mm, mempolicy: stop adjusting current->il_next in mpol_rebind_nodemask()
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
1da177e4 69
7ee3d4e8 70#include <asm/sections.h>
1da177e4 71#include <asm/tlbflush.h>
ac924c60 72#include <asm/div64.h>
1da177e4
LT
73#include "internal.h"
74
c8e251fa
CS
75/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 77#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 78
72812019
LS
79#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80DEFINE_PER_CPU(int, numa_node);
81EXPORT_PER_CPU_SYMBOL(numa_node);
82#endif
83
7aac7898
LS
84#ifdef CONFIG_HAVE_MEMORYLESS_NODES
85/*
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
90 */
91DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 93int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
94#endif
95
bd233f53
MG
96/* work_structs for global per-cpu drains */
97DEFINE_MUTEX(pcpu_drain_mutex);
98DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99
38addce8 100#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 101volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
102EXPORT_SYMBOL(latent_entropy);
103#endif
104
1da177e4 105/*
13808910 106 * Array of node states.
1da177e4 107 */
13808910
CL
108nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
111#ifndef CONFIG_NUMA
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113#ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
115#endif
116#ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
118#endif
119 [N_CPU] = { { [0] = 1UL } },
120#endif /* NUMA */
121};
122EXPORT_SYMBOL(node_states);
123
c3d5f5f0
JL
124/* Protect totalram_pages and zone->managed_pages */
125static DEFINE_SPINLOCK(managed_page_count_lock);
126
6c231b7b 127unsigned long totalram_pages __read_mostly;
cb45b0e9 128unsigned long totalreserve_pages __read_mostly;
e48322ab 129unsigned long totalcma_pages __read_mostly;
ab8fabd4 130
1b76b02f 131int percpu_pagelist_fraction;
dcce284a 132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 133
bb14c2c7
VB
134/*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142static inline int get_pcppage_migratetype(struct page *page)
143{
144 return page->index;
145}
146
147static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148{
149 page->index = migratetype;
150}
151
452aa699
RW
152#ifdef CONFIG_PM_SLEEP
153/*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
160 */
c9e664f1
RW
161
162static gfp_t saved_gfp_mask;
163
164void pm_restore_gfp_mask(void)
452aa699
RW
165{
166 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
452aa699
RW
171}
172
c9e664f1 173void pm_restrict_gfp_mask(void)
452aa699 174{
452aa699 175 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
d0164adc 178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 179}
f90ac398
MG
180
181bool pm_suspended_storage(void)
182{
d0164adc 183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
184 return false;
185 return true;
186}
452aa699
RW
187#endif /* CONFIG_PM_SLEEP */
188
d9c23400 189#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 190unsigned int pageblock_order __read_mostly;
d9c23400
MG
191#endif
192
d98c7a09 193static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 194
1da177e4
LT
195/*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
1da177e4 205 */
2f1b6248 206int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 207#ifdef CONFIG_ZONE_DMA
2f1b6248 208 256,
4b51d669 209#endif
fb0e7942 210#ifdef CONFIG_ZONE_DMA32
2f1b6248 211 256,
fb0e7942 212#endif
e53ef38d 213#ifdef CONFIG_HIGHMEM
2a1e274a 214 32,
e53ef38d 215#endif
2a1e274a 216 32,
2f1b6248 217};
1da177e4
LT
218
219EXPORT_SYMBOL(totalram_pages);
1da177e4 220
15ad7cdc 221static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 222#ifdef CONFIG_ZONE_DMA
2f1b6248 223 "DMA",
4b51d669 224#endif
fb0e7942 225#ifdef CONFIG_ZONE_DMA32
2f1b6248 226 "DMA32",
fb0e7942 227#endif
2f1b6248 228 "Normal",
e53ef38d 229#ifdef CONFIG_HIGHMEM
2a1e274a 230 "HighMem",
e53ef38d 231#endif
2a1e274a 232 "Movable",
033fbae9
DW
233#ifdef CONFIG_ZONE_DEVICE
234 "Device",
235#endif
2f1b6248
CL
236};
237
60f30350
VB
238char * const migratetype_names[MIGRATE_TYPES] = {
239 "Unmovable",
240 "Movable",
241 "Reclaimable",
242 "HighAtomic",
243#ifdef CONFIG_CMA
244 "CMA",
245#endif
246#ifdef CONFIG_MEMORY_ISOLATION
247 "Isolate",
248#endif
249};
250
f1e61557
KS
251compound_page_dtor * const compound_page_dtors[] = {
252 NULL,
253 free_compound_page,
254#ifdef CONFIG_HUGETLB_PAGE
255 free_huge_page,
256#endif
9a982250
KS
257#ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 free_transhuge_page,
259#endif
f1e61557
KS
260};
261
1da177e4 262int min_free_kbytes = 1024;
42aa83cb 263int user_min_free_kbytes = -1;
795ae7a0 264int watermark_scale_factor = 10;
1da177e4 265
2c85f51d
JB
266static unsigned long __meminitdata nr_kernel_pages;
267static unsigned long __meminitdata nr_all_pages;
a3142c8e 268static unsigned long __meminitdata dma_reserve;
1da177e4 269
0ee332c1
TH
270#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273static unsigned long __initdata required_kernelcore;
274static unsigned long __initdata required_movablecore;
275static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 276static bool mirrored_kernelcore;
0ee332c1
TH
277
278/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279int movable_zone;
280EXPORT_SYMBOL(movable_zone);
281#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 282
418508c1
MS
283#if MAX_NUMNODES > 1
284int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 285int nr_online_nodes __read_mostly = 1;
418508c1 286EXPORT_SYMBOL(nr_node_ids);
62bc62a8 287EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
288#endif
289
9ef9acb0
MG
290int page_group_by_mobility_disabled __read_mostly;
291
3a80a7fa
MG
292#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293static inline void reset_deferred_meminit(pg_data_t *pgdat)
294{
864b9a39
MH
295 unsigned long max_initialise;
296 unsigned long reserved_lowmem;
297
298 /*
299 * Initialise at least 2G of a node but also take into account that
300 * two large system hashes that can take up 1GB for 0.25TB/node.
301 */
302 max_initialise = max(2UL << (30 - PAGE_SHIFT),
303 (pgdat->node_spanned_pages >> 8));
304
305 /*
306 * Compensate the all the memblock reservations (e.g. crash kernel)
307 * from the initial estimation to make sure we will initialize enough
308 * memory to boot.
309 */
310 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
311 pgdat->node_start_pfn + max_initialise);
312 max_initialise += reserved_lowmem;
313
314 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
3a80a7fa
MG
315 pgdat->first_deferred_pfn = ULONG_MAX;
316}
317
318/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 319static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 320{
ef70b6f4
MG
321 int nid = early_pfn_to_nid(pfn);
322
323 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
324 return true;
325
326 return false;
327}
328
329/*
330 * Returns false when the remaining initialisation should be deferred until
331 * later in the boot cycle when it can be parallelised.
332 */
333static inline bool update_defer_init(pg_data_t *pgdat,
334 unsigned long pfn, unsigned long zone_end,
335 unsigned long *nr_initialised)
336{
337 /* Always populate low zones for address-contrained allocations */
338 if (zone_end < pgdat_end_pfn(pgdat))
339 return true;
3a80a7fa 340 (*nr_initialised)++;
864b9a39 341 if ((*nr_initialised > pgdat->static_init_size) &&
3a80a7fa
MG
342 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
343 pgdat->first_deferred_pfn = pfn;
344 return false;
345 }
346
347 return true;
348}
349#else
350static inline void reset_deferred_meminit(pg_data_t *pgdat)
351{
352}
353
354static inline bool early_page_uninitialised(unsigned long pfn)
355{
356 return false;
357}
358
359static inline bool update_defer_init(pg_data_t *pgdat,
360 unsigned long pfn, unsigned long zone_end,
361 unsigned long *nr_initialised)
362{
363 return true;
364}
365#endif
366
0b423ca2
MG
367/* Return a pointer to the bitmap storing bits affecting a block of pages */
368static inline unsigned long *get_pageblock_bitmap(struct page *page,
369 unsigned long pfn)
370{
371#ifdef CONFIG_SPARSEMEM
372 return __pfn_to_section(pfn)->pageblock_flags;
373#else
374 return page_zone(page)->pageblock_flags;
375#endif /* CONFIG_SPARSEMEM */
376}
377
378static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
379{
380#ifdef CONFIG_SPARSEMEM
381 pfn &= (PAGES_PER_SECTION-1);
382 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
383#else
384 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386#endif /* CONFIG_SPARSEMEM */
387}
388
389/**
390 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
391 * @page: The page within the block of interest
392 * @pfn: The target page frame number
393 * @end_bitidx: The last bit of interest to retrieve
394 * @mask: mask of bits that the caller is interested in
395 *
396 * Return: pageblock_bits flags
397 */
398static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
399 unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
402{
403 unsigned long *bitmap;
404 unsigned long bitidx, word_bitidx;
405 unsigned long word;
406
407 bitmap = get_pageblock_bitmap(page, pfn);
408 bitidx = pfn_to_bitidx(page, pfn);
409 word_bitidx = bitidx / BITS_PER_LONG;
410 bitidx &= (BITS_PER_LONG-1);
411
412 word = bitmap[word_bitidx];
413 bitidx += end_bitidx;
414 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
415}
416
417unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
418 unsigned long end_bitidx,
419 unsigned long mask)
420{
421 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
422}
423
424static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
425{
426 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
427}
428
429/**
430 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
431 * @page: The page within the block of interest
432 * @flags: The flags to set
433 * @pfn: The target page frame number
434 * @end_bitidx: The last bit of interest
435 * @mask: mask of bits that the caller is interested in
436 */
437void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
438 unsigned long pfn,
439 unsigned long end_bitidx,
440 unsigned long mask)
441{
442 unsigned long *bitmap;
443 unsigned long bitidx, word_bitidx;
444 unsigned long old_word, word;
445
446 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
447
448 bitmap = get_pageblock_bitmap(page, pfn);
449 bitidx = pfn_to_bitidx(page, pfn);
450 word_bitidx = bitidx / BITS_PER_LONG;
451 bitidx &= (BITS_PER_LONG-1);
452
453 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
454
455 bitidx += end_bitidx;
456 mask <<= (BITS_PER_LONG - bitidx - 1);
457 flags <<= (BITS_PER_LONG - bitidx - 1);
458
459 word = READ_ONCE(bitmap[word_bitidx]);
460 for (;;) {
461 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
462 if (word == old_word)
463 break;
464 word = old_word;
465 }
466}
3a80a7fa 467
ee6f509c 468void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 469{
5d0f3f72
KM
470 if (unlikely(page_group_by_mobility_disabled &&
471 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
472 migratetype = MIGRATE_UNMOVABLE;
473
b2a0ac88
MG
474 set_pageblock_flags_group(page, (unsigned long)migratetype,
475 PB_migrate, PB_migrate_end);
476}
477
13e7444b 478#ifdef CONFIG_DEBUG_VM
c6a57e19 479static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 480{
bdc8cb98
DH
481 int ret = 0;
482 unsigned seq;
483 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 484 unsigned long sp, start_pfn;
c6a57e19 485
bdc8cb98
DH
486 do {
487 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
488 start_pfn = zone->zone_start_pfn;
489 sp = zone->spanned_pages;
108bcc96 490 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
491 ret = 1;
492 } while (zone_span_seqretry(zone, seq));
493
b5e6a5a2 494 if (ret)
613813e8
DH
495 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
496 pfn, zone_to_nid(zone), zone->name,
497 start_pfn, start_pfn + sp);
b5e6a5a2 498
bdc8cb98 499 return ret;
c6a57e19
DH
500}
501
502static int page_is_consistent(struct zone *zone, struct page *page)
503{
14e07298 504 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 505 return 0;
1da177e4 506 if (zone != page_zone(page))
c6a57e19
DH
507 return 0;
508
509 return 1;
510}
511/*
512 * Temporary debugging check for pages not lying within a given zone.
513 */
d73d3c9f 514static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
515{
516 if (page_outside_zone_boundaries(zone, page))
1da177e4 517 return 1;
c6a57e19
DH
518 if (!page_is_consistent(zone, page))
519 return 1;
520
1da177e4
LT
521 return 0;
522}
13e7444b 523#else
d73d3c9f 524static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
525{
526 return 0;
527}
528#endif
529
d230dec1
KS
530static void bad_page(struct page *page, const char *reason,
531 unsigned long bad_flags)
1da177e4 532{
d936cf9b
HD
533 static unsigned long resume;
534 static unsigned long nr_shown;
535 static unsigned long nr_unshown;
536
537 /*
538 * Allow a burst of 60 reports, then keep quiet for that minute;
539 * or allow a steady drip of one report per second.
540 */
541 if (nr_shown == 60) {
542 if (time_before(jiffies, resume)) {
543 nr_unshown++;
544 goto out;
545 }
546 if (nr_unshown) {
ff8e8116 547 pr_alert(
1e9e6365 548 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
549 nr_unshown);
550 nr_unshown = 0;
551 }
552 nr_shown = 0;
553 }
554 if (nr_shown++ == 0)
555 resume = jiffies + 60 * HZ;
556
ff8e8116 557 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 558 current->comm, page_to_pfn(page));
ff8e8116
VB
559 __dump_page(page, reason);
560 bad_flags &= page->flags;
561 if (bad_flags)
562 pr_alert("bad because of flags: %#lx(%pGp)\n",
563 bad_flags, &bad_flags);
4e462112 564 dump_page_owner(page);
3dc14741 565
4f31888c 566 print_modules();
1da177e4 567 dump_stack();
d936cf9b 568out:
8cc3b392 569 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 570 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
572}
573
1da177e4
LT
574/*
575 * Higher-order pages are called "compound pages". They are structured thusly:
576 *
1d798ca3 577 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 578 *
1d798ca3
KS
579 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
580 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 581 *
1d798ca3
KS
582 * The first tail page's ->compound_dtor holds the offset in array of compound
583 * page destructors. See compound_page_dtors.
1da177e4 584 *
1d798ca3 585 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 586 * This usage means that zero-order pages may not be compound.
1da177e4 587 */
d98c7a09 588
9a982250 589void free_compound_page(struct page *page)
d98c7a09 590{
d85f3385 591 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
592}
593
d00181b9 594void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
595{
596 int i;
597 int nr_pages = 1 << order;
598
f1e61557 599 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
600 set_compound_order(page, order);
601 __SetPageHead(page);
602 for (i = 1; i < nr_pages; i++) {
603 struct page *p = page + i;
58a84aa9 604 set_page_count(p, 0);
1c290f64 605 p->mapping = TAIL_MAPPING;
1d798ca3 606 set_compound_head(p, page);
18229df5 607 }
53f9263b 608 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
609}
610
c0a32fc5
SG
611#ifdef CONFIG_DEBUG_PAGEALLOC
612unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
613bool _debug_pagealloc_enabled __read_mostly
614 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 615EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
616bool _debug_guardpage_enabled __read_mostly;
617
031bc574
JK
618static int __init early_debug_pagealloc(char *buf)
619{
620 if (!buf)
621 return -EINVAL;
2a138dc7 622 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
623}
624early_param("debug_pagealloc", early_debug_pagealloc);
625
e30825f1
JK
626static bool need_debug_guardpage(void)
627{
031bc574
JK
628 /* If we don't use debug_pagealloc, we don't need guard page */
629 if (!debug_pagealloc_enabled())
630 return false;
631
f1c1e9f7
JK
632 if (!debug_guardpage_minorder())
633 return false;
634
e30825f1
JK
635 return true;
636}
637
638static void init_debug_guardpage(void)
639{
031bc574
JK
640 if (!debug_pagealloc_enabled())
641 return;
642
f1c1e9f7
JK
643 if (!debug_guardpage_minorder())
644 return;
645
e30825f1
JK
646 _debug_guardpage_enabled = true;
647}
648
649struct page_ext_operations debug_guardpage_ops = {
650 .need = need_debug_guardpage,
651 .init = init_debug_guardpage,
652};
c0a32fc5
SG
653
654static int __init debug_guardpage_minorder_setup(char *buf)
655{
656 unsigned long res;
657
658 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 659 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
660 return 0;
661 }
662 _debug_guardpage_minorder = res;
1170532b 663 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
664 return 0;
665}
f1c1e9f7 666early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 667
acbc15a4 668static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 669 unsigned int order, int migratetype)
c0a32fc5 670{
e30825f1
JK
671 struct page_ext *page_ext;
672
673 if (!debug_guardpage_enabled())
acbc15a4
JK
674 return false;
675
676 if (order >= debug_guardpage_minorder())
677 return false;
e30825f1
JK
678
679 page_ext = lookup_page_ext(page);
f86e4271 680 if (unlikely(!page_ext))
acbc15a4 681 return false;
f86e4271 682
e30825f1
JK
683 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684
2847cf95
JK
685 INIT_LIST_HEAD(&page->lru);
686 set_page_private(page, order);
687 /* Guard pages are not available for any usage */
688 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
689
690 return true;
c0a32fc5
SG
691}
692
2847cf95
JK
693static inline void clear_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype)
c0a32fc5 695{
e30825f1
JK
696 struct page_ext *page_ext;
697
698 if (!debug_guardpage_enabled())
699 return;
700
701 page_ext = lookup_page_ext(page);
f86e4271
YS
702 if (unlikely(!page_ext))
703 return;
704
e30825f1
JK
705 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
706
2847cf95
JK
707 set_page_private(page, 0);
708 if (!is_migrate_isolate(migratetype))
709 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
710}
711#else
980ac167 712struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
713static inline bool set_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype) { return false; }
2847cf95
JK
715static inline void clear_page_guard(struct zone *zone, struct page *page,
716 unsigned int order, int migratetype) {}
c0a32fc5
SG
717#endif
718
7aeb09f9 719static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 720{
4c21e2f2 721 set_page_private(page, order);
676165a8 722 __SetPageBuddy(page);
1da177e4
LT
723}
724
725static inline void rmv_page_order(struct page *page)
726{
676165a8 727 __ClearPageBuddy(page);
4c21e2f2 728 set_page_private(page, 0);
1da177e4
LT
729}
730
1da177e4
LT
731/*
732 * This function checks whether a page is free && is the buddy
733 * we can do coalesce a page and its buddy if
13ad59df 734 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 735 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
736 * (c) a page and its buddy have the same order &&
737 * (d) a page and its buddy are in the same zone.
676165a8 738 *
cf6fe945
WSH
739 * For recording whether a page is in the buddy system, we set ->_mapcount
740 * PAGE_BUDDY_MAPCOUNT_VALUE.
741 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
742 * serialized by zone->lock.
1da177e4 743 *
676165a8 744 * For recording page's order, we use page_private(page).
1da177e4 745 */
cb2b95e1 746static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 747 unsigned int order)
1da177e4 748{
c0a32fc5 749 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
4c5018ce
WY
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
c0a32fc5
SG
755 return 1;
756 }
757
cb2b95e1 758 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
759 /*
760 * zone check is done late to avoid uselessly
761 * calculating zone/node ids for pages that could
762 * never merge.
763 */
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
4c5018ce
WY
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
6aa3001b 769 return 1;
676165a8 770 }
6aa3001b 771 return 0;
1da177e4
LT
772}
773
774/*
775 * Freeing function for a buddy system allocator.
776 *
777 * The concept of a buddy system is to maintain direct-mapped table
778 * (containing bit values) for memory blocks of various "orders".
779 * The bottom level table contains the map for the smallest allocatable
780 * units of memory (here, pages), and each level above it describes
781 * pairs of units from the levels below, hence, "buddies".
782 * At a high level, all that happens here is marking the table entry
783 * at the bottom level available, and propagating the changes upward
784 * as necessary, plus some accounting needed to play nicely with other
785 * parts of the VM system.
786 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
787 * free pages of length of (1 << order) and marked with _mapcount
788 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
789 * field.
1da177e4 790 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
791 * other. That is, if we allocate a small block, and both were
792 * free, the remainder of the region must be split into blocks.
1da177e4 793 * If a block is freed, and its buddy is also free, then this
5f63b720 794 * triggers coalescing into a block of larger size.
1da177e4 795 *
6d49e352 796 * -- nyc
1da177e4
LT
797 */
798
48db57f8 799static inline void __free_one_page(struct page *page,
dc4b0caf 800 unsigned long pfn,
ed0ae21d
MG
801 struct zone *zone, unsigned int order,
802 int migratetype)
1da177e4 803{
76741e77
VB
804 unsigned long combined_pfn;
805 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 806 struct page *buddy;
d9dddbf5
VB
807 unsigned int max_order;
808
809 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 810
d29bb978 811 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 812 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 813
ed0ae21d 814 VM_BUG_ON(migratetype == -1);
d9dddbf5 815 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 816 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 817
76741e77 818 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 819 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 820
d9dddbf5 821continue_merging:
3c605096 822 while (order < max_order - 1) {
76741e77
VB
823 buddy_pfn = __find_buddy_pfn(pfn, order);
824 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
825
826 if (!pfn_valid_within(buddy_pfn))
827 goto done_merging;
cb2b95e1 828 if (!page_is_buddy(page, buddy, order))
d9dddbf5 829 goto done_merging;
c0a32fc5
SG
830 /*
831 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
832 * merge with it and move up one order.
833 */
834 if (page_is_guard(buddy)) {
2847cf95 835 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
836 } else {
837 list_del(&buddy->lru);
838 zone->free_area[order].nr_free--;
839 rmv_page_order(buddy);
840 }
76741e77
VB
841 combined_pfn = buddy_pfn & pfn;
842 page = page + (combined_pfn - pfn);
843 pfn = combined_pfn;
1da177e4
LT
844 order++;
845 }
d9dddbf5
VB
846 if (max_order < MAX_ORDER) {
847 /* If we are here, it means order is >= pageblock_order.
848 * We want to prevent merge between freepages on isolate
849 * pageblock and normal pageblock. Without this, pageblock
850 * isolation could cause incorrect freepage or CMA accounting.
851 *
852 * We don't want to hit this code for the more frequent
853 * low-order merging.
854 */
855 if (unlikely(has_isolate_pageblock(zone))) {
856 int buddy_mt;
857
76741e77
VB
858 buddy_pfn = __find_buddy_pfn(pfn, order);
859 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
860 buddy_mt = get_pageblock_migratetype(buddy);
861
862 if (migratetype != buddy_mt
863 && (is_migrate_isolate(migratetype) ||
864 is_migrate_isolate(buddy_mt)))
865 goto done_merging;
866 }
867 max_order++;
868 goto continue_merging;
869 }
870
871done_merging:
1da177e4 872 set_page_order(page, order);
6dda9d55
CZ
873
874 /*
875 * If this is not the largest possible page, check if the buddy
876 * of the next-highest order is free. If it is, it's possible
877 * that pages are being freed that will coalesce soon. In case,
878 * that is happening, add the free page to the tail of the list
879 * so it's less likely to be used soon and more likely to be merged
880 * as a higher order page
881 */
13ad59df 882 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 883 struct page *higher_page, *higher_buddy;
76741e77
VB
884 combined_pfn = buddy_pfn & pfn;
885 higher_page = page + (combined_pfn - pfn);
886 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
887 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
888 if (pfn_valid_within(buddy_pfn) &&
889 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
890 list_add_tail(&page->lru,
891 &zone->free_area[order].free_list[migratetype]);
892 goto out;
893 }
894 }
895
896 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
897out:
1da177e4
LT
898 zone->free_area[order].nr_free++;
899}
900
7bfec6f4
MG
901/*
902 * A bad page could be due to a number of fields. Instead of multiple branches,
903 * try and check multiple fields with one check. The caller must do a detailed
904 * check if necessary.
905 */
906static inline bool page_expected_state(struct page *page,
907 unsigned long check_flags)
908{
909 if (unlikely(atomic_read(&page->_mapcount) != -1))
910 return false;
911
912 if (unlikely((unsigned long)page->mapping |
913 page_ref_count(page) |
914#ifdef CONFIG_MEMCG
915 (unsigned long)page->mem_cgroup |
916#endif
917 (page->flags & check_flags)))
918 return false;
919
920 return true;
921}
922
bb552ac6 923static void free_pages_check_bad(struct page *page)
1da177e4 924{
7bfec6f4
MG
925 const char *bad_reason;
926 unsigned long bad_flags;
927
7bfec6f4
MG
928 bad_reason = NULL;
929 bad_flags = 0;
f0b791a3 930
53f9263b 931 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
932 bad_reason = "nonzero mapcount";
933 if (unlikely(page->mapping != NULL))
934 bad_reason = "non-NULL mapping";
fe896d18 935 if (unlikely(page_ref_count(page) != 0))
0139aa7b 936 bad_reason = "nonzero _refcount";
f0b791a3
DH
937 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
938 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
940 }
9edad6ea
JW
941#ifdef CONFIG_MEMCG
942 if (unlikely(page->mem_cgroup))
943 bad_reason = "page still charged to cgroup";
944#endif
7bfec6f4 945 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
946}
947
948static inline int free_pages_check(struct page *page)
949{
da838d4f 950 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 951 return 0;
bb552ac6
MG
952
953 /* Something has gone sideways, find it */
954 free_pages_check_bad(page);
7bfec6f4 955 return 1;
1da177e4
LT
956}
957
4db7548c
MG
958static int free_tail_pages_check(struct page *head_page, struct page *page)
959{
960 int ret = 1;
961
962 /*
963 * We rely page->lru.next never has bit 0 set, unless the page
964 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
965 */
966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
967
968 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
969 ret = 0;
970 goto out;
971 }
972 switch (page - head_page) {
973 case 1:
974 /* the first tail page: ->mapping is compound_mapcount() */
975 if (unlikely(compound_mapcount(page))) {
976 bad_page(page, "nonzero compound_mapcount", 0);
977 goto out;
978 }
979 break;
980 case 2:
981 /*
982 * the second tail page: ->mapping is
983 * page_deferred_list().next -- ignore value.
984 */
985 break;
986 default:
987 if (page->mapping != TAIL_MAPPING) {
988 bad_page(page, "corrupted mapping in tail page", 0);
989 goto out;
990 }
991 break;
992 }
993 if (unlikely(!PageTail(page))) {
994 bad_page(page, "PageTail not set", 0);
995 goto out;
996 }
997 if (unlikely(compound_head(page) != head_page)) {
998 bad_page(page, "compound_head not consistent", 0);
999 goto out;
1000 }
1001 ret = 0;
1002out:
1003 page->mapping = NULL;
1004 clear_compound_head(page);
1005 return ret;
1006}
1007
e2769dbd
MG
1008static __always_inline bool free_pages_prepare(struct page *page,
1009 unsigned int order, bool check_free)
4db7548c 1010{
e2769dbd 1011 int bad = 0;
4db7548c 1012
4db7548c
MG
1013 VM_BUG_ON_PAGE(PageTail(page), page);
1014
e2769dbd
MG
1015 trace_mm_page_free(page, order);
1016 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1017
1018 /*
1019 * Check tail pages before head page information is cleared to
1020 * avoid checking PageCompound for order-0 pages.
1021 */
1022 if (unlikely(order)) {
1023 bool compound = PageCompound(page);
1024 int i;
1025
1026 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1027
9a73f61b
KS
1028 if (compound)
1029 ClearPageDoubleMap(page);
e2769dbd
MG
1030 for (i = 1; i < (1 << order); i++) {
1031 if (compound)
1032 bad += free_tail_pages_check(page, page + i);
1033 if (unlikely(free_pages_check(page + i))) {
1034 bad++;
1035 continue;
1036 }
1037 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 }
1039 }
bda807d4 1040 if (PageMappingFlags(page))
4db7548c 1041 page->mapping = NULL;
c4159a75 1042 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1043 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1044 if (check_free)
1045 bad += free_pages_check(page);
1046 if (bad)
1047 return false;
4db7548c 1048
e2769dbd
MG
1049 page_cpupid_reset_last(page);
1050 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 reset_page_owner(page, order);
4db7548c
MG
1052
1053 if (!PageHighMem(page)) {
1054 debug_check_no_locks_freed(page_address(page),
e2769dbd 1055 PAGE_SIZE << order);
4db7548c 1056 debug_check_no_obj_freed(page_address(page),
e2769dbd 1057 PAGE_SIZE << order);
4db7548c 1058 }
e2769dbd
MG
1059 arch_free_page(page, order);
1060 kernel_poison_pages(page, 1 << order, 0);
1061 kernel_map_pages(page, 1 << order, 0);
29b52de1 1062 kasan_free_pages(page, order);
4db7548c 1063
4db7548c
MG
1064 return true;
1065}
1066
e2769dbd
MG
1067#ifdef CONFIG_DEBUG_VM
1068static inline bool free_pcp_prepare(struct page *page)
1069{
1070 return free_pages_prepare(page, 0, true);
1071}
1072
1073static inline bool bulkfree_pcp_prepare(struct page *page)
1074{
1075 return false;
1076}
1077#else
1078static bool free_pcp_prepare(struct page *page)
1079{
1080 return free_pages_prepare(page, 0, false);
1081}
1082
4db7548c
MG
1083static bool bulkfree_pcp_prepare(struct page *page)
1084{
1085 return free_pages_check(page);
1086}
1087#endif /* CONFIG_DEBUG_VM */
1088
1da177e4 1089/*
5f8dcc21 1090 * Frees a number of pages from the PCP lists
1da177e4 1091 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1092 * count is the number of pages to free.
1da177e4
LT
1093 *
1094 * If the zone was previously in an "all pages pinned" state then look to
1095 * see if this freeing clears that state.
1096 *
1097 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1098 * pinned" detection logic.
1099 */
5f8dcc21
MG
1100static void free_pcppages_bulk(struct zone *zone, int count,
1101 struct per_cpu_pages *pcp)
1da177e4 1102{
5f8dcc21 1103 int migratetype = 0;
a6f9edd6 1104 int batch_free = 0;
3777999d 1105 bool isolated_pageblocks;
5f8dcc21 1106
d34b0733 1107 spin_lock(&zone->lock);
3777999d 1108 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1109
e5b31ac2 1110 while (count) {
48db57f8 1111 struct page *page;
5f8dcc21
MG
1112 struct list_head *list;
1113
1114 /*
a6f9edd6
MG
1115 * Remove pages from lists in a round-robin fashion. A
1116 * batch_free count is maintained that is incremented when an
1117 * empty list is encountered. This is so more pages are freed
1118 * off fuller lists instead of spinning excessively around empty
1119 * lists
5f8dcc21
MG
1120 */
1121 do {
a6f9edd6 1122 batch_free++;
5f8dcc21
MG
1123 if (++migratetype == MIGRATE_PCPTYPES)
1124 migratetype = 0;
1125 list = &pcp->lists[migratetype];
1126 } while (list_empty(list));
48db57f8 1127
1d16871d
NK
1128 /* This is the only non-empty list. Free them all. */
1129 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1130 batch_free = count;
1d16871d 1131
a6f9edd6 1132 do {
770c8aaa
BZ
1133 int mt; /* migratetype of the to-be-freed page */
1134
a16601c5 1135 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1136 /* must delete as __free_one_page list manipulates */
1137 list_del(&page->lru);
aa016d14 1138
bb14c2c7 1139 mt = get_pcppage_migratetype(page);
aa016d14
VB
1140 /* MIGRATE_ISOLATE page should not go to pcplists */
1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1142 /* Pageblock could have been isolated meanwhile */
3777999d 1143 if (unlikely(isolated_pageblocks))
51bb1a40 1144 mt = get_pageblock_migratetype(page);
51bb1a40 1145
4db7548c
MG
1146 if (bulkfree_pcp_prepare(page))
1147 continue;
1148
dc4b0caf 1149 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1150 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1151 } while (--count && --batch_free && !list_empty(list));
1da177e4 1152 }
d34b0733 1153 spin_unlock(&zone->lock);
1da177e4
LT
1154}
1155
dc4b0caf
MG
1156static void free_one_page(struct zone *zone,
1157 struct page *page, unsigned long pfn,
7aeb09f9 1158 unsigned int order,
ed0ae21d 1159 int migratetype)
1da177e4 1160{
d34b0733 1161 spin_lock(&zone->lock);
ad53f92e
JK
1162 if (unlikely(has_isolate_pageblock(zone) ||
1163 is_migrate_isolate(migratetype))) {
1164 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1165 }
dc4b0caf 1166 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1167 spin_unlock(&zone->lock);
48db57f8
NP
1168}
1169
1e8ce83c
RH
1170static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1171 unsigned long zone, int nid)
1172{
1e8ce83c 1173 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1174 init_page_count(page);
1175 page_mapcount_reset(page);
1176 page_cpupid_reset_last(page);
1e8ce83c 1177
1e8ce83c
RH
1178 INIT_LIST_HEAD(&page->lru);
1179#ifdef WANT_PAGE_VIRTUAL
1180 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1181 if (!is_highmem_idx(zone))
1182 set_page_address(page, __va(pfn << PAGE_SHIFT));
1183#endif
1184}
1185
1186static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1187 int nid)
1188{
1189 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1190}
1191
7e18adb4
MG
1192#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1193static void init_reserved_page(unsigned long pfn)
1194{
1195 pg_data_t *pgdat;
1196 int nid, zid;
1197
1198 if (!early_page_uninitialised(pfn))
1199 return;
1200
1201 nid = early_pfn_to_nid(pfn);
1202 pgdat = NODE_DATA(nid);
1203
1204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1205 struct zone *zone = &pgdat->node_zones[zid];
1206
1207 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1208 break;
1209 }
1210 __init_single_pfn(pfn, zid, nid);
1211}
1212#else
1213static inline void init_reserved_page(unsigned long pfn)
1214{
1215}
1216#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1217
92923ca3
NZ
1218/*
1219 * Initialised pages do not have PageReserved set. This function is
1220 * called for each range allocated by the bootmem allocator and
1221 * marks the pages PageReserved. The remaining valid pages are later
1222 * sent to the buddy page allocator.
1223 */
4b50bcc7 1224void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1225{
1226 unsigned long start_pfn = PFN_DOWN(start);
1227 unsigned long end_pfn = PFN_UP(end);
1228
7e18adb4
MG
1229 for (; start_pfn < end_pfn; start_pfn++) {
1230 if (pfn_valid(start_pfn)) {
1231 struct page *page = pfn_to_page(start_pfn);
1232
1233 init_reserved_page(start_pfn);
1d798ca3
KS
1234
1235 /* Avoid false-positive PageTail() */
1236 INIT_LIST_HEAD(&page->lru);
1237
7e18adb4
MG
1238 SetPageReserved(page);
1239 }
1240 }
92923ca3
NZ
1241}
1242
ec95f53a
KM
1243static void __free_pages_ok(struct page *page, unsigned int order)
1244{
d34b0733 1245 unsigned long flags;
95e34412 1246 int migratetype;
dc4b0caf 1247 unsigned long pfn = page_to_pfn(page);
ec95f53a 1248
e2769dbd 1249 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1250 return;
1251
cfc47a28 1252 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1253 local_irq_save(flags);
1254 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1255 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1256 local_irq_restore(flags);
1da177e4
LT
1257}
1258
949698a3 1259static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1260{
c3993076 1261 unsigned int nr_pages = 1 << order;
e2d0bd2b 1262 struct page *p = page;
c3993076 1263 unsigned int loop;
a226f6c8 1264
e2d0bd2b
YL
1265 prefetchw(p);
1266 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1267 prefetchw(p + 1);
c3993076
JW
1268 __ClearPageReserved(p);
1269 set_page_count(p, 0);
a226f6c8 1270 }
e2d0bd2b
YL
1271 __ClearPageReserved(p);
1272 set_page_count(p, 0);
c3993076 1273
e2d0bd2b 1274 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1275 set_page_refcounted(page);
1276 __free_pages(page, order);
a226f6c8
DH
1277}
1278
75a592a4
MG
1279#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1280 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1281
75a592a4
MG
1282static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1283
1284int __meminit early_pfn_to_nid(unsigned long pfn)
1285{
7ace9917 1286 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1287 int nid;
1288
7ace9917 1289 spin_lock(&early_pfn_lock);
75a592a4 1290 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1291 if (nid < 0)
e4568d38 1292 nid = first_online_node;
7ace9917
MG
1293 spin_unlock(&early_pfn_lock);
1294
1295 return nid;
75a592a4
MG
1296}
1297#endif
1298
1299#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1300static inline bool __meminit __maybe_unused
1301meminit_pfn_in_nid(unsigned long pfn, int node,
1302 struct mminit_pfnnid_cache *state)
75a592a4
MG
1303{
1304 int nid;
1305
1306 nid = __early_pfn_to_nid(pfn, state);
1307 if (nid >= 0 && nid != node)
1308 return false;
1309 return true;
1310}
1311
1312/* Only safe to use early in boot when initialisation is single-threaded */
1313static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314{
1315 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1316}
1317
1318#else
1319
1320static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1321{
1322 return true;
1323}
d73d3c9f
MK
1324static inline bool __meminit __maybe_unused
1325meminit_pfn_in_nid(unsigned long pfn, int node,
1326 struct mminit_pfnnid_cache *state)
75a592a4
MG
1327{
1328 return true;
1329}
1330#endif
1331
1332
0e1cc95b 1333void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1334 unsigned int order)
1335{
1336 if (early_page_uninitialised(pfn))
1337 return;
949698a3 1338 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1339}
1340
7cf91a98
JK
1341/*
1342 * Check that the whole (or subset of) a pageblock given by the interval of
1343 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1344 * with the migration of free compaction scanner. The scanners then need to
1345 * use only pfn_valid_within() check for arches that allow holes within
1346 * pageblocks.
1347 *
1348 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1349 *
1350 * It's possible on some configurations to have a setup like node0 node1 node0
1351 * i.e. it's possible that all pages within a zones range of pages do not
1352 * belong to a single zone. We assume that a border between node0 and node1
1353 * can occur within a single pageblock, but not a node0 node1 node0
1354 * interleaving within a single pageblock. It is therefore sufficient to check
1355 * the first and last page of a pageblock and avoid checking each individual
1356 * page in a pageblock.
1357 */
1358struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1359 unsigned long end_pfn, struct zone *zone)
1360{
1361 struct page *start_page;
1362 struct page *end_page;
1363
1364 /* end_pfn is one past the range we are checking */
1365 end_pfn--;
1366
1367 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1368 return NULL;
1369
2d070eab
MH
1370 start_page = pfn_to_online_page(start_pfn);
1371 if (!start_page)
1372 return NULL;
7cf91a98
JK
1373
1374 if (page_zone(start_page) != zone)
1375 return NULL;
1376
1377 end_page = pfn_to_page(end_pfn);
1378
1379 /* This gives a shorter code than deriving page_zone(end_page) */
1380 if (page_zone_id(start_page) != page_zone_id(end_page))
1381 return NULL;
1382
1383 return start_page;
1384}
1385
1386void set_zone_contiguous(struct zone *zone)
1387{
1388 unsigned long block_start_pfn = zone->zone_start_pfn;
1389 unsigned long block_end_pfn;
1390
1391 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1392 for (; block_start_pfn < zone_end_pfn(zone);
1393 block_start_pfn = block_end_pfn,
1394 block_end_pfn += pageblock_nr_pages) {
1395
1396 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1397
1398 if (!__pageblock_pfn_to_page(block_start_pfn,
1399 block_end_pfn, zone))
1400 return;
1401 }
1402
1403 /* We confirm that there is no hole */
1404 zone->contiguous = true;
1405}
1406
1407void clear_zone_contiguous(struct zone *zone)
1408{
1409 zone->contiguous = false;
1410}
1411
7e18adb4 1412#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1413static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1414 unsigned long pfn, int nr_pages)
1415{
1416 int i;
1417
1418 if (!page)
1419 return;
1420
1421 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1422 if (nr_pages == pageblock_nr_pages &&
1423 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1424 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1425 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1426 return;
1427 }
1428
e780149b
XQ
1429 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1430 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1431 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1432 __free_pages_boot_core(page, 0);
e780149b 1433 }
a4de83dd
MG
1434}
1435
d3cd131d
NS
1436/* Completion tracking for deferred_init_memmap() threads */
1437static atomic_t pgdat_init_n_undone __initdata;
1438static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1439
1440static inline void __init pgdat_init_report_one_done(void)
1441{
1442 if (atomic_dec_and_test(&pgdat_init_n_undone))
1443 complete(&pgdat_init_all_done_comp);
1444}
0e1cc95b 1445
7e18adb4 1446/* Initialise remaining memory on a node */
0e1cc95b 1447static int __init deferred_init_memmap(void *data)
7e18adb4 1448{
0e1cc95b
MG
1449 pg_data_t *pgdat = data;
1450 int nid = pgdat->node_id;
7e18adb4
MG
1451 struct mminit_pfnnid_cache nid_init_state = { };
1452 unsigned long start = jiffies;
1453 unsigned long nr_pages = 0;
1454 unsigned long walk_start, walk_end;
1455 int i, zid;
1456 struct zone *zone;
7e18adb4 1457 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1458 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1459
0e1cc95b 1460 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1461 pgdat_init_report_one_done();
0e1cc95b
MG
1462 return 0;
1463 }
1464
1465 /* Bind memory initialisation thread to a local node if possible */
1466 if (!cpumask_empty(cpumask))
1467 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1468
1469 /* Sanity check boundaries */
1470 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1471 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1472 pgdat->first_deferred_pfn = ULONG_MAX;
1473
1474 /* Only the highest zone is deferred so find it */
1475 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1476 zone = pgdat->node_zones + zid;
1477 if (first_init_pfn < zone_end_pfn(zone))
1478 break;
1479 }
1480
1481 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1482 unsigned long pfn, end_pfn;
54608c3f 1483 struct page *page = NULL;
a4de83dd
MG
1484 struct page *free_base_page = NULL;
1485 unsigned long free_base_pfn = 0;
1486 int nr_to_free = 0;
7e18adb4
MG
1487
1488 end_pfn = min(walk_end, zone_end_pfn(zone));
1489 pfn = first_init_pfn;
1490 if (pfn < walk_start)
1491 pfn = walk_start;
1492 if (pfn < zone->zone_start_pfn)
1493 pfn = zone->zone_start_pfn;
1494
1495 for (; pfn < end_pfn; pfn++) {
54608c3f 1496 if (!pfn_valid_within(pfn))
a4de83dd 1497 goto free_range;
7e18adb4 1498
54608c3f
MG
1499 /*
1500 * Ensure pfn_valid is checked every
e780149b 1501 * pageblock_nr_pages for memory holes
54608c3f 1502 */
e780149b 1503 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1504 if (!pfn_valid(pfn)) {
1505 page = NULL;
a4de83dd 1506 goto free_range;
54608c3f
MG
1507 }
1508 }
1509
1510 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1511 page = NULL;
a4de83dd 1512 goto free_range;
54608c3f
MG
1513 }
1514
1515 /* Minimise pfn page lookups and scheduler checks */
e780149b 1516 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1517 page++;
1518 } else {
a4de83dd
MG
1519 nr_pages += nr_to_free;
1520 deferred_free_range(free_base_page,
1521 free_base_pfn, nr_to_free);
1522 free_base_page = NULL;
1523 free_base_pfn = nr_to_free = 0;
1524
54608c3f
MG
1525 page = pfn_to_page(pfn);
1526 cond_resched();
1527 }
7e18adb4
MG
1528
1529 if (page->flags) {
1530 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1531 goto free_range;
7e18adb4
MG
1532 }
1533
1534 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1535 if (!free_base_page) {
1536 free_base_page = page;
1537 free_base_pfn = pfn;
1538 nr_to_free = 0;
1539 }
1540 nr_to_free++;
1541
1542 /* Where possible, batch up pages for a single free */
1543 continue;
1544free_range:
1545 /* Free the current block of pages to allocator */
1546 nr_pages += nr_to_free;
1547 deferred_free_range(free_base_page, free_base_pfn,
1548 nr_to_free);
1549 free_base_page = NULL;
1550 free_base_pfn = nr_to_free = 0;
7e18adb4 1551 }
e780149b
XQ
1552 /* Free the last block of pages to allocator */
1553 nr_pages += nr_to_free;
1554 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1555
7e18adb4
MG
1556 first_init_pfn = max(end_pfn, first_init_pfn);
1557 }
1558
1559 /* Sanity check that the next zone really is unpopulated */
1560 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1561
0e1cc95b 1562 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1563 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1564
1565 pgdat_init_report_one_done();
0e1cc95b
MG
1566 return 0;
1567}
7cf91a98 1568#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1569
1570void __init page_alloc_init_late(void)
1571{
7cf91a98
JK
1572 struct zone *zone;
1573
1574#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1575 int nid;
1576
d3cd131d
NS
1577 /* There will be num_node_state(N_MEMORY) threads */
1578 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1579 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1580 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1581 }
1582
1583 /* Block until all are initialised */
d3cd131d 1584 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1585
1586 /* Reinit limits that are based on free pages after the kernel is up */
1587 files_maxfiles_init();
7cf91a98
JK
1588#endif
1589
1590 for_each_populated_zone(zone)
1591 set_zone_contiguous(zone);
7e18adb4 1592}
7e18adb4 1593
47118af0 1594#ifdef CONFIG_CMA
9cf510a5 1595/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1596void __init init_cma_reserved_pageblock(struct page *page)
1597{
1598 unsigned i = pageblock_nr_pages;
1599 struct page *p = page;
1600
1601 do {
1602 __ClearPageReserved(p);
1603 set_page_count(p, 0);
1604 } while (++p, --i);
1605
47118af0 1606 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1607
1608 if (pageblock_order >= MAX_ORDER) {
1609 i = pageblock_nr_pages;
1610 p = page;
1611 do {
1612 set_page_refcounted(p);
1613 __free_pages(p, MAX_ORDER - 1);
1614 p += MAX_ORDER_NR_PAGES;
1615 } while (i -= MAX_ORDER_NR_PAGES);
1616 } else {
1617 set_page_refcounted(page);
1618 __free_pages(page, pageblock_order);
1619 }
1620
3dcc0571 1621 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1622}
1623#endif
1da177e4
LT
1624
1625/*
1626 * The order of subdivision here is critical for the IO subsystem.
1627 * Please do not alter this order without good reasons and regression
1628 * testing. Specifically, as large blocks of memory are subdivided,
1629 * the order in which smaller blocks are delivered depends on the order
1630 * they're subdivided in this function. This is the primary factor
1631 * influencing the order in which pages are delivered to the IO
1632 * subsystem according to empirical testing, and this is also justified
1633 * by considering the behavior of a buddy system containing a single
1634 * large block of memory acted on by a series of small allocations.
1635 * This behavior is a critical factor in sglist merging's success.
1636 *
6d49e352 1637 * -- nyc
1da177e4 1638 */
085cc7d5 1639static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1640 int low, int high, struct free_area *area,
1641 int migratetype)
1da177e4
LT
1642{
1643 unsigned long size = 1 << high;
1644
1645 while (high > low) {
1646 area--;
1647 high--;
1648 size >>= 1;
309381fe 1649 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1650
acbc15a4
JK
1651 /*
1652 * Mark as guard pages (or page), that will allow to
1653 * merge back to allocator when buddy will be freed.
1654 * Corresponding page table entries will not be touched,
1655 * pages will stay not present in virtual address space
1656 */
1657 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1658 continue;
acbc15a4 1659
b2a0ac88 1660 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1661 area->nr_free++;
1662 set_page_order(&page[size], high);
1663 }
1da177e4
LT
1664}
1665
4e611801 1666static void check_new_page_bad(struct page *page)
1da177e4 1667{
4e611801
VB
1668 const char *bad_reason = NULL;
1669 unsigned long bad_flags = 0;
7bfec6f4 1670
53f9263b 1671 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1672 bad_reason = "nonzero mapcount";
1673 if (unlikely(page->mapping != NULL))
1674 bad_reason = "non-NULL mapping";
fe896d18 1675 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1676 bad_reason = "nonzero _count";
f4c18e6f
NH
1677 if (unlikely(page->flags & __PG_HWPOISON)) {
1678 bad_reason = "HWPoisoned (hardware-corrupted)";
1679 bad_flags = __PG_HWPOISON;
e570f56c
NH
1680 /* Don't complain about hwpoisoned pages */
1681 page_mapcount_reset(page); /* remove PageBuddy */
1682 return;
f4c18e6f 1683 }
f0b791a3
DH
1684 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1685 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1686 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1687 }
9edad6ea
JW
1688#ifdef CONFIG_MEMCG
1689 if (unlikely(page->mem_cgroup))
1690 bad_reason = "page still charged to cgroup";
1691#endif
4e611801
VB
1692 bad_page(page, bad_reason, bad_flags);
1693}
1694
1695/*
1696 * This page is about to be returned from the page allocator
1697 */
1698static inline int check_new_page(struct page *page)
1699{
1700 if (likely(page_expected_state(page,
1701 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1702 return 0;
1703
1704 check_new_page_bad(page);
1705 return 1;
2a7684a2
WF
1706}
1707
bd33ef36 1708static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1709{
1710 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1711 page_poisoning_enabled();
1414c7f4
LA
1712}
1713
479f854a
MG
1714#ifdef CONFIG_DEBUG_VM
1715static bool check_pcp_refill(struct page *page)
1716{
1717 return false;
1718}
1719
1720static bool check_new_pcp(struct page *page)
1721{
1722 return check_new_page(page);
1723}
1724#else
1725static bool check_pcp_refill(struct page *page)
1726{
1727 return check_new_page(page);
1728}
1729static bool check_new_pcp(struct page *page)
1730{
1731 return false;
1732}
1733#endif /* CONFIG_DEBUG_VM */
1734
1735static bool check_new_pages(struct page *page, unsigned int order)
1736{
1737 int i;
1738 for (i = 0; i < (1 << order); i++) {
1739 struct page *p = page + i;
1740
1741 if (unlikely(check_new_page(p)))
1742 return true;
1743 }
1744
1745 return false;
1746}
1747
46f24fd8
JK
1748inline void post_alloc_hook(struct page *page, unsigned int order,
1749 gfp_t gfp_flags)
1750{
1751 set_page_private(page, 0);
1752 set_page_refcounted(page);
1753
1754 arch_alloc_page(page, order);
1755 kernel_map_pages(page, 1 << order, 1);
1756 kernel_poison_pages(page, 1 << order, 1);
1757 kasan_alloc_pages(page, order);
1758 set_page_owner(page, order, gfp_flags);
1759}
1760
479f854a 1761static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1762 unsigned int alloc_flags)
2a7684a2
WF
1763{
1764 int i;
689bcebf 1765
46f24fd8 1766 post_alloc_hook(page, order, gfp_flags);
17cf4406 1767
bd33ef36 1768 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1769 for (i = 0; i < (1 << order); i++)
1770 clear_highpage(page + i);
17cf4406
NP
1771
1772 if (order && (gfp_flags & __GFP_COMP))
1773 prep_compound_page(page, order);
1774
75379191 1775 /*
2f064f34 1776 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1777 * allocate the page. The expectation is that the caller is taking
1778 * steps that will free more memory. The caller should avoid the page
1779 * being used for !PFMEMALLOC purposes.
1780 */
2f064f34
MH
1781 if (alloc_flags & ALLOC_NO_WATERMARKS)
1782 set_page_pfmemalloc(page);
1783 else
1784 clear_page_pfmemalloc(page);
1da177e4
LT
1785}
1786
56fd56b8
MG
1787/*
1788 * Go through the free lists for the given migratetype and remove
1789 * the smallest available page from the freelists
1790 */
728ec980
MG
1791static inline
1792struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1793 int migratetype)
1794{
1795 unsigned int current_order;
b8af2941 1796 struct free_area *area;
56fd56b8
MG
1797 struct page *page;
1798
1799 /* Find a page of the appropriate size in the preferred list */
1800 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1801 area = &(zone->free_area[current_order]);
a16601c5 1802 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1803 struct page, lru);
a16601c5
GT
1804 if (!page)
1805 continue;
56fd56b8
MG
1806 list_del(&page->lru);
1807 rmv_page_order(page);
1808 area->nr_free--;
56fd56b8 1809 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1810 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1811 return page;
1812 }
1813
1814 return NULL;
1815}
1816
1817
b2a0ac88
MG
1818/*
1819 * This array describes the order lists are fallen back to when
1820 * the free lists for the desirable migrate type are depleted
1821 */
47118af0 1822static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1823 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1824 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1825 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1826#ifdef CONFIG_CMA
974a786e 1827 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1828#endif
194159fb 1829#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1830 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1831#endif
b2a0ac88
MG
1832};
1833
dc67647b
JK
1834#ifdef CONFIG_CMA
1835static struct page *__rmqueue_cma_fallback(struct zone *zone,
1836 unsigned int order)
1837{
1838 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1839}
1840#else
1841static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1842 unsigned int order) { return NULL; }
1843#endif
1844
c361be55
MG
1845/*
1846 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1847 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1848 * boundary. If alignment is required, use move_freepages_block()
1849 */
02aa0cdd 1850static int move_freepages(struct zone *zone,
b69a7288 1851 struct page *start_page, struct page *end_page,
02aa0cdd 1852 int migratetype, int *num_movable)
c361be55
MG
1853{
1854 struct page *page;
d00181b9 1855 unsigned int order;
d100313f 1856 int pages_moved = 0;
c361be55
MG
1857
1858#ifndef CONFIG_HOLES_IN_ZONE
1859 /*
1860 * page_zone is not safe to call in this context when
1861 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1862 * anyway as we check zone boundaries in move_freepages_block().
1863 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1864 * grouping pages by mobility
c361be55 1865 */
97ee4ba7 1866 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1867#endif
1868
02aa0cdd
VB
1869 if (num_movable)
1870 *num_movable = 0;
1871
c361be55
MG
1872 for (page = start_page; page <= end_page;) {
1873 if (!pfn_valid_within(page_to_pfn(page))) {
1874 page++;
1875 continue;
1876 }
1877
f073bdc5
AB
1878 /* Make sure we are not inadvertently changing nodes */
1879 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1880
c361be55 1881 if (!PageBuddy(page)) {
02aa0cdd
VB
1882 /*
1883 * We assume that pages that could be isolated for
1884 * migration are movable. But we don't actually try
1885 * isolating, as that would be expensive.
1886 */
1887 if (num_movable &&
1888 (PageLRU(page) || __PageMovable(page)))
1889 (*num_movable)++;
1890
c361be55
MG
1891 page++;
1892 continue;
1893 }
1894
1895 order = page_order(page);
84be48d8
KS
1896 list_move(&page->lru,
1897 &zone->free_area[order].free_list[migratetype]);
c361be55 1898 page += 1 << order;
d100313f 1899 pages_moved += 1 << order;
c361be55
MG
1900 }
1901
d100313f 1902 return pages_moved;
c361be55
MG
1903}
1904
ee6f509c 1905int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1906 int migratetype, int *num_movable)
c361be55
MG
1907{
1908 unsigned long start_pfn, end_pfn;
1909 struct page *start_page, *end_page;
1910
1911 start_pfn = page_to_pfn(page);
d9c23400 1912 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1913 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1914 end_page = start_page + pageblock_nr_pages - 1;
1915 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1916
1917 /* Do not cross zone boundaries */
108bcc96 1918 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1919 start_page = page;
108bcc96 1920 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1921 return 0;
1922
02aa0cdd
VB
1923 return move_freepages(zone, start_page, end_page, migratetype,
1924 num_movable);
c361be55
MG
1925}
1926
2f66a68f
MG
1927static void change_pageblock_range(struct page *pageblock_page,
1928 int start_order, int migratetype)
1929{
1930 int nr_pageblocks = 1 << (start_order - pageblock_order);
1931
1932 while (nr_pageblocks--) {
1933 set_pageblock_migratetype(pageblock_page, migratetype);
1934 pageblock_page += pageblock_nr_pages;
1935 }
1936}
1937
fef903ef 1938/*
9c0415eb
VB
1939 * When we are falling back to another migratetype during allocation, try to
1940 * steal extra free pages from the same pageblocks to satisfy further
1941 * allocations, instead of polluting multiple pageblocks.
1942 *
1943 * If we are stealing a relatively large buddy page, it is likely there will
1944 * be more free pages in the pageblock, so try to steal them all. For
1945 * reclaimable and unmovable allocations, we steal regardless of page size,
1946 * as fragmentation caused by those allocations polluting movable pageblocks
1947 * is worse than movable allocations stealing from unmovable and reclaimable
1948 * pageblocks.
fef903ef 1949 */
4eb7dce6
JK
1950static bool can_steal_fallback(unsigned int order, int start_mt)
1951{
1952 /*
1953 * Leaving this order check is intended, although there is
1954 * relaxed order check in next check. The reason is that
1955 * we can actually steal whole pageblock if this condition met,
1956 * but, below check doesn't guarantee it and that is just heuristic
1957 * so could be changed anytime.
1958 */
1959 if (order >= pageblock_order)
1960 return true;
1961
1962 if (order >= pageblock_order / 2 ||
1963 start_mt == MIGRATE_RECLAIMABLE ||
1964 start_mt == MIGRATE_UNMOVABLE ||
1965 page_group_by_mobility_disabled)
1966 return true;
1967
1968 return false;
1969}
1970
1971/*
1972 * This function implements actual steal behaviour. If order is large enough,
1973 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1974 * pageblock to our migratetype and determine how many already-allocated pages
1975 * are there in the pageblock with a compatible migratetype. If at least half
1976 * of pages are free or compatible, we can change migratetype of the pageblock
1977 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1978 */
1979static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 1980 int start_type, bool whole_block)
fef903ef 1981{
d00181b9 1982 unsigned int current_order = page_order(page);
3bc48f96 1983 struct free_area *area;
02aa0cdd
VB
1984 int free_pages, movable_pages, alike_pages;
1985 int old_block_type;
1986
1987 old_block_type = get_pageblock_migratetype(page);
fef903ef 1988
3bc48f96
VB
1989 /*
1990 * This can happen due to races and we want to prevent broken
1991 * highatomic accounting.
1992 */
02aa0cdd 1993 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
1994 goto single_page;
1995
fef903ef
SB
1996 /* Take ownership for orders >= pageblock_order */
1997 if (current_order >= pageblock_order) {
1998 change_pageblock_range(page, current_order, start_type);
3bc48f96 1999 goto single_page;
fef903ef
SB
2000 }
2001
3bc48f96
VB
2002 /* We are not allowed to try stealing from the whole block */
2003 if (!whole_block)
2004 goto single_page;
2005
02aa0cdd
VB
2006 free_pages = move_freepages_block(zone, page, start_type,
2007 &movable_pages);
2008 /*
2009 * Determine how many pages are compatible with our allocation.
2010 * For movable allocation, it's the number of movable pages which
2011 * we just obtained. For other types it's a bit more tricky.
2012 */
2013 if (start_type == MIGRATE_MOVABLE) {
2014 alike_pages = movable_pages;
2015 } else {
2016 /*
2017 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2018 * to MOVABLE pageblock, consider all non-movable pages as
2019 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2020 * vice versa, be conservative since we can't distinguish the
2021 * exact migratetype of non-movable pages.
2022 */
2023 if (old_block_type == MIGRATE_MOVABLE)
2024 alike_pages = pageblock_nr_pages
2025 - (free_pages + movable_pages);
2026 else
2027 alike_pages = 0;
2028 }
2029
3bc48f96 2030 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2031 if (!free_pages)
3bc48f96 2032 goto single_page;
fef903ef 2033
02aa0cdd
VB
2034 /*
2035 * If a sufficient number of pages in the block are either free or of
2036 * comparable migratability as our allocation, claim the whole block.
2037 */
2038 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2039 page_group_by_mobility_disabled)
2040 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2041
2042 return;
2043
2044single_page:
2045 area = &zone->free_area[current_order];
2046 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2047}
2048
2149cdae
JK
2049/*
2050 * Check whether there is a suitable fallback freepage with requested order.
2051 * If only_stealable is true, this function returns fallback_mt only if
2052 * we can steal other freepages all together. This would help to reduce
2053 * fragmentation due to mixed migratetype pages in one pageblock.
2054 */
2055int find_suitable_fallback(struct free_area *area, unsigned int order,
2056 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2057{
2058 int i;
2059 int fallback_mt;
2060
2061 if (area->nr_free == 0)
2062 return -1;
2063
2064 *can_steal = false;
2065 for (i = 0;; i++) {
2066 fallback_mt = fallbacks[migratetype][i];
974a786e 2067 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2068 break;
2069
2070 if (list_empty(&area->free_list[fallback_mt]))
2071 continue;
fef903ef 2072
4eb7dce6
JK
2073 if (can_steal_fallback(order, migratetype))
2074 *can_steal = true;
2075
2149cdae
JK
2076 if (!only_stealable)
2077 return fallback_mt;
2078
2079 if (*can_steal)
2080 return fallback_mt;
fef903ef 2081 }
4eb7dce6
JK
2082
2083 return -1;
fef903ef
SB
2084}
2085
0aaa29a5
MG
2086/*
2087 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2088 * there are no empty page blocks that contain a page with a suitable order
2089 */
2090static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2091 unsigned int alloc_order)
2092{
2093 int mt;
2094 unsigned long max_managed, flags;
2095
2096 /*
2097 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2098 * Check is race-prone but harmless.
2099 */
2100 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2101 if (zone->nr_reserved_highatomic >= max_managed)
2102 return;
2103
2104 spin_lock_irqsave(&zone->lock, flags);
2105
2106 /* Recheck the nr_reserved_highatomic limit under the lock */
2107 if (zone->nr_reserved_highatomic >= max_managed)
2108 goto out_unlock;
2109
2110 /* Yoink! */
2111 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2112 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2113 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2114 zone->nr_reserved_highatomic += pageblock_nr_pages;
2115 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2116 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2117 }
2118
2119out_unlock:
2120 spin_unlock_irqrestore(&zone->lock, flags);
2121}
2122
2123/*
2124 * Used when an allocation is about to fail under memory pressure. This
2125 * potentially hurts the reliability of high-order allocations when under
2126 * intense memory pressure but failed atomic allocations should be easier
2127 * to recover from than an OOM.
29fac03b
MK
2128 *
2129 * If @force is true, try to unreserve a pageblock even though highatomic
2130 * pageblock is exhausted.
0aaa29a5 2131 */
29fac03b
MK
2132static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2133 bool force)
0aaa29a5
MG
2134{
2135 struct zonelist *zonelist = ac->zonelist;
2136 unsigned long flags;
2137 struct zoneref *z;
2138 struct zone *zone;
2139 struct page *page;
2140 int order;
04c8716f 2141 bool ret;
0aaa29a5
MG
2142
2143 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2144 ac->nodemask) {
29fac03b
MK
2145 /*
2146 * Preserve at least one pageblock unless memory pressure
2147 * is really high.
2148 */
2149 if (!force && zone->nr_reserved_highatomic <=
2150 pageblock_nr_pages)
0aaa29a5
MG
2151 continue;
2152
2153 spin_lock_irqsave(&zone->lock, flags);
2154 for (order = 0; order < MAX_ORDER; order++) {
2155 struct free_area *area = &(zone->free_area[order]);
2156
a16601c5
GT
2157 page = list_first_entry_or_null(
2158 &area->free_list[MIGRATE_HIGHATOMIC],
2159 struct page, lru);
2160 if (!page)
0aaa29a5
MG
2161 continue;
2162
0aaa29a5 2163 /*
4855e4a7
MK
2164 * In page freeing path, migratetype change is racy so
2165 * we can counter several free pages in a pageblock
2166 * in this loop althoug we changed the pageblock type
2167 * from highatomic to ac->migratetype. So we should
2168 * adjust the count once.
0aaa29a5 2169 */
a6ffdc07 2170 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2171 /*
2172 * It should never happen but changes to
2173 * locking could inadvertently allow a per-cpu
2174 * drain to add pages to MIGRATE_HIGHATOMIC
2175 * while unreserving so be safe and watch for
2176 * underflows.
2177 */
2178 zone->nr_reserved_highatomic -= min(
2179 pageblock_nr_pages,
2180 zone->nr_reserved_highatomic);
2181 }
0aaa29a5
MG
2182
2183 /*
2184 * Convert to ac->migratetype and avoid the normal
2185 * pageblock stealing heuristics. Minimally, the caller
2186 * is doing the work and needs the pages. More
2187 * importantly, if the block was always converted to
2188 * MIGRATE_UNMOVABLE or another type then the number
2189 * of pageblocks that cannot be completely freed
2190 * may increase.
2191 */
2192 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2193 ret = move_freepages_block(zone, page, ac->migratetype,
2194 NULL);
29fac03b
MK
2195 if (ret) {
2196 spin_unlock_irqrestore(&zone->lock, flags);
2197 return ret;
2198 }
0aaa29a5
MG
2199 }
2200 spin_unlock_irqrestore(&zone->lock, flags);
2201 }
04c8716f
MK
2202
2203 return false;
0aaa29a5
MG
2204}
2205
3bc48f96
VB
2206/*
2207 * Try finding a free buddy page on the fallback list and put it on the free
2208 * list of requested migratetype, possibly along with other pages from the same
2209 * block, depending on fragmentation avoidance heuristics. Returns true if
2210 * fallback was found so that __rmqueue_smallest() can grab it.
2211 */
2212static inline bool
7aeb09f9 2213__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2214{
b8af2941 2215 struct free_area *area;
7aeb09f9 2216 unsigned int current_order;
b2a0ac88 2217 struct page *page;
4eb7dce6
JK
2218 int fallback_mt;
2219 bool can_steal;
b2a0ac88
MG
2220
2221 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2222 for (current_order = MAX_ORDER-1;
2223 current_order >= order && current_order <= MAX_ORDER-1;
2224 --current_order) {
4eb7dce6
JK
2225 area = &(zone->free_area[current_order]);
2226 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2227 start_migratetype, false, &can_steal);
4eb7dce6
JK
2228 if (fallback_mt == -1)
2229 continue;
b2a0ac88 2230
a16601c5 2231 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2232 struct page, lru);
b2a0ac88 2233
3bc48f96
VB
2234 steal_suitable_fallback(zone, page, start_migratetype,
2235 can_steal);
e0fff1bd 2236
4eb7dce6
JK
2237 trace_mm_page_alloc_extfrag(page, order, current_order,
2238 start_migratetype, fallback_mt);
e0fff1bd 2239
3bc48f96 2240 return true;
b2a0ac88
MG
2241 }
2242
3bc48f96 2243 return false;
b2a0ac88
MG
2244}
2245
56fd56b8 2246/*
1da177e4
LT
2247 * Do the hard work of removing an element from the buddy allocator.
2248 * Call me with the zone->lock already held.
2249 */
b2a0ac88 2250static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2251 int migratetype)
1da177e4 2252{
1da177e4
LT
2253 struct page *page;
2254
3bc48f96 2255retry:
56fd56b8 2256 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2257 if (unlikely(!page)) {
dc67647b
JK
2258 if (migratetype == MIGRATE_MOVABLE)
2259 page = __rmqueue_cma_fallback(zone, order);
2260
3bc48f96
VB
2261 if (!page && __rmqueue_fallback(zone, order, migratetype))
2262 goto retry;
728ec980
MG
2263 }
2264
0d3d062a 2265 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2266 return page;
1da177e4
LT
2267}
2268
5f63b720 2269/*
1da177e4
LT
2270 * Obtain a specified number of elements from the buddy allocator, all under
2271 * a single hold of the lock, for efficiency. Add them to the supplied list.
2272 * Returns the number of new pages which were placed at *list.
2273 */
5f63b720 2274static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2275 unsigned long count, struct list_head *list,
b745bc85 2276 int migratetype, bool cold)
1da177e4 2277{
a6de734b 2278 int i, alloced = 0;
5f63b720 2279
d34b0733 2280 spin_lock(&zone->lock);
1da177e4 2281 for (i = 0; i < count; ++i) {
6ac0206b 2282 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2283 if (unlikely(page == NULL))
1da177e4 2284 break;
81eabcbe 2285
479f854a
MG
2286 if (unlikely(check_pcp_refill(page)))
2287 continue;
2288
81eabcbe
MG
2289 /*
2290 * Split buddy pages returned by expand() are received here
2291 * in physical page order. The page is added to the callers and
2292 * list and the list head then moves forward. From the callers
2293 * perspective, the linked list is ordered by page number in
2294 * some conditions. This is useful for IO devices that can
2295 * merge IO requests if the physical pages are ordered
2296 * properly.
2297 */
b745bc85 2298 if (likely(!cold))
e084b2d9
MG
2299 list_add(&page->lru, list);
2300 else
2301 list_add_tail(&page->lru, list);
81eabcbe 2302 list = &page->lru;
a6de734b 2303 alloced++;
bb14c2c7 2304 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2305 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2306 -(1 << order));
1da177e4 2307 }
a6de734b
MG
2308
2309 /*
2310 * i pages were removed from the buddy list even if some leak due
2311 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2312 * on i. Do not confuse with 'alloced' which is the number of
2313 * pages added to the pcp list.
2314 */
f2260e6b 2315 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2316 spin_unlock(&zone->lock);
a6de734b 2317 return alloced;
1da177e4
LT
2318}
2319
4ae7c039 2320#ifdef CONFIG_NUMA
8fce4d8e 2321/*
4037d452
CL
2322 * Called from the vmstat counter updater to drain pagesets of this
2323 * currently executing processor on remote nodes after they have
2324 * expired.
2325 *
879336c3
CL
2326 * Note that this function must be called with the thread pinned to
2327 * a single processor.
8fce4d8e 2328 */
4037d452 2329void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2330{
4ae7c039 2331 unsigned long flags;
7be12fc9 2332 int to_drain, batch;
4ae7c039 2333
4037d452 2334 local_irq_save(flags);
4db0c3c2 2335 batch = READ_ONCE(pcp->batch);
7be12fc9 2336 to_drain = min(pcp->count, batch);
2a13515c
KM
2337 if (to_drain > 0) {
2338 free_pcppages_bulk(zone, to_drain, pcp);
2339 pcp->count -= to_drain;
2340 }
4037d452 2341 local_irq_restore(flags);
4ae7c039
CL
2342}
2343#endif
2344
9f8f2172 2345/*
93481ff0 2346 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2347 *
2348 * The processor must either be the current processor and the
2349 * thread pinned to the current processor or a processor that
2350 * is not online.
2351 */
93481ff0 2352static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2353{
c54ad30c 2354 unsigned long flags;
93481ff0
VB
2355 struct per_cpu_pageset *pset;
2356 struct per_cpu_pages *pcp;
1da177e4 2357
93481ff0
VB
2358 local_irq_save(flags);
2359 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2360
93481ff0
VB
2361 pcp = &pset->pcp;
2362 if (pcp->count) {
2363 free_pcppages_bulk(zone, pcp->count, pcp);
2364 pcp->count = 0;
2365 }
2366 local_irq_restore(flags);
2367}
3dfa5721 2368
93481ff0
VB
2369/*
2370 * Drain pcplists of all zones on the indicated processor.
2371 *
2372 * The processor must either be the current processor and the
2373 * thread pinned to the current processor or a processor that
2374 * is not online.
2375 */
2376static void drain_pages(unsigned int cpu)
2377{
2378 struct zone *zone;
2379
2380 for_each_populated_zone(zone) {
2381 drain_pages_zone(cpu, zone);
1da177e4
LT
2382 }
2383}
1da177e4 2384
9f8f2172
CL
2385/*
2386 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2387 *
2388 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2389 * the single zone's pages.
9f8f2172 2390 */
93481ff0 2391void drain_local_pages(struct zone *zone)
9f8f2172 2392{
93481ff0
VB
2393 int cpu = smp_processor_id();
2394
2395 if (zone)
2396 drain_pages_zone(cpu, zone);
2397 else
2398 drain_pages(cpu);
9f8f2172
CL
2399}
2400
0ccce3b9
MG
2401static void drain_local_pages_wq(struct work_struct *work)
2402{
a459eeb7
MH
2403 /*
2404 * drain_all_pages doesn't use proper cpu hotplug protection so
2405 * we can race with cpu offline when the WQ can move this from
2406 * a cpu pinned worker to an unbound one. We can operate on a different
2407 * cpu which is allright but we also have to make sure to not move to
2408 * a different one.
2409 */
2410 preempt_disable();
0ccce3b9 2411 drain_local_pages(NULL);
a459eeb7 2412 preempt_enable();
0ccce3b9
MG
2413}
2414
9f8f2172 2415/*
74046494
GBY
2416 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2417 *
93481ff0
VB
2418 * When zone parameter is non-NULL, spill just the single zone's pages.
2419 *
0ccce3b9 2420 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2421 */
93481ff0 2422void drain_all_pages(struct zone *zone)
9f8f2172 2423{
74046494 2424 int cpu;
74046494
GBY
2425
2426 /*
2427 * Allocate in the BSS so we wont require allocation in
2428 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2429 */
2430 static cpumask_t cpus_with_pcps;
2431
ce612879
MH
2432 /*
2433 * Make sure nobody triggers this path before mm_percpu_wq is fully
2434 * initialized.
2435 */
2436 if (WARN_ON_ONCE(!mm_percpu_wq))
2437 return;
2438
0ccce3b9
MG
2439 /* Workqueues cannot recurse */
2440 if (current->flags & PF_WQ_WORKER)
2441 return;
2442
bd233f53
MG
2443 /*
2444 * Do not drain if one is already in progress unless it's specific to
2445 * a zone. Such callers are primarily CMA and memory hotplug and need
2446 * the drain to be complete when the call returns.
2447 */
2448 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2449 if (!zone)
2450 return;
2451 mutex_lock(&pcpu_drain_mutex);
2452 }
0ccce3b9 2453
74046494
GBY
2454 /*
2455 * We don't care about racing with CPU hotplug event
2456 * as offline notification will cause the notified
2457 * cpu to drain that CPU pcps and on_each_cpu_mask
2458 * disables preemption as part of its processing
2459 */
2460 for_each_online_cpu(cpu) {
93481ff0
VB
2461 struct per_cpu_pageset *pcp;
2462 struct zone *z;
74046494 2463 bool has_pcps = false;
93481ff0
VB
2464
2465 if (zone) {
74046494 2466 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2467 if (pcp->pcp.count)
74046494 2468 has_pcps = true;
93481ff0
VB
2469 } else {
2470 for_each_populated_zone(z) {
2471 pcp = per_cpu_ptr(z->pageset, cpu);
2472 if (pcp->pcp.count) {
2473 has_pcps = true;
2474 break;
2475 }
74046494
GBY
2476 }
2477 }
93481ff0 2478
74046494
GBY
2479 if (has_pcps)
2480 cpumask_set_cpu(cpu, &cpus_with_pcps);
2481 else
2482 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2483 }
0ccce3b9 2484
bd233f53
MG
2485 for_each_cpu(cpu, &cpus_with_pcps) {
2486 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2487 INIT_WORK(work, drain_local_pages_wq);
ce612879 2488 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2489 }
bd233f53
MG
2490 for_each_cpu(cpu, &cpus_with_pcps)
2491 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2492
2493 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2494}
2495
296699de 2496#ifdef CONFIG_HIBERNATION
1da177e4
LT
2497
2498void mark_free_pages(struct zone *zone)
2499{
f623f0db
RW
2500 unsigned long pfn, max_zone_pfn;
2501 unsigned long flags;
7aeb09f9 2502 unsigned int order, t;
86760a2c 2503 struct page *page;
1da177e4 2504
8080fc03 2505 if (zone_is_empty(zone))
1da177e4
LT
2506 return;
2507
2508 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2509
108bcc96 2510 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2511 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2512 if (pfn_valid(pfn)) {
86760a2c 2513 page = pfn_to_page(pfn);
ba6b0979
JK
2514
2515 if (page_zone(page) != zone)
2516 continue;
2517
7be98234
RW
2518 if (!swsusp_page_is_forbidden(page))
2519 swsusp_unset_page_free(page);
f623f0db 2520 }
1da177e4 2521
b2a0ac88 2522 for_each_migratetype_order(order, t) {
86760a2c
GT
2523 list_for_each_entry(page,
2524 &zone->free_area[order].free_list[t], lru) {
f623f0db 2525 unsigned long i;
1da177e4 2526
86760a2c 2527 pfn = page_to_pfn(page);
f623f0db 2528 for (i = 0; i < (1UL << order); i++)
7be98234 2529 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2530 }
b2a0ac88 2531 }
1da177e4
LT
2532 spin_unlock_irqrestore(&zone->lock, flags);
2533}
e2c55dc8 2534#endif /* CONFIG_PM */
1da177e4 2535
1da177e4
LT
2536/*
2537 * Free a 0-order page
b745bc85 2538 * cold == true ? free a cold page : free a hot page
1da177e4 2539 */
b745bc85 2540void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2541{
2542 struct zone *zone = page_zone(page);
2543 struct per_cpu_pages *pcp;
d34b0733 2544 unsigned long flags;
dc4b0caf 2545 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2546 int migratetype;
1da177e4 2547
4db7548c 2548 if (!free_pcp_prepare(page))
689bcebf
HD
2549 return;
2550
dc4b0caf 2551 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2552 set_pcppage_migratetype(page, migratetype);
d34b0733
MG
2553 local_irq_save(flags);
2554 __count_vm_event(PGFREE);
da456f14 2555
5f8dcc21
MG
2556 /*
2557 * We only track unmovable, reclaimable and movable on pcp lists.
2558 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2559 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2560 * areas back if necessary. Otherwise, we may have to free
2561 * excessively into the page allocator
2562 */
2563 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2564 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2565 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2566 goto out;
2567 }
2568 migratetype = MIGRATE_MOVABLE;
2569 }
2570
99dcc3e5 2571 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2572 if (!cold)
5f8dcc21 2573 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2574 else
2575 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2576 pcp->count++;
48db57f8 2577 if (pcp->count >= pcp->high) {
4db0c3c2 2578 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2579 free_pcppages_bulk(zone, batch, pcp);
2580 pcp->count -= batch;
48db57f8 2581 }
5f8dcc21
MG
2582
2583out:
d34b0733 2584 local_irq_restore(flags);
1da177e4
LT
2585}
2586
cc59850e
KK
2587/*
2588 * Free a list of 0-order pages
2589 */
b745bc85 2590void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2591{
2592 struct page *page, *next;
2593
2594 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2595 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2596 free_hot_cold_page(page, cold);
2597 }
2598}
2599
8dfcc9ba
NP
2600/*
2601 * split_page takes a non-compound higher-order page, and splits it into
2602 * n (1<<order) sub-pages: page[0..n]
2603 * Each sub-page must be freed individually.
2604 *
2605 * Note: this is probably too low level an operation for use in drivers.
2606 * Please consult with lkml before using this in your driver.
2607 */
2608void split_page(struct page *page, unsigned int order)
2609{
2610 int i;
2611
309381fe
SL
2612 VM_BUG_ON_PAGE(PageCompound(page), page);
2613 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2614
2615#ifdef CONFIG_KMEMCHECK
2616 /*
2617 * Split shadow pages too, because free(page[0]) would
2618 * otherwise free the whole shadow.
2619 */
2620 if (kmemcheck_page_is_tracked(page))
2621 split_page(virt_to_page(page[0].shadow), order);
2622#endif
2623
a9627bc5 2624 for (i = 1; i < (1 << order); i++)
7835e98b 2625 set_page_refcounted(page + i);
a9627bc5 2626 split_page_owner(page, order);
8dfcc9ba 2627}
5853ff23 2628EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2629
3c605096 2630int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2631{
748446bb
MG
2632 unsigned long watermark;
2633 struct zone *zone;
2139cbe6 2634 int mt;
748446bb
MG
2635
2636 BUG_ON(!PageBuddy(page));
2637
2638 zone = page_zone(page);
2e30abd1 2639 mt = get_pageblock_migratetype(page);
748446bb 2640
194159fb 2641 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2642 /*
2643 * Obey watermarks as if the page was being allocated. We can
2644 * emulate a high-order watermark check with a raised order-0
2645 * watermark, because we already know our high-order page
2646 * exists.
2647 */
2648 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2649 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2650 return 0;
2651
8fb74b9f 2652 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2653 }
748446bb
MG
2654
2655 /* Remove page from free list */
2656 list_del(&page->lru);
2657 zone->free_area[order].nr_free--;
2658 rmv_page_order(page);
2139cbe6 2659
400bc7fd 2660 /*
2661 * Set the pageblock if the isolated page is at least half of a
2662 * pageblock
2663 */
748446bb
MG
2664 if (order >= pageblock_order - 1) {
2665 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2666 for (; page < endpage; page += pageblock_nr_pages) {
2667 int mt = get_pageblock_migratetype(page);
88ed365e 2668 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2669 && !is_migrate_highatomic(mt))
47118af0
MN
2670 set_pageblock_migratetype(page,
2671 MIGRATE_MOVABLE);
2672 }
748446bb
MG
2673 }
2674
f3a14ced 2675
8fb74b9f 2676 return 1UL << order;
1fb3f8ca
MG
2677}
2678
060e7417
MG
2679/*
2680 * Update NUMA hit/miss statistics
2681 *
2682 * Must be called with interrupts disabled.
060e7417 2683 */
41b6167e 2684static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2685{
2686#ifdef CONFIG_NUMA
060e7417
MG
2687 enum zone_stat_item local_stat = NUMA_LOCAL;
2688
2df26639 2689 if (z->node != numa_node_id())
060e7417 2690 local_stat = NUMA_OTHER;
060e7417 2691
2df26639 2692 if (z->node == preferred_zone->node)
060e7417 2693 __inc_zone_state(z, NUMA_HIT);
2df26639 2694 else {
060e7417
MG
2695 __inc_zone_state(z, NUMA_MISS);
2696 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2697 }
2df26639 2698 __inc_zone_state(z, local_stat);
060e7417
MG
2699#endif
2700}
2701
066b2393
MG
2702/* Remove page from the per-cpu list, caller must protect the list */
2703static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2704 bool cold, struct per_cpu_pages *pcp,
2705 struct list_head *list)
2706{
2707 struct page *page;
2708
2709 do {
2710 if (list_empty(list)) {
2711 pcp->count += rmqueue_bulk(zone, 0,
2712 pcp->batch, list,
2713 migratetype, cold);
2714 if (unlikely(list_empty(list)))
2715 return NULL;
2716 }
2717
2718 if (cold)
2719 page = list_last_entry(list, struct page, lru);
2720 else
2721 page = list_first_entry(list, struct page, lru);
2722
2723 list_del(&page->lru);
2724 pcp->count--;
2725 } while (check_new_pcp(page));
2726
2727 return page;
2728}
2729
2730/* Lock and remove page from the per-cpu list */
2731static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2732 struct zone *zone, unsigned int order,
2733 gfp_t gfp_flags, int migratetype)
2734{
2735 struct per_cpu_pages *pcp;
2736 struct list_head *list;
2737 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2738 struct page *page;
d34b0733 2739 unsigned long flags;
066b2393 2740
d34b0733 2741 local_irq_save(flags);
066b2393
MG
2742 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2743 list = &pcp->lists[migratetype];
2744 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2745 if (page) {
2746 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2747 zone_statistics(preferred_zone, zone);
2748 }
d34b0733 2749 local_irq_restore(flags);
066b2393
MG
2750 return page;
2751}
2752
1da177e4 2753/*
75379191 2754 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2755 */
0a15c3e9 2756static inline
066b2393 2757struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2758 struct zone *zone, unsigned int order,
c603844b
MG
2759 gfp_t gfp_flags, unsigned int alloc_flags,
2760 int migratetype)
1da177e4
LT
2761{
2762 unsigned long flags;
689bcebf 2763 struct page *page;
1da177e4 2764
d34b0733 2765 if (likely(order == 0)) {
066b2393
MG
2766 page = rmqueue_pcplist(preferred_zone, zone, order,
2767 gfp_flags, migratetype);
2768 goto out;
2769 }
83b9355b 2770
066b2393
MG
2771 /*
2772 * We most definitely don't want callers attempting to
2773 * allocate greater than order-1 page units with __GFP_NOFAIL.
2774 */
2775 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2776 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2777
066b2393
MG
2778 do {
2779 page = NULL;
2780 if (alloc_flags & ALLOC_HARDER) {
2781 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2782 if (page)
2783 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2784 }
a74609fa 2785 if (!page)
066b2393
MG
2786 page = __rmqueue(zone, order, migratetype);
2787 } while (page && check_new_pages(page, order));
2788 spin_unlock(&zone->lock);
2789 if (!page)
2790 goto failed;
2791 __mod_zone_freepage_state(zone, -(1 << order),
2792 get_pcppage_migratetype(page));
1da177e4 2793
16709d1d 2794 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2795 zone_statistics(preferred_zone, zone);
a74609fa 2796 local_irq_restore(flags);
1da177e4 2797
066b2393
MG
2798out:
2799 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2800 return page;
a74609fa
NP
2801
2802failed:
2803 local_irq_restore(flags);
a74609fa 2804 return NULL;
1da177e4
LT
2805}
2806
933e312e
AM
2807#ifdef CONFIG_FAIL_PAGE_ALLOC
2808
b2588c4b 2809static struct {
933e312e
AM
2810 struct fault_attr attr;
2811
621a5f7a 2812 bool ignore_gfp_highmem;
71baba4b 2813 bool ignore_gfp_reclaim;
54114994 2814 u32 min_order;
933e312e
AM
2815} fail_page_alloc = {
2816 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2817 .ignore_gfp_reclaim = true,
621a5f7a 2818 .ignore_gfp_highmem = true,
54114994 2819 .min_order = 1,
933e312e
AM
2820};
2821
2822static int __init setup_fail_page_alloc(char *str)
2823{
2824 return setup_fault_attr(&fail_page_alloc.attr, str);
2825}
2826__setup("fail_page_alloc=", setup_fail_page_alloc);
2827
deaf386e 2828static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2829{
54114994 2830 if (order < fail_page_alloc.min_order)
deaf386e 2831 return false;
933e312e 2832 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2833 return false;
933e312e 2834 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2835 return false;
71baba4b
MG
2836 if (fail_page_alloc.ignore_gfp_reclaim &&
2837 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2838 return false;
933e312e
AM
2839
2840 return should_fail(&fail_page_alloc.attr, 1 << order);
2841}
2842
2843#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2844
2845static int __init fail_page_alloc_debugfs(void)
2846{
f4ae40a6 2847 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2848 struct dentry *dir;
933e312e 2849
dd48c085
AM
2850 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2851 &fail_page_alloc.attr);
2852 if (IS_ERR(dir))
2853 return PTR_ERR(dir);
933e312e 2854
b2588c4b 2855 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2856 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2857 goto fail;
2858 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2859 &fail_page_alloc.ignore_gfp_highmem))
2860 goto fail;
2861 if (!debugfs_create_u32("min-order", mode, dir,
2862 &fail_page_alloc.min_order))
2863 goto fail;
2864
2865 return 0;
2866fail:
dd48c085 2867 debugfs_remove_recursive(dir);
933e312e 2868
b2588c4b 2869 return -ENOMEM;
933e312e
AM
2870}
2871
2872late_initcall(fail_page_alloc_debugfs);
2873
2874#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2875
2876#else /* CONFIG_FAIL_PAGE_ALLOC */
2877
deaf386e 2878static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2879{
deaf386e 2880 return false;
933e312e
AM
2881}
2882
2883#endif /* CONFIG_FAIL_PAGE_ALLOC */
2884
1da177e4 2885/*
97a16fc8
MG
2886 * Return true if free base pages are above 'mark'. For high-order checks it
2887 * will return true of the order-0 watermark is reached and there is at least
2888 * one free page of a suitable size. Checking now avoids taking the zone lock
2889 * to check in the allocation paths if no pages are free.
1da177e4 2890 */
86a294a8
MH
2891bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2892 int classzone_idx, unsigned int alloc_flags,
2893 long free_pages)
1da177e4 2894{
d23ad423 2895 long min = mark;
1da177e4 2896 int o;
c603844b 2897 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2898
0aaa29a5 2899 /* free_pages may go negative - that's OK */
df0a6daa 2900 free_pages -= (1 << order) - 1;
0aaa29a5 2901
7fb1d9fc 2902 if (alloc_flags & ALLOC_HIGH)
1da177e4 2903 min -= min / 2;
0aaa29a5
MG
2904
2905 /*
2906 * If the caller does not have rights to ALLOC_HARDER then subtract
2907 * the high-atomic reserves. This will over-estimate the size of the
2908 * atomic reserve but it avoids a search.
2909 */
97a16fc8 2910 if (likely(!alloc_harder))
0aaa29a5
MG
2911 free_pages -= z->nr_reserved_highatomic;
2912 else
1da177e4 2913 min -= min / 4;
e2b19197 2914
d95ea5d1
BZ
2915#ifdef CONFIG_CMA
2916 /* If allocation can't use CMA areas don't use free CMA pages */
2917 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2918 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2919#endif
026b0814 2920
97a16fc8
MG
2921 /*
2922 * Check watermarks for an order-0 allocation request. If these
2923 * are not met, then a high-order request also cannot go ahead
2924 * even if a suitable page happened to be free.
2925 */
2926 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2927 return false;
1da177e4 2928
97a16fc8
MG
2929 /* If this is an order-0 request then the watermark is fine */
2930 if (!order)
2931 return true;
2932
2933 /* For a high-order request, check at least one suitable page is free */
2934 for (o = order; o < MAX_ORDER; o++) {
2935 struct free_area *area = &z->free_area[o];
2936 int mt;
2937
2938 if (!area->nr_free)
2939 continue;
2940
2941 if (alloc_harder)
2942 return true;
1da177e4 2943
97a16fc8
MG
2944 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2945 if (!list_empty(&area->free_list[mt]))
2946 return true;
2947 }
2948
2949#ifdef CONFIG_CMA
2950 if ((alloc_flags & ALLOC_CMA) &&
2951 !list_empty(&area->free_list[MIGRATE_CMA])) {
2952 return true;
2953 }
2954#endif
1da177e4 2955 }
97a16fc8 2956 return false;
88f5acf8
MG
2957}
2958
7aeb09f9 2959bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2960 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2961{
2962 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2963 zone_page_state(z, NR_FREE_PAGES));
2964}
2965
48ee5f36
MG
2966static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2967 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2968{
2969 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2970 long cma_pages = 0;
2971
2972#ifdef CONFIG_CMA
2973 /* If allocation can't use CMA areas don't use free CMA pages */
2974 if (!(alloc_flags & ALLOC_CMA))
2975 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2976#endif
2977
2978 /*
2979 * Fast check for order-0 only. If this fails then the reserves
2980 * need to be calculated. There is a corner case where the check
2981 * passes but only the high-order atomic reserve are free. If
2982 * the caller is !atomic then it'll uselessly search the free
2983 * list. That corner case is then slower but it is harmless.
2984 */
2985 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2986 return true;
2987
2988 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2989 free_pages);
2990}
2991
7aeb09f9 2992bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2993 unsigned long mark, int classzone_idx)
88f5acf8
MG
2994{
2995 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2996
2997 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2998 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2999
e2b19197 3000 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3001 free_pages);
1da177e4
LT
3002}
3003
9276b1bc 3004#ifdef CONFIG_NUMA
957f822a
DR
3005static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3006{
e02dc017 3007 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3008 RECLAIM_DISTANCE;
957f822a 3009}
9276b1bc 3010#else /* CONFIG_NUMA */
957f822a
DR
3011static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3012{
3013 return true;
3014}
9276b1bc
PJ
3015#endif /* CONFIG_NUMA */
3016
7fb1d9fc 3017/*
0798e519 3018 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3019 * a page.
3020 */
3021static struct page *
a9263751
VB
3022get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3023 const struct alloc_context *ac)
753ee728 3024{
c33d6c06 3025 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3026 struct zone *zone;
3b8c0be4
MG
3027 struct pglist_data *last_pgdat_dirty_limit = NULL;
3028
7fb1d9fc 3029 /*
9276b1bc 3030 * Scan zonelist, looking for a zone with enough free.
344736f2 3031 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3032 */
c33d6c06 3033 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3034 ac->nodemask) {
be06af00 3035 struct page *page;
e085dbc5
JW
3036 unsigned long mark;
3037
664eedde
MG
3038 if (cpusets_enabled() &&
3039 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3040 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3041 continue;
a756cf59
JW
3042 /*
3043 * When allocating a page cache page for writing, we
281e3726
MG
3044 * want to get it from a node that is within its dirty
3045 * limit, such that no single node holds more than its
a756cf59 3046 * proportional share of globally allowed dirty pages.
281e3726 3047 * The dirty limits take into account the node's
a756cf59
JW
3048 * lowmem reserves and high watermark so that kswapd
3049 * should be able to balance it without having to
3050 * write pages from its LRU list.
3051 *
a756cf59 3052 * XXX: For now, allow allocations to potentially
281e3726 3053 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3054 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3055 * which is important when on a NUMA setup the allowed
281e3726 3056 * nodes are together not big enough to reach the
a756cf59 3057 * global limit. The proper fix for these situations
281e3726 3058 * will require awareness of nodes in the
a756cf59
JW
3059 * dirty-throttling and the flusher threads.
3060 */
3b8c0be4
MG
3061 if (ac->spread_dirty_pages) {
3062 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3063 continue;
3064
3065 if (!node_dirty_ok(zone->zone_pgdat)) {
3066 last_pgdat_dirty_limit = zone->zone_pgdat;
3067 continue;
3068 }
3069 }
7fb1d9fc 3070
e085dbc5 3071 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3072 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3073 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3074 int ret;
3075
5dab2911
MG
3076 /* Checked here to keep the fast path fast */
3077 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3078 if (alloc_flags & ALLOC_NO_WATERMARKS)
3079 goto try_this_zone;
3080
a5f5f91d 3081 if (node_reclaim_mode == 0 ||
c33d6c06 3082 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3083 continue;
3084
a5f5f91d 3085 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3086 switch (ret) {
a5f5f91d 3087 case NODE_RECLAIM_NOSCAN:
fa5e084e 3088 /* did not scan */
cd38b115 3089 continue;
a5f5f91d 3090 case NODE_RECLAIM_FULL:
fa5e084e 3091 /* scanned but unreclaimable */
cd38b115 3092 continue;
fa5e084e
MG
3093 default:
3094 /* did we reclaim enough */
fed2719e 3095 if (zone_watermark_ok(zone, order, mark,
93ea9964 3096 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3097 goto try_this_zone;
3098
fed2719e 3099 continue;
0798e519 3100 }
7fb1d9fc
RS
3101 }
3102
fa5e084e 3103try_this_zone:
066b2393 3104 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3105 gfp_mask, alloc_flags, ac->migratetype);
75379191 3106 if (page) {
479f854a 3107 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3108
3109 /*
3110 * If this is a high-order atomic allocation then check
3111 * if the pageblock should be reserved for the future
3112 */
3113 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3114 reserve_highatomic_pageblock(page, zone, order);
3115
75379191
VB
3116 return page;
3117 }
54a6eb5c 3118 }
9276b1bc 3119
4ffeaf35 3120 return NULL;
753ee728
MH
3121}
3122
29423e77
DR
3123/*
3124 * Large machines with many possible nodes should not always dump per-node
3125 * meminfo in irq context.
3126 */
3127static inline bool should_suppress_show_mem(void)
3128{
3129 bool ret = false;
3130
3131#if NODES_SHIFT > 8
3132 ret = in_interrupt();
3133#endif
3134 return ret;
3135}
3136
9af744d7 3137static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3138{
a238ab5b 3139 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3140 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3141
aa187507 3142 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3143 return;
3144
3145 /*
3146 * This documents exceptions given to allocations in certain
3147 * contexts that are allowed to allocate outside current's set
3148 * of allowed nodes.
3149 */
3150 if (!(gfp_mask & __GFP_NOMEMALLOC))
3151 if (test_thread_flag(TIF_MEMDIE) ||
3152 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3153 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3154 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3155 filter &= ~SHOW_MEM_FILTER_NODES;
3156
9af744d7 3157 show_mem(filter, nodemask);
aa187507
MH
3158}
3159
a8e99259 3160void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3161{
3162 struct va_format vaf;
3163 va_list args;
3164 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3165 DEFAULT_RATELIMIT_BURST);
3166
0f7896f1 3167 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3168 return;
3169
7877cdcc 3170 pr_warn("%s: ", current->comm);
3ee9a4f0 3171
7877cdcc
MH
3172 va_start(args, fmt);
3173 vaf.fmt = fmt;
3174 vaf.va = &args;
3175 pr_cont("%pV", &vaf);
3176 va_end(args);
3ee9a4f0 3177
685dbf6f
DR
3178 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3179 if (nodemask)
3180 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3181 else
3182 pr_cont("(null)\n");
3183
a8e99259 3184 cpuset_print_current_mems_allowed();
3ee9a4f0 3185
a238ab5b 3186 dump_stack();
685dbf6f 3187 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3188}
3189
6c18ba7a
MH
3190static inline struct page *
3191__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3192 unsigned int alloc_flags,
3193 const struct alloc_context *ac)
3194{
3195 struct page *page;
3196
3197 page = get_page_from_freelist(gfp_mask, order,
3198 alloc_flags|ALLOC_CPUSET, ac);
3199 /*
3200 * fallback to ignore cpuset restriction if our nodes
3201 * are depleted
3202 */
3203 if (!page)
3204 page = get_page_from_freelist(gfp_mask, order,
3205 alloc_flags, ac);
3206
3207 return page;
3208}
3209
11e33f6a
MG
3210static inline struct page *
3211__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3212 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3213{
6e0fc46d
DR
3214 struct oom_control oc = {
3215 .zonelist = ac->zonelist,
3216 .nodemask = ac->nodemask,
2a966b77 3217 .memcg = NULL,
6e0fc46d
DR
3218 .gfp_mask = gfp_mask,
3219 .order = order,
6e0fc46d 3220 };
11e33f6a
MG
3221 struct page *page;
3222
9879de73
JW
3223 *did_some_progress = 0;
3224
9879de73 3225 /*
dc56401f
JW
3226 * Acquire the oom lock. If that fails, somebody else is
3227 * making progress for us.
9879de73 3228 */
dc56401f 3229 if (!mutex_trylock(&oom_lock)) {
9879de73 3230 *did_some_progress = 1;
11e33f6a 3231 schedule_timeout_uninterruptible(1);
1da177e4
LT
3232 return NULL;
3233 }
6b1de916 3234
11e33f6a
MG
3235 /*
3236 * Go through the zonelist yet one more time, keep very high watermark
3237 * here, this is only to catch a parallel oom killing, we must fail if
3238 * we're still under heavy pressure.
3239 */
a9263751
VB
3240 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3241 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3242 if (page)
11e33f6a
MG
3243 goto out;
3244
06ad276a
MH
3245 /* Coredumps can quickly deplete all memory reserves */
3246 if (current->flags & PF_DUMPCORE)
3247 goto out;
3248 /* The OOM killer will not help higher order allocs */
3249 if (order > PAGE_ALLOC_COSTLY_ORDER)
3250 goto out;
3251 /* The OOM killer does not needlessly kill tasks for lowmem */
3252 if (ac->high_zoneidx < ZONE_NORMAL)
3253 goto out;
3254 if (pm_suspended_storage())
3255 goto out;
3256 /*
3257 * XXX: GFP_NOFS allocations should rather fail than rely on
3258 * other request to make a forward progress.
3259 * We are in an unfortunate situation where out_of_memory cannot
3260 * do much for this context but let's try it to at least get
3261 * access to memory reserved if the current task is killed (see
3262 * out_of_memory). Once filesystems are ready to handle allocation
3263 * failures more gracefully we should just bail out here.
3264 */
3265
3266 /* The OOM killer may not free memory on a specific node */
3267 if (gfp_mask & __GFP_THISNODE)
3268 goto out;
3da88fb3 3269
11e33f6a 3270 /* Exhausted what can be done so it's blamo time */
5020e285 3271 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3272 *did_some_progress = 1;
5020e285 3273
6c18ba7a
MH
3274 /*
3275 * Help non-failing allocations by giving them access to memory
3276 * reserves
3277 */
3278 if (gfp_mask & __GFP_NOFAIL)
3279 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3280 ALLOC_NO_WATERMARKS, ac);
5020e285 3281 }
11e33f6a 3282out:
dc56401f 3283 mutex_unlock(&oom_lock);
11e33f6a
MG
3284 return page;
3285}
3286
33c2d214
MH
3287/*
3288 * Maximum number of compaction retries wit a progress before OOM
3289 * killer is consider as the only way to move forward.
3290 */
3291#define MAX_COMPACT_RETRIES 16
3292
56de7263
MG
3293#ifdef CONFIG_COMPACTION
3294/* Try memory compaction for high-order allocations before reclaim */
3295static struct page *
3296__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3297 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3298 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3299{
98dd3b48 3300 struct page *page;
499118e9 3301 unsigned int noreclaim_flag;
53853e2d
VB
3302
3303 if (!order)
66199712 3304 return NULL;
66199712 3305
499118e9 3306 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3307 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3308 prio);
499118e9 3309 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3310
c5d01d0d 3311 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3312 return NULL;
53853e2d 3313
98dd3b48
VB
3314 /*
3315 * At least in one zone compaction wasn't deferred or skipped, so let's
3316 * count a compaction stall
3317 */
3318 count_vm_event(COMPACTSTALL);
8fb74b9f 3319
31a6c190 3320 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3321
98dd3b48
VB
3322 if (page) {
3323 struct zone *zone = page_zone(page);
53853e2d 3324
98dd3b48
VB
3325 zone->compact_blockskip_flush = false;
3326 compaction_defer_reset(zone, order, true);
3327 count_vm_event(COMPACTSUCCESS);
3328 return page;
3329 }
56de7263 3330
98dd3b48
VB
3331 /*
3332 * It's bad if compaction run occurs and fails. The most likely reason
3333 * is that pages exist, but not enough to satisfy watermarks.
3334 */
3335 count_vm_event(COMPACTFAIL);
66199712 3336
98dd3b48 3337 cond_resched();
56de7263
MG
3338
3339 return NULL;
3340}
33c2d214 3341
3250845d
VB
3342static inline bool
3343should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3344 enum compact_result compact_result,
3345 enum compact_priority *compact_priority,
d9436498 3346 int *compaction_retries)
3250845d
VB
3347{
3348 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3349 int min_priority;
65190cff
MH
3350 bool ret = false;
3351 int retries = *compaction_retries;
3352 enum compact_priority priority = *compact_priority;
3250845d
VB
3353
3354 if (!order)
3355 return false;
3356
d9436498
VB
3357 if (compaction_made_progress(compact_result))
3358 (*compaction_retries)++;
3359
3250845d
VB
3360 /*
3361 * compaction considers all the zone as desperately out of memory
3362 * so it doesn't really make much sense to retry except when the
3363 * failure could be caused by insufficient priority
3364 */
d9436498
VB
3365 if (compaction_failed(compact_result))
3366 goto check_priority;
3250845d
VB
3367
3368 /*
3369 * make sure the compaction wasn't deferred or didn't bail out early
3370 * due to locks contention before we declare that we should give up.
3371 * But do not retry if the given zonelist is not suitable for
3372 * compaction.
3373 */
65190cff
MH
3374 if (compaction_withdrawn(compact_result)) {
3375 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3376 goto out;
3377 }
3250845d
VB
3378
3379 /*
3380 * !costly requests are much more important than __GFP_REPEAT
3381 * costly ones because they are de facto nofail and invoke OOM
3382 * killer to move on while costly can fail and users are ready
3383 * to cope with that. 1/4 retries is rather arbitrary but we
3384 * would need much more detailed feedback from compaction to
3385 * make a better decision.
3386 */
3387 if (order > PAGE_ALLOC_COSTLY_ORDER)
3388 max_retries /= 4;
65190cff
MH
3389 if (*compaction_retries <= max_retries) {
3390 ret = true;
3391 goto out;
3392 }
3250845d 3393
d9436498
VB
3394 /*
3395 * Make sure there are attempts at the highest priority if we exhausted
3396 * all retries or failed at the lower priorities.
3397 */
3398check_priority:
c2033b00
VB
3399 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3400 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3401
c2033b00 3402 if (*compact_priority > min_priority) {
d9436498
VB
3403 (*compact_priority)--;
3404 *compaction_retries = 0;
65190cff 3405 ret = true;
d9436498 3406 }
65190cff
MH
3407out:
3408 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3409 return ret;
3250845d 3410}
56de7263
MG
3411#else
3412static inline struct page *
3413__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3414 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3415 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3416{
33c2d214 3417 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3418 return NULL;
3419}
33c2d214
MH
3420
3421static inline bool
86a294a8
MH
3422should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3423 enum compact_result compact_result,
a5508cd8 3424 enum compact_priority *compact_priority,
d9436498 3425 int *compaction_retries)
33c2d214 3426{
31e49bfd
MH
3427 struct zone *zone;
3428 struct zoneref *z;
3429
3430 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3431 return false;
3432
3433 /*
3434 * There are setups with compaction disabled which would prefer to loop
3435 * inside the allocator rather than hit the oom killer prematurely.
3436 * Let's give them a good hope and keep retrying while the order-0
3437 * watermarks are OK.
3438 */
3439 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3440 ac->nodemask) {
3441 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3442 ac_classzone_idx(ac), alloc_flags))
3443 return true;
3444 }
33c2d214
MH
3445 return false;
3446}
3250845d 3447#endif /* CONFIG_COMPACTION */
56de7263 3448
bba90710
MS
3449/* Perform direct synchronous page reclaim */
3450static int
a9263751
VB
3451__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3452 const struct alloc_context *ac)
11e33f6a 3453{
11e33f6a 3454 struct reclaim_state reclaim_state;
bba90710 3455 int progress;
499118e9 3456 unsigned int noreclaim_flag;
11e33f6a
MG
3457
3458 cond_resched();
3459
3460 /* We now go into synchronous reclaim */
3461 cpuset_memory_pressure_bump();
499118e9 3462 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a
MG
3463 lockdep_set_current_reclaim_state(gfp_mask);
3464 reclaim_state.reclaimed_slab = 0;
c06b1fca 3465 current->reclaim_state = &reclaim_state;
11e33f6a 3466
a9263751
VB
3467 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3468 ac->nodemask);
11e33f6a 3469
c06b1fca 3470 current->reclaim_state = NULL;
11e33f6a 3471 lockdep_clear_current_reclaim_state();
499118e9 3472 memalloc_noreclaim_restore(noreclaim_flag);
11e33f6a
MG
3473
3474 cond_resched();
3475
bba90710
MS
3476 return progress;
3477}
3478
3479/* The really slow allocator path where we enter direct reclaim */
3480static inline struct page *
3481__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3482 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3483 unsigned long *did_some_progress)
bba90710
MS
3484{
3485 struct page *page = NULL;
3486 bool drained = false;
3487
a9263751 3488 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3489 if (unlikely(!(*did_some_progress)))
3490 return NULL;
11e33f6a 3491
9ee493ce 3492retry:
31a6c190 3493 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3494
3495 /*
3496 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3497 * pages are pinned on the per-cpu lists or in high alloc reserves.
3498 * Shrink them them and try again
9ee493ce
MG
3499 */
3500 if (!page && !drained) {
29fac03b 3501 unreserve_highatomic_pageblock(ac, false);
93481ff0 3502 drain_all_pages(NULL);
9ee493ce
MG
3503 drained = true;
3504 goto retry;
3505 }
3506
11e33f6a
MG
3507 return page;
3508}
3509
a9263751 3510static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3511{
3512 struct zoneref *z;
3513 struct zone *zone;
e1a55637 3514 pg_data_t *last_pgdat = NULL;
3a025760 3515
a9263751 3516 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3517 ac->high_zoneidx, ac->nodemask) {
3518 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3519 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3520 last_pgdat = zone->zone_pgdat;
3521 }
3a025760
JW
3522}
3523
c603844b 3524static inline unsigned int
341ce06f
PZ
3525gfp_to_alloc_flags(gfp_t gfp_mask)
3526{
c603844b 3527 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3528
a56f57ff 3529 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3530 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3531
341ce06f
PZ
3532 /*
3533 * The caller may dip into page reserves a bit more if the caller
3534 * cannot run direct reclaim, or if the caller has realtime scheduling
3535 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3536 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3537 */
e6223a3b 3538 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3539
d0164adc 3540 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3541 /*
b104a35d
DR
3542 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3543 * if it can't schedule.
5c3240d9 3544 */
b104a35d 3545 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3546 alloc_flags |= ALLOC_HARDER;
523b9458 3547 /*
b104a35d 3548 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3549 * comment for __cpuset_node_allowed().
523b9458 3550 */
341ce06f 3551 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3552 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3553 alloc_flags |= ALLOC_HARDER;
3554
d95ea5d1 3555#ifdef CONFIG_CMA
43e7a34d 3556 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3557 alloc_flags |= ALLOC_CMA;
3558#endif
341ce06f
PZ
3559 return alloc_flags;
3560}
3561
072bb0aa
MG
3562bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3563{
31a6c190
VB
3564 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3565 return false;
3566
3567 if (gfp_mask & __GFP_MEMALLOC)
3568 return true;
3569 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3570 return true;
3571 if (!in_interrupt() &&
3572 ((current->flags & PF_MEMALLOC) ||
3573 unlikely(test_thread_flag(TIF_MEMDIE))))
3574 return true;
3575
3576 return false;
072bb0aa
MG
3577}
3578
0a0337e0
MH
3579/*
3580 * Checks whether it makes sense to retry the reclaim to make a forward progress
3581 * for the given allocation request.
491d79ae
JW
3582 *
3583 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3584 * without success, or when we couldn't even meet the watermark if we
3585 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3586 *
3587 * Returns true if a retry is viable or false to enter the oom path.
3588 */
3589static inline bool
3590should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3591 struct alloc_context *ac, int alloc_flags,
423b452e 3592 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3593{
3594 struct zone *zone;
3595 struct zoneref *z;
3596
423b452e
VB
3597 /*
3598 * Costly allocations might have made a progress but this doesn't mean
3599 * their order will become available due to high fragmentation so
3600 * always increment the no progress counter for them
3601 */
3602 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3603 *no_progress_loops = 0;
3604 else
3605 (*no_progress_loops)++;
3606
0a0337e0
MH
3607 /*
3608 * Make sure we converge to OOM if we cannot make any progress
3609 * several times in the row.
3610 */
04c8716f
MK
3611 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3612 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3613 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3614 }
0a0337e0 3615
bca67592
MG
3616 /*
3617 * Keep reclaiming pages while there is a chance this will lead
3618 * somewhere. If none of the target zones can satisfy our allocation
3619 * request even if all reclaimable pages are considered then we are
3620 * screwed and have to go OOM.
0a0337e0
MH
3621 */
3622 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3623 ac->nodemask) {
3624 unsigned long available;
ede37713 3625 unsigned long reclaimable;
d379f01d
MH
3626 unsigned long min_wmark = min_wmark_pages(zone);
3627 bool wmark;
0a0337e0 3628
5a1c84b4 3629 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3630 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3631
3632 /*
491d79ae
JW
3633 * Would the allocation succeed if we reclaimed all
3634 * reclaimable pages?
0a0337e0 3635 */
d379f01d
MH
3636 wmark = __zone_watermark_ok(zone, order, min_wmark,
3637 ac_classzone_idx(ac), alloc_flags, available);
3638 trace_reclaim_retry_zone(z, order, reclaimable,
3639 available, min_wmark, *no_progress_loops, wmark);
3640 if (wmark) {
ede37713
MH
3641 /*
3642 * If we didn't make any progress and have a lot of
3643 * dirty + writeback pages then we should wait for
3644 * an IO to complete to slow down the reclaim and
3645 * prevent from pre mature OOM
3646 */
3647 if (!did_some_progress) {
11fb9989 3648 unsigned long write_pending;
ede37713 3649
5a1c84b4
MG
3650 write_pending = zone_page_state_snapshot(zone,
3651 NR_ZONE_WRITE_PENDING);
ede37713 3652
11fb9989 3653 if (2 * write_pending > reclaimable) {
ede37713
MH
3654 congestion_wait(BLK_RW_ASYNC, HZ/10);
3655 return true;
3656 }
3657 }
5a1c84b4 3658
ede37713
MH
3659 /*
3660 * Memory allocation/reclaim might be called from a WQ
3661 * context and the current implementation of the WQ
3662 * concurrency control doesn't recognize that
3663 * a particular WQ is congested if the worker thread is
3664 * looping without ever sleeping. Therefore we have to
3665 * do a short sleep here rather than calling
3666 * cond_resched().
3667 */
3668 if (current->flags & PF_WQ_WORKER)
3669 schedule_timeout_uninterruptible(1);
3670 else
3671 cond_resched();
3672
0a0337e0
MH
3673 return true;
3674 }
3675 }
3676
3677 return false;
3678}
3679
902b6281
VB
3680static inline bool
3681check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3682{
3683 /*
3684 * It's possible that cpuset's mems_allowed and the nodemask from
3685 * mempolicy don't intersect. This should be normally dealt with by
3686 * policy_nodemask(), but it's possible to race with cpuset update in
3687 * such a way the check therein was true, and then it became false
3688 * before we got our cpuset_mems_cookie here.
3689 * This assumes that for all allocations, ac->nodemask can come only
3690 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3691 * when it does not intersect with the cpuset restrictions) or the
3692 * caller can deal with a violated nodemask.
3693 */
3694 if (cpusets_enabled() && ac->nodemask &&
3695 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3696 ac->nodemask = NULL;
3697 return true;
3698 }
3699
3700 /*
3701 * When updating a task's mems_allowed or mempolicy nodemask, it is
3702 * possible to race with parallel threads in such a way that our
3703 * allocation can fail while the mask is being updated. If we are about
3704 * to fail, check if the cpuset changed during allocation and if so,
3705 * retry.
3706 */
3707 if (read_mems_allowed_retry(cpuset_mems_cookie))
3708 return true;
3709
3710 return false;
3711}
3712
11e33f6a
MG
3713static inline struct page *
3714__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3715 struct alloc_context *ac)
11e33f6a 3716{
d0164adc 3717 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3718 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3719 struct page *page = NULL;
c603844b 3720 unsigned int alloc_flags;
11e33f6a 3721 unsigned long did_some_progress;
5ce9bfef 3722 enum compact_priority compact_priority;
c5d01d0d 3723 enum compact_result compact_result;
5ce9bfef
VB
3724 int compaction_retries;
3725 int no_progress_loops;
63f53dea
MH
3726 unsigned long alloc_start = jiffies;
3727 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3728 unsigned int cpuset_mems_cookie;
1da177e4 3729
72807a74
MG
3730 /*
3731 * In the slowpath, we sanity check order to avoid ever trying to
3732 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3733 * be using allocators in order of preference for an area that is
3734 * too large.
3735 */
1fc28b70
MG
3736 if (order >= MAX_ORDER) {
3737 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3738 return NULL;
1fc28b70 3739 }
1da177e4 3740
d0164adc
MG
3741 /*
3742 * We also sanity check to catch abuse of atomic reserves being used by
3743 * callers that are not in atomic context.
3744 */
3745 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3746 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3747 gfp_mask &= ~__GFP_ATOMIC;
3748
5ce9bfef
VB
3749retry_cpuset:
3750 compaction_retries = 0;
3751 no_progress_loops = 0;
3752 compact_priority = DEF_COMPACT_PRIORITY;
3753 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3754
3755 /*
3756 * The fast path uses conservative alloc_flags to succeed only until
3757 * kswapd needs to be woken up, and to avoid the cost of setting up
3758 * alloc_flags precisely. So we do that now.
3759 */
3760 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3761
e47483bc
VB
3762 /*
3763 * We need to recalculate the starting point for the zonelist iterator
3764 * because we might have used different nodemask in the fast path, or
3765 * there was a cpuset modification and we are retrying - otherwise we
3766 * could end up iterating over non-eligible zones endlessly.
3767 */
3768 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3769 ac->high_zoneidx, ac->nodemask);
3770 if (!ac->preferred_zoneref->zone)
3771 goto nopage;
3772
23771235
VB
3773 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3774 wake_all_kswapds(order, ac);
3775
3776 /*
3777 * The adjusted alloc_flags might result in immediate success, so try
3778 * that first
3779 */
3780 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3781 if (page)
3782 goto got_pg;
3783
a8161d1e
VB
3784 /*
3785 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3786 * that we have enough base pages and don't need to reclaim. For non-
3787 * movable high-order allocations, do that as well, as compaction will
3788 * try prevent permanent fragmentation by migrating from blocks of the
3789 * same migratetype.
3790 * Don't try this for allocations that are allowed to ignore
3791 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3792 */
282722b0
VB
3793 if (can_direct_reclaim &&
3794 (costly_order ||
3795 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3796 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3797 page = __alloc_pages_direct_compact(gfp_mask, order,
3798 alloc_flags, ac,
a5508cd8 3799 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3800 &compact_result);
3801 if (page)
3802 goto got_pg;
3803
3eb2771b
VB
3804 /*
3805 * Checks for costly allocations with __GFP_NORETRY, which
3806 * includes THP page fault allocations
3807 */
282722b0 3808 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3809 /*
3810 * If compaction is deferred for high-order allocations,
3811 * it is because sync compaction recently failed. If
3812 * this is the case and the caller requested a THP
3813 * allocation, we do not want to heavily disrupt the
3814 * system, so we fail the allocation instead of entering
3815 * direct reclaim.
3816 */
3817 if (compact_result == COMPACT_DEFERRED)
3818 goto nopage;
3819
a8161d1e 3820 /*
3eb2771b
VB
3821 * Looks like reclaim/compaction is worth trying, but
3822 * sync compaction could be very expensive, so keep
25160354 3823 * using async compaction.
a8161d1e 3824 */
a5508cd8 3825 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3826 }
3827 }
23771235 3828
31a6c190 3829retry:
23771235 3830 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3831 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3832 wake_all_kswapds(order, ac);
3833
23771235
VB
3834 if (gfp_pfmemalloc_allowed(gfp_mask))
3835 alloc_flags = ALLOC_NO_WATERMARKS;
3836
e46e7b77
MG
3837 /*
3838 * Reset the zonelist iterators if memory policies can be ignored.
3839 * These allocations are high priority and system rather than user
3840 * orientated.
3841 */
23771235 3842 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3843 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3844 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3845 ac->high_zoneidx, ac->nodemask);
3846 }
3847
23771235 3848 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3849 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3850 if (page)
3851 goto got_pg;
1da177e4 3852
d0164adc 3853 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3854 if (!can_direct_reclaim)
1da177e4
LT
3855 goto nopage;
3856
9a67f648
MH
3857 /* Make sure we know about allocations which stall for too long */
3858 if (time_after(jiffies, alloc_start + stall_timeout)) {
82251963 3859 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
9a67f648
MH
3860 "page allocation stalls for %ums, order:%u",
3861 jiffies_to_msecs(jiffies-alloc_start), order);
3862 stall_timeout += 10 * HZ;
33d53103 3863 }
341ce06f 3864
9a67f648
MH
3865 /* Avoid recursion of direct reclaim */
3866 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3867 goto nopage;
3868
a8161d1e
VB
3869 /* Try direct reclaim and then allocating */
3870 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3871 &did_some_progress);
3872 if (page)
3873 goto got_pg;
3874
3875 /* Try direct compaction and then allocating */
a9263751 3876 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3877 compact_priority, &compact_result);
56de7263
MG
3878 if (page)
3879 goto got_pg;
75f30861 3880
9083905a
JW
3881 /* Do not loop if specifically requested */
3882 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3883 goto nopage;
9083905a 3884
0a0337e0
MH
3885 /*
3886 * Do not retry costly high order allocations unless they are
3887 * __GFP_REPEAT
3888 */
282722b0 3889 if (costly_order && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3890 goto nopage;
0a0337e0 3891
0a0337e0 3892 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3893 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3894 goto retry;
3895
33c2d214
MH
3896 /*
3897 * It doesn't make any sense to retry for the compaction if the order-0
3898 * reclaim is not able to make any progress because the current
3899 * implementation of the compaction depends on the sufficient amount
3900 * of free memory (see __compaction_suitable)
3901 */
3902 if (did_some_progress > 0 &&
86a294a8 3903 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3904 compact_result, &compact_priority,
d9436498 3905 &compaction_retries))
33c2d214
MH
3906 goto retry;
3907
902b6281
VB
3908
3909 /* Deal with possible cpuset update races before we start OOM killing */
3910 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
3911 goto retry_cpuset;
3912
9083905a
JW
3913 /* Reclaim has failed us, start killing things */
3914 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3915 if (page)
3916 goto got_pg;
3917
9a67f648 3918 /* Avoid allocations with no watermarks from looping endlessly */
c288983d
TH
3919 if (test_thread_flag(TIF_MEMDIE) &&
3920 (alloc_flags == ALLOC_NO_WATERMARKS ||
3921 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
3922 goto nopage;
3923
9083905a 3924 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3925 if (did_some_progress) {
3926 no_progress_loops = 0;
9083905a 3927 goto retry;
0a0337e0 3928 }
9083905a 3929
1da177e4 3930nopage:
902b6281
VB
3931 /* Deal with possible cpuset update races before we fail */
3932 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
3933 goto retry_cpuset;
3934
9a67f648
MH
3935 /*
3936 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3937 * we always retry
3938 */
3939 if (gfp_mask & __GFP_NOFAIL) {
3940 /*
3941 * All existing users of the __GFP_NOFAIL are blockable, so warn
3942 * of any new users that actually require GFP_NOWAIT
3943 */
3944 if (WARN_ON_ONCE(!can_direct_reclaim))
3945 goto fail;
3946
3947 /*
3948 * PF_MEMALLOC request from this context is rather bizarre
3949 * because we cannot reclaim anything and only can loop waiting
3950 * for somebody to do a work for us
3951 */
3952 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3953
3954 /*
3955 * non failing costly orders are a hard requirement which we
3956 * are not prepared for much so let's warn about these users
3957 * so that we can identify them and convert them to something
3958 * else.
3959 */
3960 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3961
6c18ba7a
MH
3962 /*
3963 * Help non-failing allocations by giving them access to memory
3964 * reserves but do not use ALLOC_NO_WATERMARKS because this
3965 * could deplete whole memory reserves which would just make
3966 * the situation worse
3967 */
3968 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3969 if (page)
3970 goto got_pg;
3971
9a67f648
MH
3972 cond_resched();
3973 goto retry;
3974 }
3975fail:
a8e99259 3976 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 3977 "page allocation failure: order:%u", order);
1da177e4 3978got_pg:
072bb0aa 3979 return page;
1da177e4 3980}
11e33f6a 3981
9cd75558
MG
3982static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3983 struct zonelist *zonelist, nodemask_t *nodemask,
3984 struct alloc_context *ac, gfp_t *alloc_mask,
3985 unsigned int *alloc_flags)
11e33f6a 3986{
9cd75558
MG
3987 ac->high_zoneidx = gfp_zone(gfp_mask);
3988 ac->zonelist = zonelist;
3989 ac->nodemask = nodemask;
3990 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 3991
682a3385 3992 if (cpusets_enabled()) {
9cd75558 3993 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
3994 if (!ac->nodemask)
3995 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
3996 else
3997 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
3998 }
3999
11e33f6a
MG
4000 lockdep_trace_alloc(gfp_mask);
4001
d0164adc 4002 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4003
4004 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4005 return false;
11e33f6a 4006
9cd75558
MG
4007 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4008 *alloc_flags |= ALLOC_CMA;
4009
4010 return true;
4011}
21bb9bd1 4012
9cd75558
MG
4013/* Determine whether to spread dirty pages and what the first usable zone */
4014static inline void finalise_ac(gfp_t gfp_mask,
4015 unsigned int order, struct alloc_context *ac)
4016{
c9ab0c4f 4017 /* Dirty zone balancing only done in the fast path */
9cd75558 4018 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4019
e46e7b77
MG
4020 /*
4021 * The preferred zone is used for statistics but crucially it is
4022 * also used as the starting point for the zonelist iterator. It
4023 * may get reset for allocations that ignore memory policies.
4024 */
9cd75558
MG
4025 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4026 ac->high_zoneidx, ac->nodemask);
4027}
4028
4029/*
4030 * This is the 'heart' of the zoned buddy allocator.
4031 */
4032struct page *
4033__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
4034 struct zonelist *zonelist, nodemask_t *nodemask)
4035{
4036 struct page *page;
4037 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4038 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4039 struct alloc_context ac = { };
4040
4041 gfp_mask &= gfp_allowed_mask;
4042 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
4043 return NULL;
4044
4045 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4046
5117f45d 4047 /* First allocation attempt */
a9263751 4048 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4049 if (likely(page))
4050 goto out;
11e33f6a 4051
4fcb0971 4052 /*
7dea19f9
MH
4053 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4054 * resp. GFP_NOIO which has to be inherited for all allocation requests
4055 * from a particular context which has been marked by
4056 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4057 */
7dea19f9 4058 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4059 ac.spread_dirty_pages = false;
23f086f9 4060
4741526b
MG
4061 /*
4062 * Restore the original nodemask if it was potentially replaced with
4063 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4064 */
e47483bc 4065 if (unlikely(ac.nodemask != nodemask))
4741526b 4066 ac.nodemask = nodemask;
16096c25 4067
4fcb0971 4068 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4069
4fcb0971 4070out:
c4159a75
VD
4071 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4072 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4073 __free_pages(page, order);
4074 page = NULL;
4949148a
VD
4075 }
4076
4fcb0971
MG
4077 if (kmemcheck_enabled && page)
4078 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4079
4080 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4081
11e33f6a 4082 return page;
1da177e4 4083}
d239171e 4084EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4085
4086/*
4087 * Common helper functions.
4088 */
920c7a5d 4089unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4090{
945a1113
AM
4091 struct page *page;
4092
4093 /*
4094 * __get_free_pages() returns a 32-bit address, which cannot represent
4095 * a highmem page
4096 */
4097 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4098
1da177e4
LT
4099 page = alloc_pages(gfp_mask, order);
4100 if (!page)
4101 return 0;
4102 return (unsigned long) page_address(page);
4103}
1da177e4
LT
4104EXPORT_SYMBOL(__get_free_pages);
4105
920c7a5d 4106unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4107{
945a1113 4108 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4109}
1da177e4
LT
4110EXPORT_SYMBOL(get_zeroed_page);
4111
920c7a5d 4112void __free_pages(struct page *page, unsigned int order)
1da177e4 4113{
b5810039 4114 if (put_page_testzero(page)) {
1da177e4 4115 if (order == 0)
b745bc85 4116 free_hot_cold_page(page, false);
1da177e4
LT
4117 else
4118 __free_pages_ok(page, order);
4119 }
4120}
4121
4122EXPORT_SYMBOL(__free_pages);
4123
920c7a5d 4124void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4125{
4126 if (addr != 0) {
725d704e 4127 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4128 __free_pages(virt_to_page((void *)addr), order);
4129 }
4130}
4131
4132EXPORT_SYMBOL(free_pages);
4133
b63ae8ca
AD
4134/*
4135 * Page Fragment:
4136 * An arbitrary-length arbitrary-offset area of memory which resides
4137 * within a 0 or higher order page. Multiple fragments within that page
4138 * are individually refcounted, in the page's reference counter.
4139 *
4140 * The page_frag functions below provide a simple allocation framework for
4141 * page fragments. This is used by the network stack and network device
4142 * drivers to provide a backing region of memory for use as either an
4143 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4144 */
2976db80
AD
4145static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4146 gfp_t gfp_mask)
b63ae8ca
AD
4147{
4148 struct page *page = NULL;
4149 gfp_t gfp = gfp_mask;
4150
4151#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4152 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4153 __GFP_NOMEMALLOC;
4154 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4155 PAGE_FRAG_CACHE_MAX_ORDER);
4156 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4157#endif
4158 if (unlikely(!page))
4159 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4160
4161 nc->va = page ? page_address(page) : NULL;
4162
4163 return page;
4164}
4165
2976db80 4166void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4167{
4168 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4169
4170 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4171 unsigned int order = compound_order(page);
4172
44fdffd7
AD
4173 if (order == 0)
4174 free_hot_cold_page(page, false);
4175 else
4176 __free_pages_ok(page, order);
4177 }
4178}
2976db80 4179EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4180
8c2dd3e4
AD
4181void *page_frag_alloc(struct page_frag_cache *nc,
4182 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4183{
4184 unsigned int size = PAGE_SIZE;
4185 struct page *page;
4186 int offset;
4187
4188 if (unlikely(!nc->va)) {
4189refill:
2976db80 4190 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4191 if (!page)
4192 return NULL;
4193
4194#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4195 /* if size can vary use size else just use PAGE_SIZE */
4196 size = nc->size;
4197#endif
4198 /* Even if we own the page, we do not use atomic_set().
4199 * This would break get_page_unless_zero() users.
4200 */
fe896d18 4201 page_ref_add(page, size - 1);
b63ae8ca
AD
4202
4203 /* reset page count bias and offset to start of new frag */
2f064f34 4204 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4205 nc->pagecnt_bias = size;
4206 nc->offset = size;
4207 }
4208
4209 offset = nc->offset - fragsz;
4210 if (unlikely(offset < 0)) {
4211 page = virt_to_page(nc->va);
4212
fe896d18 4213 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4214 goto refill;
4215
4216#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4217 /* if size can vary use size else just use PAGE_SIZE */
4218 size = nc->size;
4219#endif
4220 /* OK, page count is 0, we can safely set it */
fe896d18 4221 set_page_count(page, size);
b63ae8ca
AD
4222
4223 /* reset page count bias and offset to start of new frag */
4224 nc->pagecnt_bias = size;
4225 offset = size - fragsz;
4226 }
4227
4228 nc->pagecnt_bias--;
4229 nc->offset = offset;
4230
4231 return nc->va + offset;
4232}
8c2dd3e4 4233EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4234
4235/*
4236 * Frees a page fragment allocated out of either a compound or order 0 page.
4237 */
8c2dd3e4 4238void page_frag_free(void *addr)
b63ae8ca
AD
4239{
4240 struct page *page = virt_to_head_page(addr);
4241
4242 if (unlikely(put_page_testzero(page)))
4243 __free_pages_ok(page, compound_order(page));
4244}
8c2dd3e4 4245EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4246
d00181b9
KS
4247static void *make_alloc_exact(unsigned long addr, unsigned int order,
4248 size_t size)
ee85c2e1
AK
4249{
4250 if (addr) {
4251 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4252 unsigned long used = addr + PAGE_ALIGN(size);
4253
4254 split_page(virt_to_page((void *)addr), order);
4255 while (used < alloc_end) {
4256 free_page(used);
4257 used += PAGE_SIZE;
4258 }
4259 }
4260 return (void *)addr;
4261}
4262
2be0ffe2
TT
4263/**
4264 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4265 * @size: the number of bytes to allocate
4266 * @gfp_mask: GFP flags for the allocation
4267 *
4268 * This function is similar to alloc_pages(), except that it allocates the
4269 * minimum number of pages to satisfy the request. alloc_pages() can only
4270 * allocate memory in power-of-two pages.
4271 *
4272 * This function is also limited by MAX_ORDER.
4273 *
4274 * Memory allocated by this function must be released by free_pages_exact().
4275 */
4276void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4277{
4278 unsigned int order = get_order(size);
4279 unsigned long addr;
4280
4281 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4282 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4283}
4284EXPORT_SYMBOL(alloc_pages_exact);
4285
ee85c2e1
AK
4286/**
4287 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4288 * pages on a node.
b5e6ab58 4289 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4290 * @size: the number of bytes to allocate
4291 * @gfp_mask: GFP flags for the allocation
4292 *
4293 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4294 * back.
ee85c2e1 4295 */
e1931811 4296void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4297{
d00181b9 4298 unsigned int order = get_order(size);
ee85c2e1
AK
4299 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4300 if (!p)
4301 return NULL;
4302 return make_alloc_exact((unsigned long)page_address(p), order, size);
4303}
ee85c2e1 4304
2be0ffe2
TT
4305/**
4306 * free_pages_exact - release memory allocated via alloc_pages_exact()
4307 * @virt: the value returned by alloc_pages_exact.
4308 * @size: size of allocation, same value as passed to alloc_pages_exact().
4309 *
4310 * Release the memory allocated by a previous call to alloc_pages_exact.
4311 */
4312void free_pages_exact(void *virt, size_t size)
4313{
4314 unsigned long addr = (unsigned long)virt;
4315 unsigned long end = addr + PAGE_ALIGN(size);
4316
4317 while (addr < end) {
4318 free_page(addr);
4319 addr += PAGE_SIZE;
4320 }
4321}
4322EXPORT_SYMBOL(free_pages_exact);
4323
e0fb5815
ZY
4324/**
4325 * nr_free_zone_pages - count number of pages beyond high watermark
4326 * @offset: The zone index of the highest zone
4327 *
4328 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4329 * high watermark within all zones at or below a given zone index. For each
4330 * zone, the number of pages is calculated as:
0e056eb5 4331 *
4332 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4333 */
ebec3862 4334static unsigned long nr_free_zone_pages(int offset)
1da177e4 4335{
dd1a239f 4336 struct zoneref *z;
54a6eb5c
MG
4337 struct zone *zone;
4338
e310fd43 4339 /* Just pick one node, since fallback list is circular */
ebec3862 4340 unsigned long sum = 0;
1da177e4 4341
0e88460d 4342 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4343
54a6eb5c 4344 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4345 unsigned long size = zone->managed_pages;
41858966 4346 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4347 if (size > high)
4348 sum += size - high;
1da177e4
LT
4349 }
4350
4351 return sum;
4352}
4353
e0fb5815
ZY
4354/**
4355 * nr_free_buffer_pages - count number of pages beyond high watermark
4356 *
4357 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4358 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4359 */
ebec3862 4360unsigned long nr_free_buffer_pages(void)
1da177e4 4361{
af4ca457 4362 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4363}
c2f1a551 4364EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4365
e0fb5815
ZY
4366/**
4367 * nr_free_pagecache_pages - count number of pages beyond high watermark
4368 *
4369 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4370 * high watermark within all zones.
1da177e4 4371 */
ebec3862 4372unsigned long nr_free_pagecache_pages(void)
1da177e4 4373{
2a1e274a 4374 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4375}
08e0f6a9
CL
4376
4377static inline void show_node(struct zone *zone)
1da177e4 4378{
e5adfffc 4379 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4380 printk("Node %d ", zone_to_nid(zone));
1da177e4 4381}
1da177e4 4382
d02bd27b
IR
4383long si_mem_available(void)
4384{
4385 long available;
4386 unsigned long pagecache;
4387 unsigned long wmark_low = 0;
4388 unsigned long pages[NR_LRU_LISTS];
4389 struct zone *zone;
4390 int lru;
4391
4392 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4393 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4394
4395 for_each_zone(zone)
4396 wmark_low += zone->watermark[WMARK_LOW];
4397
4398 /*
4399 * Estimate the amount of memory available for userspace allocations,
4400 * without causing swapping.
4401 */
4402 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4403
4404 /*
4405 * Not all the page cache can be freed, otherwise the system will
4406 * start swapping. Assume at least half of the page cache, or the
4407 * low watermark worth of cache, needs to stay.
4408 */
4409 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4410 pagecache -= min(pagecache / 2, wmark_low);
4411 available += pagecache;
4412
4413 /*
4414 * Part of the reclaimable slab consists of items that are in use,
4415 * and cannot be freed. Cap this estimate at the low watermark.
4416 */
4417 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4418 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4419
4420 if (available < 0)
4421 available = 0;
4422 return available;
4423}
4424EXPORT_SYMBOL_GPL(si_mem_available);
4425
1da177e4
LT
4426void si_meminfo(struct sysinfo *val)
4427{
4428 val->totalram = totalram_pages;
11fb9989 4429 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4430 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4431 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4432 val->totalhigh = totalhigh_pages;
4433 val->freehigh = nr_free_highpages();
1da177e4
LT
4434 val->mem_unit = PAGE_SIZE;
4435}
4436
4437EXPORT_SYMBOL(si_meminfo);
4438
4439#ifdef CONFIG_NUMA
4440void si_meminfo_node(struct sysinfo *val, int nid)
4441{
cdd91a77
JL
4442 int zone_type; /* needs to be signed */
4443 unsigned long managed_pages = 0;
fc2bd799
JK
4444 unsigned long managed_highpages = 0;
4445 unsigned long free_highpages = 0;
1da177e4
LT
4446 pg_data_t *pgdat = NODE_DATA(nid);
4447
cdd91a77
JL
4448 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4449 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4450 val->totalram = managed_pages;
11fb9989 4451 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4452 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4453#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4454 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4455 struct zone *zone = &pgdat->node_zones[zone_type];
4456
4457 if (is_highmem(zone)) {
4458 managed_highpages += zone->managed_pages;
4459 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4460 }
4461 }
4462 val->totalhigh = managed_highpages;
4463 val->freehigh = free_highpages;
98d2b0eb 4464#else
fc2bd799
JK
4465 val->totalhigh = managed_highpages;
4466 val->freehigh = free_highpages;
98d2b0eb 4467#endif
1da177e4
LT
4468 val->mem_unit = PAGE_SIZE;
4469}
4470#endif
4471
ddd588b5 4472/*
7bf02ea2
DR
4473 * Determine whether the node should be displayed or not, depending on whether
4474 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4475 */
9af744d7 4476static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4477{
ddd588b5 4478 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4479 return false;
ddd588b5 4480
9af744d7
MH
4481 /*
4482 * no node mask - aka implicit memory numa policy. Do not bother with
4483 * the synchronization - read_mems_allowed_begin - because we do not
4484 * have to be precise here.
4485 */
4486 if (!nodemask)
4487 nodemask = &cpuset_current_mems_allowed;
4488
4489 return !node_isset(nid, *nodemask);
ddd588b5
DR
4490}
4491
1da177e4
LT
4492#define K(x) ((x) << (PAGE_SHIFT-10))
4493
377e4f16
RV
4494static void show_migration_types(unsigned char type)
4495{
4496 static const char types[MIGRATE_TYPES] = {
4497 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4498 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4499 [MIGRATE_RECLAIMABLE] = 'E',
4500 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4501#ifdef CONFIG_CMA
4502 [MIGRATE_CMA] = 'C',
4503#endif
194159fb 4504#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4505 [MIGRATE_ISOLATE] = 'I',
194159fb 4506#endif
377e4f16
RV
4507 };
4508 char tmp[MIGRATE_TYPES + 1];
4509 char *p = tmp;
4510 int i;
4511
4512 for (i = 0; i < MIGRATE_TYPES; i++) {
4513 if (type & (1 << i))
4514 *p++ = types[i];
4515 }
4516
4517 *p = '\0';
1f84a18f 4518 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4519}
4520
1da177e4
LT
4521/*
4522 * Show free area list (used inside shift_scroll-lock stuff)
4523 * We also calculate the percentage fragmentation. We do this by counting the
4524 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4525 *
4526 * Bits in @filter:
4527 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4528 * cpuset.
1da177e4 4529 */
9af744d7 4530void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4531{
d1bfcdb8 4532 unsigned long free_pcp = 0;
c7241913 4533 int cpu;
1da177e4 4534 struct zone *zone;
599d0c95 4535 pg_data_t *pgdat;
1da177e4 4536
ee99c71c 4537 for_each_populated_zone(zone) {
9af744d7 4538 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4539 continue;
d1bfcdb8 4540
761b0677
KK
4541 for_each_online_cpu(cpu)
4542 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4543 }
4544
a731286d
KM
4545 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4546 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4547 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4548 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4549 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4550 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4551 global_node_page_state(NR_ACTIVE_ANON),
4552 global_node_page_state(NR_INACTIVE_ANON),
4553 global_node_page_state(NR_ISOLATED_ANON),
4554 global_node_page_state(NR_ACTIVE_FILE),
4555 global_node_page_state(NR_INACTIVE_FILE),
4556 global_node_page_state(NR_ISOLATED_FILE),
4557 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4558 global_node_page_state(NR_FILE_DIRTY),
4559 global_node_page_state(NR_WRITEBACK),
4560 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4561 global_page_state(NR_SLAB_RECLAIMABLE),
4562 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4563 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4564 global_node_page_state(NR_SHMEM),
a25700a5 4565 global_page_state(NR_PAGETABLE),
d1ce749a 4566 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4567 global_page_state(NR_FREE_PAGES),
4568 free_pcp,
d1ce749a 4569 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4570
599d0c95 4571 for_each_online_pgdat(pgdat) {
9af744d7 4572 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4573 continue;
4574
599d0c95
MG
4575 printk("Node %d"
4576 " active_anon:%lukB"
4577 " inactive_anon:%lukB"
4578 " active_file:%lukB"
4579 " inactive_file:%lukB"
4580 " unevictable:%lukB"
4581 " isolated(anon):%lukB"
4582 " isolated(file):%lukB"
50658e2e 4583 " mapped:%lukB"
11fb9989
MG
4584 " dirty:%lukB"
4585 " writeback:%lukB"
4586 " shmem:%lukB"
4587#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4588 " shmem_thp: %lukB"
4589 " shmem_pmdmapped: %lukB"
4590 " anon_thp: %lukB"
4591#endif
4592 " writeback_tmp:%lukB"
4593 " unstable:%lukB"
599d0c95
MG
4594 " all_unreclaimable? %s"
4595 "\n",
4596 pgdat->node_id,
4597 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4598 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4599 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4600 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4601 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4602 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4603 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4604 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4605 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4606 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4607 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4608#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4609 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4610 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4611 * HPAGE_PMD_NR),
4612 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4613#endif
11fb9989
MG
4614 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4615 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4616 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4617 "yes" : "no");
599d0c95
MG
4618 }
4619
ee99c71c 4620 for_each_populated_zone(zone) {
1da177e4
LT
4621 int i;
4622
9af744d7 4623 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4624 continue;
d1bfcdb8
KK
4625
4626 free_pcp = 0;
4627 for_each_online_cpu(cpu)
4628 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4629
1da177e4 4630 show_node(zone);
1f84a18f
JP
4631 printk(KERN_CONT
4632 "%s"
1da177e4
LT
4633 " free:%lukB"
4634 " min:%lukB"
4635 " low:%lukB"
4636 " high:%lukB"
71c799f4
MK
4637 " active_anon:%lukB"
4638 " inactive_anon:%lukB"
4639 " active_file:%lukB"
4640 " inactive_file:%lukB"
4641 " unevictable:%lukB"
5a1c84b4 4642 " writepending:%lukB"
1da177e4 4643 " present:%lukB"
9feedc9d 4644 " managed:%lukB"
4a0aa73f 4645 " mlocked:%lukB"
4a0aa73f
KM
4646 " slab_reclaimable:%lukB"
4647 " slab_unreclaimable:%lukB"
c6a7f572 4648 " kernel_stack:%lukB"
4a0aa73f 4649 " pagetables:%lukB"
4a0aa73f 4650 " bounce:%lukB"
d1bfcdb8
KK
4651 " free_pcp:%lukB"
4652 " local_pcp:%ukB"
d1ce749a 4653 " free_cma:%lukB"
1da177e4
LT
4654 "\n",
4655 zone->name,
88f5acf8 4656 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4657 K(min_wmark_pages(zone)),
4658 K(low_wmark_pages(zone)),
4659 K(high_wmark_pages(zone)),
71c799f4
MK
4660 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4661 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4662 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4663 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4664 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4665 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4666 K(zone->present_pages),
9feedc9d 4667 K(zone->managed_pages),
4a0aa73f 4668 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4669 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4670 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4671 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4672 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4673 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4674 K(free_pcp),
4675 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4676 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4677 printk("lowmem_reserve[]:");
4678 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4679 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4680 printk(KERN_CONT "\n");
1da177e4
LT
4681 }
4682
ee99c71c 4683 for_each_populated_zone(zone) {
d00181b9
KS
4684 unsigned int order;
4685 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4686 unsigned char types[MAX_ORDER];
1da177e4 4687
9af744d7 4688 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4689 continue;
1da177e4 4690 show_node(zone);
1f84a18f 4691 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4692
4693 spin_lock_irqsave(&zone->lock, flags);
4694 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4695 struct free_area *area = &zone->free_area[order];
4696 int type;
4697
4698 nr[order] = area->nr_free;
8f9de51a 4699 total += nr[order] << order;
377e4f16
RV
4700
4701 types[order] = 0;
4702 for (type = 0; type < MIGRATE_TYPES; type++) {
4703 if (!list_empty(&area->free_list[type]))
4704 types[order] |= 1 << type;
4705 }
1da177e4
LT
4706 }
4707 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4708 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4709 printk(KERN_CONT "%lu*%lukB ",
4710 nr[order], K(1UL) << order);
377e4f16
RV
4711 if (nr[order])
4712 show_migration_types(types[order]);
4713 }
1f84a18f 4714 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4715 }
4716
949f7ec5
DR
4717 hugetlb_show_meminfo();
4718
11fb9989 4719 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4720
1da177e4
LT
4721 show_swap_cache_info();
4722}
4723
19770b32
MG
4724static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4725{
4726 zoneref->zone = zone;
4727 zoneref->zone_idx = zone_idx(zone);
4728}
4729
1da177e4
LT
4730/*
4731 * Builds allocation fallback zone lists.
1a93205b
CL
4732 *
4733 * Add all populated zones of a node to the zonelist.
1da177e4 4734 */
f0c0b2b8 4735static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4736 int nr_zones)
1da177e4 4737{
1a93205b 4738 struct zone *zone;
bc732f1d 4739 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4740
4741 do {
2f6726e5 4742 zone_type--;
070f8032 4743 zone = pgdat->node_zones + zone_type;
6aa303de 4744 if (managed_zone(zone)) {
dd1a239f
MG
4745 zoneref_set_zone(zone,
4746 &zonelist->_zonerefs[nr_zones++]);
070f8032 4747 check_highest_zone(zone_type);
1da177e4 4748 }
2f6726e5 4749 } while (zone_type);
bc732f1d 4750
070f8032 4751 return nr_zones;
1da177e4
LT
4752}
4753
f0c0b2b8
KH
4754
4755/*
4756 * zonelist_order:
4757 * 0 = automatic detection of better ordering.
4758 * 1 = order by ([node] distance, -zonetype)
4759 * 2 = order by (-zonetype, [node] distance)
4760 *
4761 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4762 * the same zonelist. So only NUMA can configure this param.
4763 */
4764#define ZONELIST_ORDER_DEFAULT 0
4765#define ZONELIST_ORDER_NODE 1
4766#define ZONELIST_ORDER_ZONE 2
4767
4768/* zonelist order in the kernel.
4769 * set_zonelist_order() will set this to NODE or ZONE.
4770 */
4771static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4772static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4773
4774
1da177e4 4775#ifdef CONFIG_NUMA
f0c0b2b8
KH
4776/* The value user specified ....changed by config */
4777static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4778/* string for sysctl */
4779#define NUMA_ZONELIST_ORDER_LEN 16
4780char numa_zonelist_order[16] = "default";
4781
4782/*
4783 * interface for configure zonelist ordering.
4784 * command line option "numa_zonelist_order"
4785 * = "[dD]efault - default, automatic configuration.
4786 * = "[nN]ode - order by node locality, then by zone within node
4787 * = "[zZ]one - order by zone, then by locality within zone
4788 */
4789
4790static int __parse_numa_zonelist_order(char *s)
4791{
4792 if (*s == 'd' || *s == 'D') {
4793 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4794 } else if (*s == 'n' || *s == 'N') {
4795 user_zonelist_order = ZONELIST_ORDER_NODE;
4796 } else if (*s == 'z' || *s == 'Z') {
4797 user_zonelist_order = ZONELIST_ORDER_ZONE;
4798 } else {
1170532b 4799 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4800 return -EINVAL;
4801 }
4802 return 0;
4803}
4804
4805static __init int setup_numa_zonelist_order(char *s)
4806{
ecb256f8
VL
4807 int ret;
4808
4809 if (!s)
4810 return 0;
4811
4812 ret = __parse_numa_zonelist_order(s);
4813 if (ret == 0)
4814 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4815
4816 return ret;
f0c0b2b8
KH
4817}
4818early_param("numa_zonelist_order", setup_numa_zonelist_order);
4819
4820/*
4821 * sysctl handler for numa_zonelist_order
4822 */
cccad5b9 4823int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4824 void __user *buffer, size_t *length,
f0c0b2b8
KH
4825 loff_t *ppos)
4826{
4827 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4828 int ret;
443c6f14 4829 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4830
443c6f14 4831 mutex_lock(&zl_order_mutex);
dacbde09
CG
4832 if (write) {
4833 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4834 ret = -EINVAL;
4835 goto out;
4836 }
4837 strcpy(saved_string, (char *)table->data);
4838 }
8d65af78 4839 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4840 if (ret)
443c6f14 4841 goto out;
f0c0b2b8
KH
4842 if (write) {
4843 int oldval = user_zonelist_order;
dacbde09
CG
4844
4845 ret = __parse_numa_zonelist_order((char *)table->data);
4846 if (ret) {
f0c0b2b8
KH
4847 /*
4848 * bogus value. restore saved string
4849 */
dacbde09 4850 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4851 NUMA_ZONELIST_ORDER_LEN);
4852 user_zonelist_order = oldval;
4eaf3f64
HL
4853 } else if (oldval != user_zonelist_order) {
4854 mutex_lock(&zonelists_mutex);
9adb62a5 4855 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4856 mutex_unlock(&zonelists_mutex);
4857 }
f0c0b2b8 4858 }
443c6f14
AK
4859out:
4860 mutex_unlock(&zl_order_mutex);
4861 return ret;
f0c0b2b8
KH
4862}
4863
4864
62bc62a8 4865#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4866static int node_load[MAX_NUMNODES];
4867
1da177e4 4868/**
4dc3b16b 4869 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4870 * @node: node whose fallback list we're appending
4871 * @used_node_mask: nodemask_t of already used nodes
4872 *
4873 * We use a number of factors to determine which is the next node that should
4874 * appear on a given node's fallback list. The node should not have appeared
4875 * already in @node's fallback list, and it should be the next closest node
4876 * according to the distance array (which contains arbitrary distance values
4877 * from each node to each node in the system), and should also prefer nodes
4878 * with no CPUs, since presumably they'll have very little allocation pressure
4879 * on them otherwise.
4880 * It returns -1 if no node is found.
4881 */
f0c0b2b8 4882static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4883{
4cf808eb 4884 int n, val;
1da177e4 4885 int min_val = INT_MAX;
00ef2d2f 4886 int best_node = NUMA_NO_NODE;
a70f7302 4887 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4888
4cf808eb
LT
4889 /* Use the local node if we haven't already */
4890 if (!node_isset(node, *used_node_mask)) {
4891 node_set(node, *used_node_mask);
4892 return node;
4893 }
1da177e4 4894
4b0ef1fe 4895 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4896
4897 /* Don't want a node to appear more than once */
4898 if (node_isset(n, *used_node_mask))
4899 continue;
4900
1da177e4
LT
4901 /* Use the distance array to find the distance */
4902 val = node_distance(node, n);
4903
4cf808eb
LT
4904 /* Penalize nodes under us ("prefer the next node") */
4905 val += (n < node);
4906
1da177e4 4907 /* Give preference to headless and unused nodes */
a70f7302
RR
4908 tmp = cpumask_of_node(n);
4909 if (!cpumask_empty(tmp))
1da177e4
LT
4910 val += PENALTY_FOR_NODE_WITH_CPUS;
4911
4912 /* Slight preference for less loaded node */
4913 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4914 val += node_load[n];
4915
4916 if (val < min_val) {
4917 min_val = val;
4918 best_node = n;
4919 }
4920 }
4921
4922 if (best_node >= 0)
4923 node_set(best_node, *used_node_mask);
4924
4925 return best_node;
4926}
4927
f0c0b2b8
KH
4928
4929/*
4930 * Build zonelists ordered by node and zones within node.
4931 * This results in maximum locality--normal zone overflows into local
4932 * DMA zone, if any--but risks exhausting DMA zone.
4933 */
4934static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4935{
f0c0b2b8 4936 int j;
1da177e4 4937 struct zonelist *zonelist;
f0c0b2b8 4938
c9634cf0 4939 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4940 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4941 ;
bc732f1d 4942 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4943 zonelist->_zonerefs[j].zone = NULL;
4944 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4945}
4946
523b9458
CL
4947/*
4948 * Build gfp_thisnode zonelists
4949 */
4950static void build_thisnode_zonelists(pg_data_t *pgdat)
4951{
523b9458
CL
4952 int j;
4953 struct zonelist *zonelist;
4954
c9634cf0 4955 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4956 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4957 zonelist->_zonerefs[j].zone = NULL;
4958 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4959}
4960
f0c0b2b8
KH
4961/*
4962 * Build zonelists ordered by zone and nodes within zones.
4963 * This results in conserving DMA zone[s] until all Normal memory is
4964 * exhausted, but results in overflowing to remote node while memory
4965 * may still exist in local DMA zone.
4966 */
4967static int node_order[MAX_NUMNODES];
4968
4969static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4970{
f0c0b2b8
KH
4971 int pos, j, node;
4972 int zone_type; /* needs to be signed */
4973 struct zone *z;
4974 struct zonelist *zonelist;
4975
c9634cf0 4976 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4977 pos = 0;
4978 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4979 for (j = 0; j < nr_nodes; j++) {
4980 node = node_order[j];
4981 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4982 if (managed_zone(z)) {
dd1a239f
MG
4983 zoneref_set_zone(z,
4984 &zonelist->_zonerefs[pos++]);
54a6eb5c 4985 check_highest_zone(zone_type);
f0c0b2b8
KH
4986 }
4987 }
f0c0b2b8 4988 }
dd1a239f
MG
4989 zonelist->_zonerefs[pos].zone = NULL;
4990 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4991}
4992
3193913c
MG
4993#if defined(CONFIG_64BIT)
4994/*
4995 * Devices that require DMA32/DMA are relatively rare and do not justify a
4996 * penalty to every machine in case the specialised case applies. Default
4997 * to Node-ordering on 64-bit NUMA machines
4998 */
4999static int default_zonelist_order(void)
5000{
5001 return ZONELIST_ORDER_NODE;
5002}
5003#else
5004/*
5005 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5006 * by the kernel. If processes running on node 0 deplete the low memory zone
5007 * then reclaim will occur more frequency increasing stalls and potentially
5008 * be easier to OOM if a large percentage of the zone is under writeback or
5009 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5010 * Hence, default to zone ordering on 32-bit.
5011 */
f0c0b2b8
KH
5012static int default_zonelist_order(void)
5013{
f0c0b2b8
KH
5014 return ZONELIST_ORDER_ZONE;
5015}
3193913c 5016#endif /* CONFIG_64BIT */
f0c0b2b8
KH
5017
5018static void set_zonelist_order(void)
5019{
5020 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
5021 current_zonelist_order = default_zonelist_order();
5022 else
5023 current_zonelist_order = user_zonelist_order;
5024}
5025
5026static void build_zonelists(pg_data_t *pgdat)
5027{
c00eb15a 5028 int i, node, load;
1da177e4 5029 nodemask_t used_mask;
f0c0b2b8
KH
5030 int local_node, prev_node;
5031 struct zonelist *zonelist;
d00181b9 5032 unsigned int order = current_zonelist_order;
1da177e4
LT
5033
5034 /* initialize zonelists */
523b9458 5035 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 5036 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
5037 zonelist->_zonerefs[0].zone = NULL;
5038 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
5039 }
5040
5041 /* NUMA-aware ordering of nodes */
5042 local_node = pgdat->node_id;
62bc62a8 5043 load = nr_online_nodes;
1da177e4
LT
5044 prev_node = local_node;
5045 nodes_clear(used_mask);
f0c0b2b8 5046
f0c0b2b8 5047 memset(node_order, 0, sizeof(node_order));
c00eb15a 5048 i = 0;
f0c0b2b8 5049
1da177e4
LT
5050 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5051 /*
5052 * We don't want to pressure a particular node.
5053 * So adding penalty to the first node in same
5054 * distance group to make it round-robin.
5055 */
957f822a
DR
5056 if (node_distance(local_node, node) !=
5057 node_distance(local_node, prev_node))
f0c0b2b8
KH
5058 node_load[node] = load;
5059
1da177e4
LT
5060 prev_node = node;
5061 load--;
f0c0b2b8
KH
5062 if (order == ZONELIST_ORDER_NODE)
5063 build_zonelists_in_node_order(pgdat, node);
5064 else
c00eb15a 5065 node_order[i++] = node; /* remember order */
f0c0b2b8 5066 }
1da177e4 5067
f0c0b2b8
KH
5068 if (order == ZONELIST_ORDER_ZONE) {
5069 /* calculate node order -- i.e., DMA last! */
c00eb15a 5070 build_zonelists_in_zone_order(pgdat, i);
1da177e4 5071 }
523b9458
CL
5072
5073 build_thisnode_zonelists(pgdat);
1da177e4
LT
5074}
5075
7aac7898
LS
5076#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5077/*
5078 * Return node id of node used for "local" allocations.
5079 * I.e., first node id of first zone in arg node's generic zonelist.
5080 * Used for initializing percpu 'numa_mem', which is used primarily
5081 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5082 */
5083int local_memory_node(int node)
5084{
c33d6c06 5085 struct zoneref *z;
7aac7898 5086
c33d6c06 5087 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5088 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5089 NULL);
5090 return z->zone->node;
7aac7898
LS
5091}
5092#endif
f0c0b2b8 5093
6423aa81
JK
5094static void setup_min_unmapped_ratio(void);
5095static void setup_min_slab_ratio(void);
1da177e4
LT
5096#else /* CONFIG_NUMA */
5097
f0c0b2b8
KH
5098static void set_zonelist_order(void)
5099{
5100 current_zonelist_order = ZONELIST_ORDER_ZONE;
5101}
5102
5103static void build_zonelists(pg_data_t *pgdat)
1da177e4 5104{
19655d34 5105 int node, local_node;
54a6eb5c
MG
5106 enum zone_type j;
5107 struct zonelist *zonelist;
1da177e4
LT
5108
5109 local_node = pgdat->node_id;
1da177e4 5110
c9634cf0 5111 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 5112 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 5113
54a6eb5c
MG
5114 /*
5115 * Now we build the zonelist so that it contains the zones
5116 * of all the other nodes.
5117 * We don't want to pressure a particular node, so when
5118 * building the zones for node N, we make sure that the
5119 * zones coming right after the local ones are those from
5120 * node N+1 (modulo N)
5121 */
5122 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5123 if (!node_online(node))
5124 continue;
bc732f1d 5125 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5126 }
54a6eb5c
MG
5127 for (node = 0; node < local_node; node++) {
5128 if (!node_online(node))
5129 continue;
bc732f1d 5130 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5131 }
5132
dd1a239f
MG
5133 zonelist->_zonerefs[j].zone = NULL;
5134 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5135}
5136
5137#endif /* CONFIG_NUMA */
5138
99dcc3e5
CL
5139/*
5140 * Boot pageset table. One per cpu which is going to be used for all
5141 * zones and all nodes. The parameters will be set in such a way
5142 * that an item put on a list will immediately be handed over to
5143 * the buddy list. This is safe since pageset manipulation is done
5144 * with interrupts disabled.
5145 *
5146 * The boot_pagesets must be kept even after bootup is complete for
5147 * unused processors and/or zones. They do play a role for bootstrapping
5148 * hotplugged processors.
5149 *
5150 * zoneinfo_show() and maybe other functions do
5151 * not check if the processor is online before following the pageset pointer.
5152 * Other parts of the kernel may not check if the zone is available.
5153 */
5154static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5155static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 5156static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5157
4eaf3f64
HL
5158/*
5159 * Global mutex to protect against size modification of zonelists
5160 * as well as to serialize pageset setup for the new populated zone.
5161 */
5162DEFINE_MUTEX(zonelists_mutex);
5163
9b1a4d38 5164/* return values int ....just for stop_machine() */
4ed7e022 5165static int __build_all_zonelists(void *data)
1da177e4 5166{
6811378e 5167 int nid;
99dcc3e5 5168 int cpu;
9adb62a5 5169 pg_data_t *self = data;
9276b1bc 5170
7f9cfb31
BL
5171#ifdef CONFIG_NUMA
5172 memset(node_load, 0, sizeof(node_load));
5173#endif
9adb62a5
JL
5174
5175 if (self && !node_online(self->node_id)) {
5176 build_zonelists(self);
9adb62a5
JL
5177 }
5178
9276b1bc 5179 for_each_online_node(nid) {
7ea1530a
CL
5180 pg_data_t *pgdat = NODE_DATA(nid);
5181
5182 build_zonelists(pgdat);
9276b1bc 5183 }
99dcc3e5
CL
5184
5185 /*
5186 * Initialize the boot_pagesets that are going to be used
5187 * for bootstrapping processors. The real pagesets for
5188 * each zone will be allocated later when the per cpu
5189 * allocator is available.
5190 *
5191 * boot_pagesets are used also for bootstrapping offline
5192 * cpus if the system is already booted because the pagesets
5193 * are needed to initialize allocators on a specific cpu too.
5194 * F.e. the percpu allocator needs the page allocator which
5195 * needs the percpu allocator in order to allocate its pagesets
5196 * (a chicken-egg dilemma).
5197 */
7aac7898 5198 for_each_possible_cpu(cpu) {
99dcc3e5
CL
5199 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5200
7aac7898
LS
5201#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5202 /*
5203 * We now know the "local memory node" for each node--
5204 * i.e., the node of the first zone in the generic zonelist.
5205 * Set up numa_mem percpu variable for on-line cpus. During
5206 * boot, only the boot cpu should be on-line; we'll init the
5207 * secondary cpus' numa_mem as they come on-line. During
5208 * node/memory hotplug, we'll fixup all on-line cpus.
5209 */
5210 if (cpu_online(cpu))
5211 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5212#endif
5213 }
5214
6811378e
YG
5215 return 0;
5216}
5217
061f67bc
RV
5218static noinline void __init
5219build_all_zonelists_init(void)
5220{
5221 __build_all_zonelists(NULL);
5222 mminit_verify_zonelist();
5223 cpuset_init_current_mems_allowed();
5224}
5225
4eaf3f64
HL
5226/*
5227 * Called with zonelists_mutex held always
5228 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5229 *
5230 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5231 * [we're only called with non-NULL zone through __meminit paths] and
5232 * (2) call of __init annotated helper build_all_zonelists_init
5233 * [protected by SYSTEM_BOOTING].
4eaf3f64 5234 */
9adb62a5 5235void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5236{
f0c0b2b8
KH
5237 set_zonelist_order();
5238
6811378e 5239 if (system_state == SYSTEM_BOOTING) {
061f67bc 5240 build_all_zonelists_init();
6811378e 5241 } else {
e9959f0f 5242#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5243 if (zone)
5244 setup_zone_pageset(zone);
e9959f0f 5245#endif
dd1895e2
CS
5246 /* we have to stop all cpus to guarantee there is no user
5247 of zonelist */
9adb62a5 5248 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5249 /* cpuset refresh routine should be here */
5250 }
bd1e22b8 5251 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5252 /*
5253 * Disable grouping by mobility if the number of pages in the
5254 * system is too low to allow the mechanism to work. It would be
5255 * more accurate, but expensive to check per-zone. This check is
5256 * made on memory-hotadd so a system can start with mobility
5257 * disabled and enable it later
5258 */
d9c23400 5259 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5260 page_group_by_mobility_disabled = 1;
5261 else
5262 page_group_by_mobility_disabled = 0;
5263
756a025f
JP
5264 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5265 nr_online_nodes,
5266 zonelist_order_name[current_zonelist_order],
5267 page_group_by_mobility_disabled ? "off" : "on",
5268 vm_total_pages);
f0c0b2b8 5269#ifdef CONFIG_NUMA
f88dfff5 5270 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5271#endif
1da177e4
LT
5272}
5273
1da177e4
LT
5274/*
5275 * Initially all pages are reserved - free ones are freed
5276 * up by free_all_bootmem() once the early boot process is
5277 * done. Non-atomic initialization, single-pass.
5278 */
c09b4240 5279void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5280 unsigned long start_pfn, enum memmap_context context)
1da177e4 5281{
4b94ffdc 5282 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5283 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5284 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5285 unsigned long pfn;
3a80a7fa 5286 unsigned long nr_initialised = 0;
342332e6
TI
5287#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5288 struct memblock_region *r = NULL, *tmp;
5289#endif
1da177e4 5290
22b31eec
HD
5291 if (highest_memmap_pfn < end_pfn - 1)
5292 highest_memmap_pfn = end_pfn - 1;
5293
4b94ffdc
DW
5294 /*
5295 * Honor reservation requested by the driver for this ZONE_DEVICE
5296 * memory
5297 */
5298 if (altmap && start_pfn == altmap->base_pfn)
5299 start_pfn += altmap->reserve;
5300
cbe8dd4a 5301 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5302 /*
b72d0ffb
AM
5303 * There can be holes in boot-time mem_map[]s handed to this
5304 * function. They do not exist on hotplugged memory.
a2f3aa02 5305 */
b72d0ffb
AM
5306 if (context != MEMMAP_EARLY)
5307 goto not_early;
5308
b92df1de
PB
5309 if (!early_pfn_valid(pfn)) {
5310#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5311 /*
5312 * Skip to the pfn preceding the next valid one (or
5313 * end_pfn), such that we hit a valid pfn (or end_pfn)
5314 * on our next iteration of the loop.
5315 */
5316 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5317#endif
b72d0ffb 5318 continue;
b92df1de 5319 }
b72d0ffb
AM
5320 if (!early_pfn_in_nid(pfn, nid))
5321 continue;
5322 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5323 break;
342332e6
TI
5324
5325#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5326 /*
5327 * Check given memblock attribute by firmware which can affect
5328 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5329 * mirrored, it's an overlapped memmap init. skip it.
5330 */
5331 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5332 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5333 for_each_memblock(memory, tmp)
5334 if (pfn < memblock_region_memory_end_pfn(tmp))
5335 break;
5336 r = tmp;
5337 }
5338 if (pfn >= memblock_region_memory_base_pfn(r) &&
5339 memblock_is_mirror(r)) {
5340 /* already initialized as NORMAL */
5341 pfn = memblock_region_memory_end_pfn(r);
5342 continue;
342332e6 5343 }
a2f3aa02 5344 }
b72d0ffb 5345#endif
ac5d2539 5346
b72d0ffb 5347not_early:
ac5d2539
MG
5348 /*
5349 * Mark the block movable so that blocks are reserved for
5350 * movable at startup. This will force kernel allocations
5351 * to reserve their blocks rather than leaking throughout
5352 * the address space during boot when many long-lived
974a786e 5353 * kernel allocations are made.
ac5d2539
MG
5354 *
5355 * bitmap is created for zone's valid pfn range. but memmap
5356 * can be created for invalid pages (for alignment)
5357 * check here not to call set_pageblock_migratetype() against
5358 * pfn out of zone.
5359 */
5360 if (!(pfn & (pageblock_nr_pages - 1))) {
5361 struct page *page = pfn_to_page(pfn);
5362
5363 __init_single_page(page, pfn, zone, nid);
5364 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5365 } else {
5366 __init_single_pfn(pfn, zone, nid);
5367 }
1da177e4
LT
5368 }
5369}
5370
1e548deb 5371static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5372{
7aeb09f9 5373 unsigned int order, t;
b2a0ac88
MG
5374 for_each_migratetype_order(order, t) {
5375 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5376 zone->free_area[order].nr_free = 0;
5377 }
5378}
5379
5380#ifndef __HAVE_ARCH_MEMMAP_INIT
5381#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5382 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5383#endif
5384
7cd2b0a3 5385static int zone_batchsize(struct zone *zone)
e7c8d5c9 5386{
3a6be87f 5387#ifdef CONFIG_MMU
e7c8d5c9
CL
5388 int batch;
5389
5390 /*
5391 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5392 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5393 *
5394 * OK, so we don't know how big the cache is. So guess.
5395 */
b40da049 5396 batch = zone->managed_pages / 1024;
ba56e91c
SR
5397 if (batch * PAGE_SIZE > 512 * 1024)
5398 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5399 batch /= 4; /* We effectively *= 4 below */
5400 if (batch < 1)
5401 batch = 1;
5402
5403 /*
0ceaacc9
NP
5404 * Clamp the batch to a 2^n - 1 value. Having a power
5405 * of 2 value was found to be more likely to have
5406 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5407 *
0ceaacc9
NP
5408 * For example if 2 tasks are alternately allocating
5409 * batches of pages, one task can end up with a lot
5410 * of pages of one half of the possible page colors
5411 * and the other with pages of the other colors.
e7c8d5c9 5412 */
9155203a 5413 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5414
e7c8d5c9 5415 return batch;
3a6be87f
DH
5416
5417#else
5418 /* The deferral and batching of frees should be suppressed under NOMMU
5419 * conditions.
5420 *
5421 * The problem is that NOMMU needs to be able to allocate large chunks
5422 * of contiguous memory as there's no hardware page translation to
5423 * assemble apparent contiguous memory from discontiguous pages.
5424 *
5425 * Queueing large contiguous runs of pages for batching, however,
5426 * causes the pages to actually be freed in smaller chunks. As there
5427 * can be a significant delay between the individual batches being
5428 * recycled, this leads to the once large chunks of space being
5429 * fragmented and becoming unavailable for high-order allocations.
5430 */
5431 return 0;
5432#endif
e7c8d5c9
CL
5433}
5434
8d7a8fa9
CS
5435/*
5436 * pcp->high and pcp->batch values are related and dependent on one another:
5437 * ->batch must never be higher then ->high.
5438 * The following function updates them in a safe manner without read side
5439 * locking.
5440 *
5441 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5442 * those fields changing asynchronously (acording the the above rule).
5443 *
5444 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5445 * outside of boot time (or some other assurance that no concurrent updaters
5446 * exist).
5447 */
5448static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5449 unsigned long batch)
5450{
5451 /* start with a fail safe value for batch */
5452 pcp->batch = 1;
5453 smp_wmb();
5454
5455 /* Update high, then batch, in order */
5456 pcp->high = high;
5457 smp_wmb();
5458
5459 pcp->batch = batch;
5460}
5461
3664033c 5462/* a companion to pageset_set_high() */
4008bab7
CS
5463static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5464{
8d7a8fa9 5465 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5466}
5467
88c90dbc 5468static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5469{
5470 struct per_cpu_pages *pcp;
5f8dcc21 5471 int migratetype;
2caaad41 5472
1c6fe946
MD
5473 memset(p, 0, sizeof(*p));
5474
3dfa5721 5475 pcp = &p->pcp;
2caaad41 5476 pcp->count = 0;
5f8dcc21
MG
5477 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5478 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5479}
5480
88c90dbc
CS
5481static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5482{
5483 pageset_init(p);
5484 pageset_set_batch(p, batch);
5485}
5486
8ad4b1fb 5487/*
3664033c 5488 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5489 * to the value high for the pageset p.
5490 */
3664033c 5491static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5492 unsigned long high)
5493{
8d7a8fa9
CS
5494 unsigned long batch = max(1UL, high / 4);
5495 if ((high / 4) > (PAGE_SHIFT * 8))
5496 batch = PAGE_SHIFT * 8;
8ad4b1fb 5497
8d7a8fa9 5498 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5499}
5500
7cd2b0a3
DR
5501static void pageset_set_high_and_batch(struct zone *zone,
5502 struct per_cpu_pageset *pcp)
56cef2b8 5503{
56cef2b8 5504 if (percpu_pagelist_fraction)
3664033c 5505 pageset_set_high(pcp,
56cef2b8
CS
5506 (zone->managed_pages /
5507 percpu_pagelist_fraction));
5508 else
5509 pageset_set_batch(pcp, zone_batchsize(zone));
5510}
5511
169f6c19
CS
5512static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5513{
5514 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5515
5516 pageset_init(pcp);
5517 pageset_set_high_and_batch(zone, pcp);
5518}
5519
4ed7e022 5520static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5521{
5522 int cpu;
319774e2 5523 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5524 for_each_possible_cpu(cpu)
5525 zone_pageset_init(zone, cpu);
319774e2
WF
5526}
5527
2caaad41 5528/*
99dcc3e5
CL
5529 * Allocate per cpu pagesets and initialize them.
5530 * Before this call only boot pagesets were available.
e7c8d5c9 5531 */
99dcc3e5 5532void __init setup_per_cpu_pageset(void)
e7c8d5c9 5533{
b4911ea2 5534 struct pglist_data *pgdat;
99dcc3e5 5535 struct zone *zone;
e7c8d5c9 5536
319774e2
WF
5537 for_each_populated_zone(zone)
5538 setup_zone_pageset(zone);
b4911ea2
MG
5539
5540 for_each_online_pgdat(pgdat)
5541 pgdat->per_cpu_nodestats =
5542 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5543}
5544
c09b4240 5545static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5546{
99dcc3e5
CL
5547 /*
5548 * per cpu subsystem is not up at this point. The following code
5549 * relies on the ability of the linker to provide the
5550 * offset of a (static) per cpu variable into the per cpu area.
5551 */
5552 zone->pageset = &boot_pageset;
ed8ece2e 5553
b38a8725 5554 if (populated_zone(zone))
99dcc3e5
CL
5555 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5556 zone->name, zone->present_pages,
5557 zone_batchsize(zone));
ed8ece2e
DH
5558}
5559
dc0bbf3b 5560void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5561 unsigned long zone_start_pfn,
b171e409 5562 unsigned long size)
ed8ece2e
DH
5563{
5564 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5565
ed8ece2e
DH
5566 pgdat->nr_zones = zone_idx(zone) + 1;
5567
ed8ece2e
DH
5568 zone->zone_start_pfn = zone_start_pfn;
5569
708614e6
MG
5570 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5571 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5572 pgdat->node_id,
5573 (unsigned long)zone_idx(zone),
5574 zone_start_pfn, (zone_start_pfn + size));
5575
1e548deb 5576 zone_init_free_lists(zone);
9dcb8b68 5577 zone->initialized = 1;
ed8ece2e
DH
5578}
5579
0ee332c1 5580#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5581#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5582
c713216d
MG
5583/*
5584 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5585 */
8a942fde
MG
5586int __meminit __early_pfn_to_nid(unsigned long pfn,
5587 struct mminit_pfnnid_cache *state)
c713216d 5588{
c13291a5 5589 unsigned long start_pfn, end_pfn;
e76b63f8 5590 int nid;
7c243c71 5591
8a942fde
MG
5592 if (state->last_start <= pfn && pfn < state->last_end)
5593 return state->last_nid;
c713216d 5594
e76b63f8
YL
5595 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5596 if (nid != -1) {
8a942fde
MG
5597 state->last_start = start_pfn;
5598 state->last_end = end_pfn;
5599 state->last_nid = nid;
e76b63f8
YL
5600 }
5601
5602 return nid;
c713216d
MG
5603}
5604#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5605
c713216d 5606/**
6782832e 5607 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5608 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5609 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5610 *
7d018176
ZZ
5611 * If an architecture guarantees that all ranges registered contain no holes
5612 * and may be freed, this this function may be used instead of calling
5613 * memblock_free_early_nid() manually.
c713216d 5614 */
c13291a5 5615void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5616{
c13291a5
TH
5617 unsigned long start_pfn, end_pfn;
5618 int i, this_nid;
edbe7d23 5619
c13291a5
TH
5620 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5621 start_pfn = min(start_pfn, max_low_pfn);
5622 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5623
c13291a5 5624 if (start_pfn < end_pfn)
6782832e
SS
5625 memblock_free_early_nid(PFN_PHYS(start_pfn),
5626 (end_pfn - start_pfn) << PAGE_SHIFT,
5627 this_nid);
edbe7d23 5628 }
edbe7d23 5629}
edbe7d23 5630
c713216d
MG
5631/**
5632 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5633 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5634 *
7d018176
ZZ
5635 * If an architecture guarantees that all ranges registered contain no holes and may
5636 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5637 */
5638void __init sparse_memory_present_with_active_regions(int nid)
5639{
c13291a5
TH
5640 unsigned long start_pfn, end_pfn;
5641 int i, this_nid;
c713216d 5642
c13291a5
TH
5643 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5644 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5645}
5646
5647/**
5648 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5649 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5650 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5651 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5652 *
5653 * It returns the start and end page frame of a node based on information
7d018176 5654 * provided by memblock_set_node(). If called for a node
c713216d 5655 * with no available memory, a warning is printed and the start and end
88ca3b94 5656 * PFNs will be 0.
c713216d 5657 */
a3142c8e 5658void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5659 unsigned long *start_pfn, unsigned long *end_pfn)
5660{
c13291a5 5661 unsigned long this_start_pfn, this_end_pfn;
c713216d 5662 int i;
c13291a5 5663
c713216d
MG
5664 *start_pfn = -1UL;
5665 *end_pfn = 0;
5666
c13291a5
TH
5667 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5668 *start_pfn = min(*start_pfn, this_start_pfn);
5669 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5670 }
5671
633c0666 5672 if (*start_pfn == -1UL)
c713216d 5673 *start_pfn = 0;
c713216d
MG
5674}
5675
2a1e274a
MG
5676/*
5677 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5678 * assumption is made that zones within a node are ordered in monotonic
5679 * increasing memory addresses so that the "highest" populated zone is used
5680 */
b69a7288 5681static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5682{
5683 int zone_index;
5684 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5685 if (zone_index == ZONE_MOVABLE)
5686 continue;
5687
5688 if (arch_zone_highest_possible_pfn[zone_index] >
5689 arch_zone_lowest_possible_pfn[zone_index])
5690 break;
5691 }
5692
5693 VM_BUG_ON(zone_index == -1);
5694 movable_zone = zone_index;
5695}
5696
5697/*
5698 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5699 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5700 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5701 * in each node depending on the size of each node and how evenly kernelcore
5702 * is distributed. This helper function adjusts the zone ranges
5703 * provided by the architecture for a given node by using the end of the
5704 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5705 * zones within a node are in order of monotonic increases memory addresses
5706 */
b69a7288 5707static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5708 unsigned long zone_type,
5709 unsigned long node_start_pfn,
5710 unsigned long node_end_pfn,
5711 unsigned long *zone_start_pfn,
5712 unsigned long *zone_end_pfn)
5713{
5714 /* Only adjust if ZONE_MOVABLE is on this node */
5715 if (zone_movable_pfn[nid]) {
5716 /* Size ZONE_MOVABLE */
5717 if (zone_type == ZONE_MOVABLE) {
5718 *zone_start_pfn = zone_movable_pfn[nid];
5719 *zone_end_pfn = min(node_end_pfn,
5720 arch_zone_highest_possible_pfn[movable_zone]);
5721
e506b996
XQ
5722 /* Adjust for ZONE_MOVABLE starting within this range */
5723 } else if (!mirrored_kernelcore &&
5724 *zone_start_pfn < zone_movable_pfn[nid] &&
5725 *zone_end_pfn > zone_movable_pfn[nid]) {
5726 *zone_end_pfn = zone_movable_pfn[nid];
5727
2a1e274a
MG
5728 /* Check if this whole range is within ZONE_MOVABLE */
5729 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5730 *zone_start_pfn = *zone_end_pfn;
5731 }
5732}
5733
c713216d
MG
5734/*
5735 * Return the number of pages a zone spans in a node, including holes
5736 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5737 */
6ea6e688 5738static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5739 unsigned long zone_type,
7960aedd
ZY
5740 unsigned long node_start_pfn,
5741 unsigned long node_end_pfn,
d91749c1
TI
5742 unsigned long *zone_start_pfn,
5743 unsigned long *zone_end_pfn,
c713216d
MG
5744 unsigned long *ignored)
5745{
b5685e92 5746 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5747 if (!node_start_pfn && !node_end_pfn)
5748 return 0;
5749
7960aedd 5750 /* Get the start and end of the zone */
d91749c1
TI
5751 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5752 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5753 adjust_zone_range_for_zone_movable(nid, zone_type,
5754 node_start_pfn, node_end_pfn,
d91749c1 5755 zone_start_pfn, zone_end_pfn);
c713216d
MG
5756
5757 /* Check that this node has pages within the zone's required range */
d91749c1 5758 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5759 return 0;
5760
5761 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5762 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5763 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5764
5765 /* Return the spanned pages */
d91749c1 5766 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5767}
5768
5769/*
5770 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5771 * then all holes in the requested range will be accounted for.
c713216d 5772 */
32996250 5773unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5774 unsigned long range_start_pfn,
5775 unsigned long range_end_pfn)
5776{
96e907d1
TH
5777 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5778 unsigned long start_pfn, end_pfn;
5779 int i;
c713216d 5780
96e907d1
TH
5781 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5782 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5783 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5784 nr_absent -= end_pfn - start_pfn;
c713216d 5785 }
96e907d1 5786 return nr_absent;
c713216d
MG
5787}
5788
5789/**
5790 * absent_pages_in_range - Return number of page frames in holes within a range
5791 * @start_pfn: The start PFN to start searching for holes
5792 * @end_pfn: The end PFN to stop searching for holes
5793 *
88ca3b94 5794 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5795 */
5796unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5797 unsigned long end_pfn)
5798{
5799 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5800}
5801
5802/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5803static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5804 unsigned long zone_type,
7960aedd
ZY
5805 unsigned long node_start_pfn,
5806 unsigned long node_end_pfn,
c713216d
MG
5807 unsigned long *ignored)
5808{
96e907d1
TH
5809 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5810 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5811 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5812 unsigned long nr_absent;
9c7cd687 5813
b5685e92 5814 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5815 if (!node_start_pfn && !node_end_pfn)
5816 return 0;
5817
96e907d1
TH
5818 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5819 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5820
2a1e274a
MG
5821 adjust_zone_range_for_zone_movable(nid, zone_type,
5822 node_start_pfn, node_end_pfn,
5823 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5824 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5825
5826 /*
5827 * ZONE_MOVABLE handling.
5828 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5829 * and vice versa.
5830 */
e506b996
XQ
5831 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5832 unsigned long start_pfn, end_pfn;
5833 struct memblock_region *r;
5834
5835 for_each_memblock(memory, r) {
5836 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5837 zone_start_pfn, zone_end_pfn);
5838 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5839 zone_start_pfn, zone_end_pfn);
5840
5841 if (zone_type == ZONE_MOVABLE &&
5842 memblock_is_mirror(r))
5843 nr_absent += end_pfn - start_pfn;
5844
5845 if (zone_type == ZONE_NORMAL &&
5846 !memblock_is_mirror(r))
5847 nr_absent += end_pfn - start_pfn;
342332e6
TI
5848 }
5849 }
5850
5851 return nr_absent;
c713216d 5852}
0e0b864e 5853
0ee332c1 5854#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5855static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5856 unsigned long zone_type,
7960aedd
ZY
5857 unsigned long node_start_pfn,
5858 unsigned long node_end_pfn,
d91749c1
TI
5859 unsigned long *zone_start_pfn,
5860 unsigned long *zone_end_pfn,
c713216d
MG
5861 unsigned long *zones_size)
5862{
d91749c1
TI
5863 unsigned int zone;
5864
5865 *zone_start_pfn = node_start_pfn;
5866 for (zone = 0; zone < zone_type; zone++)
5867 *zone_start_pfn += zones_size[zone];
5868
5869 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5870
c713216d
MG
5871 return zones_size[zone_type];
5872}
5873
6ea6e688 5874static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5875 unsigned long zone_type,
7960aedd
ZY
5876 unsigned long node_start_pfn,
5877 unsigned long node_end_pfn,
c713216d
MG
5878 unsigned long *zholes_size)
5879{
5880 if (!zholes_size)
5881 return 0;
5882
5883 return zholes_size[zone_type];
5884}
20e6926d 5885
0ee332c1 5886#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5887
a3142c8e 5888static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5889 unsigned long node_start_pfn,
5890 unsigned long node_end_pfn,
5891 unsigned long *zones_size,
5892 unsigned long *zholes_size)
c713216d 5893{
febd5949 5894 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5895 enum zone_type i;
5896
febd5949
GZ
5897 for (i = 0; i < MAX_NR_ZONES; i++) {
5898 struct zone *zone = pgdat->node_zones + i;
d91749c1 5899 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5900 unsigned long size, real_size;
c713216d 5901
febd5949
GZ
5902 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5903 node_start_pfn,
5904 node_end_pfn,
d91749c1
TI
5905 &zone_start_pfn,
5906 &zone_end_pfn,
febd5949
GZ
5907 zones_size);
5908 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5909 node_start_pfn, node_end_pfn,
5910 zholes_size);
d91749c1
TI
5911 if (size)
5912 zone->zone_start_pfn = zone_start_pfn;
5913 else
5914 zone->zone_start_pfn = 0;
febd5949
GZ
5915 zone->spanned_pages = size;
5916 zone->present_pages = real_size;
5917
5918 totalpages += size;
5919 realtotalpages += real_size;
5920 }
5921
5922 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5923 pgdat->node_present_pages = realtotalpages;
5924 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5925 realtotalpages);
5926}
5927
835c134e
MG
5928#ifndef CONFIG_SPARSEMEM
5929/*
5930 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5931 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5932 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5933 * round what is now in bits to nearest long in bits, then return it in
5934 * bytes.
5935 */
7c45512d 5936static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5937{
5938 unsigned long usemapsize;
5939
7c45512d 5940 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5941 usemapsize = roundup(zonesize, pageblock_nr_pages);
5942 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5943 usemapsize *= NR_PAGEBLOCK_BITS;
5944 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5945
5946 return usemapsize / 8;
5947}
5948
5949static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5950 struct zone *zone,
5951 unsigned long zone_start_pfn,
5952 unsigned long zonesize)
835c134e 5953{
7c45512d 5954 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5955 zone->pageblock_flags = NULL;
58a01a45 5956 if (usemapsize)
6782832e
SS
5957 zone->pageblock_flags =
5958 memblock_virt_alloc_node_nopanic(usemapsize,
5959 pgdat->node_id);
835c134e
MG
5960}
5961#else
7c45512d
LT
5962static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5963 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5964#endif /* CONFIG_SPARSEMEM */
5965
d9c23400 5966#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5967
d9c23400 5968/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5969void __paginginit set_pageblock_order(void)
d9c23400 5970{
955c1cd7
AM
5971 unsigned int order;
5972
d9c23400
MG
5973 /* Check that pageblock_nr_pages has not already been setup */
5974 if (pageblock_order)
5975 return;
5976
955c1cd7
AM
5977 if (HPAGE_SHIFT > PAGE_SHIFT)
5978 order = HUGETLB_PAGE_ORDER;
5979 else
5980 order = MAX_ORDER - 1;
5981
d9c23400
MG
5982 /*
5983 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5984 * This value may be variable depending on boot parameters on IA64 and
5985 * powerpc.
d9c23400
MG
5986 */
5987 pageblock_order = order;
5988}
5989#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5990
ba72cb8c
MG
5991/*
5992 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5993 * is unused as pageblock_order is set at compile-time. See
5994 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5995 * the kernel config
ba72cb8c 5996 */
15ca220e 5997void __paginginit set_pageblock_order(void)
ba72cb8c 5998{
ba72cb8c 5999}
d9c23400
MG
6000
6001#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6002
01cefaef
JL
6003static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6004 unsigned long present_pages)
6005{
6006 unsigned long pages = spanned_pages;
6007
6008 /*
6009 * Provide a more accurate estimation if there are holes within
6010 * the zone and SPARSEMEM is in use. If there are holes within the
6011 * zone, each populated memory region may cost us one or two extra
6012 * memmap pages due to alignment because memmap pages for each
89d790ab 6013 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6014 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6015 */
6016 if (spanned_pages > present_pages + (present_pages >> 4) &&
6017 IS_ENABLED(CONFIG_SPARSEMEM))
6018 pages = present_pages;
6019
6020 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6021}
6022
1da177e4
LT
6023/*
6024 * Set up the zone data structures:
6025 * - mark all pages reserved
6026 * - mark all memory queues empty
6027 * - clear the memory bitmaps
6527af5d
MK
6028 *
6029 * NOTE: pgdat should get zeroed by caller.
1da177e4 6030 */
7f3eb55b 6031static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6032{
2f1b6248 6033 enum zone_type j;
ed8ece2e 6034 int nid = pgdat->node_id;
1da177e4 6035
208d54e5 6036 pgdat_resize_init(pgdat);
8177a420
AA
6037#ifdef CONFIG_NUMA_BALANCING
6038 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6039 pgdat->numabalancing_migrate_nr_pages = 0;
6040 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6041#endif
6042#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6043 spin_lock_init(&pgdat->split_queue_lock);
6044 INIT_LIST_HEAD(&pgdat->split_queue);
6045 pgdat->split_queue_len = 0;
8177a420 6046#endif
1da177e4 6047 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6048 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6049#ifdef CONFIG_COMPACTION
6050 init_waitqueue_head(&pgdat->kcompactd_wait);
6051#endif
eefa864b 6052 pgdat_page_ext_init(pgdat);
a52633d8 6053 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6054 lruvec_init(node_lruvec(pgdat));
5f63b720 6055
1da177e4
LT
6056 for (j = 0; j < MAX_NR_ZONES; j++) {
6057 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6058 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6059 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6060
febd5949
GZ
6061 size = zone->spanned_pages;
6062 realsize = freesize = zone->present_pages;
1da177e4 6063
0e0b864e 6064 /*
9feedc9d 6065 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6066 * is used by this zone for memmap. This affects the watermark
6067 * and per-cpu initialisations
6068 */
01cefaef 6069 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6070 if (!is_highmem_idx(j)) {
6071 if (freesize >= memmap_pages) {
6072 freesize -= memmap_pages;
6073 if (memmap_pages)
6074 printk(KERN_DEBUG
6075 " %s zone: %lu pages used for memmap\n",
6076 zone_names[j], memmap_pages);
6077 } else
1170532b 6078 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6079 zone_names[j], memmap_pages, freesize);
6080 }
0e0b864e 6081
6267276f 6082 /* Account for reserved pages */
9feedc9d
JL
6083 if (j == 0 && freesize > dma_reserve) {
6084 freesize -= dma_reserve;
d903ef9f 6085 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6086 zone_names[0], dma_reserve);
0e0b864e
MG
6087 }
6088
98d2b0eb 6089 if (!is_highmem_idx(j))
9feedc9d 6090 nr_kernel_pages += freesize;
01cefaef
JL
6091 /* Charge for highmem memmap if there are enough kernel pages */
6092 else if (nr_kernel_pages > memmap_pages * 2)
6093 nr_kernel_pages -= memmap_pages;
9feedc9d 6094 nr_all_pages += freesize;
1da177e4 6095
9feedc9d
JL
6096 /*
6097 * Set an approximate value for lowmem here, it will be adjusted
6098 * when the bootmem allocator frees pages into the buddy system.
6099 * And all highmem pages will be managed by the buddy system.
6100 */
6101 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6102#ifdef CONFIG_NUMA
d5f541ed 6103 zone->node = nid;
9614634f 6104#endif
1da177e4 6105 zone->name = zone_names[j];
a52633d8 6106 zone->zone_pgdat = pgdat;
1da177e4 6107 spin_lock_init(&zone->lock);
bdc8cb98 6108 zone_seqlock_init(zone);
ed8ece2e 6109 zone_pcp_init(zone);
81c0a2bb 6110
1da177e4
LT
6111 if (!size)
6112 continue;
6113
955c1cd7 6114 set_pageblock_order();
7c45512d 6115 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6116 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6117 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6118 }
6119}
6120
bd721ea7 6121static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6122{
b0aeba74 6123 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6124 unsigned long __maybe_unused offset = 0;
6125
1da177e4
LT
6126 /* Skip empty nodes */
6127 if (!pgdat->node_spanned_pages)
6128 return;
6129
d41dee36 6130#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6131 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6132 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6133 /* ia64 gets its own node_mem_map, before this, without bootmem */
6134 if (!pgdat->node_mem_map) {
b0aeba74 6135 unsigned long size, end;
d41dee36
AW
6136 struct page *map;
6137
e984bb43
BP
6138 /*
6139 * The zone's endpoints aren't required to be MAX_ORDER
6140 * aligned but the node_mem_map endpoints must be in order
6141 * for the buddy allocator to function correctly.
6142 */
108bcc96 6143 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6144 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6145 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6146 map = alloc_remap(pgdat->node_id, size);
6147 if (!map)
6782832e
SS
6148 map = memblock_virt_alloc_node_nopanic(size,
6149 pgdat->node_id);
a1c34a3b 6150 pgdat->node_mem_map = map + offset;
1da177e4 6151 }
12d810c1 6152#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6153 /*
6154 * With no DISCONTIG, the global mem_map is just set as node 0's
6155 */
c713216d 6156 if (pgdat == NODE_DATA(0)) {
1da177e4 6157 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6158#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6159 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6160 mem_map -= offset;
0ee332c1 6161#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6162 }
1da177e4 6163#endif
d41dee36 6164#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6165}
6166
9109fb7b
JW
6167void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6168 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6169{
9109fb7b 6170 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6171 unsigned long start_pfn = 0;
6172 unsigned long end_pfn = 0;
9109fb7b 6173
88fdf75d 6174 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6175 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6176
1da177e4
LT
6177 pgdat->node_id = nid;
6178 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6179 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6180#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6181 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6182 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6183 (u64)start_pfn << PAGE_SHIFT,
6184 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6185#else
6186 start_pfn = node_start_pfn;
7960aedd
ZY
6187#endif
6188 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6189 zones_size, zholes_size);
1da177e4
LT
6190
6191 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6192#ifdef CONFIG_FLAT_NODE_MEM_MAP
6193 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6194 nid, (unsigned long)pgdat,
6195 (unsigned long)pgdat->node_mem_map);
6196#endif
1da177e4 6197
864b9a39 6198 reset_deferred_meminit(pgdat);
7f3eb55b 6199 free_area_init_core(pgdat);
1da177e4
LT
6200}
6201
0ee332c1 6202#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6203
6204#if MAX_NUMNODES > 1
6205/*
6206 * Figure out the number of possible node ids.
6207 */
f9872caf 6208void __init setup_nr_node_ids(void)
418508c1 6209{
904a9553 6210 unsigned int highest;
418508c1 6211
904a9553 6212 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6213 nr_node_ids = highest + 1;
6214}
418508c1
MS
6215#endif
6216
1e01979c
TH
6217/**
6218 * node_map_pfn_alignment - determine the maximum internode alignment
6219 *
6220 * This function should be called after node map is populated and sorted.
6221 * It calculates the maximum power of two alignment which can distinguish
6222 * all the nodes.
6223 *
6224 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6225 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6226 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6227 * shifted, 1GiB is enough and this function will indicate so.
6228 *
6229 * This is used to test whether pfn -> nid mapping of the chosen memory
6230 * model has fine enough granularity to avoid incorrect mapping for the
6231 * populated node map.
6232 *
6233 * Returns the determined alignment in pfn's. 0 if there is no alignment
6234 * requirement (single node).
6235 */
6236unsigned long __init node_map_pfn_alignment(void)
6237{
6238 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6239 unsigned long start, end, mask;
1e01979c 6240 int last_nid = -1;
c13291a5 6241 int i, nid;
1e01979c 6242
c13291a5 6243 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6244 if (!start || last_nid < 0 || last_nid == nid) {
6245 last_nid = nid;
6246 last_end = end;
6247 continue;
6248 }
6249
6250 /*
6251 * Start with a mask granular enough to pin-point to the
6252 * start pfn and tick off bits one-by-one until it becomes
6253 * too coarse to separate the current node from the last.
6254 */
6255 mask = ~((1 << __ffs(start)) - 1);
6256 while (mask && last_end <= (start & (mask << 1)))
6257 mask <<= 1;
6258
6259 /* accumulate all internode masks */
6260 accl_mask |= mask;
6261 }
6262
6263 /* convert mask to number of pages */
6264 return ~accl_mask + 1;
6265}
6266
a6af2bc3 6267/* Find the lowest pfn for a node */
b69a7288 6268static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6269{
a6af2bc3 6270 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6271 unsigned long start_pfn;
6272 int i;
1abbfb41 6273
c13291a5
TH
6274 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6275 min_pfn = min(min_pfn, start_pfn);
c713216d 6276
a6af2bc3 6277 if (min_pfn == ULONG_MAX) {
1170532b 6278 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6279 return 0;
6280 }
6281
6282 return min_pfn;
c713216d
MG
6283}
6284
6285/**
6286 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6287 *
6288 * It returns the minimum PFN based on information provided via
7d018176 6289 * memblock_set_node().
c713216d
MG
6290 */
6291unsigned long __init find_min_pfn_with_active_regions(void)
6292{
6293 return find_min_pfn_for_node(MAX_NUMNODES);
6294}
6295
37b07e41
LS
6296/*
6297 * early_calculate_totalpages()
6298 * Sum pages in active regions for movable zone.
4b0ef1fe 6299 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6300 */
484f51f8 6301static unsigned long __init early_calculate_totalpages(void)
7e63efef 6302{
7e63efef 6303 unsigned long totalpages = 0;
c13291a5
TH
6304 unsigned long start_pfn, end_pfn;
6305 int i, nid;
6306
6307 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6308 unsigned long pages = end_pfn - start_pfn;
7e63efef 6309
37b07e41
LS
6310 totalpages += pages;
6311 if (pages)
4b0ef1fe 6312 node_set_state(nid, N_MEMORY);
37b07e41 6313 }
b8af2941 6314 return totalpages;
7e63efef
MG
6315}
6316
2a1e274a
MG
6317/*
6318 * Find the PFN the Movable zone begins in each node. Kernel memory
6319 * is spread evenly between nodes as long as the nodes have enough
6320 * memory. When they don't, some nodes will have more kernelcore than
6321 * others
6322 */
b224ef85 6323static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6324{
6325 int i, nid;
6326 unsigned long usable_startpfn;
6327 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6328 /* save the state before borrow the nodemask */
4b0ef1fe 6329 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6330 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6331 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6332 struct memblock_region *r;
b2f3eebe
TC
6333
6334 /* Need to find movable_zone earlier when movable_node is specified. */
6335 find_usable_zone_for_movable();
6336
6337 /*
6338 * If movable_node is specified, ignore kernelcore and movablecore
6339 * options.
6340 */
6341 if (movable_node_is_enabled()) {
136199f0
EM
6342 for_each_memblock(memory, r) {
6343 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6344 continue;
6345
136199f0 6346 nid = r->nid;
b2f3eebe 6347
136199f0 6348 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6349 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6350 min(usable_startpfn, zone_movable_pfn[nid]) :
6351 usable_startpfn;
6352 }
6353
6354 goto out2;
6355 }
2a1e274a 6356
342332e6
TI
6357 /*
6358 * If kernelcore=mirror is specified, ignore movablecore option
6359 */
6360 if (mirrored_kernelcore) {
6361 bool mem_below_4gb_not_mirrored = false;
6362
6363 for_each_memblock(memory, r) {
6364 if (memblock_is_mirror(r))
6365 continue;
6366
6367 nid = r->nid;
6368
6369 usable_startpfn = memblock_region_memory_base_pfn(r);
6370
6371 if (usable_startpfn < 0x100000) {
6372 mem_below_4gb_not_mirrored = true;
6373 continue;
6374 }
6375
6376 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6377 min(usable_startpfn, zone_movable_pfn[nid]) :
6378 usable_startpfn;
6379 }
6380
6381 if (mem_below_4gb_not_mirrored)
6382 pr_warn("This configuration results in unmirrored kernel memory.");
6383
6384 goto out2;
6385 }
6386
7e63efef 6387 /*
b2f3eebe 6388 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6389 * kernelcore that corresponds so that memory usable for
6390 * any allocation type is evenly spread. If both kernelcore
6391 * and movablecore are specified, then the value of kernelcore
6392 * will be used for required_kernelcore if it's greater than
6393 * what movablecore would have allowed.
6394 */
6395 if (required_movablecore) {
7e63efef
MG
6396 unsigned long corepages;
6397
6398 /*
6399 * Round-up so that ZONE_MOVABLE is at least as large as what
6400 * was requested by the user
6401 */
6402 required_movablecore =
6403 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6404 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6405 corepages = totalpages - required_movablecore;
6406
6407 required_kernelcore = max(required_kernelcore, corepages);
6408 }
6409
bde304bd
XQ
6410 /*
6411 * If kernelcore was not specified or kernelcore size is larger
6412 * than totalpages, there is no ZONE_MOVABLE.
6413 */
6414 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6415 goto out;
2a1e274a
MG
6416
6417 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6418 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6419
6420restart:
6421 /* Spread kernelcore memory as evenly as possible throughout nodes */
6422 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6423 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6424 unsigned long start_pfn, end_pfn;
6425
2a1e274a
MG
6426 /*
6427 * Recalculate kernelcore_node if the division per node
6428 * now exceeds what is necessary to satisfy the requested
6429 * amount of memory for the kernel
6430 */
6431 if (required_kernelcore < kernelcore_node)
6432 kernelcore_node = required_kernelcore / usable_nodes;
6433
6434 /*
6435 * As the map is walked, we track how much memory is usable
6436 * by the kernel using kernelcore_remaining. When it is
6437 * 0, the rest of the node is usable by ZONE_MOVABLE
6438 */
6439 kernelcore_remaining = kernelcore_node;
6440
6441 /* Go through each range of PFNs within this node */
c13291a5 6442 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6443 unsigned long size_pages;
6444
c13291a5 6445 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6446 if (start_pfn >= end_pfn)
6447 continue;
6448
6449 /* Account for what is only usable for kernelcore */
6450 if (start_pfn < usable_startpfn) {
6451 unsigned long kernel_pages;
6452 kernel_pages = min(end_pfn, usable_startpfn)
6453 - start_pfn;
6454
6455 kernelcore_remaining -= min(kernel_pages,
6456 kernelcore_remaining);
6457 required_kernelcore -= min(kernel_pages,
6458 required_kernelcore);
6459
6460 /* Continue if range is now fully accounted */
6461 if (end_pfn <= usable_startpfn) {
6462
6463 /*
6464 * Push zone_movable_pfn to the end so
6465 * that if we have to rebalance
6466 * kernelcore across nodes, we will
6467 * not double account here
6468 */
6469 zone_movable_pfn[nid] = end_pfn;
6470 continue;
6471 }
6472 start_pfn = usable_startpfn;
6473 }
6474
6475 /*
6476 * The usable PFN range for ZONE_MOVABLE is from
6477 * start_pfn->end_pfn. Calculate size_pages as the
6478 * number of pages used as kernelcore
6479 */
6480 size_pages = end_pfn - start_pfn;
6481 if (size_pages > kernelcore_remaining)
6482 size_pages = kernelcore_remaining;
6483 zone_movable_pfn[nid] = start_pfn + size_pages;
6484
6485 /*
6486 * Some kernelcore has been met, update counts and
6487 * break if the kernelcore for this node has been
b8af2941 6488 * satisfied
2a1e274a
MG
6489 */
6490 required_kernelcore -= min(required_kernelcore,
6491 size_pages);
6492 kernelcore_remaining -= size_pages;
6493 if (!kernelcore_remaining)
6494 break;
6495 }
6496 }
6497
6498 /*
6499 * If there is still required_kernelcore, we do another pass with one
6500 * less node in the count. This will push zone_movable_pfn[nid] further
6501 * along on the nodes that still have memory until kernelcore is
b8af2941 6502 * satisfied
2a1e274a
MG
6503 */
6504 usable_nodes--;
6505 if (usable_nodes && required_kernelcore > usable_nodes)
6506 goto restart;
6507
b2f3eebe 6508out2:
2a1e274a
MG
6509 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6510 for (nid = 0; nid < MAX_NUMNODES; nid++)
6511 zone_movable_pfn[nid] =
6512 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6513
20e6926d 6514out:
66918dcd 6515 /* restore the node_state */
4b0ef1fe 6516 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6517}
6518
4b0ef1fe
LJ
6519/* Any regular or high memory on that node ? */
6520static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6521{
37b07e41
LS
6522 enum zone_type zone_type;
6523
4b0ef1fe
LJ
6524 if (N_MEMORY == N_NORMAL_MEMORY)
6525 return;
6526
6527 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6528 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6529 if (populated_zone(zone)) {
4b0ef1fe
LJ
6530 node_set_state(nid, N_HIGH_MEMORY);
6531 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6532 zone_type <= ZONE_NORMAL)
6533 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6534 break;
6535 }
37b07e41 6536 }
37b07e41
LS
6537}
6538
c713216d
MG
6539/**
6540 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6541 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6542 *
6543 * This will call free_area_init_node() for each active node in the system.
7d018176 6544 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6545 * zone in each node and their holes is calculated. If the maximum PFN
6546 * between two adjacent zones match, it is assumed that the zone is empty.
6547 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6548 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6549 * starts where the previous one ended. For example, ZONE_DMA32 starts
6550 * at arch_max_dma_pfn.
6551 */
6552void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6553{
c13291a5
TH
6554 unsigned long start_pfn, end_pfn;
6555 int i, nid;
a6af2bc3 6556
c713216d
MG
6557 /* Record where the zone boundaries are */
6558 memset(arch_zone_lowest_possible_pfn, 0,
6559 sizeof(arch_zone_lowest_possible_pfn));
6560 memset(arch_zone_highest_possible_pfn, 0,
6561 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6562
6563 start_pfn = find_min_pfn_with_active_regions();
6564
6565 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6566 if (i == ZONE_MOVABLE)
6567 continue;
90cae1fe
OH
6568
6569 end_pfn = max(max_zone_pfn[i], start_pfn);
6570 arch_zone_lowest_possible_pfn[i] = start_pfn;
6571 arch_zone_highest_possible_pfn[i] = end_pfn;
6572
6573 start_pfn = end_pfn;
c713216d 6574 }
2a1e274a
MG
6575
6576 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6577 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6578 find_zone_movable_pfns_for_nodes();
c713216d 6579
c713216d 6580 /* Print out the zone ranges */
f88dfff5 6581 pr_info("Zone ranges:\n");
2a1e274a
MG
6582 for (i = 0; i < MAX_NR_ZONES; i++) {
6583 if (i == ZONE_MOVABLE)
6584 continue;
f88dfff5 6585 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6586 if (arch_zone_lowest_possible_pfn[i] ==
6587 arch_zone_highest_possible_pfn[i])
f88dfff5 6588 pr_cont("empty\n");
72f0ba02 6589 else
8d29e18a
JG
6590 pr_cont("[mem %#018Lx-%#018Lx]\n",
6591 (u64)arch_zone_lowest_possible_pfn[i]
6592 << PAGE_SHIFT,
6593 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6594 << PAGE_SHIFT) - 1);
2a1e274a
MG
6595 }
6596
6597 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6598 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6599 for (i = 0; i < MAX_NUMNODES; i++) {
6600 if (zone_movable_pfn[i])
8d29e18a
JG
6601 pr_info(" Node %d: %#018Lx\n", i,
6602 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6603 }
c713216d 6604
f2d52fe5 6605 /* Print out the early node map */
f88dfff5 6606 pr_info("Early memory node ranges\n");
c13291a5 6607 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6608 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6609 (u64)start_pfn << PAGE_SHIFT,
6610 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6611
6612 /* Initialise every node */
708614e6 6613 mminit_verify_pageflags_layout();
8ef82866 6614 setup_nr_node_ids();
c713216d
MG
6615 for_each_online_node(nid) {
6616 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6617 free_area_init_node(nid, NULL,
c713216d 6618 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6619
6620 /* Any memory on that node */
6621 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6622 node_set_state(nid, N_MEMORY);
6623 check_for_memory(pgdat, nid);
c713216d
MG
6624 }
6625}
2a1e274a 6626
7e63efef 6627static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6628{
6629 unsigned long long coremem;
6630 if (!p)
6631 return -EINVAL;
6632
6633 coremem = memparse(p, &p);
7e63efef 6634 *core = coremem >> PAGE_SHIFT;
2a1e274a 6635
7e63efef 6636 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6637 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6638
6639 return 0;
6640}
ed7ed365 6641
7e63efef
MG
6642/*
6643 * kernelcore=size sets the amount of memory for use for allocations that
6644 * cannot be reclaimed or migrated.
6645 */
6646static int __init cmdline_parse_kernelcore(char *p)
6647{
342332e6
TI
6648 /* parse kernelcore=mirror */
6649 if (parse_option_str(p, "mirror")) {
6650 mirrored_kernelcore = true;
6651 return 0;
6652 }
6653
7e63efef
MG
6654 return cmdline_parse_core(p, &required_kernelcore);
6655}
6656
6657/*
6658 * movablecore=size sets the amount of memory for use for allocations that
6659 * can be reclaimed or migrated.
6660 */
6661static int __init cmdline_parse_movablecore(char *p)
6662{
6663 return cmdline_parse_core(p, &required_movablecore);
6664}
6665
ed7ed365 6666early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6667early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6668
0ee332c1 6669#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6670
c3d5f5f0
JL
6671void adjust_managed_page_count(struct page *page, long count)
6672{
6673 spin_lock(&managed_page_count_lock);
6674 page_zone(page)->managed_pages += count;
6675 totalram_pages += count;
3dcc0571
JL
6676#ifdef CONFIG_HIGHMEM
6677 if (PageHighMem(page))
6678 totalhigh_pages += count;
6679#endif
c3d5f5f0
JL
6680 spin_unlock(&managed_page_count_lock);
6681}
3dcc0571 6682EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6683
11199692 6684unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6685{
11199692
JL
6686 void *pos;
6687 unsigned long pages = 0;
69afade7 6688
11199692
JL
6689 start = (void *)PAGE_ALIGN((unsigned long)start);
6690 end = (void *)((unsigned long)end & PAGE_MASK);
6691 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6692 if ((unsigned int)poison <= 0xFF)
11199692
JL
6693 memset(pos, poison, PAGE_SIZE);
6694 free_reserved_page(virt_to_page(pos));
69afade7
JL
6695 }
6696
6697 if (pages && s)
adb1fe9a
JP
6698 pr_info("Freeing %s memory: %ldK\n",
6699 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6700
6701 return pages;
6702}
11199692 6703EXPORT_SYMBOL(free_reserved_area);
69afade7 6704
cfa11e08
JL
6705#ifdef CONFIG_HIGHMEM
6706void free_highmem_page(struct page *page)
6707{
6708 __free_reserved_page(page);
6709 totalram_pages++;
7b4b2a0d 6710 page_zone(page)->managed_pages++;
cfa11e08
JL
6711 totalhigh_pages++;
6712}
6713#endif
6714
7ee3d4e8
JL
6715
6716void __init mem_init_print_info(const char *str)
6717{
6718 unsigned long physpages, codesize, datasize, rosize, bss_size;
6719 unsigned long init_code_size, init_data_size;
6720
6721 physpages = get_num_physpages();
6722 codesize = _etext - _stext;
6723 datasize = _edata - _sdata;
6724 rosize = __end_rodata - __start_rodata;
6725 bss_size = __bss_stop - __bss_start;
6726 init_data_size = __init_end - __init_begin;
6727 init_code_size = _einittext - _sinittext;
6728
6729 /*
6730 * Detect special cases and adjust section sizes accordingly:
6731 * 1) .init.* may be embedded into .data sections
6732 * 2) .init.text.* may be out of [__init_begin, __init_end],
6733 * please refer to arch/tile/kernel/vmlinux.lds.S.
6734 * 3) .rodata.* may be embedded into .text or .data sections.
6735 */
6736#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6737 do { \
6738 if (start <= pos && pos < end && size > adj) \
6739 size -= adj; \
6740 } while (0)
7ee3d4e8
JL
6741
6742 adj_init_size(__init_begin, __init_end, init_data_size,
6743 _sinittext, init_code_size);
6744 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6745 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6746 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6747 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6748
6749#undef adj_init_size
6750
756a025f 6751 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6752#ifdef CONFIG_HIGHMEM
756a025f 6753 ", %luK highmem"
7ee3d4e8 6754#endif
756a025f
JP
6755 "%s%s)\n",
6756 nr_free_pages() << (PAGE_SHIFT - 10),
6757 physpages << (PAGE_SHIFT - 10),
6758 codesize >> 10, datasize >> 10, rosize >> 10,
6759 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6760 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6761 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6762#ifdef CONFIG_HIGHMEM
756a025f 6763 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6764#endif
756a025f 6765 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6766}
6767
0e0b864e 6768/**
88ca3b94
RD
6769 * set_dma_reserve - set the specified number of pages reserved in the first zone
6770 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6771 *
013110a7 6772 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6773 * In the DMA zone, a significant percentage may be consumed by kernel image
6774 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6775 * function may optionally be used to account for unfreeable pages in the
6776 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6777 * smaller per-cpu batchsize.
0e0b864e
MG
6778 */
6779void __init set_dma_reserve(unsigned long new_dma_reserve)
6780{
6781 dma_reserve = new_dma_reserve;
6782}
6783
1da177e4
LT
6784void __init free_area_init(unsigned long *zones_size)
6785{
9109fb7b 6786 free_area_init_node(0, zones_size,
1da177e4
LT
6787 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6788}
1da177e4 6789
005fd4bb 6790static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6791{
1da177e4 6792
005fd4bb
SAS
6793 lru_add_drain_cpu(cpu);
6794 drain_pages(cpu);
9f8f2172 6795
005fd4bb
SAS
6796 /*
6797 * Spill the event counters of the dead processor
6798 * into the current processors event counters.
6799 * This artificially elevates the count of the current
6800 * processor.
6801 */
6802 vm_events_fold_cpu(cpu);
9f8f2172 6803
005fd4bb
SAS
6804 /*
6805 * Zero the differential counters of the dead processor
6806 * so that the vm statistics are consistent.
6807 *
6808 * This is only okay since the processor is dead and cannot
6809 * race with what we are doing.
6810 */
6811 cpu_vm_stats_fold(cpu);
6812 return 0;
1da177e4 6813}
1da177e4
LT
6814
6815void __init page_alloc_init(void)
6816{
005fd4bb
SAS
6817 int ret;
6818
6819 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6820 "mm/page_alloc:dead", NULL,
6821 page_alloc_cpu_dead);
6822 WARN_ON(ret < 0);
1da177e4
LT
6823}
6824
cb45b0e9 6825/*
34b10060 6826 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6827 * or min_free_kbytes changes.
6828 */
6829static void calculate_totalreserve_pages(void)
6830{
6831 struct pglist_data *pgdat;
6832 unsigned long reserve_pages = 0;
2f6726e5 6833 enum zone_type i, j;
cb45b0e9
HA
6834
6835 for_each_online_pgdat(pgdat) {
281e3726
MG
6836
6837 pgdat->totalreserve_pages = 0;
6838
cb45b0e9
HA
6839 for (i = 0; i < MAX_NR_ZONES; i++) {
6840 struct zone *zone = pgdat->node_zones + i;
3484b2de 6841 long max = 0;
cb45b0e9
HA
6842
6843 /* Find valid and maximum lowmem_reserve in the zone */
6844 for (j = i; j < MAX_NR_ZONES; j++) {
6845 if (zone->lowmem_reserve[j] > max)
6846 max = zone->lowmem_reserve[j];
6847 }
6848
41858966
MG
6849 /* we treat the high watermark as reserved pages. */
6850 max += high_wmark_pages(zone);
cb45b0e9 6851
b40da049
JL
6852 if (max > zone->managed_pages)
6853 max = zone->managed_pages;
a8d01437 6854
281e3726 6855 pgdat->totalreserve_pages += max;
a8d01437 6856
cb45b0e9
HA
6857 reserve_pages += max;
6858 }
6859 }
6860 totalreserve_pages = reserve_pages;
6861}
6862
1da177e4
LT
6863/*
6864 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6865 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6866 * has a correct pages reserved value, so an adequate number of
6867 * pages are left in the zone after a successful __alloc_pages().
6868 */
6869static void setup_per_zone_lowmem_reserve(void)
6870{
6871 struct pglist_data *pgdat;
2f6726e5 6872 enum zone_type j, idx;
1da177e4 6873
ec936fc5 6874 for_each_online_pgdat(pgdat) {
1da177e4
LT
6875 for (j = 0; j < MAX_NR_ZONES; j++) {
6876 struct zone *zone = pgdat->node_zones + j;
b40da049 6877 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6878
6879 zone->lowmem_reserve[j] = 0;
6880
2f6726e5
CL
6881 idx = j;
6882 while (idx) {
1da177e4
LT
6883 struct zone *lower_zone;
6884
2f6726e5
CL
6885 idx--;
6886
1da177e4
LT
6887 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6888 sysctl_lowmem_reserve_ratio[idx] = 1;
6889
6890 lower_zone = pgdat->node_zones + idx;
b40da049 6891 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6892 sysctl_lowmem_reserve_ratio[idx];
b40da049 6893 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6894 }
6895 }
6896 }
cb45b0e9
HA
6897
6898 /* update totalreserve_pages */
6899 calculate_totalreserve_pages();
1da177e4
LT
6900}
6901
cfd3da1e 6902static void __setup_per_zone_wmarks(void)
1da177e4
LT
6903{
6904 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6905 unsigned long lowmem_pages = 0;
6906 struct zone *zone;
6907 unsigned long flags;
6908
6909 /* Calculate total number of !ZONE_HIGHMEM pages */
6910 for_each_zone(zone) {
6911 if (!is_highmem(zone))
b40da049 6912 lowmem_pages += zone->managed_pages;
1da177e4
LT
6913 }
6914
6915 for_each_zone(zone) {
ac924c60
AM
6916 u64 tmp;
6917
1125b4e3 6918 spin_lock_irqsave(&zone->lock, flags);
b40da049 6919 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6920 do_div(tmp, lowmem_pages);
1da177e4
LT
6921 if (is_highmem(zone)) {
6922 /*
669ed175
NP
6923 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6924 * need highmem pages, so cap pages_min to a small
6925 * value here.
6926 *
41858966 6927 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6928 * deltas control asynch page reclaim, and so should
669ed175 6929 * not be capped for highmem.
1da177e4 6930 */
90ae8d67 6931 unsigned long min_pages;
1da177e4 6932
b40da049 6933 min_pages = zone->managed_pages / 1024;
90ae8d67 6934 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6935 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6936 } else {
669ed175
NP
6937 /*
6938 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6939 * proportionate to the zone's size.
6940 */
41858966 6941 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6942 }
6943
795ae7a0
JW
6944 /*
6945 * Set the kswapd watermarks distance according to the
6946 * scale factor in proportion to available memory, but
6947 * ensure a minimum size on small systems.
6948 */
6949 tmp = max_t(u64, tmp >> 2,
6950 mult_frac(zone->managed_pages,
6951 watermark_scale_factor, 10000));
6952
6953 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6954 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6955
1125b4e3 6956 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6957 }
cb45b0e9
HA
6958
6959 /* update totalreserve_pages */
6960 calculate_totalreserve_pages();
1da177e4
LT
6961}
6962
cfd3da1e
MG
6963/**
6964 * setup_per_zone_wmarks - called when min_free_kbytes changes
6965 * or when memory is hot-{added|removed}
6966 *
6967 * Ensures that the watermark[min,low,high] values for each zone are set
6968 * correctly with respect to min_free_kbytes.
6969 */
6970void setup_per_zone_wmarks(void)
6971{
6972 mutex_lock(&zonelists_mutex);
6973 __setup_per_zone_wmarks();
6974 mutex_unlock(&zonelists_mutex);
6975}
6976
1da177e4
LT
6977/*
6978 * Initialise min_free_kbytes.
6979 *
6980 * For small machines we want it small (128k min). For large machines
6981 * we want it large (64MB max). But it is not linear, because network
6982 * bandwidth does not increase linearly with machine size. We use
6983 *
b8af2941 6984 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6985 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6986 *
6987 * which yields
6988 *
6989 * 16MB: 512k
6990 * 32MB: 724k
6991 * 64MB: 1024k
6992 * 128MB: 1448k
6993 * 256MB: 2048k
6994 * 512MB: 2896k
6995 * 1024MB: 4096k
6996 * 2048MB: 5792k
6997 * 4096MB: 8192k
6998 * 8192MB: 11584k
6999 * 16384MB: 16384k
7000 */
1b79acc9 7001int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7002{
7003 unsigned long lowmem_kbytes;
5f12733e 7004 int new_min_free_kbytes;
1da177e4
LT
7005
7006 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7007 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7008
7009 if (new_min_free_kbytes > user_min_free_kbytes) {
7010 min_free_kbytes = new_min_free_kbytes;
7011 if (min_free_kbytes < 128)
7012 min_free_kbytes = 128;
7013 if (min_free_kbytes > 65536)
7014 min_free_kbytes = 65536;
7015 } else {
7016 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7017 new_min_free_kbytes, user_min_free_kbytes);
7018 }
bc75d33f 7019 setup_per_zone_wmarks();
a6cccdc3 7020 refresh_zone_stat_thresholds();
1da177e4 7021 setup_per_zone_lowmem_reserve();
6423aa81
JK
7022
7023#ifdef CONFIG_NUMA
7024 setup_min_unmapped_ratio();
7025 setup_min_slab_ratio();
7026#endif
7027
1da177e4
LT
7028 return 0;
7029}
bc22af74 7030core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7031
7032/*
b8af2941 7033 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7034 * that we can call two helper functions whenever min_free_kbytes
7035 * changes.
7036 */
cccad5b9 7037int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7038 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7039{
da8c757b
HP
7040 int rc;
7041
7042 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7043 if (rc)
7044 return rc;
7045
5f12733e
MH
7046 if (write) {
7047 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7048 setup_per_zone_wmarks();
5f12733e 7049 }
1da177e4
LT
7050 return 0;
7051}
7052
795ae7a0
JW
7053int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7054 void __user *buffer, size_t *length, loff_t *ppos)
7055{
7056 int rc;
7057
7058 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7059 if (rc)
7060 return rc;
7061
7062 if (write)
7063 setup_per_zone_wmarks();
7064
7065 return 0;
7066}
7067
9614634f 7068#ifdef CONFIG_NUMA
6423aa81 7069static void setup_min_unmapped_ratio(void)
9614634f 7070{
6423aa81 7071 pg_data_t *pgdat;
9614634f 7072 struct zone *zone;
9614634f 7073
a5f5f91d 7074 for_each_online_pgdat(pgdat)
81cbcbc2 7075 pgdat->min_unmapped_pages = 0;
a5f5f91d 7076
9614634f 7077 for_each_zone(zone)
a5f5f91d 7078 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7079 sysctl_min_unmapped_ratio) / 100;
9614634f 7080}
0ff38490 7081
6423aa81
JK
7082
7083int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7084 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7085{
0ff38490
CL
7086 int rc;
7087
8d65af78 7088 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7089 if (rc)
7090 return rc;
7091
6423aa81
JK
7092 setup_min_unmapped_ratio();
7093
7094 return 0;
7095}
7096
7097static void setup_min_slab_ratio(void)
7098{
7099 pg_data_t *pgdat;
7100 struct zone *zone;
7101
a5f5f91d
MG
7102 for_each_online_pgdat(pgdat)
7103 pgdat->min_slab_pages = 0;
7104
0ff38490 7105 for_each_zone(zone)
a5f5f91d 7106 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7107 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7108}
7109
7110int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7111 void __user *buffer, size_t *length, loff_t *ppos)
7112{
7113 int rc;
7114
7115 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7116 if (rc)
7117 return rc;
7118
7119 setup_min_slab_ratio();
7120
0ff38490
CL
7121 return 0;
7122}
9614634f
CL
7123#endif
7124
1da177e4
LT
7125/*
7126 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7127 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7128 * whenever sysctl_lowmem_reserve_ratio changes.
7129 *
7130 * The reserve ratio obviously has absolutely no relation with the
41858966 7131 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7132 * if in function of the boot time zone sizes.
7133 */
cccad5b9 7134int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7135 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7136{
8d65af78 7137 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7138 setup_per_zone_lowmem_reserve();
7139 return 0;
7140}
7141
8ad4b1fb
RS
7142/*
7143 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7144 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7145 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7146 */
cccad5b9 7147int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7148 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7149{
7150 struct zone *zone;
7cd2b0a3 7151 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7152 int ret;
7153
7cd2b0a3
DR
7154 mutex_lock(&pcp_batch_high_lock);
7155 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7156
8d65af78 7157 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7158 if (!write || ret < 0)
7159 goto out;
7160
7161 /* Sanity checking to avoid pcp imbalance */
7162 if (percpu_pagelist_fraction &&
7163 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7164 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7165 ret = -EINVAL;
7166 goto out;
7167 }
7168
7169 /* No change? */
7170 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7171 goto out;
c8e251fa 7172
364df0eb 7173 for_each_populated_zone(zone) {
7cd2b0a3
DR
7174 unsigned int cpu;
7175
22a7f12b 7176 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7177 pageset_set_high_and_batch(zone,
7178 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7179 }
7cd2b0a3 7180out:
c8e251fa 7181 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7182 return ret;
8ad4b1fb
RS
7183}
7184
a9919c79 7185#ifdef CONFIG_NUMA
f034b5d4 7186int hashdist = HASHDIST_DEFAULT;
1da177e4 7187
1da177e4
LT
7188static int __init set_hashdist(char *str)
7189{
7190 if (!str)
7191 return 0;
7192 hashdist = simple_strtoul(str, &str, 0);
7193 return 1;
7194}
7195__setup("hashdist=", set_hashdist);
7196#endif
7197
f6f34b43
SD
7198#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7199/*
7200 * Returns the number of pages that arch has reserved but
7201 * is not known to alloc_large_system_hash().
7202 */
7203static unsigned long __init arch_reserved_kernel_pages(void)
7204{
7205 return 0;
7206}
7207#endif
7208
9017217b
PT
7209/*
7210 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7211 * machines. As memory size is increased the scale is also increased but at
7212 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7213 * quadruples the scale is increased by one, which means the size of hash table
7214 * only doubles, instead of quadrupling as well.
7215 * Because 32-bit systems cannot have large physical memory, where this scaling
7216 * makes sense, it is disabled on such platforms.
7217 */
7218#if __BITS_PER_LONG > 32
7219#define ADAPT_SCALE_BASE (64ul << 30)
7220#define ADAPT_SCALE_SHIFT 2
7221#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7222#endif
7223
1da177e4
LT
7224/*
7225 * allocate a large system hash table from bootmem
7226 * - it is assumed that the hash table must contain an exact power-of-2
7227 * quantity of entries
7228 * - limit is the number of hash buckets, not the total allocation size
7229 */
7230void *__init alloc_large_system_hash(const char *tablename,
7231 unsigned long bucketsize,
7232 unsigned long numentries,
7233 int scale,
7234 int flags,
7235 unsigned int *_hash_shift,
7236 unsigned int *_hash_mask,
31fe62b9
TB
7237 unsigned long low_limit,
7238 unsigned long high_limit)
1da177e4 7239{
31fe62b9 7240 unsigned long long max = high_limit;
1da177e4
LT
7241 unsigned long log2qty, size;
7242 void *table = NULL;
3749a8f0 7243 gfp_t gfp_flags;
1da177e4
LT
7244
7245 /* allow the kernel cmdline to have a say */
7246 if (!numentries) {
7247 /* round applicable memory size up to nearest megabyte */
04903664 7248 numentries = nr_kernel_pages;
f6f34b43 7249 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7250
7251 /* It isn't necessary when PAGE_SIZE >= 1MB */
7252 if (PAGE_SHIFT < 20)
7253 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7254
9017217b
PT
7255#if __BITS_PER_LONG > 32
7256 if (!high_limit) {
7257 unsigned long adapt;
7258
7259 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7260 adapt <<= ADAPT_SCALE_SHIFT)
7261 scale++;
7262 }
7263#endif
7264
1da177e4
LT
7265 /* limit to 1 bucket per 2^scale bytes of low memory */
7266 if (scale > PAGE_SHIFT)
7267 numentries >>= (scale - PAGE_SHIFT);
7268 else
7269 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7270
7271 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7272 if (unlikely(flags & HASH_SMALL)) {
7273 /* Makes no sense without HASH_EARLY */
7274 WARN_ON(!(flags & HASH_EARLY));
7275 if (!(numentries >> *_hash_shift)) {
7276 numentries = 1UL << *_hash_shift;
7277 BUG_ON(!numentries);
7278 }
7279 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7280 numentries = PAGE_SIZE / bucketsize;
1da177e4 7281 }
6e692ed3 7282 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7283
7284 /* limit allocation size to 1/16 total memory by default */
7285 if (max == 0) {
7286 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7287 do_div(max, bucketsize);
7288 }
074b8517 7289 max = min(max, 0x80000000ULL);
1da177e4 7290
31fe62b9
TB
7291 if (numentries < low_limit)
7292 numentries = low_limit;
1da177e4
LT
7293 if (numentries > max)
7294 numentries = max;
7295
f0d1b0b3 7296 log2qty = ilog2(numentries);
1da177e4 7297
3749a8f0
PT
7298 /*
7299 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7300 * currently not used when HASH_EARLY is specified.
7301 */
7302 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7303 do {
7304 size = bucketsize << log2qty;
7305 if (flags & HASH_EARLY)
6782832e 7306 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4 7307 else if (hashdist)
3749a8f0 7308 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
1da177e4 7309 else {
1037b83b
ED
7310 /*
7311 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7312 * some pages at the end of hash table which
7313 * alloc_pages_exact() automatically does
1037b83b 7314 */
264ef8a9 7315 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7316 table = alloc_pages_exact(size, gfp_flags);
7317 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7318 }
1da177e4
LT
7319 }
7320 } while (!table && size > PAGE_SIZE && --log2qty);
7321
7322 if (!table)
7323 panic("Failed to allocate %s hash table\n", tablename);
7324
1170532b
JP
7325 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7326 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7327
7328 if (_hash_shift)
7329 *_hash_shift = log2qty;
7330 if (_hash_mask)
7331 *_hash_mask = (1 << log2qty) - 1;
7332
7333 return table;
7334}
a117e66e 7335
a5d76b54 7336/*
80934513
MK
7337 * This function checks whether pageblock includes unmovable pages or not.
7338 * If @count is not zero, it is okay to include less @count unmovable pages
7339 *
b8af2941 7340 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7341 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7342 * check without lock_page also may miss some movable non-lru pages at
7343 * race condition. So you can't expect this function should be exact.
a5d76b54 7344 */
b023f468
WC
7345bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7346 bool skip_hwpoisoned_pages)
49ac8255
KH
7347{
7348 unsigned long pfn, iter, found;
47118af0
MN
7349 int mt;
7350
49ac8255
KH
7351 /*
7352 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7353 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7354 */
7355 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7356 return false;
47118af0
MN
7357 mt = get_pageblock_migratetype(page);
7358 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7359 return false;
49ac8255
KH
7360
7361 pfn = page_to_pfn(page);
7362 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7363 unsigned long check = pfn + iter;
7364
29723fcc 7365 if (!pfn_valid_within(check))
49ac8255 7366 continue;
29723fcc 7367
49ac8255 7368 page = pfn_to_page(check);
c8721bbb
NH
7369
7370 /*
7371 * Hugepages are not in LRU lists, but they're movable.
7372 * We need not scan over tail pages bacause we don't
7373 * handle each tail page individually in migration.
7374 */
7375 if (PageHuge(page)) {
7376 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7377 continue;
7378 }
7379
97d255c8
MK
7380 /*
7381 * We can't use page_count without pin a page
7382 * because another CPU can free compound page.
7383 * This check already skips compound tails of THP
0139aa7b 7384 * because their page->_refcount is zero at all time.
97d255c8 7385 */
fe896d18 7386 if (!page_ref_count(page)) {
49ac8255
KH
7387 if (PageBuddy(page))
7388 iter += (1 << page_order(page)) - 1;
7389 continue;
7390 }
97d255c8 7391
b023f468
WC
7392 /*
7393 * The HWPoisoned page may be not in buddy system, and
7394 * page_count() is not 0.
7395 */
7396 if (skip_hwpoisoned_pages && PageHWPoison(page))
7397 continue;
7398
0efadf48
YX
7399 if (__PageMovable(page))
7400 continue;
7401
49ac8255
KH
7402 if (!PageLRU(page))
7403 found++;
7404 /*
6b4f7799
JW
7405 * If there are RECLAIMABLE pages, we need to check
7406 * it. But now, memory offline itself doesn't call
7407 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7408 */
7409 /*
7410 * If the page is not RAM, page_count()should be 0.
7411 * we don't need more check. This is an _used_ not-movable page.
7412 *
7413 * The problematic thing here is PG_reserved pages. PG_reserved
7414 * is set to both of a memory hole page and a _used_ kernel
7415 * page at boot.
7416 */
7417 if (found > count)
80934513 7418 return true;
49ac8255 7419 }
80934513 7420 return false;
49ac8255
KH
7421}
7422
7423bool is_pageblock_removable_nolock(struct page *page)
7424{
656a0706
MH
7425 struct zone *zone;
7426 unsigned long pfn;
687875fb
MH
7427
7428 /*
7429 * We have to be careful here because we are iterating over memory
7430 * sections which are not zone aware so we might end up outside of
7431 * the zone but still within the section.
656a0706
MH
7432 * We have to take care about the node as well. If the node is offline
7433 * its NODE_DATA will be NULL - see page_zone.
687875fb 7434 */
656a0706
MH
7435 if (!node_online(page_to_nid(page)))
7436 return false;
7437
7438 zone = page_zone(page);
7439 pfn = page_to_pfn(page);
108bcc96 7440 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7441 return false;
7442
b023f468 7443 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7444}
0c0e6195 7445
080fe206 7446#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7447
7448static unsigned long pfn_max_align_down(unsigned long pfn)
7449{
7450 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7451 pageblock_nr_pages) - 1);
7452}
7453
7454static unsigned long pfn_max_align_up(unsigned long pfn)
7455{
7456 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7457 pageblock_nr_pages));
7458}
7459
041d3a8c 7460/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7461static int __alloc_contig_migrate_range(struct compact_control *cc,
7462 unsigned long start, unsigned long end)
041d3a8c
MN
7463{
7464 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7465 unsigned long nr_reclaimed;
041d3a8c
MN
7466 unsigned long pfn = start;
7467 unsigned int tries = 0;
7468 int ret = 0;
7469
be49a6e1 7470 migrate_prep();
041d3a8c 7471
bb13ffeb 7472 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7473 if (fatal_signal_pending(current)) {
7474 ret = -EINTR;
7475 break;
7476 }
7477
bb13ffeb
MG
7478 if (list_empty(&cc->migratepages)) {
7479 cc->nr_migratepages = 0;
edc2ca61 7480 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7481 if (!pfn) {
7482 ret = -EINTR;
7483 break;
7484 }
7485 tries = 0;
7486 } else if (++tries == 5) {
7487 ret = ret < 0 ? ret : -EBUSY;
7488 break;
7489 }
7490
beb51eaa
MK
7491 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7492 &cc->migratepages);
7493 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7494
9c620e2b 7495 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7496 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7497 }
2a6f5124
SP
7498 if (ret < 0) {
7499 putback_movable_pages(&cc->migratepages);
7500 return ret;
7501 }
7502 return 0;
041d3a8c
MN
7503}
7504
7505/**
7506 * alloc_contig_range() -- tries to allocate given range of pages
7507 * @start: start PFN to allocate
7508 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7509 * @migratetype: migratetype of the underlaying pageblocks (either
7510 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7511 * in range must have the same migratetype and it must
7512 * be either of the two.
ca96b625 7513 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7514 *
7515 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7516 * aligned, however it's the caller's responsibility to guarantee that
7517 * we are the only thread that changes migrate type of pageblocks the
7518 * pages fall in.
7519 *
7520 * The PFN range must belong to a single zone.
7521 *
7522 * Returns zero on success or negative error code. On success all
7523 * pages which PFN is in [start, end) are allocated for the caller and
7524 * need to be freed with free_contig_range().
7525 */
0815f3d8 7526int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7527 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7528{
041d3a8c 7529 unsigned long outer_start, outer_end;
d00181b9
KS
7530 unsigned int order;
7531 int ret = 0;
041d3a8c 7532
bb13ffeb
MG
7533 struct compact_control cc = {
7534 .nr_migratepages = 0,
7535 .order = -1,
7536 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7537 .mode = MIGRATE_SYNC,
bb13ffeb 7538 .ignore_skip_hint = true,
7dea19f9 7539 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7540 };
7541 INIT_LIST_HEAD(&cc.migratepages);
7542
041d3a8c
MN
7543 /*
7544 * What we do here is we mark all pageblocks in range as
7545 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7546 * have different sizes, and due to the way page allocator
7547 * work, we align the range to biggest of the two pages so
7548 * that page allocator won't try to merge buddies from
7549 * different pageblocks and change MIGRATE_ISOLATE to some
7550 * other migration type.
7551 *
7552 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7553 * migrate the pages from an unaligned range (ie. pages that
7554 * we are interested in). This will put all the pages in
7555 * range back to page allocator as MIGRATE_ISOLATE.
7556 *
7557 * When this is done, we take the pages in range from page
7558 * allocator removing them from the buddy system. This way
7559 * page allocator will never consider using them.
7560 *
7561 * This lets us mark the pageblocks back as
7562 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7563 * aligned range but not in the unaligned, original range are
7564 * put back to page allocator so that buddy can use them.
7565 */
7566
7567 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7568 pfn_max_align_up(end), migratetype,
7569 false);
041d3a8c 7570 if (ret)
86a595f9 7571 return ret;
041d3a8c 7572
8ef5849f
JK
7573 /*
7574 * In case of -EBUSY, we'd like to know which page causes problem.
7575 * So, just fall through. We will check it in test_pages_isolated().
7576 */
bb13ffeb 7577 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7578 if (ret && ret != -EBUSY)
041d3a8c
MN
7579 goto done;
7580
7581 /*
7582 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7583 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7584 * more, all pages in [start, end) are free in page allocator.
7585 * What we are going to do is to allocate all pages from
7586 * [start, end) (that is remove them from page allocator).
7587 *
7588 * The only problem is that pages at the beginning and at the
7589 * end of interesting range may be not aligned with pages that
7590 * page allocator holds, ie. they can be part of higher order
7591 * pages. Because of this, we reserve the bigger range and
7592 * once this is done free the pages we are not interested in.
7593 *
7594 * We don't have to hold zone->lock here because the pages are
7595 * isolated thus they won't get removed from buddy.
7596 */
7597
7598 lru_add_drain_all();
510f5507 7599 drain_all_pages(cc.zone);
041d3a8c
MN
7600
7601 order = 0;
7602 outer_start = start;
7603 while (!PageBuddy(pfn_to_page(outer_start))) {
7604 if (++order >= MAX_ORDER) {
8ef5849f
JK
7605 outer_start = start;
7606 break;
041d3a8c
MN
7607 }
7608 outer_start &= ~0UL << order;
7609 }
7610
8ef5849f
JK
7611 if (outer_start != start) {
7612 order = page_order(pfn_to_page(outer_start));
7613
7614 /*
7615 * outer_start page could be small order buddy page and
7616 * it doesn't include start page. Adjust outer_start
7617 * in this case to report failed page properly
7618 * on tracepoint in test_pages_isolated()
7619 */
7620 if (outer_start + (1UL << order) <= start)
7621 outer_start = start;
7622 }
7623
041d3a8c 7624 /* Make sure the range is really isolated. */
b023f468 7625 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7626 pr_info("%s: [%lx, %lx) PFNs busy\n",
7627 __func__, outer_start, end);
041d3a8c
MN
7628 ret = -EBUSY;
7629 goto done;
7630 }
7631
49f223a9 7632 /* Grab isolated pages from freelists. */
bb13ffeb 7633 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7634 if (!outer_end) {
7635 ret = -EBUSY;
7636 goto done;
7637 }
7638
7639 /* Free head and tail (if any) */
7640 if (start != outer_start)
7641 free_contig_range(outer_start, start - outer_start);
7642 if (end != outer_end)
7643 free_contig_range(end, outer_end - end);
7644
7645done:
7646 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7647 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7648 return ret;
7649}
7650
7651void free_contig_range(unsigned long pfn, unsigned nr_pages)
7652{
bcc2b02f
MS
7653 unsigned int count = 0;
7654
7655 for (; nr_pages--; pfn++) {
7656 struct page *page = pfn_to_page(pfn);
7657
7658 count += page_count(page) != 1;
7659 __free_page(page);
7660 }
7661 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7662}
7663#endif
7664
4ed7e022 7665#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7666/*
7667 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7668 * page high values need to be recalulated.
7669 */
4ed7e022
JL
7670void __meminit zone_pcp_update(struct zone *zone)
7671{
0a647f38 7672 unsigned cpu;
c8e251fa 7673 mutex_lock(&pcp_batch_high_lock);
0a647f38 7674 for_each_possible_cpu(cpu)
169f6c19
CS
7675 pageset_set_high_and_batch(zone,
7676 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7677 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7678}
7679#endif
7680
340175b7
JL
7681void zone_pcp_reset(struct zone *zone)
7682{
7683 unsigned long flags;
5a883813
MK
7684 int cpu;
7685 struct per_cpu_pageset *pset;
340175b7
JL
7686
7687 /* avoid races with drain_pages() */
7688 local_irq_save(flags);
7689 if (zone->pageset != &boot_pageset) {
5a883813
MK
7690 for_each_online_cpu(cpu) {
7691 pset = per_cpu_ptr(zone->pageset, cpu);
7692 drain_zonestat(zone, pset);
7693 }
340175b7
JL
7694 free_percpu(zone->pageset);
7695 zone->pageset = &boot_pageset;
7696 }
7697 local_irq_restore(flags);
7698}
7699
6dcd73d7 7700#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7701/*
b9eb6319
JK
7702 * All pages in the range must be in a single zone and isolated
7703 * before calling this.
0c0e6195
KH
7704 */
7705void
7706__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7707{
7708 struct page *page;
7709 struct zone *zone;
7aeb09f9 7710 unsigned int order, i;
0c0e6195
KH
7711 unsigned long pfn;
7712 unsigned long flags;
7713 /* find the first valid pfn */
7714 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7715 if (pfn_valid(pfn))
7716 break;
7717 if (pfn == end_pfn)
7718 return;
2d070eab 7719 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7720 zone = page_zone(pfn_to_page(pfn));
7721 spin_lock_irqsave(&zone->lock, flags);
7722 pfn = start_pfn;
7723 while (pfn < end_pfn) {
7724 if (!pfn_valid(pfn)) {
7725 pfn++;
7726 continue;
7727 }
7728 page = pfn_to_page(pfn);
b023f468
WC
7729 /*
7730 * The HWPoisoned page may be not in buddy system, and
7731 * page_count() is not 0.
7732 */
7733 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7734 pfn++;
7735 SetPageReserved(page);
7736 continue;
7737 }
7738
0c0e6195
KH
7739 BUG_ON(page_count(page));
7740 BUG_ON(!PageBuddy(page));
7741 order = page_order(page);
7742#ifdef CONFIG_DEBUG_VM
1170532b
JP
7743 pr_info("remove from free list %lx %d %lx\n",
7744 pfn, 1 << order, end_pfn);
0c0e6195
KH
7745#endif
7746 list_del(&page->lru);
7747 rmv_page_order(page);
7748 zone->free_area[order].nr_free--;
0c0e6195
KH
7749 for (i = 0; i < (1 << order); i++)
7750 SetPageReserved((page+i));
7751 pfn += (1 << order);
7752 }
7753 spin_unlock_irqrestore(&zone->lock, flags);
7754}
7755#endif
8d22ba1b 7756
8d22ba1b
WF
7757bool is_free_buddy_page(struct page *page)
7758{
7759 struct zone *zone = page_zone(page);
7760 unsigned long pfn = page_to_pfn(page);
7761 unsigned long flags;
7aeb09f9 7762 unsigned int order;
8d22ba1b
WF
7763
7764 spin_lock_irqsave(&zone->lock, flags);
7765 for (order = 0; order < MAX_ORDER; order++) {
7766 struct page *page_head = page - (pfn & ((1 << order) - 1));
7767
7768 if (PageBuddy(page_head) && page_order(page_head) >= order)
7769 break;
7770 }
7771 spin_unlock_irqrestore(&zone->lock, flags);
7772
7773 return order < MAX_ORDER;
7774}