mm, oom_reaper: clear TIF_MEMDIE for all tasks queued for oom_reaper
[linux-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
224abf92 787static inline int free_pages_check(struct page *page)
1da177e4 788{
d230dec1 789 const char *bad_reason = NULL;
f0b791a3
DH
790 unsigned long bad_flags = 0;
791
53f9263b 792 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
fe896d18 796 if (unlikely(page_ref_count(page) != 0))
0139aa7b 797 bad_reason = "nonzero _refcount";
f0b791a3
DH
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
9edad6ea
JW
802#ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805#endif
f0b791a3
DH
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
79f4b7bf 808 return 1;
8cc3b392 809 }
90572890 810 page_cpupid_reset_last(page);
79f4b7bf
HD
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
1da177e4
LT
814}
815
816/*
5f8dcc21 817 * Frees a number of pages from the PCP lists
1da177e4 818 * Assumes all pages on list are in same zone, and of same order.
207f36ee 819 * count is the number of pages to free.
1da177e4
LT
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
5f8dcc21
MG
827static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
1da177e4 829{
5f8dcc21 830 int migratetype = 0;
a6f9edd6 831 int batch_free = 0;
72853e29 832 int to_free = count;
0d5d823a 833 unsigned long nr_scanned;
5f8dcc21 834
c54ad30c 835 spin_lock(&zone->lock);
0d5d823a
MG
836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 if (nr_scanned)
838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 839
72853e29 840 while (to_free) {
48db57f8 841 struct page *page;
5f8dcc21
MG
842 struct list_head *list;
843
844 /*
a6f9edd6
MG
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
849 * lists
5f8dcc21
MG
850 */
851 do {
a6f9edd6 852 batch_free++;
5f8dcc21
MG
853 if (++migratetype == MIGRATE_PCPTYPES)
854 migratetype = 0;
855 list = &pcp->lists[migratetype];
856 } while (list_empty(list));
48db57f8 857
1d16871d
NK
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free == MIGRATE_PCPTYPES)
860 batch_free = to_free;
861
a6f9edd6 862 do {
770c8aaa
BZ
863 int mt; /* migratetype of the to-be-freed page */
864
a16601c5 865 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page->lru);
aa016d14 868
bb14c2c7 869 mt = get_pcppage_migratetype(page);
aa016d14
VB
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 /* Pageblock could have been isolated meanwhile */
8f82b55d 873 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 874 mt = get_pageblock_migratetype(page);
51bb1a40 875
dc4b0caf 876 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 877 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 878 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 879 }
c54ad30c 880 spin_unlock(&zone->lock);
1da177e4
LT
881}
882
dc4b0caf
MG
883static void free_one_page(struct zone *zone,
884 struct page *page, unsigned long pfn,
7aeb09f9 885 unsigned int order,
ed0ae21d 886 int migratetype)
1da177e4 887{
0d5d823a 888 unsigned long nr_scanned;
006d22d9 889 spin_lock(&zone->lock);
0d5d823a
MG
890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 if (nr_scanned)
892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 893
ad53f92e
JK
894 if (unlikely(has_isolate_pageblock(zone) ||
895 is_migrate_isolate(migratetype))) {
896 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 897 }
dc4b0caf 898 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 899 spin_unlock(&zone->lock);
48db57f8
NP
900}
901
81422f29
KS
902static int free_tail_pages_check(struct page *head_page, struct page *page)
903{
1d798ca3
KS
904 int ret = 1;
905
906 /*
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 */
910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911
912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 ret = 0;
914 goto out;
915 }
9a982250
KS
916 switch (page - head_page) {
917 case 1:
918 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
919 if (unlikely(compound_mapcount(page))) {
920 bad_page(page, "nonzero compound_mapcount", 0);
921 goto out;
922 }
9a982250
KS
923 break;
924 case 2:
925 /*
926 * the second tail page: ->mapping is
927 * page_deferred_list().next -- ignore value.
928 */
929 break;
930 default:
931 if (page->mapping != TAIL_MAPPING) {
932 bad_page(page, "corrupted mapping in tail page", 0);
933 goto out;
934 }
935 break;
1c290f64 936 }
81422f29
KS
937 if (unlikely(!PageTail(page))) {
938 bad_page(page, "PageTail not set", 0);
1d798ca3 939 goto out;
81422f29 940 }
1d798ca3
KS
941 if (unlikely(compound_head(page) != head_page)) {
942 bad_page(page, "compound_head not consistent", 0);
943 goto out;
81422f29 944 }
1d798ca3
KS
945 ret = 0;
946out:
1c290f64 947 page->mapping = NULL;
1d798ca3
KS
948 clear_compound_head(page);
949 return ret;
81422f29
KS
950}
951
1e8ce83c
RH
952static void __meminit __init_single_page(struct page *page, unsigned long pfn,
953 unsigned long zone, int nid)
954{
1e8ce83c 955 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
956 init_page_count(page);
957 page_mapcount_reset(page);
958 page_cpupid_reset_last(page);
1e8ce83c 959
1e8ce83c
RH
960 INIT_LIST_HEAD(&page->lru);
961#ifdef WANT_PAGE_VIRTUAL
962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 if (!is_highmem_idx(zone))
964 set_page_address(page, __va(pfn << PAGE_SHIFT));
965#endif
966}
967
968static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
969 int nid)
970{
971 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
972}
973
7e18adb4
MG
974#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
975static void init_reserved_page(unsigned long pfn)
976{
977 pg_data_t *pgdat;
978 int nid, zid;
979
980 if (!early_page_uninitialised(pfn))
981 return;
982
983 nid = early_pfn_to_nid(pfn);
984 pgdat = NODE_DATA(nid);
985
986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
987 struct zone *zone = &pgdat->node_zones[zid];
988
989 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
990 break;
991 }
992 __init_single_pfn(pfn, zid, nid);
993}
994#else
995static inline void init_reserved_page(unsigned long pfn)
996{
997}
998#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
999
92923ca3
NZ
1000/*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
7e18adb4 1006void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1007{
1008 unsigned long start_pfn = PFN_DOWN(start);
1009 unsigned long end_pfn = PFN_UP(end);
1010
7e18adb4
MG
1011 for (; start_pfn < end_pfn; start_pfn++) {
1012 if (pfn_valid(start_pfn)) {
1013 struct page *page = pfn_to_page(start_pfn);
1014
1015 init_reserved_page(start_pfn);
1d798ca3
KS
1016
1017 /* Avoid false-positive PageTail() */
1018 INIT_LIST_HEAD(&page->lru);
1019
7e18adb4
MG
1020 SetPageReserved(page);
1021 }
1022 }
92923ca3
NZ
1023}
1024
ec95f53a 1025static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1026{
81422f29
KS
1027 bool compound = PageCompound(page);
1028 int i, bad = 0;
1da177e4 1029
ab1f306f 1030 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 1031 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 1032
b413d48a 1033 trace_mm_page_free(page, order);
b1eeab67 1034 kmemcheck_free_shadow(page, order);
b8c73fc2 1035 kasan_free_pages(page, order);
b1eeab67 1036
8dd60a3a
AA
1037 if (PageAnon(page))
1038 page->mapping = NULL;
81422f29
KS
1039 bad += free_pages_check(page);
1040 for (i = 1; i < (1 << order); i++) {
1041 if (compound)
1042 bad += free_tail_pages_check(page, page + i);
8dd60a3a 1043 bad += free_pages_check(page + i);
81422f29 1044 }
8cc3b392 1045 if (bad)
ec95f53a 1046 return false;
689bcebf 1047
48c96a36
JK
1048 reset_page_owner(page, order);
1049
3ac7fe5a 1050 if (!PageHighMem(page)) {
b8af2941
PK
1051 debug_check_no_locks_freed(page_address(page),
1052 PAGE_SIZE << order);
3ac7fe5a
TG
1053 debug_check_no_obj_freed(page_address(page),
1054 PAGE_SIZE << order);
1055 }
dafb1367 1056 arch_free_page(page, order);
8823b1db 1057 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1058 kernel_map_pages(page, 1 << order, 0);
dafb1367 1059
ec95f53a
KM
1060 return true;
1061}
1062
1063static void __free_pages_ok(struct page *page, unsigned int order)
1064{
1065 unsigned long flags;
95e34412 1066 int migratetype;
dc4b0caf 1067 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1068
1069 if (!free_pages_prepare(page, order))
1070 return;
1071
cfc47a28 1072 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1073 local_irq_save(flags);
f8891e5e 1074 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1075 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1076 local_irq_restore(flags);
1da177e4
LT
1077}
1078
949698a3 1079static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1080{
c3993076 1081 unsigned int nr_pages = 1 << order;
e2d0bd2b 1082 struct page *p = page;
c3993076 1083 unsigned int loop;
a226f6c8 1084
e2d0bd2b
YL
1085 prefetchw(p);
1086 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1087 prefetchw(p + 1);
c3993076
JW
1088 __ClearPageReserved(p);
1089 set_page_count(p, 0);
a226f6c8 1090 }
e2d0bd2b
YL
1091 __ClearPageReserved(p);
1092 set_page_count(p, 0);
c3993076 1093
e2d0bd2b 1094 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1095 set_page_refcounted(page);
1096 __free_pages(page, order);
a226f6c8
DH
1097}
1098
75a592a4
MG
1099#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1100 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1101
75a592a4
MG
1102static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1103
1104int __meminit early_pfn_to_nid(unsigned long pfn)
1105{
7ace9917 1106 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1107 int nid;
1108
7ace9917 1109 spin_lock(&early_pfn_lock);
75a592a4 1110 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1111 if (nid < 0)
1112 nid = 0;
1113 spin_unlock(&early_pfn_lock);
1114
1115 return nid;
75a592a4
MG
1116}
1117#endif
1118
1119#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1120static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1121 struct mminit_pfnnid_cache *state)
1122{
1123 int nid;
1124
1125 nid = __early_pfn_to_nid(pfn, state);
1126 if (nid >= 0 && nid != node)
1127 return false;
1128 return true;
1129}
1130
1131/* Only safe to use early in boot when initialisation is single-threaded */
1132static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1133{
1134 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1135}
1136
1137#else
1138
1139static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1140{
1141 return true;
1142}
1143static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1144 struct mminit_pfnnid_cache *state)
1145{
1146 return true;
1147}
1148#endif
1149
1150
0e1cc95b 1151void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1152 unsigned int order)
1153{
1154 if (early_page_uninitialised(pfn))
1155 return;
949698a3 1156 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1157}
1158
7cf91a98
JK
1159/*
1160 * Check that the whole (or subset of) a pageblock given by the interval of
1161 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1162 * with the migration of free compaction scanner. The scanners then need to
1163 * use only pfn_valid_within() check for arches that allow holes within
1164 * pageblocks.
1165 *
1166 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1167 *
1168 * It's possible on some configurations to have a setup like node0 node1 node0
1169 * i.e. it's possible that all pages within a zones range of pages do not
1170 * belong to a single zone. We assume that a border between node0 and node1
1171 * can occur within a single pageblock, but not a node0 node1 node0
1172 * interleaving within a single pageblock. It is therefore sufficient to check
1173 * the first and last page of a pageblock and avoid checking each individual
1174 * page in a pageblock.
1175 */
1176struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1177 unsigned long end_pfn, struct zone *zone)
1178{
1179 struct page *start_page;
1180 struct page *end_page;
1181
1182 /* end_pfn is one past the range we are checking */
1183 end_pfn--;
1184
1185 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1186 return NULL;
1187
1188 start_page = pfn_to_page(start_pfn);
1189
1190 if (page_zone(start_page) != zone)
1191 return NULL;
1192
1193 end_page = pfn_to_page(end_pfn);
1194
1195 /* This gives a shorter code than deriving page_zone(end_page) */
1196 if (page_zone_id(start_page) != page_zone_id(end_page))
1197 return NULL;
1198
1199 return start_page;
1200}
1201
1202void set_zone_contiguous(struct zone *zone)
1203{
1204 unsigned long block_start_pfn = zone->zone_start_pfn;
1205 unsigned long block_end_pfn;
1206
1207 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1208 for (; block_start_pfn < zone_end_pfn(zone);
1209 block_start_pfn = block_end_pfn,
1210 block_end_pfn += pageblock_nr_pages) {
1211
1212 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1213
1214 if (!__pageblock_pfn_to_page(block_start_pfn,
1215 block_end_pfn, zone))
1216 return;
1217 }
1218
1219 /* We confirm that there is no hole */
1220 zone->contiguous = true;
1221}
1222
1223void clear_zone_contiguous(struct zone *zone)
1224{
1225 zone->contiguous = false;
1226}
1227
7e18adb4 1228#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1229static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1230 unsigned long pfn, int nr_pages)
1231{
1232 int i;
1233
1234 if (!page)
1235 return;
1236
1237 /* Free a large naturally-aligned chunk if possible */
1238 if (nr_pages == MAX_ORDER_NR_PAGES &&
1239 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1240 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1241 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1242 return;
1243 }
1244
949698a3
LZ
1245 for (i = 0; i < nr_pages; i++, page++)
1246 __free_pages_boot_core(page, 0);
a4de83dd
MG
1247}
1248
d3cd131d
NS
1249/* Completion tracking for deferred_init_memmap() threads */
1250static atomic_t pgdat_init_n_undone __initdata;
1251static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1252
1253static inline void __init pgdat_init_report_one_done(void)
1254{
1255 if (atomic_dec_and_test(&pgdat_init_n_undone))
1256 complete(&pgdat_init_all_done_comp);
1257}
0e1cc95b 1258
7e18adb4 1259/* Initialise remaining memory on a node */
0e1cc95b 1260static int __init deferred_init_memmap(void *data)
7e18adb4 1261{
0e1cc95b
MG
1262 pg_data_t *pgdat = data;
1263 int nid = pgdat->node_id;
7e18adb4
MG
1264 struct mminit_pfnnid_cache nid_init_state = { };
1265 unsigned long start = jiffies;
1266 unsigned long nr_pages = 0;
1267 unsigned long walk_start, walk_end;
1268 int i, zid;
1269 struct zone *zone;
7e18adb4 1270 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1271 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1272
0e1cc95b 1273 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1274 pgdat_init_report_one_done();
0e1cc95b
MG
1275 return 0;
1276 }
1277
1278 /* Bind memory initialisation thread to a local node if possible */
1279 if (!cpumask_empty(cpumask))
1280 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1281
1282 /* Sanity check boundaries */
1283 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1284 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1285 pgdat->first_deferred_pfn = ULONG_MAX;
1286
1287 /* Only the highest zone is deferred so find it */
1288 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1289 zone = pgdat->node_zones + zid;
1290 if (first_init_pfn < zone_end_pfn(zone))
1291 break;
1292 }
1293
1294 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1295 unsigned long pfn, end_pfn;
54608c3f 1296 struct page *page = NULL;
a4de83dd
MG
1297 struct page *free_base_page = NULL;
1298 unsigned long free_base_pfn = 0;
1299 int nr_to_free = 0;
7e18adb4
MG
1300
1301 end_pfn = min(walk_end, zone_end_pfn(zone));
1302 pfn = first_init_pfn;
1303 if (pfn < walk_start)
1304 pfn = walk_start;
1305 if (pfn < zone->zone_start_pfn)
1306 pfn = zone->zone_start_pfn;
1307
1308 for (; pfn < end_pfn; pfn++) {
54608c3f 1309 if (!pfn_valid_within(pfn))
a4de83dd 1310 goto free_range;
7e18adb4 1311
54608c3f
MG
1312 /*
1313 * Ensure pfn_valid is checked every
1314 * MAX_ORDER_NR_PAGES for memory holes
1315 */
1316 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1317 if (!pfn_valid(pfn)) {
1318 page = NULL;
a4de83dd 1319 goto free_range;
54608c3f
MG
1320 }
1321 }
1322
1323 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1324 page = NULL;
a4de83dd 1325 goto free_range;
54608c3f
MG
1326 }
1327
1328 /* Minimise pfn page lookups and scheduler checks */
1329 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1330 page++;
1331 } else {
a4de83dd
MG
1332 nr_pages += nr_to_free;
1333 deferred_free_range(free_base_page,
1334 free_base_pfn, nr_to_free);
1335 free_base_page = NULL;
1336 free_base_pfn = nr_to_free = 0;
1337
54608c3f
MG
1338 page = pfn_to_page(pfn);
1339 cond_resched();
1340 }
7e18adb4
MG
1341
1342 if (page->flags) {
1343 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1344 goto free_range;
7e18adb4
MG
1345 }
1346
1347 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1348 if (!free_base_page) {
1349 free_base_page = page;
1350 free_base_pfn = pfn;
1351 nr_to_free = 0;
1352 }
1353 nr_to_free++;
1354
1355 /* Where possible, batch up pages for a single free */
1356 continue;
1357free_range:
1358 /* Free the current block of pages to allocator */
1359 nr_pages += nr_to_free;
1360 deferred_free_range(free_base_page, free_base_pfn,
1361 nr_to_free);
1362 free_base_page = NULL;
1363 free_base_pfn = nr_to_free = 0;
7e18adb4 1364 }
a4de83dd 1365
7e18adb4
MG
1366 first_init_pfn = max(end_pfn, first_init_pfn);
1367 }
1368
1369 /* Sanity check that the next zone really is unpopulated */
1370 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1371
0e1cc95b 1372 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1373 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1374
1375 pgdat_init_report_one_done();
0e1cc95b
MG
1376 return 0;
1377}
7cf91a98 1378#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1379
1380void __init page_alloc_init_late(void)
1381{
7cf91a98
JK
1382 struct zone *zone;
1383
1384#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1385 int nid;
1386
d3cd131d
NS
1387 /* There will be num_node_state(N_MEMORY) threads */
1388 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1389 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1390 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1391 }
1392
1393 /* Block until all are initialised */
d3cd131d 1394 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1395
1396 /* Reinit limits that are based on free pages after the kernel is up */
1397 files_maxfiles_init();
7cf91a98
JK
1398#endif
1399
1400 for_each_populated_zone(zone)
1401 set_zone_contiguous(zone);
7e18adb4 1402}
7e18adb4 1403
47118af0 1404#ifdef CONFIG_CMA
9cf510a5 1405/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1406void __init init_cma_reserved_pageblock(struct page *page)
1407{
1408 unsigned i = pageblock_nr_pages;
1409 struct page *p = page;
1410
1411 do {
1412 __ClearPageReserved(p);
1413 set_page_count(p, 0);
1414 } while (++p, --i);
1415
47118af0 1416 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1417
1418 if (pageblock_order >= MAX_ORDER) {
1419 i = pageblock_nr_pages;
1420 p = page;
1421 do {
1422 set_page_refcounted(p);
1423 __free_pages(p, MAX_ORDER - 1);
1424 p += MAX_ORDER_NR_PAGES;
1425 } while (i -= MAX_ORDER_NR_PAGES);
1426 } else {
1427 set_page_refcounted(page);
1428 __free_pages(page, pageblock_order);
1429 }
1430
3dcc0571 1431 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1432}
1433#endif
1da177e4
LT
1434
1435/*
1436 * The order of subdivision here is critical for the IO subsystem.
1437 * Please do not alter this order without good reasons and regression
1438 * testing. Specifically, as large blocks of memory are subdivided,
1439 * the order in which smaller blocks are delivered depends on the order
1440 * they're subdivided in this function. This is the primary factor
1441 * influencing the order in which pages are delivered to the IO
1442 * subsystem according to empirical testing, and this is also justified
1443 * by considering the behavior of a buddy system containing a single
1444 * large block of memory acted on by a series of small allocations.
1445 * This behavior is a critical factor in sglist merging's success.
1446 *
6d49e352 1447 * -- nyc
1da177e4 1448 */
085cc7d5 1449static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1450 int low, int high, struct free_area *area,
1451 int migratetype)
1da177e4
LT
1452{
1453 unsigned long size = 1 << high;
1454
1455 while (high > low) {
1456 area--;
1457 high--;
1458 size >>= 1;
309381fe 1459 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1460
2847cf95 1461 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1462 debug_guardpage_enabled() &&
2847cf95 1463 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1464 /*
1465 * Mark as guard pages (or page), that will allow to
1466 * merge back to allocator when buddy will be freed.
1467 * Corresponding page table entries will not be touched,
1468 * pages will stay not present in virtual address space
1469 */
2847cf95 1470 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1471 continue;
1472 }
b2a0ac88 1473 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1474 area->nr_free++;
1475 set_page_order(&page[size], high);
1476 }
1da177e4
LT
1477}
1478
1da177e4
LT
1479/*
1480 * This page is about to be returned from the page allocator
1481 */
2a7684a2 1482static inline int check_new_page(struct page *page)
1da177e4 1483{
d230dec1 1484 const char *bad_reason = NULL;
f0b791a3
DH
1485 unsigned long bad_flags = 0;
1486
53f9263b 1487 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1488 bad_reason = "nonzero mapcount";
1489 if (unlikely(page->mapping != NULL))
1490 bad_reason = "non-NULL mapping";
fe896d18 1491 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1492 bad_reason = "nonzero _count";
f4c18e6f
NH
1493 if (unlikely(page->flags & __PG_HWPOISON)) {
1494 bad_reason = "HWPoisoned (hardware-corrupted)";
1495 bad_flags = __PG_HWPOISON;
1496 }
f0b791a3
DH
1497 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1498 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1499 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1500 }
9edad6ea
JW
1501#ifdef CONFIG_MEMCG
1502 if (unlikely(page->mem_cgroup))
1503 bad_reason = "page still charged to cgroup";
1504#endif
f0b791a3
DH
1505 if (unlikely(bad_reason)) {
1506 bad_page(page, bad_reason, bad_flags);
689bcebf 1507 return 1;
8cc3b392 1508 }
2a7684a2
WF
1509 return 0;
1510}
1511
1414c7f4
LA
1512static inline bool free_pages_prezeroed(bool poisoned)
1513{
1514 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1515 page_poisoning_enabled() && poisoned;
1516}
1517
75379191
VB
1518static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1519 int alloc_flags)
2a7684a2
WF
1520{
1521 int i;
1414c7f4 1522 bool poisoned = true;
2a7684a2
WF
1523
1524 for (i = 0; i < (1 << order); i++) {
1525 struct page *p = page + i;
1526 if (unlikely(check_new_page(p)))
1527 return 1;
1414c7f4
LA
1528 if (poisoned)
1529 poisoned &= page_is_poisoned(p);
2a7684a2 1530 }
689bcebf 1531
4c21e2f2 1532 set_page_private(page, 0);
7835e98b 1533 set_page_refcounted(page);
cc102509
NP
1534
1535 arch_alloc_page(page, order);
1da177e4 1536 kernel_map_pages(page, 1 << order, 1);
8823b1db 1537 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1538 kasan_alloc_pages(page, order);
17cf4406 1539
1414c7f4 1540 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1541 for (i = 0; i < (1 << order); i++)
1542 clear_highpage(page + i);
17cf4406
NP
1543
1544 if (order && (gfp_flags & __GFP_COMP))
1545 prep_compound_page(page, order);
1546
48c96a36
JK
1547 set_page_owner(page, order, gfp_flags);
1548
75379191 1549 /*
2f064f34 1550 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1551 * allocate the page. The expectation is that the caller is taking
1552 * steps that will free more memory. The caller should avoid the page
1553 * being used for !PFMEMALLOC purposes.
1554 */
2f064f34
MH
1555 if (alloc_flags & ALLOC_NO_WATERMARKS)
1556 set_page_pfmemalloc(page);
1557 else
1558 clear_page_pfmemalloc(page);
75379191 1559
689bcebf 1560 return 0;
1da177e4
LT
1561}
1562
56fd56b8
MG
1563/*
1564 * Go through the free lists for the given migratetype and remove
1565 * the smallest available page from the freelists
1566 */
728ec980
MG
1567static inline
1568struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1569 int migratetype)
1570{
1571 unsigned int current_order;
b8af2941 1572 struct free_area *area;
56fd56b8
MG
1573 struct page *page;
1574
1575 /* Find a page of the appropriate size in the preferred list */
1576 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1577 area = &(zone->free_area[current_order]);
a16601c5 1578 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1579 struct page, lru);
a16601c5
GT
1580 if (!page)
1581 continue;
56fd56b8
MG
1582 list_del(&page->lru);
1583 rmv_page_order(page);
1584 area->nr_free--;
56fd56b8 1585 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1586 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1587 return page;
1588 }
1589
1590 return NULL;
1591}
1592
1593
b2a0ac88
MG
1594/*
1595 * This array describes the order lists are fallen back to when
1596 * the free lists for the desirable migrate type are depleted
1597 */
47118af0 1598static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1599 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1600 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1601 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1602#ifdef CONFIG_CMA
974a786e 1603 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1604#endif
194159fb 1605#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1606 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1607#endif
b2a0ac88
MG
1608};
1609
dc67647b
JK
1610#ifdef CONFIG_CMA
1611static struct page *__rmqueue_cma_fallback(struct zone *zone,
1612 unsigned int order)
1613{
1614 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1615}
1616#else
1617static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1618 unsigned int order) { return NULL; }
1619#endif
1620
c361be55
MG
1621/*
1622 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1623 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1624 * boundary. If alignment is required, use move_freepages_block()
1625 */
435b405c 1626int move_freepages(struct zone *zone,
b69a7288
AB
1627 struct page *start_page, struct page *end_page,
1628 int migratetype)
c361be55
MG
1629{
1630 struct page *page;
d00181b9 1631 unsigned int order;
d100313f 1632 int pages_moved = 0;
c361be55
MG
1633
1634#ifndef CONFIG_HOLES_IN_ZONE
1635 /*
1636 * page_zone is not safe to call in this context when
1637 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1638 * anyway as we check zone boundaries in move_freepages_block().
1639 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1640 * grouping pages by mobility
c361be55 1641 */
97ee4ba7 1642 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1643#endif
1644
1645 for (page = start_page; page <= end_page;) {
344c790e 1646 /* Make sure we are not inadvertently changing nodes */
309381fe 1647 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1648
c361be55
MG
1649 if (!pfn_valid_within(page_to_pfn(page))) {
1650 page++;
1651 continue;
1652 }
1653
1654 if (!PageBuddy(page)) {
1655 page++;
1656 continue;
1657 }
1658
1659 order = page_order(page);
84be48d8
KS
1660 list_move(&page->lru,
1661 &zone->free_area[order].free_list[migratetype]);
c361be55 1662 page += 1 << order;
d100313f 1663 pages_moved += 1 << order;
c361be55
MG
1664 }
1665
d100313f 1666 return pages_moved;
c361be55
MG
1667}
1668
ee6f509c 1669int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1670 int migratetype)
c361be55
MG
1671{
1672 unsigned long start_pfn, end_pfn;
1673 struct page *start_page, *end_page;
1674
1675 start_pfn = page_to_pfn(page);
d9c23400 1676 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1677 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1678 end_page = start_page + pageblock_nr_pages - 1;
1679 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1680
1681 /* Do not cross zone boundaries */
108bcc96 1682 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1683 start_page = page;
108bcc96 1684 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1685 return 0;
1686
1687 return move_freepages(zone, start_page, end_page, migratetype);
1688}
1689
2f66a68f
MG
1690static void change_pageblock_range(struct page *pageblock_page,
1691 int start_order, int migratetype)
1692{
1693 int nr_pageblocks = 1 << (start_order - pageblock_order);
1694
1695 while (nr_pageblocks--) {
1696 set_pageblock_migratetype(pageblock_page, migratetype);
1697 pageblock_page += pageblock_nr_pages;
1698 }
1699}
1700
fef903ef 1701/*
9c0415eb
VB
1702 * When we are falling back to another migratetype during allocation, try to
1703 * steal extra free pages from the same pageblocks to satisfy further
1704 * allocations, instead of polluting multiple pageblocks.
1705 *
1706 * If we are stealing a relatively large buddy page, it is likely there will
1707 * be more free pages in the pageblock, so try to steal them all. For
1708 * reclaimable and unmovable allocations, we steal regardless of page size,
1709 * as fragmentation caused by those allocations polluting movable pageblocks
1710 * is worse than movable allocations stealing from unmovable and reclaimable
1711 * pageblocks.
fef903ef 1712 */
4eb7dce6
JK
1713static bool can_steal_fallback(unsigned int order, int start_mt)
1714{
1715 /*
1716 * Leaving this order check is intended, although there is
1717 * relaxed order check in next check. The reason is that
1718 * we can actually steal whole pageblock if this condition met,
1719 * but, below check doesn't guarantee it and that is just heuristic
1720 * so could be changed anytime.
1721 */
1722 if (order >= pageblock_order)
1723 return true;
1724
1725 if (order >= pageblock_order / 2 ||
1726 start_mt == MIGRATE_RECLAIMABLE ||
1727 start_mt == MIGRATE_UNMOVABLE ||
1728 page_group_by_mobility_disabled)
1729 return true;
1730
1731 return false;
1732}
1733
1734/*
1735 * This function implements actual steal behaviour. If order is large enough,
1736 * we can steal whole pageblock. If not, we first move freepages in this
1737 * pageblock and check whether half of pages are moved or not. If half of
1738 * pages are moved, we can change migratetype of pageblock and permanently
1739 * use it's pages as requested migratetype in the future.
1740 */
1741static void steal_suitable_fallback(struct zone *zone, struct page *page,
1742 int start_type)
fef903ef 1743{
d00181b9 1744 unsigned int current_order = page_order(page);
4eb7dce6 1745 int pages;
fef903ef 1746
fef903ef
SB
1747 /* Take ownership for orders >= pageblock_order */
1748 if (current_order >= pageblock_order) {
1749 change_pageblock_range(page, current_order, start_type);
3a1086fb 1750 return;
fef903ef
SB
1751 }
1752
4eb7dce6 1753 pages = move_freepages_block(zone, page, start_type);
fef903ef 1754
4eb7dce6
JK
1755 /* Claim the whole block if over half of it is free */
1756 if (pages >= (1 << (pageblock_order-1)) ||
1757 page_group_by_mobility_disabled)
1758 set_pageblock_migratetype(page, start_type);
1759}
1760
2149cdae
JK
1761/*
1762 * Check whether there is a suitable fallback freepage with requested order.
1763 * If only_stealable is true, this function returns fallback_mt only if
1764 * we can steal other freepages all together. This would help to reduce
1765 * fragmentation due to mixed migratetype pages in one pageblock.
1766 */
1767int find_suitable_fallback(struct free_area *area, unsigned int order,
1768 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1769{
1770 int i;
1771 int fallback_mt;
1772
1773 if (area->nr_free == 0)
1774 return -1;
1775
1776 *can_steal = false;
1777 for (i = 0;; i++) {
1778 fallback_mt = fallbacks[migratetype][i];
974a786e 1779 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1780 break;
1781
1782 if (list_empty(&area->free_list[fallback_mt]))
1783 continue;
fef903ef 1784
4eb7dce6
JK
1785 if (can_steal_fallback(order, migratetype))
1786 *can_steal = true;
1787
2149cdae
JK
1788 if (!only_stealable)
1789 return fallback_mt;
1790
1791 if (*can_steal)
1792 return fallback_mt;
fef903ef 1793 }
4eb7dce6
JK
1794
1795 return -1;
fef903ef
SB
1796}
1797
0aaa29a5
MG
1798/*
1799 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1800 * there are no empty page blocks that contain a page with a suitable order
1801 */
1802static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1803 unsigned int alloc_order)
1804{
1805 int mt;
1806 unsigned long max_managed, flags;
1807
1808 /*
1809 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1810 * Check is race-prone but harmless.
1811 */
1812 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1813 if (zone->nr_reserved_highatomic >= max_managed)
1814 return;
1815
1816 spin_lock_irqsave(&zone->lock, flags);
1817
1818 /* Recheck the nr_reserved_highatomic limit under the lock */
1819 if (zone->nr_reserved_highatomic >= max_managed)
1820 goto out_unlock;
1821
1822 /* Yoink! */
1823 mt = get_pageblock_migratetype(page);
1824 if (mt != MIGRATE_HIGHATOMIC &&
1825 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1826 zone->nr_reserved_highatomic += pageblock_nr_pages;
1827 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1828 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1829 }
1830
1831out_unlock:
1832 spin_unlock_irqrestore(&zone->lock, flags);
1833}
1834
1835/*
1836 * Used when an allocation is about to fail under memory pressure. This
1837 * potentially hurts the reliability of high-order allocations when under
1838 * intense memory pressure but failed atomic allocations should be easier
1839 * to recover from than an OOM.
1840 */
1841static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1842{
1843 struct zonelist *zonelist = ac->zonelist;
1844 unsigned long flags;
1845 struct zoneref *z;
1846 struct zone *zone;
1847 struct page *page;
1848 int order;
1849
1850 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1851 ac->nodemask) {
1852 /* Preserve at least one pageblock */
1853 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1854 continue;
1855
1856 spin_lock_irqsave(&zone->lock, flags);
1857 for (order = 0; order < MAX_ORDER; order++) {
1858 struct free_area *area = &(zone->free_area[order]);
1859
a16601c5
GT
1860 page = list_first_entry_or_null(
1861 &area->free_list[MIGRATE_HIGHATOMIC],
1862 struct page, lru);
1863 if (!page)
0aaa29a5
MG
1864 continue;
1865
0aaa29a5
MG
1866 /*
1867 * It should never happen but changes to locking could
1868 * inadvertently allow a per-cpu drain to add pages
1869 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1870 * and watch for underflows.
1871 */
1872 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1873 zone->nr_reserved_highatomic);
1874
1875 /*
1876 * Convert to ac->migratetype and avoid the normal
1877 * pageblock stealing heuristics. Minimally, the caller
1878 * is doing the work and needs the pages. More
1879 * importantly, if the block was always converted to
1880 * MIGRATE_UNMOVABLE or another type then the number
1881 * of pageblocks that cannot be completely freed
1882 * may increase.
1883 */
1884 set_pageblock_migratetype(page, ac->migratetype);
1885 move_freepages_block(zone, page, ac->migratetype);
1886 spin_unlock_irqrestore(&zone->lock, flags);
1887 return;
1888 }
1889 spin_unlock_irqrestore(&zone->lock, flags);
1890 }
1891}
1892
b2a0ac88 1893/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1894static inline struct page *
7aeb09f9 1895__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1896{
b8af2941 1897 struct free_area *area;
7aeb09f9 1898 unsigned int current_order;
b2a0ac88 1899 struct page *page;
4eb7dce6
JK
1900 int fallback_mt;
1901 bool can_steal;
b2a0ac88
MG
1902
1903 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1904 for (current_order = MAX_ORDER-1;
1905 current_order >= order && current_order <= MAX_ORDER-1;
1906 --current_order) {
4eb7dce6
JK
1907 area = &(zone->free_area[current_order]);
1908 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1909 start_migratetype, false, &can_steal);
4eb7dce6
JK
1910 if (fallback_mt == -1)
1911 continue;
b2a0ac88 1912
a16601c5 1913 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1914 struct page, lru);
1915 if (can_steal)
1916 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1917
4eb7dce6
JK
1918 /* Remove the page from the freelists */
1919 area->nr_free--;
1920 list_del(&page->lru);
1921 rmv_page_order(page);
3a1086fb 1922
4eb7dce6
JK
1923 expand(zone, page, order, current_order, area,
1924 start_migratetype);
1925 /*
bb14c2c7 1926 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1927 * migratetype depending on the decisions in
bb14c2c7
VB
1928 * find_suitable_fallback(). This is OK as long as it does not
1929 * differ for MIGRATE_CMA pageblocks. Those can be used as
1930 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1931 */
bb14c2c7 1932 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1933
4eb7dce6
JK
1934 trace_mm_page_alloc_extfrag(page, order, current_order,
1935 start_migratetype, fallback_mt);
e0fff1bd 1936
4eb7dce6 1937 return page;
b2a0ac88
MG
1938 }
1939
728ec980 1940 return NULL;
b2a0ac88
MG
1941}
1942
56fd56b8 1943/*
1da177e4
LT
1944 * Do the hard work of removing an element from the buddy allocator.
1945 * Call me with the zone->lock already held.
1946 */
b2a0ac88 1947static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1948 int migratetype)
1da177e4 1949{
1da177e4
LT
1950 struct page *page;
1951
56fd56b8 1952 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1953 if (unlikely(!page)) {
dc67647b
JK
1954 if (migratetype == MIGRATE_MOVABLE)
1955 page = __rmqueue_cma_fallback(zone, order);
1956
1957 if (!page)
1958 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1959 }
1960
0d3d062a 1961 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1962 return page;
1da177e4
LT
1963}
1964
5f63b720 1965/*
1da177e4
LT
1966 * Obtain a specified number of elements from the buddy allocator, all under
1967 * a single hold of the lock, for efficiency. Add them to the supplied list.
1968 * Returns the number of new pages which were placed at *list.
1969 */
5f63b720 1970static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1971 unsigned long count, struct list_head *list,
b745bc85 1972 int migratetype, bool cold)
1da177e4 1973{
5bcc9f86 1974 int i;
5f63b720 1975
c54ad30c 1976 spin_lock(&zone->lock);
1da177e4 1977 for (i = 0; i < count; ++i) {
6ac0206b 1978 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1979 if (unlikely(page == NULL))
1da177e4 1980 break;
81eabcbe
MG
1981
1982 /*
1983 * Split buddy pages returned by expand() are received here
1984 * in physical page order. The page is added to the callers and
1985 * list and the list head then moves forward. From the callers
1986 * perspective, the linked list is ordered by page number in
1987 * some conditions. This is useful for IO devices that can
1988 * merge IO requests if the physical pages are ordered
1989 * properly.
1990 */
b745bc85 1991 if (likely(!cold))
e084b2d9
MG
1992 list_add(&page->lru, list);
1993 else
1994 list_add_tail(&page->lru, list);
81eabcbe 1995 list = &page->lru;
bb14c2c7 1996 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1997 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1998 -(1 << order));
1da177e4 1999 }
f2260e6b 2000 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2001 spin_unlock(&zone->lock);
085cc7d5 2002 return i;
1da177e4
LT
2003}
2004
4ae7c039 2005#ifdef CONFIG_NUMA
8fce4d8e 2006/*
4037d452
CL
2007 * Called from the vmstat counter updater to drain pagesets of this
2008 * currently executing processor on remote nodes after they have
2009 * expired.
2010 *
879336c3
CL
2011 * Note that this function must be called with the thread pinned to
2012 * a single processor.
8fce4d8e 2013 */
4037d452 2014void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2015{
4ae7c039 2016 unsigned long flags;
7be12fc9 2017 int to_drain, batch;
4ae7c039 2018
4037d452 2019 local_irq_save(flags);
4db0c3c2 2020 batch = READ_ONCE(pcp->batch);
7be12fc9 2021 to_drain = min(pcp->count, batch);
2a13515c
KM
2022 if (to_drain > 0) {
2023 free_pcppages_bulk(zone, to_drain, pcp);
2024 pcp->count -= to_drain;
2025 }
4037d452 2026 local_irq_restore(flags);
4ae7c039
CL
2027}
2028#endif
2029
9f8f2172 2030/*
93481ff0 2031 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2032 *
2033 * The processor must either be the current processor and the
2034 * thread pinned to the current processor or a processor that
2035 * is not online.
2036 */
93481ff0 2037static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2038{
c54ad30c 2039 unsigned long flags;
93481ff0
VB
2040 struct per_cpu_pageset *pset;
2041 struct per_cpu_pages *pcp;
1da177e4 2042
93481ff0
VB
2043 local_irq_save(flags);
2044 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2045
93481ff0
VB
2046 pcp = &pset->pcp;
2047 if (pcp->count) {
2048 free_pcppages_bulk(zone, pcp->count, pcp);
2049 pcp->count = 0;
2050 }
2051 local_irq_restore(flags);
2052}
3dfa5721 2053
93481ff0
VB
2054/*
2055 * Drain pcplists of all zones on the indicated processor.
2056 *
2057 * The processor must either be the current processor and the
2058 * thread pinned to the current processor or a processor that
2059 * is not online.
2060 */
2061static void drain_pages(unsigned int cpu)
2062{
2063 struct zone *zone;
2064
2065 for_each_populated_zone(zone) {
2066 drain_pages_zone(cpu, zone);
1da177e4
LT
2067 }
2068}
1da177e4 2069
9f8f2172
CL
2070/*
2071 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2072 *
2073 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2074 * the single zone's pages.
9f8f2172 2075 */
93481ff0 2076void drain_local_pages(struct zone *zone)
9f8f2172 2077{
93481ff0
VB
2078 int cpu = smp_processor_id();
2079
2080 if (zone)
2081 drain_pages_zone(cpu, zone);
2082 else
2083 drain_pages(cpu);
9f8f2172
CL
2084}
2085
2086/*
74046494
GBY
2087 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2088 *
93481ff0
VB
2089 * When zone parameter is non-NULL, spill just the single zone's pages.
2090 *
74046494
GBY
2091 * Note that this code is protected against sending an IPI to an offline
2092 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2093 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2094 * nothing keeps CPUs from showing up after we populated the cpumask and
2095 * before the call to on_each_cpu_mask().
9f8f2172 2096 */
93481ff0 2097void drain_all_pages(struct zone *zone)
9f8f2172 2098{
74046494 2099 int cpu;
74046494
GBY
2100
2101 /*
2102 * Allocate in the BSS so we wont require allocation in
2103 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2104 */
2105 static cpumask_t cpus_with_pcps;
2106
2107 /*
2108 * We don't care about racing with CPU hotplug event
2109 * as offline notification will cause the notified
2110 * cpu to drain that CPU pcps and on_each_cpu_mask
2111 * disables preemption as part of its processing
2112 */
2113 for_each_online_cpu(cpu) {
93481ff0
VB
2114 struct per_cpu_pageset *pcp;
2115 struct zone *z;
74046494 2116 bool has_pcps = false;
93481ff0
VB
2117
2118 if (zone) {
74046494 2119 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2120 if (pcp->pcp.count)
74046494 2121 has_pcps = true;
93481ff0
VB
2122 } else {
2123 for_each_populated_zone(z) {
2124 pcp = per_cpu_ptr(z->pageset, cpu);
2125 if (pcp->pcp.count) {
2126 has_pcps = true;
2127 break;
2128 }
74046494
GBY
2129 }
2130 }
93481ff0 2131
74046494
GBY
2132 if (has_pcps)
2133 cpumask_set_cpu(cpu, &cpus_with_pcps);
2134 else
2135 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2136 }
93481ff0
VB
2137 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2138 zone, 1);
9f8f2172
CL
2139}
2140
296699de 2141#ifdef CONFIG_HIBERNATION
1da177e4
LT
2142
2143void mark_free_pages(struct zone *zone)
2144{
f623f0db
RW
2145 unsigned long pfn, max_zone_pfn;
2146 unsigned long flags;
7aeb09f9 2147 unsigned int order, t;
86760a2c 2148 struct page *page;
1da177e4 2149
8080fc03 2150 if (zone_is_empty(zone))
1da177e4
LT
2151 return;
2152
2153 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2154
108bcc96 2155 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2156 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2157 if (pfn_valid(pfn)) {
86760a2c 2158 page = pfn_to_page(pfn);
ba6b0979
JK
2159
2160 if (page_zone(page) != zone)
2161 continue;
2162
7be98234
RW
2163 if (!swsusp_page_is_forbidden(page))
2164 swsusp_unset_page_free(page);
f623f0db 2165 }
1da177e4 2166
b2a0ac88 2167 for_each_migratetype_order(order, t) {
86760a2c
GT
2168 list_for_each_entry(page,
2169 &zone->free_area[order].free_list[t], lru) {
f623f0db 2170 unsigned long i;
1da177e4 2171
86760a2c 2172 pfn = page_to_pfn(page);
f623f0db 2173 for (i = 0; i < (1UL << order); i++)
7be98234 2174 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2175 }
b2a0ac88 2176 }
1da177e4
LT
2177 spin_unlock_irqrestore(&zone->lock, flags);
2178}
e2c55dc8 2179#endif /* CONFIG_PM */
1da177e4 2180
1da177e4
LT
2181/*
2182 * Free a 0-order page
b745bc85 2183 * cold == true ? free a cold page : free a hot page
1da177e4 2184 */
b745bc85 2185void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2186{
2187 struct zone *zone = page_zone(page);
2188 struct per_cpu_pages *pcp;
2189 unsigned long flags;
dc4b0caf 2190 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2191 int migratetype;
1da177e4 2192
ec95f53a 2193 if (!free_pages_prepare(page, 0))
689bcebf
HD
2194 return;
2195
dc4b0caf 2196 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2197 set_pcppage_migratetype(page, migratetype);
1da177e4 2198 local_irq_save(flags);
f8891e5e 2199 __count_vm_event(PGFREE);
da456f14 2200
5f8dcc21
MG
2201 /*
2202 * We only track unmovable, reclaimable and movable on pcp lists.
2203 * Free ISOLATE pages back to the allocator because they are being
2204 * offlined but treat RESERVE as movable pages so we can get those
2205 * areas back if necessary. Otherwise, we may have to free
2206 * excessively into the page allocator
2207 */
2208 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2209 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2210 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2211 goto out;
2212 }
2213 migratetype = MIGRATE_MOVABLE;
2214 }
2215
99dcc3e5 2216 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2217 if (!cold)
5f8dcc21 2218 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2219 else
2220 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2221 pcp->count++;
48db57f8 2222 if (pcp->count >= pcp->high) {
4db0c3c2 2223 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2224 free_pcppages_bulk(zone, batch, pcp);
2225 pcp->count -= batch;
48db57f8 2226 }
5f8dcc21
MG
2227
2228out:
1da177e4 2229 local_irq_restore(flags);
1da177e4
LT
2230}
2231
cc59850e
KK
2232/*
2233 * Free a list of 0-order pages
2234 */
b745bc85 2235void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2236{
2237 struct page *page, *next;
2238
2239 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2240 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2241 free_hot_cold_page(page, cold);
2242 }
2243}
2244
8dfcc9ba
NP
2245/*
2246 * split_page takes a non-compound higher-order page, and splits it into
2247 * n (1<<order) sub-pages: page[0..n]
2248 * Each sub-page must be freed individually.
2249 *
2250 * Note: this is probably too low level an operation for use in drivers.
2251 * Please consult with lkml before using this in your driver.
2252 */
2253void split_page(struct page *page, unsigned int order)
2254{
2255 int i;
e2cfc911 2256 gfp_t gfp_mask;
8dfcc9ba 2257
309381fe
SL
2258 VM_BUG_ON_PAGE(PageCompound(page), page);
2259 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2260
2261#ifdef CONFIG_KMEMCHECK
2262 /*
2263 * Split shadow pages too, because free(page[0]) would
2264 * otherwise free the whole shadow.
2265 */
2266 if (kmemcheck_page_is_tracked(page))
2267 split_page(virt_to_page(page[0].shadow), order);
2268#endif
2269
e2cfc911
JK
2270 gfp_mask = get_page_owner_gfp(page);
2271 set_page_owner(page, 0, gfp_mask);
48c96a36 2272 for (i = 1; i < (1 << order); i++) {
7835e98b 2273 set_page_refcounted(page + i);
e2cfc911 2274 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2275 }
8dfcc9ba 2276}
5853ff23 2277EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2278
3c605096 2279int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2280{
748446bb
MG
2281 unsigned long watermark;
2282 struct zone *zone;
2139cbe6 2283 int mt;
748446bb
MG
2284
2285 BUG_ON(!PageBuddy(page));
2286
2287 zone = page_zone(page);
2e30abd1 2288 mt = get_pageblock_migratetype(page);
748446bb 2289
194159fb 2290 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2291 /* Obey watermarks as if the page was being allocated */
2292 watermark = low_wmark_pages(zone) + (1 << order);
2293 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2294 return 0;
2295
8fb74b9f 2296 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2297 }
748446bb
MG
2298
2299 /* Remove page from free list */
2300 list_del(&page->lru);
2301 zone->free_area[order].nr_free--;
2302 rmv_page_order(page);
2139cbe6 2303
e2cfc911 2304 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2305
8fb74b9f 2306 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2307 if (order >= pageblock_order - 1) {
2308 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2309 for (; page < endpage; page += pageblock_nr_pages) {
2310 int mt = get_pageblock_migratetype(page);
194159fb 2311 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2312 set_pageblock_migratetype(page,
2313 MIGRATE_MOVABLE);
2314 }
748446bb
MG
2315 }
2316
f3a14ced 2317
8fb74b9f 2318 return 1UL << order;
1fb3f8ca
MG
2319}
2320
2321/*
2322 * Similar to split_page except the page is already free. As this is only
2323 * being used for migration, the migratetype of the block also changes.
2324 * As this is called with interrupts disabled, the caller is responsible
2325 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2326 * are enabled.
2327 *
2328 * Note: this is probably too low level an operation for use in drivers.
2329 * Please consult with lkml before using this in your driver.
2330 */
2331int split_free_page(struct page *page)
2332{
2333 unsigned int order;
2334 int nr_pages;
2335
1fb3f8ca
MG
2336 order = page_order(page);
2337
8fb74b9f 2338 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2339 if (!nr_pages)
2340 return 0;
2341
2342 /* Split into individual pages */
2343 set_page_refcounted(page);
2344 split_page(page, order);
2345 return nr_pages;
748446bb
MG
2346}
2347
1da177e4 2348/*
75379191 2349 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2350 */
0a15c3e9
MG
2351static inline
2352struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2353 struct zone *zone, unsigned int order,
0aaa29a5 2354 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2355{
2356 unsigned long flags;
689bcebf 2357 struct page *page;
b745bc85 2358 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2359
48db57f8 2360 if (likely(order == 0)) {
1da177e4 2361 struct per_cpu_pages *pcp;
5f8dcc21 2362 struct list_head *list;
1da177e4 2363
1da177e4 2364 local_irq_save(flags);
99dcc3e5
CL
2365 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2366 list = &pcp->lists[migratetype];
5f8dcc21 2367 if (list_empty(list)) {
535131e6 2368 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2369 pcp->batch, list,
e084b2d9 2370 migratetype, cold);
5f8dcc21 2371 if (unlikely(list_empty(list)))
6fb332fa 2372 goto failed;
535131e6 2373 }
b92a6edd 2374
5f8dcc21 2375 if (cold)
a16601c5 2376 page = list_last_entry(list, struct page, lru);
5f8dcc21 2377 else
a16601c5 2378 page = list_first_entry(list, struct page, lru);
5f8dcc21 2379
b92a6edd
MG
2380 list_del(&page->lru);
2381 pcp->count--;
7fb1d9fc 2382 } else {
0f352e53
MH
2383 /*
2384 * We most definitely don't want callers attempting to
2385 * allocate greater than order-1 page units with __GFP_NOFAIL.
2386 */
2387 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2388 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2389
2390 page = NULL;
2391 if (alloc_flags & ALLOC_HARDER) {
2392 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2393 if (page)
2394 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2395 }
2396 if (!page)
6ac0206b 2397 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2398 spin_unlock(&zone->lock);
2399 if (!page)
2400 goto failed;
d1ce749a 2401 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2402 get_pcppage_migratetype(page));
1da177e4
LT
2403 }
2404
3a025760 2405 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2406 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2407 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2408 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2409
f8891e5e 2410 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2411 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2412 local_irq_restore(flags);
1da177e4 2413
309381fe 2414 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2415 return page;
a74609fa
NP
2416
2417failed:
2418 local_irq_restore(flags);
a74609fa 2419 return NULL;
1da177e4
LT
2420}
2421
933e312e
AM
2422#ifdef CONFIG_FAIL_PAGE_ALLOC
2423
b2588c4b 2424static struct {
933e312e
AM
2425 struct fault_attr attr;
2426
621a5f7a 2427 bool ignore_gfp_highmem;
71baba4b 2428 bool ignore_gfp_reclaim;
54114994 2429 u32 min_order;
933e312e
AM
2430} fail_page_alloc = {
2431 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2432 .ignore_gfp_reclaim = true,
621a5f7a 2433 .ignore_gfp_highmem = true,
54114994 2434 .min_order = 1,
933e312e
AM
2435};
2436
2437static int __init setup_fail_page_alloc(char *str)
2438{
2439 return setup_fault_attr(&fail_page_alloc.attr, str);
2440}
2441__setup("fail_page_alloc=", setup_fail_page_alloc);
2442
deaf386e 2443static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2444{
54114994 2445 if (order < fail_page_alloc.min_order)
deaf386e 2446 return false;
933e312e 2447 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2448 return false;
933e312e 2449 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2450 return false;
71baba4b
MG
2451 if (fail_page_alloc.ignore_gfp_reclaim &&
2452 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2453 return false;
933e312e
AM
2454
2455 return should_fail(&fail_page_alloc.attr, 1 << order);
2456}
2457
2458#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2459
2460static int __init fail_page_alloc_debugfs(void)
2461{
f4ae40a6 2462 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2463 struct dentry *dir;
933e312e 2464
dd48c085
AM
2465 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2466 &fail_page_alloc.attr);
2467 if (IS_ERR(dir))
2468 return PTR_ERR(dir);
933e312e 2469
b2588c4b 2470 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2471 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2472 goto fail;
2473 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2474 &fail_page_alloc.ignore_gfp_highmem))
2475 goto fail;
2476 if (!debugfs_create_u32("min-order", mode, dir,
2477 &fail_page_alloc.min_order))
2478 goto fail;
2479
2480 return 0;
2481fail:
dd48c085 2482 debugfs_remove_recursive(dir);
933e312e 2483
b2588c4b 2484 return -ENOMEM;
933e312e
AM
2485}
2486
2487late_initcall(fail_page_alloc_debugfs);
2488
2489#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2490
2491#else /* CONFIG_FAIL_PAGE_ALLOC */
2492
deaf386e 2493static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2494{
deaf386e 2495 return false;
933e312e
AM
2496}
2497
2498#endif /* CONFIG_FAIL_PAGE_ALLOC */
2499
1da177e4 2500/*
97a16fc8
MG
2501 * Return true if free base pages are above 'mark'. For high-order checks it
2502 * will return true of the order-0 watermark is reached and there is at least
2503 * one free page of a suitable size. Checking now avoids taking the zone lock
2504 * to check in the allocation paths if no pages are free.
1da177e4 2505 */
7aeb09f9
MG
2506static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2507 unsigned long mark, int classzone_idx, int alloc_flags,
2508 long free_pages)
1da177e4 2509{
d23ad423 2510 long min = mark;
1da177e4 2511 int o;
97a16fc8 2512 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2513
0aaa29a5 2514 /* free_pages may go negative - that's OK */
df0a6daa 2515 free_pages -= (1 << order) - 1;
0aaa29a5 2516
7fb1d9fc 2517 if (alloc_flags & ALLOC_HIGH)
1da177e4 2518 min -= min / 2;
0aaa29a5
MG
2519
2520 /*
2521 * If the caller does not have rights to ALLOC_HARDER then subtract
2522 * the high-atomic reserves. This will over-estimate the size of the
2523 * atomic reserve but it avoids a search.
2524 */
97a16fc8 2525 if (likely(!alloc_harder))
0aaa29a5
MG
2526 free_pages -= z->nr_reserved_highatomic;
2527 else
1da177e4 2528 min -= min / 4;
e2b19197 2529
d95ea5d1
BZ
2530#ifdef CONFIG_CMA
2531 /* If allocation can't use CMA areas don't use free CMA pages */
2532 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2533 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2534#endif
026b0814 2535
97a16fc8
MG
2536 /*
2537 * Check watermarks for an order-0 allocation request. If these
2538 * are not met, then a high-order request also cannot go ahead
2539 * even if a suitable page happened to be free.
2540 */
2541 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2542 return false;
1da177e4 2543
97a16fc8
MG
2544 /* If this is an order-0 request then the watermark is fine */
2545 if (!order)
2546 return true;
2547
2548 /* For a high-order request, check at least one suitable page is free */
2549 for (o = order; o < MAX_ORDER; o++) {
2550 struct free_area *area = &z->free_area[o];
2551 int mt;
2552
2553 if (!area->nr_free)
2554 continue;
2555
2556 if (alloc_harder)
2557 return true;
1da177e4 2558
97a16fc8
MG
2559 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2560 if (!list_empty(&area->free_list[mt]))
2561 return true;
2562 }
2563
2564#ifdef CONFIG_CMA
2565 if ((alloc_flags & ALLOC_CMA) &&
2566 !list_empty(&area->free_list[MIGRATE_CMA])) {
2567 return true;
2568 }
2569#endif
1da177e4 2570 }
97a16fc8 2571 return false;
88f5acf8
MG
2572}
2573
7aeb09f9 2574bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2575 int classzone_idx, int alloc_flags)
2576{
2577 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2578 zone_page_state(z, NR_FREE_PAGES));
2579}
2580
7aeb09f9 2581bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2582 unsigned long mark, int classzone_idx)
88f5acf8
MG
2583{
2584 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2585
2586 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2587 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2588
e2b19197 2589 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2590 free_pages);
1da177e4
LT
2591}
2592
9276b1bc 2593#ifdef CONFIG_NUMA
81c0a2bb
JW
2594static bool zone_local(struct zone *local_zone, struct zone *zone)
2595{
fff4068c 2596 return local_zone->node == zone->node;
81c0a2bb
JW
2597}
2598
957f822a
DR
2599static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2600{
5f7a75ac
MG
2601 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2602 RECLAIM_DISTANCE;
957f822a 2603}
9276b1bc 2604#else /* CONFIG_NUMA */
81c0a2bb
JW
2605static bool zone_local(struct zone *local_zone, struct zone *zone)
2606{
2607 return true;
2608}
2609
957f822a
DR
2610static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2611{
2612 return true;
2613}
9276b1bc
PJ
2614#endif /* CONFIG_NUMA */
2615
4ffeaf35
MG
2616static void reset_alloc_batches(struct zone *preferred_zone)
2617{
2618 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2619
2620 do {
2621 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2622 high_wmark_pages(zone) - low_wmark_pages(zone) -
2623 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2624 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2625 } while (zone++ != preferred_zone);
2626}
2627
7fb1d9fc 2628/*
0798e519 2629 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2630 * a page.
2631 */
2632static struct page *
a9263751
VB
2633get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2634 const struct alloc_context *ac)
753ee728 2635{
a9263751 2636 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2637 struct zoneref *z;
7fb1d9fc 2638 struct page *page = NULL;
5117f45d 2639 struct zone *zone;
4ffeaf35
MG
2640 int nr_fair_skipped = 0;
2641 bool zonelist_rescan;
54a6eb5c 2642
9276b1bc 2643zonelist_scan:
4ffeaf35
MG
2644 zonelist_rescan = false;
2645
7fb1d9fc 2646 /*
9276b1bc 2647 * Scan zonelist, looking for a zone with enough free.
344736f2 2648 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2649 */
a9263751
VB
2650 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2651 ac->nodemask) {
e085dbc5
JW
2652 unsigned long mark;
2653
664eedde
MG
2654 if (cpusets_enabled() &&
2655 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2656 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2657 continue;
81c0a2bb
JW
2658 /*
2659 * Distribute pages in proportion to the individual
2660 * zone size to ensure fair page aging. The zone a
2661 * page was allocated in should have no effect on the
2662 * time the page has in memory before being reclaimed.
81c0a2bb 2663 */
3a025760 2664 if (alloc_flags & ALLOC_FAIR) {
a9263751 2665 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2666 break;
57054651 2667 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2668 nr_fair_skipped++;
3a025760 2669 continue;
4ffeaf35 2670 }
81c0a2bb 2671 }
a756cf59
JW
2672 /*
2673 * When allocating a page cache page for writing, we
2674 * want to get it from a zone that is within its dirty
2675 * limit, such that no single zone holds more than its
2676 * proportional share of globally allowed dirty pages.
2677 * The dirty limits take into account the zone's
2678 * lowmem reserves and high watermark so that kswapd
2679 * should be able to balance it without having to
2680 * write pages from its LRU list.
2681 *
2682 * This may look like it could increase pressure on
2683 * lower zones by failing allocations in higher zones
2684 * before they are full. But the pages that do spill
2685 * over are limited as the lower zones are protected
2686 * by this very same mechanism. It should not become
2687 * a practical burden to them.
2688 *
2689 * XXX: For now, allow allocations to potentially
2690 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2691 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2692 * which is important when on a NUMA setup the allowed
2693 * zones are together not big enough to reach the
2694 * global limit. The proper fix for these situations
2695 * will require awareness of zones in the
2696 * dirty-throttling and the flusher threads.
2697 */
c9ab0c4f 2698 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2699 continue;
7fb1d9fc 2700
e085dbc5
JW
2701 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2702 if (!zone_watermark_ok(zone, order, mark,
a9263751 2703 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2704 int ret;
2705
5dab2911
MG
2706 /* Checked here to keep the fast path fast */
2707 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2708 if (alloc_flags & ALLOC_NO_WATERMARKS)
2709 goto try_this_zone;
2710
957f822a 2711 if (zone_reclaim_mode == 0 ||
a9263751 2712 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2713 continue;
2714
fa5e084e
MG
2715 ret = zone_reclaim(zone, gfp_mask, order);
2716 switch (ret) {
2717 case ZONE_RECLAIM_NOSCAN:
2718 /* did not scan */
cd38b115 2719 continue;
fa5e084e
MG
2720 case ZONE_RECLAIM_FULL:
2721 /* scanned but unreclaimable */
cd38b115 2722 continue;
fa5e084e
MG
2723 default:
2724 /* did we reclaim enough */
fed2719e 2725 if (zone_watermark_ok(zone, order, mark,
a9263751 2726 ac->classzone_idx, alloc_flags))
fed2719e
MG
2727 goto try_this_zone;
2728
fed2719e 2729 continue;
0798e519 2730 }
7fb1d9fc
RS
2731 }
2732
fa5e084e 2733try_this_zone:
a9263751 2734 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2735 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2736 if (page) {
2737 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2738 goto try_this_zone;
0aaa29a5
MG
2739
2740 /*
2741 * If this is a high-order atomic allocation then check
2742 * if the pageblock should be reserved for the future
2743 */
2744 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2745 reserve_highatomic_pageblock(page, zone, order);
2746
75379191
VB
2747 return page;
2748 }
54a6eb5c 2749 }
9276b1bc 2750
4ffeaf35
MG
2751 /*
2752 * The first pass makes sure allocations are spread fairly within the
2753 * local node. However, the local node might have free pages left
2754 * after the fairness batches are exhausted, and remote zones haven't
2755 * even been considered yet. Try once more without fairness, and
2756 * include remote zones now, before entering the slowpath and waking
2757 * kswapd: prefer spilling to a remote zone over swapping locally.
2758 */
2759 if (alloc_flags & ALLOC_FAIR) {
2760 alloc_flags &= ~ALLOC_FAIR;
2761 if (nr_fair_skipped) {
2762 zonelist_rescan = true;
a9263751 2763 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2764 }
2765 if (nr_online_nodes > 1)
2766 zonelist_rescan = true;
2767 }
2768
4ffeaf35
MG
2769 if (zonelist_rescan)
2770 goto zonelist_scan;
2771
2772 return NULL;
753ee728
MH
2773}
2774
29423e77
DR
2775/*
2776 * Large machines with many possible nodes should not always dump per-node
2777 * meminfo in irq context.
2778 */
2779static inline bool should_suppress_show_mem(void)
2780{
2781 bool ret = false;
2782
2783#if NODES_SHIFT > 8
2784 ret = in_interrupt();
2785#endif
2786 return ret;
2787}
2788
a238ab5b
DH
2789static DEFINE_RATELIMIT_STATE(nopage_rs,
2790 DEFAULT_RATELIMIT_INTERVAL,
2791 DEFAULT_RATELIMIT_BURST);
2792
d00181b9 2793void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2794{
a238ab5b
DH
2795 unsigned int filter = SHOW_MEM_FILTER_NODES;
2796
c0a32fc5
SG
2797 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2798 debug_guardpage_minorder() > 0)
a238ab5b
DH
2799 return;
2800
2801 /*
2802 * This documents exceptions given to allocations in certain
2803 * contexts that are allowed to allocate outside current's set
2804 * of allowed nodes.
2805 */
2806 if (!(gfp_mask & __GFP_NOMEMALLOC))
2807 if (test_thread_flag(TIF_MEMDIE) ||
2808 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2809 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2810 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2811 filter &= ~SHOW_MEM_FILTER_NODES;
2812
2813 if (fmt) {
3ee9a4f0
JP
2814 struct va_format vaf;
2815 va_list args;
2816
a238ab5b 2817 va_start(args, fmt);
3ee9a4f0
JP
2818
2819 vaf.fmt = fmt;
2820 vaf.va = &args;
2821
2822 pr_warn("%pV", &vaf);
2823
a238ab5b
DH
2824 va_end(args);
2825 }
2826
c5c990e8
VB
2827 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2828 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2829 dump_stack();
2830 if (!should_suppress_show_mem())
2831 show_mem(filter);
2832}
2833
11e33f6a
MG
2834static inline struct page *
2835__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2836 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2837{
6e0fc46d
DR
2838 struct oom_control oc = {
2839 .zonelist = ac->zonelist,
2840 .nodemask = ac->nodemask,
2841 .gfp_mask = gfp_mask,
2842 .order = order,
6e0fc46d 2843 };
11e33f6a
MG
2844 struct page *page;
2845
9879de73
JW
2846 *did_some_progress = 0;
2847
9879de73 2848 /*
dc56401f
JW
2849 * Acquire the oom lock. If that fails, somebody else is
2850 * making progress for us.
9879de73 2851 */
dc56401f 2852 if (!mutex_trylock(&oom_lock)) {
9879de73 2853 *did_some_progress = 1;
11e33f6a 2854 schedule_timeout_uninterruptible(1);
1da177e4
LT
2855 return NULL;
2856 }
6b1de916 2857
11e33f6a
MG
2858 /*
2859 * Go through the zonelist yet one more time, keep very high watermark
2860 * here, this is only to catch a parallel oom killing, we must fail if
2861 * we're still under heavy pressure.
2862 */
a9263751
VB
2863 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2864 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2865 if (page)
11e33f6a
MG
2866 goto out;
2867
4365a567 2868 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2869 /* Coredumps can quickly deplete all memory reserves */
2870 if (current->flags & PF_DUMPCORE)
2871 goto out;
4365a567
KH
2872 /* The OOM killer will not help higher order allocs */
2873 if (order > PAGE_ALLOC_COSTLY_ORDER)
2874 goto out;
03668b3c 2875 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2876 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2877 goto out;
9083905a
JW
2878 if (pm_suspended_storage())
2879 goto out;
3da88fb3
MH
2880 /*
2881 * XXX: GFP_NOFS allocations should rather fail than rely on
2882 * other request to make a forward progress.
2883 * We are in an unfortunate situation where out_of_memory cannot
2884 * do much for this context but let's try it to at least get
2885 * access to memory reserved if the current task is killed (see
2886 * out_of_memory). Once filesystems are ready to handle allocation
2887 * failures more gracefully we should just bail out here.
2888 */
2889
4167e9b2 2890 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2891 if (gfp_mask & __GFP_THISNODE)
2892 goto out;
2893 }
11e33f6a 2894 /* Exhausted what can be done so it's blamo time */
5020e285 2895 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2896 *did_some_progress = 1;
5020e285
MH
2897
2898 if (gfp_mask & __GFP_NOFAIL) {
2899 page = get_page_from_freelist(gfp_mask, order,
2900 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2901 /*
2902 * fallback to ignore cpuset restriction if our nodes
2903 * are depleted
2904 */
2905 if (!page)
2906 page = get_page_from_freelist(gfp_mask, order,
2907 ALLOC_NO_WATERMARKS, ac);
2908 }
2909 }
11e33f6a 2910out:
dc56401f 2911 mutex_unlock(&oom_lock);
11e33f6a
MG
2912 return page;
2913}
2914
56de7263
MG
2915#ifdef CONFIG_COMPACTION
2916/* Try memory compaction for high-order allocations before reclaim */
2917static struct page *
2918__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2919 int alloc_flags, const struct alloc_context *ac,
2920 enum migrate_mode mode, int *contended_compaction,
2921 bool *deferred_compaction)
56de7263 2922{
53853e2d 2923 unsigned long compact_result;
98dd3b48 2924 struct page *page;
53853e2d
VB
2925
2926 if (!order)
66199712 2927 return NULL;
66199712 2928
c06b1fca 2929 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2930 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2931 mode, contended_compaction);
c06b1fca 2932 current->flags &= ~PF_MEMALLOC;
56de7263 2933
98dd3b48
VB
2934 switch (compact_result) {
2935 case COMPACT_DEFERRED:
53853e2d 2936 *deferred_compaction = true;
98dd3b48
VB
2937 /* fall-through */
2938 case COMPACT_SKIPPED:
2939 return NULL;
2940 default:
2941 break;
2942 }
53853e2d 2943
98dd3b48
VB
2944 /*
2945 * At least in one zone compaction wasn't deferred or skipped, so let's
2946 * count a compaction stall
2947 */
2948 count_vm_event(COMPACTSTALL);
8fb74b9f 2949
a9263751
VB
2950 page = get_page_from_freelist(gfp_mask, order,
2951 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2952
98dd3b48
VB
2953 if (page) {
2954 struct zone *zone = page_zone(page);
53853e2d 2955
98dd3b48
VB
2956 zone->compact_blockskip_flush = false;
2957 compaction_defer_reset(zone, order, true);
2958 count_vm_event(COMPACTSUCCESS);
2959 return page;
2960 }
56de7263 2961
98dd3b48
VB
2962 /*
2963 * It's bad if compaction run occurs and fails. The most likely reason
2964 * is that pages exist, but not enough to satisfy watermarks.
2965 */
2966 count_vm_event(COMPACTFAIL);
66199712 2967
98dd3b48 2968 cond_resched();
56de7263
MG
2969
2970 return NULL;
2971}
2972#else
2973static inline struct page *
2974__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2975 int alloc_flags, const struct alloc_context *ac,
2976 enum migrate_mode mode, int *contended_compaction,
2977 bool *deferred_compaction)
56de7263
MG
2978{
2979 return NULL;
2980}
2981#endif /* CONFIG_COMPACTION */
2982
bba90710
MS
2983/* Perform direct synchronous page reclaim */
2984static int
a9263751
VB
2985__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2986 const struct alloc_context *ac)
11e33f6a 2987{
11e33f6a 2988 struct reclaim_state reclaim_state;
bba90710 2989 int progress;
11e33f6a
MG
2990
2991 cond_resched();
2992
2993 /* We now go into synchronous reclaim */
2994 cpuset_memory_pressure_bump();
c06b1fca 2995 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2996 lockdep_set_current_reclaim_state(gfp_mask);
2997 reclaim_state.reclaimed_slab = 0;
c06b1fca 2998 current->reclaim_state = &reclaim_state;
11e33f6a 2999
a9263751
VB
3000 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3001 ac->nodemask);
11e33f6a 3002
c06b1fca 3003 current->reclaim_state = NULL;
11e33f6a 3004 lockdep_clear_current_reclaim_state();
c06b1fca 3005 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3006
3007 cond_resched();
3008
bba90710
MS
3009 return progress;
3010}
3011
3012/* The really slow allocator path where we enter direct reclaim */
3013static inline struct page *
3014__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
3015 int alloc_flags, const struct alloc_context *ac,
3016 unsigned long *did_some_progress)
bba90710
MS
3017{
3018 struct page *page = NULL;
3019 bool drained = false;
3020
a9263751 3021 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3022 if (unlikely(!(*did_some_progress)))
3023 return NULL;
11e33f6a 3024
9ee493ce 3025retry:
a9263751
VB
3026 page = get_page_from_freelist(gfp_mask, order,
3027 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3028
3029 /*
3030 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3031 * pages are pinned on the per-cpu lists or in high alloc reserves.
3032 * Shrink them them and try again
9ee493ce
MG
3033 */
3034 if (!page && !drained) {
0aaa29a5 3035 unreserve_highatomic_pageblock(ac);
93481ff0 3036 drain_all_pages(NULL);
9ee493ce
MG
3037 drained = true;
3038 goto retry;
3039 }
3040
11e33f6a
MG
3041 return page;
3042}
3043
a9263751 3044static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3045{
3046 struct zoneref *z;
3047 struct zone *zone;
3048
a9263751
VB
3049 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3050 ac->high_zoneidx, ac->nodemask)
3051 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3052}
3053
341ce06f
PZ
3054static inline int
3055gfp_to_alloc_flags(gfp_t gfp_mask)
3056{
341ce06f 3057 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3058
a56f57ff 3059 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3060 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3061
341ce06f
PZ
3062 /*
3063 * The caller may dip into page reserves a bit more if the caller
3064 * cannot run direct reclaim, or if the caller has realtime scheduling
3065 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3066 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3067 */
e6223a3b 3068 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3069
d0164adc 3070 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3071 /*
b104a35d
DR
3072 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3073 * if it can't schedule.
5c3240d9 3074 */
b104a35d 3075 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3076 alloc_flags |= ALLOC_HARDER;
523b9458 3077 /*
b104a35d 3078 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3079 * comment for __cpuset_node_allowed().
523b9458 3080 */
341ce06f 3081 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3082 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3083 alloc_flags |= ALLOC_HARDER;
3084
b37f1dd0
MG
3085 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3086 if (gfp_mask & __GFP_MEMALLOC)
3087 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3088 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3089 alloc_flags |= ALLOC_NO_WATERMARKS;
3090 else if (!in_interrupt() &&
3091 ((current->flags & PF_MEMALLOC) ||
3092 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3093 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3094 }
d95ea5d1 3095#ifdef CONFIG_CMA
43e7a34d 3096 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3097 alloc_flags |= ALLOC_CMA;
3098#endif
341ce06f
PZ
3099 return alloc_flags;
3100}
3101
072bb0aa
MG
3102bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3103{
b37f1dd0 3104 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3105}
3106
d0164adc
MG
3107static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3108{
3109 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3110}
3111
11e33f6a
MG
3112static inline struct page *
3113__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3114 struct alloc_context *ac)
11e33f6a 3115{
d0164adc 3116 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3117 struct page *page = NULL;
3118 int alloc_flags;
3119 unsigned long pages_reclaimed = 0;
3120 unsigned long did_some_progress;
e0b9daeb 3121 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3122 bool deferred_compaction = false;
1f9efdef 3123 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3124
72807a74
MG
3125 /*
3126 * In the slowpath, we sanity check order to avoid ever trying to
3127 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3128 * be using allocators in order of preference for an area that is
3129 * too large.
3130 */
1fc28b70
MG
3131 if (order >= MAX_ORDER) {
3132 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3133 return NULL;
1fc28b70 3134 }
1da177e4 3135
d0164adc
MG
3136 /*
3137 * We also sanity check to catch abuse of atomic reserves being used by
3138 * callers that are not in atomic context.
3139 */
3140 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3141 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3142 gfp_mask &= ~__GFP_ATOMIC;
3143
9879de73 3144retry:
d0164adc 3145 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3146 wake_all_kswapds(order, ac);
1da177e4 3147
9bf2229f 3148 /*
7fb1d9fc
RS
3149 * OK, we're below the kswapd watermark and have kicked background
3150 * reclaim. Now things get more complex, so set up alloc_flags according
3151 * to how we want to proceed.
9bf2229f 3152 */
341ce06f 3153 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3154
f33261d7
DR
3155 /*
3156 * Find the true preferred zone if the allocation is unconstrained by
3157 * cpusets.
3158 */
a9263751 3159 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3160 struct zoneref *preferred_zoneref;
a9263751
VB
3161 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3162 ac->high_zoneidx, NULL, &ac->preferred_zone);
3163 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3164 }
f33261d7 3165
341ce06f 3166 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3167 page = get_page_from_freelist(gfp_mask, order,
3168 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3169 if (page)
3170 goto got_pg;
1da177e4 3171
11e33f6a 3172 /* Allocate without watermarks if the context allows */
341ce06f 3173 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3174 /*
3175 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3176 * the allocation is high priority and these type of
3177 * allocations are system rather than user orientated
3178 */
a9263751 3179 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3180 page = get_page_from_freelist(gfp_mask, order,
3181 ALLOC_NO_WATERMARKS, ac);
3182 if (page)
3183 goto got_pg;
1da177e4
LT
3184 }
3185
d0164adc
MG
3186 /* Caller is not willing to reclaim, we can't balance anything */
3187 if (!can_direct_reclaim) {
aed0a0e3 3188 /*
33d53103
MH
3189 * All existing users of the __GFP_NOFAIL are blockable, so warn
3190 * of any new users that actually allow this type of allocation
3191 * to fail.
aed0a0e3
DR
3192 */
3193 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3194 goto nopage;
aed0a0e3 3195 }
1da177e4 3196
341ce06f 3197 /* Avoid recursion of direct reclaim */
33d53103
MH
3198 if (current->flags & PF_MEMALLOC) {
3199 /*
3200 * __GFP_NOFAIL request from this context is rather bizarre
3201 * because we cannot reclaim anything and only can loop waiting
3202 * for somebody to do a work for us.
3203 */
3204 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3205 cond_resched();
3206 goto retry;
3207 }
341ce06f 3208 goto nopage;
33d53103 3209 }
341ce06f 3210
6583bb64
DR
3211 /* Avoid allocations with no watermarks from looping endlessly */
3212 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3213 goto nopage;
3214
77f1fe6b
MG
3215 /*
3216 * Try direct compaction. The first pass is asynchronous. Subsequent
3217 * attempts after direct reclaim are synchronous
3218 */
a9263751
VB
3219 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3220 migration_mode,
3221 &contended_compaction,
53853e2d 3222 &deferred_compaction);
56de7263
MG
3223 if (page)
3224 goto got_pg;
75f30861 3225
1f9efdef 3226 /* Checks for THP-specific high-order allocations */
d0164adc 3227 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3228 /*
3229 * If compaction is deferred for high-order allocations, it is
3230 * because sync compaction recently failed. If this is the case
3231 * and the caller requested a THP allocation, we do not want
3232 * to heavily disrupt the system, so we fail the allocation
3233 * instead of entering direct reclaim.
3234 */
3235 if (deferred_compaction)
3236 goto nopage;
3237
3238 /*
3239 * In all zones where compaction was attempted (and not
3240 * deferred or skipped), lock contention has been detected.
3241 * For THP allocation we do not want to disrupt the others
3242 * so we fallback to base pages instead.
3243 */
3244 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3245 goto nopage;
3246
3247 /*
3248 * If compaction was aborted due to need_resched(), we do not
3249 * want to further increase allocation latency, unless it is
3250 * khugepaged trying to collapse.
3251 */
3252 if (contended_compaction == COMPACT_CONTENDED_SCHED
3253 && !(current->flags & PF_KTHREAD))
3254 goto nopage;
3255 }
66199712 3256
8fe78048
DR
3257 /*
3258 * It can become very expensive to allocate transparent hugepages at
3259 * fault, so use asynchronous memory compaction for THP unless it is
3260 * khugepaged trying to collapse.
3261 */
d0164adc 3262 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3263 migration_mode = MIGRATE_SYNC_LIGHT;
3264
11e33f6a 3265 /* Try direct reclaim and then allocating */
a9263751
VB
3266 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3267 &did_some_progress);
11e33f6a
MG
3268 if (page)
3269 goto got_pg;
1da177e4 3270
9083905a
JW
3271 /* Do not loop if specifically requested */
3272 if (gfp_mask & __GFP_NORETRY)
3273 goto noretry;
3274
3275 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3276 pages_reclaimed += did_some_progress;
9083905a
JW
3277 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3278 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3279 /* Wait for some write requests to complete then retry */
a9263751 3280 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3281 goto retry;
1da177e4
LT
3282 }
3283
9083905a
JW
3284 /* Reclaim has failed us, start killing things */
3285 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3286 if (page)
3287 goto got_pg;
3288
3289 /* Retry as long as the OOM killer is making progress */
3290 if (did_some_progress)
3291 goto retry;
3292
3293noretry:
3294 /*
3295 * High-order allocations do not necessarily loop after
3296 * direct reclaim and reclaim/compaction depends on compaction
3297 * being called after reclaim so call directly if necessary
3298 */
3299 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3300 ac, migration_mode,
3301 &contended_compaction,
3302 &deferred_compaction);
3303 if (page)
3304 goto got_pg;
1da177e4 3305nopage:
a238ab5b 3306 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3307got_pg:
072bb0aa 3308 return page;
1da177e4 3309}
11e33f6a
MG
3310
3311/*
3312 * This is the 'heart' of the zoned buddy allocator.
3313 */
3314struct page *
3315__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3316 struct zonelist *zonelist, nodemask_t *nodemask)
3317{
d8846374 3318 struct zoneref *preferred_zoneref;
cc9a6c87 3319 struct page *page = NULL;
cc9a6c87 3320 unsigned int cpuset_mems_cookie;
3a025760 3321 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3322 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3323 struct alloc_context ac = {
3324 .high_zoneidx = gfp_zone(gfp_mask),
3325 .nodemask = nodemask,
3326 .migratetype = gfpflags_to_migratetype(gfp_mask),
3327 };
11e33f6a 3328
dcce284a
BH
3329 gfp_mask &= gfp_allowed_mask;
3330
11e33f6a
MG
3331 lockdep_trace_alloc(gfp_mask);
3332
d0164adc 3333 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3334
3335 if (should_fail_alloc_page(gfp_mask, order))
3336 return NULL;
3337
3338 /*
3339 * Check the zones suitable for the gfp_mask contain at least one
3340 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3341 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3342 */
3343 if (unlikely(!zonelist->_zonerefs->zone))
3344 return NULL;
3345
a9263751 3346 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3347 alloc_flags |= ALLOC_CMA;
3348
cc9a6c87 3349retry_cpuset:
d26914d1 3350 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3351
a9263751
VB
3352 /* We set it here, as __alloc_pages_slowpath might have changed it */
3353 ac.zonelist = zonelist;
c9ab0c4f
MG
3354
3355 /* Dirty zone balancing only done in the fast path */
3356 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3357
5117f45d 3358 /* The preferred zone is used for statistics later */
a9263751
VB
3359 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3360 ac.nodemask ? : &cpuset_current_mems_allowed,
3361 &ac.preferred_zone);
3362 if (!ac.preferred_zone)
cc9a6c87 3363 goto out;
a9263751 3364 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3365
3366 /* First allocation attempt */
91fbdc0f 3367 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3368 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3369 if (unlikely(!page)) {
3370 /*
3371 * Runtime PM, block IO and its error handling path
3372 * can deadlock because I/O on the device might not
3373 * complete.
3374 */
91fbdc0f 3375 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3376 ac.spread_dirty_pages = false;
91fbdc0f 3377
a9263751 3378 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3379 }
11e33f6a 3380
23f086f9
XQ
3381 if (kmemcheck_enabled && page)
3382 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3383
a9263751 3384 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3385
3386out:
3387 /*
3388 * When updating a task's mems_allowed, it is possible to race with
3389 * parallel threads in such a way that an allocation can fail while
3390 * the mask is being updated. If a page allocation is about to fail,
3391 * check if the cpuset changed during allocation and if so, retry.
3392 */
d26914d1 3393 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3394 goto retry_cpuset;
3395
11e33f6a 3396 return page;
1da177e4 3397}
d239171e 3398EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3399
3400/*
3401 * Common helper functions.
3402 */
920c7a5d 3403unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3404{
945a1113
AM
3405 struct page *page;
3406
3407 /*
3408 * __get_free_pages() returns a 32-bit address, which cannot represent
3409 * a highmem page
3410 */
3411 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3412
1da177e4
LT
3413 page = alloc_pages(gfp_mask, order);
3414 if (!page)
3415 return 0;
3416 return (unsigned long) page_address(page);
3417}
1da177e4
LT
3418EXPORT_SYMBOL(__get_free_pages);
3419
920c7a5d 3420unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3421{
945a1113 3422 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3423}
1da177e4
LT
3424EXPORT_SYMBOL(get_zeroed_page);
3425
920c7a5d 3426void __free_pages(struct page *page, unsigned int order)
1da177e4 3427{
b5810039 3428 if (put_page_testzero(page)) {
1da177e4 3429 if (order == 0)
b745bc85 3430 free_hot_cold_page(page, false);
1da177e4
LT
3431 else
3432 __free_pages_ok(page, order);
3433 }
3434}
3435
3436EXPORT_SYMBOL(__free_pages);
3437
920c7a5d 3438void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3439{
3440 if (addr != 0) {
725d704e 3441 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3442 __free_pages(virt_to_page((void *)addr), order);
3443 }
3444}
3445
3446EXPORT_SYMBOL(free_pages);
3447
b63ae8ca
AD
3448/*
3449 * Page Fragment:
3450 * An arbitrary-length arbitrary-offset area of memory which resides
3451 * within a 0 or higher order page. Multiple fragments within that page
3452 * are individually refcounted, in the page's reference counter.
3453 *
3454 * The page_frag functions below provide a simple allocation framework for
3455 * page fragments. This is used by the network stack and network device
3456 * drivers to provide a backing region of memory for use as either an
3457 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3458 */
3459static struct page *__page_frag_refill(struct page_frag_cache *nc,
3460 gfp_t gfp_mask)
3461{
3462 struct page *page = NULL;
3463 gfp_t gfp = gfp_mask;
3464
3465#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3466 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3467 __GFP_NOMEMALLOC;
3468 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3469 PAGE_FRAG_CACHE_MAX_ORDER);
3470 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3471#endif
3472 if (unlikely(!page))
3473 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3474
3475 nc->va = page ? page_address(page) : NULL;
3476
3477 return page;
3478}
3479
3480void *__alloc_page_frag(struct page_frag_cache *nc,
3481 unsigned int fragsz, gfp_t gfp_mask)
3482{
3483 unsigned int size = PAGE_SIZE;
3484 struct page *page;
3485 int offset;
3486
3487 if (unlikely(!nc->va)) {
3488refill:
3489 page = __page_frag_refill(nc, gfp_mask);
3490 if (!page)
3491 return NULL;
3492
3493#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3494 /* if size can vary use size else just use PAGE_SIZE */
3495 size = nc->size;
3496#endif
3497 /* Even if we own the page, we do not use atomic_set().
3498 * This would break get_page_unless_zero() users.
3499 */
fe896d18 3500 page_ref_add(page, size - 1);
b63ae8ca
AD
3501
3502 /* reset page count bias and offset to start of new frag */
2f064f34 3503 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3504 nc->pagecnt_bias = size;
3505 nc->offset = size;
3506 }
3507
3508 offset = nc->offset - fragsz;
3509 if (unlikely(offset < 0)) {
3510 page = virt_to_page(nc->va);
3511
fe896d18 3512 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3513 goto refill;
3514
3515#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3516 /* if size can vary use size else just use PAGE_SIZE */
3517 size = nc->size;
3518#endif
3519 /* OK, page count is 0, we can safely set it */
fe896d18 3520 set_page_count(page, size);
b63ae8ca
AD
3521
3522 /* reset page count bias and offset to start of new frag */
3523 nc->pagecnt_bias = size;
3524 offset = size - fragsz;
3525 }
3526
3527 nc->pagecnt_bias--;
3528 nc->offset = offset;
3529
3530 return nc->va + offset;
3531}
3532EXPORT_SYMBOL(__alloc_page_frag);
3533
3534/*
3535 * Frees a page fragment allocated out of either a compound or order 0 page.
3536 */
3537void __free_page_frag(void *addr)
3538{
3539 struct page *page = virt_to_head_page(addr);
3540
3541 if (unlikely(put_page_testzero(page)))
3542 __free_pages_ok(page, compound_order(page));
3543}
3544EXPORT_SYMBOL(__free_page_frag);
3545
6a1a0d3b 3546/*
52383431 3547 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3548 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3549 * equivalent to alloc_pages.
6a1a0d3b 3550 *
52383431
VD
3551 * It should be used when the caller would like to use kmalloc, but since the
3552 * allocation is large, it has to fall back to the page allocator.
3553 */
3554struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3555{
3556 struct page *page;
52383431 3557
52383431 3558 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3559 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3560 __free_pages(page, order);
3561 page = NULL;
3562 }
52383431
VD
3563 return page;
3564}
3565
3566struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3567{
3568 struct page *page;
52383431 3569
52383431 3570 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3571 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3572 __free_pages(page, order);
3573 page = NULL;
3574 }
52383431
VD
3575 return page;
3576}
3577
3578/*
3579 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3580 * alloc_kmem_pages.
6a1a0d3b 3581 */
52383431 3582void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3583{
d05e83a6 3584 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3585 __free_pages(page, order);
3586}
3587
52383431 3588void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3589{
3590 if (addr != 0) {
3591 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3592 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3593 }
3594}
3595
d00181b9
KS
3596static void *make_alloc_exact(unsigned long addr, unsigned int order,
3597 size_t size)
ee85c2e1
AK
3598{
3599 if (addr) {
3600 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3601 unsigned long used = addr + PAGE_ALIGN(size);
3602
3603 split_page(virt_to_page((void *)addr), order);
3604 while (used < alloc_end) {
3605 free_page(used);
3606 used += PAGE_SIZE;
3607 }
3608 }
3609 return (void *)addr;
3610}
3611
2be0ffe2
TT
3612/**
3613 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3614 * @size: the number of bytes to allocate
3615 * @gfp_mask: GFP flags for the allocation
3616 *
3617 * This function is similar to alloc_pages(), except that it allocates the
3618 * minimum number of pages to satisfy the request. alloc_pages() can only
3619 * allocate memory in power-of-two pages.
3620 *
3621 * This function is also limited by MAX_ORDER.
3622 *
3623 * Memory allocated by this function must be released by free_pages_exact().
3624 */
3625void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3626{
3627 unsigned int order = get_order(size);
3628 unsigned long addr;
3629
3630 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3631 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3632}
3633EXPORT_SYMBOL(alloc_pages_exact);
3634
ee85c2e1
AK
3635/**
3636 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3637 * pages on a node.
b5e6ab58 3638 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3639 * @size: the number of bytes to allocate
3640 * @gfp_mask: GFP flags for the allocation
3641 *
3642 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3643 * back.
ee85c2e1 3644 */
e1931811 3645void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3646{
d00181b9 3647 unsigned int order = get_order(size);
ee85c2e1
AK
3648 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3649 if (!p)
3650 return NULL;
3651 return make_alloc_exact((unsigned long)page_address(p), order, size);
3652}
ee85c2e1 3653
2be0ffe2
TT
3654/**
3655 * free_pages_exact - release memory allocated via alloc_pages_exact()
3656 * @virt: the value returned by alloc_pages_exact.
3657 * @size: size of allocation, same value as passed to alloc_pages_exact().
3658 *
3659 * Release the memory allocated by a previous call to alloc_pages_exact.
3660 */
3661void free_pages_exact(void *virt, size_t size)
3662{
3663 unsigned long addr = (unsigned long)virt;
3664 unsigned long end = addr + PAGE_ALIGN(size);
3665
3666 while (addr < end) {
3667 free_page(addr);
3668 addr += PAGE_SIZE;
3669 }
3670}
3671EXPORT_SYMBOL(free_pages_exact);
3672
e0fb5815
ZY
3673/**
3674 * nr_free_zone_pages - count number of pages beyond high watermark
3675 * @offset: The zone index of the highest zone
3676 *
3677 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3678 * high watermark within all zones at or below a given zone index. For each
3679 * zone, the number of pages is calculated as:
834405c3 3680 * managed_pages - high_pages
e0fb5815 3681 */
ebec3862 3682static unsigned long nr_free_zone_pages(int offset)
1da177e4 3683{
dd1a239f 3684 struct zoneref *z;
54a6eb5c
MG
3685 struct zone *zone;
3686
e310fd43 3687 /* Just pick one node, since fallback list is circular */
ebec3862 3688 unsigned long sum = 0;
1da177e4 3689
0e88460d 3690 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3691
54a6eb5c 3692 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3693 unsigned long size = zone->managed_pages;
41858966 3694 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3695 if (size > high)
3696 sum += size - high;
1da177e4
LT
3697 }
3698
3699 return sum;
3700}
3701
e0fb5815
ZY
3702/**
3703 * nr_free_buffer_pages - count number of pages beyond high watermark
3704 *
3705 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3706 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3707 */
ebec3862 3708unsigned long nr_free_buffer_pages(void)
1da177e4 3709{
af4ca457 3710 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3711}
c2f1a551 3712EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3713
e0fb5815
ZY
3714/**
3715 * nr_free_pagecache_pages - count number of pages beyond high watermark
3716 *
3717 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3718 * high watermark within all zones.
1da177e4 3719 */
ebec3862 3720unsigned long nr_free_pagecache_pages(void)
1da177e4 3721{
2a1e274a 3722 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3723}
08e0f6a9
CL
3724
3725static inline void show_node(struct zone *zone)
1da177e4 3726{
e5adfffc 3727 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3728 printk("Node %d ", zone_to_nid(zone));
1da177e4 3729}
1da177e4 3730
d02bd27b
IR
3731long si_mem_available(void)
3732{
3733 long available;
3734 unsigned long pagecache;
3735 unsigned long wmark_low = 0;
3736 unsigned long pages[NR_LRU_LISTS];
3737 struct zone *zone;
3738 int lru;
3739
3740 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3741 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3742
3743 for_each_zone(zone)
3744 wmark_low += zone->watermark[WMARK_LOW];
3745
3746 /*
3747 * Estimate the amount of memory available for userspace allocations,
3748 * without causing swapping.
3749 */
3750 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3751
3752 /*
3753 * Not all the page cache can be freed, otherwise the system will
3754 * start swapping. Assume at least half of the page cache, or the
3755 * low watermark worth of cache, needs to stay.
3756 */
3757 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3758 pagecache -= min(pagecache / 2, wmark_low);
3759 available += pagecache;
3760
3761 /*
3762 * Part of the reclaimable slab consists of items that are in use,
3763 * and cannot be freed. Cap this estimate at the low watermark.
3764 */
3765 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3766 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3767
3768 if (available < 0)
3769 available = 0;
3770 return available;
3771}
3772EXPORT_SYMBOL_GPL(si_mem_available);
3773
1da177e4
LT
3774void si_meminfo(struct sysinfo *val)
3775{
3776 val->totalram = totalram_pages;
cc7452b6 3777 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3778 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3779 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3780 val->totalhigh = totalhigh_pages;
3781 val->freehigh = nr_free_highpages();
1da177e4
LT
3782 val->mem_unit = PAGE_SIZE;
3783}
3784
3785EXPORT_SYMBOL(si_meminfo);
3786
3787#ifdef CONFIG_NUMA
3788void si_meminfo_node(struct sysinfo *val, int nid)
3789{
cdd91a77
JL
3790 int zone_type; /* needs to be signed */
3791 unsigned long managed_pages = 0;
fc2bd799
JK
3792 unsigned long managed_highpages = 0;
3793 unsigned long free_highpages = 0;
1da177e4
LT
3794 pg_data_t *pgdat = NODE_DATA(nid);
3795
cdd91a77
JL
3796 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3797 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3798 val->totalram = managed_pages;
cc7452b6 3799 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3800 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3801#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3802 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3803 struct zone *zone = &pgdat->node_zones[zone_type];
3804
3805 if (is_highmem(zone)) {
3806 managed_highpages += zone->managed_pages;
3807 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3808 }
3809 }
3810 val->totalhigh = managed_highpages;
3811 val->freehigh = free_highpages;
98d2b0eb 3812#else
fc2bd799
JK
3813 val->totalhigh = managed_highpages;
3814 val->freehigh = free_highpages;
98d2b0eb 3815#endif
1da177e4
LT
3816 val->mem_unit = PAGE_SIZE;
3817}
3818#endif
3819
ddd588b5 3820/*
7bf02ea2
DR
3821 * Determine whether the node should be displayed or not, depending on whether
3822 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3823 */
7bf02ea2 3824bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3825{
3826 bool ret = false;
cc9a6c87 3827 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3828
3829 if (!(flags & SHOW_MEM_FILTER_NODES))
3830 goto out;
3831
cc9a6c87 3832 do {
d26914d1 3833 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3834 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3835 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3836out:
3837 return ret;
3838}
3839
1da177e4
LT
3840#define K(x) ((x) << (PAGE_SHIFT-10))
3841
377e4f16
RV
3842static void show_migration_types(unsigned char type)
3843{
3844 static const char types[MIGRATE_TYPES] = {
3845 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3846 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3847 [MIGRATE_RECLAIMABLE] = 'E',
3848 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3849#ifdef CONFIG_CMA
3850 [MIGRATE_CMA] = 'C',
3851#endif
194159fb 3852#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3853 [MIGRATE_ISOLATE] = 'I',
194159fb 3854#endif
377e4f16
RV
3855 };
3856 char tmp[MIGRATE_TYPES + 1];
3857 char *p = tmp;
3858 int i;
3859
3860 for (i = 0; i < MIGRATE_TYPES; i++) {
3861 if (type & (1 << i))
3862 *p++ = types[i];
3863 }
3864
3865 *p = '\0';
3866 printk("(%s) ", tmp);
3867}
3868
1da177e4
LT
3869/*
3870 * Show free area list (used inside shift_scroll-lock stuff)
3871 * We also calculate the percentage fragmentation. We do this by counting the
3872 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3873 *
3874 * Bits in @filter:
3875 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3876 * cpuset.
1da177e4 3877 */
7bf02ea2 3878void show_free_areas(unsigned int filter)
1da177e4 3879{
d1bfcdb8 3880 unsigned long free_pcp = 0;
c7241913 3881 int cpu;
1da177e4
LT
3882 struct zone *zone;
3883
ee99c71c 3884 for_each_populated_zone(zone) {
7bf02ea2 3885 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3886 continue;
d1bfcdb8 3887
761b0677
KK
3888 for_each_online_cpu(cpu)
3889 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3890 }
3891
a731286d
KM
3892 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3893 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3894 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3895 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3896 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3897 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3898 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3899 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3900 global_page_state(NR_ISOLATED_ANON),
3901 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3902 global_page_state(NR_INACTIVE_FILE),
a731286d 3903 global_page_state(NR_ISOLATED_FILE),
7b854121 3904 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3905 global_page_state(NR_FILE_DIRTY),
ce866b34 3906 global_page_state(NR_WRITEBACK),
fd39fc85 3907 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3908 global_page_state(NR_SLAB_RECLAIMABLE),
3909 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3910 global_page_state(NR_FILE_MAPPED),
4b02108a 3911 global_page_state(NR_SHMEM),
a25700a5 3912 global_page_state(NR_PAGETABLE),
d1ce749a 3913 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3914 global_page_state(NR_FREE_PAGES),
3915 free_pcp,
d1ce749a 3916 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3917
ee99c71c 3918 for_each_populated_zone(zone) {
1da177e4
LT
3919 int i;
3920
7bf02ea2 3921 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3922 continue;
d1bfcdb8
KK
3923
3924 free_pcp = 0;
3925 for_each_online_cpu(cpu)
3926 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3927
1da177e4
LT
3928 show_node(zone);
3929 printk("%s"
3930 " free:%lukB"
3931 " min:%lukB"
3932 " low:%lukB"
3933 " high:%lukB"
4f98a2fe
RR
3934 " active_anon:%lukB"
3935 " inactive_anon:%lukB"
3936 " active_file:%lukB"
3937 " inactive_file:%lukB"
7b854121 3938 " unevictable:%lukB"
a731286d
KM
3939 " isolated(anon):%lukB"
3940 " isolated(file):%lukB"
1da177e4 3941 " present:%lukB"
9feedc9d 3942 " managed:%lukB"
4a0aa73f
KM
3943 " mlocked:%lukB"
3944 " dirty:%lukB"
3945 " writeback:%lukB"
3946 " mapped:%lukB"
4b02108a 3947 " shmem:%lukB"
4a0aa73f
KM
3948 " slab_reclaimable:%lukB"
3949 " slab_unreclaimable:%lukB"
c6a7f572 3950 " kernel_stack:%lukB"
4a0aa73f
KM
3951 " pagetables:%lukB"
3952 " unstable:%lukB"
3953 " bounce:%lukB"
d1bfcdb8
KK
3954 " free_pcp:%lukB"
3955 " local_pcp:%ukB"
d1ce749a 3956 " free_cma:%lukB"
4a0aa73f 3957 " writeback_tmp:%lukB"
1da177e4
LT
3958 " pages_scanned:%lu"
3959 " all_unreclaimable? %s"
3960 "\n",
3961 zone->name,
88f5acf8 3962 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3963 K(min_wmark_pages(zone)),
3964 K(low_wmark_pages(zone)),
3965 K(high_wmark_pages(zone)),
4f98a2fe
RR
3966 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3967 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3968 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3969 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3970 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3971 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3972 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3973 K(zone->present_pages),
9feedc9d 3974 K(zone->managed_pages),
4a0aa73f
KM
3975 K(zone_page_state(zone, NR_MLOCK)),
3976 K(zone_page_state(zone, NR_FILE_DIRTY)),
3977 K(zone_page_state(zone, NR_WRITEBACK)),
3978 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3979 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3980 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3981 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3982 zone_page_state(zone, NR_KERNEL_STACK) *
3983 THREAD_SIZE / 1024,
4a0aa73f
KM
3984 K(zone_page_state(zone, NR_PAGETABLE)),
3985 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3986 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3987 K(free_pcp),
3988 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3989 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3990 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3991 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3992 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3993 );
3994 printk("lowmem_reserve[]:");
3995 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3996 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3997 printk("\n");
3998 }
3999
ee99c71c 4000 for_each_populated_zone(zone) {
d00181b9
KS
4001 unsigned int order;
4002 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4003 unsigned char types[MAX_ORDER];
1da177e4 4004
7bf02ea2 4005 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4006 continue;
1da177e4
LT
4007 show_node(zone);
4008 printk("%s: ", zone->name);
1da177e4
LT
4009
4010 spin_lock_irqsave(&zone->lock, flags);
4011 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4012 struct free_area *area = &zone->free_area[order];
4013 int type;
4014
4015 nr[order] = area->nr_free;
8f9de51a 4016 total += nr[order] << order;
377e4f16
RV
4017
4018 types[order] = 0;
4019 for (type = 0; type < MIGRATE_TYPES; type++) {
4020 if (!list_empty(&area->free_list[type]))
4021 types[order] |= 1 << type;
4022 }
1da177e4
LT
4023 }
4024 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4025 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4026 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4027 if (nr[order])
4028 show_migration_types(types[order]);
4029 }
1da177e4
LT
4030 printk("= %lukB\n", K(total));
4031 }
4032
949f7ec5
DR
4033 hugetlb_show_meminfo();
4034
e6f3602d
LW
4035 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4036
1da177e4
LT
4037 show_swap_cache_info();
4038}
4039
19770b32
MG
4040static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4041{
4042 zoneref->zone = zone;
4043 zoneref->zone_idx = zone_idx(zone);
4044}
4045
1da177e4
LT
4046/*
4047 * Builds allocation fallback zone lists.
1a93205b
CL
4048 *
4049 * Add all populated zones of a node to the zonelist.
1da177e4 4050 */
f0c0b2b8 4051static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4052 int nr_zones)
1da177e4 4053{
1a93205b 4054 struct zone *zone;
bc732f1d 4055 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4056
4057 do {
2f6726e5 4058 zone_type--;
070f8032 4059 zone = pgdat->node_zones + zone_type;
1a93205b 4060 if (populated_zone(zone)) {
dd1a239f
MG
4061 zoneref_set_zone(zone,
4062 &zonelist->_zonerefs[nr_zones++]);
070f8032 4063 check_highest_zone(zone_type);
1da177e4 4064 }
2f6726e5 4065 } while (zone_type);
bc732f1d 4066
070f8032 4067 return nr_zones;
1da177e4
LT
4068}
4069
f0c0b2b8
KH
4070
4071/*
4072 * zonelist_order:
4073 * 0 = automatic detection of better ordering.
4074 * 1 = order by ([node] distance, -zonetype)
4075 * 2 = order by (-zonetype, [node] distance)
4076 *
4077 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4078 * the same zonelist. So only NUMA can configure this param.
4079 */
4080#define ZONELIST_ORDER_DEFAULT 0
4081#define ZONELIST_ORDER_NODE 1
4082#define ZONELIST_ORDER_ZONE 2
4083
4084/* zonelist order in the kernel.
4085 * set_zonelist_order() will set this to NODE or ZONE.
4086 */
4087static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4088static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4089
4090
1da177e4 4091#ifdef CONFIG_NUMA
f0c0b2b8
KH
4092/* The value user specified ....changed by config */
4093static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4094/* string for sysctl */
4095#define NUMA_ZONELIST_ORDER_LEN 16
4096char numa_zonelist_order[16] = "default";
4097
4098/*
4099 * interface for configure zonelist ordering.
4100 * command line option "numa_zonelist_order"
4101 * = "[dD]efault - default, automatic configuration.
4102 * = "[nN]ode - order by node locality, then by zone within node
4103 * = "[zZ]one - order by zone, then by locality within zone
4104 */
4105
4106static int __parse_numa_zonelist_order(char *s)
4107{
4108 if (*s == 'd' || *s == 'D') {
4109 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4110 } else if (*s == 'n' || *s == 'N') {
4111 user_zonelist_order = ZONELIST_ORDER_NODE;
4112 } else if (*s == 'z' || *s == 'Z') {
4113 user_zonelist_order = ZONELIST_ORDER_ZONE;
4114 } else {
1170532b 4115 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4116 return -EINVAL;
4117 }
4118 return 0;
4119}
4120
4121static __init int setup_numa_zonelist_order(char *s)
4122{
ecb256f8
VL
4123 int ret;
4124
4125 if (!s)
4126 return 0;
4127
4128 ret = __parse_numa_zonelist_order(s);
4129 if (ret == 0)
4130 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4131
4132 return ret;
f0c0b2b8
KH
4133}
4134early_param("numa_zonelist_order", setup_numa_zonelist_order);
4135
4136/*
4137 * sysctl handler for numa_zonelist_order
4138 */
cccad5b9 4139int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4140 void __user *buffer, size_t *length,
f0c0b2b8
KH
4141 loff_t *ppos)
4142{
4143 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4144 int ret;
443c6f14 4145 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4146
443c6f14 4147 mutex_lock(&zl_order_mutex);
dacbde09
CG
4148 if (write) {
4149 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4150 ret = -EINVAL;
4151 goto out;
4152 }
4153 strcpy(saved_string, (char *)table->data);
4154 }
8d65af78 4155 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4156 if (ret)
443c6f14 4157 goto out;
f0c0b2b8
KH
4158 if (write) {
4159 int oldval = user_zonelist_order;
dacbde09
CG
4160
4161 ret = __parse_numa_zonelist_order((char *)table->data);
4162 if (ret) {
f0c0b2b8
KH
4163 /*
4164 * bogus value. restore saved string
4165 */
dacbde09 4166 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4167 NUMA_ZONELIST_ORDER_LEN);
4168 user_zonelist_order = oldval;
4eaf3f64
HL
4169 } else if (oldval != user_zonelist_order) {
4170 mutex_lock(&zonelists_mutex);
9adb62a5 4171 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4172 mutex_unlock(&zonelists_mutex);
4173 }
f0c0b2b8 4174 }
443c6f14
AK
4175out:
4176 mutex_unlock(&zl_order_mutex);
4177 return ret;
f0c0b2b8
KH
4178}
4179
4180
62bc62a8 4181#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4182static int node_load[MAX_NUMNODES];
4183
1da177e4 4184/**
4dc3b16b 4185 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4186 * @node: node whose fallback list we're appending
4187 * @used_node_mask: nodemask_t of already used nodes
4188 *
4189 * We use a number of factors to determine which is the next node that should
4190 * appear on a given node's fallback list. The node should not have appeared
4191 * already in @node's fallback list, and it should be the next closest node
4192 * according to the distance array (which contains arbitrary distance values
4193 * from each node to each node in the system), and should also prefer nodes
4194 * with no CPUs, since presumably they'll have very little allocation pressure
4195 * on them otherwise.
4196 * It returns -1 if no node is found.
4197 */
f0c0b2b8 4198static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4199{
4cf808eb 4200 int n, val;
1da177e4 4201 int min_val = INT_MAX;
00ef2d2f 4202 int best_node = NUMA_NO_NODE;
a70f7302 4203 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4204
4cf808eb
LT
4205 /* Use the local node if we haven't already */
4206 if (!node_isset(node, *used_node_mask)) {
4207 node_set(node, *used_node_mask);
4208 return node;
4209 }
1da177e4 4210
4b0ef1fe 4211 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4212
4213 /* Don't want a node to appear more than once */
4214 if (node_isset(n, *used_node_mask))
4215 continue;
4216
1da177e4
LT
4217 /* Use the distance array to find the distance */
4218 val = node_distance(node, n);
4219
4cf808eb
LT
4220 /* Penalize nodes under us ("prefer the next node") */
4221 val += (n < node);
4222
1da177e4 4223 /* Give preference to headless and unused nodes */
a70f7302
RR
4224 tmp = cpumask_of_node(n);
4225 if (!cpumask_empty(tmp))
1da177e4
LT
4226 val += PENALTY_FOR_NODE_WITH_CPUS;
4227
4228 /* Slight preference for less loaded node */
4229 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4230 val += node_load[n];
4231
4232 if (val < min_val) {
4233 min_val = val;
4234 best_node = n;
4235 }
4236 }
4237
4238 if (best_node >= 0)
4239 node_set(best_node, *used_node_mask);
4240
4241 return best_node;
4242}
4243
f0c0b2b8
KH
4244
4245/*
4246 * Build zonelists ordered by node and zones within node.
4247 * This results in maximum locality--normal zone overflows into local
4248 * DMA zone, if any--but risks exhausting DMA zone.
4249 */
4250static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4251{
f0c0b2b8 4252 int j;
1da177e4 4253 struct zonelist *zonelist;
f0c0b2b8 4254
54a6eb5c 4255 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4256 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4257 ;
bc732f1d 4258 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4259 zonelist->_zonerefs[j].zone = NULL;
4260 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4261}
4262
523b9458
CL
4263/*
4264 * Build gfp_thisnode zonelists
4265 */
4266static void build_thisnode_zonelists(pg_data_t *pgdat)
4267{
523b9458
CL
4268 int j;
4269 struct zonelist *zonelist;
4270
54a6eb5c 4271 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4272 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4273 zonelist->_zonerefs[j].zone = NULL;
4274 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4275}
4276
f0c0b2b8
KH
4277/*
4278 * Build zonelists ordered by zone and nodes within zones.
4279 * This results in conserving DMA zone[s] until all Normal memory is
4280 * exhausted, but results in overflowing to remote node while memory
4281 * may still exist in local DMA zone.
4282 */
4283static int node_order[MAX_NUMNODES];
4284
4285static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4286{
f0c0b2b8
KH
4287 int pos, j, node;
4288 int zone_type; /* needs to be signed */
4289 struct zone *z;
4290 struct zonelist *zonelist;
4291
54a6eb5c
MG
4292 zonelist = &pgdat->node_zonelists[0];
4293 pos = 0;
4294 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4295 for (j = 0; j < nr_nodes; j++) {
4296 node = node_order[j];
4297 z = &NODE_DATA(node)->node_zones[zone_type];
4298 if (populated_zone(z)) {
dd1a239f
MG
4299 zoneref_set_zone(z,
4300 &zonelist->_zonerefs[pos++]);
54a6eb5c 4301 check_highest_zone(zone_type);
f0c0b2b8
KH
4302 }
4303 }
f0c0b2b8 4304 }
dd1a239f
MG
4305 zonelist->_zonerefs[pos].zone = NULL;
4306 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4307}
4308
3193913c
MG
4309#if defined(CONFIG_64BIT)
4310/*
4311 * Devices that require DMA32/DMA are relatively rare and do not justify a
4312 * penalty to every machine in case the specialised case applies. Default
4313 * to Node-ordering on 64-bit NUMA machines
4314 */
4315static int default_zonelist_order(void)
4316{
4317 return ZONELIST_ORDER_NODE;
4318}
4319#else
4320/*
4321 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4322 * by the kernel. If processes running on node 0 deplete the low memory zone
4323 * then reclaim will occur more frequency increasing stalls and potentially
4324 * be easier to OOM if a large percentage of the zone is under writeback or
4325 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4326 * Hence, default to zone ordering on 32-bit.
4327 */
f0c0b2b8
KH
4328static int default_zonelist_order(void)
4329{
f0c0b2b8
KH
4330 return ZONELIST_ORDER_ZONE;
4331}
3193913c 4332#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4333
4334static void set_zonelist_order(void)
4335{
4336 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4337 current_zonelist_order = default_zonelist_order();
4338 else
4339 current_zonelist_order = user_zonelist_order;
4340}
4341
4342static void build_zonelists(pg_data_t *pgdat)
4343{
c00eb15a 4344 int i, node, load;
1da177e4 4345 nodemask_t used_mask;
f0c0b2b8
KH
4346 int local_node, prev_node;
4347 struct zonelist *zonelist;
d00181b9 4348 unsigned int order = current_zonelist_order;
1da177e4
LT
4349
4350 /* initialize zonelists */
523b9458 4351 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4352 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4353 zonelist->_zonerefs[0].zone = NULL;
4354 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4355 }
4356
4357 /* NUMA-aware ordering of nodes */
4358 local_node = pgdat->node_id;
62bc62a8 4359 load = nr_online_nodes;
1da177e4
LT
4360 prev_node = local_node;
4361 nodes_clear(used_mask);
f0c0b2b8 4362
f0c0b2b8 4363 memset(node_order, 0, sizeof(node_order));
c00eb15a 4364 i = 0;
f0c0b2b8 4365
1da177e4
LT
4366 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4367 /*
4368 * We don't want to pressure a particular node.
4369 * So adding penalty to the first node in same
4370 * distance group to make it round-robin.
4371 */
957f822a
DR
4372 if (node_distance(local_node, node) !=
4373 node_distance(local_node, prev_node))
f0c0b2b8
KH
4374 node_load[node] = load;
4375
1da177e4
LT
4376 prev_node = node;
4377 load--;
f0c0b2b8
KH
4378 if (order == ZONELIST_ORDER_NODE)
4379 build_zonelists_in_node_order(pgdat, node);
4380 else
c00eb15a 4381 node_order[i++] = node; /* remember order */
f0c0b2b8 4382 }
1da177e4 4383
f0c0b2b8
KH
4384 if (order == ZONELIST_ORDER_ZONE) {
4385 /* calculate node order -- i.e., DMA last! */
c00eb15a 4386 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4387 }
523b9458
CL
4388
4389 build_thisnode_zonelists(pgdat);
1da177e4
LT
4390}
4391
7aac7898
LS
4392#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4393/*
4394 * Return node id of node used for "local" allocations.
4395 * I.e., first node id of first zone in arg node's generic zonelist.
4396 * Used for initializing percpu 'numa_mem', which is used primarily
4397 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4398 */
4399int local_memory_node(int node)
4400{
4401 struct zone *zone;
4402
4403 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4404 gfp_zone(GFP_KERNEL),
4405 NULL,
4406 &zone);
4407 return zone->node;
4408}
4409#endif
f0c0b2b8 4410
1da177e4
LT
4411#else /* CONFIG_NUMA */
4412
f0c0b2b8
KH
4413static void set_zonelist_order(void)
4414{
4415 current_zonelist_order = ZONELIST_ORDER_ZONE;
4416}
4417
4418static void build_zonelists(pg_data_t *pgdat)
1da177e4 4419{
19655d34 4420 int node, local_node;
54a6eb5c
MG
4421 enum zone_type j;
4422 struct zonelist *zonelist;
1da177e4
LT
4423
4424 local_node = pgdat->node_id;
1da177e4 4425
54a6eb5c 4426 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4427 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4428
54a6eb5c
MG
4429 /*
4430 * Now we build the zonelist so that it contains the zones
4431 * of all the other nodes.
4432 * We don't want to pressure a particular node, so when
4433 * building the zones for node N, we make sure that the
4434 * zones coming right after the local ones are those from
4435 * node N+1 (modulo N)
4436 */
4437 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4438 if (!node_online(node))
4439 continue;
bc732f1d 4440 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4441 }
54a6eb5c
MG
4442 for (node = 0; node < local_node; node++) {
4443 if (!node_online(node))
4444 continue;
bc732f1d 4445 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4446 }
4447
dd1a239f
MG
4448 zonelist->_zonerefs[j].zone = NULL;
4449 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4450}
4451
4452#endif /* CONFIG_NUMA */
4453
99dcc3e5
CL
4454/*
4455 * Boot pageset table. One per cpu which is going to be used for all
4456 * zones and all nodes. The parameters will be set in such a way
4457 * that an item put on a list will immediately be handed over to
4458 * the buddy list. This is safe since pageset manipulation is done
4459 * with interrupts disabled.
4460 *
4461 * The boot_pagesets must be kept even after bootup is complete for
4462 * unused processors and/or zones. They do play a role for bootstrapping
4463 * hotplugged processors.
4464 *
4465 * zoneinfo_show() and maybe other functions do
4466 * not check if the processor is online before following the pageset pointer.
4467 * Other parts of the kernel may not check if the zone is available.
4468 */
4469static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4470static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4471static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4472
4eaf3f64
HL
4473/*
4474 * Global mutex to protect against size modification of zonelists
4475 * as well as to serialize pageset setup for the new populated zone.
4476 */
4477DEFINE_MUTEX(zonelists_mutex);
4478
9b1a4d38 4479/* return values int ....just for stop_machine() */
4ed7e022 4480static int __build_all_zonelists(void *data)
1da177e4 4481{
6811378e 4482 int nid;
99dcc3e5 4483 int cpu;
9adb62a5 4484 pg_data_t *self = data;
9276b1bc 4485
7f9cfb31
BL
4486#ifdef CONFIG_NUMA
4487 memset(node_load, 0, sizeof(node_load));
4488#endif
9adb62a5
JL
4489
4490 if (self && !node_online(self->node_id)) {
4491 build_zonelists(self);
9adb62a5
JL
4492 }
4493
9276b1bc 4494 for_each_online_node(nid) {
7ea1530a
CL
4495 pg_data_t *pgdat = NODE_DATA(nid);
4496
4497 build_zonelists(pgdat);
9276b1bc 4498 }
99dcc3e5
CL
4499
4500 /*
4501 * Initialize the boot_pagesets that are going to be used
4502 * for bootstrapping processors. The real pagesets for
4503 * each zone will be allocated later when the per cpu
4504 * allocator is available.
4505 *
4506 * boot_pagesets are used also for bootstrapping offline
4507 * cpus if the system is already booted because the pagesets
4508 * are needed to initialize allocators on a specific cpu too.
4509 * F.e. the percpu allocator needs the page allocator which
4510 * needs the percpu allocator in order to allocate its pagesets
4511 * (a chicken-egg dilemma).
4512 */
7aac7898 4513 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4514 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4515
7aac7898
LS
4516#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4517 /*
4518 * We now know the "local memory node" for each node--
4519 * i.e., the node of the first zone in the generic zonelist.
4520 * Set up numa_mem percpu variable for on-line cpus. During
4521 * boot, only the boot cpu should be on-line; we'll init the
4522 * secondary cpus' numa_mem as they come on-line. During
4523 * node/memory hotplug, we'll fixup all on-line cpus.
4524 */
4525 if (cpu_online(cpu))
4526 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4527#endif
4528 }
4529
6811378e
YG
4530 return 0;
4531}
4532
061f67bc
RV
4533static noinline void __init
4534build_all_zonelists_init(void)
4535{
4536 __build_all_zonelists(NULL);
4537 mminit_verify_zonelist();
4538 cpuset_init_current_mems_allowed();
4539}
4540
4eaf3f64
HL
4541/*
4542 * Called with zonelists_mutex held always
4543 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4544 *
4545 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4546 * [we're only called with non-NULL zone through __meminit paths] and
4547 * (2) call of __init annotated helper build_all_zonelists_init
4548 * [protected by SYSTEM_BOOTING].
4eaf3f64 4549 */
9adb62a5 4550void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4551{
f0c0b2b8
KH
4552 set_zonelist_order();
4553
6811378e 4554 if (system_state == SYSTEM_BOOTING) {
061f67bc 4555 build_all_zonelists_init();
6811378e 4556 } else {
e9959f0f 4557#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4558 if (zone)
4559 setup_zone_pageset(zone);
e9959f0f 4560#endif
dd1895e2
CS
4561 /* we have to stop all cpus to guarantee there is no user
4562 of zonelist */
9adb62a5 4563 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4564 /* cpuset refresh routine should be here */
4565 }
bd1e22b8 4566 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4567 /*
4568 * Disable grouping by mobility if the number of pages in the
4569 * system is too low to allow the mechanism to work. It would be
4570 * more accurate, but expensive to check per-zone. This check is
4571 * made on memory-hotadd so a system can start with mobility
4572 * disabled and enable it later
4573 */
d9c23400 4574 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4575 page_group_by_mobility_disabled = 1;
4576 else
4577 page_group_by_mobility_disabled = 0;
4578
756a025f
JP
4579 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4580 nr_online_nodes,
4581 zonelist_order_name[current_zonelist_order],
4582 page_group_by_mobility_disabled ? "off" : "on",
4583 vm_total_pages);
f0c0b2b8 4584#ifdef CONFIG_NUMA
f88dfff5 4585 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4586#endif
1da177e4
LT
4587}
4588
4589/*
4590 * Helper functions to size the waitqueue hash table.
4591 * Essentially these want to choose hash table sizes sufficiently
4592 * large so that collisions trying to wait on pages are rare.
4593 * But in fact, the number of active page waitqueues on typical
4594 * systems is ridiculously low, less than 200. So this is even
4595 * conservative, even though it seems large.
4596 *
4597 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4598 * waitqueues, i.e. the size of the waitq table given the number of pages.
4599 */
4600#define PAGES_PER_WAITQUEUE 256
4601
cca448fe 4602#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4603static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4604{
4605 unsigned long size = 1;
4606
4607 pages /= PAGES_PER_WAITQUEUE;
4608
4609 while (size < pages)
4610 size <<= 1;
4611
4612 /*
4613 * Once we have dozens or even hundreds of threads sleeping
4614 * on IO we've got bigger problems than wait queue collision.
4615 * Limit the size of the wait table to a reasonable size.
4616 */
4617 size = min(size, 4096UL);
4618
4619 return max(size, 4UL);
4620}
cca448fe
YG
4621#else
4622/*
4623 * A zone's size might be changed by hot-add, so it is not possible to determine
4624 * a suitable size for its wait_table. So we use the maximum size now.
4625 *
4626 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4627 *
4628 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4629 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4630 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4631 *
4632 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4633 * or more by the traditional way. (See above). It equals:
4634 *
4635 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4636 * ia64(16K page size) : = ( 8G + 4M)byte.
4637 * powerpc (64K page size) : = (32G +16M)byte.
4638 */
4639static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4640{
4641 return 4096UL;
4642}
4643#endif
1da177e4
LT
4644
4645/*
4646 * This is an integer logarithm so that shifts can be used later
4647 * to extract the more random high bits from the multiplicative
4648 * hash function before the remainder is taken.
4649 */
4650static inline unsigned long wait_table_bits(unsigned long size)
4651{
4652 return ffz(~size);
4653}
4654
1da177e4
LT
4655/*
4656 * Initially all pages are reserved - free ones are freed
4657 * up by free_all_bootmem() once the early boot process is
4658 * done. Non-atomic initialization, single-pass.
4659 */
c09b4240 4660void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4661 unsigned long start_pfn, enum memmap_context context)
1da177e4 4662{
4b94ffdc 4663 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4664 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4665 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4666 unsigned long pfn;
3a80a7fa 4667 unsigned long nr_initialised = 0;
342332e6
TI
4668#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4669 struct memblock_region *r = NULL, *tmp;
4670#endif
1da177e4 4671
22b31eec
HD
4672 if (highest_memmap_pfn < end_pfn - 1)
4673 highest_memmap_pfn = end_pfn - 1;
4674
4b94ffdc
DW
4675 /*
4676 * Honor reservation requested by the driver for this ZONE_DEVICE
4677 * memory
4678 */
4679 if (altmap && start_pfn == altmap->base_pfn)
4680 start_pfn += altmap->reserve;
4681
cbe8dd4a 4682 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4683 /*
b72d0ffb
AM
4684 * There can be holes in boot-time mem_map[]s handed to this
4685 * function. They do not exist on hotplugged memory.
a2f3aa02 4686 */
b72d0ffb
AM
4687 if (context != MEMMAP_EARLY)
4688 goto not_early;
4689
4690 if (!early_pfn_valid(pfn))
4691 continue;
4692 if (!early_pfn_in_nid(pfn, nid))
4693 continue;
4694 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4695 break;
342332e6
TI
4696
4697#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4698 /*
4699 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4700 * from zone_movable_pfn[nid] to end of each node should be
4701 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4702 */
4703 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4704 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4705 continue;
342332e6 4706
b72d0ffb
AM
4707 /*
4708 * Check given memblock attribute by firmware which can affect
4709 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4710 * mirrored, it's an overlapped memmap init. skip it.
4711 */
4712 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4713 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4714 for_each_memblock(memory, tmp)
4715 if (pfn < memblock_region_memory_end_pfn(tmp))
4716 break;
4717 r = tmp;
4718 }
4719 if (pfn >= memblock_region_memory_base_pfn(r) &&
4720 memblock_is_mirror(r)) {
4721 /* already initialized as NORMAL */
4722 pfn = memblock_region_memory_end_pfn(r);
4723 continue;
342332e6 4724 }
a2f3aa02 4725 }
b72d0ffb 4726#endif
ac5d2539 4727
b72d0ffb 4728not_early:
ac5d2539
MG
4729 /*
4730 * Mark the block movable so that blocks are reserved for
4731 * movable at startup. This will force kernel allocations
4732 * to reserve their blocks rather than leaking throughout
4733 * the address space during boot when many long-lived
974a786e 4734 * kernel allocations are made.
ac5d2539
MG
4735 *
4736 * bitmap is created for zone's valid pfn range. but memmap
4737 * can be created for invalid pages (for alignment)
4738 * check here not to call set_pageblock_migratetype() against
4739 * pfn out of zone.
4740 */
4741 if (!(pfn & (pageblock_nr_pages - 1))) {
4742 struct page *page = pfn_to_page(pfn);
4743
4744 __init_single_page(page, pfn, zone, nid);
4745 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4746 } else {
4747 __init_single_pfn(pfn, zone, nid);
4748 }
1da177e4
LT
4749 }
4750}
4751
1e548deb 4752static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4753{
7aeb09f9 4754 unsigned int order, t;
b2a0ac88
MG
4755 for_each_migratetype_order(order, t) {
4756 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4757 zone->free_area[order].nr_free = 0;
4758 }
4759}
4760
4761#ifndef __HAVE_ARCH_MEMMAP_INIT
4762#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4763 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4764#endif
4765
7cd2b0a3 4766static int zone_batchsize(struct zone *zone)
e7c8d5c9 4767{
3a6be87f 4768#ifdef CONFIG_MMU
e7c8d5c9
CL
4769 int batch;
4770
4771 /*
4772 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4773 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4774 *
4775 * OK, so we don't know how big the cache is. So guess.
4776 */
b40da049 4777 batch = zone->managed_pages / 1024;
ba56e91c
SR
4778 if (batch * PAGE_SIZE > 512 * 1024)
4779 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4780 batch /= 4; /* We effectively *= 4 below */
4781 if (batch < 1)
4782 batch = 1;
4783
4784 /*
0ceaacc9
NP
4785 * Clamp the batch to a 2^n - 1 value. Having a power
4786 * of 2 value was found to be more likely to have
4787 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4788 *
0ceaacc9
NP
4789 * For example if 2 tasks are alternately allocating
4790 * batches of pages, one task can end up with a lot
4791 * of pages of one half of the possible page colors
4792 * and the other with pages of the other colors.
e7c8d5c9 4793 */
9155203a 4794 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4795
e7c8d5c9 4796 return batch;
3a6be87f
DH
4797
4798#else
4799 /* The deferral and batching of frees should be suppressed under NOMMU
4800 * conditions.
4801 *
4802 * The problem is that NOMMU needs to be able to allocate large chunks
4803 * of contiguous memory as there's no hardware page translation to
4804 * assemble apparent contiguous memory from discontiguous pages.
4805 *
4806 * Queueing large contiguous runs of pages for batching, however,
4807 * causes the pages to actually be freed in smaller chunks. As there
4808 * can be a significant delay between the individual batches being
4809 * recycled, this leads to the once large chunks of space being
4810 * fragmented and becoming unavailable for high-order allocations.
4811 */
4812 return 0;
4813#endif
e7c8d5c9
CL
4814}
4815
8d7a8fa9
CS
4816/*
4817 * pcp->high and pcp->batch values are related and dependent on one another:
4818 * ->batch must never be higher then ->high.
4819 * The following function updates them in a safe manner without read side
4820 * locking.
4821 *
4822 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4823 * those fields changing asynchronously (acording the the above rule).
4824 *
4825 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4826 * outside of boot time (or some other assurance that no concurrent updaters
4827 * exist).
4828 */
4829static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4830 unsigned long batch)
4831{
4832 /* start with a fail safe value for batch */
4833 pcp->batch = 1;
4834 smp_wmb();
4835
4836 /* Update high, then batch, in order */
4837 pcp->high = high;
4838 smp_wmb();
4839
4840 pcp->batch = batch;
4841}
4842
3664033c 4843/* a companion to pageset_set_high() */
4008bab7
CS
4844static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4845{
8d7a8fa9 4846 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4847}
4848
88c90dbc 4849static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4850{
4851 struct per_cpu_pages *pcp;
5f8dcc21 4852 int migratetype;
2caaad41 4853
1c6fe946
MD
4854 memset(p, 0, sizeof(*p));
4855
3dfa5721 4856 pcp = &p->pcp;
2caaad41 4857 pcp->count = 0;
5f8dcc21
MG
4858 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4859 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4860}
4861
88c90dbc
CS
4862static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4863{
4864 pageset_init(p);
4865 pageset_set_batch(p, batch);
4866}
4867
8ad4b1fb 4868/*
3664033c 4869 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4870 * to the value high for the pageset p.
4871 */
3664033c 4872static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4873 unsigned long high)
4874{
8d7a8fa9
CS
4875 unsigned long batch = max(1UL, high / 4);
4876 if ((high / 4) > (PAGE_SHIFT * 8))
4877 batch = PAGE_SHIFT * 8;
8ad4b1fb 4878
8d7a8fa9 4879 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4880}
4881
7cd2b0a3
DR
4882static void pageset_set_high_and_batch(struct zone *zone,
4883 struct per_cpu_pageset *pcp)
56cef2b8 4884{
56cef2b8 4885 if (percpu_pagelist_fraction)
3664033c 4886 pageset_set_high(pcp,
56cef2b8
CS
4887 (zone->managed_pages /
4888 percpu_pagelist_fraction));
4889 else
4890 pageset_set_batch(pcp, zone_batchsize(zone));
4891}
4892
169f6c19
CS
4893static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4894{
4895 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4896
4897 pageset_init(pcp);
4898 pageset_set_high_and_batch(zone, pcp);
4899}
4900
4ed7e022 4901static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4902{
4903 int cpu;
319774e2 4904 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4905 for_each_possible_cpu(cpu)
4906 zone_pageset_init(zone, cpu);
319774e2
WF
4907}
4908
2caaad41 4909/*
99dcc3e5
CL
4910 * Allocate per cpu pagesets and initialize them.
4911 * Before this call only boot pagesets were available.
e7c8d5c9 4912 */
99dcc3e5 4913void __init setup_per_cpu_pageset(void)
e7c8d5c9 4914{
99dcc3e5 4915 struct zone *zone;
e7c8d5c9 4916
319774e2
WF
4917 for_each_populated_zone(zone)
4918 setup_zone_pageset(zone);
e7c8d5c9
CL
4919}
4920
577a32f6 4921static noinline __init_refok
cca448fe 4922int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4923{
4924 int i;
cca448fe 4925 size_t alloc_size;
ed8ece2e
DH
4926
4927 /*
4928 * The per-page waitqueue mechanism uses hashed waitqueues
4929 * per zone.
4930 */
02b694de
YG
4931 zone->wait_table_hash_nr_entries =
4932 wait_table_hash_nr_entries(zone_size_pages);
4933 zone->wait_table_bits =
4934 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4935 alloc_size = zone->wait_table_hash_nr_entries
4936 * sizeof(wait_queue_head_t);
4937
cd94b9db 4938 if (!slab_is_available()) {
cca448fe 4939 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4940 memblock_virt_alloc_node_nopanic(
4941 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4942 } else {
4943 /*
4944 * This case means that a zone whose size was 0 gets new memory
4945 * via memory hot-add.
4946 * But it may be the case that a new node was hot-added. In
4947 * this case vmalloc() will not be able to use this new node's
4948 * memory - this wait_table must be initialized to use this new
4949 * node itself as well.
4950 * To use this new node's memory, further consideration will be
4951 * necessary.
4952 */
8691f3a7 4953 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4954 }
4955 if (!zone->wait_table)
4956 return -ENOMEM;
ed8ece2e 4957
b8af2941 4958 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4959 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4960
4961 return 0;
ed8ece2e
DH
4962}
4963
c09b4240 4964static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4965{
99dcc3e5
CL
4966 /*
4967 * per cpu subsystem is not up at this point. The following code
4968 * relies on the ability of the linker to provide the
4969 * offset of a (static) per cpu variable into the per cpu area.
4970 */
4971 zone->pageset = &boot_pageset;
ed8ece2e 4972
b38a8725 4973 if (populated_zone(zone))
99dcc3e5
CL
4974 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4975 zone->name, zone->present_pages,
4976 zone_batchsize(zone));
ed8ece2e
DH
4977}
4978
4ed7e022 4979int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4980 unsigned long zone_start_pfn,
b171e409 4981 unsigned long size)
ed8ece2e
DH
4982{
4983 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4984 int ret;
4985 ret = zone_wait_table_init(zone, size);
4986 if (ret)
4987 return ret;
ed8ece2e
DH
4988 pgdat->nr_zones = zone_idx(zone) + 1;
4989
ed8ece2e
DH
4990 zone->zone_start_pfn = zone_start_pfn;
4991
708614e6
MG
4992 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4993 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4994 pgdat->node_id,
4995 (unsigned long)zone_idx(zone),
4996 zone_start_pfn, (zone_start_pfn + size));
4997
1e548deb 4998 zone_init_free_lists(zone);
718127cc
YG
4999
5000 return 0;
ed8ece2e
DH
5001}
5002
0ee332c1 5003#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5004#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5005
c713216d
MG
5006/*
5007 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5008 */
8a942fde
MG
5009int __meminit __early_pfn_to_nid(unsigned long pfn,
5010 struct mminit_pfnnid_cache *state)
c713216d 5011{
c13291a5 5012 unsigned long start_pfn, end_pfn;
e76b63f8 5013 int nid;
7c243c71 5014
8a942fde
MG
5015 if (state->last_start <= pfn && pfn < state->last_end)
5016 return state->last_nid;
c713216d 5017
e76b63f8
YL
5018 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5019 if (nid != -1) {
8a942fde
MG
5020 state->last_start = start_pfn;
5021 state->last_end = end_pfn;
5022 state->last_nid = nid;
e76b63f8
YL
5023 }
5024
5025 return nid;
c713216d
MG
5026}
5027#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5028
c713216d 5029/**
6782832e 5030 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5031 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5032 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5033 *
7d018176
ZZ
5034 * If an architecture guarantees that all ranges registered contain no holes
5035 * and may be freed, this this function may be used instead of calling
5036 * memblock_free_early_nid() manually.
c713216d 5037 */
c13291a5 5038void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5039{
c13291a5
TH
5040 unsigned long start_pfn, end_pfn;
5041 int i, this_nid;
edbe7d23 5042
c13291a5
TH
5043 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5044 start_pfn = min(start_pfn, max_low_pfn);
5045 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5046
c13291a5 5047 if (start_pfn < end_pfn)
6782832e
SS
5048 memblock_free_early_nid(PFN_PHYS(start_pfn),
5049 (end_pfn - start_pfn) << PAGE_SHIFT,
5050 this_nid);
edbe7d23 5051 }
edbe7d23 5052}
edbe7d23 5053
c713216d
MG
5054/**
5055 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5056 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5057 *
7d018176
ZZ
5058 * If an architecture guarantees that all ranges registered contain no holes and may
5059 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5060 */
5061void __init sparse_memory_present_with_active_regions(int nid)
5062{
c13291a5
TH
5063 unsigned long start_pfn, end_pfn;
5064 int i, this_nid;
c713216d 5065
c13291a5
TH
5066 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5067 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5068}
5069
5070/**
5071 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5072 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5073 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5074 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5075 *
5076 * It returns the start and end page frame of a node based on information
7d018176 5077 * provided by memblock_set_node(). If called for a node
c713216d 5078 * with no available memory, a warning is printed and the start and end
88ca3b94 5079 * PFNs will be 0.
c713216d 5080 */
a3142c8e 5081void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5082 unsigned long *start_pfn, unsigned long *end_pfn)
5083{
c13291a5 5084 unsigned long this_start_pfn, this_end_pfn;
c713216d 5085 int i;
c13291a5 5086
c713216d
MG
5087 *start_pfn = -1UL;
5088 *end_pfn = 0;
5089
c13291a5
TH
5090 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5091 *start_pfn = min(*start_pfn, this_start_pfn);
5092 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5093 }
5094
633c0666 5095 if (*start_pfn == -1UL)
c713216d 5096 *start_pfn = 0;
c713216d
MG
5097}
5098
2a1e274a
MG
5099/*
5100 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5101 * assumption is made that zones within a node are ordered in monotonic
5102 * increasing memory addresses so that the "highest" populated zone is used
5103 */
b69a7288 5104static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5105{
5106 int zone_index;
5107 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5108 if (zone_index == ZONE_MOVABLE)
5109 continue;
5110
5111 if (arch_zone_highest_possible_pfn[zone_index] >
5112 arch_zone_lowest_possible_pfn[zone_index])
5113 break;
5114 }
5115
5116 VM_BUG_ON(zone_index == -1);
5117 movable_zone = zone_index;
5118}
5119
5120/*
5121 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5122 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5123 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5124 * in each node depending on the size of each node and how evenly kernelcore
5125 * is distributed. This helper function adjusts the zone ranges
5126 * provided by the architecture for a given node by using the end of the
5127 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5128 * zones within a node are in order of monotonic increases memory addresses
5129 */
b69a7288 5130static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5131 unsigned long zone_type,
5132 unsigned long node_start_pfn,
5133 unsigned long node_end_pfn,
5134 unsigned long *zone_start_pfn,
5135 unsigned long *zone_end_pfn)
5136{
5137 /* Only adjust if ZONE_MOVABLE is on this node */
5138 if (zone_movable_pfn[nid]) {
5139 /* Size ZONE_MOVABLE */
5140 if (zone_type == ZONE_MOVABLE) {
5141 *zone_start_pfn = zone_movable_pfn[nid];
5142 *zone_end_pfn = min(node_end_pfn,
5143 arch_zone_highest_possible_pfn[movable_zone]);
5144
2a1e274a
MG
5145 /* Check if this whole range is within ZONE_MOVABLE */
5146 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5147 *zone_start_pfn = *zone_end_pfn;
5148 }
5149}
5150
c713216d
MG
5151/*
5152 * Return the number of pages a zone spans in a node, including holes
5153 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5154 */
6ea6e688 5155static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5156 unsigned long zone_type,
7960aedd
ZY
5157 unsigned long node_start_pfn,
5158 unsigned long node_end_pfn,
d91749c1
TI
5159 unsigned long *zone_start_pfn,
5160 unsigned long *zone_end_pfn,
c713216d
MG
5161 unsigned long *ignored)
5162{
b5685e92 5163 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5164 if (!node_start_pfn && !node_end_pfn)
5165 return 0;
5166
7960aedd 5167 /* Get the start and end of the zone */
d91749c1
TI
5168 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5169 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5170 adjust_zone_range_for_zone_movable(nid, zone_type,
5171 node_start_pfn, node_end_pfn,
d91749c1 5172 zone_start_pfn, zone_end_pfn);
c713216d
MG
5173
5174 /* Check that this node has pages within the zone's required range */
d91749c1 5175 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5176 return 0;
5177
5178 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5179 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5180 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5181
5182 /* Return the spanned pages */
d91749c1 5183 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5184}
5185
5186/*
5187 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5188 * then all holes in the requested range will be accounted for.
c713216d 5189 */
32996250 5190unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5191 unsigned long range_start_pfn,
5192 unsigned long range_end_pfn)
5193{
96e907d1
TH
5194 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5195 unsigned long start_pfn, end_pfn;
5196 int i;
c713216d 5197
96e907d1
TH
5198 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5199 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5200 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5201 nr_absent -= end_pfn - start_pfn;
c713216d 5202 }
96e907d1 5203 return nr_absent;
c713216d
MG
5204}
5205
5206/**
5207 * absent_pages_in_range - Return number of page frames in holes within a range
5208 * @start_pfn: The start PFN to start searching for holes
5209 * @end_pfn: The end PFN to stop searching for holes
5210 *
88ca3b94 5211 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5212 */
5213unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5214 unsigned long end_pfn)
5215{
5216 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5217}
5218
5219/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5220static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5221 unsigned long zone_type,
7960aedd
ZY
5222 unsigned long node_start_pfn,
5223 unsigned long node_end_pfn,
c713216d
MG
5224 unsigned long *ignored)
5225{
96e907d1
TH
5226 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5227 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5228 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5229 unsigned long nr_absent;
9c7cd687 5230
b5685e92 5231 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5232 if (!node_start_pfn && !node_end_pfn)
5233 return 0;
5234
96e907d1
TH
5235 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5236 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5237
2a1e274a
MG
5238 adjust_zone_range_for_zone_movable(nid, zone_type,
5239 node_start_pfn, node_end_pfn,
5240 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5241 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5242
5243 /*
5244 * ZONE_MOVABLE handling.
5245 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5246 * and vice versa.
5247 */
5248 if (zone_movable_pfn[nid]) {
5249 if (mirrored_kernelcore) {
5250 unsigned long start_pfn, end_pfn;
5251 struct memblock_region *r;
5252
5253 for_each_memblock(memory, r) {
5254 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5255 zone_start_pfn, zone_end_pfn);
5256 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5257 zone_start_pfn, zone_end_pfn);
5258
5259 if (zone_type == ZONE_MOVABLE &&
5260 memblock_is_mirror(r))
5261 nr_absent += end_pfn - start_pfn;
5262
5263 if (zone_type == ZONE_NORMAL &&
5264 !memblock_is_mirror(r))
5265 nr_absent += end_pfn - start_pfn;
5266 }
5267 } else {
5268 if (zone_type == ZONE_NORMAL)
5269 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5270 }
5271 }
5272
5273 return nr_absent;
c713216d 5274}
0e0b864e 5275
0ee332c1 5276#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5277static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5278 unsigned long zone_type,
7960aedd
ZY
5279 unsigned long node_start_pfn,
5280 unsigned long node_end_pfn,
d91749c1
TI
5281 unsigned long *zone_start_pfn,
5282 unsigned long *zone_end_pfn,
c713216d
MG
5283 unsigned long *zones_size)
5284{
d91749c1
TI
5285 unsigned int zone;
5286
5287 *zone_start_pfn = node_start_pfn;
5288 for (zone = 0; zone < zone_type; zone++)
5289 *zone_start_pfn += zones_size[zone];
5290
5291 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5292
c713216d
MG
5293 return zones_size[zone_type];
5294}
5295
6ea6e688 5296static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5297 unsigned long zone_type,
7960aedd
ZY
5298 unsigned long node_start_pfn,
5299 unsigned long node_end_pfn,
c713216d
MG
5300 unsigned long *zholes_size)
5301{
5302 if (!zholes_size)
5303 return 0;
5304
5305 return zholes_size[zone_type];
5306}
20e6926d 5307
0ee332c1 5308#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5309
a3142c8e 5310static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5311 unsigned long node_start_pfn,
5312 unsigned long node_end_pfn,
5313 unsigned long *zones_size,
5314 unsigned long *zholes_size)
c713216d 5315{
febd5949 5316 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5317 enum zone_type i;
5318
febd5949
GZ
5319 for (i = 0; i < MAX_NR_ZONES; i++) {
5320 struct zone *zone = pgdat->node_zones + i;
d91749c1 5321 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5322 unsigned long size, real_size;
c713216d 5323
febd5949
GZ
5324 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5325 node_start_pfn,
5326 node_end_pfn,
d91749c1
TI
5327 &zone_start_pfn,
5328 &zone_end_pfn,
febd5949
GZ
5329 zones_size);
5330 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5331 node_start_pfn, node_end_pfn,
5332 zholes_size);
d91749c1
TI
5333 if (size)
5334 zone->zone_start_pfn = zone_start_pfn;
5335 else
5336 zone->zone_start_pfn = 0;
febd5949
GZ
5337 zone->spanned_pages = size;
5338 zone->present_pages = real_size;
5339
5340 totalpages += size;
5341 realtotalpages += real_size;
5342 }
5343
5344 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5345 pgdat->node_present_pages = realtotalpages;
5346 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5347 realtotalpages);
5348}
5349
835c134e
MG
5350#ifndef CONFIG_SPARSEMEM
5351/*
5352 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5353 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5354 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5355 * round what is now in bits to nearest long in bits, then return it in
5356 * bytes.
5357 */
7c45512d 5358static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5359{
5360 unsigned long usemapsize;
5361
7c45512d 5362 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5363 usemapsize = roundup(zonesize, pageblock_nr_pages);
5364 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5365 usemapsize *= NR_PAGEBLOCK_BITS;
5366 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5367
5368 return usemapsize / 8;
5369}
5370
5371static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5372 struct zone *zone,
5373 unsigned long zone_start_pfn,
5374 unsigned long zonesize)
835c134e 5375{
7c45512d 5376 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5377 zone->pageblock_flags = NULL;
58a01a45 5378 if (usemapsize)
6782832e
SS
5379 zone->pageblock_flags =
5380 memblock_virt_alloc_node_nopanic(usemapsize,
5381 pgdat->node_id);
835c134e
MG
5382}
5383#else
7c45512d
LT
5384static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5385 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5386#endif /* CONFIG_SPARSEMEM */
5387
d9c23400 5388#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5389
d9c23400 5390/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5391void __paginginit set_pageblock_order(void)
d9c23400 5392{
955c1cd7
AM
5393 unsigned int order;
5394
d9c23400
MG
5395 /* Check that pageblock_nr_pages has not already been setup */
5396 if (pageblock_order)
5397 return;
5398
955c1cd7
AM
5399 if (HPAGE_SHIFT > PAGE_SHIFT)
5400 order = HUGETLB_PAGE_ORDER;
5401 else
5402 order = MAX_ORDER - 1;
5403
d9c23400
MG
5404 /*
5405 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5406 * This value may be variable depending on boot parameters on IA64 and
5407 * powerpc.
d9c23400
MG
5408 */
5409 pageblock_order = order;
5410}
5411#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5412
ba72cb8c
MG
5413/*
5414 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5415 * is unused as pageblock_order is set at compile-time. See
5416 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5417 * the kernel config
ba72cb8c 5418 */
15ca220e 5419void __paginginit set_pageblock_order(void)
ba72cb8c 5420{
ba72cb8c 5421}
d9c23400
MG
5422
5423#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5424
01cefaef
JL
5425static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5426 unsigned long present_pages)
5427{
5428 unsigned long pages = spanned_pages;
5429
5430 /*
5431 * Provide a more accurate estimation if there are holes within
5432 * the zone and SPARSEMEM is in use. If there are holes within the
5433 * zone, each populated memory region may cost us one or two extra
5434 * memmap pages due to alignment because memmap pages for each
5435 * populated regions may not naturally algined on page boundary.
5436 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5437 */
5438 if (spanned_pages > present_pages + (present_pages >> 4) &&
5439 IS_ENABLED(CONFIG_SPARSEMEM))
5440 pages = present_pages;
5441
5442 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5443}
5444
1da177e4
LT
5445/*
5446 * Set up the zone data structures:
5447 * - mark all pages reserved
5448 * - mark all memory queues empty
5449 * - clear the memory bitmaps
6527af5d
MK
5450 *
5451 * NOTE: pgdat should get zeroed by caller.
1da177e4 5452 */
7f3eb55b 5453static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5454{
2f1b6248 5455 enum zone_type j;
ed8ece2e 5456 int nid = pgdat->node_id;
718127cc 5457 int ret;
1da177e4 5458
208d54e5 5459 pgdat_resize_init(pgdat);
8177a420
AA
5460#ifdef CONFIG_NUMA_BALANCING
5461 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5462 pgdat->numabalancing_migrate_nr_pages = 0;
5463 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5464#endif
5465#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5466 spin_lock_init(&pgdat->split_queue_lock);
5467 INIT_LIST_HEAD(&pgdat->split_queue);
5468 pgdat->split_queue_len = 0;
8177a420 5469#endif
1da177e4 5470 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5471 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5472#ifdef CONFIG_COMPACTION
5473 init_waitqueue_head(&pgdat->kcompactd_wait);
5474#endif
eefa864b 5475 pgdat_page_ext_init(pgdat);
5f63b720 5476
1da177e4
LT
5477 for (j = 0; j < MAX_NR_ZONES; j++) {
5478 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5479 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5480 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5481
febd5949
GZ
5482 size = zone->spanned_pages;
5483 realsize = freesize = zone->present_pages;
1da177e4 5484
0e0b864e 5485 /*
9feedc9d 5486 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5487 * is used by this zone for memmap. This affects the watermark
5488 * and per-cpu initialisations
5489 */
01cefaef 5490 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5491 if (!is_highmem_idx(j)) {
5492 if (freesize >= memmap_pages) {
5493 freesize -= memmap_pages;
5494 if (memmap_pages)
5495 printk(KERN_DEBUG
5496 " %s zone: %lu pages used for memmap\n",
5497 zone_names[j], memmap_pages);
5498 } else
1170532b 5499 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5500 zone_names[j], memmap_pages, freesize);
5501 }
0e0b864e 5502
6267276f 5503 /* Account for reserved pages */
9feedc9d
JL
5504 if (j == 0 && freesize > dma_reserve) {
5505 freesize -= dma_reserve;
d903ef9f 5506 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5507 zone_names[0], dma_reserve);
0e0b864e
MG
5508 }
5509
98d2b0eb 5510 if (!is_highmem_idx(j))
9feedc9d 5511 nr_kernel_pages += freesize;
01cefaef
JL
5512 /* Charge for highmem memmap if there are enough kernel pages */
5513 else if (nr_kernel_pages > memmap_pages * 2)
5514 nr_kernel_pages -= memmap_pages;
9feedc9d 5515 nr_all_pages += freesize;
1da177e4 5516
9feedc9d
JL
5517 /*
5518 * Set an approximate value for lowmem here, it will be adjusted
5519 * when the bootmem allocator frees pages into the buddy system.
5520 * And all highmem pages will be managed by the buddy system.
5521 */
5522 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5523#ifdef CONFIG_NUMA
d5f541ed 5524 zone->node = nid;
9feedc9d 5525 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5526 / 100;
9feedc9d 5527 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5528#endif
1da177e4
LT
5529 zone->name = zone_names[j];
5530 spin_lock_init(&zone->lock);
5531 spin_lock_init(&zone->lru_lock);
bdc8cb98 5532 zone_seqlock_init(zone);
1da177e4 5533 zone->zone_pgdat = pgdat;
ed8ece2e 5534 zone_pcp_init(zone);
81c0a2bb
JW
5535
5536 /* For bootup, initialized properly in watermark setup */
5537 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5538
bea8c150 5539 lruvec_init(&zone->lruvec);
1da177e4
LT
5540 if (!size)
5541 continue;
5542
955c1cd7 5543 set_pageblock_order();
7c45512d 5544 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5545 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5546 BUG_ON(ret);
76cdd58e 5547 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5548 }
5549}
5550
577a32f6 5551static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5552{
b0aeba74 5553 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5554 unsigned long __maybe_unused offset = 0;
5555
1da177e4
LT
5556 /* Skip empty nodes */
5557 if (!pgdat->node_spanned_pages)
5558 return;
5559
d41dee36 5560#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5561 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5562 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5563 /* ia64 gets its own node_mem_map, before this, without bootmem */
5564 if (!pgdat->node_mem_map) {
b0aeba74 5565 unsigned long size, end;
d41dee36
AW
5566 struct page *map;
5567
e984bb43
BP
5568 /*
5569 * The zone's endpoints aren't required to be MAX_ORDER
5570 * aligned but the node_mem_map endpoints must be in order
5571 * for the buddy allocator to function correctly.
5572 */
108bcc96 5573 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5574 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5575 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5576 map = alloc_remap(pgdat->node_id, size);
5577 if (!map)
6782832e
SS
5578 map = memblock_virt_alloc_node_nopanic(size,
5579 pgdat->node_id);
a1c34a3b 5580 pgdat->node_mem_map = map + offset;
1da177e4 5581 }
12d810c1 5582#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5583 /*
5584 * With no DISCONTIG, the global mem_map is just set as node 0's
5585 */
c713216d 5586 if (pgdat == NODE_DATA(0)) {
1da177e4 5587 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5588#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5589 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5590 mem_map -= offset;
0ee332c1 5591#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5592 }
1da177e4 5593#endif
d41dee36 5594#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5595}
5596
9109fb7b
JW
5597void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5598 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5599{
9109fb7b 5600 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5601 unsigned long start_pfn = 0;
5602 unsigned long end_pfn = 0;
9109fb7b 5603
88fdf75d 5604 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5605 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5606
3a80a7fa 5607 reset_deferred_meminit(pgdat);
1da177e4
LT
5608 pgdat->node_id = nid;
5609 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5610#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5611 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5612 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5613 (u64)start_pfn << PAGE_SHIFT,
5614 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5615#else
5616 start_pfn = node_start_pfn;
7960aedd
ZY
5617#endif
5618 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5619 zones_size, zholes_size);
1da177e4
LT
5620
5621 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5622#ifdef CONFIG_FLAT_NODE_MEM_MAP
5623 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5624 nid, (unsigned long)pgdat,
5625 (unsigned long)pgdat->node_mem_map);
5626#endif
1da177e4 5627
7f3eb55b 5628 free_area_init_core(pgdat);
1da177e4
LT
5629}
5630
0ee332c1 5631#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5632
5633#if MAX_NUMNODES > 1
5634/*
5635 * Figure out the number of possible node ids.
5636 */
f9872caf 5637void __init setup_nr_node_ids(void)
418508c1 5638{
904a9553 5639 unsigned int highest;
418508c1 5640
904a9553 5641 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5642 nr_node_ids = highest + 1;
5643}
418508c1
MS
5644#endif
5645
1e01979c
TH
5646/**
5647 * node_map_pfn_alignment - determine the maximum internode alignment
5648 *
5649 * This function should be called after node map is populated and sorted.
5650 * It calculates the maximum power of two alignment which can distinguish
5651 * all the nodes.
5652 *
5653 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5654 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5655 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5656 * shifted, 1GiB is enough and this function will indicate so.
5657 *
5658 * This is used to test whether pfn -> nid mapping of the chosen memory
5659 * model has fine enough granularity to avoid incorrect mapping for the
5660 * populated node map.
5661 *
5662 * Returns the determined alignment in pfn's. 0 if there is no alignment
5663 * requirement (single node).
5664 */
5665unsigned long __init node_map_pfn_alignment(void)
5666{
5667 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5668 unsigned long start, end, mask;
1e01979c 5669 int last_nid = -1;
c13291a5 5670 int i, nid;
1e01979c 5671
c13291a5 5672 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5673 if (!start || last_nid < 0 || last_nid == nid) {
5674 last_nid = nid;
5675 last_end = end;
5676 continue;
5677 }
5678
5679 /*
5680 * Start with a mask granular enough to pin-point to the
5681 * start pfn and tick off bits one-by-one until it becomes
5682 * too coarse to separate the current node from the last.
5683 */
5684 mask = ~((1 << __ffs(start)) - 1);
5685 while (mask && last_end <= (start & (mask << 1)))
5686 mask <<= 1;
5687
5688 /* accumulate all internode masks */
5689 accl_mask |= mask;
5690 }
5691
5692 /* convert mask to number of pages */
5693 return ~accl_mask + 1;
5694}
5695
a6af2bc3 5696/* Find the lowest pfn for a node */
b69a7288 5697static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5698{
a6af2bc3 5699 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5700 unsigned long start_pfn;
5701 int i;
1abbfb41 5702
c13291a5
TH
5703 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5704 min_pfn = min(min_pfn, start_pfn);
c713216d 5705
a6af2bc3 5706 if (min_pfn == ULONG_MAX) {
1170532b 5707 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5708 return 0;
5709 }
5710
5711 return min_pfn;
c713216d
MG
5712}
5713
5714/**
5715 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5716 *
5717 * It returns the minimum PFN based on information provided via
7d018176 5718 * memblock_set_node().
c713216d
MG
5719 */
5720unsigned long __init find_min_pfn_with_active_regions(void)
5721{
5722 return find_min_pfn_for_node(MAX_NUMNODES);
5723}
5724
37b07e41
LS
5725/*
5726 * early_calculate_totalpages()
5727 * Sum pages in active regions for movable zone.
4b0ef1fe 5728 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5729 */
484f51f8 5730static unsigned long __init early_calculate_totalpages(void)
7e63efef 5731{
7e63efef 5732 unsigned long totalpages = 0;
c13291a5
TH
5733 unsigned long start_pfn, end_pfn;
5734 int i, nid;
5735
5736 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5737 unsigned long pages = end_pfn - start_pfn;
7e63efef 5738
37b07e41
LS
5739 totalpages += pages;
5740 if (pages)
4b0ef1fe 5741 node_set_state(nid, N_MEMORY);
37b07e41 5742 }
b8af2941 5743 return totalpages;
7e63efef
MG
5744}
5745
2a1e274a
MG
5746/*
5747 * Find the PFN the Movable zone begins in each node. Kernel memory
5748 * is spread evenly between nodes as long as the nodes have enough
5749 * memory. When they don't, some nodes will have more kernelcore than
5750 * others
5751 */
b224ef85 5752static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5753{
5754 int i, nid;
5755 unsigned long usable_startpfn;
5756 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5757 /* save the state before borrow the nodemask */
4b0ef1fe 5758 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5759 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5760 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5761 struct memblock_region *r;
b2f3eebe
TC
5762
5763 /* Need to find movable_zone earlier when movable_node is specified. */
5764 find_usable_zone_for_movable();
5765
5766 /*
5767 * If movable_node is specified, ignore kernelcore and movablecore
5768 * options.
5769 */
5770 if (movable_node_is_enabled()) {
136199f0
EM
5771 for_each_memblock(memory, r) {
5772 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5773 continue;
5774
136199f0 5775 nid = r->nid;
b2f3eebe 5776
136199f0 5777 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5778 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5779 min(usable_startpfn, zone_movable_pfn[nid]) :
5780 usable_startpfn;
5781 }
5782
5783 goto out2;
5784 }
2a1e274a 5785
342332e6
TI
5786 /*
5787 * If kernelcore=mirror is specified, ignore movablecore option
5788 */
5789 if (mirrored_kernelcore) {
5790 bool mem_below_4gb_not_mirrored = false;
5791
5792 for_each_memblock(memory, r) {
5793 if (memblock_is_mirror(r))
5794 continue;
5795
5796 nid = r->nid;
5797
5798 usable_startpfn = memblock_region_memory_base_pfn(r);
5799
5800 if (usable_startpfn < 0x100000) {
5801 mem_below_4gb_not_mirrored = true;
5802 continue;
5803 }
5804
5805 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5806 min(usable_startpfn, zone_movable_pfn[nid]) :
5807 usable_startpfn;
5808 }
5809
5810 if (mem_below_4gb_not_mirrored)
5811 pr_warn("This configuration results in unmirrored kernel memory.");
5812
5813 goto out2;
5814 }
5815
7e63efef 5816 /*
b2f3eebe 5817 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5818 * kernelcore that corresponds so that memory usable for
5819 * any allocation type is evenly spread. If both kernelcore
5820 * and movablecore are specified, then the value of kernelcore
5821 * will be used for required_kernelcore if it's greater than
5822 * what movablecore would have allowed.
5823 */
5824 if (required_movablecore) {
7e63efef
MG
5825 unsigned long corepages;
5826
5827 /*
5828 * Round-up so that ZONE_MOVABLE is at least as large as what
5829 * was requested by the user
5830 */
5831 required_movablecore =
5832 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5833 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5834 corepages = totalpages - required_movablecore;
5835
5836 required_kernelcore = max(required_kernelcore, corepages);
5837 }
5838
bde304bd
XQ
5839 /*
5840 * If kernelcore was not specified or kernelcore size is larger
5841 * than totalpages, there is no ZONE_MOVABLE.
5842 */
5843 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5844 goto out;
2a1e274a
MG
5845
5846 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5847 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5848
5849restart:
5850 /* Spread kernelcore memory as evenly as possible throughout nodes */
5851 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5852 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5853 unsigned long start_pfn, end_pfn;
5854
2a1e274a
MG
5855 /*
5856 * Recalculate kernelcore_node if the division per node
5857 * now exceeds what is necessary to satisfy the requested
5858 * amount of memory for the kernel
5859 */
5860 if (required_kernelcore < kernelcore_node)
5861 kernelcore_node = required_kernelcore / usable_nodes;
5862
5863 /*
5864 * As the map is walked, we track how much memory is usable
5865 * by the kernel using kernelcore_remaining. When it is
5866 * 0, the rest of the node is usable by ZONE_MOVABLE
5867 */
5868 kernelcore_remaining = kernelcore_node;
5869
5870 /* Go through each range of PFNs within this node */
c13291a5 5871 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5872 unsigned long size_pages;
5873
c13291a5 5874 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5875 if (start_pfn >= end_pfn)
5876 continue;
5877
5878 /* Account for what is only usable for kernelcore */
5879 if (start_pfn < usable_startpfn) {
5880 unsigned long kernel_pages;
5881 kernel_pages = min(end_pfn, usable_startpfn)
5882 - start_pfn;
5883
5884 kernelcore_remaining -= min(kernel_pages,
5885 kernelcore_remaining);
5886 required_kernelcore -= min(kernel_pages,
5887 required_kernelcore);
5888
5889 /* Continue if range is now fully accounted */
5890 if (end_pfn <= usable_startpfn) {
5891
5892 /*
5893 * Push zone_movable_pfn to the end so
5894 * that if we have to rebalance
5895 * kernelcore across nodes, we will
5896 * not double account here
5897 */
5898 zone_movable_pfn[nid] = end_pfn;
5899 continue;
5900 }
5901 start_pfn = usable_startpfn;
5902 }
5903
5904 /*
5905 * The usable PFN range for ZONE_MOVABLE is from
5906 * start_pfn->end_pfn. Calculate size_pages as the
5907 * number of pages used as kernelcore
5908 */
5909 size_pages = end_pfn - start_pfn;
5910 if (size_pages > kernelcore_remaining)
5911 size_pages = kernelcore_remaining;
5912 zone_movable_pfn[nid] = start_pfn + size_pages;
5913
5914 /*
5915 * Some kernelcore has been met, update counts and
5916 * break if the kernelcore for this node has been
b8af2941 5917 * satisfied
2a1e274a
MG
5918 */
5919 required_kernelcore -= min(required_kernelcore,
5920 size_pages);
5921 kernelcore_remaining -= size_pages;
5922 if (!kernelcore_remaining)
5923 break;
5924 }
5925 }
5926
5927 /*
5928 * If there is still required_kernelcore, we do another pass with one
5929 * less node in the count. This will push zone_movable_pfn[nid] further
5930 * along on the nodes that still have memory until kernelcore is
b8af2941 5931 * satisfied
2a1e274a
MG
5932 */
5933 usable_nodes--;
5934 if (usable_nodes && required_kernelcore > usable_nodes)
5935 goto restart;
5936
b2f3eebe 5937out2:
2a1e274a
MG
5938 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5939 for (nid = 0; nid < MAX_NUMNODES; nid++)
5940 zone_movable_pfn[nid] =
5941 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5942
20e6926d 5943out:
66918dcd 5944 /* restore the node_state */
4b0ef1fe 5945 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5946}
5947
4b0ef1fe
LJ
5948/* Any regular or high memory on that node ? */
5949static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5950{
37b07e41
LS
5951 enum zone_type zone_type;
5952
4b0ef1fe
LJ
5953 if (N_MEMORY == N_NORMAL_MEMORY)
5954 return;
5955
5956 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5957 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5958 if (populated_zone(zone)) {
4b0ef1fe
LJ
5959 node_set_state(nid, N_HIGH_MEMORY);
5960 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5961 zone_type <= ZONE_NORMAL)
5962 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5963 break;
5964 }
37b07e41 5965 }
37b07e41
LS
5966}
5967
c713216d
MG
5968/**
5969 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5970 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5971 *
5972 * This will call free_area_init_node() for each active node in the system.
7d018176 5973 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5974 * zone in each node and their holes is calculated. If the maximum PFN
5975 * between two adjacent zones match, it is assumed that the zone is empty.
5976 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5977 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5978 * starts where the previous one ended. For example, ZONE_DMA32 starts
5979 * at arch_max_dma_pfn.
5980 */
5981void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5982{
c13291a5
TH
5983 unsigned long start_pfn, end_pfn;
5984 int i, nid;
a6af2bc3 5985
c713216d
MG
5986 /* Record where the zone boundaries are */
5987 memset(arch_zone_lowest_possible_pfn, 0,
5988 sizeof(arch_zone_lowest_possible_pfn));
5989 memset(arch_zone_highest_possible_pfn, 0,
5990 sizeof(arch_zone_highest_possible_pfn));
5991 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5992 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5993 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5994 if (i == ZONE_MOVABLE)
5995 continue;
c713216d
MG
5996 arch_zone_lowest_possible_pfn[i] =
5997 arch_zone_highest_possible_pfn[i-1];
5998 arch_zone_highest_possible_pfn[i] =
5999 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6000 }
2a1e274a
MG
6001 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6002 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6003
6004 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6005 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6006 find_zone_movable_pfns_for_nodes();
c713216d 6007
c713216d 6008 /* Print out the zone ranges */
f88dfff5 6009 pr_info("Zone ranges:\n");
2a1e274a
MG
6010 for (i = 0; i < MAX_NR_ZONES; i++) {
6011 if (i == ZONE_MOVABLE)
6012 continue;
f88dfff5 6013 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6014 if (arch_zone_lowest_possible_pfn[i] ==
6015 arch_zone_highest_possible_pfn[i])
f88dfff5 6016 pr_cont("empty\n");
72f0ba02 6017 else
8d29e18a
JG
6018 pr_cont("[mem %#018Lx-%#018Lx]\n",
6019 (u64)arch_zone_lowest_possible_pfn[i]
6020 << PAGE_SHIFT,
6021 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6022 << PAGE_SHIFT) - 1);
2a1e274a
MG
6023 }
6024
6025 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6026 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6027 for (i = 0; i < MAX_NUMNODES; i++) {
6028 if (zone_movable_pfn[i])
8d29e18a
JG
6029 pr_info(" Node %d: %#018Lx\n", i,
6030 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6031 }
c713216d 6032
f2d52fe5 6033 /* Print out the early node map */
f88dfff5 6034 pr_info("Early memory node ranges\n");
c13291a5 6035 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6036 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6037 (u64)start_pfn << PAGE_SHIFT,
6038 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6039
6040 /* Initialise every node */
708614e6 6041 mminit_verify_pageflags_layout();
8ef82866 6042 setup_nr_node_ids();
c713216d
MG
6043 for_each_online_node(nid) {
6044 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6045 free_area_init_node(nid, NULL,
c713216d 6046 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6047
6048 /* Any memory on that node */
6049 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6050 node_set_state(nid, N_MEMORY);
6051 check_for_memory(pgdat, nid);
c713216d
MG
6052 }
6053}
2a1e274a 6054
7e63efef 6055static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6056{
6057 unsigned long long coremem;
6058 if (!p)
6059 return -EINVAL;
6060
6061 coremem = memparse(p, &p);
7e63efef 6062 *core = coremem >> PAGE_SHIFT;
2a1e274a 6063
7e63efef 6064 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6065 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6066
6067 return 0;
6068}
ed7ed365 6069
7e63efef
MG
6070/*
6071 * kernelcore=size sets the amount of memory for use for allocations that
6072 * cannot be reclaimed or migrated.
6073 */
6074static int __init cmdline_parse_kernelcore(char *p)
6075{
342332e6
TI
6076 /* parse kernelcore=mirror */
6077 if (parse_option_str(p, "mirror")) {
6078 mirrored_kernelcore = true;
6079 return 0;
6080 }
6081
7e63efef
MG
6082 return cmdline_parse_core(p, &required_kernelcore);
6083}
6084
6085/*
6086 * movablecore=size sets the amount of memory for use for allocations that
6087 * can be reclaimed or migrated.
6088 */
6089static int __init cmdline_parse_movablecore(char *p)
6090{
6091 return cmdline_parse_core(p, &required_movablecore);
6092}
6093
ed7ed365 6094early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6095early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6096
0ee332c1 6097#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6098
c3d5f5f0
JL
6099void adjust_managed_page_count(struct page *page, long count)
6100{
6101 spin_lock(&managed_page_count_lock);
6102 page_zone(page)->managed_pages += count;
6103 totalram_pages += count;
3dcc0571
JL
6104#ifdef CONFIG_HIGHMEM
6105 if (PageHighMem(page))
6106 totalhigh_pages += count;
6107#endif
c3d5f5f0
JL
6108 spin_unlock(&managed_page_count_lock);
6109}
3dcc0571 6110EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6111
11199692 6112unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6113{
11199692
JL
6114 void *pos;
6115 unsigned long pages = 0;
69afade7 6116
11199692
JL
6117 start = (void *)PAGE_ALIGN((unsigned long)start);
6118 end = (void *)((unsigned long)end & PAGE_MASK);
6119 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6120 if ((unsigned int)poison <= 0xFF)
11199692
JL
6121 memset(pos, poison, PAGE_SIZE);
6122 free_reserved_page(virt_to_page(pos));
69afade7
JL
6123 }
6124
6125 if (pages && s)
11199692 6126 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6127 s, pages << (PAGE_SHIFT - 10), start, end);
6128
6129 return pages;
6130}
11199692 6131EXPORT_SYMBOL(free_reserved_area);
69afade7 6132
cfa11e08
JL
6133#ifdef CONFIG_HIGHMEM
6134void free_highmem_page(struct page *page)
6135{
6136 __free_reserved_page(page);
6137 totalram_pages++;
7b4b2a0d 6138 page_zone(page)->managed_pages++;
cfa11e08
JL
6139 totalhigh_pages++;
6140}
6141#endif
6142
7ee3d4e8
JL
6143
6144void __init mem_init_print_info(const char *str)
6145{
6146 unsigned long physpages, codesize, datasize, rosize, bss_size;
6147 unsigned long init_code_size, init_data_size;
6148
6149 physpages = get_num_physpages();
6150 codesize = _etext - _stext;
6151 datasize = _edata - _sdata;
6152 rosize = __end_rodata - __start_rodata;
6153 bss_size = __bss_stop - __bss_start;
6154 init_data_size = __init_end - __init_begin;
6155 init_code_size = _einittext - _sinittext;
6156
6157 /*
6158 * Detect special cases and adjust section sizes accordingly:
6159 * 1) .init.* may be embedded into .data sections
6160 * 2) .init.text.* may be out of [__init_begin, __init_end],
6161 * please refer to arch/tile/kernel/vmlinux.lds.S.
6162 * 3) .rodata.* may be embedded into .text or .data sections.
6163 */
6164#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6165 do { \
6166 if (start <= pos && pos < end && size > adj) \
6167 size -= adj; \
6168 } while (0)
7ee3d4e8
JL
6169
6170 adj_init_size(__init_begin, __init_end, init_data_size,
6171 _sinittext, init_code_size);
6172 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6173 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6174 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6175 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6176
6177#undef adj_init_size
6178
756a025f 6179 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6180#ifdef CONFIG_HIGHMEM
756a025f 6181 ", %luK highmem"
7ee3d4e8 6182#endif
756a025f
JP
6183 "%s%s)\n",
6184 nr_free_pages() << (PAGE_SHIFT - 10),
6185 physpages << (PAGE_SHIFT - 10),
6186 codesize >> 10, datasize >> 10, rosize >> 10,
6187 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6188 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6189 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6190#ifdef CONFIG_HIGHMEM
756a025f 6191 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6192#endif
756a025f 6193 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6194}
6195
0e0b864e 6196/**
88ca3b94
RD
6197 * set_dma_reserve - set the specified number of pages reserved in the first zone
6198 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6199 *
013110a7 6200 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6201 * In the DMA zone, a significant percentage may be consumed by kernel image
6202 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6203 * function may optionally be used to account for unfreeable pages in the
6204 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6205 * smaller per-cpu batchsize.
0e0b864e
MG
6206 */
6207void __init set_dma_reserve(unsigned long new_dma_reserve)
6208{
6209 dma_reserve = new_dma_reserve;
6210}
6211
1da177e4
LT
6212void __init free_area_init(unsigned long *zones_size)
6213{
9109fb7b 6214 free_area_init_node(0, zones_size,
1da177e4
LT
6215 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6216}
1da177e4 6217
1da177e4
LT
6218static int page_alloc_cpu_notify(struct notifier_block *self,
6219 unsigned long action, void *hcpu)
6220{
6221 int cpu = (unsigned long)hcpu;
1da177e4 6222
8bb78442 6223 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6224 lru_add_drain_cpu(cpu);
9f8f2172
CL
6225 drain_pages(cpu);
6226
6227 /*
6228 * Spill the event counters of the dead processor
6229 * into the current processors event counters.
6230 * This artificially elevates the count of the current
6231 * processor.
6232 */
f8891e5e 6233 vm_events_fold_cpu(cpu);
9f8f2172
CL
6234
6235 /*
6236 * Zero the differential counters of the dead processor
6237 * so that the vm statistics are consistent.
6238 *
6239 * This is only okay since the processor is dead and cannot
6240 * race with what we are doing.
6241 */
2bb921e5 6242 cpu_vm_stats_fold(cpu);
1da177e4
LT
6243 }
6244 return NOTIFY_OK;
6245}
1da177e4
LT
6246
6247void __init page_alloc_init(void)
6248{
6249 hotcpu_notifier(page_alloc_cpu_notify, 0);
6250}
6251
cb45b0e9 6252/*
34b10060 6253 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6254 * or min_free_kbytes changes.
6255 */
6256static void calculate_totalreserve_pages(void)
6257{
6258 struct pglist_data *pgdat;
6259 unsigned long reserve_pages = 0;
2f6726e5 6260 enum zone_type i, j;
cb45b0e9
HA
6261
6262 for_each_online_pgdat(pgdat) {
6263 for (i = 0; i < MAX_NR_ZONES; i++) {
6264 struct zone *zone = pgdat->node_zones + i;
3484b2de 6265 long max = 0;
cb45b0e9
HA
6266
6267 /* Find valid and maximum lowmem_reserve in the zone */
6268 for (j = i; j < MAX_NR_ZONES; j++) {
6269 if (zone->lowmem_reserve[j] > max)
6270 max = zone->lowmem_reserve[j];
6271 }
6272
41858966
MG
6273 /* we treat the high watermark as reserved pages. */
6274 max += high_wmark_pages(zone);
cb45b0e9 6275
b40da049
JL
6276 if (max > zone->managed_pages)
6277 max = zone->managed_pages;
a8d01437
JW
6278
6279 zone->totalreserve_pages = max;
6280
cb45b0e9
HA
6281 reserve_pages += max;
6282 }
6283 }
6284 totalreserve_pages = reserve_pages;
6285}
6286
1da177e4
LT
6287/*
6288 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6289 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6290 * has a correct pages reserved value, so an adequate number of
6291 * pages are left in the zone after a successful __alloc_pages().
6292 */
6293static void setup_per_zone_lowmem_reserve(void)
6294{
6295 struct pglist_data *pgdat;
2f6726e5 6296 enum zone_type j, idx;
1da177e4 6297
ec936fc5 6298 for_each_online_pgdat(pgdat) {
1da177e4
LT
6299 for (j = 0; j < MAX_NR_ZONES; j++) {
6300 struct zone *zone = pgdat->node_zones + j;
b40da049 6301 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6302
6303 zone->lowmem_reserve[j] = 0;
6304
2f6726e5
CL
6305 idx = j;
6306 while (idx) {
1da177e4
LT
6307 struct zone *lower_zone;
6308
2f6726e5
CL
6309 idx--;
6310
1da177e4
LT
6311 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6312 sysctl_lowmem_reserve_ratio[idx] = 1;
6313
6314 lower_zone = pgdat->node_zones + idx;
b40da049 6315 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6316 sysctl_lowmem_reserve_ratio[idx];
b40da049 6317 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6318 }
6319 }
6320 }
cb45b0e9
HA
6321
6322 /* update totalreserve_pages */
6323 calculate_totalreserve_pages();
1da177e4
LT
6324}
6325
cfd3da1e 6326static void __setup_per_zone_wmarks(void)
1da177e4
LT
6327{
6328 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6329 unsigned long lowmem_pages = 0;
6330 struct zone *zone;
6331 unsigned long flags;
6332
6333 /* Calculate total number of !ZONE_HIGHMEM pages */
6334 for_each_zone(zone) {
6335 if (!is_highmem(zone))
b40da049 6336 lowmem_pages += zone->managed_pages;
1da177e4
LT
6337 }
6338
6339 for_each_zone(zone) {
ac924c60
AM
6340 u64 tmp;
6341
1125b4e3 6342 spin_lock_irqsave(&zone->lock, flags);
b40da049 6343 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6344 do_div(tmp, lowmem_pages);
1da177e4
LT
6345 if (is_highmem(zone)) {
6346 /*
669ed175
NP
6347 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6348 * need highmem pages, so cap pages_min to a small
6349 * value here.
6350 *
41858966 6351 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6352 * deltas control asynch page reclaim, and so should
669ed175 6353 * not be capped for highmem.
1da177e4 6354 */
90ae8d67 6355 unsigned long min_pages;
1da177e4 6356
b40da049 6357 min_pages = zone->managed_pages / 1024;
90ae8d67 6358 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6359 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6360 } else {
669ed175
NP
6361 /*
6362 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6363 * proportionate to the zone's size.
6364 */
41858966 6365 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6366 }
6367
795ae7a0
JW
6368 /*
6369 * Set the kswapd watermarks distance according to the
6370 * scale factor in proportion to available memory, but
6371 * ensure a minimum size on small systems.
6372 */
6373 tmp = max_t(u64, tmp >> 2,
6374 mult_frac(zone->managed_pages,
6375 watermark_scale_factor, 10000));
6376
6377 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6378 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6379
81c0a2bb 6380 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6381 high_wmark_pages(zone) - low_wmark_pages(zone) -
6382 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6383
1125b4e3 6384 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6385 }
cb45b0e9
HA
6386
6387 /* update totalreserve_pages */
6388 calculate_totalreserve_pages();
1da177e4
LT
6389}
6390
cfd3da1e
MG
6391/**
6392 * setup_per_zone_wmarks - called when min_free_kbytes changes
6393 * or when memory is hot-{added|removed}
6394 *
6395 * Ensures that the watermark[min,low,high] values for each zone are set
6396 * correctly with respect to min_free_kbytes.
6397 */
6398void setup_per_zone_wmarks(void)
6399{
6400 mutex_lock(&zonelists_mutex);
6401 __setup_per_zone_wmarks();
6402 mutex_unlock(&zonelists_mutex);
6403}
6404
55a4462a 6405/*
556adecb
RR
6406 * The inactive anon list should be small enough that the VM never has to
6407 * do too much work, but large enough that each inactive page has a chance
6408 * to be referenced again before it is swapped out.
6409 *
6410 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6411 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6412 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6413 * the anonymous pages are kept on the inactive list.
6414 *
6415 * total target max
6416 * memory ratio inactive anon
6417 * -------------------------------------
6418 * 10MB 1 5MB
6419 * 100MB 1 50MB
6420 * 1GB 3 250MB
6421 * 10GB 10 0.9GB
6422 * 100GB 31 3GB
6423 * 1TB 101 10GB
6424 * 10TB 320 32GB
6425 */
1b79acc9 6426static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6427{
96cb4df5 6428 unsigned int gb, ratio;
556adecb 6429
96cb4df5 6430 /* Zone size in gigabytes */
b40da049 6431 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6432 if (gb)
556adecb 6433 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6434 else
6435 ratio = 1;
556adecb 6436
96cb4df5
MK
6437 zone->inactive_ratio = ratio;
6438}
556adecb 6439
839a4fcc 6440static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6441{
6442 struct zone *zone;
6443
6444 for_each_zone(zone)
6445 calculate_zone_inactive_ratio(zone);
556adecb
RR
6446}
6447
1da177e4
LT
6448/*
6449 * Initialise min_free_kbytes.
6450 *
6451 * For small machines we want it small (128k min). For large machines
6452 * we want it large (64MB max). But it is not linear, because network
6453 * bandwidth does not increase linearly with machine size. We use
6454 *
b8af2941 6455 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6456 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6457 *
6458 * which yields
6459 *
6460 * 16MB: 512k
6461 * 32MB: 724k
6462 * 64MB: 1024k
6463 * 128MB: 1448k
6464 * 256MB: 2048k
6465 * 512MB: 2896k
6466 * 1024MB: 4096k
6467 * 2048MB: 5792k
6468 * 4096MB: 8192k
6469 * 8192MB: 11584k
6470 * 16384MB: 16384k
6471 */
1b79acc9 6472int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6473{
6474 unsigned long lowmem_kbytes;
5f12733e 6475 int new_min_free_kbytes;
1da177e4
LT
6476
6477 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6478 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6479
6480 if (new_min_free_kbytes > user_min_free_kbytes) {
6481 min_free_kbytes = new_min_free_kbytes;
6482 if (min_free_kbytes < 128)
6483 min_free_kbytes = 128;
6484 if (min_free_kbytes > 65536)
6485 min_free_kbytes = 65536;
6486 } else {
6487 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6488 new_min_free_kbytes, user_min_free_kbytes);
6489 }
bc75d33f 6490 setup_per_zone_wmarks();
a6cccdc3 6491 refresh_zone_stat_thresholds();
1da177e4 6492 setup_per_zone_lowmem_reserve();
556adecb 6493 setup_per_zone_inactive_ratio();
1da177e4
LT
6494 return 0;
6495}
bc22af74 6496core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6497
6498/*
b8af2941 6499 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6500 * that we can call two helper functions whenever min_free_kbytes
6501 * changes.
6502 */
cccad5b9 6503int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6504 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6505{
da8c757b
HP
6506 int rc;
6507
6508 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6509 if (rc)
6510 return rc;
6511
5f12733e
MH
6512 if (write) {
6513 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6514 setup_per_zone_wmarks();
5f12733e 6515 }
1da177e4
LT
6516 return 0;
6517}
6518
795ae7a0
JW
6519int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6520 void __user *buffer, size_t *length, loff_t *ppos)
6521{
6522 int rc;
6523
6524 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6525 if (rc)
6526 return rc;
6527
6528 if (write)
6529 setup_per_zone_wmarks();
6530
6531 return 0;
6532}
6533
9614634f 6534#ifdef CONFIG_NUMA
cccad5b9 6535int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6536 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6537{
6538 struct zone *zone;
6539 int rc;
6540
8d65af78 6541 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6542 if (rc)
6543 return rc;
6544
6545 for_each_zone(zone)
b40da049 6546 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6547 sysctl_min_unmapped_ratio) / 100;
6548 return 0;
6549}
0ff38490 6550
cccad5b9 6551int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6552 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6553{
6554 struct zone *zone;
6555 int rc;
6556
8d65af78 6557 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6558 if (rc)
6559 return rc;
6560
6561 for_each_zone(zone)
b40da049 6562 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6563 sysctl_min_slab_ratio) / 100;
6564 return 0;
6565}
9614634f
CL
6566#endif
6567
1da177e4
LT
6568/*
6569 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6570 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6571 * whenever sysctl_lowmem_reserve_ratio changes.
6572 *
6573 * The reserve ratio obviously has absolutely no relation with the
41858966 6574 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6575 * if in function of the boot time zone sizes.
6576 */
cccad5b9 6577int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6578 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6579{
8d65af78 6580 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6581 setup_per_zone_lowmem_reserve();
6582 return 0;
6583}
6584
8ad4b1fb
RS
6585/*
6586 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6587 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6588 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6589 */
cccad5b9 6590int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6591 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6592{
6593 struct zone *zone;
7cd2b0a3 6594 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6595 int ret;
6596
7cd2b0a3
DR
6597 mutex_lock(&pcp_batch_high_lock);
6598 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6599
8d65af78 6600 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6601 if (!write || ret < 0)
6602 goto out;
6603
6604 /* Sanity checking to avoid pcp imbalance */
6605 if (percpu_pagelist_fraction &&
6606 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6607 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6608 ret = -EINVAL;
6609 goto out;
6610 }
6611
6612 /* No change? */
6613 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6614 goto out;
c8e251fa 6615
364df0eb 6616 for_each_populated_zone(zone) {
7cd2b0a3
DR
6617 unsigned int cpu;
6618
22a7f12b 6619 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6620 pageset_set_high_and_batch(zone,
6621 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6622 }
7cd2b0a3 6623out:
c8e251fa 6624 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6625 return ret;
8ad4b1fb
RS
6626}
6627
a9919c79 6628#ifdef CONFIG_NUMA
f034b5d4 6629int hashdist = HASHDIST_DEFAULT;
1da177e4 6630
1da177e4
LT
6631static int __init set_hashdist(char *str)
6632{
6633 if (!str)
6634 return 0;
6635 hashdist = simple_strtoul(str, &str, 0);
6636 return 1;
6637}
6638__setup("hashdist=", set_hashdist);
6639#endif
6640
6641/*
6642 * allocate a large system hash table from bootmem
6643 * - it is assumed that the hash table must contain an exact power-of-2
6644 * quantity of entries
6645 * - limit is the number of hash buckets, not the total allocation size
6646 */
6647void *__init alloc_large_system_hash(const char *tablename,
6648 unsigned long bucketsize,
6649 unsigned long numentries,
6650 int scale,
6651 int flags,
6652 unsigned int *_hash_shift,
6653 unsigned int *_hash_mask,
31fe62b9
TB
6654 unsigned long low_limit,
6655 unsigned long high_limit)
1da177e4 6656{
31fe62b9 6657 unsigned long long max = high_limit;
1da177e4
LT
6658 unsigned long log2qty, size;
6659 void *table = NULL;
6660
6661 /* allow the kernel cmdline to have a say */
6662 if (!numentries) {
6663 /* round applicable memory size up to nearest megabyte */
04903664 6664 numentries = nr_kernel_pages;
a7e83318
JZ
6665
6666 /* It isn't necessary when PAGE_SIZE >= 1MB */
6667 if (PAGE_SHIFT < 20)
6668 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6669
6670 /* limit to 1 bucket per 2^scale bytes of low memory */
6671 if (scale > PAGE_SHIFT)
6672 numentries >>= (scale - PAGE_SHIFT);
6673 else
6674 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6675
6676 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6677 if (unlikely(flags & HASH_SMALL)) {
6678 /* Makes no sense without HASH_EARLY */
6679 WARN_ON(!(flags & HASH_EARLY));
6680 if (!(numentries >> *_hash_shift)) {
6681 numentries = 1UL << *_hash_shift;
6682 BUG_ON(!numentries);
6683 }
6684 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6685 numentries = PAGE_SIZE / bucketsize;
1da177e4 6686 }
6e692ed3 6687 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6688
6689 /* limit allocation size to 1/16 total memory by default */
6690 if (max == 0) {
6691 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6692 do_div(max, bucketsize);
6693 }
074b8517 6694 max = min(max, 0x80000000ULL);
1da177e4 6695
31fe62b9
TB
6696 if (numentries < low_limit)
6697 numentries = low_limit;
1da177e4
LT
6698 if (numentries > max)
6699 numentries = max;
6700
f0d1b0b3 6701 log2qty = ilog2(numentries);
1da177e4
LT
6702
6703 do {
6704 size = bucketsize << log2qty;
6705 if (flags & HASH_EARLY)
6782832e 6706 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6707 else if (hashdist)
6708 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6709 else {
1037b83b
ED
6710 /*
6711 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6712 * some pages at the end of hash table which
6713 * alloc_pages_exact() automatically does
1037b83b 6714 */
264ef8a9 6715 if (get_order(size) < MAX_ORDER) {
a1dd268c 6716 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6717 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6718 }
1da177e4
LT
6719 }
6720 } while (!table && size > PAGE_SIZE && --log2qty);
6721
6722 if (!table)
6723 panic("Failed to allocate %s hash table\n", tablename);
6724
1170532b
JP
6725 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6726 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6727
6728 if (_hash_shift)
6729 *_hash_shift = log2qty;
6730 if (_hash_mask)
6731 *_hash_mask = (1 << log2qty) - 1;
6732
6733 return table;
6734}
a117e66e 6735
835c134e
MG
6736/* Return a pointer to the bitmap storing bits affecting a block of pages */
6737static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6738 unsigned long pfn)
6739{
6740#ifdef CONFIG_SPARSEMEM
6741 return __pfn_to_section(pfn)->pageblock_flags;
6742#else
6743 return zone->pageblock_flags;
6744#endif /* CONFIG_SPARSEMEM */
6745}
6746
6747static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6748{
6749#ifdef CONFIG_SPARSEMEM
6750 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6751 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6752#else
c060f943 6753 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6754 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6755#endif /* CONFIG_SPARSEMEM */
6756}
6757
6758/**
1aab4d77 6759 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6760 * @page: The page within the block of interest
1aab4d77
RD
6761 * @pfn: The target page frame number
6762 * @end_bitidx: The last bit of interest to retrieve
6763 * @mask: mask of bits that the caller is interested in
6764 *
6765 * Return: pageblock_bits flags
835c134e 6766 */
dc4b0caf 6767unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6768 unsigned long end_bitidx,
6769 unsigned long mask)
835c134e
MG
6770{
6771 struct zone *zone;
6772 unsigned long *bitmap;
dc4b0caf 6773 unsigned long bitidx, word_bitidx;
e58469ba 6774 unsigned long word;
835c134e
MG
6775
6776 zone = page_zone(page);
835c134e
MG
6777 bitmap = get_pageblock_bitmap(zone, pfn);
6778 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6779 word_bitidx = bitidx / BITS_PER_LONG;
6780 bitidx &= (BITS_PER_LONG-1);
835c134e 6781
e58469ba
MG
6782 word = bitmap[word_bitidx];
6783 bitidx += end_bitidx;
6784 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6785}
6786
6787/**
dc4b0caf 6788 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6789 * @page: The page within the block of interest
835c134e 6790 * @flags: The flags to set
1aab4d77
RD
6791 * @pfn: The target page frame number
6792 * @end_bitidx: The last bit of interest
6793 * @mask: mask of bits that the caller is interested in
835c134e 6794 */
dc4b0caf
MG
6795void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6796 unsigned long pfn,
e58469ba
MG
6797 unsigned long end_bitidx,
6798 unsigned long mask)
835c134e
MG
6799{
6800 struct zone *zone;
6801 unsigned long *bitmap;
dc4b0caf 6802 unsigned long bitidx, word_bitidx;
e58469ba
MG
6803 unsigned long old_word, word;
6804
6805 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6806
6807 zone = page_zone(page);
835c134e
MG
6808 bitmap = get_pageblock_bitmap(zone, pfn);
6809 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6810 word_bitidx = bitidx / BITS_PER_LONG;
6811 bitidx &= (BITS_PER_LONG-1);
6812
309381fe 6813 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6814
e58469ba
MG
6815 bitidx += end_bitidx;
6816 mask <<= (BITS_PER_LONG - bitidx - 1);
6817 flags <<= (BITS_PER_LONG - bitidx - 1);
6818
4db0c3c2 6819 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6820 for (;;) {
6821 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6822 if (word == old_word)
6823 break;
6824 word = old_word;
6825 }
835c134e 6826}
a5d76b54
KH
6827
6828/*
80934513
MK
6829 * This function checks whether pageblock includes unmovable pages or not.
6830 * If @count is not zero, it is okay to include less @count unmovable pages
6831 *
b8af2941 6832 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6833 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6834 * expect this function should be exact.
a5d76b54 6835 */
b023f468
WC
6836bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6837 bool skip_hwpoisoned_pages)
49ac8255
KH
6838{
6839 unsigned long pfn, iter, found;
47118af0
MN
6840 int mt;
6841
49ac8255
KH
6842 /*
6843 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6844 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6845 */
6846 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6847 return false;
47118af0
MN
6848 mt = get_pageblock_migratetype(page);
6849 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6850 return false;
49ac8255
KH
6851
6852 pfn = page_to_pfn(page);
6853 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6854 unsigned long check = pfn + iter;
6855
29723fcc 6856 if (!pfn_valid_within(check))
49ac8255 6857 continue;
29723fcc 6858
49ac8255 6859 page = pfn_to_page(check);
c8721bbb
NH
6860
6861 /*
6862 * Hugepages are not in LRU lists, but they're movable.
6863 * We need not scan over tail pages bacause we don't
6864 * handle each tail page individually in migration.
6865 */
6866 if (PageHuge(page)) {
6867 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6868 continue;
6869 }
6870
97d255c8
MK
6871 /*
6872 * We can't use page_count without pin a page
6873 * because another CPU can free compound page.
6874 * This check already skips compound tails of THP
0139aa7b 6875 * because their page->_refcount is zero at all time.
97d255c8 6876 */
fe896d18 6877 if (!page_ref_count(page)) {
49ac8255
KH
6878 if (PageBuddy(page))
6879 iter += (1 << page_order(page)) - 1;
6880 continue;
6881 }
97d255c8 6882
b023f468
WC
6883 /*
6884 * The HWPoisoned page may be not in buddy system, and
6885 * page_count() is not 0.
6886 */
6887 if (skip_hwpoisoned_pages && PageHWPoison(page))
6888 continue;
6889
49ac8255
KH
6890 if (!PageLRU(page))
6891 found++;
6892 /*
6b4f7799
JW
6893 * If there are RECLAIMABLE pages, we need to check
6894 * it. But now, memory offline itself doesn't call
6895 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6896 */
6897 /*
6898 * If the page is not RAM, page_count()should be 0.
6899 * we don't need more check. This is an _used_ not-movable page.
6900 *
6901 * The problematic thing here is PG_reserved pages. PG_reserved
6902 * is set to both of a memory hole page and a _used_ kernel
6903 * page at boot.
6904 */
6905 if (found > count)
80934513 6906 return true;
49ac8255 6907 }
80934513 6908 return false;
49ac8255
KH
6909}
6910
6911bool is_pageblock_removable_nolock(struct page *page)
6912{
656a0706
MH
6913 struct zone *zone;
6914 unsigned long pfn;
687875fb
MH
6915
6916 /*
6917 * We have to be careful here because we are iterating over memory
6918 * sections which are not zone aware so we might end up outside of
6919 * the zone but still within the section.
656a0706
MH
6920 * We have to take care about the node as well. If the node is offline
6921 * its NODE_DATA will be NULL - see page_zone.
687875fb 6922 */
656a0706
MH
6923 if (!node_online(page_to_nid(page)))
6924 return false;
6925
6926 zone = page_zone(page);
6927 pfn = page_to_pfn(page);
108bcc96 6928 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6929 return false;
6930
b023f468 6931 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6932}
0c0e6195 6933
080fe206 6934#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6935
6936static unsigned long pfn_max_align_down(unsigned long pfn)
6937{
6938 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6939 pageblock_nr_pages) - 1);
6940}
6941
6942static unsigned long pfn_max_align_up(unsigned long pfn)
6943{
6944 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6945 pageblock_nr_pages));
6946}
6947
041d3a8c 6948/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6949static int __alloc_contig_migrate_range(struct compact_control *cc,
6950 unsigned long start, unsigned long end)
041d3a8c
MN
6951{
6952 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6953 unsigned long nr_reclaimed;
041d3a8c
MN
6954 unsigned long pfn = start;
6955 unsigned int tries = 0;
6956 int ret = 0;
6957
be49a6e1 6958 migrate_prep();
041d3a8c 6959
bb13ffeb 6960 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6961 if (fatal_signal_pending(current)) {
6962 ret = -EINTR;
6963 break;
6964 }
6965
bb13ffeb
MG
6966 if (list_empty(&cc->migratepages)) {
6967 cc->nr_migratepages = 0;
edc2ca61 6968 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6969 if (!pfn) {
6970 ret = -EINTR;
6971 break;
6972 }
6973 tries = 0;
6974 } else if (++tries == 5) {
6975 ret = ret < 0 ? ret : -EBUSY;
6976 break;
6977 }
6978
beb51eaa
MK
6979 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6980 &cc->migratepages);
6981 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6982
9c620e2b 6983 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6984 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6985 }
2a6f5124
SP
6986 if (ret < 0) {
6987 putback_movable_pages(&cc->migratepages);
6988 return ret;
6989 }
6990 return 0;
041d3a8c
MN
6991}
6992
6993/**
6994 * alloc_contig_range() -- tries to allocate given range of pages
6995 * @start: start PFN to allocate
6996 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6997 * @migratetype: migratetype of the underlaying pageblocks (either
6998 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6999 * in range must have the same migratetype and it must
7000 * be either of the two.
041d3a8c
MN
7001 *
7002 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7003 * aligned, however it's the caller's responsibility to guarantee that
7004 * we are the only thread that changes migrate type of pageblocks the
7005 * pages fall in.
7006 *
7007 * The PFN range must belong to a single zone.
7008 *
7009 * Returns zero on success or negative error code. On success all
7010 * pages which PFN is in [start, end) are allocated for the caller and
7011 * need to be freed with free_contig_range().
7012 */
0815f3d8
MN
7013int alloc_contig_range(unsigned long start, unsigned long end,
7014 unsigned migratetype)
041d3a8c 7015{
041d3a8c 7016 unsigned long outer_start, outer_end;
d00181b9
KS
7017 unsigned int order;
7018 int ret = 0;
041d3a8c 7019
bb13ffeb
MG
7020 struct compact_control cc = {
7021 .nr_migratepages = 0,
7022 .order = -1,
7023 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7024 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7025 .ignore_skip_hint = true,
7026 };
7027 INIT_LIST_HEAD(&cc.migratepages);
7028
041d3a8c
MN
7029 /*
7030 * What we do here is we mark all pageblocks in range as
7031 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7032 * have different sizes, and due to the way page allocator
7033 * work, we align the range to biggest of the two pages so
7034 * that page allocator won't try to merge buddies from
7035 * different pageblocks and change MIGRATE_ISOLATE to some
7036 * other migration type.
7037 *
7038 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7039 * migrate the pages from an unaligned range (ie. pages that
7040 * we are interested in). This will put all the pages in
7041 * range back to page allocator as MIGRATE_ISOLATE.
7042 *
7043 * When this is done, we take the pages in range from page
7044 * allocator removing them from the buddy system. This way
7045 * page allocator will never consider using them.
7046 *
7047 * This lets us mark the pageblocks back as
7048 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7049 * aligned range but not in the unaligned, original range are
7050 * put back to page allocator so that buddy can use them.
7051 */
7052
7053 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7054 pfn_max_align_up(end), migratetype,
7055 false);
041d3a8c 7056 if (ret)
86a595f9 7057 return ret;
041d3a8c 7058
8ef5849f
JK
7059 /*
7060 * In case of -EBUSY, we'd like to know which page causes problem.
7061 * So, just fall through. We will check it in test_pages_isolated().
7062 */
bb13ffeb 7063 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7064 if (ret && ret != -EBUSY)
041d3a8c
MN
7065 goto done;
7066
7067 /*
7068 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7069 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7070 * more, all pages in [start, end) are free in page allocator.
7071 * What we are going to do is to allocate all pages from
7072 * [start, end) (that is remove them from page allocator).
7073 *
7074 * The only problem is that pages at the beginning and at the
7075 * end of interesting range may be not aligned with pages that
7076 * page allocator holds, ie. they can be part of higher order
7077 * pages. Because of this, we reserve the bigger range and
7078 * once this is done free the pages we are not interested in.
7079 *
7080 * We don't have to hold zone->lock here because the pages are
7081 * isolated thus they won't get removed from buddy.
7082 */
7083
7084 lru_add_drain_all();
510f5507 7085 drain_all_pages(cc.zone);
041d3a8c
MN
7086
7087 order = 0;
7088 outer_start = start;
7089 while (!PageBuddy(pfn_to_page(outer_start))) {
7090 if (++order >= MAX_ORDER) {
8ef5849f
JK
7091 outer_start = start;
7092 break;
041d3a8c
MN
7093 }
7094 outer_start &= ~0UL << order;
7095 }
7096
8ef5849f
JK
7097 if (outer_start != start) {
7098 order = page_order(pfn_to_page(outer_start));
7099
7100 /*
7101 * outer_start page could be small order buddy page and
7102 * it doesn't include start page. Adjust outer_start
7103 * in this case to report failed page properly
7104 * on tracepoint in test_pages_isolated()
7105 */
7106 if (outer_start + (1UL << order) <= start)
7107 outer_start = start;
7108 }
7109
041d3a8c 7110 /* Make sure the range is really isolated. */
b023f468 7111 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7112 pr_info("%s: [%lx, %lx) PFNs busy\n",
7113 __func__, outer_start, end);
041d3a8c
MN
7114 ret = -EBUSY;
7115 goto done;
7116 }
7117
49f223a9 7118 /* Grab isolated pages from freelists. */
bb13ffeb 7119 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7120 if (!outer_end) {
7121 ret = -EBUSY;
7122 goto done;
7123 }
7124
7125 /* Free head and tail (if any) */
7126 if (start != outer_start)
7127 free_contig_range(outer_start, start - outer_start);
7128 if (end != outer_end)
7129 free_contig_range(end, outer_end - end);
7130
7131done:
7132 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7133 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7134 return ret;
7135}
7136
7137void free_contig_range(unsigned long pfn, unsigned nr_pages)
7138{
bcc2b02f
MS
7139 unsigned int count = 0;
7140
7141 for (; nr_pages--; pfn++) {
7142 struct page *page = pfn_to_page(pfn);
7143
7144 count += page_count(page) != 1;
7145 __free_page(page);
7146 }
7147 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7148}
7149#endif
7150
4ed7e022 7151#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7152/*
7153 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7154 * page high values need to be recalulated.
7155 */
4ed7e022
JL
7156void __meminit zone_pcp_update(struct zone *zone)
7157{
0a647f38 7158 unsigned cpu;
c8e251fa 7159 mutex_lock(&pcp_batch_high_lock);
0a647f38 7160 for_each_possible_cpu(cpu)
169f6c19
CS
7161 pageset_set_high_and_batch(zone,
7162 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7163 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7164}
7165#endif
7166
340175b7
JL
7167void zone_pcp_reset(struct zone *zone)
7168{
7169 unsigned long flags;
5a883813
MK
7170 int cpu;
7171 struct per_cpu_pageset *pset;
340175b7
JL
7172
7173 /* avoid races with drain_pages() */
7174 local_irq_save(flags);
7175 if (zone->pageset != &boot_pageset) {
5a883813
MK
7176 for_each_online_cpu(cpu) {
7177 pset = per_cpu_ptr(zone->pageset, cpu);
7178 drain_zonestat(zone, pset);
7179 }
340175b7
JL
7180 free_percpu(zone->pageset);
7181 zone->pageset = &boot_pageset;
7182 }
7183 local_irq_restore(flags);
7184}
7185
6dcd73d7 7186#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7187/*
b9eb6319
JK
7188 * All pages in the range must be in a single zone and isolated
7189 * before calling this.
0c0e6195
KH
7190 */
7191void
7192__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7193{
7194 struct page *page;
7195 struct zone *zone;
7aeb09f9 7196 unsigned int order, i;
0c0e6195
KH
7197 unsigned long pfn;
7198 unsigned long flags;
7199 /* find the first valid pfn */
7200 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7201 if (pfn_valid(pfn))
7202 break;
7203 if (pfn == end_pfn)
7204 return;
7205 zone = page_zone(pfn_to_page(pfn));
7206 spin_lock_irqsave(&zone->lock, flags);
7207 pfn = start_pfn;
7208 while (pfn < end_pfn) {
7209 if (!pfn_valid(pfn)) {
7210 pfn++;
7211 continue;
7212 }
7213 page = pfn_to_page(pfn);
b023f468
WC
7214 /*
7215 * The HWPoisoned page may be not in buddy system, and
7216 * page_count() is not 0.
7217 */
7218 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7219 pfn++;
7220 SetPageReserved(page);
7221 continue;
7222 }
7223
0c0e6195
KH
7224 BUG_ON(page_count(page));
7225 BUG_ON(!PageBuddy(page));
7226 order = page_order(page);
7227#ifdef CONFIG_DEBUG_VM
1170532b
JP
7228 pr_info("remove from free list %lx %d %lx\n",
7229 pfn, 1 << order, end_pfn);
0c0e6195
KH
7230#endif
7231 list_del(&page->lru);
7232 rmv_page_order(page);
7233 zone->free_area[order].nr_free--;
0c0e6195
KH
7234 for (i = 0; i < (1 << order); i++)
7235 SetPageReserved((page+i));
7236 pfn += (1 << order);
7237 }
7238 spin_unlock_irqrestore(&zone->lock, flags);
7239}
7240#endif
8d22ba1b 7241
8d22ba1b
WF
7242bool is_free_buddy_page(struct page *page)
7243{
7244 struct zone *zone = page_zone(page);
7245 unsigned long pfn = page_to_pfn(page);
7246 unsigned long flags;
7aeb09f9 7247 unsigned int order;
8d22ba1b
WF
7248
7249 spin_lock_irqsave(&zone->lock, flags);
7250 for (order = 0; order < MAX_ORDER; order++) {
7251 struct page *page_head = page - (pfn & ((1 << order) - 1));
7252
7253 if (PageBuddy(page_head) && page_order(page_head) >= order)
7254 break;
7255 }
7256 spin_unlock_irqrestore(&zone->lock, flags);
7257
7258 return order < MAX_ORDER;
7259}