mm/page_alloc.c: extract the common part in pfn_to_bitidx()
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
e4443149 71#include <linux/padata.h>
1da177e4 72
7ee3d4e8 73#include <asm/sections.h>
1da177e4 74#include <asm/tlbflush.h>
ac924c60 75#include <asm/div64.h>
1da177e4 76#include "internal.h"
e900a918 77#include "shuffle.h"
36e66c55 78#include "page_reporting.h"
1da177e4 79
c8e251fa
CS
80/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 82#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 83
72812019
LS
84#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85DEFINE_PER_CPU(int, numa_node);
86EXPORT_PER_CPU_SYMBOL(numa_node);
87#endif
88
4518085e
KW
89DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90
7aac7898
LS
91#ifdef CONFIG_HAVE_MEMORYLESS_NODES
92/*
93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96 * defined in <linux/topology.h>.
97 */
98DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
99EXPORT_PER_CPU_SYMBOL(_numa_mem_);
100#endif
101
bd233f53 102/* work_structs for global per-cpu drains */
d9367bd0
WY
103struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106};
8b885f53
JY
107static DEFINE_MUTEX(pcpu_drain_mutex);
108static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 109
38addce8 110#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 111volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
112EXPORT_SYMBOL(latent_entropy);
113#endif
114
1da177e4 115/*
13808910 116 * Array of node states.
1da177e4 117 */
13808910
CL
118nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121#ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123#ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 125#endif
20b2f52b 126 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
127 [N_CPU] = { { [0] = 1UL } },
128#endif /* NUMA */
129};
130EXPORT_SYMBOL(node_states);
131
ca79b0c2
AK
132atomic_long_t _totalram_pages __read_mostly;
133EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 134unsigned long totalreserve_pages __read_mostly;
e48322ab 135unsigned long totalcma_pages __read_mostly;
ab8fabd4 136
1b76b02f 137int percpu_pagelist_fraction;
dcce284a 138gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
139#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141#else
142DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143#endif
144EXPORT_SYMBOL(init_on_alloc);
145
146#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147DEFINE_STATIC_KEY_TRUE(init_on_free);
148#else
149DEFINE_STATIC_KEY_FALSE(init_on_free);
150#endif
151EXPORT_SYMBOL(init_on_free);
152
153static int __init early_init_on_alloc(char *buf)
154{
155 int ret;
156 bool bool_result;
157
158 if (!buf)
159 return -EINVAL;
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 if (bool_result)
164 static_branch_enable(&init_on_alloc);
165 else
166 static_branch_disable(&init_on_alloc);
167 return ret;
168}
169early_param("init_on_alloc", early_init_on_alloc);
170
171static int __init early_init_on_free(char *buf)
172{
173 int ret;
174 bool bool_result;
175
176 if (!buf)
177 return -EINVAL;
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 if (bool_result)
182 static_branch_enable(&init_on_free);
183 else
184 static_branch_disable(&init_on_free);
185 return ret;
186}
187early_param("init_on_free", early_init_on_free);
1da177e4 188
bb14c2c7
VB
189/*
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
196 */
197static inline int get_pcppage_migratetype(struct page *page)
198{
199 return page->index;
200}
201
202static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203{
204 page->index = migratetype;
205}
206
452aa699
RW
207#ifdef CONFIG_PM_SLEEP
208/*
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
452aa699 216 */
c9e664f1
RW
217
218static gfp_t saved_gfp_mask;
219
220void pm_restore_gfp_mask(void)
452aa699 221{
55f2503c 222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
225 saved_gfp_mask = 0;
226 }
452aa699
RW
227}
228
c9e664f1 229void pm_restrict_gfp_mask(void)
452aa699 230{
55f2503c 231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
d0164adc 234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 235}
f90ac398
MG
236
237bool pm_suspended_storage(void)
238{
d0164adc 239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
240 return false;
241 return true;
242}
452aa699
RW
243#endif /* CONFIG_PM_SLEEP */
244
d9c23400 245#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 246unsigned int pageblock_order __read_mostly;
d9c23400
MG
247#endif
248
d98c7a09 249static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 250
1da177e4
LT
251/*
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
258 *
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
1da177e4 261 */
d3cda233 262int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 263#ifdef CONFIG_ZONE_DMA
d3cda233 264 [ZONE_DMA] = 256,
4b51d669 265#endif
fb0e7942 266#ifdef CONFIG_ZONE_DMA32
d3cda233 267 [ZONE_DMA32] = 256,
fb0e7942 268#endif
d3cda233 269 [ZONE_NORMAL] = 32,
e53ef38d 270#ifdef CONFIG_HIGHMEM
d3cda233 271 [ZONE_HIGHMEM] = 0,
e53ef38d 272#endif
d3cda233 273 [ZONE_MOVABLE] = 0,
2f1b6248 274};
1da177e4 275
15ad7cdc 276static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 277#ifdef CONFIG_ZONE_DMA
2f1b6248 278 "DMA",
4b51d669 279#endif
fb0e7942 280#ifdef CONFIG_ZONE_DMA32
2f1b6248 281 "DMA32",
fb0e7942 282#endif
2f1b6248 283 "Normal",
e53ef38d 284#ifdef CONFIG_HIGHMEM
2a1e274a 285 "HighMem",
e53ef38d 286#endif
2a1e274a 287 "Movable",
033fbae9
DW
288#ifdef CONFIG_ZONE_DEVICE
289 "Device",
290#endif
2f1b6248
CL
291};
292
c999fbd3 293const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
294 "Unmovable",
295 "Movable",
296 "Reclaimable",
297 "HighAtomic",
298#ifdef CONFIG_CMA
299 "CMA",
300#endif
301#ifdef CONFIG_MEMORY_ISOLATION
302 "Isolate",
303#endif
304};
305
ae70eddd
AK
306compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 [NULL_COMPOUND_DTOR] = NULL,
308 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 309#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 310 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 311#endif
9a982250 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 314#endif
f1e61557
KS
315};
316
1da177e4 317int min_free_kbytes = 1024;
42aa83cb 318int user_min_free_kbytes = -1;
24512228
MG
319#ifdef CONFIG_DISCONTIGMEM
320/*
321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322 * are not on separate NUMA nodes. Functionally this works but with
323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324 * quite small. By default, do not boost watermarks on discontigmem as in
325 * many cases very high-order allocations like THP are likely to be
326 * unsupported and the premature reclaim offsets the advantage of long-term
327 * fragmentation avoidance.
328 */
329int watermark_boost_factor __read_mostly;
330#else
1c30844d 331int watermark_boost_factor __read_mostly = 15000;
24512228 332#endif
795ae7a0 333int watermark_scale_factor = 10;
1da177e4 334
bbe5d993
OS
335static unsigned long nr_kernel_pages __initdata;
336static unsigned long nr_all_pages __initdata;
337static unsigned long dma_reserve __initdata;
1da177e4 338
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
c713216d 351
418508c1 352#if MAX_NUMNODES > 1
b9726c26 353unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 354unsigned int nr_online_nodes __read_mostly = 1;
418508c1 355EXPORT_SYMBOL(nr_node_ids);
62bc62a8 356EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
357#endif
358
9ef9acb0
MG
359int page_group_by_mobility_disabled __read_mostly;
360
3a80a7fa 361#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
362/*
363 * During boot we initialize deferred pages on-demand, as needed, but once
364 * page_alloc_init_late() has finished, the deferred pages are all initialized,
365 * and we can permanently disable that path.
366 */
367static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368
369/*
370 * Calling kasan_free_pages() only after deferred memory initialization
371 * has completed. Poisoning pages during deferred memory init will greatly
372 * lengthen the process and cause problem in large memory systems as the
373 * deferred pages initialization is done with interrupt disabled.
374 *
375 * Assuming that there will be no reference to those newly initialized
376 * pages before they are ever allocated, this should have no effect on
377 * KASAN memory tracking as the poison will be properly inserted at page
378 * allocation time. The only corner case is when pages are allocated by
379 * on-demand allocation and then freed again before the deferred pages
380 * initialization is done, but this is not likely to happen.
381 */
382static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383{
384 if (!static_branch_unlikely(&deferred_pages))
385 kasan_free_pages(page, order);
386}
387
3a80a7fa 388/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 389static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 390{
ef70b6f4
MG
391 int nid = early_pfn_to_nid(pfn);
392
393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
394 return true;
395
396 return false;
397}
398
399/*
d3035be4 400 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
401 * later in the boot cycle when it can be parallelised.
402 */
d3035be4
PT
403static bool __meminit
404defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 405{
d3035be4
PT
406 static unsigned long prev_end_pfn, nr_initialised;
407
408 /*
409 * prev_end_pfn static that contains the end of previous zone
410 * No need to protect because called very early in boot before smp_init.
411 */
412 if (prev_end_pfn != end_pfn) {
413 prev_end_pfn = end_pfn;
414 nr_initialised = 0;
415 }
416
3c2c6488 417 /* Always populate low zones for address-constrained allocations */
d3035be4 418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 419 return false;
23b68cfa
WY
420
421 /*
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
424 */
d3035be4 425 nr_initialised++;
23b68cfa 426 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
429 return true;
3a80a7fa 430 }
d3035be4 431 return false;
3a80a7fa
MG
432}
433#else
3c0c12cc
WL
434#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
435
3a80a7fa
MG
436static inline bool early_page_uninitialised(unsigned long pfn)
437{
438 return false;
439}
440
d3035be4 441static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 442{
d3035be4 443 return false;
3a80a7fa
MG
444}
445#endif
446
0b423ca2
MG
447/* Return a pointer to the bitmap storing bits affecting a block of pages */
448static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 unsigned long pfn)
450{
451#ifdef CONFIG_SPARSEMEM
f1eca35a 452 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
453#else
454 return page_zone(page)->pageblock_flags;
455#endif /* CONFIG_SPARSEMEM */
456}
457
458static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459{
460#ifdef CONFIG_SPARSEMEM
461 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
462#else
463 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 464#endif /* CONFIG_SPARSEMEM */
399b795b 465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
466}
467
468/**
469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470 * @page: The page within the block of interest
471 * @pfn: The target page frame number
472 * @end_bitidx: The last bit of interest to retrieve
473 * @mask: mask of bits that the caller is interested in
474 *
475 * Return: pageblock_bits flags
476 */
477static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
478 unsigned long pfn,
479 unsigned long end_bitidx,
480 unsigned long mask)
481{
482 unsigned long *bitmap;
483 unsigned long bitidx, word_bitidx;
484 unsigned long word;
485
486 bitmap = get_pageblock_bitmap(page, pfn);
487 bitidx = pfn_to_bitidx(page, pfn);
488 word_bitidx = bitidx / BITS_PER_LONG;
489 bitidx &= (BITS_PER_LONG-1);
490
491 word = bitmap[word_bitidx];
492 bitidx += end_bitidx;
493 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
494}
495
496unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
497 unsigned long end_bitidx,
498 unsigned long mask)
499{
500 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
501}
502
503static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
504{
505 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
506}
507
508/**
509 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
510 * @page: The page within the block of interest
511 * @flags: The flags to set
512 * @pfn: The target page frame number
513 * @end_bitidx: The last bit of interest
514 * @mask: mask of bits that the caller is interested in
515 */
516void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
517 unsigned long pfn,
518 unsigned long end_bitidx,
519 unsigned long mask)
520{
521 unsigned long *bitmap;
522 unsigned long bitidx, word_bitidx;
523 unsigned long old_word, word;
524
525 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 526 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
527
528 bitmap = get_pageblock_bitmap(page, pfn);
529 bitidx = pfn_to_bitidx(page, pfn);
530 word_bitidx = bitidx / BITS_PER_LONG;
531 bitidx &= (BITS_PER_LONG-1);
532
533 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534
535 bitidx += end_bitidx;
536 mask <<= (BITS_PER_LONG - bitidx - 1);
537 flags <<= (BITS_PER_LONG - bitidx - 1);
538
539 word = READ_ONCE(bitmap[word_bitidx]);
540 for (;;) {
541 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
542 if (word == old_word)
543 break;
544 word = old_word;
545 }
546}
3a80a7fa 547
ee6f509c 548void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 549{
5d0f3f72
KM
550 if (unlikely(page_group_by_mobility_disabled &&
551 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
552 migratetype = MIGRATE_UNMOVABLE;
553
b2a0ac88
MG
554 set_pageblock_flags_group(page, (unsigned long)migratetype,
555 PB_migrate, PB_migrate_end);
556}
557
13e7444b 558#ifdef CONFIG_DEBUG_VM
c6a57e19 559static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 560{
bdc8cb98
DH
561 int ret = 0;
562 unsigned seq;
563 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 564 unsigned long sp, start_pfn;
c6a57e19 565
bdc8cb98
DH
566 do {
567 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
568 start_pfn = zone->zone_start_pfn;
569 sp = zone->spanned_pages;
108bcc96 570 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
571 ret = 1;
572 } while (zone_span_seqretry(zone, seq));
573
b5e6a5a2 574 if (ret)
613813e8
DH
575 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
576 pfn, zone_to_nid(zone), zone->name,
577 start_pfn, start_pfn + sp);
b5e6a5a2 578
bdc8cb98 579 return ret;
c6a57e19
DH
580}
581
582static int page_is_consistent(struct zone *zone, struct page *page)
583{
14e07298 584 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 585 return 0;
1da177e4 586 if (zone != page_zone(page))
c6a57e19
DH
587 return 0;
588
589 return 1;
590}
591/*
592 * Temporary debugging check for pages not lying within a given zone.
593 */
d73d3c9f 594static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
595{
596 if (page_outside_zone_boundaries(zone, page))
1da177e4 597 return 1;
c6a57e19
DH
598 if (!page_is_consistent(zone, page))
599 return 1;
600
1da177e4
LT
601 return 0;
602}
13e7444b 603#else
d73d3c9f 604static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
605{
606 return 0;
607}
608#endif
609
82a3241a 610static void bad_page(struct page *page, const char *reason)
1da177e4 611{
d936cf9b
HD
612 static unsigned long resume;
613 static unsigned long nr_shown;
614 static unsigned long nr_unshown;
615
616 /*
617 * Allow a burst of 60 reports, then keep quiet for that minute;
618 * or allow a steady drip of one report per second.
619 */
620 if (nr_shown == 60) {
621 if (time_before(jiffies, resume)) {
622 nr_unshown++;
623 goto out;
624 }
625 if (nr_unshown) {
ff8e8116 626 pr_alert(
1e9e6365 627 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
628 nr_unshown);
629 nr_unshown = 0;
630 }
631 nr_shown = 0;
632 }
633 if (nr_shown++ == 0)
634 resume = jiffies + 60 * HZ;
635
ff8e8116 636 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 637 current->comm, page_to_pfn(page));
ff8e8116 638 __dump_page(page, reason);
4e462112 639 dump_page_owner(page);
3dc14741 640
4f31888c 641 print_modules();
1da177e4 642 dump_stack();
d936cf9b 643out:
8cc3b392 644 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 645 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
647}
648
1da177e4
LT
649/*
650 * Higher-order pages are called "compound pages". They are structured thusly:
651 *
1d798ca3 652 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 653 *
1d798ca3
KS
654 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
655 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 656 *
1d798ca3
KS
657 * The first tail page's ->compound_dtor holds the offset in array of compound
658 * page destructors. See compound_page_dtors.
1da177e4 659 *
1d798ca3 660 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 661 * This usage means that zero-order pages may not be compound.
1da177e4 662 */
d98c7a09 663
9a982250 664void free_compound_page(struct page *page)
d98c7a09 665{
7ae88534 666 mem_cgroup_uncharge(page);
d85f3385 667 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
668}
669
d00181b9 670void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
671{
672 int i;
673 int nr_pages = 1 << order;
674
f1e61557 675 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
676 set_compound_order(page, order);
677 __SetPageHead(page);
678 for (i = 1; i < nr_pages; i++) {
679 struct page *p = page + i;
58a84aa9 680 set_page_count(p, 0);
1c290f64 681 p->mapping = TAIL_MAPPING;
1d798ca3 682 set_compound_head(p, page);
18229df5 683 }
53f9263b 684 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
685 if (hpage_pincount_available(page))
686 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
687}
688
c0a32fc5
SG
689#ifdef CONFIG_DEBUG_PAGEALLOC
690unsigned int _debug_guardpage_minorder;
96a2b03f 691
8e57f8ac
VB
692bool _debug_pagealloc_enabled_early __read_mostly
693 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
694EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 695DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 696EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
697
698DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 699
031bc574
JK
700static int __init early_debug_pagealloc(char *buf)
701{
8e57f8ac 702 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
703}
704early_param("debug_pagealloc", early_debug_pagealloc);
705
8e57f8ac 706void init_debug_pagealloc(void)
e30825f1 707{
031bc574
JK
708 if (!debug_pagealloc_enabled())
709 return;
710
8e57f8ac
VB
711 static_branch_enable(&_debug_pagealloc_enabled);
712
f1c1e9f7
JK
713 if (!debug_guardpage_minorder())
714 return;
715
96a2b03f 716 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
717}
718
c0a32fc5
SG
719static int __init debug_guardpage_minorder_setup(char *buf)
720{
721 unsigned long res;
722
723 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 724 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
725 return 0;
726 }
727 _debug_guardpage_minorder = res;
1170532b 728 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
729 return 0;
730}
f1c1e9f7 731early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 732
acbc15a4 733static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 734 unsigned int order, int migratetype)
c0a32fc5 735{
e30825f1 736 if (!debug_guardpage_enabled())
acbc15a4
JK
737 return false;
738
739 if (order >= debug_guardpage_minorder())
740 return false;
e30825f1 741
3972f6bb 742 __SetPageGuard(page);
2847cf95
JK
743 INIT_LIST_HEAD(&page->lru);
744 set_page_private(page, order);
745 /* Guard pages are not available for any usage */
746 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
747
748 return true;
c0a32fc5
SG
749}
750
2847cf95
JK
751static inline void clear_page_guard(struct zone *zone, struct page *page,
752 unsigned int order, int migratetype)
c0a32fc5 753{
e30825f1
JK
754 if (!debug_guardpage_enabled())
755 return;
756
3972f6bb 757 __ClearPageGuard(page);
e30825f1 758
2847cf95
JK
759 set_page_private(page, 0);
760 if (!is_migrate_isolate(migratetype))
761 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
762}
763#else
acbc15a4
JK
764static inline bool set_page_guard(struct zone *zone, struct page *page,
765 unsigned int order, int migratetype) { return false; }
2847cf95
JK
766static inline void clear_page_guard(struct zone *zone, struct page *page,
767 unsigned int order, int migratetype) {}
c0a32fc5
SG
768#endif
769
7aeb09f9 770static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 771{
4c21e2f2 772 set_page_private(page, order);
676165a8 773 __SetPageBuddy(page);
1da177e4
LT
774}
775
1da177e4
LT
776/*
777 * This function checks whether a page is free && is the buddy
6e292b9b 778 * we can coalesce a page and its buddy if
13ad59df 779 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 780 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
781 * (c) a page and its buddy have the same order &&
782 * (d) a page and its buddy are in the same zone.
676165a8 783 *
6e292b9b
MW
784 * For recording whether a page is in the buddy system, we set PageBuddy.
785 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 786 *
676165a8 787 * For recording page's order, we use page_private(page).
1da177e4 788 */
fe925c0c 789static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 790 unsigned int order)
1da177e4 791{
fe925c0c 792 if (!page_is_guard(buddy) && !PageBuddy(buddy))
793 return false;
4c5018ce 794
fe925c0c 795 if (page_order(buddy) != order)
796 return false;
c0a32fc5 797
fe925c0c 798 /*
799 * zone check is done late to avoid uselessly calculating
800 * zone/node ids for pages that could never merge.
801 */
802 if (page_zone_id(page) != page_zone_id(buddy))
803 return false;
d34c5fa0 804
fe925c0c 805 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 806
fe925c0c 807 return true;
1da177e4
LT
808}
809
5e1f0f09
MG
810#ifdef CONFIG_COMPACTION
811static inline struct capture_control *task_capc(struct zone *zone)
812{
813 struct capture_control *capc = current->capture_control;
814
deba0487 815 return unlikely(capc) &&
5e1f0f09
MG
816 !(current->flags & PF_KTHREAD) &&
817 !capc->page &&
deba0487 818 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
819}
820
821static inline bool
822compaction_capture(struct capture_control *capc, struct page *page,
823 int order, int migratetype)
824{
825 if (!capc || order != capc->cc->order)
826 return false;
827
828 /* Do not accidentally pollute CMA or isolated regions*/
829 if (is_migrate_cma(migratetype) ||
830 is_migrate_isolate(migratetype))
831 return false;
832
833 /*
834 * Do not let lower order allocations polluate a movable pageblock.
835 * This might let an unmovable request use a reclaimable pageblock
836 * and vice-versa but no more than normal fallback logic which can
837 * have trouble finding a high-order free page.
838 */
839 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
840 return false;
841
842 capc->page = page;
843 return true;
844}
845
846#else
847static inline struct capture_control *task_capc(struct zone *zone)
848{
849 return NULL;
850}
851
852static inline bool
853compaction_capture(struct capture_control *capc, struct page *page,
854 int order, int migratetype)
855{
856 return false;
857}
858#endif /* CONFIG_COMPACTION */
859
6ab01363
AD
860/* Used for pages not on another list */
861static inline void add_to_free_list(struct page *page, struct zone *zone,
862 unsigned int order, int migratetype)
863{
864 struct free_area *area = &zone->free_area[order];
865
866 list_add(&page->lru, &area->free_list[migratetype]);
867 area->nr_free++;
868}
869
870/* Used for pages not on another list */
871static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
872 unsigned int order, int migratetype)
873{
874 struct free_area *area = &zone->free_area[order];
875
876 list_add_tail(&page->lru, &area->free_list[migratetype]);
877 area->nr_free++;
878}
879
880/* Used for pages which are on another list */
881static inline void move_to_free_list(struct page *page, struct zone *zone,
882 unsigned int order, int migratetype)
883{
884 struct free_area *area = &zone->free_area[order];
885
886 list_move(&page->lru, &area->free_list[migratetype]);
887}
888
889static inline void del_page_from_free_list(struct page *page, struct zone *zone,
890 unsigned int order)
891{
36e66c55
AD
892 /* clear reported state and update reported page count */
893 if (page_reported(page))
894 __ClearPageReported(page);
895
6ab01363
AD
896 list_del(&page->lru);
897 __ClearPageBuddy(page);
898 set_page_private(page, 0);
899 zone->free_area[order].nr_free--;
900}
901
a2129f24
AD
902/*
903 * If this is not the largest possible page, check if the buddy
904 * of the next-highest order is free. If it is, it's possible
905 * that pages are being freed that will coalesce soon. In case,
906 * that is happening, add the free page to the tail of the list
907 * so it's less likely to be used soon and more likely to be merged
908 * as a higher order page
909 */
910static inline bool
911buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
912 struct page *page, unsigned int order)
913{
914 struct page *higher_page, *higher_buddy;
915 unsigned long combined_pfn;
916
917 if (order >= MAX_ORDER - 2)
918 return false;
919
920 if (!pfn_valid_within(buddy_pfn))
921 return false;
922
923 combined_pfn = buddy_pfn & pfn;
924 higher_page = page + (combined_pfn - pfn);
925 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
926 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
927
928 return pfn_valid_within(buddy_pfn) &&
929 page_is_buddy(higher_page, higher_buddy, order + 1);
930}
931
1da177e4
LT
932/*
933 * Freeing function for a buddy system allocator.
934 *
935 * The concept of a buddy system is to maintain direct-mapped table
936 * (containing bit values) for memory blocks of various "orders".
937 * The bottom level table contains the map for the smallest allocatable
938 * units of memory (here, pages), and each level above it describes
939 * pairs of units from the levels below, hence, "buddies".
940 * At a high level, all that happens here is marking the table entry
941 * at the bottom level available, and propagating the changes upward
942 * as necessary, plus some accounting needed to play nicely with other
943 * parts of the VM system.
944 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
945 * free pages of length of (1 << order) and marked with PageBuddy.
946 * Page's order is recorded in page_private(page) field.
1da177e4 947 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
948 * other. That is, if we allocate a small block, and both were
949 * free, the remainder of the region must be split into blocks.
1da177e4 950 * If a block is freed, and its buddy is also free, then this
5f63b720 951 * triggers coalescing into a block of larger size.
1da177e4 952 *
6d49e352 953 * -- nyc
1da177e4
LT
954 */
955
48db57f8 956static inline void __free_one_page(struct page *page,
dc4b0caf 957 unsigned long pfn,
ed0ae21d 958 struct zone *zone, unsigned int order,
36e66c55 959 int migratetype, bool report)
1da177e4 960{
a2129f24 961 struct capture_control *capc = task_capc(zone);
3f649ab7 962 unsigned long buddy_pfn;
a2129f24 963 unsigned long combined_pfn;
d9dddbf5 964 unsigned int max_order;
a2129f24
AD
965 struct page *buddy;
966 bool to_tail;
d9dddbf5
VB
967
968 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 969
d29bb978 970 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 971 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 972
ed0ae21d 973 VM_BUG_ON(migratetype == -1);
d9dddbf5 974 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 975 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 976
76741e77 977 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 978 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 979
d9dddbf5 980continue_merging:
3c605096 981 while (order < max_order - 1) {
5e1f0f09
MG
982 if (compaction_capture(capc, page, order, migratetype)) {
983 __mod_zone_freepage_state(zone, -(1 << order),
984 migratetype);
985 return;
986 }
76741e77
VB
987 buddy_pfn = __find_buddy_pfn(pfn, order);
988 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
989
990 if (!pfn_valid_within(buddy_pfn))
991 goto done_merging;
cb2b95e1 992 if (!page_is_buddy(page, buddy, order))
d9dddbf5 993 goto done_merging;
c0a32fc5
SG
994 /*
995 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
996 * merge with it and move up one order.
997 */
b03641af 998 if (page_is_guard(buddy))
2847cf95 999 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1000 else
6ab01363 1001 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1002 combined_pfn = buddy_pfn & pfn;
1003 page = page + (combined_pfn - pfn);
1004 pfn = combined_pfn;
1da177e4
LT
1005 order++;
1006 }
d9dddbf5
VB
1007 if (max_order < MAX_ORDER) {
1008 /* If we are here, it means order is >= pageblock_order.
1009 * We want to prevent merge between freepages on isolate
1010 * pageblock and normal pageblock. Without this, pageblock
1011 * isolation could cause incorrect freepage or CMA accounting.
1012 *
1013 * We don't want to hit this code for the more frequent
1014 * low-order merging.
1015 */
1016 if (unlikely(has_isolate_pageblock(zone))) {
1017 int buddy_mt;
1018
76741e77
VB
1019 buddy_pfn = __find_buddy_pfn(pfn, order);
1020 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1021 buddy_mt = get_pageblock_migratetype(buddy);
1022
1023 if (migratetype != buddy_mt
1024 && (is_migrate_isolate(migratetype) ||
1025 is_migrate_isolate(buddy_mt)))
1026 goto done_merging;
1027 }
1028 max_order++;
1029 goto continue_merging;
1030 }
1031
1032done_merging:
1da177e4 1033 set_page_order(page, order);
6dda9d55 1034
97500a4a 1035 if (is_shuffle_order(order))
a2129f24 1036 to_tail = shuffle_pick_tail();
97500a4a 1037 else
a2129f24 1038 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1039
a2129f24 1040 if (to_tail)
6ab01363 1041 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1042 else
6ab01363 1043 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1044
1045 /* Notify page reporting subsystem of freed page */
1046 if (report)
1047 page_reporting_notify_free(order);
1da177e4
LT
1048}
1049
7bfec6f4
MG
1050/*
1051 * A bad page could be due to a number of fields. Instead of multiple branches,
1052 * try and check multiple fields with one check. The caller must do a detailed
1053 * check if necessary.
1054 */
1055static inline bool page_expected_state(struct page *page,
1056 unsigned long check_flags)
1057{
1058 if (unlikely(atomic_read(&page->_mapcount) != -1))
1059 return false;
1060
1061 if (unlikely((unsigned long)page->mapping |
1062 page_ref_count(page) |
1063#ifdef CONFIG_MEMCG
1064 (unsigned long)page->mem_cgroup |
1065#endif
1066 (page->flags & check_flags)))
1067 return false;
1068
1069 return true;
1070}
1071
58b7f119 1072static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1073{
82a3241a 1074 const char *bad_reason = NULL;
f0b791a3 1075
53f9263b 1076 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1077 bad_reason = "nonzero mapcount";
1078 if (unlikely(page->mapping != NULL))
1079 bad_reason = "non-NULL mapping";
fe896d18 1080 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1081 bad_reason = "nonzero _refcount";
58b7f119
WY
1082 if (unlikely(page->flags & flags)) {
1083 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1084 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1085 else
1086 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1087 }
9edad6ea
JW
1088#ifdef CONFIG_MEMCG
1089 if (unlikely(page->mem_cgroup))
1090 bad_reason = "page still charged to cgroup";
1091#endif
58b7f119
WY
1092 return bad_reason;
1093}
1094
1095static void check_free_page_bad(struct page *page)
1096{
1097 bad_page(page,
1098 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1099}
1100
534fe5e3 1101static inline int check_free_page(struct page *page)
bb552ac6 1102{
da838d4f 1103 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1104 return 0;
bb552ac6
MG
1105
1106 /* Something has gone sideways, find it */
0d0c48a2 1107 check_free_page_bad(page);
7bfec6f4 1108 return 1;
1da177e4
LT
1109}
1110
4db7548c
MG
1111static int free_tail_pages_check(struct page *head_page, struct page *page)
1112{
1113 int ret = 1;
1114
1115 /*
1116 * We rely page->lru.next never has bit 0 set, unless the page
1117 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1118 */
1119 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1120
1121 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1122 ret = 0;
1123 goto out;
1124 }
1125 switch (page - head_page) {
1126 case 1:
4da1984e 1127 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1128 if (unlikely(compound_mapcount(page))) {
82a3241a 1129 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1130 goto out;
1131 }
1132 break;
1133 case 2:
1134 /*
1135 * the second tail page: ->mapping is
fa3015b7 1136 * deferred_list.next -- ignore value.
4db7548c
MG
1137 */
1138 break;
1139 default:
1140 if (page->mapping != TAIL_MAPPING) {
82a3241a 1141 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1142 goto out;
1143 }
1144 break;
1145 }
1146 if (unlikely(!PageTail(page))) {
82a3241a 1147 bad_page(page, "PageTail not set");
4db7548c
MG
1148 goto out;
1149 }
1150 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1151 bad_page(page, "compound_head not consistent");
4db7548c
MG
1152 goto out;
1153 }
1154 ret = 0;
1155out:
1156 page->mapping = NULL;
1157 clear_compound_head(page);
1158 return ret;
1159}
1160
6471384a
AP
1161static void kernel_init_free_pages(struct page *page, int numpages)
1162{
1163 int i;
1164
1165 for (i = 0; i < numpages; i++)
1166 clear_highpage(page + i);
1167}
1168
e2769dbd
MG
1169static __always_inline bool free_pages_prepare(struct page *page,
1170 unsigned int order, bool check_free)
4db7548c 1171{
e2769dbd 1172 int bad = 0;
4db7548c 1173
4db7548c
MG
1174 VM_BUG_ON_PAGE(PageTail(page), page);
1175
e2769dbd 1176 trace_mm_page_free(page, order);
e2769dbd
MG
1177
1178 /*
1179 * Check tail pages before head page information is cleared to
1180 * avoid checking PageCompound for order-0 pages.
1181 */
1182 if (unlikely(order)) {
1183 bool compound = PageCompound(page);
1184 int i;
1185
1186 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1187
9a73f61b
KS
1188 if (compound)
1189 ClearPageDoubleMap(page);
e2769dbd
MG
1190 for (i = 1; i < (1 << order); i++) {
1191 if (compound)
1192 bad += free_tail_pages_check(page, page + i);
534fe5e3 1193 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1194 bad++;
1195 continue;
1196 }
1197 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1198 }
1199 }
bda807d4 1200 if (PageMappingFlags(page))
4db7548c 1201 page->mapping = NULL;
c4159a75 1202 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1203 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1204 if (check_free)
534fe5e3 1205 bad += check_free_page(page);
e2769dbd
MG
1206 if (bad)
1207 return false;
4db7548c 1208
e2769dbd
MG
1209 page_cpupid_reset_last(page);
1210 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1211 reset_page_owner(page, order);
4db7548c
MG
1212
1213 if (!PageHighMem(page)) {
1214 debug_check_no_locks_freed(page_address(page),
e2769dbd 1215 PAGE_SIZE << order);
4db7548c 1216 debug_check_no_obj_freed(page_address(page),
e2769dbd 1217 PAGE_SIZE << order);
4db7548c 1218 }
6471384a
AP
1219 if (want_init_on_free())
1220 kernel_init_free_pages(page, 1 << order);
1221
e2769dbd 1222 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1223 /*
1224 * arch_free_page() can make the page's contents inaccessible. s390
1225 * does this. So nothing which can access the page's contents should
1226 * happen after this.
1227 */
1228 arch_free_page(page, order);
1229
8e57f8ac 1230 if (debug_pagealloc_enabled_static())
d6332692
RE
1231 kernel_map_pages(page, 1 << order, 0);
1232
3c0c12cc 1233 kasan_free_nondeferred_pages(page, order);
4db7548c 1234
4db7548c
MG
1235 return true;
1236}
1237
e2769dbd 1238#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1239/*
1240 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1241 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1242 * moved from pcp lists to free lists.
1243 */
1244static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1245{
1246 return free_pages_prepare(page, 0, true);
1247}
1248
4462b32c 1249static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1250{
8e57f8ac 1251 if (debug_pagealloc_enabled_static())
534fe5e3 1252 return check_free_page(page);
4462b32c
VB
1253 else
1254 return false;
e2769dbd
MG
1255}
1256#else
4462b32c
VB
1257/*
1258 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1259 * moving from pcp lists to free list in order to reduce overhead. With
1260 * debug_pagealloc enabled, they are checked also immediately when being freed
1261 * to the pcp lists.
1262 */
e2769dbd
MG
1263static bool free_pcp_prepare(struct page *page)
1264{
8e57f8ac 1265 if (debug_pagealloc_enabled_static())
4462b32c
VB
1266 return free_pages_prepare(page, 0, true);
1267 else
1268 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1269}
1270
4db7548c
MG
1271static bool bulkfree_pcp_prepare(struct page *page)
1272{
534fe5e3 1273 return check_free_page(page);
4db7548c
MG
1274}
1275#endif /* CONFIG_DEBUG_VM */
1276
97334162
AL
1277static inline void prefetch_buddy(struct page *page)
1278{
1279 unsigned long pfn = page_to_pfn(page);
1280 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1281 struct page *buddy = page + (buddy_pfn - pfn);
1282
1283 prefetch(buddy);
1284}
1285
1da177e4 1286/*
5f8dcc21 1287 * Frees a number of pages from the PCP lists
1da177e4 1288 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1289 * count is the number of pages to free.
1da177e4
LT
1290 *
1291 * If the zone was previously in an "all pages pinned" state then look to
1292 * see if this freeing clears that state.
1293 *
1294 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1295 * pinned" detection logic.
1296 */
5f8dcc21
MG
1297static void free_pcppages_bulk(struct zone *zone, int count,
1298 struct per_cpu_pages *pcp)
1da177e4 1299{
5f8dcc21 1300 int migratetype = 0;
a6f9edd6 1301 int batch_free = 0;
97334162 1302 int prefetch_nr = 0;
3777999d 1303 bool isolated_pageblocks;
0a5f4e5b
AL
1304 struct page *page, *tmp;
1305 LIST_HEAD(head);
f2260e6b 1306
e5b31ac2 1307 while (count) {
5f8dcc21
MG
1308 struct list_head *list;
1309
1310 /*
a6f9edd6
MG
1311 * Remove pages from lists in a round-robin fashion. A
1312 * batch_free count is maintained that is incremented when an
1313 * empty list is encountered. This is so more pages are freed
1314 * off fuller lists instead of spinning excessively around empty
1315 * lists
5f8dcc21
MG
1316 */
1317 do {
a6f9edd6 1318 batch_free++;
5f8dcc21
MG
1319 if (++migratetype == MIGRATE_PCPTYPES)
1320 migratetype = 0;
1321 list = &pcp->lists[migratetype];
1322 } while (list_empty(list));
48db57f8 1323
1d16871d
NK
1324 /* This is the only non-empty list. Free them all. */
1325 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1326 batch_free = count;
1d16871d 1327
a6f9edd6 1328 do {
a16601c5 1329 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1330 /* must delete to avoid corrupting pcp list */
a6f9edd6 1331 list_del(&page->lru);
77ba9062 1332 pcp->count--;
aa016d14 1333
4db7548c
MG
1334 if (bulkfree_pcp_prepare(page))
1335 continue;
1336
0a5f4e5b 1337 list_add_tail(&page->lru, &head);
97334162
AL
1338
1339 /*
1340 * We are going to put the page back to the global
1341 * pool, prefetch its buddy to speed up later access
1342 * under zone->lock. It is believed the overhead of
1343 * an additional test and calculating buddy_pfn here
1344 * can be offset by reduced memory latency later. To
1345 * avoid excessive prefetching due to large count, only
1346 * prefetch buddy for the first pcp->batch nr of pages.
1347 */
1348 if (prefetch_nr++ < pcp->batch)
1349 prefetch_buddy(page);
e5b31ac2 1350 } while (--count && --batch_free && !list_empty(list));
1da177e4 1351 }
0a5f4e5b
AL
1352
1353 spin_lock(&zone->lock);
1354 isolated_pageblocks = has_isolate_pageblock(zone);
1355
1356 /*
1357 * Use safe version since after __free_one_page(),
1358 * page->lru.next will not point to original list.
1359 */
1360 list_for_each_entry_safe(page, tmp, &head, lru) {
1361 int mt = get_pcppage_migratetype(page);
1362 /* MIGRATE_ISOLATE page should not go to pcplists */
1363 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1364 /* Pageblock could have been isolated meanwhile */
1365 if (unlikely(isolated_pageblocks))
1366 mt = get_pageblock_migratetype(page);
1367
36e66c55 1368 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1369 trace_mm_page_pcpu_drain(page, 0, mt);
1370 }
d34b0733 1371 spin_unlock(&zone->lock);
1da177e4
LT
1372}
1373
dc4b0caf
MG
1374static void free_one_page(struct zone *zone,
1375 struct page *page, unsigned long pfn,
7aeb09f9 1376 unsigned int order,
ed0ae21d 1377 int migratetype)
1da177e4 1378{
d34b0733 1379 spin_lock(&zone->lock);
ad53f92e
JK
1380 if (unlikely(has_isolate_pageblock(zone) ||
1381 is_migrate_isolate(migratetype))) {
1382 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1383 }
36e66c55 1384 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1385 spin_unlock(&zone->lock);
48db57f8
NP
1386}
1387
1e8ce83c 1388static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1389 unsigned long zone, int nid)
1e8ce83c 1390{
d0dc12e8 1391 mm_zero_struct_page(page);
1e8ce83c 1392 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1393 init_page_count(page);
1394 page_mapcount_reset(page);
1395 page_cpupid_reset_last(page);
2813b9c0 1396 page_kasan_tag_reset(page);
1e8ce83c 1397
1e8ce83c
RH
1398 INIT_LIST_HEAD(&page->lru);
1399#ifdef WANT_PAGE_VIRTUAL
1400 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1401 if (!is_highmem_idx(zone))
1402 set_page_address(page, __va(pfn << PAGE_SHIFT));
1403#endif
1404}
1405
7e18adb4 1406#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1407static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1408{
1409 pg_data_t *pgdat;
1410 int nid, zid;
1411
1412 if (!early_page_uninitialised(pfn))
1413 return;
1414
1415 nid = early_pfn_to_nid(pfn);
1416 pgdat = NODE_DATA(nid);
1417
1418 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1419 struct zone *zone = &pgdat->node_zones[zid];
1420
1421 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1422 break;
1423 }
d0dc12e8 1424 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1425}
1426#else
1427static inline void init_reserved_page(unsigned long pfn)
1428{
1429}
1430#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1431
92923ca3
NZ
1432/*
1433 * Initialised pages do not have PageReserved set. This function is
1434 * called for each range allocated by the bootmem allocator and
1435 * marks the pages PageReserved. The remaining valid pages are later
1436 * sent to the buddy page allocator.
1437 */
4b50bcc7 1438void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1439{
1440 unsigned long start_pfn = PFN_DOWN(start);
1441 unsigned long end_pfn = PFN_UP(end);
1442
7e18adb4
MG
1443 for (; start_pfn < end_pfn; start_pfn++) {
1444 if (pfn_valid(start_pfn)) {
1445 struct page *page = pfn_to_page(start_pfn);
1446
1447 init_reserved_page(start_pfn);
1d798ca3
KS
1448
1449 /* Avoid false-positive PageTail() */
1450 INIT_LIST_HEAD(&page->lru);
1451
d483da5b
AD
1452 /*
1453 * no need for atomic set_bit because the struct
1454 * page is not visible yet so nobody should
1455 * access it yet.
1456 */
1457 __SetPageReserved(page);
7e18adb4
MG
1458 }
1459 }
92923ca3
NZ
1460}
1461
ec95f53a
KM
1462static void __free_pages_ok(struct page *page, unsigned int order)
1463{
d34b0733 1464 unsigned long flags;
95e34412 1465 int migratetype;
dc4b0caf 1466 unsigned long pfn = page_to_pfn(page);
ec95f53a 1467
e2769dbd 1468 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1469 return;
1470
cfc47a28 1471 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1472 local_irq_save(flags);
1473 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1474 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1475 local_irq_restore(flags);
1da177e4
LT
1476}
1477
a9cd410a 1478void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1479{
c3993076 1480 unsigned int nr_pages = 1 << order;
e2d0bd2b 1481 struct page *p = page;
c3993076 1482 unsigned int loop;
a226f6c8 1483
e2d0bd2b
YL
1484 prefetchw(p);
1485 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1486 prefetchw(p + 1);
c3993076
JW
1487 __ClearPageReserved(p);
1488 set_page_count(p, 0);
a226f6c8 1489 }
e2d0bd2b
YL
1490 __ClearPageReserved(p);
1491 set_page_count(p, 0);
c3993076 1492
9705bea5 1493 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1494 set_page_refcounted(page);
1495 __free_pages(page, order);
a226f6c8
DH
1496}
1497
3f08a302 1498#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1499
75a592a4
MG
1500static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1501
6f24fbd3
MR
1502#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1503
1504/*
1505 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1506 */
1507int __meminit __early_pfn_to_nid(unsigned long pfn,
1508 struct mminit_pfnnid_cache *state)
75a592a4 1509{
6f24fbd3 1510 unsigned long start_pfn, end_pfn;
75a592a4
MG
1511 int nid;
1512
6f24fbd3
MR
1513 if (state->last_start <= pfn && pfn < state->last_end)
1514 return state->last_nid;
1515
1516 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1517 if (nid != NUMA_NO_NODE) {
1518 state->last_start = start_pfn;
1519 state->last_end = end_pfn;
1520 state->last_nid = nid;
1521 }
7ace9917
MG
1522
1523 return nid;
75a592a4 1524}
6f24fbd3 1525#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
75a592a4 1526
75a592a4 1527int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1528{
7ace9917 1529 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1530 int nid;
1531
7ace9917 1532 spin_lock(&early_pfn_lock);
56ec43d8 1533 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1534 if (nid < 0)
e4568d38 1535 nid = first_online_node;
7ace9917 1536 spin_unlock(&early_pfn_lock);
75a592a4 1537
7ace9917 1538 return nid;
75a592a4 1539}
3f08a302 1540#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1541
7c2ee349 1542void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1543 unsigned int order)
1544{
1545 if (early_page_uninitialised(pfn))
1546 return;
a9cd410a 1547 __free_pages_core(page, order);
3a80a7fa
MG
1548}
1549
7cf91a98
JK
1550/*
1551 * Check that the whole (or subset of) a pageblock given by the interval of
1552 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1553 * with the migration of free compaction scanner. The scanners then need to
1554 * use only pfn_valid_within() check for arches that allow holes within
1555 * pageblocks.
1556 *
1557 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1558 *
1559 * It's possible on some configurations to have a setup like node0 node1 node0
1560 * i.e. it's possible that all pages within a zones range of pages do not
1561 * belong to a single zone. We assume that a border between node0 and node1
1562 * can occur within a single pageblock, but not a node0 node1 node0
1563 * interleaving within a single pageblock. It is therefore sufficient to check
1564 * the first and last page of a pageblock and avoid checking each individual
1565 * page in a pageblock.
1566 */
1567struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1568 unsigned long end_pfn, struct zone *zone)
1569{
1570 struct page *start_page;
1571 struct page *end_page;
1572
1573 /* end_pfn is one past the range we are checking */
1574 end_pfn--;
1575
1576 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1577 return NULL;
1578
2d070eab
MH
1579 start_page = pfn_to_online_page(start_pfn);
1580 if (!start_page)
1581 return NULL;
7cf91a98
JK
1582
1583 if (page_zone(start_page) != zone)
1584 return NULL;
1585
1586 end_page = pfn_to_page(end_pfn);
1587
1588 /* This gives a shorter code than deriving page_zone(end_page) */
1589 if (page_zone_id(start_page) != page_zone_id(end_page))
1590 return NULL;
1591
1592 return start_page;
1593}
1594
1595void set_zone_contiguous(struct zone *zone)
1596{
1597 unsigned long block_start_pfn = zone->zone_start_pfn;
1598 unsigned long block_end_pfn;
1599
1600 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1601 for (; block_start_pfn < zone_end_pfn(zone);
1602 block_start_pfn = block_end_pfn,
1603 block_end_pfn += pageblock_nr_pages) {
1604
1605 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1606
1607 if (!__pageblock_pfn_to_page(block_start_pfn,
1608 block_end_pfn, zone))
1609 return;
e84fe99b 1610 cond_resched();
7cf91a98
JK
1611 }
1612
1613 /* We confirm that there is no hole */
1614 zone->contiguous = true;
1615}
1616
1617void clear_zone_contiguous(struct zone *zone)
1618{
1619 zone->contiguous = false;
1620}
1621
7e18adb4 1622#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1623static void __init deferred_free_range(unsigned long pfn,
1624 unsigned long nr_pages)
a4de83dd 1625{
2f47a91f
PT
1626 struct page *page;
1627 unsigned long i;
a4de83dd 1628
2f47a91f 1629 if (!nr_pages)
a4de83dd
MG
1630 return;
1631
2f47a91f
PT
1632 page = pfn_to_page(pfn);
1633
a4de83dd 1634 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1635 if (nr_pages == pageblock_nr_pages &&
1636 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1637 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1638 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1639 return;
1640 }
1641
e780149b
XQ
1642 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1643 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1644 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1645 __free_pages_core(page, 0);
e780149b 1646 }
a4de83dd
MG
1647}
1648
d3cd131d
NS
1649/* Completion tracking for deferred_init_memmap() threads */
1650static atomic_t pgdat_init_n_undone __initdata;
1651static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1652
1653static inline void __init pgdat_init_report_one_done(void)
1654{
1655 if (atomic_dec_and_test(&pgdat_init_n_undone))
1656 complete(&pgdat_init_all_done_comp);
1657}
0e1cc95b 1658
2f47a91f 1659/*
80b1f41c
PT
1660 * Returns true if page needs to be initialized or freed to buddy allocator.
1661 *
1662 * First we check if pfn is valid on architectures where it is possible to have
1663 * holes within pageblock_nr_pages. On systems where it is not possible, this
1664 * function is optimized out.
1665 *
1666 * Then, we check if a current large page is valid by only checking the validity
1667 * of the head pfn.
2f47a91f 1668 */
56ec43d8 1669static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1670{
80b1f41c
PT
1671 if (!pfn_valid_within(pfn))
1672 return false;
1673 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1674 return false;
80b1f41c
PT
1675 return true;
1676}
2f47a91f 1677
80b1f41c
PT
1678/*
1679 * Free pages to buddy allocator. Try to free aligned pages in
1680 * pageblock_nr_pages sizes.
1681 */
56ec43d8 1682static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1683 unsigned long end_pfn)
1684{
80b1f41c
PT
1685 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1686 unsigned long nr_free = 0;
2f47a91f 1687
80b1f41c 1688 for (; pfn < end_pfn; pfn++) {
56ec43d8 1689 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1690 deferred_free_range(pfn - nr_free, nr_free);
1691 nr_free = 0;
1692 } else if (!(pfn & nr_pgmask)) {
1693 deferred_free_range(pfn - nr_free, nr_free);
1694 nr_free = 1;
80b1f41c
PT
1695 } else {
1696 nr_free++;
1697 }
1698 }
1699 /* Free the last block of pages to allocator */
1700 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1701}
1702
80b1f41c
PT
1703/*
1704 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1705 * by performing it only once every pageblock_nr_pages.
1706 * Return number of pages initialized.
1707 */
56ec43d8 1708static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1709 unsigned long pfn,
1710 unsigned long end_pfn)
2f47a91f 1711{
2f47a91f 1712 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1713 int nid = zone_to_nid(zone);
2f47a91f 1714 unsigned long nr_pages = 0;
56ec43d8 1715 int zid = zone_idx(zone);
2f47a91f 1716 struct page *page = NULL;
2f47a91f 1717
80b1f41c 1718 for (; pfn < end_pfn; pfn++) {
56ec43d8 1719 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1720 page = NULL;
2f47a91f 1721 continue;
80b1f41c 1722 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1723 page = pfn_to_page(pfn);
80b1f41c
PT
1724 } else {
1725 page++;
2f47a91f 1726 }
d0dc12e8 1727 __init_single_page(page, pfn, zid, nid);
80b1f41c 1728 nr_pages++;
2f47a91f 1729 }
80b1f41c 1730 return (nr_pages);
2f47a91f
PT
1731}
1732
0e56acae
AD
1733/*
1734 * This function is meant to pre-load the iterator for the zone init.
1735 * Specifically it walks through the ranges until we are caught up to the
1736 * first_init_pfn value and exits there. If we never encounter the value we
1737 * return false indicating there are no valid ranges left.
1738 */
1739static bool __init
1740deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1741 unsigned long *spfn, unsigned long *epfn,
1742 unsigned long first_init_pfn)
1743{
1744 u64 j;
1745
1746 /*
1747 * Start out by walking through the ranges in this zone that have
1748 * already been initialized. We don't need to do anything with them
1749 * so we just need to flush them out of the system.
1750 */
1751 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1752 if (*epfn <= first_init_pfn)
1753 continue;
1754 if (*spfn < first_init_pfn)
1755 *spfn = first_init_pfn;
1756 *i = j;
1757 return true;
1758 }
1759
1760 return false;
1761}
1762
1763/*
1764 * Initialize and free pages. We do it in two loops: first we initialize
1765 * struct page, then free to buddy allocator, because while we are
1766 * freeing pages we can access pages that are ahead (computing buddy
1767 * page in __free_one_page()).
1768 *
1769 * In order to try and keep some memory in the cache we have the loop
1770 * broken along max page order boundaries. This way we will not cause
1771 * any issues with the buddy page computation.
1772 */
1773static unsigned long __init
1774deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1775 unsigned long *end_pfn)
1776{
1777 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1778 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1779 unsigned long nr_pages = 0;
1780 u64 j = *i;
1781
1782 /* First we loop through and initialize the page values */
1783 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1784 unsigned long t;
1785
1786 if (mo_pfn <= *start_pfn)
1787 break;
1788
1789 t = min(mo_pfn, *end_pfn);
1790 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1791
1792 if (mo_pfn < *end_pfn) {
1793 *start_pfn = mo_pfn;
1794 break;
1795 }
1796 }
1797
1798 /* Reset values and now loop through freeing pages as needed */
1799 swap(j, *i);
1800
1801 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1802 unsigned long t;
1803
1804 if (mo_pfn <= spfn)
1805 break;
1806
1807 t = min(mo_pfn, epfn);
1808 deferred_free_pages(spfn, t);
1809
1810 if (mo_pfn <= epfn)
1811 break;
1812 }
1813
1814 return nr_pages;
1815}
1816
e4443149
DJ
1817static void __init
1818deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1819 void *arg)
1820{
1821 unsigned long spfn, epfn;
1822 struct zone *zone = arg;
1823 u64 i;
1824
1825 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1826
1827 /*
1828 * Initialize and free pages in MAX_ORDER sized increments so that we
1829 * can avoid introducing any issues with the buddy allocator.
1830 */
1831 while (spfn < end_pfn) {
1832 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1833 cond_resched();
1834 }
1835}
1836
ecd09650
DJ
1837/* An arch may override for more concurrency. */
1838__weak int __init
1839deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1840{
1841 return 1;
1842}
1843
7e18adb4 1844/* Initialise remaining memory on a node */
0e1cc95b 1845static int __init deferred_init_memmap(void *data)
7e18adb4 1846{
0e1cc95b 1847 pg_data_t *pgdat = data;
0e56acae 1848 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1849 unsigned long spfn = 0, epfn = 0;
0e56acae 1850 unsigned long first_init_pfn, flags;
7e18adb4 1851 unsigned long start = jiffies;
7e18adb4 1852 struct zone *zone;
e4443149 1853 int zid, max_threads;
2f47a91f 1854 u64 i;
7e18adb4 1855
3a2d7fa8
PT
1856 /* Bind memory initialisation thread to a local node if possible */
1857 if (!cpumask_empty(cpumask))
1858 set_cpus_allowed_ptr(current, cpumask);
1859
1860 pgdat_resize_lock(pgdat, &flags);
1861 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1862 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1863 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1864 pgdat_init_report_one_done();
0e1cc95b
MG
1865 return 0;
1866 }
1867
7e18adb4
MG
1868 /* Sanity check boundaries */
1869 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1870 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1871 pgdat->first_deferred_pfn = ULONG_MAX;
1872
3d060856
PT
1873 /*
1874 * Once we unlock here, the zone cannot be grown anymore, thus if an
1875 * interrupt thread must allocate this early in boot, zone must be
1876 * pre-grown prior to start of deferred page initialization.
1877 */
1878 pgdat_resize_unlock(pgdat, &flags);
1879
7e18adb4
MG
1880 /* Only the highest zone is deferred so find it */
1881 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1882 zone = pgdat->node_zones + zid;
1883 if (first_init_pfn < zone_end_pfn(zone))
1884 break;
1885 }
0e56acae
AD
1886
1887 /* If the zone is empty somebody else may have cleared out the zone */
1888 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1889 first_init_pfn))
1890 goto zone_empty;
7e18adb4 1891
ecd09650 1892 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1893
117003c3 1894 while (spfn < epfn) {
e4443149
DJ
1895 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1896 struct padata_mt_job job = {
1897 .thread_fn = deferred_init_memmap_chunk,
1898 .fn_arg = zone,
1899 .start = spfn,
1900 .size = epfn_align - spfn,
1901 .align = PAGES_PER_SECTION,
1902 .min_chunk = PAGES_PER_SECTION,
1903 .max_threads = max_threads,
1904 };
1905
1906 padata_do_multithreaded(&job);
1907 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1908 epfn_align);
117003c3 1909 }
0e56acae 1910zone_empty:
7e18adb4
MG
1911 /* Sanity check that the next zone really is unpopulated */
1912 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1913
89c7c402
DJ
1914 pr_info("node %d deferred pages initialised in %ums\n",
1915 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1916
1917 pgdat_init_report_one_done();
0e1cc95b
MG
1918 return 0;
1919}
c9e97a19 1920
c9e97a19
PT
1921/*
1922 * If this zone has deferred pages, try to grow it by initializing enough
1923 * deferred pages to satisfy the allocation specified by order, rounded up to
1924 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1925 * of SECTION_SIZE bytes by initializing struct pages in increments of
1926 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1927 *
1928 * Return true when zone was grown, otherwise return false. We return true even
1929 * when we grow less than requested, to let the caller decide if there are
1930 * enough pages to satisfy the allocation.
1931 *
1932 * Note: We use noinline because this function is needed only during boot, and
1933 * it is called from a __ref function _deferred_grow_zone. This way we are
1934 * making sure that it is not inlined into permanent text section.
1935 */
1936static noinline bool __init
1937deferred_grow_zone(struct zone *zone, unsigned int order)
1938{
c9e97a19 1939 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1940 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1941 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1942 unsigned long spfn, epfn, flags;
1943 unsigned long nr_pages = 0;
c9e97a19
PT
1944 u64 i;
1945
1946 /* Only the last zone may have deferred pages */
1947 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1948 return false;
1949
1950 pgdat_resize_lock(pgdat, &flags);
1951
c9e97a19
PT
1952 /*
1953 * If someone grew this zone while we were waiting for spinlock, return
1954 * true, as there might be enough pages already.
1955 */
1956 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1957 pgdat_resize_unlock(pgdat, &flags);
1958 return true;
1959 }
1960
0e56acae
AD
1961 /* If the zone is empty somebody else may have cleared out the zone */
1962 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1963 first_deferred_pfn)) {
1964 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1965 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1966 /* Retry only once. */
1967 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1968 }
1969
0e56acae
AD
1970 /*
1971 * Initialize and free pages in MAX_ORDER sized increments so
1972 * that we can avoid introducing any issues with the buddy
1973 * allocator.
1974 */
1975 while (spfn < epfn) {
1976 /* update our first deferred PFN for this section */
1977 first_deferred_pfn = spfn;
1978
1979 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 1980 touch_nmi_watchdog();
c9e97a19 1981
0e56acae
AD
1982 /* We should only stop along section boundaries */
1983 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1984 continue;
c9e97a19 1985
0e56acae 1986 /* If our quota has been met we can stop here */
c9e97a19
PT
1987 if (nr_pages >= nr_pages_needed)
1988 break;
1989 }
1990
0e56acae 1991 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1992 pgdat_resize_unlock(pgdat, &flags);
1993
1994 return nr_pages > 0;
1995}
1996
1997/*
1998 * deferred_grow_zone() is __init, but it is called from
1999 * get_page_from_freelist() during early boot until deferred_pages permanently
2000 * disables this call. This is why we have refdata wrapper to avoid warning,
2001 * and to ensure that the function body gets unloaded.
2002 */
2003static bool __ref
2004_deferred_grow_zone(struct zone *zone, unsigned int order)
2005{
2006 return deferred_grow_zone(zone, order);
2007}
2008
7cf91a98 2009#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2010
2011void __init page_alloc_init_late(void)
2012{
7cf91a98 2013 struct zone *zone;
e900a918 2014 int nid;
7cf91a98
JK
2015
2016#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2017
d3cd131d
NS
2018 /* There will be num_node_state(N_MEMORY) threads */
2019 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2020 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2021 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2022 }
2023
2024 /* Block until all are initialised */
d3cd131d 2025 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2026
3e8fc007
MG
2027 /*
2028 * The number of managed pages has changed due to the initialisation
2029 * so the pcpu batch and high limits needs to be updated or the limits
2030 * will be artificially small.
2031 */
2032 for_each_populated_zone(zone)
2033 zone_pcp_update(zone);
2034
c9e97a19
PT
2035 /*
2036 * We initialized the rest of the deferred pages. Permanently disable
2037 * on-demand struct page initialization.
2038 */
2039 static_branch_disable(&deferred_pages);
2040
4248b0da
MG
2041 /* Reinit limits that are based on free pages after the kernel is up */
2042 files_maxfiles_init();
7cf91a98 2043#endif
350e88ba 2044
3010f876
PT
2045 /* Discard memblock private memory */
2046 memblock_discard();
7cf91a98 2047
e900a918
DW
2048 for_each_node_state(nid, N_MEMORY)
2049 shuffle_free_memory(NODE_DATA(nid));
2050
7cf91a98
JK
2051 for_each_populated_zone(zone)
2052 set_zone_contiguous(zone);
7e18adb4 2053}
7e18adb4 2054
47118af0 2055#ifdef CONFIG_CMA
9cf510a5 2056/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2057void __init init_cma_reserved_pageblock(struct page *page)
2058{
2059 unsigned i = pageblock_nr_pages;
2060 struct page *p = page;
2061
2062 do {
2063 __ClearPageReserved(p);
2064 set_page_count(p, 0);
d883c6cf 2065 } while (++p, --i);
47118af0 2066
47118af0 2067 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2068
2069 if (pageblock_order >= MAX_ORDER) {
2070 i = pageblock_nr_pages;
2071 p = page;
2072 do {
2073 set_page_refcounted(p);
2074 __free_pages(p, MAX_ORDER - 1);
2075 p += MAX_ORDER_NR_PAGES;
2076 } while (i -= MAX_ORDER_NR_PAGES);
2077 } else {
2078 set_page_refcounted(page);
2079 __free_pages(page, pageblock_order);
2080 }
2081
3dcc0571 2082 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2083}
2084#endif
1da177e4
LT
2085
2086/*
2087 * The order of subdivision here is critical for the IO subsystem.
2088 * Please do not alter this order without good reasons and regression
2089 * testing. Specifically, as large blocks of memory are subdivided,
2090 * the order in which smaller blocks are delivered depends on the order
2091 * they're subdivided in this function. This is the primary factor
2092 * influencing the order in which pages are delivered to the IO
2093 * subsystem according to empirical testing, and this is also justified
2094 * by considering the behavior of a buddy system containing a single
2095 * large block of memory acted on by a series of small allocations.
2096 * This behavior is a critical factor in sglist merging's success.
2097 *
6d49e352 2098 * -- nyc
1da177e4 2099 */
085cc7d5 2100static inline void expand(struct zone *zone, struct page *page,
6ab01363 2101 int low, int high, int migratetype)
1da177e4
LT
2102{
2103 unsigned long size = 1 << high;
2104
2105 while (high > low) {
1da177e4
LT
2106 high--;
2107 size >>= 1;
309381fe 2108 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2109
acbc15a4
JK
2110 /*
2111 * Mark as guard pages (or page), that will allow to
2112 * merge back to allocator when buddy will be freed.
2113 * Corresponding page table entries will not be touched,
2114 * pages will stay not present in virtual address space
2115 */
2116 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2117 continue;
acbc15a4 2118
6ab01363 2119 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2120 set_page_order(&page[size], high);
2121 }
1da177e4
LT
2122}
2123
4e611801 2124static void check_new_page_bad(struct page *page)
1da177e4 2125{
f4c18e6f 2126 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2127 /* Don't complain about hwpoisoned pages */
2128 page_mapcount_reset(page); /* remove PageBuddy */
2129 return;
f4c18e6f 2130 }
58b7f119
WY
2131
2132 bad_page(page,
2133 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2134}
2135
2136/*
2137 * This page is about to be returned from the page allocator
2138 */
2139static inline int check_new_page(struct page *page)
2140{
2141 if (likely(page_expected_state(page,
2142 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2143 return 0;
2144
2145 check_new_page_bad(page);
2146 return 1;
2a7684a2
WF
2147}
2148
bd33ef36 2149static inline bool free_pages_prezeroed(void)
1414c7f4 2150{
6471384a
AP
2151 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2152 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2153}
2154
479f854a 2155#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2156/*
2157 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2158 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2159 * also checked when pcp lists are refilled from the free lists.
2160 */
2161static inline bool check_pcp_refill(struct page *page)
479f854a 2162{
8e57f8ac 2163 if (debug_pagealloc_enabled_static())
4462b32c
VB
2164 return check_new_page(page);
2165 else
2166 return false;
479f854a
MG
2167}
2168
4462b32c 2169static inline bool check_new_pcp(struct page *page)
479f854a
MG
2170{
2171 return check_new_page(page);
2172}
2173#else
4462b32c
VB
2174/*
2175 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2176 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2177 * enabled, they are also checked when being allocated from the pcp lists.
2178 */
2179static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2180{
2181 return check_new_page(page);
2182}
4462b32c 2183static inline bool check_new_pcp(struct page *page)
479f854a 2184{
8e57f8ac 2185 if (debug_pagealloc_enabled_static())
4462b32c
VB
2186 return check_new_page(page);
2187 else
2188 return false;
479f854a
MG
2189}
2190#endif /* CONFIG_DEBUG_VM */
2191
2192static bool check_new_pages(struct page *page, unsigned int order)
2193{
2194 int i;
2195 for (i = 0; i < (1 << order); i++) {
2196 struct page *p = page + i;
2197
2198 if (unlikely(check_new_page(p)))
2199 return true;
2200 }
2201
2202 return false;
2203}
2204
46f24fd8
JK
2205inline void post_alloc_hook(struct page *page, unsigned int order,
2206 gfp_t gfp_flags)
2207{
2208 set_page_private(page, 0);
2209 set_page_refcounted(page);
2210
2211 arch_alloc_page(page, order);
8e57f8ac 2212 if (debug_pagealloc_enabled_static())
d6332692 2213 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2214 kasan_alloc_pages(page, order);
4117992d 2215 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2216 set_page_owner(page, order, gfp_flags);
2217}
2218
479f854a 2219static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2220 unsigned int alloc_flags)
2a7684a2 2221{
46f24fd8 2222 post_alloc_hook(page, order, gfp_flags);
17cf4406 2223
6471384a
AP
2224 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2225 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2226
2227 if (order && (gfp_flags & __GFP_COMP))
2228 prep_compound_page(page, order);
2229
75379191 2230 /*
2f064f34 2231 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2232 * allocate the page. The expectation is that the caller is taking
2233 * steps that will free more memory. The caller should avoid the page
2234 * being used for !PFMEMALLOC purposes.
2235 */
2f064f34
MH
2236 if (alloc_flags & ALLOC_NO_WATERMARKS)
2237 set_page_pfmemalloc(page);
2238 else
2239 clear_page_pfmemalloc(page);
1da177e4
LT
2240}
2241
56fd56b8
MG
2242/*
2243 * Go through the free lists for the given migratetype and remove
2244 * the smallest available page from the freelists
2245 */
85ccc8fa 2246static __always_inline
728ec980 2247struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2248 int migratetype)
2249{
2250 unsigned int current_order;
b8af2941 2251 struct free_area *area;
56fd56b8
MG
2252 struct page *page;
2253
2254 /* Find a page of the appropriate size in the preferred list */
2255 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2256 area = &(zone->free_area[current_order]);
b03641af 2257 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2258 if (!page)
2259 continue;
6ab01363
AD
2260 del_page_from_free_list(page, zone, current_order);
2261 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2262 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2263 return page;
2264 }
2265
2266 return NULL;
2267}
2268
2269
b2a0ac88
MG
2270/*
2271 * This array describes the order lists are fallen back to when
2272 * the free lists for the desirable migrate type are depleted
2273 */
47118af0 2274static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2275 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2276 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2277 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2278#ifdef CONFIG_CMA
974a786e 2279 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2280#endif
194159fb 2281#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2282 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2283#endif
b2a0ac88
MG
2284};
2285
dc67647b 2286#ifdef CONFIG_CMA
85ccc8fa 2287static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2288 unsigned int order)
2289{
2290 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2291}
2292#else
2293static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2294 unsigned int order) { return NULL; }
2295#endif
2296
c361be55
MG
2297/*
2298 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2299 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2300 * boundary. If alignment is required, use move_freepages_block()
2301 */
02aa0cdd 2302static int move_freepages(struct zone *zone,
b69a7288 2303 struct page *start_page, struct page *end_page,
02aa0cdd 2304 int migratetype, int *num_movable)
c361be55
MG
2305{
2306 struct page *page;
d00181b9 2307 unsigned int order;
d100313f 2308 int pages_moved = 0;
c361be55 2309
c361be55
MG
2310 for (page = start_page; page <= end_page;) {
2311 if (!pfn_valid_within(page_to_pfn(page))) {
2312 page++;
2313 continue;
2314 }
2315
2316 if (!PageBuddy(page)) {
02aa0cdd
VB
2317 /*
2318 * We assume that pages that could be isolated for
2319 * migration are movable. But we don't actually try
2320 * isolating, as that would be expensive.
2321 */
2322 if (num_movable &&
2323 (PageLRU(page) || __PageMovable(page)))
2324 (*num_movable)++;
2325
c361be55
MG
2326 page++;
2327 continue;
2328 }
2329
cd961038
DR
2330 /* Make sure we are not inadvertently changing nodes */
2331 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2332 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2333
c361be55 2334 order = page_order(page);
6ab01363 2335 move_to_free_list(page, zone, order, migratetype);
c361be55 2336 page += 1 << order;
d100313f 2337 pages_moved += 1 << order;
c361be55
MG
2338 }
2339
d100313f 2340 return pages_moved;
c361be55
MG
2341}
2342
ee6f509c 2343int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2344 int migratetype, int *num_movable)
c361be55
MG
2345{
2346 unsigned long start_pfn, end_pfn;
2347 struct page *start_page, *end_page;
2348
4a222127
DR
2349 if (num_movable)
2350 *num_movable = 0;
2351
c361be55 2352 start_pfn = page_to_pfn(page);
d9c23400 2353 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2354 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2355 end_page = start_page + pageblock_nr_pages - 1;
2356 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2357
2358 /* Do not cross zone boundaries */
108bcc96 2359 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2360 start_page = page;
108bcc96 2361 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2362 return 0;
2363
02aa0cdd
VB
2364 return move_freepages(zone, start_page, end_page, migratetype,
2365 num_movable);
c361be55
MG
2366}
2367
2f66a68f
MG
2368static void change_pageblock_range(struct page *pageblock_page,
2369 int start_order, int migratetype)
2370{
2371 int nr_pageblocks = 1 << (start_order - pageblock_order);
2372
2373 while (nr_pageblocks--) {
2374 set_pageblock_migratetype(pageblock_page, migratetype);
2375 pageblock_page += pageblock_nr_pages;
2376 }
2377}
2378
fef903ef 2379/*
9c0415eb
VB
2380 * When we are falling back to another migratetype during allocation, try to
2381 * steal extra free pages from the same pageblocks to satisfy further
2382 * allocations, instead of polluting multiple pageblocks.
2383 *
2384 * If we are stealing a relatively large buddy page, it is likely there will
2385 * be more free pages in the pageblock, so try to steal them all. For
2386 * reclaimable and unmovable allocations, we steal regardless of page size,
2387 * as fragmentation caused by those allocations polluting movable pageblocks
2388 * is worse than movable allocations stealing from unmovable and reclaimable
2389 * pageblocks.
fef903ef 2390 */
4eb7dce6
JK
2391static bool can_steal_fallback(unsigned int order, int start_mt)
2392{
2393 /*
2394 * Leaving this order check is intended, although there is
2395 * relaxed order check in next check. The reason is that
2396 * we can actually steal whole pageblock if this condition met,
2397 * but, below check doesn't guarantee it and that is just heuristic
2398 * so could be changed anytime.
2399 */
2400 if (order >= pageblock_order)
2401 return true;
2402
2403 if (order >= pageblock_order / 2 ||
2404 start_mt == MIGRATE_RECLAIMABLE ||
2405 start_mt == MIGRATE_UNMOVABLE ||
2406 page_group_by_mobility_disabled)
2407 return true;
2408
2409 return false;
2410}
2411
1c30844d
MG
2412static inline void boost_watermark(struct zone *zone)
2413{
2414 unsigned long max_boost;
2415
2416 if (!watermark_boost_factor)
2417 return;
14f69140
HW
2418 /*
2419 * Don't bother in zones that are unlikely to produce results.
2420 * On small machines, including kdump capture kernels running
2421 * in a small area, boosting the watermark can cause an out of
2422 * memory situation immediately.
2423 */
2424 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2425 return;
1c30844d
MG
2426
2427 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2428 watermark_boost_factor, 10000);
94b3334c
MG
2429
2430 /*
2431 * high watermark may be uninitialised if fragmentation occurs
2432 * very early in boot so do not boost. We do not fall
2433 * through and boost by pageblock_nr_pages as failing
2434 * allocations that early means that reclaim is not going
2435 * to help and it may even be impossible to reclaim the
2436 * boosted watermark resulting in a hang.
2437 */
2438 if (!max_boost)
2439 return;
2440
1c30844d
MG
2441 max_boost = max(pageblock_nr_pages, max_boost);
2442
2443 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2444 max_boost);
2445}
2446
4eb7dce6
JK
2447/*
2448 * This function implements actual steal behaviour. If order is large enough,
2449 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2450 * pageblock to our migratetype and determine how many already-allocated pages
2451 * are there in the pageblock with a compatible migratetype. If at least half
2452 * of pages are free or compatible, we can change migratetype of the pageblock
2453 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2454 */
2455static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2456 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2457{
d00181b9 2458 unsigned int current_order = page_order(page);
02aa0cdd
VB
2459 int free_pages, movable_pages, alike_pages;
2460 int old_block_type;
2461
2462 old_block_type = get_pageblock_migratetype(page);
fef903ef 2463
3bc48f96
VB
2464 /*
2465 * This can happen due to races and we want to prevent broken
2466 * highatomic accounting.
2467 */
02aa0cdd 2468 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2469 goto single_page;
2470
fef903ef
SB
2471 /* Take ownership for orders >= pageblock_order */
2472 if (current_order >= pageblock_order) {
2473 change_pageblock_range(page, current_order, start_type);
3bc48f96 2474 goto single_page;
fef903ef
SB
2475 }
2476
1c30844d
MG
2477 /*
2478 * Boost watermarks to increase reclaim pressure to reduce the
2479 * likelihood of future fallbacks. Wake kswapd now as the node
2480 * may be balanced overall and kswapd will not wake naturally.
2481 */
2482 boost_watermark(zone);
2483 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2484 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2485
3bc48f96
VB
2486 /* We are not allowed to try stealing from the whole block */
2487 if (!whole_block)
2488 goto single_page;
2489
02aa0cdd
VB
2490 free_pages = move_freepages_block(zone, page, start_type,
2491 &movable_pages);
2492 /*
2493 * Determine how many pages are compatible with our allocation.
2494 * For movable allocation, it's the number of movable pages which
2495 * we just obtained. For other types it's a bit more tricky.
2496 */
2497 if (start_type == MIGRATE_MOVABLE) {
2498 alike_pages = movable_pages;
2499 } else {
2500 /*
2501 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2502 * to MOVABLE pageblock, consider all non-movable pages as
2503 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2504 * vice versa, be conservative since we can't distinguish the
2505 * exact migratetype of non-movable pages.
2506 */
2507 if (old_block_type == MIGRATE_MOVABLE)
2508 alike_pages = pageblock_nr_pages
2509 - (free_pages + movable_pages);
2510 else
2511 alike_pages = 0;
2512 }
2513
3bc48f96 2514 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2515 if (!free_pages)
3bc48f96 2516 goto single_page;
fef903ef 2517
02aa0cdd
VB
2518 /*
2519 * If a sufficient number of pages in the block are either free or of
2520 * comparable migratability as our allocation, claim the whole block.
2521 */
2522 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2523 page_group_by_mobility_disabled)
2524 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2525
2526 return;
2527
2528single_page:
6ab01363 2529 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2530}
2531
2149cdae
JK
2532/*
2533 * Check whether there is a suitable fallback freepage with requested order.
2534 * If only_stealable is true, this function returns fallback_mt only if
2535 * we can steal other freepages all together. This would help to reduce
2536 * fragmentation due to mixed migratetype pages in one pageblock.
2537 */
2538int find_suitable_fallback(struct free_area *area, unsigned int order,
2539 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2540{
2541 int i;
2542 int fallback_mt;
2543
2544 if (area->nr_free == 0)
2545 return -1;
2546
2547 *can_steal = false;
2548 for (i = 0;; i++) {
2549 fallback_mt = fallbacks[migratetype][i];
974a786e 2550 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2551 break;
2552
b03641af 2553 if (free_area_empty(area, fallback_mt))
4eb7dce6 2554 continue;
fef903ef 2555
4eb7dce6
JK
2556 if (can_steal_fallback(order, migratetype))
2557 *can_steal = true;
2558
2149cdae
JK
2559 if (!only_stealable)
2560 return fallback_mt;
2561
2562 if (*can_steal)
2563 return fallback_mt;
fef903ef 2564 }
4eb7dce6
JK
2565
2566 return -1;
fef903ef
SB
2567}
2568
0aaa29a5
MG
2569/*
2570 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2571 * there are no empty page blocks that contain a page with a suitable order
2572 */
2573static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2574 unsigned int alloc_order)
2575{
2576 int mt;
2577 unsigned long max_managed, flags;
2578
2579 /*
2580 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2581 * Check is race-prone but harmless.
2582 */
9705bea5 2583 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2584 if (zone->nr_reserved_highatomic >= max_managed)
2585 return;
2586
2587 spin_lock_irqsave(&zone->lock, flags);
2588
2589 /* Recheck the nr_reserved_highatomic limit under the lock */
2590 if (zone->nr_reserved_highatomic >= max_managed)
2591 goto out_unlock;
2592
2593 /* Yoink! */
2594 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2595 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2596 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2597 zone->nr_reserved_highatomic += pageblock_nr_pages;
2598 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2599 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2600 }
2601
2602out_unlock:
2603 spin_unlock_irqrestore(&zone->lock, flags);
2604}
2605
2606/*
2607 * Used when an allocation is about to fail under memory pressure. This
2608 * potentially hurts the reliability of high-order allocations when under
2609 * intense memory pressure but failed atomic allocations should be easier
2610 * to recover from than an OOM.
29fac03b
MK
2611 *
2612 * If @force is true, try to unreserve a pageblock even though highatomic
2613 * pageblock is exhausted.
0aaa29a5 2614 */
29fac03b
MK
2615static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2616 bool force)
0aaa29a5
MG
2617{
2618 struct zonelist *zonelist = ac->zonelist;
2619 unsigned long flags;
2620 struct zoneref *z;
2621 struct zone *zone;
2622 struct page *page;
2623 int order;
04c8716f 2624 bool ret;
0aaa29a5 2625
97a225e6 2626 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2627 ac->nodemask) {
29fac03b
MK
2628 /*
2629 * Preserve at least one pageblock unless memory pressure
2630 * is really high.
2631 */
2632 if (!force && zone->nr_reserved_highatomic <=
2633 pageblock_nr_pages)
0aaa29a5
MG
2634 continue;
2635
2636 spin_lock_irqsave(&zone->lock, flags);
2637 for (order = 0; order < MAX_ORDER; order++) {
2638 struct free_area *area = &(zone->free_area[order]);
2639
b03641af 2640 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2641 if (!page)
0aaa29a5
MG
2642 continue;
2643
0aaa29a5 2644 /*
4855e4a7
MK
2645 * In page freeing path, migratetype change is racy so
2646 * we can counter several free pages in a pageblock
2647 * in this loop althoug we changed the pageblock type
2648 * from highatomic to ac->migratetype. So we should
2649 * adjust the count once.
0aaa29a5 2650 */
a6ffdc07 2651 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2652 /*
2653 * It should never happen but changes to
2654 * locking could inadvertently allow a per-cpu
2655 * drain to add pages to MIGRATE_HIGHATOMIC
2656 * while unreserving so be safe and watch for
2657 * underflows.
2658 */
2659 zone->nr_reserved_highatomic -= min(
2660 pageblock_nr_pages,
2661 zone->nr_reserved_highatomic);
2662 }
0aaa29a5
MG
2663
2664 /*
2665 * Convert to ac->migratetype and avoid the normal
2666 * pageblock stealing heuristics. Minimally, the caller
2667 * is doing the work and needs the pages. More
2668 * importantly, if the block was always converted to
2669 * MIGRATE_UNMOVABLE or another type then the number
2670 * of pageblocks that cannot be completely freed
2671 * may increase.
2672 */
2673 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2674 ret = move_freepages_block(zone, page, ac->migratetype,
2675 NULL);
29fac03b
MK
2676 if (ret) {
2677 spin_unlock_irqrestore(&zone->lock, flags);
2678 return ret;
2679 }
0aaa29a5
MG
2680 }
2681 spin_unlock_irqrestore(&zone->lock, flags);
2682 }
04c8716f
MK
2683
2684 return false;
0aaa29a5
MG
2685}
2686
3bc48f96
VB
2687/*
2688 * Try finding a free buddy page on the fallback list and put it on the free
2689 * list of requested migratetype, possibly along with other pages from the same
2690 * block, depending on fragmentation avoidance heuristics. Returns true if
2691 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2692 *
2693 * The use of signed ints for order and current_order is a deliberate
2694 * deviation from the rest of this file, to make the for loop
2695 * condition simpler.
3bc48f96 2696 */
85ccc8fa 2697static __always_inline bool
6bb15450
MG
2698__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2699 unsigned int alloc_flags)
b2a0ac88 2700{
b8af2941 2701 struct free_area *area;
b002529d 2702 int current_order;
6bb15450 2703 int min_order = order;
b2a0ac88 2704 struct page *page;
4eb7dce6
JK
2705 int fallback_mt;
2706 bool can_steal;
b2a0ac88 2707
6bb15450
MG
2708 /*
2709 * Do not steal pages from freelists belonging to other pageblocks
2710 * i.e. orders < pageblock_order. If there are no local zones free,
2711 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2712 */
2713 if (alloc_flags & ALLOC_NOFRAGMENT)
2714 min_order = pageblock_order;
2715
7a8f58f3
VB
2716 /*
2717 * Find the largest available free page in the other list. This roughly
2718 * approximates finding the pageblock with the most free pages, which
2719 * would be too costly to do exactly.
2720 */
6bb15450 2721 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2722 --current_order) {
4eb7dce6
JK
2723 area = &(zone->free_area[current_order]);
2724 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2725 start_migratetype, false, &can_steal);
4eb7dce6
JK
2726 if (fallback_mt == -1)
2727 continue;
b2a0ac88 2728
7a8f58f3
VB
2729 /*
2730 * We cannot steal all free pages from the pageblock and the
2731 * requested migratetype is movable. In that case it's better to
2732 * steal and split the smallest available page instead of the
2733 * largest available page, because even if the next movable
2734 * allocation falls back into a different pageblock than this
2735 * one, it won't cause permanent fragmentation.
2736 */
2737 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2738 && current_order > order)
2739 goto find_smallest;
b2a0ac88 2740
7a8f58f3
VB
2741 goto do_steal;
2742 }
e0fff1bd 2743
7a8f58f3 2744 return false;
e0fff1bd 2745
7a8f58f3
VB
2746find_smallest:
2747 for (current_order = order; current_order < MAX_ORDER;
2748 current_order++) {
2749 area = &(zone->free_area[current_order]);
2750 fallback_mt = find_suitable_fallback(area, current_order,
2751 start_migratetype, false, &can_steal);
2752 if (fallback_mt != -1)
2753 break;
b2a0ac88
MG
2754 }
2755
7a8f58f3
VB
2756 /*
2757 * This should not happen - we already found a suitable fallback
2758 * when looking for the largest page.
2759 */
2760 VM_BUG_ON(current_order == MAX_ORDER);
2761
2762do_steal:
b03641af 2763 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2764
1c30844d
MG
2765 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2766 can_steal);
7a8f58f3
VB
2767
2768 trace_mm_page_alloc_extfrag(page, order, current_order,
2769 start_migratetype, fallback_mt);
2770
2771 return true;
2772
b2a0ac88
MG
2773}
2774
56fd56b8 2775/*
1da177e4
LT
2776 * Do the hard work of removing an element from the buddy allocator.
2777 * Call me with the zone->lock already held.
2778 */
85ccc8fa 2779static __always_inline struct page *
6bb15450
MG
2780__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2781 unsigned int alloc_flags)
1da177e4 2782{
1da177e4
LT
2783 struct page *page;
2784
16867664
RG
2785#ifdef CONFIG_CMA
2786 /*
2787 * Balance movable allocations between regular and CMA areas by
2788 * allocating from CMA when over half of the zone's free memory
2789 * is in the CMA area.
2790 */
2791 if (migratetype == MIGRATE_MOVABLE &&
2792 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2793 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2794 page = __rmqueue_cma_fallback(zone, order);
2795 if (page)
2796 return page;
2797 }
2798#endif
3bc48f96 2799retry:
56fd56b8 2800 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2801 if (unlikely(!page)) {
dc67647b
JK
2802 if (migratetype == MIGRATE_MOVABLE)
2803 page = __rmqueue_cma_fallback(zone, order);
2804
6bb15450
MG
2805 if (!page && __rmqueue_fallback(zone, order, migratetype,
2806 alloc_flags))
3bc48f96 2807 goto retry;
728ec980
MG
2808 }
2809
0d3d062a 2810 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2811 return page;
1da177e4
LT
2812}
2813
5f63b720 2814/*
1da177e4
LT
2815 * Obtain a specified number of elements from the buddy allocator, all under
2816 * a single hold of the lock, for efficiency. Add them to the supplied list.
2817 * Returns the number of new pages which were placed at *list.
2818 */
5f63b720 2819static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2820 unsigned long count, struct list_head *list,
6bb15450 2821 int migratetype, unsigned int alloc_flags)
1da177e4 2822{
a6de734b 2823 int i, alloced = 0;
5f63b720 2824
d34b0733 2825 spin_lock(&zone->lock);
1da177e4 2826 for (i = 0; i < count; ++i) {
6bb15450
MG
2827 struct page *page = __rmqueue(zone, order, migratetype,
2828 alloc_flags);
085cc7d5 2829 if (unlikely(page == NULL))
1da177e4 2830 break;
81eabcbe 2831
479f854a
MG
2832 if (unlikely(check_pcp_refill(page)))
2833 continue;
2834
81eabcbe 2835 /*
0fac3ba5
VB
2836 * Split buddy pages returned by expand() are received here in
2837 * physical page order. The page is added to the tail of
2838 * caller's list. From the callers perspective, the linked list
2839 * is ordered by page number under some conditions. This is
2840 * useful for IO devices that can forward direction from the
2841 * head, thus also in the physical page order. This is useful
2842 * for IO devices that can merge IO requests if the physical
2843 * pages are ordered properly.
81eabcbe 2844 */
0fac3ba5 2845 list_add_tail(&page->lru, list);
a6de734b 2846 alloced++;
bb14c2c7 2847 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2848 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2849 -(1 << order));
1da177e4 2850 }
a6de734b
MG
2851
2852 /*
2853 * i pages were removed from the buddy list even if some leak due
2854 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2855 * on i. Do not confuse with 'alloced' which is the number of
2856 * pages added to the pcp list.
2857 */
f2260e6b 2858 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2859 spin_unlock(&zone->lock);
a6de734b 2860 return alloced;
1da177e4
LT
2861}
2862
4ae7c039 2863#ifdef CONFIG_NUMA
8fce4d8e 2864/*
4037d452
CL
2865 * Called from the vmstat counter updater to drain pagesets of this
2866 * currently executing processor on remote nodes after they have
2867 * expired.
2868 *
879336c3
CL
2869 * Note that this function must be called with the thread pinned to
2870 * a single processor.
8fce4d8e 2871 */
4037d452 2872void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2873{
4ae7c039 2874 unsigned long flags;
7be12fc9 2875 int to_drain, batch;
4ae7c039 2876
4037d452 2877 local_irq_save(flags);
4db0c3c2 2878 batch = READ_ONCE(pcp->batch);
7be12fc9 2879 to_drain = min(pcp->count, batch);
77ba9062 2880 if (to_drain > 0)
2a13515c 2881 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2882 local_irq_restore(flags);
4ae7c039
CL
2883}
2884#endif
2885
9f8f2172 2886/*
93481ff0 2887 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2888 *
2889 * The processor must either be the current processor and the
2890 * thread pinned to the current processor or a processor that
2891 * is not online.
2892 */
93481ff0 2893static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2894{
c54ad30c 2895 unsigned long flags;
93481ff0
VB
2896 struct per_cpu_pageset *pset;
2897 struct per_cpu_pages *pcp;
1da177e4 2898
93481ff0
VB
2899 local_irq_save(flags);
2900 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2901
93481ff0 2902 pcp = &pset->pcp;
77ba9062 2903 if (pcp->count)
93481ff0 2904 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2905 local_irq_restore(flags);
2906}
3dfa5721 2907
93481ff0
VB
2908/*
2909 * Drain pcplists of all zones on the indicated processor.
2910 *
2911 * The processor must either be the current processor and the
2912 * thread pinned to the current processor or a processor that
2913 * is not online.
2914 */
2915static void drain_pages(unsigned int cpu)
2916{
2917 struct zone *zone;
2918
2919 for_each_populated_zone(zone) {
2920 drain_pages_zone(cpu, zone);
1da177e4
LT
2921 }
2922}
1da177e4 2923
9f8f2172
CL
2924/*
2925 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2926 *
2927 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2928 * the single zone's pages.
9f8f2172 2929 */
93481ff0 2930void drain_local_pages(struct zone *zone)
9f8f2172 2931{
93481ff0
VB
2932 int cpu = smp_processor_id();
2933
2934 if (zone)
2935 drain_pages_zone(cpu, zone);
2936 else
2937 drain_pages(cpu);
9f8f2172
CL
2938}
2939
0ccce3b9
MG
2940static void drain_local_pages_wq(struct work_struct *work)
2941{
d9367bd0
WY
2942 struct pcpu_drain *drain;
2943
2944 drain = container_of(work, struct pcpu_drain, work);
2945
a459eeb7
MH
2946 /*
2947 * drain_all_pages doesn't use proper cpu hotplug protection so
2948 * we can race with cpu offline when the WQ can move this from
2949 * a cpu pinned worker to an unbound one. We can operate on a different
2950 * cpu which is allright but we also have to make sure to not move to
2951 * a different one.
2952 */
2953 preempt_disable();
d9367bd0 2954 drain_local_pages(drain->zone);
a459eeb7 2955 preempt_enable();
0ccce3b9
MG
2956}
2957
9f8f2172 2958/*
74046494
GBY
2959 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2960 *
93481ff0
VB
2961 * When zone parameter is non-NULL, spill just the single zone's pages.
2962 *
0ccce3b9 2963 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2964 */
93481ff0 2965void drain_all_pages(struct zone *zone)
9f8f2172 2966{
74046494 2967 int cpu;
74046494
GBY
2968
2969 /*
2970 * Allocate in the BSS so we wont require allocation in
2971 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2972 */
2973 static cpumask_t cpus_with_pcps;
2974
ce612879
MH
2975 /*
2976 * Make sure nobody triggers this path before mm_percpu_wq is fully
2977 * initialized.
2978 */
2979 if (WARN_ON_ONCE(!mm_percpu_wq))
2980 return;
2981
bd233f53
MG
2982 /*
2983 * Do not drain if one is already in progress unless it's specific to
2984 * a zone. Such callers are primarily CMA and memory hotplug and need
2985 * the drain to be complete when the call returns.
2986 */
2987 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2988 if (!zone)
2989 return;
2990 mutex_lock(&pcpu_drain_mutex);
2991 }
0ccce3b9 2992
74046494
GBY
2993 /*
2994 * We don't care about racing with CPU hotplug event
2995 * as offline notification will cause the notified
2996 * cpu to drain that CPU pcps and on_each_cpu_mask
2997 * disables preemption as part of its processing
2998 */
2999 for_each_online_cpu(cpu) {
93481ff0
VB
3000 struct per_cpu_pageset *pcp;
3001 struct zone *z;
74046494 3002 bool has_pcps = false;
93481ff0
VB
3003
3004 if (zone) {
74046494 3005 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3006 if (pcp->pcp.count)
74046494 3007 has_pcps = true;
93481ff0
VB
3008 } else {
3009 for_each_populated_zone(z) {
3010 pcp = per_cpu_ptr(z->pageset, cpu);
3011 if (pcp->pcp.count) {
3012 has_pcps = true;
3013 break;
3014 }
74046494
GBY
3015 }
3016 }
93481ff0 3017
74046494
GBY
3018 if (has_pcps)
3019 cpumask_set_cpu(cpu, &cpus_with_pcps);
3020 else
3021 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3022 }
0ccce3b9 3023
bd233f53 3024 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3025 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3026
3027 drain->zone = zone;
3028 INIT_WORK(&drain->work, drain_local_pages_wq);
3029 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3030 }
bd233f53 3031 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3032 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3033
3034 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3035}
3036
296699de 3037#ifdef CONFIG_HIBERNATION
1da177e4 3038
556b969a
CY
3039/*
3040 * Touch the watchdog for every WD_PAGE_COUNT pages.
3041 */
3042#define WD_PAGE_COUNT (128*1024)
3043
1da177e4
LT
3044void mark_free_pages(struct zone *zone)
3045{
556b969a 3046 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3047 unsigned long flags;
7aeb09f9 3048 unsigned int order, t;
86760a2c 3049 struct page *page;
1da177e4 3050
8080fc03 3051 if (zone_is_empty(zone))
1da177e4
LT
3052 return;
3053
3054 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3055
108bcc96 3056 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3057 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3058 if (pfn_valid(pfn)) {
86760a2c 3059 page = pfn_to_page(pfn);
ba6b0979 3060
556b969a
CY
3061 if (!--page_count) {
3062 touch_nmi_watchdog();
3063 page_count = WD_PAGE_COUNT;
3064 }
3065
ba6b0979
JK
3066 if (page_zone(page) != zone)
3067 continue;
3068
7be98234
RW
3069 if (!swsusp_page_is_forbidden(page))
3070 swsusp_unset_page_free(page);
f623f0db 3071 }
1da177e4 3072
b2a0ac88 3073 for_each_migratetype_order(order, t) {
86760a2c
GT
3074 list_for_each_entry(page,
3075 &zone->free_area[order].free_list[t], lru) {
f623f0db 3076 unsigned long i;
1da177e4 3077
86760a2c 3078 pfn = page_to_pfn(page);
556b969a
CY
3079 for (i = 0; i < (1UL << order); i++) {
3080 if (!--page_count) {
3081 touch_nmi_watchdog();
3082 page_count = WD_PAGE_COUNT;
3083 }
7be98234 3084 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3085 }
f623f0db 3086 }
b2a0ac88 3087 }
1da177e4
LT
3088 spin_unlock_irqrestore(&zone->lock, flags);
3089}
e2c55dc8 3090#endif /* CONFIG_PM */
1da177e4 3091
2d4894b5 3092static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3093{
5f8dcc21 3094 int migratetype;
1da177e4 3095
4db7548c 3096 if (!free_pcp_prepare(page))
9cca35d4 3097 return false;
689bcebf 3098
dc4b0caf 3099 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3100 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3101 return true;
3102}
3103
2d4894b5 3104static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3105{
3106 struct zone *zone = page_zone(page);
3107 struct per_cpu_pages *pcp;
3108 int migratetype;
3109
3110 migratetype = get_pcppage_migratetype(page);
d34b0733 3111 __count_vm_event(PGFREE);
da456f14 3112
5f8dcc21
MG
3113 /*
3114 * We only track unmovable, reclaimable and movable on pcp lists.
3115 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3116 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3117 * areas back if necessary. Otherwise, we may have to free
3118 * excessively into the page allocator
3119 */
3120 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3121 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3122 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3123 return;
5f8dcc21
MG
3124 }
3125 migratetype = MIGRATE_MOVABLE;
3126 }
3127
99dcc3e5 3128 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3129 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3130 pcp->count++;
48db57f8 3131 if (pcp->count >= pcp->high) {
4db0c3c2 3132 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3133 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3134 }
9cca35d4 3135}
5f8dcc21 3136
9cca35d4
MG
3137/*
3138 * Free a 0-order page
9cca35d4 3139 */
2d4894b5 3140void free_unref_page(struct page *page)
9cca35d4
MG
3141{
3142 unsigned long flags;
3143 unsigned long pfn = page_to_pfn(page);
3144
2d4894b5 3145 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3146 return;
3147
3148 local_irq_save(flags);
2d4894b5 3149 free_unref_page_commit(page, pfn);
d34b0733 3150 local_irq_restore(flags);
1da177e4
LT
3151}
3152
cc59850e
KK
3153/*
3154 * Free a list of 0-order pages
3155 */
2d4894b5 3156void free_unref_page_list(struct list_head *list)
cc59850e
KK
3157{
3158 struct page *page, *next;
9cca35d4 3159 unsigned long flags, pfn;
c24ad77d 3160 int batch_count = 0;
9cca35d4
MG
3161
3162 /* Prepare pages for freeing */
3163 list_for_each_entry_safe(page, next, list, lru) {
3164 pfn = page_to_pfn(page);
2d4894b5 3165 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3166 list_del(&page->lru);
3167 set_page_private(page, pfn);
3168 }
cc59850e 3169
9cca35d4 3170 local_irq_save(flags);
cc59850e 3171 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3172 unsigned long pfn = page_private(page);
3173
3174 set_page_private(page, 0);
2d4894b5
MG
3175 trace_mm_page_free_batched(page);
3176 free_unref_page_commit(page, pfn);
c24ad77d
LS
3177
3178 /*
3179 * Guard against excessive IRQ disabled times when we get
3180 * a large list of pages to free.
3181 */
3182 if (++batch_count == SWAP_CLUSTER_MAX) {
3183 local_irq_restore(flags);
3184 batch_count = 0;
3185 local_irq_save(flags);
3186 }
cc59850e 3187 }
9cca35d4 3188 local_irq_restore(flags);
cc59850e
KK
3189}
3190
8dfcc9ba
NP
3191/*
3192 * split_page takes a non-compound higher-order page, and splits it into
3193 * n (1<<order) sub-pages: page[0..n]
3194 * Each sub-page must be freed individually.
3195 *
3196 * Note: this is probably too low level an operation for use in drivers.
3197 * Please consult with lkml before using this in your driver.
3198 */
3199void split_page(struct page *page, unsigned int order)
3200{
3201 int i;
3202
309381fe
SL
3203 VM_BUG_ON_PAGE(PageCompound(page), page);
3204 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3205
a9627bc5 3206 for (i = 1; i < (1 << order); i++)
7835e98b 3207 set_page_refcounted(page + i);
a9627bc5 3208 split_page_owner(page, order);
8dfcc9ba 3209}
5853ff23 3210EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3211
3c605096 3212int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3213{
748446bb
MG
3214 unsigned long watermark;
3215 struct zone *zone;
2139cbe6 3216 int mt;
748446bb
MG
3217
3218 BUG_ON(!PageBuddy(page));
3219
3220 zone = page_zone(page);
2e30abd1 3221 mt = get_pageblock_migratetype(page);
748446bb 3222
194159fb 3223 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3224 /*
3225 * Obey watermarks as if the page was being allocated. We can
3226 * emulate a high-order watermark check with a raised order-0
3227 * watermark, because we already know our high-order page
3228 * exists.
3229 */
fd1444b2 3230 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3231 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3232 return 0;
3233
8fb74b9f 3234 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3235 }
748446bb
MG
3236
3237 /* Remove page from free list */
b03641af 3238
6ab01363 3239 del_page_from_free_list(page, zone, order);
2139cbe6 3240
400bc7fd 3241 /*
3242 * Set the pageblock if the isolated page is at least half of a
3243 * pageblock
3244 */
748446bb
MG
3245 if (order >= pageblock_order - 1) {
3246 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3247 for (; page < endpage; page += pageblock_nr_pages) {
3248 int mt = get_pageblock_migratetype(page);
88ed365e 3249 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3250 && !is_migrate_highatomic(mt))
47118af0
MN
3251 set_pageblock_migratetype(page,
3252 MIGRATE_MOVABLE);
3253 }
748446bb
MG
3254 }
3255
f3a14ced 3256
8fb74b9f 3257 return 1UL << order;
1fb3f8ca
MG
3258}
3259
624f58d8
AD
3260/**
3261 * __putback_isolated_page - Return a now-isolated page back where we got it
3262 * @page: Page that was isolated
3263 * @order: Order of the isolated page
e6a0a7ad 3264 * @mt: The page's pageblock's migratetype
624f58d8
AD
3265 *
3266 * This function is meant to return a page pulled from the free lists via
3267 * __isolate_free_page back to the free lists they were pulled from.
3268 */
3269void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3270{
3271 struct zone *zone = page_zone(page);
3272
3273 /* zone lock should be held when this function is called */
3274 lockdep_assert_held(&zone->lock);
3275
3276 /* Return isolated page to tail of freelist. */
36e66c55 3277 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3278}
3279
060e7417
MG
3280/*
3281 * Update NUMA hit/miss statistics
3282 *
3283 * Must be called with interrupts disabled.
060e7417 3284 */
41b6167e 3285static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3286{
3287#ifdef CONFIG_NUMA
3a321d2a 3288 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3289
4518085e
KW
3290 /* skip numa counters update if numa stats is disabled */
3291 if (!static_branch_likely(&vm_numa_stat_key))
3292 return;
3293
c1093b74 3294 if (zone_to_nid(z) != numa_node_id())
060e7417 3295 local_stat = NUMA_OTHER;
060e7417 3296
c1093b74 3297 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3298 __inc_numa_state(z, NUMA_HIT);
2df26639 3299 else {
3a321d2a
KW
3300 __inc_numa_state(z, NUMA_MISS);
3301 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3302 }
3a321d2a 3303 __inc_numa_state(z, local_stat);
060e7417
MG
3304#endif
3305}
3306
066b2393
MG
3307/* Remove page from the per-cpu list, caller must protect the list */
3308static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3309 unsigned int alloc_flags,
453f85d4 3310 struct per_cpu_pages *pcp,
066b2393
MG
3311 struct list_head *list)
3312{
3313 struct page *page;
3314
3315 do {
3316 if (list_empty(list)) {
3317 pcp->count += rmqueue_bulk(zone, 0,
3318 pcp->batch, list,
6bb15450 3319 migratetype, alloc_flags);
066b2393
MG
3320 if (unlikely(list_empty(list)))
3321 return NULL;
3322 }
3323
453f85d4 3324 page = list_first_entry(list, struct page, lru);
066b2393
MG
3325 list_del(&page->lru);
3326 pcp->count--;
3327 } while (check_new_pcp(page));
3328
3329 return page;
3330}
3331
3332/* Lock and remove page from the per-cpu list */
3333static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3334 struct zone *zone, gfp_t gfp_flags,
3335 int migratetype, unsigned int alloc_flags)
066b2393
MG
3336{
3337 struct per_cpu_pages *pcp;
3338 struct list_head *list;
066b2393 3339 struct page *page;
d34b0733 3340 unsigned long flags;
066b2393 3341
d34b0733 3342 local_irq_save(flags);
066b2393
MG
3343 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3344 list = &pcp->lists[migratetype];
6bb15450 3345 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3346 if (page) {
1c52e6d0 3347 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3348 zone_statistics(preferred_zone, zone);
3349 }
d34b0733 3350 local_irq_restore(flags);
066b2393
MG
3351 return page;
3352}
3353
1da177e4 3354/*
75379191 3355 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3356 */
0a15c3e9 3357static inline
066b2393 3358struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3359 struct zone *zone, unsigned int order,
c603844b
MG
3360 gfp_t gfp_flags, unsigned int alloc_flags,
3361 int migratetype)
1da177e4
LT
3362{
3363 unsigned long flags;
689bcebf 3364 struct page *page;
1da177e4 3365
d34b0733 3366 if (likely(order == 0)) {
1c52e6d0
YS
3367 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3368 migratetype, alloc_flags);
066b2393
MG
3369 goto out;
3370 }
83b9355b 3371
066b2393
MG
3372 /*
3373 * We most definitely don't want callers attempting to
3374 * allocate greater than order-1 page units with __GFP_NOFAIL.
3375 */
3376 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3377 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3378
066b2393
MG
3379 do {
3380 page = NULL;
3381 if (alloc_flags & ALLOC_HARDER) {
3382 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3383 if (page)
3384 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3385 }
a74609fa 3386 if (!page)
6bb15450 3387 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3388 } while (page && check_new_pages(page, order));
3389 spin_unlock(&zone->lock);
3390 if (!page)
3391 goto failed;
3392 __mod_zone_freepage_state(zone, -(1 << order),
3393 get_pcppage_migratetype(page));
1da177e4 3394
16709d1d 3395 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3396 zone_statistics(preferred_zone, zone);
a74609fa 3397 local_irq_restore(flags);
1da177e4 3398
066b2393 3399out:
73444bc4
MG
3400 /* Separate test+clear to avoid unnecessary atomics */
3401 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3402 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3403 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3404 }
3405
066b2393 3406 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3407 return page;
a74609fa
NP
3408
3409failed:
3410 local_irq_restore(flags);
a74609fa 3411 return NULL;
1da177e4
LT
3412}
3413
933e312e
AM
3414#ifdef CONFIG_FAIL_PAGE_ALLOC
3415
b2588c4b 3416static struct {
933e312e
AM
3417 struct fault_attr attr;
3418
621a5f7a 3419 bool ignore_gfp_highmem;
71baba4b 3420 bool ignore_gfp_reclaim;
54114994 3421 u32 min_order;
933e312e
AM
3422} fail_page_alloc = {
3423 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3424 .ignore_gfp_reclaim = true,
621a5f7a 3425 .ignore_gfp_highmem = true,
54114994 3426 .min_order = 1,
933e312e
AM
3427};
3428
3429static int __init setup_fail_page_alloc(char *str)
3430{
3431 return setup_fault_attr(&fail_page_alloc.attr, str);
3432}
3433__setup("fail_page_alloc=", setup_fail_page_alloc);
3434
af3b8544 3435static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3436{
54114994 3437 if (order < fail_page_alloc.min_order)
deaf386e 3438 return false;
933e312e 3439 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3440 return false;
933e312e 3441 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3442 return false;
71baba4b
MG
3443 if (fail_page_alloc.ignore_gfp_reclaim &&
3444 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3445 return false;
933e312e
AM
3446
3447 return should_fail(&fail_page_alloc.attr, 1 << order);
3448}
3449
3450#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3451
3452static int __init fail_page_alloc_debugfs(void)
3453{
0825a6f9 3454 umode_t mode = S_IFREG | 0600;
933e312e 3455 struct dentry *dir;
933e312e 3456
dd48c085
AM
3457 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3458 &fail_page_alloc.attr);
b2588c4b 3459
d9f7979c
GKH
3460 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3461 &fail_page_alloc.ignore_gfp_reclaim);
3462 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3463 &fail_page_alloc.ignore_gfp_highmem);
3464 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3465
d9f7979c 3466 return 0;
933e312e
AM
3467}
3468
3469late_initcall(fail_page_alloc_debugfs);
3470
3471#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3472
3473#else /* CONFIG_FAIL_PAGE_ALLOC */
3474
af3b8544 3475static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3476{
deaf386e 3477 return false;
933e312e
AM
3478}
3479
3480#endif /* CONFIG_FAIL_PAGE_ALLOC */
3481
af3b8544
BP
3482static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3483{
3484 return __should_fail_alloc_page(gfp_mask, order);
3485}
3486ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3487
f27ce0e1
JK
3488static inline long __zone_watermark_unusable_free(struct zone *z,
3489 unsigned int order, unsigned int alloc_flags)
3490{
3491 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3492 long unusable_free = (1 << order) - 1;
3493
3494 /*
3495 * If the caller does not have rights to ALLOC_HARDER then subtract
3496 * the high-atomic reserves. This will over-estimate the size of the
3497 * atomic reserve but it avoids a search.
3498 */
3499 if (likely(!alloc_harder))
3500 unusable_free += z->nr_reserved_highatomic;
3501
3502#ifdef CONFIG_CMA
3503 /* If allocation can't use CMA areas don't use free CMA pages */
3504 if (!(alloc_flags & ALLOC_CMA))
3505 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3506#endif
3507
3508 return unusable_free;
3509}
3510
1da177e4 3511/*
97a16fc8
MG
3512 * Return true if free base pages are above 'mark'. For high-order checks it
3513 * will return true of the order-0 watermark is reached and there is at least
3514 * one free page of a suitable size. Checking now avoids taking the zone lock
3515 * to check in the allocation paths if no pages are free.
1da177e4 3516 */
86a294a8 3517bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3518 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3519 long free_pages)
1da177e4 3520{
d23ad423 3521 long min = mark;
1da177e4 3522 int o;
cd04ae1e 3523 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3524
0aaa29a5 3525 /* free_pages may go negative - that's OK */
f27ce0e1 3526 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3527
7fb1d9fc 3528 if (alloc_flags & ALLOC_HIGH)
1da177e4 3529 min -= min / 2;
0aaa29a5 3530
f27ce0e1 3531 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3532 /*
3533 * OOM victims can try even harder than normal ALLOC_HARDER
3534 * users on the grounds that it's definitely going to be in
3535 * the exit path shortly and free memory. Any allocation it
3536 * makes during the free path will be small and short-lived.
3537 */
3538 if (alloc_flags & ALLOC_OOM)
3539 min -= min / 2;
3540 else
3541 min -= min / 4;
3542 }
3543
97a16fc8
MG
3544 /*
3545 * Check watermarks for an order-0 allocation request. If these
3546 * are not met, then a high-order request also cannot go ahead
3547 * even if a suitable page happened to be free.
3548 */
97a225e6 3549 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3550 return false;
1da177e4 3551
97a16fc8
MG
3552 /* If this is an order-0 request then the watermark is fine */
3553 if (!order)
3554 return true;
3555
3556 /* For a high-order request, check at least one suitable page is free */
3557 for (o = order; o < MAX_ORDER; o++) {
3558 struct free_area *area = &z->free_area[o];
3559 int mt;
3560
3561 if (!area->nr_free)
3562 continue;
3563
97a16fc8 3564 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3565 if (!free_area_empty(area, mt))
97a16fc8
MG
3566 return true;
3567 }
3568
3569#ifdef CONFIG_CMA
d883c6cf 3570 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3571 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3572 return true;
d883c6cf 3573 }
97a16fc8 3574#endif
76089d00 3575 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3576 return true;
1da177e4 3577 }
97a16fc8 3578 return false;
88f5acf8
MG
3579}
3580
7aeb09f9 3581bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3582 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3583{
97a225e6 3584 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3585 zone_page_state(z, NR_FREE_PAGES));
3586}
3587
48ee5f36 3588static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3589 unsigned long mark, int highest_zoneidx,
f80b08fc 3590 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3591{
f27ce0e1 3592 long free_pages;
d883c6cf 3593
f27ce0e1 3594 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3595
3596 /*
3597 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3598 * need to be calculated.
48ee5f36 3599 */
f27ce0e1
JK
3600 if (!order) {
3601 long fast_free;
3602
3603 fast_free = free_pages;
3604 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3605 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3606 return true;
3607 }
48ee5f36 3608
f80b08fc
CTR
3609 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3610 free_pages))
3611 return true;
3612 /*
3613 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3614 * when checking the min watermark. The min watermark is the
3615 * point where boosting is ignored so that kswapd is woken up
3616 * when below the low watermark.
3617 */
3618 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3619 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3620 mark = z->_watermark[WMARK_MIN];
3621 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3622 alloc_flags, free_pages);
3623 }
3624
3625 return false;
48ee5f36
MG
3626}
3627
7aeb09f9 3628bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3629 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3630{
3631 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3632
3633 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3634 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3635
97a225e6 3636 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3637 free_pages);
1da177e4
LT
3638}
3639
9276b1bc 3640#ifdef CONFIG_NUMA
957f822a
DR
3641static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3642{
e02dc017 3643 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3644 node_reclaim_distance;
957f822a 3645}
9276b1bc 3646#else /* CONFIG_NUMA */
957f822a
DR
3647static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3648{
3649 return true;
3650}
9276b1bc
PJ
3651#endif /* CONFIG_NUMA */
3652
6bb15450
MG
3653/*
3654 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3655 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3656 * premature use of a lower zone may cause lowmem pressure problems that
3657 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3658 * probably too small. It only makes sense to spread allocations to avoid
3659 * fragmentation between the Normal and DMA32 zones.
3660 */
3661static inline unsigned int
0a79cdad 3662alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3663{
736838e9 3664 unsigned int alloc_flags;
0a79cdad 3665
736838e9
MN
3666 /*
3667 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3668 * to save a branch.
3669 */
3670 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3671
3672#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3673 if (!zone)
3674 return alloc_flags;
3675
6bb15450 3676 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3677 return alloc_flags;
6bb15450
MG
3678
3679 /*
3680 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3681 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3682 * on UMA that if Normal is populated then so is DMA32.
3683 */
3684 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3685 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3686 return alloc_flags;
6bb15450 3687
8118b82e 3688 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3689#endif /* CONFIG_ZONE_DMA32 */
3690 return alloc_flags;
6bb15450 3691}
6bb15450 3692
7fb1d9fc 3693/*
0798e519 3694 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3695 * a page.
3696 */
3697static struct page *
a9263751
VB
3698get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3699 const struct alloc_context *ac)
753ee728 3700{
6bb15450 3701 struct zoneref *z;
5117f45d 3702 struct zone *zone;
3b8c0be4 3703 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3704 bool no_fallback;
3b8c0be4 3705
6bb15450 3706retry:
7fb1d9fc 3707 /*
9276b1bc 3708 * Scan zonelist, looking for a zone with enough free.
344736f2 3709 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3710 */
6bb15450
MG
3711 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3712 z = ac->preferred_zoneref;
97a225e6
JK
3713 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3714 ac->highest_zoneidx, ac->nodemask) {
be06af00 3715 struct page *page;
e085dbc5
JW
3716 unsigned long mark;
3717
664eedde
MG
3718 if (cpusets_enabled() &&
3719 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3720 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3721 continue;
a756cf59
JW
3722 /*
3723 * When allocating a page cache page for writing, we
281e3726
MG
3724 * want to get it from a node that is within its dirty
3725 * limit, such that no single node holds more than its
a756cf59 3726 * proportional share of globally allowed dirty pages.
281e3726 3727 * The dirty limits take into account the node's
a756cf59
JW
3728 * lowmem reserves and high watermark so that kswapd
3729 * should be able to balance it without having to
3730 * write pages from its LRU list.
3731 *
a756cf59 3732 * XXX: For now, allow allocations to potentially
281e3726 3733 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3734 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3735 * which is important when on a NUMA setup the allowed
281e3726 3736 * nodes are together not big enough to reach the
a756cf59 3737 * global limit. The proper fix for these situations
281e3726 3738 * will require awareness of nodes in the
a756cf59
JW
3739 * dirty-throttling and the flusher threads.
3740 */
3b8c0be4
MG
3741 if (ac->spread_dirty_pages) {
3742 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3743 continue;
3744
3745 if (!node_dirty_ok(zone->zone_pgdat)) {
3746 last_pgdat_dirty_limit = zone->zone_pgdat;
3747 continue;
3748 }
3749 }
7fb1d9fc 3750
6bb15450
MG
3751 if (no_fallback && nr_online_nodes > 1 &&
3752 zone != ac->preferred_zoneref->zone) {
3753 int local_nid;
3754
3755 /*
3756 * If moving to a remote node, retry but allow
3757 * fragmenting fallbacks. Locality is more important
3758 * than fragmentation avoidance.
3759 */
3760 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3761 if (zone_to_nid(zone) != local_nid) {
3762 alloc_flags &= ~ALLOC_NOFRAGMENT;
3763 goto retry;
3764 }
3765 }
3766
a9214443 3767 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3768 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3769 ac->highest_zoneidx, alloc_flags,
3770 gfp_mask)) {
fa5e084e
MG
3771 int ret;
3772
c9e97a19
PT
3773#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3774 /*
3775 * Watermark failed for this zone, but see if we can
3776 * grow this zone if it contains deferred pages.
3777 */
3778 if (static_branch_unlikely(&deferred_pages)) {
3779 if (_deferred_grow_zone(zone, order))
3780 goto try_this_zone;
3781 }
3782#endif
5dab2911
MG
3783 /* Checked here to keep the fast path fast */
3784 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3785 if (alloc_flags & ALLOC_NO_WATERMARKS)
3786 goto try_this_zone;
3787
a5f5f91d 3788 if (node_reclaim_mode == 0 ||
c33d6c06 3789 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3790 continue;
3791
a5f5f91d 3792 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3793 switch (ret) {
a5f5f91d 3794 case NODE_RECLAIM_NOSCAN:
fa5e084e 3795 /* did not scan */
cd38b115 3796 continue;
a5f5f91d 3797 case NODE_RECLAIM_FULL:
fa5e084e 3798 /* scanned but unreclaimable */
cd38b115 3799 continue;
fa5e084e
MG
3800 default:
3801 /* did we reclaim enough */
fed2719e 3802 if (zone_watermark_ok(zone, order, mark,
97a225e6 3803 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3804 goto try_this_zone;
3805
fed2719e 3806 continue;
0798e519 3807 }
7fb1d9fc
RS
3808 }
3809
fa5e084e 3810try_this_zone:
066b2393 3811 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3812 gfp_mask, alloc_flags, ac->migratetype);
75379191 3813 if (page) {
479f854a 3814 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3815
3816 /*
3817 * If this is a high-order atomic allocation then check
3818 * if the pageblock should be reserved for the future
3819 */
3820 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3821 reserve_highatomic_pageblock(page, zone, order);
3822
75379191 3823 return page;
c9e97a19
PT
3824 } else {
3825#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3826 /* Try again if zone has deferred pages */
3827 if (static_branch_unlikely(&deferred_pages)) {
3828 if (_deferred_grow_zone(zone, order))
3829 goto try_this_zone;
3830 }
3831#endif
75379191 3832 }
54a6eb5c 3833 }
9276b1bc 3834
6bb15450
MG
3835 /*
3836 * It's possible on a UMA machine to get through all zones that are
3837 * fragmented. If avoiding fragmentation, reset and try again.
3838 */
3839 if (no_fallback) {
3840 alloc_flags &= ~ALLOC_NOFRAGMENT;
3841 goto retry;
3842 }
3843
4ffeaf35 3844 return NULL;
753ee728
MH
3845}
3846
9af744d7 3847static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3848{
a238ab5b 3849 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3850
3851 /*
3852 * This documents exceptions given to allocations in certain
3853 * contexts that are allowed to allocate outside current's set
3854 * of allowed nodes.
3855 */
3856 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3857 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3858 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3859 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3860 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3861 filter &= ~SHOW_MEM_FILTER_NODES;
3862
9af744d7 3863 show_mem(filter, nodemask);
aa187507
MH
3864}
3865
a8e99259 3866void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3867{
3868 struct va_format vaf;
3869 va_list args;
1be334e5 3870 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3871
0f7896f1 3872 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3873 return;
3874
7877cdcc
MH
3875 va_start(args, fmt);
3876 vaf.fmt = fmt;
3877 vaf.va = &args;
ef8444ea 3878 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3879 current->comm, &vaf, gfp_mask, &gfp_mask,
3880 nodemask_pr_args(nodemask));
7877cdcc 3881 va_end(args);
3ee9a4f0 3882
a8e99259 3883 cpuset_print_current_mems_allowed();
ef8444ea 3884 pr_cont("\n");
a238ab5b 3885 dump_stack();
685dbf6f 3886 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3887}
3888
6c18ba7a
MH
3889static inline struct page *
3890__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3891 unsigned int alloc_flags,
3892 const struct alloc_context *ac)
3893{
3894 struct page *page;
3895
3896 page = get_page_from_freelist(gfp_mask, order,
3897 alloc_flags|ALLOC_CPUSET, ac);
3898 /*
3899 * fallback to ignore cpuset restriction if our nodes
3900 * are depleted
3901 */
3902 if (!page)
3903 page = get_page_from_freelist(gfp_mask, order,
3904 alloc_flags, ac);
3905
3906 return page;
3907}
3908
11e33f6a
MG
3909static inline struct page *
3910__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3911 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3912{
6e0fc46d
DR
3913 struct oom_control oc = {
3914 .zonelist = ac->zonelist,
3915 .nodemask = ac->nodemask,
2a966b77 3916 .memcg = NULL,
6e0fc46d
DR
3917 .gfp_mask = gfp_mask,
3918 .order = order,
6e0fc46d 3919 };
11e33f6a
MG
3920 struct page *page;
3921
9879de73
JW
3922 *did_some_progress = 0;
3923
9879de73 3924 /*
dc56401f
JW
3925 * Acquire the oom lock. If that fails, somebody else is
3926 * making progress for us.
9879de73 3927 */
dc56401f 3928 if (!mutex_trylock(&oom_lock)) {
9879de73 3929 *did_some_progress = 1;
11e33f6a 3930 schedule_timeout_uninterruptible(1);
1da177e4
LT
3931 return NULL;
3932 }
6b1de916 3933
11e33f6a
MG
3934 /*
3935 * Go through the zonelist yet one more time, keep very high watermark
3936 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3937 * we're still under heavy pressure. But make sure that this reclaim
3938 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3939 * allocation which will never fail due to oom_lock already held.
11e33f6a 3940 */
e746bf73
TH
3941 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3942 ~__GFP_DIRECT_RECLAIM, order,
3943 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3944 if (page)
11e33f6a
MG
3945 goto out;
3946
06ad276a
MH
3947 /* Coredumps can quickly deplete all memory reserves */
3948 if (current->flags & PF_DUMPCORE)
3949 goto out;
3950 /* The OOM killer will not help higher order allocs */
3951 if (order > PAGE_ALLOC_COSTLY_ORDER)
3952 goto out;
dcda9b04
MH
3953 /*
3954 * We have already exhausted all our reclaim opportunities without any
3955 * success so it is time to admit defeat. We will skip the OOM killer
3956 * because it is very likely that the caller has a more reasonable
3957 * fallback than shooting a random task.
3958 */
3959 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3960 goto out;
06ad276a 3961 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3962 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3963 goto out;
3964 if (pm_suspended_storage())
3965 goto out;
3966 /*
3967 * XXX: GFP_NOFS allocations should rather fail than rely on
3968 * other request to make a forward progress.
3969 * We are in an unfortunate situation where out_of_memory cannot
3970 * do much for this context but let's try it to at least get
3971 * access to memory reserved if the current task is killed (see
3972 * out_of_memory). Once filesystems are ready to handle allocation
3973 * failures more gracefully we should just bail out here.
3974 */
3975
3976 /* The OOM killer may not free memory on a specific node */
3977 if (gfp_mask & __GFP_THISNODE)
3978 goto out;
3da88fb3 3979
3c2c6488 3980 /* Exhausted what can be done so it's blame time */
5020e285 3981 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3982 *did_some_progress = 1;
5020e285 3983
6c18ba7a
MH
3984 /*
3985 * Help non-failing allocations by giving them access to memory
3986 * reserves
3987 */
3988 if (gfp_mask & __GFP_NOFAIL)
3989 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3990 ALLOC_NO_WATERMARKS, ac);
5020e285 3991 }
11e33f6a 3992out:
dc56401f 3993 mutex_unlock(&oom_lock);
11e33f6a
MG
3994 return page;
3995}
3996
33c2d214
MH
3997/*
3998 * Maximum number of compaction retries wit a progress before OOM
3999 * killer is consider as the only way to move forward.
4000 */
4001#define MAX_COMPACT_RETRIES 16
4002
56de7263
MG
4003#ifdef CONFIG_COMPACTION
4004/* Try memory compaction for high-order allocations before reclaim */
4005static struct page *
4006__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4007 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4008 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4009{
5e1f0f09 4010 struct page *page = NULL;
eb414681 4011 unsigned long pflags;
499118e9 4012 unsigned int noreclaim_flag;
53853e2d
VB
4013
4014 if (!order)
66199712 4015 return NULL;
66199712 4016
eb414681 4017 psi_memstall_enter(&pflags);
499118e9 4018 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4019
c5d01d0d 4020 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4021 prio, &page);
eb414681 4022
499118e9 4023 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4024 psi_memstall_leave(&pflags);
56de7263 4025
98dd3b48
VB
4026 /*
4027 * At least in one zone compaction wasn't deferred or skipped, so let's
4028 * count a compaction stall
4029 */
4030 count_vm_event(COMPACTSTALL);
8fb74b9f 4031
5e1f0f09
MG
4032 /* Prep a captured page if available */
4033 if (page)
4034 prep_new_page(page, order, gfp_mask, alloc_flags);
4035
4036 /* Try get a page from the freelist if available */
4037 if (!page)
4038 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4039
98dd3b48
VB
4040 if (page) {
4041 struct zone *zone = page_zone(page);
53853e2d 4042
98dd3b48
VB
4043 zone->compact_blockskip_flush = false;
4044 compaction_defer_reset(zone, order, true);
4045 count_vm_event(COMPACTSUCCESS);
4046 return page;
4047 }
56de7263 4048
98dd3b48
VB
4049 /*
4050 * It's bad if compaction run occurs and fails. The most likely reason
4051 * is that pages exist, but not enough to satisfy watermarks.
4052 */
4053 count_vm_event(COMPACTFAIL);
66199712 4054
98dd3b48 4055 cond_resched();
56de7263
MG
4056
4057 return NULL;
4058}
33c2d214 4059
3250845d
VB
4060static inline bool
4061should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4062 enum compact_result compact_result,
4063 enum compact_priority *compact_priority,
d9436498 4064 int *compaction_retries)
3250845d
VB
4065{
4066 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4067 int min_priority;
65190cff
MH
4068 bool ret = false;
4069 int retries = *compaction_retries;
4070 enum compact_priority priority = *compact_priority;
3250845d
VB
4071
4072 if (!order)
4073 return false;
4074
d9436498
VB
4075 if (compaction_made_progress(compact_result))
4076 (*compaction_retries)++;
4077
3250845d
VB
4078 /*
4079 * compaction considers all the zone as desperately out of memory
4080 * so it doesn't really make much sense to retry except when the
4081 * failure could be caused by insufficient priority
4082 */
d9436498
VB
4083 if (compaction_failed(compact_result))
4084 goto check_priority;
3250845d 4085
49433085
VB
4086 /*
4087 * compaction was skipped because there are not enough order-0 pages
4088 * to work with, so we retry only if it looks like reclaim can help.
4089 */
4090 if (compaction_needs_reclaim(compact_result)) {
4091 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4092 goto out;
4093 }
4094
3250845d
VB
4095 /*
4096 * make sure the compaction wasn't deferred or didn't bail out early
4097 * due to locks contention before we declare that we should give up.
49433085
VB
4098 * But the next retry should use a higher priority if allowed, so
4099 * we don't just keep bailing out endlessly.
3250845d 4100 */
65190cff 4101 if (compaction_withdrawn(compact_result)) {
49433085 4102 goto check_priority;
65190cff 4103 }
3250845d
VB
4104
4105 /*
dcda9b04 4106 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4107 * costly ones because they are de facto nofail and invoke OOM
4108 * killer to move on while costly can fail and users are ready
4109 * to cope with that. 1/4 retries is rather arbitrary but we
4110 * would need much more detailed feedback from compaction to
4111 * make a better decision.
4112 */
4113 if (order > PAGE_ALLOC_COSTLY_ORDER)
4114 max_retries /= 4;
65190cff
MH
4115 if (*compaction_retries <= max_retries) {
4116 ret = true;
4117 goto out;
4118 }
3250845d 4119
d9436498
VB
4120 /*
4121 * Make sure there are attempts at the highest priority if we exhausted
4122 * all retries or failed at the lower priorities.
4123 */
4124check_priority:
c2033b00
VB
4125 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4126 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4127
c2033b00 4128 if (*compact_priority > min_priority) {
d9436498
VB
4129 (*compact_priority)--;
4130 *compaction_retries = 0;
65190cff 4131 ret = true;
d9436498 4132 }
65190cff
MH
4133out:
4134 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4135 return ret;
3250845d 4136}
56de7263
MG
4137#else
4138static inline struct page *
4139__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4140 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4141 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4142{
33c2d214 4143 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4144 return NULL;
4145}
33c2d214
MH
4146
4147static inline bool
86a294a8
MH
4148should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4149 enum compact_result compact_result,
a5508cd8 4150 enum compact_priority *compact_priority,
d9436498 4151 int *compaction_retries)
33c2d214 4152{
31e49bfd
MH
4153 struct zone *zone;
4154 struct zoneref *z;
4155
4156 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4157 return false;
4158
4159 /*
4160 * There are setups with compaction disabled which would prefer to loop
4161 * inside the allocator rather than hit the oom killer prematurely.
4162 * Let's give them a good hope and keep retrying while the order-0
4163 * watermarks are OK.
4164 */
97a225e6
JK
4165 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4166 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4167 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4168 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4169 return true;
4170 }
33c2d214
MH
4171 return false;
4172}
3250845d 4173#endif /* CONFIG_COMPACTION */
56de7263 4174
d92a8cfc 4175#ifdef CONFIG_LOCKDEP
93781325 4176static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4177 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4178
4179static bool __need_fs_reclaim(gfp_t gfp_mask)
4180{
4181 gfp_mask = current_gfp_context(gfp_mask);
4182
4183 /* no reclaim without waiting on it */
4184 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4185 return false;
4186
4187 /* this guy won't enter reclaim */
2e517d68 4188 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4189 return false;
4190
4191 /* We're only interested __GFP_FS allocations for now */
4192 if (!(gfp_mask & __GFP_FS))
4193 return false;
4194
4195 if (gfp_mask & __GFP_NOLOCKDEP)
4196 return false;
4197
4198 return true;
4199}
4200
93781325
OS
4201void __fs_reclaim_acquire(void)
4202{
4203 lock_map_acquire(&__fs_reclaim_map);
4204}
4205
4206void __fs_reclaim_release(void)
4207{
4208 lock_map_release(&__fs_reclaim_map);
4209}
4210
d92a8cfc
PZ
4211void fs_reclaim_acquire(gfp_t gfp_mask)
4212{
4213 if (__need_fs_reclaim(gfp_mask))
93781325 4214 __fs_reclaim_acquire();
d92a8cfc
PZ
4215}
4216EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4217
4218void fs_reclaim_release(gfp_t gfp_mask)
4219{
4220 if (__need_fs_reclaim(gfp_mask))
93781325 4221 __fs_reclaim_release();
d92a8cfc
PZ
4222}
4223EXPORT_SYMBOL_GPL(fs_reclaim_release);
4224#endif
4225
bba90710
MS
4226/* Perform direct synchronous page reclaim */
4227static int
a9263751
VB
4228__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4229 const struct alloc_context *ac)
11e33f6a 4230{
bba90710 4231 int progress;
499118e9 4232 unsigned int noreclaim_flag;
eb414681 4233 unsigned long pflags;
11e33f6a
MG
4234
4235 cond_resched();
4236
4237 /* We now go into synchronous reclaim */
4238 cpuset_memory_pressure_bump();
eb414681 4239 psi_memstall_enter(&pflags);
d92a8cfc 4240 fs_reclaim_acquire(gfp_mask);
93781325 4241 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4242
a9263751
VB
4243 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4244 ac->nodemask);
11e33f6a 4245
499118e9 4246 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4247 fs_reclaim_release(gfp_mask);
eb414681 4248 psi_memstall_leave(&pflags);
11e33f6a
MG
4249
4250 cond_resched();
4251
bba90710
MS
4252 return progress;
4253}
4254
4255/* The really slow allocator path where we enter direct reclaim */
4256static inline struct page *
4257__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4258 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4259 unsigned long *did_some_progress)
bba90710
MS
4260{
4261 struct page *page = NULL;
4262 bool drained = false;
4263
a9263751 4264 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4265 if (unlikely(!(*did_some_progress)))
4266 return NULL;
11e33f6a 4267
9ee493ce 4268retry:
31a6c190 4269 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4270
4271 /*
4272 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4273 * pages are pinned on the per-cpu lists or in high alloc reserves.
4274 * Shrink them them and try again
9ee493ce
MG
4275 */
4276 if (!page && !drained) {
29fac03b 4277 unreserve_highatomic_pageblock(ac, false);
93481ff0 4278 drain_all_pages(NULL);
9ee493ce
MG
4279 drained = true;
4280 goto retry;
4281 }
4282
11e33f6a
MG
4283 return page;
4284}
4285
5ecd9d40
DR
4286static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4287 const struct alloc_context *ac)
3a025760
JW
4288{
4289 struct zoneref *z;
4290 struct zone *zone;
e1a55637 4291 pg_data_t *last_pgdat = NULL;
97a225e6 4292 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4293
97a225e6 4294 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4295 ac->nodemask) {
e1a55637 4296 if (last_pgdat != zone->zone_pgdat)
97a225e6 4297 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4298 last_pgdat = zone->zone_pgdat;
4299 }
3a025760
JW
4300}
4301
c603844b 4302static inline unsigned int
341ce06f
PZ
4303gfp_to_alloc_flags(gfp_t gfp_mask)
4304{
c603844b 4305 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4306
736838e9
MN
4307 /*
4308 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4309 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4310 * to save two branches.
4311 */
e6223a3b 4312 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4313 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4314
341ce06f
PZ
4315 /*
4316 * The caller may dip into page reserves a bit more if the caller
4317 * cannot run direct reclaim, or if the caller has realtime scheduling
4318 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4319 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4320 */
736838e9
MN
4321 alloc_flags |= (__force int)
4322 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4323
d0164adc 4324 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4325 /*
b104a35d
DR
4326 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4327 * if it can't schedule.
5c3240d9 4328 */
b104a35d 4329 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4330 alloc_flags |= ALLOC_HARDER;
523b9458 4331 /*
b104a35d 4332 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4333 * comment for __cpuset_node_allowed().
523b9458 4334 */
341ce06f 4335 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4336 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4337 alloc_flags |= ALLOC_HARDER;
4338
d883c6cf 4339#ifdef CONFIG_CMA
01c0bfe0 4340 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d883c6cf
JK
4341 alloc_flags |= ALLOC_CMA;
4342#endif
341ce06f
PZ
4343 return alloc_flags;
4344}
4345
cd04ae1e 4346static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4347{
cd04ae1e
MH
4348 if (!tsk_is_oom_victim(tsk))
4349 return false;
4350
4351 /*
4352 * !MMU doesn't have oom reaper so give access to memory reserves
4353 * only to the thread with TIF_MEMDIE set
4354 */
4355 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4356 return false;
4357
cd04ae1e
MH
4358 return true;
4359}
4360
4361/*
4362 * Distinguish requests which really need access to full memory
4363 * reserves from oom victims which can live with a portion of it
4364 */
4365static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4366{
4367 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4368 return 0;
31a6c190 4369 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4370 return ALLOC_NO_WATERMARKS;
31a6c190 4371 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4372 return ALLOC_NO_WATERMARKS;
4373 if (!in_interrupt()) {
4374 if (current->flags & PF_MEMALLOC)
4375 return ALLOC_NO_WATERMARKS;
4376 else if (oom_reserves_allowed(current))
4377 return ALLOC_OOM;
4378 }
31a6c190 4379
cd04ae1e
MH
4380 return 0;
4381}
4382
4383bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4384{
4385 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4386}
4387
0a0337e0
MH
4388/*
4389 * Checks whether it makes sense to retry the reclaim to make a forward progress
4390 * for the given allocation request.
491d79ae
JW
4391 *
4392 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4393 * without success, or when we couldn't even meet the watermark if we
4394 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4395 *
4396 * Returns true if a retry is viable or false to enter the oom path.
4397 */
4398static inline bool
4399should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4400 struct alloc_context *ac, int alloc_flags,
423b452e 4401 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4402{
4403 struct zone *zone;
4404 struct zoneref *z;
15f570bf 4405 bool ret = false;
0a0337e0 4406
423b452e
VB
4407 /*
4408 * Costly allocations might have made a progress but this doesn't mean
4409 * their order will become available due to high fragmentation so
4410 * always increment the no progress counter for them
4411 */
4412 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4413 *no_progress_loops = 0;
4414 else
4415 (*no_progress_loops)++;
4416
0a0337e0
MH
4417 /*
4418 * Make sure we converge to OOM if we cannot make any progress
4419 * several times in the row.
4420 */
04c8716f
MK
4421 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4422 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4423 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4424 }
0a0337e0 4425
bca67592
MG
4426 /*
4427 * Keep reclaiming pages while there is a chance this will lead
4428 * somewhere. If none of the target zones can satisfy our allocation
4429 * request even if all reclaimable pages are considered then we are
4430 * screwed and have to go OOM.
0a0337e0 4431 */
97a225e6
JK
4432 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4433 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4434 unsigned long available;
ede37713 4435 unsigned long reclaimable;
d379f01d
MH
4436 unsigned long min_wmark = min_wmark_pages(zone);
4437 bool wmark;
0a0337e0 4438
5a1c84b4 4439 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4440 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4441
4442 /*
491d79ae
JW
4443 * Would the allocation succeed if we reclaimed all
4444 * reclaimable pages?
0a0337e0 4445 */
d379f01d 4446 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4447 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4448 trace_reclaim_retry_zone(z, order, reclaimable,
4449 available, min_wmark, *no_progress_loops, wmark);
4450 if (wmark) {
ede37713
MH
4451 /*
4452 * If we didn't make any progress and have a lot of
4453 * dirty + writeback pages then we should wait for
4454 * an IO to complete to slow down the reclaim and
4455 * prevent from pre mature OOM
4456 */
4457 if (!did_some_progress) {
11fb9989 4458 unsigned long write_pending;
ede37713 4459
5a1c84b4
MG
4460 write_pending = zone_page_state_snapshot(zone,
4461 NR_ZONE_WRITE_PENDING);
ede37713 4462
11fb9989 4463 if (2 * write_pending > reclaimable) {
ede37713
MH
4464 congestion_wait(BLK_RW_ASYNC, HZ/10);
4465 return true;
4466 }
4467 }
5a1c84b4 4468
15f570bf
MH
4469 ret = true;
4470 goto out;
0a0337e0
MH
4471 }
4472 }
4473
15f570bf
MH
4474out:
4475 /*
4476 * Memory allocation/reclaim might be called from a WQ context and the
4477 * current implementation of the WQ concurrency control doesn't
4478 * recognize that a particular WQ is congested if the worker thread is
4479 * looping without ever sleeping. Therefore we have to do a short sleep
4480 * here rather than calling cond_resched().
4481 */
4482 if (current->flags & PF_WQ_WORKER)
4483 schedule_timeout_uninterruptible(1);
4484 else
4485 cond_resched();
4486 return ret;
0a0337e0
MH
4487}
4488
902b6281
VB
4489static inline bool
4490check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4491{
4492 /*
4493 * It's possible that cpuset's mems_allowed and the nodemask from
4494 * mempolicy don't intersect. This should be normally dealt with by
4495 * policy_nodemask(), but it's possible to race with cpuset update in
4496 * such a way the check therein was true, and then it became false
4497 * before we got our cpuset_mems_cookie here.
4498 * This assumes that for all allocations, ac->nodemask can come only
4499 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4500 * when it does not intersect with the cpuset restrictions) or the
4501 * caller can deal with a violated nodemask.
4502 */
4503 if (cpusets_enabled() && ac->nodemask &&
4504 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4505 ac->nodemask = NULL;
4506 return true;
4507 }
4508
4509 /*
4510 * When updating a task's mems_allowed or mempolicy nodemask, it is
4511 * possible to race with parallel threads in such a way that our
4512 * allocation can fail while the mask is being updated. If we are about
4513 * to fail, check if the cpuset changed during allocation and if so,
4514 * retry.
4515 */
4516 if (read_mems_allowed_retry(cpuset_mems_cookie))
4517 return true;
4518
4519 return false;
4520}
4521
11e33f6a
MG
4522static inline struct page *
4523__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4524 struct alloc_context *ac)
11e33f6a 4525{
d0164adc 4526 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4527 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4528 struct page *page = NULL;
c603844b 4529 unsigned int alloc_flags;
11e33f6a 4530 unsigned long did_some_progress;
5ce9bfef 4531 enum compact_priority compact_priority;
c5d01d0d 4532 enum compact_result compact_result;
5ce9bfef
VB
4533 int compaction_retries;
4534 int no_progress_loops;
5ce9bfef 4535 unsigned int cpuset_mems_cookie;
cd04ae1e 4536 int reserve_flags;
1da177e4 4537
d0164adc
MG
4538 /*
4539 * We also sanity check to catch abuse of atomic reserves being used by
4540 * callers that are not in atomic context.
4541 */
4542 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4543 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4544 gfp_mask &= ~__GFP_ATOMIC;
4545
5ce9bfef
VB
4546retry_cpuset:
4547 compaction_retries = 0;
4548 no_progress_loops = 0;
4549 compact_priority = DEF_COMPACT_PRIORITY;
4550 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4551
4552 /*
4553 * The fast path uses conservative alloc_flags to succeed only until
4554 * kswapd needs to be woken up, and to avoid the cost of setting up
4555 * alloc_flags precisely. So we do that now.
4556 */
4557 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4558
e47483bc
VB
4559 /*
4560 * We need to recalculate the starting point for the zonelist iterator
4561 * because we might have used different nodemask in the fast path, or
4562 * there was a cpuset modification and we are retrying - otherwise we
4563 * could end up iterating over non-eligible zones endlessly.
4564 */
4565 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4566 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4567 if (!ac->preferred_zoneref->zone)
4568 goto nopage;
4569
0a79cdad 4570 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4571 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4572
4573 /*
4574 * The adjusted alloc_flags might result in immediate success, so try
4575 * that first
4576 */
4577 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4578 if (page)
4579 goto got_pg;
4580
a8161d1e
VB
4581 /*
4582 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4583 * that we have enough base pages and don't need to reclaim. For non-
4584 * movable high-order allocations, do that as well, as compaction will
4585 * try prevent permanent fragmentation by migrating from blocks of the
4586 * same migratetype.
4587 * Don't try this for allocations that are allowed to ignore
4588 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4589 */
282722b0
VB
4590 if (can_direct_reclaim &&
4591 (costly_order ||
4592 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4593 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4594 page = __alloc_pages_direct_compact(gfp_mask, order,
4595 alloc_flags, ac,
a5508cd8 4596 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4597 &compact_result);
4598 if (page)
4599 goto got_pg;
4600
cc638f32
VB
4601 /*
4602 * Checks for costly allocations with __GFP_NORETRY, which
4603 * includes some THP page fault allocations
4604 */
4605 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4606 /*
4607 * If allocating entire pageblock(s) and compaction
4608 * failed because all zones are below low watermarks
4609 * or is prohibited because it recently failed at this
3f36d866
DR
4610 * order, fail immediately unless the allocator has
4611 * requested compaction and reclaim retry.
b39d0ee2
DR
4612 *
4613 * Reclaim is
4614 * - potentially very expensive because zones are far
4615 * below their low watermarks or this is part of very
4616 * bursty high order allocations,
4617 * - not guaranteed to help because isolate_freepages()
4618 * may not iterate over freed pages as part of its
4619 * linear scan, and
4620 * - unlikely to make entire pageblocks free on its
4621 * own.
4622 */
4623 if (compact_result == COMPACT_SKIPPED ||
4624 compact_result == COMPACT_DEFERRED)
4625 goto nopage;
a8161d1e 4626
a8161d1e 4627 /*
3eb2771b
VB
4628 * Looks like reclaim/compaction is worth trying, but
4629 * sync compaction could be very expensive, so keep
25160354 4630 * using async compaction.
a8161d1e 4631 */
a5508cd8 4632 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4633 }
4634 }
23771235 4635
31a6c190 4636retry:
23771235 4637 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4638 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4639 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4640
cd04ae1e
MH
4641 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4642 if (reserve_flags)
4643 alloc_flags = reserve_flags;
23771235 4644
e46e7b77 4645 /*
d6a24df0
VB
4646 * Reset the nodemask and zonelist iterators if memory policies can be
4647 * ignored. These allocations are high priority and system rather than
4648 * user oriented.
e46e7b77 4649 */
cd04ae1e 4650 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4651 ac->nodemask = NULL;
e46e7b77 4652 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4653 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4654 }
4655
23771235 4656 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4657 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4658 if (page)
4659 goto got_pg;
1da177e4 4660
d0164adc 4661 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4662 if (!can_direct_reclaim)
1da177e4
LT
4663 goto nopage;
4664
9a67f648
MH
4665 /* Avoid recursion of direct reclaim */
4666 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4667 goto nopage;
4668
a8161d1e
VB
4669 /* Try direct reclaim and then allocating */
4670 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4671 &did_some_progress);
4672 if (page)
4673 goto got_pg;
4674
4675 /* Try direct compaction and then allocating */
a9263751 4676 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4677 compact_priority, &compact_result);
56de7263
MG
4678 if (page)
4679 goto got_pg;
75f30861 4680
9083905a
JW
4681 /* Do not loop if specifically requested */
4682 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4683 goto nopage;
9083905a 4684
0a0337e0
MH
4685 /*
4686 * Do not retry costly high order allocations unless they are
dcda9b04 4687 * __GFP_RETRY_MAYFAIL
0a0337e0 4688 */
dcda9b04 4689 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4690 goto nopage;
0a0337e0 4691
0a0337e0 4692 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4693 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4694 goto retry;
4695
33c2d214
MH
4696 /*
4697 * It doesn't make any sense to retry for the compaction if the order-0
4698 * reclaim is not able to make any progress because the current
4699 * implementation of the compaction depends on the sufficient amount
4700 * of free memory (see __compaction_suitable)
4701 */
4702 if (did_some_progress > 0 &&
86a294a8 4703 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4704 compact_result, &compact_priority,
d9436498 4705 &compaction_retries))
33c2d214
MH
4706 goto retry;
4707
902b6281
VB
4708
4709 /* Deal with possible cpuset update races before we start OOM killing */
4710 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4711 goto retry_cpuset;
4712
9083905a
JW
4713 /* Reclaim has failed us, start killing things */
4714 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4715 if (page)
4716 goto got_pg;
4717
9a67f648 4718 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4719 if (tsk_is_oom_victim(current) &&
4720 (alloc_flags == ALLOC_OOM ||
c288983d 4721 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4722 goto nopage;
4723
9083905a 4724 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4725 if (did_some_progress) {
4726 no_progress_loops = 0;
9083905a 4727 goto retry;
0a0337e0 4728 }
9083905a 4729
1da177e4 4730nopage:
902b6281
VB
4731 /* Deal with possible cpuset update races before we fail */
4732 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4733 goto retry_cpuset;
4734
9a67f648
MH
4735 /*
4736 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4737 * we always retry
4738 */
4739 if (gfp_mask & __GFP_NOFAIL) {
4740 /*
4741 * All existing users of the __GFP_NOFAIL are blockable, so warn
4742 * of any new users that actually require GFP_NOWAIT
4743 */
4744 if (WARN_ON_ONCE(!can_direct_reclaim))
4745 goto fail;
4746
4747 /*
4748 * PF_MEMALLOC request from this context is rather bizarre
4749 * because we cannot reclaim anything and only can loop waiting
4750 * for somebody to do a work for us
4751 */
4752 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4753
4754 /*
4755 * non failing costly orders are a hard requirement which we
4756 * are not prepared for much so let's warn about these users
4757 * so that we can identify them and convert them to something
4758 * else.
4759 */
4760 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4761
6c18ba7a
MH
4762 /*
4763 * Help non-failing allocations by giving them access to memory
4764 * reserves but do not use ALLOC_NO_WATERMARKS because this
4765 * could deplete whole memory reserves which would just make
4766 * the situation worse
4767 */
4768 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4769 if (page)
4770 goto got_pg;
4771
9a67f648
MH
4772 cond_resched();
4773 goto retry;
4774 }
4775fail:
a8e99259 4776 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4777 "page allocation failure: order:%u", order);
1da177e4 4778got_pg:
072bb0aa 4779 return page;
1da177e4 4780}
11e33f6a 4781
9cd75558 4782static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4783 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4784 struct alloc_context *ac, gfp_t *alloc_mask,
4785 unsigned int *alloc_flags)
11e33f6a 4786{
97a225e6 4787 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4788 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4789 ac->nodemask = nodemask;
01c0bfe0 4790 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4791
682a3385 4792 if (cpusets_enabled()) {
9cd75558 4793 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4794 if (!ac->nodemask)
4795 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4796 else
4797 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4798 }
4799
d92a8cfc
PZ
4800 fs_reclaim_acquire(gfp_mask);
4801 fs_reclaim_release(gfp_mask);
11e33f6a 4802
d0164adc 4803 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4804
4805 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4806 return false;
11e33f6a 4807
d883c6cf
JK
4808 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4809 *alloc_flags |= ALLOC_CMA;
4810
9cd75558
MG
4811 return true;
4812}
21bb9bd1 4813
9cd75558 4814/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4815static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4816{
c9ab0c4f 4817 /* Dirty zone balancing only done in the fast path */
9cd75558 4818 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4819
e46e7b77
MG
4820 /*
4821 * The preferred zone is used for statistics but crucially it is
4822 * also used as the starting point for the zonelist iterator. It
4823 * may get reset for allocations that ignore memory policies.
4824 */
9cd75558 4825 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4826 ac->highest_zoneidx, ac->nodemask);
9cd75558
MG
4827}
4828
4829/*
4830 * This is the 'heart' of the zoned buddy allocator.
4831 */
4832struct page *
04ec6264
VB
4833__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4834 nodemask_t *nodemask)
9cd75558
MG
4835{
4836 struct page *page;
4837 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4838 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4839 struct alloc_context ac = { };
4840
c63ae43b
MH
4841 /*
4842 * There are several places where we assume that the order value is sane
4843 * so bail out early if the request is out of bound.
4844 */
4845 if (unlikely(order >= MAX_ORDER)) {
4846 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4847 return NULL;
4848 }
4849
9cd75558 4850 gfp_mask &= gfp_allowed_mask;
f19360f0 4851 alloc_mask = gfp_mask;
04ec6264 4852 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4853 return NULL;
4854
a380b40a 4855 finalise_ac(gfp_mask, &ac);
5bb1b169 4856
6bb15450
MG
4857 /*
4858 * Forbid the first pass from falling back to types that fragment
4859 * memory until all local zones are considered.
4860 */
0a79cdad 4861 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4862
5117f45d 4863 /* First allocation attempt */
a9263751 4864 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4865 if (likely(page))
4866 goto out;
11e33f6a 4867
4fcb0971 4868 /*
7dea19f9
MH
4869 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4870 * resp. GFP_NOIO which has to be inherited for all allocation requests
4871 * from a particular context which has been marked by
4872 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4873 */
7dea19f9 4874 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4875 ac.spread_dirty_pages = false;
23f086f9 4876
4741526b
MG
4877 /*
4878 * Restore the original nodemask if it was potentially replaced with
4879 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4880 */
97ce86f9 4881 ac.nodemask = nodemask;
16096c25 4882
4fcb0971 4883 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4884
4fcb0971 4885out:
c4159a75 4886 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4887 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4888 __free_pages(page, order);
4889 page = NULL;
4949148a
VD
4890 }
4891
4fcb0971
MG
4892 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4893
11e33f6a 4894 return page;
1da177e4 4895}
d239171e 4896EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4897
4898/*
9ea9a680
MH
4899 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4900 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4901 * you need to access high mem.
1da177e4 4902 */
920c7a5d 4903unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4904{
945a1113
AM
4905 struct page *page;
4906
9ea9a680 4907 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4908 if (!page)
4909 return 0;
4910 return (unsigned long) page_address(page);
4911}
1da177e4
LT
4912EXPORT_SYMBOL(__get_free_pages);
4913
920c7a5d 4914unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4915{
945a1113 4916 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4917}
1da177e4
LT
4918EXPORT_SYMBOL(get_zeroed_page);
4919
742aa7fb 4920static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4921{
742aa7fb
AL
4922 if (order == 0) /* Via pcp? */
4923 free_unref_page(page);
4924 else
4925 __free_pages_ok(page, order);
1da177e4
LT
4926}
4927
742aa7fb
AL
4928void __free_pages(struct page *page, unsigned int order)
4929{
4930 if (put_page_testzero(page))
4931 free_the_page(page, order);
4932}
1da177e4
LT
4933EXPORT_SYMBOL(__free_pages);
4934
920c7a5d 4935void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4936{
4937 if (addr != 0) {
725d704e 4938 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4939 __free_pages(virt_to_page((void *)addr), order);
4940 }
4941}
4942
4943EXPORT_SYMBOL(free_pages);
4944
b63ae8ca
AD
4945/*
4946 * Page Fragment:
4947 * An arbitrary-length arbitrary-offset area of memory which resides
4948 * within a 0 or higher order page. Multiple fragments within that page
4949 * are individually refcounted, in the page's reference counter.
4950 *
4951 * The page_frag functions below provide a simple allocation framework for
4952 * page fragments. This is used by the network stack and network device
4953 * drivers to provide a backing region of memory for use as either an
4954 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4955 */
2976db80
AD
4956static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4957 gfp_t gfp_mask)
b63ae8ca
AD
4958{
4959 struct page *page = NULL;
4960 gfp_t gfp = gfp_mask;
4961
4962#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4963 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4964 __GFP_NOMEMALLOC;
4965 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4966 PAGE_FRAG_CACHE_MAX_ORDER);
4967 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4968#endif
4969 if (unlikely(!page))
4970 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4971
4972 nc->va = page ? page_address(page) : NULL;
4973
4974 return page;
4975}
4976
2976db80 4977void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4978{
4979 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4980
742aa7fb
AL
4981 if (page_ref_sub_and_test(page, count))
4982 free_the_page(page, compound_order(page));
44fdffd7 4983}
2976db80 4984EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4985
8c2dd3e4
AD
4986void *page_frag_alloc(struct page_frag_cache *nc,
4987 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4988{
4989 unsigned int size = PAGE_SIZE;
4990 struct page *page;
4991 int offset;
4992
4993 if (unlikely(!nc->va)) {
4994refill:
2976db80 4995 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4996 if (!page)
4997 return NULL;
4998
4999#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5000 /* if size can vary use size else just use PAGE_SIZE */
5001 size = nc->size;
5002#endif
5003 /* Even if we own the page, we do not use atomic_set().
5004 * This would break get_page_unless_zero() users.
5005 */
86447726 5006 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5007
5008 /* reset page count bias and offset to start of new frag */
2f064f34 5009 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5010 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5011 nc->offset = size;
5012 }
5013
5014 offset = nc->offset - fragsz;
5015 if (unlikely(offset < 0)) {
5016 page = virt_to_page(nc->va);
5017
fe896d18 5018 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5019 goto refill;
5020
5021#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5022 /* if size can vary use size else just use PAGE_SIZE */
5023 size = nc->size;
5024#endif
5025 /* OK, page count is 0, we can safely set it */
86447726 5026 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5027
5028 /* reset page count bias and offset to start of new frag */
86447726 5029 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5030 offset = size - fragsz;
5031 }
5032
5033 nc->pagecnt_bias--;
5034 nc->offset = offset;
5035
5036 return nc->va + offset;
5037}
8c2dd3e4 5038EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5039
5040/*
5041 * Frees a page fragment allocated out of either a compound or order 0 page.
5042 */
8c2dd3e4 5043void page_frag_free(void *addr)
b63ae8ca
AD
5044{
5045 struct page *page = virt_to_head_page(addr);
5046
742aa7fb
AL
5047 if (unlikely(put_page_testzero(page)))
5048 free_the_page(page, compound_order(page));
b63ae8ca 5049}
8c2dd3e4 5050EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5051
d00181b9
KS
5052static void *make_alloc_exact(unsigned long addr, unsigned int order,
5053 size_t size)
ee85c2e1
AK
5054{
5055 if (addr) {
5056 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5057 unsigned long used = addr + PAGE_ALIGN(size);
5058
5059 split_page(virt_to_page((void *)addr), order);
5060 while (used < alloc_end) {
5061 free_page(used);
5062 used += PAGE_SIZE;
5063 }
5064 }
5065 return (void *)addr;
5066}
5067
2be0ffe2
TT
5068/**
5069 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5070 * @size: the number of bytes to allocate
63931eb9 5071 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5072 *
5073 * This function is similar to alloc_pages(), except that it allocates the
5074 * minimum number of pages to satisfy the request. alloc_pages() can only
5075 * allocate memory in power-of-two pages.
5076 *
5077 * This function is also limited by MAX_ORDER.
5078 *
5079 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5080 *
5081 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5082 */
5083void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5084{
5085 unsigned int order = get_order(size);
5086 unsigned long addr;
5087
63931eb9
VB
5088 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5089 gfp_mask &= ~__GFP_COMP;
5090
2be0ffe2 5091 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5092 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5093}
5094EXPORT_SYMBOL(alloc_pages_exact);
5095
ee85c2e1
AK
5096/**
5097 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5098 * pages on a node.
b5e6ab58 5099 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5100 * @size: the number of bytes to allocate
63931eb9 5101 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5102 *
5103 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5104 * back.
a862f68a
MR
5105 *
5106 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5107 */
e1931811 5108void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5109{
d00181b9 5110 unsigned int order = get_order(size);
63931eb9
VB
5111 struct page *p;
5112
5113 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5114 gfp_mask &= ~__GFP_COMP;
5115
5116 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5117 if (!p)
5118 return NULL;
5119 return make_alloc_exact((unsigned long)page_address(p), order, size);
5120}
ee85c2e1 5121
2be0ffe2
TT
5122/**
5123 * free_pages_exact - release memory allocated via alloc_pages_exact()
5124 * @virt: the value returned by alloc_pages_exact.
5125 * @size: size of allocation, same value as passed to alloc_pages_exact().
5126 *
5127 * Release the memory allocated by a previous call to alloc_pages_exact.
5128 */
5129void free_pages_exact(void *virt, size_t size)
5130{
5131 unsigned long addr = (unsigned long)virt;
5132 unsigned long end = addr + PAGE_ALIGN(size);
5133
5134 while (addr < end) {
5135 free_page(addr);
5136 addr += PAGE_SIZE;
5137 }
5138}
5139EXPORT_SYMBOL(free_pages_exact);
5140
e0fb5815
ZY
5141/**
5142 * nr_free_zone_pages - count number of pages beyond high watermark
5143 * @offset: The zone index of the highest zone
5144 *
a862f68a 5145 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5146 * high watermark within all zones at or below a given zone index. For each
5147 * zone, the number of pages is calculated as:
0e056eb5 5148 *
5149 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5150 *
5151 * Return: number of pages beyond high watermark.
e0fb5815 5152 */
ebec3862 5153static unsigned long nr_free_zone_pages(int offset)
1da177e4 5154{
dd1a239f 5155 struct zoneref *z;
54a6eb5c
MG
5156 struct zone *zone;
5157
e310fd43 5158 /* Just pick one node, since fallback list is circular */
ebec3862 5159 unsigned long sum = 0;
1da177e4 5160
0e88460d 5161 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5162
54a6eb5c 5163 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5164 unsigned long size = zone_managed_pages(zone);
41858966 5165 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5166 if (size > high)
5167 sum += size - high;
1da177e4
LT
5168 }
5169
5170 return sum;
5171}
5172
e0fb5815
ZY
5173/**
5174 * nr_free_buffer_pages - count number of pages beyond high watermark
5175 *
5176 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5177 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5178 *
5179 * Return: number of pages beyond high watermark within ZONE_DMA and
5180 * ZONE_NORMAL.
1da177e4 5181 */
ebec3862 5182unsigned long nr_free_buffer_pages(void)
1da177e4 5183{
af4ca457 5184 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5185}
c2f1a551 5186EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5187
08e0f6a9 5188static inline void show_node(struct zone *zone)
1da177e4 5189{
e5adfffc 5190 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5191 printk("Node %d ", zone_to_nid(zone));
1da177e4 5192}
1da177e4 5193
d02bd27b
IR
5194long si_mem_available(void)
5195{
5196 long available;
5197 unsigned long pagecache;
5198 unsigned long wmark_low = 0;
5199 unsigned long pages[NR_LRU_LISTS];
b29940c1 5200 unsigned long reclaimable;
d02bd27b
IR
5201 struct zone *zone;
5202 int lru;
5203
5204 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5205 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5206
5207 for_each_zone(zone)
a9214443 5208 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5209
5210 /*
5211 * Estimate the amount of memory available for userspace allocations,
5212 * without causing swapping.
5213 */
c41f012a 5214 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5215
5216 /*
5217 * Not all the page cache can be freed, otherwise the system will
5218 * start swapping. Assume at least half of the page cache, or the
5219 * low watermark worth of cache, needs to stay.
5220 */
5221 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5222 pagecache -= min(pagecache / 2, wmark_low);
5223 available += pagecache;
5224
5225 /*
b29940c1
VB
5226 * Part of the reclaimable slab and other kernel memory consists of
5227 * items that are in use, and cannot be freed. Cap this estimate at the
5228 * low watermark.
d02bd27b 5229 */
d42f3245
RG
5230 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5231 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5232 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5233
d02bd27b
IR
5234 if (available < 0)
5235 available = 0;
5236 return available;
5237}
5238EXPORT_SYMBOL_GPL(si_mem_available);
5239
1da177e4
LT
5240void si_meminfo(struct sysinfo *val)
5241{
ca79b0c2 5242 val->totalram = totalram_pages();
11fb9989 5243 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5244 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5245 val->bufferram = nr_blockdev_pages();
ca79b0c2 5246 val->totalhigh = totalhigh_pages();
1da177e4 5247 val->freehigh = nr_free_highpages();
1da177e4
LT
5248 val->mem_unit = PAGE_SIZE;
5249}
5250
5251EXPORT_SYMBOL(si_meminfo);
5252
5253#ifdef CONFIG_NUMA
5254void si_meminfo_node(struct sysinfo *val, int nid)
5255{
cdd91a77
JL
5256 int zone_type; /* needs to be signed */
5257 unsigned long managed_pages = 0;
fc2bd799
JK
5258 unsigned long managed_highpages = 0;
5259 unsigned long free_highpages = 0;
1da177e4
LT
5260 pg_data_t *pgdat = NODE_DATA(nid);
5261
cdd91a77 5262 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5263 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5264 val->totalram = managed_pages;
11fb9989 5265 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5266 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5267#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5268 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5269 struct zone *zone = &pgdat->node_zones[zone_type];
5270
5271 if (is_highmem(zone)) {
9705bea5 5272 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5273 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5274 }
5275 }
5276 val->totalhigh = managed_highpages;
5277 val->freehigh = free_highpages;
98d2b0eb 5278#else
fc2bd799
JK
5279 val->totalhigh = managed_highpages;
5280 val->freehigh = free_highpages;
98d2b0eb 5281#endif
1da177e4
LT
5282 val->mem_unit = PAGE_SIZE;
5283}
5284#endif
5285
ddd588b5 5286/*
7bf02ea2
DR
5287 * Determine whether the node should be displayed or not, depending on whether
5288 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5289 */
9af744d7 5290static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5291{
ddd588b5 5292 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5293 return false;
ddd588b5 5294
9af744d7
MH
5295 /*
5296 * no node mask - aka implicit memory numa policy. Do not bother with
5297 * the synchronization - read_mems_allowed_begin - because we do not
5298 * have to be precise here.
5299 */
5300 if (!nodemask)
5301 nodemask = &cpuset_current_mems_allowed;
5302
5303 return !node_isset(nid, *nodemask);
ddd588b5
DR
5304}
5305
1da177e4
LT
5306#define K(x) ((x) << (PAGE_SHIFT-10))
5307
377e4f16
RV
5308static void show_migration_types(unsigned char type)
5309{
5310 static const char types[MIGRATE_TYPES] = {
5311 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5312 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5313 [MIGRATE_RECLAIMABLE] = 'E',
5314 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5315#ifdef CONFIG_CMA
5316 [MIGRATE_CMA] = 'C',
5317#endif
194159fb 5318#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5319 [MIGRATE_ISOLATE] = 'I',
194159fb 5320#endif
377e4f16
RV
5321 };
5322 char tmp[MIGRATE_TYPES + 1];
5323 char *p = tmp;
5324 int i;
5325
5326 for (i = 0; i < MIGRATE_TYPES; i++) {
5327 if (type & (1 << i))
5328 *p++ = types[i];
5329 }
5330
5331 *p = '\0';
1f84a18f 5332 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5333}
5334
1da177e4
LT
5335/*
5336 * Show free area list (used inside shift_scroll-lock stuff)
5337 * We also calculate the percentage fragmentation. We do this by counting the
5338 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5339 *
5340 * Bits in @filter:
5341 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5342 * cpuset.
1da177e4 5343 */
9af744d7 5344void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5345{
d1bfcdb8 5346 unsigned long free_pcp = 0;
c7241913 5347 int cpu;
1da177e4 5348 struct zone *zone;
599d0c95 5349 pg_data_t *pgdat;
1da177e4 5350
ee99c71c 5351 for_each_populated_zone(zone) {
9af744d7 5352 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5353 continue;
d1bfcdb8 5354
761b0677
KK
5355 for_each_online_cpu(cpu)
5356 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5357 }
5358
a731286d
KM
5359 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5360 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5361 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5362 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5363 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5364 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5365 global_node_page_state(NR_ACTIVE_ANON),
5366 global_node_page_state(NR_INACTIVE_ANON),
5367 global_node_page_state(NR_ISOLATED_ANON),
5368 global_node_page_state(NR_ACTIVE_FILE),
5369 global_node_page_state(NR_INACTIVE_FILE),
5370 global_node_page_state(NR_ISOLATED_FILE),
5371 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5372 global_node_page_state(NR_FILE_DIRTY),
5373 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5374 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5375 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5376 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5377 global_node_page_state(NR_SHMEM),
c41f012a
MH
5378 global_zone_page_state(NR_PAGETABLE),
5379 global_zone_page_state(NR_BOUNCE),
5380 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5381 free_pcp,
c41f012a 5382 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5383
599d0c95 5384 for_each_online_pgdat(pgdat) {
9af744d7 5385 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5386 continue;
5387
599d0c95
MG
5388 printk("Node %d"
5389 " active_anon:%lukB"
5390 " inactive_anon:%lukB"
5391 " active_file:%lukB"
5392 " inactive_file:%lukB"
5393 " unevictable:%lukB"
5394 " isolated(anon):%lukB"
5395 " isolated(file):%lukB"
50658e2e 5396 " mapped:%lukB"
11fb9989
MG
5397 " dirty:%lukB"
5398 " writeback:%lukB"
5399 " shmem:%lukB"
5400#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5401 " shmem_thp: %lukB"
5402 " shmem_pmdmapped: %lukB"
5403 " anon_thp: %lukB"
5404#endif
5405 " writeback_tmp:%lukB"
991e7673
SB
5406 " kernel_stack:%lukB"
5407#ifdef CONFIG_SHADOW_CALL_STACK
5408 " shadow_call_stack:%lukB"
5409#endif
599d0c95
MG
5410 " all_unreclaimable? %s"
5411 "\n",
5412 pgdat->node_id,
5413 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5414 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5415 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5416 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5417 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5418 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5419 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5420 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5421 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5422 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5423 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5424#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5425 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5426 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5427 * HPAGE_PMD_NR),
5428 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5429#endif
11fb9989 5430 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5431 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5432#ifdef CONFIG_SHADOW_CALL_STACK
5433 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5434#endif
c73322d0
JW
5435 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5436 "yes" : "no");
599d0c95
MG
5437 }
5438
ee99c71c 5439 for_each_populated_zone(zone) {
1da177e4
LT
5440 int i;
5441
9af744d7 5442 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5443 continue;
d1bfcdb8
KK
5444
5445 free_pcp = 0;
5446 for_each_online_cpu(cpu)
5447 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5448
1da177e4 5449 show_node(zone);
1f84a18f
JP
5450 printk(KERN_CONT
5451 "%s"
1da177e4
LT
5452 " free:%lukB"
5453 " min:%lukB"
5454 " low:%lukB"
5455 " high:%lukB"
e47b346a 5456 " reserved_highatomic:%luKB"
71c799f4
MK
5457 " active_anon:%lukB"
5458 " inactive_anon:%lukB"
5459 " active_file:%lukB"
5460 " inactive_file:%lukB"
5461 " unevictable:%lukB"
5a1c84b4 5462 " writepending:%lukB"
1da177e4 5463 " present:%lukB"
9feedc9d 5464 " managed:%lukB"
4a0aa73f 5465 " mlocked:%lukB"
4a0aa73f 5466 " pagetables:%lukB"
4a0aa73f 5467 " bounce:%lukB"
d1bfcdb8
KK
5468 " free_pcp:%lukB"
5469 " local_pcp:%ukB"
d1ce749a 5470 " free_cma:%lukB"
1da177e4
LT
5471 "\n",
5472 zone->name,
88f5acf8 5473 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5474 K(min_wmark_pages(zone)),
5475 K(low_wmark_pages(zone)),
5476 K(high_wmark_pages(zone)),
e47b346a 5477 K(zone->nr_reserved_highatomic),
71c799f4
MK
5478 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5479 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5480 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5481 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5482 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5483 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5484 K(zone->present_pages),
9705bea5 5485 K(zone_managed_pages(zone)),
4a0aa73f 5486 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5487 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5488 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5489 K(free_pcp),
5490 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5491 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5492 printk("lowmem_reserve[]:");
5493 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5494 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5495 printk(KERN_CONT "\n");
1da177e4
LT
5496 }
5497
ee99c71c 5498 for_each_populated_zone(zone) {
d00181b9
KS
5499 unsigned int order;
5500 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5501 unsigned char types[MAX_ORDER];
1da177e4 5502
9af744d7 5503 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5504 continue;
1da177e4 5505 show_node(zone);
1f84a18f 5506 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5507
5508 spin_lock_irqsave(&zone->lock, flags);
5509 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5510 struct free_area *area = &zone->free_area[order];
5511 int type;
5512
5513 nr[order] = area->nr_free;
8f9de51a 5514 total += nr[order] << order;
377e4f16
RV
5515
5516 types[order] = 0;
5517 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5518 if (!free_area_empty(area, type))
377e4f16
RV
5519 types[order] |= 1 << type;
5520 }
1da177e4
LT
5521 }
5522 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5523 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5524 printk(KERN_CONT "%lu*%lukB ",
5525 nr[order], K(1UL) << order);
377e4f16
RV
5526 if (nr[order])
5527 show_migration_types(types[order]);
5528 }
1f84a18f 5529 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5530 }
5531
949f7ec5
DR
5532 hugetlb_show_meminfo();
5533
11fb9989 5534 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5535
1da177e4
LT
5536 show_swap_cache_info();
5537}
5538
19770b32
MG
5539static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5540{
5541 zoneref->zone = zone;
5542 zoneref->zone_idx = zone_idx(zone);
5543}
5544
1da177e4
LT
5545/*
5546 * Builds allocation fallback zone lists.
1a93205b
CL
5547 *
5548 * Add all populated zones of a node to the zonelist.
1da177e4 5549 */
9d3be21b 5550static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5551{
1a93205b 5552 struct zone *zone;
bc732f1d 5553 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5554 int nr_zones = 0;
02a68a5e
CL
5555
5556 do {
2f6726e5 5557 zone_type--;
070f8032 5558 zone = pgdat->node_zones + zone_type;
6aa303de 5559 if (managed_zone(zone)) {
9d3be21b 5560 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5561 check_highest_zone(zone_type);
1da177e4 5562 }
2f6726e5 5563 } while (zone_type);
bc732f1d 5564
070f8032 5565 return nr_zones;
1da177e4
LT
5566}
5567
5568#ifdef CONFIG_NUMA
f0c0b2b8
KH
5569
5570static int __parse_numa_zonelist_order(char *s)
5571{
c9bff3ee
MH
5572 /*
5573 * We used to support different zonlists modes but they turned
5574 * out to be just not useful. Let's keep the warning in place
5575 * if somebody still use the cmd line parameter so that we do
5576 * not fail it silently
5577 */
5578 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5579 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5580 return -EINVAL;
5581 }
5582 return 0;
5583}
5584
c9bff3ee
MH
5585char numa_zonelist_order[] = "Node";
5586
f0c0b2b8
KH
5587/*
5588 * sysctl handler for numa_zonelist_order
5589 */
cccad5b9 5590int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5591 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5592{
32927393
CH
5593 if (write)
5594 return __parse_numa_zonelist_order(buffer);
5595 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5596}
5597
5598
62bc62a8 5599#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5600static int node_load[MAX_NUMNODES];
5601
1da177e4 5602/**
4dc3b16b 5603 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5604 * @node: node whose fallback list we're appending
5605 * @used_node_mask: nodemask_t of already used nodes
5606 *
5607 * We use a number of factors to determine which is the next node that should
5608 * appear on a given node's fallback list. The node should not have appeared
5609 * already in @node's fallback list, and it should be the next closest node
5610 * according to the distance array (which contains arbitrary distance values
5611 * from each node to each node in the system), and should also prefer nodes
5612 * with no CPUs, since presumably they'll have very little allocation pressure
5613 * on them otherwise.
a862f68a
MR
5614 *
5615 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5616 */
f0c0b2b8 5617static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5618{
4cf808eb 5619 int n, val;
1da177e4 5620 int min_val = INT_MAX;
00ef2d2f 5621 int best_node = NUMA_NO_NODE;
a70f7302 5622 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5623
4cf808eb
LT
5624 /* Use the local node if we haven't already */
5625 if (!node_isset(node, *used_node_mask)) {
5626 node_set(node, *used_node_mask);
5627 return node;
5628 }
1da177e4 5629
4b0ef1fe 5630 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5631
5632 /* Don't want a node to appear more than once */
5633 if (node_isset(n, *used_node_mask))
5634 continue;
5635
1da177e4
LT
5636 /* Use the distance array to find the distance */
5637 val = node_distance(node, n);
5638
4cf808eb
LT
5639 /* Penalize nodes under us ("prefer the next node") */
5640 val += (n < node);
5641
1da177e4 5642 /* Give preference to headless and unused nodes */
a70f7302
RR
5643 tmp = cpumask_of_node(n);
5644 if (!cpumask_empty(tmp))
1da177e4
LT
5645 val += PENALTY_FOR_NODE_WITH_CPUS;
5646
5647 /* Slight preference for less loaded node */
5648 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5649 val += node_load[n];
5650
5651 if (val < min_val) {
5652 min_val = val;
5653 best_node = n;
5654 }
5655 }
5656
5657 if (best_node >= 0)
5658 node_set(best_node, *used_node_mask);
5659
5660 return best_node;
5661}
5662
f0c0b2b8
KH
5663
5664/*
5665 * Build zonelists ordered by node and zones within node.
5666 * This results in maximum locality--normal zone overflows into local
5667 * DMA zone, if any--but risks exhausting DMA zone.
5668 */
9d3be21b
MH
5669static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5670 unsigned nr_nodes)
1da177e4 5671{
9d3be21b
MH
5672 struct zoneref *zonerefs;
5673 int i;
5674
5675 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5676
5677 for (i = 0; i < nr_nodes; i++) {
5678 int nr_zones;
5679
5680 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5681
9d3be21b
MH
5682 nr_zones = build_zonerefs_node(node, zonerefs);
5683 zonerefs += nr_zones;
5684 }
5685 zonerefs->zone = NULL;
5686 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5687}
5688
523b9458
CL
5689/*
5690 * Build gfp_thisnode zonelists
5691 */
5692static void build_thisnode_zonelists(pg_data_t *pgdat)
5693{
9d3be21b
MH
5694 struct zoneref *zonerefs;
5695 int nr_zones;
523b9458 5696
9d3be21b
MH
5697 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5698 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5699 zonerefs += nr_zones;
5700 zonerefs->zone = NULL;
5701 zonerefs->zone_idx = 0;
523b9458
CL
5702}
5703
f0c0b2b8
KH
5704/*
5705 * Build zonelists ordered by zone and nodes within zones.
5706 * This results in conserving DMA zone[s] until all Normal memory is
5707 * exhausted, but results in overflowing to remote node while memory
5708 * may still exist in local DMA zone.
5709 */
f0c0b2b8 5710
f0c0b2b8
KH
5711static void build_zonelists(pg_data_t *pgdat)
5712{
9d3be21b
MH
5713 static int node_order[MAX_NUMNODES];
5714 int node, load, nr_nodes = 0;
d0ddf49b 5715 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5716 int local_node, prev_node;
1da177e4
LT
5717
5718 /* NUMA-aware ordering of nodes */
5719 local_node = pgdat->node_id;
62bc62a8 5720 load = nr_online_nodes;
1da177e4 5721 prev_node = local_node;
f0c0b2b8 5722
f0c0b2b8 5723 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5724 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5725 /*
5726 * We don't want to pressure a particular node.
5727 * So adding penalty to the first node in same
5728 * distance group to make it round-robin.
5729 */
957f822a
DR
5730 if (node_distance(local_node, node) !=
5731 node_distance(local_node, prev_node))
f0c0b2b8
KH
5732 node_load[node] = load;
5733
9d3be21b 5734 node_order[nr_nodes++] = node;
1da177e4
LT
5735 prev_node = node;
5736 load--;
1da177e4 5737 }
523b9458 5738
9d3be21b 5739 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5740 build_thisnode_zonelists(pgdat);
1da177e4
LT
5741}
5742
7aac7898
LS
5743#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5744/*
5745 * Return node id of node used for "local" allocations.
5746 * I.e., first node id of first zone in arg node's generic zonelist.
5747 * Used for initializing percpu 'numa_mem', which is used primarily
5748 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5749 */
5750int local_memory_node(int node)
5751{
c33d6c06 5752 struct zoneref *z;
7aac7898 5753
c33d6c06 5754 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5755 gfp_zone(GFP_KERNEL),
c33d6c06 5756 NULL);
c1093b74 5757 return zone_to_nid(z->zone);
7aac7898
LS
5758}
5759#endif
f0c0b2b8 5760
6423aa81
JK
5761static void setup_min_unmapped_ratio(void);
5762static void setup_min_slab_ratio(void);
1da177e4
LT
5763#else /* CONFIG_NUMA */
5764
f0c0b2b8 5765static void build_zonelists(pg_data_t *pgdat)
1da177e4 5766{
19655d34 5767 int node, local_node;
9d3be21b
MH
5768 struct zoneref *zonerefs;
5769 int nr_zones;
1da177e4
LT
5770
5771 local_node = pgdat->node_id;
1da177e4 5772
9d3be21b
MH
5773 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5774 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5775 zonerefs += nr_zones;
1da177e4 5776
54a6eb5c
MG
5777 /*
5778 * Now we build the zonelist so that it contains the zones
5779 * of all the other nodes.
5780 * We don't want to pressure a particular node, so when
5781 * building the zones for node N, we make sure that the
5782 * zones coming right after the local ones are those from
5783 * node N+1 (modulo N)
5784 */
5785 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5786 if (!node_online(node))
5787 continue;
9d3be21b
MH
5788 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5789 zonerefs += nr_zones;
1da177e4 5790 }
54a6eb5c
MG
5791 for (node = 0; node < local_node; node++) {
5792 if (!node_online(node))
5793 continue;
9d3be21b
MH
5794 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5795 zonerefs += nr_zones;
54a6eb5c
MG
5796 }
5797
9d3be21b
MH
5798 zonerefs->zone = NULL;
5799 zonerefs->zone_idx = 0;
1da177e4
LT
5800}
5801
5802#endif /* CONFIG_NUMA */
5803
99dcc3e5
CL
5804/*
5805 * Boot pageset table. One per cpu which is going to be used for all
5806 * zones and all nodes. The parameters will be set in such a way
5807 * that an item put on a list will immediately be handed over to
5808 * the buddy list. This is safe since pageset manipulation is done
5809 * with interrupts disabled.
5810 *
5811 * The boot_pagesets must be kept even after bootup is complete for
5812 * unused processors and/or zones. They do play a role for bootstrapping
5813 * hotplugged processors.
5814 *
5815 * zoneinfo_show() and maybe other functions do
5816 * not check if the processor is online before following the pageset pointer.
5817 * Other parts of the kernel may not check if the zone is available.
5818 */
5819static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5820static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5821static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5822
11cd8638 5823static void __build_all_zonelists(void *data)
1da177e4 5824{
6811378e 5825 int nid;
afb6ebb3 5826 int __maybe_unused cpu;
9adb62a5 5827 pg_data_t *self = data;
b93e0f32
MH
5828 static DEFINE_SPINLOCK(lock);
5829
5830 spin_lock(&lock);
9276b1bc 5831
7f9cfb31
BL
5832#ifdef CONFIG_NUMA
5833 memset(node_load, 0, sizeof(node_load));
5834#endif
9adb62a5 5835
c1152583
WY
5836 /*
5837 * This node is hotadded and no memory is yet present. So just
5838 * building zonelists is fine - no need to touch other nodes.
5839 */
9adb62a5
JL
5840 if (self && !node_online(self->node_id)) {
5841 build_zonelists(self);
c1152583
WY
5842 } else {
5843 for_each_online_node(nid) {
5844 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5845
c1152583
WY
5846 build_zonelists(pgdat);
5847 }
99dcc3e5 5848
7aac7898
LS
5849#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5850 /*
5851 * We now know the "local memory node" for each node--
5852 * i.e., the node of the first zone in the generic zonelist.
5853 * Set up numa_mem percpu variable for on-line cpus. During
5854 * boot, only the boot cpu should be on-line; we'll init the
5855 * secondary cpus' numa_mem as they come on-line. During
5856 * node/memory hotplug, we'll fixup all on-line cpus.
5857 */
d9c9a0b9 5858 for_each_online_cpu(cpu)
7aac7898 5859 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5860#endif
d9c9a0b9 5861 }
b93e0f32
MH
5862
5863 spin_unlock(&lock);
6811378e
YG
5864}
5865
061f67bc
RV
5866static noinline void __init
5867build_all_zonelists_init(void)
5868{
afb6ebb3
MH
5869 int cpu;
5870
061f67bc 5871 __build_all_zonelists(NULL);
afb6ebb3
MH
5872
5873 /*
5874 * Initialize the boot_pagesets that are going to be used
5875 * for bootstrapping processors. The real pagesets for
5876 * each zone will be allocated later when the per cpu
5877 * allocator is available.
5878 *
5879 * boot_pagesets are used also for bootstrapping offline
5880 * cpus if the system is already booted because the pagesets
5881 * are needed to initialize allocators on a specific cpu too.
5882 * F.e. the percpu allocator needs the page allocator which
5883 * needs the percpu allocator in order to allocate its pagesets
5884 * (a chicken-egg dilemma).
5885 */
5886 for_each_possible_cpu(cpu)
5887 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5888
061f67bc
RV
5889 mminit_verify_zonelist();
5890 cpuset_init_current_mems_allowed();
5891}
5892
4eaf3f64 5893/*
4eaf3f64 5894 * unless system_state == SYSTEM_BOOTING.
061f67bc 5895 *
72675e13 5896 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5897 * [protected by SYSTEM_BOOTING].
4eaf3f64 5898 */
72675e13 5899void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5900{
0a18e607
DH
5901 unsigned long vm_total_pages;
5902
6811378e 5903 if (system_state == SYSTEM_BOOTING) {
061f67bc 5904 build_all_zonelists_init();
6811378e 5905 } else {
11cd8638 5906 __build_all_zonelists(pgdat);
6811378e
YG
5907 /* cpuset refresh routine should be here */
5908 }
56b9413b
DH
5909 /* Get the number of free pages beyond high watermark in all zones. */
5910 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5911 /*
5912 * Disable grouping by mobility if the number of pages in the
5913 * system is too low to allow the mechanism to work. It would be
5914 * more accurate, but expensive to check per-zone. This check is
5915 * made on memory-hotadd so a system can start with mobility
5916 * disabled and enable it later
5917 */
d9c23400 5918 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5919 page_group_by_mobility_disabled = 1;
5920 else
5921 page_group_by_mobility_disabled = 0;
5922
ce0725f7 5923 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5924 nr_online_nodes,
756a025f
JP
5925 page_group_by_mobility_disabled ? "off" : "on",
5926 vm_total_pages);
f0c0b2b8 5927#ifdef CONFIG_NUMA
f88dfff5 5928 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5929#endif
1da177e4
LT
5930}
5931
a9a9e77f
PT
5932/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5933static bool __meminit
5934overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5935{
a9a9e77f
PT
5936 static struct memblock_region *r;
5937
5938 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5939 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5940 for_each_memblock(memory, r) {
5941 if (*pfn < memblock_region_memory_end_pfn(r))
5942 break;
5943 }
5944 }
5945 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5946 memblock_is_mirror(r)) {
5947 *pfn = memblock_region_memory_end_pfn(r);
5948 return true;
5949 }
5950 }
a9a9e77f
PT
5951 return false;
5952}
5953
1da177e4
LT
5954/*
5955 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5956 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5957 * done. Non-atomic initialization, single-pass.
5958 */
c09b4240 5959void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5960 unsigned long start_pfn, enum memmap_context context,
5961 struct vmem_altmap *altmap)
1da177e4 5962{
a9a9e77f 5963 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5964 struct page *page;
1da177e4 5965
22b31eec
HD
5966 if (highest_memmap_pfn < end_pfn - 1)
5967 highest_memmap_pfn = end_pfn - 1;
5968
966cf44f 5969#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5970 /*
5971 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5972 * memory. We limit the total number of pages to initialize to just
5973 * those that might contain the memory mapping. We will defer the
5974 * ZONE_DEVICE page initialization until after we have released
5975 * the hotplug lock.
4b94ffdc 5976 */
966cf44f
AD
5977 if (zone == ZONE_DEVICE) {
5978 if (!altmap)
5979 return;
5980
5981 if (start_pfn == altmap->base_pfn)
5982 start_pfn += altmap->reserve;
5983 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5984 }
5985#endif
4b94ffdc 5986
948c436e 5987 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 5988 /*
b72d0ffb
AM
5989 * There can be holes in boot-time mem_map[]s handed to this
5990 * function. They do not exist on hotplugged memory.
a2f3aa02 5991 */
a9a9e77f 5992 if (context == MEMMAP_EARLY) {
a9a9e77f
PT
5993 if (overlap_memmap_init(zone, &pfn))
5994 continue;
5995 if (defer_init(nid, pfn, end_pfn))
5996 break;
a2f3aa02 5997 }
ac5d2539 5998
d0dc12e8
PT
5999 page = pfn_to_page(pfn);
6000 __init_single_page(page, pfn, zone, nid);
6001 if (context == MEMMAP_HOTPLUG)
d483da5b 6002 __SetPageReserved(page);
d0dc12e8 6003
ac5d2539
MG
6004 /*
6005 * Mark the block movable so that blocks are reserved for
6006 * movable at startup. This will force kernel allocations
6007 * to reserve their blocks rather than leaking throughout
6008 * the address space during boot when many long-lived
974a786e 6009 * kernel allocations are made.
ac5d2539
MG
6010 *
6011 * bitmap is created for zone's valid pfn range. but memmap
6012 * can be created for invalid pages (for alignment)
6013 * check here not to call set_pageblock_migratetype() against
6014 * pfn out of zone.
6015 */
6016 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 6017 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 6018 cond_resched();
ac5d2539 6019 }
948c436e 6020 pfn++;
1da177e4
LT
6021 }
6022}
6023
966cf44f
AD
6024#ifdef CONFIG_ZONE_DEVICE
6025void __ref memmap_init_zone_device(struct zone *zone,
6026 unsigned long start_pfn,
1f8d75c1 6027 unsigned long nr_pages,
966cf44f
AD
6028 struct dev_pagemap *pgmap)
6029{
1f8d75c1 6030 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6031 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6032 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6033 unsigned long zone_idx = zone_idx(zone);
6034 unsigned long start = jiffies;
6035 int nid = pgdat->node_id;
6036
46d945ae 6037 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6038 return;
6039
6040 /*
6041 * The call to memmap_init_zone should have already taken care
6042 * of the pages reserved for the memmap, so we can just jump to
6043 * the end of that region and start processing the device pages.
6044 */
514caf23 6045 if (altmap) {
966cf44f 6046 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6047 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6048 }
6049
6050 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6051 struct page *page = pfn_to_page(pfn);
6052
6053 __init_single_page(page, pfn, zone_idx, nid);
6054
6055 /*
6056 * Mark page reserved as it will need to wait for onlining
6057 * phase for it to be fully associated with a zone.
6058 *
6059 * We can use the non-atomic __set_bit operation for setting
6060 * the flag as we are still initializing the pages.
6061 */
6062 __SetPageReserved(page);
6063
6064 /*
8a164fef
CH
6065 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6066 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6067 * ever freed or placed on a driver-private list.
966cf44f
AD
6068 */
6069 page->pgmap = pgmap;
8a164fef 6070 page->zone_device_data = NULL;
966cf44f
AD
6071
6072 /*
6073 * Mark the block movable so that blocks are reserved for
6074 * movable at startup. This will force kernel allocations
6075 * to reserve their blocks rather than leaking throughout
6076 * the address space during boot when many long-lived
6077 * kernel allocations are made.
6078 *
6079 * bitmap is created for zone's valid pfn range. but memmap
6080 * can be created for invalid pages (for alignment)
6081 * check here not to call set_pageblock_migratetype() against
6082 * pfn out of zone.
6083 *
6084 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 6085 * because this is done early in section_activate()
966cf44f
AD
6086 */
6087 if (!(pfn & (pageblock_nr_pages - 1))) {
6088 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6089 cond_resched();
6090 }
6091 }
6092
fdc029b1 6093 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6094 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6095}
6096
6097#endif
1e548deb 6098static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6099{
7aeb09f9 6100 unsigned int order, t;
b2a0ac88
MG
6101 for_each_migratetype_order(order, t) {
6102 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6103 zone->free_area[order].nr_free = 0;
6104 }
6105}
6106
dfb3ccd0 6107void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6108 unsigned long zone,
6109 unsigned long range_start_pfn)
dfb3ccd0 6110{
73a6e474
BH
6111 unsigned long start_pfn, end_pfn;
6112 unsigned long range_end_pfn = range_start_pfn + size;
6113 int i;
6114
6115 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6116 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6117 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6118
6119 if (end_pfn > start_pfn) {
6120 size = end_pfn - start_pfn;
6121 memmap_init_zone(size, nid, zone, start_pfn,
6122 MEMMAP_EARLY, NULL);
6123 }
6124 }
dfb3ccd0 6125}
1da177e4 6126
7cd2b0a3 6127static int zone_batchsize(struct zone *zone)
e7c8d5c9 6128{
3a6be87f 6129#ifdef CONFIG_MMU
e7c8d5c9
CL
6130 int batch;
6131
6132 /*
6133 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6134 * size of the zone.
e7c8d5c9 6135 */
9705bea5 6136 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6137 /* But no more than a meg. */
6138 if (batch * PAGE_SIZE > 1024 * 1024)
6139 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6140 batch /= 4; /* We effectively *= 4 below */
6141 if (batch < 1)
6142 batch = 1;
6143
6144 /*
0ceaacc9
NP
6145 * Clamp the batch to a 2^n - 1 value. Having a power
6146 * of 2 value was found to be more likely to have
6147 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6148 *
0ceaacc9
NP
6149 * For example if 2 tasks are alternately allocating
6150 * batches of pages, one task can end up with a lot
6151 * of pages of one half of the possible page colors
6152 * and the other with pages of the other colors.
e7c8d5c9 6153 */
9155203a 6154 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6155
e7c8d5c9 6156 return batch;
3a6be87f
DH
6157
6158#else
6159 /* The deferral and batching of frees should be suppressed under NOMMU
6160 * conditions.
6161 *
6162 * The problem is that NOMMU needs to be able to allocate large chunks
6163 * of contiguous memory as there's no hardware page translation to
6164 * assemble apparent contiguous memory from discontiguous pages.
6165 *
6166 * Queueing large contiguous runs of pages for batching, however,
6167 * causes the pages to actually be freed in smaller chunks. As there
6168 * can be a significant delay between the individual batches being
6169 * recycled, this leads to the once large chunks of space being
6170 * fragmented and becoming unavailable for high-order allocations.
6171 */
6172 return 0;
6173#endif
e7c8d5c9
CL
6174}
6175
8d7a8fa9
CS
6176/*
6177 * pcp->high and pcp->batch values are related and dependent on one another:
6178 * ->batch must never be higher then ->high.
6179 * The following function updates them in a safe manner without read side
6180 * locking.
6181 *
6182 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6183 * those fields changing asynchronously (acording the the above rule).
6184 *
6185 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6186 * outside of boot time (or some other assurance that no concurrent updaters
6187 * exist).
6188 */
6189static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6190 unsigned long batch)
6191{
6192 /* start with a fail safe value for batch */
6193 pcp->batch = 1;
6194 smp_wmb();
6195
6196 /* Update high, then batch, in order */
6197 pcp->high = high;
6198 smp_wmb();
6199
6200 pcp->batch = batch;
6201}
6202
3664033c 6203/* a companion to pageset_set_high() */
4008bab7
CS
6204static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6205{
8d7a8fa9 6206 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6207}
6208
88c90dbc 6209static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6210{
6211 struct per_cpu_pages *pcp;
5f8dcc21 6212 int migratetype;
2caaad41 6213
1c6fe946
MD
6214 memset(p, 0, sizeof(*p));
6215
3dfa5721 6216 pcp = &p->pcp;
5f8dcc21
MG
6217 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6218 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6219}
6220
88c90dbc
CS
6221static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6222{
6223 pageset_init(p);
6224 pageset_set_batch(p, batch);
6225}
6226
8ad4b1fb 6227/*
3664033c 6228 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6229 * to the value high for the pageset p.
6230 */
3664033c 6231static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6232 unsigned long high)
6233{
8d7a8fa9
CS
6234 unsigned long batch = max(1UL, high / 4);
6235 if ((high / 4) > (PAGE_SHIFT * 8))
6236 batch = PAGE_SHIFT * 8;
8ad4b1fb 6237
8d7a8fa9 6238 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6239}
6240
7cd2b0a3
DR
6241static void pageset_set_high_and_batch(struct zone *zone,
6242 struct per_cpu_pageset *pcp)
56cef2b8 6243{
56cef2b8 6244 if (percpu_pagelist_fraction)
3664033c 6245 pageset_set_high(pcp,
9705bea5 6246 (zone_managed_pages(zone) /
56cef2b8
CS
6247 percpu_pagelist_fraction));
6248 else
6249 pageset_set_batch(pcp, zone_batchsize(zone));
6250}
6251
169f6c19
CS
6252static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6253{
6254 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6255
6256 pageset_init(pcp);
6257 pageset_set_high_and_batch(zone, pcp);
6258}
6259
72675e13 6260void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6261{
6262 int cpu;
319774e2 6263 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6264 for_each_possible_cpu(cpu)
6265 zone_pageset_init(zone, cpu);
319774e2
WF
6266}
6267
2caaad41 6268/*
99dcc3e5
CL
6269 * Allocate per cpu pagesets and initialize them.
6270 * Before this call only boot pagesets were available.
e7c8d5c9 6271 */
99dcc3e5 6272void __init setup_per_cpu_pageset(void)
e7c8d5c9 6273{
b4911ea2 6274 struct pglist_data *pgdat;
99dcc3e5 6275 struct zone *zone;
b418a0f9 6276 int __maybe_unused cpu;
e7c8d5c9 6277
319774e2
WF
6278 for_each_populated_zone(zone)
6279 setup_zone_pageset(zone);
b4911ea2 6280
b418a0f9
SD
6281#ifdef CONFIG_NUMA
6282 /*
6283 * Unpopulated zones continue using the boot pagesets.
6284 * The numa stats for these pagesets need to be reset.
6285 * Otherwise, they will end up skewing the stats of
6286 * the nodes these zones are associated with.
6287 */
6288 for_each_possible_cpu(cpu) {
6289 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6290 memset(pcp->vm_numa_stat_diff, 0,
6291 sizeof(pcp->vm_numa_stat_diff));
6292 }
6293#endif
6294
b4911ea2
MG
6295 for_each_online_pgdat(pgdat)
6296 pgdat->per_cpu_nodestats =
6297 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6298}
6299
c09b4240 6300static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6301{
99dcc3e5
CL
6302 /*
6303 * per cpu subsystem is not up at this point. The following code
6304 * relies on the ability of the linker to provide the
6305 * offset of a (static) per cpu variable into the per cpu area.
6306 */
6307 zone->pageset = &boot_pageset;
ed8ece2e 6308
b38a8725 6309 if (populated_zone(zone))
99dcc3e5
CL
6310 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6311 zone->name, zone->present_pages,
6312 zone_batchsize(zone));
ed8ece2e
DH
6313}
6314
dc0bbf3b 6315void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6316 unsigned long zone_start_pfn,
b171e409 6317 unsigned long size)
ed8ece2e
DH
6318{
6319 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6320 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6321
8f416836
WY
6322 if (zone_idx > pgdat->nr_zones)
6323 pgdat->nr_zones = zone_idx;
ed8ece2e 6324
ed8ece2e
DH
6325 zone->zone_start_pfn = zone_start_pfn;
6326
708614e6
MG
6327 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6328 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6329 pgdat->node_id,
6330 (unsigned long)zone_idx(zone),
6331 zone_start_pfn, (zone_start_pfn + size));
6332
1e548deb 6333 zone_init_free_lists(zone);
9dcb8b68 6334 zone->initialized = 1;
ed8ece2e
DH
6335}
6336
c713216d
MG
6337/**
6338 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6339 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6340 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6341 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6342 *
6343 * It returns the start and end page frame of a node based on information
7d018176 6344 * provided by memblock_set_node(). If called for a node
c713216d 6345 * with no available memory, a warning is printed and the start and end
88ca3b94 6346 * PFNs will be 0.
c713216d 6347 */
bbe5d993 6348void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6349 unsigned long *start_pfn, unsigned long *end_pfn)
6350{
c13291a5 6351 unsigned long this_start_pfn, this_end_pfn;
c713216d 6352 int i;
c13291a5 6353
c713216d
MG
6354 *start_pfn = -1UL;
6355 *end_pfn = 0;
6356
c13291a5
TH
6357 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6358 *start_pfn = min(*start_pfn, this_start_pfn);
6359 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6360 }
6361
633c0666 6362 if (*start_pfn == -1UL)
c713216d 6363 *start_pfn = 0;
c713216d
MG
6364}
6365
2a1e274a
MG
6366/*
6367 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6368 * assumption is made that zones within a node are ordered in monotonic
6369 * increasing memory addresses so that the "highest" populated zone is used
6370 */
b69a7288 6371static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6372{
6373 int zone_index;
6374 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6375 if (zone_index == ZONE_MOVABLE)
6376 continue;
6377
6378 if (arch_zone_highest_possible_pfn[zone_index] >
6379 arch_zone_lowest_possible_pfn[zone_index])
6380 break;
6381 }
6382
6383 VM_BUG_ON(zone_index == -1);
6384 movable_zone = zone_index;
6385}
6386
6387/*
6388 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6389 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6390 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6391 * in each node depending on the size of each node and how evenly kernelcore
6392 * is distributed. This helper function adjusts the zone ranges
6393 * provided by the architecture for a given node by using the end of the
6394 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6395 * zones within a node are in order of monotonic increases memory addresses
6396 */
bbe5d993 6397static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6398 unsigned long zone_type,
6399 unsigned long node_start_pfn,
6400 unsigned long node_end_pfn,
6401 unsigned long *zone_start_pfn,
6402 unsigned long *zone_end_pfn)
6403{
6404 /* Only adjust if ZONE_MOVABLE is on this node */
6405 if (zone_movable_pfn[nid]) {
6406 /* Size ZONE_MOVABLE */
6407 if (zone_type == ZONE_MOVABLE) {
6408 *zone_start_pfn = zone_movable_pfn[nid];
6409 *zone_end_pfn = min(node_end_pfn,
6410 arch_zone_highest_possible_pfn[movable_zone]);
6411
e506b996
XQ
6412 /* Adjust for ZONE_MOVABLE starting within this range */
6413 } else if (!mirrored_kernelcore &&
6414 *zone_start_pfn < zone_movable_pfn[nid] &&
6415 *zone_end_pfn > zone_movable_pfn[nid]) {
6416 *zone_end_pfn = zone_movable_pfn[nid];
6417
2a1e274a
MG
6418 /* Check if this whole range is within ZONE_MOVABLE */
6419 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6420 *zone_start_pfn = *zone_end_pfn;
6421 }
6422}
6423
c713216d
MG
6424/*
6425 * Return the number of pages a zone spans in a node, including holes
6426 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6427 */
bbe5d993 6428static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6429 unsigned long zone_type,
7960aedd
ZY
6430 unsigned long node_start_pfn,
6431 unsigned long node_end_pfn,
d91749c1 6432 unsigned long *zone_start_pfn,
854e8848 6433 unsigned long *zone_end_pfn)
c713216d 6434{
299c83dc
LF
6435 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6436 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6437 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6438 if (!node_start_pfn && !node_end_pfn)
6439 return 0;
6440
7960aedd 6441 /* Get the start and end of the zone */
299c83dc
LF
6442 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6443 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6444 adjust_zone_range_for_zone_movable(nid, zone_type,
6445 node_start_pfn, node_end_pfn,
d91749c1 6446 zone_start_pfn, zone_end_pfn);
c713216d
MG
6447
6448 /* Check that this node has pages within the zone's required range */
d91749c1 6449 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6450 return 0;
6451
6452 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6453 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6454 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6455
6456 /* Return the spanned pages */
d91749c1 6457 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6458}
6459
6460/*
6461 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6462 * then all holes in the requested range will be accounted for.
c713216d 6463 */
bbe5d993 6464unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6465 unsigned long range_start_pfn,
6466 unsigned long range_end_pfn)
6467{
96e907d1
TH
6468 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6469 unsigned long start_pfn, end_pfn;
6470 int i;
c713216d 6471
96e907d1
TH
6472 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6473 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6474 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6475 nr_absent -= end_pfn - start_pfn;
c713216d 6476 }
96e907d1 6477 return nr_absent;
c713216d
MG
6478}
6479
6480/**
6481 * absent_pages_in_range - Return number of page frames in holes within a range
6482 * @start_pfn: The start PFN to start searching for holes
6483 * @end_pfn: The end PFN to stop searching for holes
6484 *
a862f68a 6485 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6486 */
6487unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6488 unsigned long end_pfn)
6489{
6490 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6491}
6492
6493/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6494static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6495 unsigned long zone_type,
7960aedd 6496 unsigned long node_start_pfn,
854e8848 6497 unsigned long node_end_pfn)
c713216d 6498{
96e907d1
TH
6499 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6500 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6501 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6502 unsigned long nr_absent;
9c7cd687 6503
b5685e92 6504 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6505 if (!node_start_pfn && !node_end_pfn)
6506 return 0;
6507
96e907d1
TH
6508 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6509 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6510
2a1e274a
MG
6511 adjust_zone_range_for_zone_movable(nid, zone_type,
6512 node_start_pfn, node_end_pfn,
6513 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6514 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6515
6516 /*
6517 * ZONE_MOVABLE handling.
6518 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6519 * and vice versa.
6520 */
e506b996
XQ
6521 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6522 unsigned long start_pfn, end_pfn;
6523 struct memblock_region *r;
6524
6525 for_each_memblock(memory, r) {
6526 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6527 zone_start_pfn, zone_end_pfn);
6528 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6529 zone_start_pfn, zone_end_pfn);
6530
6531 if (zone_type == ZONE_MOVABLE &&
6532 memblock_is_mirror(r))
6533 nr_absent += end_pfn - start_pfn;
6534
6535 if (zone_type == ZONE_NORMAL &&
6536 !memblock_is_mirror(r))
6537 nr_absent += end_pfn - start_pfn;
342332e6
TI
6538 }
6539 }
6540
6541 return nr_absent;
c713216d 6542}
0e0b864e 6543
bbe5d993 6544static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6545 unsigned long node_start_pfn,
854e8848 6546 unsigned long node_end_pfn)
c713216d 6547{
febd5949 6548 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6549 enum zone_type i;
6550
febd5949
GZ
6551 for (i = 0; i < MAX_NR_ZONES; i++) {
6552 struct zone *zone = pgdat->node_zones + i;
d91749c1 6553 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6554 unsigned long spanned, absent;
febd5949 6555 unsigned long size, real_size;
c713216d 6556
854e8848
MR
6557 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6558 node_start_pfn,
6559 node_end_pfn,
6560 &zone_start_pfn,
6561 &zone_end_pfn);
6562 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6563 node_start_pfn,
6564 node_end_pfn);
3f08a302
MR
6565
6566 size = spanned;
6567 real_size = size - absent;
6568
d91749c1
TI
6569 if (size)
6570 zone->zone_start_pfn = zone_start_pfn;
6571 else
6572 zone->zone_start_pfn = 0;
febd5949
GZ
6573 zone->spanned_pages = size;
6574 zone->present_pages = real_size;
6575
6576 totalpages += size;
6577 realtotalpages += real_size;
6578 }
6579
6580 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6581 pgdat->node_present_pages = realtotalpages;
6582 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6583 realtotalpages);
6584}
6585
835c134e
MG
6586#ifndef CONFIG_SPARSEMEM
6587/*
6588 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6589 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6590 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6591 * round what is now in bits to nearest long in bits, then return it in
6592 * bytes.
6593 */
7c45512d 6594static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6595{
6596 unsigned long usemapsize;
6597
7c45512d 6598 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6599 usemapsize = roundup(zonesize, pageblock_nr_pages);
6600 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6601 usemapsize *= NR_PAGEBLOCK_BITS;
6602 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6603
6604 return usemapsize / 8;
6605}
6606
7cc2a959 6607static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6608 struct zone *zone,
6609 unsigned long zone_start_pfn,
6610 unsigned long zonesize)
835c134e 6611{
7c45512d 6612 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6613 zone->pageblock_flags = NULL;
23a7052a 6614 if (usemapsize) {
6782832e 6615 zone->pageblock_flags =
26fb3dae
MR
6616 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6617 pgdat->node_id);
23a7052a
MR
6618 if (!zone->pageblock_flags)
6619 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6620 usemapsize, zone->name, pgdat->node_id);
6621 }
835c134e
MG
6622}
6623#else
7c45512d
LT
6624static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6625 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6626#endif /* CONFIG_SPARSEMEM */
6627
d9c23400 6628#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6629
d9c23400 6630/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6631void __init set_pageblock_order(void)
d9c23400 6632{
955c1cd7
AM
6633 unsigned int order;
6634
d9c23400
MG
6635 /* Check that pageblock_nr_pages has not already been setup */
6636 if (pageblock_order)
6637 return;
6638
955c1cd7
AM
6639 if (HPAGE_SHIFT > PAGE_SHIFT)
6640 order = HUGETLB_PAGE_ORDER;
6641 else
6642 order = MAX_ORDER - 1;
6643
d9c23400
MG
6644 /*
6645 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6646 * This value may be variable depending on boot parameters on IA64 and
6647 * powerpc.
d9c23400
MG
6648 */
6649 pageblock_order = order;
6650}
6651#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6652
ba72cb8c
MG
6653/*
6654 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6655 * is unused as pageblock_order is set at compile-time. See
6656 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6657 * the kernel config
ba72cb8c 6658 */
03e85f9d 6659void __init set_pageblock_order(void)
ba72cb8c 6660{
ba72cb8c 6661}
d9c23400
MG
6662
6663#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6664
03e85f9d 6665static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6666 unsigned long present_pages)
01cefaef
JL
6667{
6668 unsigned long pages = spanned_pages;
6669
6670 /*
6671 * Provide a more accurate estimation if there are holes within
6672 * the zone and SPARSEMEM is in use. If there are holes within the
6673 * zone, each populated memory region may cost us one or two extra
6674 * memmap pages due to alignment because memmap pages for each
89d790ab 6675 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6676 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6677 */
6678 if (spanned_pages > present_pages + (present_pages >> 4) &&
6679 IS_ENABLED(CONFIG_SPARSEMEM))
6680 pages = present_pages;
6681
6682 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6683}
6684
ace1db39
OS
6685#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6686static void pgdat_init_split_queue(struct pglist_data *pgdat)
6687{
364c1eeb
YS
6688 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6689
6690 spin_lock_init(&ds_queue->split_queue_lock);
6691 INIT_LIST_HEAD(&ds_queue->split_queue);
6692 ds_queue->split_queue_len = 0;
ace1db39
OS
6693}
6694#else
6695static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6696#endif
6697
6698#ifdef CONFIG_COMPACTION
6699static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6700{
6701 init_waitqueue_head(&pgdat->kcompactd_wait);
6702}
6703#else
6704static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6705#endif
6706
03e85f9d 6707static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6708{
208d54e5 6709 pgdat_resize_init(pgdat);
ace1db39 6710
ace1db39
OS
6711 pgdat_init_split_queue(pgdat);
6712 pgdat_init_kcompactd(pgdat);
6713
1da177e4 6714 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6715 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6716
eefa864b 6717 pgdat_page_ext_init(pgdat);
a52633d8 6718 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6719 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6720}
6721
6722static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6723 unsigned long remaining_pages)
6724{
9705bea5 6725 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6726 zone_set_nid(zone, nid);
6727 zone->name = zone_names[idx];
6728 zone->zone_pgdat = NODE_DATA(nid);
6729 spin_lock_init(&zone->lock);
6730 zone_seqlock_init(zone);
6731 zone_pcp_init(zone);
6732}
6733
6734/*
6735 * Set up the zone data structures
6736 * - init pgdat internals
6737 * - init all zones belonging to this node
6738 *
6739 * NOTE: this function is only called during memory hotplug
6740 */
6741#ifdef CONFIG_MEMORY_HOTPLUG
6742void __ref free_area_init_core_hotplug(int nid)
6743{
6744 enum zone_type z;
6745 pg_data_t *pgdat = NODE_DATA(nid);
6746
6747 pgdat_init_internals(pgdat);
6748 for (z = 0; z < MAX_NR_ZONES; z++)
6749 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6750}
6751#endif
6752
6753/*
6754 * Set up the zone data structures:
6755 * - mark all pages reserved
6756 * - mark all memory queues empty
6757 * - clear the memory bitmaps
6758 *
6759 * NOTE: pgdat should get zeroed by caller.
6760 * NOTE: this function is only called during early init.
6761 */
6762static void __init free_area_init_core(struct pglist_data *pgdat)
6763{
6764 enum zone_type j;
6765 int nid = pgdat->node_id;
5f63b720 6766
03e85f9d 6767 pgdat_init_internals(pgdat);
385386cf
JW
6768 pgdat->per_cpu_nodestats = &boot_nodestats;
6769
1da177e4
LT
6770 for (j = 0; j < MAX_NR_ZONES; j++) {
6771 struct zone *zone = pgdat->node_zones + j;
e6943859 6772 unsigned long size, freesize, memmap_pages;
d91749c1 6773 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6774
febd5949 6775 size = zone->spanned_pages;
e6943859 6776 freesize = zone->present_pages;
1da177e4 6777
0e0b864e 6778 /*
9feedc9d 6779 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6780 * is used by this zone for memmap. This affects the watermark
6781 * and per-cpu initialisations
6782 */
e6943859 6783 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6784 if (!is_highmem_idx(j)) {
6785 if (freesize >= memmap_pages) {
6786 freesize -= memmap_pages;
6787 if (memmap_pages)
6788 printk(KERN_DEBUG
6789 " %s zone: %lu pages used for memmap\n",
6790 zone_names[j], memmap_pages);
6791 } else
1170532b 6792 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6793 zone_names[j], memmap_pages, freesize);
6794 }
0e0b864e 6795
6267276f 6796 /* Account for reserved pages */
9feedc9d
JL
6797 if (j == 0 && freesize > dma_reserve) {
6798 freesize -= dma_reserve;
d903ef9f 6799 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6800 zone_names[0], dma_reserve);
0e0b864e
MG
6801 }
6802
98d2b0eb 6803 if (!is_highmem_idx(j))
9feedc9d 6804 nr_kernel_pages += freesize;
01cefaef
JL
6805 /* Charge for highmem memmap if there are enough kernel pages */
6806 else if (nr_kernel_pages > memmap_pages * 2)
6807 nr_kernel_pages -= memmap_pages;
9feedc9d 6808 nr_all_pages += freesize;
1da177e4 6809
9feedc9d
JL
6810 /*
6811 * Set an approximate value for lowmem here, it will be adjusted
6812 * when the bootmem allocator frees pages into the buddy system.
6813 * And all highmem pages will be managed by the buddy system.
6814 */
03e85f9d 6815 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6816
d883c6cf 6817 if (!size)
1da177e4
LT
6818 continue;
6819
955c1cd7 6820 set_pageblock_order();
d883c6cf
JK
6821 setup_usemap(pgdat, zone, zone_start_pfn, size);
6822 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6823 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6824 }
6825}
6826
0cd842f9 6827#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6828static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6829{
b0aeba74 6830 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6831 unsigned long __maybe_unused offset = 0;
6832
1da177e4
LT
6833 /* Skip empty nodes */
6834 if (!pgdat->node_spanned_pages)
6835 return;
6836
b0aeba74
TL
6837 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6838 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6839 /* ia64 gets its own node_mem_map, before this, without bootmem */
6840 if (!pgdat->node_mem_map) {
b0aeba74 6841 unsigned long size, end;
d41dee36
AW
6842 struct page *map;
6843
e984bb43
BP
6844 /*
6845 * The zone's endpoints aren't required to be MAX_ORDER
6846 * aligned but the node_mem_map endpoints must be in order
6847 * for the buddy allocator to function correctly.
6848 */
108bcc96 6849 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6850 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6851 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6852 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6853 pgdat->node_id);
23a7052a
MR
6854 if (!map)
6855 panic("Failed to allocate %ld bytes for node %d memory map\n",
6856 size, pgdat->node_id);
a1c34a3b 6857 pgdat->node_mem_map = map + offset;
1da177e4 6858 }
0cd842f9
OS
6859 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6860 __func__, pgdat->node_id, (unsigned long)pgdat,
6861 (unsigned long)pgdat->node_mem_map);
12d810c1 6862#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6863 /*
6864 * With no DISCONTIG, the global mem_map is just set as node 0's
6865 */
c713216d 6866 if (pgdat == NODE_DATA(0)) {
1da177e4 6867 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6868 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6869 mem_map -= offset;
c713216d 6870 }
1da177e4
LT
6871#endif
6872}
0cd842f9
OS
6873#else
6874static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6875#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6876
0188dc98
OS
6877#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6878static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6879{
0188dc98
OS
6880 pgdat->first_deferred_pfn = ULONG_MAX;
6881}
6882#else
6883static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6884#endif
6885
854e8848 6886static void __init free_area_init_node(int nid)
1da177e4 6887{
9109fb7b 6888 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6889 unsigned long start_pfn = 0;
6890 unsigned long end_pfn = 0;
9109fb7b 6891
88fdf75d 6892 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 6893 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 6894
854e8848 6895 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 6896
1da177e4 6897 pgdat->node_id = nid;
854e8848 6898 pgdat->node_start_pfn = start_pfn;
75ef7184 6899 pgdat->per_cpu_nodestats = NULL;
854e8848 6900
8d29e18a 6901 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6902 (u64)start_pfn << PAGE_SHIFT,
6903 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 6904 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
6905
6906 alloc_node_mem_map(pgdat);
0188dc98 6907 pgdat_set_deferred_range(pgdat);
1da177e4 6908
7f3eb55b 6909 free_area_init_core(pgdat);
1da177e4
LT
6910}
6911
bc9331a1 6912void __init free_area_init_memoryless_node(int nid)
3f08a302 6913{
854e8848 6914 free_area_init_node(nid);
3f08a302
MR
6915}
6916
aca52c39 6917#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6918/*
4b094b78
DH
6919 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6920 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6921 */
4b094b78 6922static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6923{
6924 unsigned long pfn;
6925 u64 pgcnt = 0;
6926
6927 for (pfn = spfn; pfn < epfn; pfn++) {
6928 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6929 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6930 + pageblock_nr_pages - 1;
6931 continue;
6932 }
4b094b78
DH
6933 /*
6934 * Use a fake node/zone (0) for now. Some of these pages
6935 * (in memblock.reserved but not in memblock.memory) will
6936 * get re-initialized via reserve_bootmem_region() later.
6937 */
6938 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6939 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
6940 pgcnt++;
6941 }
6942
6943 return pgcnt;
6944}
6945
a4a3ede2
PT
6946/*
6947 * Only struct pages that are backed by physical memory are zeroed and
6948 * initialized by going through __init_single_page(). But, there are some
6949 * struct pages which are reserved in memblock allocator and their fields
6950 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 6951 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
6952 *
6953 * This function also addresses a similar issue where struct pages are left
6954 * uninitialized because the physical address range is not covered by
6955 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
6956 * layout is manually configured via memmap=, or when the highest physical
6957 * address (max_pfn) does not end on a section boundary.
a4a3ede2 6958 */
4b094b78 6959static void __init init_unavailable_mem(void)
a4a3ede2
PT
6960{
6961 phys_addr_t start, end;
a4a3ede2 6962 u64 i, pgcnt;
907ec5fc 6963 phys_addr_t next = 0;
a4a3ede2
PT
6964
6965 /*
907ec5fc 6966 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6967 */
6968 pgcnt = 0;
907ec5fc
NH
6969 for_each_mem_range(i, &memblock.memory, NULL,
6970 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 6971 if (next < start)
4b094b78
DH
6972 pgcnt += init_unavailable_range(PFN_DOWN(next),
6973 PFN_UP(start));
907ec5fc
NH
6974 next = end;
6975 }
e822969c
DH
6976
6977 /*
6978 * Early sections always have a fully populated memmap for the whole
6979 * section - see pfn_valid(). If the last section has holes at the
6980 * end and that section is marked "online", the memmap will be
6981 * considered initialized. Make sure that memmap has a well defined
6982 * state.
6983 */
4b094b78
DH
6984 pgcnt += init_unavailable_range(PFN_DOWN(next),
6985 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 6986
a4a3ede2
PT
6987 /*
6988 * Struct pages that do not have backing memory. This could be because
6989 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6990 */
6991 if (pgcnt)
907ec5fc 6992 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6993}
4b094b78
DH
6994#else
6995static inline void __init init_unavailable_mem(void)
6996{
6997}
aca52c39 6998#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6999
418508c1
MS
7000#if MAX_NUMNODES > 1
7001/*
7002 * Figure out the number of possible node ids.
7003 */
f9872caf 7004void __init setup_nr_node_ids(void)
418508c1 7005{
904a9553 7006 unsigned int highest;
418508c1 7007
904a9553 7008 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7009 nr_node_ids = highest + 1;
7010}
418508c1
MS
7011#endif
7012
1e01979c
TH
7013/**
7014 * node_map_pfn_alignment - determine the maximum internode alignment
7015 *
7016 * This function should be called after node map is populated and sorted.
7017 * It calculates the maximum power of two alignment which can distinguish
7018 * all the nodes.
7019 *
7020 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7021 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7022 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7023 * shifted, 1GiB is enough and this function will indicate so.
7024 *
7025 * This is used to test whether pfn -> nid mapping of the chosen memory
7026 * model has fine enough granularity to avoid incorrect mapping for the
7027 * populated node map.
7028 *
a862f68a 7029 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7030 * requirement (single node).
7031 */
7032unsigned long __init node_map_pfn_alignment(void)
7033{
7034 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7035 unsigned long start, end, mask;
98fa15f3 7036 int last_nid = NUMA_NO_NODE;
c13291a5 7037 int i, nid;
1e01979c 7038
c13291a5 7039 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7040 if (!start || last_nid < 0 || last_nid == nid) {
7041 last_nid = nid;
7042 last_end = end;
7043 continue;
7044 }
7045
7046 /*
7047 * Start with a mask granular enough to pin-point to the
7048 * start pfn and tick off bits one-by-one until it becomes
7049 * too coarse to separate the current node from the last.
7050 */
7051 mask = ~((1 << __ffs(start)) - 1);
7052 while (mask && last_end <= (start & (mask << 1)))
7053 mask <<= 1;
7054
7055 /* accumulate all internode masks */
7056 accl_mask |= mask;
7057 }
7058
7059 /* convert mask to number of pages */
7060 return ~accl_mask + 1;
7061}
7062
c713216d
MG
7063/**
7064 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7065 *
a862f68a 7066 * Return: the minimum PFN based on information provided via
7d018176 7067 * memblock_set_node().
c713216d
MG
7068 */
7069unsigned long __init find_min_pfn_with_active_regions(void)
7070{
8a1b25fe 7071 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7072}
7073
37b07e41
LS
7074/*
7075 * early_calculate_totalpages()
7076 * Sum pages in active regions for movable zone.
4b0ef1fe 7077 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7078 */
484f51f8 7079static unsigned long __init early_calculate_totalpages(void)
7e63efef 7080{
7e63efef 7081 unsigned long totalpages = 0;
c13291a5
TH
7082 unsigned long start_pfn, end_pfn;
7083 int i, nid;
7084
7085 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7086 unsigned long pages = end_pfn - start_pfn;
7e63efef 7087
37b07e41
LS
7088 totalpages += pages;
7089 if (pages)
4b0ef1fe 7090 node_set_state(nid, N_MEMORY);
37b07e41 7091 }
b8af2941 7092 return totalpages;
7e63efef
MG
7093}
7094
2a1e274a
MG
7095/*
7096 * Find the PFN the Movable zone begins in each node. Kernel memory
7097 * is spread evenly between nodes as long as the nodes have enough
7098 * memory. When they don't, some nodes will have more kernelcore than
7099 * others
7100 */
b224ef85 7101static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7102{
7103 int i, nid;
7104 unsigned long usable_startpfn;
7105 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7106 /* save the state before borrow the nodemask */
4b0ef1fe 7107 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7108 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7109 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7110 struct memblock_region *r;
b2f3eebe
TC
7111
7112 /* Need to find movable_zone earlier when movable_node is specified. */
7113 find_usable_zone_for_movable();
7114
7115 /*
7116 * If movable_node is specified, ignore kernelcore and movablecore
7117 * options.
7118 */
7119 if (movable_node_is_enabled()) {
136199f0
EM
7120 for_each_memblock(memory, r) {
7121 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7122 continue;
7123
d622abf7 7124 nid = memblock_get_region_node(r);
b2f3eebe 7125
136199f0 7126 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7127 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7128 min(usable_startpfn, zone_movable_pfn[nid]) :
7129 usable_startpfn;
7130 }
7131
7132 goto out2;
7133 }
2a1e274a 7134
342332e6
TI
7135 /*
7136 * If kernelcore=mirror is specified, ignore movablecore option
7137 */
7138 if (mirrored_kernelcore) {
7139 bool mem_below_4gb_not_mirrored = false;
7140
7141 for_each_memblock(memory, r) {
7142 if (memblock_is_mirror(r))
7143 continue;
7144
d622abf7 7145 nid = memblock_get_region_node(r);
342332e6
TI
7146
7147 usable_startpfn = memblock_region_memory_base_pfn(r);
7148
7149 if (usable_startpfn < 0x100000) {
7150 mem_below_4gb_not_mirrored = true;
7151 continue;
7152 }
7153
7154 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7155 min(usable_startpfn, zone_movable_pfn[nid]) :
7156 usable_startpfn;
7157 }
7158
7159 if (mem_below_4gb_not_mirrored)
633bf2fe 7160 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7161
7162 goto out2;
7163 }
7164
7e63efef 7165 /*
a5c6d650
DR
7166 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7167 * amount of necessary memory.
7168 */
7169 if (required_kernelcore_percent)
7170 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7171 10000UL;
7172 if (required_movablecore_percent)
7173 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7174 10000UL;
7175
7176 /*
7177 * If movablecore= was specified, calculate what size of
7e63efef
MG
7178 * kernelcore that corresponds so that memory usable for
7179 * any allocation type is evenly spread. If both kernelcore
7180 * and movablecore are specified, then the value of kernelcore
7181 * will be used for required_kernelcore if it's greater than
7182 * what movablecore would have allowed.
7183 */
7184 if (required_movablecore) {
7e63efef
MG
7185 unsigned long corepages;
7186
7187 /*
7188 * Round-up so that ZONE_MOVABLE is at least as large as what
7189 * was requested by the user
7190 */
7191 required_movablecore =
7192 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7193 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7194 corepages = totalpages - required_movablecore;
7195
7196 required_kernelcore = max(required_kernelcore, corepages);
7197 }
7198
bde304bd
XQ
7199 /*
7200 * If kernelcore was not specified or kernelcore size is larger
7201 * than totalpages, there is no ZONE_MOVABLE.
7202 */
7203 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7204 goto out;
2a1e274a
MG
7205
7206 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7207 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7208
7209restart:
7210 /* Spread kernelcore memory as evenly as possible throughout nodes */
7211 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7212 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7213 unsigned long start_pfn, end_pfn;
7214
2a1e274a
MG
7215 /*
7216 * Recalculate kernelcore_node if the division per node
7217 * now exceeds what is necessary to satisfy the requested
7218 * amount of memory for the kernel
7219 */
7220 if (required_kernelcore < kernelcore_node)
7221 kernelcore_node = required_kernelcore / usable_nodes;
7222
7223 /*
7224 * As the map is walked, we track how much memory is usable
7225 * by the kernel using kernelcore_remaining. When it is
7226 * 0, the rest of the node is usable by ZONE_MOVABLE
7227 */
7228 kernelcore_remaining = kernelcore_node;
7229
7230 /* Go through each range of PFNs within this node */
c13291a5 7231 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7232 unsigned long size_pages;
7233
c13291a5 7234 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7235 if (start_pfn >= end_pfn)
7236 continue;
7237
7238 /* Account for what is only usable for kernelcore */
7239 if (start_pfn < usable_startpfn) {
7240 unsigned long kernel_pages;
7241 kernel_pages = min(end_pfn, usable_startpfn)
7242 - start_pfn;
7243
7244 kernelcore_remaining -= min(kernel_pages,
7245 kernelcore_remaining);
7246 required_kernelcore -= min(kernel_pages,
7247 required_kernelcore);
7248
7249 /* Continue if range is now fully accounted */
7250 if (end_pfn <= usable_startpfn) {
7251
7252 /*
7253 * Push zone_movable_pfn to the end so
7254 * that if we have to rebalance
7255 * kernelcore across nodes, we will
7256 * not double account here
7257 */
7258 zone_movable_pfn[nid] = end_pfn;
7259 continue;
7260 }
7261 start_pfn = usable_startpfn;
7262 }
7263
7264 /*
7265 * The usable PFN range for ZONE_MOVABLE is from
7266 * start_pfn->end_pfn. Calculate size_pages as the
7267 * number of pages used as kernelcore
7268 */
7269 size_pages = end_pfn - start_pfn;
7270 if (size_pages > kernelcore_remaining)
7271 size_pages = kernelcore_remaining;
7272 zone_movable_pfn[nid] = start_pfn + size_pages;
7273
7274 /*
7275 * Some kernelcore has been met, update counts and
7276 * break if the kernelcore for this node has been
b8af2941 7277 * satisfied
2a1e274a
MG
7278 */
7279 required_kernelcore -= min(required_kernelcore,
7280 size_pages);
7281 kernelcore_remaining -= size_pages;
7282 if (!kernelcore_remaining)
7283 break;
7284 }
7285 }
7286
7287 /*
7288 * If there is still required_kernelcore, we do another pass with one
7289 * less node in the count. This will push zone_movable_pfn[nid] further
7290 * along on the nodes that still have memory until kernelcore is
b8af2941 7291 * satisfied
2a1e274a
MG
7292 */
7293 usable_nodes--;
7294 if (usable_nodes && required_kernelcore > usable_nodes)
7295 goto restart;
7296
b2f3eebe 7297out2:
2a1e274a
MG
7298 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7299 for (nid = 0; nid < MAX_NUMNODES; nid++)
7300 zone_movable_pfn[nid] =
7301 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7302
20e6926d 7303out:
66918dcd 7304 /* restore the node_state */
4b0ef1fe 7305 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7306}
7307
4b0ef1fe
LJ
7308/* Any regular or high memory on that node ? */
7309static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7310{
37b07e41
LS
7311 enum zone_type zone_type;
7312
4b0ef1fe 7313 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7314 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7315 if (populated_zone(zone)) {
7b0e0c0e
OS
7316 if (IS_ENABLED(CONFIG_HIGHMEM))
7317 node_set_state(nid, N_HIGH_MEMORY);
7318 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7319 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7320 break;
7321 }
37b07e41 7322 }
37b07e41
LS
7323}
7324
51930df5
MR
7325/*
7326 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7327 * such cases we allow max_zone_pfn sorted in the descending order
7328 */
7329bool __weak arch_has_descending_max_zone_pfns(void)
7330{
7331 return false;
7332}
7333
c713216d 7334/**
9691a071 7335 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7336 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7337 *
7338 * This will call free_area_init_node() for each active node in the system.
7d018176 7339 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7340 * zone in each node and their holes is calculated. If the maximum PFN
7341 * between two adjacent zones match, it is assumed that the zone is empty.
7342 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7343 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7344 * starts where the previous one ended. For example, ZONE_DMA32 starts
7345 * at arch_max_dma_pfn.
7346 */
9691a071 7347void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7348{
c13291a5 7349 unsigned long start_pfn, end_pfn;
51930df5
MR
7350 int i, nid, zone;
7351 bool descending;
a6af2bc3 7352
c713216d
MG
7353 /* Record where the zone boundaries are */
7354 memset(arch_zone_lowest_possible_pfn, 0,
7355 sizeof(arch_zone_lowest_possible_pfn));
7356 memset(arch_zone_highest_possible_pfn, 0,
7357 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7358
7359 start_pfn = find_min_pfn_with_active_regions();
51930df5 7360 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7361
7362 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7363 if (descending)
7364 zone = MAX_NR_ZONES - i - 1;
7365 else
7366 zone = i;
7367
7368 if (zone == ZONE_MOVABLE)
2a1e274a 7369 continue;
90cae1fe 7370
51930df5
MR
7371 end_pfn = max(max_zone_pfn[zone], start_pfn);
7372 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7373 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7374
7375 start_pfn = end_pfn;
c713216d 7376 }
2a1e274a
MG
7377
7378 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7379 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7380 find_zone_movable_pfns_for_nodes();
c713216d 7381
c713216d 7382 /* Print out the zone ranges */
f88dfff5 7383 pr_info("Zone ranges:\n");
2a1e274a
MG
7384 for (i = 0; i < MAX_NR_ZONES; i++) {
7385 if (i == ZONE_MOVABLE)
7386 continue;
f88dfff5 7387 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7388 if (arch_zone_lowest_possible_pfn[i] ==
7389 arch_zone_highest_possible_pfn[i])
f88dfff5 7390 pr_cont("empty\n");
72f0ba02 7391 else
8d29e18a
JG
7392 pr_cont("[mem %#018Lx-%#018Lx]\n",
7393 (u64)arch_zone_lowest_possible_pfn[i]
7394 << PAGE_SHIFT,
7395 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7396 << PAGE_SHIFT) - 1);
2a1e274a
MG
7397 }
7398
7399 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7400 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7401 for (i = 0; i < MAX_NUMNODES; i++) {
7402 if (zone_movable_pfn[i])
8d29e18a
JG
7403 pr_info(" Node %d: %#018Lx\n", i,
7404 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7405 }
c713216d 7406
f46edbd1
DW
7407 /*
7408 * Print out the early node map, and initialize the
7409 * subsection-map relative to active online memory ranges to
7410 * enable future "sub-section" extensions of the memory map.
7411 */
f88dfff5 7412 pr_info("Early memory node ranges\n");
f46edbd1 7413 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7414 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7415 (u64)start_pfn << PAGE_SHIFT,
7416 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7417 subsection_map_init(start_pfn, end_pfn - start_pfn);
7418 }
c713216d
MG
7419
7420 /* Initialise every node */
708614e6 7421 mminit_verify_pageflags_layout();
8ef82866 7422 setup_nr_node_ids();
4b094b78 7423 init_unavailable_mem();
c713216d
MG
7424 for_each_online_node(nid) {
7425 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7426 free_area_init_node(nid);
37b07e41
LS
7427
7428 /* Any memory on that node */
7429 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7430 node_set_state(nid, N_MEMORY);
7431 check_for_memory(pgdat, nid);
c713216d
MG
7432 }
7433}
2a1e274a 7434
a5c6d650
DR
7435static int __init cmdline_parse_core(char *p, unsigned long *core,
7436 unsigned long *percent)
2a1e274a
MG
7437{
7438 unsigned long long coremem;
a5c6d650
DR
7439 char *endptr;
7440
2a1e274a
MG
7441 if (!p)
7442 return -EINVAL;
7443
a5c6d650
DR
7444 /* Value may be a percentage of total memory, otherwise bytes */
7445 coremem = simple_strtoull(p, &endptr, 0);
7446 if (*endptr == '%') {
7447 /* Paranoid check for percent values greater than 100 */
7448 WARN_ON(coremem > 100);
2a1e274a 7449
a5c6d650
DR
7450 *percent = coremem;
7451 } else {
7452 coremem = memparse(p, &p);
7453 /* Paranoid check that UL is enough for the coremem value */
7454 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7455
a5c6d650
DR
7456 *core = coremem >> PAGE_SHIFT;
7457 *percent = 0UL;
7458 }
2a1e274a
MG
7459 return 0;
7460}
ed7ed365 7461
7e63efef
MG
7462/*
7463 * kernelcore=size sets the amount of memory for use for allocations that
7464 * cannot be reclaimed or migrated.
7465 */
7466static int __init cmdline_parse_kernelcore(char *p)
7467{
342332e6
TI
7468 /* parse kernelcore=mirror */
7469 if (parse_option_str(p, "mirror")) {
7470 mirrored_kernelcore = true;
7471 return 0;
7472 }
7473
a5c6d650
DR
7474 return cmdline_parse_core(p, &required_kernelcore,
7475 &required_kernelcore_percent);
7e63efef
MG
7476}
7477
7478/*
7479 * movablecore=size sets the amount of memory for use for allocations that
7480 * can be reclaimed or migrated.
7481 */
7482static int __init cmdline_parse_movablecore(char *p)
7483{
a5c6d650
DR
7484 return cmdline_parse_core(p, &required_movablecore,
7485 &required_movablecore_percent);
7e63efef
MG
7486}
7487
ed7ed365 7488early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7489early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7490
c3d5f5f0
JL
7491void adjust_managed_page_count(struct page *page, long count)
7492{
9705bea5 7493 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7494 totalram_pages_add(count);
3dcc0571
JL
7495#ifdef CONFIG_HIGHMEM
7496 if (PageHighMem(page))
ca79b0c2 7497 totalhigh_pages_add(count);
3dcc0571 7498#endif
c3d5f5f0 7499}
3dcc0571 7500EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7501
e5cb113f 7502unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7503{
11199692
JL
7504 void *pos;
7505 unsigned long pages = 0;
69afade7 7506
11199692
JL
7507 start = (void *)PAGE_ALIGN((unsigned long)start);
7508 end = (void *)((unsigned long)end & PAGE_MASK);
7509 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7510 struct page *page = virt_to_page(pos);
7511 void *direct_map_addr;
7512
7513 /*
7514 * 'direct_map_addr' might be different from 'pos'
7515 * because some architectures' virt_to_page()
7516 * work with aliases. Getting the direct map
7517 * address ensures that we get a _writeable_
7518 * alias for the memset().
7519 */
7520 direct_map_addr = page_address(page);
dbe67df4 7521 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7522 memset(direct_map_addr, poison, PAGE_SIZE);
7523
7524 free_reserved_page(page);
69afade7
JL
7525 }
7526
7527 if (pages && s)
adb1fe9a
JP
7528 pr_info("Freeing %s memory: %ldK\n",
7529 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7530
7531 return pages;
7532}
7533
cfa11e08
JL
7534#ifdef CONFIG_HIGHMEM
7535void free_highmem_page(struct page *page)
7536{
7537 __free_reserved_page(page);
ca79b0c2 7538 totalram_pages_inc();
9705bea5 7539 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7540 totalhigh_pages_inc();
cfa11e08
JL
7541}
7542#endif
7543
7ee3d4e8
JL
7544
7545void __init mem_init_print_info(const char *str)
7546{
7547 unsigned long physpages, codesize, datasize, rosize, bss_size;
7548 unsigned long init_code_size, init_data_size;
7549
7550 physpages = get_num_physpages();
7551 codesize = _etext - _stext;
7552 datasize = _edata - _sdata;
7553 rosize = __end_rodata - __start_rodata;
7554 bss_size = __bss_stop - __bss_start;
7555 init_data_size = __init_end - __init_begin;
7556 init_code_size = _einittext - _sinittext;
7557
7558 /*
7559 * Detect special cases and adjust section sizes accordingly:
7560 * 1) .init.* may be embedded into .data sections
7561 * 2) .init.text.* may be out of [__init_begin, __init_end],
7562 * please refer to arch/tile/kernel/vmlinux.lds.S.
7563 * 3) .rodata.* may be embedded into .text or .data sections.
7564 */
7565#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7566 do { \
7567 if (start <= pos && pos < end && size > adj) \
7568 size -= adj; \
7569 } while (0)
7ee3d4e8
JL
7570
7571 adj_init_size(__init_begin, __init_end, init_data_size,
7572 _sinittext, init_code_size);
7573 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7574 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7575 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7576 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7577
7578#undef adj_init_size
7579
756a025f 7580 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7581#ifdef CONFIG_HIGHMEM
756a025f 7582 ", %luK highmem"
7ee3d4e8 7583#endif
756a025f
JP
7584 "%s%s)\n",
7585 nr_free_pages() << (PAGE_SHIFT - 10),
7586 physpages << (PAGE_SHIFT - 10),
7587 codesize >> 10, datasize >> 10, rosize >> 10,
7588 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7589 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7590 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7591#ifdef CONFIG_HIGHMEM
ca79b0c2 7592 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7593#endif
756a025f 7594 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7595}
7596
0e0b864e 7597/**
88ca3b94
RD
7598 * set_dma_reserve - set the specified number of pages reserved in the first zone
7599 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7600 *
013110a7 7601 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7602 * In the DMA zone, a significant percentage may be consumed by kernel image
7603 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7604 * function may optionally be used to account for unfreeable pages in the
7605 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7606 * smaller per-cpu batchsize.
0e0b864e
MG
7607 */
7608void __init set_dma_reserve(unsigned long new_dma_reserve)
7609{
7610 dma_reserve = new_dma_reserve;
7611}
7612
005fd4bb 7613static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7614{
1da177e4 7615
005fd4bb
SAS
7616 lru_add_drain_cpu(cpu);
7617 drain_pages(cpu);
9f8f2172 7618
005fd4bb
SAS
7619 /*
7620 * Spill the event counters of the dead processor
7621 * into the current processors event counters.
7622 * This artificially elevates the count of the current
7623 * processor.
7624 */
7625 vm_events_fold_cpu(cpu);
9f8f2172 7626
005fd4bb
SAS
7627 /*
7628 * Zero the differential counters of the dead processor
7629 * so that the vm statistics are consistent.
7630 *
7631 * This is only okay since the processor is dead and cannot
7632 * race with what we are doing.
7633 */
7634 cpu_vm_stats_fold(cpu);
7635 return 0;
1da177e4 7636}
1da177e4 7637
e03a5125
NP
7638#ifdef CONFIG_NUMA
7639int hashdist = HASHDIST_DEFAULT;
7640
7641static int __init set_hashdist(char *str)
7642{
7643 if (!str)
7644 return 0;
7645 hashdist = simple_strtoul(str, &str, 0);
7646 return 1;
7647}
7648__setup("hashdist=", set_hashdist);
7649#endif
7650
1da177e4
LT
7651void __init page_alloc_init(void)
7652{
005fd4bb
SAS
7653 int ret;
7654
e03a5125
NP
7655#ifdef CONFIG_NUMA
7656 if (num_node_state(N_MEMORY) == 1)
7657 hashdist = 0;
7658#endif
7659
005fd4bb
SAS
7660 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7661 "mm/page_alloc:dead", NULL,
7662 page_alloc_cpu_dead);
7663 WARN_ON(ret < 0);
1da177e4
LT
7664}
7665
cb45b0e9 7666/*
34b10060 7667 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7668 * or min_free_kbytes changes.
7669 */
7670static void calculate_totalreserve_pages(void)
7671{
7672 struct pglist_data *pgdat;
7673 unsigned long reserve_pages = 0;
2f6726e5 7674 enum zone_type i, j;
cb45b0e9
HA
7675
7676 for_each_online_pgdat(pgdat) {
281e3726
MG
7677
7678 pgdat->totalreserve_pages = 0;
7679
cb45b0e9
HA
7680 for (i = 0; i < MAX_NR_ZONES; i++) {
7681 struct zone *zone = pgdat->node_zones + i;
3484b2de 7682 long max = 0;
9705bea5 7683 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7684
7685 /* Find valid and maximum lowmem_reserve in the zone */
7686 for (j = i; j < MAX_NR_ZONES; j++) {
7687 if (zone->lowmem_reserve[j] > max)
7688 max = zone->lowmem_reserve[j];
7689 }
7690
41858966
MG
7691 /* we treat the high watermark as reserved pages. */
7692 max += high_wmark_pages(zone);
cb45b0e9 7693
3d6357de
AK
7694 if (max > managed_pages)
7695 max = managed_pages;
a8d01437 7696
281e3726 7697 pgdat->totalreserve_pages += max;
a8d01437 7698
cb45b0e9
HA
7699 reserve_pages += max;
7700 }
7701 }
7702 totalreserve_pages = reserve_pages;
7703}
7704
1da177e4
LT
7705/*
7706 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7707 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7708 * has a correct pages reserved value, so an adequate number of
7709 * pages are left in the zone after a successful __alloc_pages().
7710 */
7711static void setup_per_zone_lowmem_reserve(void)
7712{
7713 struct pglist_data *pgdat;
2f6726e5 7714 enum zone_type j, idx;
1da177e4 7715
ec936fc5 7716 for_each_online_pgdat(pgdat) {
1da177e4
LT
7717 for (j = 0; j < MAX_NR_ZONES; j++) {
7718 struct zone *zone = pgdat->node_zones + j;
9705bea5 7719 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7720
7721 zone->lowmem_reserve[j] = 0;
7722
2f6726e5
CL
7723 idx = j;
7724 while (idx) {
1da177e4
LT
7725 struct zone *lower_zone;
7726
2f6726e5 7727 idx--;
1da177e4 7728 lower_zone = pgdat->node_zones + idx;
d3cda233 7729
f6366156
BH
7730 if (!sysctl_lowmem_reserve_ratio[idx] ||
7731 !zone_managed_pages(lower_zone)) {
d3cda233 7732 lower_zone->lowmem_reserve[j] = 0;
f6366156 7733 continue;
d3cda233
JK
7734 } else {
7735 lower_zone->lowmem_reserve[j] =
7736 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7737 }
9705bea5 7738 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7739 }
7740 }
7741 }
cb45b0e9
HA
7742
7743 /* update totalreserve_pages */
7744 calculate_totalreserve_pages();
1da177e4
LT
7745}
7746
cfd3da1e 7747static void __setup_per_zone_wmarks(void)
1da177e4
LT
7748{
7749 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7750 unsigned long lowmem_pages = 0;
7751 struct zone *zone;
7752 unsigned long flags;
7753
7754 /* Calculate total number of !ZONE_HIGHMEM pages */
7755 for_each_zone(zone) {
7756 if (!is_highmem(zone))
9705bea5 7757 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7758 }
7759
7760 for_each_zone(zone) {
ac924c60
AM
7761 u64 tmp;
7762
1125b4e3 7763 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7764 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7765 do_div(tmp, lowmem_pages);
1da177e4
LT
7766 if (is_highmem(zone)) {
7767 /*
669ed175
NP
7768 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7769 * need highmem pages, so cap pages_min to a small
7770 * value here.
7771 *
41858966 7772 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7773 * deltas control async page reclaim, and so should
669ed175 7774 * not be capped for highmem.
1da177e4 7775 */
90ae8d67 7776 unsigned long min_pages;
1da177e4 7777
9705bea5 7778 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7779 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7780 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7781 } else {
669ed175
NP
7782 /*
7783 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7784 * proportionate to the zone's size.
7785 */
a9214443 7786 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7787 }
7788
795ae7a0
JW
7789 /*
7790 * Set the kswapd watermarks distance according to the
7791 * scale factor in proportion to available memory, but
7792 * ensure a minimum size on small systems.
7793 */
7794 tmp = max_t(u64, tmp >> 2,
9705bea5 7795 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7796 watermark_scale_factor, 10000));
7797
aa092591 7798 zone->watermark_boost = 0;
a9214443
MG
7799 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7800 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7801
1125b4e3 7802 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7803 }
cb45b0e9
HA
7804
7805 /* update totalreserve_pages */
7806 calculate_totalreserve_pages();
1da177e4
LT
7807}
7808
cfd3da1e
MG
7809/**
7810 * setup_per_zone_wmarks - called when min_free_kbytes changes
7811 * or when memory is hot-{added|removed}
7812 *
7813 * Ensures that the watermark[min,low,high] values for each zone are set
7814 * correctly with respect to min_free_kbytes.
7815 */
7816void setup_per_zone_wmarks(void)
7817{
b93e0f32
MH
7818 static DEFINE_SPINLOCK(lock);
7819
7820 spin_lock(&lock);
cfd3da1e 7821 __setup_per_zone_wmarks();
b93e0f32 7822 spin_unlock(&lock);
cfd3da1e
MG
7823}
7824
1da177e4
LT
7825/*
7826 * Initialise min_free_kbytes.
7827 *
7828 * For small machines we want it small (128k min). For large machines
8beeae86 7829 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7830 * bandwidth does not increase linearly with machine size. We use
7831 *
b8af2941 7832 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7833 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7834 *
7835 * which yields
7836 *
7837 * 16MB: 512k
7838 * 32MB: 724k
7839 * 64MB: 1024k
7840 * 128MB: 1448k
7841 * 256MB: 2048k
7842 * 512MB: 2896k
7843 * 1024MB: 4096k
7844 * 2048MB: 5792k
7845 * 4096MB: 8192k
7846 * 8192MB: 11584k
7847 * 16384MB: 16384k
7848 */
1b79acc9 7849int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7850{
7851 unsigned long lowmem_kbytes;
5f12733e 7852 int new_min_free_kbytes;
1da177e4
LT
7853
7854 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7855 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7856
7857 if (new_min_free_kbytes > user_min_free_kbytes) {
7858 min_free_kbytes = new_min_free_kbytes;
7859 if (min_free_kbytes < 128)
7860 min_free_kbytes = 128;
ee8eb9a5
JS
7861 if (min_free_kbytes > 262144)
7862 min_free_kbytes = 262144;
5f12733e
MH
7863 } else {
7864 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7865 new_min_free_kbytes, user_min_free_kbytes);
7866 }
bc75d33f 7867 setup_per_zone_wmarks();
a6cccdc3 7868 refresh_zone_stat_thresholds();
1da177e4 7869 setup_per_zone_lowmem_reserve();
6423aa81
JK
7870
7871#ifdef CONFIG_NUMA
7872 setup_min_unmapped_ratio();
7873 setup_min_slab_ratio();
7874#endif
7875
1da177e4
LT
7876 return 0;
7877}
bc22af74 7878core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7879
7880/*
b8af2941 7881 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7882 * that we can call two helper functions whenever min_free_kbytes
7883 * changes.
7884 */
cccad5b9 7885int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 7886 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7887{
da8c757b
HP
7888 int rc;
7889
7890 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7891 if (rc)
7892 return rc;
7893
5f12733e
MH
7894 if (write) {
7895 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7896 setup_per_zone_wmarks();
5f12733e 7897 }
1da177e4
LT
7898 return 0;
7899}
7900
795ae7a0 7901int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 7902 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
7903{
7904 int rc;
7905
7906 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7907 if (rc)
7908 return rc;
7909
7910 if (write)
7911 setup_per_zone_wmarks();
7912
7913 return 0;
7914}
7915
9614634f 7916#ifdef CONFIG_NUMA
6423aa81 7917static void setup_min_unmapped_ratio(void)
9614634f 7918{
6423aa81 7919 pg_data_t *pgdat;
9614634f 7920 struct zone *zone;
9614634f 7921
a5f5f91d 7922 for_each_online_pgdat(pgdat)
81cbcbc2 7923 pgdat->min_unmapped_pages = 0;
a5f5f91d 7924
9614634f 7925 for_each_zone(zone)
9705bea5
AK
7926 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7927 sysctl_min_unmapped_ratio) / 100;
9614634f 7928}
0ff38490 7929
6423aa81
JK
7930
7931int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7932 void *buffer, size_t *length, loff_t *ppos)
0ff38490 7933{
0ff38490
CL
7934 int rc;
7935
8d65af78 7936 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7937 if (rc)
7938 return rc;
7939
6423aa81
JK
7940 setup_min_unmapped_ratio();
7941
7942 return 0;
7943}
7944
7945static void setup_min_slab_ratio(void)
7946{
7947 pg_data_t *pgdat;
7948 struct zone *zone;
7949
a5f5f91d
MG
7950 for_each_online_pgdat(pgdat)
7951 pgdat->min_slab_pages = 0;
7952
0ff38490 7953 for_each_zone(zone)
9705bea5
AK
7954 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7955 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7956}
7957
7958int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7959 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
7960{
7961 int rc;
7962
7963 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7964 if (rc)
7965 return rc;
7966
7967 setup_min_slab_ratio();
7968
0ff38490
CL
7969 return 0;
7970}
9614634f
CL
7971#endif
7972
1da177e4
LT
7973/*
7974 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7975 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7976 * whenever sysctl_lowmem_reserve_ratio changes.
7977 *
7978 * The reserve ratio obviously has absolutely no relation with the
41858966 7979 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7980 * if in function of the boot time zone sizes.
7981 */
cccad5b9 7982int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7983 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7984{
86aaf255
BH
7985 int i;
7986
8d65af78 7987 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
7988
7989 for (i = 0; i < MAX_NR_ZONES; i++) {
7990 if (sysctl_lowmem_reserve_ratio[i] < 1)
7991 sysctl_lowmem_reserve_ratio[i] = 0;
7992 }
7993
1da177e4
LT
7994 setup_per_zone_lowmem_reserve();
7995 return 0;
7996}
7997
cb1ef534
MG
7998static void __zone_pcp_update(struct zone *zone)
7999{
8000 unsigned int cpu;
8001
8002 for_each_possible_cpu(cpu)
8003 pageset_set_high_and_batch(zone,
8004 per_cpu_ptr(zone->pageset, cpu));
8005}
8006
8ad4b1fb
RS
8007/*
8008 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8009 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8010 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8011 */
cccad5b9 8012int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8013 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8014{
8015 struct zone *zone;
7cd2b0a3 8016 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8017 int ret;
8018
7cd2b0a3
DR
8019 mutex_lock(&pcp_batch_high_lock);
8020 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8021
8d65af78 8022 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8023 if (!write || ret < 0)
8024 goto out;
8025
8026 /* Sanity checking to avoid pcp imbalance */
8027 if (percpu_pagelist_fraction &&
8028 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8029 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8030 ret = -EINVAL;
8031 goto out;
8032 }
8033
8034 /* No change? */
8035 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8036 goto out;
c8e251fa 8037
cb1ef534
MG
8038 for_each_populated_zone(zone)
8039 __zone_pcp_update(zone);
7cd2b0a3 8040out:
c8e251fa 8041 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8042 return ret;
8ad4b1fb
RS
8043}
8044
f6f34b43
SD
8045#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8046/*
8047 * Returns the number of pages that arch has reserved but
8048 * is not known to alloc_large_system_hash().
8049 */
8050static unsigned long __init arch_reserved_kernel_pages(void)
8051{
8052 return 0;
8053}
8054#endif
8055
9017217b
PT
8056/*
8057 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8058 * machines. As memory size is increased the scale is also increased but at
8059 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8060 * quadruples the scale is increased by one, which means the size of hash table
8061 * only doubles, instead of quadrupling as well.
8062 * Because 32-bit systems cannot have large physical memory, where this scaling
8063 * makes sense, it is disabled on such platforms.
8064 */
8065#if __BITS_PER_LONG > 32
8066#define ADAPT_SCALE_BASE (64ul << 30)
8067#define ADAPT_SCALE_SHIFT 2
8068#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8069#endif
8070
1da177e4
LT
8071/*
8072 * allocate a large system hash table from bootmem
8073 * - it is assumed that the hash table must contain an exact power-of-2
8074 * quantity of entries
8075 * - limit is the number of hash buckets, not the total allocation size
8076 */
8077void *__init alloc_large_system_hash(const char *tablename,
8078 unsigned long bucketsize,
8079 unsigned long numentries,
8080 int scale,
8081 int flags,
8082 unsigned int *_hash_shift,
8083 unsigned int *_hash_mask,
31fe62b9
TB
8084 unsigned long low_limit,
8085 unsigned long high_limit)
1da177e4 8086{
31fe62b9 8087 unsigned long long max = high_limit;
1da177e4
LT
8088 unsigned long log2qty, size;
8089 void *table = NULL;
3749a8f0 8090 gfp_t gfp_flags;
ec11408a 8091 bool virt;
1da177e4
LT
8092
8093 /* allow the kernel cmdline to have a say */
8094 if (!numentries) {
8095 /* round applicable memory size up to nearest megabyte */
04903664 8096 numentries = nr_kernel_pages;
f6f34b43 8097 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8098
8099 /* It isn't necessary when PAGE_SIZE >= 1MB */
8100 if (PAGE_SHIFT < 20)
8101 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8102
9017217b
PT
8103#if __BITS_PER_LONG > 32
8104 if (!high_limit) {
8105 unsigned long adapt;
8106
8107 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8108 adapt <<= ADAPT_SCALE_SHIFT)
8109 scale++;
8110 }
8111#endif
8112
1da177e4
LT
8113 /* limit to 1 bucket per 2^scale bytes of low memory */
8114 if (scale > PAGE_SHIFT)
8115 numentries >>= (scale - PAGE_SHIFT);
8116 else
8117 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8118
8119 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8120 if (unlikely(flags & HASH_SMALL)) {
8121 /* Makes no sense without HASH_EARLY */
8122 WARN_ON(!(flags & HASH_EARLY));
8123 if (!(numentries >> *_hash_shift)) {
8124 numentries = 1UL << *_hash_shift;
8125 BUG_ON(!numentries);
8126 }
8127 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8128 numentries = PAGE_SIZE / bucketsize;
1da177e4 8129 }
6e692ed3 8130 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8131
8132 /* limit allocation size to 1/16 total memory by default */
8133 if (max == 0) {
8134 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8135 do_div(max, bucketsize);
8136 }
074b8517 8137 max = min(max, 0x80000000ULL);
1da177e4 8138
31fe62b9
TB
8139 if (numentries < low_limit)
8140 numentries = low_limit;
1da177e4
LT
8141 if (numentries > max)
8142 numentries = max;
8143
f0d1b0b3 8144 log2qty = ilog2(numentries);
1da177e4 8145
3749a8f0 8146 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8147 do {
ec11408a 8148 virt = false;
1da177e4 8149 size = bucketsize << log2qty;
ea1f5f37
PT
8150 if (flags & HASH_EARLY) {
8151 if (flags & HASH_ZERO)
26fb3dae 8152 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8153 else
7e1c4e27
MR
8154 table = memblock_alloc_raw(size,
8155 SMP_CACHE_BYTES);
ec11408a 8156 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8157 table = __vmalloc(size, gfp_flags);
ec11408a 8158 virt = true;
ea1f5f37 8159 } else {
1037b83b
ED
8160 /*
8161 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8162 * some pages at the end of hash table which
8163 * alloc_pages_exact() automatically does
1037b83b 8164 */
ec11408a
NP
8165 table = alloc_pages_exact(size, gfp_flags);
8166 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8167 }
8168 } while (!table && size > PAGE_SIZE && --log2qty);
8169
8170 if (!table)
8171 panic("Failed to allocate %s hash table\n", tablename);
8172
ec11408a
NP
8173 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8174 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8175 virt ? "vmalloc" : "linear");
1da177e4
LT
8176
8177 if (_hash_shift)
8178 *_hash_shift = log2qty;
8179 if (_hash_mask)
8180 *_hash_mask = (1 << log2qty) - 1;
8181
8182 return table;
8183}
a117e66e 8184
a5d76b54 8185/*
80934513 8186 * This function checks whether pageblock includes unmovable pages or not.
80934513 8187 *
b8af2941 8188 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8189 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8190 * check without lock_page also may miss some movable non-lru pages at
8191 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8192 *
8193 * Returns a page without holding a reference. If the caller wants to
8194 * dereference that page (e.g., dumping), it has to make sure that that it
8195 * cannot get removed (e.g., via memory unplug) concurrently.
8196 *
a5d76b54 8197 */
4a55c047
QC
8198struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8199 int migratetype, int flags)
49ac8255 8200{
1a9f2191
QC
8201 unsigned long iter = 0;
8202 unsigned long pfn = page_to_pfn(page);
47118af0 8203
49ac8255 8204 /*
15c30bc0
MH
8205 * TODO we could make this much more efficient by not checking every
8206 * page in the range if we know all of them are in MOVABLE_ZONE and
8207 * that the movable zone guarantees that pages are migratable but
8208 * the later is not the case right now unfortunatelly. E.g. movablecore
8209 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8210 */
49ac8255 8211
1a9f2191
QC
8212 if (is_migrate_cma_page(page)) {
8213 /*
8214 * CMA allocations (alloc_contig_range) really need to mark
8215 * isolate CMA pageblocks even when they are not movable in fact
8216 * so consider them movable here.
8217 */
8218 if (is_migrate_cma(migratetype))
4a55c047 8219 return NULL;
1a9f2191 8220
3d680bdf 8221 return page;
1a9f2191 8222 }
4da2ce25 8223
fe4c86c9
DH
8224 for (; iter < pageblock_nr_pages; iter++) {
8225 if (!pfn_valid_within(pfn + iter))
49ac8255 8226 continue;
29723fcc 8227
fe4c86c9 8228 page = pfn_to_page(pfn + iter);
c8721bbb 8229
d7ab3672 8230 if (PageReserved(page))
3d680bdf 8231 return page;
d7ab3672 8232
9d789999
MH
8233 /*
8234 * If the zone is movable and we have ruled out all reserved
8235 * pages then it should be reasonably safe to assume the rest
8236 * is movable.
8237 */
8238 if (zone_idx(zone) == ZONE_MOVABLE)
8239 continue;
8240
c8721bbb
NH
8241 /*
8242 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8243 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8244 * We need not scan over tail pages because we don't
c8721bbb
NH
8245 * handle each tail page individually in migration.
8246 */
1da2f328 8247 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8248 struct page *head = compound_head(page);
8249 unsigned int skip_pages;
464c7ffb 8250
1da2f328
RR
8251 if (PageHuge(page)) {
8252 if (!hugepage_migration_supported(page_hstate(head)))
8253 return page;
8254 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8255 return page;
1da2f328 8256 }
464c7ffb 8257
d8c6546b 8258 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8259 iter += skip_pages - 1;
c8721bbb
NH
8260 continue;
8261 }
8262
97d255c8
MK
8263 /*
8264 * We can't use page_count without pin a page
8265 * because another CPU can free compound page.
8266 * This check already skips compound tails of THP
0139aa7b 8267 * because their page->_refcount is zero at all time.
97d255c8 8268 */
fe896d18 8269 if (!page_ref_count(page)) {
49ac8255
KH
8270 if (PageBuddy(page))
8271 iter += (1 << page_order(page)) - 1;
8272 continue;
8273 }
97d255c8 8274
b023f468
WC
8275 /*
8276 * The HWPoisoned page may be not in buddy system, and
8277 * page_count() is not 0.
8278 */
756d25be 8279 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8280 continue;
8281
aa218795
DH
8282 /*
8283 * We treat all PageOffline() pages as movable when offlining
8284 * to give drivers a chance to decrement their reference count
8285 * in MEM_GOING_OFFLINE in order to indicate that these pages
8286 * can be offlined as there are no direct references anymore.
8287 * For actually unmovable PageOffline() where the driver does
8288 * not support this, we will fail later when trying to actually
8289 * move these pages that still have a reference count > 0.
8290 * (false negatives in this function only)
8291 */
8292 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8293 continue;
8294
fe4c86c9 8295 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8296 continue;
8297
49ac8255 8298 /*
6b4f7799
JW
8299 * If there are RECLAIMABLE pages, we need to check
8300 * it. But now, memory offline itself doesn't call
8301 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8302 */
8303 /*
8304 * If the page is not RAM, page_count()should be 0.
8305 * we don't need more check. This is an _used_ not-movable page.
8306 *
8307 * The problematic thing here is PG_reserved pages. PG_reserved
8308 * is set to both of a memory hole page and a _used_ kernel
8309 * page at boot.
8310 */
3d680bdf 8311 return page;
49ac8255 8312 }
4a55c047 8313 return NULL;
49ac8255
KH
8314}
8315
8df995f6 8316#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8317static unsigned long pfn_max_align_down(unsigned long pfn)
8318{
8319 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8320 pageblock_nr_pages) - 1);
8321}
8322
8323static unsigned long pfn_max_align_up(unsigned long pfn)
8324{
8325 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8326 pageblock_nr_pages));
8327}
8328
041d3a8c 8329/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8330static int __alloc_contig_migrate_range(struct compact_control *cc,
8331 unsigned long start, unsigned long end)
041d3a8c
MN
8332{
8333 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8334 unsigned int nr_reclaimed;
041d3a8c
MN
8335 unsigned long pfn = start;
8336 unsigned int tries = 0;
8337 int ret = 0;
8338
be49a6e1 8339 migrate_prep();
041d3a8c 8340
bb13ffeb 8341 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8342 if (fatal_signal_pending(current)) {
8343 ret = -EINTR;
8344 break;
8345 }
8346
bb13ffeb
MG
8347 if (list_empty(&cc->migratepages)) {
8348 cc->nr_migratepages = 0;
edc2ca61 8349 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8350 if (!pfn) {
8351 ret = -EINTR;
8352 break;
8353 }
8354 tries = 0;
8355 } else if (++tries == 5) {
8356 ret = ret < 0 ? ret : -EBUSY;
8357 break;
8358 }
8359
beb51eaa
MK
8360 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8361 &cc->migratepages);
8362 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8363
9c620e2b 8364 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8365 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8366 }
2a6f5124
SP
8367 if (ret < 0) {
8368 putback_movable_pages(&cc->migratepages);
8369 return ret;
8370 }
8371 return 0;
041d3a8c
MN
8372}
8373
8374/**
8375 * alloc_contig_range() -- tries to allocate given range of pages
8376 * @start: start PFN to allocate
8377 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8378 * @migratetype: migratetype of the underlaying pageblocks (either
8379 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8380 * in range must have the same migratetype and it must
8381 * be either of the two.
ca96b625 8382 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8383 *
8384 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8385 * aligned. The PFN range must belong to a single zone.
041d3a8c 8386 *
2c7452a0
MK
8387 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8388 * pageblocks in the range. Once isolated, the pageblocks should not
8389 * be modified by others.
041d3a8c 8390 *
a862f68a 8391 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8392 * pages which PFN is in [start, end) are allocated for the caller and
8393 * need to be freed with free_contig_range().
8394 */
0815f3d8 8395int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8396 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8397{
041d3a8c 8398 unsigned long outer_start, outer_end;
d00181b9
KS
8399 unsigned int order;
8400 int ret = 0;
041d3a8c 8401
bb13ffeb
MG
8402 struct compact_control cc = {
8403 .nr_migratepages = 0,
8404 .order = -1,
8405 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8406 .mode = MIGRATE_SYNC,
bb13ffeb 8407 .ignore_skip_hint = true,
2583d671 8408 .no_set_skip_hint = true,
7dea19f9 8409 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8410 .alloc_contig = true,
bb13ffeb
MG
8411 };
8412 INIT_LIST_HEAD(&cc.migratepages);
8413
041d3a8c
MN
8414 /*
8415 * What we do here is we mark all pageblocks in range as
8416 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8417 * have different sizes, and due to the way page allocator
8418 * work, we align the range to biggest of the two pages so
8419 * that page allocator won't try to merge buddies from
8420 * different pageblocks and change MIGRATE_ISOLATE to some
8421 * other migration type.
8422 *
8423 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8424 * migrate the pages from an unaligned range (ie. pages that
8425 * we are interested in). This will put all the pages in
8426 * range back to page allocator as MIGRATE_ISOLATE.
8427 *
8428 * When this is done, we take the pages in range from page
8429 * allocator removing them from the buddy system. This way
8430 * page allocator will never consider using them.
8431 *
8432 * This lets us mark the pageblocks back as
8433 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8434 * aligned range but not in the unaligned, original range are
8435 * put back to page allocator so that buddy can use them.
8436 */
8437
8438 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8439 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8440 if (ret < 0)
86a595f9 8441 return ret;
041d3a8c 8442
8ef5849f
JK
8443 /*
8444 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8445 * So, just fall through. test_pages_isolated() has a tracepoint
8446 * which will report the busy page.
8447 *
8448 * It is possible that busy pages could become available before
8449 * the call to test_pages_isolated, and the range will actually be
8450 * allocated. So, if we fall through be sure to clear ret so that
8451 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8452 */
bb13ffeb 8453 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8454 if (ret && ret != -EBUSY)
041d3a8c 8455 goto done;
63cd4489 8456 ret =0;
041d3a8c
MN
8457
8458 /*
8459 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8460 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8461 * more, all pages in [start, end) are free in page allocator.
8462 * What we are going to do is to allocate all pages from
8463 * [start, end) (that is remove them from page allocator).
8464 *
8465 * The only problem is that pages at the beginning and at the
8466 * end of interesting range may be not aligned with pages that
8467 * page allocator holds, ie. they can be part of higher order
8468 * pages. Because of this, we reserve the bigger range and
8469 * once this is done free the pages we are not interested in.
8470 *
8471 * We don't have to hold zone->lock here because the pages are
8472 * isolated thus they won't get removed from buddy.
8473 */
8474
8475 lru_add_drain_all();
041d3a8c
MN
8476
8477 order = 0;
8478 outer_start = start;
8479 while (!PageBuddy(pfn_to_page(outer_start))) {
8480 if (++order >= MAX_ORDER) {
8ef5849f
JK
8481 outer_start = start;
8482 break;
041d3a8c
MN
8483 }
8484 outer_start &= ~0UL << order;
8485 }
8486
8ef5849f
JK
8487 if (outer_start != start) {
8488 order = page_order(pfn_to_page(outer_start));
8489
8490 /*
8491 * outer_start page could be small order buddy page and
8492 * it doesn't include start page. Adjust outer_start
8493 * in this case to report failed page properly
8494 * on tracepoint in test_pages_isolated()
8495 */
8496 if (outer_start + (1UL << order) <= start)
8497 outer_start = start;
8498 }
8499
041d3a8c 8500 /* Make sure the range is really isolated. */
756d25be 8501 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8502 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8503 __func__, outer_start, end);
041d3a8c
MN
8504 ret = -EBUSY;
8505 goto done;
8506 }
8507
49f223a9 8508 /* Grab isolated pages from freelists. */
bb13ffeb 8509 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8510 if (!outer_end) {
8511 ret = -EBUSY;
8512 goto done;
8513 }
8514
8515 /* Free head and tail (if any) */
8516 if (start != outer_start)
8517 free_contig_range(outer_start, start - outer_start);
8518 if (end != outer_end)
8519 free_contig_range(end, outer_end - end);
8520
8521done:
8522 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8523 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8524 return ret;
8525}
255f5985 8526EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8527
8528static int __alloc_contig_pages(unsigned long start_pfn,
8529 unsigned long nr_pages, gfp_t gfp_mask)
8530{
8531 unsigned long end_pfn = start_pfn + nr_pages;
8532
8533 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8534 gfp_mask);
8535}
8536
8537static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8538 unsigned long nr_pages)
8539{
8540 unsigned long i, end_pfn = start_pfn + nr_pages;
8541 struct page *page;
8542
8543 for (i = start_pfn; i < end_pfn; i++) {
8544 page = pfn_to_online_page(i);
8545 if (!page)
8546 return false;
8547
8548 if (page_zone(page) != z)
8549 return false;
8550
8551 if (PageReserved(page))
8552 return false;
8553
8554 if (page_count(page) > 0)
8555 return false;
8556
8557 if (PageHuge(page))
8558 return false;
8559 }
8560 return true;
8561}
8562
8563static bool zone_spans_last_pfn(const struct zone *zone,
8564 unsigned long start_pfn, unsigned long nr_pages)
8565{
8566 unsigned long last_pfn = start_pfn + nr_pages - 1;
8567
8568 return zone_spans_pfn(zone, last_pfn);
8569}
8570
8571/**
8572 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8573 * @nr_pages: Number of contiguous pages to allocate
8574 * @gfp_mask: GFP mask to limit search and used during compaction
8575 * @nid: Target node
8576 * @nodemask: Mask for other possible nodes
8577 *
8578 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8579 * on an applicable zonelist to find a contiguous pfn range which can then be
8580 * tried for allocation with alloc_contig_range(). This routine is intended
8581 * for allocation requests which can not be fulfilled with the buddy allocator.
8582 *
8583 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8584 * power of two then the alignment is guaranteed to be to the given nr_pages
8585 * (e.g. 1GB request would be aligned to 1GB).
8586 *
8587 * Allocated pages can be freed with free_contig_range() or by manually calling
8588 * __free_page() on each allocated page.
8589 *
8590 * Return: pointer to contiguous pages on success, or NULL if not successful.
8591 */
8592struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8593 int nid, nodemask_t *nodemask)
8594{
8595 unsigned long ret, pfn, flags;
8596 struct zonelist *zonelist;
8597 struct zone *zone;
8598 struct zoneref *z;
8599
8600 zonelist = node_zonelist(nid, gfp_mask);
8601 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8602 gfp_zone(gfp_mask), nodemask) {
8603 spin_lock_irqsave(&zone->lock, flags);
8604
8605 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8606 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8607 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8608 /*
8609 * We release the zone lock here because
8610 * alloc_contig_range() will also lock the zone
8611 * at some point. If there's an allocation
8612 * spinning on this lock, it may win the race
8613 * and cause alloc_contig_range() to fail...
8614 */
8615 spin_unlock_irqrestore(&zone->lock, flags);
8616 ret = __alloc_contig_pages(pfn, nr_pages,
8617 gfp_mask);
8618 if (!ret)
8619 return pfn_to_page(pfn);
8620 spin_lock_irqsave(&zone->lock, flags);
8621 }
8622 pfn += nr_pages;
8623 }
8624 spin_unlock_irqrestore(&zone->lock, flags);
8625 }
8626 return NULL;
8627}
4eb0716e 8628#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8629
4eb0716e 8630void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8631{
bcc2b02f
MS
8632 unsigned int count = 0;
8633
8634 for (; nr_pages--; pfn++) {
8635 struct page *page = pfn_to_page(pfn);
8636
8637 count += page_count(page) != 1;
8638 __free_page(page);
8639 }
8640 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8641}
255f5985 8642EXPORT_SYMBOL(free_contig_range);
041d3a8c 8643
0a647f38
CS
8644/*
8645 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8646 * page high values need to be recalulated.
8647 */
4ed7e022
JL
8648void __meminit zone_pcp_update(struct zone *zone)
8649{
c8e251fa 8650 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8651 __zone_pcp_update(zone);
c8e251fa 8652 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8653}
4ed7e022 8654
340175b7
JL
8655void zone_pcp_reset(struct zone *zone)
8656{
8657 unsigned long flags;
5a883813
MK
8658 int cpu;
8659 struct per_cpu_pageset *pset;
340175b7
JL
8660
8661 /* avoid races with drain_pages() */
8662 local_irq_save(flags);
8663 if (zone->pageset != &boot_pageset) {
5a883813
MK
8664 for_each_online_cpu(cpu) {
8665 pset = per_cpu_ptr(zone->pageset, cpu);
8666 drain_zonestat(zone, pset);
8667 }
340175b7
JL
8668 free_percpu(zone->pageset);
8669 zone->pageset = &boot_pageset;
8670 }
8671 local_irq_restore(flags);
8672}
8673
6dcd73d7 8674#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8675/*
b9eb6319
JK
8676 * All pages in the range must be in a single zone and isolated
8677 * before calling this.
0c0e6195 8678 */
5557c766 8679unsigned long
0c0e6195
KH
8680__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8681{
8682 struct page *page;
8683 struct zone *zone;
0ee5f4f3 8684 unsigned int order;
0c0e6195
KH
8685 unsigned long pfn;
8686 unsigned long flags;
5557c766
MH
8687 unsigned long offlined_pages = 0;
8688
0c0e6195
KH
8689 /* find the first valid pfn */
8690 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8691 if (pfn_valid(pfn))
8692 break;
8693 if (pfn == end_pfn)
5557c766
MH
8694 return offlined_pages;
8695
2d070eab 8696 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8697 zone = page_zone(pfn_to_page(pfn));
8698 spin_lock_irqsave(&zone->lock, flags);
8699 pfn = start_pfn;
8700 while (pfn < end_pfn) {
8701 if (!pfn_valid(pfn)) {
8702 pfn++;
8703 continue;
8704 }
8705 page = pfn_to_page(pfn);
b023f468
WC
8706 /*
8707 * The HWPoisoned page may be not in buddy system, and
8708 * page_count() is not 0.
8709 */
8710 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8711 pfn++;
5557c766 8712 offlined_pages++;
b023f468
WC
8713 continue;
8714 }
aa218795
DH
8715 /*
8716 * At this point all remaining PageOffline() pages have a
8717 * reference count of 0 and can simply be skipped.
8718 */
8719 if (PageOffline(page)) {
8720 BUG_ON(page_count(page));
8721 BUG_ON(PageBuddy(page));
8722 pfn++;
8723 offlined_pages++;
8724 continue;
8725 }
b023f468 8726
0c0e6195
KH
8727 BUG_ON(page_count(page));
8728 BUG_ON(!PageBuddy(page));
8729 order = page_order(page);
5557c766 8730 offlined_pages += 1 << order;
6ab01363 8731 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8732 pfn += (1 << order);
8733 }
8734 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8735
8736 return offlined_pages;
0c0e6195
KH
8737}
8738#endif
8d22ba1b 8739
8d22ba1b
WF
8740bool is_free_buddy_page(struct page *page)
8741{
8742 struct zone *zone = page_zone(page);
8743 unsigned long pfn = page_to_pfn(page);
8744 unsigned long flags;
7aeb09f9 8745 unsigned int order;
8d22ba1b
WF
8746
8747 spin_lock_irqsave(&zone->lock, flags);
8748 for (order = 0; order < MAX_ORDER; order++) {
8749 struct page *page_head = page - (pfn & ((1 << order) - 1));
8750
8751 if (PageBuddy(page_head) && page_order(page_head) >= order)
8752 break;
8753 }
8754 spin_unlock_irqrestore(&zone->lock, flags);
8755
8756 return order < MAX_ORDER;
8757}
d4ae9916
NH
8758
8759#ifdef CONFIG_MEMORY_FAILURE
8760/*
8761 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8762 * test is performed under the zone lock to prevent a race against page
8763 * allocation.
8764 */
8765bool set_hwpoison_free_buddy_page(struct page *page)
8766{
8767 struct zone *zone = page_zone(page);
8768 unsigned long pfn = page_to_pfn(page);
8769 unsigned long flags;
8770 unsigned int order;
8771 bool hwpoisoned = false;
8772
8773 spin_lock_irqsave(&zone->lock, flags);
8774 for (order = 0; order < MAX_ORDER; order++) {
8775 struct page *page_head = page - (pfn & ((1 << order) - 1));
8776
8777 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8778 if (!TestSetPageHWPoison(page))
8779 hwpoisoned = true;
8780 break;
8781 }
8782 }
8783 spin_unlock_irqrestore(&zone->lock, flags);
8784
8785 return hwpoisoned;
8786}
8787#endif