wait_queue_head_t);
4702
cd94b9db 4703 if (!slab_is_available()) {
cca448fe 4704 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4705 memblock_virt_alloc_node_nopanic(
4706 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4707 } else {
4708 /*
4709 * This case means that a zone whose size was 0 gets new memory
4710 * via memory hot-add.
4711 * But it may be the case that a new node was hot-added. In
4712 * this case vmalloc() will not be able to use this new node's
4713 * memory - this wait_table must be initialized to use this new
4714 * node itself as well.
4715 * To use this new node's memory, further consideration will be
4716 * necessary.
4717 */
8691f3a7 4718 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4719 }
4720 if (!zone->wait_table)
4721 return -ENOMEM;
ed8ece2e 4722
b8af2941 4723 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4724 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4725
4726 return 0;
ed8ece2e
DH
4727}
4728
c09b4240 4729static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4730{
99dcc3e5
CL
4731 /*
4732 * per cpu subsystem is not up at this point. The following code
4733 * relies on the ability of the linker to provide the
4734 * offset of a (static) per cpu variable into the per cpu area.
4735 */
4736 zone->pageset = &boot_pageset;
ed8ece2e 4737
b38a8725 4738 if (populated_zone(zone))
99dcc3e5
CL
4739 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4740 zone->name, zone->present_pages,
4741 zone_batchsize(zone));
ed8ece2e
DH
4742}
4743
4ed7e022 4744int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4745 unsigned long zone_start_pfn,
b171e409 4746 unsigned long size)
ed8ece2e
DH
4747{
4748 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4749 int ret;
4750 ret = zone_wait_table_init(zone, size);
4751 if (ret)
4752 return ret;
ed8ece2e
DH
4753 pgdat->nr_zones = zone_idx(zone) + 1;
4754
ed8ece2e
DH
4755 zone->zone_start_pfn = zone_start_pfn;
4756
708614e6
MG
4757 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4758 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4759 pgdat->node_id,
4760 (unsigned long)zone_idx(zone),
4761 zone_start_pfn, (zone_start_pfn + size));
4762
1e548deb 4763 zone_init_free_lists(zone);
718127cc
YG
4764
4765 return 0;
ed8ece2e
DH
4766}
4767
0ee332c1 4768#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4769#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4770
c713216d
MG
4771/*
4772 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4773 */
8a942fde
MG
4774int __meminit __early_pfn_to_nid(unsigned long pfn,
4775 struct mminit_pfnnid_cache *state)
c713216d 4776{
c13291a5 4777 unsigned long start_pfn, end_pfn;
e76b63f8 4778 int nid;
7c243c71 4779
8a942fde
MG
4780 if (state->last_start <= pfn && pfn < state->last_end)
4781 return state->last_nid;
c713216d 4782
e76b63f8
YL
4783 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4784 if (nid != -1) {
8a942fde
MG
4785 state->last_start = start_pfn;
4786 state->last_end = end_pfn;
4787 state->last_nid = nid;
e76b63f8
YL
4788 }
4789
4790 return nid;
c713216d
MG
4791}
4792#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4793
c713216d 4794/**
6782832e 4795 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4796 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4797 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4798 *
7d018176
ZZ
4799 * If an architecture guarantees that all ranges registered contain no holes
4800 * and may be freed, this this function may be used instead of calling
4801 * memblock_free_early_nid() manually.
c713216d 4802 */
c13291a5 4803void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4804{
c13291a5
TH
4805 unsigned long start_pfn, end_pfn;
4806 int i, this_nid;
edbe7d23 4807
c13291a5
TH
4808 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4809 start_pfn = min(start_pfn, max_low_pfn);
4810 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4811
c13291a5 4812 if (start_pfn < end_pfn)
6782832e
SS
4813 memblock_free_early_nid(PFN_PHYS(start_pfn),
4814 (end_pfn - start_pfn) << PAGE_SHIFT,
4815 this_nid);
edbe7d23 4816 }
edbe7d23 4817}
edbe7d23 4818
c713216d
MG
4819/**
4820 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4821 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4822 *
7d018176
ZZ
4823 * If an architecture guarantees that all ranges registered contain no holes and may
4824 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4825 */
4826void __init sparse_memory_present_with_active_regions(int nid)
4827{
c13291a5
TH
4828 unsigned long start_pfn, end_pfn;
4829 int i, this_nid;
c713216d 4830
c13291a5
TH
4831 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4832 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4833}
4834
4835/**
4836 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4837 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4838 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4839 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4840 *
4841 * It returns the start and end page frame of a node based on information
7d018176 4842 * provided by memblock_set_node(). If called for a node
c713216d 4843 * with no available memory, a warning is printed and the start and end
88ca3b94 4844 * PFNs will be 0.
c713216d 4845 */
a3142c8e 4846void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4847 unsigned long *start_pfn, unsigned long *end_pfn)
4848{
c13291a5 4849 unsigned long this_start_pfn, this_end_pfn;
c713216d 4850 int i;
c13291a5 4851
c713216d
MG
4852 *start_pfn = -1UL;
4853 *end_pfn = 0;
4854
c13291a5
TH
4855 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4856 *start_pfn = min(*start_pfn, this_start_pfn);
4857 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4858 }
4859
633c0666 4860 if (*start_pfn == -1UL)
c713216d 4861 *start_pfn = 0;
c713216d
MG
4862}
4863
2a1e274a
MG
4864/*
4865 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4866 * assumption is made that zones within a node are ordered in monotonic
4867 * increasing memory addresses so that the "highest" populated zone is used
4868 */
b69a7288 4869static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4870{
4871 int zone_index;
4872 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4873 if (zone_index == ZONE_MOVABLE)
4874 continue;
4875
4876 if (arch_zone_highest_possible_pfn[zone_index] >
4877 arch_zone_lowest_possible_pfn[zone_index])
4878 break;
4879 }
4880
4881 VM_BUG_ON(zone_index == -1);
4882 movable_zone = zone_index;
4883}
4884
4885/*
4886 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4887 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4888 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4889 * in each node depending on the size of each node and how evenly kernelcore
4890 * is distributed. This helper function adjusts the zone ranges
4891 * provided by the architecture for a given node by using the end of the
4892 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4893 * zones within a node are in order of monotonic increases memory addresses
4894 */
b69a7288 4895static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4896 unsigned long zone_type,
4897 unsigned long node_start_pfn,
4898 unsigned long node_end_pfn,
4899 unsigned long *zone_start_pfn,
4900 unsigned long *zone_end_pfn)
4901{
4902 /* Only adjust if ZONE_MOVABLE is on this node */
4903 if (zone_movable_pfn[nid]) {
4904 /* Size ZONE_MOVABLE */
4905 if (zone_type == ZONE_MOVABLE) {
4906 *zone_start_pfn = zone_movable_pfn[nid];
4907 *zone_end_pfn = min(node_end_pfn,
4908 arch_zone_highest_possible_pfn[movable_zone]);
4909
4910 /* Adjust for ZONE_MOVABLE starting within this range */
4911 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4912 *zone_end_pfn > zone_movable_pfn[nid]) {
4913 *zone_end_pfn = zone_movable_pfn[nid];
4914
4915 /* Check if this whole range is within ZONE_MOVABLE */
4916 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4917 *zone_start_pfn = *zone_end_pfn;
4918 }
4919}
4920
c713216d
MG
4921/*
4922 * Return the number of pages a zone spans in a node, including holes
4923 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4924 */
6ea6e688 4925static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4926 unsigned long zone_type,
7960aedd
ZY
4927 unsigned long node_start_pfn,
4928 unsigned long node_end_pfn,
c713216d
MG
4929 unsigned long *ignored)
4930{
c713216d
MG
4931 unsigned long zone_start_pfn, zone_end_pfn;
4932
b5685e92 4933 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
4934 if (!node_start_pfn && !node_end_pfn)
4935 return 0;
4936
7960aedd 4937 /* Get the start and end of the zone */
c713216d
MG
4938 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4939 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4940 adjust_zone_range_for_zone_movable(nid, zone_type,
4941 node_start_pfn, node_end_pfn,
4942 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4943
4944 /* Check that this node has pages within the zone's required range */
4945 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4946 return 0;
4947
4948 /* Move the zone boundaries inside the node if necessary */
4949 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4950 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4951
4952 /* Return the spanned pages */
4953 return zone_end_pfn - zone_start_pfn;
4954}
4955
4956/*
4957 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4958 * then all holes in the requested range will be accounted for.
c713216d 4959 */
32996250 4960unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4961 unsigned long range_start_pfn,
4962 unsigned long range_end_pfn)
4963{
96e907d1
TH
4964 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4965 unsigned long start_pfn, end_pfn;
4966 int i;
c713216d 4967
96e907d1
TH
4968 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4969 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4970 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4971 nr_absent -= end_pfn - start_pfn;
c713216d 4972 }
96e907d1 4973 return nr_absent;
c713216d
MG
4974}
4975
4976/**
4977 * absent_pages_in_range - Return number of page frames in holes within a range
4978 * @start_pfn: The start PFN to start searching for holes
4979 * @end_pfn: The end PFN to stop searching for holes
4980 *
88ca3b94 4981 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4982 */
4983unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4984 unsigned long end_pfn)
4985{
4986 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4987}
4988
4989/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4990static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4991 unsigned long zone_type,
7960aedd
ZY
4992 unsigned long node_start_pfn,
4993 unsigned long node_end_pfn,
c713216d
MG
4994 unsigned long *ignored)
4995{
96e907d1
TH
4996 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4997 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4998 unsigned long zone_start_pfn, zone_end_pfn;
4999
b5685e92 5000 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5001 if (!node_start_pfn && !node_end_pfn)
5002 return 0;
5003
96e907d1
TH
5004 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5005 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5006
2a1e274a
MG
5007 adjust_zone_range_for_zone_movable(nid, zone_type,
5008 node_start_pfn, node_end_pfn,
5009 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5010 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5011}
0e0b864e 5012
0ee332c1 5013#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5014static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5015 unsigned long zone_type,
7960aedd
ZY
5016 unsigned long node_start_pfn,
5017 unsigned long node_end_pfn,
c713216d
MG
5018 unsigned long *zones_size)
5019{
5020 return zones_size[zone_type];
5021}
5022
6ea6e688 5023static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5024 unsigned long zone_type,
7960aedd
ZY
5025 unsigned long node_start_pfn,
5026 unsigned long node_end_pfn,
c713216d
MG
5027 unsigned long *zholes_size)
5028{
5029 if (!zholes_size)
5030 return 0;
5031
5032 return zholes_size[zone_type];
5033}
20e6926d 5034
0ee332c1 5035#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5036
a3142c8e 5037static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5038 unsigned long node_start_pfn,
5039 unsigned long node_end_pfn,
5040 unsigned long *zones_size,
5041 unsigned long *zholes_size)
c713216d 5042{
febd5949 5043 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5044 enum zone_type i;
5045
febd5949
GZ
5046 for (i = 0; i < MAX_NR_ZONES; i++) {
5047 struct zone *zone = pgdat->node_zones + i;
5048 unsigned long size, real_size;
c713216d 5049
febd5949
GZ
5050 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5051 node_start_pfn,
5052 node_end_pfn,
5053 zones_size);
5054 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5055 node_start_pfn, node_end_pfn,
5056 zholes_size);
febd5949
GZ
5057 zone->spanned_pages = size;
5058 zone->present_pages = real_size;
5059
5060 totalpages += size;
5061 realtotalpages += real_size;
5062 }
5063
5064 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5065 pgdat->node_present_pages = realtotalpages;
5066 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5067 realtotalpages);
5068}
5069
835c134e
MG
5070#ifndef CONFIG_SPARSEMEM
5071/*
5072 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5073 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5074 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5075 * round what is now in bits to nearest long in bits, then return it in
5076 * bytes.
5077 */
7c45512d 5078static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5079{
5080 unsigned long usemapsize;
5081
7c45512d 5082 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5083 usemapsize = roundup(zonesize, pageblock_nr_pages);
5084 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5085 usemapsize *= NR_PAGEBLOCK_BITS;
5086 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5087
5088 return usemapsize / 8;
5089}
5090
5091static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5092 struct zone *zone,
5093 unsigned long zone_start_pfn,
5094 unsigned long zonesize)
835c134e 5095{
7c45512d 5096 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5097 zone->pageblock_flags = NULL;
58a01a45 5098 if (usemapsize)
6782832e
SS
5099 zone->pageblock_flags =
5100 memblock_virt_alloc_node_nopanic(usemapsize,
5101 pgdat->node_id);
835c134e
MG
5102}
5103#else
7c45512d
LT
5104static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5105 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5106#endif /* CONFIG_SPARSEMEM */
5107
d9c23400 5108#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5109
d9c23400 5110/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5111void __paginginit set_pageblock_order(void)
d9c23400 5112{
955c1cd7
AM
5113 unsigned int order;
5114
d9c23400
MG
5115 /* Check that pageblock_nr_pages has not already been setup */
5116 if (pageblock_order)
5117 return;
5118
955c1cd7
AM
5119 if (HPAGE_SHIFT > PAGE_SHIFT)
5120 order = HUGETLB_PAGE_ORDER;
5121 else
5122 order = MAX_ORDER - 1;
5123
d9c23400
MG
5124 /*
5125 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5126 * This value may be variable depending on boot parameters on IA64 and
5127 * powerpc.
d9c23400
MG
5128 */
5129 pageblock_order = order;
5130}
5131#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5132
ba72cb8c
MG
5133/*
5134 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5135 * is unused as pageblock_order is set at compile-time. See
5136 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5137 * the kernel config
ba72cb8c 5138 */
15ca220e 5139void __paginginit set_pageblock_order(void)
ba72cb8c 5140{
ba72cb8c 5141}
d9c23400
MG
5142
5143#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5144
01cefaef
JL
5145static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5146 unsigned long present_pages)
5147{
5148 unsigned long pages = spanned_pages;
5149
5150 /*
5151 * Provide a more accurate estimation if there are holes within
5152 * the zone and SPARSEMEM is in use. If there are holes within the
5153 * zone, each populated memory region may cost us one or two extra
5154 * memmap pages due to alignment because memmap pages for each
5155 * populated regions may not naturally algined on page boundary.
5156 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5157 */
5158 if (spanned_pages > present_pages + (present_pages >> 4) &&
5159 IS_ENABLED(CONFIG_SPARSEMEM))
5160 pages = present_pages;
5161
5162 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5163}
5164
1da177e4
LT
5165/*
5166 * Set up the zone data structures:
5167 * - mark all pages reserved
5168 * - mark all memory queues empty
5169 * - clear the memory bitmaps
6527af5d
MK
5170 *
5171 * NOTE: pgdat should get zeroed by caller.
1da177e4 5172 */
7f3eb55b 5173static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5174{
2f1b6248 5175 enum zone_type j;
ed8ece2e 5176 int nid = pgdat->node_id;
1da177e4 5177 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5178 int ret;
1da177e4 5179
208d54e5 5180 pgdat_resize_init(pgdat);
8177a420
AA
5181#ifdef CONFIG_NUMA_BALANCING
5182 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5183 pgdat->numabalancing_migrate_nr_pages = 0;
5184 pgdat->numabalancing_migrate_next_window = jiffies;
5185#endif
1da177e4 5186 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5187 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5188 pgdat_page_ext_init(pgdat);
5f63b720 5189
1da177e4
LT
5190 for (j = 0; j < MAX_NR_ZONES; j++) {
5191 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5192 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5193
febd5949
GZ
5194 size = zone->spanned_pages;
5195 realsize = freesize = zone->present_pages;
1da177e4 5196
0e0b864e 5197 /*
9feedc9d 5198 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5199 * is used by this zone for memmap. This affects the watermark
5200 * and per-cpu initialisations
5201 */
01cefaef 5202 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5203 if (!is_highmem_idx(j)) {
5204 if (freesize >= memmap_pages) {
5205 freesize -= memmap_pages;
5206 if (memmap_pages)
5207 printk(KERN_DEBUG
5208 " %s zone: %lu pages used for memmap\n",
5209 zone_names[j], memmap_pages);
5210 } else
5211 printk(KERN_WARNING
5212 " %s zone: %lu pages exceeds freesize %lu\n",
5213 zone_names[j], memmap_pages, freesize);
5214 }
0e0b864e 5215
6267276f 5216 /* Account for reserved pages */
9feedc9d
JL
5217 if (j == 0 && freesize > dma_reserve) {
5218 freesize -= dma_reserve;
d903ef9f 5219 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5220 zone_names[0], dma_reserve);
0e0b864e
MG
5221 }
5222
98d2b0eb 5223 if (!is_highmem_idx(j))
9feedc9d 5224 nr_kernel_pages += freesize;
01cefaef
JL
5225 /* Charge for highmem memmap if there are enough kernel pages */
5226 else if (nr_kernel_pages > memmap_pages * 2)
5227 nr_kernel_pages -= memmap_pages;
9feedc9d 5228 nr_all_pages += freesize;
1da177e4 5229
9feedc9d
JL
5230 /*
5231 * Set an approximate value for lowmem here, it will be adjusted
5232 * when the bootmem allocator frees pages into the buddy system.
5233 * And all highmem pages will be managed by the buddy system.
5234 */
5235 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5236#ifdef CONFIG_NUMA
d5f541ed 5237 zone->node = nid;
9feedc9d 5238 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5239 / 100;
9feedc9d 5240 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5241#endif
1da177e4
LT
5242 zone->name = zone_names[j];
5243 spin_lock_init(&zone->lock);
5244 spin_lock_init(&zone->lru_lock);
bdc8cb98 5245 zone_seqlock_init(zone);
1da177e4 5246 zone->zone_pgdat = pgdat;
ed8ece2e 5247 zone_pcp_init(zone);
81c0a2bb
JW
5248
5249 /* For bootup, initialized properly in watermark setup */
5250 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5251
bea8c150 5252 lruvec_init(&zone->lruvec);
1da177e4
LT
5253 if (!size)
5254 continue;
5255
955c1cd7 5256 set_pageblock_order();
7c45512d 5257 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5258 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5259 BUG_ON(ret);
76cdd58e 5260 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5261 zone_start_pfn += size;
1da177e4
LT
5262 }
5263}
5264
577a32f6 5265static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5266{
b0aeba74 5267 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5268 unsigned long __maybe_unused offset = 0;
5269
1da177e4
LT
5270 /* Skip empty nodes */
5271 if (!pgdat->node_spanned_pages)
5272 return;
5273
d41dee36 5274#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5275 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5276 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5277 /* ia64 gets its own node_mem_map, before this, without bootmem */
5278 if (!pgdat->node_mem_map) {
b0aeba74 5279 unsigned long size, end;
d41dee36
AW
5280 struct page *map;
5281
e984bb43
BP
5282 /*
5283 * The zone's endpoints aren't required to be MAX_ORDER
5284 * aligned but the node_mem_map endpoints must be in order
5285 * for the buddy allocator to function correctly.
5286 */
108bcc96 5287 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5288 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5289 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5290 map = alloc_remap(pgdat->node_id, size);
5291 if (!map)
6782832e
SS
5292 map = memblock_virt_alloc_node_nopanic(size,
5293 pgdat->node_id);
a1c34a3b 5294 pgdat->node_mem_map = map + offset;
1da177e4 5295 }
12d810c1 5296#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5297 /*
5298 * With no DISCONTIG, the global mem_map is just set as node 0's
5299 */
c713216d 5300 if (pgdat == NODE_DATA(0)) {
1da177e4 5301 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5302#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5303 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5304 mem_map -= offset;
0ee332c1 5305#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5306 }
1da177e4 5307#endif
d41dee36 5308#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5309}
5310
9109fb7b
JW
5311void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5312 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5313{
9109fb7b 5314 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5315 unsigned long start_pfn = 0;
5316 unsigned long end_pfn = 0;
9109fb7b 5317
88fdf75d 5318 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5319 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5320
3a80a7fa 5321 reset_deferred_meminit(pgdat);
1da177e4
LT
5322 pgdat->node_id = nid;
5323 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5324#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5325 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5326 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5327 (u64)start_pfn << PAGE_SHIFT,
5328 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7960aedd
ZY
5329#endif
5330 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5331 zones_size, zholes_size);
1da177e4
LT
5332
5333 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5334#ifdef CONFIG_FLAT_NODE_MEM_MAP
5335 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5336 nid, (unsigned long)pgdat,
5337 (unsigned long)pgdat->node_mem_map);
5338#endif
1da177e4 5339
7f3eb55b 5340 free_area_init_core(pgdat);
1da177e4
LT
5341}
5342
0ee332c1 5343#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5344
5345#if MAX_NUMNODES > 1
5346/*
5347 * Figure out the number of possible node ids.
5348 */
f9872caf 5349void __init setup_nr_node_ids(void)
418508c1 5350{
904a9553 5351 unsigned int highest;
418508c1 5352
904a9553 5353 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5354 nr_node_ids = highest + 1;
5355}
418508c1
MS
5356#endif
5357
1e01979c
TH
5358/**
5359 * node_map_pfn_alignment - determine the maximum internode alignment
5360 *
5361 * This function should be called after node map is populated and sorted.
5362 * It calculates the maximum power of two alignment which can distinguish
5363 * all the nodes.
5364 *
5365 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5366 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5367 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5368 * shifted, 1GiB is enough and this function will indicate so.
5369 *
5370 * This is used to test whether pfn -> nid mapping of the chosen memory
5371 * model has fine enough granularity to avoid incorrect mapping for the
5372 * populated node map.
5373 *
5374 * Returns the determined alignment in pfn's. 0 if there is no alignment
5375 * requirement (single node).
5376 */
5377unsigned long __init node_map_pfn_alignment(void)
5378{
5379 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5380 unsigned long start, end, mask;
1e01979c 5381 int last_nid = -1;
c13291a5 5382 int i, nid;
1e01979c 5383
c13291a5 5384 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5385 if (!start || last_nid < 0 || last_nid == nid) {
5386 last_nid = nid;
5387 last_end = end;
5388 continue;
5389 }
5390
5391 /*
5392 * Start with a mask granular enough to pin-point to the
5393 * start pfn and tick off bits one-by-one until it becomes
5394 * too coarse to separate the current node from the last.
5395 */
5396 mask = ~((1 << __ffs(start)) - 1);
5397 while (mask && last_end <= (start & (mask << 1)))
5398 mask <<= 1;
5399
5400 /* accumulate all internode masks */
5401 accl_mask |= mask;
5402 }
5403
5404 /* convert mask to number of pages */
5405 return ~accl_mask + 1;
5406}
5407
a6af2bc3 5408/* Find the lowest pfn for a node */
b69a7288 5409static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5410{
a6af2bc3 5411 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5412 unsigned long start_pfn;
5413 int i;
1abbfb41 5414
c13291a5
TH
5415 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5416 min_pfn = min(min_pfn, start_pfn);
c713216d 5417
a6af2bc3
MG
5418 if (min_pfn == ULONG_MAX) {
5419 printk(KERN_WARNING
2bc0d261 5420 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5421 return 0;
5422 }
5423
5424 return min_pfn;
c713216d
MG
5425}
5426
5427/**
5428 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5429 *
5430 * It returns the minimum PFN based on information provided via
7d018176 5431 * memblock_set_node().
c713216d
MG
5432 */
5433unsigned long __init find_min_pfn_with_active_regions(void)
5434{
5435 return find_min_pfn_for_node(MAX_NUMNODES);
5436}
5437
37b07e41
LS
5438/*
5439 * early_calculate_totalpages()
5440 * Sum pages in active regions for movable zone.
4b0ef1fe 5441 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5442 */
484f51f8 5443static unsigned long __init early_calculate_totalpages(void)
7e63efef 5444{
7e63efef 5445 unsigned long totalpages = 0;
c13291a5
TH
5446 unsigned long start_pfn, end_pfn;
5447 int i, nid;
5448
5449 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5450 unsigned long pages = end_pfn - start_pfn;
7e63efef 5451
37b07e41
LS
5452 totalpages += pages;
5453 if (pages)
4b0ef1fe 5454 node_set_state(nid, N_MEMORY);
37b07e41 5455 }
b8af2941 5456 return totalpages;
7e63efef
MG
5457}
5458
2a1e274a
MG
5459/*
5460 * Find the PFN the Movable zone begins in each node. Kernel memory
5461 * is spread evenly between nodes as long as the nodes have enough
5462 * memory. When they don't, some nodes will have more kernelcore than
5463 * others
5464 */
b224ef85 5465static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5466{
5467 int i, nid;
5468 unsigned long usable_startpfn;
5469 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5470 /* save the state before borrow the nodemask */
4b0ef1fe 5471 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5472 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5473 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5474 struct memblock_region *r;
b2f3eebe
TC
5475
5476 /* Need to find movable_zone earlier when movable_node is specified. */
5477 find_usable_zone_for_movable();
5478
5479 /*
5480 * If movable_node is specified, ignore kernelcore and movablecore
5481 * options.
5482 */
5483 if (movable_node_is_enabled()) {
136199f0
EM
5484 for_each_memblock(memory, r) {
5485 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5486 continue;
5487
136199f0 5488 nid = r->nid;
b2f3eebe 5489
136199f0 5490 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5491 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5492 min(usable_startpfn, zone_movable_pfn[nid]) :
5493 usable_startpfn;
5494 }
5495
5496 goto out2;
5497 }
2a1e274a 5498
7e63efef 5499 /*
b2f3eebe 5500 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5501 * kernelcore that corresponds so that memory usable for
5502 * any allocation type is evenly spread. If both kernelcore
5503 * and movablecore are specified, then the value of kernelcore
5504 * will be used for required_kernelcore if it's greater than
5505 * what movablecore would have allowed.
5506 */
5507 if (required_movablecore) {
7e63efef
MG
5508 unsigned long corepages;
5509
5510 /*
5511 * Round-up so that ZONE_MOVABLE is at least as large as what
5512 * was requested by the user
5513 */
5514 required_movablecore =
5515 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5516 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5517 corepages = totalpages - required_movablecore;
5518
5519 required_kernelcore = max(required_kernelcore, corepages);
5520 }
5521
bde304bd
XQ
5522 /*
5523 * If kernelcore was not specified or kernelcore size is larger
5524 * than totalpages, there is no ZONE_MOVABLE.
5525 */
5526 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5527 goto out;
2a1e274a
MG
5528
5529 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5530 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5531
5532restart:
5533 /* Spread kernelcore memory as evenly as possible throughout nodes */
5534 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5535 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5536 unsigned long start_pfn, end_pfn;
5537
2a1e274a
MG
5538 /*
5539 * Recalculate kernelcore_node if the division per node
5540 * now exceeds what is necessary to satisfy the requested
5541 * amount of memory for the kernel
5542 */
5543 if (required_kernelcore < kernelcore_node)
5544 kernelcore_node = required_kernelcore / usable_nodes;
5545
5546 /*
5547 * As the map is walked, we track how much memory is usable
5548 * by the kernel using kernelcore_remaining. When it is
5549 * 0, the rest of the node is usable by ZONE_MOVABLE
5550 */
5551 kernelcore_remaining = kernelcore_node;
5552
5553 /* Go through each range of PFNs within this node */
c13291a5 5554 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5555 unsigned long size_pages;
5556
c13291a5 5557 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5558 if (start_pfn >= end_pfn)
5559 continue;
5560
5561 /* Account for what is only usable for kernelcore */
5562 if (start_pfn < usable_startpfn) {
5563 unsigned long kernel_pages;
5564 kernel_pages = min(end_pfn, usable_startpfn)
5565 - start_pfn;
5566
5567 kernelcore_remaining -= min(kernel_pages,
5568 kernelcore_remaining);
5569 required_kernelcore -= min(kernel_pages,
5570 required_kernelcore);
5571
5572 /* Continue if range is now fully accounted */
5573 if (end_pfn <= usable_startpfn) {
5574
5575 /*
5576 * Push zone_movable_pfn to the end so
5577 * that if we have to rebalance
5578 * kernelcore across nodes, we will
5579 * not double account here
5580 */
5581 zone_movable_pfn[nid] = end_pfn;
5582 continue;
5583 }
5584 start_pfn = usable_startpfn;
5585 }
5586
5587 /*
5588 * The usable PFN range for ZONE_MOVABLE is from
5589 * start_pfn->end_pfn. Calculate size_pages as the
5590 * number of pages used as kernelcore
5591 */
5592 size_pages = end_pfn - start_pfn;
5593 if (size_pages > kernelcore_remaining)
5594 size_pages = kernelcore_remaining;
5595 zone_movable_pfn[nid] = start_pfn + size_pages;
5596
5597 /*
5598 * Some kernelcore has been met, update counts and
5599 * break if the kernelcore for this node has been
b8af2941 5600 * satisfied
2a1e274a
MG
5601 */
5602 required_kernelcore -= min(required_kernelcore,
5603 size_pages);
5604 kernelcore_remaining -= size_pages;
5605 if (!kernelcore_remaining)
5606 break;
5607 }
5608 }
5609
5610 /*
5611 * If there is still required_kernelcore, we do another pass with one
5612 * less node in the count. This will push zone_movable_pfn[nid] further
5613 * along on the nodes that still have memory until kernelcore is
b8af2941 5614 * satisfied
2a1e274a
MG
5615 */
5616 usable_nodes--;
5617 if (usable_nodes && required_kernelcore > usable_nodes)
5618 goto restart;
5619
b2f3eebe 5620out2:
2a1e274a
MG
5621 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5622 for (nid = 0; nid < MAX_NUMNODES; nid++)
5623 zone_movable_pfn[nid] =
5624 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5625
20e6926d 5626out:
66918dcd 5627 /* restore the node_state */
4b0ef1fe 5628 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5629}
5630
4b0ef1fe
LJ
5631/* Any regular or high memory on that node ? */
5632static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5633{
37b07e41
LS
5634 enum zone_type zone_type;
5635
4b0ef1fe
LJ
5636 if (N_MEMORY == N_NORMAL_MEMORY)
5637 return;
5638
5639 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5640 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5641 if (populated_zone(zone)) {
4b0ef1fe
LJ
5642 node_set_state(nid, N_HIGH_MEMORY);
5643 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5644 zone_type <= ZONE_NORMAL)
5645 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5646 break;
5647 }
37b07e41 5648 }
37b07e41
LS
5649}
5650
c713216d
MG
5651/**
5652 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5653 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5654 *
5655 * This will call free_area_init_node() for each active node in the system.
7d018176 5656 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5657 * zone in each node and their holes is calculated. If the maximum PFN
5658 * between two adjacent zones match, it is assumed that the zone is empty.
5659 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5660 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5661 * starts where the previous one ended. For example, ZONE_DMA32 starts
5662 * at arch_max_dma_pfn.
5663 */
5664void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5665{
c13291a5
TH
5666 unsigned long start_pfn, end_pfn;
5667 int i, nid;
a6af2bc3 5668
c713216d
MG
5669 /* Record where the zone boundaries are */
5670 memset(arch_zone_lowest_possible_pfn, 0,
5671 sizeof(arch_zone_lowest_possible_pfn));
5672 memset(arch_zone_highest_possible_pfn, 0,
5673 sizeof(arch_zone_highest_possible_pfn));
5674 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5675 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5676 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5677 if (i == ZONE_MOVABLE)
5678 continue;
c713216d
MG
5679 arch_zone_lowest_possible_pfn[i] =
5680 arch_zone_highest_possible_pfn[i-1];
5681 arch_zone_highest_possible_pfn[i] =
5682 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5683 }
2a1e274a
MG
5684 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5685 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5686
5687 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5688 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5689 find_zone_movable_pfns_for_nodes();
c713216d 5690
c713216d 5691 /* Print out the zone ranges */
f88dfff5 5692 pr_info("Zone ranges:\n");
2a1e274a
MG
5693 for (i = 0; i < MAX_NR_ZONES; i++) {
5694 if (i == ZONE_MOVABLE)
5695 continue;
f88dfff5 5696 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5697 if (arch_zone_lowest_possible_pfn[i] ==
5698 arch_zone_highest_possible_pfn[i])
f88dfff5 5699 pr_cont("empty\n");
72f0ba02 5700 else
8d29e18a
JG
5701 pr_cont("[mem %#018Lx-%#018Lx]\n",
5702 (u64)arch_zone_lowest_possible_pfn[i]
5703 << PAGE_SHIFT,
5704 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5705 << PAGE_SHIFT) - 1);
2a1e274a
MG
5706 }
5707
5708 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5709 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5710 for (i = 0; i < MAX_NUMNODES; i++) {
5711 if (zone_movable_pfn[i])
8d29e18a
JG
5712 pr_info(" Node %d: %#018Lx\n", i,
5713 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5714 }
c713216d 5715
f2d52fe5 5716 /* Print out the early node map */
f88dfff5 5717 pr_info("Early memory node ranges\n");
c13291a5 5718 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5719 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5720 (u64)start_pfn << PAGE_SHIFT,
5721 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5722
5723 /* Initialise every node */
708614e6 5724 mminit_verify_pageflags_layout();
8ef82866 5725 setup_nr_node_ids();
c713216d
MG
5726 for_each_online_node(nid) {
5727 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5728 free_area_init_node(nid, NULL,
c713216d 5729 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5730
5731 /* Any memory on that node */
5732 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5733 node_set_state(nid, N_MEMORY);
5734 check_for_memory(pgdat, nid);
c713216d
MG
5735 }
5736}
2a1e274a 5737
7e63efef 5738static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5739{
5740 unsigned long long coremem;
5741 if (!p)
5742 return -EINVAL;
5743
5744 coremem = memparse(p, &p);
7e63efef 5745 *core = coremem >> PAGE_SHIFT;
2a1e274a 5746
7e63efef 5747 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5748 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5749
5750 return 0;
5751}
ed7ed365 5752
7e63efef
MG
5753/*
5754 * kernelcore=size sets the amount of memory for use for allocations that
5755 * cannot be reclaimed or migrated.
5756 */
5757static int __init cmdline_parse_kernelcore(char *p)
5758{
5759 return cmdline_parse_core(p, &required_kernelcore);
5760}
5761
5762/*
5763 * movablecore=size sets the amount of memory for use for allocations that
5764 * can be reclaimed or migrated.
5765 */
5766static int __init cmdline_parse_movablecore(char *p)
5767{
5768 return cmdline_parse_core(p, &required_movablecore);
5769}
5770
ed7ed365 5771early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5772early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5773
0ee332c1 5774#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5775
c3d5f5f0
JL
5776void adjust_managed_page_count(struct page *page, long count)
5777{
5778 spin_lock(&managed_page_count_lock);
5779 page_zone(page)->managed_pages += count;
5780 totalram_pages += count;
3dcc0571
JL
5781#ifdef CONFIG_HIGHMEM
5782 if (PageHighMem(page))
5783 totalhigh_pages += count;
5784#endif
c3d5f5f0
JL
5785 spin_unlock(&managed_page_count_lock);
5786}
3dcc0571 5787EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5788
11199692 5789unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5790{
11199692
JL
5791 void *pos;
5792 unsigned long pages = 0;
69afade7 5793
11199692
JL
5794 start = (void *)PAGE_ALIGN((unsigned long)start);
5795 end = (void *)((unsigned long)end & PAGE_MASK);
5796 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5797 if ((unsigned int)poison <= 0xFF)
11199692
JL
5798 memset(pos, poison, PAGE_SIZE);
5799 free_reserved_page(virt_to_page(pos));
69afade7
JL
5800 }
5801
5802 if (pages && s)
11199692 5803 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5804 s, pages << (PAGE_SHIFT - 10), start, end);
5805
5806 return pages;
5807}
11199692 5808EXPORT_SYMBOL(free_reserved_area);
69afade7 5809
cfa11e08
JL
5810#ifdef CONFIG_HIGHMEM
5811void free_highmem_page(struct page *page)
5812{
5813 __free_reserved_page(page);
5814 totalram_pages++;
7b4b2a0d 5815 page_zone(page)->managed_pages++;
cfa11e08
JL
5816 totalhigh_pages++;
5817}
5818#endif
5819
7ee3d4e8
JL
5820
5821void __init mem_init_print_info(const char *str)
5822{
5823 unsigned long physpages, codesize, datasize, rosize, bss_size;
5824 unsigned long init_code_size, init_data_size;
5825
5826 physpages = get_num_physpages();
5827 codesize = _etext - _stext;
5828 datasize = _edata - _sdata;
5829 rosize = __end_rodata - __start_rodata;
5830 bss_size = __bss_stop - __bss_start;
5831 init_data_size = __init_end - __init_begin;
5832 init_code_size = _einittext - _sinittext;
5833
5834 /*
5835 * Detect special cases and adjust section sizes accordingly:
5836 * 1) .init.* may be embedded into .data sections
5837 * 2) .init.text.* may be out of [__init_begin, __init_end],
5838 * please refer to arch/tile/kernel/vmlinux.lds.S.
5839 * 3) .rodata.* may be embedded into .text or .data sections.
5840 */
5841#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5842 do { \
5843 if (start <= pos && pos < end && size > adj) \
5844 size -= adj; \
5845 } while (0)
7ee3d4e8
JL
5846
5847 adj_init_size(__init_begin, __init_end, init_data_size,
5848 _sinittext, init_code_size);
5849 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5850 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5851 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5852 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5853
5854#undef adj_init_size
5855
f88dfff5 5856 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5857 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5858 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5859#ifdef CONFIG_HIGHMEM
5860 ", %luK highmem"
5861#endif
5862 "%s%s)\n",
5863 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5864 codesize >> 10, datasize >> 10, rosize >> 10,
5865 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5866 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5867 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5868#ifdef CONFIG_HIGHMEM
5869 totalhigh_pages << (PAGE_SHIFT-10),
5870#endif
5871 str ? ", " : "", str ? str : "");
5872}
5873
0e0b864e 5874/**
88ca3b94
RD
5875 * set_dma_reserve - set the specified number of pages reserved in the first zone
5876 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 5877 *
013110a7 5878 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
5879 * In the DMA zone, a significant percentage may be consumed by kernel image
5880 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5881 * function may optionally be used to account for unfreeable pages in the
5882 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5883 * smaller per-cpu batchsize.
0e0b864e
MG
5884 */
5885void __init set_dma_reserve(unsigned long new_dma_reserve)
5886{
5887 dma_reserve = new_dma_reserve;
5888}
5889
1da177e4
LT
5890void __init free_area_init(unsigned long *zones_size)
5891{
9109fb7b 5892 free_area_init_node(0, zones_size,
1da177e4
LT
5893 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5894}
1da177e4 5895
1da177e4
LT
5896static int page_alloc_cpu_notify(struct notifier_block *self,
5897 unsigned long action, void *hcpu)
5898{
5899 int cpu = (unsigned long)hcpu;
1da177e4 5900
8bb78442 5901 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5902 lru_add_drain_cpu(cpu);
9f8f2172
CL
5903 drain_pages(cpu);
5904
5905 /*
5906 * Spill the event counters of the dead processor
5907 * into the current processors event counters.
5908 * This artificially elevates the count of the current
5909 * processor.
5910 */
f8891e5e 5911 vm_events_fold_cpu(cpu);
9f8f2172
CL
5912
5913 /*
5914 * Zero the differential counters of the dead processor
5915 * so that the vm statistics are consistent.
5916 *
5917 * This is only okay since the processor is dead and cannot
5918 * race with what we are doing.
5919 */
2bb921e5 5920 cpu_vm_stats_fold(cpu);
1da177e4
LT
5921 }
5922 return NOTIFY_OK;
5923}
1da177e4
LT
5924
5925void __init page_alloc_init(void)
5926{
5927 hotcpu_notifier(page_alloc_cpu_notify, 0);
5928}
5929
cb45b0e9 5930/*
34b10060 5931 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
5932 * or min_free_kbytes changes.
5933 */
5934static void calculate_totalreserve_pages(void)
5935{
5936 struct pglist_data *pgdat;
5937 unsigned long reserve_pages = 0;
2f6726e5 5938 enum zone_type i, j;
cb45b0e9
HA
5939
5940 for_each_online_pgdat(pgdat) {
5941 for (i = 0; i < MAX_NR_ZONES; i++) {
5942 struct zone *zone = pgdat->node_zones + i;
3484b2de 5943 long max = 0;
cb45b0e9
HA
5944
5945 /* Find valid and maximum lowmem_reserve in the zone */
5946 for (j = i; j < MAX_NR_ZONES; j++) {
5947 if (zone->lowmem_reserve[j] > max)
5948 max = zone->lowmem_reserve[j];
5949 }
5950
41858966
MG
5951 /* we treat the high watermark as reserved pages. */
5952 max += high_wmark_pages(zone);
cb45b0e9 5953
b40da049
JL
5954 if (max > zone->managed_pages)
5955 max = zone->managed_pages;
a8d01437
JW
5956
5957 zone->totalreserve_pages = max;
5958
cb45b0e9
HA
5959 reserve_pages += max;
5960 }
5961 }
5962 totalreserve_pages = reserve_pages;
5963}
5964
1da177e4
LT
5965/*
5966 * setup_per_zone_lowmem_reserve - called whenever
34b10060 5967 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
5968 * has a correct pages reserved value, so an adequate number of
5969 * pages are left in the zone after a successful __alloc_pages().
5970 */
5971static void setup_per_zone_lowmem_reserve(void)
5972{
5973 struct pglist_data *pgdat;
2f6726e5 5974 enum zone_type j, idx;
1da177e4 5975
ec936fc5 5976 for_each_online_pgdat(pgdat) {
1da177e4
LT
5977 for (j = 0; j < MAX_NR_ZONES; j++) {
5978 struct zone *zone = pgdat->node_zones + j;
b40da049 5979 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5980
5981 zone->lowmem_reserve[j] = 0;
5982
2f6726e5
CL
5983 idx = j;
5984 while (idx) {
1da177e4
LT
5985 struct zone *lower_zone;
5986
2f6726e5
CL
5987 idx--;
5988
1da177e4
LT
5989 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5990 sysctl_lowmem_reserve_ratio[idx] = 1;
5991
5992 lower_zone = pgdat->node_zones + idx;
b40da049 5993 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5994 sysctl_lowmem_reserve_ratio[idx];
b40da049 5995 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5996 }
5997 }
5998 }
cb45b0e9
HA
5999
6000 /* update totalreserve_pages */
6001 calculate_totalreserve_pages();
1da177e4
LT
6002}
6003
cfd3da1e 6004static void __setup_per_zone_wmarks(void)
1da177e4
LT
6005{
6006 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6007 unsigned long lowmem_pages = 0;
6008 struct zone *zone;
6009 unsigned long flags;
6010
6011 /* Calculate total number of !ZONE_HIGHMEM pages */
6012 for_each_zone(zone) {
6013 if (!is_highmem(zone))
b40da049 6014 lowmem_pages += zone->managed_pages;
1da177e4
LT
6015 }
6016
6017 for_each_zone(zone) {
ac924c60
AM
6018 u64 tmp;
6019
1125b4e3 6020 spin_lock_irqsave(&zone->lock, flags);
b40da049 6021 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6022 do_div(tmp, lowmem_pages);
1da177e4
LT
6023 if (is_highmem(zone)) {
6024 /*
669ed175
NP
6025 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6026 * need highmem pages, so cap pages_min to a small
6027 * value here.
6028 *
41858966 6029 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6030 * deltas control asynch page reclaim, and so should
669ed175 6031 * not be capped for highmem.
1da177e4 6032 */
90ae8d67 6033 unsigned long min_pages;
1da177e4 6034
b40da049 6035 min_pages = zone->managed_pages / 1024;
90ae8d67 6036 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6037 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6038 } else {
669ed175
NP
6039 /*
6040 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6041 * proportionate to the zone's size.
6042 */
41858966 6043 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6044 }
6045
41858966
MG
6046 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6047 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6048
81c0a2bb 6049 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6050 high_wmark_pages(zone) - low_wmark_pages(zone) -
6051 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6052
1125b4e3 6053 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6054 }
cb45b0e9
HA
6055
6056 /* update totalreserve_pages */
6057 calculate_totalreserve_pages();
1da177e4
LT
6058}
6059
cfd3da1e
MG
6060/**
6061 * setup_per_zone_wmarks - called when min_free_kbytes changes
6062 * or when memory is hot-{added|removed}
6063 *
6064 * Ensures that the watermark[min,low,high] values for each zone are set
6065 * correctly with respect to min_free_kbytes.
6066 */
6067void setup_per_zone_wmarks(void)
6068{
6069 mutex_lock(&zonelists_mutex);
6070 __setup_per_zone_wmarks();
6071 mutex_unlock(&zonelists_mutex);
6072}
6073
55a4462a 6074/*
556adecb
RR
6075 * The inactive anon list should be small enough that the VM never has to
6076 * do too much work, but large enough that each inactive page has a chance
6077 * to be referenced again before it is swapped out.
6078 *
6079 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6080 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6081 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6082 * the anonymous pages are kept on the inactive list.
6083 *
6084 * total target max
6085 * memory ratio inactive anon
6086 * -------------------------------------
6087 * 10MB 1 5MB
6088 * 100MB 1 50MB
6089 * 1GB 3 250MB
6090 * 10GB 10 0.9GB
6091 * 100GB 31 3GB
6092 * 1TB 101 10GB
6093 * 10TB 320 32GB
6094 */
1b79acc9 6095static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6096{
96cb4df5 6097 unsigned int gb, ratio;
556adecb 6098
96cb4df5 6099 /* Zone size in gigabytes */
b40da049 6100 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6101 if (gb)
556adecb 6102 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6103 else
6104 ratio = 1;
556adecb 6105
96cb4df5
MK
6106 zone->inactive_ratio = ratio;
6107}
556adecb 6108
839a4fcc 6109static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6110{
6111 struct zone *zone;
6112
6113 for_each_zone(zone)
6114 calculate_zone_inactive_ratio(zone);
556adecb
RR
6115}
6116
1da177e4
LT
6117/*
6118 * Initialise min_free_kbytes.
6119 *
6120 * For small machines we want it small (128k min). For large machines
6121 * we want it large (64MB max). But it is not linear, because network
6122 * bandwidth does not increase linearly with machine size. We use
6123 *
b8af2941 6124 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6125 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6126 *
6127 * which yields
6128 *
6129 * 16MB: 512k
6130 * 32MB: 724k
6131 * 64MB: 1024k
6132 * 128MB: 1448k
6133 * 256MB: 2048k
6134 * 512MB: 2896k
6135 * 1024MB: 4096k
6136 * 2048MB: 5792k
6137 * 4096MB: 8192k
6138 * 8192MB: 11584k
6139 * 16384MB: 16384k
6140 */
1b79acc9 6141int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6142{
6143 unsigned long lowmem_kbytes;
5f12733e 6144 int new_min_free_kbytes;
1da177e4
LT
6145
6146 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6147 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6148
6149 if (new_min_free_kbytes > user_min_free_kbytes) {
6150 min_free_kbytes = new_min_free_kbytes;
6151 if (min_free_kbytes < 128)
6152 min_free_kbytes = 128;
6153 if (min_free_kbytes > 65536)
6154 min_free_kbytes = 65536;
6155 } else {
6156 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6157 new_min_free_kbytes, user_min_free_kbytes);
6158 }
bc75d33f 6159 setup_per_zone_wmarks();
a6cccdc3 6160 refresh_zone_stat_thresholds();
1da177e4 6161 setup_per_zone_lowmem_reserve();
556adecb 6162 setup_per_zone_inactive_ratio();
1da177e4
LT
6163 return 0;
6164}
bc75d33f 6165module_init(init_per_zone_wmark_min)
1da177e4
LT
6166
6167/*
b8af2941 6168 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6169 * that we can call two helper functions whenever min_free_kbytes
6170 * changes.
6171 */
cccad5b9 6172int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6173 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6174{
da8c757b
HP
6175 int rc;
6176
6177 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6178 if (rc)
6179 return rc;
6180
5f12733e
MH
6181 if (write) {
6182 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6183 setup_per_zone_wmarks();
5f12733e 6184 }
1da177e4
LT
6185 return 0;
6186}
6187
9614634f 6188#ifdef CONFIG_NUMA
cccad5b9 6189int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6190 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6191{
6192 struct zone *zone;
6193 int rc;
6194
8d65af78 6195 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6196 if (rc)
6197 return rc;
6198
6199 for_each_zone(zone)
b40da049 6200 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6201 sysctl_min_unmapped_ratio) / 100;
6202 return 0;
6203}
0ff38490 6204
cccad5b9 6205int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6206 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6207{
6208 struct zone *zone;
6209 int rc;
6210
8d65af78 6211 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6212 if (rc)
6213 return rc;
6214
6215 for_each_zone(zone)
b40da049 6216 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6217 sysctl_min_slab_ratio) / 100;
6218 return 0;
6219}
9614634f
CL
6220#endif
6221
1da177e4
LT
6222/*
6223 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6224 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6225 * whenever sysctl_lowmem_reserve_ratio changes.
6226 *
6227 * The reserve ratio obviously has absolutely no relation with the
41858966 6228 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6229 * if in function of the boot time zone sizes.
6230 */
cccad5b9 6231int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6232 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6233{
8d65af78 6234 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6235 setup_per_zone_lowmem_reserve();
6236 return 0;
6237}
6238
8ad4b1fb
RS
6239/*
6240 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6241 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6242 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6243 */
cccad5b9 6244int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6245 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6246{
6247 struct zone *zone;
7cd2b0a3 6248 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6249 int ret;
6250
7cd2b0a3
DR
6251 mutex_lock(&pcp_batch_high_lock);
6252 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6253
8d65af78 6254 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6255 if (!write || ret < 0)
6256 goto out;
6257
6258 /* Sanity checking to avoid pcp imbalance */
6259 if (percpu_pagelist_fraction &&
6260 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6261 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6262 ret = -EINVAL;
6263 goto out;
6264 }
6265
6266 /* No change? */
6267 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6268 goto out;
c8e251fa 6269
364df0eb 6270 for_each_populated_zone(zone) {
7cd2b0a3
DR
6271 unsigned int cpu;
6272
22a7f12b 6273 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6274 pageset_set_high_and_batch(zone,
6275 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6276 }
7cd2b0a3 6277out:
c8e251fa 6278 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6279 return ret;
8ad4b1fb
RS
6280}
6281
a9919c79 6282#ifdef CONFIG_NUMA
f034b5d4 6283int hashdist = HASHDIST_DEFAULT;
1da177e4 6284
1da177e4
LT
6285static int __init set_hashdist(char *str)
6286{
6287 if (!str)
6288 return 0;
6289 hashdist = simple_strtoul(str, &str, 0);
6290 return 1;
6291}
6292__setup("hashdist=", set_hashdist);
6293#endif
6294
6295/*
6296 * allocate a large system hash table from bootmem
6297 * - it is assumed that the hash table must contain an exact power-of-2
6298 * quantity of entries
6299 * - limit is the number of hash buckets, not the total allocation size
6300 */
6301void *__init alloc_large_system_hash(const char *tablename,
6302 unsigned long bucketsize,
6303 unsigned long numentries,
6304 int scale,
6305 int flags,
6306 unsigned int *_hash_shift,
6307 unsigned int *_hash_mask,
31fe62b9
TB
6308 unsigned long low_limit,
6309 unsigned long high_limit)
1da177e4 6310{
31fe62b9 6311 unsigned long long max = high_limit;
1da177e4
LT
6312 unsigned long log2qty, size;
6313 void *table = NULL;
6314
6315 /* allow the kernel cmdline to have a say */
6316 if (!numentries) {
6317 /* round applicable memory size up to nearest megabyte */
04903664 6318 numentries = nr_kernel_pages;
a7e83318
JZ
6319
6320 /* It isn't necessary when PAGE_SIZE >= 1MB */
6321 if (PAGE_SHIFT < 20)
6322 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6323
6324 /* limit to 1 bucket per 2^scale bytes of low memory */
6325 if (scale > PAGE_SHIFT)
6326 numentries >>= (scale - PAGE_SHIFT);
6327 else
6328 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6329
6330 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6331 if (unlikely(flags & HASH_SMALL)) {
6332 /* Makes no sense without HASH_EARLY */
6333 WARN_ON(!(flags & HASH_EARLY));
6334 if (!(numentries >> *_hash_shift)) {
6335 numentries = 1UL << *_hash_shift;
6336 BUG_ON(!numentries);
6337 }
6338 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6339 numentries = PAGE_SIZE / bucketsize;
1da177e4 6340 }
6e692ed3 6341 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6342
6343 /* limit allocation size to 1/16 total memory by default */
6344 if (max == 0) {
6345 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6346 do_div(max, bucketsize);
6347 }
074b8517 6348 max = min(max, 0x80000000ULL);
1da177e4 6349
31fe62b9
TB
6350 if (numentries < low_limit)
6351 numentries = low_limit;
1da177e4
LT
6352 if (numentries > max)
6353 numentries = max;
6354
f0d1b0b3 6355 log2qty = ilog2(numentries);
1da177e4
LT
6356
6357 do {
6358 size = bucketsize << log2qty;
6359 if (flags & HASH_EARLY)
6782832e 6360 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6361 else if (hashdist)
6362 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6363 else {
1037b83b
ED
6364 /*
6365 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6366 * some pages at the end of hash table which
6367 * alloc_pages_exact() automatically does
1037b83b 6368 */
264ef8a9 6369 if (get_order(size) < MAX_ORDER) {
a1dd268c 6370 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6371 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6372 }
1da177e4
LT
6373 }
6374 } while (!table && size > PAGE_SIZE && --log2qty);
6375
6376 if (!table)
6377 panic("Failed to allocate %s hash table\n", tablename);
6378
f241e660 6379 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6380 tablename,
f241e660 6381 (1UL << log2qty),
f0d1b0b3 6382 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6383 size);
6384
6385 if (_hash_shift)
6386 *_hash_shift = log2qty;
6387 if (_hash_mask)
6388 *_hash_mask = (1 << log2qty) - 1;
6389
6390 return table;
6391}
a117e66e 6392
835c134e
MG
6393/* Return a pointer to the bitmap storing bits affecting a block of pages */
6394static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6395 unsigned long pfn)
6396{
6397#ifdef CONFIG_SPARSEMEM
6398 return __pfn_to_section(pfn)->pageblock_flags;
6399#else
6400 return zone->pageblock_flags;
6401#endif /* CONFIG_SPARSEMEM */
6402}
6403
6404static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6405{
6406#ifdef CONFIG_SPARSEMEM
6407 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6408 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6409#else
c060f943 6410 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6411 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6412#endif /* CONFIG_SPARSEMEM */
6413}
6414
6415/**
1aab4d77 6416 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6417 * @page: The page within the block of interest
1aab4d77
RD
6418 * @pfn: The target page frame number
6419 * @end_bitidx: The last bit of interest to retrieve
6420 * @mask: mask of bits that the caller is interested in
6421 *
6422 * Return: pageblock_bits flags
835c134e 6423 */
dc4b0caf 6424unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6425 unsigned long end_bitidx,
6426 unsigned long mask)
835c134e
MG
6427{
6428 struct zone *zone;
6429 unsigned long *bitmap;
dc4b0caf 6430 unsigned long bitidx, word_bitidx;
e58469ba 6431 unsigned long word;
835c134e
MG
6432
6433 zone = page_zone(page);
835c134e
MG
6434 bitmap = get_pageblock_bitmap(zone, pfn);
6435 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6436 word_bitidx = bitidx / BITS_PER_LONG;
6437 bitidx &= (BITS_PER_LONG-1);
835c134e 6438
e58469ba
MG
6439 word = bitmap[word_bitidx];
6440 bitidx += end_bitidx;
6441 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6442}
6443
6444/**
dc4b0caf 6445 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6446 * @page: The page within the block of interest
835c134e 6447 * @flags: The flags to set
1aab4d77
RD
6448 * @pfn: The target page frame number
6449 * @end_bitidx: The last bit of interest
6450 * @mask: mask of bits that the caller is interested in
835c134e 6451 */
dc4b0caf
MG
6452void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6453 unsigned long pfn,
e58469ba
MG
6454 unsigned long end_bitidx,
6455 unsigned long mask)
835c134e
MG
6456{
6457 struct zone *zone;
6458 unsigned long *bitmap;
dc4b0caf 6459 unsigned long bitidx, word_bitidx;
e58469ba
MG
6460 unsigned long old_word, word;
6461
6462 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6463
6464 zone = page_zone(page);
835c134e
MG
6465 bitmap = get_pageblock_bitmap(zone, pfn);
6466 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6467 word_bitidx = bitidx / BITS_PER_LONG;
6468 bitidx &= (BITS_PER_LONG-1);
6469
309381fe 6470 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6471
e58469ba
MG
6472 bitidx += end_bitidx;
6473 mask <<= (BITS_PER_LONG - bitidx - 1);
6474 flags <<= (BITS_PER_LONG - bitidx - 1);
6475
4db0c3c2 6476 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6477 for (;;) {
6478 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6479 if (word == old_word)
6480 break;
6481 word = old_word;
6482 }
835c134e 6483}
a5d76b54
KH
6484
6485/*
80934513
MK
6486 * This function checks whether pageblock includes unmovable pages or not.
6487 * If @count is not zero, it is okay to include less @count unmovable pages
6488 *
b8af2941 6489 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6490 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6491 * expect this function should be exact.
a5d76b54 6492 */
b023f468
WC
6493bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6494 bool skip_hwpoisoned_pages)
49ac8255
KH
6495{
6496 unsigned long pfn, iter, found;
47118af0
MN
6497 int mt;
6498
49ac8255
KH
6499 /*
6500 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6501 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6502 */
6503 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6504 return false;
47118af0
MN
6505 mt = get_pageblock_migratetype(page);
6506 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6507 return false;
49ac8255
KH
6508
6509 pfn = page_to_pfn(page);
6510 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6511 unsigned long check = pfn + iter;
6512
29723fcc 6513 if (!pfn_valid_within(check))
49ac8255 6514 continue;
29723fcc 6515
49ac8255 6516 page = pfn_to_page(check);
c8721bbb
NH
6517
6518 /*
6519 * Hugepages are not in LRU lists, but they're movable.
6520 * We need not scan over tail pages bacause we don't
6521 * handle each tail page individually in migration.
6522 */
6523 if (PageHuge(page)) {
6524 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6525 continue;
6526 }
6527
97d255c8
MK
6528 /*
6529 * We can't use page_count without pin a page
6530 * because another CPU can free compound page.
6531 * This check already skips compound tails of THP
6532 * because their page->_count is zero at all time.
6533 */
6534 if (!atomic_read(&page->_count)) {
49ac8255
KH
6535 if (PageBuddy(page))
6536 iter += (1 << page_order(page)) - 1;
6537 continue;
6538 }
97d255c8 6539
b023f468
WC
6540 /*
6541 * The HWPoisoned page may be not in buddy system, and
6542 * page_count() is not 0.
6543 */
6544 if (skip_hwpoisoned_pages && PageHWPoison(page))
6545 continue;
6546
49ac8255
KH
6547 if (!PageLRU(page))
6548 found++;
6549 /*
6b4f7799
JW
6550 * If there are RECLAIMABLE pages, we need to check
6551 * it. But now, memory offline itself doesn't call
6552 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6553 */
6554 /*
6555 * If the page is not RAM, page_count()should be 0.
6556 * we don't need more check. This is an _used_ not-movable page.
6557 *
6558 * The problematic thing here is PG_reserved pages. PG_reserved
6559 * is set to both of a memory hole page and a _used_ kernel
6560 * page at boot.
6561 */
6562 if (found > count)
80934513 6563 return true;
49ac8255 6564 }
80934513 6565 return false;
49ac8255
KH
6566}
6567
6568bool is_pageblock_removable_nolock(struct page *page)
6569{
656a0706
MH
6570 struct zone *zone;
6571 unsigned long pfn;
687875fb
MH
6572
6573 /*
6574 * We have to be careful here because we are iterating over memory
6575 * sections which are not zone aware so we might end up outside of
6576 * the zone but still within the section.
656a0706
MH
6577 * We have to take care about the node as well. If the node is offline
6578 * its NODE_DATA will be NULL - see page_zone.
687875fb 6579 */
656a0706
MH
6580 if (!node_online(page_to_nid(page)))
6581 return false;
6582
6583 zone = page_zone(page);
6584 pfn = page_to_pfn(page);
108bcc96 6585 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6586 return false;
6587
b023f468 6588 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6589}
0c0e6195 6590
041d3a8c
MN
6591#ifdef CONFIG_CMA
6592
6593static unsigned long pfn_max_align_down(unsigned long pfn)
6594{
6595 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6596 pageblock_nr_pages) - 1);
6597}
6598
6599static unsigned long pfn_max_align_up(unsigned long pfn)
6600{
6601 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6602 pageblock_nr_pages));
6603}
6604
041d3a8c 6605/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6606static int __alloc_contig_migrate_range(struct compact_control *cc,
6607 unsigned long start, unsigned long end)
041d3a8c
MN
6608{
6609 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6610 unsigned long nr_reclaimed;
041d3a8c
MN
6611 unsigned long pfn = start;
6612 unsigned int tries = 0;
6613 int ret = 0;
6614
be49a6e1 6615 migrate_prep();
041d3a8c 6616
bb13ffeb 6617 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6618 if (fatal_signal_pending(current)) {
6619 ret = -EINTR;
6620 break;
6621 }
6622
bb13ffeb
MG
6623 if (list_empty(&cc->migratepages)) {
6624 cc->nr_migratepages = 0;
edc2ca61 6625 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6626 if (!pfn) {
6627 ret = -EINTR;
6628 break;
6629 }
6630 tries = 0;
6631 } else if (++tries == 5) {
6632 ret = ret < 0 ? ret : -EBUSY;
6633 break;
6634 }
6635
beb51eaa
MK
6636 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6637 &cc->migratepages);
6638 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6639
9c620e2b 6640 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6641 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6642 }
2a6f5124
SP
6643 if (ret < 0) {
6644 putback_movable_pages(&cc->migratepages);
6645 return ret;
6646 }
6647 return 0;
041d3a8c
MN
6648}
6649
6650/**
6651 * alloc_contig_range() -- tries to allocate given range of pages
6652 * @start: start PFN to allocate
6653 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6654 * @migratetype: migratetype of the underlaying pageblocks (either
6655 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6656 * in range must have the same migratetype and it must
6657 * be either of the two.
041d3a8c
MN
6658 *
6659 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6660 * aligned, however it's the caller's responsibility to guarantee that
6661 * we are the only thread that changes migrate type of pageblocks the
6662 * pages fall in.
6663 *
6664 * The PFN range must belong to a single zone.
6665 *
6666 * Returns zero on success or negative error code. On success all
6667 * pages which PFN is in [start, end) are allocated for the caller and
6668 * need to be freed with free_contig_range().
6669 */
0815f3d8
MN
6670int alloc_contig_range(unsigned long start, unsigned long end,
6671 unsigned migratetype)
041d3a8c 6672{
041d3a8c 6673 unsigned long outer_start, outer_end;
d00181b9
KS
6674 unsigned int order;
6675 int ret = 0;
041d3a8c 6676
bb13ffeb
MG
6677 struct compact_control cc = {
6678 .nr_migratepages = 0,
6679 .order = -1,
6680 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6681 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6682 .ignore_skip_hint = true,
6683 };
6684 INIT_LIST_HEAD(&cc.migratepages);
6685
041d3a8c
MN
6686 /*
6687 * What we do here is we mark all pageblocks in range as
6688 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6689 * have different sizes, and due to the way page allocator
6690 * work, we align the range to biggest of the two pages so
6691 * that page allocator won't try to merge buddies from
6692 * different pageblocks and change MIGRATE_ISOLATE to some
6693 * other migration type.
6694 *
6695 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6696 * migrate the pages from an unaligned range (ie. pages that
6697 * we are interested in). This will put all the pages in
6698 * range back to page allocator as MIGRATE_ISOLATE.
6699 *
6700 * When this is done, we take the pages in range from page
6701 * allocator removing them from the buddy system. This way
6702 * page allocator will never consider using them.
6703 *
6704 * This lets us mark the pageblocks back as
6705 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6706 * aligned range but not in the unaligned, original range are
6707 * put back to page allocator so that buddy can use them.
6708 */
6709
6710 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6711 pfn_max_align_up(end), migratetype,
6712 false);
041d3a8c 6713 if (ret)
86a595f9 6714 return ret;
041d3a8c 6715
8ef5849f
JK
6716 /*
6717 * In case of -EBUSY, we'd like to know which page causes problem.
6718 * So, just fall through. We will check it in test_pages_isolated().
6719 */
bb13ffeb 6720 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6721 if (ret && ret != -EBUSY)
041d3a8c
MN
6722 goto done;
6723
6724 /*
6725 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6726 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6727 * more, all pages in [start, end) are free in page allocator.
6728 * What we are going to do is to allocate all pages from
6729 * [start, end) (that is remove them from page allocator).
6730 *
6731 * The only problem is that pages at the beginning and at the
6732 * end of interesting range may be not aligned with pages that
6733 * page allocator holds, ie. they can be part of higher order
6734 * pages. Because of this, we reserve the bigger range and
6735 * once this is done free the pages we are not interested in.
6736 *
6737 * We don't have to hold zone->lock here because the pages are
6738 * isolated thus they won't get removed from buddy.
6739 */
6740
6741 lru_add_drain_all();
510f5507 6742 drain_all_pages(cc.zone);
041d3a8c
MN
6743
6744 order = 0;
6745 outer_start = start;
6746 while (!PageBuddy(pfn_to_page(outer_start))) {
6747 if (++order >= MAX_ORDER) {
8ef5849f
JK
6748 outer_start = start;
6749 break;
041d3a8c
MN
6750 }
6751 outer_start &= ~0UL << order;
6752 }
6753
8ef5849f
JK
6754 if (outer_start != start) {
6755 order = page_order(pfn_to_page(outer_start));
6756
6757 /*
6758 * outer_start page could be small order buddy page and
6759 * it doesn't include start page. Adjust outer_start
6760 * in this case to report failed page properly
6761 * on tracepoint in test_pages_isolated()
6762 */
6763 if (outer_start + (1UL << order) <= start)
6764 outer_start = start;
6765 }
6766
041d3a8c 6767 /* Make sure the range is really isolated. */
b023f468 6768 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6769 pr_info("%s: [%lx, %lx) PFNs busy\n",
6770 __func__, outer_start, end);
041d3a8c
MN
6771 ret = -EBUSY;
6772 goto done;
6773 }
6774
49f223a9 6775 /* Grab isolated pages from freelists. */
bb13ffeb 6776 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6777 if (!outer_end) {
6778 ret = -EBUSY;
6779 goto done;
6780 }
6781
6782 /* Free head and tail (if any) */
6783 if (start != outer_start)
6784 free_contig_range(outer_start, start - outer_start);
6785 if (end != outer_end)
6786 free_contig_range(end, outer_end - end);
6787
6788done:
6789 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6790 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6791 return ret;
6792}
6793
6794void free_contig_range(unsigned long pfn, unsigned nr_pages)
6795{
bcc2b02f
MS
6796 unsigned int count = 0;
6797
6798 for (; nr_pages--; pfn++) {
6799 struct page *page = pfn_to_page(pfn);
6800
6801 count += page_count(page) != 1;
6802 __free_page(page);
6803 }
6804 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6805}
6806#endif
6807
4ed7e022 6808#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6809/*
6810 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6811 * page high values need to be recalulated.
6812 */
4ed7e022
JL
6813void __meminit zone_pcp_update(struct zone *zone)
6814{
0a647f38 6815 unsigned cpu;
c8e251fa 6816 mutex_lock(&pcp_batch_high_lock);
0a647f38 6817 for_each_possible_cpu(cpu)
169f6c19
CS
6818 pageset_set_high_and_batch(zone,
6819 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6820 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6821}
6822#endif
6823
340175b7
JL
6824void zone_pcp_reset(struct zone *zone)
6825{
6826 unsigned long flags;
5a883813
MK
6827 int cpu;
6828 struct per_cpu_pageset *pset;
340175b7
JL
6829
6830 /* avoid races with drain_pages() */
6831 local_irq_save(flags);
6832 if (zone->pageset != &boot_pageset) {
5a883813
MK
6833 for_each_online_cpu(cpu) {
6834 pset = per_cpu_ptr(zone->pageset, cpu);
6835 drain_zonestat(zone, pset);
6836 }
340175b7
JL
6837 free_percpu(zone->pageset);
6838 zone->pageset = &boot_pageset;
6839 }
6840 local_irq_restore(flags);
6841}
6842
6dcd73d7 6843#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6844/*
6845 * All pages in the range must be isolated before calling this.
6846 */
6847void
6848__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6849{
6850 struct page *page;
6851 struct zone *zone;
7aeb09f9 6852 unsigned int order, i;
0c0e6195
KH
6853 unsigned long pfn;
6854 unsigned long flags;
6855 /* find the first valid pfn */
6856 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6857 if (pfn_valid(pfn))
6858 break;
6859 if (pfn == end_pfn)
6860 return;
6861 zone = page_zone(pfn_to_page(pfn));
6862 spin_lock_irqsave(&zone->lock, flags);
6863 pfn = start_pfn;
6864 while (pfn < end_pfn) {
6865 if (!pfn_valid(pfn)) {
6866 pfn++;
6867 continue;
6868 }
6869 page = pfn_to_page(pfn);
b023f468
WC
6870 /*
6871 * The HWPoisoned page may be not in buddy system, and
6872 * page_count() is not 0.
6873 */
6874 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6875 pfn++;
6876 SetPageReserved(page);
6877 continue;
6878 }
6879
0c0e6195
KH
6880 BUG_ON(page_count(page));
6881 BUG_ON(!PageBuddy(page));
6882 order = page_order(page);
6883#ifdef CONFIG_DEBUG_VM
6884 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6885 pfn, 1 << order, end_pfn);
6886#endif
6887 list_del(&page->lru);
6888 rmv_page_order(page);
6889 zone->free_area[order].nr_free--;
0c0e6195
KH
6890 for (i = 0; i < (1 << order); i++)
6891 SetPageReserved((page+i));
6892 pfn += (1 << order);
6893 }
6894 spin_unlock_irqrestore(&zone->lock, flags);
6895}
6896#endif
8d22ba1b
WF
6897
6898#ifdef CONFIG_MEMORY_FAILURE
6899bool is_free_buddy_page(struct page *page)
6900{
6901 struct zone *zone = page_zone(page);
6902 unsigned long pfn = page_to_pfn(page);
6903 unsigned long flags;
7aeb09f9 6904 unsigned int order;
8d22ba1b
WF
6905
6906 spin_lock_irqsave(&zone->lock, flags);
6907 for (order = 0; order < MAX_ORDER; order++) {
6908 struct page *page_head = page - (pfn & ((1 << order) - 1));
6909
6910 if (PageBuddy(page_head) && page_order(page_head) >= order)
6911 break;
6912 }
6913 spin_unlock_irqrestore(&zone->lock, flags);
6914
6915 return order < MAX_ORDER;
6916}
6917#endif