mm/page_alloc.c: initialize memmap of unavailable memory directly
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
1da177e4 77
c8e251fa
CS
78/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 80#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 81
72812019
LS
82#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83DEFINE_PER_CPU(int, numa_node);
84EXPORT_PER_CPU_SYMBOL(numa_node);
85#endif
86
4518085e
KW
87DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
7aac7898
LS
89#ifdef CONFIG_HAVE_MEMORYLESS_NODES
90/*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 98int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
bd233f53 106DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 107DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
0ee332c1 338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
351#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
f1eca35a 453 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464#else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467#endif /* CONFIG_SPARSEMEM */
468}
469
470/**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483{
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496}
497
498unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501{
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548}
3a80a7fa 549
ee6f509c 550void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 551{
5d0f3f72
KM
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
554 migratetype = MIGRATE_UNMOVABLE;
555
b2a0ac88
MG
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558}
559
13e7444b 560#ifdef CONFIG_DEBUG_VM
c6a57e19 561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 562{
bdc8cb98
DH
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 566 unsigned long sp, start_pfn;
c6a57e19 567
bdc8cb98
DH
568 do {
569 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
108bcc96 572 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
b5e6a5a2 576 if (ret)
613813e8
DH
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
b5e6a5a2 580
bdc8cb98 581 return ret;
c6a57e19
DH
582}
583
584static int page_is_consistent(struct zone *zone, struct page *page)
585{
14e07298 586 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 587 return 0;
1da177e4 588 if (zone != page_zone(page))
c6a57e19
DH
589 return 0;
590
591 return 1;
592}
593/*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
d73d3c9f 596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
597{
598 if (page_outside_zone_boundaries(zone, page))
1da177e4 599 return 1;
c6a57e19
DH
600 if (!page_is_consistent(zone, page))
601 return 1;
602
1da177e4
LT
603 return 0;
604}
13e7444b 605#else
d73d3c9f 606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
607{
608 return 0;
609}
610#endif
611
d230dec1
KS
612static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
1da177e4 614{
d936cf9b
HD
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
ff8e8116 629 pr_alert(
1e9e6365 630 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
ff8e8116 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 640 current->comm, page_to_pfn(page));
ff8e8116
VB
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
4e462112 646 dump_page_owner(page);
3dc14741 647
4f31888c 648 print_modules();
1da177e4 649 dump_stack();
d936cf9b 650out:
8cc3b392 651 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 652 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
654}
655
1da177e4
LT
656/*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
1d798ca3 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 660 *
1d798ca3
KS
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 663 *
1d798ca3
KS
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
1da177e4 666 *
1d798ca3 667 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 668 * This usage means that zero-order pages may not be compound.
1da177e4 669 */
d98c7a09 670
9a982250 671void free_compound_page(struct page *page)
d98c7a09 672{
7ae88534 673 mem_cgroup_uncharge(page);
d85f3385 674 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
675}
676
d00181b9 677void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
678{
679 int i;
680 int nr_pages = 1 << order;
681
f1e61557 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
58a84aa9 687 set_page_count(p, 0);
1c290f64 688 p->mapping = TAIL_MAPPING;
1d798ca3 689 set_compound_head(p, page);
18229df5 690 }
53f9263b 691 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
692}
693
c0a32fc5
SG
694#ifdef CONFIG_DEBUG_PAGEALLOC
695unsigned int _debug_guardpage_minorder;
96a2b03f 696
8e57f8ac
VB
697bool _debug_pagealloc_enabled_early __read_mostly
698 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
699EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 700DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 701EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
702
703DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 704
031bc574
JK
705static int __init early_debug_pagealloc(char *buf)
706{
8e57f8ac 707 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
708}
709early_param("debug_pagealloc", early_debug_pagealloc);
710
8e57f8ac 711void init_debug_pagealloc(void)
e30825f1 712{
031bc574
JK
713 if (!debug_pagealloc_enabled())
714 return;
715
8e57f8ac
VB
716 static_branch_enable(&_debug_pagealloc_enabled);
717
f1c1e9f7
JK
718 if (!debug_guardpage_minorder())
719 return;
720
96a2b03f 721 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
722}
723
c0a32fc5
SG
724static int __init debug_guardpage_minorder_setup(char *buf)
725{
726 unsigned long res;
727
728 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 729 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
730 return 0;
731 }
732 _debug_guardpage_minorder = res;
1170532b 733 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
734 return 0;
735}
f1c1e9f7 736early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 737
acbc15a4 738static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 739 unsigned int order, int migratetype)
c0a32fc5 740{
e30825f1 741 if (!debug_guardpage_enabled())
acbc15a4
JK
742 return false;
743
744 if (order >= debug_guardpage_minorder())
745 return false;
e30825f1 746
3972f6bb 747 __SetPageGuard(page);
2847cf95
JK
748 INIT_LIST_HEAD(&page->lru);
749 set_page_private(page, order);
750 /* Guard pages are not available for any usage */
751 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
752
753 return true;
c0a32fc5
SG
754}
755
2847cf95
JK
756static inline void clear_page_guard(struct zone *zone, struct page *page,
757 unsigned int order, int migratetype)
c0a32fc5 758{
e30825f1
JK
759 if (!debug_guardpage_enabled())
760 return;
761
3972f6bb 762 __ClearPageGuard(page);
e30825f1 763
2847cf95
JK
764 set_page_private(page, 0);
765 if (!is_migrate_isolate(migratetype))
766 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
767}
768#else
acbc15a4
JK
769static inline bool set_page_guard(struct zone *zone, struct page *page,
770 unsigned int order, int migratetype) { return false; }
2847cf95
JK
771static inline void clear_page_guard(struct zone *zone, struct page *page,
772 unsigned int order, int migratetype) {}
c0a32fc5
SG
773#endif
774
7aeb09f9 775static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 776{
4c21e2f2 777 set_page_private(page, order);
676165a8 778 __SetPageBuddy(page);
1da177e4
LT
779}
780
1da177e4
LT
781/*
782 * This function checks whether a page is free && is the buddy
6e292b9b 783 * we can coalesce a page and its buddy if
13ad59df 784 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 785 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
786 * (c) a page and its buddy have the same order &&
787 * (d) a page and its buddy are in the same zone.
676165a8 788 *
6e292b9b
MW
789 * For recording whether a page is in the buddy system, we set PageBuddy.
790 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 791 *
676165a8 792 * For recording page's order, we use page_private(page).
1da177e4 793 */
cb2b95e1 794static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 795 unsigned int order)
1da177e4 796{
c0a32fc5 797 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
798 if (page_zone_id(page) != page_zone_id(buddy))
799 return 0;
800
4c5018ce
WY
801 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
802
c0a32fc5
SG
803 return 1;
804 }
805
cb2b95e1 806 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
807 /*
808 * zone check is done late to avoid uselessly
809 * calculating zone/node ids for pages that could
810 * never merge.
811 */
812 if (page_zone_id(page) != page_zone_id(buddy))
813 return 0;
814
4c5018ce
WY
815 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
816
6aa3001b 817 return 1;
676165a8 818 }
6aa3001b 819 return 0;
1da177e4
LT
820}
821
5e1f0f09
MG
822#ifdef CONFIG_COMPACTION
823static inline struct capture_control *task_capc(struct zone *zone)
824{
825 struct capture_control *capc = current->capture_control;
826
827 return capc &&
828 !(current->flags & PF_KTHREAD) &&
829 !capc->page &&
830 capc->cc->zone == zone &&
831 capc->cc->direct_compaction ? capc : NULL;
832}
833
834static inline bool
835compaction_capture(struct capture_control *capc, struct page *page,
836 int order, int migratetype)
837{
838 if (!capc || order != capc->cc->order)
839 return false;
840
841 /* Do not accidentally pollute CMA or isolated regions*/
842 if (is_migrate_cma(migratetype) ||
843 is_migrate_isolate(migratetype))
844 return false;
845
846 /*
847 * Do not let lower order allocations polluate a movable pageblock.
848 * This might let an unmovable request use a reclaimable pageblock
849 * and vice-versa but no more than normal fallback logic which can
850 * have trouble finding a high-order free page.
851 */
852 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
853 return false;
854
855 capc->page = page;
856 return true;
857}
858
859#else
860static inline struct capture_control *task_capc(struct zone *zone)
861{
862 return NULL;
863}
864
865static inline bool
866compaction_capture(struct capture_control *capc, struct page *page,
867 int order, int migratetype)
868{
869 return false;
870}
871#endif /* CONFIG_COMPACTION */
872
1da177e4
LT
873/*
874 * Freeing function for a buddy system allocator.
875 *
876 * The concept of a buddy system is to maintain direct-mapped table
877 * (containing bit values) for memory blocks of various "orders".
878 * The bottom level table contains the map for the smallest allocatable
879 * units of memory (here, pages), and each level above it describes
880 * pairs of units from the levels below, hence, "buddies".
881 * At a high level, all that happens here is marking the table entry
882 * at the bottom level available, and propagating the changes upward
883 * as necessary, plus some accounting needed to play nicely with other
884 * parts of the VM system.
885 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
886 * free pages of length of (1 << order) and marked with PageBuddy.
887 * Page's order is recorded in page_private(page) field.
1da177e4 888 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
889 * other. That is, if we allocate a small block, and both were
890 * free, the remainder of the region must be split into blocks.
1da177e4 891 * If a block is freed, and its buddy is also free, then this
5f63b720 892 * triggers coalescing into a block of larger size.
1da177e4 893 *
6d49e352 894 * -- nyc
1da177e4
LT
895 */
896
48db57f8 897static inline void __free_one_page(struct page *page,
dc4b0caf 898 unsigned long pfn,
ed0ae21d
MG
899 struct zone *zone, unsigned int order,
900 int migratetype)
1da177e4 901{
76741e77
VB
902 unsigned long combined_pfn;
903 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 904 struct page *buddy;
d9dddbf5 905 unsigned int max_order;
5e1f0f09 906 struct capture_control *capc = task_capc(zone);
d9dddbf5
VB
907
908 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 909
d29bb978 910 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 911 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 912
ed0ae21d 913 VM_BUG_ON(migratetype == -1);
d9dddbf5 914 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 915 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 916
76741e77 917 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 918 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 919
d9dddbf5 920continue_merging:
3c605096 921 while (order < max_order - 1) {
5e1f0f09
MG
922 if (compaction_capture(capc, page, order, migratetype)) {
923 __mod_zone_freepage_state(zone, -(1 << order),
924 migratetype);
925 return;
926 }
76741e77
VB
927 buddy_pfn = __find_buddy_pfn(pfn, order);
928 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
929
930 if (!pfn_valid_within(buddy_pfn))
931 goto done_merging;
cb2b95e1 932 if (!page_is_buddy(page, buddy, order))
d9dddbf5 933 goto done_merging;
c0a32fc5
SG
934 /*
935 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
936 * merge with it and move up one order.
937 */
b03641af 938 if (page_is_guard(buddy))
2847cf95 939 clear_page_guard(zone, buddy, order, migratetype);
b03641af
DW
940 else
941 del_page_from_free_area(buddy, &zone->free_area[order]);
76741e77
VB
942 combined_pfn = buddy_pfn & pfn;
943 page = page + (combined_pfn - pfn);
944 pfn = combined_pfn;
1da177e4
LT
945 order++;
946 }
d9dddbf5
VB
947 if (max_order < MAX_ORDER) {
948 /* If we are here, it means order is >= pageblock_order.
949 * We want to prevent merge between freepages on isolate
950 * pageblock and normal pageblock. Without this, pageblock
951 * isolation could cause incorrect freepage or CMA accounting.
952 *
953 * We don't want to hit this code for the more frequent
954 * low-order merging.
955 */
956 if (unlikely(has_isolate_pageblock(zone))) {
957 int buddy_mt;
958
76741e77
VB
959 buddy_pfn = __find_buddy_pfn(pfn, order);
960 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
961 buddy_mt = get_pageblock_migratetype(buddy);
962
963 if (migratetype != buddy_mt
964 && (is_migrate_isolate(migratetype) ||
965 is_migrate_isolate(buddy_mt)))
966 goto done_merging;
967 }
968 max_order++;
969 goto continue_merging;
970 }
971
972done_merging:
1da177e4 973 set_page_order(page, order);
6dda9d55
CZ
974
975 /*
976 * If this is not the largest possible page, check if the buddy
977 * of the next-highest order is free. If it is, it's possible
978 * that pages are being freed that will coalesce soon. In case,
979 * that is happening, add the free page to the tail of the list
980 * so it's less likely to be used soon and more likely to be merged
981 * as a higher order page
982 */
97500a4a
DW
983 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
984 && !is_shuffle_order(order)) {
6dda9d55 985 struct page *higher_page, *higher_buddy;
76741e77
VB
986 combined_pfn = buddy_pfn & pfn;
987 higher_page = page + (combined_pfn - pfn);
988 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
989 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
990 if (pfn_valid_within(buddy_pfn) &&
991 page_is_buddy(higher_page, higher_buddy, order + 1)) {
b03641af
DW
992 add_to_free_area_tail(page, &zone->free_area[order],
993 migratetype);
994 return;
6dda9d55
CZ
995 }
996 }
997
97500a4a
DW
998 if (is_shuffle_order(order))
999 add_to_free_area_random(page, &zone->free_area[order],
1000 migratetype);
1001 else
1002 add_to_free_area(page, &zone->free_area[order], migratetype);
1003
1da177e4
LT
1004}
1005
7bfec6f4
MG
1006/*
1007 * A bad page could be due to a number of fields. Instead of multiple branches,
1008 * try and check multiple fields with one check. The caller must do a detailed
1009 * check if necessary.
1010 */
1011static inline bool page_expected_state(struct page *page,
1012 unsigned long check_flags)
1013{
1014 if (unlikely(atomic_read(&page->_mapcount) != -1))
1015 return false;
1016
1017 if (unlikely((unsigned long)page->mapping |
1018 page_ref_count(page) |
1019#ifdef CONFIG_MEMCG
1020 (unsigned long)page->mem_cgroup |
1021#endif
1022 (page->flags & check_flags)))
1023 return false;
1024
1025 return true;
1026}
1027
bb552ac6 1028static void free_pages_check_bad(struct page *page)
1da177e4 1029{
7bfec6f4
MG
1030 const char *bad_reason;
1031 unsigned long bad_flags;
1032
7bfec6f4
MG
1033 bad_reason = NULL;
1034 bad_flags = 0;
f0b791a3 1035
53f9263b 1036 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1037 bad_reason = "nonzero mapcount";
1038 if (unlikely(page->mapping != NULL))
1039 bad_reason = "non-NULL mapping";
fe896d18 1040 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1041 bad_reason = "nonzero _refcount";
f0b791a3
DH
1042 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1043 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1044 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1045 }
9edad6ea
JW
1046#ifdef CONFIG_MEMCG
1047 if (unlikely(page->mem_cgroup))
1048 bad_reason = "page still charged to cgroup";
1049#endif
7bfec6f4 1050 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1051}
1052
1053static inline int free_pages_check(struct page *page)
1054{
da838d4f 1055 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1056 return 0;
bb552ac6
MG
1057
1058 /* Something has gone sideways, find it */
1059 free_pages_check_bad(page);
7bfec6f4 1060 return 1;
1da177e4
LT
1061}
1062
4db7548c
MG
1063static int free_tail_pages_check(struct page *head_page, struct page *page)
1064{
1065 int ret = 1;
1066
1067 /*
1068 * We rely page->lru.next never has bit 0 set, unless the page
1069 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1070 */
1071 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1072
1073 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1074 ret = 0;
1075 goto out;
1076 }
1077 switch (page - head_page) {
1078 case 1:
4da1984e 1079 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1080 if (unlikely(compound_mapcount(page))) {
1081 bad_page(page, "nonzero compound_mapcount", 0);
1082 goto out;
1083 }
1084 break;
1085 case 2:
1086 /*
1087 * the second tail page: ->mapping is
fa3015b7 1088 * deferred_list.next -- ignore value.
4db7548c
MG
1089 */
1090 break;
1091 default:
1092 if (page->mapping != TAIL_MAPPING) {
1093 bad_page(page, "corrupted mapping in tail page", 0);
1094 goto out;
1095 }
1096 break;
1097 }
1098 if (unlikely(!PageTail(page))) {
1099 bad_page(page, "PageTail not set", 0);
1100 goto out;
1101 }
1102 if (unlikely(compound_head(page) != head_page)) {
1103 bad_page(page, "compound_head not consistent", 0);
1104 goto out;
1105 }
1106 ret = 0;
1107out:
1108 page->mapping = NULL;
1109 clear_compound_head(page);
1110 return ret;
1111}
1112
6471384a
AP
1113static void kernel_init_free_pages(struct page *page, int numpages)
1114{
1115 int i;
1116
1117 for (i = 0; i < numpages; i++)
1118 clear_highpage(page + i);
1119}
1120
e2769dbd
MG
1121static __always_inline bool free_pages_prepare(struct page *page,
1122 unsigned int order, bool check_free)
4db7548c 1123{
e2769dbd 1124 int bad = 0;
4db7548c 1125
4db7548c
MG
1126 VM_BUG_ON_PAGE(PageTail(page), page);
1127
e2769dbd 1128 trace_mm_page_free(page, order);
e2769dbd
MG
1129
1130 /*
1131 * Check tail pages before head page information is cleared to
1132 * avoid checking PageCompound for order-0 pages.
1133 */
1134 if (unlikely(order)) {
1135 bool compound = PageCompound(page);
1136 int i;
1137
1138 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1139
9a73f61b
KS
1140 if (compound)
1141 ClearPageDoubleMap(page);
e2769dbd
MG
1142 for (i = 1; i < (1 << order); i++) {
1143 if (compound)
1144 bad += free_tail_pages_check(page, page + i);
1145 if (unlikely(free_pages_check(page + i))) {
1146 bad++;
1147 continue;
1148 }
1149 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1150 }
1151 }
bda807d4 1152 if (PageMappingFlags(page))
4db7548c 1153 page->mapping = NULL;
c4159a75 1154 if (memcg_kmem_enabled() && PageKmemcg(page))
60cd4bcd 1155 __memcg_kmem_uncharge(page, order);
e2769dbd
MG
1156 if (check_free)
1157 bad += free_pages_check(page);
1158 if (bad)
1159 return false;
4db7548c 1160
e2769dbd
MG
1161 page_cpupid_reset_last(page);
1162 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1163 reset_page_owner(page, order);
4db7548c
MG
1164
1165 if (!PageHighMem(page)) {
1166 debug_check_no_locks_freed(page_address(page),
e2769dbd 1167 PAGE_SIZE << order);
4db7548c 1168 debug_check_no_obj_freed(page_address(page),
e2769dbd 1169 PAGE_SIZE << order);
4db7548c 1170 }
6471384a
AP
1171 if (want_init_on_free())
1172 kernel_init_free_pages(page, 1 << order);
1173
e2769dbd 1174 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1175 /*
1176 * arch_free_page() can make the page's contents inaccessible. s390
1177 * does this. So nothing which can access the page's contents should
1178 * happen after this.
1179 */
1180 arch_free_page(page, order);
1181
8e57f8ac 1182 if (debug_pagealloc_enabled_static())
d6332692
RE
1183 kernel_map_pages(page, 1 << order, 0);
1184
3c0c12cc 1185 kasan_free_nondeferred_pages(page, order);
4db7548c 1186
4db7548c
MG
1187 return true;
1188}
1189
e2769dbd 1190#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1191/*
1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1194 * moved from pcp lists to free lists.
1195 */
1196static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1197{
1198 return free_pages_prepare(page, 0, true);
1199}
1200
4462b32c 1201static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1202{
8e57f8ac 1203 if (debug_pagealloc_enabled_static())
4462b32c
VB
1204 return free_pages_check(page);
1205 else
1206 return false;
e2769dbd
MG
1207}
1208#else
4462b32c
VB
1209/*
1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1211 * moving from pcp lists to free list in order to reduce overhead. With
1212 * debug_pagealloc enabled, they are checked also immediately when being freed
1213 * to the pcp lists.
1214 */
e2769dbd
MG
1215static bool free_pcp_prepare(struct page *page)
1216{
8e57f8ac 1217 if (debug_pagealloc_enabled_static())
4462b32c
VB
1218 return free_pages_prepare(page, 0, true);
1219 else
1220 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1221}
1222
4db7548c
MG
1223static bool bulkfree_pcp_prepare(struct page *page)
1224{
1225 return free_pages_check(page);
1226}
1227#endif /* CONFIG_DEBUG_VM */
1228
97334162
AL
1229static inline void prefetch_buddy(struct page *page)
1230{
1231 unsigned long pfn = page_to_pfn(page);
1232 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1233 struct page *buddy = page + (buddy_pfn - pfn);
1234
1235 prefetch(buddy);
1236}
1237
1da177e4 1238/*
5f8dcc21 1239 * Frees a number of pages from the PCP lists
1da177e4 1240 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1241 * count is the number of pages to free.
1da177e4
LT
1242 *
1243 * If the zone was previously in an "all pages pinned" state then look to
1244 * see if this freeing clears that state.
1245 *
1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1247 * pinned" detection logic.
1248 */
5f8dcc21
MG
1249static void free_pcppages_bulk(struct zone *zone, int count,
1250 struct per_cpu_pages *pcp)
1da177e4 1251{
5f8dcc21 1252 int migratetype = 0;
a6f9edd6 1253 int batch_free = 0;
97334162 1254 int prefetch_nr = 0;
3777999d 1255 bool isolated_pageblocks;
0a5f4e5b
AL
1256 struct page *page, *tmp;
1257 LIST_HEAD(head);
f2260e6b 1258
e5b31ac2 1259 while (count) {
5f8dcc21
MG
1260 struct list_head *list;
1261
1262 /*
a6f9edd6
MG
1263 * Remove pages from lists in a round-robin fashion. A
1264 * batch_free count is maintained that is incremented when an
1265 * empty list is encountered. This is so more pages are freed
1266 * off fuller lists instead of spinning excessively around empty
1267 * lists
5f8dcc21
MG
1268 */
1269 do {
a6f9edd6 1270 batch_free++;
5f8dcc21
MG
1271 if (++migratetype == MIGRATE_PCPTYPES)
1272 migratetype = 0;
1273 list = &pcp->lists[migratetype];
1274 } while (list_empty(list));
48db57f8 1275
1d16871d
NK
1276 /* This is the only non-empty list. Free them all. */
1277 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1278 batch_free = count;
1d16871d 1279
a6f9edd6 1280 do {
a16601c5 1281 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1282 /* must delete to avoid corrupting pcp list */
a6f9edd6 1283 list_del(&page->lru);
77ba9062 1284 pcp->count--;
aa016d14 1285
4db7548c
MG
1286 if (bulkfree_pcp_prepare(page))
1287 continue;
1288
0a5f4e5b 1289 list_add_tail(&page->lru, &head);
97334162
AL
1290
1291 /*
1292 * We are going to put the page back to the global
1293 * pool, prefetch its buddy to speed up later access
1294 * under zone->lock. It is believed the overhead of
1295 * an additional test and calculating buddy_pfn here
1296 * can be offset by reduced memory latency later. To
1297 * avoid excessive prefetching due to large count, only
1298 * prefetch buddy for the first pcp->batch nr of pages.
1299 */
1300 if (prefetch_nr++ < pcp->batch)
1301 prefetch_buddy(page);
e5b31ac2 1302 } while (--count && --batch_free && !list_empty(list));
1da177e4 1303 }
0a5f4e5b
AL
1304
1305 spin_lock(&zone->lock);
1306 isolated_pageblocks = has_isolate_pageblock(zone);
1307
1308 /*
1309 * Use safe version since after __free_one_page(),
1310 * page->lru.next will not point to original list.
1311 */
1312 list_for_each_entry_safe(page, tmp, &head, lru) {
1313 int mt = get_pcppage_migratetype(page);
1314 /* MIGRATE_ISOLATE page should not go to pcplists */
1315 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1316 /* Pageblock could have been isolated meanwhile */
1317 if (unlikely(isolated_pageblocks))
1318 mt = get_pageblock_migratetype(page);
1319
1320 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1321 trace_mm_page_pcpu_drain(page, 0, mt);
1322 }
d34b0733 1323 spin_unlock(&zone->lock);
1da177e4
LT
1324}
1325
dc4b0caf
MG
1326static void free_one_page(struct zone *zone,
1327 struct page *page, unsigned long pfn,
7aeb09f9 1328 unsigned int order,
ed0ae21d 1329 int migratetype)
1da177e4 1330{
d34b0733 1331 spin_lock(&zone->lock);
ad53f92e
JK
1332 if (unlikely(has_isolate_pageblock(zone) ||
1333 is_migrate_isolate(migratetype))) {
1334 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1335 }
dc4b0caf 1336 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1337 spin_unlock(&zone->lock);
48db57f8
NP
1338}
1339
1e8ce83c 1340static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1341 unsigned long zone, int nid)
1e8ce83c 1342{
d0dc12e8 1343 mm_zero_struct_page(page);
1e8ce83c 1344 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1345 init_page_count(page);
1346 page_mapcount_reset(page);
1347 page_cpupid_reset_last(page);
2813b9c0 1348 page_kasan_tag_reset(page);
1e8ce83c 1349
1e8ce83c
RH
1350 INIT_LIST_HEAD(&page->lru);
1351#ifdef WANT_PAGE_VIRTUAL
1352 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1353 if (!is_highmem_idx(zone))
1354 set_page_address(page, __va(pfn << PAGE_SHIFT));
1355#endif
1356}
1357
7e18adb4 1358#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1359static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1360{
1361 pg_data_t *pgdat;
1362 int nid, zid;
1363
1364 if (!early_page_uninitialised(pfn))
1365 return;
1366
1367 nid = early_pfn_to_nid(pfn);
1368 pgdat = NODE_DATA(nid);
1369
1370 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1371 struct zone *zone = &pgdat->node_zones[zid];
1372
1373 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1374 break;
1375 }
d0dc12e8 1376 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1377}
1378#else
1379static inline void init_reserved_page(unsigned long pfn)
1380{
1381}
1382#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1383
92923ca3
NZ
1384/*
1385 * Initialised pages do not have PageReserved set. This function is
1386 * called for each range allocated by the bootmem allocator and
1387 * marks the pages PageReserved. The remaining valid pages are later
1388 * sent to the buddy page allocator.
1389 */
4b50bcc7 1390void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1391{
1392 unsigned long start_pfn = PFN_DOWN(start);
1393 unsigned long end_pfn = PFN_UP(end);
1394
7e18adb4
MG
1395 for (; start_pfn < end_pfn; start_pfn++) {
1396 if (pfn_valid(start_pfn)) {
1397 struct page *page = pfn_to_page(start_pfn);
1398
1399 init_reserved_page(start_pfn);
1d798ca3
KS
1400
1401 /* Avoid false-positive PageTail() */
1402 INIT_LIST_HEAD(&page->lru);
1403
d483da5b
AD
1404 /*
1405 * no need for atomic set_bit because the struct
1406 * page is not visible yet so nobody should
1407 * access it yet.
1408 */
1409 __SetPageReserved(page);
7e18adb4
MG
1410 }
1411 }
92923ca3
NZ
1412}
1413
ec95f53a
KM
1414static void __free_pages_ok(struct page *page, unsigned int order)
1415{
d34b0733 1416 unsigned long flags;
95e34412 1417 int migratetype;
dc4b0caf 1418 unsigned long pfn = page_to_pfn(page);
ec95f53a 1419
e2769dbd 1420 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1421 return;
1422
cfc47a28 1423 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1424 local_irq_save(flags);
1425 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1426 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1427 local_irq_restore(flags);
1da177e4
LT
1428}
1429
a9cd410a 1430void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1431{
c3993076 1432 unsigned int nr_pages = 1 << order;
e2d0bd2b 1433 struct page *p = page;
c3993076 1434 unsigned int loop;
a226f6c8 1435
e2d0bd2b
YL
1436 prefetchw(p);
1437 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1438 prefetchw(p + 1);
c3993076
JW
1439 __ClearPageReserved(p);
1440 set_page_count(p, 0);
a226f6c8 1441 }
e2d0bd2b
YL
1442 __ClearPageReserved(p);
1443 set_page_count(p, 0);
c3993076 1444
9705bea5 1445 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1446 set_page_refcounted(page);
1447 __free_pages(page, order);
a226f6c8
DH
1448}
1449
75a592a4
MG
1450#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1451 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1452
75a592a4
MG
1453static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1454
1455int __meminit early_pfn_to_nid(unsigned long pfn)
1456{
7ace9917 1457 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1458 int nid;
1459
7ace9917 1460 spin_lock(&early_pfn_lock);
75a592a4 1461 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1462 if (nid < 0)
e4568d38 1463 nid = first_online_node;
7ace9917
MG
1464 spin_unlock(&early_pfn_lock);
1465
1466 return nid;
75a592a4
MG
1467}
1468#endif
1469
1470#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1471/* Only safe to use early in boot when initialisation is single-threaded */
1472static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1473{
1474 int nid;
1475
56ec43d8 1476 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1477 if (nid >= 0 && nid != node)
1478 return false;
1479 return true;
1480}
1481
75a592a4 1482#else
75a592a4
MG
1483static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1484{
1485 return true;
1486}
75a592a4
MG
1487#endif
1488
1489
7c2ee349 1490void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1491 unsigned int order)
1492{
1493 if (early_page_uninitialised(pfn))
1494 return;
a9cd410a 1495 __free_pages_core(page, order);
3a80a7fa
MG
1496}
1497
7cf91a98
JK
1498/*
1499 * Check that the whole (or subset of) a pageblock given by the interval of
1500 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1501 * with the migration of free compaction scanner. The scanners then need to
1502 * use only pfn_valid_within() check for arches that allow holes within
1503 * pageblocks.
1504 *
1505 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1506 *
1507 * It's possible on some configurations to have a setup like node0 node1 node0
1508 * i.e. it's possible that all pages within a zones range of pages do not
1509 * belong to a single zone. We assume that a border between node0 and node1
1510 * can occur within a single pageblock, but not a node0 node1 node0
1511 * interleaving within a single pageblock. It is therefore sufficient to check
1512 * the first and last page of a pageblock and avoid checking each individual
1513 * page in a pageblock.
1514 */
1515struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1516 unsigned long end_pfn, struct zone *zone)
1517{
1518 struct page *start_page;
1519 struct page *end_page;
1520
1521 /* end_pfn is one past the range we are checking */
1522 end_pfn--;
1523
1524 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1525 return NULL;
1526
2d070eab
MH
1527 start_page = pfn_to_online_page(start_pfn);
1528 if (!start_page)
1529 return NULL;
7cf91a98
JK
1530
1531 if (page_zone(start_page) != zone)
1532 return NULL;
1533
1534 end_page = pfn_to_page(end_pfn);
1535
1536 /* This gives a shorter code than deriving page_zone(end_page) */
1537 if (page_zone_id(start_page) != page_zone_id(end_page))
1538 return NULL;
1539
1540 return start_page;
1541}
1542
1543void set_zone_contiguous(struct zone *zone)
1544{
1545 unsigned long block_start_pfn = zone->zone_start_pfn;
1546 unsigned long block_end_pfn;
1547
1548 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1549 for (; block_start_pfn < zone_end_pfn(zone);
1550 block_start_pfn = block_end_pfn,
1551 block_end_pfn += pageblock_nr_pages) {
1552
1553 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1554
1555 if (!__pageblock_pfn_to_page(block_start_pfn,
1556 block_end_pfn, zone))
1557 return;
1558 }
1559
1560 /* We confirm that there is no hole */
1561 zone->contiguous = true;
1562}
1563
1564void clear_zone_contiguous(struct zone *zone)
1565{
1566 zone->contiguous = false;
1567}
1568
7e18adb4 1569#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1570static void __init deferred_free_range(unsigned long pfn,
1571 unsigned long nr_pages)
a4de83dd 1572{
2f47a91f
PT
1573 struct page *page;
1574 unsigned long i;
a4de83dd 1575
2f47a91f 1576 if (!nr_pages)
a4de83dd
MG
1577 return;
1578
2f47a91f
PT
1579 page = pfn_to_page(pfn);
1580
a4de83dd 1581 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1582 if (nr_pages == pageblock_nr_pages &&
1583 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1584 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1585 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1586 return;
1587 }
1588
e780149b
XQ
1589 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1590 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1592 __free_pages_core(page, 0);
e780149b 1593 }
a4de83dd
MG
1594}
1595
d3cd131d
NS
1596/* Completion tracking for deferred_init_memmap() threads */
1597static atomic_t pgdat_init_n_undone __initdata;
1598static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1599
1600static inline void __init pgdat_init_report_one_done(void)
1601{
1602 if (atomic_dec_and_test(&pgdat_init_n_undone))
1603 complete(&pgdat_init_all_done_comp);
1604}
0e1cc95b 1605
2f47a91f 1606/*
80b1f41c
PT
1607 * Returns true if page needs to be initialized or freed to buddy allocator.
1608 *
1609 * First we check if pfn is valid on architectures where it is possible to have
1610 * holes within pageblock_nr_pages. On systems where it is not possible, this
1611 * function is optimized out.
1612 *
1613 * Then, we check if a current large page is valid by only checking the validity
1614 * of the head pfn.
2f47a91f 1615 */
56ec43d8 1616static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1617{
80b1f41c
PT
1618 if (!pfn_valid_within(pfn))
1619 return false;
1620 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1621 return false;
80b1f41c
PT
1622 return true;
1623}
2f47a91f 1624
80b1f41c
PT
1625/*
1626 * Free pages to buddy allocator. Try to free aligned pages in
1627 * pageblock_nr_pages sizes.
1628 */
56ec43d8 1629static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1630 unsigned long end_pfn)
1631{
80b1f41c
PT
1632 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1633 unsigned long nr_free = 0;
2f47a91f 1634
80b1f41c 1635 for (; pfn < end_pfn; pfn++) {
56ec43d8 1636 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1637 deferred_free_range(pfn - nr_free, nr_free);
1638 nr_free = 0;
1639 } else if (!(pfn & nr_pgmask)) {
1640 deferred_free_range(pfn - nr_free, nr_free);
1641 nr_free = 1;
3a2d7fa8 1642 touch_nmi_watchdog();
80b1f41c
PT
1643 } else {
1644 nr_free++;
1645 }
1646 }
1647 /* Free the last block of pages to allocator */
1648 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1649}
1650
80b1f41c
PT
1651/*
1652 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1653 * by performing it only once every pageblock_nr_pages.
1654 * Return number of pages initialized.
1655 */
56ec43d8 1656static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1657 unsigned long pfn,
1658 unsigned long end_pfn)
2f47a91f 1659{
2f47a91f 1660 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1661 int nid = zone_to_nid(zone);
2f47a91f 1662 unsigned long nr_pages = 0;
56ec43d8 1663 int zid = zone_idx(zone);
2f47a91f 1664 struct page *page = NULL;
2f47a91f 1665
80b1f41c 1666 for (; pfn < end_pfn; pfn++) {
56ec43d8 1667 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1668 page = NULL;
2f47a91f 1669 continue;
80b1f41c 1670 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1671 page = pfn_to_page(pfn);
3a2d7fa8 1672 touch_nmi_watchdog();
80b1f41c
PT
1673 } else {
1674 page++;
2f47a91f 1675 }
d0dc12e8 1676 __init_single_page(page, pfn, zid, nid);
80b1f41c 1677 nr_pages++;
2f47a91f 1678 }
80b1f41c 1679 return (nr_pages);
2f47a91f
PT
1680}
1681
0e56acae
AD
1682/*
1683 * This function is meant to pre-load the iterator for the zone init.
1684 * Specifically it walks through the ranges until we are caught up to the
1685 * first_init_pfn value and exits there. If we never encounter the value we
1686 * return false indicating there are no valid ranges left.
1687 */
1688static bool __init
1689deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1690 unsigned long *spfn, unsigned long *epfn,
1691 unsigned long first_init_pfn)
1692{
1693 u64 j;
1694
1695 /*
1696 * Start out by walking through the ranges in this zone that have
1697 * already been initialized. We don't need to do anything with them
1698 * so we just need to flush them out of the system.
1699 */
1700 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1701 if (*epfn <= first_init_pfn)
1702 continue;
1703 if (*spfn < first_init_pfn)
1704 *spfn = first_init_pfn;
1705 *i = j;
1706 return true;
1707 }
1708
1709 return false;
1710}
1711
1712/*
1713 * Initialize and free pages. We do it in two loops: first we initialize
1714 * struct page, then free to buddy allocator, because while we are
1715 * freeing pages we can access pages that are ahead (computing buddy
1716 * page in __free_one_page()).
1717 *
1718 * In order to try and keep some memory in the cache we have the loop
1719 * broken along max page order boundaries. This way we will not cause
1720 * any issues with the buddy page computation.
1721 */
1722static unsigned long __init
1723deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1724 unsigned long *end_pfn)
1725{
1726 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1727 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1728 unsigned long nr_pages = 0;
1729 u64 j = *i;
1730
1731 /* First we loop through and initialize the page values */
1732 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1733 unsigned long t;
1734
1735 if (mo_pfn <= *start_pfn)
1736 break;
1737
1738 t = min(mo_pfn, *end_pfn);
1739 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1740
1741 if (mo_pfn < *end_pfn) {
1742 *start_pfn = mo_pfn;
1743 break;
1744 }
1745 }
1746
1747 /* Reset values and now loop through freeing pages as needed */
1748 swap(j, *i);
1749
1750 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1751 unsigned long t;
1752
1753 if (mo_pfn <= spfn)
1754 break;
1755
1756 t = min(mo_pfn, epfn);
1757 deferred_free_pages(spfn, t);
1758
1759 if (mo_pfn <= epfn)
1760 break;
1761 }
1762
1763 return nr_pages;
1764}
1765
7e18adb4 1766/* Initialise remaining memory on a node */
0e1cc95b 1767static int __init deferred_init_memmap(void *data)
7e18adb4 1768{
0e1cc95b 1769 pg_data_t *pgdat = data;
0e56acae
AD
1770 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1771 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1772 unsigned long first_init_pfn, flags;
7e18adb4 1773 unsigned long start = jiffies;
7e18adb4 1774 struct zone *zone;
0e56acae 1775 int zid;
2f47a91f 1776 u64 i;
7e18adb4 1777
3a2d7fa8
PT
1778 /* Bind memory initialisation thread to a local node if possible */
1779 if (!cpumask_empty(cpumask))
1780 set_cpus_allowed_ptr(current, cpumask);
1781
1782 pgdat_resize_lock(pgdat, &flags);
1783 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1784 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1785 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1786 pgdat_init_report_one_done();
0e1cc95b
MG
1787 return 0;
1788 }
1789
7e18adb4
MG
1790 /* Sanity check boundaries */
1791 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1792 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1793 pgdat->first_deferred_pfn = ULONG_MAX;
1794
1795 /* Only the highest zone is deferred so find it */
1796 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1797 zone = pgdat->node_zones + zid;
1798 if (first_init_pfn < zone_end_pfn(zone))
1799 break;
1800 }
0e56acae
AD
1801
1802 /* If the zone is empty somebody else may have cleared out the zone */
1803 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1804 first_init_pfn))
1805 goto zone_empty;
7e18adb4 1806
80b1f41c 1807 /*
0e56acae
AD
1808 * Initialize and free pages in MAX_ORDER sized increments so
1809 * that we can avoid introducing any issues with the buddy
1810 * allocator.
80b1f41c 1811 */
0e56acae
AD
1812 while (spfn < epfn)
1813 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1814zone_empty:
3a2d7fa8 1815 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1816
1817 /* Sanity check that the next zone really is unpopulated */
1818 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1819
837566e7
AD
1820 pr_info("node %d initialised, %lu pages in %ums\n",
1821 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1822
1823 pgdat_init_report_one_done();
0e1cc95b
MG
1824 return 0;
1825}
c9e97a19 1826
c9e97a19
PT
1827/*
1828 * If this zone has deferred pages, try to grow it by initializing enough
1829 * deferred pages to satisfy the allocation specified by order, rounded up to
1830 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1831 * of SECTION_SIZE bytes by initializing struct pages in increments of
1832 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1833 *
1834 * Return true when zone was grown, otherwise return false. We return true even
1835 * when we grow less than requested, to let the caller decide if there are
1836 * enough pages to satisfy the allocation.
1837 *
1838 * Note: We use noinline because this function is needed only during boot, and
1839 * it is called from a __ref function _deferred_grow_zone. This way we are
1840 * making sure that it is not inlined into permanent text section.
1841 */
1842static noinline bool __init
1843deferred_grow_zone(struct zone *zone, unsigned int order)
1844{
c9e97a19 1845 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1846 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1847 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1848 unsigned long spfn, epfn, flags;
1849 unsigned long nr_pages = 0;
c9e97a19
PT
1850 u64 i;
1851
1852 /* Only the last zone may have deferred pages */
1853 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1854 return false;
1855
1856 pgdat_resize_lock(pgdat, &flags);
1857
1858 /*
1859 * If deferred pages have been initialized while we were waiting for
1860 * the lock, return true, as the zone was grown. The caller will retry
1861 * this zone. We won't return to this function since the caller also
1862 * has this static branch.
1863 */
1864 if (!static_branch_unlikely(&deferred_pages)) {
1865 pgdat_resize_unlock(pgdat, &flags);
1866 return true;
1867 }
1868
1869 /*
1870 * If someone grew this zone while we were waiting for spinlock, return
1871 * true, as there might be enough pages already.
1872 */
1873 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1874 pgdat_resize_unlock(pgdat, &flags);
1875 return true;
1876 }
1877
0e56acae
AD
1878 /* If the zone is empty somebody else may have cleared out the zone */
1879 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1880 first_deferred_pfn)) {
1881 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1882 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1883 /* Retry only once. */
1884 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1885 }
1886
0e56acae
AD
1887 /*
1888 * Initialize and free pages in MAX_ORDER sized increments so
1889 * that we can avoid introducing any issues with the buddy
1890 * allocator.
1891 */
1892 while (spfn < epfn) {
1893 /* update our first deferred PFN for this section */
1894 first_deferred_pfn = spfn;
1895
1896 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1897
0e56acae
AD
1898 /* We should only stop along section boundaries */
1899 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1900 continue;
c9e97a19 1901
0e56acae 1902 /* If our quota has been met we can stop here */
c9e97a19
PT
1903 if (nr_pages >= nr_pages_needed)
1904 break;
1905 }
1906
0e56acae 1907 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1908 pgdat_resize_unlock(pgdat, &flags);
1909
1910 return nr_pages > 0;
1911}
1912
1913/*
1914 * deferred_grow_zone() is __init, but it is called from
1915 * get_page_from_freelist() during early boot until deferred_pages permanently
1916 * disables this call. This is why we have refdata wrapper to avoid warning,
1917 * and to ensure that the function body gets unloaded.
1918 */
1919static bool __ref
1920_deferred_grow_zone(struct zone *zone, unsigned int order)
1921{
1922 return deferred_grow_zone(zone, order);
1923}
1924
7cf91a98 1925#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1926
1927void __init page_alloc_init_late(void)
1928{
7cf91a98 1929 struct zone *zone;
e900a918 1930 int nid;
7cf91a98
JK
1931
1932#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1933
d3cd131d
NS
1934 /* There will be num_node_state(N_MEMORY) threads */
1935 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1936 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1937 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1938 }
1939
1940 /* Block until all are initialised */
d3cd131d 1941 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1942
3e8fc007
MG
1943 /*
1944 * The number of managed pages has changed due to the initialisation
1945 * so the pcpu batch and high limits needs to be updated or the limits
1946 * will be artificially small.
1947 */
1948 for_each_populated_zone(zone)
1949 zone_pcp_update(zone);
1950
c9e97a19
PT
1951 /*
1952 * We initialized the rest of the deferred pages. Permanently disable
1953 * on-demand struct page initialization.
1954 */
1955 static_branch_disable(&deferred_pages);
1956
4248b0da
MG
1957 /* Reinit limits that are based on free pages after the kernel is up */
1958 files_maxfiles_init();
7cf91a98 1959#endif
350e88ba 1960
3010f876
PT
1961 /* Discard memblock private memory */
1962 memblock_discard();
7cf91a98 1963
e900a918
DW
1964 for_each_node_state(nid, N_MEMORY)
1965 shuffle_free_memory(NODE_DATA(nid));
1966
7cf91a98
JK
1967 for_each_populated_zone(zone)
1968 set_zone_contiguous(zone);
7e18adb4 1969}
7e18adb4 1970
47118af0 1971#ifdef CONFIG_CMA
9cf510a5 1972/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1973void __init init_cma_reserved_pageblock(struct page *page)
1974{
1975 unsigned i = pageblock_nr_pages;
1976 struct page *p = page;
1977
1978 do {
1979 __ClearPageReserved(p);
1980 set_page_count(p, 0);
d883c6cf 1981 } while (++p, --i);
47118af0 1982
47118af0 1983 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1984
1985 if (pageblock_order >= MAX_ORDER) {
1986 i = pageblock_nr_pages;
1987 p = page;
1988 do {
1989 set_page_refcounted(p);
1990 __free_pages(p, MAX_ORDER - 1);
1991 p += MAX_ORDER_NR_PAGES;
1992 } while (i -= MAX_ORDER_NR_PAGES);
1993 } else {
1994 set_page_refcounted(page);
1995 __free_pages(page, pageblock_order);
1996 }
1997
3dcc0571 1998 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1999}
2000#endif
1da177e4
LT
2001
2002/*
2003 * The order of subdivision here is critical for the IO subsystem.
2004 * Please do not alter this order without good reasons and regression
2005 * testing. Specifically, as large blocks of memory are subdivided,
2006 * the order in which smaller blocks are delivered depends on the order
2007 * they're subdivided in this function. This is the primary factor
2008 * influencing the order in which pages are delivered to the IO
2009 * subsystem according to empirical testing, and this is also justified
2010 * by considering the behavior of a buddy system containing a single
2011 * large block of memory acted on by a series of small allocations.
2012 * This behavior is a critical factor in sglist merging's success.
2013 *
6d49e352 2014 * -- nyc
1da177e4 2015 */
085cc7d5 2016static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
2017 int low, int high, struct free_area *area,
2018 int migratetype)
1da177e4
LT
2019{
2020 unsigned long size = 1 << high;
2021
2022 while (high > low) {
2023 area--;
2024 high--;
2025 size >>= 1;
309381fe 2026 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2027
acbc15a4
JK
2028 /*
2029 * Mark as guard pages (or page), that will allow to
2030 * merge back to allocator when buddy will be freed.
2031 * Corresponding page table entries will not be touched,
2032 * pages will stay not present in virtual address space
2033 */
2034 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2035 continue;
acbc15a4 2036
b03641af 2037 add_to_free_area(&page[size], area, migratetype);
1da177e4
LT
2038 set_page_order(&page[size], high);
2039 }
1da177e4
LT
2040}
2041
4e611801 2042static void check_new_page_bad(struct page *page)
1da177e4 2043{
4e611801
VB
2044 const char *bad_reason = NULL;
2045 unsigned long bad_flags = 0;
7bfec6f4 2046
53f9263b 2047 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
2048 bad_reason = "nonzero mapcount";
2049 if (unlikely(page->mapping != NULL))
2050 bad_reason = "non-NULL mapping";
fe896d18 2051 if (unlikely(page_ref_count(page) != 0))
136ac591 2052 bad_reason = "nonzero _refcount";
f4c18e6f
NH
2053 if (unlikely(page->flags & __PG_HWPOISON)) {
2054 bad_reason = "HWPoisoned (hardware-corrupted)";
2055 bad_flags = __PG_HWPOISON;
e570f56c
NH
2056 /* Don't complain about hwpoisoned pages */
2057 page_mapcount_reset(page); /* remove PageBuddy */
2058 return;
f4c18e6f 2059 }
f0b791a3
DH
2060 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2061 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2062 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2063 }
9edad6ea
JW
2064#ifdef CONFIG_MEMCG
2065 if (unlikely(page->mem_cgroup))
2066 bad_reason = "page still charged to cgroup";
2067#endif
4e611801
VB
2068 bad_page(page, bad_reason, bad_flags);
2069}
2070
2071/*
2072 * This page is about to be returned from the page allocator
2073 */
2074static inline int check_new_page(struct page *page)
2075{
2076 if (likely(page_expected_state(page,
2077 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2078 return 0;
2079
2080 check_new_page_bad(page);
2081 return 1;
2a7684a2
WF
2082}
2083
bd33ef36 2084static inline bool free_pages_prezeroed(void)
1414c7f4 2085{
6471384a
AP
2086 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2087 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2088}
2089
479f854a 2090#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2091/*
2092 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2093 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2094 * also checked when pcp lists are refilled from the free lists.
2095 */
2096static inline bool check_pcp_refill(struct page *page)
479f854a 2097{
8e57f8ac 2098 if (debug_pagealloc_enabled_static())
4462b32c
VB
2099 return check_new_page(page);
2100 else
2101 return false;
479f854a
MG
2102}
2103
4462b32c 2104static inline bool check_new_pcp(struct page *page)
479f854a
MG
2105{
2106 return check_new_page(page);
2107}
2108#else
4462b32c
VB
2109/*
2110 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2111 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2112 * enabled, they are also checked when being allocated from the pcp lists.
2113 */
2114static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2115{
2116 return check_new_page(page);
2117}
4462b32c 2118static inline bool check_new_pcp(struct page *page)
479f854a 2119{
8e57f8ac 2120 if (debug_pagealloc_enabled_static())
4462b32c
VB
2121 return check_new_page(page);
2122 else
2123 return false;
479f854a
MG
2124}
2125#endif /* CONFIG_DEBUG_VM */
2126
2127static bool check_new_pages(struct page *page, unsigned int order)
2128{
2129 int i;
2130 for (i = 0; i < (1 << order); i++) {
2131 struct page *p = page + i;
2132
2133 if (unlikely(check_new_page(p)))
2134 return true;
2135 }
2136
2137 return false;
2138}
2139
46f24fd8
JK
2140inline void post_alloc_hook(struct page *page, unsigned int order,
2141 gfp_t gfp_flags)
2142{
2143 set_page_private(page, 0);
2144 set_page_refcounted(page);
2145
2146 arch_alloc_page(page, order);
8e57f8ac 2147 if (debug_pagealloc_enabled_static())
d6332692 2148 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2149 kasan_alloc_pages(page, order);
4117992d 2150 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2151 set_page_owner(page, order, gfp_flags);
2152}
2153
479f854a 2154static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2155 unsigned int alloc_flags)
2a7684a2 2156{
46f24fd8 2157 post_alloc_hook(page, order, gfp_flags);
17cf4406 2158
6471384a
AP
2159 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2160 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2161
2162 if (order && (gfp_flags & __GFP_COMP))
2163 prep_compound_page(page, order);
2164
75379191 2165 /*
2f064f34 2166 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2167 * allocate the page. The expectation is that the caller is taking
2168 * steps that will free more memory. The caller should avoid the page
2169 * being used for !PFMEMALLOC purposes.
2170 */
2f064f34
MH
2171 if (alloc_flags & ALLOC_NO_WATERMARKS)
2172 set_page_pfmemalloc(page);
2173 else
2174 clear_page_pfmemalloc(page);
1da177e4
LT
2175}
2176
56fd56b8
MG
2177/*
2178 * Go through the free lists for the given migratetype and remove
2179 * the smallest available page from the freelists
2180 */
85ccc8fa 2181static __always_inline
728ec980 2182struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2183 int migratetype)
2184{
2185 unsigned int current_order;
b8af2941 2186 struct free_area *area;
56fd56b8
MG
2187 struct page *page;
2188
2189 /* Find a page of the appropriate size in the preferred list */
2190 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2191 area = &(zone->free_area[current_order]);
b03641af 2192 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2193 if (!page)
2194 continue;
b03641af 2195 del_page_from_free_area(page, area);
56fd56b8 2196 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2197 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2198 return page;
2199 }
2200
2201 return NULL;
2202}
2203
2204
b2a0ac88
MG
2205/*
2206 * This array describes the order lists are fallen back to when
2207 * the free lists for the desirable migrate type are depleted
2208 */
47118af0 2209static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2210 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2211 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2212 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2213#ifdef CONFIG_CMA
974a786e 2214 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2215#endif
194159fb 2216#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2217 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2218#endif
b2a0ac88
MG
2219};
2220
dc67647b 2221#ifdef CONFIG_CMA
85ccc8fa 2222static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2223 unsigned int order)
2224{
2225 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2226}
2227#else
2228static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2229 unsigned int order) { return NULL; }
2230#endif
2231
c361be55
MG
2232/*
2233 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2234 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2235 * boundary. If alignment is required, use move_freepages_block()
2236 */
02aa0cdd 2237static int move_freepages(struct zone *zone,
b69a7288 2238 struct page *start_page, struct page *end_page,
02aa0cdd 2239 int migratetype, int *num_movable)
c361be55
MG
2240{
2241 struct page *page;
d00181b9 2242 unsigned int order;
d100313f 2243 int pages_moved = 0;
c361be55 2244
c361be55
MG
2245 for (page = start_page; page <= end_page;) {
2246 if (!pfn_valid_within(page_to_pfn(page))) {
2247 page++;
2248 continue;
2249 }
2250
2251 if (!PageBuddy(page)) {
02aa0cdd
VB
2252 /*
2253 * We assume that pages that could be isolated for
2254 * migration are movable. But we don't actually try
2255 * isolating, as that would be expensive.
2256 */
2257 if (num_movable &&
2258 (PageLRU(page) || __PageMovable(page)))
2259 (*num_movable)++;
2260
c361be55
MG
2261 page++;
2262 continue;
2263 }
2264
cd961038
DR
2265 /* Make sure we are not inadvertently changing nodes */
2266 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2267 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2268
c361be55 2269 order = page_order(page);
b03641af 2270 move_to_free_area(page, &zone->free_area[order], migratetype);
c361be55 2271 page += 1 << order;
d100313f 2272 pages_moved += 1 << order;
c361be55
MG
2273 }
2274
d100313f 2275 return pages_moved;
c361be55
MG
2276}
2277
ee6f509c 2278int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2279 int migratetype, int *num_movable)
c361be55
MG
2280{
2281 unsigned long start_pfn, end_pfn;
2282 struct page *start_page, *end_page;
2283
4a222127
DR
2284 if (num_movable)
2285 *num_movable = 0;
2286
c361be55 2287 start_pfn = page_to_pfn(page);
d9c23400 2288 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2289 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2290 end_page = start_page + pageblock_nr_pages - 1;
2291 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2292
2293 /* Do not cross zone boundaries */
108bcc96 2294 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2295 start_page = page;
108bcc96 2296 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2297 return 0;
2298
02aa0cdd
VB
2299 return move_freepages(zone, start_page, end_page, migratetype,
2300 num_movable);
c361be55
MG
2301}
2302
2f66a68f
MG
2303static void change_pageblock_range(struct page *pageblock_page,
2304 int start_order, int migratetype)
2305{
2306 int nr_pageblocks = 1 << (start_order - pageblock_order);
2307
2308 while (nr_pageblocks--) {
2309 set_pageblock_migratetype(pageblock_page, migratetype);
2310 pageblock_page += pageblock_nr_pages;
2311 }
2312}
2313
fef903ef 2314/*
9c0415eb
VB
2315 * When we are falling back to another migratetype during allocation, try to
2316 * steal extra free pages from the same pageblocks to satisfy further
2317 * allocations, instead of polluting multiple pageblocks.
2318 *
2319 * If we are stealing a relatively large buddy page, it is likely there will
2320 * be more free pages in the pageblock, so try to steal them all. For
2321 * reclaimable and unmovable allocations, we steal regardless of page size,
2322 * as fragmentation caused by those allocations polluting movable pageblocks
2323 * is worse than movable allocations stealing from unmovable and reclaimable
2324 * pageblocks.
fef903ef 2325 */
4eb7dce6
JK
2326static bool can_steal_fallback(unsigned int order, int start_mt)
2327{
2328 /*
2329 * Leaving this order check is intended, although there is
2330 * relaxed order check in next check. The reason is that
2331 * we can actually steal whole pageblock if this condition met,
2332 * but, below check doesn't guarantee it and that is just heuristic
2333 * so could be changed anytime.
2334 */
2335 if (order >= pageblock_order)
2336 return true;
2337
2338 if (order >= pageblock_order / 2 ||
2339 start_mt == MIGRATE_RECLAIMABLE ||
2340 start_mt == MIGRATE_UNMOVABLE ||
2341 page_group_by_mobility_disabled)
2342 return true;
2343
2344 return false;
2345}
2346
1c30844d
MG
2347static inline void boost_watermark(struct zone *zone)
2348{
2349 unsigned long max_boost;
2350
2351 if (!watermark_boost_factor)
2352 return;
2353
2354 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2355 watermark_boost_factor, 10000);
94b3334c
MG
2356
2357 /*
2358 * high watermark may be uninitialised if fragmentation occurs
2359 * very early in boot so do not boost. We do not fall
2360 * through and boost by pageblock_nr_pages as failing
2361 * allocations that early means that reclaim is not going
2362 * to help and it may even be impossible to reclaim the
2363 * boosted watermark resulting in a hang.
2364 */
2365 if (!max_boost)
2366 return;
2367
1c30844d
MG
2368 max_boost = max(pageblock_nr_pages, max_boost);
2369
2370 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2371 max_boost);
2372}
2373
4eb7dce6
JK
2374/*
2375 * This function implements actual steal behaviour. If order is large enough,
2376 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2377 * pageblock to our migratetype and determine how many already-allocated pages
2378 * are there in the pageblock with a compatible migratetype. If at least half
2379 * of pages are free or compatible, we can change migratetype of the pageblock
2380 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2381 */
2382static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2383 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2384{
d00181b9 2385 unsigned int current_order = page_order(page);
3bc48f96 2386 struct free_area *area;
02aa0cdd
VB
2387 int free_pages, movable_pages, alike_pages;
2388 int old_block_type;
2389
2390 old_block_type = get_pageblock_migratetype(page);
fef903ef 2391
3bc48f96
VB
2392 /*
2393 * This can happen due to races and we want to prevent broken
2394 * highatomic accounting.
2395 */
02aa0cdd 2396 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2397 goto single_page;
2398
fef903ef
SB
2399 /* Take ownership for orders >= pageblock_order */
2400 if (current_order >= pageblock_order) {
2401 change_pageblock_range(page, current_order, start_type);
3bc48f96 2402 goto single_page;
fef903ef
SB
2403 }
2404
1c30844d
MG
2405 /*
2406 * Boost watermarks to increase reclaim pressure to reduce the
2407 * likelihood of future fallbacks. Wake kswapd now as the node
2408 * may be balanced overall and kswapd will not wake naturally.
2409 */
2410 boost_watermark(zone);
2411 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2412 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2413
3bc48f96
VB
2414 /* We are not allowed to try stealing from the whole block */
2415 if (!whole_block)
2416 goto single_page;
2417
02aa0cdd
VB
2418 free_pages = move_freepages_block(zone, page, start_type,
2419 &movable_pages);
2420 /*
2421 * Determine how many pages are compatible with our allocation.
2422 * For movable allocation, it's the number of movable pages which
2423 * we just obtained. For other types it's a bit more tricky.
2424 */
2425 if (start_type == MIGRATE_MOVABLE) {
2426 alike_pages = movable_pages;
2427 } else {
2428 /*
2429 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2430 * to MOVABLE pageblock, consider all non-movable pages as
2431 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2432 * vice versa, be conservative since we can't distinguish the
2433 * exact migratetype of non-movable pages.
2434 */
2435 if (old_block_type == MIGRATE_MOVABLE)
2436 alike_pages = pageblock_nr_pages
2437 - (free_pages + movable_pages);
2438 else
2439 alike_pages = 0;
2440 }
2441
3bc48f96 2442 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2443 if (!free_pages)
3bc48f96 2444 goto single_page;
fef903ef 2445
02aa0cdd
VB
2446 /*
2447 * If a sufficient number of pages in the block are either free or of
2448 * comparable migratability as our allocation, claim the whole block.
2449 */
2450 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2451 page_group_by_mobility_disabled)
2452 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2453
2454 return;
2455
2456single_page:
2457 area = &zone->free_area[current_order];
b03641af 2458 move_to_free_area(page, area, start_type);
4eb7dce6
JK
2459}
2460
2149cdae
JK
2461/*
2462 * Check whether there is a suitable fallback freepage with requested order.
2463 * If only_stealable is true, this function returns fallback_mt only if
2464 * we can steal other freepages all together. This would help to reduce
2465 * fragmentation due to mixed migratetype pages in one pageblock.
2466 */
2467int find_suitable_fallback(struct free_area *area, unsigned int order,
2468 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2469{
2470 int i;
2471 int fallback_mt;
2472
2473 if (area->nr_free == 0)
2474 return -1;
2475
2476 *can_steal = false;
2477 for (i = 0;; i++) {
2478 fallback_mt = fallbacks[migratetype][i];
974a786e 2479 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2480 break;
2481
b03641af 2482 if (free_area_empty(area, fallback_mt))
4eb7dce6 2483 continue;
fef903ef 2484
4eb7dce6
JK
2485 if (can_steal_fallback(order, migratetype))
2486 *can_steal = true;
2487
2149cdae
JK
2488 if (!only_stealable)
2489 return fallback_mt;
2490
2491 if (*can_steal)
2492 return fallback_mt;
fef903ef 2493 }
4eb7dce6
JK
2494
2495 return -1;
fef903ef
SB
2496}
2497
0aaa29a5
MG
2498/*
2499 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2500 * there are no empty page blocks that contain a page with a suitable order
2501 */
2502static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2503 unsigned int alloc_order)
2504{
2505 int mt;
2506 unsigned long max_managed, flags;
2507
2508 /*
2509 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2510 * Check is race-prone but harmless.
2511 */
9705bea5 2512 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2513 if (zone->nr_reserved_highatomic >= max_managed)
2514 return;
2515
2516 spin_lock_irqsave(&zone->lock, flags);
2517
2518 /* Recheck the nr_reserved_highatomic limit under the lock */
2519 if (zone->nr_reserved_highatomic >= max_managed)
2520 goto out_unlock;
2521
2522 /* Yoink! */
2523 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2524 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2525 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2526 zone->nr_reserved_highatomic += pageblock_nr_pages;
2527 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2528 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2529 }
2530
2531out_unlock:
2532 spin_unlock_irqrestore(&zone->lock, flags);
2533}
2534
2535/*
2536 * Used when an allocation is about to fail under memory pressure. This
2537 * potentially hurts the reliability of high-order allocations when under
2538 * intense memory pressure but failed atomic allocations should be easier
2539 * to recover from than an OOM.
29fac03b
MK
2540 *
2541 * If @force is true, try to unreserve a pageblock even though highatomic
2542 * pageblock is exhausted.
0aaa29a5 2543 */
29fac03b
MK
2544static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2545 bool force)
0aaa29a5
MG
2546{
2547 struct zonelist *zonelist = ac->zonelist;
2548 unsigned long flags;
2549 struct zoneref *z;
2550 struct zone *zone;
2551 struct page *page;
2552 int order;
04c8716f 2553 bool ret;
0aaa29a5
MG
2554
2555 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2556 ac->nodemask) {
29fac03b
MK
2557 /*
2558 * Preserve at least one pageblock unless memory pressure
2559 * is really high.
2560 */
2561 if (!force && zone->nr_reserved_highatomic <=
2562 pageblock_nr_pages)
0aaa29a5
MG
2563 continue;
2564
2565 spin_lock_irqsave(&zone->lock, flags);
2566 for (order = 0; order < MAX_ORDER; order++) {
2567 struct free_area *area = &(zone->free_area[order]);
2568
b03641af 2569 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2570 if (!page)
0aaa29a5
MG
2571 continue;
2572
0aaa29a5 2573 /*
4855e4a7
MK
2574 * In page freeing path, migratetype change is racy so
2575 * we can counter several free pages in a pageblock
2576 * in this loop althoug we changed the pageblock type
2577 * from highatomic to ac->migratetype. So we should
2578 * adjust the count once.
0aaa29a5 2579 */
a6ffdc07 2580 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2581 /*
2582 * It should never happen but changes to
2583 * locking could inadvertently allow a per-cpu
2584 * drain to add pages to MIGRATE_HIGHATOMIC
2585 * while unreserving so be safe and watch for
2586 * underflows.
2587 */
2588 zone->nr_reserved_highatomic -= min(
2589 pageblock_nr_pages,
2590 zone->nr_reserved_highatomic);
2591 }
0aaa29a5
MG
2592
2593 /*
2594 * Convert to ac->migratetype and avoid the normal
2595 * pageblock stealing heuristics. Minimally, the caller
2596 * is doing the work and needs the pages. More
2597 * importantly, if the block was always converted to
2598 * MIGRATE_UNMOVABLE or another type then the number
2599 * of pageblocks that cannot be completely freed
2600 * may increase.
2601 */
2602 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2603 ret = move_freepages_block(zone, page, ac->migratetype,
2604 NULL);
29fac03b
MK
2605 if (ret) {
2606 spin_unlock_irqrestore(&zone->lock, flags);
2607 return ret;
2608 }
0aaa29a5
MG
2609 }
2610 spin_unlock_irqrestore(&zone->lock, flags);
2611 }
04c8716f
MK
2612
2613 return false;
0aaa29a5
MG
2614}
2615
3bc48f96
VB
2616/*
2617 * Try finding a free buddy page on the fallback list and put it on the free
2618 * list of requested migratetype, possibly along with other pages from the same
2619 * block, depending on fragmentation avoidance heuristics. Returns true if
2620 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2621 *
2622 * The use of signed ints for order and current_order is a deliberate
2623 * deviation from the rest of this file, to make the for loop
2624 * condition simpler.
3bc48f96 2625 */
85ccc8fa 2626static __always_inline bool
6bb15450
MG
2627__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2628 unsigned int alloc_flags)
b2a0ac88 2629{
b8af2941 2630 struct free_area *area;
b002529d 2631 int current_order;
6bb15450 2632 int min_order = order;
b2a0ac88 2633 struct page *page;
4eb7dce6
JK
2634 int fallback_mt;
2635 bool can_steal;
b2a0ac88 2636
6bb15450
MG
2637 /*
2638 * Do not steal pages from freelists belonging to other pageblocks
2639 * i.e. orders < pageblock_order. If there are no local zones free,
2640 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2641 */
2642 if (alloc_flags & ALLOC_NOFRAGMENT)
2643 min_order = pageblock_order;
2644
7a8f58f3
VB
2645 /*
2646 * Find the largest available free page in the other list. This roughly
2647 * approximates finding the pageblock with the most free pages, which
2648 * would be too costly to do exactly.
2649 */
6bb15450 2650 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2651 --current_order) {
4eb7dce6
JK
2652 area = &(zone->free_area[current_order]);
2653 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2654 start_migratetype, false, &can_steal);
4eb7dce6
JK
2655 if (fallback_mt == -1)
2656 continue;
b2a0ac88 2657
7a8f58f3
VB
2658 /*
2659 * We cannot steal all free pages from the pageblock and the
2660 * requested migratetype is movable. In that case it's better to
2661 * steal and split the smallest available page instead of the
2662 * largest available page, because even if the next movable
2663 * allocation falls back into a different pageblock than this
2664 * one, it won't cause permanent fragmentation.
2665 */
2666 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2667 && current_order > order)
2668 goto find_smallest;
b2a0ac88 2669
7a8f58f3
VB
2670 goto do_steal;
2671 }
e0fff1bd 2672
7a8f58f3 2673 return false;
e0fff1bd 2674
7a8f58f3
VB
2675find_smallest:
2676 for (current_order = order; current_order < MAX_ORDER;
2677 current_order++) {
2678 area = &(zone->free_area[current_order]);
2679 fallback_mt = find_suitable_fallback(area, current_order,
2680 start_migratetype, false, &can_steal);
2681 if (fallback_mt != -1)
2682 break;
b2a0ac88
MG
2683 }
2684
7a8f58f3
VB
2685 /*
2686 * This should not happen - we already found a suitable fallback
2687 * when looking for the largest page.
2688 */
2689 VM_BUG_ON(current_order == MAX_ORDER);
2690
2691do_steal:
b03641af 2692 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2693
1c30844d
MG
2694 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2695 can_steal);
7a8f58f3
VB
2696
2697 trace_mm_page_alloc_extfrag(page, order, current_order,
2698 start_migratetype, fallback_mt);
2699
2700 return true;
2701
b2a0ac88
MG
2702}
2703
56fd56b8 2704/*
1da177e4
LT
2705 * Do the hard work of removing an element from the buddy allocator.
2706 * Call me with the zone->lock already held.
2707 */
85ccc8fa 2708static __always_inline struct page *
6bb15450
MG
2709__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2710 unsigned int alloc_flags)
1da177e4 2711{
1da177e4
LT
2712 struct page *page;
2713
3bc48f96 2714retry:
56fd56b8 2715 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2716 if (unlikely(!page)) {
dc67647b
JK
2717 if (migratetype == MIGRATE_MOVABLE)
2718 page = __rmqueue_cma_fallback(zone, order);
2719
6bb15450
MG
2720 if (!page && __rmqueue_fallback(zone, order, migratetype,
2721 alloc_flags))
3bc48f96 2722 goto retry;
728ec980
MG
2723 }
2724
0d3d062a 2725 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2726 return page;
1da177e4
LT
2727}
2728
5f63b720 2729/*
1da177e4
LT
2730 * Obtain a specified number of elements from the buddy allocator, all under
2731 * a single hold of the lock, for efficiency. Add them to the supplied list.
2732 * Returns the number of new pages which were placed at *list.
2733 */
5f63b720 2734static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2735 unsigned long count, struct list_head *list,
6bb15450 2736 int migratetype, unsigned int alloc_flags)
1da177e4 2737{
a6de734b 2738 int i, alloced = 0;
5f63b720 2739
d34b0733 2740 spin_lock(&zone->lock);
1da177e4 2741 for (i = 0; i < count; ++i) {
6bb15450
MG
2742 struct page *page = __rmqueue(zone, order, migratetype,
2743 alloc_flags);
085cc7d5 2744 if (unlikely(page == NULL))
1da177e4 2745 break;
81eabcbe 2746
479f854a
MG
2747 if (unlikely(check_pcp_refill(page)))
2748 continue;
2749
81eabcbe 2750 /*
0fac3ba5
VB
2751 * Split buddy pages returned by expand() are received here in
2752 * physical page order. The page is added to the tail of
2753 * caller's list. From the callers perspective, the linked list
2754 * is ordered by page number under some conditions. This is
2755 * useful for IO devices that can forward direction from the
2756 * head, thus also in the physical page order. This is useful
2757 * for IO devices that can merge IO requests if the physical
2758 * pages are ordered properly.
81eabcbe 2759 */
0fac3ba5 2760 list_add_tail(&page->lru, list);
a6de734b 2761 alloced++;
bb14c2c7 2762 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2763 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2764 -(1 << order));
1da177e4 2765 }
a6de734b
MG
2766
2767 /*
2768 * i pages were removed from the buddy list even if some leak due
2769 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2770 * on i. Do not confuse with 'alloced' which is the number of
2771 * pages added to the pcp list.
2772 */
f2260e6b 2773 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2774 spin_unlock(&zone->lock);
a6de734b 2775 return alloced;
1da177e4
LT
2776}
2777
4ae7c039 2778#ifdef CONFIG_NUMA
8fce4d8e 2779/*
4037d452
CL
2780 * Called from the vmstat counter updater to drain pagesets of this
2781 * currently executing processor on remote nodes after they have
2782 * expired.
2783 *
879336c3
CL
2784 * Note that this function must be called with the thread pinned to
2785 * a single processor.
8fce4d8e 2786 */
4037d452 2787void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2788{
4ae7c039 2789 unsigned long flags;
7be12fc9 2790 int to_drain, batch;
4ae7c039 2791
4037d452 2792 local_irq_save(flags);
4db0c3c2 2793 batch = READ_ONCE(pcp->batch);
7be12fc9 2794 to_drain = min(pcp->count, batch);
77ba9062 2795 if (to_drain > 0)
2a13515c 2796 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2797 local_irq_restore(flags);
4ae7c039
CL
2798}
2799#endif
2800
9f8f2172 2801/*
93481ff0 2802 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2803 *
2804 * The processor must either be the current processor and the
2805 * thread pinned to the current processor or a processor that
2806 * is not online.
2807 */
93481ff0 2808static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2809{
c54ad30c 2810 unsigned long flags;
93481ff0
VB
2811 struct per_cpu_pageset *pset;
2812 struct per_cpu_pages *pcp;
1da177e4 2813
93481ff0
VB
2814 local_irq_save(flags);
2815 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2816
93481ff0 2817 pcp = &pset->pcp;
77ba9062 2818 if (pcp->count)
93481ff0 2819 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2820 local_irq_restore(flags);
2821}
3dfa5721 2822
93481ff0
VB
2823/*
2824 * Drain pcplists of all zones on the indicated processor.
2825 *
2826 * The processor must either be the current processor and the
2827 * thread pinned to the current processor or a processor that
2828 * is not online.
2829 */
2830static void drain_pages(unsigned int cpu)
2831{
2832 struct zone *zone;
2833
2834 for_each_populated_zone(zone) {
2835 drain_pages_zone(cpu, zone);
1da177e4
LT
2836 }
2837}
1da177e4 2838
9f8f2172
CL
2839/*
2840 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2841 *
2842 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2843 * the single zone's pages.
9f8f2172 2844 */
93481ff0 2845void drain_local_pages(struct zone *zone)
9f8f2172 2846{
93481ff0
VB
2847 int cpu = smp_processor_id();
2848
2849 if (zone)
2850 drain_pages_zone(cpu, zone);
2851 else
2852 drain_pages(cpu);
9f8f2172
CL
2853}
2854
0ccce3b9
MG
2855static void drain_local_pages_wq(struct work_struct *work)
2856{
d9367bd0
WY
2857 struct pcpu_drain *drain;
2858
2859 drain = container_of(work, struct pcpu_drain, work);
2860
a459eeb7
MH
2861 /*
2862 * drain_all_pages doesn't use proper cpu hotplug protection so
2863 * we can race with cpu offline when the WQ can move this from
2864 * a cpu pinned worker to an unbound one. We can operate on a different
2865 * cpu which is allright but we also have to make sure to not move to
2866 * a different one.
2867 */
2868 preempt_disable();
d9367bd0 2869 drain_local_pages(drain->zone);
a459eeb7 2870 preempt_enable();
0ccce3b9
MG
2871}
2872
9f8f2172 2873/*
74046494
GBY
2874 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2875 *
93481ff0
VB
2876 * When zone parameter is non-NULL, spill just the single zone's pages.
2877 *
0ccce3b9 2878 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2879 */
93481ff0 2880void drain_all_pages(struct zone *zone)
9f8f2172 2881{
74046494 2882 int cpu;
74046494
GBY
2883
2884 /*
2885 * Allocate in the BSS so we wont require allocation in
2886 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2887 */
2888 static cpumask_t cpus_with_pcps;
2889
ce612879
MH
2890 /*
2891 * Make sure nobody triggers this path before mm_percpu_wq is fully
2892 * initialized.
2893 */
2894 if (WARN_ON_ONCE(!mm_percpu_wq))
2895 return;
2896
bd233f53
MG
2897 /*
2898 * Do not drain if one is already in progress unless it's specific to
2899 * a zone. Such callers are primarily CMA and memory hotplug and need
2900 * the drain to be complete when the call returns.
2901 */
2902 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2903 if (!zone)
2904 return;
2905 mutex_lock(&pcpu_drain_mutex);
2906 }
0ccce3b9 2907
74046494
GBY
2908 /*
2909 * We don't care about racing with CPU hotplug event
2910 * as offline notification will cause the notified
2911 * cpu to drain that CPU pcps and on_each_cpu_mask
2912 * disables preemption as part of its processing
2913 */
2914 for_each_online_cpu(cpu) {
93481ff0
VB
2915 struct per_cpu_pageset *pcp;
2916 struct zone *z;
74046494 2917 bool has_pcps = false;
93481ff0
VB
2918
2919 if (zone) {
74046494 2920 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2921 if (pcp->pcp.count)
74046494 2922 has_pcps = true;
93481ff0
VB
2923 } else {
2924 for_each_populated_zone(z) {
2925 pcp = per_cpu_ptr(z->pageset, cpu);
2926 if (pcp->pcp.count) {
2927 has_pcps = true;
2928 break;
2929 }
74046494
GBY
2930 }
2931 }
93481ff0 2932
74046494
GBY
2933 if (has_pcps)
2934 cpumask_set_cpu(cpu, &cpus_with_pcps);
2935 else
2936 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2937 }
0ccce3b9 2938
bd233f53 2939 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2940 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2941
2942 drain->zone = zone;
2943 INIT_WORK(&drain->work, drain_local_pages_wq);
2944 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2945 }
bd233f53 2946 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2947 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2948
2949 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2950}
2951
296699de 2952#ifdef CONFIG_HIBERNATION
1da177e4 2953
556b969a
CY
2954/*
2955 * Touch the watchdog for every WD_PAGE_COUNT pages.
2956 */
2957#define WD_PAGE_COUNT (128*1024)
2958
1da177e4
LT
2959void mark_free_pages(struct zone *zone)
2960{
556b969a 2961 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2962 unsigned long flags;
7aeb09f9 2963 unsigned int order, t;
86760a2c 2964 struct page *page;
1da177e4 2965
8080fc03 2966 if (zone_is_empty(zone))
1da177e4
LT
2967 return;
2968
2969 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2970
108bcc96 2971 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2972 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2973 if (pfn_valid(pfn)) {
86760a2c 2974 page = pfn_to_page(pfn);
ba6b0979 2975
556b969a
CY
2976 if (!--page_count) {
2977 touch_nmi_watchdog();
2978 page_count = WD_PAGE_COUNT;
2979 }
2980
ba6b0979
JK
2981 if (page_zone(page) != zone)
2982 continue;
2983
7be98234
RW
2984 if (!swsusp_page_is_forbidden(page))
2985 swsusp_unset_page_free(page);
f623f0db 2986 }
1da177e4 2987
b2a0ac88 2988 for_each_migratetype_order(order, t) {
86760a2c
GT
2989 list_for_each_entry(page,
2990 &zone->free_area[order].free_list[t], lru) {
f623f0db 2991 unsigned long i;
1da177e4 2992
86760a2c 2993 pfn = page_to_pfn(page);
556b969a
CY
2994 for (i = 0; i < (1UL << order); i++) {
2995 if (!--page_count) {
2996 touch_nmi_watchdog();
2997 page_count = WD_PAGE_COUNT;
2998 }
7be98234 2999 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3000 }
f623f0db 3001 }
b2a0ac88 3002 }
1da177e4
LT
3003 spin_unlock_irqrestore(&zone->lock, flags);
3004}
e2c55dc8 3005#endif /* CONFIG_PM */
1da177e4 3006
2d4894b5 3007static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3008{
5f8dcc21 3009 int migratetype;
1da177e4 3010
4db7548c 3011 if (!free_pcp_prepare(page))
9cca35d4 3012 return false;
689bcebf 3013
dc4b0caf 3014 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3015 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3016 return true;
3017}
3018
2d4894b5 3019static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3020{
3021 struct zone *zone = page_zone(page);
3022 struct per_cpu_pages *pcp;
3023 int migratetype;
3024
3025 migratetype = get_pcppage_migratetype(page);
d34b0733 3026 __count_vm_event(PGFREE);
da456f14 3027
5f8dcc21
MG
3028 /*
3029 * We only track unmovable, reclaimable and movable on pcp lists.
3030 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3031 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3032 * areas back if necessary. Otherwise, we may have to free
3033 * excessively into the page allocator
3034 */
3035 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3036 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3037 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3038 return;
5f8dcc21
MG
3039 }
3040 migratetype = MIGRATE_MOVABLE;
3041 }
3042
99dcc3e5 3043 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3044 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3045 pcp->count++;
48db57f8 3046 if (pcp->count >= pcp->high) {
4db0c3c2 3047 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3048 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3049 }
9cca35d4 3050}
5f8dcc21 3051
9cca35d4
MG
3052/*
3053 * Free a 0-order page
9cca35d4 3054 */
2d4894b5 3055void free_unref_page(struct page *page)
9cca35d4
MG
3056{
3057 unsigned long flags;
3058 unsigned long pfn = page_to_pfn(page);
3059
2d4894b5 3060 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3061 return;
3062
3063 local_irq_save(flags);
2d4894b5 3064 free_unref_page_commit(page, pfn);
d34b0733 3065 local_irq_restore(flags);
1da177e4
LT
3066}
3067
cc59850e
KK
3068/*
3069 * Free a list of 0-order pages
3070 */
2d4894b5 3071void free_unref_page_list(struct list_head *list)
cc59850e
KK
3072{
3073 struct page *page, *next;
9cca35d4 3074 unsigned long flags, pfn;
c24ad77d 3075 int batch_count = 0;
9cca35d4
MG
3076
3077 /* Prepare pages for freeing */
3078 list_for_each_entry_safe(page, next, list, lru) {
3079 pfn = page_to_pfn(page);
2d4894b5 3080 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3081 list_del(&page->lru);
3082 set_page_private(page, pfn);
3083 }
cc59850e 3084
9cca35d4 3085 local_irq_save(flags);
cc59850e 3086 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3087 unsigned long pfn = page_private(page);
3088
3089 set_page_private(page, 0);
2d4894b5
MG
3090 trace_mm_page_free_batched(page);
3091 free_unref_page_commit(page, pfn);
c24ad77d
LS
3092
3093 /*
3094 * Guard against excessive IRQ disabled times when we get
3095 * a large list of pages to free.
3096 */
3097 if (++batch_count == SWAP_CLUSTER_MAX) {
3098 local_irq_restore(flags);
3099 batch_count = 0;
3100 local_irq_save(flags);
3101 }
cc59850e 3102 }
9cca35d4 3103 local_irq_restore(flags);
cc59850e
KK
3104}
3105
8dfcc9ba
NP
3106/*
3107 * split_page takes a non-compound higher-order page, and splits it into
3108 * n (1<<order) sub-pages: page[0..n]
3109 * Each sub-page must be freed individually.
3110 *
3111 * Note: this is probably too low level an operation for use in drivers.
3112 * Please consult with lkml before using this in your driver.
3113 */
3114void split_page(struct page *page, unsigned int order)
3115{
3116 int i;
3117
309381fe
SL
3118 VM_BUG_ON_PAGE(PageCompound(page), page);
3119 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3120
a9627bc5 3121 for (i = 1; i < (1 << order); i++)
7835e98b 3122 set_page_refcounted(page + i);
a9627bc5 3123 split_page_owner(page, order);
8dfcc9ba 3124}
5853ff23 3125EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3126
3c605096 3127int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3128{
b03641af 3129 struct free_area *area = &page_zone(page)->free_area[order];
748446bb
MG
3130 unsigned long watermark;
3131 struct zone *zone;
2139cbe6 3132 int mt;
748446bb
MG
3133
3134 BUG_ON(!PageBuddy(page));
3135
3136 zone = page_zone(page);
2e30abd1 3137 mt = get_pageblock_migratetype(page);
748446bb 3138
194159fb 3139 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3140 /*
3141 * Obey watermarks as if the page was being allocated. We can
3142 * emulate a high-order watermark check with a raised order-0
3143 * watermark, because we already know our high-order page
3144 * exists.
3145 */
fd1444b2 3146 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3147 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3148 return 0;
3149
8fb74b9f 3150 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3151 }
748446bb
MG
3152
3153 /* Remove page from free list */
b03641af
DW
3154
3155 del_page_from_free_area(page, area);
2139cbe6 3156
400bc7fd 3157 /*
3158 * Set the pageblock if the isolated page is at least half of a
3159 * pageblock
3160 */
748446bb
MG
3161 if (order >= pageblock_order - 1) {
3162 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3163 for (; page < endpage; page += pageblock_nr_pages) {
3164 int mt = get_pageblock_migratetype(page);
88ed365e 3165 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3166 && !is_migrate_highatomic(mt))
47118af0
MN
3167 set_pageblock_migratetype(page,
3168 MIGRATE_MOVABLE);
3169 }
748446bb
MG
3170 }
3171
f3a14ced 3172
8fb74b9f 3173 return 1UL << order;
1fb3f8ca
MG
3174}
3175
060e7417
MG
3176/*
3177 * Update NUMA hit/miss statistics
3178 *
3179 * Must be called with interrupts disabled.
060e7417 3180 */
41b6167e 3181static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3182{
3183#ifdef CONFIG_NUMA
3a321d2a 3184 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3185
4518085e
KW
3186 /* skip numa counters update if numa stats is disabled */
3187 if (!static_branch_likely(&vm_numa_stat_key))
3188 return;
3189
c1093b74 3190 if (zone_to_nid(z) != numa_node_id())
060e7417 3191 local_stat = NUMA_OTHER;
060e7417 3192
c1093b74 3193 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3194 __inc_numa_state(z, NUMA_HIT);
2df26639 3195 else {
3a321d2a
KW
3196 __inc_numa_state(z, NUMA_MISS);
3197 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3198 }
3a321d2a 3199 __inc_numa_state(z, local_stat);
060e7417
MG
3200#endif
3201}
3202
066b2393
MG
3203/* Remove page from the per-cpu list, caller must protect the list */
3204static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3205 unsigned int alloc_flags,
453f85d4 3206 struct per_cpu_pages *pcp,
066b2393
MG
3207 struct list_head *list)
3208{
3209 struct page *page;
3210
3211 do {
3212 if (list_empty(list)) {
3213 pcp->count += rmqueue_bulk(zone, 0,
3214 pcp->batch, list,
6bb15450 3215 migratetype, alloc_flags);
066b2393
MG
3216 if (unlikely(list_empty(list)))
3217 return NULL;
3218 }
3219
453f85d4 3220 page = list_first_entry(list, struct page, lru);
066b2393
MG
3221 list_del(&page->lru);
3222 pcp->count--;
3223 } while (check_new_pcp(page));
3224
3225 return page;
3226}
3227
3228/* Lock and remove page from the per-cpu list */
3229static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3230 struct zone *zone, gfp_t gfp_flags,
3231 int migratetype, unsigned int alloc_flags)
066b2393
MG
3232{
3233 struct per_cpu_pages *pcp;
3234 struct list_head *list;
066b2393 3235 struct page *page;
d34b0733 3236 unsigned long flags;
066b2393 3237
d34b0733 3238 local_irq_save(flags);
066b2393
MG
3239 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3240 list = &pcp->lists[migratetype];
6bb15450 3241 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3242 if (page) {
1c52e6d0 3243 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3244 zone_statistics(preferred_zone, zone);
3245 }
d34b0733 3246 local_irq_restore(flags);
066b2393
MG
3247 return page;
3248}
3249
1da177e4 3250/*
75379191 3251 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3252 */
0a15c3e9 3253static inline
066b2393 3254struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3255 struct zone *zone, unsigned int order,
c603844b
MG
3256 gfp_t gfp_flags, unsigned int alloc_flags,
3257 int migratetype)
1da177e4
LT
3258{
3259 unsigned long flags;
689bcebf 3260 struct page *page;
1da177e4 3261
d34b0733 3262 if (likely(order == 0)) {
1c52e6d0
YS
3263 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3264 migratetype, alloc_flags);
066b2393
MG
3265 goto out;
3266 }
83b9355b 3267
066b2393
MG
3268 /*
3269 * We most definitely don't want callers attempting to
3270 * allocate greater than order-1 page units with __GFP_NOFAIL.
3271 */
3272 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3273 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3274
066b2393
MG
3275 do {
3276 page = NULL;
3277 if (alloc_flags & ALLOC_HARDER) {
3278 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3279 if (page)
3280 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3281 }
a74609fa 3282 if (!page)
6bb15450 3283 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3284 } while (page && check_new_pages(page, order));
3285 spin_unlock(&zone->lock);
3286 if (!page)
3287 goto failed;
3288 __mod_zone_freepage_state(zone, -(1 << order),
3289 get_pcppage_migratetype(page));
1da177e4 3290
16709d1d 3291 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3292 zone_statistics(preferred_zone, zone);
a74609fa 3293 local_irq_restore(flags);
1da177e4 3294
066b2393 3295out:
73444bc4
MG
3296 /* Separate test+clear to avoid unnecessary atomics */
3297 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3298 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3299 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3300 }
3301
066b2393 3302 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3303 return page;
a74609fa
NP
3304
3305failed:
3306 local_irq_restore(flags);
a74609fa 3307 return NULL;
1da177e4
LT
3308}
3309
933e312e
AM
3310#ifdef CONFIG_FAIL_PAGE_ALLOC
3311
b2588c4b 3312static struct {
933e312e
AM
3313 struct fault_attr attr;
3314
621a5f7a 3315 bool ignore_gfp_highmem;
71baba4b 3316 bool ignore_gfp_reclaim;
54114994 3317 u32 min_order;
933e312e
AM
3318} fail_page_alloc = {
3319 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3320 .ignore_gfp_reclaim = true,
621a5f7a 3321 .ignore_gfp_highmem = true,
54114994 3322 .min_order = 1,
933e312e
AM
3323};
3324
3325static int __init setup_fail_page_alloc(char *str)
3326{
3327 return setup_fault_attr(&fail_page_alloc.attr, str);
3328}
3329__setup("fail_page_alloc=", setup_fail_page_alloc);
3330
af3b8544 3331static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3332{
54114994 3333 if (order < fail_page_alloc.min_order)
deaf386e 3334 return false;
933e312e 3335 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3336 return false;
933e312e 3337 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3338 return false;
71baba4b
MG
3339 if (fail_page_alloc.ignore_gfp_reclaim &&
3340 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3341 return false;
933e312e
AM
3342
3343 return should_fail(&fail_page_alloc.attr, 1 << order);
3344}
3345
3346#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3347
3348static int __init fail_page_alloc_debugfs(void)
3349{
0825a6f9 3350 umode_t mode = S_IFREG | 0600;
933e312e 3351 struct dentry *dir;
933e312e 3352
dd48c085
AM
3353 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3354 &fail_page_alloc.attr);
b2588c4b 3355
d9f7979c
GKH
3356 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3357 &fail_page_alloc.ignore_gfp_reclaim);
3358 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3359 &fail_page_alloc.ignore_gfp_highmem);
3360 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3361
d9f7979c 3362 return 0;
933e312e
AM
3363}
3364
3365late_initcall(fail_page_alloc_debugfs);
3366
3367#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3368
3369#else /* CONFIG_FAIL_PAGE_ALLOC */
3370
af3b8544 3371static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3372{
deaf386e 3373 return false;
933e312e
AM
3374}
3375
3376#endif /* CONFIG_FAIL_PAGE_ALLOC */
3377
af3b8544
BP
3378static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3379{
3380 return __should_fail_alloc_page(gfp_mask, order);
3381}
3382ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3383
1da177e4 3384/*
97a16fc8
MG
3385 * Return true if free base pages are above 'mark'. For high-order checks it
3386 * will return true of the order-0 watermark is reached and there is at least
3387 * one free page of a suitable size. Checking now avoids taking the zone lock
3388 * to check in the allocation paths if no pages are free.
1da177e4 3389 */
86a294a8
MH
3390bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3391 int classzone_idx, unsigned int alloc_flags,
3392 long free_pages)
1da177e4 3393{
d23ad423 3394 long min = mark;
1da177e4 3395 int o;
cd04ae1e 3396 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3397
0aaa29a5 3398 /* free_pages may go negative - that's OK */
df0a6daa 3399 free_pages -= (1 << order) - 1;
0aaa29a5 3400
7fb1d9fc 3401 if (alloc_flags & ALLOC_HIGH)
1da177e4 3402 min -= min / 2;
0aaa29a5
MG
3403
3404 /*
3405 * If the caller does not have rights to ALLOC_HARDER then subtract
3406 * the high-atomic reserves. This will over-estimate the size of the
3407 * atomic reserve but it avoids a search.
3408 */
cd04ae1e 3409 if (likely(!alloc_harder)) {
0aaa29a5 3410 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3411 } else {
3412 /*
3413 * OOM victims can try even harder than normal ALLOC_HARDER
3414 * users on the grounds that it's definitely going to be in
3415 * the exit path shortly and free memory. Any allocation it
3416 * makes during the free path will be small and short-lived.
3417 */
3418 if (alloc_flags & ALLOC_OOM)
3419 min -= min / 2;
3420 else
3421 min -= min / 4;
3422 }
3423
e2b19197 3424
d883c6cf
JK
3425#ifdef CONFIG_CMA
3426 /* If allocation can't use CMA areas don't use free CMA pages */
3427 if (!(alloc_flags & ALLOC_CMA))
3428 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3429#endif
3430
97a16fc8
MG
3431 /*
3432 * Check watermarks for an order-0 allocation request. If these
3433 * are not met, then a high-order request also cannot go ahead
3434 * even if a suitable page happened to be free.
3435 */
3436 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3437 return false;
1da177e4 3438
97a16fc8
MG
3439 /* If this is an order-0 request then the watermark is fine */
3440 if (!order)
3441 return true;
3442
3443 /* For a high-order request, check at least one suitable page is free */
3444 for (o = order; o < MAX_ORDER; o++) {
3445 struct free_area *area = &z->free_area[o];
3446 int mt;
3447
3448 if (!area->nr_free)
3449 continue;
3450
97a16fc8 3451 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3452 if (!free_area_empty(area, mt))
97a16fc8
MG
3453 return true;
3454 }
3455
3456#ifdef CONFIG_CMA
d883c6cf 3457 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3458 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3459 return true;
d883c6cf 3460 }
97a16fc8 3461#endif
b050e376
VB
3462 if (alloc_harder &&
3463 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3464 return true;
1da177e4 3465 }
97a16fc8 3466 return false;
88f5acf8
MG
3467}
3468
7aeb09f9 3469bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3470 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3471{
3472 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3473 zone_page_state(z, NR_FREE_PAGES));
3474}
3475
48ee5f36
MG
3476static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3477 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3478{
3479 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3480 long cma_pages = 0;
3481
3482#ifdef CONFIG_CMA
3483 /* If allocation can't use CMA areas don't use free CMA pages */
3484 if (!(alloc_flags & ALLOC_CMA))
3485 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3486#endif
48ee5f36
MG
3487
3488 /*
3489 * Fast check for order-0 only. If this fails then the reserves
3490 * need to be calculated. There is a corner case where the check
3491 * passes but only the high-order atomic reserve are free. If
3492 * the caller is !atomic then it'll uselessly search the free
3493 * list. That corner case is then slower but it is harmless.
3494 */
d883c6cf 3495 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3496 return true;
3497
3498 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3499 free_pages);
3500}
3501
7aeb09f9 3502bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3503 unsigned long mark, int classzone_idx)
88f5acf8
MG
3504{
3505 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3506
3507 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3508 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3509
e2b19197 3510 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3511 free_pages);
1da177e4
LT
3512}
3513
9276b1bc 3514#ifdef CONFIG_NUMA
957f822a
DR
3515static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3516{
e02dc017 3517 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3518 node_reclaim_distance;
957f822a 3519}
9276b1bc 3520#else /* CONFIG_NUMA */
957f822a
DR
3521static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3522{
3523 return true;
3524}
9276b1bc
PJ
3525#endif /* CONFIG_NUMA */
3526
6bb15450
MG
3527/*
3528 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3529 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3530 * premature use of a lower zone may cause lowmem pressure problems that
3531 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3532 * probably too small. It only makes sense to spread allocations to avoid
3533 * fragmentation between the Normal and DMA32 zones.
3534 */
3535static inline unsigned int
0a79cdad 3536alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3537{
0a79cdad
MG
3538 unsigned int alloc_flags = 0;
3539
3540 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3541 alloc_flags |= ALLOC_KSWAPD;
3542
3543#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3544 if (!zone)
3545 return alloc_flags;
3546
6bb15450 3547 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3548 return alloc_flags;
6bb15450
MG
3549
3550 /*
3551 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3552 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3553 * on UMA that if Normal is populated then so is DMA32.
3554 */
3555 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3556 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3557 return alloc_flags;
6bb15450 3558
8118b82e 3559 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3560#endif /* CONFIG_ZONE_DMA32 */
3561 return alloc_flags;
6bb15450 3562}
6bb15450 3563
7fb1d9fc 3564/*
0798e519 3565 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3566 * a page.
3567 */
3568static struct page *
a9263751
VB
3569get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3570 const struct alloc_context *ac)
753ee728 3571{
6bb15450 3572 struct zoneref *z;
5117f45d 3573 struct zone *zone;
3b8c0be4 3574 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3575 bool no_fallback;
3b8c0be4 3576
6bb15450 3577retry:
7fb1d9fc 3578 /*
9276b1bc 3579 * Scan zonelist, looking for a zone with enough free.
344736f2 3580 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3581 */
6bb15450
MG
3582 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3583 z = ac->preferred_zoneref;
c33d6c06 3584 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3585 ac->nodemask) {
be06af00 3586 struct page *page;
e085dbc5
JW
3587 unsigned long mark;
3588
664eedde
MG
3589 if (cpusets_enabled() &&
3590 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3591 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3592 continue;
a756cf59
JW
3593 /*
3594 * When allocating a page cache page for writing, we
281e3726
MG
3595 * want to get it from a node that is within its dirty
3596 * limit, such that no single node holds more than its
a756cf59 3597 * proportional share of globally allowed dirty pages.
281e3726 3598 * The dirty limits take into account the node's
a756cf59
JW
3599 * lowmem reserves and high watermark so that kswapd
3600 * should be able to balance it without having to
3601 * write pages from its LRU list.
3602 *
a756cf59 3603 * XXX: For now, allow allocations to potentially
281e3726 3604 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3605 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3606 * which is important when on a NUMA setup the allowed
281e3726 3607 * nodes are together not big enough to reach the
a756cf59 3608 * global limit. The proper fix for these situations
281e3726 3609 * will require awareness of nodes in the
a756cf59
JW
3610 * dirty-throttling and the flusher threads.
3611 */
3b8c0be4
MG
3612 if (ac->spread_dirty_pages) {
3613 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3614 continue;
3615
3616 if (!node_dirty_ok(zone->zone_pgdat)) {
3617 last_pgdat_dirty_limit = zone->zone_pgdat;
3618 continue;
3619 }
3620 }
7fb1d9fc 3621
6bb15450
MG
3622 if (no_fallback && nr_online_nodes > 1 &&
3623 zone != ac->preferred_zoneref->zone) {
3624 int local_nid;
3625
3626 /*
3627 * If moving to a remote node, retry but allow
3628 * fragmenting fallbacks. Locality is more important
3629 * than fragmentation avoidance.
3630 */
3631 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3632 if (zone_to_nid(zone) != local_nid) {
3633 alloc_flags &= ~ALLOC_NOFRAGMENT;
3634 goto retry;
3635 }
3636 }
3637
a9214443 3638 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3639 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3640 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3641 int ret;
3642
c9e97a19
PT
3643#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3644 /*
3645 * Watermark failed for this zone, but see if we can
3646 * grow this zone if it contains deferred pages.
3647 */
3648 if (static_branch_unlikely(&deferred_pages)) {
3649 if (_deferred_grow_zone(zone, order))
3650 goto try_this_zone;
3651 }
3652#endif
5dab2911
MG
3653 /* Checked here to keep the fast path fast */
3654 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3655 if (alloc_flags & ALLOC_NO_WATERMARKS)
3656 goto try_this_zone;
3657
a5f5f91d 3658 if (node_reclaim_mode == 0 ||
c33d6c06 3659 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3660 continue;
3661
a5f5f91d 3662 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3663 switch (ret) {
a5f5f91d 3664 case NODE_RECLAIM_NOSCAN:
fa5e084e 3665 /* did not scan */
cd38b115 3666 continue;
a5f5f91d 3667 case NODE_RECLAIM_FULL:
fa5e084e 3668 /* scanned but unreclaimable */
cd38b115 3669 continue;
fa5e084e
MG
3670 default:
3671 /* did we reclaim enough */
fed2719e 3672 if (zone_watermark_ok(zone, order, mark,
93ea9964 3673 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3674 goto try_this_zone;
3675
fed2719e 3676 continue;
0798e519 3677 }
7fb1d9fc
RS
3678 }
3679
fa5e084e 3680try_this_zone:
066b2393 3681 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3682 gfp_mask, alloc_flags, ac->migratetype);
75379191 3683 if (page) {
479f854a 3684 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3685
3686 /*
3687 * If this is a high-order atomic allocation then check
3688 * if the pageblock should be reserved for the future
3689 */
3690 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3691 reserve_highatomic_pageblock(page, zone, order);
3692
75379191 3693 return page;
c9e97a19
PT
3694 } else {
3695#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3696 /* Try again if zone has deferred pages */
3697 if (static_branch_unlikely(&deferred_pages)) {
3698 if (_deferred_grow_zone(zone, order))
3699 goto try_this_zone;
3700 }
3701#endif
75379191 3702 }
54a6eb5c 3703 }
9276b1bc 3704
6bb15450
MG
3705 /*
3706 * It's possible on a UMA machine to get through all zones that are
3707 * fragmented. If avoiding fragmentation, reset and try again.
3708 */
3709 if (no_fallback) {
3710 alloc_flags &= ~ALLOC_NOFRAGMENT;
3711 goto retry;
3712 }
3713
4ffeaf35 3714 return NULL;
753ee728
MH
3715}
3716
9af744d7 3717static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3718{
a238ab5b 3719 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3720
3721 /*
3722 * This documents exceptions given to allocations in certain
3723 * contexts that are allowed to allocate outside current's set
3724 * of allowed nodes.
3725 */
3726 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3727 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3728 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3729 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3730 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3731 filter &= ~SHOW_MEM_FILTER_NODES;
3732
9af744d7 3733 show_mem(filter, nodemask);
aa187507
MH
3734}
3735
a8e99259 3736void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3737{
3738 struct va_format vaf;
3739 va_list args;
1be334e5 3740 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3741
0f7896f1 3742 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3743 return;
3744
7877cdcc
MH
3745 va_start(args, fmt);
3746 vaf.fmt = fmt;
3747 vaf.va = &args;
ef8444ea 3748 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3749 current->comm, &vaf, gfp_mask, &gfp_mask,
3750 nodemask_pr_args(nodemask));
7877cdcc 3751 va_end(args);
3ee9a4f0 3752
a8e99259 3753 cpuset_print_current_mems_allowed();
ef8444ea 3754 pr_cont("\n");
a238ab5b 3755 dump_stack();
685dbf6f 3756 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3757}
3758
6c18ba7a
MH
3759static inline struct page *
3760__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3761 unsigned int alloc_flags,
3762 const struct alloc_context *ac)
3763{
3764 struct page *page;
3765
3766 page = get_page_from_freelist(gfp_mask, order,
3767 alloc_flags|ALLOC_CPUSET, ac);
3768 /*
3769 * fallback to ignore cpuset restriction if our nodes
3770 * are depleted
3771 */
3772 if (!page)
3773 page = get_page_from_freelist(gfp_mask, order,
3774 alloc_flags, ac);
3775
3776 return page;
3777}
3778
11e33f6a
MG
3779static inline struct page *
3780__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3781 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3782{
6e0fc46d
DR
3783 struct oom_control oc = {
3784 .zonelist = ac->zonelist,
3785 .nodemask = ac->nodemask,
2a966b77 3786 .memcg = NULL,
6e0fc46d
DR
3787 .gfp_mask = gfp_mask,
3788 .order = order,
6e0fc46d 3789 };
11e33f6a
MG
3790 struct page *page;
3791
9879de73
JW
3792 *did_some_progress = 0;
3793
9879de73 3794 /*
dc56401f
JW
3795 * Acquire the oom lock. If that fails, somebody else is
3796 * making progress for us.
9879de73 3797 */
dc56401f 3798 if (!mutex_trylock(&oom_lock)) {
9879de73 3799 *did_some_progress = 1;
11e33f6a 3800 schedule_timeout_uninterruptible(1);
1da177e4
LT
3801 return NULL;
3802 }
6b1de916 3803
11e33f6a
MG
3804 /*
3805 * Go through the zonelist yet one more time, keep very high watermark
3806 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3807 * we're still under heavy pressure. But make sure that this reclaim
3808 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3809 * allocation which will never fail due to oom_lock already held.
11e33f6a 3810 */
e746bf73
TH
3811 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3812 ~__GFP_DIRECT_RECLAIM, order,
3813 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3814 if (page)
11e33f6a
MG
3815 goto out;
3816
06ad276a
MH
3817 /* Coredumps can quickly deplete all memory reserves */
3818 if (current->flags & PF_DUMPCORE)
3819 goto out;
3820 /* The OOM killer will not help higher order allocs */
3821 if (order > PAGE_ALLOC_COSTLY_ORDER)
3822 goto out;
dcda9b04
MH
3823 /*
3824 * We have already exhausted all our reclaim opportunities without any
3825 * success so it is time to admit defeat. We will skip the OOM killer
3826 * because it is very likely that the caller has a more reasonable
3827 * fallback than shooting a random task.
3828 */
3829 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3830 goto out;
06ad276a
MH
3831 /* The OOM killer does not needlessly kill tasks for lowmem */
3832 if (ac->high_zoneidx < ZONE_NORMAL)
3833 goto out;
3834 if (pm_suspended_storage())
3835 goto out;
3836 /*
3837 * XXX: GFP_NOFS allocations should rather fail than rely on
3838 * other request to make a forward progress.
3839 * We are in an unfortunate situation where out_of_memory cannot
3840 * do much for this context but let's try it to at least get
3841 * access to memory reserved if the current task is killed (see
3842 * out_of_memory). Once filesystems are ready to handle allocation
3843 * failures more gracefully we should just bail out here.
3844 */
3845
3846 /* The OOM killer may not free memory on a specific node */
3847 if (gfp_mask & __GFP_THISNODE)
3848 goto out;
3da88fb3 3849
3c2c6488 3850 /* Exhausted what can be done so it's blame time */
5020e285 3851 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3852 *did_some_progress = 1;
5020e285 3853
6c18ba7a
MH
3854 /*
3855 * Help non-failing allocations by giving them access to memory
3856 * reserves
3857 */
3858 if (gfp_mask & __GFP_NOFAIL)
3859 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3860 ALLOC_NO_WATERMARKS, ac);
5020e285 3861 }
11e33f6a 3862out:
dc56401f 3863 mutex_unlock(&oom_lock);
11e33f6a
MG
3864 return page;
3865}
3866
33c2d214
MH
3867/*
3868 * Maximum number of compaction retries wit a progress before OOM
3869 * killer is consider as the only way to move forward.
3870 */
3871#define MAX_COMPACT_RETRIES 16
3872
56de7263
MG
3873#ifdef CONFIG_COMPACTION
3874/* Try memory compaction for high-order allocations before reclaim */
3875static struct page *
3876__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3877 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3878 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3879{
5e1f0f09 3880 struct page *page = NULL;
eb414681 3881 unsigned long pflags;
499118e9 3882 unsigned int noreclaim_flag;
53853e2d
VB
3883
3884 if (!order)
66199712 3885 return NULL;
66199712 3886
eb414681 3887 psi_memstall_enter(&pflags);
499118e9 3888 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3889
c5d01d0d 3890 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3891 prio, &page);
eb414681 3892
499118e9 3893 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3894 psi_memstall_leave(&pflags);
56de7263 3895
98dd3b48
VB
3896 /*
3897 * At least in one zone compaction wasn't deferred or skipped, so let's
3898 * count a compaction stall
3899 */
3900 count_vm_event(COMPACTSTALL);
8fb74b9f 3901
5e1f0f09
MG
3902 /* Prep a captured page if available */
3903 if (page)
3904 prep_new_page(page, order, gfp_mask, alloc_flags);
3905
3906 /* Try get a page from the freelist if available */
3907 if (!page)
3908 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3909
98dd3b48
VB
3910 if (page) {
3911 struct zone *zone = page_zone(page);
53853e2d 3912
98dd3b48
VB
3913 zone->compact_blockskip_flush = false;
3914 compaction_defer_reset(zone, order, true);
3915 count_vm_event(COMPACTSUCCESS);
3916 return page;
3917 }
56de7263 3918
98dd3b48
VB
3919 /*
3920 * It's bad if compaction run occurs and fails. The most likely reason
3921 * is that pages exist, but not enough to satisfy watermarks.
3922 */
3923 count_vm_event(COMPACTFAIL);
66199712 3924
98dd3b48 3925 cond_resched();
56de7263
MG
3926
3927 return NULL;
3928}
33c2d214 3929
3250845d
VB
3930static inline bool
3931should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3932 enum compact_result compact_result,
3933 enum compact_priority *compact_priority,
d9436498 3934 int *compaction_retries)
3250845d
VB
3935{
3936 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3937 int min_priority;
65190cff
MH
3938 bool ret = false;
3939 int retries = *compaction_retries;
3940 enum compact_priority priority = *compact_priority;
3250845d
VB
3941
3942 if (!order)
3943 return false;
3944
d9436498
VB
3945 if (compaction_made_progress(compact_result))
3946 (*compaction_retries)++;
3947
3250845d
VB
3948 /*
3949 * compaction considers all the zone as desperately out of memory
3950 * so it doesn't really make much sense to retry except when the
3951 * failure could be caused by insufficient priority
3952 */
d9436498
VB
3953 if (compaction_failed(compact_result))
3954 goto check_priority;
3250845d 3955
49433085
VB
3956 /*
3957 * compaction was skipped because there are not enough order-0 pages
3958 * to work with, so we retry only if it looks like reclaim can help.
3959 */
3960 if (compaction_needs_reclaim(compact_result)) {
3961 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3962 goto out;
3963 }
3964
3250845d
VB
3965 /*
3966 * make sure the compaction wasn't deferred or didn't bail out early
3967 * due to locks contention before we declare that we should give up.
49433085
VB
3968 * But the next retry should use a higher priority if allowed, so
3969 * we don't just keep bailing out endlessly.
3250845d 3970 */
65190cff 3971 if (compaction_withdrawn(compact_result)) {
49433085 3972 goto check_priority;
65190cff 3973 }
3250845d
VB
3974
3975 /*
dcda9b04 3976 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3977 * costly ones because they are de facto nofail and invoke OOM
3978 * killer to move on while costly can fail and users are ready
3979 * to cope with that. 1/4 retries is rather arbitrary but we
3980 * would need much more detailed feedback from compaction to
3981 * make a better decision.
3982 */
3983 if (order > PAGE_ALLOC_COSTLY_ORDER)
3984 max_retries /= 4;
65190cff
MH
3985 if (*compaction_retries <= max_retries) {
3986 ret = true;
3987 goto out;
3988 }
3250845d 3989
d9436498
VB
3990 /*
3991 * Make sure there are attempts at the highest priority if we exhausted
3992 * all retries or failed at the lower priorities.
3993 */
3994check_priority:
c2033b00
VB
3995 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3996 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3997
c2033b00 3998 if (*compact_priority > min_priority) {
d9436498
VB
3999 (*compact_priority)--;
4000 *compaction_retries = 0;
65190cff 4001 ret = true;
d9436498 4002 }
65190cff
MH
4003out:
4004 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4005 return ret;
3250845d 4006}
56de7263
MG
4007#else
4008static inline struct page *
4009__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4010 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4011 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4012{
33c2d214 4013 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4014 return NULL;
4015}
33c2d214
MH
4016
4017static inline bool
86a294a8
MH
4018should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4019 enum compact_result compact_result,
a5508cd8 4020 enum compact_priority *compact_priority,
d9436498 4021 int *compaction_retries)
33c2d214 4022{
31e49bfd
MH
4023 struct zone *zone;
4024 struct zoneref *z;
4025
4026 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4027 return false;
4028
4029 /*
4030 * There are setups with compaction disabled which would prefer to loop
4031 * inside the allocator rather than hit the oom killer prematurely.
4032 * Let's give them a good hope and keep retrying while the order-0
4033 * watermarks are OK.
4034 */
4035 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4036 ac->nodemask) {
4037 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4038 ac_classzone_idx(ac), alloc_flags))
4039 return true;
4040 }
33c2d214
MH
4041 return false;
4042}
3250845d 4043#endif /* CONFIG_COMPACTION */
56de7263 4044
d92a8cfc 4045#ifdef CONFIG_LOCKDEP
93781325 4046static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4047 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4048
4049static bool __need_fs_reclaim(gfp_t gfp_mask)
4050{
4051 gfp_mask = current_gfp_context(gfp_mask);
4052
4053 /* no reclaim without waiting on it */
4054 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4055 return false;
4056
4057 /* this guy won't enter reclaim */
2e517d68 4058 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4059 return false;
4060
4061 /* We're only interested __GFP_FS allocations for now */
4062 if (!(gfp_mask & __GFP_FS))
4063 return false;
4064
4065 if (gfp_mask & __GFP_NOLOCKDEP)
4066 return false;
4067
4068 return true;
4069}
4070
93781325
OS
4071void __fs_reclaim_acquire(void)
4072{
4073 lock_map_acquire(&__fs_reclaim_map);
4074}
4075
4076void __fs_reclaim_release(void)
4077{
4078 lock_map_release(&__fs_reclaim_map);
4079}
4080
d92a8cfc
PZ
4081void fs_reclaim_acquire(gfp_t gfp_mask)
4082{
4083 if (__need_fs_reclaim(gfp_mask))
93781325 4084 __fs_reclaim_acquire();
d92a8cfc
PZ
4085}
4086EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4087
4088void fs_reclaim_release(gfp_t gfp_mask)
4089{
4090 if (__need_fs_reclaim(gfp_mask))
93781325 4091 __fs_reclaim_release();
d92a8cfc
PZ
4092}
4093EXPORT_SYMBOL_GPL(fs_reclaim_release);
4094#endif
4095
bba90710
MS
4096/* Perform direct synchronous page reclaim */
4097static int
a9263751
VB
4098__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4099 const struct alloc_context *ac)
11e33f6a 4100{
bba90710 4101 int progress;
499118e9 4102 unsigned int noreclaim_flag;
eb414681 4103 unsigned long pflags;
11e33f6a
MG
4104
4105 cond_resched();
4106
4107 /* We now go into synchronous reclaim */
4108 cpuset_memory_pressure_bump();
eb414681 4109 psi_memstall_enter(&pflags);
d92a8cfc 4110 fs_reclaim_acquire(gfp_mask);
93781325 4111 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4112
a9263751
VB
4113 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4114 ac->nodemask);
11e33f6a 4115
499118e9 4116 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4117 fs_reclaim_release(gfp_mask);
eb414681 4118 psi_memstall_leave(&pflags);
11e33f6a
MG
4119
4120 cond_resched();
4121
bba90710
MS
4122 return progress;
4123}
4124
4125/* The really slow allocator path where we enter direct reclaim */
4126static inline struct page *
4127__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4128 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4129 unsigned long *did_some_progress)
bba90710
MS
4130{
4131 struct page *page = NULL;
4132 bool drained = false;
4133
a9263751 4134 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4135 if (unlikely(!(*did_some_progress)))
4136 return NULL;
11e33f6a 4137
9ee493ce 4138retry:
31a6c190 4139 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4140
4141 /*
4142 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4143 * pages are pinned on the per-cpu lists or in high alloc reserves.
4144 * Shrink them them and try again
9ee493ce
MG
4145 */
4146 if (!page && !drained) {
29fac03b 4147 unreserve_highatomic_pageblock(ac, false);
93481ff0 4148 drain_all_pages(NULL);
9ee493ce
MG
4149 drained = true;
4150 goto retry;
4151 }
4152
11e33f6a
MG
4153 return page;
4154}
4155
5ecd9d40
DR
4156static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4157 const struct alloc_context *ac)
3a025760
JW
4158{
4159 struct zoneref *z;
4160 struct zone *zone;
e1a55637 4161 pg_data_t *last_pgdat = NULL;
5ecd9d40 4162 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4163
5ecd9d40
DR
4164 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4165 ac->nodemask) {
e1a55637 4166 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4167 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4168 last_pgdat = zone->zone_pgdat;
4169 }
3a025760
JW
4170}
4171
c603844b 4172static inline unsigned int
341ce06f
PZ
4173gfp_to_alloc_flags(gfp_t gfp_mask)
4174{
c603844b 4175 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4176
a56f57ff 4177 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 4178 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 4179
341ce06f
PZ
4180 /*
4181 * The caller may dip into page reserves a bit more if the caller
4182 * cannot run direct reclaim, or if the caller has realtime scheduling
4183 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4184 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4185 */
e6223a3b 4186 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4187
d0164adc 4188 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4189 /*
b104a35d
DR
4190 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4191 * if it can't schedule.
5c3240d9 4192 */
b104a35d 4193 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4194 alloc_flags |= ALLOC_HARDER;
523b9458 4195 /*
b104a35d 4196 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4197 * comment for __cpuset_node_allowed().
523b9458 4198 */
341ce06f 4199 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4200 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4201 alloc_flags |= ALLOC_HARDER;
4202
0a79cdad
MG
4203 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4204 alloc_flags |= ALLOC_KSWAPD;
4205
d883c6cf
JK
4206#ifdef CONFIG_CMA
4207 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4208 alloc_flags |= ALLOC_CMA;
4209#endif
341ce06f
PZ
4210 return alloc_flags;
4211}
4212
cd04ae1e 4213static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4214{
cd04ae1e
MH
4215 if (!tsk_is_oom_victim(tsk))
4216 return false;
4217
4218 /*
4219 * !MMU doesn't have oom reaper so give access to memory reserves
4220 * only to the thread with TIF_MEMDIE set
4221 */
4222 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4223 return false;
4224
cd04ae1e
MH
4225 return true;
4226}
4227
4228/*
4229 * Distinguish requests which really need access to full memory
4230 * reserves from oom victims which can live with a portion of it
4231 */
4232static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4233{
4234 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4235 return 0;
31a6c190 4236 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4237 return ALLOC_NO_WATERMARKS;
31a6c190 4238 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4239 return ALLOC_NO_WATERMARKS;
4240 if (!in_interrupt()) {
4241 if (current->flags & PF_MEMALLOC)
4242 return ALLOC_NO_WATERMARKS;
4243 else if (oom_reserves_allowed(current))
4244 return ALLOC_OOM;
4245 }
31a6c190 4246
cd04ae1e
MH
4247 return 0;
4248}
4249
4250bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4251{
4252 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4253}
4254
0a0337e0
MH
4255/*
4256 * Checks whether it makes sense to retry the reclaim to make a forward progress
4257 * for the given allocation request.
491d79ae
JW
4258 *
4259 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4260 * without success, or when we couldn't even meet the watermark if we
4261 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4262 *
4263 * Returns true if a retry is viable or false to enter the oom path.
4264 */
4265static inline bool
4266should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4267 struct alloc_context *ac, int alloc_flags,
423b452e 4268 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4269{
4270 struct zone *zone;
4271 struct zoneref *z;
15f570bf 4272 bool ret = false;
0a0337e0 4273
423b452e
VB
4274 /*
4275 * Costly allocations might have made a progress but this doesn't mean
4276 * their order will become available due to high fragmentation so
4277 * always increment the no progress counter for them
4278 */
4279 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4280 *no_progress_loops = 0;
4281 else
4282 (*no_progress_loops)++;
4283
0a0337e0
MH
4284 /*
4285 * Make sure we converge to OOM if we cannot make any progress
4286 * several times in the row.
4287 */
04c8716f
MK
4288 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4289 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4290 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4291 }
0a0337e0 4292
bca67592
MG
4293 /*
4294 * Keep reclaiming pages while there is a chance this will lead
4295 * somewhere. If none of the target zones can satisfy our allocation
4296 * request even if all reclaimable pages are considered then we are
4297 * screwed and have to go OOM.
0a0337e0
MH
4298 */
4299 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4300 ac->nodemask) {
4301 unsigned long available;
ede37713 4302 unsigned long reclaimable;
d379f01d
MH
4303 unsigned long min_wmark = min_wmark_pages(zone);
4304 bool wmark;
0a0337e0 4305
5a1c84b4 4306 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4307 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4308
4309 /*
491d79ae
JW
4310 * Would the allocation succeed if we reclaimed all
4311 * reclaimable pages?
0a0337e0 4312 */
d379f01d
MH
4313 wmark = __zone_watermark_ok(zone, order, min_wmark,
4314 ac_classzone_idx(ac), alloc_flags, available);
4315 trace_reclaim_retry_zone(z, order, reclaimable,
4316 available, min_wmark, *no_progress_loops, wmark);
4317 if (wmark) {
ede37713
MH
4318 /*
4319 * If we didn't make any progress and have a lot of
4320 * dirty + writeback pages then we should wait for
4321 * an IO to complete to slow down the reclaim and
4322 * prevent from pre mature OOM
4323 */
4324 if (!did_some_progress) {
11fb9989 4325 unsigned long write_pending;
ede37713 4326
5a1c84b4
MG
4327 write_pending = zone_page_state_snapshot(zone,
4328 NR_ZONE_WRITE_PENDING);
ede37713 4329
11fb9989 4330 if (2 * write_pending > reclaimable) {
ede37713
MH
4331 congestion_wait(BLK_RW_ASYNC, HZ/10);
4332 return true;
4333 }
4334 }
5a1c84b4 4335
15f570bf
MH
4336 ret = true;
4337 goto out;
0a0337e0
MH
4338 }
4339 }
4340
15f570bf
MH
4341out:
4342 /*
4343 * Memory allocation/reclaim might be called from a WQ context and the
4344 * current implementation of the WQ concurrency control doesn't
4345 * recognize that a particular WQ is congested if the worker thread is
4346 * looping without ever sleeping. Therefore we have to do a short sleep
4347 * here rather than calling cond_resched().
4348 */
4349 if (current->flags & PF_WQ_WORKER)
4350 schedule_timeout_uninterruptible(1);
4351 else
4352 cond_resched();
4353 return ret;
0a0337e0
MH
4354}
4355
902b6281
VB
4356static inline bool
4357check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4358{
4359 /*
4360 * It's possible that cpuset's mems_allowed and the nodemask from
4361 * mempolicy don't intersect. This should be normally dealt with by
4362 * policy_nodemask(), but it's possible to race with cpuset update in
4363 * such a way the check therein was true, and then it became false
4364 * before we got our cpuset_mems_cookie here.
4365 * This assumes that for all allocations, ac->nodemask can come only
4366 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4367 * when it does not intersect with the cpuset restrictions) or the
4368 * caller can deal with a violated nodemask.
4369 */
4370 if (cpusets_enabled() && ac->nodemask &&
4371 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4372 ac->nodemask = NULL;
4373 return true;
4374 }
4375
4376 /*
4377 * When updating a task's mems_allowed or mempolicy nodemask, it is
4378 * possible to race with parallel threads in such a way that our
4379 * allocation can fail while the mask is being updated. If we are about
4380 * to fail, check if the cpuset changed during allocation and if so,
4381 * retry.
4382 */
4383 if (read_mems_allowed_retry(cpuset_mems_cookie))
4384 return true;
4385
4386 return false;
4387}
4388
11e33f6a
MG
4389static inline struct page *
4390__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4391 struct alloc_context *ac)
11e33f6a 4392{
d0164adc 4393 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4394 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4395 struct page *page = NULL;
c603844b 4396 unsigned int alloc_flags;
11e33f6a 4397 unsigned long did_some_progress;
5ce9bfef 4398 enum compact_priority compact_priority;
c5d01d0d 4399 enum compact_result compact_result;
5ce9bfef
VB
4400 int compaction_retries;
4401 int no_progress_loops;
5ce9bfef 4402 unsigned int cpuset_mems_cookie;
cd04ae1e 4403 int reserve_flags;
1da177e4 4404
d0164adc
MG
4405 /*
4406 * We also sanity check to catch abuse of atomic reserves being used by
4407 * callers that are not in atomic context.
4408 */
4409 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4410 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4411 gfp_mask &= ~__GFP_ATOMIC;
4412
5ce9bfef
VB
4413retry_cpuset:
4414 compaction_retries = 0;
4415 no_progress_loops = 0;
4416 compact_priority = DEF_COMPACT_PRIORITY;
4417 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4418
4419 /*
4420 * The fast path uses conservative alloc_flags to succeed only until
4421 * kswapd needs to be woken up, and to avoid the cost of setting up
4422 * alloc_flags precisely. So we do that now.
4423 */
4424 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4425
e47483bc
VB
4426 /*
4427 * We need to recalculate the starting point for the zonelist iterator
4428 * because we might have used different nodemask in the fast path, or
4429 * there was a cpuset modification and we are retrying - otherwise we
4430 * could end up iterating over non-eligible zones endlessly.
4431 */
4432 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4433 ac->high_zoneidx, ac->nodemask);
4434 if (!ac->preferred_zoneref->zone)
4435 goto nopage;
4436
0a79cdad 4437 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4438 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4439
4440 /*
4441 * The adjusted alloc_flags might result in immediate success, so try
4442 * that first
4443 */
4444 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4445 if (page)
4446 goto got_pg;
4447
a8161d1e
VB
4448 /*
4449 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4450 * that we have enough base pages and don't need to reclaim. For non-
4451 * movable high-order allocations, do that as well, as compaction will
4452 * try prevent permanent fragmentation by migrating from blocks of the
4453 * same migratetype.
4454 * Don't try this for allocations that are allowed to ignore
4455 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4456 */
282722b0
VB
4457 if (can_direct_reclaim &&
4458 (costly_order ||
4459 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4460 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4461 page = __alloc_pages_direct_compact(gfp_mask, order,
4462 alloc_flags, ac,
a5508cd8 4463 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4464 &compact_result);
4465 if (page)
4466 goto got_pg;
4467
cc638f32
VB
4468 /*
4469 * Checks for costly allocations with __GFP_NORETRY, which
4470 * includes some THP page fault allocations
4471 */
4472 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4473 /*
4474 * If allocating entire pageblock(s) and compaction
4475 * failed because all zones are below low watermarks
4476 * or is prohibited because it recently failed at this
3f36d866
DR
4477 * order, fail immediately unless the allocator has
4478 * requested compaction and reclaim retry.
b39d0ee2
DR
4479 *
4480 * Reclaim is
4481 * - potentially very expensive because zones are far
4482 * below their low watermarks or this is part of very
4483 * bursty high order allocations,
4484 * - not guaranteed to help because isolate_freepages()
4485 * may not iterate over freed pages as part of its
4486 * linear scan, and
4487 * - unlikely to make entire pageblocks free on its
4488 * own.
4489 */
4490 if (compact_result == COMPACT_SKIPPED ||
4491 compact_result == COMPACT_DEFERRED)
4492 goto nopage;
a8161d1e 4493
a8161d1e 4494 /*
3eb2771b
VB
4495 * Looks like reclaim/compaction is worth trying, but
4496 * sync compaction could be very expensive, so keep
25160354 4497 * using async compaction.
a8161d1e 4498 */
a5508cd8 4499 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4500 }
4501 }
23771235 4502
31a6c190 4503retry:
23771235 4504 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4505 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4506 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4507
cd04ae1e
MH
4508 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4509 if (reserve_flags)
4510 alloc_flags = reserve_flags;
23771235 4511
e46e7b77 4512 /*
d6a24df0
VB
4513 * Reset the nodemask and zonelist iterators if memory policies can be
4514 * ignored. These allocations are high priority and system rather than
4515 * user oriented.
e46e7b77 4516 */
cd04ae1e 4517 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4518 ac->nodemask = NULL;
e46e7b77
MG
4519 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4520 ac->high_zoneidx, ac->nodemask);
4521 }
4522
23771235 4523 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4524 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4525 if (page)
4526 goto got_pg;
1da177e4 4527
d0164adc 4528 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4529 if (!can_direct_reclaim)
1da177e4
LT
4530 goto nopage;
4531
9a67f648
MH
4532 /* Avoid recursion of direct reclaim */
4533 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4534 goto nopage;
4535
a8161d1e
VB
4536 /* Try direct reclaim and then allocating */
4537 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4538 &did_some_progress);
4539 if (page)
4540 goto got_pg;
4541
4542 /* Try direct compaction and then allocating */
a9263751 4543 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4544 compact_priority, &compact_result);
56de7263
MG
4545 if (page)
4546 goto got_pg;
75f30861 4547
9083905a
JW
4548 /* Do not loop if specifically requested */
4549 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4550 goto nopage;
9083905a 4551
0a0337e0
MH
4552 /*
4553 * Do not retry costly high order allocations unless they are
dcda9b04 4554 * __GFP_RETRY_MAYFAIL
0a0337e0 4555 */
dcda9b04 4556 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4557 goto nopage;
0a0337e0 4558
0a0337e0 4559 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4560 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4561 goto retry;
4562
33c2d214
MH
4563 /*
4564 * It doesn't make any sense to retry for the compaction if the order-0
4565 * reclaim is not able to make any progress because the current
4566 * implementation of the compaction depends on the sufficient amount
4567 * of free memory (see __compaction_suitable)
4568 */
4569 if (did_some_progress > 0 &&
86a294a8 4570 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4571 compact_result, &compact_priority,
d9436498 4572 &compaction_retries))
33c2d214
MH
4573 goto retry;
4574
902b6281
VB
4575
4576 /* Deal with possible cpuset update races before we start OOM killing */
4577 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4578 goto retry_cpuset;
4579
9083905a
JW
4580 /* Reclaim has failed us, start killing things */
4581 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4582 if (page)
4583 goto got_pg;
4584
9a67f648 4585 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4586 if (tsk_is_oom_victim(current) &&
4587 (alloc_flags == ALLOC_OOM ||
c288983d 4588 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4589 goto nopage;
4590
9083905a 4591 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4592 if (did_some_progress) {
4593 no_progress_loops = 0;
9083905a 4594 goto retry;
0a0337e0 4595 }
9083905a 4596
1da177e4 4597nopage:
902b6281
VB
4598 /* Deal with possible cpuset update races before we fail */
4599 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4600 goto retry_cpuset;
4601
9a67f648
MH
4602 /*
4603 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4604 * we always retry
4605 */
4606 if (gfp_mask & __GFP_NOFAIL) {
4607 /*
4608 * All existing users of the __GFP_NOFAIL are blockable, so warn
4609 * of any new users that actually require GFP_NOWAIT
4610 */
4611 if (WARN_ON_ONCE(!can_direct_reclaim))
4612 goto fail;
4613
4614 /*
4615 * PF_MEMALLOC request from this context is rather bizarre
4616 * because we cannot reclaim anything and only can loop waiting
4617 * for somebody to do a work for us
4618 */
4619 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4620
4621 /*
4622 * non failing costly orders are a hard requirement which we
4623 * are not prepared for much so let's warn about these users
4624 * so that we can identify them and convert them to something
4625 * else.
4626 */
4627 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4628
6c18ba7a
MH
4629 /*
4630 * Help non-failing allocations by giving them access to memory
4631 * reserves but do not use ALLOC_NO_WATERMARKS because this
4632 * could deplete whole memory reserves which would just make
4633 * the situation worse
4634 */
4635 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4636 if (page)
4637 goto got_pg;
4638
9a67f648
MH
4639 cond_resched();
4640 goto retry;
4641 }
4642fail:
a8e99259 4643 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4644 "page allocation failure: order:%u", order);
1da177e4 4645got_pg:
072bb0aa 4646 return page;
1da177e4 4647}
11e33f6a 4648
9cd75558 4649static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4650 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4651 struct alloc_context *ac, gfp_t *alloc_mask,
4652 unsigned int *alloc_flags)
11e33f6a 4653{
9cd75558 4654 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4655 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4656 ac->nodemask = nodemask;
4657 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4658
682a3385 4659 if (cpusets_enabled()) {
9cd75558 4660 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4661 if (!ac->nodemask)
4662 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4663 else
4664 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4665 }
4666
d92a8cfc
PZ
4667 fs_reclaim_acquire(gfp_mask);
4668 fs_reclaim_release(gfp_mask);
11e33f6a 4669
d0164adc 4670 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4671
4672 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4673 return false;
11e33f6a 4674
d883c6cf
JK
4675 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4676 *alloc_flags |= ALLOC_CMA;
4677
9cd75558
MG
4678 return true;
4679}
21bb9bd1 4680
9cd75558 4681/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4682static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4683{
c9ab0c4f 4684 /* Dirty zone balancing only done in the fast path */
9cd75558 4685 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4686
e46e7b77
MG
4687 /*
4688 * The preferred zone is used for statistics but crucially it is
4689 * also used as the starting point for the zonelist iterator. It
4690 * may get reset for allocations that ignore memory policies.
4691 */
9cd75558
MG
4692 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4693 ac->high_zoneidx, ac->nodemask);
4694}
4695
4696/*
4697 * This is the 'heart' of the zoned buddy allocator.
4698 */
4699struct page *
04ec6264
VB
4700__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4701 nodemask_t *nodemask)
9cd75558
MG
4702{
4703 struct page *page;
4704 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4705 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4706 struct alloc_context ac = { };
4707
c63ae43b
MH
4708 /*
4709 * There are several places where we assume that the order value is sane
4710 * so bail out early if the request is out of bound.
4711 */
4712 if (unlikely(order >= MAX_ORDER)) {
4713 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4714 return NULL;
4715 }
4716
9cd75558 4717 gfp_mask &= gfp_allowed_mask;
f19360f0 4718 alloc_mask = gfp_mask;
04ec6264 4719 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4720 return NULL;
4721
a380b40a 4722 finalise_ac(gfp_mask, &ac);
5bb1b169 4723
6bb15450
MG
4724 /*
4725 * Forbid the first pass from falling back to types that fragment
4726 * memory until all local zones are considered.
4727 */
0a79cdad 4728 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4729
5117f45d 4730 /* First allocation attempt */
a9263751 4731 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4732 if (likely(page))
4733 goto out;
11e33f6a 4734
4fcb0971 4735 /*
7dea19f9
MH
4736 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4737 * resp. GFP_NOIO which has to be inherited for all allocation requests
4738 * from a particular context which has been marked by
4739 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4740 */
7dea19f9 4741 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4742 ac.spread_dirty_pages = false;
23f086f9 4743
4741526b
MG
4744 /*
4745 * Restore the original nodemask if it was potentially replaced with
4746 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4747 */
e47483bc 4748 if (unlikely(ac.nodemask != nodemask))
4741526b 4749 ac.nodemask = nodemask;
16096c25 4750
4fcb0971 4751 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4752
4fcb0971 4753out:
c4159a75 4754 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
60cd4bcd 4755 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
c4159a75
VD
4756 __free_pages(page, order);
4757 page = NULL;
4949148a
VD
4758 }
4759
4fcb0971
MG
4760 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4761
11e33f6a 4762 return page;
1da177e4 4763}
d239171e 4764EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4765
4766/*
9ea9a680
MH
4767 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4768 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4769 * you need to access high mem.
1da177e4 4770 */
920c7a5d 4771unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4772{
945a1113
AM
4773 struct page *page;
4774
9ea9a680 4775 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4776 if (!page)
4777 return 0;
4778 return (unsigned long) page_address(page);
4779}
1da177e4
LT
4780EXPORT_SYMBOL(__get_free_pages);
4781
920c7a5d 4782unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4783{
945a1113 4784 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4785}
1da177e4
LT
4786EXPORT_SYMBOL(get_zeroed_page);
4787
742aa7fb 4788static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4789{
742aa7fb
AL
4790 if (order == 0) /* Via pcp? */
4791 free_unref_page(page);
4792 else
4793 __free_pages_ok(page, order);
1da177e4
LT
4794}
4795
742aa7fb
AL
4796void __free_pages(struct page *page, unsigned int order)
4797{
4798 if (put_page_testzero(page))
4799 free_the_page(page, order);
4800}
1da177e4
LT
4801EXPORT_SYMBOL(__free_pages);
4802
920c7a5d 4803void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4804{
4805 if (addr != 0) {
725d704e 4806 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4807 __free_pages(virt_to_page((void *)addr), order);
4808 }
4809}
4810
4811EXPORT_SYMBOL(free_pages);
4812
b63ae8ca
AD
4813/*
4814 * Page Fragment:
4815 * An arbitrary-length arbitrary-offset area of memory which resides
4816 * within a 0 or higher order page. Multiple fragments within that page
4817 * are individually refcounted, in the page's reference counter.
4818 *
4819 * The page_frag functions below provide a simple allocation framework for
4820 * page fragments. This is used by the network stack and network device
4821 * drivers to provide a backing region of memory for use as either an
4822 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4823 */
2976db80
AD
4824static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4825 gfp_t gfp_mask)
b63ae8ca
AD
4826{
4827 struct page *page = NULL;
4828 gfp_t gfp = gfp_mask;
4829
4830#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4831 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4832 __GFP_NOMEMALLOC;
4833 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4834 PAGE_FRAG_CACHE_MAX_ORDER);
4835 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4836#endif
4837 if (unlikely(!page))
4838 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4839
4840 nc->va = page ? page_address(page) : NULL;
4841
4842 return page;
4843}
4844
2976db80 4845void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4846{
4847 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4848
742aa7fb
AL
4849 if (page_ref_sub_and_test(page, count))
4850 free_the_page(page, compound_order(page));
44fdffd7 4851}
2976db80 4852EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4853
8c2dd3e4
AD
4854void *page_frag_alloc(struct page_frag_cache *nc,
4855 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4856{
4857 unsigned int size = PAGE_SIZE;
4858 struct page *page;
4859 int offset;
4860
4861 if (unlikely(!nc->va)) {
4862refill:
2976db80 4863 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4864 if (!page)
4865 return NULL;
4866
4867#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4868 /* if size can vary use size else just use PAGE_SIZE */
4869 size = nc->size;
4870#endif
4871 /* Even if we own the page, we do not use atomic_set().
4872 * This would break get_page_unless_zero() users.
4873 */
86447726 4874 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4875
4876 /* reset page count bias and offset to start of new frag */
2f064f34 4877 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4878 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4879 nc->offset = size;
4880 }
4881
4882 offset = nc->offset - fragsz;
4883 if (unlikely(offset < 0)) {
4884 page = virt_to_page(nc->va);
4885
fe896d18 4886 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4887 goto refill;
4888
4889#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4890 /* if size can vary use size else just use PAGE_SIZE */
4891 size = nc->size;
4892#endif
4893 /* OK, page count is 0, we can safely set it */
86447726 4894 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4895
4896 /* reset page count bias and offset to start of new frag */
86447726 4897 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4898 offset = size - fragsz;
4899 }
4900
4901 nc->pagecnt_bias--;
4902 nc->offset = offset;
4903
4904 return nc->va + offset;
4905}
8c2dd3e4 4906EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4907
4908/*
4909 * Frees a page fragment allocated out of either a compound or order 0 page.
4910 */
8c2dd3e4 4911void page_frag_free(void *addr)
b63ae8ca
AD
4912{
4913 struct page *page = virt_to_head_page(addr);
4914
742aa7fb
AL
4915 if (unlikely(put_page_testzero(page)))
4916 free_the_page(page, compound_order(page));
b63ae8ca 4917}
8c2dd3e4 4918EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4919
d00181b9
KS
4920static void *make_alloc_exact(unsigned long addr, unsigned int order,
4921 size_t size)
ee85c2e1
AK
4922{
4923 if (addr) {
4924 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4925 unsigned long used = addr + PAGE_ALIGN(size);
4926
4927 split_page(virt_to_page((void *)addr), order);
4928 while (used < alloc_end) {
4929 free_page(used);
4930 used += PAGE_SIZE;
4931 }
4932 }
4933 return (void *)addr;
4934}
4935
2be0ffe2
TT
4936/**
4937 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4938 * @size: the number of bytes to allocate
63931eb9 4939 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4940 *
4941 * This function is similar to alloc_pages(), except that it allocates the
4942 * minimum number of pages to satisfy the request. alloc_pages() can only
4943 * allocate memory in power-of-two pages.
4944 *
4945 * This function is also limited by MAX_ORDER.
4946 *
4947 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4948 *
4949 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4950 */
4951void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4952{
4953 unsigned int order = get_order(size);
4954 unsigned long addr;
4955
63931eb9
VB
4956 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4957 gfp_mask &= ~__GFP_COMP;
4958
2be0ffe2 4959 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4960 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4961}
4962EXPORT_SYMBOL(alloc_pages_exact);
4963
ee85c2e1
AK
4964/**
4965 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4966 * pages on a node.
b5e6ab58 4967 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4968 * @size: the number of bytes to allocate
63931eb9 4969 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4970 *
4971 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4972 * back.
a862f68a
MR
4973 *
4974 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4975 */
e1931811 4976void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4977{
d00181b9 4978 unsigned int order = get_order(size);
63931eb9
VB
4979 struct page *p;
4980
4981 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4982 gfp_mask &= ~__GFP_COMP;
4983
4984 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4985 if (!p)
4986 return NULL;
4987 return make_alloc_exact((unsigned long)page_address(p), order, size);
4988}
ee85c2e1 4989
2be0ffe2
TT
4990/**
4991 * free_pages_exact - release memory allocated via alloc_pages_exact()
4992 * @virt: the value returned by alloc_pages_exact.
4993 * @size: size of allocation, same value as passed to alloc_pages_exact().
4994 *
4995 * Release the memory allocated by a previous call to alloc_pages_exact.
4996 */
4997void free_pages_exact(void *virt, size_t size)
4998{
4999 unsigned long addr = (unsigned long)virt;
5000 unsigned long end = addr + PAGE_ALIGN(size);
5001
5002 while (addr < end) {
5003 free_page(addr);
5004 addr += PAGE_SIZE;
5005 }
5006}
5007EXPORT_SYMBOL(free_pages_exact);
5008
e0fb5815
ZY
5009/**
5010 * nr_free_zone_pages - count number of pages beyond high watermark
5011 * @offset: The zone index of the highest zone
5012 *
a862f68a 5013 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5014 * high watermark within all zones at or below a given zone index. For each
5015 * zone, the number of pages is calculated as:
0e056eb5 5016 *
5017 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5018 *
5019 * Return: number of pages beyond high watermark.
e0fb5815 5020 */
ebec3862 5021static unsigned long nr_free_zone_pages(int offset)
1da177e4 5022{
dd1a239f 5023 struct zoneref *z;
54a6eb5c
MG
5024 struct zone *zone;
5025
e310fd43 5026 /* Just pick one node, since fallback list is circular */
ebec3862 5027 unsigned long sum = 0;
1da177e4 5028
0e88460d 5029 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5030
54a6eb5c 5031 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5032 unsigned long size = zone_managed_pages(zone);
41858966 5033 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5034 if (size > high)
5035 sum += size - high;
1da177e4
LT
5036 }
5037
5038 return sum;
5039}
5040
e0fb5815
ZY
5041/**
5042 * nr_free_buffer_pages - count number of pages beyond high watermark
5043 *
5044 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5045 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5046 *
5047 * Return: number of pages beyond high watermark within ZONE_DMA and
5048 * ZONE_NORMAL.
1da177e4 5049 */
ebec3862 5050unsigned long nr_free_buffer_pages(void)
1da177e4 5051{
af4ca457 5052 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5053}
c2f1a551 5054EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5055
e0fb5815
ZY
5056/**
5057 * nr_free_pagecache_pages - count number of pages beyond high watermark
5058 *
5059 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5060 * high watermark within all zones.
a862f68a
MR
5061 *
5062 * Return: number of pages beyond high watermark within all zones.
1da177e4 5063 */
ebec3862 5064unsigned long nr_free_pagecache_pages(void)
1da177e4 5065{
2a1e274a 5066 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5067}
08e0f6a9
CL
5068
5069static inline void show_node(struct zone *zone)
1da177e4 5070{
e5adfffc 5071 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5072 printk("Node %d ", zone_to_nid(zone));
1da177e4 5073}
1da177e4 5074
d02bd27b
IR
5075long si_mem_available(void)
5076{
5077 long available;
5078 unsigned long pagecache;
5079 unsigned long wmark_low = 0;
5080 unsigned long pages[NR_LRU_LISTS];
b29940c1 5081 unsigned long reclaimable;
d02bd27b
IR
5082 struct zone *zone;
5083 int lru;
5084
5085 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5086 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5087
5088 for_each_zone(zone)
a9214443 5089 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5090
5091 /*
5092 * Estimate the amount of memory available for userspace allocations,
5093 * without causing swapping.
5094 */
c41f012a 5095 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5096
5097 /*
5098 * Not all the page cache can be freed, otherwise the system will
5099 * start swapping. Assume at least half of the page cache, or the
5100 * low watermark worth of cache, needs to stay.
5101 */
5102 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5103 pagecache -= min(pagecache / 2, wmark_low);
5104 available += pagecache;
5105
5106 /*
b29940c1
VB
5107 * Part of the reclaimable slab and other kernel memory consists of
5108 * items that are in use, and cannot be freed. Cap this estimate at the
5109 * low watermark.
d02bd27b 5110 */
b29940c1
VB
5111 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5112 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5113 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5114
d02bd27b
IR
5115 if (available < 0)
5116 available = 0;
5117 return available;
5118}
5119EXPORT_SYMBOL_GPL(si_mem_available);
5120
1da177e4
LT
5121void si_meminfo(struct sysinfo *val)
5122{
ca79b0c2 5123 val->totalram = totalram_pages();
11fb9989 5124 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5125 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5126 val->bufferram = nr_blockdev_pages();
ca79b0c2 5127 val->totalhigh = totalhigh_pages();
1da177e4 5128 val->freehigh = nr_free_highpages();
1da177e4
LT
5129 val->mem_unit = PAGE_SIZE;
5130}
5131
5132EXPORT_SYMBOL(si_meminfo);
5133
5134#ifdef CONFIG_NUMA
5135void si_meminfo_node(struct sysinfo *val, int nid)
5136{
cdd91a77
JL
5137 int zone_type; /* needs to be signed */
5138 unsigned long managed_pages = 0;
fc2bd799
JK
5139 unsigned long managed_highpages = 0;
5140 unsigned long free_highpages = 0;
1da177e4
LT
5141 pg_data_t *pgdat = NODE_DATA(nid);
5142
cdd91a77 5143 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5144 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5145 val->totalram = managed_pages;
11fb9989 5146 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5147 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5148#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5149 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5150 struct zone *zone = &pgdat->node_zones[zone_type];
5151
5152 if (is_highmem(zone)) {
9705bea5 5153 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5154 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5155 }
5156 }
5157 val->totalhigh = managed_highpages;
5158 val->freehigh = free_highpages;
98d2b0eb 5159#else
fc2bd799
JK
5160 val->totalhigh = managed_highpages;
5161 val->freehigh = free_highpages;
98d2b0eb 5162#endif
1da177e4
LT
5163 val->mem_unit = PAGE_SIZE;
5164}
5165#endif
5166
ddd588b5 5167/*
7bf02ea2
DR
5168 * Determine whether the node should be displayed or not, depending on whether
5169 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5170 */
9af744d7 5171static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5172{
ddd588b5 5173 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5174 return false;
ddd588b5 5175
9af744d7
MH
5176 /*
5177 * no node mask - aka implicit memory numa policy. Do not bother with
5178 * the synchronization - read_mems_allowed_begin - because we do not
5179 * have to be precise here.
5180 */
5181 if (!nodemask)
5182 nodemask = &cpuset_current_mems_allowed;
5183
5184 return !node_isset(nid, *nodemask);
ddd588b5
DR
5185}
5186
1da177e4
LT
5187#define K(x) ((x) << (PAGE_SHIFT-10))
5188
377e4f16
RV
5189static void show_migration_types(unsigned char type)
5190{
5191 static const char types[MIGRATE_TYPES] = {
5192 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5193 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5194 [MIGRATE_RECLAIMABLE] = 'E',
5195 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5196#ifdef CONFIG_CMA
5197 [MIGRATE_CMA] = 'C',
5198#endif
194159fb 5199#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5200 [MIGRATE_ISOLATE] = 'I',
194159fb 5201#endif
377e4f16
RV
5202 };
5203 char tmp[MIGRATE_TYPES + 1];
5204 char *p = tmp;
5205 int i;
5206
5207 for (i = 0; i < MIGRATE_TYPES; i++) {
5208 if (type & (1 << i))
5209 *p++ = types[i];
5210 }
5211
5212 *p = '\0';
1f84a18f 5213 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5214}
5215
1da177e4
LT
5216/*
5217 * Show free area list (used inside shift_scroll-lock stuff)
5218 * We also calculate the percentage fragmentation. We do this by counting the
5219 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5220 *
5221 * Bits in @filter:
5222 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5223 * cpuset.
1da177e4 5224 */
9af744d7 5225void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5226{
d1bfcdb8 5227 unsigned long free_pcp = 0;
c7241913 5228 int cpu;
1da177e4 5229 struct zone *zone;
599d0c95 5230 pg_data_t *pgdat;
1da177e4 5231
ee99c71c 5232 for_each_populated_zone(zone) {
9af744d7 5233 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5234 continue;
d1bfcdb8 5235
761b0677
KK
5236 for_each_online_cpu(cpu)
5237 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5238 }
5239
a731286d
KM
5240 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5241 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5242 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5243 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5244 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5245 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5246 global_node_page_state(NR_ACTIVE_ANON),
5247 global_node_page_state(NR_INACTIVE_ANON),
5248 global_node_page_state(NR_ISOLATED_ANON),
5249 global_node_page_state(NR_ACTIVE_FILE),
5250 global_node_page_state(NR_INACTIVE_FILE),
5251 global_node_page_state(NR_ISOLATED_FILE),
5252 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5253 global_node_page_state(NR_FILE_DIRTY),
5254 global_node_page_state(NR_WRITEBACK),
5255 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5256 global_node_page_state(NR_SLAB_RECLAIMABLE),
5257 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5258 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5259 global_node_page_state(NR_SHMEM),
c41f012a
MH
5260 global_zone_page_state(NR_PAGETABLE),
5261 global_zone_page_state(NR_BOUNCE),
5262 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5263 free_pcp,
c41f012a 5264 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5265
599d0c95 5266 for_each_online_pgdat(pgdat) {
9af744d7 5267 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5268 continue;
5269
599d0c95
MG
5270 printk("Node %d"
5271 " active_anon:%lukB"
5272 " inactive_anon:%lukB"
5273 " active_file:%lukB"
5274 " inactive_file:%lukB"
5275 " unevictable:%lukB"
5276 " isolated(anon):%lukB"
5277 " isolated(file):%lukB"
50658e2e 5278 " mapped:%lukB"
11fb9989
MG
5279 " dirty:%lukB"
5280 " writeback:%lukB"
5281 " shmem:%lukB"
5282#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5283 " shmem_thp: %lukB"
5284 " shmem_pmdmapped: %lukB"
5285 " anon_thp: %lukB"
5286#endif
5287 " writeback_tmp:%lukB"
5288 " unstable:%lukB"
599d0c95
MG
5289 " all_unreclaimable? %s"
5290 "\n",
5291 pgdat->node_id,
5292 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5293 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5294 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5295 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5296 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5297 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5298 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5299 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5300 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5301 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5302 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5303#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5304 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5305 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5306 * HPAGE_PMD_NR),
5307 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5308#endif
11fb9989
MG
5309 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5310 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5311 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5312 "yes" : "no");
599d0c95
MG
5313 }
5314
ee99c71c 5315 for_each_populated_zone(zone) {
1da177e4
LT
5316 int i;
5317
9af744d7 5318 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5319 continue;
d1bfcdb8
KK
5320
5321 free_pcp = 0;
5322 for_each_online_cpu(cpu)
5323 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5324
1da177e4 5325 show_node(zone);
1f84a18f
JP
5326 printk(KERN_CONT
5327 "%s"
1da177e4
LT
5328 " free:%lukB"
5329 " min:%lukB"
5330 " low:%lukB"
5331 " high:%lukB"
e47b346a 5332 " reserved_highatomic:%luKB"
71c799f4
MK
5333 " active_anon:%lukB"
5334 " inactive_anon:%lukB"
5335 " active_file:%lukB"
5336 " inactive_file:%lukB"
5337 " unevictable:%lukB"
5a1c84b4 5338 " writepending:%lukB"
1da177e4 5339 " present:%lukB"
9feedc9d 5340 " managed:%lukB"
4a0aa73f 5341 " mlocked:%lukB"
c6a7f572 5342 " kernel_stack:%lukB"
4a0aa73f 5343 " pagetables:%lukB"
4a0aa73f 5344 " bounce:%lukB"
d1bfcdb8
KK
5345 " free_pcp:%lukB"
5346 " local_pcp:%ukB"
d1ce749a 5347 " free_cma:%lukB"
1da177e4
LT
5348 "\n",
5349 zone->name,
88f5acf8 5350 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5351 K(min_wmark_pages(zone)),
5352 K(low_wmark_pages(zone)),
5353 K(high_wmark_pages(zone)),
e47b346a 5354 K(zone->nr_reserved_highatomic),
71c799f4
MK
5355 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5356 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5357 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5358 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5359 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5360 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5361 K(zone->present_pages),
9705bea5 5362 K(zone_managed_pages(zone)),
4a0aa73f 5363 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5364 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5365 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5366 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5367 K(free_pcp),
5368 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5369 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5370 printk("lowmem_reserve[]:");
5371 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5372 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5373 printk(KERN_CONT "\n");
1da177e4
LT
5374 }
5375
ee99c71c 5376 for_each_populated_zone(zone) {
d00181b9
KS
5377 unsigned int order;
5378 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5379 unsigned char types[MAX_ORDER];
1da177e4 5380
9af744d7 5381 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5382 continue;
1da177e4 5383 show_node(zone);
1f84a18f 5384 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5385
5386 spin_lock_irqsave(&zone->lock, flags);
5387 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5388 struct free_area *area = &zone->free_area[order];
5389 int type;
5390
5391 nr[order] = area->nr_free;
8f9de51a 5392 total += nr[order] << order;
377e4f16
RV
5393
5394 types[order] = 0;
5395 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5396 if (!free_area_empty(area, type))
377e4f16
RV
5397 types[order] |= 1 << type;
5398 }
1da177e4
LT
5399 }
5400 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5401 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5402 printk(KERN_CONT "%lu*%lukB ",
5403 nr[order], K(1UL) << order);
377e4f16
RV
5404 if (nr[order])
5405 show_migration_types(types[order]);
5406 }
1f84a18f 5407 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5408 }
5409
949f7ec5
DR
5410 hugetlb_show_meminfo();
5411
11fb9989 5412 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5413
1da177e4
LT
5414 show_swap_cache_info();
5415}
5416
19770b32
MG
5417static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5418{
5419 zoneref->zone = zone;
5420 zoneref->zone_idx = zone_idx(zone);
5421}
5422
1da177e4
LT
5423/*
5424 * Builds allocation fallback zone lists.
1a93205b
CL
5425 *
5426 * Add all populated zones of a node to the zonelist.
1da177e4 5427 */
9d3be21b 5428static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5429{
1a93205b 5430 struct zone *zone;
bc732f1d 5431 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5432 int nr_zones = 0;
02a68a5e
CL
5433
5434 do {
2f6726e5 5435 zone_type--;
070f8032 5436 zone = pgdat->node_zones + zone_type;
6aa303de 5437 if (managed_zone(zone)) {
9d3be21b 5438 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5439 check_highest_zone(zone_type);
1da177e4 5440 }
2f6726e5 5441 } while (zone_type);
bc732f1d 5442
070f8032 5443 return nr_zones;
1da177e4
LT
5444}
5445
5446#ifdef CONFIG_NUMA
f0c0b2b8
KH
5447
5448static int __parse_numa_zonelist_order(char *s)
5449{
c9bff3ee
MH
5450 /*
5451 * We used to support different zonlists modes but they turned
5452 * out to be just not useful. Let's keep the warning in place
5453 * if somebody still use the cmd line parameter so that we do
5454 * not fail it silently
5455 */
5456 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5457 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5458 return -EINVAL;
5459 }
5460 return 0;
5461}
5462
5463static __init int setup_numa_zonelist_order(char *s)
5464{
ecb256f8
VL
5465 if (!s)
5466 return 0;
5467
c9bff3ee 5468 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5469}
5470early_param("numa_zonelist_order", setup_numa_zonelist_order);
5471
c9bff3ee
MH
5472char numa_zonelist_order[] = "Node";
5473
f0c0b2b8
KH
5474/*
5475 * sysctl handler for numa_zonelist_order
5476 */
cccad5b9 5477int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5478 void __user *buffer, size_t *length,
f0c0b2b8
KH
5479 loff_t *ppos)
5480{
c9bff3ee 5481 char *str;
f0c0b2b8
KH
5482 int ret;
5483
c9bff3ee
MH
5484 if (!write)
5485 return proc_dostring(table, write, buffer, length, ppos);
5486 str = memdup_user_nul(buffer, 16);
5487 if (IS_ERR(str))
5488 return PTR_ERR(str);
dacbde09 5489
c9bff3ee
MH
5490 ret = __parse_numa_zonelist_order(str);
5491 kfree(str);
443c6f14 5492 return ret;
f0c0b2b8
KH
5493}
5494
5495
62bc62a8 5496#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5497static int node_load[MAX_NUMNODES];
5498
1da177e4 5499/**
4dc3b16b 5500 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5501 * @node: node whose fallback list we're appending
5502 * @used_node_mask: nodemask_t of already used nodes
5503 *
5504 * We use a number of factors to determine which is the next node that should
5505 * appear on a given node's fallback list. The node should not have appeared
5506 * already in @node's fallback list, and it should be the next closest node
5507 * according to the distance array (which contains arbitrary distance values
5508 * from each node to each node in the system), and should also prefer nodes
5509 * with no CPUs, since presumably they'll have very little allocation pressure
5510 * on them otherwise.
a862f68a
MR
5511 *
5512 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5513 */
f0c0b2b8 5514static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5515{
4cf808eb 5516 int n, val;
1da177e4 5517 int min_val = INT_MAX;
00ef2d2f 5518 int best_node = NUMA_NO_NODE;
a70f7302 5519 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5520
4cf808eb
LT
5521 /* Use the local node if we haven't already */
5522 if (!node_isset(node, *used_node_mask)) {
5523 node_set(node, *used_node_mask);
5524 return node;
5525 }
1da177e4 5526
4b0ef1fe 5527 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5528
5529 /* Don't want a node to appear more than once */
5530 if (node_isset(n, *used_node_mask))
5531 continue;
5532
1da177e4
LT
5533 /* Use the distance array to find the distance */
5534 val = node_distance(node, n);
5535
4cf808eb
LT
5536 /* Penalize nodes under us ("prefer the next node") */
5537 val += (n < node);
5538
1da177e4 5539 /* Give preference to headless and unused nodes */
a70f7302
RR
5540 tmp = cpumask_of_node(n);
5541 if (!cpumask_empty(tmp))
1da177e4
LT
5542 val += PENALTY_FOR_NODE_WITH_CPUS;
5543
5544 /* Slight preference for less loaded node */
5545 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5546 val += node_load[n];
5547
5548 if (val < min_val) {
5549 min_val = val;
5550 best_node = n;
5551 }
5552 }
5553
5554 if (best_node >= 0)
5555 node_set(best_node, *used_node_mask);
5556
5557 return best_node;
5558}
5559
f0c0b2b8
KH
5560
5561/*
5562 * Build zonelists ordered by node and zones within node.
5563 * This results in maximum locality--normal zone overflows into local
5564 * DMA zone, if any--but risks exhausting DMA zone.
5565 */
9d3be21b
MH
5566static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5567 unsigned nr_nodes)
1da177e4 5568{
9d3be21b
MH
5569 struct zoneref *zonerefs;
5570 int i;
5571
5572 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5573
5574 for (i = 0; i < nr_nodes; i++) {
5575 int nr_zones;
5576
5577 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5578
9d3be21b
MH
5579 nr_zones = build_zonerefs_node(node, zonerefs);
5580 zonerefs += nr_zones;
5581 }
5582 zonerefs->zone = NULL;
5583 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5584}
5585
523b9458
CL
5586/*
5587 * Build gfp_thisnode zonelists
5588 */
5589static void build_thisnode_zonelists(pg_data_t *pgdat)
5590{
9d3be21b
MH
5591 struct zoneref *zonerefs;
5592 int nr_zones;
523b9458 5593
9d3be21b
MH
5594 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5595 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5596 zonerefs += nr_zones;
5597 zonerefs->zone = NULL;
5598 zonerefs->zone_idx = 0;
523b9458
CL
5599}
5600
f0c0b2b8
KH
5601/*
5602 * Build zonelists ordered by zone and nodes within zones.
5603 * This results in conserving DMA zone[s] until all Normal memory is
5604 * exhausted, but results in overflowing to remote node while memory
5605 * may still exist in local DMA zone.
5606 */
f0c0b2b8 5607
f0c0b2b8
KH
5608static void build_zonelists(pg_data_t *pgdat)
5609{
9d3be21b
MH
5610 static int node_order[MAX_NUMNODES];
5611 int node, load, nr_nodes = 0;
1da177e4 5612 nodemask_t used_mask;
f0c0b2b8 5613 int local_node, prev_node;
1da177e4
LT
5614
5615 /* NUMA-aware ordering of nodes */
5616 local_node = pgdat->node_id;
62bc62a8 5617 load = nr_online_nodes;
1da177e4
LT
5618 prev_node = local_node;
5619 nodes_clear(used_mask);
f0c0b2b8 5620
f0c0b2b8 5621 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5622 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5623 /*
5624 * We don't want to pressure a particular node.
5625 * So adding penalty to the first node in same
5626 * distance group to make it round-robin.
5627 */
957f822a
DR
5628 if (node_distance(local_node, node) !=
5629 node_distance(local_node, prev_node))
f0c0b2b8
KH
5630 node_load[node] = load;
5631
9d3be21b 5632 node_order[nr_nodes++] = node;
1da177e4
LT
5633 prev_node = node;
5634 load--;
1da177e4 5635 }
523b9458 5636
9d3be21b 5637 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5638 build_thisnode_zonelists(pgdat);
1da177e4
LT
5639}
5640
7aac7898
LS
5641#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5642/*
5643 * Return node id of node used for "local" allocations.
5644 * I.e., first node id of first zone in arg node's generic zonelist.
5645 * Used for initializing percpu 'numa_mem', which is used primarily
5646 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5647 */
5648int local_memory_node(int node)
5649{
c33d6c06 5650 struct zoneref *z;
7aac7898 5651
c33d6c06 5652 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5653 gfp_zone(GFP_KERNEL),
c33d6c06 5654 NULL);
c1093b74 5655 return zone_to_nid(z->zone);
7aac7898
LS
5656}
5657#endif
f0c0b2b8 5658
6423aa81
JK
5659static void setup_min_unmapped_ratio(void);
5660static void setup_min_slab_ratio(void);
1da177e4
LT
5661#else /* CONFIG_NUMA */
5662
f0c0b2b8 5663static void build_zonelists(pg_data_t *pgdat)
1da177e4 5664{
19655d34 5665 int node, local_node;
9d3be21b
MH
5666 struct zoneref *zonerefs;
5667 int nr_zones;
1da177e4
LT
5668
5669 local_node = pgdat->node_id;
1da177e4 5670
9d3be21b
MH
5671 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5672 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5673 zonerefs += nr_zones;
1da177e4 5674
54a6eb5c
MG
5675 /*
5676 * Now we build the zonelist so that it contains the zones
5677 * of all the other nodes.
5678 * We don't want to pressure a particular node, so when
5679 * building the zones for node N, we make sure that the
5680 * zones coming right after the local ones are those from
5681 * node N+1 (modulo N)
5682 */
5683 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5684 if (!node_online(node))
5685 continue;
9d3be21b
MH
5686 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5687 zonerefs += nr_zones;
1da177e4 5688 }
54a6eb5c
MG
5689 for (node = 0; node < local_node; node++) {
5690 if (!node_online(node))
5691 continue;
9d3be21b
MH
5692 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5693 zonerefs += nr_zones;
54a6eb5c
MG
5694 }
5695
9d3be21b
MH
5696 zonerefs->zone = NULL;
5697 zonerefs->zone_idx = 0;
1da177e4
LT
5698}
5699
5700#endif /* CONFIG_NUMA */
5701
99dcc3e5
CL
5702/*
5703 * Boot pageset table. One per cpu which is going to be used for all
5704 * zones and all nodes. The parameters will be set in such a way
5705 * that an item put on a list will immediately be handed over to
5706 * the buddy list. This is safe since pageset manipulation is done
5707 * with interrupts disabled.
5708 *
5709 * The boot_pagesets must be kept even after bootup is complete for
5710 * unused processors and/or zones. They do play a role for bootstrapping
5711 * hotplugged processors.
5712 *
5713 * zoneinfo_show() and maybe other functions do
5714 * not check if the processor is online before following the pageset pointer.
5715 * Other parts of the kernel may not check if the zone is available.
5716 */
5717static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5718static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5719static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5720
11cd8638 5721static void __build_all_zonelists(void *data)
1da177e4 5722{
6811378e 5723 int nid;
afb6ebb3 5724 int __maybe_unused cpu;
9adb62a5 5725 pg_data_t *self = data;
b93e0f32
MH
5726 static DEFINE_SPINLOCK(lock);
5727
5728 spin_lock(&lock);
9276b1bc 5729
7f9cfb31
BL
5730#ifdef CONFIG_NUMA
5731 memset(node_load, 0, sizeof(node_load));
5732#endif
9adb62a5 5733
c1152583
WY
5734 /*
5735 * This node is hotadded and no memory is yet present. So just
5736 * building zonelists is fine - no need to touch other nodes.
5737 */
9adb62a5
JL
5738 if (self && !node_online(self->node_id)) {
5739 build_zonelists(self);
c1152583
WY
5740 } else {
5741 for_each_online_node(nid) {
5742 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5743
c1152583
WY
5744 build_zonelists(pgdat);
5745 }
99dcc3e5 5746
7aac7898
LS
5747#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5748 /*
5749 * We now know the "local memory node" for each node--
5750 * i.e., the node of the first zone in the generic zonelist.
5751 * Set up numa_mem percpu variable for on-line cpus. During
5752 * boot, only the boot cpu should be on-line; we'll init the
5753 * secondary cpus' numa_mem as they come on-line. During
5754 * node/memory hotplug, we'll fixup all on-line cpus.
5755 */
d9c9a0b9 5756 for_each_online_cpu(cpu)
7aac7898 5757 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5758#endif
d9c9a0b9 5759 }
b93e0f32
MH
5760
5761 spin_unlock(&lock);
6811378e
YG
5762}
5763
061f67bc
RV
5764static noinline void __init
5765build_all_zonelists_init(void)
5766{
afb6ebb3
MH
5767 int cpu;
5768
061f67bc 5769 __build_all_zonelists(NULL);
afb6ebb3
MH
5770
5771 /*
5772 * Initialize the boot_pagesets that are going to be used
5773 * for bootstrapping processors. The real pagesets for
5774 * each zone will be allocated later when the per cpu
5775 * allocator is available.
5776 *
5777 * boot_pagesets are used also for bootstrapping offline
5778 * cpus if the system is already booted because the pagesets
5779 * are needed to initialize allocators on a specific cpu too.
5780 * F.e. the percpu allocator needs the page allocator which
5781 * needs the percpu allocator in order to allocate its pagesets
5782 * (a chicken-egg dilemma).
5783 */
5784 for_each_possible_cpu(cpu)
5785 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5786
061f67bc
RV
5787 mminit_verify_zonelist();
5788 cpuset_init_current_mems_allowed();
5789}
5790
4eaf3f64 5791/*
4eaf3f64 5792 * unless system_state == SYSTEM_BOOTING.
061f67bc 5793 *
72675e13 5794 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5795 * [protected by SYSTEM_BOOTING].
4eaf3f64 5796 */
72675e13 5797void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5798{
5799 if (system_state == SYSTEM_BOOTING) {
061f67bc 5800 build_all_zonelists_init();
6811378e 5801 } else {
11cd8638 5802 __build_all_zonelists(pgdat);
6811378e
YG
5803 /* cpuset refresh routine should be here */
5804 }
bd1e22b8 5805 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5806 /*
5807 * Disable grouping by mobility if the number of pages in the
5808 * system is too low to allow the mechanism to work. It would be
5809 * more accurate, but expensive to check per-zone. This check is
5810 * made on memory-hotadd so a system can start with mobility
5811 * disabled and enable it later
5812 */
d9c23400 5813 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5814 page_group_by_mobility_disabled = 1;
5815 else
5816 page_group_by_mobility_disabled = 0;
5817
ce0725f7 5818 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5819 nr_online_nodes,
756a025f
JP
5820 page_group_by_mobility_disabled ? "off" : "on",
5821 vm_total_pages);
f0c0b2b8 5822#ifdef CONFIG_NUMA
f88dfff5 5823 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5824#endif
1da177e4
LT
5825}
5826
a9a9e77f
PT
5827/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5828static bool __meminit
5829overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5830{
5831#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5832 static struct memblock_region *r;
5833
5834 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5835 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5836 for_each_memblock(memory, r) {
5837 if (*pfn < memblock_region_memory_end_pfn(r))
5838 break;
5839 }
5840 }
5841 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5842 memblock_is_mirror(r)) {
5843 *pfn = memblock_region_memory_end_pfn(r);
5844 return true;
5845 }
5846 }
5847#endif
5848 return false;
5849}
5850
3f135355
KS
5851#ifdef CONFIG_SPARSEMEM
5852/* Skip PFNs that belong to non-present sections */
5853static inline __meminit unsigned long next_pfn(unsigned long pfn)
5854{
5855 unsigned long section_nr;
5856
5857 section_nr = pfn_to_section_nr(++pfn);
5858 if (present_section_nr(section_nr))
5859 return pfn;
5860
5861 while (++section_nr <= __highest_present_section_nr) {
5862 if (present_section_nr(section_nr))
5863 return section_nr_to_pfn(section_nr);
5864 }
5865
5866 return -1;
5867}
5868#else
5869static inline __meminit unsigned long next_pfn(unsigned long pfn)
5870{
5871 return pfn++;
5872}
5873#endif
5874
1da177e4
LT
5875/*
5876 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5877 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5878 * done. Non-atomic initialization, single-pass.
5879 */
c09b4240 5880void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5881 unsigned long start_pfn, enum memmap_context context,
5882 struct vmem_altmap *altmap)
1da177e4 5883{
a9a9e77f 5884 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5885 struct page *page;
1da177e4 5886
22b31eec
HD
5887 if (highest_memmap_pfn < end_pfn - 1)
5888 highest_memmap_pfn = end_pfn - 1;
5889
966cf44f 5890#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5891 /*
5892 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5893 * memory. We limit the total number of pages to initialize to just
5894 * those that might contain the memory mapping. We will defer the
5895 * ZONE_DEVICE page initialization until after we have released
5896 * the hotplug lock.
4b94ffdc 5897 */
966cf44f
AD
5898 if (zone == ZONE_DEVICE) {
5899 if (!altmap)
5900 return;
5901
5902 if (start_pfn == altmap->base_pfn)
5903 start_pfn += altmap->reserve;
5904 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5905 }
5906#endif
4b94ffdc 5907
cbe8dd4a 5908 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5909 /*
b72d0ffb
AM
5910 * There can be holes in boot-time mem_map[]s handed to this
5911 * function. They do not exist on hotplugged memory.
a2f3aa02 5912 */
a9a9e77f 5913 if (context == MEMMAP_EARLY) {
3f135355
KS
5914 if (!early_pfn_valid(pfn)) {
5915 pfn = next_pfn(pfn) - 1;
b72d0ffb 5916 continue;
3f135355 5917 }
a9a9e77f
PT
5918 if (!early_pfn_in_nid(pfn, nid))
5919 continue;
5920 if (overlap_memmap_init(zone, &pfn))
5921 continue;
5922 if (defer_init(nid, pfn, end_pfn))
5923 break;
a2f3aa02 5924 }
ac5d2539 5925
d0dc12e8
PT
5926 page = pfn_to_page(pfn);
5927 __init_single_page(page, pfn, zone, nid);
5928 if (context == MEMMAP_HOTPLUG)
d483da5b 5929 __SetPageReserved(page);
d0dc12e8 5930
ac5d2539
MG
5931 /*
5932 * Mark the block movable so that blocks are reserved for
5933 * movable at startup. This will force kernel allocations
5934 * to reserve their blocks rather than leaking throughout
5935 * the address space during boot when many long-lived
974a786e 5936 * kernel allocations are made.
ac5d2539
MG
5937 *
5938 * bitmap is created for zone's valid pfn range. but memmap
5939 * can be created for invalid pages (for alignment)
5940 * check here not to call set_pageblock_migratetype() against
5941 * pfn out of zone.
5942 */
5943 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5944 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5945 cond_resched();
ac5d2539 5946 }
1da177e4
LT
5947 }
5948}
5949
966cf44f
AD
5950#ifdef CONFIG_ZONE_DEVICE
5951void __ref memmap_init_zone_device(struct zone *zone,
5952 unsigned long start_pfn,
5953 unsigned long size,
5954 struct dev_pagemap *pgmap)
5955{
5956 unsigned long pfn, end_pfn = start_pfn + size;
5957 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 5958 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
5959 unsigned long zone_idx = zone_idx(zone);
5960 unsigned long start = jiffies;
5961 int nid = pgdat->node_id;
5962
46d945ae 5963 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
5964 return;
5965
5966 /*
5967 * The call to memmap_init_zone should have already taken care
5968 * of the pages reserved for the memmap, so we can just jump to
5969 * the end of that region and start processing the device pages.
5970 */
514caf23 5971 if (altmap) {
966cf44f
AD
5972 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5973 size = end_pfn - start_pfn;
5974 }
5975
5976 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5977 struct page *page = pfn_to_page(pfn);
5978
5979 __init_single_page(page, pfn, zone_idx, nid);
5980
5981 /*
5982 * Mark page reserved as it will need to wait for onlining
5983 * phase for it to be fully associated with a zone.
5984 *
5985 * We can use the non-atomic __set_bit operation for setting
5986 * the flag as we are still initializing the pages.
5987 */
5988 __SetPageReserved(page);
5989
5990 /*
8a164fef
CH
5991 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5992 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5993 * ever freed or placed on a driver-private list.
966cf44f
AD
5994 */
5995 page->pgmap = pgmap;
8a164fef 5996 page->zone_device_data = NULL;
966cf44f
AD
5997
5998 /*
5999 * Mark the block movable so that blocks are reserved for
6000 * movable at startup. This will force kernel allocations
6001 * to reserve their blocks rather than leaking throughout
6002 * the address space during boot when many long-lived
6003 * kernel allocations are made.
6004 *
6005 * bitmap is created for zone's valid pfn range. but memmap
6006 * can be created for invalid pages (for alignment)
6007 * check here not to call set_pageblock_migratetype() against
6008 * pfn out of zone.
6009 *
6010 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 6011 * because this is done early in section_activate()
966cf44f
AD
6012 */
6013 if (!(pfn & (pageblock_nr_pages - 1))) {
6014 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6015 cond_resched();
6016 }
6017 }
6018
fdc029b1 6019 pr_info("%s initialised %lu pages in %ums\n", __func__,
966cf44f
AD
6020 size, jiffies_to_msecs(jiffies - start));
6021}
6022
6023#endif
1e548deb 6024static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6025{
7aeb09f9 6026 unsigned int order, t;
b2a0ac88
MG
6027 for_each_migratetype_order(order, t) {
6028 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6029 zone->free_area[order].nr_free = 0;
6030 }
6031}
6032
dfb3ccd0
PT
6033void __meminit __weak memmap_init(unsigned long size, int nid,
6034 unsigned long zone, unsigned long start_pfn)
6035{
6036 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6037}
1da177e4 6038
7cd2b0a3 6039static int zone_batchsize(struct zone *zone)
e7c8d5c9 6040{
3a6be87f 6041#ifdef CONFIG_MMU
e7c8d5c9
CL
6042 int batch;
6043
6044 /*
6045 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6046 * size of the zone.
e7c8d5c9 6047 */
9705bea5 6048 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6049 /* But no more than a meg. */
6050 if (batch * PAGE_SIZE > 1024 * 1024)
6051 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6052 batch /= 4; /* We effectively *= 4 below */
6053 if (batch < 1)
6054 batch = 1;
6055
6056 /*
0ceaacc9
NP
6057 * Clamp the batch to a 2^n - 1 value. Having a power
6058 * of 2 value was found to be more likely to have
6059 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6060 *
0ceaacc9
NP
6061 * For example if 2 tasks are alternately allocating
6062 * batches of pages, one task can end up with a lot
6063 * of pages of one half of the possible page colors
6064 * and the other with pages of the other colors.
e7c8d5c9 6065 */
9155203a 6066 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6067
e7c8d5c9 6068 return batch;
3a6be87f
DH
6069
6070#else
6071 /* The deferral and batching of frees should be suppressed under NOMMU
6072 * conditions.
6073 *
6074 * The problem is that NOMMU needs to be able to allocate large chunks
6075 * of contiguous memory as there's no hardware page translation to
6076 * assemble apparent contiguous memory from discontiguous pages.
6077 *
6078 * Queueing large contiguous runs of pages for batching, however,
6079 * causes the pages to actually be freed in smaller chunks. As there
6080 * can be a significant delay between the individual batches being
6081 * recycled, this leads to the once large chunks of space being
6082 * fragmented and becoming unavailable for high-order allocations.
6083 */
6084 return 0;
6085#endif
e7c8d5c9
CL
6086}
6087
8d7a8fa9
CS
6088/*
6089 * pcp->high and pcp->batch values are related and dependent on one another:
6090 * ->batch must never be higher then ->high.
6091 * The following function updates them in a safe manner without read side
6092 * locking.
6093 *
6094 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6095 * those fields changing asynchronously (acording the the above rule).
6096 *
6097 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6098 * outside of boot time (or some other assurance that no concurrent updaters
6099 * exist).
6100 */
6101static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6102 unsigned long batch)
6103{
6104 /* start with a fail safe value for batch */
6105 pcp->batch = 1;
6106 smp_wmb();
6107
6108 /* Update high, then batch, in order */
6109 pcp->high = high;
6110 smp_wmb();
6111
6112 pcp->batch = batch;
6113}
6114
3664033c 6115/* a companion to pageset_set_high() */
4008bab7
CS
6116static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6117{
8d7a8fa9 6118 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6119}
6120
88c90dbc 6121static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6122{
6123 struct per_cpu_pages *pcp;
5f8dcc21 6124 int migratetype;
2caaad41 6125
1c6fe946
MD
6126 memset(p, 0, sizeof(*p));
6127
3dfa5721 6128 pcp = &p->pcp;
5f8dcc21
MG
6129 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6130 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6131}
6132
88c90dbc
CS
6133static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6134{
6135 pageset_init(p);
6136 pageset_set_batch(p, batch);
6137}
6138
8ad4b1fb 6139/*
3664033c 6140 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6141 * to the value high for the pageset p.
6142 */
3664033c 6143static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6144 unsigned long high)
6145{
8d7a8fa9
CS
6146 unsigned long batch = max(1UL, high / 4);
6147 if ((high / 4) > (PAGE_SHIFT * 8))
6148 batch = PAGE_SHIFT * 8;
8ad4b1fb 6149
8d7a8fa9 6150 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6151}
6152
7cd2b0a3
DR
6153static void pageset_set_high_and_batch(struct zone *zone,
6154 struct per_cpu_pageset *pcp)
56cef2b8 6155{
56cef2b8 6156 if (percpu_pagelist_fraction)
3664033c 6157 pageset_set_high(pcp,
9705bea5 6158 (zone_managed_pages(zone) /
56cef2b8
CS
6159 percpu_pagelist_fraction));
6160 else
6161 pageset_set_batch(pcp, zone_batchsize(zone));
6162}
6163
169f6c19
CS
6164static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6165{
6166 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6167
6168 pageset_init(pcp);
6169 pageset_set_high_and_batch(zone, pcp);
6170}
6171
72675e13 6172void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6173{
6174 int cpu;
319774e2 6175 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6176 for_each_possible_cpu(cpu)
6177 zone_pageset_init(zone, cpu);
319774e2
WF
6178}
6179
2caaad41 6180/*
99dcc3e5
CL
6181 * Allocate per cpu pagesets and initialize them.
6182 * Before this call only boot pagesets were available.
e7c8d5c9 6183 */
99dcc3e5 6184void __init setup_per_cpu_pageset(void)
e7c8d5c9 6185{
b4911ea2 6186 struct pglist_data *pgdat;
99dcc3e5 6187 struct zone *zone;
e7c8d5c9 6188
319774e2
WF
6189 for_each_populated_zone(zone)
6190 setup_zone_pageset(zone);
b4911ea2
MG
6191
6192 for_each_online_pgdat(pgdat)
6193 pgdat->per_cpu_nodestats =
6194 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6195}
6196
c09b4240 6197static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6198{
99dcc3e5
CL
6199 /*
6200 * per cpu subsystem is not up at this point. The following code
6201 * relies on the ability of the linker to provide the
6202 * offset of a (static) per cpu variable into the per cpu area.
6203 */
6204 zone->pageset = &boot_pageset;
ed8ece2e 6205
b38a8725 6206 if (populated_zone(zone))
99dcc3e5
CL
6207 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6208 zone->name, zone->present_pages,
6209 zone_batchsize(zone));
ed8ece2e
DH
6210}
6211
dc0bbf3b 6212void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6213 unsigned long zone_start_pfn,
b171e409 6214 unsigned long size)
ed8ece2e
DH
6215{
6216 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6217 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6218
8f416836
WY
6219 if (zone_idx > pgdat->nr_zones)
6220 pgdat->nr_zones = zone_idx;
ed8ece2e 6221
ed8ece2e
DH
6222 zone->zone_start_pfn = zone_start_pfn;
6223
708614e6
MG
6224 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6225 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6226 pgdat->node_id,
6227 (unsigned long)zone_idx(zone),
6228 zone_start_pfn, (zone_start_pfn + size));
6229
1e548deb 6230 zone_init_free_lists(zone);
9dcb8b68 6231 zone->initialized = 1;
ed8ece2e
DH
6232}
6233
0ee332c1 6234#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6235#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6236
c713216d
MG
6237/*
6238 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6239 */
8a942fde
MG
6240int __meminit __early_pfn_to_nid(unsigned long pfn,
6241 struct mminit_pfnnid_cache *state)
c713216d 6242{
c13291a5 6243 unsigned long start_pfn, end_pfn;
e76b63f8 6244 int nid;
7c243c71 6245
8a942fde
MG
6246 if (state->last_start <= pfn && pfn < state->last_end)
6247 return state->last_nid;
c713216d 6248
e76b63f8 6249 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6250 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6251 state->last_start = start_pfn;
6252 state->last_end = end_pfn;
6253 state->last_nid = nid;
e76b63f8
YL
6254 }
6255
6256 return nid;
c713216d
MG
6257}
6258#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6259
c713216d 6260/**
6782832e 6261 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6262 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6263 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6264 *
7d018176
ZZ
6265 * If an architecture guarantees that all ranges registered contain no holes
6266 * and may be freed, this this function may be used instead of calling
6267 * memblock_free_early_nid() manually.
c713216d 6268 */
c13291a5 6269void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6270{
c13291a5
TH
6271 unsigned long start_pfn, end_pfn;
6272 int i, this_nid;
edbe7d23 6273
c13291a5
TH
6274 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6275 start_pfn = min(start_pfn, max_low_pfn);
6276 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6277
c13291a5 6278 if (start_pfn < end_pfn)
6782832e
SS
6279 memblock_free_early_nid(PFN_PHYS(start_pfn),
6280 (end_pfn - start_pfn) << PAGE_SHIFT,
6281 this_nid);
edbe7d23 6282 }
edbe7d23 6283}
edbe7d23 6284
c713216d
MG
6285/**
6286 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6287 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6288 *
7d018176
ZZ
6289 * If an architecture guarantees that all ranges registered contain no holes and may
6290 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6291 */
6292void __init sparse_memory_present_with_active_regions(int nid)
6293{
c13291a5
TH
6294 unsigned long start_pfn, end_pfn;
6295 int i, this_nid;
c713216d 6296
c13291a5
TH
6297 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6298 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6299}
6300
6301/**
6302 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6303 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6304 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6305 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6306 *
6307 * It returns the start and end page frame of a node based on information
7d018176 6308 * provided by memblock_set_node(). If called for a node
c713216d 6309 * with no available memory, a warning is printed and the start and end
88ca3b94 6310 * PFNs will be 0.
c713216d 6311 */
bbe5d993 6312void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6313 unsigned long *start_pfn, unsigned long *end_pfn)
6314{
c13291a5 6315 unsigned long this_start_pfn, this_end_pfn;
c713216d 6316 int i;
c13291a5 6317
c713216d
MG
6318 *start_pfn = -1UL;
6319 *end_pfn = 0;
6320
c13291a5
TH
6321 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6322 *start_pfn = min(*start_pfn, this_start_pfn);
6323 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6324 }
6325
633c0666 6326 if (*start_pfn == -1UL)
c713216d 6327 *start_pfn = 0;
c713216d
MG
6328}
6329
2a1e274a
MG
6330/*
6331 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6332 * assumption is made that zones within a node are ordered in monotonic
6333 * increasing memory addresses so that the "highest" populated zone is used
6334 */
b69a7288 6335static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6336{
6337 int zone_index;
6338 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6339 if (zone_index == ZONE_MOVABLE)
6340 continue;
6341
6342 if (arch_zone_highest_possible_pfn[zone_index] >
6343 arch_zone_lowest_possible_pfn[zone_index])
6344 break;
6345 }
6346
6347 VM_BUG_ON(zone_index == -1);
6348 movable_zone = zone_index;
6349}
6350
6351/*
6352 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6353 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6354 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6355 * in each node depending on the size of each node and how evenly kernelcore
6356 * is distributed. This helper function adjusts the zone ranges
6357 * provided by the architecture for a given node by using the end of the
6358 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6359 * zones within a node are in order of monotonic increases memory addresses
6360 */
bbe5d993 6361static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6362 unsigned long zone_type,
6363 unsigned long node_start_pfn,
6364 unsigned long node_end_pfn,
6365 unsigned long *zone_start_pfn,
6366 unsigned long *zone_end_pfn)
6367{
6368 /* Only adjust if ZONE_MOVABLE is on this node */
6369 if (zone_movable_pfn[nid]) {
6370 /* Size ZONE_MOVABLE */
6371 if (zone_type == ZONE_MOVABLE) {
6372 *zone_start_pfn = zone_movable_pfn[nid];
6373 *zone_end_pfn = min(node_end_pfn,
6374 arch_zone_highest_possible_pfn[movable_zone]);
6375
e506b996
XQ
6376 /* Adjust for ZONE_MOVABLE starting within this range */
6377 } else if (!mirrored_kernelcore &&
6378 *zone_start_pfn < zone_movable_pfn[nid] &&
6379 *zone_end_pfn > zone_movable_pfn[nid]) {
6380 *zone_end_pfn = zone_movable_pfn[nid];
6381
2a1e274a
MG
6382 /* Check if this whole range is within ZONE_MOVABLE */
6383 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6384 *zone_start_pfn = *zone_end_pfn;
6385 }
6386}
6387
c713216d
MG
6388/*
6389 * Return the number of pages a zone spans in a node, including holes
6390 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6391 */
bbe5d993 6392static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6393 unsigned long zone_type,
7960aedd
ZY
6394 unsigned long node_start_pfn,
6395 unsigned long node_end_pfn,
d91749c1
TI
6396 unsigned long *zone_start_pfn,
6397 unsigned long *zone_end_pfn,
c713216d
MG
6398 unsigned long *ignored)
6399{
299c83dc
LF
6400 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6401 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6402 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6403 if (!node_start_pfn && !node_end_pfn)
6404 return 0;
6405
7960aedd 6406 /* Get the start and end of the zone */
299c83dc
LF
6407 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6408 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6409 adjust_zone_range_for_zone_movable(nid, zone_type,
6410 node_start_pfn, node_end_pfn,
d91749c1 6411 zone_start_pfn, zone_end_pfn);
c713216d
MG
6412
6413 /* Check that this node has pages within the zone's required range */
d91749c1 6414 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6415 return 0;
6416
6417 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6418 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6419 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6420
6421 /* Return the spanned pages */
d91749c1 6422 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6423}
6424
6425/*
6426 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6427 * then all holes in the requested range will be accounted for.
c713216d 6428 */
bbe5d993 6429unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6430 unsigned long range_start_pfn,
6431 unsigned long range_end_pfn)
6432{
96e907d1
TH
6433 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6434 unsigned long start_pfn, end_pfn;
6435 int i;
c713216d 6436
96e907d1
TH
6437 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6438 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6439 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6440 nr_absent -= end_pfn - start_pfn;
c713216d 6441 }
96e907d1 6442 return nr_absent;
c713216d
MG
6443}
6444
6445/**
6446 * absent_pages_in_range - Return number of page frames in holes within a range
6447 * @start_pfn: The start PFN to start searching for holes
6448 * @end_pfn: The end PFN to stop searching for holes
6449 *
a862f68a 6450 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6451 */
6452unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6453 unsigned long end_pfn)
6454{
6455 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6456}
6457
6458/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6459static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6460 unsigned long zone_type,
7960aedd
ZY
6461 unsigned long node_start_pfn,
6462 unsigned long node_end_pfn,
c713216d
MG
6463 unsigned long *ignored)
6464{
96e907d1
TH
6465 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6466 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6467 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6468 unsigned long nr_absent;
9c7cd687 6469
b5685e92 6470 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6471 if (!node_start_pfn && !node_end_pfn)
6472 return 0;
6473
96e907d1
TH
6474 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6475 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6476
2a1e274a
MG
6477 adjust_zone_range_for_zone_movable(nid, zone_type,
6478 node_start_pfn, node_end_pfn,
6479 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6480 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6481
6482 /*
6483 * ZONE_MOVABLE handling.
6484 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6485 * and vice versa.
6486 */
e506b996
XQ
6487 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6488 unsigned long start_pfn, end_pfn;
6489 struct memblock_region *r;
6490
6491 for_each_memblock(memory, r) {
6492 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6493 zone_start_pfn, zone_end_pfn);
6494 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6495 zone_start_pfn, zone_end_pfn);
6496
6497 if (zone_type == ZONE_MOVABLE &&
6498 memblock_is_mirror(r))
6499 nr_absent += end_pfn - start_pfn;
6500
6501 if (zone_type == ZONE_NORMAL &&
6502 !memblock_is_mirror(r))
6503 nr_absent += end_pfn - start_pfn;
342332e6
TI
6504 }
6505 }
6506
6507 return nr_absent;
c713216d 6508}
0e0b864e 6509
0ee332c1 6510#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6511static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6512 unsigned long zone_type,
7960aedd
ZY
6513 unsigned long node_start_pfn,
6514 unsigned long node_end_pfn,
d91749c1
TI
6515 unsigned long *zone_start_pfn,
6516 unsigned long *zone_end_pfn,
c713216d
MG
6517 unsigned long *zones_size)
6518{
d91749c1
TI
6519 unsigned int zone;
6520
6521 *zone_start_pfn = node_start_pfn;
6522 for (zone = 0; zone < zone_type; zone++)
6523 *zone_start_pfn += zones_size[zone];
6524
6525 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6526
c713216d
MG
6527 return zones_size[zone_type];
6528}
6529
bbe5d993 6530static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6531 unsigned long zone_type,
7960aedd
ZY
6532 unsigned long node_start_pfn,
6533 unsigned long node_end_pfn,
c713216d
MG
6534 unsigned long *zholes_size)
6535{
6536 if (!zholes_size)
6537 return 0;
6538
6539 return zholes_size[zone_type];
6540}
20e6926d 6541
0ee332c1 6542#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6543
bbe5d993 6544static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6545 unsigned long node_start_pfn,
6546 unsigned long node_end_pfn,
6547 unsigned long *zones_size,
6548 unsigned long *zholes_size)
c713216d 6549{
febd5949 6550 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6551 enum zone_type i;
6552
febd5949
GZ
6553 for (i = 0; i < MAX_NR_ZONES; i++) {
6554 struct zone *zone = pgdat->node_zones + i;
d91749c1 6555 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6556 unsigned long size, real_size;
c713216d 6557
febd5949
GZ
6558 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6559 node_start_pfn,
6560 node_end_pfn,
d91749c1
TI
6561 &zone_start_pfn,
6562 &zone_end_pfn,
febd5949
GZ
6563 zones_size);
6564 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6565 node_start_pfn, node_end_pfn,
6566 zholes_size);
d91749c1
TI
6567 if (size)
6568 zone->zone_start_pfn = zone_start_pfn;
6569 else
6570 zone->zone_start_pfn = 0;
febd5949
GZ
6571 zone->spanned_pages = size;
6572 zone->present_pages = real_size;
6573
6574 totalpages += size;
6575 realtotalpages += real_size;
6576 }
6577
6578 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6579 pgdat->node_present_pages = realtotalpages;
6580 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6581 realtotalpages);
6582}
6583
835c134e
MG
6584#ifndef CONFIG_SPARSEMEM
6585/*
6586 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6587 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6588 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6589 * round what is now in bits to nearest long in bits, then return it in
6590 * bytes.
6591 */
7c45512d 6592static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6593{
6594 unsigned long usemapsize;
6595
7c45512d 6596 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6597 usemapsize = roundup(zonesize, pageblock_nr_pages);
6598 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6599 usemapsize *= NR_PAGEBLOCK_BITS;
6600 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6601
6602 return usemapsize / 8;
6603}
6604
7cc2a959 6605static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6606 struct zone *zone,
6607 unsigned long zone_start_pfn,
6608 unsigned long zonesize)
835c134e 6609{
7c45512d 6610 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6611 zone->pageblock_flags = NULL;
23a7052a 6612 if (usemapsize) {
6782832e 6613 zone->pageblock_flags =
26fb3dae
MR
6614 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6615 pgdat->node_id);
23a7052a
MR
6616 if (!zone->pageblock_flags)
6617 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6618 usemapsize, zone->name, pgdat->node_id);
6619 }
835c134e
MG
6620}
6621#else
7c45512d
LT
6622static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6623 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6624#endif /* CONFIG_SPARSEMEM */
6625
d9c23400 6626#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6627
d9c23400 6628/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6629void __init set_pageblock_order(void)
d9c23400 6630{
955c1cd7
AM
6631 unsigned int order;
6632
d9c23400
MG
6633 /* Check that pageblock_nr_pages has not already been setup */
6634 if (pageblock_order)
6635 return;
6636
955c1cd7
AM
6637 if (HPAGE_SHIFT > PAGE_SHIFT)
6638 order = HUGETLB_PAGE_ORDER;
6639 else
6640 order = MAX_ORDER - 1;
6641
d9c23400
MG
6642 /*
6643 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6644 * This value may be variable depending on boot parameters on IA64 and
6645 * powerpc.
d9c23400
MG
6646 */
6647 pageblock_order = order;
6648}
6649#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6650
ba72cb8c
MG
6651/*
6652 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6653 * is unused as pageblock_order is set at compile-time. See
6654 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6655 * the kernel config
ba72cb8c 6656 */
03e85f9d 6657void __init set_pageblock_order(void)
ba72cb8c 6658{
ba72cb8c 6659}
d9c23400
MG
6660
6661#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6662
03e85f9d 6663static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6664 unsigned long present_pages)
01cefaef
JL
6665{
6666 unsigned long pages = spanned_pages;
6667
6668 /*
6669 * Provide a more accurate estimation if there are holes within
6670 * the zone and SPARSEMEM is in use. If there are holes within the
6671 * zone, each populated memory region may cost us one or two extra
6672 * memmap pages due to alignment because memmap pages for each
89d790ab 6673 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6674 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6675 */
6676 if (spanned_pages > present_pages + (present_pages >> 4) &&
6677 IS_ENABLED(CONFIG_SPARSEMEM))
6678 pages = present_pages;
6679
6680 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6681}
6682
ace1db39
OS
6683#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6684static void pgdat_init_split_queue(struct pglist_data *pgdat)
6685{
364c1eeb
YS
6686 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6687
6688 spin_lock_init(&ds_queue->split_queue_lock);
6689 INIT_LIST_HEAD(&ds_queue->split_queue);
6690 ds_queue->split_queue_len = 0;
ace1db39
OS
6691}
6692#else
6693static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6694#endif
6695
6696#ifdef CONFIG_COMPACTION
6697static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6698{
6699 init_waitqueue_head(&pgdat->kcompactd_wait);
6700}
6701#else
6702static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6703#endif
6704
03e85f9d 6705static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6706{
208d54e5 6707 pgdat_resize_init(pgdat);
ace1db39 6708
ace1db39
OS
6709 pgdat_init_split_queue(pgdat);
6710 pgdat_init_kcompactd(pgdat);
6711
1da177e4 6712 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6713 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6714
eefa864b 6715 pgdat_page_ext_init(pgdat);
a52633d8 6716 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6717 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6718}
6719
6720static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6721 unsigned long remaining_pages)
6722{
9705bea5 6723 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6724 zone_set_nid(zone, nid);
6725 zone->name = zone_names[idx];
6726 zone->zone_pgdat = NODE_DATA(nid);
6727 spin_lock_init(&zone->lock);
6728 zone_seqlock_init(zone);
6729 zone_pcp_init(zone);
6730}
6731
6732/*
6733 * Set up the zone data structures
6734 * - init pgdat internals
6735 * - init all zones belonging to this node
6736 *
6737 * NOTE: this function is only called during memory hotplug
6738 */
6739#ifdef CONFIG_MEMORY_HOTPLUG
6740void __ref free_area_init_core_hotplug(int nid)
6741{
6742 enum zone_type z;
6743 pg_data_t *pgdat = NODE_DATA(nid);
6744
6745 pgdat_init_internals(pgdat);
6746 for (z = 0; z < MAX_NR_ZONES; z++)
6747 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6748}
6749#endif
6750
6751/*
6752 * Set up the zone data structures:
6753 * - mark all pages reserved
6754 * - mark all memory queues empty
6755 * - clear the memory bitmaps
6756 *
6757 * NOTE: pgdat should get zeroed by caller.
6758 * NOTE: this function is only called during early init.
6759 */
6760static void __init free_area_init_core(struct pglist_data *pgdat)
6761{
6762 enum zone_type j;
6763 int nid = pgdat->node_id;
5f63b720 6764
03e85f9d 6765 pgdat_init_internals(pgdat);
385386cf
JW
6766 pgdat->per_cpu_nodestats = &boot_nodestats;
6767
1da177e4
LT
6768 for (j = 0; j < MAX_NR_ZONES; j++) {
6769 struct zone *zone = pgdat->node_zones + j;
e6943859 6770 unsigned long size, freesize, memmap_pages;
d91749c1 6771 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6772
febd5949 6773 size = zone->spanned_pages;
e6943859 6774 freesize = zone->present_pages;
1da177e4 6775
0e0b864e 6776 /*
9feedc9d 6777 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6778 * is used by this zone for memmap. This affects the watermark
6779 * and per-cpu initialisations
6780 */
e6943859 6781 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6782 if (!is_highmem_idx(j)) {
6783 if (freesize >= memmap_pages) {
6784 freesize -= memmap_pages;
6785 if (memmap_pages)
6786 printk(KERN_DEBUG
6787 " %s zone: %lu pages used for memmap\n",
6788 zone_names[j], memmap_pages);
6789 } else
1170532b 6790 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6791 zone_names[j], memmap_pages, freesize);
6792 }
0e0b864e 6793
6267276f 6794 /* Account for reserved pages */
9feedc9d
JL
6795 if (j == 0 && freesize > dma_reserve) {
6796 freesize -= dma_reserve;
d903ef9f 6797 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6798 zone_names[0], dma_reserve);
0e0b864e
MG
6799 }
6800
98d2b0eb 6801 if (!is_highmem_idx(j))
9feedc9d 6802 nr_kernel_pages += freesize;
01cefaef
JL
6803 /* Charge for highmem memmap if there are enough kernel pages */
6804 else if (nr_kernel_pages > memmap_pages * 2)
6805 nr_kernel_pages -= memmap_pages;
9feedc9d 6806 nr_all_pages += freesize;
1da177e4 6807
9feedc9d
JL
6808 /*
6809 * Set an approximate value for lowmem here, it will be adjusted
6810 * when the bootmem allocator frees pages into the buddy system.
6811 * And all highmem pages will be managed by the buddy system.
6812 */
03e85f9d 6813 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6814
d883c6cf 6815 if (!size)
1da177e4
LT
6816 continue;
6817
955c1cd7 6818 set_pageblock_order();
d883c6cf
JK
6819 setup_usemap(pgdat, zone, zone_start_pfn, size);
6820 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6821 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6822 }
6823}
6824
0cd842f9 6825#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6826static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6827{
b0aeba74 6828 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6829 unsigned long __maybe_unused offset = 0;
6830
1da177e4
LT
6831 /* Skip empty nodes */
6832 if (!pgdat->node_spanned_pages)
6833 return;
6834
b0aeba74
TL
6835 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6836 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6837 /* ia64 gets its own node_mem_map, before this, without bootmem */
6838 if (!pgdat->node_mem_map) {
b0aeba74 6839 unsigned long size, end;
d41dee36
AW
6840 struct page *map;
6841
e984bb43
BP
6842 /*
6843 * The zone's endpoints aren't required to be MAX_ORDER
6844 * aligned but the node_mem_map endpoints must be in order
6845 * for the buddy allocator to function correctly.
6846 */
108bcc96 6847 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6848 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6849 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6850 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6851 pgdat->node_id);
23a7052a
MR
6852 if (!map)
6853 panic("Failed to allocate %ld bytes for node %d memory map\n",
6854 size, pgdat->node_id);
a1c34a3b 6855 pgdat->node_mem_map = map + offset;
1da177e4 6856 }
0cd842f9
OS
6857 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6858 __func__, pgdat->node_id, (unsigned long)pgdat,
6859 (unsigned long)pgdat->node_mem_map);
12d810c1 6860#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6861 /*
6862 * With no DISCONTIG, the global mem_map is just set as node 0's
6863 */
c713216d 6864 if (pgdat == NODE_DATA(0)) {
1da177e4 6865 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6866#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6867 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6868 mem_map -= offset;
0ee332c1 6869#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6870 }
1da177e4
LT
6871#endif
6872}
0cd842f9
OS
6873#else
6874static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6875#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6876
0188dc98
OS
6877#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6878static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6879{
0188dc98
OS
6880 pgdat->first_deferred_pfn = ULONG_MAX;
6881}
6882#else
6883static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6884#endif
6885
03e85f9d 6886void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6887 unsigned long node_start_pfn,
6888 unsigned long *zholes_size)
1da177e4 6889{
9109fb7b 6890 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6891 unsigned long start_pfn = 0;
6892 unsigned long end_pfn = 0;
9109fb7b 6893
88fdf75d 6894 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6895 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6896
1da177e4
LT
6897 pgdat->node_id = nid;
6898 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6899 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6900#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6901 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6902 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6903 (u64)start_pfn << PAGE_SHIFT,
6904 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6905#else
6906 start_pfn = node_start_pfn;
7960aedd
ZY
6907#endif
6908 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6909 zones_size, zholes_size);
1da177e4
LT
6910
6911 alloc_node_mem_map(pgdat);
0188dc98 6912 pgdat_set_deferred_range(pgdat);
1da177e4 6913
7f3eb55b 6914 free_area_init_core(pgdat);
1da177e4
LT
6915}
6916
aca52c39 6917#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6918/*
4b094b78
DH
6919 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6920 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6921 */
4b094b78 6922static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6923{
6924 unsigned long pfn;
6925 u64 pgcnt = 0;
6926
6927 for (pfn = spfn; pfn < epfn; pfn++) {
6928 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6929 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6930 + pageblock_nr_pages - 1;
6931 continue;
6932 }
4b094b78
DH
6933 /*
6934 * Use a fake node/zone (0) for now. Some of these pages
6935 * (in memblock.reserved but not in memblock.memory) will
6936 * get re-initialized via reserve_bootmem_region() later.
6937 */
6938 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6939 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
6940 pgcnt++;
6941 }
6942
6943 return pgcnt;
6944}
6945
a4a3ede2
PT
6946/*
6947 * Only struct pages that are backed by physical memory are zeroed and
6948 * initialized by going through __init_single_page(). But, there are some
6949 * struct pages which are reserved in memblock allocator and their fields
6950 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 6951 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
6952 *
6953 * This function also addresses a similar issue where struct pages are left
6954 * uninitialized because the physical address range is not covered by
6955 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
6956 * layout is manually configured via memmap=, or when the highest physical
6957 * address (max_pfn) does not end on a section boundary.
a4a3ede2 6958 */
4b094b78 6959static void __init init_unavailable_mem(void)
a4a3ede2
PT
6960{
6961 phys_addr_t start, end;
a4a3ede2 6962 u64 i, pgcnt;
907ec5fc 6963 phys_addr_t next = 0;
a4a3ede2
PT
6964
6965 /*
907ec5fc 6966 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6967 */
6968 pgcnt = 0;
907ec5fc
NH
6969 for_each_mem_range(i, &memblock.memory, NULL,
6970 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 6971 if (next < start)
4b094b78
DH
6972 pgcnt += init_unavailable_range(PFN_DOWN(next),
6973 PFN_UP(start));
907ec5fc
NH
6974 next = end;
6975 }
e822969c
DH
6976
6977 /*
6978 * Early sections always have a fully populated memmap for the whole
6979 * section - see pfn_valid(). If the last section has holes at the
6980 * end and that section is marked "online", the memmap will be
6981 * considered initialized. Make sure that memmap has a well defined
6982 * state.
6983 */
4b094b78
DH
6984 pgcnt += init_unavailable_range(PFN_DOWN(next),
6985 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 6986
a4a3ede2
PT
6987 /*
6988 * Struct pages that do not have backing memory. This could be because
6989 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6990 */
6991 if (pgcnt)
907ec5fc 6992 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6993}
4b094b78
DH
6994#else
6995static inline void __init init_unavailable_mem(void)
6996{
6997}
aca52c39 6998#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6999
0ee332c1 7000#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
7001
7002#if MAX_NUMNODES > 1
7003/*
7004 * Figure out the number of possible node ids.
7005 */
f9872caf 7006void __init setup_nr_node_ids(void)
418508c1 7007{
904a9553 7008 unsigned int highest;
418508c1 7009
904a9553 7010 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7011 nr_node_ids = highest + 1;
7012}
418508c1
MS
7013#endif
7014
1e01979c
TH
7015/**
7016 * node_map_pfn_alignment - determine the maximum internode alignment
7017 *
7018 * This function should be called after node map is populated and sorted.
7019 * It calculates the maximum power of two alignment which can distinguish
7020 * all the nodes.
7021 *
7022 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7023 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7024 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7025 * shifted, 1GiB is enough and this function will indicate so.
7026 *
7027 * This is used to test whether pfn -> nid mapping of the chosen memory
7028 * model has fine enough granularity to avoid incorrect mapping for the
7029 * populated node map.
7030 *
a862f68a 7031 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7032 * requirement (single node).
7033 */
7034unsigned long __init node_map_pfn_alignment(void)
7035{
7036 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7037 unsigned long start, end, mask;
98fa15f3 7038 int last_nid = NUMA_NO_NODE;
c13291a5 7039 int i, nid;
1e01979c 7040
c13291a5 7041 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7042 if (!start || last_nid < 0 || last_nid == nid) {
7043 last_nid = nid;
7044 last_end = end;
7045 continue;
7046 }
7047
7048 /*
7049 * Start with a mask granular enough to pin-point to the
7050 * start pfn and tick off bits one-by-one until it becomes
7051 * too coarse to separate the current node from the last.
7052 */
7053 mask = ~((1 << __ffs(start)) - 1);
7054 while (mask && last_end <= (start & (mask << 1)))
7055 mask <<= 1;
7056
7057 /* accumulate all internode masks */
7058 accl_mask |= mask;
7059 }
7060
7061 /* convert mask to number of pages */
7062 return ~accl_mask + 1;
7063}
7064
a6af2bc3 7065/* Find the lowest pfn for a node */
b69a7288 7066static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 7067{
a6af2bc3 7068 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
7069 unsigned long start_pfn;
7070 int i;
1abbfb41 7071
c13291a5
TH
7072 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7073 min_pfn = min(min_pfn, start_pfn);
c713216d 7074
a6af2bc3 7075 if (min_pfn == ULONG_MAX) {
1170532b 7076 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
7077 return 0;
7078 }
7079
7080 return min_pfn;
c713216d
MG
7081}
7082
7083/**
7084 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7085 *
a862f68a 7086 * Return: the minimum PFN based on information provided via
7d018176 7087 * memblock_set_node().
c713216d
MG
7088 */
7089unsigned long __init find_min_pfn_with_active_regions(void)
7090{
7091 return find_min_pfn_for_node(MAX_NUMNODES);
7092}
7093
37b07e41
LS
7094/*
7095 * early_calculate_totalpages()
7096 * Sum pages in active regions for movable zone.
4b0ef1fe 7097 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7098 */
484f51f8 7099static unsigned long __init early_calculate_totalpages(void)
7e63efef 7100{
7e63efef 7101 unsigned long totalpages = 0;
c13291a5
TH
7102 unsigned long start_pfn, end_pfn;
7103 int i, nid;
7104
7105 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7106 unsigned long pages = end_pfn - start_pfn;
7e63efef 7107
37b07e41
LS
7108 totalpages += pages;
7109 if (pages)
4b0ef1fe 7110 node_set_state(nid, N_MEMORY);
37b07e41 7111 }
b8af2941 7112 return totalpages;
7e63efef
MG
7113}
7114
2a1e274a
MG
7115/*
7116 * Find the PFN the Movable zone begins in each node. Kernel memory
7117 * is spread evenly between nodes as long as the nodes have enough
7118 * memory. When they don't, some nodes will have more kernelcore than
7119 * others
7120 */
b224ef85 7121static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7122{
7123 int i, nid;
7124 unsigned long usable_startpfn;
7125 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7126 /* save the state before borrow the nodemask */
4b0ef1fe 7127 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7128 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7129 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7130 struct memblock_region *r;
b2f3eebe
TC
7131
7132 /* Need to find movable_zone earlier when movable_node is specified. */
7133 find_usable_zone_for_movable();
7134
7135 /*
7136 * If movable_node is specified, ignore kernelcore and movablecore
7137 * options.
7138 */
7139 if (movable_node_is_enabled()) {
136199f0
EM
7140 for_each_memblock(memory, r) {
7141 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7142 continue;
7143
136199f0 7144 nid = r->nid;
b2f3eebe 7145
136199f0 7146 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7147 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7148 min(usable_startpfn, zone_movable_pfn[nid]) :
7149 usable_startpfn;
7150 }
7151
7152 goto out2;
7153 }
2a1e274a 7154
342332e6
TI
7155 /*
7156 * If kernelcore=mirror is specified, ignore movablecore option
7157 */
7158 if (mirrored_kernelcore) {
7159 bool mem_below_4gb_not_mirrored = false;
7160
7161 for_each_memblock(memory, r) {
7162 if (memblock_is_mirror(r))
7163 continue;
7164
7165 nid = r->nid;
7166
7167 usable_startpfn = memblock_region_memory_base_pfn(r);
7168
7169 if (usable_startpfn < 0x100000) {
7170 mem_below_4gb_not_mirrored = true;
7171 continue;
7172 }
7173
7174 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7175 min(usable_startpfn, zone_movable_pfn[nid]) :
7176 usable_startpfn;
7177 }
7178
7179 if (mem_below_4gb_not_mirrored)
7180 pr_warn("This configuration results in unmirrored kernel memory.");
7181
7182 goto out2;
7183 }
7184
7e63efef 7185 /*
a5c6d650
DR
7186 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7187 * amount of necessary memory.
7188 */
7189 if (required_kernelcore_percent)
7190 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7191 10000UL;
7192 if (required_movablecore_percent)
7193 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7194 10000UL;
7195
7196 /*
7197 * If movablecore= was specified, calculate what size of
7e63efef
MG
7198 * kernelcore that corresponds so that memory usable for
7199 * any allocation type is evenly spread. If both kernelcore
7200 * and movablecore are specified, then the value of kernelcore
7201 * will be used for required_kernelcore if it's greater than
7202 * what movablecore would have allowed.
7203 */
7204 if (required_movablecore) {
7e63efef
MG
7205 unsigned long corepages;
7206
7207 /*
7208 * Round-up so that ZONE_MOVABLE is at least as large as what
7209 * was requested by the user
7210 */
7211 required_movablecore =
7212 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7213 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7214 corepages = totalpages - required_movablecore;
7215
7216 required_kernelcore = max(required_kernelcore, corepages);
7217 }
7218
bde304bd
XQ
7219 /*
7220 * If kernelcore was not specified or kernelcore size is larger
7221 * than totalpages, there is no ZONE_MOVABLE.
7222 */
7223 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7224 goto out;
2a1e274a
MG
7225
7226 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7227 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7228
7229restart:
7230 /* Spread kernelcore memory as evenly as possible throughout nodes */
7231 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7232 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7233 unsigned long start_pfn, end_pfn;
7234
2a1e274a
MG
7235 /*
7236 * Recalculate kernelcore_node if the division per node
7237 * now exceeds what is necessary to satisfy the requested
7238 * amount of memory for the kernel
7239 */
7240 if (required_kernelcore < kernelcore_node)
7241 kernelcore_node = required_kernelcore / usable_nodes;
7242
7243 /*
7244 * As the map is walked, we track how much memory is usable
7245 * by the kernel using kernelcore_remaining. When it is
7246 * 0, the rest of the node is usable by ZONE_MOVABLE
7247 */
7248 kernelcore_remaining = kernelcore_node;
7249
7250 /* Go through each range of PFNs within this node */
c13291a5 7251 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7252 unsigned long size_pages;
7253
c13291a5 7254 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7255 if (start_pfn >= end_pfn)
7256 continue;
7257
7258 /* Account for what is only usable for kernelcore */
7259 if (start_pfn < usable_startpfn) {
7260 unsigned long kernel_pages;
7261 kernel_pages = min(end_pfn, usable_startpfn)
7262 - start_pfn;
7263
7264 kernelcore_remaining -= min(kernel_pages,
7265 kernelcore_remaining);
7266 required_kernelcore -= min(kernel_pages,
7267 required_kernelcore);
7268
7269 /* Continue if range is now fully accounted */
7270 if (end_pfn <= usable_startpfn) {
7271
7272 /*
7273 * Push zone_movable_pfn to the end so
7274 * that if we have to rebalance
7275 * kernelcore across nodes, we will
7276 * not double account here
7277 */
7278 zone_movable_pfn[nid] = end_pfn;
7279 continue;
7280 }
7281 start_pfn = usable_startpfn;
7282 }
7283
7284 /*
7285 * The usable PFN range for ZONE_MOVABLE is from
7286 * start_pfn->end_pfn. Calculate size_pages as the
7287 * number of pages used as kernelcore
7288 */
7289 size_pages = end_pfn - start_pfn;
7290 if (size_pages > kernelcore_remaining)
7291 size_pages = kernelcore_remaining;
7292 zone_movable_pfn[nid] = start_pfn + size_pages;
7293
7294 /*
7295 * Some kernelcore has been met, update counts and
7296 * break if the kernelcore for this node has been
b8af2941 7297 * satisfied
2a1e274a
MG
7298 */
7299 required_kernelcore -= min(required_kernelcore,
7300 size_pages);
7301 kernelcore_remaining -= size_pages;
7302 if (!kernelcore_remaining)
7303 break;
7304 }
7305 }
7306
7307 /*
7308 * If there is still required_kernelcore, we do another pass with one
7309 * less node in the count. This will push zone_movable_pfn[nid] further
7310 * along on the nodes that still have memory until kernelcore is
b8af2941 7311 * satisfied
2a1e274a
MG
7312 */
7313 usable_nodes--;
7314 if (usable_nodes && required_kernelcore > usable_nodes)
7315 goto restart;
7316
b2f3eebe 7317out2:
2a1e274a
MG
7318 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7319 for (nid = 0; nid < MAX_NUMNODES; nid++)
7320 zone_movable_pfn[nid] =
7321 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7322
20e6926d 7323out:
66918dcd 7324 /* restore the node_state */
4b0ef1fe 7325 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7326}
7327
4b0ef1fe
LJ
7328/* Any regular or high memory on that node ? */
7329static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7330{
37b07e41
LS
7331 enum zone_type zone_type;
7332
4b0ef1fe 7333 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7334 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7335 if (populated_zone(zone)) {
7b0e0c0e
OS
7336 if (IS_ENABLED(CONFIG_HIGHMEM))
7337 node_set_state(nid, N_HIGH_MEMORY);
7338 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7339 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7340 break;
7341 }
37b07e41 7342 }
37b07e41
LS
7343}
7344
c713216d
MG
7345/**
7346 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7347 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7348 *
7349 * This will call free_area_init_node() for each active node in the system.
7d018176 7350 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7351 * zone in each node and their holes is calculated. If the maximum PFN
7352 * between two adjacent zones match, it is assumed that the zone is empty.
7353 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7354 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7355 * starts where the previous one ended. For example, ZONE_DMA32 starts
7356 * at arch_max_dma_pfn.
7357 */
7358void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7359{
c13291a5
TH
7360 unsigned long start_pfn, end_pfn;
7361 int i, nid;
a6af2bc3 7362
c713216d
MG
7363 /* Record where the zone boundaries are */
7364 memset(arch_zone_lowest_possible_pfn, 0,
7365 sizeof(arch_zone_lowest_possible_pfn));
7366 memset(arch_zone_highest_possible_pfn, 0,
7367 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7368
7369 start_pfn = find_min_pfn_with_active_regions();
7370
7371 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7372 if (i == ZONE_MOVABLE)
7373 continue;
90cae1fe
OH
7374
7375 end_pfn = max(max_zone_pfn[i], start_pfn);
7376 arch_zone_lowest_possible_pfn[i] = start_pfn;
7377 arch_zone_highest_possible_pfn[i] = end_pfn;
7378
7379 start_pfn = end_pfn;
c713216d 7380 }
2a1e274a
MG
7381
7382 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7383 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7384 find_zone_movable_pfns_for_nodes();
c713216d 7385
c713216d 7386 /* Print out the zone ranges */
f88dfff5 7387 pr_info("Zone ranges:\n");
2a1e274a
MG
7388 for (i = 0; i < MAX_NR_ZONES; i++) {
7389 if (i == ZONE_MOVABLE)
7390 continue;
f88dfff5 7391 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7392 if (arch_zone_lowest_possible_pfn[i] ==
7393 arch_zone_highest_possible_pfn[i])
f88dfff5 7394 pr_cont("empty\n");
72f0ba02 7395 else
8d29e18a
JG
7396 pr_cont("[mem %#018Lx-%#018Lx]\n",
7397 (u64)arch_zone_lowest_possible_pfn[i]
7398 << PAGE_SHIFT,
7399 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7400 << PAGE_SHIFT) - 1);
2a1e274a
MG
7401 }
7402
7403 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7404 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7405 for (i = 0; i < MAX_NUMNODES; i++) {
7406 if (zone_movable_pfn[i])
8d29e18a
JG
7407 pr_info(" Node %d: %#018Lx\n", i,
7408 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7409 }
c713216d 7410
f46edbd1
DW
7411 /*
7412 * Print out the early node map, and initialize the
7413 * subsection-map relative to active online memory ranges to
7414 * enable future "sub-section" extensions of the memory map.
7415 */
f88dfff5 7416 pr_info("Early memory node ranges\n");
f46edbd1 7417 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7418 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7419 (u64)start_pfn << PAGE_SHIFT,
7420 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7421 subsection_map_init(start_pfn, end_pfn - start_pfn);
7422 }
c713216d
MG
7423
7424 /* Initialise every node */
708614e6 7425 mminit_verify_pageflags_layout();
8ef82866 7426 setup_nr_node_ids();
4b094b78 7427 init_unavailable_mem();
c713216d
MG
7428 for_each_online_node(nid) {
7429 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7430 free_area_init_node(nid, NULL,
c713216d 7431 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7432
7433 /* Any memory on that node */
7434 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7435 node_set_state(nid, N_MEMORY);
7436 check_for_memory(pgdat, nid);
c713216d
MG
7437 }
7438}
2a1e274a 7439
a5c6d650
DR
7440static int __init cmdline_parse_core(char *p, unsigned long *core,
7441 unsigned long *percent)
2a1e274a
MG
7442{
7443 unsigned long long coremem;
a5c6d650
DR
7444 char *endptr;
7445
2a1e274a
MG
7446 if (!p)
7447 return -EINVAL;
7448
a5c6d650
DR
7449 /* Value may be a percentage of total memory, otherwise bytes */
7450 coremem = simple_strtoull(p, &endptr, 0);
7451 if (*endptr == '%') {
7452 /* Paranoid check for percent values greater than 100 */
7453 WARN_ON(coremem > 100);
2a1e274a 7454
a5c6d650
DR
7455 *percent = coremem;
7456 } else {
7457 coremem = memparse(p, &p);
7458 /* Paranoid check that UL is enough for the coremem value */
7459 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7460
a5c6d650
DR
7461 *core = coremem >> PAGE_SHIFT;
7462 *percent = 0UL;
7463 }
2a1e274a
MG
7464 return 0;
7465}
ed7ed365 7466
7e63efef
MG
7467/*
7468 * kernelcore=size sets the amount of memory for use for allocations that
7469 * cannot be reclaimed or migrated.
7470 */
7471static int __init cmdline_parse_kernelcore(char *p)
7472{
342332e6
TI
7473 /* parse kernelcore=mirror */
7474 if (parse_option_str(p, "mirror")) {
7475 mirrored_kernelcore = true;
7476 return 0;
7477 }
7478
a5c6d650
DR
7479 return cmdline_parse_core(p, &required_kernelcore,
7480 &required_kernelcore_percent);
7e63efef
MG
7481}
7482
7483/*
7484 * movablecore=size sets the amount of memory for use for allocations that
7485 * can be reclaimed or migrated.
7486 */
7487static int __init cmdline_parse_movablecore(char *p)
7488{
a5c6d650
DR
7489 return cmdline_parse_core(p, &required_movablecore,
7490 &required_movablecore_percent);
7e63efef
MG
7491}
7492
ed7ed365 7493early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7494early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7495
0ee332c1 7496#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7497
c3d5f5f0
JL
7498void adjust_managed_page_count(struct page *page, long count)
7499{
9705bea5 7500 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7501 totalram_pages_add(count);
3dcc0571
JL
7502#ifdef CONFIG_HIGHMEM
7503 if (PageHighMem(page))
ca79b0c2 7504 totalhigh_pages_add(count);
3dcc0571 7505#endif
c3d5f5f0 7506}
3dcc0571 7507EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7508
e5cb113f 7509unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7510{
11199692
JL
7511 void *pos;
7512 unsigned long pages = 0;
69afade7 7513
11199692
JL
7514 start = (void *)PAGE_ALIGN((unsigned long)start);
7515 end = (void *)((unsigned long)end & PAGE_MASK);
7516 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7517 struct page *page = virt_to_page(pos);
7518 void *direct_map_addr;
7519
7520 /*
7521 * 'direct_map_addr' might be different from 'pos'
7522 * because some architectures' virt_to_page()
7523 * work with aliases. Getting the direct map
7524 * address ensures that we get a _writeable_
7525 * alias for the memset().
7526 */
7527 direct_map_addr = page_address(page);
dbe67df4 7528 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7529 memset(direct_map_addr, poison, PAGE_SIZE);
7530
7531 free_reserved_page(page);
69afade7
JL
7532 }
7533
7534 if (pages && s)
adb1fe9a
JP
7535 pr_info("Freeing %s memory: %ldK\n",
7536 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7537
7538 return pages;
7539}
7540
cfa11e08
JL
7541#ifdef CONFIG_HIGHMEM
7542void free_highmem_page(struct page *page)
7543{
7544 __free_reserved_page(page);
ca79b0c2 7545 totalram_pages_inc();
9705bea5 7546 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7547 totalhigh_pages_inc();
cfa11e08
JL
7548}
7549#endif
7550
7ee3d4e8
JL
7551
7552void __init mem_init_print_info(const char *str)
7553{
7554 unsigned long physpages, codesize, datasize, rosize, bss_size;
7555 unsigned long init_code_size, init_data_size;
7556
7557 physpages = get_num_physpages();
7558 codesize = _etext - _stext;
7559 datasize = _edata - _sdata;
7560 rosize = __end_rodata - __start_rodata;
7561 bss_size = __bss_stop - __bss_start;
7562 init_data_size = __init_end - __init_begin;
7563 init_code_size = _einittext - _sinittext;
7564
7565 /*
7566 * Detect special cases and adjust section sizes accordingly:
7567 * 1) .init.* may be embedded into .data sections
7568 * 2) .init.text.* may be out of [__init_begin, __init_end],
7569 * please refer to arch/tile/kernel/vmlinux.lds.S.
7570 * 3) .rodata.* may be embedded into .text or .data sections.
7571 */
7572#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7573 do { \
7574 if (start <= pos && pos < end && size > adj) \
7575 size -= adj; \
7576 } while (0)
7ee3d4e8
JL
7577
7578 adj_init_size(__init_begin, __init_end, init_data_size,
7579 _sinittext, init_code_size);
7580 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7581 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7582 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7583 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7584
7585#undef adj_init_size
7586
756a025f 7587 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7588#ifdef CONFIG_HIGHMEM
756a025f 7589 ", %luK highmem"
7ee3d4e8 7590#endif
756a025f
JP
7591 "%s%s)\n",
7592 nr_free_pages() << (PAGE_SHIFT - 10),
7593 physpages << (PAGE_SHIFT - 10),
7594 codesize >> 10, datasize >> 10, rosize >> 10,
7595 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7596 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7597 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7598#ifdef CONFIG_HIGHMEM
ca79b0c2 7599 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7600#endif
756a025f 7601 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7602}
7603
0e0b864e 7604/**
88ca3b94
RD
7605 * set_dma_reserve - set the specified number of pages reserved in the first zone
7606 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7607 *
013110a7 7608 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7609 * In the DMA zone, a significant percentage may be consumed by kernel image
7610 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7611 * function may optionally be used to account for unfreeable pages in the
7612 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7613 * smaller per-cpu batchsize.
0e0b864e
MG
7614 */
7615void __init set_dma_reserve(unsigned long new_dma_reserve)
7616{
7617 dma_reserve = new_dma_reserve;
7618}
7619
1da177e4
LT
7620void __init free_area_init(unsigned long *zones_size)
7621{
4b094b78 7622 init_unavailable_mem();
9109fb7b 7623 free_area_init_node(0, zones_size,
1da177e4
LT
7624 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7625}
1da177e4 7626
005fd4bb 7627static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7628{
1da177e4 7629
005fd4bb
SAS
7630 lru_add_drain_cpu(cpu);
7631 drain_pages(cpu);
9f8f2172 7632
005fd4bb
SAS
7633 /*
7634 * Spill the event counters of the dead processor
7635 * into the current processors event counters.
7636 * This artificially elevates the count of the current
7637 * processor.
7638 */
7639 vm_events_fold_cpu(cpu);
9f8f2172 7640
005fd4bb
SAS
7641 /*
7642 * Zero the differential counters of the dead processor
7643 * so that the vm statistics are consistent.
7644 *
7645 * This is only okay since the processor is dead and cannot
7646 * race with what we are doing.
7647 */
7648 cpu_vm_stats_fold(cpu);
7649 return 0;
1da177e4 7650}
1da177e4 7651
e03a5125
NP
7652#ifdef CONFIG_NUMA
7653int hashdist = HASHDIST_DEFAULT;
7654
7655static int __init set_hashdist(char *str)
7656{
7657 if (!str)
7658 return 0;
7659 hashdist = simple_strtoul(str, &str, 0);
7660 return 1;
7661}
7662__setup("hashdist=", set_hashdist);
7663#endif
7664
1da177e4
LT
7665void __init page_alloc_init(void)
7666{
005fd4bb
SAS
7667 int ret;
7668
e03a5125
NP
7669#ifdef CONFIG_NUMA
7670 if (num_node_state(N_MEMORY) == 1)
7671 hashdist = 0;
7672#endif
7673
005fd4bb
SAS
7674 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7675 "mm/page_alloc:dead", NULL,
7676 page_alloc_cpu_dead);
7677 WARN_ON(ret < 0);
1da177e4
LT
7678}
7679
cb45b0e9 7680/*
34b10060 7681 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7682 * or min_free_kbytes changes.
7683 */
7684static void calculate_totalreserve_pages(void)
7685{
7686 struct pglist_data *pgdat;
7687 unsigned long reserve_pages = 0;
2f6726e5 7688 enum zone_type i, j;
cb45b0e9
HA
7689
7690 for_each_online_pgdat(pgdat) {
281e3726
MG
7691
7692 pgdat->totalreserve_pages = 0;
7693
cb45b0e9
HA
7694 for (i = 0; i < MAX_NR_ZONES; i++) {
7695 struct zone *zone = pgdat->node_zones + i;
3484b2de 7696 long max = 0;
9705bea5 7697 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7698
7699 /* Find valid and maximum lowmem_reserve in the zone */
7700 for (j = i; j < MAX_NR_ZONES; j++) {
7701 if (zone->lowmem_reserve[j] > max)
7702 max = zone->lowmem_reserve[j];
7703 }
7704
41858966
MG
7705 /* we treat the high watermark as reserved pages. */
7706 max += high_wmark_pages(zone);
cb45b0e9 7707
3d6357de
AK
7708 if (max > managed_pages)
7709 max = managed_pages;
a8d01437 7710
281e3726 7711 pgdat->totalreserve_pages += max;
a8d01437 7712
cb45b0e9
HA
7713 reserve_pages += max;
7714 }
7715 }
7716 totalreserve_pages = reserve_pages;
7717}
7718
1da177e4
LT
7719/*
7720 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7721 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7722 * has a correct pages reserved value, so an adequate number of
7723 * pages are left in the zone after a successful __alloc_pages().
7724 */
7725static void setup_per_zone_lowmem_reserve(void)
7726{
7727 struct pglist_data *pgdat;
2f6726e5 7728 enum zone_type j, idx;
1da177e4 7729
ec936fc5 7730 for_each_online_pgdat(pgdat) {
1da177e4
LT
7731 for (j = 0; j < MAX_NR_ZONES; j++) {
7732 struct zone *zone = pgdat->node_zones + j;
9705bea5 7733 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7734
7735 zone->lowmem_reserve[j] = 0;
7736
2f6726e5
CL
7737 idx = j;
7738 while (idx) {
1da177e4
LT
7739 struct zone *lower_zone;
7740
2f6726e5 7741 idx--;
1da177e4 7742 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7743
7744 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7745 sysctl_lowmem_reserve_ratio[idx] = 0;
7746 lower_zone->lowmem_reserve[j] = 0;
7747 } else {
7748 lower_zone->lowmem_reserve[j] =
7749 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7750 }
9705bea5 7751 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7752 }
7753 }
7754 }
cb45b0e9
HA
7755
7756 /* update totalreserve_pages */
7757 calculate_totalreserve_pages();
1da177e4
LT
7758}
7759
cfd3da1e 7760static void __setup_per_zone_wmarks(void)
1da177e4
LT
7761{
7762 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7763 unsigned long lowmem_pages = 0;
7764 struct zone *zone;
7765 unsigned long flags;
7766
7767 /* Calculate total number of !ZONE_HIGHMEM pages */
7768 for_each_zone(zone) {
7769 if (!is_highmem(zone))
9705bea5 7770 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7771 }
7772
7773 for_each_zone(zone) {
ac924c60
AM
7774 u64 tmp;
7775
1125b4e3 7776 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7777 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7778 do_div(tmp, lowmem_pages);
1da177e4
LT
7779 if (is_highmem(zone)) {
7780 /*
669ed175
NP
7781 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7782 * need highmem pages, so cap pages_min to a small
7783 * value here.
7784 *
41858966 7785 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7786 * deltas control async page reclaim, and so should
669ed175 7787 * not be capped for highmem.
1da177e4 7788 */
90ae8d67 7789 unsigned long min_pages;
1da177e4 7790
9705bea5 7791 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7792 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7793 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7794 } else {
669ed175
NP
7795 /*
7796 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7797 * proportionate to the zone's size.
7798 */
a9214443 7799 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7800 }
7801
795ae7a0
JW
7802 /*
7803 * Set the kswapd watermarks distance according to the
7804 * scale factor in proportion to available memory, but
7805 * ensure a minimum size on small systems.
7806 */
7807 tmp = max_t(u64, tmp >> 2,
9705bea5 7808 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7809 watermark_scale_factor, 10000));
7810
a9214443
MG
7811 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7812 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7813 zone->watermark_boost = 0;
49f223a9 7814
1125b4e3 7815 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7816 }
cb45b0e9
HA
7817
7818 /* update totalreserve_pages */
7819 calculate_totalreserve_pages();
1da177e4
LT
7820}
7821
cfd3da1e
MG
7822/**
7823 * setup_per_zone_wmarks - called when min_free_kbytes changes
7824 * or when memory is hot-{added|removed}
7825 *
7826 * Ensures that the watermark[min,low,high] values for each zone are set
7827 * correctly with respect to min_free_kbytes.
7828 */
7829void setup_per_zone_wmarks(void)
7830{
b93e0f32
MH
7831 static DEFINE_SPINLOCK(lock);
7832
7833 spin_lock(&lock);
cfd3da1e 7834 __setup_per_zone_wmarks();
b93e0f32 7835 spin_unlock(&lock);
cfd3da1e
MG
7836}
7837
1da177e4
LT
7838/*
7839 * Initialise min_free_kbytes.
7840 *
7841 * For small machines we want it small (128k min). For large machines
7842 * we want it large (64MB max). But it is not linear, because network
7843 * bandwidth does not increase linearly with machine size. We use
7844 *
b8af2941 7845 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7846 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7847 *
7848 * which yields
7849 *
7850 * 16MB: 512k
7851 * 32MB: 724k
7852 * 64MB: 1024k
7853 * 128MB: 1448k
7854 * 256MB: 2048k
7855 * 512MB: 2896k
7856 * 1024MB: 4096k
7857 * 2048MB: 5792k
7858 * 4096MB: 8192k
7859 * 8192MB: 11584k
7860 * 16384MB: 16384k
7861 */
1b79acc9 7862int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7863{
7864 unsigned long lowmem_kbytes;
5f12733e 7865 int new_min_free_kbytes;
1da177e4
LT
7866
7867 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7868 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7869
7870 if (new_min_free_kbytes > user_min_free_kbytes) {
7871 min_free_kbytes = new_min_free_kbytes;
7872 if (min_free_kbytes < 128)
7873 min_free_kbytes = 128;
7874 if (min_free_kbytes > 65536)
7875 min_free_kbytes = 65536;
7876 } else {
7877 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7878 new_min_free_kbytes, user_min_free_kbytes);
7879 }
bc75d33f 7880 setup_per_zone_wmarks();
a6cccdc3 7881 refresh_zone_stat_thresholds();
1da177e4 7882 setup_per_zone_lowmem_reserve();
6423aa81
JK
7883
7884#ifdef CONFIG_NUMA
7885 setup_min_unmapped_ratio();
7886 setup_min_slab_ratio();
7887#endif
7888
1da177e4
LT
7889 return 0;
7890}
bc22af74 7891core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7892
7893/*
b8af2941 7894 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7895 * that we can call two helper functions whenever min_free_kbytes
7896 * changes.
7897 */
cccad5b9 7898int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7899 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7900{
da8c757b
HP
7901 int rc;
7902
7903 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7904 if (rc)
7905 return rc;
7906
5f12733e
MH
7907 if (write) {
7908 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7909 setup_per_zone_wmarks();
5f12733e 7910 }
1da177e4
LT
7911 return 0;
7912}
7913
1c30844d
MG
7914int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7915 void __user *buffer, size_t *length, loff_t *ppos)
7916{
7917 int rc;
7918
7919 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7920 if (rc)
7921 return rc;
7922
7923 return 0;
7924}
7925
795ae7a0
JW
7926int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7927 void __user *buffer, size_t *length, loff_t *ppos)
7928{
7929 int rc;
7930
7931 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7932 if (rc)
7933 return rc;
7934
7935 if (write)
7936 setup_per_zone_wmarks();
7937
7938 return 0;
7939}
7940
9614634f 7941#ifdef CONFIG_NUMA
6423aa81 7942static void setup_min_unmapped_ratio(void)
9614634f 7943{
6423aa81 7944 pg_data_t *pgdat;
9614634f 7945 struct zone *zone;
9614634f 7946
a5f5f91d 7947 for_each_online_pgdat(pgdat)
81cbcbc2 7948 pgdat->min_unmapped_pages = 0;
a5f5f91d 7949
9614634f 7950 for_each_zone(zone)
9705bea5
AK
7951 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7952 sysctl_min_unmapped_ratio) / 100;
9614634f 7953}
0ff38490 7954
6423aa81
JK
7955
7956int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7957 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7958{
0ff38490
CL
7959 int rc;
7960
8d65af78 7961 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7962 if (rc)
7963 return rc;
7964
6423aa81
JK
7965 setup_min_unmapped_ratio();
7966
7967 return 0;
7968}
7969
7970static void setup_min_slab_ratio(void)
7971{
7972 pg_data_t *pgdat;
7973 struct zone *zone;
7974
a5f5f91d
MG
7975 for_each_online_pgdat(pgdat)
7976 pgdat->min_slab_pages = 0;
7977
0ff38490 7978 for_each_zone(zone)
9705bea5
AK
7979 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7980 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7981}
7982
7983int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7984 void __user *buffer, size_t *length, loff_t *ppos)
7985{
7986 int rc;
7987
7988 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7989 if (rc)
7990 return rc;
7991
7992 setup_min_slab_ratio();
7993
0ff38490
CL
7994 return 0;
7995}
9614634f
CL
7996#endif
7997
1da177e4
LT
7998/*
7999 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8000 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8001 * whenever sysctl_lowmem_reserve_ratio changes.
8002 *
8003 * The reserve ratio obviously has absolutely no relation with the
41858966 8004 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8005 * if in function of the boot time zone sizes.
8006 */
cccad5b9 8007int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8008 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 8009{
8d65af78 8010 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
8011 setup_per_zone_lowmem_reserve();
8012 return 0;
8013}
8014
cb1ef534
MG
8015static void __zone_pcp_update(struct zone *zone)
8016{
8017 unsigned int cpu;
8018
8019 for_each_possible_cpu(cpu)
8020 pageset_set_high_and_batch(zone,
8021 per_cpu_ptr(zone->pageset, cpu));
8022}
8023
8ad4b1fb
RS
8024/*
8025 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8026 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8027 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8028 */
cccad5b9 8029int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8030 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8031{
8032 struct zone *zone;
7cd2b0a3 8033 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8034 int ret;
8035
7cd2b0a3
DR
8036 mutex_lock(&pcp_batch_high_lock);
8037 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8038
8d65af78 8039 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8040 if (!write || ret < 0)
8041 goto out;
8042
8043 /* Sanity checking to avoid pcp imbalance */
8044 if (percpu_pagelist_fraction &&
8045 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8046 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8047 ret = -EINVAL;
8048 goto out;
8049 }
8050
8051 /* No change? */
8052 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8053 goto out;
c8e251fa 8054
cb1ef534
MG
8055 for_each_populated_zone(zone)
8056 __zone_pcp_update(zone);
7cd2b0a3 8057out:
c8e251fa 8058 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8059 return ret;
8ad4b1fb
RS
8060}
8061
f6f34b43
SD
8062#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8063/*
8064 * Returns the number of pages that arch has reserved but
8065 * is not known to alloc_large_system_hash().
8066 */
8067static unsigned long __init arch_reserved_kernel_pages(void)
8068{
8069 return 0;
8070}
8071#endif
8072
9017217b
PT
8073/*
8074 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8075 * machines. As memory size is increased the scale is also increased but at
8076 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8077 * quadruples the scale is increased by one, which means the size of hash table
8078 * only doubles, instead of quadrupling as well.
8079 * Because 32-bit systems cannot have large physical memory, where this scaling
8080 * makes sense, it is disabled on such platforms.
8081 */
8082#if __BITS_PER_LONG > 32
8083#define ADAPT_SCALE_BASE (64ul << 30)
8084#define ADAPT_SCALE_SHIFT 2
8085#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8086#endif
8087
1da177e4
LT
8088/*
8089 * allocate a large system hash table from bootmem
8090 * - it is assumed that the hash table must contain an exact power-of-2
8091 * quantity of entries
8092 * - limit is the number of hash buckets, not the total allocation size
8093 */
8094void *__init alloc_large_system_hash(const char *tablename,
8095 unsigned long bucketsize,
8096 unsigned long numentries,
8097 int scale,
8098 int flags,
8099 unsigned int *_hash_shift,
8100 unsigned int *_hash_mask,
31fe62b9
TB
8101 unsigned long low_limit,
8102 unsigned long high_limit)
1da177e4 8103{
31fe62b9 8104 unsigned long long max = high_limit;
1da177e4
LT
8105 unsigned long log2qty, size;
8106 void *table = NULL;
3749a8f0 8107 gfp_t gfp_flags;
ec11408a 8108 bool virt;
1da177e4
LT
8109
8110 /* allow the kernel cmdline to have a say */
8111 if (!numentries) {
8112 /* round applicable memory size up to nearest megabyte */
04903664 8113 numentries = nr_kernel_pages;
f6f34b43 8114 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8115
8116 /* It isn't necessary when PAGE_SIZE >= 1MB */
8117 if (PAGE_SHIFT < 20)
8118 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8119
9017217b
PT
8120#if __BITS_PER_LONG > 32
8121 if (!high_limit) {
8122 unsigned long adapt;
8123
8124 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8125 adapt <<= ADAPT_SCALE_SHIFT)
8126 scale++;
8127 }
8128#endif
8129
1da177e4
LT
8130 /* limit to 1 bucket per 2^scale bytes of low memory */
8131 if (scale > PAGE_SHIFT)
8132 numentries >>= (scale - PAGE_SHIFT);
8133 else
8134 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8135
8136 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8137 if (unlikely(flags & HASH_SMALL)) {
8138 /* Makes no sense without HASH_EARLY */
8139 WARN_ON(!(flags & HASH_EARLY));
8140 if (!(numentries >> *_hash_shift)) {
8141 numentries = 1UL << *_hash_shift;
8142 BUG_ON(!numentries);
8143 }
8144 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8145 numentries = PAGE_SIZE / bucketsize;
1da177e4 8146 }
6e692ed3 8147 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8148
8149 /* limit allocation size to 1/16 total memory by default */
8150 if (max == 0) {
8151 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8152 do_div(max, bucketsize);
8153 }
074b8517 8154 max = min(max, 0x80000000ULL);
1da177e4 8155
31fe62b9
TB
8156 if (numentries < low_limit)
8157 numentries = low_limit;
1da177e4
LT
8158 if (numentries > max)
8159 numentries = max;
8160
f0d1b0b3 8161 log2qty = ilog2(numentries);
1da177e4 8162
3749a8f0 8163 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8164 do {
ec11408a 8165 virt = false;
1da177e4 8166 size = bucketsize << log2qty;
ea1f5f37
PT
8167 if (flags & HASH_EARLY) {
8168 if (flags & HASH_ZERO)
26fb3dae 8169 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8170 else
7e1c4e27
MR
8171 table = memblock_alloc_raw(size,
8172 SMP_CACHE_BYTES);
ec11408a 8173 } else if (get_order(size) >= MAX_ORDER || hashdist) {
3749a8f0 8174 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ec11408a 8175 virt = true;
ea1f5f37 8176 } else {
1037b83b
ED
8177 /*
8178 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8179 * some pages at the end of hash table which
8180 * alloc_pages_exact() automatically does
1037b83b 8181 */
ec11408a
NP
8182 table = alloc_pages_exact(size, gfp_flags);
8183 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8184 }
8185 } while (!table && size > PAGE_SIZE && --log2qty);
8186
8187 if (!table)
8188 panic("Failed to allocate %s hash table\n", tablename);
8189
ec11408a
NP
8190 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8191 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8192 virt ? "vmalloc" : "linear");
1da177e4
LT
8193
8194 if (_hash_shift)
8195 *_hash_shift = log2qty;
8196 if (_hash_mask)
8197 *_hash_mask = (1 << log2qty) - 1;
8198
8199 return table;
8200}
a117e66e 8201
a5d76b54 8202/*
80934513 8203 * This function checks whether pageblock includes unmovable pages or not.
80934513 8204 *
b8af2941 8205 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8206 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8207 * check without lock_page also may miss some movable non-lru pages at
8208 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8209 *
8210 * Returns a page without holding a reference. If the caller wants to
8211 * dereference that page (e.g., dumping), it has to make sure that that it
8212 * cannot get removed (e.g., via memory unplug) concurrently.
8213 *
a5d76b54 8214 */
4a55c047
QC
8215struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8216 int migratetype, int flags)
49ac8255 8217{
1a9f2191
QC
8218 unsigned long iter = 0;
8219 unsigned long pfn = page_to_pfn(page);
47118af0 8220
49ac8255 8221 /*
15c30bc0
MH
8222 * TODO we could make this much more efficient by not checking every
8223 * page in the range if we know all of them are in MOVABLE_ZONE and
8224 * that the movable zone guarantees that pages are migratable but
8225 * the later is not the case right now unfortunatelly. E.g. movablecore
8226 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8227 */
49ac8255 8228
1a9f2191
QC
8229 if (is_migrate_cma_page(page)) {
8230 /*
8231 * CMA allocations (alloc_contig_range) really need to mark
8232 * isolate CMA pageblocks even when they are not movable in fact
8233 * so consider them movable here.
8234 */
8235 if (is_migrate_cma(migratetype))
4a55c047 8236 return NULL;
1a9f2191 8237
3d680bdf 8238 return page;
1a9f2191 8239 }
4da2ce25 8240
fe4c86c9
DH
8241 for (; iter < pageblock_nr_pages; iter++) {
8242 if (!pfn_valid_within(pfn + iter))
49ac8255 8243 continue;
29723fcc 8244
fe4c86c9 8245 page = pfn_to_page(pfn + iter);
c8721bbb 8246
d7ab3672 8247 if (PageReserved(page))
3d680bdf 8248 return page;
d7ab3672 8249
9d789999
MH
8250 /*
8251 * If the zone is movable and we have ruled out all reserved
8252 * pages then it should be reasonably safe to assume the rest
8253 * is movable.
8254 */
8255 if (zone_idx(zone) == ZONE_MOVABLE)
8256 continue;
8257
c8721bbb
NH
8258 /*
8259 * Hugepages are not in LRU lists, but they're movable.
8bb4e7a2 8260 * We need not scan over tail pages because we don't
c8721bbb
NH
8261 * handle each tail page individually in migration.
8262 */
8263 if (PageHuge(page)) {
17e2e7d7
OS
8264 struct page *head = compound_head(page);
8265 unsigned int skip_pages;
464c7ffb 8266
17e2e7d7 8267 if (!hugepage_migration_supported(page_hstate(head)))
3d680bdf 8268 return page;
464c7ffb 8269
d8c6546b 8270 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8271 iter += skip_pages - 1;
c8721bbb
NH
8272 continue;
8273 }
8274
97d255c8
MK
8275 /*
8276 * We can't use page_count without pin a page
8277 * because another CPU can free compound page.
8278 * This check already skips compound tails of THP
0139aa7b 8279 * because their page->_refcount is zero at all time.
97d255c8 8280 */
fe896d18 8281 if (!page_ref_count(page)) {
49ac8255
KH
8282 if (PageBuddy(page))
8283 iter += (1 << page_order(page)) - 1;
8284 continue;
8285 }
97d255c8 8286
b023f468
WC
8287 /*
8288 * The HWPoisoned page may be not in buddy system, and
8289 * page_count() is not 0.
8290 */
756d25be 8291 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8292 continue;
8293
fe4c86c9 8294 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8295 continue;
8296
49ac8255 8297 /*
6b4f7799
JW
8298 * If there are RECLAIMABLE pages, we need to check
8299 * it. But now, memory offline itself doesn't call
8300 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8301 */
8302 /*
8303 * If the page is not RAM, page_count()should be 0.
8304 * we don't need more check. This is an _used_ not-movable page.
8305 *
8306 * The problematic thing here is PG_reserved pages. PG_reserved
8307 * is set to both of a memory hole page and a _used_ kernel
8308 * page at boot.
8309 */
3d680bdf 8310 return page;
49ac8255 8311 }
4a55c047 8312 return NULL;
49ac8255
KH
8313}
8314
8df995f6 8315#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8316static unsigned long pfn_max_align_down(unsigned long pfn)
8317{
8318 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8319 pageblock_nr_pages) - 1);
8320}
8321
8322static unsigned long pfn_max_align_up(unsigned long pfn)
8323{
8324 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8325 pageblock_nr_pages));
8326}
8327
041d3a8c 8328/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8329static int __alloc_contig_migrate_range(struct compact_control *cc,
8330 unsigned long start, unsigned long end)
041d3a8c
MN
8331{
8332 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8333 unsigned long nr_reclaimed;
041d3a8c
MN
8334 unsigned long pfn = start;
8335 unsigned int tries = 0;
8336 int ret = 0;
8337
be49a6e1 8338 migrate_prep();
041d3a8c 8339
bb13ffeb 8340 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8341 if (fatal_signal_pending(current)) {
8342 ret = -EINTR;
8343 break;
8344 }
8345
bb13ffeb
MG
8346 if (list_empty(&cc->migratepages)) {
8347 cc->nr_migratepages = 0;
edc2ca61 8348 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8349 if (!pfn) {
8350 ret = -EINTR;
8351 break;
8352 }
8353 tries = 0;
8354 } else if (++tries == 5) {
8355 ret = ret < 0 ? ret : -EBUSY;
8356 break;
8357 }
8358
beb51eaa
MK
8359 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8360 &cc->migratepages);
8361 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8362
9c620e2b 8363 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8364 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8365 }
2a6f5124
SP
8366 if (ret < 0) {
8367 putback_movable_pages(&cc->migratepages);
8368 return ret;
8369 }
8370 return 0;
041d3a8c
MN
8371}
8372
8373/**
8374 * alloc_contig_range() -- tries to allocate given range of pages
8375 * @start: start PFN to allocate
8376 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8377 * @migratetype: migratetype of the underlaying pageblocks (either
8378 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8379 * in range must have the same migratetype and it must
8380 * be either of the two.
ca96b625 8381 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8382 *
8383 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8384 * aligned. The PFN range must belong to a single zone.
041d3a8c 8385 *
2c7452a0
MK
8386 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8387 * pageblocks in the range. Once isolated, the pageblocks should not
8388 * be modified by others.
041d3a8c 8389 *
a862f68a 8390 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8391 * pages which PFN is in [start, end) are allocated for the caller and
8392 * need to be freed with free_contig_range().
8393 */
0815f3d8 8394int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8395 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8396{
041d3a8c 8397 unsigned long outer_start, outer_end;
d00181b9
KS
8398 unsigned int order;
8399 int ret = 0;
041d3a8c 8400
bb13ffeb
MG
8401 struct compact_control cc = {
8402 .nr_migratepages = 0,
8403 .order = -1,
8404 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8405 .mode = MIGRATE_SYNC,
bb13ffeb 8406 .ignore_skip_hint = true,
2583d671 8407 .no_set_skip_hint = true,
7dea19f9 8408 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8409 };
8410 INIT_LIST_HEAD(&cc.migratepages);
8411
041d3a8c
MN
8412 /*
8413 * What we do here is we mark all pageblocks in range as
8414 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8415 * have different sizes, and due to the way page allocator
8416 * work, we align the range to biggest of the two pages so
8417 * that page allocator won't try to merge buddies from
8418 * different pageblocks and change MIGRATE_ISOLATE to some
8419 * other migration type.
8420 *
8421 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8422 * migrate the pages from an unaligned range (ie. pages that
8423 * we are interested in). This will put all the pages in
8424 * range back to page allocator as MIGRATE_ISOLATE.
8425 *
8426 * When this is done, we take the pages in range from page
8427 * allocator removing them from the buddy system. This way
8428 * page allocator will never consider using them.
8429 *
8430 * This lets us mark the pageblocks back as
8431 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8432 * aligned range but not in the unaligned, original range are
8433 * put back to page allocator so that buddy can use them.
8434 */
8435
8436 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8437 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8438 if (ret < 0)
86a595f9 8439 return ret;
041d3a8c 8440
8ef5849f
JK
8441 /*
8442 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8443 * So, just fall through. test_pages_isolated() has a tracepoint
8444 * which will report the busy page.
8445 *
8446 * It is possible that busy pages could become available before
8447 * the call to test_pages_isolated, and the range will actually be
8448 * allocated. So, if we fall through be sure to clear ret so that
8449 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8450 */
bb13ffeb 8451 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8452 if (ret && ret != -EBUSY)
041d3a8c 8453 goto done;
63cd4489 8454 ret =0;
041d3a8c
MN
8455
8456 /*
8457 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8458 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8459 * more, all pages in [start, end) are free in page allocator.
8460 * What we are going to do is to allocate all pages from
8461 * [start, end) (that is remove them from page allocator).
8462 *
8463 * The only problem is that pages at the beginning and at the
8464 * end of interesting range may be not aligned with pages that
8465 * page allocator holds, ie. they can be part of higher order
8466 * pages. Because of this, we reserve the bigger range and
8467 * once this is done free the pages we are not interested in.
8468 *
8469 * We don't have to hold zone->lock here because the pages are
8470 * isolated thus they won't get removed from buddy.
8471 */
8472
8473 lru_add_drain_all();
041d3a8c
MN
8474
8475 order = 0;
8476 outer_start = start;
8477 while (!PageBuddy(pfn_to_page(outer_start))) {
8478 if (++order >= MAX_ORDER) {
8ef5849f
JK
8479 outer_start = start;
8480 break;
041d3a8c
MN
8481 }
8482 outer_start &= ~0UL << order;
8483 }
8484
8ef5849f
JK
8485 if (outer_start != start) {
8486 order = page_order(pfn_to_page(outer_start));
8487
8488 /*
8489 * outer_start page could be small order buddy page and
8490 * it doesn't include start page. Adjust outer_start
8491 * in this case to report failed page properly
8492 * on tracepoint in test_pages_isolated()
8493 */
8494 if (outer_start + (1UL << order) <= start)
8495 outer_start = start;
8496 }
8497
041d3a8c 8498 /* Make sure the range is really isolated. */
756d25be 8499 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8500 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8501 __func__, outer_start, end);
041d3a8c
MN
8502 ret = -EBUSY;
8503 goto done;
8504 }
8505
49f223a9 8506 /* Grab isolated pages from freelists. */
bb13ffeb 8507 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8508 if (!outer_end) {
8509 ret = -EBUSY;
8510 goto done;
8511 }
8512
8513 /* Free head and tail (if any) */
8514 if (start != outer_start)
8515 free_contig_range(outer_start, start - outer_start);
8516 if (end != outer_end)
8517 free_contig_range(end, outer_end - end);
8518
8519done:
8520 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8521 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8522 return ret;
8523}
5e27a2df
AK
8524
8525static int __alloc_contig_pages(unsigned long start_pfn,
8526 unsigned long nr_pages, gfp_t gfp_mask)
8527{
8528 unsigned long end_pfn = start_pfn + nr_pages;
8529
8530 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8531 gfp_mask);
8532}
8533
8534static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8535 unsigned long nr_pages)
8536{
8537 unsigned long i, end_pfn = start_pfn + nr_pages;
8538 struct page *page;
8539
8540 for (i = start_pfn; i < end_pfn; i++) {
8541 page = pfn_to_online_page(i);
8542 if (!page)
8543 return false;
8544
8545 if (page_zone(page) != z)
8546 return false;
8547
8548 if (PageReserved(page))
8549 return false;
8550
8551 if (page_count(page) > 0)
8552 return false;
8553
8554 if (PageHuge(page))
8555 return false;
8556 }
8557 return true;
8558}
8559
8560static bool zone_spans_last_pfn(const struct zone *zone,
8561 unsigned long start_pfn, unsigned long nr_pages)
8562{
8563 unsigned long last_pfn = start_pfn + nr_pages - 1;
8564
8565 return zone_spans_pfn(zone, last_pfn);
8566}
8567
8568/**
8569 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8570 * @nr_pages: Number of contiguous pages to allocate
8571 * @gfp_mask: GFP mask to limit search and used during compaction
8572 * @nid: Target node
8573 * @nodemask: Mask for other possible nodes
8574 *
8575 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8576 * on an applicable zonelist to find a contiguous pfn range which can then be
8577 * tried for allocation with alloc_contig_range(). This routine is intended
8578 * for allocation requests which can not be fulfilled with the buddy allocator.
8579 *
8580 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8581 * power of two then the alignment is guaranteed to be to the given nr_pages
8582 * (e.g. 1GB request would be aligned to 1GB).
8583 *
8584 * Allocated pages can be freed with free_contig_range() or by manually calling
8585 * __free_page() on each allocated page.
8586 *
8587 * Return: pointer to contiguous pages on success, or NULL if not successful.
8588 */
8589struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8590 int nid, nodemask_t *nodemask)
8591{
8592 unsigned long ret, pfn, flags;
8593 struct zonelist *zonelist;
8594 struct zone *zone;
8595 struct zoneref *z;
8596
8597 zonelist = node_zonelist(nid, gfp_mask);
8598 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8599 gfp_zone(gfp_mask), nodemask) {
8600 spin_lock_irqsave(&zone->lock, flags);
8601
8602 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8603 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8604 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8605 /*
8606 * We release the zone lock here because
8607 * alloc_contig_range() will also lock the zone
8608 * at some point. If there's an allocation
8609 * spinning on this lock, it may win the race
8610 * and cause alloc_contig_range() to fail...
8611 */
8612 spin_unlock_irqrestore(&zone->lock, flags);
8613 ret = __alloc_contig_pages(pfn, nr_pages,
8614 gfp_mask);
8615 if (!ret)
8616 return pfn_to_page(pfn);
8617 spin_lock_irqsave(&zone->lock, flags);
8618 }
8619 pfn += nr_pages;
8620 }
8621 spin_unlock_irqrestore(&zone->lock, flags);
8622 }
8623 return NULL;
8624}
4eb0716e 8625#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8626
4eb0716e 8627void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8628{
bcc2b02f
MS
8629 unsigned int count = 0;
8630
8631 for (; nr_pages--; pfn++) {
8632 struct page *page = pfn_to_page(pfn);
8633
8634 count += page_count(page) != 1;
8635 __free_page(page);
8636 }
8637 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8638}
041d3a8c 8639
0a647f38
CS
8640/*
8641 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8642 * page high values need to be recalulated.
8643 */
4ed7e022
JL
8644void __meminit zone_pcp_update(struct zone *zone)
8645{
c8e251fa 8646 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8647 __zone_pcp_update(zone);
c8e251fa 8648 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8649}
4ed7e022 8650
340175b7
JL
8651void zone_pcp_reset(struct zone *zone)
8652{
8653 unsigned long flags;
5a883813
MK
8654 int cpu;
8655 struct per_cpu_pageset *pset;
340175b7
JL
8656
8657 /* avoid races with drain_pages() */
8658 local_irq_save(flags);
8659 if (zone->pageset != &boot_pageset) {
5a883813
MK
8660 for_each_online_cpu(cpu) {
8661 pset = per_cpu_ptr(zone->pageset, cpu);
8662 drain_zonestat(zone, pset);
8663 }
340175b7
JL
8664 free_percpu(zone->pageset);
8665 zone->pageset = &boot_pageset;
8666 }
8667 local_irq_restore(flags);
8668}
8669
6dcd73d7 8670#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8671/*
b9eb6319
JK
8672 * All pages in the range must be in a single zone and isolated
8673 * before calling this.
0c0e6195 8674 */
5557c766 8675unsigned long
0c0e6195
KH
8676__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8677{
8678 struct page *page;
8679 struct zone *zone;
0ee5f4f3 8680 unsigned int order;
0c0e6195
KH
8681 unsigned long pfn;
8682 unsigned long flags;
5557c766
MH
8683 unsigned long offlined_pages = 0;
8684
0c0e6195
KH
8685 /* find the first valid pfn */
8686 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8687 if (pfn_valid(pfn))
8688 break;
8689 if (pfn == end_pfn)
5557c766
MH
8690 return offlined_pages;
8691
2d070eab 8692 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8693 zone = page_zone(pfn_to_page(pfn));
8694 spin_lock_irqsave(&zone->lock, flags);
8695 pfn = start_pfn;
8696 while (pfn < end_pfn) {
8697 if (!pfn_valid(pfn)) {
8698 pfn++;
8699 continue;
8700 }
8701 page = pfn_to_page(pfn);
b023f468
WC
8702 /*
8703 * The HWPoisoned page may be not in buddy system, and
8704 * page_count() is not 0.
8705 */
8706 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8707 pfn++;
5557c766 8708 offlined_pages++;
b023f468
WC
8709 continue;
8710 }
8711
0c0e6195
KH
8712 BUG_ON(page_count(page));
8713 BUG_ON(!PageBuddy(page));
8714 order = page_order(page);
5557c766 8715 offlined_pages += 1 << order;
b03641af 8716 del_page_from_free_area(page, &zone->free_area[order]);
0c0e6195
KH
8717 pfn += (1 << order);
8718 }
8719 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8720
8721 return offlined_pages;
0c0e6195
KH
8722}
8723#endif
8d22ba1b 8724
8d22ba1b
WF
8725bool is_free_buddy_page(struct page *page)
8726{
8727 struct zone *zone = page_zone(page);
8728 unsigned long pfn = page_to_pfn(page);
8729 unsigned long flags;
7aeb09f9 8730 unsigned int order;
8d22ba1b
WF
8731
8732 spin_lock_irqsave(&zone->lock, flags);
8733 for (order = 0; order < MAX_ORDER; order++) {
8734 struct page *page_head = page - (pfn & ((1 << order) - 1));
8735
8736 if (PageBuddy(page_head) && page_order(page_head) >= order)
8737 break;
8738 }
8739 spin_unlock_irqrestore(&zone->lock, flags);
8740
8741 return order < MAX_ORDER;
8742}
d4ae9916
NH
8743
8744#ifdef CONFIG_MEMORY_FAILURE
8745/*
8746 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8747 * test is performed under the zone lock to prevent a race against page
8748 * allocation.
8749 */
8750bool set_hwpoison_free_buddy_page(struct page *page)
8751{
8752 struct zone *zone = page_zone(page);
8753 unsigned long pfn = page_to_pfn(page);
8754 unsigned long flags;
8755 unsigned int order;
8756 bool hwpoisoned = false;
8757
8758 spin_lock_irqsave(&zone->lock, flags);
8759 for (order = 0; order < MAX_ORDER; order++) {
8760 struct page *page_head = page - (pfn & ((1 << order) - 1));
8761
8762 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8763 if (!TestSetPageHWPoison(page))
8764 hwpoisoned = true;
8765 break;
8766 }
8767 }
8768 spin_unlock_irqrestore(&zone->lock, flags);
8769
8770 return hwpoisoned;
8771}
8772#endif