kasan, arm64: print report from tag fault handler
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
1da177e4 75
7ee3d4e8 76#include <asm/sections.h>
1da177e4 77#include <asm/tlbflush.h>
ac924c60 78#include <asm/div64.h>
1da177e4 79#include "internal.h"
e900a918 80#include "shuffle.h"
36e66c55 81#include "page_reporting.h"
1da177e4 82
f04a5d5d
DH
83/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84typedef int __bitwise fpi_t;
85
86/* No special request */
87#define FPI_NONE ((__force fpi_t)0)
88
89/*
90 * Skip free page reporting notification for the (possibly merged) page.
91 * This does not hinder free page reporting from grabbing the page,
92 * reporting it and marking it "reported" - it only skips notifying
93 * the free page reporting infrastructure about a newly freed page. For
94 * example, used when temporarily pulling a page from a freelist and
95 * putting it back unmodified.
96 */
97#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
98
47b6a24a
DH
99/*
100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
101 * page shuffling (relevant code - e.g., memory onlining - is expected to
102 * shuffle the whole zone).
103 *
104 * Note: No code should rely on this flag for correctness - it's purely
105 * to allow for optimizations when handing back either fresh pages
106 * (memory onlining) or untouched pages (page isolation, free page
107 * reporting).
108 */
109#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
110
c8e251fa
CS
111/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 113#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 114
72812019
LS
115#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116DEFINE_PER_CPU(int, numa_node);
117EXPORT_PER_CPU_SYMBOL(numa_node);
118#endif
119
4518085e
KW
120DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121
7aac7898
LS
122#ifdef CONFIG_HAVE_MEMORYLESS_NODES
123/*
124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127 * defined in <linux/topology.h>.
128 */
129DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
130EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131#endif
132
bd233f53 133/* work_structs for global per-cpu drains */
d9367bd0
WY
134struct pcpu_drain {
135 struct zone *zone;
136 struct work_struct work;
137};
8b885f53
JY
138static DEFINE_MUTEX(pcpu_drain_mutex);
139static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 140
38addce8 141#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 142volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
143EXPORT_SYMBOL(latent_entropy);
144#endif
145
1da177e4 146/*
13808910 147 * Array of node states.
1da177e4 148 */
13808910
CL
149nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 [N_POSSIBLE] = NODE_MASK_ALL,
151 [N_ONLINE] = { { [0] = 1UL } },
152#ifndef CONFIG_NUMA
153 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
154#ifdef CONFIG_HIGHMEM
155 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 156#endif
20b2f52b 157 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
158 [N_CPU] = { { [0] = 1UL } },
159#endif /* NUMA */
160};
161EXPORT_SYMBOL(node_states);
162
ca79b0c2
AK
163atomic_long_t _totalram_pages __read_mostly;
164EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 165unsigned long totalreserve_pages __read_mostly;
e48322ab 166unsigned long totalcma_pages __read_mostly;
ab8fabd4 167
1b76b02f 168int percpu_pagelist_fraction;
dcce284a 169gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a 170DEFINE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
171EXPORT_SYMBOL(init_on_alloc);
172
6471384a 173DEFINE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
174EXPORT_SYMBOL(init_on_free);
175
04013513
VB
176static bool _init_on_alloc_enabled_early __read_mostly
177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
178static int __init early_init_on_alloc(char *buf)
179{
6471384a 180
04013513 181 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
182}
183early_param("init_on_alloc", early_init_on_alloc);
184
04013513
VB
185static bool _init_on_free_enabled_early __read_mostly
186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
187static int __init early_init_on_free(char *buf)
188{
04013513 189 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
190}
191early_param("init_on_free", early_init_on_free);
1da177e4 192
bb14c2c7
VB
193/*
194 * A cached value of the page's pageblock's migratetype, used when the page is
195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197 * Also the migratetype set in the page does not necessarily match the pcplist
198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199 * other index - this ensures that it will be put on the correct CMA freelist.
200 */
201static inline int get_pcppage_migratetype(struct page *page)
202{
203 return page->index;
204}
205
206static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207{
208 page->index = migratetype;
209}
210
452aa699
RW
211#ifdef CONFIG_PM_SLEEP
212/*
213 * The following functions are used by the suspend/hibernate code to temporarily
214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
216 * they should always be called with system_transition_mutex held
217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219 * with that modification).
452aa699 220 */
c9e664f1
RW
221
222static gfp_t saved_gfp_mask;
223
224void pm_restore_gfp_mask(void)
452aa699 225{
55f2503c 226 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
227 if (saved_gfp_mask) {
228 gfp_allowed_mask = saved_gfp_mask;
229 saved_gfp_mask = 0;
230 }
452aa699
RW
231}
232
c9e664f1 233void pm_restrict_gfp_mask(void)
452aa699 234{
55f2503c 235 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
236 WARN_ON(saved_gfp_mask);
237 saved_gfp_mask = gfp_allowed_mask;
d0164adc 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 239}
f90ac398
MG
240
241bool pm_suspended_storage(void)
242{
d0164adc 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
244 return false;
245 return true;
246}
452aa699
RW
247#endif /* CONFIG_PM_SLEEP */
248
d9c23400 249#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 250unsigned int pageblock_order __read_mostly;
d9c23400
MG
251#endif
252
7fef431b
DH
253static void __free_pages_ok(struct page *page, unsigned int order,
254 fpi_t fpi_flags);
a226f6c8 255
1da177e4
LT
256/*
257 * results with 256, 32 in the lowmem_reserve sysctl:
258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259 * 1G machine -> (16M dma, 784M normal, 224M high)
260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
263 *
264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
265 * don't need any ZONE_NORMAL reservation
1da177e4 266 */
d3cda233 267int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 268#ifdef CONFIG_ZONE_DMA
d3cda233 269 [ZONE_DMA] = 256,
4b51d669 270#endif
fb0e7942 271#ifdef CONFIG_ZONE_DMA32
d3cda233 272 [ZONE_DMA32] = 256,
fb0e7942 273#endif
d3cda233 274 [ZONE_NORMAL] = 32,
e53ef38d 275#ifdef CONFIG_HIGHMEM
d3cda233 276 [ZONE_HIGHMEM] = 0,
e53ef38d 277#endif
d3cda233 278 [ZONE_MOVABLE] = 0,
2f1b6248 279};
1da177e4 280
15ad7cdc 281static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 282#ifdef CONFIG_ZONE_DMA
2f1b6248 283 "DMA",
4b51d669 284#endif
fb0e7942 285#ifdef CONFIG_ZONE_DMA32
2f1b6248 286 "DMA32",
fb0e7942 287#endif
2f1b6248 288 "Normal",
e53ef38d 289#ifdef CONFIG_HIGHMEM
2a1e274a 290 "HighMem",
e53ef38d 291#endif
2a1e274a 292 "Movable",
033fbae9
DW
293#ifdef CONFIG_ZONE_DEVICE
294 "Device",
295#endif
2f1b6248
CL
296};
297
c999fbd3 298const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
299 "Unmovable",
300 "Movable",
301 "Reclaimable",
302 "HighAtomic",
303#ifdef CONFIG_CMA
304 "CMA",
305#endif
306#ifdef CONFIG_MEMORY_ISOLATION
307 "Isolate",
308#endif
309};
310
ae70eddd
AK
311compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 [NULL_COMPOUND_DTOR] = NULL,
313 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 314#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 315 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 316#endif
9a982250 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 319#endif
f1e61557
KS
320};
321
1da177e4 322int min_free_kbytes = 1024;
42aa83cb 323int user_min_free_kbytes = -1;
24512228
MG
324#ifdef CONFIG_DISCONTIGMEM
325/*
326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327 * are not on separate NUMA nodes. Functionally this works but with
328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329 * quite small. By default, do not boost watermarks on discontigmem as in
330 * many cases very high-order allocations like THP are likely to be
331 * unsupported and the premature reclaim offsets the advantage of long-term
332 * fragmentation avoidance.
333 */
334int watermark_boost_factor __read_mostly;
335#else
1c30844d 336int watermark_boost_factor __read_mostly = 15000;
24512228 337#endif
795ae7a0 338int watermark_scale_factor = 10;
1da177e4 339
bbe5d993
OS
340static unsigned long nr_kernel_pages __initdata;
341static unsigned long nr_all_pages __initdata;
342static unsigned long dma_reserve __initdata;
1da177e4 343
bbe5d993
OS
344static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 346static unsigned long required_kernelcore __initdata;
a5c6d650 347static unsigned long required_kernelcore_percent __initdata;
7f16f91f 348static unsigned long required_movablecore __initdata;
a5c6d650 349static unsigned long required_movablecore_percent __initdata;
bbe5d993 350static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 351static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
352
353/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354int movable_zone;
355EXPORT_SYMBOL(movable_zone);
c713216d 356
418508c1 357#if MAX_NUMNODES > 1
b9726c26 358unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 359unsigned int nr_online_nodes __read_mostly = 1;
418508c1 360EXPORT_SYMBOL(nr_node_ids);
62bc62a8 361EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
362#endif
363
9ef9acb0
MG
364int page_group_by_mobility_disabled __read_mostly;
365
3a80a7fa 366#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
367/*
368 * During boot we initialize deferred pages on-demand, as needed, but once
369 * page_alloc_init_late() has finished, the deferred pages are all initialized,
370 * and we can permanently disable that path.
371 */
372static DEFINE_STATIC_KEY_TRUE(deferred_pages);
373
374/*
375 * Calling kasan_free_pages() only after deferred memory initialization
376 * has completed. Poisoning pages during deferred memory init will greatly
377 * lengthen the process and cause problem in large memory systems as the
378 * deferred pages initialization is done with interrupt disabled.
379 *
380 * Assuming that there will be no reference to those newly initialized
381 * pages before they are ever allocated, this should have no effect on
382 * KASAN memory tracking as the poison will be properly inserted at page
383 * allocation time. The only corner case is when pages are allocated by
384 * on-demand allocation and then freed again before the deferred pages
385 * initialization is done, but this is not likely to happen.
386 */
387static inline void kasan_free_nondeferred_pages(struct page *page, int order)
388{
389 if (!static_branch_unlikely(&deferred_pages))
390 kasan_free_pages(page, order);
391}
392
3a80a7fa 393/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 394static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 395{
ef70b6f4
MG
396 int nid = early_pfn_to_nid(pfn);
397
398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
399 return true;
400
401 return false;
402}
403
404/*
d3035be4 405 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
406 * later in the boot cycle when it can be parallelised.
407 */
d3035be4
PT
408static bool __meminit
409defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 410{
d3035be4
PT
411 static unsigned long prev_end_pfn, nr_initialised;
412
413 /*
414 * prev_end_pfn static that contains the end of previous zone
415 * No need to protect because called very early in boot before smp_init.
416 */
417 if (prev_end_pfn != end_pfn) {
418 prev_end_pfn = end_pfn;
419 nr_initialised = 0;
420 }
421
3c2c6488 422 /* Always populate low zones for address-constrained allocations */
d3035be4 423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 424 return false;
23b68cfa
WY
425
426 /*
427 * We start only with one section of pages, more pages are added as
428 * needed until the rest of deferred pages are initialized.
429 */
d3035be4 430 nr_initialised++;
23b68cfa 431 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
432 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
433 NODE_DATA(nid)->first_deferred_pfn = pfn;
434 return true;
3a80a7fa 435 }
d3035be4 436 return false;
3a80a7fa
MG
437}
438#else
3c0c12cc
WL
439#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
440
3a80a7fa
MG
441static inline bool early_page_uninitialised(unsigned long pfn)
442{
443 return false;
444}
445
d3035be4 446static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 447{
d3035be4 448 return false;
3a80a7fa
MG
449}
450#endif
451
0b423ca2
MG
452/* Return a pointer to the bitmap storing bits affecting a block of pages */
453static inline unsigned long *get_pageblock_bitmap(struct page *page,
454 unsigned long pfn)
455{
456#ifdef CONFIG_SPARSEMEM
f1eca35a 457 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
458#else
459 return page_zone(page)->pageblock_flags;
460#endif /* CONFIG_SPARSEMEM */
461}
462
463static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
464{
465#ifdef CONFIG_SPARSEMEM
466 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
467#else
468 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 469#endif /* CONFIG_SPARSEMEM */
399b795b 470 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
471}
472
535b81e2
WY
473static __always_inline
474unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 475 unsigned long pfn,
0b423ca2
MG
476 unsigned long mask)
477{
478 unsigned long *bitmap;
479 unsigned long bitidx, word_bitidx;
480 unsigned long word;
481
482 bitmap = get_pageblock_bitmap(page, pfn);
483 bitidx = pfn_to_bitidx(page, pfn);
484 word_bitidx = bitidx / BITS_PER_LONG;
485 bitidx &= (BITS_PER_LONG-1);
486
487 word = bitmap[word_bitidx];
d93d5ab9 488 return (word >> bitidx) & mask;
0b423ca2
MG
489}
490
a00cda3f
MCC
491/**
492 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
493 * @page: The page within the block of interest
494 * @pfn: The target page frame number
495 * @mask: mask of bits that the caller is interested in
496 *
497 * Return: pageblock_bits flags
498 */
0b423ca2 499unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
500 unsigned long mask)
501{
535b81e2 502 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
535b81e2 507 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
0b423ca2
MG
515 * @mask: mask of bits that the caller is interested in
516 */
517void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 unsigned long pfn,
0b423ca2
MG
519 unsigned long mask)
520{
521 unsigned long *bitmap;
522 unsigned long bitidx, word_bitidx;
523 unsigned long old_word, word;
524
525 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 526 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
527
528 bitmap = get_pageblock_bitmap(page, pfn);
529 bitidx = pfn_to_bitidx(page, pfn);
530 word_bitidx = bitidx / BITS_PER_LONG;
531 bitidx &= (BITS_PER_LONG-1);
532
533 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534
d93d5ab9
WY
535 mask <<= bitidx;
536 flags <<= bitidx;
0b423ca2
MG
537
538 word = READ_ONCE(bitmap[word_bitidx]);
539 for (;;) {
540 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
541 if (word == old_word)
542 break;
543 word = old_word;
544 }
545}
3a80a7fa 546
ee6f509c 547void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 548{
5d0f3f72
KM
549 if (unlikely(page_group_by_mobility_disabled &&
550 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
551 migratetype = MIGRATE_UNMOVABLE;
552
d93d5ab9 553 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 554 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
555}
556
13e7444b 557#ifdef CONFIG_DEBUG_VM
c6a57e19 558static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 559{
bdc8cb98
DH
560 int ret = 0;
561 unsigned seq;
562 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 563 unsigned long sp, start_pfn;
c6a57e19 564
bdc8cb98
DH
565 do {
566 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
567 start_pfn = zone->zone_start_pfn;
568 sp = zone->spanned_pages;
108bcc96 569 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
570 ret = 1;
571 } while (zone_span_seqretry(zone, seq));
572
b5e6a5a2 573 if (ret)
613813e8
DH
574 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
575 pfn, zone_to_nid(zone), zone->name,
576 start_pfn, start_pfn + sp);
b5e6a5a2 577
bdc8cb98 578 return ret;
c6a57e19
DH
579}
580
581static int page_is_consistent(struct zone *zone, struct page *page)
582{
14e07298 583 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 584 return 0;
1da177e4 585 if (zone != page_zone(page))
c6a57e19
DH
586 return 0;
587
588 return 1;
589}
590/*
591 * Temporary debugging check for pages not lying within a given zone.
592 */
d73d3c9f 593static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
594{
595 if (page_outside_zone_boundaries(zone, page))
1da177e4 596 return 1;
c6a57e19
DH
597 if (!page_is_consistent(zone, page))
598 return 1;
599
1da177e4
LT
600 return 0;
601}
13e7444b 602#else
d73d3c9f 603static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
604{
605 return 0;
606}
607#endif
608
82a3241a 609static void bad_page(struct page *page, const char *reason)
1da177e4 610{
d936cf9b
HD
611 static unsigned long resume;
612 static unsigned long nr_shown;
613 static unsigned long nr_unshown;
614
615 /*
616 * Allow a burst of 60 reports, then keep quiet for that minute;
617 * or allow a steady drip of one report per second.
618 */
619 if (nr_shown == 60) {
620 if (time_before(jiffies, resume)) {
621 nr_unshown++;
622 goto out;
623 }
624 if (nr_unshown) {
ff8e8116 625 pr_alert(
1e9e6365 626 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
627 nr_unshown);
628 nr_unshown = 0;
629 }
630 nr_shown = 0;
631 }
632 if (nr_shown++ == 0)
633 resume = jiffies + 60 * HZ;
634
ff8e8116 635 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 636 current->comm, page_to_pfn(page));
ff8e8116 637 __dump_page(page, reason);
4e462112 638 dump_page_owner(page);
3dc14741 639
4f31888c 640 print_modules();
1da177e4 641 dump_stack();
d936cf9b 642out:
8cc3b392 643 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 644 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 645 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
646}
647
1da177e4
LT
648/*
649 * Higher-order pages are called "compound pages". They are structured thusly:
650 *
1d798ca3 651 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 652 *
1d798ca3
KS
653 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
654 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 655 *
1d798ca3
KS
656 * The first tail page's ->compound_dtor holds the offset in array of compound
657 * page destructors. See compound_page_dtors.
1da177e4 658 *
1d798ca3 659 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 660 * This usage means that zero-order pages may not be compound.
1da177e4 661 */
d98c7a09 662
9a982250 663void free_compound_page(struct page *page)
d98c7a09 664{
7ae88534 665 mem_cgroup_uncharge(page);
7fef431b 666 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
667}
668
d00181b9 669void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
670{
671 int i;
672 int nr_pages = 1 << order;
673
18229df5
AW
674 __SetPageHead(page);
675 for (i = 1; i < nr_pages; i++) {
676 struct page *p = page + i;
58a84aa9 677 set_page_count(p, 0);
1c290f64 678 p->mapping = TAIL_MAPPING;
1d798ca3 679 set_compound_head(p, page);
18229df5 680 }
1378a5ee
MWO
681
682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 set_compound_order(page, order);
53f9263b 684 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
685 if (hpage_pincount_available(page))
686 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
687}
688
c0a32fc5
SG
689#ifdef CONFIG_DEBUG_PAGEALLOC
690unsigned int _debug_guardpage_minorder;
96a2b03f 691
8e57f8ac
VB
692bool _debug_pagealloc_enabled_early __read_mostly
693 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
694EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 695DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 696EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
697
698DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 699
031bc574
JK
700static int __init early_debug_pagealloc(char *buf)
701{
8e57f8ac 702 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
703}
704early_param("debug_pagealloc", early_debug_pagealloc);
705
c0a32fc5
SG
706static int __init debug_guardpage_minorder_setup(char *buf)
707{
708 unsigned long res;
709
710 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 711 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
712 return 0;
713 }
714 _debug_guardpage_minorder = res;
1170532b 715 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
716 return 0;
717}
f1c1e9f7 718early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 719
acbc15a4 720static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 721 unsigned int order, int migratetype)
c0a32fc5 722{
e30825f1 723 if (!debug_guardpage_enabled())
acbc15a4
JK
724 return false;
725
726 if (order >= debug_guardpage_minorder())
727 return false;
e30825f1 728
3972f6bb 729 __SetPageGuard(page);
2847cf95
JK
730 INIT_LIST_HEAD(&page->lru);
731 set_page_private(page, order);
732 /* Guard pages are not available for any usage */
733 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
734
735 return true;
c0a32fc5
SG
736}
737
2847cf95
JK
738static inline void clear_page_guard(struct zone *zone, struct page *page,
739 unsigned int order, int migratetype)
c0a32fc5 740{
e30825f1
JK
741 if (!debug_guardpage_enabled())
742 return;
743
3972f6bb 744 __ClearPageGuard(page);
e30825f1 745
2847cf95
JK
746 set_page_private(page, 0);
747 if (!is_migrate_isolate(migratetype))
748 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
749}
750#else
acbc15a4
JK
751static inline bool set_page_guard(struct zone *zone, struct page *page,
752 unsigned int order, int migratetype) { return false; }
2847cf95
JK
753static inline void clear_page_guard(struct zone *zone, struct page *page,
754 unsigned int order, int migratetype) {}
c0a32fc5
SG
755#endif
756
04013513
VB
757/*
758 * Enable static keys related to various memory debugging and hardening options.
759 * Some override others, and depend on early params that are evaluated in the
760 * order of appearance. So we need to first gather the full picture of what was
761 * enabled, and then make decisions.
762 */
763void init_mem_debugging_and_hardening(void)
764{
765 if (_init_on_alloc_enabled_early) {
766 if (page_poisoning_enabled())
767 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
768 "will take precedence over init_on_alloc\n");
769 else
770 static_branch_enable(&init_on_alloc);
771 }
772 if (_init_on_free_enabled_early) {
773 if (page_poisoning_enabled())
774 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
775 "will take precedence over init_on_free\n");
776 else
777 static_branch_enable(&init_on_free);
778 }
779
8db26a3d
VB
780#ifdef CONFIG_PAGE_POISONING
781 /*
782 * Page poisoning is debug page alloc for some arches. If
783 * either of those options are enabled, enable poisoning.
784 */
785 if (page_poisoning_enabled() ||
786 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
787 debug_pagealloc_enabled()))
788 static_branch_enable(&_page_poisoning_enabled);
789#endif
790
04013513
VB
791#ifdef CONFIG_DEBUG_PAGEALLOC
792 if (!debug_pagealloc_enabled())
793 return;
794
795 static_branch_enable(&_debug_pagealloc_enabled);
796
797 if (!debug_guardpage_minorder())
798 return;
799
800 static_branch_enable(&_debug_guardpage_enabled);
801#endif
802}
803
ab130f91 804static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 805{
4c21e2f2 806 set_page_private(page, order);
676165a8 807 __SetPageBuddy(page);
1da177e4
LT
808}
809
1da177e4
LT
810/*
811 * This function checks whether a page is free && is the buddy
6e292b9b 812 * we can coalesce a page and its buddy if
13ad59df 813 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 814 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
815 * (c) a page and its buddy have the same order &&
816 * (d) a page and its buddy are in the same zone.
676165a8 817 *
6e292b9b
MW
818 * For recording whether a page is in the buddy system, we set PageBuddy.
819 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 820 *
676165a8 821 * For recording page's order, we use page_private(page).
1da177e4 822 */
fe925c0c 823static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 824 unsigned int order)
1da177e4 825{
fe925c0c 826 if (!page_is_guard(buddy) && !PageBuddy(buddy))
827 return false;
4c5018ce 828
ab130f91 829 if (buddy_order(buddy) != order)
fe925c0c 830 return false;
c0a32fc5 831
fe925c0c 832 /*
833 * zone check is done late to avoid uselessly calculating
834 * zone/node ids for pages that could never merge.
835 */
836 if (page_zone_id(page) != page_zone_id(buddy))
837 return false;
d34c5fa0 838
fe925c0c 839 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 840
fe925c0c 841 return true;
1da177e4
LT
842}
843
5e1f0f09
MG
844#ifdef CONFIG_COMPACTION
845static inline struct capture_control *task_capc(struct zone *zone)
846{
847 struct capture_control *capc = current->capture_control;
848
deba0487 849 return unlikely(capc) &&
5e1f0f09
MG
850 !(current->flags & PF_KTHREAD) &&
851 !capc->page &&
deba0487 852 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
853}
854
855static inline bool
856compaction_capture(struct capture_control *capc, struct page *page,
857 int order, int migratetype)
858{
859 if (!capc || order != capc->cc->order)
860 return false;
861
862 /* Do not accidentally pollute CMA or isolated regions*/
863 if (is_migrate_cma(migratetype) ||
864 is_migrate_isolate(migratetype))
865 return false;
866
867 /*
868 * Do not let lower order allocations polluate a movable pageblock.
869 * This might let an unmovable request use a reclaimable pageblock
870 * and vice-versa but no more than normal fallback logic which can
871 * have trouble finding a high-order free page.
872 */
873 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
874 return false;
875
876 capc->page = page;
877 return true;
878}
879
880#else
881static inline struct capture_control *task_capc(struct zone *zone)
882{
883 return NULL;
884}
885
886static inline bool
887compaction_capture(struct capture_control *capc, struct page *page,
888 int order, int migratetype)
889{
890 return false;
891}
892#endif /* CONFIG_COMPACTION */
893
6ab01363
AD
894/* Used for pages not on another list */
895static inline void add_to_free_list(struct page *page, struct zone *zone,
896 unsigned int order, int migratetype)
897{
898 struct free_area *area = &zone->free_area[order];
899
900 list_add(&page->lru, &area->free_list[migratetype]);
901 area->nr_free++;
902}
903
904/* Used for pages not on another list */
905static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
906 unsigned int order, int migratetype)
907{
908 struct free_area *area = &zone->free_area[order];
909
910 list_add_tail(&page->lru, &area->free_list[migratetype]);
911 area->nr_free++;
912}
913
293ffa5e
DH
914/*
915 * Used for pages which are on another list. Move the pages to the tail
916 * of the list - so the moved pages won't immediately be considered for
917 * allocation again (e.g., optimization for memory onlining).
918 */
6ab01363
AD
919static inline void move_to_free_list(struct page *page, struct zone *zone,
920 unsigned int order, int migratetype)
921{
922 struct free_area *area = &zone->free_area[order];
923
293ffa5e 924 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
925}
926
927static inline void del_page_from_free_list(struct page *page, struct zone *zone,
928 unsigned int order)
929{
36e66c55
AD
930 /* clear reported state and update reported page count */
931 if (page_reported(page))
932 __ClearPageReported(page);
933
6ab01363
AD
934 list_del(&page->lru);
935 __ClearPageBuddy(page);
936 set_page_private(page, 0);
937 zone->free_area[order].nr_free--;
938}
939
a2129f24
AD
940/*
941 * If this is not the largest possible page, check if the buddy
942 * of the next-highest order is free. If it is, it's possible
943 * that pages are being freed that will coalesce soon. In case,
944 * that is happening, add the free page to the tail of the list
945 * so it's less likely to be used soon and more likely to be merged
946 * as a higher order page
947 */
948static inline bool
949buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
950 struct page *page, unsigned int order)
951{
952 struct page *higher_page, *higher_buddy;
953 unsigned long combined_pfn;
954
955 if (order >= MAX_ORDER - 2)
956 return false;
957
958 if (!pfn_valid_within(buddy_pfn))
959 return false;
960
961 combined_pfn = buddy_pfn & pfn;
962 higher_page = page + (combined_pfn - pfn);
963 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
964 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
965
966 return pfn_valid_within(buddy_pfn) &&
967 page_is_buddy(higher_page, higher_buddy, order + 1);
968}
969
1da177e4
LT
970/*
971 * Freeing function for a buddy system allocator.
972 *
973 * The concept of a buddy system is to maintain direct-mapped table
974 * (containing bit values) for memory blocks of various "orders".
975 * The bottom level table contains the map for the smallest allocatable
976 * units of memory (here, pages), and each level above it describes
977 * pairs of units from the levels below, hence, "buddies".
978 * At a high level, all that happens here is marking the table entry
979 * at the bottom level available, and propagating the changes upward
980 * as necessary, plus some accounting needed to play nicely with other
981 * parts of the VM system.
982 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
983 * free pages of length of (1 << order) and marked with PageBuddy.
984 * Page's order is recorded in page_private(page) field.
1da177e4 985 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
986 * other. That is, if we allocate a small block, and both were
987 * free, the remainder of the region must be split into blocks.
1da177e4 988 * If a block is freed, and its buddy is also free, then this
5f63b720 989 * triggers coalescing into a block of larger size.
1da177e4 990 *
6d49e352 991 * -- nyc
1da177e4
LT
992 */
993
48db57f8 994static inline void __free_one_page(struct page *page,
dc4b0caf 995 unsigned long pfn,
ed0ae21d 996 struct zone *zone, unsigned int order,
f04a5d5d 997 int migratetype, fpi_t fpi_flags)
1da177e4 998{
a2129f24 999 struct capture_control *capc = task_capc(zone);
3f649ab7 1000 unsigned long buddy_pfn;
a2129f24 1001 unsigned long combined_pfn;
d9dddbf5 1002 unsigned int max_order;
a2129f24
AD
1003 struct page *buddy;
1004 bool to_tail;
d9dddbf5 1005
7ad69832 1006 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1007
d29bb978 1008 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1009 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1010
ed0ae21d 1011 VM_BUG_ON(migratetype == -1);
d9dddbf5 1012 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1013 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1014
76741e77 1015 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1016 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1017
d9dddbf5 1018continue_merging:
7ad69832 1019 while (order < max_order) {
5e1f0f09
MG
1020 if (compaction_capture(capc, page, order, migratetype)) {
1021 __mod_zone_freepage_state(zone, -(1 << order),
1022 migratetype);
1023 return;
1024 }
76741e77
VB
1025 buddy_pfn = __find_buddy_pfn(pfn, order);
1026 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1027
1028 if (!pfn_valid_within(buddy_pfn))
1029 goto done_merging;
cb2b95e1 1030 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1031 goto done_merging;
c0a32fc5
SG
1032 /*
1033 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1034 * merge with it and move up one order.
1035 */
b03641af 1036 if (page_is_guard(buddy))
2847cf95 1037 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1038 else
6ab01363 1039 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1040 combined_pfn = buddy_pfn & pfn;
1041 page = page + (combined_pfn - pfn);
1042 pfn = combined_pfn;
1da177e4
LT
1043 order++;
1044 }
7ad69832 1045 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1046 /* If we are here, it means order is >= pageblock_order.
1047 * We want to prevent merge between freepages on isolate
1048 * pageblock and normal pageblock. Without this, pageblock
1049 * isolation could cause incorrect freepage or CMA accounting.
1050 *
1051 * We don't want to hit this code for the more frequent
1052 * low-order merging.
1053 */
1054 if (unlikely(has_isolate_pageblock(zone))) {
1055 int buddy_mt;
1056
76741e77
VB
1057 buddy_pfn = __find_buddy_pfn(pfn, order);
1058 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1059 buddy_mt = get_pageblock_migratetype(buddy);
1060
1061 if (migratetype != buddy_mt
1062 && (is_migrate_isolate(migratetype) ||
1063 is_migrate_isolate(buddy_mt)))
1064 goto done_merging;
1065 }
7ad69832 1066 max_order = order + 1;
d9dddbf5
VB
1067 goto continue_merging;
1068 }
1069
1070done_merging:
ab130f91 1071 set_buddy_order(page, order);
6dda9d55 1072
47b6a24a
DH
1073 if (fpi_flags & FPI_TO_TAIL)
1074 to_tail = true;
1075 else if (is_shuffle_order(order))
a2129f24 1076 to_tail = shuffle_pick_tail();
97500a4a 1077 else
a2129f24 1078 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1079
a2129f24 1080 if (to_tail)
6ab01363 1081 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1082 else
6ab01363 1083 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1084
1085 /* Notify page reporting subsystem of freed page */
f04a5d5d 1086 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1087 page_reporting_notify_free(order);
1da177e4
LT
1088}
1089
7bfec6f4
MG
1090/*
1091 * A bad page could be due to a number of fields. Instead of multiple branches,
1092 * try and check multiple fields with one check. The caller must do a detailed
1093 * check if necessary.
1094 */
1095static inline bool page_expected_state(struct page *page,
1096 unsigned long check_flags)
1097{
1098 if (unlikely(atomic_read(&page->_mapcount) != -1))
1099 return false;
1100
1101 if (unlikely((unsigned long)page->mapping |
1102 page_ref_count(page) |
1103#ifdef CONFIG_MEMCG
bcfe06bf 1104 (unsigned long)page_memcg(page) |
7bfec6f4
MG
1105#endif
1106 (page->flags & check_flags)))
1107 return false;
1108
1109 return true;
1110}
1111
58b7f119 1112static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1113{
82a3241a 1114 const char *bad_reason = NULL;
f0b791a3 1115
53f9263b 1116 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1117 bad_reason = "nonzero mapcount";
1118 if (unlikely(page->mapping != NULL))
1119 bad_reason = "non-NULL mapping";
fe896d18 1120 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1121 bad_reason = "nonzero _refcount";
58b7f119
WY
1122 if (unlikely(page->flags & flags)) {
1123 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1124 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1125 else
1126 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1127 }
9edad6ea 1128#ifdef CONFIG_MEMCG
bcfe06bf 1129 if (unlikely(page_memcg(page)))
9edad6ea
JW
1130 bad_reason = "page still charged to cgroup";
1131#endif
58b7f119
WY
1132 return bad_reason;
1133}
1134
1135static void check_free_page_bad(struct page *page)
1136{
1137 bad_page(page,
1138 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1139}
1140
534fe5e3 1141static inline int check_free_page(struct page *page)
bb552ac6 1142{
da838d4f 1143 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1144 return 0;
bb552ac6
MG
1145
1146 /* Something has gone sideways, find it */
0d0c48a2 1147 check_free_page_bad(page);
7bfec6f4 1148 return 1;
1da177e4
LT
1149}
1150
4db7548c
MG
1151static int free_tail_pages_check(struct page *head_page, struct page *page)
1152{
1153 int ret = 1;
1154
1155 /*
1156 * We rely page->lru.next never has bit 0 set, unless the page
1157 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1158 */
1159 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1160
1161 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1162 ret = 0;
1163 goto out;
1164 }
1165 switch (page - head_page) {
1166 case 1:
4da1984e 1167 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1168 if (unlikely(compound_mapcount(page))) {
82a3241a 1169 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1170 goto out;
1171 }
1172 break;
1173 case 2:
1174 /*
1175 * the second tail page: ->mapping is
fa3015b7 1176 * deferred_list.next -- ignore value.
4db7548c
MG
1177 */
1178 break;
1179 default:
1180 if (page->mapping != TAIL_MAPPING) {
82a3241a 1181 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1182 goto out;
1183 }
1184 break;
1185 }
1186 if (unlikely(!PageTail(page))) {
82a3241a 1187 bad_page(page, "PageTail not set");
4db7548c
MG
1188 goto out;
1189 }
1190 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1191 bad_page(page, "compound_head not consistent");
4db7548c
MG
1192 goto out;
1193 }
1194 ret = 0;
1195out:
1196 page->mapping = NULL;
1197 clear_compound_head(page);
1198 return ret;
1199}
1200
6471384a
AP
1201static void kernel_init_free_pages(struct page *page, int numpages)
1202{
1203 int i;
1204
9e15afa5
QC
1205 /* s390's use of memset() could override KASAN redzones. */
1206 kasan_disable_current();
6471384a
AP
1207 for (i = 0; i < numpages; i++)
1208 clear_highpage(page + i);
9e15afa5 1209 kasan_enable_current();
6471384a
AP
1210}
1211
e2769dbd
MG
1212static __always_inline bool free_pages_prepare(struct page *page,
1213 unsigned int order, bool check_free)
4db7548c 1214{
e2769dbd 1215 int bad = 0;
4db7548c 1216
4db7548c
MG
1217 VM_BUG_ON_PAGE(PageTail(page), page);
1218
e2769dbd 1219 trace_mm_page_free(page, order);
e2769dbd 1220
79f5f8fa
OS
1221 if (unlikely(PageHWPoison(page)) && !order) {
1222 /*
1223 * Do not let hwpoison pages hit pcplists/buddy
1224 * Untie memcg state and reset page's owner
1225 */
18b2db3b 1226 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1227 __memcg_kmem_uncharge_page(page, order);
1228 reset_page_owner(page, order);
1229 return false;
1230 }
1231
e2769dbd
MG
1232 /*
1233 * Check tail pages before head page information is cleared to
1234 * avoid checking PageCompound for order-0 pages.
1235 */
1236 if (unlikely(order)) {
1237 bool compound = PageCompound(page);
1238 int i;
1239
1240 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1241
9a73f61b
KS
1242 if (compound)
1243 ClearPageDoubleMap(page);
e2769dbd
MG
1244 for (i = 1; i < (1 << order); i++) {
1245 if (compound)
1246 bad += free_tail_pages_check(page, page + i);
534fe5e3 1247 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1248 bad++;
1249 continue;
1250 }
1251 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1252 }
1253 }
bda807d4 1254 if (PageMappingFlags(page))
4db7548c 1255 page->mapping = NULL;
18b2db3b 1256 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1257 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1258 if (check_free)
534fe5e3 1259 bad += check_free_page(page);
e2769dbd
MG
1260 if (bad)
1261 return false;
4db7548c 1262
e2769dbd
MG
1263 page_cpupid_reset_last(page);
1264 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1265 reset_page_owner(page, order);
4db7548c
MG
1266
1267 if (!PageHighMem(page)) {
1268 debug_check_no_locks_freed(page_address(page),
e2769dbd 1269 PAGE_SIZE << order);
4db7548c 1270 debug_check_no_obj_freed(page_address(page),
e2769dbd 1271 PAGE_SIZE << order);
4db7548c 1272 }
6471384a
AP
1273 if (want_init_on_free())
1274 kernel_init_free_pages(page, 1 << order);
1275
8db26a3d
VB
1276 kernel_poison_pages(page, 1 << order);
1277
234fdce8
QC
1278 /*
1279 * arch_free_page() can make the page's contents inaccessible. s390
1280 * does this. So nothing which can access the page's contents should
1281 * happen after this.
1282 */
1283 arch_free_page(page, order);
1284
77bc7fd6 1285 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1286
3c0c12cc 1287 kasan_free_nondeferred_pages(page, order);
4db7548c 1288
4db7548c
MG
1289 return true;
1290}
1291
e2769dbd 1292#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1293/*
1294 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1295 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1296 * moved from pcp lists to free lists.
1297 */
1298static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1299{
1300 return free_pages_prepare(page, 0, true);
1301}
1302
4462b32c 1303static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1304{
8e57f8ac 1305 if (debug_pagealloc_enabled_static())
534fe5e3 1306 return check_free_page(page);
4462b32c
VB
1307 else
1308 return false;
e2769dbd
MG
1309}
1310#else
4462b32c
VB
1311/*
1312 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1313 * moving from pcp lists to free list in order to reduce overhead. With
1314 * debug_pagealloc enabled, they are checked also immediately when being freed
1315 * to the pcp lists.
1316 */
e2769dbd
MG
1317static bool free_pcp_prepare(struct page *page)
1318{
8e57f8ac 1319 if (debug_pagealloc_enabled_static())
4462b32c
VB
1320 return free_pages_prepare(page, 0, true);
1321 else
1322 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1323}
1324
4db7548c
MG
1325static bool bulkfree_pcp_prepare(struct page *page)
1326{
534fe5e3 1327 return check_free_page(page);
4db7548c
MG
1328}
1329#endif /* CONFIG_DEBUG_VM */
1330
97334162
AL
1331static inline void prefetch_buddy(struct page *page)
1332{
1333 unsigned long pfn = page_to_pfn(page);
1334 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1335 struct page *buddy = page + (buddy_pfn - pfn);
1336
1337 prefetch(buddy);
1338}
1339
1da177e4 1340/*
5f8dcc21 1341 * Frees a number of pages from the PCP lists
1da177e4 1342 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1343 * count is the number of pages to free.
1da177e4
LT
1344 *
1345 * If the zone was previously in an "all pages pinned" state then look to
1346 * see if this freeing clears that state.
1347 *
1348 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1349 * pinned" detection logic.
1350 */
5f8dcc21
MG
1351static void free_pcppages_bulk(struct zone *zone, int count,
1352 struct per_cpu_pages *pcp)
1da177e4 1353{
5f8dcc21 1354 int migratetype = 0;
a6f9edd6 1355 int batch_free = 0;
5c3ad2eb 1356 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1357 bool isolated_pageblocks;
0a5f4e5b
AL
1358 struct page *page, *tmp;
1359 LIST_HEAD(head);
f2260e6b 1360
88e8ac11
CTR
1361 /*
1362 * Ensure proper count is passed which otherwise would stuck in the
1363 * below while (list_empty(list)) loop.
1364 */
1365 count = min(pcp->count, count);
e5b31ac2 1366 while (count) {
5f8dcc21
MG
1367 struct list_head *list;
1368
1369 /*
a6f9edd6
MG
1370 * Remove pages from lists in a round-robin fashion. A
1371 * batch_free count is maintained that is incremented when an
1372 * empty list is encountered. This is so more pages are freed
1373 * off fuller lists instead of spinning excessively around empty
1374 * lists
5f8dcc21
MG
1375 */
1376 do {
a6f9edd6 1377 batch_free++;
5f8dcc21
MG
1378 if (++migratetype == MIGRATE_PCPTYPES)
1379 migratetype = 0;
1380 list = &pcp->lists[migratetype];
1381 } while (list_empty(list));
48db57f8 1382
1d16871d
NK
1383 /* This is the only non-empty list. Free them all. */
1384 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1385 batch_free = count;
1d16871d 1386
a6f9edd6 1387 do {
a16601c5 1388 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1389 /* must delete to avoid corrupting pcp list */
a6f9edd6 1390 list_del(&page->lru);
77ba9062 1391 pcp->count--;
aa016d14 1392
4db7548c
MG
1393 if (bulkfree_pcp_prepare(page))
1394 continue;
1395
0a5f4e5b 1396 list_add_tail(&page->lru, &head);
97334162
AL
1397
1398 /*
1399 * We are going to put the page back to the global
1400 * pool, prefetch its buddy to speed up later access
1401 * under zone->lock. It is believed the overhead of
1402 * an additional test and calculating buddy_pfn here
1403 * can be offset by reduced memory latency later. To
1404 * avoid excessive prefetching due to large count, only
1405 * prefetch buddy for the first pcp->batch nr of pages.
1406 */
5c3ad2eb 1407 if (prefetch_nr) {
97334162 1408 prefetch_buddy(page);
5c3ad2eb
VB
1409 prefetch_nr--;
1410 }
e5b31ac2 1411 } while (--count && --batch_free && !list_empty(list));
1da177e4 1412 }
0a5f4e5b
AL
1413
1414 spin_lock(&zone->lock);
1415 isolated_pageblocks = has_isolate_pageblock(zone);
1416
1417 /*
1418 * Use safe version since after __free_one_page(),
1419 * page->lru.next will not point to original list.
1420 */
1421 list_for_each_entry_safe(page, tmp, &head, lru) {
1422 int mt = get_pcppage_migratetype(page);
1423 /* MIGRATE_ISOLATE page should not go to pcplists */
1424 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1425 /* Pageblock could have been isolated meanwhile */
1426 if (unlikely(isolated_pageblocks))
1427 mt = get_pageblock_migratetype(page);
1428
f04a5d5d 1429 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1430 trace_mm_page_pcpu_drain(page, 0, mt);
1431 }
d34b0733 1432 spin_unlock(&zone->lock);
1da177e4
LT
1433}
1434
dc4b0caf
MG
1435static void free_one_page(struct zone *zone,
1436 struct page *page, unsigned long pfn,
7aeb09f9 1437 unsigned int order,
7fef431b 1438 int migratetype, fpi_t fpi_flags)
1da177e4 1439{
d34b0733 1440 spin_lock(&zone->lock);
ad53f92e
JK
1441 if (unlikely(has_isolate_pageblock(zone) ||
1442 is_migrate_isolate(migratetype))) {
1443 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1444 }
7fef431b 1445 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1446 spin_unlock(&zone->lock);
48db57f8
NP
1447}
1448
1e8ce83c 1449static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1450 unsigned long zone, int nid)
1e8ce83c 1451{
d0dc12e8 1452 mm_zero_struct_page(page);
1e8ce83c 1453 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1454 init_page_count(page);
1455 page_mapcount_reset(page);
1456 page_cpupid_reset_last(page);
2813b9c0 1457 page_kasan_tag_reset(page);
1e8ce83c 1458
1e8ce83c
RH
1459 INIT_LIST_HEAD(&page->lru);
1460#ifdef WANT_PAGE_VIRTUAL
1461 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1462 if (!is_highmem_idx(zone))
1463 set_page_address(page, __va(pfn << PAGE_SHIFT));
1464#endif
1465}
1466
7e18adb4 1467#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1468static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1469{
1470 pg_data_t *pgdat;
1471 int nid, zid;
1472
1473 if (!early_page_uninitialised(pfn))
1474 return;
1475
1476 nid = early_pfn_to_nid(pfn);
1477 pgdat = NODE_DATA(nid);
1478
1479 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1480 struct zone *zone = &pgdat->node_zones[zid];
1481
1482 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1483 break;
1484 }
d0dc12e8 1485 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1486}
1487#else
1488static inline void init_reserved_page(unsigned long pfn)
1489{
1490}
1491#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1492
92923ca3
NZ
1493/*
1494 * Initialised pages do not have PageReserved set. This function is
1495 * called for each range allocated by the bootmem allocator and
1496 * marks the pages PageReserved. The remaining valid pages are later
1497 * sent to the buddy page allocator.
1498 */
4b50bcc7 1499void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1500{
1501 unsigned long start_pfn = PFN_DOWN(start);
1502 unsigned long end_pfn = PFN_UP(end);
1503
7e18adb4
MG
1504 for (; start_pfn < end_pfn; start_pfn++) {
1505 if (pfn_valid(start_pfn)) {
1506 struct page *page = pfn_to_page(start_pfn);
1507
1508 init_reserved_page(start_pfn);
1d798ca3
KS
1509
1510 /* Avoid false-positive PageTail() */
1511 INIT_LIST_HEAD(&page->lru);
1512
d483da5b
AD
1513 /*
1514 * no need for atomic set_bit because the struct
1515 * page is not visible yet so nobody should
1516 * access it yet.
1517 */
1518 __SetPageReserved(page);
7e18adb4
MG
1519 }
1520 }
92923ca3
NZ
1521}
1522
7fef431b
DH
1523static void __free_pages_ok(struct page *page, unsigned int order,
1524 fpi_t fpi_flags)
ec95f53a 1525{
d34b0733 1526 unsigned long flags;
95e34412 1527 int migratetype;
dc4b0caf 1528 unsigned long pfn = page_to_pfn(page);
ec95f53a 1529
e2769dbd 1530 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1531 return;
1532
cfc47a28 1533 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1534 local_irq_save(flags);
1535 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1536 free_one_page(page_zone(page), page, pfn, order, migratetype,
1537 fpi_flags);
d34b0733 1538 local_irq_restore(flags);
1da177e4
LT
1539}
1540
a9cd410a 1541void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1542{
c3993076 1543 unsigned int nr_pages = 1 << order;
e2d0bd2b 1544 struct page *p = page;
c3993076 1545 unsigned int loop;
a226f6c8 1546
7fef431b
DH
1547 /*
1548 * When initializing the memmap, __init_single_page() sets the refcount
1549 * of all pages to 1 ("allocated"/"not free"). We have to set the
1550 * refcount of all involved pages to 0.
1551 */
e2d0bd2b
YL
1552 prefetchw(p);
1553 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1554 prefetchw(p + 1);
c3993076
JW
1555 __ClearPageReserved(p);
1556 set_page_count(p, 0);
a226f6c8 1557 }
e2d0bd2b
YL
1558 __ClearPageReserved(p);
1559 set_page_count(p, 0);
c3993076 1560
9705bea5 1561 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1562
1563 /*
1564 * Bypass PCP and place fresh pages right to the tail, primarily
1565 * relevant for memory onlining.
1566 */
1567 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1568}
1569
3f08a302 1570#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1571
03e92a5e
MR
1572/*
1573 * During memory init memblocks map pfns to nids. The search is expensive and
1574 * this caches recent lookups. The implementation of __early_pfn_to_nid
1575 * treats start/end as pfns.
1576 */
1577struct mminit_pfnnid_cache {
1578 unsigned long last_start;
1579 unsigned long last_end;
1580 int last_nid;
1581};
75a592a4 1582
03e92a5e 1583static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1584
1585/*
1586 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1587 */
03e92a5e 1588static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1589 struct mminit_pfnnid_cache *state)
75a592a4 1590{
6f24fbd3 1591 unsigned long start_pfn, end_pfn;
75a592a4
MG
1592 int nid;
1593
6f24fbd3
MR
1594 if (state->last_start <= pfn && pfn < state->last_end)
1595 return state->last_nid;
1596
1597 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1598 if (nid != NUMA_NO_NODE) {
1599 state->last_start = start_pfn;
1600 state->last_end = end_pfn;
1601 state->last_nid = nid;
1602 }
7ace9917
MG
1603
1604 return nid;
75a592a4 1605}
75a592a4 1606
75a592a4 1607int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1608{
7ace9917 1609 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1610 int nid;
1611
7ace9917 1612 spin_lock(&early_pfn_lock);
56ec43d8 1613 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1614 if (nid < 0)
e4568d38 1615 nid = first_online_node;
7ace9917 1616 spin_unlock(&early_pfn_lock);
75a592a4 1617
7ace9917 1618 return nid;
75a592a4 1619}
3f08a302 1620#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1621
7c2ee349 1622void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1623 unsigned int order)
1624{
1625 if (early_page_uninitialised(pfn))
1626 return;
a9cd410a 1627 __free_pages_core(page, order);
3a80a7fa
MG
1628}
1629
7cf91a98
JK
1630/*
1631 * Check that the whole (or subset of) a pageblock given by the interval of
1632 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1633 * with the migration of free compaction scanner. The scanners then need to
1634 * use only pfn_valid_within() check for arches that allow holes within
1635 * pageblocks.
1636 *
1637 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1638 *
1639 * It's possible on some configurations to have a setup like node0 node1 node0
1640 * i.e. it's possible that all pages within a zones range of pages do not
1641 * belong to a single zone. We assume that a border between node0 and node1
1642 * can occur within a single pageblock, but not a node0 node1 node0
1643 * interleaving within a single pageblock. It is therefore sufficient to check
1644 * the first and last page of a pageblock and avoid checking each individual
1645 * page in a pageblock.
1646 */
1647struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1648 unsigned long end_pfn, struct zone *zone)
1649{
1650 struct page *start_page;
1651 struct page *end_page;
1652
1653 /* end_pfn is one past the range we are checking */
1654 end_pfn--;
1655
1656 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1657 return NULL;
1658
2d070eab
MH
1659 start_page = pfn_to_online_page(start_pfn);
1660 if (!start_page)
1661 return NULL;
7cf91a98
JK
1662
1663 if (page_zone(start_page) != zone)
1664 return NULL;
1665
1666 end_page = pfn_to_page(end_pfn);
1667
1668 /* This gives a shorter code than deriving page_zone(end_page) */
1669 if (page_zone_id(start_page) != page_zone_id(end_page))
1670 return NULL;
1671
1672 return start_page;
1673}
1674
1675void set_zone_contiguous(struct zone *zone)
1676{
1677 unsigned long block_start_pfn = zone->zone_start_pfn;
1678 unsigned long block_end_pfn;
1679
1680 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1681 for (; block_start_pfn < zone_end_pfn(zone);
1682 block_start_pfn = block_end_pfn,
1683 block_end_pfn += pageblock_nr_pages) {
1684
1685 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1686
1687 if (!__pageblock_pfn_to_page(block_start_pfn,
1688 block_end_pfn, zone))
1689 return;
e84fe99b 1690 cond_resched();
7cf91a98
JK
1691 }
1692
1693 /* We confirm that there is no hole */
1694 zone->contiguous = true;
1695}
1696
1697void clear_zone_contiguous(struct zone *zone)
1698{
1699 zone->contiguous = false;
1700}
1701
7e18adb4 1702#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1703static void __init deferred_free_range(unsigned long pfn,
1704 unsigned long nr_pages)
a4de83dd 1705{
2f47a91f
PT
1706 struct page *page;
1707 unsigned long i;
a4de83dd 1708
2f47a91f 1709 if (!nr_pages)
a4de83dd
MG
1710 return;
1711
2f47a91f
PT
1712 page = pfn_to_page(pfn);
1713
a4de83dd 1714 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1715 if (nr_pages == pageblock_nr_pages &&
1716 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1717 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1718 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1719 return;
1720 }
1721
e780149b
XQ
1722 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1723 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1724 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1725 __free_pages_core(page, 0);
e780149b 1726 }
a4de83dd
MG
1727}
1728
d3cd131d
NS
1729/* Completion tracking for deferred_init_memmap() threads */
1730static atomic_t pgdat_init_n_undone __initdata;
1731static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1732
1733static inline void __init pgdat_init_report_one_done(void)
1734{
1735 if (atomic_dec_and_test(&pgdat_init_n_undone))
1736 complete(&pgdat_init_all_done_comp);
1737}
0e1cc95b 1738
2f47a91f 1739/*
80b1f41c
PT
1740 * Returns true if page needs to be initialized or freed to buddy allocator.
1741 *
1742 * First we check if pfn is valid on architectures where it is possible to have
1743 * holes within pageblock_nr_pages. On systems where it is not possible, this
1744 * function is optimized out.
1745 *
1746 * Then, we check if a current large page is valid by only checking the validity
1747 * of the head pfn.
2f47a91f 1748 */
56ec43d8 1749static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1750{
80b1f41c
PT
1751 if (!pfn_valid_within(pfn))
1752 return false;
1753 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1754 return false;
80b1f41c
PT
1755 return true;
1756}
2f47a91f 1757
80b1f41c
PT
1758/*
1759 * Free pages to buddy allocator. Try to free aligned pages in
1760 * pageblock_nr_pages sizes.
1761 */
56ec43d8 1762static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1763 unsigned long end_pfn)
1764{
80b1f41c
PT
1765 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1766 unsigned long nr_free = 0;
2f47a91f 1767
80b1f41c 1768 for (; pfn < end_pfn; pfn++) {
56ec43d8 1769 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1770 deferred_free_range(pfn - nr_free, nr_free);
1771 nr_free = 0;
1772 } else if (!(pfn & nr_pgmask)) {
1773 deferred_free_range(pfn - nr_free, nr_free);
1774 nr_free = 1;
80b1f41c
PT
1775 } else {
1776 nr_free++;
1777 }
1778 }
1779 /* Free the last block of pages to allocator */
1780 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1781}
1782
80b1f41c
PT
1783/*
1784 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1785 * by performing it only once every pageblock_nr_pages.
1786 * Return number of pages initialized.
1787 */
56ec43d8 1788static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1789 unsigned long pfn,
1790 unsigned long end_pfn)
2f47a91f 1791{
2f47a91f 1792 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1793 int nid = zone_to_nid(zone);
2f47a91f 1794 unsigned long nr_pages = 0;
56ec43d8 1795 int zid = zone_idx(zone);
2f47a91f 1796 struct page *page = NULL;
2f47a91f 1797
80b1f41c 1798 for (; pfn < end_pfn; pfn++) {
56ec43d8 1799 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1800 page = NULL;
2f47a91f 1801 continue;
80b1f41c 1802 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1803 page = pfn_to_page(pfn);
80b1f41c
PT
1804 } else {
1805 page++;
2f47a91f 1806 }
d0dc12e8 1807 __init_single_page(page, pfn, zid, nid);
80b1f41c 1808 nr_pages++;
2f47a91f 1809 }
80b1f41c 1810 return (nr_pages);
2f47a91f
PT
1811}
1812
0e56acae
AD
1813/*
1814 * This function is meant to pre-load the iterator for the zone init.
1815 * Specifically it walks through the ranges until we are caught up to the
1816 * first_init_pfn value and exits there. If we never encounter the value we
1817 * return false indicating there are no valid ranges left.
1818 */
1819static bool __init
1820deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1821 unsigned long *spfn, unsigned long *epfn,
1822 unsigned long first_init_pfn)
1823{
1824 u64 j;
1825
1826 /*
1827 * Start out by walking through the ranges in this zone that have
1828 * already been initialized. We don't need to do anything with them
1829 * so we just need to flush them out of the system.
1830 */
1831 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1832 if (*epfn <= first_init_pfn)
1833 continue;
1834 if (*spfn < first_init_pfn)
1835 *spfn = first_init_pfn;
1836 *i = j;
1837 return true;
1838 }
1839
1840 return false;
1841}
1842
1843/*
1844 * Initialize and free pages. We do it in two loops: first we initialize
1845 * struct page, then free to buddy allocator, because while we are
1846 * freeing pages we can access pages that are ahead (computing buddy
1847 * page in __free_one_page()).
1848 *
1849 * In order to try and keep some memory in the cache we have the loop
1850 * broken along max page order boundaries. This way we will not cause
1851 * any issues with the buddy page computation.
1852 */
1853static unsigned long __init
1854deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1855 unsigned long *end_pfn)
1856{
1857 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1858 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1859 unsigned long nr_pages = 0;
1860 u64 j = *i;
1861
1862 /* First we loop through and initialize the page values */
1863 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1864 unsigned long t;
1865
1866 if (mo_pfn <= *start_pfn)
1867 break;
1868
1869 t = min(mo_pfn, *end_pfn);
1870 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1871
1872 if (mo_pfn < *end_pfn) {
1873 *start_pfn = mo_pfn;
1874 break;
1875 }
1876 }
1877
1878 /* Reset values and now loop through freeing pages as needed */
1879 swap(j, *i);
1880
1881 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1882 unsigned long t;
1883
1884 if (mo_pfn <= spfn)
1885 break;
1886
1887 t = min(mo_pfn, epfn);
1888 deferred_free_pages(spfn, t);
1889
1890 if (mo_pfn <= epfn)
1891 break;
1892 }
1893
1894 return nr_pages;
1895}
1896
e4443149
DJ
1897static void __init
1898deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1899 void *arg)
1900{
1901 unsigned long spfn, epfn;
1902 struct zone *zone = arg;
1903 u64 i;
1904
1905 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1906
1907 /*
1908 * Initialize and free pages in MAX_ORDER sized increments so that we
1909 * can avoid introducing any issues with the buddy allocator.
1910 */
1911 while (spfn < end_pfn) {
1912 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1913 cond_resched();
1914 }
1915}
1916
ecd09650
DJ
1917/* An arch may override for more concurrency. */
1918__weak int __init
1919deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1920{
1921 return 1;
1922}
1923
7e18adb4 1924/* Initialise remaining memory on a node */
0e1cc95b 1925static int __init deferred_init_memmap(void *data)
7e18adb4 1926{
0e1cc95b 1927 pg_data_t *pgdat = data;
0e56acae 1928 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1929 unsigned long spfn = 0, epfn = 0;
0e56acae 1930 unsigned long first_init_pfn, flags;
7e18adb4 1931 unsigned long start = jiffies;
7e18adb4 1932 struct zone *zone;
e4443149 1933 int zid, max_threads;
2f47a91f 1934 u64 i;
7e18adb4 1935
3a2d7fa8
PT
1936 /* Bind memory initialisation thread to a local node if possible */
1937 if (!cpumask_empty(cpumask))
1938 set_cpus_allowed_ptr(current, cpumask);
1939
1940 pgdat_resize_lock(pgdat, &flags);
1941 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1942 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1943 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1944 pgdat_init_report_one_done();
0e1cc95b
MG
1945 return 0;
1946 }
1947
7e18adb4
MG
1948 /* Sanity check boundaries */
1949 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1950 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1951 pgdat->first_deferred_pfn = ULONG_MAX;
1952
3d060856
PT
1953 /*
1954 * Once we unlock here, the zone cannot be grown anymore, thus if an
1955 * interrupt thread must allocate this early in boot, zone must be
1956 * pre-grown prior to start of deferred page initialization.
1957 */
1958 pgdat_resize_unlock(pgdat, &flags);
1959
7e18adb4
MG
1960 /* Only the highest zone is deferred so find it */
1961 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1962 zone = pgdat->node_zones + zid;
1963 if (first_init_pfn < zone_end_pfn(zone))
1964 break;
1965 }
0e56acae
AD
1966
1967 /* If the zone is empty somebody else may have cleared out the zone */
1968 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1969 first_init_pfn))
1970 goto zone_empty;
7e18adb4 1971
ecd09650 1972 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1973
117003c3 1974 while (spfn < epfn) {
e4443149
DJ
1975 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1976 struct padata_mt_job job = {
1977 .thread_fn = deferred_init_memmap_chunk,
1978 .fn_arg = zone,
1979 .start = spfn,
1980 .size = epfn_align - spfn,
1981 .align = PAGES_PER_SECTION,
1982 .min_chunk = PAGES_PER_SECTION,
1983 .max_threads = max_threads,
1984 };
1985
1986 padata_do_multithreaded(&job);
1987 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1988 epfn_align);
117003c3 1989 }
0e56acae 1990zone_empty:
7e18adb4
MG
1991 /* Sanity check that the next zone really is unpopulated */
1992 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1993
89c7c402
DJ
1994 pr_info("node %d deferred pages initialised in %ums\n",
1995 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1996
1997 pgdat_init_report_one_done();
0e1cc95b
MG
1998 return 0;
1999}
c9e97a19 2000
c9e97a19
PT
2001/*
2002 * If this zone has deferred pages, try to grow it by initializing enough
2003 * deferred pages to satisfy the allocation specified by order, rounded up to
2004 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2005 * of SECTION_SIZE bytes by initializing struct pages in increments of
2006 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2007 *
2008 * Return true when zone was grown, otherwise return false. We return true even
2009 * when we grow less than requested, to let the caller decide if there are
2010 * enough pages to satisfy the allocation.
2011 *
2012 * Note: We use noinline because this function is needed only during boot, and
2013 * it is called from a __ref function _deferred_grow_zone. This way we are
2014 * making sure that it is not inlined into permanent text section.
2015 */
2016static noinline bool __init
2017deferred_grow_zone(struct zone *zone, unsigned int order)
2018{
c9e97a19 2019 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2020 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2021 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2022 unsigned long spfn, epfn, flags;
2023 unsigned long nr_pages = 0;
c9e97a19
PT
2024 u64 i;
2025
2026 /* Only the last zone may have deferred pages */
2027 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2028 return false;
2029
2030 pgdat_resize_lock(pgdat, &flags);
2031
c9e97a19
PT
2032 /*
2033 * If someone grew this zone while we were waiting for spinlock, return
2034 * true, as there might be enough pages already.
2035 */
2036 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2037 pgdat_resize_unlock(pgdat, &flags);
2038 return true;
2039 }
2040
0e56acae
AD
2041 /* If the zone is empty somebody else may have cleared out the zone */
2042 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2043 first_deferred_pfn)) {
2044 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2045 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2046 /* Retry only once. */
2047 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2048 }
2049
0e56acae
AD
2050 /*
2051 * Initialize and free pages in MAX_ORDER sized increments so
2052 * that we can avoid introducing any issues with the buddy
2053 * allocator.
2054 */
2055 while (spfn < epfn) {
2056 /* update our first deferred PFN for this section */
2057 first_deferred_pfn = spfn;
2058
2059 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2060 touch_nmi_watchdog();
c9e97a19 2061
0e56acae
AD
2062 /* We should only stop along section boundaries */
2063 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2064 continue;
c9e97a19 2065
0e56acae 2066 /* If our quota has been met we can stop here */
c9e97a19
PT
2067 if (nr_pages >= nr_pages_needed)
2068 break;
2069 }
2070
0e56acae 2071 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2072 pgdat_resize_unlock(pgdat, &flags);
2073
2074 return nr_pages > 0;
2075}
2076
2077/*
2078 * deferred_grow_zone() is __init, but it is called from
2079 * get_page_from_freelist() during early boot until deferred_pages permanently
2080 * disables this call. This is why we have refdata wrapper to avoid warning,
2081 * and to ensure that the function body gets unloaded.
2082 */
2083static bool __ref
2084_deferred_grow_zone(struct zone *zone, unsigned int order)
2085{
2086 return deferred_grow_zone(zone, order);
2087}
2088
7cf91a98 2089#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2090
2091void __init page_alloc_init_late(void)
2092{
7cf91a98 2093 struct zone *zone;
e900a918 2094 int nid;
7cf91a98
JK
2095
2096#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2097
d3cd131d
NS
2098 /* There will be num_node_state(N_MEMORY) threads */
2099 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2100 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2101 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2102 }
2103
2104 /* Block until all are initialised */
d3cd131d 2105 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2106
3e8fc007
MG
2107 /*
2108 * The number of managed pages has changed due to the initialisation
2109 * so the pcpu batch and high limits needs to be updated or the limits
2110 * will be artificially small.
2111 */
2112 for_each_populated_zone(zone)
2113 zone_pcp_update(zone);
2114
c9e97a19
PT
2115 /*
2116 * We initialized the rest of the deferred pages. Permanently disable
2117 * on-demand struct page initialization.
2118 */
2119 static_branch_disable(&deferred_pages);
2120
4248b0da
MG
2121 /* Reinit limits that are based on free pages after the kernel is up */
2122 files_maxfiles_init();
7cf91a98 2123#endif
350e88ba 2124
ba8f3587
LF
2125 buffer_init();
2126
3010f876
PT
2127 /* Discard memblock private memory */
2128 memblock_discard();
7cf91a98 2129
e900a918
DW
2130 for_each_node_state(nid, N_MEMORY)
2131 shuffle_free_memory(NODE_DATA(nid));
2132
7cf91a98
JK
2133 for_each_populated_zone(zone)
2134 set_zone_contiguous(zone);
7e18adb4 2135}
7e18adb4 2136
47118af0 2137#ifdef CONFIG_CMA
9cf510a5 2138/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2139void __init init_cma_reserved_pageblock(struct page *page)
2140{
2141 unsigned i = pageblock_nr_pages;
2142 struct page *p = page;
2143
2144 do {
2145 __ClearPageReserved(p);
2146 set_page_count(p, 0);
d883c6cf 2147 } while (++p, --i);
47118af0 2148
47118af0 2149 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2150
2151 if (pageblock_order >= MAX_ORDER) {
2152 i = pageblock_nr_pages;
2153 p = page;
2154 do {
2155 set_page_refcounted(p);
2156 __free_pages(p, MAX_ORDER - 1);
2157 p += MAX_ORDER_NR_PAGES;
2158 } while (i -= MAX_ORDER_NR_PAGES);
2159 } else {
2160 set_page_refcounted(page);
2161 __free_pages(page, pageblock_order);
2162 }
2163
3dcc0571 2164 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2165}
2166#endif
1da177e4
LT
2167
2168/*
2169 * The order of subdivision here is critical for the IO subsystem.
2170 * Please do not alter this order without good reasons and regression
2171 * testing. Specifically, as large blocks of memory are subdivided,
2172 * the order in which smaller blocks are delivered depends on the order
2173 * they're subdivided in this function. This is the primary factor
2174 * influencing the order in which pages are delivered to the IO
2175 * subsystem according to empirical testing, and this is also justified
2176 * by considering the behavior of a buddy system containing a single
2177 * large block of memory acted on by a series of small allocations.
2178 * This behavior is a critical factor in sglist merging's success.
2179 *
6d49e352 2180 * -- nyc
1da177e4 2181 */
085cc7d5 2182static inline void expand(struct zone *zone, struct page *page,
6ab01363 2183 int low, int high, int migratetype)
1da177e4
LT
2184{
2185 unsigned long size = 1 << high;
2186
2187 while (high > low) {
1da177e4
LT
2188 high--;
2189 size >>= 1;
309381fe 2190 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2191
acbc15a4
JK
2192 /*
2193 * Mark as guard pages (or page), that will allow to
2194 * merge back to allocator when buddy will be freed.
2195 * Corresponding page table entries will not be touched,
2196 * pages will stay not present in virtual address space
2197 */
2198 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2199 continue;
acbc15a4 2200
6ab01363 2201 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2202 set_buddy_order(&page[size], high);
1da177e4 2203 }
1da177e4
LT
2204}
2205
4e611801 2206static void check_new_page_bad(struct page *page)
1da177e4 2207{
f4c18e6f 2208 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2209 /* Don't complain about hwpoisoned pages */
2210 page_mapcount_reset(page); /* remove PageBuddy */
2211 return;
f4c18e6f 2212 }
58b7f119
WY
2213
2214 bad_page(page,
2215 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2216}
2217
2218/*
2219 * This page is about to be returned from the page allocator
2220 */
2221static inline int check_new_page(struct page *page)
2222{
2223 if (likely(page_expected_state(page,
2224 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2225 return 0;
2226
2227 check_new_page_bad(page);
2228 return 1;
2a7684a2
WF
2229}
2230
479f854a 2231#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2232/*
2233 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2234 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2235 * also checked when pcp lists are refilled from the free lists.
2236 */
2237static inline bool check_pcp_refill(struct page *page)
479f854a 2238{
8e57f8ac 2239 if (debug_pagealloc_enabled_static())
4462b32c
VB
2240 return check_new_page(page);
2241 else
2242 return false;
479f854a
MG
2243}
2244
4462b32c 2245static inline bool check_new_pcp(struct page *page)
479f854a
MG
2246{
2247 return check_new_page(page);
2248}
2249#else
4462b32c
VB
2250/*
2251 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2252 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2253 * enabled, they are also checked when being allocated from the pcp lists.
2254 */
2255static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2256{
2257 return check_new_page(page);
2258}
4462b32c 2259static inline bool check_new_pcp(struct page *page)
479f854a 2260{
8e57f8ac 2261 if (debug_pagealloc_enabled_static())
4462b32c
VB
2262 return check_new_page(page);
2263 else
2264 return false;
479f854a
MG
2265}
2266#endif /* CONFIG_DEBUG_VM */
2267
2268static bool check_new_pages(struct page *page, unsigned int order)
2269{
2270 int i;
2271 for (i = 0; i < (1 << order); i++) {
2272 struct page *p = page + i;
2273
2274 if (unlikely(check_new_page(p)))
2275 return true;
2276 }
2277
2278 return false;
2279}
2280
46f24fd8
JK
2281inline void post_alloc_hook(struct page *page, unsigned int order,
2282 gfp_t gfp_flags)
2283{
2284 set_page_private(page, 0);
2285 set_page_refcounted(page);
2286
2287 arch_alloc_page(page, order);
77bc7fd6 2288 debug_pagealloc_map_pages(page, 1 << order);
46f24fd8 2289 kasan_alloc_pages(page, order);
8db26a3d 2290 kernel_unpoison_pages(page, 1 << order);
46f24fd8 2291 set_page_owner(page, order, gfp_flags);
862b6dee 2292
f289041e 2293 if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
862b6dee 2294 kernel_init_free_pages(page, 1 << order);
46f24fd8
JK
2295}
2296
479f854a 2297static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2298 unsigned int alloc_flags)
2a7684a2 2299{
46f24fd8 2300 post_alloc_hook(page, order, gfp_flags);
17cf4406 2301
17cf4406
NP
2302 if (order && (gfp_flags & __GFP_COMP))
2303 prep_compound_page(page, order);
2304
75379191 2305 /*
2f064f34 2306 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2307 * allocate the page. The expectation is that the caller is taking
2308 * steps that will free more memory. The caller should avoid the page
2309 * being used for !PFMEMALLOC purposes.
2310 */
2f064f34
MH
2311 if (alloc_flags & ALLOC_NO_WATERMARKS)
2312 set_page_pfmemalloc(page);
2313 else
2314 clear_page_pfmemalloc(page);
1da177e4
LT
2315}
2316
56fd56b8
MG
2317/*
2318 * Go through the free lists for the given migratetype and remove
2319 * the smallest available page from the freelists
2320 */
85ccc8fa 2321static __always_inline
728ec980 2322struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2323 int migratetype)
2324{
2325 unsigned int current_order;
b8af2941 2326 struct free_area *area;
56fd56b8
MG
2327 struct page *page;
2328
2329 /* Find a page of the appropriate size in the preferred list */
2330 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2331 area = &(zone->free_area[current_order]);
b03641af 2332 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2333 if (!page)
2334 continue;
6ab01363
AD
2335 del_page_from_free_list(page, zone, current_order);
2336 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2337 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2338 return page;
2339 }
2340
2341 return NULL;
2342}
2343
2344
b2a0ac88
MG
2345/*
2346 * This array describes the order lists are fallen back to when
2347 * the free lists for the desirable migrate type are depleted
2348 */
da415663 2349static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2350 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2351 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2352 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2353#ifdef CONFIG_CMA
974a786e 2354 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2355#endif
194159fb 2356#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2357 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2358#endif
b2a0ac88
MG
2359};
2360
dc67647b 2361#ifdef CONFIG_CMA
85ccc8fa 2362static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2363 unsigned int order)
2364{
2365 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2366}
2367#else
2368static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2369 unsigned int order) { return NULL; }
2370#endif
2371
c361be55 2372/*
293ffa5e 2373 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2374 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2375 * boundary. If alignment is required, use move_freepages_block()
2376 */
02aa0cdd 2377static int move_freepages(struct zone *zone,
b69a7288 2378 struct page *start_page, struct page *end_page,
02aa0cdd 2379 int migratetype, int *num_movable)
c361be55
MG
2380{
2381 struct page *page;
d00181b9 2382 unsigned int order;
d100313f 2383 int pages_moved = 0;
c361be55 2384
c361be55
MG
2385 for (page = start_page; page <= end_page;) {
2386 if (!pfn_valid_within(page_to_pfn(page))) {
2387 page++;
2388 continue;
2389 }
2390
2391 if (!PageBuddy(page)) {
02aa0cdd
VB
2392 /*
2393 * We assume that pages that could be isolated for
2394 * migration are movable. But we don't actually try
2395 * isolating, as that would be expensive.
2396 */
2397 if (num_movable &&
2398 (PageLRU(page) || __PageMovable(page)))
2399 (*num_movable)++;
2400
c361be55
MG
2401 page++;
2402 continue;
2403 }
2404
cd961038
DR
2405 /* Make sure we are not inadvertently changing nodes */
2406 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2407 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2408
ab130f91 2409 order = buddy_order(page);
6ab01363 2410 move_to_free_list(page, zone, order, migratetype);
c361be55 2411 page += 1 << order;
d100313f 2412 pages_moved += 1 << order;
c361be55
MG
2413 }
2414
d100313f 2415 return pages_moved;
c361be55
MG
2416}
2417
ee6f509c 2418int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2419 int migratetype, int *num_movable)
c361be55
MG
2420{
2421 unsigned long start_pfn, end_pfn;
2422 struct page *start_page, *end_page;
2423
4a222127
DR
2424 if (num_movable)
2425 *num_movable = 0;
2426
c361be55 2427 start_pfn = page_to_pfn(page);
d9c23400 2428 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2429 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2430 end_page = start_page + pageblock_nr_pages - 1;
2431 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2432
2433 /* Do not cross zone boundaries */
108bcc96 2434 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2435 start_page = page;
108bcc96 2436 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2437 return 0;
2438
02aa0cdd
VB
2439 return move_freepages(zone, start_page, end_page, migratetype,
2440 num_movable);
c361be55
MG
2441}
2442
2f66a68f
MG
2443static void change_pageblock_range(struct page *pageblock_page,
2444 int start_order, int migratetype)
2445{
2446 int nr_pageblocks = 1 << (start_order - pageblock_order);
2447
2448 while (nr_pageblocks--) {
2449 set_pageblock_migratetype(pageblock_page, migratetype);
2450 pageblock_page += pageblock_nr_pages;
2451 }
2452}
2453
fef903ef 2454/*
9c0415eb
VB
2455 * When we are falling back to another migratetype during allocation, try to
2456 * steal extra free pages from the same pageblocks to satisfy further
2457 * allocations, instead of polluting multiple pageblocks.
2458 *
2459 * If we are stealing a relatively large buddy page, it is likely there will
2460 * be more free pages in the pageblock, so try to steal them all. For
2461 * reclaimable and unmovable allocations, we steal regardless of page size,
2462 * as fragmentation caused by those allocations polluting movable pageblocks
2463 * is worse than movable allocations stealing from unmovable and reclaimable
2464 * pageblocks.
fef903ef 2465 */
4eb7dce6
JK
2466static bool can_steal_fallback(unsigned int order, int start_mt)
2467{
2468 /*
2469 * Leaving this order check is intended, although there is
2470 * relaxed order check in next check. The reason is that
2471 * we can actually steal whole pageblock if this condition met,
2472 * but, below check doesn't guarantee it and that is just heuristic
2473 * so could be changed anytime.
2474 */
2475 if (order >= pageblock_order)
2476 return true;
2477
2478 if (order >= pageblock_order / 2 ||
2479 start_mt == MIGRATE_RECLAIMABLE ||
2480 start_mt == MIGRATE_UNMOVABLE ||
2481 page_group_by_mobility_disabled)
2482 return true;
2483
2484 return false;
2485}
2486
597c8920 2487static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2488{
2489 unsigned long max_boost;
2490
2491 if (!watermark_boost_factor)
597c8920 2492 return false;
14f69140
HW
2493 /*
2494 * Don't bother in zones that are unlikely to produce results.
2495 * On small machines, including kdump capture kernels running
2496 * in a small area, boosting the watermark can cause an out of
2497 * memory situation immediately.
2498 */
2499 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2500 return false;
1c30844d
MG
2501
2502 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2503 watermark_boost_factor, 10000);
94b3334c
MG
2504
2505 /*
2506 * high watermark may be uninitialised if fragmentation occurs
2507 * very early in boot so do not boost. We do not fall
2508 * through and boost by pageblock_nr_pages as failing
2509 * allocations that early means that reclaim is not going
2510 * to help and it may even be impossible to reclaim the
2511 * boosted watermark resulting in a hang.
2512 */
2513 if (!max_boost)
597c8920 2514 return false;
94b3334c 2515
1c30844d
MG
2516 max_boost = max(pageblock_nr_pages, max_boost);
2517
2518 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2519 max_boost);
597c8920
JW
2520
2521 return true;
1c30844d
MG
2522}
2523
4eb7dce6
JK
2524/*
2525 * This function implements actual steal behaviour. If order is large enough,
2526 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2527 * pageblock to our migratetype and determine how many already-allocated pages
2528 * are there in the pageblock with a compatible migratetype. If at least half
2529 * of pages are free or compatible, we can change migratetype of the pageblock
2530 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2531 */
2532static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2533 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2534{
ab130f91 2535 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2536 int free_pages, movable_pages, alike_pages;
2537 int old_block_type;
2538
2539 old_block_type = get_pageblock_migratetype(page);
fef903ef 2540
3bc48f96
VB
2541 /*
2542 * This can happen due to races and we want to prevent broken
2543 * highatomic accounting.
2544 */
02aa0cdd 2545 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2546 goto single_page;
2547
fef903ef
SB
2548 /* Take ownership for orders >= pageblock_order */
2549 if (current_order >= pageblock_order) {
2550 change_pageblock_range(page, current_order, start_type);
3bc48f96 2551 goto single_page;
fef903ef
SB
2552 }
2553
1c30844d
MG
2554 /*
2555 * Boost watermarks to increase reclaim pressure to reduce the
2556 * likelihood of future fallbacks. Wake kswapd now as the node
2557 * may be balanced overall and kswapd will not wake naturally.
2558 */
597c8920 2559 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2560 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2561
3bc48f96
VB
2562 /* We are not allowed to try stealing from the whole block */
2563 if (!whole_block)
2564 goto single_page;
2565
02aa0cdd
VB
2566 free_pages = move_freepages_block(zone, page, start_type,
2567 &movable_pages);
2568 /*
2569 * Determine how many pages are compatible with our allocation.
2570 * For movable allocation, it's the number of movable pages which
2571 * we just obtained. For other types it's a bit more tricky.
2572 */
2573 if (start_type == MIGRATE_MOVABLE) {
2574 alike_pages = movable_pages;
2575 } else {
2576 /*
2577 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2578 * to MOVABLE pageblock, consider all non-movable pages as
2579 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2580 * vice versa, be conservative since we can't distinguish the
2581 * exact migratetype of non-movable pages.
2582 */
2583 if (old_block_type == MIGRATE_MOVABLE)
2584 alike_pages = pageblock_nr_pages
2585 - (free_pages + movable_pages);
2586 else
2587 alike_pages = 0;
2588 }
2589
3bc48f96 2590 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2591 if (!free_pages)
3bc48f96 2592 goto single_page;
fef903ef 2593
02aa0cdd
VB
2594 /*
2595 * If a sufficient number of pages in the block are either free or of
2596 * comparable migratability as our allocation, claim the whole block.
2597 */
2598 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2599 page_group_by_mobility_disabled)
2600 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2601
2602 return;
2603
2604single_page:
6ab01363 2605 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2606}
2607
2149cdae
JK
2608/*
2609 * Check whether there is a suitable fallback freepage with requested order.
2610 * If only_stealable is true, this function returns fallback_mt only if
2611 * we can steal other freepages all together. This would help to reduce
2612 * fragmentation due to mixed migratetype pages in one pageblock.
2613 */
2614int find_suitable_fallback(struct free_area *area, unsigned int order,
2615 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2616{
2617 int i;
2618 int fallback_mt;
2619
2620 if (area->nr_free == 0)
2621 return -1;
2622
2623 *can_steal = false;
2624 for (i = 0;; i++) {
2625 fallback_mt = fallbacks[migratetype][i];
974a786e 2626 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2627 break;
2628
b03641af 2629 if (free_area_empty(area, fallback_mt))
4eb7dce6 2630 continue;
fef903ef 2631
4eb7dce6
JK
2632 if (can_steal_fallback(order, migratetype))
2633 *can_steal = true;
2634
2149cdae
JK
2635 if (!only_stealable)
2636 return fallback_mt;
2637
2638 if (*can_steal)
2639 return fallback_mt;
fef903ef 2640 }
4eb7dce6
JK
2641
2642 return -1;
fef903ef
SB
2643}
2644
0aaa29a5
MG
2645/*
2646 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2647 * there are no empty page blocks that contain a page with a suitable order
2648 */
2649static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2650 unsigned int alloc_order)
2651{
2652 int mt;
2653 unsigned long max_managed, flags;
2654
2655 /*
2656 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2657 * Check is race-prone but harmless.
2658 */
9705bea5 2659 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2660 if (zone->nr_reserved_highatomic >= max_managed)
2661 return;
2662
2663 spin_lock_irqsave(&zone->lock, flags);
2664
2665 /* Recheck the nr_reserved_highatomic limit under the lock */
2666 if (zone->nr_reserved_highatomic >= max_managed)
2667 goto out_unlock;
2668
2669 /* Yoink! */
2670 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2671 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2672 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2673 zone->nr_reserved_highatomic += pageblock_nr_pages;
2674 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2675 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2676 }
2677
2678out_unlock:
2679 spin_unlock_irqrestore(&zone->lock, flags);
2680}
2681
2682/*
2683 * Used when an allocation is about to fail under memory pressure. This
2684 * potentially hurts the reliability of high-order allocations when under
2685 * intense memory pressure but failed atomic allocations should be easier
2686 * to recover from than an OOM.
29fac03b
MK
2687 *
2688 * If @force is true, try to unreserve a pageblock even though highatomic
2689 * pageblock is exhausted.
0aaa29a5 2690 */
29fac03b
MK
2691static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2692 bool force)
0aaa29a5
MG
2693{
2694 struct zonelist *zonelist = ac->zonelist;
2695 unsigned long flags;
2696 struct zoneref *z;
2697 struct zone *zone;
2698 struct page *page;
2699 int order;
04c8716f 2700 bool ret;
0aaa29a5 2701
97a225e6 2702 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2703 ac->nodemask) {
29fac03b
MK
2704 /*
2705 * Preserve at least one pageblock unless memory pressure
2706 * is really high.
2707 */
2708 if (!force && zone->nr_reserved_highatomic <=
2709 pageblock_nr_pages)
0aaa29a5
MG
2710 continue;
2711
2712 spin_lock_irqsave(&zone->lock, flags);
2713 for (order = 0; order < MAX_ORDER; order++) {
2714 struct free_area *area = &(zone->free_area[order]);
2715
b03641af 2716 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2717 if (!page)
0aaa29a5
MG
2718 continue;
2719
0aaa29a5 2720 /*
4855e4a7
MK
2721 * In page freeing path, migratetype change is racy so
2722 * we can counter several free pages in a pageblock
2723 * in this loop althoug we changed the pageblock type
2724 * from highatomic to ac->migratetype. So we should
2725 * adjust the count once.
0aaa29a5 2726 */
a6ffdc07 2727 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2728 /*
2729 * It should never happen but changes to
2730 * locking could inadvertently allow a per-cpu
2731 * drain to add pages to MIGRATE_HIGHATOMIC
2732 * while unreserving so be safe and watch for
2733 * underflows.
2734 */
2735 zone->nr_reserved_highatomic -= min(
2736 pageblock_nr_pages,
2737 zone->nr_reserved_highatomic);
2738 }
0aaa29a5
MG
2739
2740 /*
2741 * Convert to ac->migratetype and avoid the normal
2742 * pageblock stealing heuristics. Minimally, the caller
2743 * is doing the work and needs the pages. More
2744 * importantly, if the block was always converted to
2745 * MIGRATE_UNMOVABLE or another type then the number
2746 * of pageblocks that cannot be completely freed
2747 * may increase.
2748 */
2749 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2750 ret = move_freepages_block(zone, page, ac->migratetype,
2751 NULL);
29fac03b
MK
2752 if (ret) {
2753 spin_unlock_irqrestore(&zone->lock, flags);
2754 return ret;
2755 }
0aaa29a5
MG
2756 }
2757 spin_unlock_irqrestore(&zone->lock, flags);
2758 }
04c8716f
MK
2759
2760 return false;
0aaa29a5
MG
2761}
2762
3bc48f96
VB
2763/*
2764 * Try finding a free buddy page on the fallback list and put it on the free
2765 * list of requested migratetype, possibly along with other pages from the same
2766 * block, depending on fragmentation avoidance heuristics. Returns true if
2767 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2768 *
2769 * The use of signed ints for order and current_order is a deliberate
2770 * deviation from the rest of this file, to make the for loop
2771 * condition simpler.
3bc48f96 2772 */
85ccc8fa 2773static __always_inline bool
6bb15450
MG
2774__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2775 unsigned int alloc_flags)
b2a0ac88 2776{
b8af2941 2777 struct free_area *area;
b002529d 2778 int current_order;
6bb15450 2779 int min_order = order;
b2a0ac88 2780 struct page *page;
4eb7dce6
JK
2781 int fallback_mt;
2782 bool can_steal;
b2a0ac88 2783
6bb15450
MG
2784 /*
2785 * Do not steal pages from freelists belonging to other pageblocks
2786 * i.e. orders < pageblock_order. If there are no local zones free,
2787 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2788 */
2789 if (alloc_flags & ALLOC_NOFRAGMENT)
2790 min_order = pageblock_order;
2791
7a8f58f3
VB
2792 /*
2793 * Find the largest available free page in the other list. This roughly
2794 * approximates finding the pageblock with the most free pages, which
2795 * would be too costly to do exactly.
2796 */
6bb15450 2797 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2798 --current_order) {
4eb7dce6
JK
2799 area = &(zone->free_area[current_order]);
2800 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2801 start_migratetype, false, &can_steal);
4eb7dce6
JK
2802 if (fallback_mt == -1)
2803 continue;
b2a0ac88 2804
7a8f58f3
VB
2805 /*
2806 * We cannot steal all free pages from the pageblock and the
2807 * requested migratetype is movable. In that case it's better to
2808 * steal and split the smallest available page instead of the
2809 * largest available page, because even if the next movable
2810 * allocation falls back into a different pageblock than this
2811 * one, it won't cause permanent fragmentation.
2812 */
2813 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2814 && current_order > order)
2815 goto find_smallest;
b2a0ac88 2816
7a8f58f3
VB
2817 goto do_steal;
2818 }
e0fff1bd 2819
7a8f58f3 2820 return false;
e0fff1bd 2821
7a8f58f3
VB
2822find_smallest:
2823 for (current_order = order; current_order < MAX_ORDER;
2824 current_order++) {
2825 area = &(zone->free_area[current_order]);
2826 fallback_mt = find_suitable_fallback(area, current_order,
2827 start_migratetype, false, &can_steal);
2828 if (fallback_mt != -1)
2829 break;
b2a0ac88
MG
2830 }
2831
7a8f58f3
VB
2832 /*
2833 * This should not happen - we already found a suitable fallback
2834 * when looking for the largest page.
2835 */
2836 VM_BUG_ON(current_order == MAX_ORDER);
2837
2838do_steal:
b03641af 2839 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2840
1c30844d
MG
2841 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2842 can_steal);
7a8f58f3
VB
2843
2844 trace_mm_page_alloc_extfrag(page, order, current_order,
2845 start_migratetype, fallback_mt);
2846
2847 return true;
2848
b2a0ac88
MG
2849}
2850
56fd56b8 2851/*
1da177e4
LT
2852 * Do the hard work of removing an element from the buddy allocator.
2853 * Call me with the zone->lock already held.
2854 */
85ccc8fa 2855static __always_inline struct page *
6bb15450
MG
2856__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2857 unsigned int alloc_flags)
1da177e4 2858{
1da177e4
LT
2859 struct page *page;
2860
16867664
RG
2861#ifdef CONFIG_CMA
2862 /*
2863 * Balance movable allocations between regular and CMA areas by
2864 * allocating from CMA when over half of the zone's free memory
2865 * is in the CMA area.
2866 */
8510e69c 2867 if (alloc_flags & ALLOC_CMA &&
16867664
RG
2868 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2869 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2870 page = __rmqueue_cma_fallback(zone, order);
2871 if (page)
2872 return page;
2873 }
2874#endif
3bc48f96 2875retry:
56fd56b8 2876 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2877 if (unlikely(!page)) {
8510e69c 2878 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2879 page = __rmqueue_cma_fallback(zone, order);
2880
6bb15450
MG
2881 if (!page && __rmqueue_fallback(zone, order, migratetype,
2882 alloc_flags))
3bc48f96 2883 goto retry;
728ec980
MG
2884 }
2885
0d3d062a 2886 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2887 return page;
1da177e4
LT
2888}
2889
5f63b720 2890/*
1da177e4
LT
2891 * Obtain a specified number of elements from the buddy allocator, all under
2892 * a single hold of the lock, for efficiency. Add them to the supplied list.
2893 * Returns the number of new pages which were placed at *list.
2894 */
5f63b720 2895static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2896 unsigned long count, struct list_head *list,
6bb15450 2897 int migratetype, unsigned int alloc_flags)
1da177e4 2898{
a6de734b 2899 int i, alloced = 0;
5f63b720 2900
d34b0733 2901 spin_lock(&zone->lock);
1da177e4 2902 for (i = 0; i < count; ++i) {
6bb15450
MG
2903 struct page *page = __rmqueue(zone, order, migratetype,
2904 alloc_flags);
085cc7d5 2905 if (unlikely(page == NULL))
1da177e4 2906 break;
81eabcbe 2907
479f854a
MG
2908 if (unlikely(check_pcp_refill(page)))
2909 continue;
2910
81eabcbe 2911 /*
0fac3ba5
VB
2912 * Split buddy pages returned by expand() are received here in
2913 * physical page order. The page is added to the tail of
2914 * caller's list. From the callers perspective, the linked list
2915 * is ordered by page number under some conditions. This is
2916 * useful for IO devices that can forward direction from the
2917 * head, thus also in the physical page order. This is useful
2918 * for IO devices that can merge IO requests if the physical
2919 * pages are ordered properly.
81eabcbe 2920 */
0fac3ba5 2921 list_add_tail(&page->lru, list);
a6de734b 2922 alloced++;
bb14c2c7 2923 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2924 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2925 -(1 << order));
1da177e4 2926 }
a6de734b
MG
2927
2928 /*
2929 * i pages were removed from the buddy list even if some leak due
2930 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2931 * on i. Do not confuse with 'alloced' which is the number of
2932 * pages added to the pcp list.
2933 */
f2260e6b 2934 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2935 spin_unlock(&zone->lock);
a6de734b 2936 return alloced;
1da177e4
LT
2937}
2938
4ae7c039 2939#ifdef CONFIG_NUMA
8fce4d8e 2940/*
4037d452
CL
2941 * Called from the vmstat counter updater to drain pagesets of this
2942 * currently executing processor on remote nodes after they have
2943 * expired.
2944 *
879336c3
CL
2945 * Note that this function must be called with the thread pinned to
2946 * a single processor.
8fce4d8e 2947 */
4037d452 2948void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2949{
4ae7c039 2950 unsigned long flags;
7be12fc9 2951 int to_drain, batch;
4ae7c039 2952
4037d452 2953 local_irq_save(flags);
4db0c3c2 2954 batch = READ_ONCE(pcp->batch);
7be12fc9 2955 to_drain = min(pcp->count, batch);
77ba9062 2956 if (to_drain > 0)
2a13515c 2957 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2958 local_irq_restore(flags);
4ae7c039
CL
2959}
2960#endif
2961
9f8f2172 2962/*
93481ff0 2963 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2964 *
2965 * The processor must either be the current processor and the
2966 * thread pinned to the current processor or a processor that
2967 * is not online.
2968 */
93481ff0 2969static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2970{
c54ad30c 2971 unsigned long flags;
93481ff0
VB
2972 struct per_cpu_pageset *pset;
2973 struct per_cpu_pages *pcp;
1da177e4 2974
93481ff0
VB
2975 local_irq_save(flags);
2976 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2977
93481ff0 2978 pcp = &pset->pcp;
77ba9062 2979 if (pcp->count)
93481ff0 2980 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2981 local_irq_restore(flags);
2982}
3dfa5721 2983
93481ff0
VB
2984/*
2985 * Drain pcplists of all zones on the indicated processor.
2986 *
2987 * The processor must either be the current processor and the
2988 * thread pinned to the current processor or a processor that
2989 * is not online.
2990 */
2991static void drain_pages(unsigned int cpu)
2992{
2993 struct zone *zone;
2994
2995 for_each_populated_zone(zone) {
2996 drain_pages_zone(cpu, zone);
1da177e4
LT
2997 }
2998}
1da177e4 2999
9f8f2172
CL
3000/*
3001 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3002 *
3003 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3004 * the single zone's pages.
9f8f2172 3005 */
93481ff0 3006void drain_local_pages(struct zone *zone)
9f8f2172 3007{
93481ff0
VB
3008 int cpu = smp_processor_id();
3009
3010 if (zone)
3011 drain_pages_zone(cpu, zone);
3012 else
3013 drain_pages(cpu);
9f8f2172
CL
3014}
3015
0ccce3b9
MG
3016static void drain_local_pages_wq(struct work_struct *work)
3017{
d9367bd0
WY
3018 struct pcpu_drain *drain;
3019
3020 drain = container_of(work, struct pcpu_drain, work);
3021
a459eeb7
MH
3022 /*
3023 * drain_all_pages doesn't use proper cpu hotplug protection so
3024 * we can race with cpu offline when the WQ can move this from
3025 * a cpu pinned worker to an unbound one. We can operate on a different
3026 * cpu which is allright but we also have to make sure to not move to
3027 * a different one.
3028 */
3029 preempt_disable();
d9367bd0 3030 drain_local_pages(drain->zone);
a459eeb7 3031 preempt_enable();
0ccce3b9
MG
3032}
3033
9f8f2172 3034/*
ec6e8c7e
VB
3035 * The implementation of drain_all_pages(), exposing an extra parameter to
3036 * drain on all cpus.
93481ff0 3037 *
ec6e8c7e
VB
3038 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3039 * not empty. The check for non-emptiness can however race with a free to
3040 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3041 * that need the guarantee that every CPU has drained can disable the
3042 * optimizing racy check.
9f8f2172 3043 */
3b1f3658 3044static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3045{
74046494 3046 int cpu;
74046494
GBY
3047
3048 /*
3049 * Allocate in the BSS so we wont require allocation in
3050 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3051 */
3052 static cpumask_t cpus_with_pcps;
3053
ce612879
MH
3054 /*
3055 * Make sure nobody triggers this path before mm_percpu_wq is fully
3056 * initialized.
3057 */
3058 if (WARN_ON_ONCE(!mm_percpu_wq))
3059 return;
3060
bd233f53
MG
3061 /*
3062 * Do not drain if one is already in progress unless it's specific to
3063 * a zone. Such callers are primarily CMA and memory hotplug and need
3064 * the drain to be complete when the call returns.
3065 */
3066 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3067 if (!zone)
3068 return;
3069 mutex_lock(&pcpu_drain_mutex);
3070 }
0ccce3b9 3071
74046494
GBY
3072 /*
3073 * We don't care about racing with CPU hotplug event
3074 * as offline notification will cause the notified
3075 * cpu to drain that CPU pcps and on_each_cpu_mask
3076 * disables preemption as part of its processing
3077 */
3078 for_each_online_cpu(cpu) {
93481ff0
VB
3079 struct per_cpu_pageset *pcp;
3080 struct zone *z;
74046494 3081 bool has_pcps = false;
93481ff0 3082
ec6e8c7e
VB
3083 if (force_all_cpus) {
3084 /*
3085 * The pcp.count check is racy, some callers need a
3086 * guarantee that no cpu is missed.
3087 */
3088 has_pcps = true;
3089 } else if (zone) {
74046494 3090 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3091 if (pcp->pcp.count)
74046494 3092 has_pcps = true;
93481ff0
VB
3093 } else {
3094 for_each_populated_zone(z) {
3095 pcp = per_cpu_ptr(z->pageset, cpu);
3096 if (pcp->pcp.count) {
3097 has_pcps = true;
3098 break;
3099 }
74046494
GBY
3100 }
3101 }
93481ff0 3102
74046494
GBY
3103 if (has_pcps)
3104 cpumask_set_cpu(cpu, &cpus_with_pcps);
3105 else
3106 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3107 }
0ccce3b9 3108
bd233f53 3109 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3110 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3111
3112 drain->zone = zone;
3113 INIT_WORK(&drain->work, drain_local_pages_wq);
3114 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3115 }
bd233f53 3116 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3117 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3118
3119 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3120}
3121
ec6e8c7e
VB
3122/*
3123 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3124 *
3125 * When zone parameter is non-NULL, spill just the single zone's pages.
3126 *
3127 * Note that this can be extremely slow as the draining happens in a workqueue.
3128 */
3129void drain_all_pages(struct zone *zone)
3130{
3131 __drain_all_pages(zone, false);
3132}
3133
296699de 3134#ifdef CONFIG_HIBERNATION
1da177e4 3135
556b969a
CY
3136/*
3137 * Touch the watchdog for every WD_PAGE_COUNT pages.
3138 */
3139#define WD_PAGE_COUNT (128*1024)
3140
1da177e4
LT
3141void mark_free_pages(struct zone *zone)
3142{
556b969a 3143 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3144 unsigned long flags;
7aeb09f9 3145 unsigned int order, t;
86760a2c 3146 struct page *page;
1da177e4 3147
8080fc03 3148 if (zone_is_empty(zone))
1da177e4
LT
3149 return;
3150
3151 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3152
108bcc96 3153 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3154 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3155 if (pfn_valid(pfn)) {
86760a2c 3156 page = pfn_to_page(pfn);
ba6b0979 3157
556b969a
CY
3158 if (!--page_count) {
3159 touch_nmi_watchdog();
3160 page_count = WD_PAGE_COUNT;
3161 }
3162
ba6b0979
JK
3163 if (page_zone(page) != zone)
3164 continue;
3165
7be98234
RW
3166 if (!swsusp_page_is_forbidden(page))
3167 swsusp_unset_page_free(page);
f623f0db 3168 }
1da177e4 3169
b2a0ac88 3170 for_each_migratetype_order(order, t) {
86760a2c
GT
3171 list_for_each_entry(page,
3172 &zone->free_area[order].free_list[t], lru) {
f623f0db 3173 unsigned long i;
1da177e4 3174
86760a2c 3175 pfn = page_to_pfn(page);
556b969a
CY
3176 for (i = 0; i < (1UL << order); i++) {
3177 if (!--page_count) {
3178 touch_nmi_watchdog();
3179 page_count = WD_PAGE_COUNT;
3180 }
7be98234 3181 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3182 }
f623f0db 3183 }
b2a0ac88 3184 }
1da177e4
LT
3185 spin_unlock_irqrestore(&zone->lock, flags);
3186}
e2c55dc8 3187#endif /* CONFIG_PM */
1da177e4 3188
2d4894b5 3189static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3190{
5f8dcc21 3191 int migratetype;
1da177e4 3192
4db7548c 3193 if (!free_pcp_prepare(page))
9cca35d4 3194 return false;
689bcebf 3195
dc4b0caf 3196 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3197 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3198 return true;
3199}
3200
2d4894b5 3201static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3202{
3203 struct zone *zone = page_zone(page);
3204 struct per_cpu_pages *pcp;
3205 int migratetype;
3206
3207 migratetype = get_pcppage_migratetype(page);
d34b0733 3208 __count_vm_event(PGFREE);
da456f14 3209
5f8dcc21
MG
3210 /*
3211 * We only track unmovable, reclaimable and movable on pcp lists.
3212 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3213 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3214 * areas back if necessary. Otherwise, we may have to free
3215 * excessively into the page allocator
3216 */
3217 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3218 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3219 free_one_page(zone, page, pfn, 0, migratetype,
3220 FPI_NONE);
9cca35d4 3221 return;
5f8dcc21
MG
3222 }
3223 migratetype = MIGRATE_MOVABLE;
3224 }
3225
99dcc3e5 3226 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3227 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3228 pcp->count++;
5c3ad2eb
VB
3229 if (pcp->count >= READ_ONCE(pcp->high))
3230 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
9cca35d4 3231}
5f8dcc21 3232
9cca35d4
MG
3233/*
3234 * Free a 0-order page
9cca35d4 3235 */
2d4894b5 3236void free_unref_page(struct page *page)
9cca35d4
MG
3237{
3238 unsigned long flags;
3239 unsigned long pfn = page_to_pfn(page);
3240
2d4894b5 3241 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3242 return;
3243
3244 local_irq_save(flags);
2d4894b5 3245 free_unref_page_commit(page, pfn);
d34b0733 3246 local_irq_restore(flags);
1da177e4
LT
3247}
3248
cc59850e
KK
3249/*
3250 * Free a list of 0-order pages
3251 */
2d4894b5 3252void free_unref_page_list(struct list_head *list)
cc59850e
KK
3253{
3254 struct page *page, *next;
9cca35d4 3255 unsigned long flags, pfn;
c24ad77d 3256 int batch_count = 0;
9cca35d4
MG
3257
3258 /* Prepare pages for freeing */
3259 list_for_each_entry_safe(page, next, list, lru) {
3260 pfn = page_to_pfn(page);
2d4894b5 3261 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3262 list_del(&page->lru);
3263 set_page_private(page, pfn);
3264 }
cc59850e 3265
9cca35d4 3266 local_irq_save(flags);
cc59850e 3267 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3268 unsigned long pfn = page_private(page);
3269
3270 set_page_private(page, 0);
2d4894b5
MG
3271 trace_mm_page_free_batched(page);
3272 free_unref_page_commit(page, pfn);
c24ad77d
LS
3273
3274 /*
3275 * Guard against excessive IRQ disabled times when we get
3276 * a large list of pages to free.
3277 */
3278 if (++batch_count == SWAP_CLUSTER_MAX) {
3279 local_irq_restore(flags);
3280 batch_count = 0;
3281 local_irq_save(flags);
3282 }
cc59850e 3283 }
9cca35d4 3284 local_irq_restore(flags);
cc59850e
KK
3285}
3286
8dfcc9ba
NP
3287/*
3288 * split_page takes a non-compound higher-order page, and splits it into
3289 * n (1<<order) sub-pages: page[0..n]
3290 * Each sub-page must be freed individually.
3291 *
3292 * Note: this is probably too low level an operation for use in drivers.
3293 * Please consult with lkml before using this in your driver.
3294 */
3295void split_page(struct page *page, unsigned int order)
3296{
3297 int i;
3298
309381fe
SL
3299 VM_BUG_ON_PAGE(PageCompound(page), page);
3300 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3301
a9627bc5 3302 for (i = 1; i < (1 << order); i++)
7835e98b 3303 set_page_refcounted(page + i);
8fb156c9 3304 split_page_owner(page, 1 << order);
8dfcc9ba 3305}
5853ff23 3306EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3307
3c605096 3308int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3309{
748446bb
MG
3310 unsigned long watermark;
3311 struct zone *zone;
2139cbe6 3312 int mt;
748446bb
MG
3313
3314 BUG_ON(!PageBuddy(page));
3315
3316 zone = page_zone(page);
2e30abd1 3317 mt = get_pageblock_migratetype(page);
748446bb 3318
194159fb 3319 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3320 /*
3321 * Obey watermarks as if the page was being allocated. We can
3322 * emulate a high-order watermark check with a raised order-0
3323 * watermark, because we already know our high-order page
3324 * exists.
3325 */
fd1444b2 3326 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3327 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3328 return 0;
3329
8fb74b9f 3330 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3331 }
748446bb
MG
3332
3333 /* Remove page from free list */
b03641af 3334
6ab01363 3335 del_page_from_free_list(page, zone, order);
2139cbe6 3336
400bc7fd 3337 /*
3338 * Set the pageblock if the isolated page is at least half of a
3339 * pageblock
3340 */
748446bb
MG
3341 if (order >= pageblock_order - 1) {
3342 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3343 for (; page < endpage; page += pageblock_nr_pages) {
3344 int mt = get_pageblock_migratetype(page);
88ed365e 3345 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3346 && !is_migrate_highatomic(mt))
47118af0
MN
3347 set_pageblock_migratetype(page,
3348 MIGRATE_MOVABLE);
3349 }
748446bb
MG
3350 }
3351
f3a14ced 3352
8fb74b9f 3353 return 1UL << order;
1fb3f8ca
MG
3354}
3355
624f58d8
AD
3356/**
3357 * __putback_isolated_page - Return a now-isolated page back where we got it
3358 * @page: Page that was isolated
3359 * @order: Order of the isolated page
e6a0a7ad 3360 * @mt: The page's pageblock's migratetype
624f58d8
AD
3361 *
3362 * This function is meant to return a page pulled from the free lists via
3363 * __isolate_free_page back to the free lists they were pulled from.
3364 */
3365void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3366{
3367 struct zone *zone = page_zone(page);
3368
3369 /* zone lock should be held when this function is called */
3370 lockdep_assert_held(&zone->lock);
3371
3372 /* Return isolated page to tail of freelist. */
f04a5d5d 3373 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3374 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3375}
3376
060e7417
MG
3377/*
3378 * Update NUMA hit/miss statistics
3379 *
3380 * Must be called with interrupts disabled.
060e7417 3381 */
41b6167e 3382static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3383{
3384#ifdef CONFIG_NUMA
3a321d2a 3385 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3386
4518085e
KW
3387 /* skip numa counters update if numa stats is disabled */
3388 if (!static_branch_likely(&vm_numa_stat_key))
3389 return;
3390
c1093b74 3391 if (zone_to_nid(z) != numa_node_id())
060e7417 3392 local_stat = NUMA_OTHER;
060e7417 3393
c1093b74 3394 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3395 __inc_numa_state(z, NUMA_HIT);
2df26639 3396 else {
3a321d2a
KW
3397 __inc_numa_state(z, NUMA_MISS);
3398 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3399 }
3a321d2a 3400 __inc_numa_state(z, local_stat);
060e7417
MG
3401#endif
3402}
3403
066b2393
MG
3404/* Remove page from the per-cpu list, caller must protect the list */
3405static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3406 unsigned int alloc_flags,
453f85d4 3407 struct per_cpu_pages *pcp,
066b2393
MG
3408 struct list_head *list)
3409{
3410 struct page *page;
3411
3412 do {
3413 if (list_empty(list)) {
3414 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3415 READ_ONCE(pcp->batch), list,
6bb15450 3416 migratetype, alloc_flags);
066b2393
MG
3417 if (unlikely(list_empty(list)))
3418 return NULL;
3419 }
3420
453f85d4 3421 page = list_first_entry(list, struct page, lru);
066b2393
MG
3422 list_del(&page->lru);
3423 pcp->count--;
3424 } while (check_new_pcp(page));
3425
3426 return page;
3427}
3428
3429/* Lock and remove page from the per-cpu list */
3430static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3431 struct zone *zone, gfp_t gfp_flags,
3432 int migratetype, unsigned int alloc_flags)
066b2393
MG
3433{
3434 struct per_cpu_pages *pcp;
3435 struct list_head *list;
066b2393 3436 struct page *page;
d34b0733 3437 unsigned long flags;
066b2393 3438
d34b0733 3439 local_irq_save(flags);
066b2393
MG
3440 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3441 list = &pcp->lists[migratetype];
6bb15450 3442 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3443 if (page) {
1c52e6d0 3444 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3445 zone_statistics(preferred_zone, zone);
3446 }
d34b0733 3447 local_irq_restore(flags);
066b2393
MG
3448 return page;
3449}
3450
1da177e4 3451/*
75379191 3452 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3453 */
0a15c3e9 3454static inline
066b2393 3455struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3456 struct zone *zone, unsigned int order,
c603844b
MG
3457 gfp_t gfp_flags, unsigned int alloc_flags,
3458 int migratetype)
1da177e4
LT
3459{
3460 unsigned long flags;
689bcebf 3461 struct page *page;
1da177e4 3462
d34b0733 3463 if (likely(order == 0)) {
1d91df85
JK
3464 /*
3465 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3466 * we need to skip it when CMA area isn't allowed.
3467 */
3468 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3469 migratetype != MIGRATE_MOVABLE) {
3470 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3471 migratetype, alloc_flags);
1d91df85
JK
3472 goto out;
3473 }
066b2393 3474 }
83b9355b 3475
066b2393
MG
3476 /*
3477 * We most definitely don't want callers attempting to
3478 * allocate greater than order-1 page units with __GFP_NOFAIL.
3479 */
3480 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3481 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3482
066b2393
MG
3483 do {
3484 page = NULL;
1d91df85
JK
3485 /*
3486 * order-0 request can reach here when the pcplist is skipped
3487 * due to non-CMA allocation context. HIGHATOMIC area is
3488 * reserved for high-order atomic allocation, so order-0
3489 * request should skip it.
3490 */
3491 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3492 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3493 if (page)
3494 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3495 }
a74609fa 3496 if (!page)
6bb15450 3497 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3498 } while (page && check_new_pages(page, order));
3499 spin_unlock(&zone->lock);
3500 if (!page)
3501 goto failed;
3502 __mod_zone_freepage_state(zone, -(1 << order),
3503 get_pcppage_migratetype(page));
1da177e4 3504
16709d1d 3505 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3506 zone_statistics(preferred_zone, zone);
a74609fa 3507 local_irq_restore(flags);
1da177e4 3508
066b2393 3509out:
73444bc4
MG
3510 /* Separate test+clear to avoid unnecessary atomics */
3511 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3512 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3513 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3514 }
3515
066b2393 3516 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3517 return page;
a74609fa
NP
3518
3519failed:
3520 local_irq_restore(flags);
a74609fa 3521 return NULL;
1da177e4
LT
3522}
3523
933e312e
AM
3524#ifdef CONFIG_FAIL_PAGE_ALLOC
3525
b2588c4b 3526static struct {
933e312e
AM
3527 struct fault_attr attr;
3528
621a5f7a 3529 bool ignore_gfp_highmem;
71baba4b 3530 bool ignore_gfp_reclaim;
54114994 3531 u32 min_order;
933e312e
AM
3532} fail_page_alloc = {
3533 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3534 .ignore_gfp_reclaim = true,
621a5f7a 3535 .ignore_gfp_highmem = true,
54114994 3536 .min_order = 1,
933e312e
AM
3537};
3538
3539static int __init setup_fail_page_alloc(char *str)
3540{
3541 return setup_fault_attr(&fail_page_alloc.attr, str);
3542}
3543__setup("fail_page_alloc=", setup_fail_page_alloc);
3544
af3b8544 3545static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3546{
54114994 3547 if (order < fail_page_alloc.min_order)
deaf386e 3548 return false;
933e312e 3549 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3550 return false;
933e312e 3551 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3552 return false;
71baba4b
MG
3553 if (fail_page_alloc.ignore_gfp_reclaim &&
3554 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3555 return false;
933e312e
AM
3556
3557 return should_fail(&fail_page_alloc.attr, 1 << order);
3558}
3559
3560#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3561
3562static int __init fail_page_alloc_debugfs(void)
3563{
0825a6f9 3564 umode_t mode = S_IFREG | 0600;
933e312e 3565 struct dentry *dir;
933e312e 3566
dd48c085
AM
3567 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3568 &fail_page_alloc.attr);
b2588c4b 3569
d9f7979c
GKH
3570 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3571 &fail_page_alloc.ignore_gfp_reclaim);
3572 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3573 &fail_page_alloc.ignore_gfp_highmem);
3574 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3575
d9f7979c 3576 return 0;
933e312e
AM
3577}
3578
3579late_initcall(fail_page_alloc_debugfs);
3580
3581#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3582
3583#else /* CONFIG_FAIL_PAGE_ALLOC */
3584
af3b8544 3585static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3586{
deaf386e 3587 return false;
933e312e
AM
3588}
3589
3590#endif /* CONFIG_FAIL_PAGE_ALLOC */
3591
76cd6173 3592noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3593{
3594 return __should_fail_alloc_page(gfp_mask, order);
3595}
3596ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3597
f27ce0e1
JK
3598static inline long __zone_watermark_unusable_free(struct zone *z,
3599 unsigned int order, unsigned int alloc_flags)
3600{
3601 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3602 long unusable_free = (1 << order) - 1;
3603
3604 /*
3605 * If the caller does not have rights to ALLOC_HARDER then subtract
3606 * the high-atomic reserves. This will over-estimate the size of the
3607 * atomic reserve but it avoids a search.
3608 */
3609 if (likely(!alloc_harder))
3610 unusable_free += z->nr_reserved_highatomic;
3611
3612#ifdef CONFIG_CMA
3613 /* If allocation can't use CMA areas don't use free CMA pages */
3614 if (!(alloc_flags & ALLOC_CMA))
3615 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3616#endif
3617
3618 return unusable_free;
3619}
3620
1da177e4 3621/*
97a16fc8
MG
3622 * Return true if free base pages are above 'mark'. For high-order checks it
3623 * will return true of the order-0 watermark is reached and there is at least
3624 * one free page of a suitable size. Checking now avoids taking the zone lock
3625 * to check in the allocation paths if no pages are free.
1da177e4 3626 */
86a294a8 3627bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3628 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3629 long free_pages)
1da177e4 3630{
d23ad423 3631 long min = mark;
1da177e4 3632 int o;
cd04ae1e 3633 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3634
0aaa29a5 3635 /* free_pages may go negative - that's OK */
f27ce0e1 3636 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3637
7fb1d9fc 3638 if (alloc_flags & ALLOC_HIGH)
1da177e4 3639 min -= min / 2;
0aaa29a5 3640
f27ce0e1 3641 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3642 /*
3643 * OOM victims can try even harder than normal ALLOC_HARDER
3644 * users on the grounds that it's definitely going to be in
3645 * the exit path shortly and free memory. Any allocation it
3646 * makes during the free path will be small and short-lived.
3647 */
3648 if (alloc_flags & ALLOC_OOM)
3649 min -= min / 2;
3650 else
3651 min -= min / 4;
3652 }
3653
97a16fc8
MG
3654 /*
3655 * Check watermarks for an order-0 allocation request. If these
3656 * are not met, then a high-order request also cannot go ahead
3657 * even if a suitable page happened to be free.
3658 */
97a225e6 3659 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3660 return false;
1da177e4 3661
97a16fc8
MG
3662 /* If this is an order-0 request then the watermark is fine */
3663 if (!order)
3664 return true;
3665
3666 /* For a high-order request, check at least one suitable page is free */
3667 for (o = order; o < MAX_ORDER; o++) {
3668 struct free_area *area = &z->free_area[o];
3669 int mt;
3670
3671 if (!area->nr_free)
3672 continue;
3673
97a16fc8 3674 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3675 if (!free_area_empty(area, mt))
97a16fc8
MG
3676 return true;
3677 }
3678
3679#ifdef CONFIG_CMA
d883c6cf 3680 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3681 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3682 return true;
d883c6cf 3683 }
97a16fc8 3684#endif
76089d00 3685 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3686 return true;
1da177e4 3687 }
97a16fc8 3688 return false;
88f5acf8
MG
3689}
3690
7aeb09f9 3691bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3692 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3693{
97a225e6 3694 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3695 zone_page_state(z, NR_FREE_PAGES));
3696}
3697
48ee5f36 3698static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3699 unsigned long mark, int highest_zoneidx,
f80b08fc 3700 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3701{
f27ce0e1 3702 long free_pages;
d883c6cf 3703
f27ce0e1 3704 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3705
3706 /*
3707 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3708 * need to be calculated.
48ee5f36 3709 */
f27ce0e1
JK
3710 if (!order) {
3711 long fast_free;
3712
3713 fast_free = free_pages;
3714 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3715 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3716 return true;
3717 }
48ee5f36 3718
f80b08fc
CTR
3719 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3720 free_pages))
3721 return true;
3722 /*
3723 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3724 * when checking the min watermark. The min watermark is the
3725 * point where boosting is ignored so that kswapd is woken up
3726 * when below the low watermark.
3727 */
3728 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3729 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3730 mark = z->_watermark[WMARK_MIN];
3731 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3732 alloc_flags, free_pages);
3733 }
3734
3735 return false;
48ee5f36
MG
3736}
3737
7aeb09f9 3738bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3739 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3740{
3741 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3742
3743 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3744 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3745
97a225e6 3746 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3747 free_pages);
1da177e4
LT
3748}
3749
9276b1bc 3750#ifdef CONFIG_NUMA
957f822a
DR
3751static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3752{
e02dc017 3753 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3754 node_reclaim_distance;
957f822a 3755}
9276b1bc 3756#else /* CONFIG_NUMA */
957f822a
DR
3757static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3758{
3759 return true;
3760}
9276b1bc
PJ
3761#endif /* CONFIG_NUMA */
3762
6bb15450
MG
3763/*
3764 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3765 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3766 * premature use of a lower zone may cause lowmem pressure problems that
3767 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3768 * probably too small. It only makes sense to spread allocations to avoid
3769 * fragmentation between the Normal and DMA32 zones.
3770 */
3771static inline unsigned int
0a79cdad 3772alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3773{
736838e9 3774 unsigned int alloc_flags;
0a79cdad 3775
736838e9
MN
3776 /*
3777 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3778 * to save a branch.
3779 */
3780 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3781
3782#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3783 if (!zone)
3784 return alloc_flags;
3785
6bb15450 3786 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3787 return alloc_flags;
6bb15450
MG
3788
3789 /*
3790 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3791 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3792 * on UMA that if Normal is populated then so is DMA32.
3793 */
3794 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3795 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3796 return alloc_flags;
6bb15450 3797
8118b82e 3798 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3799#endif /* CONFIG_ZONE_DMA32 */
3800 return alloc_flags;
6bb15450 3801}
6bb15450 3802
8510e69c
JK
3803static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3804 unsigned int alloc_flags)
3805{
3806#ifdef CONFIG_CMA
3807 unsigned int pflags = current->flags;
3808
3809 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3810 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3811 alloc_flags |= ALLOC_CMA;
3812
3813#endif
3814 return alloc_flags;
3815}
3816
7fb1d9fc 3817/*
0798e519 3818 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3819 * a page.
3820 */
3821static struct page *
a9263751
VB
3822get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3823 const struct alloc_context *ac)
753ee728 3824{
6bb15450 3825 struct zoneref *z;
5117f45d 3826 struct zone *zone;
3b8c0be4 3827 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3828 bool no_fallback;
3b8c0be4 3829
6bb15450 3830retry:
7fb1d9fc 3831 /*
9276b1bc 3832 * Scan zonelist, looking for a zone with enough free.
344736f2 3833 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3834 */
6bb15450
MG
3835 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3836 z = ac->preferred_zoneref;
30d8ec73
MN
3837 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3838 ac->nodemask) {
be06af00 3839 struct page *page;
e085dbc5
JW
3840 unsigned long mark;
3841
664eedde
MG
3842 if (cpusets_enabled() &&
3843 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3844 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3845 continue;
a756cf59
JW
3846 /*
3847 * When allocating a page cache page for writing, we
281e3726
MG
3848 * want to get it from a node that is within its dirty
3849 * limit, such that no single node holds more than its
a756cf59 3850 * proportional share of globally allowed dirty pages.
281e3726 3851 * The dirty limits take into account the node's
a756cf59
JW
3852 * lowmem reserves and high watermark so that kswapd
3853 * should be able to balance it without having to
3854 * write pages from its LRU list.
3855 *
a756cf59 3856 * XXX: For now, allow allocations to potentially
281e3726 3857 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3858 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3859 * which is important when on a NUMA setup the allowed
281e3726 3860 * nodes are together not big enough to reach the
a756cf59 3861 * global limit. The proper fix for these situations
281e3726 3862 * will require awareness of nodes in the
a756cf59
JW
3863 * dirty-throttling and the flusher threads.
3864 */
3b8c0be4
MG
3865 if (ac->spread_dirty_pages) {
3866 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3867 continue;
3868
3869 if (!node_dirty_ok(zone->zone_pgdat)) {
3870 last_pgdat_dirty_limit = zone->zone_pgdat;
3871 continue;
3872 }
3873 }
7fb1d9fc 3874
6bb15450
MG
3875 if (no_fallback && nr_online_nodes > 1 &&
3876 zone != ac->preferred_zoneref->zone) {
3877 int local_nid;
3878
3879 /*
3880 * If moving to a remote node, retry but allow
3881 * fragmenting fallbacks. Locality is more important
3882 * than fragmentation avoidance.
3883 */
3884 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3885 if (zone_to_nid(zone) != local_nid) {
3886 alloc_flags &= ~ALLOC_NOFRAGMENT;
3887 goto retry;
3888 }
3889 }
3890
a9214443 3891 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3892 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3893 ac->highest_zoneidx, alloc_flags,
3894 gfp_mask)) {
fa5e084e
MG
3895 int ret;
3896
c9e97a19
PT
3897#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3898 /*
3899 * Watermark failed for this zone, but see if we can
3900 * grow this zone if it contains deferred pages.
3901 */
3902 if (static_branch_unlikely(&deferred_pages)) {
3903 if (_deferred_grow_zone(zone, order))
3904 goto try_this_zone;
3905 }
3906#endif
5dab2911
MG
3907 /* Checked here to keep the fast path fast */
3908 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3909 if (alloc_flags & ALLOC_NO_WATERMARKS)
3910 goto try_this_zone;
3911
a5f5f91d 3912 if (node_reclaim_mode == 0 ||
c33d6c06 3913 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3914 continue;
3915
a5f5f91d 3916 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3917 switch (ret) {
a5f5f91d 3918 case NODE_RECLAIM_NOSCAN:
fa5e084e 3919 /* did not scan */
cd38b115 3920 continue;
a5f5f91d 3921 case NODE_RECLAIM_FULL:
fa5e084e 3922 /* scanned but unreclaimable */
cd38b115 3923 continue;
fa5e084e
MG
3924 default:
3925 /* did we reclaim enough */
fed2719e 3926 if (zone_watermark_ok(zone, order, mark,
97a225e6 3927 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3928 goto try_this_zone;
3929
fed2719e 3930 continue;
0798e519 3931 }
7fb1d9fc
RS
3932 }
3933
fa5e084e 3934try_this_zone:
066b2393 3935 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3936 gfp_mask, alloc_flags, ac->migratetype);
75379191 3937 if (page) {
479f854a 3938 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3939
3940 /*
3941 * If this is a high-order atomic allocation then check
3942 * if the pageblock should be reserved for the future
3943 */
3944 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3945 reserve_highatomic_pageblock(page, zone, order);
3946
75379191 3947 return page;
c9e97a19
PT
3948 } else {
3949#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3950 /* Try again if zone has deferred pages */
3951 if (static_branch_unlikely(&deferred_pages)) {
3952 if (_deferred_grow_zone(zone, order))
3953 goto try_this_zone;
3954 }
3955#endif
75379191 3956 }
54a6eb5c 3957 }
9276b1bc 3958
6bb15450
MG
3959 /*
3960 * It's possible on a UMA machine to get through all zones that are
3961 * fragmented. If avoiding fragmentation, reset and try again.
3962 */
3963 if (no_fallback) {
3964 alloc_flags &= ~ALLOC_NOFRAGMENT;
3965 goto retry;
3966 }
3967
4ffeaf35 3968 return NULL;
753ee728
MH
3969}
3970
9af744d7 3971static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3972{
a238ab5b 3973 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3974
3975 /*
3976 * This documents exceptions given to allocations in certain
3977 * contexts that are allowed to allocate outside current's set
3978 * of allowed nodes.
3979 */
3980 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3981 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3982 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3983 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3984 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3985 filter &= ~SHOW_MEM_FILTER_NODES;
3986
9af744d7 3987 show_mem(filter, nodemask);
aa187507
MH
3988}
3989
a8e99259 3990void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3991{
3992 struct va_format vaf;
3993 va_list args;
1be334e5 3994 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3995
0f7896f1 3996 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3997 return;
3998
7877cdcc
MH
3999 va_start(args, fmt);
4000 vaf.fmt = fmt;
4001 vaf.va = &args;
ef8444ea 4002 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4003 current->comm, &vaf, gfp_mask, &gfp_mask,
4004 nodemask_pr_args(nodemask));
7877cdcc 4005 va_end(args);
3ee9a4f0 4006
a8e99259 4007 cpuset_print_current_mems_allowed();
ef8444ea 4008 pr_cont("\n");
a238ab5b 4009 dump_stack();
685dbf6f 4010 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4011}
4012
6c18ba7a
MH
4013static inline struct page *
4014__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4015 unsigned int alloc_flags,
4016 const struct alloc_context *ac)
4017{
4018 struct page *page;
4019
4020 page = get_page_from_freelist(gfp_mask, order,
4021 alloc_flags|ALLOC_CPUSET, ac);
4022 /*
4023 * fallback to ignore cpuset restriction if our nodes
4024 * are depleted
4025 */
4026 if (!page)
4027 page = get_page_from_freelist(gfp_mask, order,
4028 alloc_flags, ac);
4029
4030 return page;
4031}
4032
11e33f6a
MG
4033static inline struct page *
4034__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4035 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4036{
6e0fc46d
DR
4037 struct oom_control oc = {
4038 .zonelist = ac->zonelist,
4039 .nodemask = ac->nodemask,
2a966b77 4040 .memcg = NULL,
6e0fc46d
DR
4041 .gfp_mask = gfp_mask,
4042 .order = order,
6e0fc46d 4043 };
11e33f6a
MG
4044 struct page *page;
4045
9879de73
JW
4046 *did_some_progress = 0;
4047
9879de73 4048 /*
dc56401f
JW
4049 * Acquire the oom lock. If that fails, somebody else is
4050 * making progress for us.
9879de73 4051 */
dc56401f 4052 if (!mutex_trylock(&oom_lock)) {
9879de73 4053 *did_some_progress = 1;
11e33f6a 4054 schedule_timeout_uninterruptible(1);
1da177e4
LT
4055 return NULL;
4056 }
6b1de916 4057
11e33f6a
MG
4058 /*
4059 * Go through the zonelist yet one more time, keep very high watermark
4060 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4061 * we're still under heavy pressure. But make sure that this reclaim
4062 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4063 * allocation which will never fail due to oom_lock already held.
11e33f6a 4064 */
e746bf73
TH
4065 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4066 ~__GFP_DIRECT_RECLAIM, order,
4067 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4068 if (page)
11e33f6a
MG
4069 goto out;
4070
06ad276a
MH
4071 /* Coredumps can quickly deplete all memory reserves */
4072 if (current->flags & PF_DUMPCORE)
4073 goto out;
4074 /* The OOM killer will not help higher order allocs */
4075 if (order > PAGE_ALLOC_COSTLY_ORDER)
4076 goto out;
dcda9b04
MH
4077 /*
4078 * We have already exhausted all our reclaim opportunities without any
4079 * success so it is time to admit defeat. We will skip the OOM killer
4080 * because it is very likely that the caller has a more reasonable
4081 * fallback than shooting a random task.
cfb4a541
MN
4082 *
4083 * The OOM killer may not free memory on a specific node.
dcda9b04 4084 */
cfb4a541 4085 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4086 goto out;
06ad276a 4087 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4088 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4089 goto out;
4090 if (pm_suspended_storage())
4091 goto out;
4092 /*
4093 * XXX: GFP_NOFS allocations should rather fail than rely on
4094 * other request to make a forward progress.
4095 * We are in an unfortunate situation where out_of_memory cannot
4096 * do much for this context but let's try it to at least get
4097 * access to memory reserved if the current task is killed (see
4098 * out_of_memory). Once filesystems are ready to handle allocation
4099 * failures more gracefully we should just bail out here.
4100 */
4101
3c2c6488 4102 /* Exhausted what can be done so it's blame time */
5020e285 4103 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4104 *did_some_progress = 1;
5020e285 4105
6c18ba7a
MH
4106 /*
4107 * Help non-failing allocations by giving them access to memory
4108 * reserves
4109 */
4110 if (gfp_mask & __GFP_NOFAIL)
4111 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4112 ALLOC_NO_WATERMARKS, ac);
5020e285 4113 }
11e33f6a 4114out:
dc56401f 4115 mutex_unlock(&oom_lock);
11e33f6a
MG
4116 return page;
4117}
4118
33c2d214
MH
4119/*
4120 * Maximum number of compaction retries wit a progress before OOM
4121 * killer is consider as the only way to move forward.
4122 */
4123#define MAX_COMPACT_RETRIES 16
4124
56de7263
MG
4125#ifdef CONFIG_COMPACTION
4126/* Try memory compaction for high-order allocations before reclaim */
4127static struct page *
4128__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4129 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4130 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4131{
5e1f0f09 4132 struct page *page = NULL;
eb414681 4133 unsigned long pflags;
499118e9 4134 unsigned int noreclaim_flag;
53853e2d
VB
4135
4136 if (!order)
66199712 4137 return NULL;
66199712 4138
eb414681 4139 psi_memstall_enter(&pflags);
499118e9 4140 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4141
c5d01d0d 4142 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4143 prio, &page);
eb414681 4144
499118e9 4145 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4146 psi_memstall_leave(&pflags);
56de7263 4147
98dd3b48
VB
4148 /*
4149 * At least in one zone compaction wasn't deferred or skipped, so let's
4150 * count a compaction stall
4151 */
4152 count_vm_event(COMPACTSTALL);
8fb74b9f 4153
5e1f0f09
MG
4154 /* Prep a captured page if available */
4155 if (page)
4156 prep_new_page(page, order, gfp_mask, alloc_flags);
4157
4158 /* Try get a page from the freelist if available */
4159 if (!page)
4160 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4161
98dd3b48
VB
4162 if (page) {
4163 struct zone *zone = page_zone(page);
53853e2d 4164
98dd3b48
VB
4165 zone->compact_blockskip_flush = false;
4166 compaction_defer_reset(zone, order, true);
4167 count_vm_event(COMPACTSUCCESS);
4168 return page;
4169 }
56de7263 4170
98dd3b48
VB
4171 /*
4172 * It's bad if compaction run occurs and fails. The most likely reason
4173 * is that pages exist, but not enough to satisfy watermarks.
4174 */
4175 count_vm_event(COMPACTFAIL);
66199712 4176
98dd3b48 4177 cond_resched();
56de7263
MG
4178
4179 return NULL;
4180}
33c2d214 4181
3250845d
VB
4182static inline bool
4183should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4184 enum compact_result compact_result,
4185 enum compact_priority *compact_priority,
d9436498 4186 int *compaction_retries)
3250845d
VB
4187{
4188 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4189 int min_priority;
65190cff
MH
4190 bool ret = false;
4191 int retries = *compaction_retries;
4192 enum compact_priority priority = *compact_priority;
3250845d
VB
4193
4194 if (!order)
4195 return false;
4196
d9436498
VB
4197 if (compaction_made_progress(compact_result))
4198 (*compaction_retries)++;
4199
3250845d
VB
4200 /*
4201 * compaction considers all the zone as desperately out of memory
4202 * so it doesn't really make much sense to retry except when the
4203 * failure could be caused by insufficient priority
4204 */
d9436498
VB
4205 if (compaction_failed(compact_result))
4206 goto check_priority;
3250845d 4207
49433085
VB
4208 /*
4209 * compaction was skipped because there are not enough order-0 pages
4210 * to work with, so we retry only if it looks like reclaim can help.
4211 */
4212 if (compaction_needs_reclaim(compact_result)) {
4213 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4214 goto out;
4215 }
4216
3250845d
VB
4217 /*
4218 * make sure the compaction wasn't deferred or didn't bail out early
4219 * due to locks contention before we declare that we should give up.
49433085
VB
4220 * But the next retry should use a higher priority if allowed, so
4221 * we don't just keep bailing out endlessly.
3250845d 4222 */
65190cff 4223 if (compaction_withdrawn(compact_result)) {
49433085 4224 goto check_priority;
65190cff 4225 }
3250845d
VB
4226
4227 /*
dcda9b04 4228 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4229 * costly ones because they are de facto nofail and invoke OOM
4230 * killer to move on while costly can fail and users are ready
4231 * to cope with that. 1/4 retries is rather arbitrary but we
4232 * would need much more detailed feedback from compaction to
4233 * make a better decision.
4234 */
4235 if (order > PAGE_ALLOC_COSTLY_ORDER)
4236 max_retries /= 4;
65190cff
MH
4237 if (*compaction_retries <= max_retries) {
4238 ret = true;
4239 goto out;
4240 }
3250845d 4241
d9436498
VB
4242 /*
4243 * Make sure there are attempts at the highest priority if we exhausted
4244 * all retries or failed at the lower priorities.
4245 */
4246check_priority:
c2033b00
VB
4247 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4248 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4249
c2033b00 4250 if (*compact_priority > min_priority) {
d9436498
VB
4251 (*compact_priority)--;
4252 *compaction_retries = 0;
65190cff 4253 ret = true;
d9436498 4254 }
65190cff
MH
4255out:
4256 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4257 return ret;
3250845d 4258}
56de7263
MG
4259#else
4260static inline struct page *
4261__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4262 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4263 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4264{
33c2d214 4265 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4266 return NULL;
4267}
33c2d214
MH
4268
4269static inline bool
86a294a8
MH
4270should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4271 enum compact_result compact_result,
a5508cd8 4272 enum compact_priority *compact_priority,
d9436498 4273 int *compaction_retries)
33c2d214 4274{
31e49bfd
MH
4275 struct zone *zone;
4276 struct zoneref *z;
4277
4278 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4279 return false;
4280
4281 /*
4282 * There are setups with compaction disabled which would prefer to loop
4283 * inside the allocator rather than hit the oom killer prematurely.
4284 * Let's give them a good hope and keep retrying while the order-0
4285 * watermarks are OK.
4286 */
97a225e6
JK
4287 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4288 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4289 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4290 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4291 return true;
4292 }
33c2d214
MH
4293 return false;
4294}
3250845d 4295#endif /* CONFIG_COMPACTION */
56de7263 4296
d92a8cfc 4297#ifdef CONFIG_LOCKDEP
93781325 4298static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4299 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4300
f920e413 4301static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4302{
d92a8cfc
PZ
4303 /* no reclaim without waiting on it */
4304 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4305 return false;
4306
4307 /* this guy won't enter reclaim */
2e517d68 4308 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4309 return false;
4310
d92a8cfc
PZ
4311 if (gfp_mask & __GFP_NOLOCKDEP)
4312 return false;
4313
4314 return true;
4315}
4316
93781325
OS
4317void __fs_reclaim_acquire(void)
4318{
4319 lock_map_acquire(&__fs_reclaim_map);
4320}
4321
4322void __fs_reclaim_release(void)
4323{
4324 lock_map_release(&__fs_reclaim_map);
4325}
4326
d92a8cfc
PZ
4327void fs_reclaim_acquire(gfp_t gfp_mask)
4328{
f920e413
DV
4329 gfp_mask = current_gfp_context(gfp_mask);
4330
4331 if (__need_reclaim(gfp_mask)) {
4332 if (gfp_mask & __GFP_FS)
4333 __fs_reclaim_acquire();
4334
4335#ifdef CONFIG_MMU_NOTIFIER
4336 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4337 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4338#endif
4339
4340 }
d92a8cfc
PZ
4341}
4342EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4343
4344void fs_reclaim_release(gfp_t gfp_mask)
4345{
f920e413
DV
4346 gfp_mask = current_gfp_context(gfp_mask);
4347
4348 if (__need_reclaim(gfp_mask)) {
4349 if (gfp_mask & __GFP_FS)
4350 __fs_reclaim_release();
4351 }
d92a8cfc
PZ
4352}
4353EXPORT_SYMBOL_GPL(fs_reclaim_release);
4354#endif
4355
bba90710 4356/* Perform direct synchronous page reclaim */
2187e17b 4357static unsigned long
a9263751
VB
4358__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4359 const struct alloc_context *ac)
11e33f6a 4360{
499118e9 4361 unsigned int noreclaim_flag;
2187e17b 4362 unsigned long pflags, progress;
11e33f6a
MG
4363
4364 cond_resched();
4365
4366 /* We now go into synchronous reclaim */
4367 cpuset_memory_pressure_bump();
eb414681 4368 psi_memstall_enter(&pflags);
d92a8cfc 4369 fs_reclaim_acquire(gfp_mask);
93781325 4370 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4371
a9263751
VB
4372 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4373 ac->nodemask);
11e33f6a 4374
499118e9 4375 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4376 fs_reclaim_release(gfp_mask);
eb414681 4377 psi_memstall_leave(&pflags);
11e33f6a
MG
4378
4379 cond_resched();
4380
bba90710
MS
4381 return progress;
4382}
4383
4384/* The really slow allocator path where we enter direct reclaim */
4385static inline struct page *
4386__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4387 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4388 unsigned long *did_some_progress)
bba90710
MS
4389{
4390 struct page *page = NULL;
4391 bool drained = false;
4392
a9263751 4393 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4394 if (unlikely(!(*did_some_progress)))
4395 return NULL;
11e33f6a 4396
9ee493ce 4397retry:
31a6c190 4398 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4399
4400 /*
4401 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4402 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4403 * Shrink them and try again
9ee493ce
MG
4404 */
4405 if (!page && !drained) {
29fac03b 4406 unreserve_highatomic_pageblock(ac, false);
93481ff0 4407 drain_all_pages(NULL);
9ee493ce
MG
4408 drained = true;
4409 goto retry;
4410 }
4411
11e33f6a
MG
4412 return page;
4413}
4414
5ecd9d40
DR
4415static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4416 const struct alloc_context *ac)
3a025760
JW
4417{
4418 struct zoneref *z;
4419 struct zone *zone;
e1a55637 4420 pg_data_t *last_pgdat = NULL;
97a225e6 4421 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4422
97a225e6 4423 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4424 ac->nodemask) {
e1a55637 4425 if (last_pgdat != zone->zone_pgdat)
97a225e6 4426 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4427 last_pgdat = zone->zone_pgdat;
4428 }
3a025760
JW
4429}
4430
c603844b 4431static inline unsigned int
341ce06f
PZ
4432gfp_to_alloc_flags(gfp_t gfp_mask)
4433{
c603844b 4434 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4435
736838e9
MN
4436 /*
4437 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4438 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4439 * to save two branches.
4440 */
e6223a3b 4441 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4442 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4443
341ce06f
PZ
4444 /*
4445 * The caller may dip into page reserves a bit more if the caller
4446 * cannot run direct reclaim, or if the caller has realtime scheduling
4447 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4448 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4449 */
736838e9
MN
4450 alloc_flags |= (__force int)
4451 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4452
d0164adc 4453 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4454 /*
b104a35d
DR
4455 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4456 * if it can't schedule.
5c3240d9 4457 */
b104a35d 4458 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4459 alloc_flags |= ALLOC_HARDER;
523b9458 4460 /*
b104a35d 4461 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4462 * comment for __cpuset_node_allowed().
523b9458 4463 */
341ce06f 4464 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4465 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4466 alloc_flags |= ALLOC_HARDER;
4467
8510e69c
JK
4468 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4469
341ce06f
PZ
4470 return alloc_flags;
4471}
4472
cd04ae1e 4473static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4474{
cd04ae1e
MH
4475 if (!tsk_is_oom_victim(tsk))
4476 return false;
4477
4478 /*
4479 * !MMU doesn't have oom reaper so give access to memory reserves
4480 * only to the thread with TIF_MEMDIE set
4481 */
4482 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4483 return false;
4484
cd04ae1e
MH
4485 return true;
4486}
4487
4488/*
4489 * Distinguish requests which really need access to full memory
4490 * reserves from oom victims which can live with a portion of it
4491 */
4492static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4493{
4494 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4495 return 0;
31a6c190 4496 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4497 return ALLOC_NO_WATERMARKS;
31a6c190 4498 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4499 return ALLOC_NO_WATERMARKS;
4500 if (!in_interrupt()) {
4501 if (current->flags & PF_MEMALLOC)
4502 return ALLOC_NO_WATERMARKS;
4503 else if (oom_reserves_allowed(current))
4504 return ALLOC_OOM;
4505 }
31a6c190 4506
cd04ae1e
MH
4507 return 0;
4508}
4509
4510bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4511{
4512 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4513}
4514
0a0337e0
MH
4515/*
4516 * Checks whether it makes sense to retry the reclaim to make a forward progress
4517 * for the given allocation request.
491d79ae
JW
4518 *
4519 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4520 * without success, or when we couldn't even meet the watermark if we
4521 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4522 *
4523 * Returns true if a retry is viable or false to enter the oom path.
4524 */
4525static inline bool
4526should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4527 struct alloc_context *ac, int alloc_flags,
423b452e 4528 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4529{
4530 struct zone *zone;
4531 struct zoneref *z;
15f570bf 4532 bool ret = false;
0a0337e0 4533
423b452e
VB
4534 /*
4535 * Costly allocations might have made a progress but this doesn't mean
4536 * their order will become available due to high fragmentation so
4537 * always increment the no progress counter for them
4538 */
4539 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4540 *no_progress_loops = 0;
4541 else
4542 (*no_progress_loops)++;
4543
0a0337e0
MH
4544 /*
4545 * Make sure we converge to OOM if we cannot make any progress
4546 * several times in the row.
4547 */
04c8716f
MK
4548 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4549 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4550 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4551 }
0a0337e0 4552
bca67592
MG
4553 /*
4554 * Keep reclaiming pages while there is a chance this will lead
4555 * somewhere. If none of the target zones can satisfy our allocation
4556 * request even if all reclaimable pages are considered then we are
4557 * screwed and have to go OOM.
0a0337e0 4558 */
97a225e6
JK
4559 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4560 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4561 unsigned long available;
ede37713 4562 unsigned long reclaimable;
d379f01d
MH
4563 unsigned long min_wmark = min_wmark_pages(zone);
4564 bool wmark;
0a0337e0 4565
5a1c84b4 4566 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4567 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4568
4569 /*
491d79ae
JW
4570 * Would the allocation succeed if we reclaimed all
4571 * reclaimable pages?
0a0337e0 4572 */
d379f01d 4573 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4574 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4575 trace_reclaim_retry_zone(z, order, reclaimable,
4576 available, min_wmark, *no_progress_loops, wmark);
4577 if (wmark) {
ede37713
MH
4578 /*
4579 * If we didn't make any progress and have a lot of
4580 * dirty + writeback pages then we should wait for
4581 * an IO to complete to slow down the reclaim and
4582 * prevent from pre mature OOM
4583 */
4584 if (!did_some_progress) {
11fb9989 4585 unsigned long write_pending;
ede37713 4586
5a1c84b4
MG
4587 write_pending = zone_page_state_snapshot(zone,
4588 NR_ZONE_WRITE_PENDING);
ede37713 4589
11fb9989 4590 if (2 * write_pending > reclaimable) {
ede37713
MH
4591 congestion_wait(BLK_RW_ASYNC, HZ/10);
4592 return true;
4593 }
4594 }
5a1c84b4 4595
15f570bf
MH
4596 ret = true;
4597 goto out;
0a0337e0
MH
4598 }
4599 }
4600
15f570bf
MH
4601out:
4602 /*
4603 * Memory allocation/reclaim might be called from a WQ context and the
4604 * current implementation of the WQ concurrency control doesn't
4605 * recognize that a particular WQ is congested if the worker thread is
4606 * looping without ever sleeping. Therefore we have to do a short sleep
4607 * here rather than calling cond_resched().
4608 */
4609 if (current->flags & PF_WQ_WORKER)
4610 schedule_timeout_uninterruptible(1);
4611 else
4612 cond_resched();
4613 return ret;
0a0337e0
MH
4614}
4615
902b6281
VB
4616static inline bool
4617check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4618{
4619 /*
4620 * It's possible that cpuset's mems_allowed and the nodemask from
4621 * mempolicy don't intersect. This should be normally dealt with by
4622 * policy_nodemask(), but it's possible to race with cpuset update in
4623 * such a way the check therein was true, and then it became false
4624 * before we got our cpuset_mems_cookie here.
4625 * This assumes that for all allocations, ac->nodemask can come only
4626 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4627 * when it does not intersect with the cpuset restrictions) or the
4628 * caller can deal with a violated nodemask.
4629 */
4630 if (cpusets_enabled() && ac->nodemask &&
4631 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4632 ac->nodemask = NULL;
4633 return true;
4634 }
4635
4636 /*
4637 * When updating a task's mems_allowed or mempolicy nodemask, it is
4638 * possible to race with parallel threads in such a way that our
4639 * allocation can fail while the mask is being updated. If we are about
4640 * to fail, check if the cpuset changed during allocation and if so,
4641 * retry.
4642 */
4643 if (read_mems_allowed_retry(cpuset_mems_cookie))
4644 return true;
4645
4646 return false;
4647}
4648
11e33f6a
MG
4649static inline struct page *
4650__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4651 struct alloc_context *ac)
11e33f6a 4652{
d0164adc 4653 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4654 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4655 struct page *page = NULL;
c603844b 4656 unsigned int alloc_flags;
11e33f6a 4657 unsigned long did_some_progress;
5ce9bfef 4658 enum compact_priority compact_priority;
c5d01d0d 4659 enum compact_result compact_result;
5ce9bfef
VB
4660 int compaction_retries;
4661 int no_progress_loops;
5ce9bfef 4662 unsigned int cpuset_mems_cookie;
cd04ae1e 4663 int reserve_flags;
1da177e4 4664
d0164adc
MG
4665 /*
4666 * We also sanity check to catch abuse of atomic reserves being used by
4667 * callers that are not in atomic context.
4668 */
4669 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4670 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4671 gfp_mask &= ~__GFP_ATOMIC;
4672
5ce9bfef
VB
4673retry_cpuset:
4674 compaction_retries = 0;
4675 no_progress_loops = 0;
4676 compact_priority = DEF_COMPACT_PRIORITY;
4677 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4678
4679 /*
4680 * The fast path uses conservative alloc_flags to succeed only until
4681 * kswapd needs to be woken up, and to avoid the cost of setting up
4682 * alloc_flags precisely. So we do that now.
4683 */
4684 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4685
e47483bc
VB
4686 /*
4687 * We need to recalculate the starting point for the zonelist iterator
4688 * because we might have used different nodemask in the fast path, or
4689 * there was a cpuset modification and we are retrying - otherwise we
4690 * could end up iterating over non-eligible zones endlessly.
4691 */
4692 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4693 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4694 if (!ac->preferred_zoneref->zone)
4695 goto nopage;
4696
0a79cdad 4697 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4698 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4699
4700 /*
4701 * The adjusted alloc_flags might result in immediate success, so try
4702 * that first
4703 */
4704 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4705 if (page)
4706 goto got_pg;
4707
a8161d1e
VB
4708 /*
4709 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4710 * that we have enough base pages and don't need to reclaim. For non-
4711 * movable high-order allocations, do that as well, as compaction will
4712 * try prevent permanent fragmentation by migrating from blocks of the
4713 * same migratetype.
4714 * Don't try this for allocations that are allowed to ignore
4715 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4716 */
282722b0
VB
4717 if (can_direct_reclaim &&
4718 (costly_order ||
4719 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4720 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4721 page = __alloc_pages_direct_compact(gfp_mask, order,
4722 alloc_flags, ac,
a5508cd8 4723 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4724 &compact_result);
4725 if (page)
4726 goto got_pg;
4727
cc638f32
VB
4728 /*
4729 * Checks for costly allocations with __GFP_NORETRY, which
4730 * includes some THP page fault allocations
4731 */
4732 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4733 /*
4734 * If allocating entire pageblock(s) and compaction
4735 * failed because all zones are below low watermarks
4736 * or is prohibited because it recently failed at this
3f36d866
DR
4737 * order, fail immediately unless the allocator has
4738 * requested compaction and reclaim retry.
b39d0ee2
DR
4739 *
4740 * Reclaim is
4741 * - potentially very expensive because zones are far
4742 * below their low watermarks or this is part of very
4743 * bursty high order allocations,
4744 * - not guaranteed to help because isolate_freepages()
4745 * may not iterate over freed pages as part of its
4746 * linear scan, and
4747 * - unlikely to make entire pageblocks free on its
4748 * own.
4749 */
4750 if (compact_result == COMPACT_SKIPPED ||
4751 compact_result == COMPACT_DEFERRED)
4752 goto nopage;
a8161d1e 4753
a8161d1e 4754 /*
3eb2771b
VB
4755 * Looks like reclaim/compaction is worth trying, but
4756 * sync compaction could be very expensive, so keep
25160354 4757 * using async compaction.
a8161d1e 4758 */
a5508cd8 4759 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4760 }
4761 }
23771235 4762
31a6c190 4763retry:
23771235 4764 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4765 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4766 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4767
cd04ae1e
MH
4768 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4769 if (reserve_flags)
8510e69c 4770 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4771
e46e7b77 4772 /*
d6a24df0
VB
4773 * Reset the nodemask and zonelist iterators if memory policies can be
4774 * ignored. These allocations are high priority and system rather than
4775 * user oriented.
e46e7b77 4776 */
cd04ae1e 4777 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4778 ac->nodemask = NULL;
e46e7b77 4779 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4780 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4781 }
4782
23771235 4783 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4784 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4785 if (page)
4786 goto got_pg;
1da177e4 4787
d0164adc 4788 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4789 if (!can_direct_reclaim)
1da177e4
LT
4790 goto nopage;
4791
9a67f648
MH
4792 /* Avoid recursion of direct reclaim */
4793 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4794 goto nopage;
4795
a8161d1e
VB
4796 /* Try direct reclaim and then allocating */
4797 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4798 &did_some_progress);
4799 if (page)
4800 goto got_pg;
4801
4802 /* Try direct compaction and then allocating */
a9263751 4803 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4804 compact_priority, &compact_result);
56de7263
MG
4805 if (page)
4806 goto got_pg;
75f30861 4807
9083905a
JW
4808 /* Do not loop if specifically requested */
4809 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4810 goto nopage;
9083905a 4811
0a0337e0
MH
4812 /*
4813 * Do not retry costly high order allocations unless they are
dcda9b04 4814 * __GFP_RETRY_MAYFAIL
0a0337e0 4815 */
dcda9b04 4816 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4817 goto nopage;
0a0337e0 4818
0a0337e0 4819 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4820 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4821 goto retry;
4822
33c2d214
MH
4823 /*
4824 * It doesn't make any sense to retry for the compaction if the order-0
4825 * reclaim is not able to make any progress because the current
4826 * implementation of the compaction depends on the sufficient amount
4827 * of free memory (see __compaction_suitable)
4828 */
4829 if (did_some_progress > 0 &&
86a294a8 4830 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4831 compact_result, &compact_priority,
d9436498 4832 &compaction_retries))
33c2d214
MH
4833 goto retry;
4834
902b6281
VB
4835
4836 /* Deal with possible cpuset update races before we start OOM killing */
4837 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4838 goto retry_cpuset;
4839
9083905a
JW
4840 /* Reclaim has failed us, start killing things */
4841 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4842 if (page)
4843 goto got_pg;
4844
9a67f648 4845 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4846 if (tsk_is_oom_victim(current) &&
8510e69c 4847 (alloc_flags & ALLOC_OOM ||
c288983d 4848 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4849 goto nopage;
4850
9083905a 4851 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4852 if (did_some_progress) {
4853 no_progress_loops = 0;
9083905a 4854 goto retry;
0a0337e0 4855 }
9083905a 4856
1da177e4 4857nopage:
902b6281
VB
4858 /* Deal with possible cpuset update races before we fail */
4859 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4860 goto retry_cpuset;
4861
9a67f648
MH
4862 /*
4863 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4864 * we always retry
4865 */
4866 if (gfp_mask & __GFP_NOFAIL) {
4867 /*
4868 * All existing users of the __GFP_NOFAIL are blockable, so warn
4869 * of any new users that actually require GFP_NOWAIT
4870 */
4871 if (WARN_ON_ONCE(!can_direct_reclaim))
4872 goto fail;
4873
4874 /*
4875 * PF_MEMALLOC request from this context is rather bizarre
4876 * because we cannot reclaim anything and only can loop waiting
4877 * for somebody to do a work for us
4878 */
4879 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4880
4881 /*
4882 * non failing costly orders are a hard requirement which we
4883 * are not prepared for much so let's warn about these users
4884 * so that we can identify them and convert them to something
4885 * else.
4886 */
4887 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4888
6c18ba7a
MH
4889 /*
4890 * Help non-failing allocations by giving them access to memory
4891 * reserves but do not use ALLOC_NO_WATERMARKS because this
4892 * could deplete whole memory reserves which would just make
4893 * the situation worse
4894 */
4895 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4896 if (page)
4897 goto got_pg;
4898
9a67f648
MH
4899 cond_resched();
4900 goto retry;
4901 }
4902fail:
a8e99259 4903 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4904 "page allocation failure: order:%u", order);
1da177e4 4905got_pg:
072bb0aa 4906 return page;
1da177e4 4907}
11e33f6a 4908
9cd75558 4909static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4910 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4911 struct alloc_context *ac, gfp_t *alloc_mask,
4912 unsigned int *alloc_flags)
11e33f6a 4913{
97a225e6 4914 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4915 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4916 ac->nodemask = nodemask;
01c0bfe0 4917 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4918
682a3385 4919 if (cpusets_enabled()) {
9cd75558 4920 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4921 /*
4922 * When we are in the interrupt context, it is irrelevant
4923 * to the current task context. It means that any node ok.
4924 */
4925 if (!in_interrupt() && !ac->nodemask)
9cd75558 4926 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4927 else
4928 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4929 }
4930
d92a8cfc
PZ
4931 fs_reclaim_acquire(gfp_mask);
4932 fs_reclaim_release(gfp_mask);
11e33f6a 4933
d0164adc 4934 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4935
4936 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4937 return false;
11e33f6a 4938
8510e69c 4939 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4940
c9ab0c4f 4941 /* Dirty zone balancing only done in the fast path */
9cd75558 4942 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4943
e46e7b77
MG
4944 /*
4945 * The preferred zone is used for statistics but crucially it is
4946 * also used as the starting point for the zonelist iterator. It
4947 * may get reset for allocations that ignore memory policies.
4948 */
9cd75558 4949 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4950 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4951
4952 return true;
9cd75558
MG
4953}
4954
4955/*
4956 * This is the 'heart' of the zoned buddy allocator.
4957 */
4958struct page *
04ec6264
VB
4959__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4960 nodemask_t *nodemask)
9cd75558
MG
4961{
4962 struct page *page;
4963 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4964 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4965 struct alloc_context ac = { };
4966
c63ae43b
MH
4967 /*
4968 * There are several places where we assume that the order value is sane
4969 * so bail out early if the request is out of bound.
4970 */
4971 if (unlikely(order >= MAX_ORDER)) {
4972 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4973 return NULL;
4974 }
4975
9cd75558 4976 gfp_mask &= gfp_allowed_mask;
f19360f0 4977 alloc_mask = gfp_mask;
04ec6264 4978 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4979 return NULL;
4980
6bb15450
MG
4981 /*
4982 * Forbid the first pass from falling back to types that fragment
4983 * memory until all local zones are considered.
4984 */
0a79cdad 4985 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4986
5117f45d 4987 /* First allocation attempt */
a9263751 4988 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4989 if (likely(page))
4990 goto out;
11e33f6a 4991
4fcb0971 4992 /*
7dea19f9
MH
4993 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4994 * resp. GFP_NOIO which has to be inherited for all allocation requests
4995 * from a particular context which has been marked by
4996 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4997 */
7dea19f9 4998 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4999 ac.spread_dirty_pages = false;
23f086f9 5000
4741526b
MG
5001 /*
5002 * Restore the original nodemask if it was potentially replaced with
5003 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5004 */
97ce86f9 5005 ac.nodemask = nodemask;
16096c25 5006
4fcb0971 5007 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 5008
4fcb0971 5009out:
c4159a75 5010 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 5011 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
5012 __free_pages(page, order);
5013 page = NULL;
4949148a
VD
5014 }
5015
4fcb0971
MG
5016 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5017
11e33f6a 5018 return page;
1da177e4 5019}
d239171e 5020EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
5021
5022/*
9ea9a680
MH
5023 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5024 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5025 * you need to access high mem.
1da177e4 5026 */
920c7a5d 5027unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5028{
945a1113
AM
5029 struct page *page;
5030
9ea9a680 5031 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5032 if (!page)
5033 return 0;
5034 return (unsigned long) page_address(page);
5035}
1da177e4
LT
5036EXPORT_SYMBOL(__get_free_pages);
5037
920c7a5d 5038unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5039{
945a1113 5040 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5041}
1da177e4
LT
5042EXPORT_SYMBOL(get_zeroed_page);
5043
742aa7fb 5044static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5045{
742aa7fb
AL
5046 if (order == 0) /* Via pcp? */
5047 free_unref_page(page);
5048 else
7fef431b 5049 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5050}
5051
7f194fbb
MWO
5052/**
5053 * __free_pages - Free pages allocated with alloc_pages().
5054 * @page: The page pointer returned from alloc_pages().
5055 * @order: The order of the allocation.
5056 *
5057 * This function can free multi-page allocations that are not compound
5058 * pages. It does not check that the @order passed in matches that of
5059 * the allocation, so it is easy to leak memory. Freeing more memory
5060 * than was allocated will probably emit a warning.
5061 *
5062 * If the last reference to this page is speculative, it will be released
5063 * by put_page() which only frees the first page of a non-compound
5064 * allocation. To prevent the remaining pages from being leaked, we free
5065 * the subsequent pages here. If you want to use the page's reference
5066 * count to decide when to free the allocation, you should allocate a
5067 * compound page, and use put_page() instead of __free_pages().
5068 *
5069 * Context: May be called in interrupt context or while holding a normal
5070 * spinlock, but not in NMI context or while holding a raw spinlock.
5071 */
742aa7fb
AL
5072void __free_pages(struct page *page, unsigned int order)
5073{
5074 if (put_page_testzero(page))
5075 free_the_page(page, order);
e320d301
MWO
5076 else if (!PageHead(page))
5077 while (order-- > 0)
5078 free_the_page(page + (1 << order), order);
742aa7fb 5079}
1da177e4
LT
5080EXPORT_SYMBOL(__free_pages);
5081
920c7a5d 5082void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5083{
5084 if (addr != 0) {
725d704e 5085 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5086 __free_pages(virt_to_page((void *)addr), order);
5087 }
5088}
5089
5090EXPORT_SYMBOL(free_pages);
5091
b63ae8ca
AD
5092/*
5093 * Page Fragment:
5094 * An arbitrary-length arbitrary-offset area of memory which resides
5095 * within a 0 or higher order page. Multiple fragments within that page
5096 * are individually refcounted, in the page's reference counter.
5097 *
5098 * The page_frag functions below provide a simple allocation framework for
5099 * page fragments. This is used by the network stack and network device
5100 * drivers to provide a backing region of memory for use as either an
5101 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5102 */
2976db80
AD
5103static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5104 gfp_t gfp_mask)
b63ae8ca
AD
5105{
5106 struct page *page = NULL;
5107 gfp_t gfp = gfp_mask;
5108
5109#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5110 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5111 __GFP_NOMEMALLOC;
5112 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5113 PAGE_FRAG_CACHE_MAX_ORDER);
5114 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5115#endif
5116 if (unlikely(!page))
5117 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5118
5119 nc->va = page ? page_address(page) : NULL;
5120
5121 return page;
5122}
5123
2976db80 5124void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5125{
5126 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5127
742aa7fb
AL
5128 if (page_ref_sub_and_test(page, count))
5129 free_the_page(page, compound_order(page));
44fdffd7 5130}
2976db80 5131EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5132
8c2dd3e4
AD
5133void *page_frag_alloc(struct page_frag_cache *nc,
5134 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5135{
5136 unsigned int size = PAGE_SIZE;
5137 struct page *page;
5138 int offset;
5139
5140 if (unlikely(!nc->va)) {
5141refill:
2976db80 5142 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5143 if (!page)
5144 return NULL;
5145
5146#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5147 /* if size can vary use size else just use PAGE_SIZE */
5148 size = nc->size;
5149#endif
5150 /* Even if we own the page, we do not use atomic_set().
5151 * This would break get_page_unless_zero() users.
5152 */
86447726 5153 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5154
5155 /* reset page count bias and offset to start of new frag */
2f064f34 5156 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5157 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5158 nc->offset = size;
5159 }
5160
5161 offset = nc->offset - fragsz;
5162 if (unlikely(offset < 0)) {
5163 page = virt_to_page(nc->va);
5164
fe896d18 5165 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5166 goto refill;
5167
d8c19014
DZ
5168 if (unlikely(nc->pfmemalloc)) {
5169 free_the_page(page, compound_order(page));
5170 goto refill;
5171 }
5172
b63ae8ca
AD
5173#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5174 /* if size can vary use size else just use PAGE_SIZE */
5175 size = nc->size;
5176#endif
5177 /* OK, page count is 0, we can safely set it */
86447726 5178 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5179
5180 /* reset page count bias and offset to start of new frag */
86447726 5181 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5182 offset = size - fragsz;
5183 }
5184
5185 nc->pagecnt_bias--;
5186 nc->offset = offset;
5187
5188 return nc->va + offset;
5189}
8c2dd3e4 5190EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5191
5192/*
5193 * Frees a page fragment allocated out of either a compound or order 0 page.
5194 */
8c2dd3e4 5195void page_frag_free(void *addr)
b63ae8ca
AD
5196{
5197 struct page *page = virt_to_head_page(addr);
5198
742aa7fb
AL
5199 if (unlikely(put_page_testzero(page)))
5200 free_the_page(page, compound_order(page));
b63ae8ca 5201}
8c2dd3e4 5202EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5203
d00181b9
KS
5204static void *make_alloc_exact(unsigned long addr, unsigned int order,
5205 size_t size)
ee85c2e1
AK
5206{
5207 if (addr) {
5208 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5209 unsigned long used = addr + PAGE_ALIGN(size);
5210
5211 split_page(virt_to_page((void *)addr), order);
5212 while (used < alloc_end) {
5213 free_page(used);
5214 used += PAGE_SIZE;
5215 }
5216 }
5217 return (void *)addr;
5218}
5219
2be0ffe2
TT
5220/**
5221 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5222 * @size: the number of bytes to allocate
63931eb9 5223 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5224 *
5225 * This function is similar to alloc_pages(), except that it allocates the
5226 * minimum number of pages to satisfy the request. alloc_pages() can only
5227 * allocate memory in power-of-two pages.
5228 *
5229 * This function is also limited by MAX_ORDER.
5230 *
5231 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5232 *
5233 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5234 */
5235void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5236{
5237 unsigned int order = get_order(size);
5238 unsigned long addr;
5239
63931eb9
VB
5240 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5241 gfp_mask &= ~__GFP_COMP;
5242
2be0ffe2 5243 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5244 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5245}
5246EXPORT_SYMBOL(alloc_pages_exact);
5247
ee85c2e1
AK
5248/**
5249 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5250 * pages on a node.
b5e6ab58 5251 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5252 * @size: the number of bytes to allocate
63931eb9 5253 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5254 *
5255 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5256 * back.
a862f68a
MR
5257 *
5258 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5259 */
e1931811 5260void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5261{
d00181b9 5262 unsigned int order = get_order(size);
63931eb9
VB
5263 struct page *p;
5264
5265 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5266 gfp_mask &= ~__GFP_COMP;
5267
5268 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5269 if (!p)
5270 return NULL;
5271 return make_alloc_exact((unsigned long)page_address(p), order, size);
5272}
ee85c2e1 5273
2be0ffe2
TT
5274/**
5275 * free_pages_exact - release memory allocated via alloc_pages_exact()
5276 * @virt: the value returned by alloc_pages_exact.
5277 * @size: size of allocation, same value as passed to alloc_pages_exact().
5278 *
5279 * Release the memory allocated by a previous call to alloc_pages_exact.
5280 */
5281void free_pages_exact(void *virt, size_t size)
5282{
5283 unsigned long addr = (unsigned long)virt;
5284 unsigned long end = addr + PAGE_ALIGN(size);
5285
5286 while (addr < end) {
5287 free_page(addr);
5288 addr += PAGE_SIZE;
5289 }
5290}
5291EXPORT_SYMBOL(free_pages_exact);
5292
e0fb5815
ZY
5293/**
5294 * nr_free_zone_pages - count number of pages beyond high watermark
5295 * @offset: The zone index of the highest zone
5296 *
a862f68a 5297 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5298 * high watermark within all zones at or below a given zone index. For each
5299 * zone, the number of pages is calculated as:
0e056eb5 5300 *
5301 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5302 *
5303 * Return: number of pages beyond high watermark.
e0fb5815 5304 */
ebec3862 5305static unsigned long nr_free_zone_pages(int offset)
1da177e4 5306{
dd1a239f 5307 struct zoneref *z;
54a6eb5c
MG
5308 struct zone *zone;
5309
e310fd43 5310 /* Just pick one node, since fallback list is circular */
ebec3862 5311 unsigned long sum = 0;
1da177e4 5312
0e88460d 5313 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5314
54a6eb5c 5315 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5316 unsigned long size = zone_managed_pages(zone);
41858966 5317 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5318 if (size > high)
5319 sum += size - high;
1da177e4
LT
5320 }
5321
5322 return sum;
5323}
5324
e0fb5815
ZY
5325/**
5326 * nr_free_buffer_pages - count number of pages beyond high watermark
5327 *
5328 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5329 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5330 *
5331 * Return: number of pages beyond high watermark within ZONE_DMA and
5332 * ZONE_NORMAL.
1da177e4 5333 */
ebec3862 5334unsigned long nr_free_buffer_pages(void)
1da177e4 5335{
af4ca457 5336 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5337}
c2f1a551 5338EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5339
08e0f6a9 5340static inline void show_node(struct zone *zone)
1da177e4 5341{
e5adfffc 5342 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5343 printk("Node %d ", zone_to_nid(zone));
1da177e4 5344}
1da177e4 5345
d02bd27b
IR
5346long si_mem_available(void)
5347{
5348 long available;
5349 unsigned long pagecache;
5350 unsigned long wmark_low = 0;
5351 unsigned long pages[NR_LRU_LISTS];
b29940c1 5352 unsigned long reclaimable;
d02bd27b
IR
5353 struct zone *zone;
5354 int lru;
5355
5356 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5357 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5358
5359 for_each_zone(zone)
a9214443 5360 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5361
5362 /*
5363 * Estimate the amount of memory available for userspace allocations,
5364 * without causing swapping.
5365 */
c41f012a 5366 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5367
5368 /*
5369 * Not all the page cache can be freed, otherwise the system will
5370 * start swapping. Assume at least half of the page cache, or the
5371 * low watermark worth of cache, needs to stay.
5372 */
5373 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5374 pagecache -= min(pagecache / 2, wmark_low);
5375 available += pagecache;
5376
5377 /*
b29940c1
VB
5378 * Part of the reclaimable slab and other kernel memory consists of
5379 * items that are in use, and cannot be freed. Cap this estimate at the
5380 * low watermark.
d02bd27b 5381 */
d42f3245
RG
5382 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5383 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5384 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5385
d02bd27b
IR
5386 if (available < 0)
5387 available = 0;
5388 return available;
5389}
5390EXPORT_SYMBOL_GPL(si_mem_available);
5391
1da177e4
LT
5392void si_meminfo(struct sysinfo *val)
5393{
ca79b0c2 5394 val->totalram = totalram_pages();
11fb9989 5395 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5396 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5397 val->bufferram = nr_blockdev_pages();
ca79b0c2 5398 val->totalhigh = totalhigh_pages();
1da177e4 5399 val->freehigh = nr_free_highpages();
1da177e4
LT
5400 val->mem_unit = PAGE_SIZE;
5401}
5402
5403EXPORT_SYMBOL(si_meminfo);
5404
5405#ifdef CONFIG_NUMA
5406void si_meminfo_node(struct sysinfo *val, int nid)
5407{
cdd91a77
JL
5408 int zone_type; /* needs to be signed */
5409 unsigned long managed_pages = 0;
fc2bd799
JK
5410 unsigned long managed_highpages = 0;
5411 unsigned long free_highpages = 0;
1da177e4
LT
5412 pg_data_t *pgdat = NODE_DATA(nid);
5413
cdd91a77 5414 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5415 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5416 val->totalram = managed_pages;
11fb9989 5417 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5418 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5419#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5420 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5421 struct zone *zone = &pgdat->node_zones[zone_type];
5422
5423 if (is_highmem(zone)) {
9705bea5 5424 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5425 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5426 }
5427 }
5428 val->totalhigh = managed_highpages;
5429 val->freehigh = free_highpages;
98d2b0eb 5430#else
fc2bd799
JK
5431 val->totalhigh = managed_highpages;
5432 val->freehigh = free_highpages;
98d2b0eb 5433#endif
1da177e4
LT
5434 val->mem_unit = PAGE_SIZE;
5435}
5436#endif
5437
ddd588b5 5438/*
7bf02ea2
DR
5439 * Determine whether the node should be displayed or not, depending on whether
5440 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5441 */
9af744d7 5442static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5443{
ddd588b5 5444 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5445 return false;
ddd588b5 5446
9af744d7
MH
5447 /*
5448 * no node mask - aka implicit memory numa policy. Do not bother with
5449 * the synchronization - read_mems_allowed_begin - because we do not
5450 * have to be precise here.
5451 */
5452 if (!nodemask)
5453 nodemask = &cpuset_current_mems_allowed;
5454
5455 return !node_isset(nid, *nodemask);
ddd588b5
DR
5456}
5457
1da177e4
LT
5458#define K(x) ((x) << (PAGE_SHIFT-10))
5459
377e4f16
RV
5460static void show_migration_types(unsigned char type)
5461{
5462 static const char types[MIGRATE_TYPES] = {
5463 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5464 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5465 [MIGRATE_RECLAIMABLE] = 'E',
5466 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5467#ifdef CONFIG_CMA
5468 [MIGRATE_CMA] = 'C',
5469#endif
194159fb 5470#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5471 [MIGRATE_ISOLATE] = 'I',
194159fb 5472#endif
377e4f16
RV
5473 };
5474 char tmp[MIGRATE_TYPES + 1];
5475 char *p = tmp;
5476 int i;
5477
5478 for (i = 0; i < MIGRATE_TYPES; i++) {
5479 if (type & (1 << i))
5480 *p++ = types[i];
5481 }
5482
5483 *p = '\0';
1f84a18f 5484 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5485}
5486
1da177e4
LT
5487/*
5488 * Show free area list (used inside shift_scroll-lock stuff)
5489 * We also calculate the percentage fragmentation. We do this by counting the
5490 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5491 *
5492 * Bits in @filter:
5493 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5494 * cpuset.
1da177e4 5495 */
9af744d7 5496void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5497{
d1bfcdb8 5498 unsigned long free_pcp = 0;
c7241913 5499 int cpu;
1da177e4 5500 struct zone *zone;
599d0c95 5501 pg_data_t *pgdat;
1da177e4 5502
ee99c71c 5503 for_each_populated_zone(zone) {
9af744d7 5504 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5505 continue;
d1bfcdb8 5506
761b0677
KK
5507 for_each_online_cpu(cpu)
5508 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5509 }
5510
a731286d
KM
5511 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5512 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5513 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5514 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5515 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5516 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5517 global_node_page_state(NR_ACTIVE_ANON),
5518 global_node_page_state(NR_INACTIVE_ANON),
5519 global_node_page_state(NR_ISOLATED_ANON),
5520 global_node_page_state(NR_ACTIVE_FILE),
5521 global_node_page_state(NR_INACTIVE_FILE),
5522 global_node_page_state(NR_ISOLATED_FILE),
5523 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5524 global_node_page_state(NR_FILE_DIRTY),
5525 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5526 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5527 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5528 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5529 global_node_page_state(NR_SHMEM),
f0c0c115 5530 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5531 global_zone_page_state(NR_BOUNCE),
5532 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5533 free_pcp,
c41f012a 5534 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5535
599d0c95 5536 for_each_online_pgdat(pgdat) {
9af744d7 5537 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5538 continue;
5539
599d0c95
MG
5540 printk("Node %d"
5541 " active_anon:%lukB"
5542 " inactive_anon:%lukB"
5543 " active_file:%lukB"
5544 " inactive_file:%lukB"
5545 " unevictable:%lukB"
5546 " isolated(anon):%lukB"
5547 " isolated(file):%lukB"
50658e2e 5548 " mapped:%lukB"
11fb9989
MG
5549 " dirty:%lukB"
5550 " writeback:%lukB"
5551 " shmem:%lukB"
5552#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5553 " shmem_thp: %lukB"
5554 " shmem_pmdmapped: %lukB"
5555 " anon_thp: %lukB"
5556#endif
5557 " writeback_tmp:%lukB"
991e7673
SB
5558 " kernel_stack:%lukB"
5559#ifdef CONFIG_SHADOW_CALL_STACK
5560 " shadow_call_stack:%lukB"
5561#endif
f0c0c115 5562 " pagetables:%lukB"
599d0c95
MG
5563 " all_unreclaimable? %s"
5564 "\n",
5565 pgdat->node_id,
5566 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5567 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5568 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5569 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5570 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5571 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5572 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5573 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5574 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5575 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5576 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5577#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5578 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5579 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5580 * HPAGE_PMD_NR),
5581 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5582#endif
11fb9989 5583 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5584 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5585#ifdef CONFIG_SHADOW_CALL_STACK
5586 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5587#endif
f0c0c115 5588 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5589 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5590 "yes" : "no");
599d0c95
MG
5591 }
5592
ee99c71c 5593 for_each_populated_zone(zone) {
1da177e4
LT
5594 int i;
5595
9af744d7 5596 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5597 continue;
d1bfcdb8
KK
5598
5599 free_pcp = 0;
5600 for_each_online_cpu(cpu)
5601 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5602
1da177e4 5603 show_node(zone);
1f84a18f
JP
5604 printk(KERN_CONT
5605 "%s"
1da177e4
LT
5606 " free:%lukB"
5607 " min:%lukB"
5608 " low:%lukB"
5609 " high:%lukB"
e47b346a 5610 " reserved_highatomic:%luKB"
71c799f4
MK
5611 " active_anon:%lukB"
5612 " inactive_anon:%lukB"
5613 " active_file:%lukB"
5614 " inactive_file:%lukB"
5615 " unevictable:%lukB"
5a1c84b4 5616 " writepending:%lukB"
1da177e4 5617 " present:%lukB"
9feedc9d 5618 " managed:%lukB"
4a0aa73f 5619 " mlocked:%lukB"
4a0aa73f 5620 " bounce:%lukB"
d1bfcdb8
KK
5621 " free_pcp:%lukB"
5622 " local_pcp:%ukB"
d1ce749a 5623 " free_cma:%lukB"
1da177e4
LT
5624 "\n",
5625 zone->name,
88f5acf8 5626 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5627 K(min_wmark_pages(zone)),
5628 K(low_wmark_pages(zone)),
5629 K(high_wmark_pages(zone)),
e47b346a 5630 K(zone->nr_reserved_highatomic),
71c799f4
MK
5631 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5632 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5633 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5634 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5635 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5636 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5637 K(zone->present_pages),
9705bea5 5638 K(zone_managed_pages(zone)),
4a0aa73f 5639 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5640 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5641 K(free_pcp),
5642 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5643 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5644 printk("lowmem_reserve[]:");
5645 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5646 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5647 printk(KERN_CONT "\n");
1da177e4
LT
5648 }
5649
ee99c71c 5650 for_each_populated_zone(zone) {
d00181b9
KS
5651 unsigned int order;
5652 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5653 unsigned char types[MAX_ORDER];
1da177e4 5654
9af744d7 5655 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5656 continue;
1da177e4 5657 show_node(zone);
1f84a18f 5658 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5659
5660 spin_lock_irqsave(&zone->lock, flags);
5661 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5662 struct free_area *area = &zone->free_area[order];
5663 int type;
5664
5665 nr[order] = area->nr_free;
8f9de51a 5666 total += nr[order] << order;
377e4f16
RV
5667
5668 types[order] = 0;
5669 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5670 if (!free_area_empty(area, type))
377e4f16
RV
5671 types[order] |= 1 << type;
5672 }
1da177e4
LT
5673 }
5674 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5675 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5676 printk(KERN_CONT "%lu*%lukB ",
5677 nr[order], K(1UL) << order);
377e4f16
RV
5678 if (nr[order])
5679 show_migration_types(types[order]);
5680 }
1f84a18f 5681 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5682 }
5683
949f7ec5
DR
5684 hugetlb_show_meminfo();
5685
11fb9989 5686 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5687
1da177e4
LT
5688 show_swap_cache_info();
5689}
5690
19770b32
MG
5691static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5692{
5693 zoneref->zone = zone;
5694 zoneref->zone_idx = zone_idx(zone);
5695}
5696
1da177e4
LT
5697/*
5698 * Builds allocation fallback zone lists.
1a93205b
CL
5699 *
5700 * Add all populated zones of a node to the zonelist.
1da177e4 5701 */
9d3be21b 5702static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5703{
1a93205b 5704 struct zone *zone;
bc732f1d 5705 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5706 int nr_zones = 0;
02a68a5e
CL
5707
5708 do {
2f6726e5 5709 zone_type--;
070f8032 5710 zone = pgdat->node_zones + zone_type;
6aa303de 5711 if (managed_zone(zone)) {
9d3be21b 5712 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5713 check_highest_zone(zone_type);
1da177e4 5714 }
2f6726e5 5715 } while (zone_type);
bc732f1d 5716
070f8032 5717 return nr_zones;
1da177e4
LT
5718}
5719
5720#ifdef CONFIG_NUMA
f0c0b2b8
KH
5721
5722static int __parse_numa_zonelist_order(char *s)
5723{
c9bff3ee
MH
5724 /*
5725 * We used to support different zonlists modes but they turned
5726 * out to be just not useful. Let's keep the warning in place
5727 * if somebody still use the cmd line parameter so that we do
5728 * not fail it silently
5729 */
5730 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5731 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5732 return -EINVAL;
5733 }
5734 return 0;
5735}
5736
c9bff3ee
MH
5737char numa_zonelist_order[] = "Node";
5738
f0c0b2b8
KH
5739/*
5740 * sysctl handler for numa_zonelist_order
5741 */
cccad5b9 5742int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5743 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5744{
32927393
CH
5745 if (write)
5746 return __parse_numa_zonelist_order(buffer);
5747 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5748}
5749
5750
62bc62a8 5751#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5752static int node_load[MAX_NUMNODES];
5753
1da177e4 5754/**
4dc3b16b 5755 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5756 * @node: node whose fallback list we're appending
5757 * @used_node_mask: nodemask_t of already used nodes
5758 *
5759 * We use a number of factors to determine which is the next node that should
5760 * appear on a given node's fallback list. The node should not have appeared
5761 * already in @node's fallback list, and it should be the next closest node
5762 * according to the distance array (which contains arbitrary distance values
5763 * from each node to each node in the system), and should also prefer nodes
5764 * with no CPUs, since presumably they'll have very little allocation pressure
5765 * on them otherwise.
a862f68a
MR
5766 *
5767 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5768 */
f0c0b2b8 5769static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5770{
4cf808eb 5771 int n, val;
1da177e4 5772 int min_val = INT_MAX;
00ef2d2f 5773 int best_node = NUMA_NO_NODE;
1da177e4 5774
4cf808eb
LT
5775 /* Use the local node if we haven't already */
5776 if (!node_isset(node, *used_node_mask)) {
5777 node_set(node, *used_node_mask);
5778 return node;
5779 }
1da177e4 5780
4b0ef1fe 5781 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5782
5783 /* Don't want a node to appear more than once */
5784 if (node_isset(n, *used_node_mask))
5785 continue;
5786
1da177e4
LT
5787 /* Use the distance array to find the distance */
5788 val = node_distance(node, n);
5789
4cf808eb
LT
5790 /* Penalize nodes under us ("prefer the next node") */
5791 val += (n < node);
5792
1da177e4 5793 /* Give preference to headless and unused nodes */
b630749f 5794 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5795 val += PENALTY_FOR_NODE_WITH_CPUS;
5796
5797 /* Slight preference for less loaded node */
5798 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5799 val += node_load[n];
5800
5801 if (val < min_val) {
5802 min_val = val;
5803 best_node = n;
5804 }
5805 }
5806
5807 if (best_node >= 0)
5808 node_set(best_node, *used_node_mask);
5809
5810 return best_node;
5811}
5812
f0c0b2b8
KH
5813
5814/*
5815 * Build zonelists ordered by node and zones within node.
5816 * This results in maximum locality--normal zone overflows into local
5817 * DMA zone, if any--but risks exhausting DMA zone.
5818 */
9d3be21b
MH
5819static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5820 unsigned nr_nodes)
1da177e4 5821{
9d3be21b
MH
5822 struct zoneref *zonerefs;
5823 int i;
5824
5825 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5826
5827 for (i = 0; i < nr_nodes; i++) {
5828 int nr_zones;
5829
5830 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5831
9d3be21b
MH
5832 nr_zones = build_zonerefs_node(node, zonerefs);
5833 zonerefs += nr_zones;
5834 }
5835 zonerefs->zone = NULL;
5836 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5837}
5838
523b9458
CL
5839/*
5840 * Build gfp_thisnode zonelists
5841 */
5842static void build_thisnode_zonelists(pg_data_t *pgdat)
5843{
9d3be21b
MH
5844 struct zoneref *zonerefs;
5845 int nr_zones;
523b9458 5846
9d3be21b
MH
5847 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5848 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5849 zonerefs += nr_zones;
5850 zonerefs->zone = NULL;
5851 zonerefs->zone_idx = 0;
523b9458
CL
5852}
5853
f0c0b2b8
KH
5854/*
5855 * Build zonelists ordered by zone and nodes within zones.
5856 * This results in conserving DMA zone[s] until all Normal memory is
5857 * exhausted, but results in overflowing to remote node while memory
5858 * may still exist in local DMA zone.
5859 */
f0c0b2b8 5860
f0c0b2b8
KH
5861static void build_zonelists(pg_data_t *pgdat)
5862{
9d3be21b
MH
5863 static int node_order[MAX_NUMNODES];
5864 int node, load, nr_nodes = 0;
d0ddf49b 5865 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5866 int local_node, prev_node;
1da177e4
LT
5867
5868 /* NUMA-aware ordering of nodes */
5869 local_node = pgdat->node_id;
62bc62a8 5870 load = nr_online_nodes;
1da177e4 5871 prev_node = local_node;
f0c0b2b8 5872
f0c0b2b8 5873 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5874 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5875 /*
5876 * We don't want to pressure a particular node.
5877 * So adding penalty to the first node in same
5878 * distance group to make it round-robin.
5879 */
957f822a
DR
5880 if (node_distance(local_node, node) !=
5881 node_distance(local_node, prev_node))
f0c0b2b8
KH
5882 node_load[node] = load;
5883
9d3be21b 5884 node_order[nr_nodes++] = node;
1da177e4
LT
5885 prev_node = node;
5886 load--;
1da177e4 5887 }
523b9458 5888
9d3be21b 5889 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5890 build_thisnode_zonelists(pgdat);
1da177e4
LT
5891}
5892
7aac7898
LS
5893#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5894/*
5895 * Return node id of node used for "local" allocations.
5896 * I.e., first node id of first zone in arg node's generic zonelist.
5897 * Used for initializing percpu 'numa_mem', which is used primarily
5898 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5899 */
5900int local_memory_node(int node)
5901{
c33d6c06 5902 struct zoneref *z;
7aac7898 5903
c33d6c06 5904 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5905 gfp_zone(GFP_KERNEL),
c33d6c06 5906 NULL);
c1093b74 5907 return zone_to_nid(z->zone);
7aac7898
LS
5908}
5909#endif
f0c0b2b8 5910
6423aa81
JK
5911static void setup_min_unmapped_ratio(void);
5912static void setup_min_slab_ratio(void);
1da177e4
LT
5913#else /* CONFIG_NUMA */
5914
f0c0b2b8 5915static void build_zonelists(pg_data_t *pgdat)
1da177e4 5916{
19655d34 5917 int node, local_node;
9d3be21b
MH
5918 struct zoneref *zonerefs;
5919 int nr_zones;
1da177e4
LT
5920
5921 local_node = pgdat->node_id;
1da177e4 5922
9d3be21b
MH
5923 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5924 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5925 zonerefs += nr_zones;
1da177e4 5926
54a6eb5c
MG
5927 /*
5928 * Now we build the zonelist so that it contains the zones
5929 * of all the other nodes.
5930 * We don't want to pressure a particular node, so when
5931 * building the zones for node N, we make sure that the
5932 * zones coming right after the local ones are those from
5933 * node N+1 (modulo N)
5934 */
5935 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5936 if (!node_online(node))
5937 continue;
9d3be21b
MH
5938 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5939 zonerefs += nr_zones;
1da177e4 5940 }
54a6eb5c
MG
5941 for (node = 0; node < local_node; node++) {
5942 if (!node_online(node))
5943 continue;
9d3be21b
MH
5944 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5945 zonerefs += nr_zones;
54a6eb5c
MG
5946 }
5947
9d3be21b
MH
5948 zonerefs->zone = NULL;
5949 zonerefs->zone_idx = 0;
1da177e4
LT
5950}
5951
5952#endif /* CONFIG_NUMA */
5953
99dcc3e5
CL
5954/*
5955 * Boot pageset table. One per cpu which is going to be used for all
5956 * zones and all nodes. The parameters will be set in such a way
5957 * that an item put on a list will immediately be handed over to
5958 * the buddy list. This is safe since pageset manipulation is done
5959 * with interrupts disabled.
5960 *
5961 * The boot_pagesets must be kept even after bootup is complete for
5962 * unused processors and/or zones. They do play a role for bootstrapping
5963 * hotplugged processors.
5964 *
5965 * zoneinfo_show() and maybe other functions do
5966 * not check if the processor is online before following the pageset pointer.
5967 * Other parts of the kernel may not check if the zone is available.
5968 */
69a8396a 5969static void pageset_init(struct per_cpu_pageset *p);
952eaf81
VB
5970/* These effectively disable the pcplists in the boot pageset completely */
5971#define BOOT_PAGESET_HIGH 0
5972#define BOOT_PAGESET_BATCH 1
99dcc3e5 5973static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5974static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5975
11cd8638 5976static void __build_all_zonelists(void *data)
1da177e4 5977{
6811378e 5978 int nid;
afb6ebb3 5979 int __maybe_unused cpu;
9adb62a5 5980 pg_data_t *self = data;
b93e0f32
MH
5981 static DEFINE_SPINLOCK(lock);
5982
5983 spin_lock(&lock);
9276b1bc 5984
7f9cfb31
BL
5985#ifdef CONFIG_NUMA
5986 memset(node_load, 0, sizeof(node_load));
5987#endif
9adb62a5 5988
c1152583
WY
5989 /*
5990 * This node is hotadded and no memory is yet present. So just
5991 * building zonelists is fine - no need to touch other nodes.
5992 */
9adb62a5
JL
5993 if (self && !node_online(self->node_id)) {
5994 build_zonelists(self);
c1152583
WY
5995 } else {
5996 for_each_online_node(nid) {
5997 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5998
c1152583
WY
5999 build_zonelists(pgdat);
6000 }
99dcc3e5 6001
7aac7898
LS
6002#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6003 /*
6004 * We now know the "local memory node" for each node--
6005 * i.e., the node of the first zone in the generic zonelist.
6006 * Set up numa_mem percpu variable for on-line cpus. During
6007 * boot, only the boot cpu should be on-line; we'll init the
6008 * secondary cpus' numa_mem as they come on-line. During
6009 * node/memory hotplug, we'll fixup all on-line cpus.
6010 */
d9c9a0b9 6011 for_each_online_cpu(cpu)
7aac7898 6012 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6013#endif
d9c9a0b9 6014 }
b93e0f32
MH
6015
6016 spin_unlock(&lock);
6811378e
YG
6017}
6018
061f67bc
RV
6019static noinline void __init
6020build_all_zonelists_init(void)
6021{
afb6ebb3
MH
6022 int cpu;
6023
061f67bc 6024 __build_all_zonelists(NULL);
afb6ebb3
MH
6025
6026 /*
6027 * Initialize the boot_pagesets that are going to be used
6028 * for bootstrapping processors. The real pagesets for
6029 * each zone will be allocated later when the per cpu
6030 * allocator is available.
6031 *
6032 * boot_pagesets are used also for bootstrapping offline
6033 * cpus if the system is already booted because the pagesets
6034 * are needed to initialize allocators on a specific cpu too.
6035 * F.e. the percpu allocator needs the page allocator which
6036 * needs the percpu allocator in order to allocate its pagesets
6037 * (a chicken-egg dilemma).
6038 */
6039 for_each_possible_cpu(cpu)
69a8396a 6040 pageset_init(&per_cpu(boot_pageset, cpu));
afb6ebb3 6041
061f67bc
RV
6042 mminit_verify_zonelist();
6043 cpuset_init_current_mems_allowed();
6044}
6045
4eaf3f64 6046/*
4eaf3f64 6047 * unless system_state == SYSTEM_BOOTING.
061f67bc 6048 *
72675e13 6049 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6050 * [protected by SYSTEM_BOOTING].
4eaf3f64 6051 */
72675e13 6052void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6053{
0a18e607
DH
6054 unsigned long vm_total_pages;
6055
6811378e 6056 if (system_state == SYSTEM_BOOTING) {
061f67bc 6057 build_all_zonelists_init();
6811378e 6058 } else {
11cd8638 6059 __build_all_zonelists(pgdat);
6811378e
YG
6060 /* cpuset refresh routine should be here */
6061 }
56b9413b
DH
6062 /* Get the number of free pages beyond high watermark in all zones. */
6063 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6064 /*
6065 * Disable grouping by mobility if the number of pages in the
6066 * system is too low to allow the mechanism to work. It would be
6067 * more accurate, but expensive to check per-zone. This check is
6068 * made on memory-hotadd so a system can start with mobility
6069 * disabled and enable it later
6070 */
d9c23400 6071 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6072 page_group_by_mobility_disabled = 1;
6073 else
6074 page_group_by_mobility_disabled = 0;
6075
ce0725f7 6076 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6077 nr_online_nodes,
756a025f
JP
6078 page_group_by_mobility_disabled ? "off" : "on",
6079 vm_total_pages);
f0c0b2b8 6080#ifdef CONFIG_NUMA
f88dfff5 6081 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6082#endif
1da177e4
LT
6083}
6084
a9a9e77f
PT
6085/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6086static bool __meminit
6087overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6088{
a9a9e77f
PT
6089 static struct memblock_region *r;
6090
6091 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6092 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6093 for_each_mem_region(r) {
a9a9e77f
PT
6094 if (*pfn < memblock_region_memory_end_pfn(r))
6095 break;
6096 }
6097 }
6098 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6099 memblock_is_mirror(r)) {
6100 *pfn = memblock_region_memory_end_pfn(r);
6101 return true;
6102 }
6103 }
a9a9e77f
PT
6104 return false;
6105}
6106
1da177e4
LT
6107/*
6108 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6109 * up by memblock_free_all() once the early boot process is
1da177e4 6110 * done. Non-atomic initialization, single-pass.
d882c006
DH
6111 *
6112 * All aligned pageblocks are initialized to the specified migratetype
6113 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6114 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6115 */
c09b4240 6116void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
d882c006
DH
6117 unsigned long start_pfn,
6118 enum meminit_context context,
6119 struct vmem_altmap *altmap, int migratetype)
1da177e4 6120{
a9a9e77f 6121 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6122 struct page *page;
1da177e4 6123
22b31eec
HD
6124 if (highest_memmap_pfn < end_pfn - 1)
6125 highest_memmap_pfn = end_pfn - 1;
6126
966cf44f 6127#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6128 /*
6129 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6130 * memory. We limit the total number of pages to initialize to just
6131 * those that might contain the memory mapping. We will defer the
6132 * ZONE_DEVICE page initialization until after we have released
6133 * the hotplug lock.
4b94ffdc 6134 */
966cf44f
AD
6135 if (zone == ZONE_DEVICE) {
6136 if (!altmap)
6137 return;
6138
6139 if (start_pfn == altmap->base_pfn)
6140 start_pfn += altmap->reserve;
6141 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6142 }
6143#endif
4b94ffdc 6144
948c436e 6145 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6146 /*
b72d0ffb
AM
6147 * There can be holes in boot-time mem_map[]s handed to this
6148 * function. They do not exist on hotplugged memory.
a2f3aa02 6149 */
c1d0da83 6150 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6151 if (overlap_memmap_init(zone, &pfn))
6152 continue;
6153 if (defer_init(nid, pfn, end_pfn))
6154 break;
a2f3aa02 6155 }
ac5d2539 6156
d0dc12e8
PT
6157 page = pfn_to_page(pfn);
6158 __init_single_page(page, pfn, zone, nid);
c1d0da83 6159 if (context == MEMINIT_HOTPLUG)
d483da5b 6160 __SetPageReserved(page);
d0dc12e8 6161
ac5d2539 6162 /*
d882c006
DH
6163 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6164 * such that unmovable allocations won't be scattered all
6165 * over the place during system boot.
ac5d2539 6166 */
4eb29bd9 6167 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6168 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6169 cond_resched();
ac5d2539 6170 }
948c436e 6171 pfn++;
1da177e4
LT
6172 }
6173}
6174
966cf44f
AD
6175#ifdef CONFIG_ZONE_DEVICE
6176void __ref memmap_init_zone_device(struct zone *zone,
6177 unsigned long start_pfn,
1f8d75c1 6178 unsigned long nr_pages,
966cf44f
AD
6179 struct dev_pagemap *pgmap)
6180{
1f8d75c1 6181 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6182 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6183 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6184 unsigned long zone_idx = zone_idx(zone);
6185 unsigned long start = jiffies;
6186 int nid = pgdat->node_id;
6187
46d945ae 6188 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6189 return;
6190
6191 /*
6192 * The call to memmap_init_zone should have already taken care
6193 * of the pages reserved for the memmap, so we can just jump to
6194 * the end of that region and start processing the device pages.
6195 */
514caf23 6196 if (altmap) {
966cf44f 6197 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6198 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6199 }
6200
6201 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6202 struct page *page = pfn_to_page(pfn);
6203
6204 __init_single_page(page, pfn, zone_idx, nid);
6205
6206 /*
6207 * Mark page reserved as it will need to wait for onlining
6208 * phase for it to be fully associated with a zone.
6209 *
6210 * We can use the non-atomic __set_bit operation for setting
6211 * the flag as we are still initializing the pages.
6212 */
6213 __SetPageReserved(page);
6214
6215 /*
8a164fef
CH
6216 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6217 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6218 * ever freed or placed on a driver-private list.
966cf44f
AD
6219 */
6220 page->pgmap = pgmap;
8a164fef 6221 page->zone_device_data = NULL;
966cf44f
AD
6222
6223 /*
6224 * Mark the block movable so that blocks are reserved for
6225 * movable at startup. This will force kernel allocations
6226 * to reserve their blocks rather than leaking throughout
6227 * the address space during boot when many long-lived
6228 * kernel allocations are made.
6229 *
c1d0da83 6230 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6231 * because this is done early in section_activate()
966cf44f 6232 */
4eb29bd9 6233 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6234 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6235 cond_resched();
6236 }
6237 }
6238
fdc029b1 6239 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6240 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6241}
6242
6243#endif
1e548deb 6244static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6245{
7aeb09f9 6246 unsigned int order, t;
b2a0ac88
MG
6247 for_each_migratetype_order(order, t) {
6248 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6249 zone->free_area[order].nr_free = 0;
6250 }
6251}
6252
dfb3ccd0 6253void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6254 unsigned long zone,
6255 unsigned long range_start_pfn)
dfb3ccd0 6256{
73a6e474
BH
6257 unsigned long start_pfn, end_pfn;
6258 unsigned long range_end_pfn = range_start_pfn + size;
6259 int i;
6260
6261 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6262 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6263 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6264
6265 if (end_pfn > start_pfn) {
6266 size = end_pfn - start_pfn;
6267 memmap_init_zone(size, nid, zone, start_pfn,
d882c006 6268 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
73a6e474
BH
6269 }
6270 }
dfb3ccd0 6271}
1da177e4 6272
7cd2b0a3 6273static int zone_batchsize(struct zone *zone)
e7c8d5c9 6274{
3a6be87f 6275#ifdef CONFIG_MMU
e7c8d5c9
CL
6276 int batch;
6277
6278 /*
6279 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6280 * size of the zone.
e7c8d5c9 6281 */
9705bea5 6282 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6283 /* But no more than a meg. */
6284 if (batch * PAGE_SIZE > 1024 * 1024)
6285 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6286 batch /= 4; /* We effectively *= 4 below */
6287 if (batch < 1)
6288 batch = 1;
6289
6290 /*
0ceaacc9
NP
6291 * Clamp the batch to a 2^n - 1 value. Having a power
6292 * of 2 value was found to be more likely to have
6293 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6294 *
0ceaacc9
NP
6295 * For example if 2 tasks are alternately allocating
6296 * batches of pages, one task can end up with a lot
6297 * of pages of one half of the possible page colors
6298 * and the other with pages of the other colors.
e7c8d5c9 6299 */
9155203a 6300 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6301
e7c8d5c9 6302 return batch;
3a6be87f
DH
6303
6304#else
6305 /* The deferral and batching of frees should be suppressed under NOMMU
6306 * conditions.
6307 *
6308 * The problem is that NOMMU needs to be able to allocate large chunks
6309 * of contiguous memory as there's no hardware page translation to
6310 * assemble apparent contiguous memory from discontiguous pages.
6311 *
6312 * Queueing large contiguous runs of pages for batching, however,
6313 * causes the pages to actually be freed in smaller chunks. As there
6314 * can be a significant delay between the individual batches being
6315 * recycled, this leads to the once large chunks of space being
6316 * fragmented and becoming unavailable for high-order allocations.
6317 */
6318 return 0;
6319#endif
e7c8d5c9
CL
6320}
6321
8d7a8fa9 6322/*
5c3ad2eb
VB
6323 * pcp->high and pcp->batch values are related and generally batch is lower
6324 * than high. They are also related to pcp->count such that count is lower
6325 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6326 *
5c3ad2eb
VB
6327 * However, guaranteeing these relations at all times would require e.g. write
6328 * barriers here but also careful usage of read barriers at the read side, and
6329 * thus be prone to error and bad for performance. Thus the update only prevents
6330 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6331 * can cope with those fields changing asynchronously, and fully trust only the
6332 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6333 *
6334 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6335 * outside of boot time (or some other assurance that no concurrent updaters
6336 * exist).
6337 */
6338static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6339 unsigned long batch)
6340{
5c3ad2eb
VB
6341 WRITE_ONCE(pcp->batch, batch);
6342 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6343}
6344
88c90dbc 6345static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6346{
6347 struct per_cpu_pages *pcp;
5f8dcc21 6348 int migratetype;
2caaad41 6349
1c6fe946
MD
6350 memset(p, 0, sizeof(*p));
6351
3dfa5721 6352 pcp = &p->pcp;
5f8dcc21
MG
6353 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6354 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6355
69a8396a
VB
6356 /*
6357 * Set batch and high values safe for a boot pageset. A true percpu
6358 * pageset's initialization will update them subsequently. Here we don't
6359 * need to be as careful as pageset_update() as nobody can access the
6360 * pageset yet.
6361 */
952eaf81
VB
6362 pcp->high = BOOT_PAGESET_HIGH;
6363 pcp->batch = BOOT_PAGESET_BATCH;
88c90dbc
CS
6364}
6365
3b1f3658 6366static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6367 unsigned long batch)
6368{
6369 struct per_cpu_pageset *p;
6370 int cpu;
6371
6372 for_each_possible_cpu(cpu) {
6373 p = per_cpu_ptr(zone->pageset, cpu);
6374 pageset_update(&p->pcp, high, batch);
6375 }
6376}
6377
8ad4b1fb 6378/*
0a8b4f1d 6379 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6380 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6381 */
0a8b4f1d 6382static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6383{
7115ac6e
VB
6384 unsigned long new_high, new_batch;
6385
6386 if (percpu_pagelist_fraction) {
6387 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6388 new_batch = max(1UL, new_high / 4);
6389 if ((new_high / 4) > (PAGE_SHIFT * 8))
6390 new_batch = PAGE_SHIFT * 8;
6391 } else {
6392 new_batch = zone_batchsize(zone);
6393 new_high = 6 * new_batch;
6394 new_batch = max(1UL, 1 * new_batch);
6395 }
169f6c19 6396
952eaf81
VB
6397 if (zone->pageset_high == new_high &&
6398 zone->pageset_batch == new_batch)
6399 return;
6400
6401 zone->pageset_high = new_high;
6402 zone->pageset_batch = new_batch;
6403
ec6e8c7e 6404 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6405}
6406
72675e13 6407void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6408{
0a8b4f1d 6409 struct per_cpu_pageset *p;
319774e2 6410 int cpu;
0a8b4f1d 6411
319774e2 6412 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6413 for_each_possible_cpu(cpu) {
6414 p = per_cpu_ptr(zone->pageset, cpu);
6415 pageset_init(p);
6416 }
6417
6418 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6419}
6420
2caaad41 6421/*
99dcc3e5
CL
6422 * Allocate per cpu pagesets and initialize them.
6423 * Before this call only boot pagesets were available.
e7c8d5c9 6424 */
99dcc3e5 6425void __init setup_per_cpu_pageset(void)
e7c8d5c9 6426{
b4911ea2 6427 struct pglist_data *pgdat;
99dcc3e5 6428 struct zone *zone;
b418a0f9 6429 int __maybe_unused cpu;
e7c8d5c9 6430
319774e2
WF
6431 for_each_populated_zone(zone)
6432 setup_zone_pageset(zone);
b4911ea2 6433
b418a0f9
SD
6434#ifdef CONFIG_NUMA
6435 /*
6436 * Unpopulated zones continue using the boot pagesets.
6437 * The numa stats for these pagesets need to be reset.
6438 * Otherwise, they will end up skewing the stats of
6439 * the nodes these zones are associated with.
6440 */
6441 for_each_possible_cpu(cpu) {
6442 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6443 memset(pcp->vm_numa_stat_diff, 0,
6444 sizeof(pcp->vm_numa_stat_diff));
6445 }
6446#endif
6447
b4911ea2
MG
6448 for_each_online_pgdat(pgdat)
6449 pgdat->per_cpu_nodestats =
6450 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6451}
6452
c09b4240 6453static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6454{
99dcc3e5
CL
6455 /*
6456 * per cpu subsystem is not up at this point. The following code
6457 * relies on the ability of the linker to provide the
6458 * offset of a (static) per cpu variable into the per cpu area.
6459 */
6460 zone->pageset = &boot_pageset;
952eaf81
VB
6461 zone->pageset_high = BOOT_PAGESET_HIGH;
6462 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6463
b38a8725 6464 if (populated_zone(zone))
99dcc3e5
CL
6465 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6466 zone->name, zone->present_pages,
6467 zone_batchsize(zone));
ed8ece2e
DH
6468}
6469
dc0bbf3b 6470void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6471 unsigned long zone_start_pfn,
b171e409 6472 unsigned long size)
ed8ece2e
DH
6473{
6474 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6475 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6476
8f416836
WY
6477 if (zone_idx > pgdat->nr_zones)
6478 pgdat->nr_zones = zone_idx;
ed8ece2e 6479
ed8ece2e
DH
6480 zone->zone_start_pfn = zone_start_pfn;
6481
708614e6
MG
6482 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6483 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6484 pgdat->node_id,
6485 (unsigned long)zone_idx(zone),
6486 zone_start_pfn, (zone_start_pfn + size));
6487
1e548deb 6488 zone_init_free_lists(zone);
9dcb8b68 6489 zone->initialized = 1;
ed8ece2e
DH
6490}
6491
c713216d
MG
6492/**
6493 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6494 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6495 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6496 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6497 *
6498 * It returns the start and end page frame of a node based on information
7d018176 6499 * provided by memblock_set_node(). If called for a node
c713216d 6500 * with no available memory, a warning is printed and the start and end
88ca3b94 6501 * PFNs will be 0.
c713216d 6502 */
bbe5d993 6503void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6504 unsigned long *start_pfn, unsigned long *end_pfn)
6505{
c13291a5 6506 unsigned long this_start_pfn, this_end_pfn;
c713216d 6507 int i;
c13291a5 6508
c713216d
MG
6509 *start_pfn = -1UL;
6510 *end_pfn = 0;
6511
c13291a5
TH
6512 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6513 *start_pfn = min(*start_pfn, this_start_pfn);
6514 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6515 }
6516
633c0666 6517 if (*start_pfn == -1UL)
c713216d 6518 *start_pfn = 0;
c713216d
MG
6519}
6520
2a1e274a
MG
6521/*
6522 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6523 * assumption is made that zones within a node are ordered in monotonic
6524 * increasing memory addresses so that the "highest" populated zone is used
6525 */
b69a7288 6526static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6527{
6528 int zone_index;
6529 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6530 if (zone_index == ZONE_MOVABLE)
6531 continue;
6532
6533 if (arch_zone_highest_possible_pfn[zone_index] >
6534 arch_zone_lowest_possible_pfn[zone_index])
6535 break;
6536 }
6537
6538 VM_BUG_ON(zone_index == -1);
6539 movable_zone = zone_index;
6540}
6541
6542/*
6543 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6544 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6545 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6546 * in each node depending on the size of each node and how evenly kernelcore
6547 * is distributed. This helper function adjusts the zone ranges
6548 * provided by the architecture for a given node by using the end of the
6549 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6550 * zones within a node are in order of monotonic increases memory addresses
6551 */
bbe5d993 6552static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6553 unsigned long zone_type,
6554 unsigned long node_start_pfn,
6555 unsigned long node_end_pfn,
6556 unsigned long *zone_start_pfn,
6557 unsigned long *zone_end_pfn)
6558{
6559 /* Only adjust if ZONE_MOVABLE is on this node */
6560 if (zone_movable_pfn[nid]) {
6561 /* Size ZONE_MOVABLE */
6562 if (zone_type == ZONE_MOVABLE) {
6563 *zone_start_pfn = zone_movable_pfn[nid];
6564 *zone_end_pfn = min(node_end_pfn,
6565 arch_zone_highest_possible_pfn[movable_zone]);
6566
e506b996
XQ
6567 /* Adjust for ZONE_MOVABLE starting within this range */
6568 } else if (!mirrored_kernelcore &&
6569 *zone_start_pfn < zone_movable_pfn[nid] &&
6570 *zone_end_pfn > zone_movable_pfn[nid]) {
6571 *zone_end_pfn = zone_movable_pfn[nid];
6572
2a1e274a
MG
6573 /* Check if this whole range is within ZONE_MOVABLE */
6574 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6575 *zone_start_pfn = *zone_end_pfn;
6576 }
6577}
6578
c713216d
MG
6579/*
6580 * Return the number of pages a zone spans in a node, including holes
6581 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6582 */
bbe5d993 6583static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6584 unsigned long zone_type,
7960aedd
ZY
6585 unsigned long node_start_pfn,
6586 unsigned long node_end_pfn,
d91749c1 6587 unsigned long *zone_start_pfn,
854e8848 6588 unsigned long *zone_end_pfn)
c713216d 6589{
299c83dc
LF
6590 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6591 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6592 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6593 if (!node_start_pfn && !node_end_pfn)
6594 return 0;
6595
7960aedd 6596 /* Get the start and end of the zone */
299c83dc
LF
6597 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6598 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6599 adjust_zone_range_for_zone_movable(nid, zone_type,
6600 node_start_pfn, node_end_pfn,
d91749c1 6601 zone_start_pfn, zone_end_pfn);
c713216d
MG
6602
6603 /* Check that this node has pages within the zone's required range */
d91749c1 6604 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6605 return 0;
6606
6607 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6608 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6609 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6610
6611 /* Return the spanned pages */
d91749c1 6612 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6613}
6614
6615/*
6616 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6617 * then all holes in the requested range will be accounted for.
c713216d 6618 */
bbe5d993 6619unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6620 unsigned long range_start_pfn,
6621 unsigned long range_end_pfn)
6622{
96e907d1
TH
6623 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6624 unsigned long start_pfn, end_pfn;
6625 int i;
c713216d 6626
96e907d1
TH
6627 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6628 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6629 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6630 nr_absent -= end_pfn - start_pfn;
c713216d 6631 }
96e907d1 6632 return nr_absent;
c713216d
MG
6633}
6634
6635/**
6636 * absent_pages_in_range - Return number of page frames in holes within a range
6637 * @start_pfn: The start PFN to start searching for holes
6638 * @end_pfn: The end PFN to stop searching for holes
6639 *
a862f68a 6640 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6641 */
6642unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6643 unsigned long end_pfn)
6644{
6645 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6646}
6647
6648/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6649static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6650 unsigned long zone_type,
7960aedd 6651 unsigned long node_start_pfn,
854e8848 6652 unsigned long node_end_pfn)
c713216d 6653{
96e907d1
TH
6654 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6655 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6656 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6657 unsigned long nr_absent;
9c7cd687 6658
b5685e92 6659 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6660 if (!node_start_pfn && !node_end_pfn)
6661 return 0;
6662
96e907d1
TH
6663 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6664 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6665
2a1e274a
MG
6666 adjust_zone_range_for_zone_movable(nid, zone_type,
6667 node_start_pfn, node_end_pfn,
6668 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6669 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6670
6671 /*
6672 * ZONE_MOVABLE handling.
6673 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6674 * and vice versa.
6675 */
e506b996
XQ
6676 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6677 unsigned long start_pfn, end_pfn;
6678 struct memblock_region *r;
6679
cc6de168 6680 for_each_mem_region(r) {
e506b996
XQ
6681 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6682 zone_start_pfn, zone_end_pfn);
6683 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6684 zone_start_pfn, zone_end_pfn);
6685
6686 if (zone_type == ZONE_MOVABLE &&
6687 memblock_is_mirror(r))
6688 nr_absent += end_pfn - start_pfn;
6689
6690 if (zone_type == ZONE_NORMAL &&
6691 !memblock_is_mirror(r))
6692 nr_absent += end_pfn - start_pfn;
342332e6
TI
6693 }
6694 }
6695
6696 return nr_absent;
c713216d 6697}
0e0b864e 6698
bbe5d993 6699static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6700 unsigned long node_start_pfn,
854e8848 6701 unsigned long node_end_pfn)
c713216d 6702{
febd5949 6703 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6704 enum zone_type i;
6705
febd5949
GZ
6706 for (i = 0; i < MAX_NR_ZONES; i++) {
6707 struct zone *zone = pgdat->node_zones + i;
d91749c1 6708 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6709 unsigned long spanned, absent;
febd5949 6710 unsigned long size, real_size;
c713216d 6711
854e8848
MR
6712 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6713 node_start_pfn,
6714 node_end_pfn,
6715 &zone_start_pfn,
6716 &zone_end_pfn);
6717 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6718 node_start_pfn,
6719 node_end_pfn);
3f08a302
MR
6720
6721 size = spanned;
6722 real_size = size - absent;
6723
d91749c1
TI
6724 if (size)
6725 zone->zone_start_pfn = zone_start_pfn;
6726 else
6727 zone->zone_start_pfn = 0;
febd5949
GZ
6728 zone->spanned_pages = size;
6729 zone->present_pages = real_size;
6730
6731 totalpages += size;
6732 realtotalpages += real_size;
6733 }
6734
6735 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6736 pgdat->node_present_pages = realtotalpages;
6737 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6738 realtotalpages);
6739}
6740
835c134e
MG
6741#ifndef CONFIG_SPARSEMEM
6742/*
6743 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6744 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6745 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6746 * round what is now in bits to nearest long in bits, then return it in
6747 * bytes.
6748 */
7c45512d 6749static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6750{
6751 unsigned long usemapsize;
6752
7c45512d 6753 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6754 usemapsize = roundup(zonesize, pageblock_nr_pages);
6755 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6756 usemapsize *= NR_PAGEBLOCK_BITS;
6757 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6758
6759 return usemapsize / 8;
6760}
6761
7cc2a959 6762static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6763 struct zone *zone,
6764 unsigned long zone_start_pfn,
6765 unsigned long zonesize)
835c134e 6766{
7c45512d 6767 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6768 zone->pageblock_flags = NULL;
23a7052a 6769 if (usemapsize) {
6782832e 6770 zone->pageblock_flags =
26fb3dae
MR
6771 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6772 pgdat->node_id);
23a7052a
MR
6773 if (!zone->pageblock_flags)
6774 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6775 usemapsize, zone->name, pgdat->node_id);
6776 }
835c134e
MG
6777}
6778#else
7c45512d
LT
6779static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6780 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6781#endif /* CONFIG_SPARSEMEM */
6782
d9c23400 6783#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6784
d9c23400 6785/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6786void __init set_pageblock_order(void)
d9c23400 6787{
955c1cd7
AM
6788 unsigned int order;
6789
d9c23400
MG
6790 /* Check that pageblock_nr_pages has not already been setup */
6791 if (pageblock_order)
6792 return;
6793
955c1cd7
AM
6794 if (HPAGE_SHIFT > PAGE_SHIFT)
6795 order = HUGETLB_PAGE_ORDER;
6796 else
6797 order = MAX_ORDER - 1;
6798
d9c23400
MG
6799 /*
6800 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6801 * This value may be variable depending on boot parameters on IA64 and
6802 * powerpc.
d9c23400
MG
6803 */
6804 pageblock_order = order;
6805}
6806#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6807
ba72cb8c
MG
6808/*
6809 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6810 * is unused as pageblock_order is set at compile-time. See
6811 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6812 * the kernel config
ba72cb8c 6813 */
03e85f9d 6814void __init set_pageblock_order(void)
ba72cb8c 6815{
ba72cb8c 6816}
d9c23400
MG
6817
6818#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6819
03e85f9d 6820static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6821 unsigned long present_pages)
01cefaef
JL
6822{
6823 unsigned long pages = spanned_pages;
6824
6825 /*
6826 * Provide a more accurate estimation if there are holes within
6827 * the zone and SPARSEMEM is in use. If there are holes within the
6828 * zone, each populated memory region may cost us one or two extra
6829 * memmap pages due to alignment because memmap pages for each
89d790ab 6830 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6831 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6832 */
6833 if (spanned_pages > present_pages + (present_pages >> 4) &&
6834 IS_ENABLED(CONFIG_SPARSEMEM))
6835 pages = present_pages;
6836
6837 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6838}
6839
ace1db39
OS
6840#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6841static void pgdat_init_split_queue(struct pglist_data *pgdat)
6842{
364c1eeb
YS
6843 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6844
6845 spin_lock_init(&ds_queue->split_queue_lock);
6846 INIT_LIST_HEAD(&ds_queue->split_queue);
6847 ds_queue->split_queue_len = 0;
ace1db39
OS
6848}
6849#else
6850static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6851#endif
6852
6853#ifdef CONFIG_COMPACTION
6854static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6855{
6856 init_waitqueue_head(&pgdat->kcompactd_wait);
6857}
6858#else
6859static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6860#endif
6861
03e85f9d 6862static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6863{
208d54e5 6864 pgdat_resize_init(pgdat);
ace1db39 6865
ace1db39
OS
6866 pgdat_init_split_queue(pgdat);
6867 pgdat_init_kcompactd(pgdat);
6868
1da177e4 6869 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6870 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6871
eefa864b 6872 pgdat_page_ext_init(pgdat);
867e5e1d 6873 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6874}
6875
6876static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6877 unsigned long remaining_pages)
6878{
9705bea5 6879 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6880 zone_set_nid(zone, nid);
6881 zone->name = zone_names[idx];
6882 zone->zone_pgdat = NODE_DATA(nid);
6883 spin_lock_init(&zone->lock);
6884 zone_seqlock_init(zone);
6885 zone_pcp_init(zone);
6886}
6887
6888/*
6889 * Set up the zone data structures
6890 * - init pgdat internals
6891 * - init all zones belonging to this node
6892 *
6893 * NOTE: this function is only called during memory hotplug
6894 */
6895#ifdef CONFIG_MEMORY_HOTPLUG
6896void __ref free_area_init_core_hotplug(int nid)
6897{
6898 enum zone_type z;
6899 pg_data_t *pgdat = NODE_DATA(nid);
6900
6901 pgdat_init_internals(pgdat);
6902 for (z = 0; z < MAX_NR_ZONES; z++)
6903 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6904}
6905#endif
6906
6907/*
6908 * Set up the zone data structures:
6909 * - mark all pages reserved
6910 * - mark all memory queues empty
6911 * - clear the memory bitmaps
6912 *
6913 * NOTE: pgdat should get zeroed by caller.
6914 * NOTE: this function is only called during early init.
6915 */
6916static void __init free_area_init_core(struct pglist_data *pgdat)
6917{
6918 enum zone_type j;
6919 int nid = pgdat->node_id;
5f63b720 6920
03e85f9d 6921 pgdat_init_internals(pgdat);
385386cf
JW
6922 pgdat->per_cpu_nodestats = &boot_nodestats;
6923
1da177e4
LT
6924 for (j = 0; j < MAX_NR_ZONES; j++) {
6925 struct zone *zone = pgdat->node_zones + j;
e6943859 6926 unsigned long size, freesize, memmap_pages;
d91749c1 6927 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6928
febd5949 6929 size = zone->spanned_pages;
e6943859 6930 freesize = zone->present_pages;
1da177e4 6931
0e0b864e 6932 /*
9feedc9d 6933 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6934 * is used by this zone for memmap. This affects the watermark
6935 * and per-cpu initialisations
6936 */
e6943859 6937 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6938 if (!is_highmem_idx(j)) {
6939 if (freesize >= memmap_pages) {
6940 freesize -= memmap_pages;
6941 if (memmap_pages)
6942 printk(KERN_DEBUG
6943 " %s zone: %lu pages used for memmap\n",
6944 zone_names[j], memmap_pages);
6945 } else
1170532b 6946 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6947 zone_names[j], memmap_pages, freesize);
6948 }
0e0b864e 6949
6267276f 6950 /* Account for reserved pages */
9feedc9d
JL
6951 if (j == 0 && freesize > dma_reserve) {
6952 freesize -= dma_reserve;
d903ef9f 6953 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6954 zone_names[0], dma_reserve);
0e0b864e
MG
6955 }
6956
98d2b0eb 6957 if (!is_highmem_idx(j))
9feedc9d 6958 nr_kernel_pages += freesize;
01cefaef
JL
6959 /* Charge for highmem memmap if there are enough kernel pages */
6960 else if (nr_kernel_pages > memmap_pages * 2)
6961 nr_kernel_pages -= memmap_pages;
9feedc9d 6962 nr_all_pages += freesize;
1da177e4 6963
9feedc9d
JL
6964 /*
6965 * Set an approximate value for lowmem here, it will be adjusted
6966 * when the bootmem allocator frees pages into the buddy system.
6967 * And all highmem pages will be managed by the buddy system.
6968 */
03e85f9d 6969 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6970
d883c6cf 6971 if (!size)
1da177e4
LT
6972 continue;
6973
955c1cd7 6974 set_pageblock_order();
d883c6cf
JK
6975 setup_usemap(pgdat, zone, zone_start_pfn, size);
6976 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6977 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6978 }
6979}
6980
0cd842f9 6981#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6982static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6983{
b0aeba74 6984 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6985 unsigned long __maybe_unused offset = 0;
6986
1da177e4
LT
6987 /* Skip empty nodes */
6988 if (!pgdat->node_spanned_pages)
6989 return;
6990
b0aeba74
TL
6991 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6992 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6993 /* ia64 gets its own node_mem_map, before this, without bootmem */
6994 if (!pgdat->node_mem_map) {
b0aeba74 6995 unsigned long size, end;
d41dee36
AW
6996 struct page *map;
6997
e984bb43
BP
6998 /*
6999 * The zone's endpoints aren't required to be MAX_ORDER
7000 * aligned but the node_mem_map endpoints must be in order
7001 * for the buddy allocator to function correctly.
7002 */
108bcc96 7003 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7004 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7005 size = (end - start) * sizeof(struct page);
26fb3dae
MR
7006 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7007 pgdat->node_id);
23a7052a
MR
7008 if (!map)
7009 panic("Failed to allocate %ld bytes for node %d memory map\n",
7010 size, pgdat->node_id);
a1c34a3b 7011 pgdat->node_mem_map = map + offset;
1da177e4 7012 }
0cd842f9
OS
7013 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7014 __func__, pgdat->node_id, (unsigned long)pgdat,
7015 (unsigned long)pgdat->node_mem_map);
12d810c1 7016#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
7017 /*
7018 * With no DISCONTIG, the global mem_map is just set as node 0's
7019 */
c713216d 7020 if (pgdat == NODE_DATA(0)) {
1da177e4 7021 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7022 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7023 mem_map -= offset;
c713216d 7024 }
1da177e4
LT
7025#endif
7026}
0cd842f9
OS
7027#else
7028static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7029#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 7030
0188dc98
OS
7031#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7032static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7033{
0188dc98
OS
7034 pgdat->first_deferred_pfn = ULONG_MAX;
7035}
7036#else
7037static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7038#endif
7039
854e8848 7040static void __init free_area_init_node(int nid)
1da177e4 7041{
9109fb7b 7042 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7043 unsigned long start_pfn = 0;
7044 unsigned long end_pfn = 0;
9109fb7b 7045
88fdf75d 7046 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7047 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7048
854e8848 7049 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7050
1da177e4 7051 pgdat->node_id = nid;
854e8848 7052 pgdat->node_start_pfn = start_pfn;
75ef7184 7053 pgdat->per_cpu_nodestats = NULL;
854e8848 7054
8d29e18a 7055 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7056 (u64)start_pfn << PAGE_SHIFT,
7057 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7058 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7059
7060 alloc_node_mem_map(pgdat);
0188dc98 7061 pgdat_set_deferred_range(pgdat);
1da177e4 7062
7f3eb55b 7063 free_area_init_core(pgdat);
1da177e4
LT
7064}
7065
bc9331a1 7066void __init free_area_init_memoryless_node(int nid)
3f08a302 7067{
854e8848 7068 free_area_init_node(nid);
3f08a302
MR
7069}
7070
aca52c39 7071#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 7072/*
4b094b78
DH
7073 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7074 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 7075 */
4b094b78 7076static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
7077{
7078 unsigned long pfn;
7079 u64 pgcnt = 0;
7080
7081 for (pfn = spfn; pfn < epfn; pfn++) {
7082 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7083 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7084 + pageblock_nr_pages - 1;
7085 continue;
7086 }
4b094b78
DH
7087 /*
7088 * Use a fake node/zone (0) for now. Some of these pages
7089 * (in memblock.reserved but not in memblock.memory) will
7090 * get re-initialized via reserve_bootmem_region() later.
7091 */
7092 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7093 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
7094 pgcnt++;
7095 }
7096
7097 return pgcnt;
7098}
7099
a4a3ede2
PT
7100/*
7101 * Only struct pages that are backed by physical memory are zeroed and
7102 * initialized by going through __init_single_page(). But, there are some
7103 * struct pages which are reserved in memblock allocator and their fields
7104 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 7105 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
7106 *
7107 * This function also addresses a similar issue where struct pages are left
7108 * uninitialized because the physical address range is not covered by
7109 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
7110 * layout is manually configured via memmap=, or when the highest physical
7111 * address (max_pfn) does not end on a section boundary.
a4a3ede2 7112 */
4b094b78 7113static void __init init_unavailable_mem(void)
a4a3ede2
PT
7114{
7115 phys_addr_t start, end;
a4a3ede2 7116 u64 i, pgcnt;
907ec5fc 7117 phys_addr_t next = 0;
a4a3ede2
PT
7118
7119 /*
907ec5fc 7120 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
7121 */
7122 pgcnt = 0;
6e245ad4 7123 for_each_mem_range(i, &start, &end) {
ec393a0f 7124 if (next < start)
4b094b78
DH
7125 pgcnt += init_unavailable_range(PFN_DOWN(next),
7126 PFN_UP(start));
907ec5fc
NH
7127 next = end;
7128 }
e822969c
DH
7129
7130 /*
7131 * Early sections always have a fully populated memmap for the whole
7132 * section - see pfn_valid(). If the last section has holes at the
7133 * end and that section is marked "online", the memmap will be
7134 * considered initialized. Make sure that memmap has a well defined
7135 * state.
7136 */
4b094b78
DH
7137 pgcnt += init_unavailable_range(PFN_DOWN(next),
7138 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7139
a4a3ede2
PT
7140 /*
7141 * Struct pages that do not have backing memory. This could be because
7142 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7143 */
7144 if (pgcnt)
907ec5fc 7145 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7146}
4b094b78
DH
7147#else
7148static inline void __init init_unavailable_mem(void)
7149{
7150}
aca52c39 7151#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7152
418508c1
MS
7153#if MAX_NUMNODES > 1
7154/*
7155 * Figure out the number of possible node ids.
7156 */
f9872caf 7157void __init setup_nr_node_ids(void)
418508c1 7158{
904a9553 7159 unsigned int highest;
418508c1 7160
904a9553 7161 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7162 nr_node_ids = highest + 1;
7163}
418508c1
MS
7164#endif
7165
1e01979c
TH
7166/**
7167 * node_map_pfn_alignment - determine the maximum internode alignment
7168 *
7169 * This function should be called after node map is populated and sorted.
7170 * It calculates the maximum power of two alignment which can distinguish
7171 * all the nodes.
7172 *
7173 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7174 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7175 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7176 * shifted, 1GiB is enough and this function will indicate so.
7177 *
7178 * This is used to test whether pfn -> nid mapping of the chosen memory
7179 * model has fine enough granularity to avoid incorrect mapping for the
7180 * populated node map.
7181 *
a862f68a 7182 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7183 * requirement (single node).
7184 */
7185unsigned long __init node_map_pfn_alignment(void)
7186{
7187 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7188 unsigned long start, end, mask;
98fa15f3 7189 int last_nid = NUMA_NO_NODE;
c13291a5 7190 int i, nid;
1e01979c 7191
c13291a5 7192 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7193 if (!start || last_nid < 0 || last_nid == nid) {
7194 last_nid = nid;
7195 last_end = end;
7196 continue;
7197 }
7198
7199 /*
7200 * Start with a mask granular enough to pin-point to the
7201 * start pfn and tick off bits one-by-one until it becomes
7202 * too coarse to separate the current node from the last.
7203 */
7204 mask = ~((1 << __ffs(start)) - 1);
7205 while (mask && last_end <= (start & (mask << 1)))
7206 mask <<= 1;
7207
7208 /* accumulate all internode masks */
7209 accl_mask |= mask;
7210 }
7211
7212 /* convert mask to number of pages */
7213 return ~accl_mask + 1;
7214}
7215
c713216d
MG
7216/**
7217 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7218 *
a862f68a 7219 * Return: the minimum PFN based on information provided via
7d018176 7220 * memblock_set_node().
c713216d
MG
7221 */
7222unsigned long __init find_min_pfn_with_active_regions(void)
7223{
8a1b25fe 7224 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7225}
7226
37b07e41
LS
7227/*
7228 * early_calculate_totalpages()
7229 * Sum pages in active regions for movable zone.
4b0ef1fe 7230 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7231 */
484f51f8 7232static unsigned long __init early_calculate_totalpages(void)
7e63efef 7233{
7e63efef 7234 unsigned long totalpages = 0;
c13291a5
TH
7235 unsigned long start_pfn, end_pfn;
7236 int i, nid;
7237
7238 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7239 unsigned long pages = end_pfn - start_pfn;
7e63efef 7240
37b07e41
LS
7241 totalpages += pages;
7242 if (pages)
4b0ef1fe 7243 node_set_state(nid, N_MEMORY);
37b07e41 7244 }
b8af2941 7245 return totalpages;
7e63efef
MG
7246}
7247
2a1e274a
MG
7248/*
7249 * Find the PFN the Movable zone begins in each node. Kernel memory
7250 * is spread evenly between nodes as long as the nodes have enough
7251 * memory. When they don't, some nodes will have more kernelcore than
7252 * others
7253 */
b224ef85 7254static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7255{
7256 int i, nid;
7257 unsigned long usable_startpfn;
7258 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7259 /* save the state before borrow the nodemask */
4b0ef1fe 7260 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7261 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7262 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7263 struct memblock_region *r;
b2f3eebe
TC
7264
7265 /* Need to find movable_zone earlier when movable_node is specified. */
7266 find_usable_zone_for_movable();
7267
7268 /*
7269 * If movable_node is specified, ignore kernelcore and movablecore
7270 * options.
7271 */
7272 if (movable_node_is_enabled()) {
cc6de168 7273 for_each_mem_region(r) {
136199f0 7274 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7275 continue;
7276
d622abf7 7277 nid = memblock_get_region_node(r);
b2f3eebe 7278
136199f0 7279 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7280 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7281 min(usable_startpfn, zone_movable_pfn[nid]) :
7282 usable_startpfn;
7283 }
7284
7285 goto out2;
7286 }
2a1e274a 7287
342332e6
TI
7288 /*
7289 * If kernelcore=mirror is specified, ignore movablecore option
7290 */
7291 if (mirrored_kernelcore) {
7292 bool mem_below_4gb_not_mirrored = false;
7293
cc6de168 7294 for_each_mem_region(r) {
342332e6
TI
7295 if (memblock_is_mirror(r))
7296 continue;
7297
d622abf7 7298 nid = memblock_get_region_node(r);
342332e6
TI
7299
7300 usable_startpfn = memblock_region_memory_base_pfn(r);
7301
7302 if (usable_startpfn < 0x100000) {
7303 mem_below_4gb_not_mirrored = true;
7304 continue;
7305 }
7306
7307 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7308 min(usable_startpfn, zone_movable_pfn[nid]) :
7309 usable_startpfn;
7310 }
7311
7312 if (mem_below_4gb_not_mirrored)
633bf2fe 7313 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7314
7315 goto out2;
7316 }
7317
7e63efef 7318 /*
a5c6d650
DR
7319 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7320 * amount of necessary memory.
7321 */
7322 if (required_kernelcore_percent)
7323 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7324 10000UL;
7325 if (required_movablecore_percent)
7326 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7327 10000UL;
7328
7329 /*
7330 * If movablecore= was specified, calculate what size of
7e63efef
MG
7331 * kernelcore that corresponds so that memory usable for
7332 * any allocation type is evenly spread. If both kernelcore
7333 * and movablecore are specified, then the value of kernelcore
7334 * will be used for required_kernelcore if it's greater than
7335 * what movablecore would have allowed.
7336 */
7337 if (required_movablecore) {
7e63efef
MG
7338 unsigned long corepages;
7339
7340 /*
7341 * Round-up so that ZONE_MOVABLE is at least as large as what
7342 * was requested by the user
7343 */
7344 required_movablecore =
7345 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7346 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7347 corepages = totalpages - required_movablecore;
7348
7349 required_kernelcore = max(required_kernelcore, corepages);
7350 }
7351
bde304bd
XQ
7352 /*
7353 * If kernelcore was not specified or kernelcore size is larger
7354 * than totalpages, there is no ZONE_MOVABLE.
7355 */
7356 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7357 goto out;
2a1e274a
MG
7358
7359 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7360 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7361
7362restart:
7363 /* Spread kernelcore memory as evenly as possible throughout nodes */
7364 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7365 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7366 unsigned long start_pfn, end_pfn;
7367
2a1e274a
MG
7368 /*
7369 * Recalculate kernelcore_node if the division per node
7370 * now exceeds what is necessary to satisfy the requested
7371 * amount of memory for the kernel
7372 */
7373 if (required_kernelcore < kernelcore_node)
7374 kernelcore_node = required_kernelcore / usable_nodes;
7375
7376 /*
7377 * As the map is walked, we track how much memory is usable
7378 * by the kernel using kernelcore_remaining. When it is
7379 * 0, the rest of the node is usable by ZONE_MOVABLE
7380 */
7381 kernelcore_remaining = kernelcore_node;
7382
7383 /* Go through each range of PFNs within this node */
c13291a5 7384 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7385 unsigned long size_pages;
7386
c13291a5 7387 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7388 if (start_pfn >= end_pfn)
7389 continue;
7390
7391 /* Account for what is only usable for kernelcore */
7392 if (start_pfn < usable_startpfn) {
7393 unsigned long kernel_pages;
7394 kernel_pages = min(end_pfn, usable_startpfn)
7395 - start_pfn;
7396
7397 kernelcore_remaining -= min(kernel_pages,
7398 kernelcore_remaining);
7399 required_kernelcore -= min(kernel_pages,
7400 required_kernelcore);
7401
7402 /* Continue if range is now fully accounted */
7403 if (end_pfn <= usable_startpfn) {
7404
7405 /*
7406 * Push zone_movable_pfn to the end so
7407 * that if we have to rebalance
7408 * kernelcore across nodes, we will
7409 * not double account here
7410 */
7411 zone_movable_pfn[nid] = end_pfn;
7412 continue;
7413 }
7414 start_pfn = usable_startpfn;
7415 }
7416
7417 /*
7418 * The usable PFN range for ZONE_MOVABLE is from
7419 * start_pfn->end_pfn. Calculate size_pages as the
7420 * number of pages used as kernelcore
7421 */
7422 size_pages = end_pfn - start_pfn;
7423 if (size_pages > kernelcore_remaining)
7424 size_pages = kernelcore_remaining;
7425 zone_movable_pfn[nid] = start_pfn + size_pages;
7426
7427 /*
7428 * Some kernelcore has been met, update counts and
7429 * break if the kernelcore for this node has been
b8af2941 7430 * satisfied
2a1e274a
MG
7431 */
7432 required_kernelcore -= min(required_kernelcore,
7433 size_pages);
7434 kernelcore_remaining -= size_pages;
7435 if (!kernelcore_remaining)
7436 break;
7437 }
7438 }
7439
7440 /*
7441 * If there is still required_kernelcore, we do another pass with one
7442 * less node in the count. This will push zone_movable_pfn[nid] further
7443 * along on the nodes that still have memory until kernelcore is
b8af2941 7444 * satisfied
2a1e274a
MG
7445 */
7446 usable_nodes--;
7447 if (usable_nodes && required_kernelcore > usable_nodes)
7448 goto restart;
7449
b2f3eebe 7450out2:
2a1e274a
MG
7451 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7452 for (nid = 0; nid < MAX_NUMNODES; nid++)
7453 zone_movable_pfn[nid] =
7454 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7455
20e6926d 7456out:
66918dcd 7457 /* restore the node_state */
4b0ef1fe 7458 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7459}
7460
4b0ef1fe
LJ
7461/* Any regular or high memory on that node ? */
7462static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7463{
37b07e41
LS
7464 enum zone_type zone_type;
7465
4b0ef1fe 7466 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7467 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7468 if (populated_zone(zone)) {
7b0e0c0e
OS
7469 if (IS_ENABLED(CONFIG_HIGHMEM))
7470 node_set_state(nid, N_HIGH_MEMORY);
7471 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7472 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7473 break;
7474 }
37b07e41 7475 }
37b07e41
LS
7476}
7477
51930df5
MR
7478/*
7479 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7480 * such cases we allow max_zone_pfn sorted in the descending order
7481 */
7482bool __weak arch_has_descending_max_zone_pfns(void)
7483{
7484 return false;
7485}
7486
c713216d 7487/**
9691a071 7488 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7489 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7490 *
7491 * This will call free_area_init_node() for each active node in the system.
7d018176 7492 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7493 * zone in each node and their holes is calculated. If the maximum PFN
7494 * between two adjacent zones match, it is assumed that the zone is empty.
7495 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7496 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7497 * starts where the previous one ended. For example, ZONE_DMA32 starts
7498 * at arch_max_dma_pfn.
7499 */
9691a071 7500void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7501{
c13291a5 7502 unsigned long start_pfn, end_pfn;
51930df5
MR
7503 int i, nid, zone;
7504 bool descending;
a6af2bc3 7505
c713216d
MG
7506 /* Record where the zone boundaries are */
7507 memset(arch_zone_lowest_possible_pfn, 0,
7508 sizeof(arch_zone_lowest_possible_pfn));
7509 memset(arch_zone_highest_possible_pfn, 0,
7510 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7511
7512 start_pfn = find_min_pfn_with_active_regions();
51930df5 7513 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7514
7515 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7516 if (descending)
7517 zone = MAX_NR_ZONES - i - 1;
7518 else
7519 zone = i;
7520
7521 if (zone == ZONE_MOVABLE)
2a1e274a 7522 continue;
90cae1fe 7523
51930df5
MR
7524 end_pfn = max(max_zone_pfn[zone], start_pfn);
7525 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7526 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7527
7528 start_pfn = end_pfn;
c713216d 7529 }
2a1e274a
MG
7530
7531 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7532 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7533 find_zone_movable_pfns_for_nodes();
c713216d 7534
c713216d 7535 /* Print out the zone ranges */
f88dfff5 7536 pr_info("Zone ranges:\n");
2a1e274a
MG
7537 for (i = 0; i < MAX_NR_ZONES; i++) {
7538 if (i == ZONE_MOVABLE)
7539 continue;
f88dfff5 7540 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7541 if (arch_zone_lowest_possible_pfn[i] ==
7542 arch_zone_highest_possible_pfn[i])
f88dfff5 7543 pr_cont("empty\n");
72f0ba02 7544 else
8d29e18a
JG
7545 pr_cont("[mem %#018Lx-%#018Lx]\n",
7546 (u64)arch_zone_lowest_possible_pfn[i]
7547 << PAGE_SHIFT,
7548 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7549 << PAGE_SHIFT) - 1);
2a1e274a
MG
7550 }
7551
7552 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7553 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7554 for (i = 0; i < MAX_NUMNODES; i++) {
7555 if (zone_movable_pfn[i])
8d29e18a
JG
7556 pr_info(" Node %d: %#018Lx\n", i,
7557 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7558 }
c713216d 7559
f46edbd1
DW
7560 /*
7561 * Print out the early node map, and initialize the
7562 * subsection-map relative to active online memory ranges to
7563 * enable future "sub-section" extensions of the memory map.
7564 */
f88dfff5 7565 pr_info("Early memory node ranges\n");
f46edbd1 7566 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7567 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7568 (u64)start_pfn << PAGE_SHIFT,
7569 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7570 subsection_map_init(start_pfn, end_pfn - start_pfn);
7571 }
c713216d
MG
7572
7573 /* Initialise every node */
708614e6 7574 mminit_verify_pageflags_layout();
8ef82866 7575 setup_nr_node_ids();
4b094b78 7576 init_unavailable_mem();
c713216d
MG
7577 for_each_online_node(nid) {
7578 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7579 free_area_init_node(nid);
37b07e41
LS
7580
7581 /* Any memory on that node */
7582 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7583 node_set_state(nid, N_MEMORY);
7584 check_for_memory(pgdat, nid);
c713216d
MG
7585 }
7586}
2a1e274a 7587
a5c6d650
DR
7588static int __init cmdline_parse_core(char *p, unsigned long *core,
7589 unsigned long *percent)
2a1e274a
MG
7590{
7591 unsigned long long coremem;
a5c6d650
DR
7592 char *endptr;
7593
2a1e274a
MG
7594 if (!p)
7595 return -EINVAL;
7596
a5c6d650
DR
7597 /* Value may be a percentage of total memory, otherwise bytes */
7598 coremem = simple_strtoull(p, &endptr, 0);
7599 if (*endptr == '%') {
7600 /* Paranoid check for percent values greater than 100 */
7601 WARN_ON(coremem > 100);
2a1e274a 7602
a5c6d650
DR
7603 *percent = coremem;
7604 } else {
7605 coremem = memparse(p, &p);
7606 /* Paranoid check that UL is enough for the coremem value */
7607 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7608
a5c6d650
DR
7609 *core = coremem >> PAGE_SHIFT;
7610 *percent = 0UL;
7611 }
2a1e274a
MG
7612 return 0;
7613}
ed7ed365 7614
7e63efef
MG
7615/*
7616 * kernelcore=size sets the amount of memory for use for allocations that
7617 * cannot be reclaimed or migrated.
7618 */
7619static int __init cmdline_parse_kernelcore(char *p)
7620{
342332e6
TI
7621 /* parse kernelcore=mirror */
7622 if (parse_option_str(p, "mirror")) {
7623 mirrored_kernelcore = true;
7624 return 0;
7625 }
7626
a5c6d650
DR
7627 return cmdline_parse_core(p, &required_kernelcore,
7628 &required_kernelcore_percent);
7e63efef
MG
7629}
7630
7631/*
7632 * movablecore=size sets the amount of memory for use for allocations that
7633 * can be reclaimed or migrated.
7634 */
7635static int __init cmdline_parse_movablecore(char *p)
7636{
a5c6d650
DR
7637 return cmdline_parse_core(p, &required_movablecore,
7638 &required_movablecore_percent);
7e63efef
MG
7639}
7640
ed7ed365 7641early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7642early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7643
c3d5f5f0
JL
7644void adjust_managed_page_count(struct page *page, long count)
7645{
9705bea5 7646 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7647 totalram_pages_add(count);
3dcc0571
JL
7648#ifdef CONFIG_HIGHMEM
7649 if (PageHighMem(page))
ca79b0c2 7650 totalhigh_pages_add(count);
3dcc0571 7651#endif
c3d5f5f0 7652}
3dcc0571 7653EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7654
e5cb113f 7655unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7656{
11199692
JL
7657 void *pos;
7658 unsigned long pages = 0;
69afade7 7659
11199692
JL
7660 start = (void *)PAGE_ALIGN((unsigned long)start);
7661 end = (void *)((unsigned long)end & PAGE_MASK);
7662 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7663 struct page *page = virt_to_page(pos);
7664 void *direct_map_addr;
7665
7666 /*
7667 * 'direct_map_addr' might be different from 'pos'
7668 * because some architectures' virt_to_page()
7669 * work with aliases. Getting the direct map
7670 * address ensures that we get a _writeable_
7671 * alias for the memset().
7672 */
7673 direct_map_addr = page_address(page);
c746170d
VF
7674 /*
7675 * Perform a kasan-unchecked memset() since this memory
7676 * has not been initialized.
7677 */
7678 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 7679 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7680 memset(direct_map_addr, poison, PAGE_SIZE);
7681
7682 free_reserved_page(page);
69afade7
JL
7683 }
7684
7685 if (pages && s)
adb1fe9a
JP
7686 pr_info("Freeing %s memory: %ldK\n",
7687 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7688
7689 return pages;
7690}
7691
cfa11e08
JL
7692#ifdef CONFIG_HIGHMEM
7693void free_highmem_page(struct page *page)
7694{
7695 __free_reserved_page(page);
ca79b0c2 7696 totalram_pages_inc();
9705bea5 7697 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7698 totalhigh_pages_inc();
cfa11e08
JL
7699}
7700#endif
7701
7ee3d4e8
JL
7702
7703void __init mem_init_print_info(const char *str)
7704{
7705 unsigned long physpages, codesize, datasize, rosize, bss_size;
7706 unsigned long init_code_size, init_data_size;
7707
7708 physpages = get_num_physpages();
7709 codesize = _etext - _stext;
7710 datasize = _edata - _sdata;
7711 rosize = __end_rodata - __start_rodata;
7712 bss_size = __bss_stop - __bss_start;
7713 init_data_size = __init_end - __init_begin;
7714 init_code_size = _einittext - _sinittext;
7715
7716 /*
7717 * Detect special cases and adjust section sizes accordingly:
7718 * 1) .init.* may be embedded into .data sections
7719 * 2) .init.text.* may be out of [__init_begin, __init_end],
7720 * please refer to arch/tile/kernel/vmlinux.lds.S.
7721 * 3) .rodata.* may be embedded into .text or .data sections.
7722 */
7723#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7724 do { \
7725 if (start <= pos && pos < end && size > adj) \
7726 size -= adj; \
7727 } while (0)
7ee3d4e8
JL
7728
7729 adj_init_size(__init_begin, __init_end, init_data_size,
7730 _sinittext, init_code_size);
7731 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7732 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7733 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7734 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7735
7736#undef adj_init_size
7737
756a025f 7738 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7739#ifdef CONFIG_HIGHMEM
756a025f 7740 ", %luK highmem"
7ee3d4e8 7741#endif
756a025f
JP
7742 "%s%s)\n",
7743 nr_free_pages() << (PAGE_SHIFT - 10),
7744 physpages << (PAGE_SHIFT - 10),
7745 codesize >> 10, datasize >> 10, rosize >> 10,
7746 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7747 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7748 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7749#ifdef CONFIG_HIGHMEM
ca79b0c2 7750 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7751#endif
756a025f 7752 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7753}
7754
0e0b864e 7755/**
88ca3b94
RD
7756 * set_dma_reserve - set the specified number of pages reserved in the first zone
7757 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7758 *
013110a7 7759 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7760 * In the DMA zone, a significant percentage may be consumed by kernel image
7761 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7762 * function may optionally be used to account for unfreeable pages in the
7763 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7764 * smaller per-cpu batchsize.
0e0b864e
MG
7765 */
7766void __init set_dma_reserve(unsigned long new_dma_reserve)
7767{
7768 dma_reserve = new_dma_reserve;
7769}
7770
005fd4bb 7771static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7772{
1da177e4 7773
005fd4bb
SAS
7774 lru_add_drain_cpu(cpu);
7775 drain_pages(cpu);
9f8f2172 7776
005fd4bb
SAS
7777 /*
7778 * Spill the event counters of the dead processor
7779 * into the current processors event counters.
7780 * This artificially elevates the count of the current
7781 * processor.
7782 */
7783 vm_events_fold_cpu(cpu);
9f8f2172 7784
005fd4bb
SAS
7785 /*
7786 * Zero the differential counters of the dead processor
7787 * so that the vm statistics are consistent.
7788 *
7789 * This is only okay since the processor is dead and cannot
7790 * race with what we are doing.
7791 */
7792 cpu_vm_stats_fold(cpu);
7793 return 0;
1da177e4 7794}
1da177e4 7795
e03a5125
NP
7796#ifdef CONFIG_NUMA
7797int hashdist = HASHDIST_DEFAULT;
7798
7799static int __init set_hashdist(char *str)
7800{
7801 if (!str)
7802 return 0;
7803 hashdist = simple_strtoul(str, &str, 0);
7804 return 1;
7805}
7806__setup("hashdist=", set_hashdist);
7807#endif
7808
1da177e4
LT
7809void __init page_alloc_init(void)
7810{
005fd4bb
SAS
7811 int ret;
7812
e03a5125
NP
7813#ifdef CONFIG_NUMA
7814 if (num_node_state(N_MEMORY) == 1)
7815 hashdist = 0;
7816#endif
7817
005fd4bb
SAS
7818 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7819 "mm/page_alloc:dead", NULL,
7820 page_alloc_cpu_dead);
7821 WARN_ON(ret < 0);
1da177e4
LT
7822}
7823
cb45b0e9 7824/*
34b10060 7825 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7826 * or min_free_kbytes changes.
7827 */
7828static void calculate_totalreserve_pages(void)
7829{
7830 struct pglist_data *pgdat;
7831 unsigned long reserve_pages = 0;
2f6726e5 7832 enum zone_type i, j;
cb45b0e9
HA
7833
7834 for_each_online_pgdat(pgdat) {
281e3726
MG
7835
7836 pgdat->totalreserve_pages = 0;
7837
cb45b0e9
HA
7838 for (i = 0; i < MAX_NR_ZONES; i++) {
7839 struct zone *zone = pgdat->node_zones + i;
3484b2de 7840 long max = 0;
9705bea5 7841 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7842
7843 /* Find valid and maximum lowmem_reserve in the zone */
7844 for (j = i; j < MAX_NR_ZONES; j++) {
7845 if (zone->lowmem_reserve[j] > max)
7846 max = zone->lowmem_reserve[j];
7847 }
7848
41858966
MG
7849 /* we treat the high watermark as reserved pages. */
7850 max += high_wmark_pages(zone);
cb45b0e9 7851
3d6357de
AK
7852 if (max > managed_pages)
7853 max = managed_pages;
a8d01437 7854
281e3726 7855 pgdat->totalreserve_pages += max;
a8d01437 7856
cb45b0e9
HA
7857 reserve_pages += max;
7858 }
7859 }
7860 totalreserve_pages = reserve_pages;
7861}
7862
1da177e4
LT
7863/*
7864 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7865 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7866 * has a correct pages reserved value, so an adequate number of
7867 * pages are left in the zone after a successful __alloc_pages().
7868 */
7869static void setup_per_zone_lowmem_reserve(void)
7870{
7871 struct pglist_data *pgdat;
470c61d7 7872 enum zone_type i, j;
1da177e4 7873
ec936fc5 7874 for_each_online_pgdat(pgdat) {
470c61d7
LS
7875 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7876 struct zone *zone = &pgdat->node_zones[i];
7877 int ratio = sysctl_lowmem_reserve_ratio[i];
7878 bool clear = !ratio || !zone_managed_pages(zone);
7879 unsigned long managed_pages = 0;
7880
7881 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7882 if (clear) {
7883 zone->lowmem_reserve[j] = 0;
d3cda233 7884 } else {
470c61d7
LS
7885 struct zone *upper_zone = &pgdat->node_zones[j];
7886
7887 managed_pages += zone_managed_pages(upper_zone);
7888 zone->lowmem_reserve[j] = managed_pages / ratio;
d3cda233 7889 }
1da177e4
LT
7890 }
7891 }
7892 }
cb45b0e9
HA
7893
7894 /* update totalreserve_pages */
7895 calculate_totalreserve_pages();
1da177e4
LT
7896}
7897
cfd3da1e 7898static void __setup_per_zone_wmarks(void)
1da177e4
LT
7899{
7900 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7901 unsigned long lowmem_pages = 0;
7902 struct zone *zone;
7903 unsigned long flags;
7904
7905 /* Calculate total number of !ZONE_HIGHMEM pages */
7906 for_each_zone(zone) {
7907 if (!is_highmem(zone))
9705bea5 7908 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7909 }
7910
7911 for_each_zone(zone) {
ac924c60
AM
7912 u64 tmp;
7913
1125b4e3 7914 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7915 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7916 do_div(tmp, lowmem_pages);
1da177e4
LT
7917 if (is_highmem(zone)) {
7918 /*
669ed175
NP
7919 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7920 * need highmem pages, so cap pages_min to a small
7921 * value here.
7922 *
41858966 7923 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7924 * deltas control async page reclaim, and so should
669ed175 7925 * not be capped for highmem.
1da177e4 7926 */
90ae8d67 7927 unsigned long min_pages;
1da177e4 7928
9705bea5 7929 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7930 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7931 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7932 } else {
669ed175
NP
7933 /*
7934 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7935 * proportionate to the zone's size.
7936 */
a9214443 7937 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7938 }
7939
795ae7a0
JW
7940 /*
7941 * Set the kswapd watermarks distance according to the
7942 * scale factor in proportion to available memory, but
7943 * ensure a minimum size on small systems.
7944 */
7945 tmp = max_t(u64, tmp >> 2,
9705bea5 7946 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7947 watermark_scale_factor, 10000));
7948
aa092591 7949 zone->watermark_boost = 0;
a9214443
MG
7950 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7951 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7952
1125b4e3 7953 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7954 }
cb45b0e9
HA
7955
7956 /* update totalreserve_pages */
7957 calculate_totalreserve_pages();
1da177e4
LT
7958}
7959
cfd3da1e
MG
7960/**
7961 * setup_per_zone_wmarks - called when min_free_kbytes changes
7962 * or when memory is hot-{added|removed}
7963 *
7964 * Ensures that the watermark[min,low,high] values for each zone are set
7965 * correctly with respect to min_free_kbytes.
7966 */
7967void setup_per_zone_wmarks(void)
7968{
b93e0f32
MH
7969 static DEFINE_SPINLOCK(lock);
7970
7971 spin_lock(&lock);
cfd3da1e 7972 __setup_per_zone_wmarks();
b93e0f32 7973 spin_unlock(&lock);
cfd3da1e
MG
7974}
7975
1da177e4
LT
7976/*
7977 * Initialise min_free_kbytes.
7978 *
7979 * For small machines we want it small (128k min). For large machines
8beeae86 7980 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7981 * bandwidth does not increase linearly with machine size. We use
7982 *
b8af2941 7983 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7984 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7985 *
7986 * which yields
7987 *
7988 * 16MB: 512k
7989 * 32MB: 724k
7990 * 64MB: 1024k
7991 * 128MB: 1448k
7992 * 256MB: 2048k
7993 * 512MB: 2896k
7994 * 1024MB: 4096k
7995 * 2048MB: 5792k
7996 * 4096MB: 8192k
7997 * 8192MB: 11584k
7998 * 16384MB: 16384k
7999 */
1b79acc9 8000int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
8001{
8002 unsigned long lowmem_kbytes;
5f12733e 8003 int new_min_free_kbytes;
1da177e4
LT
8004
8005 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8006 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8007
8008 if (new_min_free_kbytes > user_min_free_kbytes) {
8009 min_free_kbytes = new_min_free_kbytes;
8010 if (min_free_kbytes < 128)
8011 min_free_kbytes = 128;
ee8eb9a5
JS
8012 if (min_free_kbytes > 262144)
8013 min_free_kbytes = 262144;
5f12733e
MH
8014 } else {
8015 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8016 new_min_free_kbytes, user_min_free_kbytes);
8017 }
bc75d33f 8018 setup_per_zone_wmarks();
a6cccdc3 8019 refresh_zone_stat_thresholds();
1da177e4 8020 setup_per_zone_lowmem_reserve();
6423aa81
JK
8021
8022#ifdef CONFIG_NUMA
8023 setup_min_unmapped_ratio();
8024 setup_min_slab_ratio();
8025#endif
8026
4aab2be0
VB
8027 khugepaged_min_free_kbytes_update();
8028
1da177e4
LT
8029 return 0;
8030}
e08d3fdf 8031postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8032
8033/*
b8af2941 8034 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8035 * that we can call two helper functions whenever min_free_kbytes
8036 * changes.
8037 */
cccad5b9 8038int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8039 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8040{
da8c757b
HP
8041 int rc;
8042
8043 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8044 if (rc)
8045 return rc;
8046
5f12733e
MH
8047 if (write) {
8048 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8049 setup_per_zone_wmarks();
5f12733e 8050 }
1da177e4
LT
8051 return 0;
8052}
8053
795ae7a0 8054int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8055 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8056{
8057 int rc;
8058
8059 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8060 if (rc)
8061 return rc;
8062
8063 if (write)
8064 setup_per_zone_wmarks();
8065
8066 return 0;
8067}
8068
9614634f 8069#ifdef CONFIG_NUMA
6423aa81 8070static void setup_min_unmapped_ratio(void)
9614634f 8071{
6423aa81 8072 pg_data_t *pgdat;
9614634f 8073 struct zone *zone;
9614634f 8074
a5f5f91d 8075 for_each_online_pgdat(pgdat)
81cbcbc2 8076 pgdat->min_unmapped_pages = 0;
a5f5f91d 8077
9614634f 8078 for_each_zone(zone)
9705bea5
AK
8079 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8080 sysctl_min_unmapped_ratio) / 100;
9614634f 8081}
0ff38490 8082
6423aa81
JK
8083
8084int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8085 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8086{
0ff38490
CL
8087 int rc;
8088
8d65af78 8089 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8090 if (rc)
8091 return rc;
8092
6423aa81
JK
8093 setup_min_unmapped_ratio();
8094
8095 return 0;
8096}
8097
8098static void setup_min_slab_ratio(void)
8099{
8100 pg_data_t *pgdat;
8101 struct zone *zone;
8102
a5f5f91d
MG
8103 for_each_online_pgdat(pgdat)
8104 pgdat->min_slab_pages = 0;
8105
0ff38490 8106 for_each_zone(zone)
9705bea5
AK
8107 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8108 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8109}
8110
8111int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8112 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8113{
8114 int rc;
8115
8116 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8117 if (rc)
8118 return rc;
8119
8120 setup_min_slab_ratio();
8121
0ff38490
CL
8122 return 0;
8123}
9614634f
CL
8124#endif
8125
1da177e4
LT
8126/*
8127 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8128 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8129 * whenever sysctl_lowmem_reserve_ratio changes.
8130 *
8131 * The reserve ratio obviously has absolutely no relation with the
41858966 8132 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8133 * if in function of the boot time zone sizes.
8134 */
cccad5b9 8135int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8136 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8137{
86aaf255
BH
8138 int i;
8139
8d65af78 8140 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8141
8142 for (i = 0; i < MAX_NR_ZONES; i++) {
8143 if (sysctl_lowmem_reserve_ratio[i] < 1)
8144 sysctl_lowmem_reserve_ratio[i] = 0;
8145 }
8146
1da177e4
LT
8147 setup_per_zone_lowmem_reserve();
8148 return 0;
8149}
8150
8ad4b1fb
RS
8151/*
8152 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8153 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8154 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8155 */
cccad5b9 8156int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8157 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8158{
8159 struct zone *zone;
7cd2b0a3 8160 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8161 int ret;
8162
7cd2b0a3
DR
8163 mutex_lock(&pcp_batch_high_lock);
8164 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8165
8d65af78 8166 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8167 if (!write || ret < 0)
8168 goto out;
8169
8170 /* Sanity checking to avoid pcp imbalance */
8171 if (percpu_pagelist_fraction &&
8172 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8173 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8174 ret = -EINVAL;
8175 goto out;
8176 }
8177
8178 /* No change? */
8179 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8180 goto out;
c8e251fa 8181
cb1ef534 8182 for_each_populated_zone(zone)
0a8b4f1d 8183 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8184out:
c8e251fa 8185 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8186 return ret;
8ad4b1fb
RS
8187}
8188
f6f34b43
SD
8189#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8190/*
8191 * Returns the number of pages that arch has reserved but
8192 * is not known to alloc_large_system_hash().
8193 */
8194static unsigned long __init arch_reserved_kernel_pages(void)
8195{
8196 return 0;
8197}
8198#endif
8199
9017217b
PT
8200/*
8201 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8202 * machines. As memory size is increased the scale is also increased but at
8203 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8204 * quadruples the scale is increased by one, which means the size of hash table
8205 * only doubles, instead of quadrupling as well.
8206 * Because 32-bit systems cannot have large physical memory, where this scaling
8207 * makes sense, it is disabled on such platforms.
8208 */
8209#if __BITS_PER_LONG > 32
8210#define ADAPT_SCALE_BASE (64ul << 30)
8211#define ADAPT_SCALE_SHIFT 2
8212#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8213#endif
8214
1da177e4
LT
8215/*
8216 * allocate a large system hash table from bootmem
8217 * - it is assumed that the hash table must contain an exact power-of-2
8218 * quantity of entries
8219 * - limit is the number of hash buckets, not the total allocation size
8220 */
8221void *__init alloc_large_system_hash(const char *tablename,
8222 unsigned long bucketsize,
8223 unsigned long numentries,
8224 int scale,
8225 int flags,
8226 unsigned int *_hash_shift,
8227 unsigned int *_hash_mask,
31fe62b9
TB
8228 unsigned long low_limit,
8229 unsigned long high_limit)
1da177e4 8230{
31fe62b9 8231 unsigned long long max = high_limit;
1da177e4
LT
8232 unsigned long log2qty, size;
8233 void *table = NULL;
3749a8f0 8234 gfp_t gfp_flags;
ec11408a 8235 bool virt;
1da177e4
LT
8236
8237 /* allow the kernel cmdline to have a say */
8238 if (!numentries) {
8239 /* round applicable memory size up to nearest megabyte */
04903664 8240 numentries = nr_kernel_pages;
f6f34b43 8241 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8242
8243 /* It isn't necessary when PAGE_SIZE >= 1MB */
8244 if (PAGE_SHIFT < 20)
8245 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8246
9017217b
PT
8247#if __BITS_PER_LONG > 32
8248 if (!high_limit) {
8249 unsigned long adapt;
8250
8251 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8252 adapt <<= ADAPT_SCALE_SHIFT)
8253 scale++;
8254 }
8255#endif
8256
1da177e4
LT
8257 /* limit to 1 bucket per 2^scale bytes of low memory */
8258 if (scale > PAGE_SHIFT)
8259 numentries >>= (scale - PAGE_SHIFT);
8260 else
8261 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8262
8263 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8264 if (unlikely(flags & HASH_SMALL)) {
8265 /* Makes no sense without HASH_EARLY */
8266 WARN_ON(!(flags & HASH_EARLY));
8267 if (!(numentries >> *_hash_shift)) {
8268 numentries = 1UL << *_hash_shift;
8269 BUG_ON(!numentries);
8270 }
8271 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8272 numentries = PAGE_SIZE / bucketsize;
1da177e4 8273 }
6e692ed3 8274 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8275
8276 /* limit allocation size to 1/16 total memory by default */
8277 if (max == 0) {
8278 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8279 do_div(max, bucketsize);
8280 }
074b8517 8281 max = min(max, 0x80000000ULL);
1da177e4 8282
31fe62b9
TB
8283 if (numentries < low_limit)
8284 numentries = low_limit;
1da177e4
LT
8285 if (numentries > max)
8286 numentries = max;
8287
f0d1b0b3 8288 log2qty = ilog2(numentries);
1da177e4 8289
3749a8f0 8290 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8291 do {
ec11408a 8292 virt = false;
1da177e4 8293 size = bucketsize << log2qty;
ea1f5f37
PT
8294 if (flags & HASH_EARLY) {
8295 if (flags & HASH_ZERO)
26fb3dae 8296 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8297 else
7e1c4e27
MR
8298 table = memblock_alloc_raw(size,
8299 SMP_CACHE_BYTES);
ec11408a 8300 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8301 table = __vmalloc(size, gfp_flags);
ec11408a 8302 virt = true;
ea1f5f37 8303 } else {
1037b83b
ED
8304 /*
8305 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8306 * some pages at the end of hash table which
8307 * alloc_pages_exact() automatically does
1037b83b 8308 */
ec11408a
NP
8309 table = alloc_pages_exact(size, gfp_flags);
8310 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8311 }
8312 } while (!table && size > PAGE_SIZE && --log2qty);
8313
8314 if (!table)
8315 panic("Failed to allocate %s hash table\n", tablename);
8316
ec11408a
NP
8317 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8318 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8319 virt ? "vmalloc" : "linear");
1da177e4
LT
8320
8321 if (_hash_shift)
8322 *_hash_shift = log2qty;
8323 if (_hash_mask)
8324 *_hash_mask = (1 << log2qty) - 1;
8325
8326 return table;
8327}
a117e66e 8328
a5d76b54 8329/*
80934513 8330 * This function checks whether pageblock includes unmovable pages or not.
80934513 8331 *
b8af2941 8332 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8333 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8334 * check without lock_page also may miss some movable non-lru pages at
8335 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8336 *
8337 * Returns a page without holding a reference. If the caller wants to
047b9967 8338 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8339 * cannot get removed (e.g., via memory unplug) concurrently.
8340 *
a5d76b54 8341 */
4a55c047
QC
8342struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8343 int migratetype, int flags)
49ac8255 8344{
1a9f2191
QC
8345 unsigned long iter = 0;
8346 unsigned long pfn = page_to_pfn(page);
6a654e36 8347 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8348
1a9f2191
QC
8349 if (is_migrate_cma_page(page)) {
8350 /*
8351 * CMA allocations (alloc_contig_range) really need to mark
8352 * isolate CMA pageblocks even when they are not movable in fact
8353 * so consider them movable here.
8354 */
8355 if (is_migrate_cma(migratetype))
4a55c047 8356 return NULL;
1a9f2191 8357
3d680bdf 8358 return page;
1a9f2191 8359 }
4da2ce25 8360
6a654e36 8361 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8362 if (!pfn_valid_within(pfn + iter))
49ac8255 8363 continue;
29723fcc 8364
fe4c86c9 8365 page = pfn_to_page(pfn + iter);
c8721bbb 8366
c9c510dc
DH
8367 /*
8368 * Both, bootmem allocations and memory holes are marked
8369 * PG_reserved and are unmovable. We can even have unmovable
8370 * allocations inside ZONE_MOVABLE, for example when
8371 * specifying "movablecore".
8372 */
d7ab3672 8373 if (PageReserved(page))
3d680bdf 8374 return page;
d7ab3672 8375
9d789999
MH
8376 /*
8377 * If the zone is movable and we have ruled out all reserved
8378 * pages then it should be reasonably safe to assume the rest
8379 * is movable.
8380 */
8381 if (zone_idx(zone) == ZONE_MOVABLE)
8382 continue;
8383
c8721bbb
NH
8384 /*
8385 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8386 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8387 * We need not scan over tail pages because we don't
c8721bbb
NH
8388 * handle each tail page individually in migration.
8389 */
1da2f328 8390 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8391 struct page *head = compound_head(page);
8392 unsigned int skip_pages;
464c7ffb 8393
1da2f328
RR
8394 if (PageHuge(page)) {
8395 if (!hugepage_migration_supported(page_hstate(head)))
8396 return page;
8397 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8398 return page;
1da2f328 8399 }
464c7ffb 8400
d8c6546b 8401 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8402 iter += skip_pages - 1;
c8721bbb
NH
8403 continue;
8404 }
8405
97d255c8
MK
8406 /*
8407 * We can't use page_count without pin a page
8408 * because another CPU can free compound page.
8409 * This check already skips compound tails of THP
0139aa7b 8410 * because their page->_refcount is zero at all time.
97d255c8 8411 */
fe896d18 8412 if (!page_ref_count(page)) {
49ac8255 8413 if (PageBuddy(page))
ab130f91 8414 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8415 continue;
8416 }
97d255c8 8417
b023f468
WC
8418 /*
8419 * The HWPoisoned page may be not in buddy system, and
8420 * page_count() is not 0.
8421 */
756d25be 8422 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8423 continue;
8424
aa218795
DH
8425 /*
8426 * We treat all PageOffline() pages as movable when offlining
8427 * to give drivers a chance to decrement their reference count
8428 * in MEM_GOING_OFFLINE in order to indicate that these pages
8429 * can be offlined as there are no direct references anymore.
8430 * For actually unmovable PageOffline() where the driver does
8431 * not support this, we will fail later when trying to actually
8432 * move these pages that still have a reference count > 0.
8433 * (false negatives in this function only)
8434 */
8435 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8436 continue;
8437
fe4c86c9 8438 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8439 continue;
8440
49ac8255 8441 /*
6b4f7799
JW
8442 * If there are RECLAIMABLE pages, we need to check
8443 * it. But now, memory offline itself doesn't call
8444 * shrink_node_slabs() and it still to be fixed.
49ac8255 8445 */
3d680bdf 8446 return page;
49ac8255 8447 }
4a55c047 8448 return NULL;
49ac8255
KH
8449}
8450
8df995f6 8451#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8452static unsigned long pfn_max_align_down(unsigned long pfn)
8453{
8454 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8455 pageblock_nr_pages) - 1);
8456}
8457
8458static unsigned long pfn_max_align_up(unsigned long pfn)
8459{
8460 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8461 pageblock_nr_pages));
8462}
8463
041d3a8c 8464/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8465static int __alloc_contig_migrate_range(struct compact_control *cc,
8466 unsigned long start, unsigned long end)
041d3a8c
MN
8467{
8468 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8469 unsigned int nr_reclaimed;
041d3a8c
MN
8470 unsigned long pfn = start;
8471 unsigned int tries = 0;
8472 int ret = 0;
8b94e0b8
JK
8473 struct migration_target_control mtc = {
8474 .nid = zone_to_nid(cc->zone),
8475 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8476 };
041d3a8c 8477
be49a6e1 8478 migrate_prep();
041d3a8c 8479
bb13ffeb 8480 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8481 if (fatal_signal_pending(current)) {
8482 ret = -EINTR;
8483 break;
8484 }
8485
bb13ffeb
MG
8486 if (list_empty(&cc->migratepages)) {
8487 cc->nr_migratepages = 0;
edc2ca61 8488 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8489 if (!pfn) {
8490 ret = -EINTR;
8491 break;
8492 }
8493 tries = 0;
8494 } else if (++tries == 5) {
8495 ret = ret < 0 ? ret : -EBUSY;
8496 break;
8497 }
8498
beb51eaa
MK
8499 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8500 &cc->migratepages);
8501 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8502
8b94e0b8
JK
8503 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8504 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8505 }
2a6f5124
SP
8506 if (ret < 0) {
8507 putback_movable_pages(&cc->migratepages);
8508 return ret;
8509 }
8510 return 0;
041d3a8c
MN
8511}
8512
8513/**
8514 * alloc_contig_range() -- tries to allocate given range of pages
8515 * @start: start PFN to allocate
8516 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8517 * @migratetype: migratetype of the underlaying pageblocks (either
8518 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8519 * in range must have the same migratetype and it must
8520 * be either of the two.
ca96b625 8521 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8522 *
8523 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8524 * aligned. The PFN range must belong to a single zone.
041d3a8c 8525 *
2c7452a0
MK
8526 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8527 * pageblocks in the range. Once isolated, the pageblocks should not
8528 * be modified by others.
041d3a8c 8529 *
a862f68a 8530 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8531 * pages which PFN is in [start, end) are allocated for the caller and
8532 * need to be freed with free_contig_range().
8533 */
0815f3d8 8534int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8535 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8536{
041d3a8c 8537 unsigned long outer_start, outer_end;
d00181b9
KS
8538 unsigned int order;
8539 int ret = 0;
041d3a8c 8540
bb13ffeb
MG
8541 struct compact_control cc = {
8542 .nr_migratepages = 0,
8543 .order = -1,
8544 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8545 .mode = MIGRATE_SYNC,
bb13ffeb 8546 .ignore_skip_hint = true,
2583d671 8547 .no_set_skip_hint = true,
7dea19f9 8548 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8549 .alloc_contig = true,
bb13ffeb
MG
8550 };
8551 INIT_LIST_HEAD(&cc.migratepages);
8552
041d3a8c
MN
8553 /*
8554 * What we do here is we mark all pageblocks in range as
8555 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8556 * have different sizes, and due to the way page allocator
8557 * work, we align the range to biggest of the two pages so
8558 * that page allocator won't try to merge buddies from
8559 * different pageblocks and change MIGRATE_ISOLATE to some
8560 * other migration type.
8561 *
8562 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8563 * migrate the pages from an unaligned range (ie. pages that
8564 * we are interested in). This will put all the pages in
8565 * range back to page allocator as MIGRATE_ISOLATE.
8566 *
8567 * When this is done, we take the pages in range from page
8568 * allocator removing them from the buddy system. This way
8569 * page allocator will never consider using them.
8570 *
8571 * This lets us mark the pageblocks back as
8572 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8573 * aligned range but not in the unaligned, original range are
8574 * put back to page allocator so that buddy can use them.
8575 */
8576
8577 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8578 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8579 if (ret)
86a595f9 8580 return ret;
041d3a8c 8581
7612921f
VB
8582 drain_all_pages(cc.zone);
8583
8ef5849f
JK
8584 /*
8585 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8586 * So, just fall through. test_pages_isolated() has a tracepoint
8587 * which will report the busy page.
8588 *
8589 * It is possible that busy pages could become available before
8590 * the call to test_pages_isolated, and the range will actually be
8591 * allocated. So, if we fall through be sure to clear ret so that
8592 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8593 */
bb13ffeb 8594 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8595 if (ret && ret != -EBUSY)
041d3a8c 8596 goto done;
63cd4489 8597 ret =0;
041d3a8c
MN
8598
8599 /*
8600 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8601 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8602 * more, all pages in [start, end) are free in page allocator.
8603 * What we are going to do is to allocate all pages from
8604 * [start, end) (that is remove them from page allocator).
8605 *
8606 * The only problem is that pages at the beginning and at the
8607 * end of interesting range may be not aligned with pages that
8608 * page allocator holds, ie. they can be part of higher order
8609 * pages. Because of this, we reserve the bigger range and
8610 * once this is done free the pages we are not interested in.
8611 *
8612 * We don't have to hold zone->lock here because the pages are
8613 * isolated thus they won't get removed from buddy.
8614 */
8615
8616 lru_add_drain_all();
041d3a8c
MN
8617
8618 order = 0;
8619 outer_start = start;
8620 while (!PageBuddy(pfn_to_page(outer_start))) {
8621 if (++order >= MAX_ORDER) {
8ef5849f
JK
8622 outer_start = start;
8623 break;
041d3a8c
MN
8624 }
8625 outer_start &= ~0UL << order;
8626 }
8627
8ef5849f 8628 if (outer_start != start) {
ab130f91 8629 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8630
8631 /*
8632 * outer_start page could be small order buddy page and
8633 * it doesn't include start page. Adjust outer_start
8634 * in this case to report failed page properly
8635 * on tracepoint in test_pages_isolated()
8636 */
8637 if (outer_start + (1UL << order) <= start)
8638 outer_start = start;
8639 }
8640
041d3a8c 8641 /* Make sure the range is really isolated. */
756d25be 8642 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8643 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8644 __func__, outer_start, end);
041d3a8c
MN
8645 ret = -EBUSY;
8646 goto done;
8647 }
8648
49f223a9 8649 /* Grab isolated pages from freelists. */
bb13ffeb 8650 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8651 if (!outer_end) {
8652 ret = -EBUSY;
8653 goto done;
8654 }
8655
8656 /* Free head and tail (if any) */
8657 if (start != outer_start)
8658 free_contig_range(outer_start, start - outer_start);
8659 if (end != outer_end)
8660 free_contig_range(end, outer_end - end);
8661
8662done:
8663 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8664 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8665 return ret;
8666}
255f5985 8667EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8668
8669static int __alloc_contig_pages(unsigned long start_pfn,
8670 unsigned long nr_pages, gfp_t gfp_mask)
8671{
8672 unsigned long end_pfn = start_pfn + nr_pages;
8673
8674 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8675 gfp_mask);
8676}
8677
8678static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8679 unsigned long nr_pages)
8680{
8681 unsigned long i, end_pfn = start_pfn + nr_pages;
8682 struct page *page;
8683
8684 for (i = start_pfn; i < end_pfn; i++) {
8685 page = pfn_to_online_page(i);
8686 if (!page)
8687 return false;
8688
8689 if (page_zone(page) != z)
8690 return false;
8691
8692 if (PageReserved(page))
8693 return false;
8694
8695 if (page_count(page) > 0)
8696 return false;
8697
8698 if (PageHuge(page))
8699 return false;
8700 }
8701 return true;
8702}
8703
8704static bool zone_spans_last_pfn(const struct zone *zone,
8705 unsigned long start_pfn, unsigned long nr_pages)
8706{
8707 unsigned long last_pfn = start_pfn + nr_pages - 1;
8708
8709 return zone_spans_pfn(zone, last_pfn);
8710}
8711
8712/**
8713 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8714 * @nr_pages: Number of contiguous pages to allocate
8715 * @gfp_mask: GFP mask to limit search and used during compaction
8716 * @nid: Target node
8717 * @nodemask: Mask for other possible nodes
8718 *
8719 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8720 * on an applicable zonelist to find a contiguous pfn range which can then be
8721 * tried for allocation with alloc_contig_range(). This routine is intended
8722 * for allocation requests which can not be fulfilled with the buddy allocator.
8723 *
8724 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8725 * power of two then the alignment is guaranteed to be to the given nr_pages
8726 * (e.g. 1GB request would be aligned to 1GB).
8727 *
8728 * Allocated pages can be freed with free_contig_range() or by manually calling
8729 * __free_page() on each allocated page.
8730 *
8731 * Return: pointer to contiguous pages on success, or NULL if not successful.
8732 */
8733struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8734 int nid, nodemask_t *nodemask)
8735{
8736 unsigned long ret, pfn, flags;
8737 struct zonelist *zonelist;
8738 struct zone *zone;
8739 struct zoneref *z;
8740
8741 zonelist = node_zonelist(nid, gfp_mask);
8742 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8743 gfp_zone(gfp_mask), nodemask) {
8744 spin_lock_irqsave(&zone->lock, flags);
8745
8746 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8747 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8748 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8749 /*
8750 * We release the zone lock here because
8751 * alloc_contig_range() will also lock the zone
8752 * at some point. If there's an allocation
8753 * spinning on this lock, it may win the race
8754 * and cause alloc_contig_range() to fail...
8755 */
8756 spin_unlock_irqrestore(&zone->lock, flags);
8757 ret = __alloc_contig_pages(pfn, nr_pages,
8758 gfp_mask);
8759 if (!ret)
8760 return pfn_to_page(pfn);
8761 spin_lock_irqsave(&zone->lock, flags);
8762 }
8763 pfn += nr_pages;
8764 }
8765 spin_unlock_irqrestore(&zone->lock, flags);
8766 }
8767 return NULL;
8768}
4eb0716e 8769#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8770
4eb0716e 8771void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8772{
bcc2b02f
MS
8773 unsigned int count = 0;
8774
8775 for (; nr_pages--; pfn++) {
8776 struct page *page = pfn_to_page(pfn);
8777
8778 count += page_count(page) != 1;
8779 __free_page(page);
8780 }
8781 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8782}
255f5985 8783EXPORT_SYMBOL(free_contig_range);
041d3a8c 8784
0a647f38
CS
8785/*
8786 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8787 * page high values need to be recalulated.
8788 */
4ed7e022
JL
8789void __meminit zone_pcp_update(struct zone *zone)
8790{
c8e251fa 8791 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8792 zone_set_pageset_high_and_batch(zone);
c8e251fa 8793 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8794}
4ed7e022 8795
ec6e8c7e
VB
8796/*
8797 * Effectively disable pcplists for the zone by setting the high limit to 0
8798 * and draining all cpus. A concurrent page freeing on another CPU that's about
8799 * to put the page on pcplist will either finish before the drain and the page
8800 * will be drained, or observe the new high limit and skip the pcplist.
8801 *
8802 * Must be paired with a call to zone_pcp_enable().
8803 */
8804void zone_pcp_disable(struct zone *zone)
8805{
8806 mutex_lock(&pcp_batch_high_lock);
8807 __zone_set_pageset_high_and_batch(zone, 0, 1);
8808 __drain_all_pages(zone, true);
8809}
8810
8811void zone_pcp_enable(struct zone *zone)
8812{
8813 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8814 mutex_unlock(&pcp_batch_high_lock);
8815}
8816
340175b7
JL
8817void zone_pcp_reset(struct zone *zone)
8818{
8819 unsigned long flags;
5a883813
MK
8820 int cpu;
8821 struct per_cpu_pageset *pset;
340175b7
JL
8822
8823 /* avoid races with drain_pages() */
8824 local_irq_save(flags);
8825 if (zone->pageset != &boot_pageset) {
5a883813
MK
8826 for_each_online_cpu(cpu) {
8827 pset = per_cpu_ptr(zone->pageset, cpu);
8828 drain_zonestat(zone, pset);
8829 }
340175b7
JL
8830 free_percpu(zone->pageset);
8831 zone->pageset = &boot_pageset;
8832 }
8833 local_irq_restore(flags);
8834}
8835
6dcd73d7 8836#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8837/*
257bea71
DH
8838 * All pages in the range must be in a single zone, must not contain holes,
8839 * must span full sections, and must be isolated before calling this function.
0c0e6195 8840 */
257bea71 8841void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8842{
257bea71 8843 unsigned long pfn = start_pfn;
0c0e6195
KH
8844 struct page *page;
8845 struct zone *zone;
0ee5f4f3 8846 unsigned int order;
0c0e6195 8847 unsigned long flags;
5557c766 8848
2d070eab 8849 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8850 zone = page_zone(pfn_to_page(pfn));
8851 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8852 while (pfn < end_pfn) {
0c0e6195 8853 page = pfn_to_page(pfn);
b023f468
WC
8854 /*
8855 * The HWPoisoned page may be not in buddy system, and
8856 * page_count() is not 0.
8857 */
8858 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8859 pfn++;
b023f468
WC
8860 continue;
8861 }
aa218795
DH
8862 /*
8863 * At this point all remaining PageOffline() pages have a
8864 * reference count of 0 and can simply be skipped.
8865 */
8866 if (PageOffline(page)) {
8867 BUG_ON(page_count(page));
8868 BUG_ON(PageBuddy(page));
8869 pfn++;
aa218795
DH
8870 continue;
8871 }
b023f468 8872
0c0e6195
KH
8873 BUG_ON(page_count(page));
8874 BUG_ON(!PageBuddy(page));
ab130f91 8875 order = buddy_order(page);
6ab01363 8876 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8877 pfn += (1 << order);
8878 }
8879 spin_unlock_irqrestore(&zone->lock, flags);
8880}
8881#endif
8d22ba1b 8882
8d22ba1b
WF
8883bool is_free_buddy_page(struct page *page)
8884{
8885 struct zone *zone = page_zone(page);
8886 unsigned long pfn = page_to_pfn(page);
8887 unsigned long flags;
7aeb09f9 8888 unsigned int order;
8d22ba1b
WF
8889
8890 spin_lock_irqsave(&zone->lock, flags);
8891 for (order = 0; order < MAX_ORDER; order++) {
8892 struct page *page_head = page - (pfn & ((1 << order) - 1));
8893
ab130f91 8894 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
8895 break;
8896 }
8897 spin_unlock_irqrestore(&zone->lock, flags);
8898
8899 return order < MAX_ORDER;
8900}
d4ae9916
NH
8901
8902#ifdef CONFIG_MEMORY_FAILURE
8903/*
06be6ff3
OS
8904 * Break down a higher-order page in sub-pages, and keep our target out of
8905 * buddy allocator.
d4ae9916 8906 */
06be6ff3
OS
8907static void break_down_buddy_pages(struct zone *zone, struct page *page,
8908 struct page *target, int low, int high,
8909 int migratetype)
8910{
8911 unsigned long size = 1 << high;
8912 struct page *current_buddy, *next_page;
8913
8914 while (high > low) {
8915 high--;
8916 size >>= 1;
8917
8918 if (target >= &page[size]) {
8919 next_page = page + size;
8920 current_buddy = page;
8921 } else {
8922 next_page = page;
8923 current_buddy = page + size;
8924 }
8925
8926 if (set_page_guard(zone, current_buddy, high, migratetype))
8927 continue;
8928
8929 if (current_buddy != target) {
8930 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 8931 set_buddy_order(current_buddy, high);
06be6ff3
OS
8932 page = next_page;
8933 }
8934 }
8935}
8936
8937/*
8938 * Take a page that will be marked as poisoned off the buddy allocator.
8939 */
8940bool take_page_off_buddy(struct page *page)
d4ae9916
NH
8941{
8942 struct zone *zone = page_zone(page);
8943 unsigned long pfn = page_to_pfn(page);
8944 unsigned long flags;
8945 unsigned int order;
06be6ff3 8946 bool ret = false;
d4ae9916
NH
8947
8948 spin_lock_irqsave(&zone->lock, flags);
8949 for (order = 0; order < MAX_ORDER; order++) {
8950 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 8951 int page_order = buddy_order(page_head);
d4ae9916 8952
ab130f91 8953 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
8954 unsigned long pfn_head = page_to_pfn(page_head);
8955 int migratetype = get_pfnblock_migratetype(page_head,
8956 pfn_head);
8957
ab130f91 8958 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 8959 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 8960 page_order, migratetype);
06be6ff3 8961 ret = true;
d4ae9916
NH
8962 break;
8963 }
06be6ff3
OS
8964 if (page_count(page_head) > 0)
8965 break;
d4ae9916
NH
8966 }
8967 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 8968 return ret;
d4ae9916
NH
8969}
8970#endif