docs: remove description of DISCONTIGMEM
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
7ee3d4e8 75#include <asm/sections.h>
1da177e4 76#include <asm/tlbflush.h>
ac924c60 77#include <asm/div64.h>
1da177e4 78#include "internal.h"
e900a918 79#include "shuffle.h"
36e66c55 80#include "page_reporting.h"
1da177e4 81
f04a5d5d
DH
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
47b6a24a
DH
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
2c335680
AK
110/*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
c8e251fa
CS
121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 124
dbbee9d5
MG
125struct pagesets {
126 local_lock_t lock;
127#if defined(CONFIG_DEBUG_INFO_BTF) && \
128 !defined(CONFIG_DEBUG_LOCK_ALLOC) && \
129 !defined(CONFIG_PAHOLE_HAS_ZEROSIZE_PERCPU_SUPPORT)
130 /*
131 * pahole 1.21 and earlier gets confused by zero-sized per-CPU
132 * variables and produces invalid BTF. Ensure that
133 * sizeof(struct pagesets) != 0 for older versions of pahole.
134 */
135 char __pahole_hack;
136 #warning "pahole too old to support zero-sized struct pagesets"
137#endif
138};
139static DEFINE_PER_CPU(struct pagesets, pagesets) = {
140 .lock = INIT_LOCAL_LOCK(lock),
141};
142
72812019
LS
143#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
144DEFINE_PER_CPU(int, numa_node);
145EXPORT_PER_CPU_SYMBOL(numa_node);
146#endif
147
4518085e
KW
148DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
149
7aac7898
LS
150#ifdef CONFIG_HAVE_MEMORYLESS_NODES
151/*
152 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
153 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
154 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
155 * defined in <linux/topology.h>.
156 */
157DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
158EXPORT_PER_CPU_SYMBOL(_numa_mem_);
159#endif
160
bd233f53 161/* work_structs for global per-cpu drains */
d9367bd0
WY
162struct pcpu_drain {
163 struct zone *zone;
164 struct work_struct work;
165};
8b885f53
JY
166static DEFINE_MUTEX(pcpu_drain_mutex);
167static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 168
38addce8 169#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 170volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
171EXPORT_SYMBOL(latent_entropy);
172#endif
173
1da177e4 174/*
13808910 175 * Array of node states.
1da177e4 176 */
13808910
CL
177nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
178 [N_POSSIBLE] = NODE_MASK_ALL,
179 [N_ONLINE] = { { [0] = 1UL } },
180#ifndef CONFIG_NUMA
181 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
182#ifdef CONFIG_HIGHMEM
183 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 184#endif
20b2f52b 185 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
186 [N_CPU] = { { [0] = 1UL } },
187#endif /* NUMA */
188};
189EXPORT_SYMBOL(node_states);
190
ca79b0c2
AK
191atomic_long_t _totalram_pages __read_mostly;
192EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 193unsigned long totalreserve_pages __read_mostly;
e48322ab 194unsigned long totalcma_pages __read_mostly;
ab8fabd4 195
74f44822 196int percpu_pagelist_high_fraction;
dcce284a 197gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 198DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
199EXPORT_SYMBOL(init_on_alloc);
200
51cba1eb 201DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
202EXPORT_SYMBOL(init_on_free);
203
04013513
VB
204static bool _init_on_alloc_enabled_early __read_mostly
205 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
206static int __init early_init_on_alloc(char *buf)
207{
6471384a 208
04013513 209 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
210}
211early_param("init_on_alloc", early_init_on_alloc);
212
04013513
VB
213static bool _init_on_free_enabled_early __read_mostly
214 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
215static int __init early_init_on_free(char *buf)
216{
04013513 217 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
218}
219early_param("init_on_free", early_init_on_free);
1da177e4 220
bb14c2c7
VB
221/*
222 * A cached value of the page's pageblock's migratetype, used when the page is
223 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
224 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
225 * Also the migratetype set in the page does not necessarily match the pcplist
226 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
227 * other index - this ensures that it will be put on the correct CMA freelist.
228 */
229static inline int get_pcppage_migratetype(struct page *page)
230{
231 return page->index;
232}
233
234static inline void set_pcppage_migratetype(struct page *page, int migratetype)
235{
236 page->index = migratetype;
237}
238
452aa699
RW
239#ifdef CONFIG_PM_SLEEP
240/*
241 * The following functions are used by the suspend/hibernate code to temporarily
242 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
243 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
244 * they should always be called with system_transition_mutex held
245 * (gfp_allowed_mask also should only be modified with system_transition_mutex
246 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
247 * with that modification).
452aa699 248 */
c9e664f1
RW
249
250static gfp_t saved_gfp_mask;
251
252void pm_restore_gfp_mask(void)
452aa699 253{
55f2503c 254 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
255 if (saved_gfp_mask) {
256 gfp_allowed_mask = saved_gfp_mask;
257 saved_gfp_mask = 0;
258 }
452aa699
RW
259}
260
c9e664f1 261void pm_restrict_gfp_mask(void)
452aa699 262{
55f2503c 263 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
264 WARN_ON(saved_gfp_mask);
265 saved_gfp_mask = gfp_allowed_mask;
d0164adc 266 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 267}
f90ac398
MG
268
269bool pm_suspended_storage(void)
270{
d0164adc 271 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
272 return false;
273 return true;
274}
452aa699
RW
275#endif /* CONFIG_PM_SLEEP */
276
d9c23400 277#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 278unsigned int pageblock_order __read_mostly;
d9c23400
MG
279#endif
280
7fef431b
DH
281static void __free_pages_ok(struct page *page, unsigned int order,
282 fpi_t fpi_flags);
a226f6c8 283
1da177e4
LT
284/*
285 * results with 256, 32 in the lowmem_reserve sysctl:
286 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
287 * 1G machine -> (16M dma, 784M normal, 224M high)
288 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
289 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 290 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
291 *
292 * TBD: should special case ZONE_DMA32 machines here - in those we normally
293 * don't need any ZONE_NORMAL reservation
1da177e4 294 */
d3cda233 295int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 296#ifdef CONFIG_ZONE_DMA
d3cda233 297 [ZONE_DMA] = 256,
4b51d669 298#endif
fb0e7942 299#ifdef CONFIG_ZONE_DMA32
d3cda233 300 [ZONE_DMA32] = 256,
fb0e7942 301#endif
d3cda233 302 [ZONE_NORMAL] = 32,
e53ef38d 303#ifdef CONFIG_HIGHMEM
d3cda233 304 [ZONE_HIGHMEM] = 0,
e53ef38d 305#endif
d3cda233 306 [ZONE_MOVABLE] = 0,
2f1b6248 307};
1da177e4 308
15ad7cdc 309static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 310#ifdef CONFIG_ZONE_DMA
2f1b6248 311 "DMA",
4b51d669 312#endif
fb0e7942 313#ifdef CONFIG_ZONE_DMA32
2f1b6248 314 "DMA32",
fb0e7942 315#endif
2f1b6248 316 "Normal",
e53ef38d 317#ifdef CONFIG_HIGHMEM
2a1e274a 318 "HighMem",
e53ef38d 319#endif
2a1e274a 320 "Movable",
033fbae9
DW
321#ifdef CONFIG_ZONE_DEVICE
322 "Device",
323#endif
2f1b6248
CL
324};
325
c999fbd3 326const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
327 "Unmovable",
328 "Movable",
329 "Reclaimable",
330 "HighAtomic",
331#ifdef CONFIG_CMA
332 "CMA",
333#endif
334#ifdef CONFIG_MEMORY_ISOLATION
335 "Isolate",
336#endif
337};
338
ae70eddd
AK
339compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
340 [NULL_COMPOUND_DTOR] = NULL,
341 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 342#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 343 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 344#endif
9a982250 345#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 346 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 347#endif
f1e61557
KS
348};
349
1da177e4 350int min_free_kbytes = 1024;
42aa83cb 351int user_min_free_kbytes = -1;
1c30844d 352int watermark_boost_factor __read_mostly = 15000;
795ae7a0 353int watermark_scale_factor = 10;
1da177e4 354
bbe5d993
OS
355static unsigned long nr_kernel_pages __initdata;
356static unsigned long nr_all_pages __initdata;
357static unsigned long dma_reserve __initdata;
1da177e4 358
bbe5d993
OS
359static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
360static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 361static unsigned long required_kernelcore __initdata;
a5c6d650 362static unsigned long required_kernelcore_percent __initdata;
7f16f91f 363static unsigned long required_movablecore __initdata;
a5c6d650 364static unsigned long required_movablecore_percent __initdata;
bbe5d993 365static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 366static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
367
368/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
369int movable_zone;
370EXPORT_SYMBOL(movable_zone);
c713216d 371
418508c1 372#if MAX_NUMNODES > 1
b9726c26 373unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 374unsigned int nr_online_nodes __read_mostly = 1;
418508c1 375EXPORT_SYMBOL(nr_node_ids);
62bc62a8 376EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
377#endif
378
9ef9acb0
MG
379int page_group_by_mobility_disabled __read_mostly;
380
3a80a7fa 381#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
382/*
383 * During boot we initialize deferred pages on-demand, as needed, but once
384 * page_alloc_init_late() has finished, the deferred pages are all initialized,
385 * and we can permanently disable that path.
386 */
387static DEFINE_STATIC_KEY_TRUE(deferred_pages);
388
389/*
390 * Calling kasan_free_pages() only after deferred memory initialization
391 * has completed. Poisoning pages during deferred memory init will greatly
392 * lengthen the process and cause problem in large memory systems as the
393 * deferred pages initialization is done with interrupt disabled.
394 *
395 * Assuming that there will be no reference to those newly initialized
396 * pages before they are ever allocated, this should have no effect on
397 * KASAN memory tracking as the poison will be properly inserted at page
398 * allocation time. The only corner case is when pages are allocated by
399 * on-demand allocation and then freed again before the deferred pages
400 * initialization is done, but this is not likely to happen.
401 */
2c335680 402static inline void kasan_free_nondeferred_pages(struct page *page, int order,
1bb5eab3 403 bool init, fpi_t fpi_flags)
3c0c12cc 404{
2c335680
AK
405 if (static_branch_unlikely(&deferred_pages))
406 return;
407 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
408 (fpi_flags & FPI_SKIP_KASAN_POISON))
409 return;
1bb5eab3 410 kasan_free_pages(page, order, init);
3c0c12cc
WL
411}
412
3a80a7fa 413/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 414static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 415{
ef70b6f4
MG
416 int nid = early_pfn_to_nid(pfn);
417
418 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
419 return true;
420
421 return false;
422}
423
424/*
d3035be4 425 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
426 * later in the boot cycle when it can be parallelised.
427 */
d3035be4
PT
428static bool __meminit
429defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 430{
d3035be4
PT
431 static unsigned long prev_end_pfn, nr_initialised;
432
433 /*
434 * prev_end_pfn static that contains the end of previous zone
435 * No need to protect because called very early in boot before smp_init.
436 */
437 if (prev_end_pfn != end_pfn) {
438 prev_end_pfn = end_pfn;
439 nr_initialised = 0;
440 }
441
3c2c6488 442 /* Always populate low zones for address-constrained allocations */
d3035be4 443 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 444 return false;
23b68cfa 445
dc2da7b4
BH
446 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
447 return true;
23b68cfa
WY
448 /*
449 * We start only with one section of pages, more pages are added as
450 * needed until the rest of deferred pages are initialized.
451 */
d3035be4 452 nr_initialised++;
23b68cfa 453 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
454 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
455 NODE_DATA(nid)->first_deferred_pfn = pfn;
456 return true;
3a80a7fa 457 }
d3035be4 458 return false;
3a80a7fa
MG
459}
460#else
2c335680 461static inline void kasan_free_nondeferred_pages(struct page *page, int order,
1bb5eab3 462 bool init, fpi_t fpi_flags)
2c335680
AK
463{
464 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
465 (fpi_flags & FPI_SKIP_KASAN_POISON))
466 return;
1bb5eab3 467 kasan_free_pages(page, order, init);
2c335680 468}
3c0c12cc 469
3a80a7fa
MG
470static inline bool early_page_uninitialised(unsigned long pfn)
471{
472 return false;
473}
474
d3035be4 475static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 476{
d3035be4 477 return false;
3a80a7fa
MG
478}
479#endif
480
0b423ca2 481/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 482static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
483 unsigned long pfn)
484{
485#ifdef CONFIG_SPARSEMEM
f1eca35a 486 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
487#else
488 return page_zone(page)->pageblock_flags;
489#endif /* CONFIG_SPARSEMEM */
490}
491
ca891f41 492static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
493{
494#ifdef CONFIG_SPARSEMEM
495 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
496#else
497 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 498#endif /* CONFIG_SPARSEMEM */
399b795b 499 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
500}
501
535b81e2 502static __always_inline
ca891f41 503unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 504 unsigned long pfn,
0b423ca2
MG
505 unsigned long mask)
506{
507 unsigned long *bitmap;
508 unsigned long bitidx, word_bitidx;
509 unsigned long word;
510
511 bitmap = get_pageblock_bitmap(page, pfn);
512 bitidx = pfn_to_bitidx(page, pfn);
513 word_bitidx = bitidx / BITS_PER_LONG;
514 bitidx &= (BITS_PER_LONG-1);
515
516 word = bitmap[word_bitidx];
d93d5ab9 517 return (word >> bitidx) & mask;
0b423ca2
MG
518}
519
a00cda3f
MCC
520/**
521 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
522 * @page: The page within the block of interest
523 * @pfn: The target page frame number
524 * @mask: mask of bits that the caller is interested in
525 *
526 * Return: pageblock_bits flags
527 */
ca891f41
MWO
528unsigned long get_pfnblock_flags_mask(const struct page *page,
529 unsigned long pfn, unsigned long mask)
0b423ca2 530{
535b81e2 531 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
532}
533
ca891f41
MWO
534static __always_inline int get_pfnblock_migratetype(const struct page *page,
535 unsigned long pfn)
0b423ca2 536{
535b81e2 537 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
538}
539
540/**
541 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
542 * @page: The page within the block of interest
543 * @flags: The flags to set
544 * @pfn: The target page frame number
0b423ca2
MG
545 * @mask: mask of bits that the caller is interested in
546 */
547void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
548 unsigned long pfn,
0b423ca2
MG
549 unsigned long mask)
550{
551 unsigned long *bitmap;
552 unsigned long bitidx, word_bitidx;
553 unsigned long old_word, word;
554
555 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 556 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
557
558 bitmap = get_pageblock_bitmap(page, pfn);
559 bitidx = pfn_to_bitidx(page, pfn);
560 word_bitidx = bitidx / BITS_PER_LONG;
561 bitidx &= (BITS_PER_LONG-1);
562
563 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
564
d93d5ab9
WY
565 mask <<= bitidx;
566 flags <<= bitidx;
0b423ca2
MG
567
568 word = READ_ONCE(bitmap[word_bitidx]);
569 for (;;) {
570 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
571 if (word == old_word)
572 break;
573 word = old_word;
574 }
575}
3a80a7fa 576
ee6f509c 577void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 578{
5d0f3f72
KM
579 if (unlikely(page_group_by_mobility_disabled &&
580 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
581 migratetype = MIGRATE_UNMOVABLE;
582
d93d5ab9 583 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 584 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
585}
586
13e7444b 587#ifdef CONFIG_DEBUG_VM
c6a57e19 588static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 589{
bdc8cb98
DH
590 int ret = 0;
591 unsigned seq;
592 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 593 unsigned long sp, start_pfn;
c6a57e19 594
bdc8cb98
DH
595 do {
596 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
597 start_pfn = zone->zone_start_pfn;
598 sp = zone->spanned_pages;
108bcc96 599 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
600 ret = 1;
601 } while (zone_span_seqretry(zone, seq));
602
b5e6a5a2 603 if (ret)
613813e8
DH
604 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
605 pfn, zone_to_nid(zone), zone->name,
606 start_pfn, start_pfn + sp);
b5e6a5a2 607
bdc8cb98 608 return ret;
c6a57e19
DH
609}
610
611static int page_is_consistent(struct zone *zone, struct page *page)
612{
14e07298 613 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 614 return 0;
1da177e4 615 if (zone != page_zone(page))
c6a57e19
DH
616 return 0;
617
618 return 1;
619}
620/*
621 * Temporary debugging check for pages not lying within a given zone.
622 */
d73d3c9f 623static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
624{
625 if (page_outside_zone_boundaries(zone, page))
1da177e4 626 return 1;
c6a57e19
DH
627 if (!page_is_consistent(zone, page))
628 return 1;
629
1da177e4
LT
630 return 0;
631}
13e7444b 632#else
d73d3c9f 633static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
634{
635 return 0;
636}
637#endif
638
82a3241a 639static void bad_page(struct page *page, const char *reason)
1da177e4 640{
d936cf9b
HD
641 static unsigned long resume;
642 static unsigned long nr_shown;
643 static unsigned long nr_unshown;
644
645 /*
646 * Allow a burst of 60 reports, then keep quiet for that minute;
647 * or allow a steady drip of one report per second.
648 */
649 if (nr_shown == 60) {
650 if (time_before(jiffies, resume)) {
651 nr_unshown++;
652 goto out;
653 }
654 if (nr_unshown) {
ff8e8116 655 pr_alert(
1e9e6365 656 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
657 nr_unshown);
658 nr_unshown = 0;
659 }
660 nr_shown = 0;
661 }
662 if (nr_shown++ == 0)
663 resume = jiffies + 60 * HZ;
664
ff8e8116 665 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 666 current->comm, page_to_pfn(page));
d2f07ec0 667 dump_page(page, reason);
3dc14741 668
4f31888c 669 print_modules();
1da177e4 670 dump_stack();
d936cf9b 671out:
8cc3b392 672 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 673 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 674 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
675}
676
21d02f8f
MG
677static inline void free_the_page(struct page *page, unsigned int order)
678{
679 if (order == 0) /* Via pcp? */
680 free_unref_page(page);
681 else
682 __free_pages_ok(page, order, FPI_NONE);
683}
684
1da177e4
LT
685/*
686 * Higher-order pages are called "compound pages". They are structured thusly:
687 *
1d798ca3 688 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 689 *
1d798ca3
KS
690 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
691 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 692 *
1d798ca3
KS
693 * The first tail page's ->compound_dtor holds the offset in array of compound
694 * page destructors. See compound_page_dtors.
1da177e4 695 *
1d798ca3 696 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 697 * This usage means that zero-order pages may not be compound.
1da177e4 698 */
d98c7a09 699
9a982250 700void free_compound_page(struct page *page)
d98c7a09 701{
7ae88534 702 mem_cgroup_uncharge(page);
7fef431b 703 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
704}
705
d00181b9 706void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
707{
708 int i;
709 int nr_pages = 1 << order;
710
18229df5
AW
711 __SetPageHead(page);
712 for (i = 1; i < nr_pages; i++) {
713 struct page *p = page + i;
58a84aa9 714 set_page_count(p, 0);
1c290f64 715 p->mapping = TAIL_MAPPING;
1d798ca3 716 set_compound_head(p, page);
18229df5 717 }
1378a5ee
MWO
718
719 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
720 set_compound_order(page, order);
53f9263b 721 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
722 if (hpage_pincount_available(page))
723 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
724}
725
c0a32fc5
SG
726#ifdef CONFIG_DEBUG_PAGEALLOC
727unsigned int _debug_guardpage_minorder;
96a2b03f 728
8e57f8ac
VB
729bool _debug_pagealloc_enabled_early __read_mostly
730 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
731EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 732DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 733EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
734
735DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 736
031bc574
JK
737static int __init early_debug_pagealloc(char *buf)
738{
8e57f8ac 739 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
740}
741early_param("debug_pagealloc", early_debug_pagealloc);
742
c0a32fc5
SG
743static int __init debug_guardpage_minorder_setup(char *buf)
744{
745 unsigned long res;
746
747 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 748 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
749 return 0;
750 }
751 _debug_guardpage_minorder = res;
1170532b 752 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
753 return 0;
754}
f1c1e9f7 755early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 756
acbc15a4 757static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 758 unsigned int order, int migratetype)
c0a32fc5 759{
e30825f1 760 if (!debug_guardpage_enabled())
acbc15a4
JK
761 return false;
762
763 if (order >= debug_guardpage_minorder())
764 return false;
e30825f1 765
3972f6bb 766 __SetPageGuard(page);
2847cf95
JK
767 INIT_LIST_HEAD(&page->lru);
768 set_page_private(page, order);
769 /* Guard pages are not available for any usage */
770 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
771
772 return true;
c0a32fc5
SG
773}
774
2847cf95
JK
775static inline void clear_page_guard(struct zone *zone, struct page *page,
776 unsigned int order, int migratetype)
c0a32fc5 777{
e30825f1
JK
778 if (!debug_guardpage_enabled())
779 return;
780
3972f6bb 781 __ClearPageGuard(page);
e30825f1 782
2847cf95
JK
783 set_page_private(page, 0);
784 if (!is_migrate_isolate(migratetype))
785 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
786}
787#else
acbc15a4
JK
788static inline bool set_page_guard(struct zone *zone, struct page *page,
789 unsigned int order, int migratetype) { return false; }
2847cf95
JK
790static inline void clear_page_guard(struct zone *zone, struct page *page,
791 unsigned int order, int migratetype) {}
c0a32fc5
SG
792#endif
793
04013513
VB
794/*
795 * Enable static keys related to various memory debugging and hardening options.
796 * Some override others, and depend on early params that are evaluated in the
797 * order of appearance. So we need to first gather the full picture of what was
798 * enabled, and then make decisions.
799 */
800void init_mem_debugging_and_hardening(void)
801{
9df65f52
ST
802 bool page_poisoning_requested = false;
803
804#ifdef CONFIG_PAGE_POISONING
805 /*
806 * Page poisoning is debug page alloc for some arches. If
807 * either of those options are enabled, enable poisoning.
808 */
809 if (page_poisoning_enabled() ||
810 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
811 debug_pagealloc_enabled())) {
812 static_branch_enable(&_page_poisoning_enabled);
813 page_poisoning_requested = true;
814 }
815#endif
816
04013513 817 if (_init_on_alloc_enabled_early) {
9df65f52 818 if (page_poisoning_requested)
04013513
VB
819 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
820 "will take precedence over init_on_alloc\n");
821 else
822 static_branch_enable(&init_on_alloc);
823 }
824 if (_init_on_free_enabled_early) {
9df65f52 825 if (page_poisoning_requested)
04013513
VB
826 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
827 "will take precedence over init_on_free\n");
828 else
829 static_branch_enable(&init_on_free);
830 }
831
832#ifdef CONFIG_DEBUG_PAGEALLOC
833 if (!debug_pagealloc_enabled())
834 return;
835
836 static_branch_enable(&_debug_pagealloc_enabled);
837
838 if (!debug_guardpage_minorder())
839 return;
840
841 static_branch_enable(&_debug_guardpage_enabled);
842#endif
843}
844
ab130f91 845static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 846{
4c21e2f2 847 set_page_private(page, order);
676165a8 848 __SetPageBuddy(page);
1da177e4
LT
849}
850
1da177e4
LT
851/*
852 * This function checks whether a page is free && is the buddy
6e292b9b 853 * we can coalesce a page and its buddy if
13ad59df 854 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 855 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
856 * (c) a page and its buddy have the same order &&
857 * (d) a page and its buddy are in the same zone.
676165a8 858 *
6e292b9b
MW
859 * For recording whether a page is in the buddy system, we set PageBuddy.
860 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 861 *
676165a8 862 * For recording page's order, we use page_private(page).
1da177e4 863 */
fe925c0c 864static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 865 unsigned int order)
1da177e4 866{
fe925c0c 867 if (!page_is_guard(buddy) && !PageBuddy(buddy))
868 return false;
4c5018ce 869
ab130f91 870 if (buddy_order(buddy) != order)
fe925c0c 871 return false;
c0a32fc5 872
fe925c0c 873 /*
874 * zone check is done late to avoid uselessly calculating
875 * zone/node ids for pages that could never merge.
876 */
877 if (page_zone_id(page) != page_zone_id(buddy))
878 return false;
d34c5fa0 879
fe925c0c 880 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 881
fe925c0c 882 return true;
1da177e4
LT
883}
884
5e1f0f09
MG
885#ifdef CONFIG_COMPACTION
886static inline struct capture_control *task_capc(struct zone *zone)
887{
888 struct capture_control *capc = current->capture_control;
889
deba0487 890 return unlikely(capc) &&
5e1f0f09
MG
891 !(current->flags & PF_KTHREAD) &&
892 !capc->page &&
deba0487 893 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
894}
895
896static inline bool
897compaction_capture(struct capture_control *capc, struct page *page,
898 int order, int migratetype)
899{
900 if (!capc || order != capc->cc->order)
901 return false;
902
903 /* Do not accidentally pollute CMA or isolated regions*/
904 if (is_migrate_cma(migratetype) ||
905 is_migrate_isolate(migratetype))
906 return false;
907
908 /*
f0953a1b 909 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
910 * This might let an unmovable request use a reclaimable pageblock
911 * and vice-versa but no more than normal fallback logic which can
912 * have trouble finding a high-order free page.
913 */
914 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
915 return false;
916
917 capc->page = page;
918 return true;
919}
920
921#else
922static inline struct capture_control *task_capc(struct zone *zone)
923{
924 return NULL;
925}
926
927static inline bool
928compaction_capture(struct capture_control *capc, struct page *page,
929 int order, int migratetype)
930{
931 return false;
932}
933#endif /* CONFIG_COMPACTION */
934
6ab01363
AD
935/* Used for pages not on another list */
936static inline void add_to_free_list(struct page *page, struct zone *zone,
937 unsigned int order, int migratetype)
938{
939 struct free_area *area = &zone->free_area[order];
940
941 list_add(&page->lru, &area->free_list[migratetype]);
942 area->nr_free++;
943}
944
945/* Used for pages not on another list */
946static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
947 unsigned int order, int migratetype)
948{
949 struct free_area *area = &zone->free_area[order];
950
951 list_add_tail(&page->lru, &area->free_list[migratetype]);
952 area->nr_free++;
953}
954
293ffa5e
DH
955/*
956 * Used for pages which are on another list. Move the pages to the tail
957 * of the list - so the moved pages won't immediately be considered for
958 * allocation again (e.g., optimization for memory onlining).
959 */
6ab01363
AD
960static inline void move_to_free_list(struct page *page, struct zone *zone,
961 unsigned int order, int migratetype)
962{
963 struct free_area *area = &zone->free_area[order];
964
293ffa5e 965 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
966}
967
968static inline void del_page_from_free_list(struct page *page, struct zone *zone,
969 unsigned int order)
970{
36e66c55
AD
971 /* clear reported state and update reported page count */
972 if (page_reported(page))
973 __ClearPageReported(page);
974
6ab01363
AD
975 list_del(&page->lru);
976 __ClearPageBuddy(page);
977 set_page_private(page, 0);
978 zone->free_area[order].nr_free--;
979}
980
a2129f24
AD
981/*
982 * If this is not the largest possible page, check if the buddy
983 * of the next-highest order is free. If it is, it's possible
984 * that pages are being freed that will coalesce soon. In case,
985 * that is happening, add the free page to the tail of the list
986 * so it's less likely to be used soon and more likely to be merged
987 * as a higher order page
988 */
989static inline bool
990buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
991 struct page *page, unsigned int order)
992{
993 struct page *higher_page, *higher_buddy;
994 unsigned long combined_pfn;
995
996 if (order >= MAX_ORDER - 2)
997 return false;
998
999 if (!pfn_valid_within(buddy_pfn))
1000 return false;
1001
1002 combined_pfn = buddy_pfn & pfn;
1003 higher_page = page + (combined_pfn - pfn);
1004 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1005 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1006
1007 return pfn_valid_within(buddy_pfn) &&
1008 page_is_buddy(higher_page, higher_buddy, order + 1);
1009}
1010
1da177e4
LT
1011/*
1012 * Freeing function for a buddy system allocator.
1013 *
1014 * The concept of a buddy system is to maintain direct-mapped table
1015 * (containing bit values) for memory blocks of various "orders".
1016 * The bottom level table contains the map for the smallest allocatable
1017 * units of memory (here, pages), and each level above it describes
1018 * pairs of units from the levels below, hence, "buddies".
1019 * At a high level, all that happens here is marking the table entry
1020 * at the bottom level available, and propagating the changes upward
1021 * as necessary, plus some accounting needed to play nicely with other
1022 * parts of the VM system.
1023 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1024 * free pages of length of (1 << order) and marked with PageBuddy.
1025 * Page's order is recorded in page_private(page) field.
1da177e4 1026 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1027 * other. That is, if we allocate a small block, and both were
1028 * free, the remainder of the region must be split into blocks.
1da177e4 1029 * If a block is freed, and its buddy is also free, then this
5f63b720 1030 * triggers coalescing into a block of larger size.
1da177e4 1031 *
6d49e352 1032 * -- nyc
1da177e4
LT
1033 */
1034
48db57f8 1035static inline void __free_one_page(struct page *page,
dc4b0caf 1036 unsigned long pfn,
ed0ae21d 1037 struct zone *zone, unsigned int order,
f04a5d5d 1038 int migratetype, fpi_t fpi_flags)
1da177e4 1039{
a2129f24 1040 struct capture_control *capc = task_capc(zone);
3f649ab7 1041 unsigned long buddy_pfn;
a2129f24 1042 unsigned long combined_pfn;
d9dddbf5 1043 unsigned int max_order;
a2129f24
AD
1044 struct page *buddy;
1045 bool to_tail;
d9dddbf5 1046
7ad69832 1047 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1048
d29bb978 1049 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1050 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1051
ed0ae21d 1052 VM_BUG_ON(migratetype == -1);
d9dddbf5 1053 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1054 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1055
76741e77 1056 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1057 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1058
d9dddbf5 1059continue_merging:
7ad69832 1060 while (order < max_order) {
5e1f0f09
MG
1061 if (compaction_capture(capc, page, order, migratetype)) {
1062 __mod_zone_freepage_state(zone, -(1 << order),
1063 migratetype);
1064 return;
1065 }
76741e77
VB
1066 buddy_pfn = __find_buddy_pfn(pfn, order);
1067 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1068
1069 if (!pfn_valid_within(buddy_pfn))
1070 goto done_merging;
cb2b95e1 1071 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1072 goto done_merging;
c0a32fc5
SG
1073 /*
1074 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1075 * merge with it and move up one order.
1076 */
b03641af 1077 if (page_is_guard(buddy))
2847cf95 1078 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1079 else
6ab01363 1080 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1081 combined_pfn = buddy_pfn & pfn;
1082 page = page + (combined_pfn - pfn);
1083 pfn = combined_pfn;
1da177e4
LT
1084 order++;
1085 }
7ad69832 1086 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1087 /* If we are here, it means order is >= pageblock_order.
1088 * We want to prevent merge between freepages on isolate
1089 * pageblock and normal pageblock. Without this, pageblock
1090 * isolation could cause incorrect freepage or CMA accounting.
1091 *
1092 * We don't want to hit this code for the more frequent
1093 * low-order merging.
1094 */
1095 if (unlikely(has_isolate_pageblock(zone))) {
1096 int buddy_mt;
1097
76741e77
VB
1098 buddy_pfn = __find_buddy_pfn(pfn, order);
1099 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1100 buddy_mt = get_pageblock_migratetype(buddy);
1101
1102 if (migratetype != buddy_mt
1103 && (is_migrate_isolate(migratetype) ||
1104 is_migrate_isolate(buddy_mt)))
1105 goto done_merging;
1106 }
7ad69832 1107 max_order = order + 1;
d9dddbf5
VB
1108 goto continue_merging;
1109 }
1110
1111done_merging:
ab130f91 1112 set_buddy_order(page, order);
6dda9d55 1113
47b6a24a
DH
1114 if (fpi_flags & FPI_TO_TAIL)
1115 to_tail = true;
1116 else if (is_shuffle_order(order))
a2129f24 1117 to_tail = shuffle_pick_tail();
97500a4a 1118 else
a2129f24 1119 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1120
a2129f24 1121 if (to_tail)
6ab01363 1122 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1123 else
6ab01363 1124 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1125
1126 /* Notify page reporting subsystem of freed page */
f04a5d5d 1127 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1128 page_reporting_notify_free(order);
1da177e4
LT
1129}
1130
7bfec6f4
MG
1131/*
1132 * A bad page could be due to a number of fields. Instead of multiple branches,
1133 * try and check multiple fields with one check. The caller must do a detailed
1134 * check if necessary.
1135 */
1136static inline bool page_expected_state(struct page *page,
1137 unsigned long check_flags)
1138{
1139 if (unlikely(atomic_read(&page->_mapcount) != -1))
1140 return false;
1141
1142 if (unlikely((unsigned long)page->mapping |
1143 page_ref_count(page) |
1144#ifdef CONFIG_MEMCG
48060834 1145 page->memcg_data |
7bfec6f4
MG
1146#endif
1147 (page->flags & check_flags)))
1148 return false;
1149
1150 return true;
1151}
1152
58b7f119 1153static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1154{
82a3241a 1155 const char *bad_reason = NULL;
f0b791a3 1156
53f9263b 1157 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1158 bad_reason = "nonzero mapcount";
1159 if (unlikely(page->mapping != NULL))
1160 bad_reason = "non-NULL mapping";
fe896d18 1161 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1162 bad_reason = "nonzero _refcount";
58b7f119
WY
1163 if (unlikely(page->flags & flags)) {
1164 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1165 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1166 else
1167 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1168 }
9edad6ea 1169#ifdef CONFIG_MEMCG
48060834 1170 if (unlikely(page->memcg_data))
9edad6ea
JW
1171 bad_reason = "page still charged to cgroup";
1172#endif
58b7f119
WY
1173 return bad_reason;
1174}
1175
1176static void check_free_page_bad(struct page *page)
1177{
1178 bad_page(page,
1179 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1180}
1181
534fe5e3 1182static inline int check_free_page(struct page *page)
bb552ac6 1183{
da838d4f 1184 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1185 return 0;
bb552ac6
MG
1186
1187 /* Something has gone sideways, find it */
0d0c48a2 1188 check_free_page_bad(page);
7bfec6f4 1189 return 1;
1da177e4
LT
1190}
1191
4db7548c
MG
1192static int free_tail_pages_check(struct page *head_page, struct page *page)
1193{
1194 int ret = 1;
1195
1196 /*
1197 * We rely page->lru.next never has bit 0 set, unless the page
1198 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1199 */
1200 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1201
1202 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1203 ret = 0;
1204 goto out;
1205 }
1206 switch (page - head_page) {
1207 case 1:
4da1984e 1208 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1209 if (unlikely(compound_mapcount(page))) {
82a3241a 1210 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1211 goto out;
1212 }
1213 break;
1214 case 2:
1215 /*
1216 * the second tail page: ->mapping is
fa3015b7 1217 * deferred_list.next -- ignore value.
4db7548c
MG
1218 */
1219 break;
1220 default:
1221 if (page->mapping != TAIL_MAPPING) {
82a3241a 1222 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1223 goto out;
1224 }
1225 break;
1226 }
1227 if (unlikely(!PageTail(page))) {
82a3241a 1228 bad_page(page, "PageTail not set");
4db7548c
MG
1229 goto out;
1230 }
1231 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1232 bad_page(page, "compound_head not consistent");
4db7548c
MG
1233 goto out;
1234 }
1235 ret = 0;
1236out:
1237 page->mapping = NULL;
1238 clear_compound_head(page);
1239 return ret;
1240}
1241
6471384a
AP
1242static void kernel_init_free_pages(struct page *page, int numpages)
1243{
1244 int i;
1245
9e15afa5
QC
1246 /* s390's use of memset() could override KASAN redzones. */
1247 kasan_disable_current();
aa1ef4d7 1248 for (i = 0; i < numpages; i++) {
acb35b17 1249 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1250 page_kasan_tag_reset(page + i);
6471384a 1251 clear_highpage(page + i);
acb35b17 1252 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1253 }
9e15afa5 1254 kasan_enable_current();
6471384a
AP
1255}
1256
e2769dbd 1257static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1258 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1259{
e2769dbd 1260 int bad = 0;
1bb5eab3 1261 bool init;
4db7548c 1262
4db7548c
MG
1263 VM_BUG_ON_PAGE(PageTail(page), page);
1264
e2769dbd 1265 trace_mm_page_free(page, order);
e2769dbd 1266
79f5f8fa
OS
1267 if (unlikely(PageHWPoison(page)) && !order) {
1268 /*
1269 * Do not let hwpoison pages hit pcplists/buddy
1270 * Untie memcg state and reset page's owner
1271 */
18b2db3b 1272 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1273 __memcg_kmem_uncharge_page(page, order);
1274 reset_page_owner(page, order);
1275 return false;
1276 }
1277
e2769dbd
MG
1278 /*
1279 * Check tail pages before head page information is cleared to
1280 * avoid checking PageCompound for order-0 pages.
1281 */
1282 if (unlikely(order)) {
1283 bool compound = PageCompound(page);
1284 int i;
1285
1286 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1287
9a73f61b
KS
1288 if (compound)
1289 ClearPageDoubleMap(page);
e2769dbd
MG
1290 for (i = 1; i < (1 << order); i++) {
1291 if (compound)
1292 bad += free_tail_pages_check(page, page + i);
534fe5e3 1293 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1294 bad++;
1295 continue;
1296 }
1297 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1298 }
1299 }
bda807d4 1300 if (PageMappingFlags(page))
4db7548c 1301 page->mapping = NULL;
18b2db3b 1302 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1303 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1304 if (check_free)
534fe5e3 1305 bad += check_free_page(page);
e2769dbd
MG
1306 if (bad)
1307 return false;
4db7548c 1308
e2769dbd
MG
1309 page_cpupid_reset_last(page);
1310 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1311 reset_page_owner(page, order);
4db7548c
MG
1312
1313 if (!PageHighMem(page)) {
1314 debug_check_no_locks_freed(page_address(page),
e2769dbd 1315 PAGE_SIZE << order);
4db7548c 1316 debug_check_no_obj_freed(page_address(page),
e2769dbd 1317 PAGE_SIZE << order);
4db7548c 1318 }
6471384a 1319
8db26a3d
VB
1320 kernel_poison_pages(page, 1 << order);
1321
f9d79e8d 1322 /*
1bb5eab3
AK
1323 * As memory initialization might be integrated into KASAN,
1324 * kasan_free_pages and kernel_init_free_pages must be
1325 * kept together to avoid discrepancies in behavior.
1326 *
f9d79e8d
AK
1327 * With hardware tag-based KASAN, memory tags must be set before the
1328 * page becomes unavailable via debug_pagealloc or arch_free_page.
1329 */
1bb5eab3
AK
1330 init = want_init_on_free();
1331 if (init && !kasan_has_integrated_init())
1332 kernel_init_free_pages(page, 1 << order);
1333 kasan_free_nondeferred_pages(page, order, init, fpi_flags);
f9d79e8d 1334
234fdce8
QC
1335 /*
1336 * arch_free_page() can make the page's contents inaccessible. s390
1337 * does this. So nothing which can access the page's contents should
1338 * happen after this.
1339 */
1340 arch_free_page(page, order);
1341
77bc7fd6 1342 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1343
4db7548c
MG
1344 return true;
1345}
1346
e2769dbd 1347#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1348/*
1349 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1350 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1351 * moved from pcp lists to free lists.
1352 */
1353static bool free_pcp_prepare(struct page *page)
e2769dbd 1354{
2c335680 1355 return free_pages_prepare(page, 0, true, FPI_NONE);
e2769dbd
MG
1356}
1357
4462b32c 1358static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1359{
8e57f8ac 1360 if (debug_pagealloc_enabled_static())
534fe5e3 1361 return check_free_page(page);
4462b32c
VB
1362 else
1363 return false;
e2769dbd
MG
1364}
1365#else
4462b32c
VB
1366/*
1367 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1368 * moving from pcp lists to free list in order to reduce overhead. With
1369 * debug_pagealloc enabled, they are checked also immediately when being freed
1370 * to the pcp lists.
1371 */
e2769dbd
MG
1372static bool free_pcp_prepare(struct page *page)
1373{
8e57f8ac 1374 if (debug_pagealloc_enabled_static())
2c335680 1375 return free_pages_prepare(page, 0, true, FPI_NONE);
4462b32c 1376 else
2c335680 1377 return free_pages_prepare(page, 0, false, FPI_NONE);
e2769dbd
MG
1378}
1379
4db7548c
MG
1380static bool bulkfree_pcp_prepare(struct page *page)
1381{
534fe5e3 1382 return check_free_page(page);
4db7548c
MG
1383}
1384#endif /* CONFIG_DEBUG_VM */
1385
97334162
AL
1386static inline void prefetch_buddy(struct page *page)
1387{
1388 unsigned long pfn = page_to_pfn(page);
1389 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1390 struct page *buddy = page + (buddy_pfn - pfn);
1391
1392 prefetch(buddy);
1393}
1394
1da177e4 1395/*
5f8dcc21 1396 * Frees a number of pages from the PCP lists
1da177e4 1397 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1398 * count is the number of pages to free.
1da177e4
LT
1399 *
1400 * If the zone was previously in an "all pages pinned" state then look to
1401 * see if this freeing clears that state.
1402 *
1403 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1404 * pinned" detection logic.
1405 */
5f8dcc21
MG
1406static void free_pcppages_bulk(struct zone *zone, int count,
1407 struct per_cpu_pages *pcp)
1da177e4 1408{
5f8dcc21 1409 int migratetype = 0;
a6f9edd6 1410 int batch_free = 0;
5c3ad2eb 1411 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1412 bool isolated_pageblocks;
0a5f4e5b
AL
1413 struct page *page, *tmp;
1414 LIST_HEAD(head);
f2260e6b 1415
88e8ac11
CTR
1416 /*
1417 * Ensure proper count is passed which otherwise would stuck in the
1418 * below while (list_empty(list)) loop.
1419 */
1420 count = min(pcp->count, count);
e5b31ac2 1421 while (count) {
5f8dcc21
MG
1422 struct list_head *list;
1423
1424 /*
a6f9edd6
MG
1425 * Remove pages from lists in a round-robin fashion. A
1426 * batch_free count is maintained that is incremented when an
1427 * empty list is encountered. This is so more pages are freed
1428 * off fuller lists instead of spinning excessively around empty
1429 * lists
5f8dcc21
MG
1430 */
1431 do {
a6f9edd6 1432 batch_free++;
5f8dcc21
MG
1433 if (++migratetype == MIGRATE_PCPTYPES)
1434 migratetype = 0;
1435 list = &pcp->lists[migratetype];
1436 } while (list_empty(list));
48db57f8 1437
1d16871d
NK
1438 /* This is the only non-empty list. Free them all. */
1439 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1440 batch_free = count;
1d16871d 1441
a6f9edd6 1442 do {
a16601c5 1443 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1444 /* must delete to avoid corrupting pcp list */
a6f9edd6 1445 list_del(&page->lru);
77ba9062 1446 pcp->count--;
aa016d14 1447
4db7548c
MG
1448 if (bulkfree_pcp_prepare(page))
1449 continue;
1450
0a5f4e5b 1451 list_add_tail(&page->lru, &head);
97334162
AL
1452
1453 /*
1454 * We are going to put the page back to the global
1455 * pool, prefetch its buddy to speed up later access
1456 * under zone->lock. It is believed the overhead of
1457 * an additional test and calculating buddy_pfn here
1458 * can be offset by reduced memory latency later. To
1459 * avoid excessive prefetching due to large count, only
1460 * prefetch buddy for the first pcp->batch nr of pages.
1461 */
5c3ad2eb 1462 if (prefetch_nr) {
97334162 1463 prefetch_buddy(page);
5c3ad2eb
VB
1464 prefetch_nr--;
1465 }
e5b31ac2 1466 } while (--count && --batch_free && !list_empty(list));
1da177e4 1467 }
0a5f4e5b 1468
dbbee9d5
MG
1469 /*
1470 * local_lock_irq held so equivalent to spin_lock_irqsave for
1471 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1472 */
0a5f4e5b
AL
1473 spin_lock(&zone->lock);
1474 isolated_pageblocks = has_isolate_pageblock(zone);
1475
1476 /*
1477 * Use safe version since after __free_one_page(),
1478 * page->lru.next will not point to original list.
1479 */
1480 list_for_each_entry_safe(page, tmp, &head, lru) {
1481 int mt = get_pcppage_migratetype(page);
1482 /* MIGRATE_ISOLATE page should not go to pcplists */
1483 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1484 /* Pageblock could have been isolated meanwhile */
1485 if (unlikely(isolated_pageblocks))
1486 mt = get_pageblock_migratetype(page);
1487
f04a5d5d 1488 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1489 trace_mm_page_pcpu_drain(page, 0, mt);
1490 }
d34b0733 1491 spin_unlock(&zone->lock);
1da177e4
LT
1492}
1493
dc4b0caf
MG
1494static void free_one_page(struct zone *zone,
1495 struct page *page, unsigned long pfn,
7aeb09f9 1496 unsigned int order,
7fef431b 1497 int migratetype, fpi_t fpi_flags)
1da177e4 1498{
df1acc85
MG
1499 unsigned long flags;
1500
1501 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1502 if (unlikely(has_isolate_pageblock(zone) ||
1503 is_migrate_isolate(migratetype))) {
1504 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1505 }
7fef431b 1506 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1507 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1508}
1509
1e8ce83c 1510static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1511 unsigned long zone, int nid)
1e8ce83c 1512{
d0dc12e8 1513 mm_zero_struct_page(page);
1e8ce83c 1514 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1515 init_page_count(page);
1516 page_mapcount_reset(page);
1517 page_cpupid_reset_last(page);
2813b9c0 1518 page_kasan_tag_reset(page);
1e8ce83c 1519
1e8ce83c
RH
1520 INIT_LIST_HEAD(&page->lru);
1521#ifdef WANT_PAGE_VIRTUAL
1522 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1523 if (!is_highmem_idx(zone))
1524 set_page_address(page, __va(pfn << PAGE_SHIFT));
1525#endif
1526}
1527
7e18adb4 1528#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1529static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1530{
1531 pg_data_t *pgdat;
1532 int nid, zid;
1533
1534 if (!early_page_uninitialised(pfn))
1535 return;
1536
1537 nid = early_pfn_to_nid(pfn);
1538 pgdat = NODE_DATA(nid);
1539
1540 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1541 struct zone *zone = &pgdat->node_zones[zid];
1542
1543 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1544 break;
1545 }
d0dc12e8 1546 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1547}
1548#else
1549static inline void init_reserved_page(unsigned long pfn)
1550{
1551}
1552#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1553
92923ca3
NZ
1554/*
1555 * Initialised pages do not have PageReserved set. This function is
1556 * called for each range allocated by the bootmem allocator and
1557 * marks the pages PageReserved. The remaining valid pages are later
1558 * sent to the buddy page allocator.
1559 */
4b50bcc7 1560void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1561{
1562 unsigned long start_pfn = PFN_DOWN(start);
1563 unsigned long end_pfn = PFN_UP(end);
1564
7e18adb4
MG
1565 for (; start_pfn < end_pfn; start_pfn++) {
1566 if (pfn_valid(start_pfn)) {
1567 struct page *page = pfn_to_page(start_pfn);
1568
1569 init_reserved_page(start_pfn);
1d798ca3
KS
1570
1571 /* Avoid false-positive PageTail() */
1572 INIT_LIST_HEAD(&page->lru);
1573
d483da5b
AD
1574 /*
1575 * no need for atomic set_bit because the struct
1576 * page is not visible yet so nobody should
1577 * access it yet.
1578 */
1579 __SetPageReserved(page);
7e18adb4
MG
1580 }
1581 }
92923ca3
NZ
1582}
1583
7fef431b
DH
1584static void __free_pages_ok(struct page *page, unsigned int order,
1585 fpi_t fpi_flags)
ec95f53a 1586{
d34b0733 1587 unsigned long flags;
95e34412 1588 int migratetype;
dc4b0caf 1589 unsigned long pfn = page_to_pfn(page);
56f0e661 1590 struct zone *zone = page_zone(page);
ec95f53a 1591
2c335680 1592 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1593 return;
1594
cfc47a28 1595 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1596
56f0e661 1597 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1598 if (unlikely(has_isolate_pageblock(zone) ||
1599 is_migrate_isolate(migratetype))) {
1600 migratetype = get_pfnblock_migratetype(page, pfn);
1601 }
1602 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1603 spin_unlock_irqrestore(&zone->lock, flags);
90249993
MG
1604
1605 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1606}
1607
a9cd410a 1608void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1609{
c3993076 1610 unsigned int nr_pages = 1 << order;
e2d0bd2b 1611 struct page *p = page;
c3993076 1612 unsigned int loop;
a226f6c8 1613
7fef431b
DH
1614 /*
1615 * When initializing the memmap, __init_single_page() sets the refcount
1616 * of all pages to 1 ("allocated"/"not free"). We have to set the
1617 * refcount of all involved pages to 0.
1618 */
e2d0bd2b
YL
1619 prefetchw(p);
1620 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1621 prefetchw(p + 1);
c3993076
JW
1622 __ClearPageReserved(p);
1623 set_page_count(p, 0);
a226f6c8 1624 }
e2d0bd2b
YL
1625 __ClearPageReserved(p);
1626 set_page_count(p, 0);
c3993076 1627
9705bea5 1628 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1629
1630 /*
1631 * Bypass PCP and place fresh pages right to the tail, primarily
1632 * relevant for memory onlining.
1633 */
2c335680 1634 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1635}
1636
3f08a302 1637#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1638
03e92a5e
MR
1639/*
1640 * During memory init memblocks map pfns to nids. The search is expensive and
1641 * this caches recent lookups. The implementation of __early_pfn_to_nid
1642 * treats start/end as pfns.
1643 */
1644struct mminit_pfnnid_cache {
1645 unsigned long last_start;
1646 unsigned long last_end;
1647 int last_nid;
1648};
75a592a4 1649
03e92a5e 1650static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1651
1652/*
1653 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1654 */
03e92a5e 1655static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1656 struct mminit_pfnnid_cache *state)
75a592a4 1657{
6f24fbd3 1658 unsigned long start_pfn, end_pfn;
75a592a4
MG
1659 int nid;
1660
6f24fbd3
MR
1661 if (state->last_start <= pfn && pfn < state->last_end)
1662 return state->last_nid;
1663
1664 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1665 if (nid != NUMA_NO_NODE) {
1666 state->last_start = start_pfn;
1667 state->last_end = end_pfn;
1668 state->last_nid = nid;
1669 }
7ace9917
MG
1670
1671 return nid;
75a592a4 1672}
75a592a4 1673
75a592a4 1674int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1675{
7ace9917 1676 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1677 int nid;
1678
7ace9917 1679 spin_lock(&early_pfn_lock);
56ec43d8 1680 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1681 if (nid < 0)
e4568d38 1682 nid = first_online_node;
7ace9917 1683 spin_unlock(&early_pfn_lock);
75a592a4 1684
7ace9917 1685 return nid;
75a592a4 1686}
3f08a302 1687#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1688
7c2ee349 1689void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1690 unsigned int order)
1691{
1692 if (early_page_uninitialised(pfn))
1693 return;
a9cd410a 1694 __free_pages_core(page, order);
3a80a7fa
MG
1695}
1696
7cf91a98
JK
1697/*
1698 * Check that the whole (or subset of) a pageblock given by the interval of
1699 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1700 * with the migration of free compaction scanner. The scanners then need to
1701 * use only pfn_valid_within() check for arches that allow holes within
1702 * pageblocks.
1703 *
1704 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1705 *
1706 * It's possible on some configurations to have a setup like node0 node1 node0
1707 * i.e. it's possible that all pages within a zones range of pages do not
1708 * belong to a single zone. We assume that a border between node0 and node1
1709 * can occur within a single pageblock, but not a node0 node1 node0
1710 * interleaving within a single pageblock. It is therefore sufficient to check
1711 * the first and last page of a pageblock and avoid checking each individual
1712 * page in a pageblock.
1713 */
1714struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1715 unsigned long end_pfn, struct zone *zone)
1716{
1717 struct page *start_page;
1718 struct page *end_page;
1719
1720 /* end_pfn is one past the range we are checking */
1721 end_pfn--;
1722
1723 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1724 return NULL;
1725
2d070eab
MH
1726 start_page = pfn_to_online_page(start_pfn);
1727 if (!start_page)
1728 return NULL;
7cf91a98
JK
1729
1730 if (page_zone(start_page) != zone)
1731 return NULL;
1732
1733 end_page = pfn_to_page(end_pfn);
1734
1735 /* This gives a shorter code than deriving page_zone(end_page) */
1736 if (page_zone_id(start_page) != page_zone_id(end_page))
1737 return NULL;
1738
1739 return start_page;
1740}
1741
1742void set_zone_contiguous(struct zone *zone)
1743{
1744 unsigned long block_start_pfn = zone->zone_start_pfn;
1745 unsigned long block_end_pfn;
1746
1747 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1748 for (; block_start_pfn < zone_end_pfn(zone);
1749 block_start_pfn = block_end_pfn,
1750 block_end_pfn += pageblock_nr_pages) {
1751
1752 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1753
1754 if (!__pageblock_pfn_to_page(block_start_pfn,
1755 block_end_pfn, zone))
1756 return;
e84fe99b 1757 cond_resched();
7cf91a98
JK
1758 }
1759
1760 /* We confirm that there is no hole */
1761 zone->contiguous = true;
1762}
1763
1764void clear_zone_contiguous(struct zone *zone)
1765{
1766 zone->contiguous = false;
1767}
1768
7e18adb4 1769#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1770static void __init deferred_free_range(unsigned long pfn,
1771 unsigned long nr_pages)
a4de83dd 1772{
2f47a91f
PT
1773 struct page *page;
1774 unsigned long i;
a4de83dd 1775
2f47a91f 1776 if (!nr_pages)
a4de83dd
MG
1777 return;
1778
2f47a91f
PT
1779 page = pfn_to_page(pfn);
1780
a4de83dd 1781 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1782 if (nr_pages == pageblock_nr_pages &&
1783 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1784 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1785 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1786 return;
1787 }
1788
e780149b
XQ
1789 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1790 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1791 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1792 __free_pages_core(page, 0);
e780149b 1793 }
a4de83dd
MG
1794}
1795
d3cd131d
NS
1796/* Completion tracking for deferred_init_memmap() threads */
1797static atomic_t pgdat_init_n_undone __initdata;
1798static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1799
1800static inline void __init pgdat_init_report_one_done(void)
1801{
1802 if (atomic_dec_and_test(&pgdat_init_n_undone))
1803 complete(&pgdat_init_all_done_comp);
1804}
0e1cc95b 1805
2f47a91f 1806/*
80b1f41c
PT
1807 * Returns true if page needs to be initialized or freed to buddy allocator.
1808 *
1809 * First we check if pfn is valid on architectures where it is possible to have
1810 * holes within pageblock_nr_pages. On systems where it is not possible, this
1811 * function is optimized out.
1812 *
1813 * Then, we check if a current large page is valid by only checking the validity
1814 * of the head pfn.
2f47a91f 1815 */
56ec43d8 1816static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1817{
80b1f41c
PT
1818 if (!pfn_valid_within(pfn))
1819 return false;
1820 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1821 return false;
80b1f41c
PT
1822 return true;
1823}
2f47a91f 1824
80b1f41c
PT
1825/*
1826 * Free pages to buddy allocator. Try to free aligned pages in
1827 * pageblock_nr_pages sizes.
1828 */
56ec43d8 1829static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1830 unsigned long end_pfn)
1831{
80b1f41c
PT
1832 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1833 unsigned long nr_free = 0;
2f47a91f 1834
80b1f41c 1835 for (; pfn < end_pfn; pfn++) {
56ec43d8 1836 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1837 deferred_free_range(pfn - nr_free, nr_free);
1838 nr_free = 0;
1839 } else if (!(pfn & nr_pgmask)) {
1840 deferred_free_range(pfn - nr_free, nr_free);
1841 nr_free = 1;
80b1f41c
PT
1842 } else {
1843 nr_free++;
1844 }
1845 }
1846 /* Free the last block of pages to allocator */
1847 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1848}
1849
80b1f41c
PT
1850/*
1851 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1852 * by performing it only once every pageblock_nr_pages.
1853 * Return number of pages initialized.
1854 */
56ec43d8 1855static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1856 unsigned long pfn,
1857 unsigned long end_pfn)
2f47a91f 1858{
2f47a91f 1859 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1860 int nid = zone_to_nid(zone);
2f47a91f 1861 unsigned long nr_pages = 0;
56ec43d8 1862 int zid = zone_idx(zone);
2f47a91f 1863 struct page *page = NULL;
2f47a91f 1864
80b1f41c 1865 for (; pfn < end_pfn; pfn++) {
56ec43d8 1866 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1867 page = NULL;
2f47a91f 1868 continue;
80b1f41c 1869 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1870 page = pfn_to_page(pfn);
80b1f41c
PT
1871 } else {
1872 page++;
2f47a91f 1873 }
d0dc12e8 1874 __init_single_page(page, pfn, zid, nid);
80b1f41c 1875 nr_pages++;
2f47a91f 1876 }
80b1f41c 1877 return (nr_pages);
2f47a91f
PT
1878}
1879
0e56acae
AD
1880/*
1881 * This function is meant to pre-load the iterator for the zone init.
1882 * Specifically it walks through the ranges until we are caught up to the
1883 * first_init_pfn value and exits there. If we never encounter the value we
1884 * return false indicating there are no valid ranges left.
1885 */
1886static bool __init
1887deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1888 unsigned long *spfn, unsigned long *epfn,
1889 unsigned long first_init_pfn)
1890{
1891 u64 j;
1892
1893 /*
1894 * Start out by walking through the ranges in this zone that have
1895 * already been initialized. We don't need to do anything with them
1896 * so we just need to flush them out of the system.
1897 */
1898 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1899 if (*epfn <= first_init_pfn)
1900 continue;
1901 if (*spfn < first_init_pfn)
1902 *spfn = first_init_pfn;
1903 *i = j;
1904 return true;
1905 }
1906
1907 return false;
1908}
1909
1910/*
1911 * Initialize and free pages. We do it in two loops: first we initialize
1912 * struct page, then free to buddy allocator, because while we are
1913 * freeing pages we can access pages that are ahead (computing buddy
1914 * page in __free_one_page()).
1915 *
1916 * In order to try and keep some memory in the cache we have the loop
1917 * broken along max page order boundaries. This way we will not cause
1918 * any issues with the buddy page computation.
1919 */
1920static unsigned long __init
1921deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1922 unsigned long *end_pfn)
1923{
1924 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1925 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1926 unsigned long nr_pages = 0;
1927 u64 j = *i;
1928
1929 /* First we loop through and initialize the page values */
1930 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1931 unsigned long t;
1932
1933 if (mo_pfn <= *start_pfn)
1934 break;
1935
1936 t = min(mo_pfn, *end_pfn);
1937 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1938
1939 if (mo_pfn < *end_pfn) {
1940 *start_pfn = mo_pfn;
1941 break;
1942 }
1943 }
1944
1945 /* Reset values and now loop through freeing pages as needed */
1946 swap(j, *i);
1947
1948 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1949 unsigned long t;
1950
1951 if (mo_pfn <= spfn)
1952 break;
1953
1954 t = min(mo_pfn, epfn);
1955 deferred_free_pages(spfn, t);
1956
1957 if (mo_pfn <= epfn)
1958 break;
1959 }
1960
1961 return nr_pages;
1962}
1963
e4443149
DJ
1964static void __init
1965deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1966 void *arg)
1967{
1968 unsigned long spfn, epfn;
1969 struct zone *zone = arg;
1970 u64 i;
1971
1972 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1973
1974 /*
1975 * Initialize and free pages in MAX_ORDER sized increments so that we
1976 * can avoid introducing any issues with the buddy allocator.
1977 */
1978 while (spfn < end_pfn) {
1979 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1980 cond_resched();
1981 }
1982}
1983
ecd09650
DJ
1984/* An arch may override for more concurrency. */
1985__weak int __init
1986deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1987{
1988 return 1;
1989}
1990
7e18adb4 1991/* Initialise remaining memory on a node */
0e1cc95b 1992static int __init deferred_init_memmap(void *data)
7e18adb4 1993{
0e1cc95b 1994 pg_data_t *pgdat = data;
0e56acae 1995 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1996 unsigned long spfn = 0, epfn = 0;
0e56acae 1997 unsigned long first_init_pfn, flags;
7e18adb4 1998 unsigned long start = jiffies;
7e18adb4 1999 struct zone *zone;
e4443149 2000 int zid, max_threads;
2f47a91f 2001 u64 i;
7e18adb4 2002
3a2d7fa8
PT
2003 /* Bind memory initialisation thread to a local node if possible */
2004 if (!cpumask_empty(cpumask))
2005 set_cpus_allowed_ptr(current, cpumask);
2006
2007 pgdat_resize_lock(pgdat, &flags);
2008 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2009 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2010 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2011 pgdat_init_report_one_done();
0e1cc95b
MG
2012 return 0;
2013 }
2014
7e18adb4
MG
2015 /* Sanity check boundaries */
2016 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2017 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2018 pgdat->first_deferred_pfn = ULONG_MAX;
2019
3d060856
PT
2020 /*
2021 * Once we unlock here, the zone cannot be grown anymore, thus if an
2022 * interrupt thread must allocate this early in boot, zone must be
2023 * pre-grown prior to start of deferred page initialization.
2024 */
2025 pgdat_resize_unlock(pgdat, &flags);
2026
7e18adb4
MG
2027 /* Only the highest zone is deferred so find it */
2028 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2029 zone = pgdat->node_zones + zid;
2030 if (first_init_pfn < zone_end_pfn(zone))
2031 break;
2032 }
0e56acae
AD
2033
2034 /* If the zone is empty somebody else may have cleared out the zone */
2035 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2036 first_init_pfn))
2037 goto zone_empty;
7e18adb4 2038
ecd09650 2039 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2040
117003c3 2041 while (spfn < epfn) {
e4443149
DJ
2042 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2043 struct padata_mt_job job = {
2044 .thread_fn = deferred_init_memmap_chunk,
2045 .fn_arg = zone,
2046 .start = spfn,
2047 .size = epfn_align - spfn,
2048 .align = PAGES_PER_SECTION,
2049 .min_chunk = PAGES_PER_SECTION,
2050 .max_threads = max_threads,
2051 };
2052
2053 padata_do_multithreaded(&job);
2054 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2055 epfn_align);
117003c3 2056 }
0e56acae 2057zone_empty:
7e18adb4
MG
2058 /* Sanity check that the next zone really is unpopulated */
2059 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2060
89c7c402
DJ
2061 pr_info("node %d deferred pages initialised in %ums\n",
2062 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2063
2064 pgdat_init_report_one_done();
0e1cc95b
MG
2065 return 0;
2066}
c9e97a19 2067
c9e97a19
PT
2068/*
2069 * If this zone has deferred pages, try to grow it by initializing enough
2070 * deferred pages to satisfy the allocation specified by order, rounded up to
2071 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2072 * of SECTION_SIZE bytes by initializing struct pages in increments of
2073 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2074 *
2075 * Return true when zone was grown, otherwise return false. We return true even
2076 * when we grow less than requested, to let the caller decide if there are
2077 * enough pages to satisfy the allocation.
2078 *
2079 * Note: We use noinline because this function is needed only during boot, and
2080 * it is called from a __ref function _deferred_grow_zone. This way we are
2081 * making sure that it is not inlined into permanent text section.
2082 */
2083static noinline bool __init
2084deferred_grow_zone(struct zone *zone, unsigned int order)
2085{
c9e97a19 2086 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2087 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2088 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2089 unsigned long spfn, epfn, flags;
2090 unsigned long nr_pages = 0;
c9e97a19
PT
2091 u64 i;
2092
2093 /* Only the last zone may have deferred pages */
2094 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2095 return false;
2096
2097 pgdat_resize_lock(pgdat, &flags);
2098
c9e97a19
PT
2099 /*
2100 * If someone grew this zone while we were waiting for spinlock, return
2101 * true, as there might be enough pages already.
2102 */
2103 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2104 pgdat_resize_unlock(pgdat, &flags);
2105 return true;
2106 }
2107
0e56acae
AD
2108 /* If the zone is empty somebody else may have cleared out the zone */
2109 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2110 first_deferred_pfn)) {
2111 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2112 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2113 /* Retry only once. */
2114 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2115 }
2116
0e56acae
AD
2117 /*
2118 * Initialize and free pages in MAX_ORDER sized increments so
2119 * that we can avoid introducing any issues with the buddy
2120 * allocator.
2121 */
2122 while (spfn < epfn) {
2123 /* update our first deferred PFN for this section */
2124 first_deferred_pfn = spfn;
2125
2126 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2127 touch_nmi_watchdog();
c9e97a19 2128
0e56acae
AD
2129 /* We should only stop along section boundaries */
2130 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2131 continue;
c9e97a19 2132
0e56acae 2133 /* If our quota has been met we can stop here */
c9e97a19
PT
2134 if (nr_pages >= nr_pages_needed)
2135 break;
2136 }
2137
0e56acae 2138 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2139 pgdat_resize_unlock(pgdat, &flags);
2140
2141 return nr_pages > 0;
2142}
2143
2144/*
2145 * deferred_grow_zone() is __init, but it is called from
2146 * get_page_from_freelist() during early boot until deferred_pages permanently
2147 * disables this call. This is why we have refdata wrapper to avoid warning,
2148 * and to ensure that the function body gets unloaded.
2149 */
2150static bool __ref
2151_deferred_grow_zone(struct zone *zone, unsigned int order)
2152{
2153 return deferred_grow_zone(zone, order);
2154}
2155
7cf91a98 2156#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2157
2158void __init page_alloc_init_late(void)
2159{
7cf91a98 2160 struct zone *zone;
e900a918 2161 int nid;
7cf91a98
JK
2162
2163#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2164
d3cd131d
NS
2165 /* There will be num_node_state(N_MEMORY) threads */
2166 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2167 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2168 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2169 }
2170
2171 /* Block until all are initialised */
d3cd131d 2172 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2173
c9e97a19
PT
2174 /*
2175 * We initialized the rest of the deferred pages. Permanently disable
2176 * on-demand struct page initialization.
2177 */
2178 static_branch_disable(&deferred_pages);
2179
4248b0da
MG
2180 /* Reinit limits that are based on free pages after the kernel is up */
2181 files_maxfiles_init();
7cf91a98 2182#endif
350e88ba 2183
ba8f3587
LF
2184 buffer_init();
2185
3010f876
PT
2186 /* Discard memblock private memory */
2187 memblock_discard();
7cf91a98 2188
e900a918
DW
2189 for_each_node_state(nid, N_MEMORY)
2190 shuffle_free_memory(NODE_DATA(nid));
2191
7cf91a98
JK
2192 for_each_populated_zone(zone)
2193 set_zone_contiguous(zone);
7e18adb4 2194}
7e18adb4 2195
47118af0 2196#ifdef CONFIG_CMA
9cf510a5 2197/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2198void __init init_cma_reserved_pageblock(struct page *page)
2199{
2200 unsigned i = pageblock_nr_pages;
2201 struct page *p = page;
2202
2203 do {
2204 __ClearPageReserved(p);
2205 set_page_count(p, 0);
d883c6cf 2206 } while (++p, --i);
47118af0 2207
47118af0 2208 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2209
2210 if (pageblock_order >= MAX_ORDER) {
2211 i = pageblock_nr_pages;
2212 p = page;
2213 do {
2214 set_page_refcounted(p);
2215 __free_pages(p, MAX_ORDER - 1);
2216 p += MAX_ORDER_NR_PAGES;
2217 } while (i -= MAX_ORDER_NR_PAGES);
2218 } else {
2219 set_page_refcounted(page);
2220 __free_pages(page, pageblock_order);
2221 }
2222
3dcc0571 2223 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2224 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2225}
2226#endif
1da177e4
LT
2227
2228/*
2229 * The order of subdivision here is critical for the IO subsystem.
2230 * Please do not alter this order without good reasons and regression
2231 * testing. Specifically, as large blocks of memory are subdivided,
2232 * the order in which smaller blocks are delivered depends on the order
2233 * they're subdivided in this function. This is the primary factor
2234 * influencing the order in which pages are delivered to the IO
2235 * subsystem according to empirical testing, and this is also justified
2236 * by considering the behavior of a buddy system containing a single
2237 * large block of memory acted on by a series of small allocations.
2238 * This behavior is a critical factor in sglist merging's success.
2239 *
6d49e352 2240 * -- nyc
1da177e4 2241 */
085cc7d5 2242static inline void expand(struct zone *zone, struct page *page,
6ab01363 2243 int low, int high, int migratetype)
1da177e4
LT
2244{
2245 unsigned long size = 1 << high;
2246
2247 while (high > low) {
1da177e4
LT
2248 high--;
2249 size >>= 1;
309381fe 2250 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2251
acbc15a4
JK
2252 /*
2253 * Mark as guard pages (or page), that will allow to
2254 * merge back to allocator when buddy will be freed.
2255 * Corresponding page table entries will not be touched,
2256 * pages will stay not present in virtual address space
2257 */
2258 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2259 continue;
acbc15a4 2260
6ab01363 2261 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2262 set_buddy_order(&page[size], high);
1da177e4 2263 }
1da177e4
LT
2264}
2265
4e611801 2266static void check_new_page_bad(struct page *page)
1da177e4 2267{
f4c18e6f 2268 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2269 /* Don't complain about hwpoisoned pages */
2270 page_mapcount_reset(page); /* remove PageBuddy */
2271 return;
f4c18e6f 2272 }
58b7f119
WY
2273
2274 bad_page(page,
2275 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2276}
2277
2278/*
2279 * This page is about to be returned from the page allocator
2280 */
2281static inline int check_new_page(struct page *page)
2282{
2283 if (likely(page_expected_state(page,
2284 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2285 return 0;
2286
2287 check_new_page_bad(page);
2288 return 1;
2a7684a2
WF
2289}
2290
479f854a 2291#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2292/*
2293 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2294 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2295 * also checked when pcp lists are refilled from the free lists.
2296 */
2297static inline bool check_pcp_refill(struct page *page)
479f854a 2298{
8e57f8ac 2299 if (debug_pagealloc_enabled_static())
4462b32c
VB
2300 return check_new_page(page);
2301 else
2302 return false;
479f854a
MG
2303}
2304
4462b32c 2305static inline bool check_new_pcp(struct page *page)
479f854a
MG
2306{
2307 return check_new_page(page);
2308}
2309#else
4462b32c
VB
2310/*
2311 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2312 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2313 * enabled, they are also checked when being allocated from the pcp lists.
2314 */
2315static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2316{
2317 return check_new_page(page);
2318}
4462b32c 2319static inline bool check_new_pcp(struct page *page)
479f854a 2320{
8e57f8ac 2321 if (debug_pagealloc_enabled_static())
4462b32c
VB
2322 return check_new_page(page);
2323 else
2324 return false;
479f854a
MG
2325}
2326#endif /* CONFIG_DEBUG_VM */
2327
2328static bool check_new_pages(struct page *page, unsigned int order)
2329{
2330 int i;
2331 for (i = 0; i < (1 << order); i++) {
2332 struct page *p = page + i;
2333
2334 if (unlikely(check_new_page(p)))
2335 return true;
2336 }
2337
2338 return false;
2339}
2340
46f24fd8
JK
2341inline void post_alloc_hook(struct page *page, unsigned int order,
2342 gfp_t gfp_flags)
2343{
1bb5eab3
AK
2344 bool init;
2345
46f24fd8
JK
2346 set_page_private(page, 0);
2347 set_page_refcounted(page);
2348
2349 arch_alloc_page(page, order);
77bc7fd6 2350 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2351
2352 /*
2353 * Page unpoisoning must happen before memory initialization.
2354 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2355 * allocations and the page unpoisoning code will complain.
2356 */
8db26a3d 2357 kernel_unpoison_pages(page, 1 << order);
862b6dee 2358
1bb5eab3
AK
2359 /*
2360 * As memory initialization might be integrated into KASAN,
2361 * kasan_alloc_pages and kernel_init_free_pages must be
2362 * kept together to avoid discrepancies in behavior.
2363 */
2364 init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2365 kasan_alloc_pages(page, order, init);
2366 if (init && !kasan_has_integrated_init())
862b6dee 2367 kernel_init_free_pages(page, 1 << order);
1bb5eab3
AK
2368
2369 set_page_owner(page, order, gfp_flags);
46f24fd8
JK
2370}
2371
479f854a 2372static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2373 unsigned int alloc_flags)
2a7684a2 2374{
46f24fd8 2375 post_alloc_hook(page, order, gfp_flags);
17cf4406 2376
17cf4406
NP
2377 if (order && (gfp_flags & __GFP_COMP))
2378 prep_compound_page(page, order);
2379
75379191 2380 /*
2f064f34 2381 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2382 * allocate the page. The expectation is that the caller is taking
2383 * steps that will free more memory. The caller should avoid the page
2384 * being used for !PFMEMALLOC purposes.
2385 */
2f064f34
MH
2386 if (alloc_flags & ALLOC_NO_WATERMARKS)
2387 set_page_pfmemalloc(page);
2388 else
2389 clear_page_pfmemalloc(page);
1da177e4
LT
2390}
2391
56fd56b8
MG
2392/*
2393 * Go through the free lists for the given migratetype and remove
2394 * the smallest available page from the freelists
2395 */
85ccc8fa 2396static __always_inline
728ec980 2397struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2398 int migratetype)
2399{
2400 unsigned int current_order;
b8af2941 2401 struct free_area *area;
56fd56b8
MG
2402 struct page *page;
2403
2404 /* Find a page of the appropriate size in the preferred list */
2405 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2406 area = &(zone->free_area[current_order]);
b03641af 2407 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2408 if (!page)
2409 continue;
6ab01363
AD
2410 del_page_from_free_list(page, zone, current_order);
2411 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2412 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2413 return page;
2414 }
2415
2416 return NULL;
2417}
2418
2419
b2a0ac88
MG
2420/*
2421 * This array describes the order lists are fallen back to when
2422 * the free lists for the desirable migrate type are depleted
2423 */
da415663 2424static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2425 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2426 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2427 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2428#ifdef CONFIG_CMA
974a786e 2429 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2430#endif
194159fb 2431#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2432 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2433#endif
b2a0ac88
MG
2434};
2435
dc67647b 2436#ifdef CONFIG_CMA
85ccc8fa 2437static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2438 unsigned int order)
2439{
2440 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2441}
2442#else
2443static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2444 unsigned int order) { return NULL; }
2445#endif
2446
c361be55 2447/*
293ffa5e 2448 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2449 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2450 * boundary. If alignment is required, use move_freepages_block()
2451 */
02aa0cdd 2452static int move_freepages(struct zone *zone,
39ddb991 2453 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2454 int migratetype, int *num_movable)
c361be55
MG
2455{
2456 struct page *page;
39ddb991 2457 unsigned long pfn;
d00181b9 2458 unsigned int order;
d100313f 2459 int pages_moved = 0;
c361be55 2460
39ddb991
KW
2461 for (pfn = start_pfn; pfn <= end_pfn;) {
2462 if (!pfn_valid_within(pfn)) {
2463 pfn++;
c361be55
MG
2464 continue;
2465 }
2466
39ddb991 2467 page = pfn_to_page(pfn);
c361be55 2468 if (!PageBuddy(page)) {
02aa0cdd
VB
2469 /*
2470 * We assume that pages that could be isolated for
2471 * migration are movable. But we don't actually try
2472 * isolating, as that would be expensive.
2473 */
2474 if (num_movable &&
2475 (PageLRU(page) || __PageMovable(page)))
2476 (*num_movable)++;
39ddb991 2477 pfn++;
c361be55
MG
2478 continue;
2479 }
2480
cd961038
DR
2481 /* Make sure we are not inadvertently changing nodes */
2482 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2483 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2484
ab130f91 2485 order = buddy_order(page);
6ab01363 2486 move_to_free_list(page, zone, order, migratetype);
39ddb991 2487 pfn += 1 << order;
d100313f 2488 pages_moved += 1 << order;
c361be55
MG
2489 }
2490
d100313f 2491 return pages_moved;
c361be55
MG
2492}
2493
ee6f509c 2494int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2495 int migratetype, int *num_movable)
c361be55 2496{
39ddb991 2497 unsigned long start_pfn, end_pfn, pfn;
c361be55 2498
4a222127
DR
2499 if (num_movable)
2500 *num_movable = 0;
2501
39ddb991
KW
2502 pfn = page_to_pfn(page);
2503 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2504 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2505
2506 /* Do not cross zone boundaries */
108bcc96 2507 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2508 start_pfn = pfn;
108bcc96 2509 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2510 return 0;
2511
39ddb991 2512 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2513 num_movable);
c361be55
MG
2514}
2515
2f66a68f
MG
2516static void change_pageblock_range(struct page *pageblock_page,
2517 int start_order, int migratetype)
2518{
2519 int nr_pageblocks = 1 << (start_order - pageblock_order);
2520
2521 while (nr_pageblocks--) {
2522 set_pageblock_migratetype(pageblock_page, migratetype);
2523 pageblock_page += pageblock_nr_pages;
2524 }
2525}
2526
fef903ef 2527/*
9c0415eb
VB
2528 * When we are falling back to another migratetype during allocation, try to
2529 * steal extra free pages from the same pageblocks to satisfy further
2530 * allocations, instead of polluting multiple pageblocks.
2531 *
2532 * If we are stealing a relatively large buddy page, it is likely there will
2533 * be more free pages in the pageblock, so try to steal them all. For
2534 * reclaimable and unmovable allocations, we steal regardless of page size,
2535 * as fragmentation caused by those allocations polluting movable pageblocks
2536 * is worse than movable allocations stealing from unmovable and reclaimable
2537 * pageblocks.
fef903ef 2538 */
4eb7dce6
JK
2539static bool can_steal_fallback(unsigned int order, int start_mt)
2540{
2541 /*
2542 * Leaving this order check is intended, although there is
2543 * relaxed order check in next check. The reason is that
2544 * we can actually steal whole pageblock if this condition met,
2545 * but, below check doesn't guarantee it and that is just heuristic
2546 * so could be changed anytime.
2547 */
2548 if (order >= pageblock_order)
2549 return true;
2550
2551 if (order >= pageblock_order / 2 ||
2552 start_mt == MIGRATE_RECLAIMABLE ||
2553 start_mt == MIGRATE_UNMOVABLE ||
2554 page_group_by_mobility_disabled)
2555 return true;
2556
2557 return false;
2558}
2559
597c8920 2560static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2561{
2562 unsigned long max_boost;
2563
2564 if (!watermark_boost_factor)
597c8920 2565 return false;
14f69140
HW
2566 /*
2567 * Don't bother in zones that are unlikely to produce results.
2568 * On small machines, including kdump capture kernels running
2569 * in a small area, boosting the watermark can cause an out of
2570 * memory situation immediately.
2571 */
2572 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2573 return false;
1c30844d
MG
2574
2575 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2576 watermark_boost_factor, 10000);
94b3334c
MG
2577
2578 /*
2579 * high watermark may be uninitialised if fragmentation occurs
2580 * very early in boot so do not boost. We do not fall
2581 * through and boost by pageblock_nr_pages as failing
2582 * allocations that early means that reclaim is not going
2583 * to help and it may even be impossible to reclaim the
2584 * boosted watermark resulting in a hang.
2585 */
2586 if (!max_boost)
597c8920 2587 return false;
94b3334c 2588
1c30844d
MG
2589 max_boost = max(pageblock_nr_pages, max_boost);
2590
2591 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2592 max_boost);
597c8920
JW
2593
2594 return true;
1c30844d
MG
2595}
2596
4eb7dce6
JK
2597/*
2598 * This function implements actual steal behaviour. If order is large enough,
2599 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2600 * pageblock to our migratetype and determine how many already-allocated pages
2601 * are there in the pageblock with a compatible migratetype. If at least half
2602 * of pages are free or compatible, we can change migratetype of the pageblock
2603 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2604 */
2605static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2606 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2607{
ab130f91 2608 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2609 int free_pages, movable_pages, alike_pages;
2610 int old_block_type;
2611
2612 old_block_type = get_pageblock_migratetype(page);
fef903ef 2613
3bc48f96
VB
2614 /*
2615 * This can happen due to races and we want to prevent broken
2616 * highatomic accounting.
2617 */
02aa0cdd 2618 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2619 goto single_page;
2620
fef903ef
SB
2621 /* Take ownership for orders >= pageblock_order */
2622 if (current_order >= pageblock_order) {
2623 change_pageblock_range(page, current_order, start_type);
3bc48f96 2624 goto single_page;
fef903ef
SB
2625 }
2626
1c30844d
MG
2627 /*
2628 * Boost watermarks to increase reclaim pressure to reduce the
2629 * likelihood of future fallbacks. Wake kswapd now as the node
2630 * may be balanced overall and kswapd will not wake naturally.
2631 */
597c8920 2632 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2633 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2634
3bc48f96
VB
2635 /* We are not allowed to try stealing from the whole block */
2636 if (!whole_block)
2637 goto single_page;
2638
02aa0cdd
VB
2639 free_pages = move_freepages_block(zone, page, start_type,
2640 &movable_pages);
2641 /*
2642 * Determine how many pages are compatible with our allocation.
2643 * For movable allocation, it's the number of movable pages which
2644 * we just obtained. For other types it's a bit more tricky.
2645 */
2646 if (start_type == MIGRATE_MOVABLE) {
2647 alike_pages = movable_pages;
2648 } else {
2649 /*
2650 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2651 * to MOVABLE pageblock, consider all non-movable pages as
2652 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2653 * vice versa, be conservative since we can't distinguish the
2654 * exact migratetype of non-movable pages.
2655 */
2656 if (old_block_type == MIGRATE_MOVABLE)
2657 alike_pages = pageblock_nr_pages
2658 - (free_pages + movable_pages);
2659 else
2660 alike_pages = 0;
2661 }
2662
3bc48f96 2663 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2664 if (!free_pages)
3bc48f96 2665 goto single_page;
fef903ef 2666
02aa0cdd
VB
2667 /*
2668 * If a sufficient number of pages in the block are either free or of
2669 * comparable migratability as our allocation, claim the whole block.
2670 */
2671 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2672 page_group_by_mobility_disabled)
2673 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2674
2675 return;
2676
2677single_page:
6ab01363 2678 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2679}
2680
2149cdae
JK
2681/*
2682 * Check whether there is a suitable fallback freepage with requested order.
2683 * If only_stealable is true, this function returns fallback_mt only if
2684 * we can steal other freepages all together. This would help to reduce
2685 * fragmentation due to mixed migratetype pages in one pageblock.
2686 */
2687int find_suitable_fallback(struct free_area *area, unsigned int order,
2688 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2689{
2690 int i;
2691 int fallback_mt;
2692
2693 if (area->nr_free == 0)
2694 return -1;
2695
2696 *can_steal = false;
2697 for (i = 0;; i++) {
2698 fallback_mt = fallbacks[migratetype][i];
974a786e 2699 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2700 break;
2701
b03641af 2702 if (free_area_empty(area, fallback_mt))
4eb7dce6 2703 continue;
fef903ef 2704
4eb7dce6
JK
2705 if (can_steal_fallback(order, migratetype))
2706 *can_steal = true;
2707
2149cdae
JK
2708 if (!only_stealable)
2709 return fallback_mt;
2710
2711 if (*can_steal)
2712 return fallback_mt;
fef903ef 2713 }
4eb7dce6
JK
2714
2715 return -1;
fef903ef
SB
2716}
2717
0aaa29a5
MG
2718/*
2719 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2720 * there are no empty page blocks that contain a page with a suitable order
2721 */
2722static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2723 unsigned int alloc_order)
2724{
2725 int mt;
2726 unsigned long max_managed, flags;
2727
2728 /*
2729 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2730 * Check is race-prone but harmless.
2731 */
9705bea5 2732 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2733 if (zone->nr_reserved_highatomic >= max_managed)
2734 return;
2735
2736 spin_lock_irqsave(&zone->lock, flags);
2737
2738 /* Recheck the nr_reserved_highatomic limit under the lock */
2739 if (zone->nr_reserved_highatomic >= max_managed)
2740 goto out_unlock;
2741
2742 /* Yoink! */
2743 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2744 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2745 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2746 zone->nr_reserved_highatomic += pageblock_nr_pages;
2747 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2748 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2749 }
2750
2751out_unlock:
2752 spin_unlock_irqrestore(&zone->lock, flags);
2753}
2754
2755/*
2756 * Used when an allocation is about to fail under memory pressure. This
2757 * potentially hurts the reliability of high-order allocations when under
2758 * intense memory pressure but failed atomic allocations should be easier
2759 * to recover from than an OOM.
29fac03b
MK
2760 *
2761 * If @force is true, try to unreserve a pageblock even though highatomic
2762 * pageblock is exhausted.
0aaa29a5 2763 */
29fac03b
MK
2764static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2765 bool force)
0aaa29a5
MG
2766{
2767 struct zonelist *zonelist = ac->zonelist;
2768 unsigned long flags;
2769 struct zoneref *z;
2770 struct zone *zone;
2771 struct page *page;
2772 int order;
04c8716f 2773 bool ret;
0aaa29a5 2774
97a225e6 2775 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2776 ac->nodemask) {
29fac03b
MK
2777 /*
2778 * Preserve at least one pageblock unless memory pressure
2779 * is really high.
2780 */
2781 if (!force && zone->nr_reserved_highatomic <=
2782 pageblock_nr_pages)
0aaa29a5
MG
2783 continue;
2784
2785 spin_lock_irqsave(&zone->lock, flags);
2786 for (order = 0; order < MAX_ORDER; order++) {
2787 struct free_area *area = &(zone->free_area[order]);
2788
b03641af 2789 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2790 if (!page)
0aaa29a5
MG
2791 continue;
2792
0aaa29a5 2793 /*
4855e4a7
MK
2794 * In page freeing path, migratetype change is racy so
2795 * we can counter several free pages in a pageblock
f0953a1b 2796 * in this loop although we changed the pageblock type
4855e4a7
MK
2797 * from highatomic to ac->migratetype. So we should
2798 * adjust the count once.
0aaa29a5 2799 */
a6ffdc07 2800 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2801 /*
2802 * It should never happen but changes to
2803 * locking could inadvertently allow a per-cpu
2804 * drain to add pages to MIGRATE_HIGHATOMIC
2805 * while unreserving so be safe and watch for
2806 * underflows.
2807 */
2808 zone->nr_reserved_highatomic -= min(
2809 pageblock_nr_pages,
2810 zone->nr_reserved_highatomic);
2811 }
0aaa29a5
MG
2812
2813 /*
2814 * Convert to ac->migratetype and avoid the normal
2815 * pageblock stealing heuristics. Minimally, the caller
2816 * is doing the work and needs the pages. More
2817 * importantly, if the block was always converted to
2818 * MIGRATE_UNMOVABLE or another type then the number
2819 * of pageblocks that cannot be completely freed
2820 * may increase.
2821 */
2822 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2823 ret = move_freepages_block(zone, page, ac->migratetype,
2824 NULL);
29fac03b
MK
2825 if (ret) {
2826 spin_unlock_irqrestore(&zone->lock, flags);
2827 return ret;
2828 }
0aaa29a5
MG
2829 }
2830 spin_unlock_irqrestore(&zone->lock, flags);
2831 }
04c8716f
MK
2832
2833 return false;
0aaa29a5
MG
2834}
2835
3bc48f96
VB
2836/*
2837 * Try finding a free buddy page on the fallback list and put it on the free
2838 * list of requested migratetype, possibly along with other pages from the same
2839 * block, depending on fragmentation avoidance heuristics. Returns true if
2840 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2841 *
2842 * The use of signed ints for order and current_order is a deliberate
2843 * deviation from the rest of this file, to make the for loop
2844 * condition simpler.
3bc48f96 2845 */
85ccc8fa 2846static __always_inline bool
6bb15450
MG
2847__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2848 unsigned int alloc_flags)
b2a0ac88 2849{
b8af2941 2850 struct free_area *area;
b002529d 2851 int current_order;
6bb15450 2852 int min_order = order;
b2a0ac88 2853 struct page *page;
4eb7dce6
JK
2854 int fallback_mt;
2855 bool can_steal;
b2a0ac88 2856
6bb15450
MG
2857 /*
2858 * Do not steal pages from freelists belonging to other pageblocks
2859 * i.e. orders < pageblock_order. If there are no local zones free,
2860 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2861 */
2862 if (alloc_flags & ALLOC_NOFRAGMENT)
2863 min_order = pageblock_order;
2864
7a8f58f3
VB
2865 /*
2866 * Find the largest available free page in the other list. This roughly
2867 * approximates finding the pageblock with the most free pages, which
2868 * would be too costly to do exactly.
2869 */
6bb15450 2870 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2871 --current_order) {
4eb7dce6
JK
2872 area = &(zone->free_area[current_order]);
2873 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2874 start_migratetype, false, &can_steal);
4eb7dce6
JK
2875 if (fallback_mt == -1)
2876 continue;
b2a0ac88 2877
7a8f58f3
VB
2878 /*
2879 * We cannot steal all free pages from the pageblock and the
2880 * requested migratetype is movable. In that case it's better to
2881 * steal and split the smallest available page instead of the
2882 * largest available page, because even if the next movable
2883 * allocation falls back into a different pageblock than this
2884 * one, it won't cause permanent fragmentation.
2885 */
2886 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2887 && current_order > order)
2888 goto find_smallest;
b2a0ac88 2889
7a8f58f3
VB
2890 goto do_steal;
2891 }
e0fff1bd 2892
7a8f58f3 2893 return false;
e0fff1bd 2894
7a8f58f3
VB
2895find_smallest:
2896 for (current_order = order; current_order < MAX_ORDER;
2897 current_order++) {
2898 area = &(zone->free_area[current_order]);
2899 fallback_mt = find_suitable_fallback(area, current_order,
2900 start_migratetype, false, &can_steal);
2901 if (fallback_mt != -1)
2902 break;
b2a0ac88
MG
2903 }
2904
7a8f58f3
VB
2905 /*
2906 * This should not happen - we already found a suitable fallback
2907 * when looking for the largest page.
2908 */
2909 VM_BUG_ON(current_order == MAX_ORDER);
2910
2911do_steal:
b03641af 2912 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2913
1c30844d
MG
2914 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2915 can_steal);
7a8f58f3
VB
2916
2917 trace_mm_page_alloc_extfrag(page, order, current_order,
2918 start_migratetype, fallback_mt);
2919
2920 return true;
2921
b2a0ac88
MG
2922}
2923
56fd56b8 2924/*
1da177e4
LT
2925 * Do the hard work of removing an element from the buddy allocator.
2926 * Call me with the zone->lock already held.
2927 */
85ccc8fa 2928static __always_inline struct page *
6bb15450
MG
2929__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2930 unsigned int alloc_flags)
1da177e4 2931{
1da177e4
LT
2932 struct page *page;
2933
ce8f86ee
H
2934 if (IS_ENABLED(CONFIG_CMA)) {
2935 /*
2936 * Balance movable allocations between regular and CMA areas by
2937 * allocating from CMA when over half of the zone's free memory
2938 * is in the CMA area.
2939 */
2940 if (alloc_flags & ALLOC_CMA &&
2941 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2942 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2943 page = __rmqueue_cma_fallback(zone, order);
2944 if (page)
2945 goto out;
2946 }
16867664 2947 }
3bc48f96 2948retry:
56fd56b8 2949 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2950 if (unlikely(!page)) {
8510e69c 2951 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2952 page = __rmqueue_cma_fallback(zone, order);
2953
6bb15450
MG
2954 if (!page && __rmqueue_fallback(zone, order, migratetype,
2955 alloc_flags))
3bc48f96 2956 goto retry;
728ec980 2957 }
ce8f86ee
H
2958out:
2959 if (page)
2960 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2961 return page;
1da177e4
LT
2962}
2963
5f63b720 2964/*
1da177e4
LT
2965 * Obtain a specified number of elements from the buddy allocator, all under
2966 * a single hold of the lock, for efficiency. Add them to the supplied list.
2967 * Returns the number of new pages which were placed at *list.
2968 */
5f63b720 2969static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2970 unsigned long count, struct list_head *list,
6bb15450 2971 int migratetype, unsigned int alloc_flags)
1da177e4 2972{
cb66bede 2973 int i, allocated = 0;
5f63b720 2974
dbbee9d5
MG
2975 /*
2976 * local_lock_irq held so equivalent to spin_lock_irqsave for
2977 * both PREEMPT_RT and non-PREEMPT_RT configurations.
2978 */
d34b0733 2979 spin_lock(&zone->lock);
1da177e4 2980 for (i = 0; i < count; ++i) {
6bb15450
MG
2981 struct page *page = __rmqueue(zone, order, migratetype,
2982 alloc_flags);
085cc7d5 2983 if (unlikely(page == NULL))
1da177e4 2984 break;
81eabcbe 2985
479f854a
MG
2986 if (unlikely(check_pcp_refill(page)))
2987 continue;
2988
81eabcbe 2989 /*
0fac3ba5
VB
2990 * Split buddy pages returned by expand() are received here in
2991 * physical page order. The page is added to the tail of
2992 * caller's list. From the callers perspective, the linked list
2993 * is ordered by page number under some conditions. This is
2994 * useful for IO devices that can forward direction from the
2995 * head, thus also in the physical page order. This is useful
2996 * for IO devices that can merge IO requests if the physical
2997 * pages are ordered properly.
81eabcbe 2998 */
0fac3ba5 2999 list_add_tail(&page->lru, list);
cb66bede 3000 allocated++;
bb14c2c7 3001 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3002 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3003 -(1 << order));
1da177e4 3004 }
a6de734b
MG
3005
3006 /*
3007 * i pages were removed from the buddy list even if some leak due
3008 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3009 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3010 * pages added to the pcp list.
3011 */
f2260e6b 3012 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3013 spin_unlock(&zone->lock);
cb66bede 3014 return allocated;
1da177e4
LT
3015}
3016
4ae7c039 3017#ifdef CONFIG_NUMA
8fce4d8e 3018/*
4037d452
CL
3019 * Called from the vmstat counter updater to drain pagesets of this
3020 * currently executing processor on remote nodes after they have
3021 * expired.
3022 *
879336c3
CL
3023 * Note that this function must be called with the thread pinned to
3024 * a single processor.
8fce4d8e 3025 */
4037d452 3026void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3027{
4ae7c039 3028 unsigned long flags;
7be12fc9 3029 int to_drain, batch;
4ae7c039 3030
dbbee9d5 3031 local_lock_irqsave(&pagesets.lock, flags);
4db0c3c2 3032 batch = READ_ONCE(pcp->batch);
7be12fc9 3033 to_drain = min(pcp->count, batch);
77ba9062 3034 if (to_drain > 0)
2a13515c 3035 free_pcppages_bulk(zone, to_drain, pcp);
dbbee9d5 3036 local_unlock_irqrestore(&pagesets.lock, flags);
4ae7c039
CL
3037}
3038#endif
3039
9f8f2172 3040/*
93481ff0 3041 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3042 *
3043 * The processor must either be the current processor and the
3044 * thread pinned to the current processor or a processor that
3045 * is not online.
3046 */
93481ff0 3047static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3048{
c54ad30c 3049 unsigned long flags;
93481ff0 3050 struct per_cpu_pages *pcp;
1da177e4 3051
dbbee9d5 3052 local_lock_irqsave(&pagesets.lock, flags);
1da177e4 3053
28f836b6 3054 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
77ba9062 3055 if (pcp->count)
93481ff0 3056 free_pcppages_bulk(zone, pcp->count, pcp);
28f836b6 3057
dbbee9d5 3058 local_unlock_irqrestore(&pagesets.lock, flags);
93481ff0 3059}
3dfa5721 3060
93481ff0
VB
3061/*
3062 * Drain pcplists of all zones on the indicated processor.
3063 *
3064 * The processor must either be the current processor and the
3065 * thread pinned to the current processor or a processor that
3066 * is not online.
3067 */
3068static void drain_pages(unsigned int cpu)
3069{
3070 struct zone *zone;
3071
3072 for_each_populated_zone(zone) {
3073 drain_pages_zone(cpu, zone);
1da177e4
LT
3074 }
3075}
1da177e4 3076
9f8f2172
CL
3077/*
3078 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3079 *
3080 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3081 * the single zone's pages.
9f8f2172 3082 */
93481ff0 3083void drain_local_pages(struct zone *zone)
9f8f2172 3084{
93481ff0
VB
3085 int cpu = smp_processor_id();
3086
3087 if (zone)
3088 drain_pages_zone(cpu, zone);
3089 else
3090 drain_pages(cpu);
9f8f2172
CL
3091}
3092
0ccce3b9
MG
3093static void drain_local_pages_wq(struct work_struct *work)
3094{
d9367bd0
WY
3095 struct pcpu_drain *drain;
3096
3097 drain = container_of(work, struct pcpu_drain, work);
3098
a459eeb7
MH
3099 /*
3100 * drain_all_pages doesn't use proper cpu hotplug protection so
3101 * we can race with cpu offline when the WQ can move this from
3102 * a cpu pinned worker to an unbound one. We can operate on a different
f0953a1b 3103 * cpu which is alright but we also have to make sure to not move to
a459eeb7
MH
3104 * a different one.
3105 */
3106 preempt_disable();
d9367bd0 3107 drain_local_pages(drain->zone);
a459eeb7 3108 preempt_enable();
0ccce3b9
MG
3109}
3110
9f8f2172 3111/*
ec6e8c7e
VB
3112 * The implementation of drain_all_pages(), exposing an extra parameter to
3113 * drain on all cpus.
93481ff0 3114 *
ec6e8c7e
VB
3115 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3116 * not empty. The check for non-emptiness can however race with a free to
3117 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3118 * that need the guarantee that every CPU has drained can disable the
3119 * optimizing racy check.
9f8f2172 3120 */
3b1f3658 3121static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3122{
74046494 3123 int cpu;
74046494
GBY
3124
3125 /*
3126 * Allocate in the BSS so we wont require allocation in
3127 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3128 */
3129 static cpumask_t cpus_with_pcps;
3130
ce612879
MH
3131 /*
3132 * Make sure nobody triggers this path before mm_percpu_wq is fully
3133 * initialized.
3134 */
3135 if (WARN_ON_ONCE(!mm_percpu_wq))
3136 return;
3137
bd233f53
MG
3138 /*
3139 * Do not drain if one is already in progress unless it's specific to
3140 * a zone. Such callers are primarily CMA and memory hotplug and need
3141 * the drain to be complete when the call returns.
3142 */
3143 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3144 if (!zone)
3145 return;
3146 mutex_lock(&pcpu_drain_mutex);
3147 }
0ccce3b9 3148
74046494
GBY
3149 /*
3150 * We don't care about racing with CPU hotplug event
3151 * as offline notification will cause the notified
3152 * cpu to drain that CPU pcps and on_each_cpu_mask
3153 * disables preemption as part of its processing
3154 */
3155 for_each_online_cpu(cpu) {
28f836b6 3156 struct per_cpu_pages *pcp;
93481ff0 3157 struct zone *z;
74046494 3158 bool has_pcps = false;
93481ff0 3159
ec6e8c7e
VB
3160 if (force_all_cpus) {
3161 /*
3162 * The pcp.count check is racy, some callers need a
3163 * guarantee that no cpu is missed.
3164 */
3165 has_pcps = true;
3166 } else if (zone) {
28f836b6
MG
3167 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3168 if (pcp->count)
74046494 3169 has_pcps = true;
93481ff0
VB
3170 } else {
3171 for_each_populated_zone(z) {
28f836b6
MG
3172 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3173 if (pcp->count) {
93481ff0
VB
3174 has_pcps = true;
3175 break;
3176 }
74046494
GBY
3177 }
3178 }
93481ff0 3179
74046494
GBY
3180 if (has_pcps)
3181 cpumask_set_cpu(cpu, &cpus_with_pcps);
3182 else
3183 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3184 }
0ccce3b9 3185
bd233f53 3186 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3187 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3188
3189 drain->zone = zone;
3190 INIT_WORK(&drain->work, drain_local_pages_wq);
3191 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3192 }
bd233f53 3193 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3194 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3195
3196 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3197}
3198
ec6e8c7e
VB
3199/*
3200 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3201 *
3202 * When zone parameter is non-NULL, spill just the single zone's pages.
3203 *
3204 * Note that this can be extremely slow as the draining happens in a workqueue.
3205 */
3206void drain_all_pages(struct zone *zone)
3207{
3208 __drain_all_pages(zone, false);
3209}
3210
296699de 3211#ifdef CONFIG_HIBERNATION
1da177e4 3212
556b969a
CY
3213/*
3214 * Touch the watchdog for every WD_PAGE_COUNT pages.
3215 */
3216#define WD_PAGE_COUNT (128*1024)
3217
1da177e4
LT
3218void mark_free_pages(struct zone *zone)
3219{
556b969a 3220 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3221 unsigned long flags;
7aeb09f9 3222 unsigned int order, t;
86760a2c 3223 struct page *page;
1da177e4 3224
8080fc03 3225 if (zone_is_empty(zone))
1da177e4
LT
3226 return;
3227
3228 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3229
108bcc96 3230 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3231 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3232 if (pfn_valid(pfn)) {
86760a2c 3233 page = pfn_to_page(pfn);
ba6b0979 3234
556b969a
CY
3235 if (!--page_count) {
3236 touch_nmi_watchdog();
3237 page_count = WD_PAGE_COUNT;
3238 }
3239
ba6b0979
JK
3240 if (page_zone(page) != zone)
3241 continue;
3242
7be98234
RW
3243 if (!swsusp_page_is_forbidden(page))
3244 swsusp_unset_page_free(page);
f623f0db 3245 }
1da177e4 3246
b2a0ac88 3247 for_each_migratetype_order(order, t) {
86760a2c
GT
3248 list_for_each_entry(page,
3249 &zone->free_area[order].free_list[t], lru) {
f623f0db 3250 unsigned long i;
1da177e4 3251
86760a2c 3252 pfn = page_to_pfn(page);
556b969a
CY
3253 for (i = 0; i < (1UL << order); i++) {
3254 if (!--page_count) {
3255 touch_nmi_watchdog();
3256 page_count = WD_PAGE_COUNT;
3257 }
7be98234 3258 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3259 }
f623f0db 3260 }
b2a0ac88 3261 }
1da177e4
LT
3262 spin_unlock_irqrestore(&zone->lock, flags);
3263}
e2c55dc8 3264#endif /* CONFIG_PM */
1da177e4 3265
2d4894b5 3266static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3267{
5f8dcc21 3268 int migratetype;
1da177e4 3269
4db7548c 3270 if (!free_pcp_prepare(page))
9cca35d4 3271 return false;
689bcebf 3272
dc4b0caf 3273 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3274 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3275 return true;
3276}
3277
3b12e7e9
MG
3278static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3279{
3280 int min_nr_free, max_nr_free;
3281
3282 /* Check for PCP disabled or boot pageset */
3283 if (unlikely(high < batch))
3284 return 1;
3285
3286 /* Leave at least pcp->batch pages on the list */
3287 min_nr_free = batch;
3288 max_nr_free = high - batch;
3289
3290 /*
3291 * Double the number of pages freed each time there is subsequent
3292 * freeing of pages without any allocation.
3293 */
3294 batch <<= pcp->free_factor;
3295 if (batch < max_nr_free)
3296 pcp->free_factor++;
3297 batch = clamp(batch, min_nr_free, max_nr_free);
3298
3299 return batch;
3300}
3301
c49c2c47
MG
3302static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3303{
3304 int high = READ_ONCE(pcp->high);
3305
3306 if (unlikely(!high))
3307 return 0;
3308
3309 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3310 return high;
3311
3312 /*
3313 * If reclaim is active, limit the number of pages that can be
3314 * stored on pcp lists
3315 */
3316 return min(READ_ONCE(pcp->batch) << 2, high);
3317}
3318
df1acc85
MG
3319static void free_unref_page_commit(struct page *page, unsigned long pfn,
3320 int migratetype)
9cca35d4
MG
3321{
3322 struct zone *zone = page_zone(page);
3323 struct per_cpu_pages *pcp;
3b12e7e9 3324 int high;
9cca35d4 3325
d34b0733 3326 __count_vm_event(PGFREE);
28f836b6 3327 pcp = this_cpu_ptr(zone->per_cpu_pageset);
2d4894b5 3328 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3329 pcp->count++;
c49c2c47 3330 high = nr_pcp_high(pcp, zone);
3b12e7e9
MG
3331 if (pcp->count >= high) {
3332 int batch = READ_ONCE(pcp->batch);
3333
3334 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3335 }
9cca35d4 3336}
5f8dcc21 3337
9cca35d4
MG
3338/*
3339 * Free a 0-order page
9cca35d4 3340 */
2d4894b5 3341void free_unref_page(struct page *page)
9cca35d4
MG
3342{
3343 unsigned long flags;
3344 unsigned long pfn = page_to_pfn(page);
df1acc85 3345 int migratetype;
9cca35d4 3346
2d4894b5 3347 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3348 return;
3349
df1acc85
MG
3350 /*
3351 * We only track unmovable, reclaimable and movable on pcp lists.
3352 * Place ISOLATE pages on the isolated list because they are being
3353 * offlined but treat HIGHATOMIC as movable pages so we can get those
3354 * areas back if necessary. Otherwise, we may have to free
3355 * excessively into the page allocator
3356 */
3357 migratetype = get_pcppage_migratetype(page);
3358 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3359 if (unlikely(is_migrate_isolate(migratetype))) {
3360 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3361 return;
3362 }
3363 migratetype = MIGRATE_MOVABLE;
3364 }
3365
dbbee9d5 3366 local_lock_irqsave(&pagesets.lock, flags);
df1acc85 3367 free_unref_page_commit(page, pfn, migratetype);
dbbee9d5 3368 local_unlock_irqrestore(&pagesets.lock, flags);
1da177e4
LT
3369}
3370
cc59850e
KK
3371/*
3372 * Free a list of 0-order pages
3373 */
2d4894b5 3374void free_unref_page_list(struct list_head *list)
cc59850e
KK
3375{
3376 struct page *page, *next;
9cca35d4 3377 unsigned long flags, pfn;
c24ad77d 3378 int batch_count = 0;
df1acc85 3379 int migratetype;
9cca35d4
MG
3380
3381 /* Prepare pages for freeing */
3382 list_for_each_entry_safe(page, next, list, lru) {
3383 pfn = page_to_pfn(page);
2d4894b5 3384 if (!free_unref_page_prepare(page, pfn))
9cca35d4 3385 list_del(&page->lru);
df1acc85
MG
3386
3387 /*
3388 * Free isolated pages directly to the allocator, see
3389 * comment in free_unref_page.
3390 */
3391 migratetype = get_pcppage_migratetype(page);
3392 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3393 if (unlikely(is_migrate_isolate(migratetype))) {
3394 list_del(&page->lru);
3395 free_one_page(page_zone(page), page, pfn, 0,
3396 migratetype, FPI_NONE);
3397 continue;
3398 }
3399
3400 /*
3401 * Non-isolated types over MIGRATE_PCPTYPES get added
3402 * to the MIGRATE_MOVABLE pcp list.
3403 */
3404 set_pcppage_migratetype(page, MIGRATE_MOVABLE);
3405 }
3406
9cca35d4
MG
3407 set_page_private(page, pfn);
3408 }
cc59850e 3409
dbbee9d5 3410 local_lock_irqsave(&pagesets.lock, flags);
cc59850e 3411 list_for_each_entry_safe(page, next, list, lru) {
df1acc85 3412 pfn = page_private(page);
9cca35d4 3413 set_page_private(page, 0);
df1acc85 3414 migratetype = get_pcppage_migratetype(page);
2d4894b5 3415 trace_mm_page_free_batched(page);
df1acc85 3416 free_unref_page_commit(page, pfn, migratetype);
c24ad77d
LS
3417
3418 /*
3419 * Guard against excessive IRQ disabled times when we get
3420 * a large list of pages to free.
3421 */
3422 if (++batch_count == SWAP_CLUSTER_MAX) {
dbbee9d5 3423 local_unlock_irqrestore(&pagesets.lock, flags);
c24ad77d 3424 batch_count = 0;
dbbee9d5 3425 local_lock_irqsave(&pagesets.lock, flags);
c24ad77d 3426 }
cc59850e 3427 }
dbbee9d5 3428 local_unlock_irqrestore(&pagesets.lock, flags);
cc59850e
KK
3429}
3430
8dfcc9ba
NP
3431/*
3432 * split_page takes a non-compound higher-order page, and splits it into
3433 * n (1<<order) sub-pages: page[0..n]
3434 * Each sub-page must be freed individually.
3435 *
3436 * Note: this is probably too low level an operation for use in drivers.
3437 * Please consult with lkml before using this in your driver.
3438 */
3439void split_page(struct page *page, unsigned int order)
3440{
3441 int i;
3442
309381fe
SL
3443 VM_BUG_ON_PAGE(PageCompound(page), page);
3444 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3445
a9627bc5 3446 for (i = 1; i < (1 << order); i++)
7835e98b 3447 set_page_refcounted(page + i);
8fb156c9 3448 split_page_owner(page, 1 << order);
e1baddf8 3449 split_page_memcg(page, 1 << order);
8dfcc9ba 3450}
5853ff23 3451EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3452
3c605096 3453int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3454{
748446bb
MG
3455 unsigned long watermark;
3456 struct zone *zone;
2139cbe6 3457 int mt;
748446bb
MG
3458
3459 BUG_ON(!PageBuddy(page));
3460
3461 zone = page_zone(page);
2e30abd1 3462 mt = get_pageblock_migratetype(page);
748446bb 3463
194159fb 3464 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3465 /*
3466 * Obey watermarks as if the page was being allocated. We can
3467 * emulate a high-order watermark check with a raised order-0
3468 * watermark, because we already know our high-order page
3469 * exists.
3470 */
fd1444b2 3471 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3472 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3473 return 0;
3474
8fb74b9f 3475 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3476 }
748446bb
MG
3477
3478 /* Remove page from free list */
b03641af 3479
6ab01363 3480 del_page_from_free_list(page, zone, order);
2139cbe6 3481
400bc7fd 3482 /*
3483 * Set the pageblock if the isolated page is at least half of a
3484 * pageblock
3485 */
748446bb
MG
3486 if (order >= pageblock_order - 1) {
3487 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3488 for (; page < endpage; page += pageblock_nr_pages) {
3489 int mt = get_pageblock_migratetype(page);
88ed365e 3490 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3491 && !is_migrate_highatomic(mt))
47118af0
MN
3492 set_pageblock_migratetype(page,
3493 MIGRATE_MOVABLE);
3494 }
748446bb
MG
3495 }
3496
f3a14ced 3497
8fb74b9f 3498 return 1UL << order;
1fb3f8ca
MG
3499}
3500
624f58d8
AD
3501/**
3502 * __putback_isolated_page - Return a now-isolated page back where we got it
3503 * @page: Page that was isolated
3504 * @order: Order of the isolated page
e6a0a7ad 3505 * @mt: The page's pageblock's migratetype
624f58d8
AD
3506 *
3507 * This function is meant to return a page pulled from the free lists via
3508 * __isolate_free_page back to the free lists they were pulled from.
3509 */
3510void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3511{
3512 struct zone *zone = page_zone(page);
3513
3514 /* zone lock should be held when this function is called */
3515 lockdep_assert_held(&zone->lock);
3516
3517 /* Return isolated page to tail of freelist. */
f04a5d5d 3518 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3519 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3520}
3521
060e7417
MG
3522/*
3523 * Update NUMA hit/miss statistics
3524 *
3525 * Must be called with interrupts disabled.
060e7417 3526 */
3e23060b
MG
3527static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3528 long nr_account)
060e7417
MG
3529{
3530#ifdef CONFIG_NUMA
3a321d2a 3531 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3532
4518085e
KW
3533 /* skip numa counters update if numa stats is disabled */
3534 if (!static_branch_likely(&vm_numa_stat_key))
3535 return;
3536
c1093b74 3537 if (zone_to_nid(z) != numa_node_id())
060e7417 3538 local_stat = NUMA_OTHER;
060e7417 3539
c1093b74 3540 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3541 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3542 else {
3e23060b
MG
3543 __count_numa_events(z, NUMA_MISS, nr_account);
3544 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3545 }
3e23060b 3546 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3547#endif
3548}
3549
066b2393 3550/* Remove page from the per-cpu list, caller must protect the list */
3b822017
JDB
3551static inline
3552struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3553 unsigned int alloc_flags,
453f85d4 3554 struct per_cpu_pages *pcp,
066b2393
MG
3555 struct list_head *list)
3556{
3557 struct page *page;
3558
3559 do {
3560 if (list_empty(list)) {
3561 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3562 READ_ONCE(pcp->batch), list,
6bb15450 3563 migratetype, alloc_flags);
066b2393
MG
3564 if (unlikely(list_empty(list)))
3565 return NULL;
3566 }
3567
453f85d4 3568 page = list_first_entry(list, struct page, lru);
066b2393
MG
3569 list_del(&page->lru);
3570 pcp->count--;
3571 } while (check_new_pcp(page));
3572
3573 return page;
3574}
3575
3576/* Lock and remove page from the per-cpu list */
3577static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3578 struct zone *zone, gfp_t gfp_flags,
3579 int migratetype, unsigned int alloc_flags)
066b2393
MG
3580{
3581 struct per_cpu_pages *pcp;
3582 struct list_head *list;
066b2393 3583 struct page *page;
d34b0733 3584 unsigned long flags;
066b2393 3585
dbbee9d5 3586 local_lock_irqsave(&pagesets.lock, flags);
3b12e7e9
MG
3587
3588 /*
3589 * On allocation, reduce the number of pages that are batch freed.
3590 * See nr_pcp_free() where free_factor is increased for subsequent
3591 * frees.
3592 */
28f836b6 3593 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3b12e7e9 3594 pcp->free_factor >>= 1;
066b2393 3595 list = &pcp->lists[migratetype];
6bb15450 3596 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
43c95bcc 3597 local_unlock_irqrestore(&pagesets.lock, flags);
066b2393 3598 if (page) {
1c52e6d0 3599 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3e23060b 3600 zone_statistics(preferred_zone, zone, 1);
066b2393 3601 }
066b2393
MG
3602 return page;
3603}
3604
1da177e4 3605/*
75379191 3606 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3607 */
0a15c3e9 3608static inline
066b2393 3609struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3610 struct zone *zone, unsigned int order,
c603844b
MG
3611 gfp_t gfp_flags, unsigned int alloc_flags,
3612 int migratetype)
1da177e4
LT
3613{
3614 unsigned long flags;
689bcebf 3615 struct page *page;
1da177e4 3616
d34b0733 3617 if (likely(order == 0)) {
1d91df85
JK
3618 /*
3619 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3620 * we need to skip it when CMA area isn't allowed.
3621 */
3622 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3623 migratetype != MIGRATE_MOVABLE) {
3624 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3625 migratetype, alloc_flags);
1d91df85
JK
3626 goto out;
3627 }
066b2393 3628 }
83b9355b 3629
066b2393
MG
3630 /*
3631 * We most definitely don't want callers attempting to
3632 * allocate greater than order-1 page units with __GFP_NOFAIL.
3633 */
3634 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3635 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3636
066b2393
MG
3637 do {
3638 page = NULL;
1d91df85
JK
3639 /*
3640 * order-0 request can reach here when the pcplist is skipped
3641 * due to non-CMA allocation context. HIGHATOMIC area is
3642 * reserved for high-order atomic allocation, so order-0
3643 * request should skip it.
3644 */
3645 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3646 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3647 if (page)
3648 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3649 }
a74609fa 3650 if (!page)
6bb15450 3651 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393 3652 } while (page && check_new_pages(page, order));
066b2393
MG
3653 if (!page)
3654 goto failed;
43c95bcc 3655
066b2393
MG
3656 __mod_zone_freepage_state(zone, -(1 << order),
3657 get_pcppage_migratetype(page));
43c95bcc 3658 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 3659
16709d1d 3660 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3661 zone_statistics(preferred_zone, zone, 1);
1da177e4 3662
066b2393 3663out:
73444bc4
MG
3664 /* Separate test+clear to avoid unnecessary atomics */
3665 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3666 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3667 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3668 }
3669
066b2393 3670 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3671 return page;
a74609fa
NP
3672
3673failed:
43c95bcc 3674 spin_unlock_irqrestore(&zone->lock, flags);
a74609fa 3675 return NULL;
1da177e4
LT
3676}
3677
933e312e
AM
3678#ifdef CONFIG_FAIL_PAGE_ALLOC
3679
b2588c4b 3680static struct {
933e312e
AM
3681 struct fault_attr attr;
3682
621a5f7a 3683 bool ignore_gfp_highmem;
71baba4b 3684 bool ignore_gfp_reclaim;
54114994 3685 u32 min_order;
933e312e
AM
3686} fail_page_alloc = {
3687 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3688 .ignore_gfp_reclaim = true,
621a5f7a 3689 .ignore_gfp_highmem = true,
54114994 3690 .min_order = 1,
933e312e
AM
3691};
3692
3693static int __init setup_fail_page_alloc(char *str)
3694{
3695 return setup_fault_attr(&fail_page_alloc.attr, str);
3696}
3697__setup("fail_page_alloc=", setup_fail_page_alloc);
3698
af3b8544 3699static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3700{
54114994 3701 if (order < fail_page_alloc.min_order)
deaf386e 3702 return false;
933e312e 3703 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3704 return false;
933e312e 3705 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3706 return false;
71baba4b
MG
3707 if (fail_page_alloc.ignore_gfp_reclaim &&
3708 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3709 return false;
933e312e
AM
3710
3711 return should_fail(&fail_page_alloc.attr, 1 << order);
3712}
3713
3714#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3715
3716static int __init fail_page_alloc_debugfs(void)
3717{
0825a6f9 3718 umode_t mode = S_IFREG | 0600;
933e312e 3719 struct dentry *dir;
933e312e 3720
dd48c085
AM
3721 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3722 &fail_page_alloc.attr);
b2588c4b 3723
d9f7979c
GKH
3724 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3725 &fail_page_alloc.ignore_gfp_reclaim);
3726 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3727 &fail_page_alloc.ignore_gfp_highmem);
3728 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3729
d9f7979c 3730 return 0;
933e312e
AM
3731}
3732
3733late_initcall(fail_page_alloc_debugfs);
3734
3735#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3736
3737#else /* CONFIG_FAIL_PAGE_ALLOC */
3738
af3b8544 3739static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3740{
deaf386e 3741 return false;
933e312e
AM
3742}
3743
3744#endif /* CONFIG_FAIL_PAGE_ALLOC */
3745
76cd6173 3746noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3747{
3748 return __should_fail_alloc_page(gfp_mask, order);
3749}
3750ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3751
f27ce0e1
JK
3752static inline long __zone_watermark_unusable_free(struct zone *z,
3753 unsigned int order, unsigned int alloc_flags)
3754{
3755 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3756 long unusable_free = (1 << order) - 1;
3757
3758 /*
3759 * If the caller does not have rights to ALLOC_HARDER then subtract
3760 * the high-atomic reserves. This will over-estimate the size of the
3761 * atomic reserve but it avoids a search.
3762 */
3763 if (likely(!alloc_harder))
3764 unusable_free += z->nr_reserved_highatomic;
3765
3766#ifdef CONFIG_CMA
3767 /* If allocation can't use CMA areas don't use free CMA pages */
3768 if (!(alloc_flags & ALLOC_CMA))
3769 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3770#endif
3771
3772 return unusable_free;
3773}
3774
1da177e4 3775/*
97a16fc8
MG
3776 * Return true if free base pages are above 'mark'. For high-order checks it
3777 * will return true of the order-0 watermark is reached and there is at least
3778 * one free page of a suitable size. Checking now avoids taking the zone lock
3779 * to check in the allocation paths if no pages are free.
1da177e4 3780 */
86a294a8 3781bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3782 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3783 long free_pages)
1da177e4 3784{
d23ad423 3785 long min = mark;
1da177e4 3786 int o;
cd04ae1e 3787 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3788
0aaa29a5 3789 /* free_pages may go negative - that's OK */
f27ce0e1 3790 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3791
7fb1d9fc 3792 if (alloc_flags & ALLOC_HIGH)
1da177e4 3793 min -= min / 2;
0aaa29a5 3794
f27ce0e1 3795 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3796 /*
3797 * OOM victims can try even harder than normal ALLOC_HARDER
3798 * users on the grounds that it's definitely going to be in
3799 * the exit path shortly and free memory. Any allocation it
3800 * makes during the free path will be small and short-lived.
3801 */
3802 if (alloc_flags & ALLOC_OOM)
3803 min -= min / 2;
3804 else
3805 min -= min / 4;
3806 }
3807
97a16fc8
MG
3808 /*
3809 * Check watermarks for an order-0 allocation request. If these
3810 * are not met, then a high-order request also cannot go ahead
3811 * even if a suitable page happened to be free.
3812 */
97a225e6 3813 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3814 return false;
1da177e4 3815
97a16fc8
MG
3816 /* If this is an order-0 request then the watermark is fine */
3817 if (!order)
3818 return true;
3819
3820 /* For a high-order request, check at least one suitable page is free */
3821 for (o = order; o < MAX_ORDER; o++) {
3822 struct free_area *area = &z->free_area[o];
3823 int mt;
3824
3825 if (!area->nr_free)
3826 continue;
3827
97a16fc8 3828 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3829 if (!free_area_empty(area, mt))
97a16fc8
MG
3830 return true;
3831 }
3832
3833#ifdef CONFIG_CMA
d883c6cf 3834 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3835 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3836 return true;
d883c6cf 3837 }
97a16fc8 3838#endif
76089d00 3839 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3840 return true;
1da177e4 3841 }
97a16fc8 3842 return false;
88f5acf8
MG
3843}
3844
7aeb09f9 3845bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3846 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3847{
97a225e6 3848 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3849 zone_page_state(z, NR_FREE_PAGES));
3850}
3851
48ee5f36 3852static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3853 unsigned long mark, int highest_zoneidx,
f80b08fc 3854 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3855{
f27ce0e1 3856 long free_pages;
d883c6cf 3857
f27ce0e1 3858 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3859
3860 /*
3861 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3862 * need to be calculated.
48ee5f36 3863 */
f27ce0e1
JK
3864 if (!order) {
3865 long fast_free;
3866
3867 fast_free = free_pages;
3868 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3869 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3870 return true;
3871 }
48ee5f36 3872
f80b08fc
CTR
3873 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3874 free_pages))
3875 return true;
3876 /*
3877 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3878 * when checking the min watermark. The min watermark is the
3879 * point where boosting is ignored so that kswapd is woken up
3880 * when below the low watermark.
3881 */
3882 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3883 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3884 mark = z->_watermark[WMARK_MIN];
3885 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3886 alloc_flags, free_pages);
3887 }
3888
3889 return false;
48ee5f36
MG
3890}
3891
7aeb09f9 3892bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3893 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3894{
3895 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3896
3897 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3898 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3899
97a225e6 3900 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3901 free_pages);
1da177e4
LT
3902}
3903
9276b1bc 3904#ifdef CONFIG_NUMA
957f822a
DR
3905static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3906{
e02dc017 3907 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3908 node_reclaim_distance;
957f822a 3909}
9276b1bc 3910#else /* CONFIG_NUMA */
957f822a
DR
3911static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3912{
3913 return true;
3914}
9276b1bc
PJ
3915#endif /* CONFIG_NUMA */
3916
6bb15450
MG
3917/*
3918 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3919 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3920 * premature use of a lower zone may cause lowmem pressure problems that
3921 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3922 * probably too small. It only makes sense to spread allocations to avoid
3923 * fragmentation between the Normal and DMA32 zones.
3924 */
3925static inline unsigned int
0a79cdad 3926alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3927{
736838e9 3928 unsigned int alloc_flags;
0a79cdad 3929
736838e9
MN
3930 /*
3931 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3932 * to save a branch.
3933 */
3934 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3935
3936#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3937 if (!zone)
3938 return alloc_flags;
3939
6bb15450 3940 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3941 return alloc_flags;
6bb15450
MG
3942
3943 /*
3944 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3945 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3946 * on UMA that if Normal is populated then so is DMA32.
3947 */
3948 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3949 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3950 return alloc_flags;
6bb15450 3951
8118b82e 3952 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3953#endif /* CONFIG_ZONE_DMA32 */
3954 return alloc_flags;
6bb15450 3955}
6bb15450 3956
8e3560d9
PT
3957/* Must be called after current_gfp_context() which can change gfp_mask */
3958static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3959 unsigned int alloc_flags)
8510e69c
JK
3960{
3961#ifdef CONFIG_CMA
8e3560d9 3962 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 3963 alloc_flags |= ALLOC_CMA;
8510e69c
JK
3964#endif
3965 return alloc_flags;
3966}
3967
7fb1d9fc 3968/*
0798e519 3969 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3970 * a page.
3971 */
3972static struct page *
a9263751
VB
3973get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3974 const struct alloc_context *ac)
753ee728 3975{
6bb15450 3976 struct zoneref *z;
5117f45d 3977 struct zone *zone;
3b8c0be4 3978 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3979 bool no_fallback;
3b8c0be4 3980
6bb15450 3981retry:
7fb1d9fc 3982 /*
9276b1bc 3983 * Scan zonelist, looking for a zone with enough free.
344736f2 3984 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3985 */
6bb15450
MG
3986 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3987 z = ac->preferred_zoneref;
30d8ec73
MN
3988 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3989 ac->nodemask) {
be06af00 3990 struct page *page;
e085dbc5
JW
3991 unsigned long mark;
3992
664eedde
MG
3993 if (cpusets_enabled() &&
3994 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3995 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3996 continue;
a756cf59
JW
3997 /*
3998 * When allocating a page cache page for writing, we
281e3726
MG
3999 * want to get it from a node that is within its dirty
4000 * limit, such that no single node holds more than its
a756cf59 4001 * proportional share of globally allowed dirty pages.
281e3726 4002 * The dirty limits take into account the node's
a756cf59
JW
4003 * lowmem reserves and high watermark so that kswapd
4004 * should be able to balance it without having to
4005 * write pages from its LRU list.
4006 *
a756cf59 4007 * XXX: For now, allow allocations to potentially
281e3726 4008 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4009 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4010 * which is important when on a NUMA setup the allowed
281e3726 4011 * nodes are together not big enough to reach the
a756cf59 4012 * global limit. The proper fix for these situations
281e3726 4013 * will require awareness of nodes in the
a756cf59
JW
4014 * dirty-throttling and the flusher threads.
4015 */
3b8c0be4
MG
4016 if (ac->spread_dirty_pages) {
4017 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4018 continue;
4019
4020 if (!node_dirty_ok(zone->zone_pgdat)) {
4021 last_pgdat_dirty_limit = zone->zone_pgdat;
4022 continue;
4023 }
4024 }
7fb1d9fc 4025
6bb15450
MG
4026 if (no_fallback && nr_online_nodes > 1 &&
4027 zone != ac->preferred_zoneref->zone) {
4028 int local_nid;
4029
4030 /*
4031 * If moving to a remote node, retry but allow
4032 * fragmenting fallbacks. Locality is more important
4033 * than fragmentation avoidance.
4034 */
4035 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4036 if (zone_to_nid(zone) != local_nid) {
4037 alloc_flags &= ~ALLOC_NOFRAGMENT;
4038 goto retry;
4039 }
4040 }
4041
a9214443 4042 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4043 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4044 ac->highest_zoneidx, alloc_flags,
4045 gfp_mask)) {
fa5e084e
MG
4046 int ret;
4047
c9e97a19
PT
4048#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4049 /*
4050 * Watermark failed for this zone, but see if we can
4051 * grow this zone if it contains deferred pages.
4052 */
4053 if (static_branch_unlikely(&deferred_pages)) {
4054 if (_deferred_grow_zone(zone, order))
4055 goto try_this_zone;
4056 }
4057#endif
5dab2911
MG
4058 /* Checked here to keep the fast path fast */
4059 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4060 if (alloc_flags & ALLOC_NO_WATERMARKS)
4061 goto try_this_zone;
4062
202e35db 4063 if (!node_reclaim_enabled() ||
c33d6c06 4064 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4065 continue;
4066
a5f5f91d 4067 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4068 switch (ret) {
a5f5f91d 4069 case NODE_RECLAIM_NOSCAN:
fa5e084e 4070 /* did not scan */
cd38b115 4071 continue;
a5f5f91d 4072 case NODE_RECLAIM_FULL:
fa5e084e 4073 /* scanned but unreclaimable */
cd38b115 4074 continue;
fa5e084e
MG
4075 default:
4076 /* did we reclaim enough */
fed2719e 4077 if (zone_watermark_ok(zone, order, mark,
97a225e6 4078 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4079 goto try_this_zone;
4080
fed2719e 4081 continue;
0798e519 4082 }
7fb1d9fc
RS
4083 }
4084
fa5e084e 4085try_this_zone:
066b2393 4086 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4087 gfp_mask, alloc_flags, ac->migratetype);
75379191 4088 if (page) {
479f854a 4089 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4090
4091 /*
4092 * If this is a high-order atomic allocation then check
4093 * if the pageblock should be reserved for the future
4094 */
4095 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4096 reserve_highatomic_pageblock(page, zone, order);
4097
75379191 4098 return page;
c9e97a19
PT
4099 } else {
4100#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4101 /* Try again if zone has deferred pages */
4102 if (static_branch_unlikely(&deferred_pages)) {
4103 if (_deferred_grow_zone(zone, order))
4104 goto try_this_zone;
4105 }
4106#endif
75379191 4107 }
54a6eb5c 4108 }
9276b1bc 4109
6bb15450
MG
4110 /*
4111 * It's possible on a UMA machine to get through all zones that are
4112 * fragmented. If avoiding fragmentation, reset and try again.
4113 */
4114 if (no_fallback) {
4115 alloc_flags &= ~ALLOC_NOFRAGMENT;
4116 goto retry;
4117 }
4118
4ffeaf35 4119 return NULL;
753ee728
MH
4120}
4121
9af744d7 4122static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4123{
a238ab5b 4124 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4125
4126 /*
4127 * This documents exceptions given to allocations in certain
4128 * contexts that are allowed to allocate outside current's set
4129 * of allowed nodes.
4130 */
4131 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4132 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4133 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4134 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 4135 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4136 filter &= ~SHOW_MEM_FILTER_NODES;
4137
9af744d7 4138 show_mem(filter, nodemask);
aa187507
MH
4139}
4140
a8e99259 4141void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4142{
4143 struct va_format vaf;
4144 va_list args;
1be334e5 4145 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4146
0f7896f1 4147 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
4148 return;
4149
7877cdcc
MH
4150 va_start(args, fmt);
4151 vaf.fmt = fmt;
4152 vaf.va = &args;
ef8444ea 4153 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4154 current->comm, &vaf, gfp_mask, &gfp_mask,
4155 nodemask_pr_args(nodemask));
7877cdcc 4156 va_end(args);
3ee9a4f0 4157
a8e99259 4158 cpuset_print_current_mems_allowed();
ef8444ea 4159 pr_cont("\n");
a238ab5b 4160 dump_stack();
685dbf6f 4161 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4162}
4163
6c18ba7a
MH
4164static inline struct page *
4165__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4166 unsigned int alloc_flags,
4167 const struct alloc_context *ac)
4168{
4169 struct page *page;
4170
4171 page = get_page_from_freelist(gfp_mask, order,
4172 alloc_flags|ALLOC_CPUSET, ac);
4173 /*
4174 * fallback to ignore cpuset restriction if our nodes
4175 * are depleted
4176 */
4177 if (!page)
4178 page = get_page_from_freelist(gfp_mask, order,
4179 alloc_flags, ac);
4180
4181 return page;
4182}
4183
11e33f6a
MG
4184static inline struct page *
4185__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4186 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4187{
6e0fc46d
DR
4188 struct oom_control oc = {
4189 .zonelist = ac->zonelist,
4190 .nodemask = ac->nodemask,
2a966b77 4191 .memcg = NULL,
6e0fc46d
DR
4192 .gfp_mask = gfp_mask,
4193 .order = order,
6e0fc46d 4194 };
11e33f6a
MG
4195 struct page *page;
4196
9879de73
JW
4197 *did_some_progress = 0;
4198
9879de73 4199 /*
dc56401f
JW
4200 * Acquire the oom lock. If that fails, somebody else is
4201 * making progress for us.
9879de73 4202 */
dc56401f 4203 if (!mutex_trylock(&oom_lock)) {
9879de73 4204 *did_some_progress = 1;
11e33f6a 4205 schedule_timeout_uninterruptible(1);
1da177e4
LT
4206 return NULL;
4207 }
6b1de916 4208
11e33f6a
MG
4209 /*
4210 * Go through the zonelist yet one more time, keep very high watermark
4211 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4212 * we're still under heavy pressure. But make sure that this reclaim
4213 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4214 * allocation which will never fail due to oom_lock already held.
11e33f6a 4215 */
e746bf73
TH
4216 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4217 ~__GFP_DIRECT_RECLAIM, order,
4218 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4219 if (page)
11e33f6a
MG
4220 goto out;
4221
06ad276a
MH
4222 /* Coredumps can quickly deplete all memory reserves */
4223 if (current->flags & PF_DUMPCORE)
4224 goto out;
4225 /* The OOM killer will not help higher order allocs */
4226 if (order > PAGE_ALLOC_COSTLY_ORDER)
4227 goto out;
dcda9b04
MH
4228 /*
4229 * We have already exhausted all our reclaim opportunities without any
4230 * success so it is time to admit defeat. We will skip the OOM killer
4231 * because it is very likely that the caller has a more reasonable
4232 * fallback than shooting a random task.
cfb4a541
MN
4233 *
4234 * The OOM killer may not free memory on a specific node.
dcda9b04 4235 */
cfb4a541 4236 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4237 goto out;
06ad276a 4238 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4239 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4240 goto out;
4241 if (pm_suspended_storage())
4242 goto out;
4243 /*
4244 * XXX: GFP_NOFS allocations should rather fail than rely on
4245 * other request to make a forward progress.
4246 * We are in an unfortunate situation where out_of_memory cannot
4247 * do much for this context but let's try it to at least get
4248 * access to memory reserved if the current task is killed (see
4249 * out_of_memory). Once filesystems are ready to handle allocation
4250 * failures more gracefully we should just bail out here.
4251 */
4252
3c2c6488 4253 /* Exhausted what can be done so it's blame time */
5020e285 4254 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4255 *did_some_progress = 1;
5020e285 4256
6c18ba7a
MH
4257 /*
4258 * Help non-failing allocations by giving them access to memory
4259 * reserves
4260 */
4261 if (gfp_mask & __GFP_NOFAIL)
4262 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4263 ALLOC_NO_WATERMARKS, ac);
5020e285 4264 }
11e33f6a 4265out:
dc56401f 4266 mutex_unlock(&oom_lock);
11e33f6a
MG
4267 return page;
4268}
4269
33c2d214 4270/*
baf2f90b 4271 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4272 * killer is consider as the only way to move forward.
4273 */
4274#define MAX_COMPACT_RETRIES 16
4275
56de7263
MG
4276#ifdef CONFIG_COMPACTION
4277/* Try memory compaction for high-order allocations before reclaim */
4278static struct page *
4279__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4280 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4281 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4282{
5e1f0f09 4283 struct page *page = NULL;
eb414681 4284 unsigned long pflags;
499118e9 4285 unsigned int noreclaim_flag;
53853e2d
VB
4286
4287 if (!order)
66199712 4288 return NULL;
66199712 4289
eb414681 4290 psi_memstall_enter(&pflags);
499118e9 4291 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4292
c5d01d0d 4293 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4294 prio, &page);
eb414681 4295
499118e9 4296 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4297 psi_memstall_leave(&pflags);
56de7263 4298
06dac2f4
CTR
4299 if (*compact_result == COMPACT_SKIPPED)
4300 return NULL;
98dd3b48
VB
4301 /*
4302 * At least in one zone compaction wasn't deferred or skipped, so let's
4303 * count a compaction stall
4304 */
4305 count_vm_event(COMPACTSTALL);
8fb74b9f 4306
5e1f0f09
MG
4307 /* Prep a captured page if available */
4308 if (page)
4309 prep_new_page(page, order, gfp_mask, alloc_flags);
4310
4311 /* Try get a page from the freelist if available */
4312 if (!page)
4313 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4314
98dd3b48
VB
4315 if (page) {
4316 struct zone *zone = page_zone(page);
53853e2d 4317
98dd3b48
VB
4318 zone->compact_blockskip_flush = false;
4319 compaction_defer_reset(zone, order, true);
4320 count_vm_event(COMPACTSUCCESS);
4321 return page;
4322 }
56de7263 4323
98dd3b48
VB
4324 /*
4325 * It's bad if compaction run occurs and fails. The most likely reason
4326 * is that pages exist, but not enough to satisfy watermarks.
4327 */
4328 count_vm_event(COMPACTFAIL);
66199712 4329
98dd3b48 4330 cond_resched();
56de7263
MG
4331
4332 return NULL;
4333}
33c2d214 4334
3250845d
VB
4335static inline bool
4336should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4337 enum compact_result compact_result,
4338 enum compact_priority *compact_priority,
d9436498 4339 int *compaction_retries)
3250845d
VB
4340{
4341 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4342 int min_priority;
65190cff
MH
4343 bool ret = false;
4344 int retries = *compaction_retries;
4345 enum compact_priority priority = *compact_priority;
3250845d
VB
4346
4347 if (!order)
4348 return false;
4349
691d9497
AT
4350 if (fatal_signal_pending(current))
4351 return false;
4352
d9436498
VB
4353 if (compaction_made_progress(compact_result))
4354 (*compaction_retries)++;
4355
3250845d
VB
4356 /*
4357 * compaction considers all the zone as desperately out of memory
4358 * so it doesn't really make much sense to retry except when the
4359 * failure could be caused by insufficient priority
4360 */
d9436498
VB
4361 if (compaction_failed(compact_result))
4362 goto check_priority;
3250845d 4363
49433085
VB
4364 /*
4365 * compaction was skipped because there are not enough order-0 pages
4366 * to work with, so we retry only if it looks like reclaim can help.
4367 */
4368 if (compaction_needs_reclaim(compact_result)) {
4369 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4370 goto out;
4371 }
4372
3250845d
VB
4373 /*
4374 * make sure the compaction wasn't deferred or didn't bail out early
4375 * due to locks contention before we declare that we should give up.
49433085
VB
4376 * But the next retry should use a higher priority if allowed, so
4377 * we don't just keep bailing out endlessly.
3250845d 4378 */
65190cff 4379 if (compaction_withdrawn(compact_result)) {
49433085 4380 goto check_priority;
65190cff 4381 }
3250845d
VB
4382
4383 /*
dcda9b04 4384 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4385 * costly ones because they are de facto nofail and invoke OOM
4386 * killer to move on while costly can fail and users are ready
4387 * to cope with that. 1/4 retries is rather arbitrary but we
4388 * would need much more detailed feedback from compaction to
4389 * make a better decision.
4390 */
4391 if (order > PAGE_ALLOC_COSTLY_ORDER)
4392 max_retries /= 4;
65190cff
MH
4393 if (*compaction_retries <= max_retries) {
4394 ret = true;
4395 goto out;
4396 }
3250845d 4397
d9436498
VB
4398 /*
4399 * Make sure there are attempts at the highest priority if we exhausted
4400 * all retries or failed at the lower priorities.
4401 */
4402check_priority:
c2033b00
VB
4403 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4404 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4405
c2033b00 4406 if (*compact_priority > min_priority) {
d9436498
VB
4407 (*compact_priority)--;
4408 *compaction_retries = 0;
65190cff 4409 ret = true;
d9436498 4410 }
65190cff
MH
4411out:
4412 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4413 return ret;
3250845d 4414}
56de7263
MG
4415#else
4416static inline struct page *
4417__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4418 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4419 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4420{
33c2d214 4421 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4422 return NULL;
4423}
33c2d214
MH
4424
4425static inline bool
86a294a8
MH
4426should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4427 enum compact_result compact_result,
a5508cd8 4428 enum compact_priority *compact_priority,
d9436498 4429 int *compaction_retries)
33c2d214 4430{
31e49bfd
MH
4431 struct zone *zone;
4432 struct zoneref *z;
4433
4434 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4435 return false;
4436
4437 /*
4438 * There are setups with compaction disabled which would prefer to loop
4439 * inside the allocator rather than hit the oom killer prematurely.
4440 * Let's give them a good hope and keep retrying while the order-0
4441 * watermarks are OK.
4442 */
97a225e6
JK
4443 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4444 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4445 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4446 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4447 return true;
4448 }
33c2d214
MH
4449 return false;
4450}
3250845d 4451#endif /* CONFIG_COMPACTION */
56de7263 4452
d92a8cfc 4453#ifdef CONFIG_LOCKDEP
93781325 4454static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4455 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4456
f920e413 4457static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4458{
d92a8cfc
PZ
4459 /* no reclaim without waiting on it */
4460 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4461 return false;
4462
4463 /* this guy won't enter reclaim */
2e517d68 4464 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4465 return false;
4466
d92a8cfc
PZ
4467 if (gfp_mask & __GFP_NOLOCKDEP)
4468 return false;
4469
4470 return true;
4471}
4472
93781325
OS
4473void __fs_reclaim_acquire(void)
4474{
4475 lock_map_acquire(&__fs_reclaim_map);
4476}
4477
4478void __fs_reclaim_release(void)
4479{
4480 lock_map_release(&__fs_reclaim_map);
4481}
4482
d92a8cfc
PZ
4483void fs_reclaim_acquire(gfp_t gfp_mask)
4484{
f920e413
DV
4485 gfp_mask = current_gfp_context(gfp_mask);
4486
4487 if (__need_reclaim(gfp_mask)) {
4488 if (gfp_mask & __GFP_FS)
4489 __fs_reclaim_acquire();
4490
4491#ifdef CONFIG_MMU_NOTIFIER
4492 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4493 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4494#endif
4495
4496 }
d92a8cfc
PZ
4497}
4498EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4499
4500void fs_reclaim_release(gfp_t gfp_mask)
4501{
f920e413
DV
4502 gfp_mask = current_gfp_context(gfp_mask);
4503
4504 if (__need_reclaim(gfp_mask)) {
4505 if (gfp_mask & __GFP_FS)
4506 __fs_reclaim_release();
4507 }
d92a8cfc
PZ
4508}
4509EXPORT_SYMBOL_GPL(fs_reclaim_release);
4510#endif
4511
bba90710 4512/* Perform direct synchronous page reclaim */
2187e17b 4513static unsigned long
a9263751
VB
4514__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4515 const struct alloc_context *ac)
11e33f6a 4516{
499118e9 4517 unsigned int noreclaim_flag;
2187e17b 4518 unsigned long pflags, progress;
11e33f6a
MG
4519
4520 cond_resched();
4521
4522 /* We now go into synchronous reclaim */
4523 cpuset_memory_pressure_bump();
eb414681 4524 psi_memstall_enter(&pflags);
d92a8cfc 4525 fs_reclaim_acquire(gfp_mask);
93781325 4526 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4527
a9263751
VB
4528 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4529 ac->nodemask);
11e33f6a 4530
499118e9 4531 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4532 fs_reclaim_release(gfp_mask);
eb414681 4533 psi_memstall_leave(&pflags);
11e33f6a
MG
4534
4535 cond_resched();
4536
bba90710
MS
4537 return progress;
4538}
4539
4540/* The really slow allocator path where we enter direct reclaim */
4541static inline struct page *
4542__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4543 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4544 unsigned long *did_some_progress)
bba90710
MS
4545{
4546 struct page *page = NULL;
4547 bool drained = false;
4548
a9263751 4549 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4550 if (unlikely(!(*did_some_progress)))
4551 return NULL;
11e33f6a 4552
9ee493ce 4553retry:
31a6c190 4554 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4555
4556 /*
4557 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4558 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4559 * Shrink them and try again
9ee493ce
MG
4560 */
4561 if (!page && !drained) {
29fac03b 4562 unreserve_highatomic_pageblock(ac, false);
93481ff0 4563 drain_all_pages(NULL);
9ee493ce
MG
4564 drained = true;
4565 goto retry;
4566 }
4567
11e33f6a
MG
4568 return page;
4569}
4570
5ecd9d40
DR
4571static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4572 const struct alloc_context *ac)
3a025760
JW
4573{
4574 struct zoneref *z;
4575 struct zone *zone;
e1a55637 4576 pg_data_t *last_pgdat = NULL;
97a225e6 4577 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4578
97a225e6 4579 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4580 ac->nodemask) {
e1a55637 4581 if (last_pgdat != zone->zone_pgdat)
97a225e6 4582 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4583 last_pgdat = zone->zone_pgdat;
4584 }
3a025760
JW
4585}
4586
c603844b 4587static inline unsigned int
341ce06f
PZ
4588gfp_to_alloc_flags(gfp_t gfp_mask)
4589{
c603844b 4590 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4591
736838e9
MN
4592 /*
4593 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4594 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4595 * to save two branches.
4596 */
e6223a3b 4597 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4598 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4599
341ce06f
PZ
4600 /*
4601 * The caller may dip into page reserves a bit more if the caller
4602 * cannot run direct reclaim, or if the caller has realtime scheduling
4603 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4604 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4605 */
736838e9
MN
4606 alloc_flags |= (__force int)
4607 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4608
d0164adc 4609 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4610 /*
b104a35d
DR
4611 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4612 * if it can't schedule.
5c3240d9 4613 */
b104a35d 4614 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4615 alloc_flags |= ALLOC_HARDER;
523b9458 4616 /*
b104a35d 4617 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4618 * comment for __cpuset_node_allowed().
523b9458 4619 */
341ce06f 4620 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4621 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4622 alloc_flags |= ALLOC_HARDER;
4623
8e3560d9 4624 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4625
341ce06f
PZ
4626 return alloc_flags;
4627}
4628
cd04ae1e 4629static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4630{
cd04ae1e
MH
4631 if (!tsk_is_oom_victim(tsk))
4632 return false;
4633
4634 /*
4635 * !MMU doesn't have oom reaper so give access to memory reserves
4636 * only to the thread with TIF_MEMDIE set
4637 */
4638 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4639 return false;
4640
cd04ae1e
MH
4641 return true;
4642}
4643
4644/*
4645 * Distinguish requests which really need access to full memory
4646 * reserves from oom victims which can live with a portion of it
4647 */
4648static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4649{
4650 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4651 return 0;
31a6c190 4652 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4653 return ALLOC_NO_WATERMARKS;
31a6c190 4654 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4655 return ALLOC_NO_WATERMARKS;
4656 if (!in_interrupt()) {
4657 if (current->flags & PF_MEMALLOC)
4658 return ALLOC_NO_WATERMARKS;
4659 else if (oom_reserves_allowed(current))
4660 return ALLOC_OOM;
4661 }
31a6c190 4662
cd04ae1e
MH
4663 return 0;
4664}
4665
4666bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4667{
4668 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4669}
4670
0a0337e0
MH
4671/*
4672 * Checks whether it makes sense to retry the reclaim to make a forward progress
4673 * for the given allocation request.
491d79ae
JW
4674 *
4675 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4676 * without success, or when we couldn't even meet the watermark if we
4677 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4678 *
4679 * Returns true if a retry is viable or false to enter the oom path.
4680 */
4681static inline bool
4682should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4683 struct alloc_context *ac, int alloc_flags,
423b452e 4684 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4685{
4686 struct zone *zone;
4687 struct zoneref *z;
15f570bf 4688 bool ret = false;
0a0337e0 4689
423b452e
VB
4690 /*
4691 * Costly allocations might have made a progress but this doesn't mean
4692 * their order will become available due to high fragmentation so
4693 * always increment the no progress counter for them
4694 */
4695 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4696 *no_progress_loops = 0;
4697 else
4698 (*no_progress_loops)++;
4699
0a0337e0
MH
4700 /*
4701 * Make sure we converge to OOM if we cannot make any progress
4702 * several times in the row.
4703 */
04c8716f
MK
4704 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4705 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4706 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4707 }
0a0337e0 4708
bca67592
MG
4709 /*
4710 * Keep reclaiming pages while there is a chance this will lead
4711 * somewhere. If none of the target zones can satisfy our allocation
4712 * request even if all reclaimable pages are considered then we are
4713 * screwed and have to go OOM.
0a0337e0 4714 */
97a225e6
JK
4715 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4716 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4717 unsigned long available;
ede37713 4718 unsigned long reclaimable;
d379f01d
MH
4719 unsigned long min_wmark = min_wmark_pages(zone);
4720 bool wmark;
0a0337e0 4721
5a1c84b4 4722 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4723 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4724
4725 /*
491d79ae
JW
4726 * Would the allocation succeed if we reclaimed all
4727 * reclaimable pages?
0a0337e0 4728 */
d379f01d 4729 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4730 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4731 trace_reclaim_retry_zone(z, order, reclaimable,
4732 available, min_wmark, *no_progress_loops, wmark);
4733 if (wmark) {
ede37713
MH
4734 /*
4735 * If we didn't make any progress and have a lot of
4736 * dirty + writeback pages then we should wait for
4737 * an IO to complete to slow down the reclaim and
4738 * prevent from pre mature OOM
4739 */
4740 if (!did_some_progress) {
11fb9989 4741 unsigned long write_pending;
ede37713 4742
5a1c84b4
MG
4743 write_pending = zone_page_state_snapshot(zone,
4744 NR_ZONE_WRITE_PENDING);
ede37713 4745
11fb9989 4746 if (2 * write_pending > reclaimable) {
ede37713
MH
4747 congestion_wait(BLK_RW_ASYNC, HZ/10);
4748 return true;
4749 }
4750 }
5a1c84b4 4751
15f570bf
MH
4752 ret = true;
4753 goto out;
0a0337e0
MH
4754 }
4755 }
4756
15f570bf
MH
4757out:
4758 /*
4759 * Memory allocation/reclaim might be called from a WQ context and the
4760 * current implementation of the WQ concurrency control doesn't
4761 * recognize that a particular WQ is congested if the worker thread is
4762 * looping without ever sleeping. Therefore we have to do a short sleep
4763 * here rather than calling cond_resched().
4764 */
4765 if (current->flags & PF_WQ_WORKER)
4766 schedule_timeout_uninterruptible(1);
4767 else
4768 cond_resched();
4769 return ret;
0a0337e0
MH
4770}
4771
902b6281
VB
4772static inline bool
4773check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4774{
4775 /*
4776 * It's possible that cpuset's mems_allowed and the nodemask from
4777 * mempolicy don't intersect. This should be normally dealt with by
4778 * policy_nodemask(), but it's possible to race with cpuset update in
4779 * such a way the check therein was true, and then it became false
4780 * before we got our cpuset_mems_cookie here.
4781 * This assumes that for all allocations, ac->nodemask can come only
4782 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4783 * when it does not intersect with the cpuset restrictions) or the
4784 * caller can deal with a violated nodemask.
4785 */
4786 if (cpusets_enabled() && ac->nodemask &&
4787 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4788 ac->nodemask = NULL;
4789 return true;
4790 }
4791
4792 /*
4793 * When updating a task's mems_allowed or mempolicy nodemask, it is
4794 * possible to race with parallel threads in such a way that our
4795 * allocation can fail while the mask is being updated. If we are about
4796 * to fail, check if the cpuset changed during allocation and if so,
4797 * retry.
4798 */
4799 if (read_mems_allowed_retry(cpuset_mems_cookie))
4800 return true;
4801
4802 return false;
4803}
4804
11e33f6a
MG
4805static inline struct page *
4806__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4807 struct alloc_context *ac)
11e33f6a 4808{
d0164adc 4809 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4810 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4811 struct page *page = NULL;
c603844b 4812 unsigned int alloc_flags;
11e33f6a 4813 unsigned long did_some_progress;
5ce9bfef 4814 enum compact_priority compact_priority;
c5d01d0d 4815 enum compact_result compact_result;
5ce9bfef
VB
4816 int compaction_retries;
4817 int no_progress_loops;
5ce9bfef 4818 unsigned int cpuset_mems_cookie;
cd04ae1e 4819 int reserve_flags;
1da177e4 4820
d0164adc
MG
4821 /*
4822 * We also sanity check to catch abuse of atomic reserves being used by
4823 * callers that are not in atomic context.
4824 */
4825 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4826 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4827 gfp_mask &= ~__GFP_ATOMIC;
4828
5ce9bfef
VB
4829retry_cpuset:
4830 compaction_retries = 0;
4831 no_progress_loops = 0;
4832 compact_priority = DEF_COMPACT_PRIORITY;
4833 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4834
4835 /*
4836 * The fast path uses conservative alloc_flags to succeed only until
4837 * kswapd needs to be woken up, and to avoid the cost of setting up
4838 * alloc_flags precisely. So we do that now.
4839 */
4840 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4841
e47483bc
VB
4842 /*
4843 * We need to recalculate the starting point for the zonelist iterator
4844 * because we might have used different nodemask in the fast path, or
4845 * there was a cpuset modification and we are retrying - otherwise we
4846 * could end up iterating over non-eligible zones endlessly.
4847 */
4848 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4849 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4850 if (!ac->preferred_zoneref->zone)
4851 goto nopage;
4852
0a79cdad 4853 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4854 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4855
4856 /*
4857 * The adjusted alloc_flags might result in immediate success, so try
4858 * that first
4859 */
4860 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4861 if (page)
4862 goto got_pg;
4863
a8161d1e
VB
4864 /*
4865 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4866 * that we have enough base pages and don't need to reclaim. For non-
4867 * movable high-order allocations, do that as well, as compaction will
4868 * try prevent permanent fragmentation by migrating from blocks of the
4869 * same migratetype.
4870 * Don't try this for allocations that are allowed to ignore
4871 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4872 */
282722b0
VB
4873 if (can_direct_reclaim &&
4874 (costly_order ||
4875 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4876 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4877 page = __alloc_pages_direct_compact(gfp_mask, order,
4878 alloc_flags, ac,
a5508cd8 4879 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4880 &compact_result);
4881 if (page)
4882 goto got_pg;
4883
cc638f32
VB
4884 /*
4885 * Checks for costly allocations with __GFP_NORETRY, which
4886 * includes some THP page fault allocations
4887 */
4888 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4889 /*
4890 * If allocating entire pageblock(s) and compaction
4891 * failed because all zones are below low watermarks
4892 * or is prohibited because it recently failed at this
3f36d866
DR
4893 * order, fail immediately unless the allocator has
4894 * requested compaction and reclaim retry.
b39d0ee2
DR
4895 *
4896 * Reclaim is
4897 * - potentially very expensive because zones are far
4898 * below their low watermarks or this is part of very
4899 * bursty high order allocations,
4900 * - not guaranteed to help because isolate_freepages()
4901 * may not iterate over freed pages as part of its
4902 * linear scan, and
4903 * - unlikely to make entire pageblocks free on its
4904 * own.
4905 */
4906 if (compact_result == COMPACT_SKIPPED ||
4907 compact_result == COMPACT_DEFERRED)
4908 goto nopage;
a8161d1e 4909
a8161d1e 4910 /*
3eb2771b
VB
4911 * Looks like reclaim/compaction is worth trying, but
4912 * sync compaction could be very expensive, so keep
25160354 4913 * using async compaction.
a8161d1e 4914 */
a5508cd8 4915 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4916 }
4917 }
23771235 4918
31a6c190 4919retry:
23771235 4920 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4921 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4922 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4923
cd04ae1e
MH
4924 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4925 if (reserve_flags)
8e3560d9 4926 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
23771235 4927
e46e7b77 4928 /*
d6a24df0
VB
4929 * Reset the nodemask and zonelist iterators if memory policies can be
4930 * ignored. These allocations are high priority and system rather than
4931 * user oriented.
e46e7b77 4932 */
cd04ae1e 4933 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4934 ac->nodemask = NULL;
e46e7b77 4935 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4936 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4937 }
4938
23771235 4939 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4940 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4941 if (page)
4942 goto got_pg;
1da177e4 4943
d0164adc 4944 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4945 if (!can_direct_reclaim)
1da177e4
LT
4946 goto nopage;
4947
9a67f648
MH
4948 /* Avoid recursion of direct reclaim */
4949 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4950 goto nopage;
4951
a8161d1e
VB
4952 /* Try direct reclaim and then allocating */
4953 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4954 &did_some_progress);
4955 if (page)
4956 goto got_pg;
4957
4958 /* Try direct compaction and then allocating */
a9263751 4959 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4960 compact_priority, &compact_result);
56de7263
MG
4961 if (page)
4962 goto got_pg;
75f30861 4963
9083905a
JW
4964 /* Do not loop if specifically requested */
4965 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4966 goto nopage;
9083905a 4967
0a0337e0
MH
4968 /*
4969 * Do not retry costly high order allocations unless they are
dcda9b04 4970 * __GFP_RETRY_MAYFAIL
0a0337e0 4971 */
dcda9b04 4972 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4973 goto nopage;
0a0337e0 4974
0a0337e0 4975 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4976 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4977 goto retry;
4978
33c2d214
MH
4979 /*
4980 * It doesn't make any sense to retry for the compaction if the order-0
4981 * reclaim is not able to make any progress because the current
4982 * implementation of the compaction depends on the sufficient amount
4983 * of free memory (see __compaction_suitable)
4984 */
4985 if (did_some_progress > 0 &&
86a294a8 4986 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4987 compact_result, &compact_priority,
d9436498 4988 &compaction_retries))
33c2d214
MH
4989 goto retry;
4990
902b6281
VB
4991
4992 /* Deal with possible cpuset update races before we start OOM killing */
4993 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4994 goto retry_cpuset;
4995
9083905a
JW
4996 /* Reclaim has failed us, start killing things */
4997 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4998 if (page)
4999 goto got_pg;
5000
9a67f648 5001 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5002 if (tsk_is_oom_victim(current) &&
8510e69c 5003 (alloc_flags & ALLOC_OOM ||
c288983d 5004 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5005 goto nopage;
5006
9083905a 5007 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5008 if (did_some_progress) {
5009 no_progress_loops = 0;
9083905a 5010 goto retry;
0a0337e0 5011 }
9083905a 5012
1da177e4 5013nopage:
902b6281
VB
5014 /* Deal with possible cpuset update races before we fail */
5015 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
5016 goto retry_cpuset;
5017
9a67f648
MH
5018 /*
5019 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5020 * we always retry
5021 */
5022 if (gfp_mask & __GFP_NOFAIL) {
5023 /*
5024 * All existing users of the __GFP_NOFAIL are blockable, so warn
5025 * of any new users that actually require GFP_NOWAIT
5026 */
5027 if (WARN_ON_ONCE(!can_direct_reclaim))
5028 goto fail;
5029
5030 /*
5031 * PF_MEMALLOC request from this context is rather bizarre
5032 * because we cannot reclaim anything and only can loop waiting
5033 * for somebody to do a work for us
5034 */
5035 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5036
5037 /*
5038 * non failing costly orders are a hard requirement which we
5039 * are not prepared for much so let's warn about these users
5040 * so that we can identify them and convert them to something
5041 * else.
5042 */
5043 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5044
6c18ba7a
MH
5045 /*
5046 * Help non-failing allocations by giving them access to memory
5047 * reserves but do not use ALLOC_NO_WATERMARKS because this
5048 * could deplete whole memory reserves which would just make
5049 * the situation worse
5050 */
5051 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5052 if (page)
5053 goto got_pg;
5054
9a67f648
MH
5055 cond_resched();
5056 goto retry;
5057 }
5058fail:
a8e99259 5059 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5060 "page allocation failure: order:%u", order);
1da177e4 5061got_pg:
072bb0aa 5062 return page;
1da177e4 5063}
11e33f6a 5064
9cd75558 5065static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5066 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5067 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5068 unsigned int *alloc_flags)
11e33f6a 5069{
97a225e6 5070 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5071 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5072 ac->nodemask = nodemask;
01c0bfe0 5073 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5074
682a3385 5075 if (cpusets_enabled()) {
8e6a930b 5076 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5077 /*
5078 * When we are in the interrupt context, it is irrelevant
5079 * to the current task context. It means that any node ok.
5080 */
5081 if (!in_interrupt() && !ac->nodemask)
9cd75558 5082 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5083 else
5084 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5085 }
5086
d92a8cfc
PZ
5087 fs_reclaim_acquire(gfp_mask);
5088 fs_reclaim_release(gfp_mask);
11e33f6a 5089
d0164adc 5090 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
5091
5092 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5093 return false;
11e33f6a 5094
8e3560d9 5095 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5096
c9ab0c4f 5097 /* Dirty zone balancing only done in the fast path */
9cd75558 5098 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5099
e46e7b77
MG
5100 /*
5101 * The preferred zone is used for statistics but crucially it is
5102 * also used as the starting point for the zonelist iterator. It
5103 * may get reset for allocations that ignore memory policies.
5104 */
9cd75558 5105 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5106 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5107
5108 return true;
9cd75558
MG
5109}
5110
387ba26f 5111/*
0f87d9d3 5112 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5113 * @gfp: GFP flags for the allocation
5114 * @preferred_nid: The preferred NUMA node ID to allocate from
5115 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5116 * @nr_pages: The number of pages desired on the list or array
5117 * @page_list: Optional list to store the allocated pages
5118 * @page_array: Optional array to store the pages
387ba26f
MG
5119 *
5120 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5121 * allocate nr_pages quickly. Pages are added to page_list if page_list
5122 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5123 *
0f87d9d3
MG
5124 * For lists, nr_pages is the number of pages that should be allocated.
5125 *
5126 * For arrays, only NULL elements are populated with pages and nr_pages
5127 * is the maximum number of pages that will be stored in the array.
5128 *
5129 * Returns the number of pages on the list or array.
387ba26f
MG
5130 */
5131unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5132 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5133 struct list_head *page_list,
5134 struct page **page_array)
387ba26f
MG
5135{
5136 struct page *page;
5137 unsigned long flags;
5138 struct zone *zone;
5139 struct zoneref *z;
5140 struct per_cpu_pages *pcp;
5141 struct list_head *pcp_list;
5142 struct alloc_context ac;
5143 gfp_t alloc_gfp;
5144 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5145 int nr_populated = 0, nr_account = 0;
387ba26f 5146
ce76f9a1 5147 if (unlikely(nr_pages <= 0))
387ba26f
MG
5148 return 0;
5149
0f87d9d3
MG
5150 /*
5151 * Skip populated array elements to determine if any pages need
5152 * to be allocated before disabling IRQs.
5153 */
b08e50dd 5154 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5155 nr_populated++;
5156
b3b64ebd
MG
5157 /* Already populated array? */
5158 if (unlikely(page_array && nr_pages - nr_populated == 0))
ff4b2b40 5159 return nr_populated;
b3b64ebd 5160
387ba26f 5161 /* Use the single page allocator for one page. */
0f87d9d3 5162 if (nr_pages - nr_populated == 1)
387ba26f
MG
5163 goto failed;
5164
5165 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5166 gfp &= gfp_allowed_mask;
5167 alloc_gfp = gfp;
5168 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5169 return 0;
5170 gfp = alloc_gfp;
5171
5172 /* Find an allowed local zone that meets the low watermark. */
5173 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5174 unsigned long mark;
5175
5176 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5177 !__cpuset_zone_allowed(zone, gfp)) {
5178 continue;
5179 }
5180
5181 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5182 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5183 goto failed;
5184 }
5185
5186 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5187 if (zone_watermark_fast(zone, 0, mark,
5188 zonelist_zone_idx(ac.preferred_zoneref),
5189 alloc_flags, gfp)) {
5190 break;
5191 }
5192 }
5193
5194 /*
5195 * If there are no allowed local zones that meets the watermarks then
5196 * try to allocate a single page and reclaim if necessary.
5197 */
ce76f9a1 5198 if (unlikely(!zone))
387ba26f
MG
5199 goto failed;
5200
5201 /* Attempt the batch allocation */
dbbee9d5 5202 local_lock_irqsave(&pagesets.lock, flags);
28f836b6 5203 pcp = this_cpu_ptr(zone->per_cpu_pageset);
387ba26f
MG
5204 pcp_list = &pcp->lists[ac.migratetype];
5205
0f87d9d3
MG
5206 while (nr_populated < nr_pages) {
5207
5208 /* Skip existing pages */
5209 if (page_array && page_array[nr_populated]) {
5210 nr_populated++;
5211 continue;
5212 }
5213
387ba26f
MG
5214 page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
5215 pcp, pcp_list);
ce76f9a1 5216 if (unlikely(!page)) {
387ba26f 5217 /* Try and get at least one page */
0f87d9d3 5218 if (!nr_populated)
387ba26f
MG
5219 goto failed_irq;
5220 break;
5221 }
3e23060b 5222 nr_account++;
387ba26f
MG
5223
5224 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5225 if (page_list)
5226 list_add(&page->lru, page_list);
5227 else
5228 page_array[nr_populated] = page;
5229 nr_populated++;
387ba26f
MG
5230 }
5231
43c95bcc
MG
5232 local_unlock_irqrestore(&pagesets.lock, flags);
5233
3e23060b
MG
5234 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5235 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5236
0f87d9d3 5237 return nr_populated;
387ba26f
MG
5238
5239failed_irq:
dbbee9d5 5240 local_unlock_irqrestore(&pagesets.lock, flags);
387ba26f
MG
5241
5242failed:
5243 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5244 if (page) {
0f87d9d3
MG
5245 if (page_list)
5246 list_add(&page->lru, page_list);
5247 else
5248 page_array[nr_populated] = page;
5249 nr_populated++;
387ba26f
MG
5250 }
5251
0f87d9d3 5252 return nr_populated;
387ba26f
MG
5253}
5254EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5255
9cd75558
MG
5256/*
5257 * This is the 'heart' of the zoned buddy allocator.
5258 */
84172f4b 5259struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5260 nodemask_t *nodemask)
9cd75558
MG
5261{
5262 struct page *page;
5263 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5264 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5265 struct alloc_context ac = { };
5266
c63ae43b
MH
5267 /*
5268 * There are several places where we assume that the order value is sane
5269 * so bail out early if the request is out of bound.
5270 */
5271 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5272 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5273 return NULL;
5274 }
5275
6e5e0f28 5276 gfp &= gfp_allowed_mask;
da6df1b0
PT
5277 /*
5278 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5279 * resp. GFP_NOIO which has to be inherited for all allocation requests
5280 * from a particular context which has been marked by
8e3560d9
PT
5281 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5282 * movable zones are not used during allocation.
da6df1b0
PT
5283 */
5284 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5285 alloc_gfp = gfp;
5286 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5287 &alloc_gfp, &alloc_flags))
9cd75558
MG
5288 return NULL;
5289
6bb15450
MG
5290 /*
5291 * Forbid the first pass from falling back to types that fragment
5292 * memory until all local zones are considered.
5293 */
6e5e0f28 5294 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5295
5117f45d 5296 /* First allocation attempt */
8e6a930b 5297 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5298 if (likely(page))
5299 goto out;
11e33f6a 5300
da6df1b0 5301 alloc_gfp = gfp;
4fcb0971 5302 ac.spread_dirty_pages = false;
23f086f9 5303
4741526b
MG
5304 /*
5305 * Restore the original nodemask if it was potentially replaced with
5306 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5307 */
97ce86f9 5308 ac.nodemask = nodemask;
16096c25 5309
8e6a930b 5310 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5311
4fcb0971 5312out:
6e5e0f28
MWO
5313 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5314 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5315 __free_pages(page, order);
5316 page = NULL;
4949148a
VD
5317 }
5318
8e6a930b 5319 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5320
11e33f6a 5321 return page;
1da177e4 5322}
84172f4b 5323EXPORT_SYMBOL(__alloc_pages);
1da177e4
LT
5324
5325/*
9ea9a680
MH
5326 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5327 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5328 * you need to access high mem.
1da177e4 5329 */
920c7a5d 5330unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5331{
945a1113
AM
5332 struct page *page;
5333
9ea9a680 5334 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5335 if (!page)
5336 return 0;
5337 return (unsigned long) page_address(page);
5338}
1da177e4
LT
5339EXPORT_SYMBOL(__get_free_pages);
5340
920c7a5d 5341unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5342{
945a1113 5343 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5344}
1da177e4
LT
5345EXPORT_SYMBOL(get_zeroed_page);
5346
7f194fbb
MWO
5347/**
5348 * __free_pages - Free pages allocated with alloc_pages().
5349 * @page: The page pointer returned from alloc_pages().
5350 * @order: The order of the allocation.
5351 *
5352 * This function can free multi-page allocations that are not compound
5353 * pages. It does not check that the @order passed in matches that of
5354 * the allocation, so it is easy to leak memory. Freeing more memory
5355 * than was allocated will probably emit a warning.
5356 *
5357 * If the last reference to this page is speculative, it will be released
5358 * by put_page() which only frees the first page of a non-compound
5359 * allocation. To prevent the remaining pages from being leaked, we free
5360 * the subsequent pages here. If you want to use the page's reference
5361 * count to decide when to free the allocation, you should allocate a
5362 * compound page, and use put_page() instead of __free_pages().
5363 *
5364 * Context: May be called in interrupt context or while holding a normal
5365 * spinlock, but not in NMI context or while holding a raw spinlock.
5366 */
742aa7fb
AL
5367void __free_pages(struct page *page, unsigned int order)
5368{
5369 if (put_page_testzero(page))
5370 free_the_page(page, order);
e320d301
MWO
5371 else if (!PageHead(page))
5372 while (order-- > 0)
5373 free_the_page(page + (1 << order), order);
742aa7fb 5374}
1da177e4
LT
5375EXPORT_SYMBOL(__free_pages);
5376
920c7a5d 5377void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5378{
5379 if (addr != 0) {
725d704e 5380 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5381 __free_pages(virt_to_page((void *)addr), order);
5382 }
5383}
5384
5385EXPORT_SYMBOL(free_pages);
5386
b63ae8ca
AD
5387/*
5388 * Page Fragment:
5389 * An arbitrary-length arbitrary-offset area of memory which resides
5390 * within a 0 or higher order page. Multiple fragments within that page
5391 * are individually refcounted, in the page's reference counter.
5392 *
5393 * The page_frag functions below provide a simple allocation framework for
5394 * page fragments. This is used by the network stack and network device
5395 * drivers to provide a backing region of memory for use as either an
5396 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5397 */
2976db80
AD
5398static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5399 gfp_t gfp_mask)
b63ae8ca
AD
5400{
5401 struct page *page = NULL;
5402 gfp_t gfp = gfp_mask;
5403
5404#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5405 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5406 __GFP_NOMEMALLOC;
5407 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5408 PAGE_FRAG_CACHE_MAX_ORDER);
5409 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5410#endif
5411 if (unlikely(!page))
5412 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5413
5414 nc->va = page ? page_address(page) : NULL;
5415
5416 return page;
5417}
5418
2976db80 5419void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5420{
5421 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5422
742aa7fb
AL
5423 if (page_ref_sub_and_test(page, count))
5424 free_the_page(page, compound_order(page));
44fdffd7 5425}
2976db80 5426EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5427
b358e212
KH
5428void *page_frag_alloc_align(struct page_frag_cache *nc,
5429 unsigned int fragsz, gfp_t gfp_mask,
5430 unsigned int align_mask)
b63ae8ca
AD
5431{
5432 unsigned int size = PAGE_SIZE;
5433 struct page *page;
5434 int offset;
5435
5436 if (unlikely(!nc->va)) {
5437refill:
2976db80 5438 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5439 if (!page)
5440 return NULL;
5441
5442#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5443 /* if size can vary use size else just use PAGE_SIZE */
5444 size = nc->size;
5445#endif
5446 /* Even if we own the page, we do not use atomic_set().
5447 * This would break get_page_unless_zero() users.
5448 */
86447726 5449 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5450
5451 /* reset page count bias and offset to start of new frag */
2f064f34 5452 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5453 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5454 nc->offset = size;
5455 }
5456
5457 offset = nc->offset - fragsz;
5458 if (unlikely(offset < 0)) {
5459 page = virt_to_page(nc->va);
5460
fe896d18 5461 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5462 goto refill;
5463
d8c19014
DZ
5464 if (unlikely(nc->pfmemalloc)) {
5465 free_the_page(page, compound_order(page));
5466 goto refill;
5467 }
5468
b63ae8ca
AD
5469#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5470 /* if size can vary use size else just use PAGE_SIZE */
5471 size = nc->size;
5472#endif
5473 /* OK, page count is 0, we can safely set it */
86447726 5474 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5475
5476 /* reset page count bias and offset to start of new frag */
86447726 5477 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5478 offset = size - fragsz;
5479 }
5480
5481 nc->pagecnt_bias--;
b358e212 5482 offset &= align_mask;
b63ae8ca
AD
5483 nc->offset = offset;
5484
5485 return nc->va + offset;
5486}
b358e212 5487EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5488
5489/*
5490 * Frees a page fragment allocated out of either a compound or order 0 page.
5491 */
8c2dd3e4 5492void page_frag_free(void *addr)
b63ae8ca
AD
5493{
5494 struct page *page = virt_to_head_page(addr);
5495
742aa7fb
AL
5496 if (unlikely(put_page_testzero(page)))
5497 free_the_page(page, compound_order(page));
b63ae8ca 5498}
8c2dd3e4 5499EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5500
d00181b9
KS
5501static void *make_alloc_exact(unsigned long addr, unsigned int order,
5502 size_t size)
ee85c2e1
AK
5503{
5504 if (addr) {
5505 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5506 unsigned long used = addr + PAGE_ALIGN(size);
5507
5508 split_page(virt_to_page((void *)addr), order);
5509 while (used < alloc_end) {
5510 free_page(used);
5511 used += PAGE_SIZE;
5512 }
5513 }
5514 return (void *)addr;
5515}
5516
2be0ffe2
TT
5517/**
5518 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5519 * @size: the number of bytes to allocate
63931eb9 5520 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5521 *
5522 * This function is similar to alloc_pages(), except that it allocates the
5523 * minimum number of pages to satisfy the request. alloc_pages() can only
5524 * allocate memory in power-of-two pages.
5525 *
5526 * This function is also limited by MAX_ORDER.
5527 *
5528 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5529 *
5530 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5531 */
5532void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5533{
5534 unsigned int order = get_order(size);
5535 unsigned long addr;
5536
63931eb9
VB
5537 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5538 gfp_mask &= ~__GFP_COMP;
5539
2be0ffe2 5540 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5541 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5542}
5543EXPORT_SYMBOL(alloc_pages_exact);
5544
ee85c2e1
AK
5545/**
5546 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5547 * pages on a node.
b5e6ab58 5548 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5549 * @size: the number of bytes to allocate
63931eb9 5550 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5551 *
5552 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5553 * back.
a862f68a
MR
5554 *
5555 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5556 */
e1931811 5557void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5558{
d00181b9 5559 unsigned int order = get_order(size);
63931eb9
VB
5560 struct page *p;
5561
5562 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5563 gfp_mask &= ~__GFP_COMP;
5564
5565 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5566 if (!p)
5567 return NULL;
5568 return make_alloc_exact((unsigned long)page_address(p), order, size);
5569}
ee85c2e1 5570
2be0ffe2
TT
5571/**
5572 * free_pages_exact - release memory allocated via alloc_pages_exact()
5573 * @virt: the value returned by alloc_pages_exact.
5574 * @size: size of allocation, same value as passed to alloc_pages_exact().
5575 *
5576 * Release the memory allocated by a previous call to alloc_pages_exact.
5577 */
5578void free_pages_exact(void *virt, size_t size)
5579{
5580 unsigned long addr = (unsigned long)virt;
5581 unsigned long end = addr + PAGE_ALIGN(size);
5582
5583 while (addr < end) {
5584 free_page(addr);
5585 addr += PAGE_SIZE;
5586 }
5587}
5588EXPORT_SYMBOL(free_pages_exact);
5589
e0fb5815
ZY
5590/**
5591 * nr_free_zone_pages - count number of pages beyond high watermark
5592 * @offset: The zone index of the highest zone
5593 *
a862f68a 5594 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5595 * high watermark within all zones at or below a given zone index. For each
5596 * zone, the number of pages is calculated as:
0e056eb5 5597 *
5598 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5599 *
5600 * Return: number of pages beyond high watermark.
e0fb5815 5601 */
ebec3862 5602static unsigned long nr_free_zone_pages(int offset)
1da177e4 5603{
dd1a239f 5604 struct zoneref *z;
54a6eb5c
MG
5605 struct zone *zone;
5606
e310fd43 5607 /* Just pick one node, since fallback list is circular */
ebec3862 5608 unsigned long sum = 0;
1da177e4 5609
0e88460d 5610 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5611
54a6eb5c 5612 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5613 unsigned long size = zone_managed_pages(zone);
41858966 5614 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5615 if (size > high)
5616 sum += size - high;
1da177e4
LT
5617 }
5618
5619 return sum;
5620}
5621
e0fb5815
ZY
5622/**
5623 * nr_free_buffer_pages - count number of pages beyond high watermark
5624 *
5625 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5626 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5627 *
5628 * Return: number of pages beyond high watermark within ZONE_DMA and
5629 * ZONE_NORMAL.
1da177e4 5630 */
ebec3862 5631unsigned long nr_free_buffer_pages(void)
1da177e4 5632{
af4ca457 5633 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5634}
c2f1a551 5635EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5636
08e0f6a9 5637static inline void show_node(struct zone *zone)
1da177e4 5638{
e5adfffc 5639 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5640 printk("Node %d ", zone_to_nid(zone));
1da177e4 5641}
1da177e4 5642
d02bd27b
IR
5643long si_mem_available(void)
5644{
5645 long available;
5646 unsigned long pagecache;
5647 unsigned long wmark_low = 0;
5648 unsigned long pages[NR_LRU_LISTS];
b29940c1 5649 unsigned long reclaimable;
d02bd27b
IR
5650 struct zone *zone;
5651 int lru;
5652
5653 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5654 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5655
5656 for_each_zone(zone)
a9214443 5657 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5658
5659 /*
5660 * Estimate the amount of memory available for userspace allocations,
5661 * without causing swapping.
5662 */
c41f012a 5663 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5664
5665 /*
5666 * Not all the page cache can be freed, otherwise the system will
5667 * start swapping. Assume at least half of the page cache, or the
5668 * low watermark worth of cache, needs to stay.
5669 */
5670 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5671 pagecache -= min(pagecache / 2, wmark_low);
5672 available += pagecache;
5673
5674 /*
b29940c1
VB
5675 * Part of the reclaimable slab and other kernel memory consists of
5676 * items that are in use, and cannot be freed. Cap this estimate at the
5677 * low watermark.
d02bd27b 5678 */
d42f3245
RG
5679 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5680 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5681 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5682
d02bd27b
IR
5683 if (available < 0)
5684 available = 0;
5685 return available;
5686}
5687EXPORT_SYMBOL_GPL(si_mem_available);
5688
1da177e4
LT
5689void si_meminfo(struct sysinfo *val)
5690{
ca79b0c2 5691 val->totalram = totalram_pages();
11fb9989 5692 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5693 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5694 val->bufferram = nr_blockdev_pages();
ca79b0c2 5695 val->totalhigh = totalhigh_pages();
1da177e4 5696 val->freehigh = nr_free_highpages();
1da177e4
LT
5697 val->mem_unit = PAGE_SIZE;
5698}
5699
5700EXPORT_SYMBOL(si_meminfo);
5701
5702#ifdef CONFIG_NUMA
5703void si_meminfo_node(struct sysinfo *val, int nid)
5704{
cdd91a77
JL
5705 int zone_type; /* needs to be signed */
5706 unsigned long managed_pages = 0;
fc2bd799
JK
5707 unsigned long managed_highpages = 0;
5708 unsigned long free_highpages = 0;
1da177e4
LT
5709 pg_data_t *pgdat = NODE_DATA(nid);
5710
cdd91a77 5711 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5712 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5713 val->totalram = managed_pages;
11fb9989 5714 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5715 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5716#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5717 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5718 struct zone *zone = &pgdat->node_zones[zone_type];
5719
5720 if (is_highmem(zone)) {
9705bea5 5721 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5722 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5723 }
5724 }
5725 val->totalhigh = managed_highpages;
5726 val->freehigh = free_highpages;
98d2b0eb 5727#else
fc2bd799
JK
5728 val->totalhigh = managed_highpages;
5729 val->freehigh = free_highpages;
98d2b0eb 5730#endif
1da177e4
LT
5731 val->mem_unit = PAGE_SIZE;
5732}
5733#endif
5734
ddd588b5 5735/*
7bf02ea2
DR
5736 * Determine whether the node should be displayed or not, depending on whether
5737 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5738 */
9af744d7 5739static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5740{
ddd588b5 5741 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5742 return false;
ddd588b5 5743
9af744d7
MH
5744 /*
5745 * no node mask - aka implicit memory numa policy. Do not bother with
5746 * the synchronization - read_mems_allowed_begin - because we do not
5747 * have to be precise here.
5748 */
5749 if (!nodemask)
5750 nodemask = &cpuset_current_mems_allowed;
5751
5752 return !node_isset(nid, *nodemask);
ddd588b5
DR
5753}
5754
1da177e4
LT
5755#define K(x) ((x) << (PAGE_SHIFT-10))
5756
377e4f16
RV
5757static void show_migration_types(unsigned char type)
5758{
5759 static const char types[MIGRATE_TYPES] = {
5760 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5761 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5762 [MIGRATE_RECLAIMABLE] = 'E',
5763 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5764#ifdef CONFIG_CMA
5765 [MIGRATE_CMA] = 'C',
5766#endif
194159fb 5767#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5768 [MIGRATE_ISOLATE] = 'I',
194159fb 5769#endif
377e4f16
RV
5770 };
5771 char tmp[MIGRATE_TYPES + 1];
5772 char *p = tmp;
5773 int i;
5774
5775 for (i = 0; i < MIGRATE_TYPES; i++) {
5776 if (type & (1 << i))
5777 *p++ = types[i];
5778 }
5779
5780 *p = '\0';
1f84a18f 5781 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5782}
5783
1da177e4
LT
5784/*
5785 * Show free area list (used inside shift_scroll-lock stuff)
5786 * We also calculate the percentage fragmentation. We do this by counting the
5787 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5788 *
5789 * Bits in @filter:
5790 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5791 * cpuset.
1da177e4 5792 */
9af744d7 5793void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5794{
d1bfcdb8 5795 unsigned long free_pcp = 0;
c7241913 5796 int cpu;
1da177e4 5797 struct zone *zone;
599d0c95 5798 pg_data_t *pgdat;
1da177e4 5799
ee99c71c 5800 for_each_populated_zone(zone) {
9af744d7 5801 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5802 continue;
d1bfcdb8 5803
761b0677 5804 for_each_online_cpu(cpu)
28f836b6 5805 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
5806 }
5807
a731286d
KM
5808 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5809 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5810 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5811 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5812 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5813 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5814 global_node_page_state(NR_ACTIVE_ANON),
5815 global_node_page_state(NR_INACTIVE_ANON),
5816 global_node_page_state(NR_ISOLATED_ANON),
5817 global_node_page_state(NR_ACTIVE_FILE),
5818 global_node_page_state(NR_INACTIVE_FILE),
5819 global_node_page_state(NR_ISOLATED_FILE),
5820 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5821 global_node_page_state(NR_FILE_DIRTY),
5822 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5823 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5824 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5825 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5826 global_node_page_state(NR_SHMEM),
f0c0c115 5827 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5828 global_zone_page_state(NR_BOUNCE),
5829 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5830 free_pcp,
c41f012a 5831 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5832
599d0c95 5833 for_each_online_pgdat(pgdat) {
9af744d7 5834 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5835 continue;
5836
599d0c95
MG
5837 printk("Node %d"
5838 " active_anon:%lukB"
5839 " inactive_anon:%lukB"
5840 " active_file:%lukB"
5841 " inactive_file:%lukB"
5842 " unevictable:%lukB"
5843 " isolated(anon):%lukB"
5844 " isolated(file):%lukB"
50658e2e 5845 " mapped:%lukB"
11fb9989
MG
5846 " dirty:%lukB"
5847 " writeback:%lukB"
5848 " shmem:%lukB"
5849#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5850 " shmem_thp: %lukB"
5851 " shmem_pmdmapped: %lukB"
5852 " anon_thp: %lukB"
5853#endif
5854 " writeback_tmp:%lukB"
991e7673
SB
5855 " kernel_stack:%lukB"
5856#ifdef CONFIG_SHADOW_CALL_STACK
5857 " shadow_call_stack:%lukB"
5858#endif
f0c0c115 5859 " pagetables:%lukB"
599d0c95
MG
5860 " all_unreclaimable? %s"
5861 "\n",
5862 pgdat->node_id,
5863 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5864 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5865 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5866 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5867 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5868 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5869 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5870 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5871 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5872 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5873 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5874#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5875 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5876 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5877 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5878#endif
11fb9989 5879 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5880 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5881#ifdef CONFIG_SHADOW_CALL_STACK
5882 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5883#endif
f0c0c115 5884 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5885 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5886 "yes" : "no");
599d0c95
MG
5887 }
5888
ee99c71c 5889 for_each_populated_zone(zone) {
1da177e4
LT
5890 int i;
5891
9af744d7 5892 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5893 continue;
d1bfcdb8
KK
5894
5895 free_pcp = 0;
5896 for_each_online_cpu(cpu)
28f836b6 5897 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 5898
1da177e4 5899 show_node(zone);
1f84a18f
JP
5900 printk(KERN_CONT
5901 "%s"
1da177e4
LT
5902 " free:%lukB"
5903 " min:%lukB"
5904 " low:%lukB"
5905 " high:%lukB"
e47b346a 5906 " reserved_highatomic:%luKB"
71c799f4
MK
5907 " active_anon:%lukB"
5908 " inactive_anon:%lukB"
5909 " active_file:%lukB"
5910 " inactive_file:%lukB"
5911 " unevictable:%lukB"
5a1c84b4 5912 " writepending:%lukB"
1da177e4 5913 " present:%lukB"
9feedc9d 5914 " managed:%lukB"
4a0aa73f 5915 " mlocked:%lukB"
4a0aa73f 5916 " bounce:%lukB"
d1bfcdb8
KK
5917 " free_pcp:%lukB"
5918 " local_pcp:%ukB"
d1ce749a 5919 " free_cma:%lukB"
1da177e4
LT
5920 "\n",
5921 zone->name,
88f5acf8 5922 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5923 K(min_wmark_pages(zone)),
5924 K(low_wmark_pages(zone)),
5925 K(high_wmark_pages(zone)),
e47b346a 5926 K(zone->nr_reserved_highatomic),
71c799f4
MK
5927 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5928 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5929 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5930 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5931 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5932 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5933 K(zone->present_pages),
9705bea5 5934 K(zone_managed_pages(zone)),
4a0aa73f 5935 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5936 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 5937 K(free_pcp),
28f836b6 5938 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 5939 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5940 printk("lowmem_reserve[]:");
5941 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5942 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5943 printk(KERN_CONT "\n");
1da177e4
LT
5944 }
5945
ee99c71c 5946 for_each_populated_zone(zone) {
d00181b9
KS
5947 unsigned int order;
5948 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5949 unsigned char types[MAX_ORDER];
1da177e4 5950
9af744d7 5951 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5952 continue;
1da177e4 5953 show_node(zone);
1f84a18f 5954 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5955
5956 spin_lock_irqsave(&zone->lock, flags);
5957 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5958 struct free_area *area = &zone->free_area[order];
5959 int type;
5960
5961 nr[order] = area->nr_free;
8f9de51a 5962 total += nr[order] << order;
377e4f16
RV
5963
5964 types[order] = 0;
5965 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5966 if (!free_area_empty(area, type))
377e4f16
RV
5967 types[order] |= 1 << type;
5968 }
1da177e4
LT
5969 }
5970 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5971 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5972 printk(KERN_CONT "%lu*%lukB ",
5973 nr[order], K(1UL) << order);
377e4f16
RV
5974 if (nr[order])
5975 show_migration_types(types[order]);
5976 }
1f84a18f 5977 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5978 }
5979
949f7ec5
DR
5980 hugetlb_show_meminfo();
5981
11fb9989 5982 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5983
1da177e4
LT
5984 show_swap_cache_info();
5985}
5986
19770b32
MG
5987static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5988{
5989 zoneref->zone = zone;
5990 zoneref->zone_idx = zone_idx(zone);
5991}
5992
1da177e4
LT
5993/*
5994 * Builds allocation fallback zone lists.
1a93205b
CL
5995 *
5996 * Add all populated zones of a node to the zonelist.
1da177e4 5997 */
9d3be21b 5998static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5999{
1a93205b 6000 struct zone *zone;
bc732f1d 6001 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6002 int nr_zones = 0;
02a68a5e
CL
6003
6004 do {
2f6726e5 6005 zone_type--;
070f8032 6006 zone = pgdat->node_zones + zone_type;
6aa303de 6007 if (managed_zone(zone)) {
9d3be21b 6008 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6009 check_highest_zone(zone_type);
1da177e4 6010 }
2f6726e5 6011 } while (zone_type);
bc732f1d 6012
070f8032 6013 return nr_zones;
1da177e4
LT
6014}
6015
6016#ifdef CONFIG_NUMA
f0c0b2b8
KH
6017
6018static int __parse_numa_zonelist_order(char *s)
6019{
c9bff3ee 6020 /*
f0953a1b 6021 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6022 * out to be just not useful. Let's keep the warning in place
6023 * if somebody still use the cmd line parameter so that we do
6024 * not fail it silently
6025 */
6026 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6027 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6028 return -EINVAL;
6029 }
6030 return 0;
6031}
6032
c9bff3ee
MH
6033char numa_zonelist_order[] = "Node";
6034
f0c0b2b8
KH
6035/*
6036 * sysctl handler for numa_zonelist_order
6037 */
cccad5b9 6038int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6039 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6040{
32927393
CH
6041 if (write)
6042 return __parse_numa_zonelist_order(buffer);
6043 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6044}
6045
6046
62bc62a8 6047#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
6048static int node_load[MAX_NUMNODES];
6049
1da177e4 6050/**
4dc3b16b 6051 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6052 * @node: node whose fallback list we're appending
6053 * @used_node_mask: nodemask_t of already used nodes
6054 *
6055 * We use a number of factors to determine which is the next node that should
6056 * appear on a given node's fallback list. The node should not have appeared
6057 * already in @node's fallback list, and it should be the next closest node
6058 * according to the distance array (which contains arbitrary distance values
6059 * from each node to each node in the system), and should also prefer nodes
6060 * with no CPUs, since presumably they'll have very little allocation pressure
6061 * on them otherwise.
a862f68a
MR
6062 *
6063 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6064 */
f0c0b2b8 6065static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6066{
4cf808eb 6067 int n, val;
1da177e4 6068 int min_val = INT_MAX;
00ef2d2f 6069 int best_node = NUMA_NO_NODE;
1da177e4 6070
4cf808eb
LT
6071 /* Use the local node if we haven't already */
6072 if (!node_isset(node, *used_node_mask)) {
6073 node_set(node, *used_node_mask);
6074 return node;
6075 }
1da177e4 6076
4b0ef1fe 6077 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6078
6079 /* Don't want a node to appear more than once */
6080 if (node_isset(n, *used_node_mask))
6081 continue;
6082
1da177e4
LT
6083 /* Use the distance array to find the distance */
6084 val = node_distance(node, n);
6085
4cf808eb
LT
6086 /* Penalize nodes under us ("prefer the next node") */
6087 val += (n < node);
6088
1da177e4 6089 /* Give preference to headless and unused nodes */
b630749f 6090 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6091 val += PENALTY_FOR_NODE_WITH_CPUS;
6092
6093 /* Slight preference for less loaded node */
6094 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6095 val += node_load[n];
6096
6097 if (val < min_val) {
6098 min_val = val;
6099 best_node = n;
6100 }
6101 }
6102
6103 if (best_node >= 0)
6104 node_set(best_node, *used_node_mask);
6105
6106 return best_node;
6107}
6108
f0c0b2b8
KH
6109
6110/*
6111 * Build zonelists ordered by node and zones within node.
6112 * This results in maximum locality--normal zone overflows into local
6113 * DMA zone, if any--but risks exhausting DMA zone.
6114 */
9d3be21b
MH
6115static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6116 unsigned nr_nodes)
1da177e4 6117{
9d3be21b
MH
6118 struct zoneref *zonerefs;
6119 int i;
6120
6121 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6122
6123 for (i = 0; i < nr_nodes; i++) {
6124 int nr_zones;
6125
6126 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6127
9d3be21b
MH
6128 nr_zones = build_zonerefs_node(node, zonerefs);
6129 zonerefs += nr_zones;
6130 }
6131 zonerefs->zone = NULL;
6132 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6133}
6134
523b9458
CL
6135/*
6136 * Build gfp_thisnode zonelists
6137 */
6138static void build_thisnode_zonelists(pg_data_t *pgdat)
6139{
9d3be21b
MH
6140 struct zoneref *zonerefs;
6141 int nr_zones;
523b9458 6142
9d3be21b
MH
6143 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6144 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6145 zonerefs += nr_zones;
6146 zonerefs->zone = NULL;
6147 zonerefs->zone_idx = 0;
523b9458
CL
6148}
6149
f0c0b2b8
KH
6150/*
6151 * Build zonelists ordered by zone and nodes within zones.
6152 * This results in conserving DMA zone[s] until all Normal memory is
6153 * exhausted, but results in overflowing to remote node while memory
6154 * may still exist in local DMA zone.
6155 */
f0c0b2b8 6156
f0c0b2b8
KH
6157static void build_zonelists(pg_data_t *pgdat)
6158{
9d3be21b
MH
6159 static int node_order[MAX_NUMNODES];
6160 int node, load, nr_nodes = 0;
d0ddf49b 6161 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6162 int local_node, prev_node;
1da177e4
LT
6163
6164 /* NUMA-aware ordering of nodes */
6165 local_node = pgdat->node_id;
62bc62a8 6166 load = nr_online_nodes;
1da177e4 6167 prev_node = local_node;
f0c0b2b8 6168
f0c0b2b8 6169 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6170 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6171 /*
6172 * We don't want to pressure a particular node.
6173 * So adding penalty to the first node in same
6174 * distance group to make it round-robin.
6175 */
957f822a
DR
6176 if (node_distance(local_node, node) !=
6177 node_distance(local_node, prev_node))
f0c0b2b8
KH
6178 node_load[node] = load;
6179
9d3be21b 6180 node_order[nr_nodes++] = node;
1da177e4
LT
6181 prev_node = node;
6182 load--;
1da177e4 6183 }
523b9458 6184
9d3be21b 6185 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6186 build_thisnode_zonelists(pgdat);
1da177e4
LT
6187}
6188
7aac7898
LS
6189#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6190/*
6191 * Return node id of node used for "local" allocations.
6192 * I.e., first node id of first zone in arg node's generic zonelist.
6193 * Used for initializing percpu 'numa_mem', which is used primarily
6194 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6195 */
6196int local_memory_node(int node)
6197{
c33d6c06 6198 struct zoneref *z;
7aac7898 6199
c33d6c06 6200 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6201 gfp_zone(GFP_KERNEL),
c33d6c06 6202 NULL);
c1093b74 6203 return zone_to_nid(z->zone);
7aac7898
LS
6204}
6205#endif
f0c0b2b8 6206
6423aa81
JK
6207static void setup_min_unmapped_ratio(void);
6208static void setup_min_slab_ratio(void);
1da177e4
LT
6209#else /* CONFIG_NUMA */
6210
f0c0b2b8 6211static void build_zonelists(pg_data_t *pgdat)
1da177e4 6212{
19655d34 6213 int node, local_node;
9d3be21b
MH
6214 struct zoneref *zonerefs;
6215 int nr_zones;
1da177e4
LT
6216
6217 local_node = pgdat->node_id;
1da177e4 6218
9d3be21b
MH
6219 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6220 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6221 zonerefs += nr_zones;
1da177e4 6222
54a6eb5c
MG
6223 /*
6224 * Now we build the zonelist so that it contains the zones
6225 * of all the other nodes.
6226 * We don't want to pressure a particular node, so when
6227 * building the zones for node N, we make sure that the
6228 * zones coming right after the local ones are those from
6229 * node N+1 (modulo N)
6230 */
6231 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6232 if (!node_online(node))
6233 continue;
9d3be21b
MH
6234 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6235 zonerefs += nr_zones;
1da177e4 6236 }
54a6eb5c
MG
6237 for (node = 0; node < local_node; node++) {
6238 if (!node_online(node))
6239 continue;
9d3be21b
MH
6240 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6241 zonerefs += nr_zones;
54a6eb5c
MG
6242 }
6243
9d3be21b
MH
6244 zonerefs->zone = NULL;
6245 zonerefs->zone_idx = 0;
1da177e4
LT
6246}
6247
6248#endif /* CONFIG_NUMA */
6249
99dcc3e5
CL
6250/*
6251 * Boot pageset table. One per cpu which is going to be used for all
6252 * zones and all nodes. The parameters will be set in such a way
6253 * that an item put on a list will immediately be handed over to
6254 * the buddy list. This is safe since pageset manipulation is done
6255 * with interrupts disabled.
6256 *
6257 * The boot_pagesets must be kept even after bootup is complete for
6258 * unused processors and/or zones. They do play a role for bootstrapping
6259 * hotplugged processors.
6260 *
6261 * zoneinfo_show() and maybe other functions do
6262 * not check if the processor is online before following the pageset pointer.
6263 * Other parts of the kernel may not check if the zone is available.
6264 */
28f836b6 6265static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6266/* These effectively disable the pcplists in the boot pageset completely */
6267#define BOOT_PAGESET_HIGH 0
6268#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6269static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6270static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
385386cf 6271static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6272
11cd8638 6273static void __build_all_zonelists(void *data)
1da177e4 6274{
6811378e 6275 int nid;
afb6ebb3 6276 int __maybe_unused cpu;
9adb62a5 6277 pg_data_t *self = data;
b93e0f32
MH
6278 static DEFINE_SPINLOCK(lock);
6279
6280 spin_lock(&lock);
9276b1bc 6281
7f9cfb31
BL
6282#ifdef CONFIG_NUMA
6283 memset(node_load, 0, sizeof(node_load));
6284#endif
9adb62a5 6285
c1152583
WY
6286 /*
6287 * This node is hotadded and no memory is yet present. So just
6288 * building zonelists is fine - no need to touch other nodes.
6289 */
9adb62a5
JL
6290 if (self && !node_online(self->node_id)) {
6291 build_zonelists(self);
c1152583
WY
6292 } else {
6293 for_each_online_node(nid) {
6294 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6295
c1152583
WY
6296 build_zonelists(pgdat);
6297 }
99dcc3e5 6298
7aac7898
LS
6299#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6300 /*
6301 * We now know the "local memory node" for each node--
6302 * i.e., the node of the first zone in the generic zonelist.
6303 * Set up numa_mem percpu variable for on-line cpus. During
6304 * boot, only the boot cpu should be on-line; we'll init the
6305 * secondary cpus' numa_mem as they come on-line. During
6306 * node/memory hotplug, we'll fixup all on-line cpus.
6307 */
d9c9a0b9 6308 for_each_online_cpu(cpu)
7aac7898 6309 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6310#endif
d9c9a0b9 6311 }
b93e0f32
MH
6312
6313 spin_unlock(&lock);
6811378e
YG
6314}
6315
061f67bc
RV
6316static noinline void __init
6317build_all_zonelists_init(void)
6318{
afb6ebb3
MH
6319 int cpu;
6320
061f67bc 6321 __build_all_zonelists(NULL);
afb6ebb3
MH
6322
6323 /*
6324 * Initialize the boot_pagesets that are going to be used
6325 * for bootstrapping processors. The real pagesets for
6326 * each zone will be allocated later when the per cpu
6327 * allocator is available.
6328 *
6329 * boot_pagesets are used also for bootstrapping offline
6330 * cpus if the system is already booted because the pagesets
6331 * are needed to initialize allocators on a specific cpu too.
6332 * F.e. the percpu allocator needs the page allocator which
6333 * needs the percpu allocator in order to allocate its pagesets
6334 * (a chicken-egg dilemma).
6335 */
6336 for_each_possible_cpu(cpu)
28f836b6 6337 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6338
061f67bc
RV
6339 mminit_verify_zonelist();
6340 cpuset_init_current_mems_allowed();
6341}
6342
4eaf3f64 6343/*
4eaf3f64 6344 * unless system_state == SYSTEM_BOOTING.
061f67bc 6345 *
72675e13 6346 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6347 * [protected by SYSTEM_BOOTING].
4eaf3f64 6348 */
72675e13 6349void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6350{
0a18e607
DH
6351 unsigned long vm_total_pages;
6352
6811378e 6353 if (system_state == SYSTEM_BOOTING) {
061f67bc 6354 build_all_zonelists_init();
6811378e 6355 } else {
11cd8638 6356 __build_all_zonelists(pgdat);
6811378e
YG
6357 /* cpuset refresh routine should be here */
6358 }
56b9413b
DH
6359 /* Get the number of free pages beyond high watermark in all zones. */
6360 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6361 /*
6362 * Disable grouping by mobility if the number of pages in the
6363 * system is too low to allow the mechanism to work. It would be
6364 * more accurate, but expensive to check per-zone. This check is
6365 * made on memory-hotadd so a system can start with mobility
6366 * disabled and enable it later
6367 */
d9c23400 6368 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6369 page_group_by_mobility_disabled = 1;
6370 else
6371 page_group_by_mobility_disabled = 0;
6372
ce0725f7 6373 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6374 nr_online_nodes,
756a025f
JP
6375 page_group_by_mobility_disabled ? "off" : "on",
6376 vm_total_pages);
f0c0b2b8 6377#ifdef CONFIG_NUMA
f88dfff5 6378 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6379#endif
1da177e4
LT
6380}
6381
a9a9e77f
PT
6382/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6383static bool __meminit
6384overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6385{
a9a9e77f
PT
6386 static struct memblock_region *r;
6387
6388 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6389 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6390 for_each_mem_region(r) {
a9a9e77f
PT
6391 if (*pfn < memblock_region_memory_end_pfn(r))
6392 break;
6393 }
6394 }
6395 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6396 memblock_is_mirror(r)) {
6397 *pfn = memblock_region_memory_end_pfn(r);
6398 return true;
6399 }
6400 }
a9a9e77f
PT
6401 return false;
6402}
6403
1da177e4
LT
6404/*
6405 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6406 * up by memblock_free_all() once the early boot process is
1da177e4 6407 * done. Non-atomic initialization, single-pass.
d882c006
DH
6408 *
6409 * All aligned pageblocks are initialized to the specified migratetype
6410 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6411 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6412 */
ab28cb6e 6413void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6414 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6415 enum meminit_context context,
6416 struct vmem_altmap *altmap, int migratetype)
1da177e4 6417{
a9a9e77f 6418 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6419 struct page *page;
1da177e4 6420
22b31eec
HD
6421 if (highest_memmap_pfn < end_pfn - 1)
6422 highest_memmap_pfn = end_pfn - 1;
6423
966cf44f 6424#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6425 /*
6426 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6427 * memory. We limit the total number of pages to initialize to just
6428 * those that might contain the memory mapping. We will defer the
6429 * ZONE_DEVICE page initialization until after we have released
6430 * the hotplug lock.
4b94ffdc 6431 */
966cf44f
AD
6432 if (zone == ZONE_DEVICE) {
6433 if (!altmap)
6434 return;
6435
6436 if (start_pfn == altmap->base_pfn)
6437 start_pfn += altmap->reserve;
6438 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6439 }
6440#endif
4b94ffdc 6441
948c436e 6442 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6443 /*
b72d0ffb
AM
6444 * There can be holes in boot-time mem_map[]s handed to this
6445 * function. They do not exist on hotplugged memory.
a2f3aa02 6446 */
c1d0da83 6447 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6448 if (overlap_memmap_init(zone, &pfn))
6449 continue;
dc2da7b4 6450 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6451 break;
a2f3aa02 6452 }
ac5d2539 6453
d0dc12e8
PT
6454 page = pfn_to_page(pfn);
6455 __init_single_page(page, pfn, zone, nid);
c1d0da83 6456 if (context == MEMINIT_HOTPLUG)
d483da5b 6457 __SetPageReserved(page);
d0dc12e8 6458
ac5d2539 6459 /*
d882c006
DH
6460 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6461 * such that unmovable allocations won't be scattered all
6462 * over the place during system boot.
ac5d2539 6463 */
4eb29bd9 6464 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6465 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6466 cond_resched();
ac5d2539 6467 }
948c436e 6468 pfn++;
1da177e4
LT
6469 }
6470}
6471
966cf44f
AD
6472#ifdef CONFIG_ZONE_DEVICE
6473void __ref memmap_init_zone_device(struct zone *zone,
6474 unsigned long start_pfn,
1f8d75c1 6475 unsigned long nr_pages,
966cf44f
AD
6476 struct dev_pagemap *pgmap)
6477{
1f8d75c1 6478 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6479 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6480 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6481 unsigned long zone_idx = zone_idx(zone);
6482 unsigned long start = jiffies;
6483 int nid = pgdat->node_id;
6484
46d945ae 6485 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6486 return;
6487
6488 /*
122e093c 6489 * The call to memmap_init should have already taken care
966cf44f
AD
6490 * of the pages reserved for the memmap, so we can just jump to
6491 * the end of that region and start processing the device pages.
6492 */
514caf23 6493 if (altmap) {
966cf44f 6494 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6495 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6496 }
6497
6498 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6499 struct page *page = pfn_to_page(pfn);
6500
6501 __init_single_page(page, pfn, zone_idx, nid);
6502
6503 /*
6504 * Mark page reserved as it will need to wait for onlining
6505 * phase for it to be fully associated with a zone.
6506 *
6507 * We can use the non-atomic __set_bit operation for setting
6508 * the flag as we are still initializing the pages.
6509 */
6510 __SetPageReserved(page);
6511
6512 /*
8a164fef
CH
6513 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6514 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6515 * ever freed or placed on a driver-private list.
966cf44f
AD
6516 */
6517 page->pgmap = pgmap;
8a164fef 6518 page->zone_device_data = NULL;
966cf44f
AD
6519
6520 /*
6521 * Mark the block movable so that blocks are reserved for
6522 * movable at startup. This will force kernel allocations
6523 * to reserve their blocks rather than leaking throughout
6524 * the address space during boot when many long-lived
6525 * kernel allocations are made.
6526 *
c1d0da83 6527 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6528 * because this is done early in section_activate()
966cf44f 6529 */
4eb29bd9 6530 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6531 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6532 cond_resched();
6533 }
6534 }
6535
fdc029b1 6536 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6537 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6538}
6539
6540#endif
1e548deb 6541static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6542{
7aeb09f9 6543 unsigned int order, t;
b2a0ac88
MG
6544 for_each_migratetype_order(order, t) {
6545 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6546 zone->free_area[order].nr_free = 0;
6547 }
6548}
6549
0740a50b
MR
6550#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6551/*
6552 * Only struct pages that correspond to ranges defined by memblock.memory
6553 * are zeroed and initialized by going through __init_single_page() during
122e093c 6554 * memmap_init_zone_range().
0740a50b
MR
6555 *
6556 * But, there could be struct pages that correspond to holes in
6557 * memblock.memory. This can happen because of the following reasons:
6558 * - physical memory bank size is not necessarily the exact multiple of the
6559 * arbitrary section size
6560 * - early reserved memory may not be listed in memblock.memory
6561 * - memory layouts defined with memmap= kernel parameter may not align
6562 * nicely with memmap sections
6563 *
6564 * Explicitly initialize those struct pages so that:
6565 * - PG_Reserved is set
6566 * - zone and node links point to zone and node that span the page if the
6567 * hole is in the middle of a zone
6568 * - zone and node links point to adjacent zone/node if the hole falls on
6569 * the zone boundary; the pages in such holes will be prepended to the
6570 * zone/node above the hole except for the trailing pages in the last
6571 * section that will be appended to the zone/node below.
6572 */
122e093c
MR
6573static void __init init_unavailable_range(unsigned long spfn,
6574 unsigned long epfn,
6575 int zone, int node)
0740a50b
MR
6576{
6577 unsigned long pfn;
6578 u64 pgcnt = 0;
6579
6580 for (pfn = spfn; pfn < epfn; pfn++) {
6581 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6582 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6583 + pageblock_nr_pages - 1;
6584 continue;
6585 }
6586 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6587 __SetPageReserved(pfn_to_page(pfn));
6588 pgcnt++;
6589 }
6590
122e093c
MR
6591 if (pgcnt)
6592 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6593 node, zone_names[zone], pgcnt);
0740a50b
MR
6594}
6595#else
122e093c
MR
6596static inline void init_unavailable_range(unsigned long spfn,
6597 unsigned long epfn,
6598 int zone, int node)
0740a50b 6599{
0740a50b
MR
6600}
6601#endif
6602
122e093c
MR
6603static void __init memmap_init_zone_range(struct zone *zone,
6604 unsigned long start_pfn,
6605 unsigned long end_pfn,
6606 unsigned long *hole_pfn)
dfb3ccd0 6607{
3256ff83
BH
6608 unsigned long zone_start_pfn = zone->zone_start_pfn;
6609 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6610 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6611
6612 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6613 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6614
6615 if (start_pfn >= end_pfn)
6616 return;
6617
6618 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6619 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6620
6621 if (*hole_pfn < start_pfn)
6622 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6623
6624 *hole_pfn = end_pfn;
6625}
6626
6627static void __init memmap_init(void)
6628{
73a6e474 6629 unsigned long start_pfn, end_pfn;
122e093c
MR
6630 unsigned long hole_pfn = 0;
6631 int i, j, zone_id, nid;
73a6e474 6632
122e093c
MR
6633 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6634 struct pglist_data *node = NODE_DATA(nid);
6635
6636 for (j = 0; j < MAX_NR_ZONES; j++) {
6637 struct zone *zone = node->node_zones + j;
73a6e474 6638
122e093c
MR
6639 if (!populated_zone(zone))
6640 continue;
0740a50b 6641
122e093c
MR
6642 memmap_init_zone_range(zone, start_pfn, end_pfn,
6643 &hole_pfn);
6644 zone_id = j;
6645 }
73a6e474 6646 }
0740a50b
MR
6647
6648#ifdef CONFIG_SPARSEMEM
6649 /*
122e093c
MR
6650 * Initialize the memory map for hole in the range [memory_end,
6651 * section_end].
6652 * Append the pages in this hole to the highest zone in the last
6653 * node.
6654 * The call to init_unavailable_range() is outside the ifdef to
6655 * silence the compiler warining about zone_id set but not used;
6656 * for FLATMEM it is a nop anyway
0740a50b 6657 */
122e093c 6658 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 6659 if (hole_pfn < end_pfn)
0740a50b 6660#endif
122e093c 6661 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 6662}
1da177e4 6663
7cd2b0a3 6664static int zone_batchsize(struct zone *zone)
e7c8d5c9 6665{
3a6be87f 6666#ifdef CONFIG_MMU
e7c8d5c9
CL
6667 int batch;
6668
6669 /*
b92ca18e
MG
6670 * The number of pages to batch allocate is either ~0.1%
6671 * of the zone or 1MB, whichever is smaller. The batch
6672 * size is striking a balance between allocation latency
6673 * and zone lock contention.
e7c8d5c9 6674 */
b92ca18e 6675 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
e7c8d5c9
CL
6676 batch /= 4; /* We effectively *= 4 below */
6677 if (batch < 1)
6678 batch = 1;
6679
6680 /*
0ceaacc9
NP
6681 * Clamp the batch to a 2^n - 1 value. Having a power
6682 * of 2 value was found to be more likely to have
6683 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6684 *
0ceaacc9
NP
6685 * For example if 2 tasks are alternately allocating
6686 * batches of pages, one task can end up with a lot
6687 * of pages of one half of the possible page colors
6688 * and the other with pages of the other colors.
e7c8d5c9 6689 */
9155203a 6690 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6691
e7c8d5c9 6692 return batch;
3a6be87f
DH
6693
6694#else
6695 /* The deferral and batching of frees should be suppressed under NOMMU
6696 * conditions.
6697 *
6698 * The problem is that NOMMU needs to be able to allocate large chunks
6699 * of contiguous memory as there's no hardware page translation to
6700 * assemble apparent contiguous memory from discontiguous pages.
6701 *
6702 * Queueing large contiguous runs of pages for batching, however,
6703 * causes the pages to actually be freed in smaller chunks. As there
6704 * can be a significant delay between the individual batches being
6705 * recycled, this leads to the once large chunks of space being
6706 * fragmented and becoming unavailable for high-order allocations.
6707 */
6708 return 0;
6709#endif
e7c8d5c9
CL
6710}
6711
04f8cfea 6712static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
6713{
6714#ifdef CONFIG_MMU
6715 int high;
6716 int nr_local_cpus;
74f44822
MG
6717 unsigned long total_pages;
6718
6719 if (!percpu_pagelist_high_fraction) {
6720 /*
6721 * By default, the high value of the pcp is based on the zone
6722 * low watermark so that if they are full then background
6723 * reclaim will not be started prematurely.
6724 */
6725 total_pages = low_wmark_pages(zone);
6726 } else {
6727 /*
6728 * If percpu_pagelist_high_fraction is configured, the high
6729 * value is based on a fraction of the managed pages in the
6730 * zone.
6731 */
6732 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6733 }
b92ca18e
MG
6734
6735 /*
74f44822
MG
6736 * Split the high value across all online CPUs local to the zone. Note
6737 * that early in boot that CPUs may not be online yet and that during
6738 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6739 * onlined.
b92ca18e 6740 */
04f8cfea 6741 nr_local_cpus = max(1U, cpumask_weight(cpumask_of_node(zone_to_nid(zone)))) + cpu_online;
74f44822 6742 high = total_pages / nr_local_cpus;
b92ca18e
MG
6743
6744 /*
6745 * Ensure high is at least batch*4. The multiple is based on the
6746 * historical relationship between high and batch.
6747 */
6748 high = max(high, batch << 2);
6749
6750 return high;
6751#else
6752 return 0;
6753#endif
6754}
6755
8d7a8fa9 6756/*
5c3ad2eb
VB
6757 * pcp->high and pcp->batch values are related and generally batch is lower
6758 * than high. They are also related to pcp->count such that count is lower
6759 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6760 *
5c3ad2eb
VB
6761 * However, guaranteeing these relations at all times would require e.g. write
6762 * barriers here but also careful usage of read barriers at the read side, and
6763 * thus be prone to error and bad for performance. Thus the update only prevents
6764 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6765 * can cope with those fields changing asynchronously, and fully trust only the
6766 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6767 *
6768 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6769 * outside of boot time (or some other assurance that no concurrent updaters
6770 * exist).
6771 */
6772static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6773 unsigned long batch)
6774{
5c3ad2eb
VB
6775 WRITE_ONCE(pcp->batch, batch);
6776 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6777}
6778
28f836b6 6779static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 6780{
5f8dcc21 6781 int migratetype;
2caaad41 6782
28f836b6
MG
6783 memset(pcp, 0, sizeof(*pcp));
6784 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 6785
5f8dcc21
MG
6786 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6787 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6788
69a8396a
VB
6789 /*
6790 * Set batch and high values safe for a boot pageset. A true percpu
6791 * pageset's initialization will update them subsequently. Here we don't
6792 * need to be as careful as pageset_update() as nobody can access the
6793 * pageset yet.
6794 */
952eaf81
VB
6795 pcp->high = BOOT_PAGESET_HIGH;
6796 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 6797 pcp->free_factor = 0;
88c90dbc
CS
6798}
6799
3b1f3658 6800static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6801 unsigned long batch)
6802{
28f836b6 6803 struct per_cpu_pages *pcp;
ec6e8c7e
VB
6804 int cpu;
6805
6806 for_each_possible_cpu(cpu) {
28f836b6
MG
6807 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6808 pageset_update(pcp, high, batch);
ec6e8c7e
VB
6809 }
6810}
6811
8ad4b1fb 6812/*
0a8b4f1d 6813 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 6814 * zone based on the zone's size.
8ad4b1fb 6815 */
04f8cfea 6816static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 6817{
b92ca18e 6818 int new_high, new_batch;
7115ac6e 6819
b92ca18e 6820 new_batch = max(1, zone_batchsize(zone));
04f8cfea 6821 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 6822
952eaf81
VB
6823 if (zone->pageset_high == new_high &&
6824 zone->pageset_batch == new_batch)
6825 return;
6826
6827 zone->pageset_high = new_high;
6828 zone->pageset_batch = new_batch;
6829
ec6e8c7e 6830 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6831}
6832
72675e13 6833void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6834{
6835 int cpu;
0a8b4f1d 6836
28f836b6
MG
6837 /* Size may be 0 on !SMP && !NUMA */
6838 if (sizeof(struct per_cpu_zonestat) > 0)
6839 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6840
6841 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 6842 for_each_possible_cpu(cpu) {
28f836b6
MG
6843 struct per_cpu_pages *pcp;
6844 struct per_cpu_zonestat *pzstats;
6845
6846 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6847 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6848 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
6849 }
6850
04f8cfea 6851 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
6852}
6853
2caaad41 6854/*
99dcc3e5
CL
6855 * Allocate per cpu pagesets and initialize them.
6856 * Before this call only boot pagesets were available.
e7c8d5c9 6857 */
99dcc3e5 6858void __init setup_per_cpu_pageset(void)
e7c8d5c9 6859{
b4911ea2 6860 struct pglist_data *pgdat;
99dcc3e5 6861 struct zone *zone;
b418a0f9 6862 int __maybe_unused cpu;
e7c8d5c9 6863
319774e2
WF
6864 for_each_populated_zone(zone)
6865 setup_zone_pageset(zone);
b4911ea2 6866
b418a0f9
SD
6867#ifdef CONFIG_NUMA
6868 /*
6869 * Unpopulated zones continue using the boot pagesets.
6870 * The numa stats for these pagesets need to be reset.
6871 * Otherwise, they will end up skewing the stats of
6872 * the nodes these zones are associated with.
6873 */
6874 for_each_possible_cpu(cpu) {
28f836b6 6875 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
6876 memset(pzstats->vm_numa_event, 0,
6877 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
6878 }
6879#endif
6880
b4911ea2
MG
6881 for_each_online_pgdat(pgdat)
6882 pgdat->per_cpu_nodestats =
6883 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6884}
6885
c09b4240 6886static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6887{
99dcc3e5
CL
6888 /*
6889 * per cpu subsystem is not up at this point. The following code
6890 * relies on the ability of the linker to provide the
6891 * offset of a (static) per cpu variable into the per cpu area.
6892 */
28f836b6
MG
6893 zone->per_cpu_pageset = &boot_pageset;
6894 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
6895 zone->pageset_high = BOOT_PAGESET_HIGH;
6896 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6897
b38a8725 6898 if (populated_zone(zone))
9660ecaa
HK
6899 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6900 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
6901}
6902
dc0bbf3b 6903void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6904 unsigned long zone_start_pfn,
b171e409 6905 unsigned long size)
ed8ece2e
DH
6906{
6907 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6908 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6909
8f416836
WY
6910 if (zone_idx > pgdat->nr_zones)
6911 pgdat->nr_zones = zone_idx;
ed8ece2e 6912
ed8ece2e
DH
6913 zone->zone_start_pfn = zone_start_pfn;
6914
708614e6
MG
6915 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6916 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6917 pgdat->node_id,
6918 (unsigned long)zone_idx(zone),
6919 zone_start_pfn, (zone_start_pfn + size));
6920
1e548deb 6921 zone_init_free_lists(zone);
9dcb8b68 6922 zone->initialized = 1;
ed8ece2e
DH
6923}
6924
c713216d
MG
6925/**
6926 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6927 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6928 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6929 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6930 *
6931 * It returns the start and end page frame of a node based on information
7d018176 6932 * provided by memblock_set_node(). If called for a node
c713216d 6933 * with no available memory, a warning is printed and the start and end
88ca3b94 6934 * PFNs will be 0.
c713216d 6935 */
bbe5d993 6936void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6937 unsigned long *start_pfn, unsigned long *end_pfn)
6938{
c13291a5 6939 unsigned long this_start_pfn, this_end_pfn;
c713216d 6940 int i;
c13291a5 6941
c713216d
MG
6942 *start_pfn = -1UL;
6943 *end_pfn = 0;
6944
c13291a5
TH
6945 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6946 *start_pfn = min(*start_pfn, this_start_pfn);
6947 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6948 }
6949
633c0666 6950 if (*start_pfn == -1UL)
c713216d 6951 *start_pfn = 0;
c713216d
MG
6952}
6953
2a1e274a
MG
6954/*
6955 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6956 * assumption is made that zones within a node are ordered in monotonic
6957 * increasing memory addresses so that the "highest" populated zone is used
6958 */
b69a7288 6959static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6960{
6961 int zone_index;
6962 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6963 if (zone_index == ZONE_MOVABLE)
6964 continue;
6965
6966 if (arch_zone_highest_possible_pfn[zone_index] >
6967 arch_zone_lowest_possible_pfn[zone_index])
6968 break;
6969 }
6970
6971 VM_BUG_ON(zone_index == -1);
6972 movable_zone = zone_index;
6973}
6974
6975/*
6976 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6977 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6978 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6979 * in each node depending on the size of each node and how evenly kernelcore
6980 * is distributed. This helper function adjusts the zone ranges
6981 * provided by the architecture for a given node by using the end of the
6982 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6983 * zones within a node are in order of monotonic increases memory addresses
6984 */
bbe5d993 6985static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6986 unsigned long zone_type,
6987 unsigned long node_start_pfn,
6988 unsigned long node_end_pfn,
6989 unsigned long *zone_start_pfn,
6990 unsigned long *zone_end_pfn)
6991{
6992 /* Only adjust if ZONE_MOVABLE is on this node */
6993 if (zone_movable_pfn[nid]) {
6994 /* Size ZONE_MOVABLE */
6995 if (zone_type == ZONE_MOVABLE) {
6996 *zone_start_pfn = zone_movable_pfn[nid];
6997 *zone_end_pfn = min(node_end_pfn,
6998 arch_zone_highest_possible_pfn[movable_zone]);
6999
e506b996
XQ
7000 /* Adjust for ZONE_MOVABLE starting within this range */
7001 } else if (!mirrored_kernelcore &&
7002 *zone_start_pfn < zone_movable_pfn[nid] &&
7003 *zone_end_pfn > zone_movable_pfn[nid]) {
7004 *zone_end_pfn = zone_movable_pfn[nid];
7005
2a1e274a
MG
7006 /* Check if this whole range is within ZONE_MOVABLE */
7007 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7008 *zone_start_pfn = *zone_end_pfn;
7009 }
7010}
7011
c713216d
MG
7012/*
7013 * Return the number of pages a zone spans in a node, including holes
7014 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7015 */
bbe5d993 7016static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7017 unsigned long zone_type,
7960aedd
ZY
7018 unsigned long node_start_pfn,
7019 unsigned long node_end_pfn,
d91749c1 7020 unsigned long *zone_start_pfn,
854e8848 7021 unsigned long *zone_end_pfn)
c713216d 7022{
299c83dc
LF
7023 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7024 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7025 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7026 if (!node_start_pfn && !node_end_pfn)
7027 return 0;
7028
7960aedd 7029 /* Get the start and end of the zone */
299c83dc
LF
7030 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7031 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7032 adjust_zone_range_for_zone_movable(nid, zone_type,
7033 node_start_pfn, node_end_pfn,
d91749c1 7034 zone_start_pfn, zone_end_pfn);
c713216d
MG
7035
7036 /* Check that this node has pages within the zone's required range */
d91749c1 7037 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7038 return 0;
7039
7040 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7041 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7042 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7043
7044 /* Return the spanned pages */
d91749c1 7045 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7046}
7047
7048/*
7049 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7050 * then all holes in the requested range will be accounted for.
c713216d 7051 */
bbe5d993 7052unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7053 unsigned long range_start_pfn,
7054 unsigned long range_end_pfn)
7055{
96e907d1
TH
7056 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7057 unsigned long start_pfn, end_pfn;
7058 int i;
c713216d 7059
96e907d1
TH
7060 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7061 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7062 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7063 nr_absent -= end_pfn - start_pfn;
c713216d 7064 }
96e907d1 7065 return nr_absent;
c713216d
MG
7066}
7067
7068/**
7069 * absent_pages_in_range - Return number of page frames in holes within a range
7070 * @start_pfn: The start PFN to start searching for holes
7071 * @end_pfn: The end PFN to stop searching for holes
7072 *
a862f68a 7073 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7074 */
7075unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7076 unsigned long end_pfn)
7077{
7078 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7079}
7080
7081/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7082static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7083 unsigned long zone_type,
7960aedd 7084 unsigned long node_start_pfn,
854e8848 7085 unsigned long node_end_pfn)
c713216d 7086{
96e907d1
TH
7087 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7088 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7089 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7090 unsigned long nr_absent;
9c7cd687 7091
b5685e92 7092 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7093 if (!node_start_pfn && !node_end_pfn)
7094 return 0;
7095
96e907d1
TH
7096 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7097 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7098
2a1e274a
MG
7099 adjust_zone_range_for_zone_movable(nid, zone_type,
7100 node_start_pfn, node_end_pfn,
7101 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7102 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7103
7104 /*
7105 * ZONE_MOVABLE handling.
7106 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7107 * and vice versa.
7108 */
e506b996
XQ
7109 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7110 unsigned long start_pfn, end_pfn;
7111 struct memblock_region *r;
7112
cc6de168 7113 for_each_mem_region(r) {
e506b996
XQ
7114 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7115 zone_start_pfn, zone_end_pfn);
7116 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7117 zone_start_pfn, zone_end_pfn);
7118
7119 if (zone_type == ZONE_MOVABLE &&
7120 memblock_is_mirror(r))
7121 nr_absent += end_pfn - start_pfn;
7122
7123 if (zone_type == ZONE_NORMAL &&
7124 !memblock_is_mirror(r))
7125 nr_absent += end_pfn - start_pfn;
342332e6
TI
7126 }
7127 }
7128
7129 return nr_absent;
c713216d 7130}
0e0b864e 7131
bbe5d993 7132static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7133 unsigned long node_start_pfn,
854e8848 7134 unsigned long node_end_pfn)
c713216d 7135{
febd5949 7136 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7137 enum zone_type i;
7138
febd5949
GZ
7139 for (i = 0; i < MAX_NR_ZONES; i++) {
7140 struct zone *zone = pgdat->node_zones + i;
d91749c1 7141 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7142 unsigned long spanned, absent;
febd5949 7143 unsigned long size, real_size;
c713216d 7144
854e8848
MR
7145 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7146 node_start_pfn,
7147 node_end_pfn,
7148 &zone_start_pfn,
7149 &zone_end_pfn);
7150 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7151 node_start_pfn,
7152 node_end_pfn);
3f08a302
MR
7153
7154 size = spanned;
7155 real_size = size - absent;
7156
d91749c1
TI
7157 if (size)
7158 zone->zone_start_pfn = zone_start_pfn;
7159 else
7160 zone->zone_start_pfn = 0;
febd5949
GZ
7161 zone->spanned_pages = size;
7162 zone->present_pages = real_size;
7163
7164 totalpages += size;
7165 realtotalpages += real_size;
7166 }
7167
7168 pgdat->node_spanned_pages = totalpages;
c713216d 7169 pgdat->node_present_pages = realtotalpages;
9660ecaa 7170 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7171}
7172
835c134e
MG
7173#ifndef CONFIG_SPARSEMEM
7174/*
7175 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7176 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7177 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7178 * round what is now in bits to nearest long in bits, then return it in
7179 * bytes.
7180 */
7c45512d 7181static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7182{
7183 unsigned long usemapsize;
7184
7c45512d 7185 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7186 usemapsize = roundup(zonesize, pageblock_nr_pages);
7187 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7188 usemapsize *= NR_PAGEBLOCK_BITS;
7189 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7190
7191 return usemapsize / 8;
7192}
7193
7010a6ec 7194static void __ref setup_usemap(struct zone *zone)
835c134e 7195{
7010a6ec
BH
7196 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7197 zone->spanned_pages);
835c134e 7198 zone->pageblock_flags = NULL;
23a7052a 7199 if (usemapsize) {
6782832e 7200 zone->pageblock_flags =
26fb3dae 7201 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7202 zone_to_nid(zone));
23a7052a
MR
7203 if (!zone->pageblock_flags)
7204 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7205 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7206 }
835c134e
MG
7207}
7208#else
7010a6ec 7209static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7210#endif /* CONFIG_SPARSEMEM */
7211
d9c23400 7212#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7213
d9c23400 7214/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7215void __init set_pageblock_order(void)
d9c23400 7216{
955c1cd7
AM
7217 unsigned int order;
7218
d9c23400
MG
7219 /* Check that pageblock_nr_pages has not already been setup */
7220 if (pageblock_order)
7221 return;
7222
955c1cd7
AM
7223 if (HPAGE_SHIFT > PAGE_SHIFT)
7224 order = HUGETLB_PAGE_ORDER;
7225 else
7226 order = MAX_ORDER - 1;
7227
d9c23400
MG
7228 /*
7229 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7230 * This value may be variable depending on boot parameters on IA64 and
7231 * powerpc.
d9c23400
MG
7232 */
7233 pageblock_order = order;
7234}
7235#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7236
ba72cb8c
MG
7237/*
7238 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7239 * is unused as pageblock_order is set at compile-time. See
7240 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7241 * the kernel config
ba72cb8c 7242 */
03e85f9d 7243void __init set_pageblock_order(void)
ba72cb8c 7244{
ba72cb8c 7245}
d9c23400
MG
7246
7247#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7248
03e85f9d 7249static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7250 unsigned long present_pages)
01cefaef
JL
7251{
7252 unsigned long pages = spanned_pages;
7253
7254 /*
7255 * Provide a more accurate estimation if there are holes within
7256 * the zone and SPARSEMEM is in use. If there are holes within the
7257 * zone, each populated memory region may cost us one or two extra
7258 * memmap pages due to alignment because memmap pages for each
89d790ab 7259 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7260 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7261 */
7262 if (spanned_pages > present_pages + (present_pages >> 4) &&
7263 IS_ENABLED(CONFIG_SPARSEMEM))
7264 pages = present_pages;
7265
7266 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7267}
7268
ace1db39
OS
7269#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7270static void pgdat_init_split_queue(struct pglist_data *pgdat)
7271{
364c1eeb
YS
7272 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7273
7274 spin_lock_init(&ds_queue->split_queue_lock);
7275 INIT_LIST_HEAD(&ds_queue->split_queue);
7276 ds_queue->split_queue_len = 0;
ace1db39
OS
7277}
7278#else
7279static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7280#endif
7281
7282#ifdef CONFIG_COMPACTION
7283static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7284{
7285 init_waitqueue_head(&pgdat->kcompactd_wait);
7286}
7287#else
7288static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7289#endif
7290
03e85f9d 7291static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7292{
208d54e5 7293 pgdat_resize_init(pgdat);
ace1db39 7294
ace1db39
OS
7295 pgdat_init_split_queue(pgdat);
7296 pgdat_init_kcompactd(pgdat);
7297
1da177e4 7298 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7299 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7300
eefa864b 7301 pgdat_page_ext_init(pgdat);
867e5e1d 7302 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7303}
7304
7305static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7306 unsigned long remaining_pages)
7307{
9705bea5 7308 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7309 zone_set_nid(zone, nid);
7310 zone->name = zone_names[idx];
7311 zone->zone_pgdat = NODE_DATA(nid);
7312 spin_lock_init(&zone->lock);
7313 zone_seqlock_init(zone);
7314 zone_pcp_init(zone);
7315}
7316
7317/*
7318 * Set up the zone data structures
7319 * - init pgdat internals
7320 * - init all zones belonging to this node
7321 *
7322 * NOTE: this function is only called during memory hotplug
7323 */
7324#ifdef CONFIG_MEMORY_HOTPLUG
7325void __ref free_area_init_core_hotplug(int nid)
7326{
7327 enum zone_type z;
7328 pg_data_t *pgdat = NODE_DATA(nid);
7329
7330 pgdat_init_internals(pgdat);
7331 for (z = 0; z < MAX_NR_ZONES; z++)
7332 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7333}
7334#endif
7335
7336/*
7337 * Set up the zone data structures:
7338 * - mark all pages reserved
7339 * - mark all memory queues empty
7340 * - clear the memory bitmaps
7341 *
7342 * NOTE: pgdat should get zeroed by caller.
7343 * NOTE: this function is only called during early init.
7344 */
7345static void __init free_area_init_core(struct pglist_data *pgdat)
7346{
7347 enum zone_type j;
7348 int nid = pgdat->node_id;
5f63b720 7349
03e85f9d 7350 pgdat_init_internals(pgdat);
385386cf
JW
7351 pgdat->per_cpu_nodestats = &boot_nodestats;
7352
1da177e4
LT
7353 for (j = 0; j < MAX_NR_ZONES; j++) {
7354 struct zone *zone = pgdat->node_zones + j;
e6943859 7355 unsigned long size, freesize, memmap_pages;
1da177e4 7356
febd5949 7357 size = zone->spanned_pages;
e6943859 7358 freesize = zone->present_pages;
1da177e4 7359
0e0b864e 7360 /*
9feedc9d 7361 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7362 * is used by this zone for memmap. This affects the watermark
7363 * and per-cpu initialisations
7364 */
e6943859 7365 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7366 if (!is_highmem_idx(j)) {
7367 if (freesize >= memmap_pages) {
7368 freesize -= memmap_pages;
7369 if (memmap_pages)
9660ecaa
HK
7370 pr_debug(" %s zone: %lu pages used for memmap\n",
7371 zone_names[j], memmap_pages);
ba914f48 7372 } else
e47aa905 7373 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7374 zone_names[j], memmap_pages, freesize);
7375 }
0e0b864e 7376
6267276f 7377 /* Account for reserved pages */
9feedc9d
JL
7378 if (j == 0 && freesize > dma_reserve) {
7379 freesize -= dma_reserve;
9660ecaa 7380 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7381 }
7382
98d2b0eb 7383 if (!is_highmem_idx(j))
9feedc9d 7384 nr_kernel_pages += freesize;
01cefaef
JL
7385 /* Charge for highmem memmap if there are enough kernel pages */
7386 else if (nr_kernel_pages > memmap_pages * 2)
7387 nr_kernel_pages -= memmap_pages;
9feedc9d 7388 nr_all_pages += freesize;
1da177e4 7389
9feedc9d
JL
7390 /*
7391 * Set an approximate value for lowmem here, it will be adjusted
7392 * when the bootmem allocator frees pages into the buddy system.
7393 * And all highmem pages will be managed by the buddy system.
7394 */
03e85f9d 7395 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7396
d883c6cf 7397 if (!size)
1da177e4
LT
7398 continue;
7399
955c1cd7 7400 set_pageblock_order();
7010a6ec 7401 setup_usemap(zone);
9699ee7b 7402 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7403 }
7404}
7405
0cd842f9 7406#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 7407static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7408{
b0aeba74 7409 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7410 unsigned long __maybe_unused offset = 0;
7411
1da177e4
LT
7412 /* Skip empty nodes */
7413 if (!pgdat->node_spanned_pages)
7414 return;
7415
b0aeba74
TL
7416 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7417 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7418 /* ia64 gets its own node_mem_map, before this, without bootmem */
7419 if (!pgdat->node_mem_map) {
b0aeba74 7420 unsigned long size, end;
d41dee36
AW
7421 struct page *map;
7422
e984bb43
BP
7423 /*
7424 * The zone's endpoints aren't required to be MAX_ORDER
7425 * aligned but the node_mem_map endpoints must be in order
7426 * for the buddy allocator to function correctly.
7427 */
108bcc96 7428 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7429 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7430 size = (end - start) * sizeof(struct page);
26fb3dae
MR
7431 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7432 pgdat->node_id);
23a7052a
MR
7433 if (!map)
7434 panic("Failed to allocate %ld bytes for node %d memory map\n",
7435 size, pgdat->node_id);
a1c34a3b 7436 pgdat->node_mem_map = map + offset;
1da177e4 7437 }
0cd842f9
OS
7438 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7439 __func__, pgdat->node_id, (unsigned long)pgdat,
7440 (unsigned long)pgdat->node_mem_map);
12d810c1 7441#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
7442 /*
7443 * With no DISCONTIG, the global mem_map is just set as node 0's
7444 */
c713216d 7445 if (pgdat == NODE_DATA(0)) {
1da177e4 7446 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7447 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7448 mem_map -= offset;
c713216d 7449 }
1da177e4
LT
7450#endif
7451}
0cd842f9
OS
7452#else
7453static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7454#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 7455
0188dc98
OS
7456#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7457static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7458{
0188dc98
OS
7459 pgdat->first_deferred_pfn = ULONG_MAX;
7460}
7461#else
7462static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7463#endif
7464
854e8848 7465static void __init free_area_init_node(int nid)
1da177e4 7466{
9109fb7b 7467 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7468 unsigned long start_pfn = 0;
7469 unsigned long end_pfn = 0;
9109fb7b 7470
88fdf75d 7471 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7472 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7473
854e8848 7474 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7475
1da177e4 7476 pgdat->node_id = nid;
854e8848 7477 pgdat->node_start_pfn = start_pfn;
75ef7184 7478 pgdat->per_cpu_nodestats = NULL;
854e8848 7479
8d29e18a 7480 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7481 (u64)start_pfn << PAGE_SHIFT,
7482 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7483 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7484
7485 alloc_node_mem_map(pgdat);
0188dc98 7486 pgdat_set_deferred_range(pgdat);
1da177e4 7487
7f3eb55b 7488 free_area_init_core(pgdat);
1da177e4
LT
7489}
7490
bc9331a1 7491void __init free_area_init_memoryless_node(int nid)
3f08a302 7492{
854e8848 7493 free_area_init_node(nid);
3f08a302
MR
7494}
7495
418508c1
MS
7496#if MAX_NUMNODES > 1
7497/*
7498 * Figure out the number of possible node ids.
7499 */
f9872caf 7500void __init setup_nr_node_ids(void)
418508c1 7501{
904a9553 7502 unsigned int highest;
418508c1 7503
904a9553 7504 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7505 nr_node_ids = highest + 1;
7506}
418508c1
MS
7507#endif
7508
1e01979c
TH
7509/**
7510 * node_map_pfn_alignment - determine the maximum internode alignment
7511 *
7512 * This function should be called after node map is populated and sorted.
7513 * It calculates the maximum power of two alignment which can distinguish
7514 * all the nodes.
7515 *
7516 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7517 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7518 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7519 * shifted, 1GiB is enough and this function will indicate so.
7520 *
7521 * This is used to test whether pfn -> nid mapping of the chosen memory
7522 * model has fine enough granularity to avoid incorrect mapping for the
7523 * populated node map.
7524 *
a862f68a 7525 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7526 * requirement (single node).
7527 */
7528unsigned long __init node_map_pfn_alignment(void)
7529{
7530 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7531 unsigned long start, end, mask;
98fa15f3 7532 int last_nid = NUMA_NO_NODE;
c13291a5 7533 int i, nid;
1e01979c 7534
c13291a5 7535 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7536 if (!start || last_nid < 0 || last_nid == nid) {
7537 last_nid = nid;
7538 last_end = end;
7539 continue;
7540 }
7541
7542 /*
7543 * Start with a mask granular enough to pin-point to the
7544 * start pfn and tick off bits one-by-one until it becomes
7545 * too coarse to separate the current node from the last.
7546 */
7547 mask = ~((1 << __ffs(start)) - 1);
7548 while (mask && last_end <= (start & (mask << 1)))
7549 mask <<= 1;
7550
7551 /* accumulate all internode masks */
7552 accl_mask |= mask;
7553 }
7554
7555 /* convert mask to number of pages */
7556 return ~accl_mask + 1;
7557}
7558
c713216d
MG
7559/**
7560 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7561 *
a862f68a 7562 * Return: the minimum PFN based on information provided via
7d018176 7563 * memblock_set_node().
c713216d
MG
7564 */
7565unsigned long __init find_min_pfn_with_active_regions(void)
7566{
8a1b25fe 7567 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7568}
7569
37b07e41
LS
7570/*
7571 * early_calculate_totalpages()
7572 * Sum pages in active regions for movable zone.
4b0ef1fe 7573 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7574 */
484f51f8 7575static unsigned long __init early_calculate_totalpages(void)
7e63efef 7576{
7e63efef 7577 unsigned long totalpages = 0;
c13291a5
TH
7578 unsigned long start_pfn, end_pfn;
7579 int i, nid;
7580
7581 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7582 unsigned long pages = end_pfn - start_pfn;
7e63efef 7583
37b07e41
LS
7584 totalpages += pages;
7585 if (pages)
4b0ef1fe 7586 node_set_state(nid, N_MEMORY);
37b07e41 7587 }
b8af2941 7588 return totalpages;
7e63efef
MG
7589}
7590
2a1e274a
MG
7591/*
7592 * Find the PFN the Movable zone begins in each node. Kernel memory
7593 * is spread evenly between nodes as long as the nodes have enough
7594 * memory. When they don't, some nodes will have more kernelcore than
7595 * others
7596 */
b224ef85 7597static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7598{
7599 int i, nid;
7600 unsigned long usable_startpfn;
7601 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7602 /* save the state before borrow the nodemask */
4b0ef1fe 7603 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7604 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7605 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7606 struct memblock_region *r;
b2f3eebe
TC
7607
7608 /* Need to find movable_zone earlier when movable_node is specified. */
7609 find_usable_zone_for_movable();
7610
7611 /*
7612 * If movable_node is specified, ignore kernelcore and movablecore
7613 * options.
7614 */
7615 if (movable_node_is_enabled()) {
cc6de168 7616 for_each_mem_region(r) {
136199f0 7617 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7618 continue;
7619
d622abf7 7620 nid = memblock_get_region_node(r);
b2f3eebe 7621
136199f0 7622 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7623 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7624 min(usable_startpfn, zone_movable_pfn[nid]) :
7625 usable_startpfn;
7626 }
7627
7628 goto out2;
7629 }
2a1e274a 7630
342332e6
TI
7631 /*
7632 * If kernelcore=mirror is specified, ignore movablecore option
7633 */
7634 if (mirrored_kernelcore) {
7635 bool mem_below_4gb_not_mirrored = false;
7636
cc6de168 7637 for_each_mem_region(r) {
342332e6
TI
7638 if (memblock_is_mirror(r))
7639 continue;
7640
d622abf7 7641 nid = memblock_get_region_node(r);
342332e6
TI
7642
7643 usable_startpfn = memblock_region_memory_base_pfn(r);
7644
7645 if (usable_startpfn < 0x100000) {
7646 mem_below_4gb_not_mirrored = true;
7647 continue;
7648 }
7649
7650 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7651 min(usable_startpfn, zone_movable_pfn[nid]) :
7652 usable_startpfn;
7653 }
7654
7655 if (mem_below_4gb_not_mirrored)
633bf2fe 7656 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7657
7658 goto out2;
7659 }
7660
7e63efef 7661 /*
a5c6d650
DR
7662 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7663 * amount of necessary memory.
7664 */
7665 if (required_kernelcore_percent)
7666 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7667 10000UL;
7668 if (required_movablecore_percent)
7669 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7670 10000UL;
7671
7672 /*
7673 * If movablecore= was specified, calculate what size of
7e63efef
MG
7674 * kernelcore that corresponds so that memory usable for
7675 * any allocation type is evenly spread. If both kernelcore
7676 * and movablecore are specified, then the value of kernelcore
7677 * will be used for required_kernelcore if it's greater than
7678 * what movablecore would have allowed.
7679 */
7680 if (required_movablecore) {
7e63efef
MG
7681 unsigned long corepages;
7682
7683 /*
7684 * Round-up so that ZONE_MOVABLE is at least as large as what
7685 * was requested by the user
7686 */
7687 required_movablecore =
7688 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7689 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7690 corepages = totalpages - required_movablecore;
7691
7692 required_kernelcore = max(required_kernelcore, corepages);
7693 }
7694
bde304bd
XQ
7695 /*
7696 * If kernelcore was not specified or kernelcore size is larger
7697 * than totalpages, there is no ZONE_MOVABLE.
7698 */
7699 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7700 goto out;
2a1e274a
MG
7701
7702 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7703 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7704
7705restart:
7706 /* Spread kernelcore memory as evenly as possible throughout nodes */
7707 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7708 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7709 unsigned long start_pfn, end_pfn;
7710
2a1e274a
MG
7711 /*
7712 * Recalculate kernelcore_node if the division per node
7713 * now exceeds what is necessary to satisfy the requested
7714 * amount of memory for the kernel
7715 */
7716 if (required_kernelcore < kernelcore_node)
7717 kernelcore_node = required_kernelcore / usable_nodes;
7718
7719 /*
7720 * As the map is walked, we track how much memory is usable
7721 * by the kernel using kernelcore_remaining. When it is
7722 * 0, the rest of the node is usable by ZONE_MOVABLE
7723 */
7724 kernelcore_remaining = kernelcore_node;
7725
7726 /* Go through each range of PFNs within this node */
c13291a5 7727 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7728 unsigned long size_pages;
7729
c13291a5 7730 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7731 if (start_pfn >= end_pfn)
7732 continue;
7733
7734 /* Account for what is only usable for kernelcore */
7735 if (start_pfn < usable_startpfn) {
7736 unsigned long kernel_pages;
7737 kernel_pages = min(end_pfn, usable_startpfn)
7738 - start_pfn;
7739
7740 kernelcore_remaining -= min(kernel_pages,
7741 kernelcore_remaining);
7742 required_kernelcore -= min(kernel_pages,
7743 required_kernelcore);
7744
7745 /* Continue if range is now fully accounted */
7746 if (end_pfn <= usable_startpfn) {
7747
7748 /*
7749 * Push zone_movable_pfn to the end so
7750 * that if we have to rebalance
7751 * kernelcore across nodes, we will
7752 * not double account here
7753 */
7754 zone_movable_pfn[nid] = end_pfn;
7755 continue;
7756 }
7757 start_pfn = usable_startpfn;
7758 }
7759
7760 /*
7761 * The usable PFN range for ZONE_MOVABLE is from
7762 * start_pfn->end_pfn. Calculate size_pages as the
7763 * number of pages used as kernelcore
7764 */
7765 size_pages = end_pfn - start_pfn;
7766 if (size_pages > kernelcore_remaining)
7767 size_pages = kernelcore_remaining;
7768 zone_movable_pfn[nid] = start_pfn + size_pages;
7769
7770 /*
7771 * Some kernelcore has been met, update counts and
7772 * break if the kernelcore for this node has been
b8af2941 7773 * satisfied
2a1e274a
MG
7774 */
7775 required_kernelcore -= min(required_kernelcore,
7776 size_pages);
7777 kernelcore_remaining -= size_pages;
7778 if (!kernelcore_remaining)
7779 break;
7780 }
7781 }
7782
7783 /*
7784 * If there is still required_kernelcore, we do another pass with one
7785 * less node in the count. This will push zone_movable_pfn[nid] further
7786 * along on the nodes that still have memory until kernelcore is
b8af2941 7787 * satisfied
2a1e274a
MG
7788 */
7789 usable_nodes--;
7790 if (usable_nodes && required_kernelcore > usable_nodes)
7791 goto restart;
7792
b2f3eebe 7793out2:
2a1e274a
MG
7794 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7795 for (nid = 0; nid < MAX_NUMNODES; nid++)
7796 zone_movable_pfn[nid] =
7797 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7798
20e6926d 7799out:
66918dcd 7800 /* restore the node_state */
4b0ef1fe 7801 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7802}
7803
4b0ef1fe
LJ
7804/* Any regular or high memory on that node ? */
7805static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7806{
37b07e41
LS
7807 enum zone_type zone_type;
7808
4b0ef1fe 7809 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7810 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7811 if (populated_zone(zone)) {
7b0e0c0e
OS
7812 if (IS_ENABLED(CONFIG_HIGHMEM))
7813 node_set_state(nid, N_HIGH_MEMORY);
7814 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7815 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7816 break;
7817 }
37b07e41 7818 }
37b07e41
LS
7819}
7820
51930df5 7821/*
f0953a1b 7822 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
7823 * such cases we allow max_zone_pfn sorted in the descending order
7824 */
7825bool __weak arch_has_descending_max_zone_pfns(void)
7826{
7827 return false;
7828}
7829
c713216d 7830/**
9691a071 7831 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7832 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7833 *
7834 * This will call free_area_init_node() for each active node in the system.
7d018176 7835 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7836 * zone in each node and their holes is calculated. If the maximum PFN
7837 * between two adjacent zones match, it is assumed that the zone is empty.
7838 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7839 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7840 * starts where the previous one ended. For example, ZONE_DMA32 starts
7841 * at arch_max_dma_pfn.
7842 */
9691a071 7843void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7844{
c13291a5 7845 unsigned long start_pfn, end_pfn;
51930df5
MR
7846 int i, nid, zone;
7847 bool descending;
a6af2bc3 7848
c713216d
MG
7849 /* Record where the zone boundaries are */
7850 memset(arch_zone_lowest_possible_pfn, 0,
7851 sizeof(arch_zone_lowest_possible_pfn));
7852 memset(arch_zone_highest_possible_pfn, 0,
7853 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7854
7855 start_pfn = find_min_pfn_with_active_regions();
51930df5 7856 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7857
7858 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7859 if (descending)
7860 zone = MAX_NR_ZONES - i - 1;
7861 else
7862 zone = i;
7863
7864 if (zone == ZONE_MOVABLE)
2a1e274a 7865 continue;
90cae1fe 7866
51930df5
MR
7867 end_pfn = max(max_zone_pfn[zone], start_pfn);
7868 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7869 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7870
7871 start_pfn = end_pfn;
c713216d 7872 }
2a1e274a
MG
7873
7874 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7875 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7876 find_zone_movable_pfns_for_nodes();
c713216d 7877
c713216d 7878 /* Print out the zone ranges */
f88dfff5 7879 pr_info("Zone ranges:\n");
2a1e274a
MG
7880 for (i = 0; i < MAX_NR_ZONES; i++) {
7881 if (i == ZONE_MOVABLE)
7882 continue;
f88dfff5 7883 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7884 if (arch_zone_lowest_possible_pfn[i] ==
7885 arch_zone_highest_possible_pfn[i])
f88dfff5 7886 pr_cont("empty\n");
72f0ba02 7887 else
8d29e18a
JG
7888 pr_cont("[mem %#018Lx-%#018Lx]\n",
7889 (u64)arch_zone_lowest_possible_pfn[i]
7890 << PAGE_SHIFT,
7891 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7892 << PAGE_SHIFT) - 1);
2a1e274a
MG
7893 }
7894
7895 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7896 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7897 for (i = 0; i < MAX_NUMNODES; i++) {
7898 if (zone_movable_pfn[i])
8d29e18a
JG
7899 pr_info(" Node %d: %#018Lx\n", i,
7900 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7901 }
c713216d 7902
f46edbd1
DW
7903 /*
7904 * Print out the early node map, and initialize the
7905 * subsection-map relative to active online memory ranges to
7906 * enable future "sub-section" extensions of the memory map.
7907 */
f88dfff5 7908 pr_info("Early memory node ranges\n");
f46edbd1 7909 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7910 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7911 (u64)start_pfn << PAGE_SHIFT,
7912 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7913 subsection_map_init(start_pfn, end_pfn - start_pfn);
7914 }
c713216d
MG
7915
7916 /* Initialise every node */
708614e6 7917 mminit_verify_pageflags_layout();
8ef82866 7918 setup_nr_node_ids();
c713216d
MG
7919 for_each_online_node(nid) {
7920 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7921 free_area_init_node(nid);
37b07e41
LS
7922
7923 /* Any memory on that node */
7924 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7925 node_set_state(nid, N_MEMORY);
7926 check_for_memory(pgdat, nid);
c713216d 7927 }
122e093c
MR
7928
7929 memmap_init();
c713216d 7930}
2a1e274a 7931
a5c6d650
DR
7932static int __init cmdline_parse_core(char *p, unsigned long *core,
7933 unsigned long *percent)
2a1e274a
MG
7934{
7935 unsigned long long coremem;
a5c6d650
DR
7936 char *endptr;
7937
2a1e274a
MG
7938 if (!p)
7939 return -EINVAL;
7940
a5c6d650
DR
7941 /* Value may be a percentage of total memory, otherwise bytes */
7942 coremem = simple_strtoull(p, &endptr, 0);
7943 if (*endptr == '%') {
7944 /* Paranoid check for percent values greater than 100 */
7945 WARN_ON(coremem > 100);
2a1e274a 7946
a5c6d650
DR
7947 *percent = coremem;
7948 } else {
7949 coremem = memparse(p, &p);
7950 /* Paranoid check that UL is enough for the coremem value */
7951 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7952
a5c6d650
DR
7953 *core = coremem >> PAGE_SHIFT;
7954 *percent = 0UL;
7955 }
2a1e274a
MG
7956 return 0;
7957}
ed7ed365 7958
7e63efef
MG
7959/*
7960 * kernelcore=size sets the amount of memory for use for allocations that
7961 * cannot be reclaimed or migrated.
7962 */
7963static int __init cmdline_parse_kernelcore(char *p)
7964{
342332e6
TI
7965 /* parse kernelcore=mirror */
7966 if (parse_option_str(p, "mirror")) {
7967 mirrored_kernelcore = true;
7968 return 0;
7969 }
7970
a5c6d650
DR
7971 return cmdline_parse_core(p, &required_kernelcore,
7972 &required_kernelcore_percent);
7e63efef
MG
7973}
7974
7975/*
7976 * movablecore=size sets the amount of memory for use for allocations that
7977 * can be reclaimed or migrated.
7978 */
7979static int __init cmdline_parse_movablecore(char *p)
7980{
a5c6d650
DR
7981 return cmdline_parse_core(p, &required_movablecore,
7982 &required_movablecore_percent);
7e63efef
MG
7983}
7984
ed7ed365 7985early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7986early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7987
c3d5f5f0
JL
7988void adjust_managed_page_count(struct page *page, long count)
7989{
9705bea5 7990 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7991 totalram_pages_add(count);
3dcc0571
JL
7992#ifdef CONFIG_HIGHMEM
7993 if (PageHighMem(page))
ca79b0c2 7994 totalhigh_pages_add(count);
3dcc0571 7995#endif
c3d5f5f0 7996}
3dcc0571 7997EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7998
e5cb113f 7999unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8000{
11199692
JL
8001 void *pos;
8002 unsigned long pages = 0;
69afade7 8003
11199692
JL
8004 start = (void *)PAGE_ALIGN((unsigned long)start);
8005 end = (void *)((unsigned long)end & PAGE_MASK);
8006 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8007 struct page *page = virt_to_page(pos);
8008 void *direct_map_addr;
8009
8010 /*
8011 * 'direct_map_addr' might be different from 'pos'
8012 * because some architectures' virt_to_page()
8013 * work with aliases. Getting the direct map
8014 * address ensures that we get a _writeable_
8015 * alias for the memset().
8016 */
8017 direct_map_addr = page_address(page);
c746170d
VF
8018 /*
8019 * Perform a kasan-unchecked memset() since this memory
8020 * has not been initialized.
8021 */
8022 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8023 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8024 memset(direct_map_addr, poison, PAGE_SIZE);
8025
8026 free_reserved_page(page);
69afade7
JL
8027 }
8028
8029 if (pages && s)
adb1fe9a
JP
8030 pr_info("Freeing %s memory: %ldK\n",
8031 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
8032
8033 return pages;
8034}
8035
1f9d03c5 8036void __init mem_init_print_info(void)
7ee3d4e8
JL
8037{
8038 unsigned long physpages, codesize, datasize, rosize, bss_size;
8039 unsigned long init_code_size, init_data_size;
8040
8041 physpages = get_num_physpages();
8042 codesize = _etext - _stext;
8043 datasize = _edata - _sdata;
8044 rosize = __end_rodata - __start_rodata;
8045 bss_size = __bss_stop - __bss_start;
8046 init_data_size = __init_end - __init_begin;
8047 init_code_size = _einittext - _sinittext;
8048
8049 /*
8050 * Detect special cases and adjust section sizes accordingly:
8051 * 1) .init.* may be embedded into .data sections
8052 * 2) .init.text.* may be out of [__init_begin, __init_end],
8053 * please refer to arch/tile/kernel/vmlinux.lds.S.
8054 * 3) .rodata.* may be embedded into .text or .data sections.
8055 */
8056#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
8057 do { \
8058 if (start <= pos && pos < end && size > adj) \
8059 size -= adj; \
8060 } while (0)
7ee3d4e8
JL
8061
8062 adj_init_size(__init_begin, __init_end, init_data_size,
8063 _sinittext, init_code_size);
8064 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8065 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8066 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8067 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8068
8069#undef adj_init_size
8070
756a025f 8071 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8072#ifdef CONFIG_HIGHMEM
756a025f 8073 ", %luK highmem"
7ee3d4e8 8074#endif
1f9d03c5 8075 ")\n",
756a025f
JP
8076 nr_free_pages() << (PAGE_SHIFT - 10),
8077 physpages << (PAGE_SHIFT - 10),
8078 codesize >> 10, datasize >> 10, rosize >> 10,
8079 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 8080 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
1f9d03c5 8081 totalcma_pages << (PAGE_SHIFT - 10)
7ee3d4e8 8082#ifdef CONFIG_HIGHMEM
1f9d03c5 8083 , totalhigh_pages() << (PAGE_SHIFT - 10)
7ee3d4e8 8084#endif
1f9d03c5 8085 );
7ee3d4e8
JL
8086}
8087
0e0b864e 8088/**
88ca3b94
RD
8089 * set_dma_reserve - set the specified number of pages reserved in the first zone
8090 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8091 *
013110a7 8092 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8093 * In the DMA zone, a significant percentage may be consumed by kernel image
8094 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8095 * function may optionally be used to account for unfreeable pages in the
8096 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8097 * smaller per-cpu batchsize.
0e0b864e
MG
8098 */
8099void __init set_dma_reserve(unsigned long new_dma_reserve)
8100{
8101 dma_reserve = new_dma_reserve;
8102}
8103
005fd4bb 8104static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8105{
04f8cfea 8106 struct zone *zone;
1da177e4 8107
005fd4bb
SAS
8108 lru_add_drain_cpu(cpu);
8109 drain_pages(cpu);
9f8f2172 8110
005fd4bb
SAS
8111 /*
8112 * Spill the event counters of the dead processor
8113 * into the current processors event counters.
8114 * This artificially elevates the count of the current
8115 * processor.
8116 */
8117 vm_events_fold_cpu(cpu);
9f8f2172 8118
005fd4bb
SAS
8119 /*
8120 * Zero the differential counters of the dead processor
8121 * so that the vm statistics are consistent.
8122 *
8123 * This is only okay since the processor is dead and cannot
8124 * race with what we are doing.
8125 */
8126 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8127
8128 for_each_populated_zone(zone)
8129 zone_pcp_update(zone, 0);
8130
8131 return 0;
8132}
8133
8134static int page_alloc_cpu_online(unsigned int cpu)
8135{
8136 struct zone *zone;
8137
8138 for_each_populated_zone(zone)
8139 zone_pcp_update(zone, 1);
005fd4bb 8140 return 0;
1da177e4 8141}
1da177e4 8142
e03a5125
NP
8143#ifdef CONFIG_NUMA
8144int hashdist = HASHDIST_DEFAULT;
8145
8146static int __init set_hashdist(char *str)
8147{
8148 if (!str)
8149 return 0;
8150 hashdist = simple_strtoul(str, &str, 0);
8151 return 1;
8152}
8153__setup("hashdist=", set_hashdist);
8154#endif
8155
1da177e4
LT
8156void __init page_alloc_init(void)
8157{
005fd4bb
SAS
8158 int ret;
8159
e03a5125
NP
8160#ifdef CONFIG_NUMA
8161 if (num_node_state(N_MEMORY) == 1)
8162 hashdist = 0;
8163#endif
8164
04f8cfea
MG
8165 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8166 "mm/page_alloc:pcp",
8167 page_alloc_cpu_online,
005fd4bb
SAS
8168 page_alloc_cpu_dead);
8169 WARN_ON(ret < 0);
1da177e4
LT
8170}
8171
cb45b0e9 8172/*
34b10060 8173 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8174 * or min_free_kbytes changes.
8175 */
8176static void calculate_totalreserve_pages(void)
8177{
8178 struct pglist_data *pgdat;
8179 unsigned long reserve_pages = 0;
2f6726e5 8180 enum zone_type i, j;
cb45b0e9
HA
8181
8182 for_each_online_pgdat(pgdat) {
281e3726
MG
8183
8184 pgdat->totalreserve_pages = 0;
8185
cb45b0e9
HA
8186 for (i = 0; i < MAX_NR_ZONES; i++) {
8187 struct zone *zone = pgdat->node_zones + i;
3484b2de 8188 long max = 0;
9705bea5 8189 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8190
8191 /* Find valid and maximum lowmem_reserve in the zone */
8192 for (j = i; j < MAX_NR_ZONES; j++) {
8193 if (zone->lowmem_reserve[j] > max)
8194 max = zone->lowmem_reserve[j];
8195 }
8196
41858966
MG
8197 /* we treat the high watermark as reserved pages. */
8198 max += high_wmark_pages(zone);
cb45b0e9 8199
3d6357de
AK
8200 if (max > managed_pages)
8201 max = managed_pages;
a8d01437 8202
281e3726 8203 pgdat->totalreserve_pages += max;
a8d01437 8204
cb45b0e9
HA
8205 reserve_pages += max;
8206 }
8207 }
8208 totalreserve_pages = reserve_pages;
8209}
8210
1da177e4
LT
8211/*
8212 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8213 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8214 * has a correct pages reserved value, so an adequate number of
8215 * pages are left in the zone after a successful __alloc_pages().
8216 */
8217static void setup_per_zone_lowmem_reserve(void)
8218{
8219 struct pglist_data *pgdat;
470c61d7 8220 enum zone_type i, j;
1da177e4 8221
ec936fc5 8222 for_each_online_pgdat(pgdat) {
470c61d7
LS
8223 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8224 struct zone *zone = &pgdat->node_zones[i];
8225 int ratio = sysctl_lowmem_reserve_ratio[i];
8226 bool clear = !ratio || !zone_managed_pages(zone);
8227 unsigned long managed_pages = 0;
8228
8229 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8230 struct zone *upper_zone = &pgdat->node_zones[j];
8231
8232 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8233
f7ec1044
LS
8234 if (clear)
8235 zone->lowmem_reserve[j] = 0;
8236 else
470c61d7 8237 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8238 }
8239 }
8240 }
cb45b0e9
HA
8241
8242 /* update totalreserve_pages */
8243 calculate_totalreserve_pages();
1da177e4
LT
8244}
8245
cfd3da1e 8246static void __setup_per_zone_wmarks(void)
1da177e4
LT
8247{
8248 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8249 unsigned long lowmem_pages = 0;
8250 struct zone *zone;
8251 unsigned long flags;
8252
8253 /* Calculate total number of !ZONE_HIGHMEM pages */
8254 for_each_zone(zone) {
8255 if (!is_highmem(zone))
9705bea5 8256 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8257 }
8258
8259 for_each_zone(zone) {
ac924c60
AM
8260 u64 tmp;
8261
1125b4e3 8262 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8263 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8264 do_div(tmp, lowmem_pages);
1da177e4
LT
8265 if (is_highmem(zone)) {
8266 /*
669ed175
NP
8267 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8268 * need highmem pages, so cap pages_min to a small
8269 * value here.
8270 *
41858966 8271 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8272 * deltas control async page reclaim, and so should
669ed175 8273 * not be capped for highmem.
1da177e4 8274 */
90ae8d67 8275 unsigned long min_pages;
1da177e4 8276
9705bea5 8277 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8278 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8279 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8280 } else {
669ed175
NP
8281 /*
8282 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8283 * proportionate to the zone's size.
8284 */
a9214443 8285 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8286 }
8287
795ae7a0
JW
8288 /*
8289 * Set the kswapd watermarks distance according to the
8290 * scale factor in proportion to available memory, but
8291 * ensure a minimum size on small systems.
8292 */
8293 tmp = max_t(u64, tmp >> 2,
9705bea5 8294 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8295 watermark_scale_factor, 10000));
8296
aa092591 8297 zone->watermark_boost = 0;
a9214443
MG
8298 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8299 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 8300
1125b4e3 8301 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8302 }
cb45b0e9
HA
8303
8304 /* update totalreserve_pages */
8305 calculate_totalreserve_pages();
1da177e4
LT
8306}
8307
cfd3da1e
MG
8308/**
8309 * setup_per_zone_wmarks - called when min_free_kbytes changes
8310 * or when memory is hot-{added|removed}
8311 *
8312 * Ensures that the watermark[min,low,high] values for each zone are set
8313 * correctly with respect to min_free_kbytes.
8314 */
8315void setup_per_zone_wmarks(void)
8316{
b92ca18e 8317 struct zone *zone;
b93e0f32
MH
8318 static DEFINE_SPINLOCK(lock);
8319
8320 spin_lock(&lock);
cfd3da1e 8321 __setup_per_zone_wmarks();
b93e0f32 8322 spin_unlock(&lock);
b92ca18e
MG
8323
8324 /*
8325 * The watermark size have changed so update the pcpu batch
8326 * and high limits or the limits may be inappropriate.
8327 */
8328 for_each_zone(zone)
04f8cfea 8329 zone_pcp_update(zone, 0);
cfd3da1e
MG
8330}
8331
1da177e4
LT
8332/*
8333 * Initialise min_free_kbytes.
8334 *
8335 * For small machines we want it small (128k min). For large machines
8beeae86 8336 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8337 * bandwidth does not increase linearly with machine size. We use
8338 *
b8af2941 8339 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8340 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8341 *
8342 * which yields
8343 *
8344 * 16MB: 512k
8345 * 32MB: 724k
8346 * 64MB: 1024k
8347 * 128MB: 1448k
8348 * 256MB: 2048k
8349 * 512MB: 2896k
8350 * 1024MB: 4096k
8351 * 2048MB: 5792k
8352 * 4096MB: 8192k
8353 * 8192MB: 11584k
8354 * 16384MB: 16384k
8355 */
1b79acc9 8356int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
8357{
8358 unsigned long lowmem_kbytes;
5f12733e 8359 int new_min_free_kbytes;
1da177e4
LT
8360
8361 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8362 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8363
8364 if (new_min_free_kbytes > user_min_free_kbytes) {
8365 min_free_kbytes = new_min_free_kbytes;
8366 if (min_free_kbytes < 128)
8367 min_free_kbytes = 128;
ee8eb9a5
JS
8368 if (min_free_kbytes > 262144)
8369 min_free_kbytes = 262144;
5f12733e
MH
8370 } else {
8371 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8372 new_min_free_kbytes, user_min_free_kbytes);
8373 }
bc75d33f 8374 setup_per_zone_wmarks();
a6cccdc3 8375 refresh_zone_stat_thresholds();
1da177e4 8376 setup_per_zone_lowmem_reserve();
6423aa81
JK
8377
8378#ifdef CONFIG_NUMA
8379 setup_min_unmapped_ratio();
8380 setup_min_slab_ratio();
8381#endif
8382
4aab2be0
VB
8383 khugepaged_min_free_kbytes_update();
8384
1da177e4
LT
8385 return 0;
8386}
e08d3fdf 8387postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8388
8389/*
b8af2941 8390 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8391 * that we can call two helper functions whenever min_free_kbytes
8392 * changes.
8393 */
cccad5b9 8394int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8395 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8396{
da8c757b
HP
8397 int rc;
8398
8399 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8400 if (rc)
8401 return rc;
8402
5f12733e
MH
8403 if (write) {
8404 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8405 setup_per_zone_wmarks();
5f12733e 8406 }
1da177e4
LT
8407 return 0;
8408}
8409
795ae7a0 8410int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8411 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8412{
8413 int rc;
8414
8415 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8416 if (rc)
8417 return rc;
8418
8419 if (write)
8420 setup_per_zone_wmarks();
8421
8422 return 0;
8423}
8424
9614634f 8425#ifdef CONFIG_NUMA
6423aa81 8426static void setup_min_unmapped_ratio(void)
9614634f 8427{
6423aa81 8428 pg_data_t *pgdat;
9614634f 8429 struct zone *zone;
9614634f 8430
a5f5f91d 8431 for_each_online_pgdat(pgdat)
81cbcbc2 8432 pgdat->min_unmapped_pages = 0;
a5f5f91d 8433
9614634f 8434 for_each_zone(zone)
9705bea5
AK
8435 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8436 sysctl_min_unmapped_ratio) / 100;
9614634f 8437}
0ff38490 8438
6423aa81
JK
8439
8440int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8441 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8442{
0ff38490
CL
8443 int rc;
8444
8d65af78 8445 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8446 if (rc)
8447 return rc;
8448
6423aa81
JK
8449 setup_min_unmapped_ratio();
8450
8451 return 0;
8452}
8453
8454static void setup_min_slab_ratio(void)
8455{
8456 pg_data_t *pgdat;
8457 struct zone *zone;
8458
a5f5f91d
MG
8459 for_each_online_pgdat(pgdat)
8460 pgdat->min_slab_pages = 0;
8461
0ff38490 8462 for_each_zone(zone)
9705bea5
AK
8463 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8464 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8465}
8466
8467int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8468 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8469{
8470 int rc;
8471
8472 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8473 if (rc)
8474 return rc;
8475
8476 setup_min_slab_ratio();
8477
0ff38490
CL
8478 return 0;
8479}
9614634f
CL
8480#endif
8481
1da177e4
LT
8482/*
8483 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8484 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8485 * whenever sysctl_lowmem_reserve_ratio changes.
8486 *
8487 * The reserve ratio obviously has absolutely no relation with the
41858966 8488 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8489 * if in function of the boot time zone sizes.
8490 */
cccad5b9 8491int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8492 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8493{
86aaf255
BH
8494 int i;
8495
8d65af78 8496 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8497
8498 for (i = 0; i < MAX_NR_ZONES; i++) {
8499 if (sysctl_lowmem_reserve_ratio[i] < 1)
8500 sysctl_lowmem_reserve_ratio[i] = 0;
8501 }
8502
1da177e4
LT
8503 setup_per_zone_lowmem_reserve();
8504 return 0;
8505}
8506
74f44822
MG
8507/*
8508 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8509 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8510 * pagelist can have before it gets flushed back to buddy allocator.
8511 */
8512int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8513 int write, void *buffer, size_t *length, loff_t *ppos)
8514{
8515 struct zone *zone;
8516 int old_percpu_pagelist_high_fraction;
8517 int ret;
8518
8519 mutex_lock(&pcp_batch_high_lock);
8520 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8521
8522 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8523 if (!write || ret < 0)
8524 goto out;
8525
8526 /* Sanity checking to avoid pcp imbalance */
8527 if (percpu_pagelist_high_fraction &&
8528 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8529 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8530 ret = -EINVAL;
8531 goto out;
8532 }
8533
8534 /* No change? */
8535 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8536 goto out;
8537
8538 for_each_populated_zone(zone)
8539 zone_set_pageset_high_and_batch(zone, 0);
8540out:
8541 mutex_unlock(&pcp_batch_high_lock);
8542 return ret;
8543}
8544
f6f34b43
SD
8545#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8546/*
8547 * Returns the number of pages that arch has reserved but
8548 * is not known to alloc_large_system_hash().
8549 */
8550static unsigned long __init arch_reserved_kernel_pages(void)
8551{
8552 return 0;
8553}
8554#endif
8555
9017217b
PT
8556/*
8557 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8558 * machines. As memory size is increased the scale is also increased but at
8559 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8560 * quadruples the scale is increased by one, which means the size of hash table
8561 * only doubles, instead of quadrupling as well.
8562 * Because 32-bit systems cannot have large physical memory, where this scaling
8563 * makes sense, it is disabled on such platforms.
8564 */
8565#if __BITS_PER_LONG > 32
8566#define ADAPT_SCALE_BASE (64ul << 30)
8567#define ADAPT_SCALE_SHIFT 2
8568#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8569#endif
8570
1da177e4
LT
8571/*
8572 * allocate a large system hash table from bootmem
8573 * - it is assumed that the hash table must contain an exact power-of-2
8574 * quantity of entries
8575 * - limit is the number of hash buckets, not the total allocation size
8576 */
8577void *__init alloc_large_system_hash(const char *tablename,
8578 unsigned long bucketsize,
8579 unsigned long numentries,
8580 int scale,
8581 int flags,
8582 unsigned int *_hash_shift,
8583 unsigned int *_hash_mask,
31fe62b9
TB
8584 unsigned long low_limit,
8585 unsigned long high_limit)
1da177e4 8586{
31fe62b9 8587 unsigned long long max = high_limit;
1da177e4
LT
8588 unsigned long log2qty, size;
8589 void *table = NULL;
3749a8f0 8590 gfp_t gfp_flags;
ec11408a 8591 bool virt;
121e6f32 8592 bool huge;
1da177e4
LT
8593
8594 /* allow the kernel cmdline to have a say */
8595 if (!numentries) {
8596 /* round applicable memory size up to nearest megabyte */
04903664 8597 numentries = nr_kernel_pages;
f6f34b43 8598 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8599
8600 /* It isn't necessary when PAGE_SIZE >= 1MB */
8601 if (PAGE_SHIFT < 20)
8602 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8603
9017217b
PT
8604#if __BITS_PER_LONG > 32
8605 if (!high_limit) {
8606 unsigned long adapt;
8607
8608 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8609 adapt <<= ADAPT_SCALE_SHIFT)
8610 scale++;
8611 }
8612#endif
8613
1da177e4
LT
8614 /* limit to 1 bucket per 2^scale bytes of low memory */
8615 if (scale > PAGE_SHIFT)
8616 numentries >>= (scale - PAGE_SHIFT);
8617 else
8618 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8619
8620 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8621 if (unlikely(flags & HASH_SMALL)) {
8622 /* Makes no sense without HASH_EARLY */
8623 WARN_ON(!(flags & HASH_EARLY));
8624 if (!(numentries >> *_hash_shift)) {
8625 numentries = 1UL << *_hash_shift;
8626 BUG_ON(!numentries);
8627 }
8628 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8629 numentries = PAGE_SIZE / bucketsize;
1da177e4 8630 }
6e692ed3 8631 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8632
8633 /* limit allocation size to 1/16 total memory by default */
8634 if (max == 0) {
8635 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8636 do_div(max, bucketsize);
8637 }
074b8517 8638 max = min(max, 0x80000000ULL);
1da177e4 8639
31fe62b9
TB
8640 if (numentries < low_limit)
8641 numentries = low_limit;
1da177e4
LT
8642 if (numentries > max)
8643 numentries = max;
8644
f0d1b0b3 8645 log2qty = ilog2(numentries);
1da177e4 8646
3749a8f0 8647 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8648 do {
ec11408a 8649 virt = false;
1da177e4 8650 size = bucketsize << log2qty;
ea1f5f37
PT
8651 if (flags & HASH_EARLY) {
8652 if (flags & HASH_ZERO)
26fb3dae 8653 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8654 else
7e1c4e27
MR
8655 table = memblock_alloc_raw(size,
8656 SMP_CACHE_BYTES);
ec11408a 8657 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8658 table = __vmalloc(size, gfp_flags);
ec11408a 8659 virt = true;
121e6f32 8660 huge = is_vm_area_hugepages(table);
ea1f5f37 8661 } else {
1037b83b
ED
8662 /*
8663 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8664 * some pages at the end of hash table which
8665 * alloc_pages_exact() automatically does
1037b83b 8666 */
ec11408a
NP
8667 table = alloc_pages_exact(size, gfp_flags);
8668 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8669 }
8670 } while (!table && size > PAGE_SIZE && --log2qty);
8671
8672 if (!table)
8673 panic("Failed to allocate %s hash table\n", tablename);
8674
ec11408a
NP
8675 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8676 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8677 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8678
8679 if (_hash_shift)
8680 *_hash_shift = log2qty;
8681 if (_hash_mask)
8682 *_hash_mask = (1 << log2qty) - 1;
8683
8684 return table;
8685}
a117e66e 8686
a5d76b54 8687/*
80934513 8688 * This function checks whether pageblock includes unmovable pages or not.
80934513 8689 *
b8af2941 8690 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8691 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8692 * check without lock_page also may miss some movable non-lru pages at
8693 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8694 *
8695 * Returns a page without holding a reference. If the caller wants to
047b9967 8696 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8697 * cannot get removed (e.g., via memory unplug) concurrently.
8698 *
a5d76b54 8699 */
4a55c047
QC
8700struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8701 int migratetype, int flags)
49ac8255 8702{
1a9f2191
QC
8703 unsigned long iter = 0;
8704 unsigned long pfn = page_to_pfn(page);
6a654e36 8705 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8706
1a9f2191
QC
8707 if (is_migrate_cma_page(page)) {
8708 /*
8709 * CMA allocations (alloc_contig_range) really need to mark
8710 * isolate CMA pageblocks even when they are not movable in fact
8711 * so consider them movable here.
8712 */
8713 if (is_migrate_cma(migratetype))
4a55c047 8714 return NULL;
1a9f2191 8715
3d680bdf 8716 return page;
1a9f2191 8717 }
4da2ce25 8718
6a654e36 8719 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8720 if (!pfn_valid_within(pfn + iter))
49ac8255 8721 continue;
29723fcc 8722
fe4c86c9 8723 page = pfn_to_page(pfn + iter);
c8721bbb 8724
c9c510dc
DH
8725 /*
8726 * Both, bootmem allocations and memory holes are marked
8727 * PG_reserved and are unmovable. We can even have unmovable
8728 * allocations inside ZONE_MOVABLE, for example when
8729 * specifying "movablecore".
8730 */
d7ab3672 8731 if (PageReserved(page))
3d680bdf 8732 return page;
d7ab3672 8733
9d789999
MH
8734 /*
8735 * If the zone is movable and we have ruled out all reserved
8736 * pages then it should be reasonably safe to assume the rest
8737 * is movable.
8738 */
8739 if (zone_idx(zone) == ZONE_MOVABLE)
8740 continue;
8741
c8721bbb
NH
8742 /*
8743 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8744 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8745 * We need not scan over tail pages because we don't
c8721bbb
NH
8746 * handle each tail page individually in migration.
8747 */
1da2f328 8748 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8749 struct page *head = compound_head(page);
8750 unsigned int skip_pages;
464c7ffb 8751
1da2f328
RR
8752 if (PageHuge(page)) {
8753 if (!hugepage_migration_supported(page_hstate(head)))
8754 return page;
8755 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8756 return page;
1da2f328 8757 }
464c7ffb 8758
d8c6546b 8759 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8760 iter += skip_pages - 1;
c8721bbb
NH
8761 continue;
8762 }
8763
97d255c8
MK
8764 /*
8765 * We can't use page_count without pin a page
8766 * because another CPU can free compound page.
8767 * This check already skips compound tails of THP
0139aa7b 8768 * because their page->_refcount is zero at all time.
97d255c8 8769 */
fe896d18 8770 if (!page_ref_count(page)) {
49ac8255 8771 if (PageBuddy(page))
ab130f91 8772 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8773 continue;
8774 }
97d255c8 8775
b023f468
WC
8776 /*
8777 * The HWPoisoned page may be not in buddy system, and
8778 * page_count() is not 0.
8779 */
756d25be 8780 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8781 continue;
8782
aa218795
DH
8783 /*
8784 * We treat all PageOffline() pages as movable when offlining
8785 * to give drivers a chance to decrement their reference count
8786 * in MEM_GOING_OFFLINE in order to indicate that these pages
8787 * can be offlined as there are no direct references anymore.
8788 * For actually unmovable PageOffline() where the driver does
8789 * not support this, we will fail later when trying to actually
8790 * move these pages that still have a reference count > 0.
8791 * (false negatives in this function only)
8792 */
8793 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8794 continue;
8795
fe4c86c9 8796 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8797 continue;
8798
49ac8255 8799 /*
6b4f7799
JW
8800 * If there are RECLAIMABLE pages, we need to check
8801 * it. But now, memory offline itself doesn't call
8802 * shrink_node_slabs() and it still to be fixed.
49ac8255 8803 */
3d680bdf 8804 return page;
49ac8255 8805 }
4a55c047 8806 return NULL;
49ac8255
KH
8807}
8808
8df995f6 8809#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8810static unsigned long pfn_max_align_down(unsigned long pfn)
8811{
8812 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8813 pageblock_nr_pages) - 1);
8814}
8815
8816static unsigned long pfn_max_align_up(unsigned long pfn)
8817{
8818 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8819 pageblock_nr_pages));
8820}
8821
a1394bdd
MK
8822#if defined(CONFIG_DYNAMIC_DEBUG) || \
8823 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8824/* Usage: See admin-guide/dynamic-debug-howto.rst */
8825static void alloc_contig_dump_pages(struct list_head *page_list)
8826{
8827 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8828
8829 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8830 struct page *page;
8831
8832 dump_stack();
8833 list_for_each_entry(page, page_list, lru)
8834 dump_page(page, "migration failure");
8835 }
8836}
8837#else
8838static inline void alloc_contig_dump_pages(struct list_head *page_list)
8839{
8840}
8841#endif
8842
041d3a8c 8843/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8844static int __alloc_contig_migrate_range(struct compact_control *cc,
8845 unsigned long start, unsigned long end)
041d3a8c
MN
8846{
8847 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8848 unsigned int nr_reclaimed;
041d3a8c
MN
8849 unsigned long pfn = start;
8850 unsigned int tries = 0;
8851 int ret = 0;
8b94e0b8
JK
8852 struct migration_target_control mtc = {
8853 .nid = zone_to_nid(cc->zone),
8854 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8855 };
041d3a8c 8856
361a2a22 8857 lru_cache_disable();
041d3a8c 8858
bb13ffeb 8859 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8860 if (fatal_signal_pending(current)) {
8861 ret = -EINTR;
8862 break;
8863 }
8864
bb13ffeb
MG
8865 if (list_empty(&cc->migratepages)) {
8866 cc->nr_migratepages = 0;
c2ad7a1f
OS
8867 ret = isolate_migratepages_range(cc, pfn, end);
8868 if (ret && ret != -EAGAIN)
041d3a8c 8869 break;
c2ad7a1f 8870 pfn = cc->migrate_pfn;
041d3a8c
MN
8871 tries = 0;
8872 } else if (++tries == 5) {
c8e28b47 8873 ret = -EBUSY;
041d3a8c
MN
8874 break;
8875 }
8876
beb51eaa
MK
8877 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8878 &cc->migratepages);
8879 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8880
8b94e0b8
JK
8881 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8882 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
c8e28b47
OS
8883
8884 /*
8885 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8886 * to retry again over this error, so do the same here.
8887 */
8888 if (ret == -ENOMEM)
8889 break;
041d3a8c 8890 }
d479960e 8891
361a2a22 8892 lru_cache_enable();
2a6f5124 8893 if (ret < 0) {
151e084a
MK
8894 if (ret == -EBUSY)
8895 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
8896 putback_movable_pages(&cc->migratepages);
8897 return ret;
8898 }
8899 return 0;
041d3a8c
MN
8900}
8901
8902/**
8903 * alloc_contig_range() -- tries to allocate given range of pages
8904 * @start: start PFN to allocate
8905 * @end: one-past-the-last PFN to allocate
f0953a1b 8906 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
8907 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8908 * in range must have the same migratetype and it must
8909 * be either of the two.
ca96b625 8910 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8911 *
8912 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8913 * aligned. The PFN range must belong to a single zone.
041d3a8c 8914 *
2c7452a0
MK
8915 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8916 * pageblocks in the range. Once isolated, the pageblocks should not
8917 * be modified by others.
041d3a8c 8918 *
a862f68a 8919 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8920 * pages which PFN is in [start, end) are allocated for the caller and
8921 * need to be freed with free_contig_range().
8922 */
0815f3d8 8923int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8924 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8925{
041d3a8c 8926 unsigned long outer_start, outer_end;
d00181b9
KS
8927 unsigned int order;
8928 int ret = 0;
041d3a8c 8929
bb13ffeb
MG
8930 struct compact_control cc = {
8931 .nr_migratepages = 0,
8932 .order = -1,
8933 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8934 .mode = MIGRATE_SYNC,
bb13ffeb 8935 .ignore_skip_hint = true,
2583d671 8936 .no_set_skip_hint = true,
7dea19f9 8937 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8938 .alloc_contig = true,
bb13ffeb
MG
8939 };
8940 INIT_LIST_HEAD(&cc.migratepages);
8941
041d3a8c
MN
8942 /*
8943 * What we do here is we mark all pageblocks in range as
8944 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8945 * have different sizes, and due to the way page allocator
8946 * work, we align the range to biggest of the two pages so
8947 * that page allocator won't try to merge buddies from
8948 * different pageblocks and change MIGRATE_ISOLATE to some
8949 * other migration type.
8950 *
8951 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8952 * migrate the pages from an unaligned range (ie. pages that
8953 * we are interested in). This will put all the pages in
8954 * range back to page allocator as MIGRATE_ISOLATE.
8955 *
8956 * When this is done, we take the pages in range from page
8957 * allocator removing them from the buddy system. This way
8958 * page allocator will never consider using them.
8959 *
8960 * This lets us mark the pageblocks back as
8961 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8962 * aligned range but not in the unaligned, original range are
8963 * put back to page allocator so that buddy can use them.
8964 */
8965
8966 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8967 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8968 if (ret)
86a595f9 8969 return ret;
041d3a8c 8970
7612921f
VB
8971 drain_all_pages(cc.zone);
8972
8ef5849f
JK
8973 /*
8974 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8975 * So, just fall through. test_pages_isolated() has a tracepoint
8976 * which will report the busy page.
8977 *
8978 * It is possible that busy pages could become available before
8979 * the call to test_pages_isolated, and the range will actually be
8980 * allocated. So, if we fall through be sure to clear ret so that
8981 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8982 */
bb13ffeb 8983 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8984 if (ret && ret != -EBUSY)
041d3a8c 8985 goto done;
68d68ff6 8986 ret = 0;
041d3a8c
MN
8987
8988 /*
8989 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8990 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8991 * more, all pages in [start, end) are free in page allocator.
8992 * What we are going to do is to allocate all pages from
8993 * [start, end) (that is remove them from page allocator).
8994 *
8995 * The only problem is that pages at the beginning and at the
8996 * end of interesting range may be not aligned with pages that
8997 * page allocator holds, ie. they can be part of higher order
8998 * pages. Because of this, we reserve the bigger range and
8999 * once this is done free the pages we are not interested in.
9000 *
9001 * We don't have to hold zone->lock here because the pages are
9002 * isolated thus they won't get removed from buddy.
9003 */
9004
041d3a8c
MN
9005 order = 0;
9006 outer_start = start;
9007 while (!PageBuddy(pfn_to_page(outer_start))) {
9008 if (++order >= MAX_ORDER) {
8ef5849f
JK
9009 outer_start = start;
9010 break;
041d3a8c
MN
9011 }
9012 outer_start &= ~0UL << order;
9013 }
9014
8ef5849f 9015 if (outer_start != start) {
ab130f91 9016 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9017
9018 /*
9019 * outer_start page could be small order buddy page and
9020 * it doesn't include start page. Adjust outer_start
9021 * in this case to report failed page properly
9022 * on tracepoint in test_pages_isolated()
9023 */
9024 if (outer_start + (1UL << order) <= start)
9025 outer_start = start;
9026 }
9027
041d3a8c 9028 /* Make sure the range is really isolated. */
756d25be 9029 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9030 ret = -EBUSY;
9031 goto done;
9032 }
9033
49f223a9 9034 /* Grab isolated pages from freelists. */
bb13ffeb 9035 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9036 if (!outer_end) {
9037 ret = -EBUSY;
9038 goto done;
9039 }
9040
9041 /* Free head and tail (if any) */
9042 if (start != outer_start)
9043 free_contig_range(outer_start, start - outer_start);
9044 if (end != outer_end)
9045 free_contig_range(end, outer_end - end);
9046
9047done:
9048 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 9049 pfn_max_align_up(end), migratetype);
041d3a8c
MN
9050 return ret;
9051}
255f5985 9052EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9053
9054static int __alloc_contig_pages(unsigned long start_pfn,
9055 unsigned long nr_pages, gfp_t gfp_mask)
9056{
9057 unsigned long end_pfn = start_pfn + nr_pages;
9058
9059 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9060 gfp_mask);
9061}
9062
9063static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9064 unsigned long nr_pages)
9065{
9066 unsigned long i, end_pfn = start_pfn + nr_pages;
9067 struct page *page;
9068
9069 for (i = start_pfn; i < end_pfn; i++) {
9070 page = pfn_to_online_page(i);
9071 if (!page)
9072 return false;
9073
9074 if (page_zone(page) != z)
9075 return false;
9076
9077 if (PageReserved(page))
9078 return false;
5e27a2df
AK
9079 }
9080 return true;
9081}
9082
9083static bool zone_spans_last_pfn(const struct zone *zone,
9084 unsigned long start_pfn, unsigned long nr_pages)
9085{
9086 unsigned long last_pfn = start_pfn + nr_pages - 1;
9087
9088 return zone_spans_pfn(zone, last_pfn);
9089}
9090
9091/**
9092 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9093 * @nr_pages: Number of contiguous pages to allocate
9094 * @gfp_mask: GFP mask to limit search and used during compaction
9095 * @nid: Target node
9096 * @nodemask: Mask for other possible nodes
9097 *
9098 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9099 * on an applicable zonelist to find a contiguous pfn range which can then be
9100 * tried for allocation with alloc_contig_range(). This routine is intended
9101 * for allocation requests which can not be fulfilled with the buddy allocator.
9102 *
9103 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9104 * power of two then the alignment is guaranteed to be to the given nr_pages
9105 * (e.g. 1GB request would be aligned to 1GB).
9106 *
9107 * Allocated pages can be freed with free_contig_range() or by manually calling
9108 * __free_page() on each allocated page.
9109 *
9110 * Return: pointer to contiguous pages on success, or NULL if not successful.
9111 */
9112struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9113 int nid, nodemask_t *nodemask)
9114{
9115 unsigned long ret, pfn, flags;
9116 struct zonelist *zonelist;
9117 struct zone *zone;
9118 struct zoneref *z;
9119
9120 zonelist = node_zonelist(nid, gfp_mask);
9121 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9122 gfp_zone(gfp_mask), nodemask) {
9123 spin_lock_irqsave(&zone->lock, flags);
9124
9125 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9126 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9127 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9128 /*
9129 * We release the zone lock here because
9130 * alloc_contig_range() will also lock the zone
9131 * at some point. If there's an allocation
9132 * spinning on this lock, it may win the race
9133 * and cause alloc_contig_range() to fail...
9134 */
9135 spin_unlock_irqrestore(&zone->lock, flags);
9136 ret = __alloc_contig_pages(pfn, nr_pages,
9137 gfp_mask);
9138 if (!ret)
9139 return pfn_to_page(pfn);
9140 spin_lock_irqsave(&zone->lock, flags);
9141 }
9142 pfn += nr_pages;
9143 }
9144 spin_unlock_irqrestore(&zone->lock, flags);
9145 }
9146 return NULL;
9147}
4eb0716e 9148#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9149
78fa5150 9150void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9151{
78fa5150 9152 unsigned long count = 0;
bcc2b02f
MS
9153
9154 for (; nr_pages--; pfn++) {
9155 struct page *page = pfn_to_page(pfn);
9156
9157 count += page_count(page) != 1;
9158 __free_page(page);
9159 }
78fa5150 9160 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9161}
255f5985 9162EXPORT_SYMBOL(free_contig_range);
041d3a8c 9163
0a647f38
CS
9164/*
9165 * The zone indicated has a new number of managed_pages; batch sizes and percpu
f0953a1b 9166 * page high values need to be recalculated.
0a647f38 9167 */
04f8cfea 9168void zone_pcp_update(struct zone *zone, int cpu_online)
4ed7e022 9169{
c8e251fa 9170 mutex_lock(&pcp_batch_high_lock);
04f8cfea 9171 zone_set_pageset_high_and_batch(zone, cpu_online);
c8e251fa 9172 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 9173}
4ed7e022 9174
ec6e8c7e
VB
9175/*
9176 * Effectively disable pcplists for the zone by setting the high limit to 0
9177 * and draining all cpus. A concurrent page freeing on another CPU that's about
9178 * to put the page on pcplist will either finish before the drain and the page
9179 * will be drained, or observe the new high limit and skip the pcplist.
9180 *
9181 * Must be paired with a call to zone_pcp_enable().
9182 */
9183void zone_pcp_disable(struct zone *zone)
9184{
9185 mutex_lock(&pcp_batch_high_lock);
9186 __zone_set_pageset_high_and_batch(zone, 0, 1);
9187 __drain_all_pages(zone, true);
9188}
9189
9190void zone_pcp_enable(struct zone *zone)
9191{
9192 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9193 mutex_unlock(&pcp_batch_high_lock);
9194}
9195
340175b7
JL
9196void zone_pcp_reset(struct zone *zone)
9197{
5a883813 9198 int cpu;
28f836b6 9199 struct per_cpu_zonestat *pzstats;
340175b7 9200
28f836b6 9201 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9202 for_each_online_cpu(cpu) {
28f836b6
MG
9203 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9204 drain_zonestat(zone, pzstats);
5a883813 9205 }
28f836b6
MG
9206 free_percpu(zone->per_cpu_pageset);
9207 free_percpu(zone->per_cpu_zonestats);
9208 zone->per_cpu_pageset = &boot_pageset;
9209 zone->per_cpu_zonestats = &boot_zonestats;
340175b7 9210 }
340175b7
JL
9211}
9212
6dcd73d7 9213#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9214/*
257bea71
DH
9215 * All pages in the range must be in a single zone, must not contain holes,
9216 * must span full sections, and must be isolated before calling this function.
0c0e6195 9217 */
257bea71 9218void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9219{
257bea71 9220 unsigned long pfn = start_pfn;
0c0e6195
KH
9221 struct page *page;
9222 struct zone *zone;
0ee5f4f3 9223 unsigned int order;
0c0e6195 9224 unsigned long flags;
5557c766 9225
2d070eab 9226 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9227 zone = page_zone(pfn_to_page(pfn));
9228 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9229 while (pfn < end_pfn) {
0c0e6195 9230 page = pfn_to_page(pfn);
b023f468
WC
9231 /*
9232 * The HWPoisoned page may be not in buddy system, and
9233 * page_count() is not 0.
9234 */
9235 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9236 pfn++;
b023f468
WC
9237 continue;
9238 }
aa218795
DH
9239 /*
9240 * At this point all remaining PageOffline() pages have a
9241 * reference count of 0 and can simply be skipped.
9242 */
9243 if (PageOffline(page)) {
9244 BUG_ON(page_count(page));
9245 BUG_ON(PageBuddy(page));
9246 pfn++;
aa218795
DH
9247 continue;
9248 }
b023f468 9249
0c0e6195
KH
9250 BUG_ON(page_count(page));
9251 BUG_ON(!PageBuddy(page));
ab130f91 9252 order = buddy_order(page);
6ab01363 9253 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9254 pfn += (1 << order);
9255 }
9256 spin_unlock_irqrestore(&zone->lock, flags);
9257}
9258#endif
8d22ba1b 9259
8d22ba1b
WF
9260bool is_free_buddy_page(struct page *page)
9261{
9262 struct zone *zone = page_zone(page);
9263 unsigned long pfn = page_to_pfn(page);
9264 unsigned long flags;
7aeb09f9 9265 unsigned int order;
8d22ba1b
WF
9266
9267 spin_lock_irqsave(&zone->lock, flags);
9268 for (order = 0; order < MAX_ORDER; order++) {
9269 struct page *page_head = page - (pfn & ((1 << order) - 1));
9270
ab130f91 9271 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
9272 break;
9273 }
9274 spin_unlock_irqrestore(&zone->lock, flags);
9275
9276 return order < MAX_ORDER;
9277}
d4ae9916
NH
9278
9279#ifdef CONFIG_MEMORY_FAILURE
9280/*
06be6ff3
OS
9281 * Break down a higher-order page in sub-pages, and keep our target out of
9282 * buddy allocator.
d4ae9916 9283 */
06be6ff3
OS
9284static void break_down_buddy_pages(struct zone *zone, struct page *page,
9285 struct page *target, int low, int high,
9286 int migratetype)
9287{
9288 unsigned long size = 1 << high;
9289 struct page *current_buddy, *next_page;
9290
9291 while (high > low) {
9292 high--;
9293 size >>= 1;
9294
9295 if (target >= &page[size]) {
9296 next_page = page + size;
9297 current_buddy = page;
9298 } else {
9299 next_page = page;
9300 current_buddy = page + size;
9301 }
9302
9303 if (set_page_guard(zone, current_buddy, high, migratetype))
9304 continue;
9305
9306 if (current_buddy != target) {
9307 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9308 set_buddy_order(current_buddy, high);
06be6ff3
OS
9309 page = next_page;
9310 }
9311 }
9312}
9313
9314/*
9315 * Take a page that will be marked as poisoned off the buddy allocator.
9316 */
9317bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9318{
9319 struct zone *zone = page_zone(page);
9320 unsigned long pfn = page_to_pfn(page);
9321 unsigned long flags;
9322 unsigned int order;
06be6ff3 9323 bool ret = false;
d4ae9916
NH
9324
9325 spin_lock_irqsave(&zone->lock, flags);
9326 for (order = 0; order < MAX_ORDER; order++) {
9327 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9328 int page_order = buddy_order(page_head);
d4ae9916 9329
ab130f91 9330 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9331 unsigned long pfn_head = page_to_pfn(page_head);
9332 int migratetype = get_pfnblock_migratetype(page_head,
9333 pfn_head);
9334
ab130f91 9335 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9336 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9337 page_order, migratetype);
bac9c6fa
DH
9338 if (!is_migrate_isolate(migratetype))
9339 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9340 ret = true;
d4ae9916
NH
9341 break;
9342 }
06be6ff3
OS
9343 if (page_count(page_head) > 0)
9344 break;
d4ae9916
NH
9345 }
9346 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9347 return ret;
d4ae9916
NH
9348}
9349#endif