mm/page_alloc.c: __perform_reclaim should return 'unsigned long'
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
e4443149 71#include <linux/padata.h>
4aab2be0 72#include <linux/khugepaged.h>
1da177e4 73
7ee3d4e8 74#include <asm/sections.h>
1da177e4 75#include <asm/tlbflush.h>
ac924c60 76#include <asm/div64.h>
1da177e4 77#include "internal.h"
e900a918 78#include "shuffle.h"
36e66c55 79#include "page_reporting.h"
1da177e4 80
c8e251fa
CS
81/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
82static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 83#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 84
72812019
LS
85#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
86DEFINE_PER_CPU(int, numa_node);
87EXPORT_PER_CPU_SYMBOL(numa_node);
88#endif
89
4518085e
KW
90DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
91
7aac7898
LS
92#ifdef CONFIG_HAVE_MEMORYLESS_NODES
93/*
94 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
95 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
96 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
97 * defined in <linux/topology.h>.
98 */
99DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
100EXPORT_PER_CPU_SYMBOL(_numa_mem_);
101#endif
102
bd233f53 103/* work_structs for global per-cpu drains */
d9367bd0
WY
104struct pcpu_drain {
105 struct zone *zone;
106 struct work_struct work;
107};
8b885f53
JY
108static DEFINE_MUTEX(pcpu_drain_mutex);
109static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 110
38addce8 111#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 112volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
113EXPORT_SYMBOL(latent_entropy);
114#endif
115
1da177e4 116/*
13808910 117 * Array of node states.
1da177e4 118 */
13808910
CL
119nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
120 [N_POSSIBLE] = NODE_MASK_ALL,
121 [N_ONLINE] = { { [0] = 1UL } },
122#ifndef CONFIG_NUMA
123 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
124#ifdef CONFIG_HIGHMEM
125 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 126#endif
20b2f52b 127 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
128 [N_CPU] = { { [0] = 1UL } },
129#endif /* NUMA */
130};
131EXPORT_SYMBOL(node_states);
132
ca79b0c2
AK
133atomic_long_t _totalram_pages __read_mostly;
134EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 135unsigned long totalreserve_pages __read_mostly;
e48322ab 136unsigned long totalcma_pages __read_mostly;
ab8fabd4 137
1b76b02f 138int percpu_pagelist_fraction;
dcce284a 139gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
140#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
141DEFINE_STATIC_KEY_TRUE(init_on_alloc);
142#else
143DEFINE_STATIC_KEY_FALSE(init_on_alloc);
144#endif
145EXPORT_SYMBOL(init_on_alloc);
146
147#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
148DEFINE_STATIC_KEY_TRUE(init_on_free);
149#else
150DEFINE_STATIC_KEY_FALSE(init_on_free);
151#endif
152EXPORT_SYMBOL(init_on_free);
153
154static int __init early_init_on_alloc(char *buf)
155{
156 int ret;
157 bool bool_result;
158
6471384a 159 ret = kstrtobool(buf, &bool_result);
fdd4fa1c
MN
160 if (ret)
161 return ret;
6471384a
AP
162 if (bool_result && page_poisoning_enabled())
163 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
164 if (bool_result)
165 static_branch_enable(&init_on_alloc);
166 else
167 static_branch_disable(&init_on_alloc);
fdd4fa1c 168 return 0;
6471384a
AP
169}
170early_param("init_on_alloc", early_init_on_alloc);
171
172static int __init early_init_on_free(char *buf)
173{
174 int ret;
175 bool bool_result;
176
6471384a 177 ret = kstrtobool(buf, &bool_result);
fdd4fa1c
MN
178 if (ret)
179 return ret;
6471384a
AP
180 if (bool_result && page_poisoning_enabled())
181 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
182 if (bool_result)
183 static_branch_enable(&init_on_free);
184 else
185 static_branch_disable(&init_on_free);
fdd4fa1c 186 return 0;
6471384a
AP
187}
188early_param("init_on_free", early_init_on_free);
1da177e4 189
bb14c2c7
VB
190/*
191 * A cached value of the page's pageblock's migratetype, used when the page is
192 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
193 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
194 * Also the migratetype set in the page does not necessarily match the pcplist
195 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
196 * other index - this ensures that it will be put on the correct CMA freelist.
197 */
198static inline int get_pcppage_migratetype(struct page *page)
199{
200 return page->index;
201}
202
203static inline void set_pcppage_migratetype(struct page *page, int migratetype)
204{
205 page->index = migratetype;
206}
207
452aa699
RW
208#ifdef CONFIG_PM_SLEEP
209/*
210 * The following functions are used by the suspend/hibernate code to temporarily
211 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
212 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
213 * they should always be called with system_transition_mutex held
214 * (gfp_allowed_mask also should only be modified with system_transition_mutex
215 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
216 * with that modification).
452aa699 217 */
c9e664f1
RW
218
219static gfp_t saved_gfp_mask;
220
221void pm_restore_gfp_mask(void)
452aa699 222{
55f2503c 223 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
224 if (saved_gfp_mask) {
225 gfp_allowed_mask = saved_gfp_mask;
226 saved_gfp_mask = 0;
227 }
452aa699
RW
228}
229
c9e664f1 230void pm_restrict_gfp_mask(void)
452aa699 231{
55f2503c 232 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
233 WARN_ON(saved_gfp_mask);
234 saved_gfp_mask = gfp_allowed_mask;
d0164adc 235 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 236}
f90ac398
MG
237
238bool pm_suspended_storage(void)
239{
d0164adc 240 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
241 return false;
242 return true;
243}
452aa699
RW
244#endif /* CONFIG_PM_SLEEP */
245
d9c23400 246#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 247unsigned int pageblock_order __read_mostly;
d9c23400
MG
248#endif
249
d98c7a09 250static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 251
1da177e4
LT
252/*
253 * results with 256, 32 in the lowmem_reserve sysctl:
254 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
255 * 1G machine -> (16M dma, 784M normal, 224M high)
256 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
257 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 258 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
259 *
260 * TBD: should special case ZONE_DMA32 machines here - in those we normally
261 * don't need any ZONE_NORMAL reservation
1da177e4 262 */
d3cda233 263int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 264#ifdef CONFIG_ZONE_DMA
d3cda233 265 [ZONE_DMA] = 256,
4b51d669 266#endif
fb0e7942 267#ifdef CONFIG_ZONE_DMA32
d3cda233 268 [ZONE_DMA32] = 256,
fb0e7942 269#endif
d3cda233 270 [ZONE_NORMAL] = 32,
e53ef38d 271#ifdef CONFIG_HIGHMEM
d3cda233 272 [ZONE_HIGHMEM] = 0,
e53ef38d 273#endif
d3cda233 274 [ZONE_MOVABLE] = 0,
2f1b6248 275};
1da177e4 276
15ad7cdc 277static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 278#ifdef CONFIG_ZONE_DMA
2f1b6248 279 "DMA",
4b51d669 280#endif
fb0e7942 281#ifdef CONFIG_ZONE_DMA32
2f1b6248 282 "DMA32",
fb0e7942 283#endif
2f1b6248 284 "Normal",
e53ef38d 285#ifdef CONFIG_HIGHMEM
2a1e274a 286 "HighMem",
e53ef38d 287#endif
2a1e274a 288 "Movable",
033fbae9
DW
289#ifdef CONFIG_ZONE_DEVICE
290 "Device",
291#endif
2f1b6248
CL
292};
293
c999fbd3 294const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
295 "Unmovable",
296 "Movable",
297 "Reclaimable",
298 "HighAtomic",
299#ifdef CONFIG_CMA
300 "CMA",
301#endif
302#ifdef CONFIG_MEMORY_ISOLATION
303 "Isolate",
304#endif
305};
306
ae70eddd
AK
307compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
308 [NULL_COMPOUND_DTOR] = NULL,
309 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 310#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 311 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 312#endif
9a982250 313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 314 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 315#endif
f1e61557
KS
316};
317
1da177e4 318int min_free_kbytes = 1024;
42aa83cb 319int user_min_free_kbytes = -1;
24512228
MG
320#ifdef CONFIG_DISCONTIGMEM
321/*
322 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
323 * are not on separate NUMA nodes. Functionally this works but with
324 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
325 * quite small. By default, do not boost watermarks on discontigmem as in
326 * many cases very high-order allocations like THP are likely to be
327 * unsupported and the premature reclaim offsets the advantage of long-term
328 * fragmentation avoidance.
329 */
330int watermark_boost_factor __read_mostly;
331#else
1c30844d 332int watermark_boost_factor __read_mostly = 15000;
24512228 333#endif
795ae7a0 334int watermark_scale_factor = 10;
1da177e4 335
bbe5d993
OS
336static unsigned long nr_kernel_pages __initdata;
337static unsigned long nr_all_pages __initdata;
338static unsigned long dma_reserve __initdata;
1da177e4 339
bbe5d993
OS
340static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
341static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 342static unsigned long required_kernelcore __initdata;
a5c6d650 343static unsigned long required_kernelcore_percent __initdata;
7f16f91f 344static unsigned long required_movablecore __initdata;
a5c6d650 345static unsigned long required_movablecore_percent __initdata;
bbe5d993 346static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 347static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
348
349/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350int movable_zone;
351EXPORT_SYMBOL(movable_zone);
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
f1eca35a 453 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
463#else
464 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 465#endif /* CONFIG_SPARSEMEM */
399b795b 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
467}
468
469/**
470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
471 * @page: The page within the block of interest
472 * @pfn: The target page frame number
0b423ca2
MG
473 * @mask: mask of bits that the caller is interested in
474 *
475 * Return: pageblock_bits flags
476 */
535b81e2
WY
477static __always_inline
478unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 479 unsigned long pfn,
0b423ca2
MG
480 unsigned long mask)
481{
482 unsigned long *bitmap;
483 unsigned long bitidx, word_bitidx;
484 unsigned long word;
485
486 bitmap = get_pageblock_bitmap(page, pfn);
487 bitidx = pfn_to_bitidx(page, pfn);
488 word_bitidx = bitidx / BITS_PER_LONG;
489 bitidx &= (BITS_PER_LONG-1);
490
491 word = bitmap[word_bitidx];
d93d5ab9 492 return (word >> bitidx) & mask;
0b423ca2
MG
493}
494
495unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
496 unsigned long mask)
497{
535b81e2 498 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
499}
500
501static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
502{
535b81e2 503 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
504}
505
506/**
507 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
508 * @page: The page within the block of interest
509 * @flags: The flags to set
510 * @pfn: The target page frame number
0b423ca2
MG
511 * @mask: mask of bits that the caller is interested in
512 */
513void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
514 unsigned long pfn,
0b423ca2
MG
515 unsigned long mask)
516{
517 unsigned long *bitmap;
518 unsigned long bitidx, word_bitidx;
519 unsigned long old_word, word;
520
521 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 522 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
523
524 bitmap = get_pageblock_bitmap(page, pfn);
525 bitidx = pfn_to_bitidx(page, pfn);
526 word_bitidx = bitidx / BITS_PER_LONG;
527 bitidx &= (BITS_PER_LONG-1);
528
529 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
530
d93d5ab9
WY
531 mask <<= bitidx;
532 flags <<= bitidx;
0b423ca2
MG
533
534 word = READ_ONCE(bitmap[word_bitidx]);
535 for (;;) {
536 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
537 if (word == old_word)
538 break;
539 word = old_word;
540 }
541}
3a80a7fa 542
ee6f509c 543void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 544{
5d0f3f72
KM
545 if (unlikely(page_group_by_mobility_disabled &&
546 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
547 migratetype = MIGRATE_UNMOVABLE;
548
d93d5ab9 549 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 550 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
551}
552
13e7444b 553#ifdef CONFIG_DEBUG_VM
c6a57e19 554static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 555{
bdc8cb98
DH
556 int ret = 0;
557 unsigned seq;
558 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 559 unsigned long sp, start_pfn;
c6a57e19 560
bdc8cb98
DH
561 do {
562 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
563 start_pfn = zone->zone_start_pfn;
564 sp = zone->spanned_pages;
108bcc96 565 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
566 ret = 1;
567 } while (zone_span_seqretry(zone, seq));
568
b5e6a5a2 569 if (ret)
613813e8
DH
570 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
571 pfn, zone_to_nid(zone), zone->name,
572 start_pfn, start_pfn + sp);
b5e6a5a2 573
bdc8cb98 574 return ret;
c6a57e19
DH
575}
576
577static int page_is_consistent(struct zone *zone, struct page *page)
578{
14e07298 579 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 580 return 0;
1da177e4 581 if (zone != page_zone(page))
c6a57e19
DH
582 return 0;
583
584 return 1;
585}
586/*
587 * Temporary debugging check for pages not lying within a given zone.
588 */
d73d3c9f 589static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
590{
591 if (page_outside_zone_boundaries(zone, page))
1da177e4 592 return 1;
c6a57e19
DH
593 if (!page_is_consistent(zone, page))
594 return 1;
595
1da177e4
LT
596 return 0;
597}
13e7444b 598#else
d73d3c9f 599static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
600{
601 return 0;
602}
603#endif
604
82a3241a 605static void bad_page(struct page *page, const char *reason)
1da177e4 606{
d936cf9b
HD
607 static unsigned long resume;
608 static unsigned long nr_shown;
609 static unsigned long nr_unshown;
610
611 /*
612 * Allow a burst of 60 reports, then keep quiet for that minute;
613 * or allow a steady drip of one report per second.
614 */
615 if (nr_shown == 60) {
616 if (time_before(jiffies, resume)) {
617 nr_unshown++;
618 goto out;
619 }
620 if (nr_unshown) {
ff8e8116 621 pr_alert(
1e9e6365 622 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
623 nr_unshown);
624 nr_unshown = 0;
625 }
626 nr_shown = 0;
627 }
628 if (nr_shown++ == 0)
629 resume = jiffies + 60 * HZ;
630
ff8e8116 631 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 632 current->comm, page_to_pfn(page));
ff8e8116 633 __dump_page(page, reason);
4e462112 634 dump_page_owner(page);
3dc14741 635
4f31888c 636 print_modules();
1da177e4 637 dump_stack();
d936cf9b 638out:
8cc3b392 639 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 640 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 641 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
642}
643
1da177e4
LT
644/*
645 * Higher-order pages are called "compound pages". They are structured thusly:
646 *
1d798ca3 647 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 648 *
1d798ca3
KS
649 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
650 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 651 *
1d798ca3
KS
652 * The first tail page's ->compound_dtor holds the offset in array of compound
653 * page destructors. See compound_page_dtors.
1da177e4 654 *
1d798ca3 655 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 656 * This usage means that zero-order pages may not be compound.
1da177e4 657 */
d98c7a09 658
9a982250 659void free_compound_page(struct page *page)
d98c7a09 660{
7ae88534 661 mem_cgroup_uncharge(page);
d85f3385 662 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
663}
664
d00181b9 665void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
666{
667 int i;
668 int nr_pages = 1 << order;
669
18229df5
AW
670 __SetPageHead(page);
671 for (i = 1; i < nr_pages; i++) {
672 struct page *p = page + i;
58a84aa9 673 set_page_count(p, 0);
1c290f64 674 p->mapping = TAIL_MAPPING;
1d798ca3 675 set_compound_head(p, page);
18229df5 676 }
1378a5ee
MWO
677
678 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
679 set_compound_order(page, order);
53f9263b 680 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
681 if (hpage_pincount_available(page))
682 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
683}
684
c0a32fc5
SG
685#ifdef CONFIG_DEBUG_PAGEALLOC
686unsigned int _debug_guardpage_minorder;
96a2b03f 687
8e57f8ac
VB
688bool _debug_pagealloc_enabled_early __read_mostly
689 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
690EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 691DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 692EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
693
694DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 695
031bc574
JK
696static int __init early_debug_pagealloc(char *buf)
697{
8e57f8ac 698 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
699}
700early_param("debug_pagealloc", early_debug_pagealloc);
701
8e57f8ac 702void init_debug_pagealloc(void)
e30825f1 703{
031bc574
JK
704 if (!debug_pagealloc_enabled())
705 return;
706
8e57f8ac
VB
707 static_branch_enable(&_debug_pagealloc_enabled);
708
f1c1e9f7
JK
709 if (!debug_guardpage_minorder())
710 return;
711
96a2b03f 712 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
713}
714
c0a32fc5
SG
715static int __init debug_guardpage_minorder_setup(char *buf)
716{
717 unsigned long res;
718
719 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 720 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
721 return 0;
722 }
723 _debug_guardpage_minorder = res;
1170532b 724 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
725 return 0;
726}
f1c1e9f7 727early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 728
acbc15a4 729static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 730 unsigned int order, int migratetype)
c0a32fc5 731{
e30825f1 732 if (!debug_guardpage_enabled())
acbc15a4
JK
733 return false;
734
735 if (order >= debug_guardpage_minorder())
736 return false;
e30825f1 737
3972f6bb 738 __SetPageGuard(page);
2847cf95
JK
739 INIT_LIST_HEAD(&page->lru);
740 set_page_private(page, order);
741 /* Guard pages are not available for any usage */
742 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
743
744 return true;
c0a32fc5
SG
745}
746
2847cf95
JK
747static inline void clear_page_guard(struct zone *zone, struct page *page,
748 unsigned int order, int migratetype)
c0a32fc5 749{
e30825f1
JK
750 if (!debug_guardpage_enabled())
751 return;
752
3972f6bb 753 __ClearPageGuard(page);
e30825f1 754
2847cf95
JK
755 set_page_private(page, 0);
756 if (!is_migrate_isolate(migratetype))
757 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
758}
759#else
acbc15a4
JK
760static inline bool set_page_guard(struct zone *zone, struct page *page,
761 unsigned int order, int migratetype) { return false; }
2847cf95
JK
762static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype) {}
c0a32fc5
SG
764#endif
765
7aeb09f9 766static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 767{
4c21e2f2 768 set_page_private(page, order);
676165a8 769 __SetPageBuddy(page);
1da177e4
LT
770}
771
1da177e4
LT
772/*
773 * This function checks whether a page is free && is the buddy
6e292b9b 774 * we can coalesce a page and its buddy if
13ad59df 775 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 776 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
777 * (c) a page and its buddy have the same order &&
778 * (d) a page and its buddy are in the same zone.
676165a8 779 *
6e292b9b
MW
780 * For recording whether a page is in the buddy system, we set PageBuddy.
781 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 782 *
676165a8 783 * For recording page's order, we use page_private(page).
1da177e4 784 */
fe925c0c 785static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 786 unsigned int order)
1da177e4 787{
fe925c0c 788 if (!page_is_guard(buddy) && !PageBuddy(buddy))
789 return false;
4c5018ce 790
fe925c0c 791 if (page_order(buddy) != order)
792 return false;
c0a32fc5 793
fe925c0c 794 /*
795 * zone check is done late to avoid uselessly calculating
796 * zone/node ids for pages that could never merge.
797 */
798 if (page_zone_id(page) != page_zone_id(buddy))
799 return false;
d34c5fa0 800
fe925c0c 801 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 802
fe925c0c 803 return true;
1da177e4
LT
804}
805
5e1f0f09
MG
806#ifdef CONFIG_COMPACTION
807static inline struct capture_control *task_capc(struct zone *zone)
808{
809 struct capture_control *capc = current->capture_control;
810
deba0487 811 return unlikely(capc) &&
5e1f0f09
MG
812 !(current->flags & PF_KTHREAD) &&
813 !capc->page &&
deba0487 814 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
815}
816
817static inline bool
818compaction_capture(struct capture_control *capc, struct page *page,
819 int order, int migratetype)
820{
821 if (!capc || order != capc->cc->order)
822 return false;
823
824 /* Do not accidentally pollute CMA or isolated regions*/
825 if (is_migrate_cma(migratetype) ||
826 is_migrate_isolate(migratetype))
827 return false;
828
829 /*
830 * Do not let lower order allocations polluate a movable pageblock.
831 * This might let an unmovable request use a reclaimable pageblock
832 * and vice-versa but no more than normal fallback logic which can
833 * have trouble finding a high-order free page.
834 */
835 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
836 return false;
837
838 capc->page = page;
839 return true;
840}
841
842#else
843static inline struct capture_control *task_capc(struct zone *zone)
844{
845 return NULL;
846}
847
848static inline bool
849compaction_capture(struct capture_control *capc, struct page *page,
850 int order, int migratetype)
851{
852 return false;
853}
854#endif /* CONFIG_COMPACTION */
855
6ab01363
AD
856/* Used for pages not on another list */
857static inline void add_to_free_list(struct page *page, struct zone *zone,
858 unsigned int order, int migratetype)
859{
860 struct free_area *area = &zone->free_area[order];
861
862 list_add(&page->lru, &area->free_list[migratetype]);
863 area->nr_free++;
864}
865
866/* Used for pages not on another list */
867static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
868 unsigned int order, int migratetype)
869{
870 struct free_area *area = &zone->free_area[order];
871
872 list_add_tail(&page->lru, &area->free_list[migratetype]);
873 area->nr_free++;
874}
875
876/* Used for pages which are on another list */
877static inline void move_to_free_list(struct page *page, struct zone *zone,
878 unsigned int order, int migratetype)
879{
880 struct free_area *area = &zone->free_area[order];
881
882 list_move(&page->lru, &area->free_list[migratetype]);
883}
884
885static inline void del_page_from_free_list(struct page *page, struct zone *zone,
886 unsigned int order)
887{
36e66c55
AD
888 /* clear reported state and update reported page count */
889 if (page_reported(page))
890 __ClearPageReported(page);
891
6ab01363
AD
892 list_del(&page->lru);
893 __ClearPageBuddy(page);
894 set_page_private(page, 0);
895 zone->free_area[order].nr_free--;
896}
897
a2129f24
AD
898/*
899 * If this is not the largest possible page, check if the buddy
900 * of the next-highest order is free. If it is, it's possible
901 * that pages are being freed that will coalesce soon. In case,
902 * that is happening, add the free page to the tail of the list
903 * so it's less likely to be used soon and more likely to be merged
904 * as a higher order page
905 */
906static inline bool
907buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
908 struct page *page, unsigned int order)
909{
910 struct page *higher_page, *higher_buddy;
911 unsigned long combined_pfn;
912
913 if (order >= MAX_ORDER - 2)
914 return false;
915
916 if (!pfn_valid_within(buddy_pfn))
917 return false;
918
919 combined_pfn = buddy_pfn & pfn;
920 higher_page = page + (combined_pfn - pfn);
921 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
922 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
923
924 return pfn_valid_within(buddy_pfn) &&
925 page_is_buddy(higher_page, higher_buddy, order + 1);
926}
927
1da177e4
LT
928/*
929 * Freeing function for a buddy system allocator.
930 *
931 * The concept of a buddy system is to maintain direct-mapped table
932 * (containing bit values) for memory blocks of various "orders".
933 * The bottom level table contains the map for the smallest allocatable
934 * units of memory (here, pages), and each level above it describes
935 * pairs of units from the levels below, hence, "buddies".
936 * At a high level, all that happens here is marking the table entry
937 * at the bottom level available, and propagating the changes upward
938 * as necessary, plus some accounting needed to play nicely with other
939 * parts of the VM system.
940 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
941 * free pages of length of (1 << order) and marked with PageBuddy.
942 * Page's order is recorded in page_private(page) field.
1da177e4 943 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
944 * other. That is, if we allocate a small block, and both were
945 * free, the remainder of the region must be split into blocks.
1da177e4 946 * If a block is freed, and its buddy is also free, then this
5f63b720 947 * triggers coalescing into a block of larger size.
1da177e4 948 *
6d49e352 949 * -- nyc
1da177e4
LT
950 */
951
48db57f8 952static inline void __free_one_page(struct page *page,
dc4b0caf 953 unsigned long pfn,
ed0ae21d 954 struct zone *zone, unsigned int order,
36e66c55 955 int migratetype, bool report)
1da177e4 956{
a2129f24 957 struct capture_control *capc = task_capc(zone);
3f649ab7 958 unsigned long buddy_pfn;
a2129f24 959 unsigned long combined_pfn;
d9dddbf5 960 unsigned int max_order;
a2129f24
AD
961 struct page *buddy;
962 bool to_tail;
d9dddbf5
VB
963
964 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 965
d29bb978 966 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 967 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 968
ed0ae21d 969 VM_BUG_ON(migratetype == -1);
d9dddbf5 970 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 971 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 972
76741e77 973 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 974 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 975
d9dddbf5 976continue_merging:
3c605096 977 while (order < max_order - 1) {
5e1f0f09
MG
978 if (compaction_capture(capc, page, order, migratetype)) {
979 __mod_zone_freepage_state(zone, -(1 << order),
980 migratetype);
981 return;
982 }
76741e77
VB
983 buddy_pfn = __find_buddy_pfn(pfn, order);
984 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
985
986 if (!pfn_valid_within(buddy_pfn))
987 goto done_merging;
cb2b95e1 988 if (!page_is_buddy(page, buddy, order))
d9dddbf5 989 goto done_merging;
c0a32fc5
SG
990 /*
991 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
992 * merge with it and move up one order.
993 */
b03641af 994 if (page_is_guard(buddy))
2847cf95 995 clear_page_guard(zone, buddy, order, migratetype);
b03641af 996 else
6ab01363 997 del_page_from_free_list(buddy, zone, order);
76741e77
VB
998 combined_pfn = buddy_pfn & pfn;
999 page = page + (combined_pfn - pfn);
1000 pfn = combined_pfn;
1da177e4
LT
1001 order++;
1002 }
d9dddbf5
VB
1003 if (max_order < MAX_ORDER) {
1004 /* If we are here, it means order is >= pageblock_order.
1005 * We want to prevent merge between freepages on isolate
1006 * pageblock and normal pageblock. Without this, pageblock
1007 * isolation could cause incorrect freepage or CMA accounting.
1008 *
1009 * We don't want to hit this code for the more frequent
1010 * low-order merging.
1011 */
1012 if (unlikely(has_isolate_pageblock(zone))) {
1013 int buddy_mt;
1014
76741e77
VB
1015 buddy_pfn = __find_buddy_pfn(pfn, order);
1016 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1017 buddy_mt = get_pageblock_migratetype(buddy);
1018
1019 if (migratetype != buddy_mt
1020 && (is_migrate_isolate(migratetype) ||
1021 is_migrate_isolate(buddy_mt)))
1022 goto done_merging;
1023 }
1024 max_order++;
1025 goto continue_merging;
1026 }
1027
1028done_merging:
1da177e4 1029 set_page_order(page, order);
6dda9d55 1030
97500a4a 1031 if (is_shuffle_order(order))
a2129f24 1032 to_tail = shuffle_pick_tail();
97500a4a 1033 else
a2129f24 1034 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1035
a2129f24 1036 if (to_tail)
6ab01363 1037 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1038 else
6ab01363 1039 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1040
1041 /* Notify page reporting subsystem of freed page */
1042 if (report)
1043 page_reporting_notify_free(order);
1da177e4
LT
1044}
1045
7bfec6f4
MG
1046/*
1047 * A bad page could be due to a number of fields. Instead of multiple branches,
1048 * try and check multiple fields with one check. The caller must do a detailed
1049 * check if necessary.
1050 */
1051static inline bool page_expected_state(struct page *page,
1052 unsigned long check_flags)
1053{
1054 if (unlikely(atomic_read(&page->_mapcount) != -1))
1055 return false;
1056
1057 if (unlikely((unsigned long)page->mapping |
1058 page_ref_count(page) |
1059#ifdef CONFIG_MEMCG
1060 (unsigned long)page->mem_cgroup |
1061#endif
1062 (page->flags & check_flags)))
1063 return false;
1064
1065 return true;
1066}
1067
58b7f119 1068static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1069{
82a3241a 1070 const char *bad_reason = NULL;
f0b791a3 1071
53f9263b 1072 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1073 bad_reason = "nonzero mapcount";
1074 if (unlikely(page->mapping != NULL))
1075 bad_reason = "non-NULL mapping";
fe896d18 1076 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1077 bad_reason = "nonzero _refcount";
58b7f119
WY
1078 if (unlikely(page->flags & flags)) {
1079 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1080 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1081 else
1082 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1083 }
9edad6ea
JW
1084#ifdef CONFIG_MEMCG
1085 if (unlikely(page->mem_cgroup))
1086 bad_reason = "page still charged to cgroup";
1087#endif
58b7f119
WY
1088 return bad_reason;
1089}
1090
1091static void check_free_page_bad(struct page *page)
1092{
1093 bad_page(page,
1094 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1095}
1096
534fe5e3 1097static inline int check_free_page(struct page *page)
bb552ac6 1098{
da838d4f 1099 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1100 return 0;
bb552ac6
MG
1101
1102 /* Something has gone sideways, find it */
0d0c48a2 1103 check_free_page_bad(page);
7bfec6f4 1104 return 1;
1da177e4
LT
1105}
1106
4db7548c
MG
1107static int free_tail_pages_check(struct page *head_page, struct page *page)
1108{
1109 int ret = 1;
1110
1111 /*
1112 * We rely page->lru.next never has bit 0 set, unless the page
1113 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1114 */
1115 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1116
1117 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1118 ret = 0;
1119 goto out;
1120 }
1121 switch (page - head_page) {
1122 case 1:
4da1984e 1123 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1124 if (unlikely(compound_mapcount(page))) {
82a3241a 1125 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1126 goto out;
1127 }
1128 break;
1129 case 2:
1130 /*
1131 * the second tail page: ->mapping is
fa3015b7 1132 * deferred_list.next -- ignore value.
4db7548c
MG
1133 */
1134 break;
1135 default:
1136 if (page->mapping != TAIL_MAPPING) {
82a3241a 1137 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1138 goto out;
1139 }
1140 break;
1141 }
1142 if (unlikely(!PageTail(page))) {
82a3241a 1143 bad_page(page, "PageTail not set");
4db7548c
MG
1144 goto out;
1145 }
1146 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1147 bad_page(page, "compound_head not consistent");
4db7548c
MG
1148 goto out;
1149 }
1150 ret = 0;
1151out:
1152 page->mapping = NULL;
1153 clear_compound_head(page);
1154 return ret;
1155}
1156
6471384a
AP
1157static void kernel_init_free_pages(struct page *page, int numpages)
1158{
1159 int i;
1160
9e15afa5
QC
1161 /* s390's use of memset() could override KASAN redzones. */
1162 kasan_disable_current();
6471384a
AP
1163 for (i = 0; i < numpages; i++)
1164 clear_highpage(page + i);
9e15afa5 1165 kasan_enable_current();
6471384a
AP
1166}
1167
e2769dbd
MG
1168static __always_inline bool free_pages_prepare(struct page *page,
1169 unsigned int order, bool check_free)
4db7548c 1170{
e2769dbd 1171 int bad = 0;
4db7548c 1172
4db7548c
MG
1173 VM_BUG_ON_PAGE(PageTail(page), page);
1174
e2769dbd 1175 trace_mm_page_free(page, order);
e2769dbd
MG
1176
1177 /*
1178 * Check tail pages before head page information is cleared to
1179 * avoid checking PageCompound for order-0 pages.
1180 */
1181 if (unlikely(order)) {
1182 bool compound = PageCompound(page);
1183 int i;
1184
1185 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1186
9a73f61b
KS
1187 if (compound)
1188 ClearPageDoubleMap(page);
e2769dbd
MG
1189 for (i = 1; i < (1 << order); i++) {
1190 if (compound)
1191 bad += free_tail_pages_check(page, page + i);
534fe5e3 1192 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1193 bad++;
1194 continue;
1195 }
1196 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1197 }
1198 }
bda807d4 1199 if (PageMappingFlags(page))
4db7548c 1200 page->mapping = NULL;
c4159a75 1201 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1202 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1203 if (check_free)
534fe5e3 1204 bad += check_free_page(page);
e2769dbd
MG
1205 if (bad)
1206 return false;
4db7548c 1207
e2769dbd
MG
1208 page_cpupid_reset_last(page);
1209 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1210 reset_page_owner(page, order);
4db7548c
MG
1211
1212 if (!PageHighMem(page)) {
1213 debug_check_no_locks_freed(page_address(page),
e2769dbd 1214 PAGE_SIZE << order);
4db7548c 1215 debug_check_no_obj_freed(page_address(page),
e2769dbd 1216 PAGE_SIZE << order);
4db7548c 1217 }
6471384a
AP
1218 if (want_init_on_free())
1219 kernel_init_free_pages(page, 1 << order);
1220
e2769dbd 1221 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1222 /*
1223 * arch_free_page() can make the page's contents inaccessible. s390
1224 * does this. So nothing which can access the page's contents should
1225 * happen after this.
1226 */
1227 arch_free_page(page, order);
1228
8e57f8ac 1229 if (debug_pagealloc_enabled_static())
d6332692
RE
1230 kernel_map_pages(page, 1 << order, 0);
1231
3c0c12cc 1232 kasan_free_nondeferred_pages(page, order);
4db7548c 1233
4db7548c
MG
1234 return true;
1235}
1236
e2769dbd 1237#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1238/*
1239 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1240 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1241 * moved from pcp lists to free lists.
1242 */
1243static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1244{
1245 return free_pages_prepare(page, 0, true);
1246}
1247
4462b32c 1248static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1249{
8e57f8ac 1250 if (debug_pagealloc_enabled_static())
534fe5e3 1251 return check_free_page(page);
4462b32c
VB
1252 else
1253 return false;
e2769dbd
MG
1254}
1255#else
4462b32c
VB
1256/*
1257 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1258 * moving from pcp lists to free list in order to reduce overhead. With
1259 * debug_pagealloc enabled, they are checked also immediately when being freed
1260 * to the pcp lists.
1261 */
e2769dbd
MG
1262static bool free_pcp_prepare(struct page *page)
1263{
8e57f8ac 1264 if (debug_pagealloc_enabled_static())
4462b32c
VB
1265 return free_pages_prepare(page, 0, true);
1266 else
1267 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1268}
1269
4db7548c
MG
1270static bool bulkfree_pcp_prepare(struct page *page)
1271{
534fe5e3 1272 return check_free_page(page);
4db7548c
MG
1273}
1274#endif /* CONFIG_DEBUG_VM */
1275
97334162
AL
1276static inline void prefetch_buddy(struct page *page)
1277{
1278 unsigned long pfn = page_to_pfn(page);
1279 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1280 struct page *buddy = page + (buddy_pfn - pfn);
1281
1282 prefetch(buddy);
1283}
1284
1da177e4 1285/*
5f8dcc21 1286 * Frees a number of pages from the PCP lists
1da177e4 1287 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1288 * count is the number of pages to free.
1da177e4
LT
1289 *
1290 * If the zone was previously in an "all pages pinned" state then look to
1291 * see if this freeing clears that state.
1292 *
1293 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1294 * pinned" detection logic.
1295 */
5f8dcc21
MG
1296static void free_pcppages_bulk(struct zone *zone, int count,
1297 struct per_cpu_pages *pcp)
1da177e4 1298{
5f8dcc21 1299 int migratetype = 0;
a6f9edd6 1300 int batch_free = 0;
97334162 1301 int prefetch_nr = 0;
3777999d 1302 bool isolated_pageblocks;
0a5f4e5b
AL
1303 struct page *page, *tmp;
1304 LIST_HEAD(head);
f2260e6b 1305
88e8ac11
CTR
1306 /*
1307 * Ensure proper count is passed which otherwise would stuck in the
1308 * below while (list_empty(list)) loop.
1309 */
1310 count = min(pcp->count, count);
e5b31ac2 1311 while (count) {
5f8dcc21
MG
1312 struct list_head *list;
1313
1314 /*
a6f9edd6
MG
1315 * Remove pages from lists in a round-robin fashion. A
1316 * batch_free count is maintained that is incremented when an
1317 * empty list is encountered. This is so more pages are freed
1318 * off fuller lists instead of spinning excessively around empty
1319 * lists
5f8dcc21
MG
1320 */
1321 do {
a6f9edd6 1322 batch_free++;
5f8dcc21
MG
1323 if (++migratetype == MIGRATE_PCPTYPES)
1324 migratetype = 0;
1325 list = &pcp->lists[migratetype];
1326 } while (list_empty(list));
48db57f8 1327
1d16871d
NK
1328 /* This is the only non-empty list. Free them all. */
1329 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1330 batch_free = count;
1d16871d 1331
a6f9edd6 1332 do {
a16601c5 1333 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1334 /* must delete to avoid corrupting pcp list */
a6f9edd6 1335 list_del(&page->lru);
77ba9062 1336 pcp->count--;
aa016d14 1337
4db7548c
MG
1338 if (bulkfree_pcp_prepare(page))
1339 continue;
1340
0a5f4e5b 1341 list_add_tail(&page->lru, &head);
97334162
AL
1342
1343 /*
1344 * We are going to put the page back to the global
1345 * pool, prefetch its buddy to speed up later access
1346 * under zone->lock. It is believed the overhead of
1347 * an additional test and calculating buddy_pfn here
1348 * can be offset by reduced memory latency later. To
1349 * avoid excessive prefetching due to large count, only
1350 * prefetch buddy for the first pcp->batch nr of pages.
1351 */
1352 if (prefetch_nr++ < pcp->batch)
1353 prefetch_buddy(page);
e5b31ac2 1354 } while (--count && --batch_free && !list_empty(list));
1da177e4 1355 }
0a5f4e5b
AL
1356
1357 spin_lock(&zone->lock);
1358 isolated_pageblocks = has_isolate_pageblock(zone);
1359
1360 /*
1361 * Use safe version since after __free_one_page(),
1362 * page->lru.next will not point to original list.
1363 */
1364 list_for_each_entry_safe(page, tmp, &head, lru) {
1365 int mt = get_pcppage_migratetype(page);
1366 /* MIGRATE_ISOLATE page should not go to pcplists */
1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368 /* Pageblock could have been isolated meanwhile */
1369 if (unlikely(isolated_pageblocks))
1370 mt = get_pageblock_migratetype(page);
1371
36e66c55 1372 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1373 trace_mm_page_pcpu_drain(page, 0, mt);
1374 }
d34b0733 1375 spin_unlock(&zone->lock);
1da177e4
LT
1376}
1377
dc4b0caf
MG
1378static void free_one_page(struct zone *zone,
1379 struct page *page, unsigned long pfn,
7aeb09f9 1380 unsigned int order,
ed0ae21d 1381 int migratetype)
1da177e4 1382{
d34b0733 1383 spin_lock(&zone->lock);
ad53f92e
JK
1384 if (unlikely(has_isolate_pageblock(zone) ||
1385 is_migrate_isolate(migratetype))) {
1386 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1387 }
36e66c55 1388 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1389 spin_unlock(&zone->lock);
48db57f8
NP
1390}
1391
1e8ce83c 1392static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1393 unsigned long zone, int nid)
1e8ce83c 1394{
d0dc12e8 1395 mm_zero_struct_page(page);
1e8ce83c 1396 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1397 init_page_count(page);
1398 page_mapcount_reset(page);
1399 page_cpupid_reset_last(page);
2813b9c0 1400 page_kasan_tag_reset(page);
1e8ce83c 1401
1e8ce83c
RH
1402 INIT_LIST_HEAD(&page->lru);
1403#ifdef WANT_PAGE_VIRTUAL
1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 if (!is_highmem_idx(zone))
1406 set_page_address(page, __va(pfn << PAGE_SHIFT));
1407#endif
1408}
1409
7e18adb4 1410#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1411static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1412{
1413 pg_data_t *pgdat;
1414 int nid, zid;
1415
1416 if (!early_page_uninitialised(pfn))
1417 return;
1418
1419 nid = early_pfn_to_nid(pfn);
1420 pgdat = NODE_DATA(nid);
1421
1422 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423 struct zone *zone = &pgdat->node_zones[zid];
1424
1425 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426 break;
1427 }
d0dc12e8 1428 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1429}
1430#else
1431static inline void init_reserved_page(unsigned long pfn)
1432{
1433}
1434#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435
92923ca3
NZ
1436/*
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1441 */
4b50bcc7 1442void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1443{
1444 unsigned long start_pfn = PFN_DOWN(start);
1445 unsigned long end_pfn = PFN_UP(end);
1446
7e18adb4
MG
1447 for (; start_pfn < end_pfn; start_pfn++) {
1448 if (pfn_valid(start_pfn)) {
1449 struct page *page = pfn_to_page(start_pfn);
1450
1451 init_reserved_page(start_pfn);
1d798ca3
KS
1452
1453 /* Avoid false-positive PageTail() */
1454 INIT_LIST_HEAD(&page->lru);
1455
d483da5b
AD
1456 /*
1457 * no need for atomic set_bit because the struct
1458 * page is not visible yet so nobody should
1459 * access it yet.
1460 */
1461 __SetPageReserved(page);
7e18adb4
MG
1462 }
1463 }
92923ca3
NZ
1464}
1465
ec95f53a
KM
1466static void __free_pages_ok(struct page *page, unsigned int order)
1467{
d34b0733 1468 unsigned long flags;
95e34412 1469 int migratetype;
dc4b0caf 1470 unsigned long pfn = page_to_pfn(page);
ec95f53a 1471
e2769dbd 1472 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1473 return;
1474
cfc47a28 1475 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1476 local_irq_save(flags);
1477 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1478 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1479 local_irq_restore(flags);
1da177e4
LT
1480}
1481
a9cd410a 1482void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1483{
c3993076 1484 unsigned int nr_pages = 1 << order;
e2d0bd2b 1485 struct page *p = page;
c3993076 1486 unsigned int loop;
a226f6c8 1487
e2d0bd2b
YL
1488 prefetchw(p);
1489 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 prefetchw(p + 1);
c3993076
JW
1491 __ClearPageReserved(p);
1492 set_page_count(p, 0);
a226f6c8 1493 }
e2d0bd2b
YL
1494 __ClearPageReserved(p);
1495 set_page_count(p, 0);
c3993076 1496
9705bea5 1497 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1498 set_page_refcounted(page);
1499 __free_pages(page, order);
a226f6c8
DH
1500}
1501
3f08a302 1502#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1503
75a592a4
MG
1504static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1505
6f24fbd3
MR
1506#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1507
1508/*
1509 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1510 */
1511int __meminit __early_pfn_to_nid(unsigned long pfn,
1512 struct mminit_pfnnid_cache *state)
75a592a4 1513{
6f24fbd3 1514 unsigned long start_pfn, end_pfn;
75a592a4
MG
1515 int nid;
1516
6f24fbd3
MR
1517 if (state->last_start <= pfn && pfn < state->last_end)
1518 return state->last_nid;
1519
1520 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1521 if (nid != NUMA_NO_NODE) {
1522 state->last_start = start_pfn;
1523 state->last_end = end_pfn;
1524 state->last_nid = nid;
1525 }
7ace9917
MG
1526
1527 return nid;
75a592a4 1528}
6f24fbd3 1529#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
75a592a4 1530
75a592a4 1531int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1532{
7ace9917 1533 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1534 int nid;
1535
7ace9917 1536 spin_lock(&early_pfn_lock);
56ec43d8 1537 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1538 if (nid < 0)
e4568d38 1539 nid = first_online_node;
7ace9917 1540 spin_unlock(&early_pfn_lock);
75a592a4 1541
7ace9917 1542 return nid;
75a592a4 1543}
3f08a302 1544#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1545
7c2ee349 1546void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1547 unsigned int order)
1548{
1549 if (early_page_uninitialised(pfn))
1550 return;
a9cd410a 1551 __free_pages_core(page, order);
3a80a7fa
MG
1552}
1553
7cf91a98
JK
1554/*
1555 * Check that the whole (or subset of) a pageblock given by the interval of
1556 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1557 * with the migration of free compaction scanner. The scanners then need to
1558 * use only pfn_valid_within() check for arches that allow holes within
1559 * pageblocks.
1560 *
1561 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1562 *
1563 * It's possible on some configurations to have a setup like node0 node1 node0
1564 * i.e. it's possible that all pages within a zones range of pages do not
1565 * belong to a single zone. We assume that a border between node0 and node1
1566 * can occur within a single pageblock, but not a node0 node1 node0
1567 * interleaving within a single pageblock. It is therefore sufficient to check
1568 * the first and last page of a pageblock and avoid checking each individual
1569 * page in a pageblock.
1570 */
1571struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1572 unsigned long end_pfn, struct zone *zone)
1573{
1574 struct page *start_page;
1575 struct page *end_page;
1576
1577 /* end_pfn is one past the range we are checking */
1578 end_pfn--;
1579
1580 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1581 return NULL;
1582
2d070eab
MH
1583 start_page = pfn_to_online_page(start_pfn);
1584 if (!start_page)
1585 return NULL;
7cf91a98
JK
1586
1587 if (page_zone(start_page) != zone)
1588 return NULL;
1589
1590 end_page = pfn_to_page(end_pfn);
1591
1592 /* This gives a shorter code than deriving page_zone(end_page) */
1593 if (page_zone_id(start_page) != page_zone_id(end_page))
1594 return NULL;
1595
1596 return start_page;
1597}
1598
1599void set_zone_contiguous(struct zone *zone)
1600{
1601 unsigned long block_start_pfn = zone->zone_start_pfn;
1602 unsigned long block_end_pfn;
1603
1604 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1605 for (; block_start_pfn < zone_end_pfn(zone);
1606 block_start_pfn = block_end_pfn,
1607 block_end_pfn += pageblock_nr_pages) {
1608
1609 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1610
1611 if (!__pageblock_pfn_to_page(block_start_pfn,
1612 block_end_pfn, zone))
1613 return;
e84fe99b 1614 cond_resched();
7cf91a98
JK
1615 }
1616
1617 /* We confirm that there is no hole */
1618 zone->contiguous = true;
1619}
1620
1621void clear_zone_contiguous(struct zone *zone)
1622{
1623 zone->contiguous = false;
1624}
1625
7e18adb4 1626#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1627static void __init deferred_free_range(unsigned long pfn,
1628 unsigned long nr_pages)
a4de83dd 1629{
2f47a91f
PT
1630 struct page *page;
1631 unsigned long i;
a4de83dd 1632
2f47a91f 1633 if (!nr_pages)
a4de83dd
MG
1634 return;
1635
2f47a91f
PT
1636 page = pfn_to_page(pfn);
1637
a4de83dd 1638 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1639 if (nr_pages == pageblock_nr_pages &&
1640 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1641 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1642 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1643 return;
1644 }
1645
e780149b
XQ
1646 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1647 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1648 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1649 __free_pages_core(page, 0);
e780149b 1650 }
a4de83dd
MG
1651}
1652
d3cd131d
NS
1653/* Completion tracking for deferred_init_memmap() threads */
1654static atomic_t pgdat_init_n_undone __initdata;
1655static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1656
1657static inline void __init pgdat_init_report_one_done(void)
1658{
1659 if (atomic_dec_and_test(&pgdat_init_n_undone))
1660 complete(&pgdat_init_all_done_comp);
1661}
0e1cc95b 1662
2f47a91f 1663/*
80b1f41c
PT
1664 * Returns true if page needs to be initialized or freed to buddy allocator.
1665 *
1666 * First we check if pfn is valid on architectures where it is possible to have
1667 * holes within pageblock_nr_pages. On systems where it is not possible, this
1668 * function is optimized out.
1669 *
1670 * Then, we check if a current large page is valid by only checking the validity
1671 * of the head pfn.
2f47a91f 1672 */
56ec43d8 1673static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1674{
80b1f41c
PT
1675 if (!pfn_valid_within(pfn))
1676 return false;
1677 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1678 return false;
80b1f41c
PT
1679 return true;
1680}
2f47a91f 1681
80b1f41c
PT
1682/*
1683 * Free pages to buddy allocator. Try to free aligned pages in
1684 * pageblock_nr_pages sizes.
1685 */
56ec43d8 1686static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1687 unsigned long end_pfn)
1688{
80b1f41c
PT
1689 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1690 unsigned long nr_free = 0;
2f47a91f 1691
80b1f41c 1692 for (; pfn < end_pfn; pfn++) {
56ec43d8 1693 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1694 deferred_free_range(pfn - nr_free, nr_free);
1695 nr_free = 0;
1696 } else if (!(pfn & nr_pgmask)) {
1697 deferred_free_range(pfn - nr_free, nr_free);
1698 nr_free = 1;
80b1f41c
PT
1699 } else {
1700 nr_free++;
1701 }
1702 }
1703 /* Free the last block of pages to allocator */
1704 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1705}
1706
80b1f41c
PT
1707/*
1708 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1709 * by performing it only once every pageblock_nr_pages.
1710 * Return number of pages initialized.
1711 */
56ec43d8 1712static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1713 unsigned long pfn,
1714 unsigned long end_pfn)
2f47a91f 1715{
2f47a91f 1716 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1717 int nid = zone_to_nid(zone);
2f47a91f 1718 unsigned long nr_pages = 0;
56ec43d8 1719 int zid = zone_idx(zone);
2f47a91f 1720 struct page *page = NULL;
2f47a91f 1721
80b1f41c 1722 for (; pfn < end_pfn; pfn++) {
56ec43d8 1723 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1724 page = NULL;
2f47a91f 1725 continue;
80b1f41c 1726 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1727 page = pfn_to_page(pfn);
80b1f41c
PT
1728 } else {
1729 page++;
2f47a91f 1730 }
d0dc12e8 1731 __init_single_page(page, pfn, zid, nid);
80b1f41c 1732 nr_pages++;
2f47a91f 1733 }
80b1f41c 1734 return (nr_pages);
2f47a91f
PT
1735}
1736
0e56acae
AD
1737/*
1738 * This function is meant to pre-load the iterator for the zone init.
1739 * Specifically it walks through the ranges until we are caught up to the
1740 * first_init_pfn value and exits there. If we never encounter the value we
1741 * return false indicating there are no valid ranges left.
1742 */
1743static bool __init
1744deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1745 unsigned long *spfn, unsigned long *epfn,
1746 unsigned long first_init_pfn)
1747{
1748 u64 j;
1749
1750 /*
1751 * Start out by walking through the ranges in this zone that have
1752 * already been initialized. We don't need to do anything with them
1753 * so we just need to flush them out of the system.
1754 */
1755 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1756 if (*epfn <= first_init_pfn)
1757 continue;
1758 if (*spfn < first_init_pfn)
1759 *spfn = first_init_pfn;
1760 *i = j;
1761 return true;
1762 }
1763
1764 return false;
1765}
1766
1767/*
1768 * Initialize and free pages. We do it in two loops: first we initialize
1769 * struct page, then free to buddy allocator, because while we are
1770 * freeing pages we can access pages that are ahead (computing buddy
1771 * page in __free_one_page()).
1772 *
1773 * In order to try and keep some memory in the cache we have the loop
1774 * broken along max page order boundaries. This way we will not cause
1775 * any issues with the buddy page computation.
1776 */
1777static unsigned long __init
1778deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1779 unsigned long *end_pfn)
1780{
1781 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1782 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1783 unsigned long nr_pages = 0;
1784 u64 j = *i;
1785
1786 /* First we loop through and initialize the page values */
1787 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1788 unsigned long t;
1789
1790 if (mo_pfn <= *start_pfn)
1791 break;
1792
1793 t = min(mo_pfn, *end_pfn);
1794 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1795
1796 if (mo_pfn < *end_pfn) {
1797 *start_pfn = mo_pfn;
1798 break;
1799 }
1800 }
1801
1802 /* Reset values and now loop through freeing pages as needed */
1803 swap(j, *i);
1804
1805 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1806 unsigned long t;
1807
1808 if (mo_pfn <= spfn)
1809 break;
1810
1811 t = min(mo_pfn, epfn);
1812 deferred_free_pages(spfn, t);
1813
1814 if (mo_pfn <= epfn)
1815 break;
1816 }
1817
1818 return nr_pages;
1819}
1820
e4443149
DJ
1821static void __init
1822deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1823 void *arg)
1824{
1825 unsigned long spfn, epfn;
1826 struct zone *zone = arg;
1827 u64 i;
1828
1829 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1830
1831 /*
1832 * Initialize and free pages in MAX_ORDER sized increments so that we
1833 * can avoid introducing any issues with the buddy allocator.
1834 */
1835 while (spfn < end_pfn) {
1836 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1837 cond_resched();
1838 }
1839}
1840
ecd09650
DJ
1841/* An arch may override for more concurrency. */
1842__weak int __init
1843deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1844{
1845 return 1;
1846}
1847
7e18adb4 1848/* Initialise remaining memory on a node */
0e1cc95b 1849static int __init deferred_init_memmap(void *data)
7e18adb4 1850{
0e1cc95b 1851 pg_data_t *pgdat = data;
0e56acae 1852 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1853 unsigned long spfn = 0, epfn = 0;
0e56acae 1854 unsigned long first_init_pfn, flags;
7e18adb4 1855 unsigned long start = jiffies;
7e18adb4 1856 struct zone *zone;
e4443149 1857 int zid, max_threads;
2f47a91f 1858 u64 i;
7e18adb4 1859
3a2d7fa8
PT
1860 /* Bind memory initialisation thread to a local node if possible */
1861 if (!cpumask_empty(cpumask))
1862 set_cpus_allowed_ptr(current, cpumask);
1863
1864 pgdat_resize_lock(pgdat, &flags);
1865 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1866 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1867 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1868 pgdat_init_report_one_done();
0e1cc95b
MG
1869 return 0;
1870 }
1871
7e18adb4
MG
1872 /* Sanity check boundaries */
1873 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1874 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1875 pgdat->first_deferred_pfn = ULONG_MAX;
1876
3d060856
PT
1877 /*
1878 * Once we unlock here, the zone cannot be grown anymore, thus if an
1879 * interrupt thread must allocate this early in boot, zone must be
1880 * pre-grown prior to start of deferred page initialization.
1881 */
1882 pgdat_resize_unlock(pgdat, &flags);
1883
7e18adb4
MG
1884 /* Only the highest zone is deferred so find it */
1885 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1886 zone = pgdat->node_zones + zid;
1887 if (first_init_pfn < zone_end_pfn(zone))
1888 break;
1889 }
0e56acae
AD
1890
1891 /* If the zone is empty somebody else may have cleared out the zone */
1892 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1893 first_init_pfn))
1894 goto zone_empty;
7e18adb4 1895
ecd09650 1896 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1897
117003c3 1898 while (spfn < epfn) {
e4443149
DJ
1899 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1900 struct padata_mt_job job = {
1901 .thread_fn = deferred_init_memmap_chunk,
1902 .fn_arg = zone,
1903 .start = spfn,
1904 .size = epfn_align - spfn,
1905 .align = PAGES_PER_SECTION,
1906 .min_chunk = PAGES_PER_SECTION,
1907 .max_threads = max_threads,
1908 };
1909
1910 padata_do_multithreaded(&job);
1911 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1912 epfn_align);
117003c3 1913 }
0e56acae 1914zone_empty:
7e18adb4
MG
1915 /* Sanity check that the next zone really is unpopulated */
1916 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1917
89c7c402
DJ
1918 pr_info("node %d deferred pages initialised in %ums\n",
1919 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1920
1921 pgdat_init_report_one_done();
0e1cc95b
MG
1922 return 0;
1923}
c9e97a19 1924
c9e97a19
PT
1925/*
1926 * If this zone has deferred pages, try to grow it by initializing enough
1927 * deferred pages to satisfy the allocation specified by order, rounded up to
1928 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1929 * of SECTION_SIZE bytes by initializing struct pages in increments of
1930 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1931 *
1932 * Return true when zone was grown, otherwise return false. We return true even
1933 * when we grow less than requested, to let the caller decide if there are
1934 * enough pages to satisfy the allocation.
1935 *
1936 * Note: We use noinline because this function is needed only during boot, and
1937 * it is called from a __ref function _deferred_grow_zone. This way we are
1938 * making sure that it is not inlined into permanent text section.
1939 */
1940static noinline bool __init
1941deferred_grow_zone(struct zone *zone, unsigned int order)
1942{
c9e97a19 1943 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1944 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1945 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1946 unsigned long spfn, epfn, flags;
1947 unsigned long nr_pages = 0;
c9e97a19
PT
1948 u64 i;
1949
1950 /* Only the last zone may have deferred pages */
1951 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1952 return false;
1953
1954 pgdat_resize_lock(pgdat, &flags);
1955
c9e97a19
PT
1956 /*
1957 * If someone grew this zone while we were waiting for spinlock, return
1958 * true, as there might be enough pages already.
1959 */
1960 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1961 pgdat_resize_unlock(pgdat, &flags);
1962 return true;
1963 }
1964
0e56acae
AD
1965 /* If the zone is empty somebody else may have cleared out the zone */
1966 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1967 first_deferred_pfn)) {
1968 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1969 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1970 /* Retry only once. */
1971 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1972 }
1973
0e56acae
AD
1974 /*
1975 * Initialize and free pages in MAX_ORDER sized increments so
1976 * that we can avoid introducing any issues with the buddy
1977 * allocator.
1978 */
1979 while (spfn < epfn) {
1980 /* update our first deferred PFN for this section */
1981 first_deferred_pfn = spfn;
1982
1983 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 1984 touch_nmi_watchdog();
c9e97a19 1985
0e56acae
AD
1986 /* We should only stop along section boundaries */
1987 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1988 continue;
c9e97a19 1989
0e56acae 1990 /* If our quota has been met we can stop here */
c9e97a19
PT
1991 if (nr_pages >= nr_pages_needed)
1992 break;
1993 }
1994
0e56acae 1995 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1996 pgdat_resize_unlock(pgdat, &flags);
1997
1998 return nr_pages > 0;
1999}
2000
2001/*
2002 * deferred_grow_zone() is __init, but it is called from
2003 * get_page_from_freelist() during early boot until deferred_pages permanently
2004 * disables this call. This is why we have refdata wrapper to avoid warning,
2005 * and to ensure that the function body gets unloaded.
2006 */
2007static bool __ref
2008_deferred_grow_zone(struct zone *zone, unsigned int order)
2009{
2010 return deferred_grow_zone(zone, order);
2011}
2012
7cf91a98 2013#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2014
2015void __init page_alloc_init_late(void)
2016{
7cf91a98 2017 struct zone *zone;
e900a918 2018 int nid;
7cf91a98
JK
2019
2020#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2021
d3cd131d
NS
2022 /* There will be num_node_state(N_MEMORY) threads */
2023 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2024 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2025 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2026 }
2027
2028 /* Block until all are initialised */
d3cd131d 2029 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2030
3e8fc007
MG
2031 /*
2032 * The number of managed pages has changed due to the initialisation
2033 * so the pcpu batch and high limits needs to be updated or the limits
2034 * will be artificially small.
2035 */
2036 for_each_populated_zone(zone)
2037 zone_pcp_update(zone);
2038
c9e97a19
PT
2039 /*
2040 * We initialized the rest of the deferred pages. Permanently disable
2041 * on-demand struct page initialization.
2042 */
2043 static_branch_disable(&deferred_pages);
2044
4248b0da
MG
2045 /* Reinit limits that are based on free pages after the kernel is up */
2046 files_maxfiles_init();
7cf91a98 2047#endif
350e88ba 2048
3010f876
PT
2049 /* Discard memblock private memory */
2050 memblock_discard();
7cf91a98 2051
e900a918
DW
2052 for_each_node_state(nid, N_MEMORY)
2053 shuffle_free_memory(NODE_DATA(nid));
2054
7cf91a98
JK
2055 for_each_populated_zone(zone)
2056 set_zone_contiguous(zone);
7e18adb4 2057}
7e18adb4 2058
47118af0 2059#ifdef CONFIG_CMA
9cf510a5 2060/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2061void __init init_cma_reserved_pageblock(struct page *page)
2062{
2063 unsigned i = pageblock_nr_pages;
2064 struct page *p = page;
2065
2066 do {
2067 __ClearPageReserved(p);
2068 set_page_count(p, 0);
d883c6cf 2069 } while (++p, --i);
47118af0 2070
47118af0 2071 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2072
2073 if (pageblock_order >= MAX_ORDER) {
2074 i = pageblock_nr_pages;
2075 p = page;
2076 do {
2077 set_page_refcounted(p);
2078 __free_pages(p, MAX_ORDER - 1);
2079 p += MAX_ORDER_NR_PAGES;
2080 } while (i -= MAX_ORDER_NR_PAGES);
2081 } else {
2082 set_page_refcounted(page);
2083 __free_pages(page, pageblock_order);
2084 }
2085
3dcc0571 2086 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2087}
2088#endif
1da177e4
LT
2089
2090/*
2091 * The order of subdivision here is critical for the IO subsystem.
2092 * Please do not alter this order without good reasons and regression
2093 * testing. Specifically, as large blocks of memory are subdivided,
2094 * the order in which smaller blocks are delivered depends on the order
2095 * they're subdivided in this function. This is the primary factor
2096 * influencing the order in which pages are delivered to the IO
2097 * subsystem according to empirical testing, and this is also justified
2098 * by considering the behavior of a buddy system containing a single
2099 * large block of memory acted on by a series of small allocations.
2100 * This behavior is a critical factor in sglist merging's success.
2101 *
6d49e352 2102 * -- nyc
1da177e4 2103 */
085cc7d5 2104static inline void expand(struct zone *zone, struct page *page,
6ab01363 2105 int low, int high, int migratetype)
1da177e4
LT
2106{
2107 unsigned long size = 1 << high;
2108
2109 while (high > low) {
1da177e4
LT
2110 high--;
2111 size >>= 1;
309381fe 2112 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2113
acbc15a4
JK
2114 /*
2115 * Mark as guard pages (or page), that will allow to
2116 * merge back to allocator when buddy will be freed.
2117 * Corresponding page table entries will not be touched,
2118 * pages will stay not present in virtual address space
2119 */
2120 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2121 continue;
acbc15a4 2122
6ab01363 2123 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2124 set_page_order(&page[size], high);
2125 }
1da177e4
LT
2126}
2127
4e611801 2128static void check_new_page_bad(struct page *page)
1da177e4 2129{
f4c18e6f 2130 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2131 /* Don't complain about hwpoisoned pages */
2132 page_mapcount_reset(page); /* remove PageBuddy */
2133 return;
f4c18e6f 2134 }
58b7f119
WY
2135
2136 bad_page(page,
2137 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2138}
2139
2140/*
2141 * This page is about to be returned from the page allocator
2142 */
2143static inline int check_new_page(struct page *page)
2144{
2145 if (likely(page_expected_state(page,
2146 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2147 return 0;
2148
2149 check_new_page_bad(page);
2150 return 1;
2a7684a2
WF
2151}
2152
bd33ef36 2153static inline bool free_pages_prezeroed(void)
1414c7f4 2154{
6471384a
AP
2155 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2156 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2157}
2158
479f854a 2159#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2160/*
2161 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2162 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2163 * also checked when pcp lists are refilled from the free lists.
2164 */
2165static inline bool check_pcp_refill(struct page *page)
479f854a 2166{
8e57f8ac 2167 if (debug_pagealloc_enabled_static())
4462b32c
VB
2168 return check_new_page(page);
2169 else
2170 return false;
479f854a
MG
2171}
2172
4462b32c 2173static inline bool check_new_pcp(struct page *page)
479f854a
MG
2174{
2175 return check_new_page(page);
2176}
2177#else
4462b32c
VB
2178/*
2179 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2180 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2181 * enabled, they are also checked when being allocated from the pcp lists.
2182 */
2183static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2184{
2185 return check_new_page(page);
2186}
4462b32c 2187static inline bool check_new_pcp(struct page *page)
479f854a 2188{
8e57f8ac 2189 if (debug_pagealloc_enabled_static())
4462b32c
VB
2190 return check_new_page(page);
2191 else
2192 return false;
479f854a
MG
2193}
2194#endif /* CONFIG_DEBUG_VM */
2195
2196static bool check_new_pages(struct page *page, unsigned int order)
2197{
2198 int i;
2199 for (i = 0; i < (1 << order); i++) {
2200 struct page *p = page + i;
2201
2202 if (unlikely(check_new_page(p)))
2203 return true;
2204 }
2205
2206 return false;
2207}
2208
46f24fd8
JK
2209inline void post_alloc_hook(struct page *page, unsigned int order,
2210 gfp_t gfp_flags)
2211{
2212 set_page_private(page, 0);
2213 set_page_refcounted(page);
2214
2215 arch_alloc_page(page, order);
8e57f8ac 2216 if (debug_pagealloc_enabled_static())
d6332692 2217 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2218 kasan_alloc_pages(page, order);
4117992d 2219 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2220 set_page_owner(page, order, gfp_flags);
2221}
2222
479f854a 2223static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2224 unsigned int alloc_flags)
2a7684a2 2225{
46f24fd8 2226 post_alloc_hook(page, order, gfp_flags);
17cf4406 2227
6471384a
AP
2228 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2229 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2230
2231 if (order && (gfp_flags & __GFP_COMP))
2232 prep_compound_page(page, order);
2233
75379191 2234 /*
2f064f34 2235 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2236 * allocate the page. The expectation is that the caller is taking
2237 * steps that will free more memory. The caller should avoid the page
2238 * being used for !PFMEMALLOC purposes.
2239 */
2f064f34
MH
2240 if (alloc_flags & ALLOC_NO_WATERMARKS)
2241 set_page_pfmemalloc(page);
2242 else
2243 clear_page_pfmemalloc(page);
1da177e4
LT
2244}
2245
56fd56b8
MG
2246/*
2247 * Go through the free lists for the given migratetype and remove
2248 * the smallest available page from the freelists
2249 */
85ccc8fa 2250static __always_inline
728ec980 2251struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2252 int migratetype)
2253{
2254 unsigned int current_order;
b8af2941 2255 struct free_area *area;
56fd56b8
MG
2256 struct page *page;
2257
2258 /* Find a page of the appropriate size in the preferred list */
2259 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2260 area = &(zone->free_area[current_order]);
b03641af 2261 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2262 if (!page)
2263 continue;
6ab01363
AD
2264 del_page_from_free_list(page, zone, current_order);
2265 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2266 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2267 return page;
2268 }
2269
2270 return NULL;
2271}
2272
2273
b2a0ac88
MG
2274/*
2275 * This array describes the order lists are fallen back to when
2276 * the free lists for the desirable migrate type are depleted
2277 */
da415663 2278static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2279 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2280 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2281 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2282#ifdef CONFIG_CMA
974a786e 2283 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2284#endif
194159fb 2285#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2286 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2287#endif
b2a0ac88
MG
2288};
2289
dc67647b 2290#ifdef CONFIG_CMA
85ccc8fa 2291static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2292 unsigned int order)
2293{
2294 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2295}
2296#else
2297static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2298 unsigned int order) { return NULL; }
2299#endif
2300
c361be55
MG
2301/*
2302 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2303 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2304 * boundary. If alignment is required, use move_freepages_block()
2305 */
02aa0cdd 2306static int move_freepages(struct zone *zone,
b69a7288 2307 struct page *start_page, struct page *end_page,
02aa0cdd 2308 int migratetype, int *num_movable)
c361be55
MG
2309{
2310 struct page *page;
d00181b9 2311 unsigned int order;
d100313f 2312 int pages_moved = 0;
c361be55 2313
c361be55
MG
2314 for (page = start_page; page <= end_page;) {
2315 if (!pfn_valid_within(page_to_pfn(page))) {
2316 page++;
2317 continue;
2318 }
2319
2320 if (!PageBuddy(page)) {
02aa0cdd
VB
2321 /*
2322 * We assume that pages that could be isolated for
2323 * migration are movable. But we don't actually try
2324 * isolating, as that would be expensive.
2325 */
2326 if (num_movable &&
2327 (PageLRU(page) || __PageMovable(page)))
2328 (*num_movable)++;
2329
c361be55
MG
2330 page++;
2331 continue;
2332 }
2333
cd961038
DR
2334 /* Make sure we are not inadvertently changing nodes */
2335 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2336 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2337
c361be55 2338 order = page_order(page);
6ab01363 2339 move_to_free_list(page, zone, order, migratetype);
c361be55 2340 page += 1 << order;
d100313f 2341 pages_moved += 1 << order;
c361be55
MG
2342 }
2343
d100313f 2344 return pages_moved;
c361be55
MG
2345}
2346
ee6f509c 2347int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2348 int migratetype, int *num_movable)
c361be55
MG
2349{
2350 unsigned long start_pfn, end_pfn;
2351 struct page *start_page, *end_page;
2352
4a222127
DR
2353 if (num_movable)
2354 *num_movable = 0;
2355
c361be55 2356 start_pfn = page_to_pfn(page);
d9c23400 2357 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2358 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2359 end_page = start_page + pageblock_nr_pages - 1;
2360 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2361
2362 /* Do not cross zone boundaries */
108bcc96 2363 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2364 start_page = page;
108bcc96 2365 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2366 return 0;
2367
02aa0cdd
VB
2368 return move_freepages(zone, start_page, end_page, migratetype,
2369 num_movable);
c361be55
MG
2370}
2371
2f66a68f
MG
2372static void change_pageblock_range(struct page *pageblock_page,
2373 int start_order, int migratetype)
2374{
2375 int nr_pageblocks = 1 << (start_order - pageblock_order);
2376
2377 while (nr_pageblocks--) {
2378 set_pageblock_migratetype(pageblock_page, migratetype);
2379 pageblock_page += pageblock_nr_pages;
2380 }
2381}
2382
fef903ef 2383/*
9c0415eb
VB
2384 * When we are falling back to another migratetype during allocation, try to
2385 * steal extra free pages from the same pageblocks to satisfy further
2386 * allocations, instead of polluting multiple pageblocks.
2387 *
2388 * If we are stealing a relatively large buddy page, it is likely there will
2389 * be more free pages in the pageblock, so try to steal them all. For
2390 * reclaimable and unmovable allocations, we steal regardless of page size,
2391 * as fragmentation caused by those allocations polluting movable pageblocks
2392 * is worse than movable allocations stealing from unmovable and reclaimable
2393 * pageblocks.
fef903ef 2394 */
4eb7dce6
JK
2395static bool can_steal_fallback(unsigned int order, int start_mt)
2396{
2397 /*
2398 * Leaving this order check is intended, although there is
2399 * relaxed order check in next check. The reason is that
2400 * we can actually steal whole pageblock if this condition met,
2401 * but, below check doesn't guarantee it and that is just heuristic
2402 * so could be changed anytime.
2403 */
2404 if (order >= pageblock_order)
2405 return true;
2406
2407 if (order >= pageblock_order / 2 ||
2408 start_mt == MIGRATE_RECLAIMABLE ||
2409 start_mt == MIGRATE_UNMOVABLE ||
2410 page_group_by_mobility_disabled)
2411 return true;
2412
2413 return false;
2414}
2415
1c30844d
MG
2416static inline void boost_watermark(struct zone *zone)
2417{
2418 unsigned long max_boost;
2419
2420 if (!watermark_boost_factor)
2421 return;
14f69140
HW
2422 /*
2423 * Don't bother in zones that are unlikely to produce results.
2424 * On small machines, including kdump capture kernels running
2425 * in a small area, boosting the watermark can cause an out of
2426 * memory situation immediately.
2427 */
2428 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2429 return;
1c30844d
MG
2430
2431 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2432 watermark_boost_factor, 10000);
94b3334c
MG
2433
2434 /*
2435 * high watermark may be uninitialised if fragmentation occurs
2436 * very early in boot so do not boost. We do not fall
2437 * through and boost by pageblock_nr_pages as failing
2438 * allocations that early means that reclaim is not going
2439 * to help and it may even be impossible to reclaim the
2440 * boosted watermark resulting in a hang.
2441 */
2442 if (!max_boost)
2443 return;
2444
1c30844d
MG
2445 max_boost = max(pageblock_nr_pages, max_boost);
2446
2447 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2448 max_boost);
2449}
2450
4eb7dce6
JK
2451/*
2452 * This function implements actual steal behaviour. If order is large enough,
2453 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2454 * pageblock to our migratetype and determine how many already-allocated pages
2455 * are there in the pageblock with a compatible migratetype. If at least half
2456 * of pages are free or compatible, we can change migratetype of the pageblock
2457 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2458 */
2459static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2460 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2461{
d00181b9 2462 unsigned int current_order = page_order(page);
02aa0cdd
VB
2463 int free_pages, movable_pages, alike_pages;
2464 int old_block_type;
2465
2466 old_block_type = get_pageblock_migratetype(page);
fef903ef 2467
3bc48f96
VB
2468 /*
2469 * This can happen due to races and we want to prevent broken
2470 * highatomic accounting.
2471 */
02aa0cdd 2472 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2473 goto single_page;
2474
fef903ef
SB
2475 /* Take ownership for orders >= pageblock_order */
2476 if (current_order >= pageblock_order) {
2477 change_pageblock_range(page, current_order, start_type);
3bc48f96 2478 goto single_page;
fef903ef
SB
2479 }
2480
1c30844d
MG
2481 /*
2482 * Boost watermarks to increase reclaim pressure to reduce the
2483 * likelihood of future fallbacks. Wake kswapd now as the node
2484 * may be balanced overall and kswapd will not wake naturally.
2485 */
2486 boost_watermark(zone);
2487 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2488 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2489
3bc48f96
VB
2490 /* We are not allowed to try stealing from the whole block */
2491 if (!whole_block)
2492 goto single_page;
2493
02aa0cdd
VB
2494 free_pages = move_freepages_block(zone, page, start_type,
2495 &movable_pages);
2496 /*
2497 * Determine how many pages are compatible with our allocation.
2498 * For movable allocation, it's the number of movable pages which
2499 * we just obtained. For other types it's a bit more tricky.
2500 */
2501 if (start_type == MIGRATE_MOVABLE) {
2502 alike_pages = movable_pages;
2503 } else {
2504 /*
2505 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2506 * to MOVABLE pageblock, consider all non-movable pages as
2507 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2508 * vice versa, be conservative since we can't distinguish the
2509 * exact migratetype of non-movable pages.
2510 */
2511 if (old_block_type == MIGRATE_MOVABLE)
2512 alike_pages = pageblock_nr_pages
2513 - (free_pages + movable_pages);
2514 else
2515 alike_pages = 0;
2516 }
2517
3bc48f96 2518 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2519 if (!free_pages)
3bc48f96 2520 goto single_page;
fef903ef 2521
02aa0cdd
VB
2522 /*
2523 * If a sufficient number of pages in the block are either free or of
2524 * comparable migratability as our allocation, claim the whole block.
2525 */
2526 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2527 page_group_by_mobility_disabled)
2528 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2529
2530 return;
2531
2532single_page:
6ab01363 2533 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2534}
2535
2149cdae
JK
2536/*
2537 * Check whether there is a suitable fallback freepage with requested order.
2538 * If only_stealable is true, this function returns fallback_mt only if
2539 * we can steal other freepages all together. This would help to reduce
2540 * fragmentation due to mixed migratetype pages in one pageblock.
2541 */
2542int find_suitable_fallback(struct free_area *area, unsigned int order,
2543 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2544{
2545 int i;
2546 int fallback_mt;
2547
2548 if (area->nr_free == 0)
2549 return -1;
2550
2551 *can_steal = false;
2552 for (i = 0;; i++) {
2553 fallback_mt = fallbacks[migratetype][i];
974a786e 2554 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2555 break;
2556
b03641af 2557 if (free_area_empty(area, fallback_mt))
4eb7dce6 2558 continue;
fef903ef 2559
4eb7dce6
JK
2560 if (can_steal_fallback(order, migratetype))
2561 *can_steal = true;
2562
2149cdae
JK
2563 if (!only_stealable)
2564 return fallback_mt;
2565
2566 if (*can_steal)
2567 return fallback_mt;
fef903ef 2568 }
4eb7dce6
JK
2569
2570 return -1;
fef903ef
SB
2571}
2572
0aaa29a5
MG
2573/*
2574 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2575 * there are no empty page blocks that contain a page with a suitable order
2576 */
2577static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2578 unsigned int alloc_order)
2579{
2580 int mt;
2581 unsigned long max_managed, flags;
2582
2583 /*
2584 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2585 * Check is race-prone but harmless.
2586 */
9705bea5 2587 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2588 if (zone->nr_reserved_highatomic >= max_managed)
2589 return;
2590
2591 spin_lock_irqsave(&zone->lock, flags);
2592
2593 /* Recheck the nr_reserved_highatomic limit under the lock */
2594 if (zone->nr_reserved_highatomic >= max_managed)
2595 goto out_unlock;
2596
2597 /* Yoink! */
2598 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2599 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2600 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2601 zone->nr_reserved_highatomic += pageblock_nr_pages;
2602 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2603 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2604 }
2605
2606out_unlock:
2607 spin_unlock_irqrestore(&zone->lock, flags);
2608}
2609
2610/*
2611 * Used when an allocation is about to fail under memory pressure. This
2612 * potentially hurts the reliability of high-order allocations when under
2613 * intense memory pressure but failed atomic allocations should be easier
2614 * to recover from than an OOM.
29fac03b
MK
2615 *
2616 * If @force is true, try to unreserve a pageblock even though highatomic
2617 * pageblock is exhausted.
0aaa29a5 2618 */
29fac03b
MK
2619static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2620 bool force)
0aaa29a5
MG
2621{
2622 struct zonelist *zonelist = ac->zonelist;
2623 unsigned long flags;
2624 struct zoneref *z;
2625 struct zone *zone;
2626 struct page *page;
2627 int order;
04c8716f 2628 bool ret;
0aaa29a5 2629
97a225e6 2630 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2631 ac->nodemask) {
29fac03b
MK
2632 /*
2633 * Preserve at least one pageblock unless memory pressure
2634 * is really high.
2635 */
2636 if (!force && zone->nr_reserved_highatomic <=
2637 pageblock_nr_pages)
0aaa29a5
MG
2638 continue;
2639
2640 spin_lock_irqsave(&zone->lock, flags);
2641 for (order = 0; order < MAX_ORDER; order++) {
2642 struct free_area *area = &(zone->free_area[order]);
2643
b03641af 2644 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2645 if (!page)
0aaa29a5
MG
2646 continue;
2647
0aaa29a5 2648 /*
4855e4a7
MK
2649 * In page freeing path, migratetype change is racy so
2650 * we can counter several free pages in a pageblock
2651 * in this loop althoug we changed the pageblock type
2652 * from highatomic to ac->migratetype. So we should
2653 * adjust the count once.
0aaa29a5 2654 */
a6ffdc07 2655 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2656 /*
2657 * It should never happen but changes to
2658 * locking could inadvertently allow a per-cpu
2659 * drain to add pages to MIGRATE_HIGHATOMIC
2660 * while unreserving so be safe and watch for
2661 * underflows.
2662 */
2663 zone->nr_reserved_highatomic -= min(
2664 pageblock_nr_pages,
2665 zone->nr_reserved_highatomic);
2666 }
0aaa29a5
MG
2667
2668 /*
2669 * Convert to ac->migratetype and avoid the normal
2670 * pageblock stealing heuristics. Minimally, the caller
2671 * is doing the work and needs the pages. More
2672 * importantly, if the block was always converted to
2673 * MIGRATE_UNMOVABLE or another type then the number
2674 * of pageblocks that cannot be completely freed
2675 * may increase.
2676 */
2677 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2678 ret = move_freepages_block(zone, page, ac->migratetype,
2679 NULL);
29fac03b
MK
2680 if (ret) {
2681 spin_unlock_irqrestore(&zone->lock, flags);
2682 return ret;
2683 }
0aaa29a5
MG
2684 }
2685 spin_unlock_irqrestore(&zone->lock, flags);
2686 }
04c8716f
MK
2687
2688 return false;
0aaa29a5
MG
2689}
2690
3bc48f96
VB
2691/*
2692 * Try finding a free buddy page on the fallback list and put it on the free
2693 * list of requested migratetype, possibly along with other pages from the same
2694 * block, depending on fragmentation avoidance heuristics. Returns true if
2695 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2696 *
2697 * The use of signed ints for order and current_order is a deliberate
2698 * deviation from the rest of this file, to make the for loop
2699 * condition simpler.
3bc48f96 2700 */
85ccc8fa 2701static __always_inline bool
6bb15450
MG
2702__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2703 unsigned int alloc_flags)
b2a0ac88 2704{
b8af2941 2705 struct free_area *area;
b002529d 2706 int current_order;
6bb15450 2707 int min_order = order;
b2a0ac88 2708 struct page *page;
4eb7dce6
JK
2709 int fallback_mt;
2710 bool can_steal;
b2a0ac88 2711
6bb15450
MG
2712 /*
2713 * Do not steal pages from freelists belonging to other pageblocks
2714 * i.e. orders < pageblock_order. If there are no local zones free,
2715 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2716 */
2717 if (alloc_flags & ALLOC_NOFRAGMENT)
2718 min_order = pageblock_order;
2719
7a8f58f3
VB
2720 /*
2721 * Find the largest available free page in the other list. This roughly
2722 * approximates finding the pageblock with the most free pages, which
2723 * would be too costly to do exactly.
2724 */
6bb15450 2725 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2726 --current_order) {
4eb7dce6
JK
2727 area = &(zone->free_area[current_order]);
2728 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2729 start_migratetype, false, &can_steal);
4eb7dce6
JK
2730 if (fallback_mt == -1)
2731 continue;
b2a0ac88 2732
7a8f58f3
VB
2733 /*
2734 * We cannot steal all free pages from the pageblock and the
2735 * requested migratetype is movable. In that case it's better to
2736 * steal and split the smallest available page instead of the
2737 * largest available page, because even if the next movable
2738 * allocation falls back into a different pageblock than this
2739 * one, it won't cause permanent fragmentation.
2740 */
2741 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2742 && current_order > order)
2743 goto find_smallest;
b2a0ac88 2744
7a8f58f3
VB
2745 goto do_steal;
2746 }
e0fff1bd 2747
7a8f58f3 2748 return false;
e0fff1bd 2749
7a8f58f3
VB
2750find_smallest:
2751 for (current_order = order; current_order < MAX_ORDER;
2752 current_order++) {
2753 area = &(zone->free_area[current_order]);
2754 fallback_mt = find_suitable_fallback(area, current_order,
2755 start_migratetype, false, &can_steal);
2756 if (fallback_mt != -1)
2757 break;
b2a0ac88
MG
2758 }
2759
7a8f58f3
VB
2760 /*
2761 * This should not happen - we already found a suitable fallback
2762 * when looking for the largest page.
2763 */
2764 VM_BUG_ON(current_order == MAX_ORDER);
2765
2766do_steal:
b03641af 2767 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2768
1c30844d
MG
2769 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2770 can_steal);
7a8f58f3
VB
2771
2772 trace_mm_page_alloc_extfrag(page, order, current_order,
2773 start_migratetype, fallback_mt);
2774
2775 return true;
2776
b2a0ac88
MG
2777}
2778
56fd56b8 2779/*
1da177e4
LT
2780 * Do the hard work of removing an element from the buddy allocator.
2781 * Call me with the zone->lock already held.
2782 */
85ccc8fa 2783static __always_inline struct page *
6bb15450
MG
2784__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2785 unsigned int alloc_flags)
1da177e4 2786{
1da177e4
LT
2787 struct page *page;
2788
16867664
RG
2789#ifdef CONFIG_CMA
2790 /*
2791 * Balance movable allocations between regular and CMA areas by
2792 * allocating from CMA when over half of the zone's free memory
2793 * is in the CMA area.
2794 */
8510e69c 2795 if (alloc_flags & ALLOC_CMA &&
16867664
RG
2796 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2797 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2798 page = __rmqueue_cma_fallback(zone, order);
2799 if (page)
2800 return page;
2801 }
2802#endif
3bc48f96 2803retry:
56fd56b8 2804 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2805 if (unlikely(!page)) {
8510e69c 2806 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2807 page = __rmqueue_cma_fallback(zone, order);
2808
6bb15450
MG
2809 if (!page && __rmqueue_fallback(zone, order, migratetype,
2810 alloc_flags))
3bc48f96 2811 goto retry;
728ec980
MG
2812 }
2813
0d3d062a 2814 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2815 return page;
1da177e4
LT
2816}
2817
5f63b720 2818/*
1da177e4
LT
2819 * Obtain a specified number of elements from the buddy allocator, all under
2820 * a single hold of the lock, for efficiency. Add them to the supplied list.
2821 * Returns the number of new pages which were placed at *list.
2822 */
5f63b720 2823static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2824 unsigned long count, struct list_head *list,
6bb15450 2825 int migratetype, unsigned int alloc_flags)
1da177e4 2826{
a6de734b 2827 int i, alloced = 0;
5f63b720 2828
d34b0733 2829 spin_lock(&zone->lock);
1da177e4 2830 for (i = 0; i < count; ++i) {
6bb15450
MG
2831 struct page *page = __rmqueue(zone, order, migratetype,
2832 alloc_flags);
085cc7d5 2833 if (unlikely(page == NULL))
1da177e4 2834 break;
81eabcbe 2835
479f854a
MG
2836 if (unlikely(check_pcp_refill(page)))
2837 continue;
2838
81eabcbe 2839 /*
0fac3ba5
VB
2840 * Split buddy pages returned by expand() are received here in
2841 * physical page order. The page is added to the tail of
2842 * caller's list. From the callers perspective, the linked list
2843 * is ordered by page number under some conditions. This is
2844 * useful for IO devices that can forward direction from the
2845 * head, thus also in the physical page order. This is useful
2846 * for IO devices that can merge IO requests if the physical
2847 * pages are ordered properly.
81eabcbe 2848 */
0fac3ba5 2849 list_add_tail(&page->lru, list);
a6de734b 2850 alloced++;
bb14c2c7 2851 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2852 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2853 -(1 << order));
1da177e4 2854 }
a6de734b
MG
2855
2856 /*
2857 * i pages were removed from the buddy list even if some leak due
2858 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2859 * on i. Do not confuse with 'alloced' which is the number of
2860 * pages added to the pcp list.
2861 */
f2260e6b 2862 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2863 spin_unlock(&zone->lock);
a6de734b 2864 return alloced;
1da177e4
LT
2865}
2866
4ae7c039 2867#ifdef CONFIG_NUMA
8fce4d8e 2868/*
4037d452
CL
2869 * Called from the vmstat counter updater to drain pagesets of this
2870 * currently executing processor on remote nodes after they have
2871 * expired.
2872 *
879336c3
CL
2873 * Note that this function must be called with the thread pinned to
2874 * a single processor.
8fce4d8e 2875 */
4037d452 2876void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2877{
4ae7c039 2878 unsigned long flags;
7be12fc9 2879 int to_drain, batch;
4ae7c039 2880
4037d452 2881 local_irq_save(flags);
4db0c3c2 2882 batch = READ_ONCE(pcp->batch);
7be12fc9 2883 to_drain = min(pcp->count, batch);
77ba9062 2884 if (to_drain > 0)
2a13515c 2885 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2886 local_irq_restore(flags);
4ae7c039
CL
2887}
2888#endif
2889
9f8f2172 2890/*
93481ff0 2891 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2892 *
2893 * The processor must either be the current processor and the
2894 * thread pinned to the current processor or a processor that
2895 * is not online.
2896 */
93481ff0 2897static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2898{
c54ad30c 2899 unsigned long flags;
93481ff0
VB
2900 struct per_cpu_pageset *pset;
2901 struct per_cpu_pages *pcp;
1da177e4 2902
93481ff0
VB
2903 local_irq_save(flags);
2904 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2905
93481ff0 2906 pcp = &pset->pcp;
77ba9062 2907 if (pcp->count)
93481ff0 2908 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2909 local_irq_restore(flags);
2910}
3dfa5721 2911
93481ff0
VB
2912/*
2913 * Drain pcplists of all zones on the indicated processor.
2914 *
2915 * The processor must either be the current processor and the
2916 * thread pinned to the current processor or a processor that
2917 * is not online.
2918 */
2919static void drain_pages(unsigned int cpu)
2920{
2921 struct zone *zone;
2922
2923 for_each_populated_zone(zone) {
2924 drain_pages_zone(cpu, zone);
1da177e4
LT
2925 }
2926}
1da177e4 2927
9f8f2172
CL
2928/*
2929 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2930 *
2931 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2932 * the single zone's pages.
9f8f2172 2933 */
93481ff0 2934void drain_local_pages(struct zone *zone)
9f8f2172 2935{
93481ff0
VB
2936 int cpu = smp_processor_id();
2937
2938 if (zone)
2939 drain_pages_zone(cpu, zone);
2940 else
2941 drain_pages(cpu);
9f8f2172
CL
2942}
2943
0ccce3b9
MG
2944static void drain_local_pages_wq(struct work_struct *work)
2945{
d9367bd0
WY
2946 struct pcpu_drain *drain;
2947
2948 drain = container_of(work, struct pcpu_drain, work);
2949
a459eeb7
MH
2950 /*
2951 * drain_all_pages doesn't use proper cpu hotplug protection so
2952 * we can race with cpu offline when the WQ can move this from
2953 * a cpu pinned worker to an unbound one. We can operate on a different
2954 * cpu which is allright but we also have to make sure to not move to
2955 * a different one.
2956 */
2957 preempt_disable();
d9367bd0 2958 drain_local_pages(drain->zone);
a459eeb7 2959 preempt_enable();
0ccce3b9
MG
2960}
2961
9f8f2172 2962/*
74046494
GBY
2963 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2964 *
93481ff0
VB
2965 * When zone parameter is non-NULL, spill just the single zone's pages.
2966 *
0ccce3b9 2967 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2968 */
93481ff0 2969void drain_all_pages(struct zone *zone)
9f8f2172 2970{
74046494 2971 int cpu;
74046494
GBY
2972
2973 /*
2974 * Allocate in the BSS so we wont require allocation in
2975 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2976 */
2977 static cpumask_t cpus_with_pcps;
2978
ce612879
MH
2979 /*
2980 * Make sure nobody triggers this path before mm_percpu_wq is fully
2981 * initialized.
2982 */
2983 if (WARN_ON_ONCE(!mm_percpu_wq))
2984 return;
2985
bd233f53
MG
2986 /*
2987 * Do not drain if one is already in progress unless it's specific to
2988 * a zone. Such callers are primarily CMA and memory hotplug and need
2989 * the drain to be complete when the call returns.
2990 */
2991 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2992 if (!zone)
2993 return;
2994 mutex_lock(&pcpu_drain_mutex);
2995 }
0ccce3b9 2996
74046494
GBY
2997 /*
2998 * We don't care about racing with CPU hotplug event
2999 * as offline notification will cause the notified
3000 * cpu to drain that CPU pcps and on_each_cpu_mask
3001 * disables preemption as part of its processing
3002 */
3003 for_each_online_cpu(cpu) {
93481ff0
VB
3004 struct per_cpu_pageset *pcp;
3005 struct zone *z;
74046494 3006 bool has_pcps = false;
93481ff0
VB
3007
3008 if (zone) {
74046494 3009 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3010 if (pcp->pcp.count)
74046494 3011 has_pcps = true;
93481ff0
VB
3012 } else {
3013 for_each_populated_zone(z) {
3014 pcp = per_cpu_ptr(z->pageset, cpu);
3015 if (pcp->pcp.count) {
3016 has_pcps = true;
3017 break;
3018 }
74046494
GBY
3019 }
3020 }
93481ff0 3021
74046494
GBY
3022 if (has_pcps)
3023 cpumask_set_cpu(cpu, &cpus_with_pcps);
3024 else
3025 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3026 }
0ccce3b9 3027
bd233f53 3028 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3029 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3030
3031 drain->zone = zone;
3032 INIT_WORK(&drain->work, drain_local_pages_wq);
3033 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3034 }
bd233f53 3035 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3036 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3037
3038 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3039}
3040
296699de 3041#ifdef CONFIG_HIBERNATION
1da177e4 3042
556b969a
CY
3043/*
3044 * Touch the watchdog for every WD_PAGE_COUNT pages.
3045 */
3046#define WD_PAGE_COUNT (128*1024)
3047
1da177e4
LT
3048void mark_free_pages(struct zone *zone)
3049{
556b969a 3050 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3051 unsigned long flags;
7aeb09f9 3052 unsigned int order, t;
86760a2c 3053 struct page *page;
1da177e4 3054
8080fc03 3055 if (zone_is_empty(zone))
1da177e4
LT
3056 return;
3057
3058 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3059
108bcc96 3060 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3061 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3062 if (pfn_valid(pfn)) {
86760a2c 3063 page = pfn_to_page(pfn);
ba6b0979 3064
556b969a
CY
3065 if (!--page_count) {
3066 touch_nmi_watchdog();
3067 page_count = WD_PAGE_COUNT;
3068 }
3069
ba6b0979
JK
3070 if (page_zone(page) != zone)
3071 continue;
3072
7be98234
RW
3073 if (!swsusp_page_is_forbidden(page))
3074 swsusp_unset_page_free(page);
f623f0db 3075 }
1da177e4 3076
b2a0ac88 3077 for_each_migratetype_order(order, t) {
86760a2c
GT
3078 list_for_each_entry(page,
3079 &zone->free_area[order].free_list[t], lru) {
f623f0db 3080 unsigned long i;
1da177e4 3081
86760a2c 3082 pfn = page_to_pfn(page);
556b969a
CY
3083 for (i = 0; i < (1UL << order); i++) {
3084 if (!--page_count) {
3085 touch_nmi_watchdog();
3086 page_count = WD_PAGE_COUNT;
3087 }
7be98234 3088 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3089 }
f623f0db 3090 }
b2a0ac88 3091 }
1da177e4
LT
3092 spin_unlock_irqrestore(&zone->lock, flags);
3093}
e2c55dc8 3094#endif /* CONFIG_PM */
1da177e4 3095
2d4894b5 3096static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3097{
5f8dcc21 3098 int migratetype;
1da177e4 3099
4db7548c 3100 if (!free_pcp_prepare(page))
9cca35d4 3101 return false;
689bcebf 3102
dc4b0caf 3103 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3104 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3105 return true;
3106}
3107
2d4894b5 3108static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3109{
3110 struct zone *zone = page_zone(page);
3111 struct per_cpu_pages *pcp;
3112 int migratetype;
3113
3114 migratetype = get_pcppage_migratetype(page);
d34b0733 3115 __count_vm_event(PGFREE);
da456f14 3116
5f8dcc21
MG
3117 /*
3118 * We only track unmovable, reclaimable and movable on pcp lists.
3119 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3120 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3121 * areas back if necessary. Otherwise, we may have to free
3122 * excessively into the page allocator
3123 */
3124 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3125 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3126 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3127 return;
5f8dcc21
MG
3128 }
3129 migratetype = MIGRATE_MOVABLE;
3130 }
3131
99dcc3e5 3132 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3133 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3134 pcp->count++;
48db57f8 3135 if (pcp->count >= pcp->high) {
4db0c3c2 3136 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3137 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3138 }
9cca35d4 3139}
5f8dcc21 3140
9cca35d4
MG
3141/*
3142 * Free a 0-order page
9cca35d4 3143 */
2d4894b5 3144void free_unref_page(struct page *page)
9cca35d4
MG
3145{
3146 unsigned long flags;
3147 unsigned long pfn = page_to_pfn(page);
3148
2d4894b5 3149 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3150 return;
3151
3152 local_irq_save(flags);
2d4894b5 3153 free_unref_page_commit(page, pfn);
d34b0733 3154 local_irq_restore(flags);
1da177e4
LT
3155}
3156
cc59850e
KK
3157/*
3158 * Free a list of 0-order pages
3159 */
2d4894b5 3160void free_unref_page_list(struct list_head *list)
cc59850e
KK
3161{
3162 struct page *page, *next;
9cca35d4 3163 unsigned long flags, pfn;
c24ad77d 3164 int batch_count = 0;
9cca35d4
MG
3165
3166 /* Prepare pages for freeing */
3167 list_for_each_entry_safe(page, next, list, lru) {
3168 pfn = page_to_pfn(page);
2d4894b5 3169 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3170 list_del(&page->lru);
3171 set_page_private(page, pfn);
3172 }
cc59850e 3173
9cca35d4 3174 local_irq_save(flags);
cc59850e 3175 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3176 unsigned long pfn = page_private(page);
3177
3178 set_page_private(page, 0);
2d4894b5
MG
3179 trace_mm_page_free_batched(page);
3180 free_unref_page_commit(page, pfn);
c24ad77d
LS
3181
3182 /*
3183 * Guard against excessive IRQ disabled times when we get
3184 * a large list of pages to free.
3185 */
3186 if (++batch_count == SWAP_CLUSTER_MAX) {
3187 local_irq_restore(flags);
3188 batch_count = 0;
3189 local_irq_save(flags);
3190 }
cc59850e 3191 }
9cca35d4 3192 local_irq_restore(flags);
cc59850e
KK
3193}
3194
8dfcc9ba
NP
3195/*
3196 * split_page takes a non-compound higher-order page, and splits it into
3197 * n (1<<order) sub-pages: page[0..n]
3198 * Each sub-page must be freed individually.
3199 *
3200 * Note: this is probably too low level an operation for use in drivers.
3201 * Please consult with lkml before using this in your driver.
3202 */
3203void split_page(struct page *page, unsigned int order)
3204{
3205 int i;
3206
309381fe
SL
3207 VM_BUG_ON_PAGE(PageCompound(page), page);
3208 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3209
a9627bc5 3210 for (i = 1; i < (1 << order); i++)
7835e98b 3211 set_page_refcounted(page + i);
a9627bc5 3212 split_page_owner(page, order);
8dfcc9ba 3213}
5853ff23 3214EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3215
3c605096 3216int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3217{
748446bb
MG
3218 unsigned long watermark;
3219 struct zone *zone;
2139cbe6 3220 int mt;
748446bb
MG
3221
3222 BUG_ON(!PageBuddy(page));
3223
3224 zone = page_zone(page);
2e30abd1 3225 mt = get_pageblock_migratetype(page);
748446bb 3226
194159fb 3227 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3228 /*
3229 * Obey watermarks as if the page was being allocated. We can
3230 * emulate a high-order watermark check with a raised order-0
3231 * watermark, because we already know our high-order page
3232 * exists.
3233 */
fd1444b2 3234 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3235 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3236 return 0;
3237
8fb74b9f 3238 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3239 }
748446bb
MG
3240
3241 /* Remove page from free list */
b03641af 3242
6ab01363 3243 del_page_from_free_list(page, zone, order);
2139cbe6 3244
400bc7fd 3245 /*
3246 * Set the pageblock if the isolated page is at least half of a
3247 * pageblock
3248 */
748446bb
MG
3249 if (order >= pageblock_order - 1) {
3250 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3251 for (; page < endpage; page += pageblock_nr_pages) {
3252 int mt = get_pageblock_migratetype(page);
88ed365e 3253 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3254 && !is_migrate_highatomic(mt))
47118af0
MN
3255 set_pageblock_migratetype(page,
3256 MIGRATE_MOVABLE);
3257 }
748446bb
MG
3258 }
3259
f3a14ced 3260
8fb74b9f 3261 return 1UL << order;
1fb3f8ca
MG
3262}
3263
624f58d8
AD
3264/**
3265 * __putback_isolated_page - Return a now-isolated page back where we got it
3266 * @page: Page that was isolated
3267 * @order: Order of the isolated page
e6a0a7ad 3268 * @mt: The page's pageblock's migratetype
624f58d8
AD
3269 *
3270 * This function is meant to return a page pulled from the free lists via
3271 * __isolate_free_page back to the free lists they were pulled from.
3272 */
3273void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3274{
3275 struct zone *zone = page_zone(page);
3276
3277 /* zone lock should be held when this function is called */
3278 lockdep_assert_held(&zone->lock);
3279
3280 /* Return isolated page to tail of freelist. */
36e66c55 3281 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3282}
3283
060e7417
MG
3284/*
3285 * Update NUMA hit/miss statistics
3286 *
3287 * Must be called with interrupts disabled.
060e7417 3288 */
41b6167e 3289static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3290{
3291#ifdef CONFIG_NUMA
3a321d2a 3292 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3293
4518085e
KW
3294 /* skip numa counters update if numa stats is disabled */
3295 if (!static_branch_likely(&vm_numa_stat_key))
3296 return;
3297
c1093b74 3298 if (zone_to_nid(z) != numa_node_id())
060e7417 3299 local_stat = NUMA_OTHER;
060e7417 3300
c1093b74 3301 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3302 __inc_numa_state(z, NUMA_HIT);
2df26639 3303 else {
3a321d2a
KW
3304 __inc_numa_state(z, NUMA_MISS);
3305 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3306 }
3a321d2a 3307 __inc_numa_state(z, local_stat);
060e7417
MG
3308#endif
3309}
3310
066b2393
MG
3311/* Remove page from the per-cpu list, caller must protect the list */
3312static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3313 unsigned int alloc_flags,
453f85d4 3314 struct per_cpu_pages *pcp,
066b2393
MG
3315 struct list_head *list)
3316{
3317 struct page *page;
3318
3319 do {
3320 if (list_empty(list)) {
3321 pcp->count += rmqueue_bulk(zone, 0,
3322 pcp->batch, list,
6bb15450 3323 migratetype, alloc_flags);
066b2393
MG
3324 if (unlikely(list_empty(list)))
3325 return NULL;
3326 }
3327
453f85d4 3328 page = list_first_entry(list, struct page, lru);
066b2393
MG
3329 list_del(&page->lru);
3330 pcp->count--;
3331 } while (check_new_pcp(page));
3332
3333 return page;
3334}
3335
3336/* Lock and remove page from the per-cpu list */
3337static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3338 struct zone *zone, gfp_t gfp_flags,
3339 int migratetype, unsigned int alloc_flags)
066b2393
MG
3340{
3341 struct per_cpu_pages *pcp;
3342 struct list_head *list;
066b2393 3343 struct page *page;
d34b0733 3344 unsigned long flags;
066b2393 3345
d34b0733 3346 local_irq_save(flags);
066b2393
MG
3347 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3348 list = &pcp->lists[migratetype];
6bb15450 3349 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3350 if (page) {
1c52e6d0 3351 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3352 zone_statistics(preferred_zone, zone);
3353 }
d34b0733 3354 local_irq_restore(flags);
066b2393
MG
3355 return page;
3356}
3357
1da177e4 3358/*
75379191 3359 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3360 */
0a15c3e9 3361static inline
066b2393 3362struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3363 struct zone *zone, unsigned int order,
c603844b
MG
3364 gfp_t gfp_flags, unsigned int alloc_flags,
3365 int migratetype)
1da177e4
LT
3366{
3367 unsigned long flags;
689bcebf 3368 struct page *page;
1da177e4 3369
d34b0733 3370 if (likely(order == 0)) {
1d91df85
JK
3371 /*
3372 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3373 * we need to skip it when CMA area isn't allowed.
3374 */
3375 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3376 migratetype != MIGRATE_MOVABLE) {
3377 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3378 migratetype, alloc_flags);
1d91df85
JK
3379 goto out;
3380 }
066b2393 3381 }
83b9355b 3382
066b2393
MG
3383 /*
3384 * We most definitely don't want callers attempting to
3385 * allocate greater than order-1 page units with __GFP_NOFAIL.
3386 */
3387 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3388 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3389
066b2393
MG
3390 do {
3391 page = NULL;
1d91df85
JK
3392 /*
3393 * order-0 request can reach here when the pcplist is skipped
3394 * due to non-CMA allocation context. HIGHATOMIC area is
3395 * reserved for high-order atomic allocation, so order-0
3396 * request should skip it.
3397 */
3398 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3399 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3400 if (page)
3401 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3402 }
a74609fa 3403 if (!page)
6bb15450 3404 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3405 } while (page && check_new_pages(page, order));
3406 spin_unlock(&zone->lock);
3407 if (!page)
3408 goto failed;
3409 __mod_zone_freepage_state(zone, -(1 << order),
3410 get_pcppage_migratetype(page));
1da177e4 3411
16709d1d 3412 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3413 zone_statistics(preferred_zone, zone);
a74609fa 3414 local_irq_restore(flags);
1da177e4 3415
066b2393 3416out:
73444bc4
MG
3417 /* Separate test+clear to avoid unnecessary atomics */
3418 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3419 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3420 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3421 }
3422
066b2393 3423 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3424 return page;
a74609fa
NP
3425
3426failed:
3427 local_irq_restore(flags);
a74609fa 3428 return NULL;
1da177e4
LT
3429}
3430
933e312e
AM
3431#ifdef CONFIG_FAIL_PAGE_ALLOC
3432
b2588c4b 3433static struct {
933e312e
AM
3434 struct fault_attr attr;
3435
621a5f7a 3436 bool ignore_gfp_highmem;
71baba4b 3437 bool ignore_gfp_reclaim;
54114994 3438 u32 min_order;
933e312e
AM
3439} fail_page_alloc = {
3440 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3441 .ignore_gfp_reclaim = true,
621a5f7a 3442 .ignore_gfp_highmem = true,
54114994 3443 .min_order = 1,
933e312e
AM
3444};
3445
3446static int __init setup_fail_page_alloc(char *str)
3447{
3448 return setup_fault_attr(&fail_page_alloc.attr, str);
3449}
3450__setup("fail_page_alloc=", setup_fail_page_alloc);
3451
af3b8544 3452static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3453{
54114994 3454 if (order < fail_page_alloc.min_order)
deaf386e 3455 return false;
933e312e 3456 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3457 return false;
933e312e 3458 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3459 return false;
71baba4b
MG
3460 if (fail_page_alloc.ignore_gfp_reclaim &&
3461 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3462 return false;
933e312e
AM
3463
3464 return should_fail(&fail_page_alloc.attr, 1 << order);
3465}
3466
3467#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3468
3469static int __init fail_page_alloc_debugfs(void)
3470{
0825a6f9 3471 umode_t mode = S_IFREG | 0600;
933e312e 3472 struct dentry *dir;
933e312e 3473
dd48c085
AM
3474 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3475 &fail_page_alloc.attr);
b2588c4b 3476
d9f7979c
GKH
3477 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3478 &fail_page_alloc.ignore_gfp_reclaim);
3479 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3480 &fail_page_alloc.ignore_gfp_highmem);
3481 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3482
d9f7979c 3483 return 0;
933e312e
AM
3484}
3485
3486late_initcall(fail_page_alloc_debugfs);
3487
3488#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3489
3490#else /* CONFIG_FAIL_PAGE_ALLOC */
3491
af3b8544 3492static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3493{
deaf386e 3494 return false;
933e312e
AM
3495}
3496
3497#endif /* CONFIG_FAIL_PAGE_ALLOC */
3498
af3b8544
BP
3499static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3500{
3501 return __should_fail_alloc_page(gfp_mask, order);
3502}
3503ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3504
f27ce0e1
JK
3505static inline long __zone_watermark_unusable_free(struct zone *z,
3506 unsigned int order, unsigned int alloc_flags)
3507{
3508 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3509 long unusable_free = (1 << order) - 1;
3510
3511 /*
3512 * If the caller does not have rights to ALLOC_HARDER then subtract
3513 * the high-atomic reserves. This will over-estimate the size of the
3514 * atomic reserve but it avoids a search.
3515 */
3516 if (likely(!alloc_harder))
3517 unusable_free += z->nr_reserved_highatomic;
3518
3519#ifdef CONFIG_CMA
3520 /* If allocation can't use CMA areas don't use free CMA pages */
3521 if (!(alloc_flags & ALLOC_CMA))
3522 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3523#endif
3524
3525 return unusable_free;
3526}
3527
1da177e4 3528/*
97a16fc8
MG
3529 * Return true if free base pages are above 'mark'. For high-order checks it
3530 * will return true of the order-0 watermark is reached and there is at least
3531 * one free page of a suitable size. Checking now avoids taking the zone lock
3532 * to check in the allocation paths if no pages are free.
1da177e4 3533 */
86a294a8 3534bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3535 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3536 long free_pages)
1da177e4 3537{
d23ad423 3538 long min = mark;
1da177e4 3539 int o;
cd04ae1e 3540 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3541
0aaa29a5 3542 /* free_pages may go negative - that's OK */
f27ce0e1 3543 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3544
7fb1d9fc 3545 if (alloc_flags & ALLOC_HIGH)
1da177e4 3546 min -= min / 2;
0aaa29a5 3547
f27ce0e1 3548 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3549 /*
3550 * OOM victims can try even harder than normal ALLOC_HARDER
3551 * users on the grounds that it's definitely going to be in
3552 * the exit path shortly and free memory. Any allocation it
3553 * makes during the free path will be small and short-lived.
3554 */
3555 if (alloc_flags & ALLOC_OOM)
3556 min -= min / 2;
3557 else
3558 min -= min / 4;
3559 }
3560
97a16fc8
MG
3561 /*
3562 * Check watermarks for an order-0 allocation request. If these
3563 * are not met, then a high-order request also cannot go ahead
3564 * even if a suitable page happened to be free.
3565 */
97a225e6 3566 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3567 return false;
1da177e4 3568
97a16fc8
MG
3569 /* If this is an order-0 request then the watermark is fine */
3570 if (!order)
3571 return true;
3572
3573 /* For a high-order request, check at least one suitable page is free */
3574 for (o = order; o < MAX_ORDER; o++) {
3575 struct free_area *area = &z->free_area[o];
3576 int mt;
3577
3578 if (!area->nr_free)
3579 continue;
3580
97a16fc8 3581 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3582 if (!free_area_empty(area, mt))
97a16fc8
MG
3583 return true;
3584 }
3585
3586#ifdef CONFIG_CMA
d883c6cf 3587 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3588 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3589 return true;
d883c6cf 3590 }
97a16fc8 3591#endif
76089d00 3592 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3593 return true;
1da177e4 3594 }
97a16fc8 3595 return false;
88f5acf8
MG
3596}
3597
7aeb09f9 3598bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3599 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3600{
97a225e6 3601 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3602 zone_page_state(z, NR_FREE_PAGES));
3603}
3604
48ee5f36 3605static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3606 unsigned long mark, int highest_zoneidx,
f80b08fc 3607 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3608{
f27ce0e1 3609 long free_pages;
d883c6cf 3610
f27ce0e1 3611 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3612
3613 /*
3614 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3615 * need to be calculated.
48ee5f36 3616 */
f27ce0e1
JK
3617 if (!order) {
3618 long fast_free;
3619
3620 fast_free = free_pages;
3621 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3622 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3623 return true;
3624 }
48ee5f36 3625
f80b08fc
CTR
3626 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3627 free_pages))
3628 return true;
3629 /*
3630 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3631 * when checking the min watermark. The min watermark is the
3632 * point where boosting is ignored so that kswapd is woken up
3633 * when below the low watermark.
3634 */
3635 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3636 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3637 mark = z->_watermark[WMARK_MIN];
3638 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3639 alloc_flags, free_pages);
3640 }
3641
3642 return false;
48ee5f36
MG
3643}
3644
7aeb09f9 3645bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3646 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3647{
3648 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3649
3650 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3651 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3652
97a225e6 3653 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3654 free_pages);
1da177e4
LT
3655}
3656
9276b1bc 3657#ifdef CONFIG_NUMA
957f822a
DR
3658static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3659{
e02dc017 3660 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3661 node_reclaim_distance;
957f822a 3662}
9276b1bc 3663#else /* CONFIG_NUMA */
957f822a
DR
3664static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3665{
3666 return true;
3667}
9276b1bc
PJ
3668#endif /* CONFIG_NUMA */
3669
6bb15450
MG
3670/*
3671 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3672 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3673 * premature use of a lower zone may cause lowmem pressure problems that
3674 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3675 * probably too small. It only makes sense to spread allocations to avoid
3676 * fragmentation between the Normal and DMA32 zones.
3677 */
3678static inline unsigned int
0a79cdad 3679alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3680{
736838e9 3681 unsigned int alloc_flags;
0a79cdad 3682
736838e9
MN
3683 /*
3684 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3685 * to save a branch.
3686 */
3687 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3688
3689#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3690 if (!zone)
3691 return alloc_flags;
3692
6bb15450 3693 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3694 return alloc_flags;
6bb15450
MG
3695
3696 /*
3697 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3698 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3699 * on UMA that if Normal is populated then so is DMA32.
3700 */
3701 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3702 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3703 return alloc_flags;
6bb15450 3704
8118b82e 3705 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3706#endif /* CONFIG_ZONE_DMA32 */
3707 return alloc_flags;
6bb15450 3708}
6bb15450 3709
8510e69c
JK
3710static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3711 unsigned int alloc_flags)
3712{
3713#ifdef CONFIG_CMA
3714 unsigned int pflags = current->flags;
3715
3716 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3717 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3718 alloc_flags |= ALLOC_CMA;
3719
3720#endif
3721 return alloc_flags;
3722}
3723
7fb1d9fc 3724/*
0798e519 3725 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3726 * a page.
3727 */
3728static struct page *
a9263751
VB
3729get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3730 const struct alloc_context *ac)
753ee728 3731{
6bb15450 3732 struct zoneref *z;
5117f45d 3733 struct zone *zone;
3b8c0be4 3734 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3735 bool no_fallback;
3b8c0be4 3736
6bb15450 3737retry:
7fb1d9fc 3738 /*
9276b1bc 3739 * Scan zonelist, looking for a zone with enough free.
344736f2 3740 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3741 */
6bb15450
MG
3742 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3743 z = ac->preferred_zoneref;
97a225e6
JK
3744 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3745 ac->highest_zoneidx, ac->nodemask) {
be06af00 3746 struct page *page;
e085dbc5
JW
3747 unsigned long mark;
3748
664eedde
MG
3749 if (cpusets_enabled() &&
3750 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3751 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3752 continue;
a756cf59
JW
3753 /*
3754 * When allocating a page cache page for writing, we
281e3726
MG
3755 * want to get it from a node that is within its dirty
3756 * limit, such that no single node holds more than its
a756cf59 3757 * proportional share of globally allowed dirty pages.
281e3726 3758 * The dirty limits take into account the node's
a756cf59
JW
3759 * lowmem reserves and high watermark so that kswapd
3760 * should be able to balance it without having to
3761 * write pages from its LRU list.
3762 *
a756cf59 3763 * XXX: For now, allow allocations to potentially
281e3726 3764 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3765 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3766 * which is important when on a NUMA setup the allowed
281e3726 3767 * nodes are together not big enough to reach the
a756cf59 3768 * global limit. The proper fix for these situations
281e3726 3769 * will require awareness of nodes in the
a756cf59
JW
3770 * dirty-throttling and the flusher threads.
3771 */
3b8c0be4
MG
3772 if (ac->spread_dirty_pages) {
3773 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3774 continue;
3775
3776 if (!node_dirty_ok(zone->zone_pgdat)) {
3777 last_pgdat_dirty_limit = zone->zone_pgdat;
3778 continue;
3779 }
3780 }
7fb1d9fc 3781
6bb15450
MG
3782 if (no_fallback && nr_online_nodes > 1 &&
3783 zone != ac->preferred_zoneref->zone) {
3784 int local_nid;
3785
3786 /*
3787 * If moving to a remote node, retry but allow
3788 * fragmenting fallbacks. Locality is more important
3789 * than fragmentation avoidance.
3790 */
3791 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3792 if (zone_to_nid(zone) != local_nid) {
3793 alloc_flags &= ~ALLOC_NOFRAGMENT;
3794 goto retry;
3795 }
3796 }
3797
a9214443 3798 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3799 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3800 ac->highest_zoneidx, alloc_flags,
3801 gfp_mask)) {
fa5e084e
MG
3802 int ret;
3803
c9e97a19
PT
3804#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3805 /*
3806 * Watermark failed for this zone, but see if we can
3807 * grow this zone if it contains deferred pages.
3808 */
3809 if (static_branch_unlikely(&deferred_pages)) {
3810 if (_deferred_grow_zone(zone, order))
3811 goto try_this_zone;
3812 }
3813#endif
5dab2911
MG
3814 /* Checked here to keep the fast path fast */
3815 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3816 if (alloc_flags & ALLOC_NO_WATERMARKS)
3817 goto try_this_zone;
3818
a5f5f91d 3819 if (node_reclaim_mode == 0 ||
c33d6c06 3820 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3821 continue;
3822
a5f5f91d 3823 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3824 switch (ret) {
a5f5f91d 3825 case NODE_RECLAIM_NOSCAN:
fa5e084e 3826 /* did not scan */
cd38b115 3827 continue;
a5f5f91d 3828 case NODE_RECLAIM_FULL:
fa5e084e 3829 /* scanned but unreclaimable */
cd38b115 3830 continue;
fa5e084e
MG
3831 default:
3832 /* did we reclaim enough */
fed2719e 3833 if (zone_watermark_ok(zone, order, mark,
97a225e6 3834 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3835 goto try_this_zone;
3836
fed2719e 3837 continue;
0798e519 3838 }
7fb1d9fc
RS
3839 }
3840
fa5e084e 3841try_this_zone:
066b2393 3842 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3843 gfp_mask, alloc_flags, ac->migratetype);
75379191 3844 if (page) {
479f854a 3845 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3846
3847 /*
3848 * If this is a high-order atomic allocation then check
3849 * if the pageblock should be reserved for the future
3850 */
3851 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3852 reserve_highatomic_pageblock(page, zone, order);
3853
75379191 3854 return page;
c9e97a19
PT
3855 } else {
3856#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3857 /* Try again if zone has deferred pages */
3858 if (static_branch_unlikely(&deferred_pages)) {
3859 if (_deferred_grow_zone(zone, order))
3860 goto try_this_zone;
3861 }
3862#endif
75379191 3863 }
54a6eb5c 3864 }
9276b1bc 3865
6bb15450
MG
3866 /*
3867 * It's possible on a UMA machine to get through all zones that are
3868 * fragmented. If avoiding fragmentation, reset and try again.
3869 */
3870 if (no_fallback) {
3871 alloc_flags &= ~ALLOC_NOFRAGMENT;
3872 goto retry;
3873 }
3874
4ffeaf35 3875 return NULL;
753ee728
MH
3876}
3877
9af744d7 3878static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3879{
a238ab5b 3880 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3881
3882 /*
3883 * This documents exceptions given to allocations in certain
3884 * contexts that are allowed to allocate outside current's set
3885 * of allowed nodes.
3886 */
3887 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3888 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3889 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3890 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3891 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3892 filter &= ~SHOW_MEM_FILTER_NODES;
3893
9af744d7 3894 show_mem(filter, nodemask);
aa187507
MH
3895}
3896
a8e99259 3897void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3898{
3899 struct va_format vaf;
3900 va_list args;
1be334e5 3901 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3902
0f7896f1 3903 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3904 return;
3905
7877cdcc
MH
3906 va_start(args, fmt);
3907 vaf.fmt = fmt;
3908 vaf.va = &args;
ef8444ea 3909 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3910 current->comm, &vaf, gfp_mask, &gfp_mask,
3911 nodemask_pr_args(nodemask));
7877cdcc 3912 va_end(args);
3ee9a4f0 3913
a8e99259 3914 cpuset_print_current_mems_allowed();
ef8444ea 3915 pr_cont("\n");
a238ab5b 3916 dump_stack();
685dbf6f 3917 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3918}
3919
6c18ba7a
MH
3920static inline struct page *
3921__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3922 unsigned int alloc_flags,
3923 const struct alloc_context *ac)
3924{
3925 struct page *page;
3926
3927 page = get_page_from_freelist(gfp_mask, order,
3928 alloc_flags|ALLOC_CPUSET, ac);
3929 /*
3930 * fallback to ignore cpuset restriction if our nodes
3931 * are depleted
3932 */
3933 if (!page)
3934 page = get_page_from_freelist(gfp_mask, order,
3935 alloc_flags, ac);
3936
3937 return page;
3938}
3939
11e33f6a
MG
3940static inline struct page *
3941__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3942 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3943{
6e0fc46d
DR
3944 struct oom_control oc = {
3945 .zonelist = ac->zonelist,
3946 .nodemask = ac->nodemask,
2a966b77 3947 .memcg = NULL,
6e0fc46d
DR
3948 .gfp_mask = gfp_mask,
3949 .order = order,
6e0fc46d 3950 };
11e33f6a
MG
3951 struct page *page;
3952
9879de73
JW
3953 *did_some_progress = 0;
3954
9879de73 3955 /*
dc56401f
JW
3956 * Acquire the oom lock. If that fails, somebody else is
3957 * making progress for us.
9879de73 3958 */
dc56401f 3959 if (!mutex_trylock(&oom_lock)) {
9879de73 3960 *did_some_progress = 1;
11e33f6a 3961 schedule_timeout_uninterruptible(1);
1da177e4
LT
3962 return NULL;
3963 }
6b1de916 3964
11e33f6a
MG
3965 /*
3966 * Go through the zonelist yet one more time, keep very high watermark
3967 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3968 * we're still under heavy pressure. But make sure that this reclaim
3969 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3970 * allocation which will never fail due to oom_lock already held.
11e33f6a 3971 */
e746bf73
TH
3972 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3973 ~__GFP_DIRECT_RECLAIM, order,
3974 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3975 if (page)
11e33f6a
MG
3976 goto out;
3977
06ad276a
MH
3978 /* Coredumps can quickly deplete all memory reserves */
3979 if (current->flags & PF_DUMPCORE)
3980 goto out;
3981 /* The OOM killer will not help higher order allocs */
3982 if (order > PAGE_ALLOC_COSTLY_ORDER)
3983 goto out;
dcda9b04
MH
3984 /*
3985 * We have already exhausted all our reclaim opportunities without any
3986 * success so it is time to admit defeat. We will skip the OOM killer
3987 * because it is very likely that the caller has a more reasonable
3988 * fallback than shooting a random task.
cfb4a541
MN
3989 *
3990 * The OOM killer may not free memory on a specific node.
dcda9b04 3991 */
cfb4a541 3992 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 3993 goto out;
06ad276a 3994 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3995 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3996 goto out;
3997 if (pm_suspended_storage())
3998 goto out;
3999 /*
4000 * XXX: GFP_NOFS allocations should rather fail than rely on
4001 * other request to make a forward progress.
4002 * We are in an unfortunate situation where out_of_memory cannot
4003 * do much for this context but let's try it to at least get
4004 * access to memory reserved if the current task is killed (see
4005 * out_of_memory). Once filesystems are ready to handle allocation
4006 * failures more gracefully we should just bail out here.
4007 */
4008
3c2c6488 4009 /* Exhausted what can be done so it's blame time */
5020e285 4010 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4011 *did_some_progress = 1;
5020e285 4012
6c18ba7a
MH
4013 /*
4014 * Help non-failing allocations by giving them access to memory
4015 * reserves
4016 */
4017 if (gfp_mask & __GFP_NOFAIL)
4018 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4019 ALLOC_NO_WATERMARKS, ac);
5020e285 4020 }
11e33f6a 4021out:
dc56401f 4022 mutex_unlock(&oom_lock);
11e33f6a
MG
4023 return page;
4024}
4025
33c2d214
MH
4026/*
4027 * Maximum number of compaction retries wit a progress before OOM
4028 * killer is consider as the only way to move forward.
4029 */
4030#define MAX_COMPACT_RETRIES 16
4031
56de7263
MG
4032#ifdef CONFIG_COMPACTION
4033/* Try memory compaction for high-order allocations before reclaim */
4034static struct page *
4035__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4036 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4037 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4038{
5e1f0f09 4039 struct page *page = NULL;
eb414681 4040 unsigned long pflags;
499118e9 4041 unsigned int noreclaim_flag;
53853e2d
VB
4042
4043 if (!order)
66199712 4044 return NULL;
66199712 4045
eb414681 4046 psi_memstall_enter(&pflags);
499118e9 4047 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4048
c5d01d0d 4049 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4050 prio, &page);
eb414681 4051
499118e9 4052 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4053 psi_memstall_leave(&pflags);
56de7263 4054
98dd3b48
VB
4055 /*
4056 * At least in one zone compaction wasn't deferred or skipped, so let's
4057 * count a compaction stall
4058 */
4059 count_vm_event(COMPACTSTALL);
8fb74b9f 4060
5e1f0f09
MG
4061 /* Prep a captured page if available */
4062 if (page)
4063 prep_new_page(page, order, gfp_mask, alloc_flags);
4064
4065 /* Try get a page from the freelist if available */
4066 if (!page)
4067 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4068
98dd3b48
VB
4069 if (page) {
4070 struct zone *zone = page_zone(page);
53853e2d 4071
98dd3b48
VB
4072 zone->compact_blockskip_flush = false;
4073 compaction_defer_reset(zone, order, true);
4074 count_vm_event(COMPACTSUCCESS);
4075 return page;
4076 }
56de7263 4077
98dd3b48
VB
4078 /*
4079 * It's bad if compaction run occurs and fails. The most likely reason
4080 * is that pages exist, but not enough to satisfy watermarks.
4081 */
4082 count_vm_event(COMPACTFAIL);
66199712 4083
98dd3b48 4084 cond_resched();
56de7263
MG
4085
4086 return NULL;
4087}
33c2d214 4088
3250845d
VB
4089static inline bool
4090should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4091 enum compact_result compact_result,
4092 enum compact_priority *compact_priority,
d9436498 4093 int *compaction_retries)
3250845d
VB
4094{
4095 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4096 int min_priority;
65190cff
MH
4097 bool ret = false;
4098 int retries = *compaction_retries;
4099 enum compact_priority priority = *compact_priority;
3250845d
VB
4100
4101 if (!order)
4102 return false;
4103
d9436498
VB
4104 if (compaction_made_progress(compact_result))
4105 (*compaction_retries)++;
4106
3250845d
VB
4107 /*
4108 * compaction considers all the zone as desperately out of memory
4109 * so it doesn't really make much sense to retry except when the
4110 * failure could be caused by insufficient priority
4111 */
d9436498
VB
4112 if (compaction_failed(compact_result))
4113 goto check_priority;
3250845d 4114
49433085
VB
4115 /*
4116 * compaction was skipped because there are not enough order-0 pages
4117 * to work with, so we retry only if it looks like reclaim can help.
4118 */
4119 if (compaction_needs_reclaim(compact_result)) {
4120 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4121 goto out;
4122 }
4123
3250845d
VB
4124 /*
4125 * make sure the compaction wasn't deferred or didn't bail out early
4126 * due to locks contention before we declare that we should give up.
49433085
VB
4127 * But the next retry should use a higher priority if allowed, so
4128 * we don't just keep bailing out endlessly.
3250845d 4129 */
65190cff 4130 if (compaction_withdrawn(compact_result)) {
49433085 4131 goto check_priority;
65190cff 4132 }
3250845d
VB
4133
4134 /*
dcda9b04 4135 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4136 * costly ones because they are de facto nofail and invoke OOM
4137 * killer to move on while costly can fail and users are ready
4138 * to cope with that. 1/4 retries is rather arbitrary but we
4139 * would need much more detailed feedback from compaction to
4140 * make a better decision.
4141 */
4142 if (order > PAGE_ALLOC_COSTLY_ORDER)
4143 max_retries /= 4;
65190cff
MH
4144 if (*compaction_retries <= max_retries) {
4145 ret = true;
4146 goto out;
4147 }
3250845d 4148
d9436498
VB
4149 /*
4150 * Make sure there are attempts at the highest priority if we exhausted
4151 * all retries or failed at the lower priorities.
4152 */
4153check_priority:
c2033b00
VB
4154 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4155 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4156
c2033b00 4157 if (*compact_priority > min_priority) {
d9436498
VB
4158 (*compact_priority)--;
4159 *compaction_retries = 0;
65190cff 4160 ret = true;
d9436498 4161 }
65190cff
MH
4162out:
4163 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4164 return ret;
3250845d 4165}
56de7263
MG
4166#else
4167static inline struct page *
4168__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4169 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4170 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4171{
33c2d214 4172 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4173 return NULL;
4174}
33c2d214
MH
4175
4176static inline bool
86a294a8
MH
4177should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4178 enum compact_result compact_result,
a5508cd8 4179 enum compact_priority *compact_priority,
d9436498 4180 int *compaction_retries)
33c2d214 4181{
31e49bfd
MH
4182 struct zone *zone;
4183 struct zoneref *z;
4184
4185 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4186 return false;
4187
4188 /*
4189 * There are setups with compaction disabled which would prefer to loop
4190 * inside the allocator rather than hit the oom killer prematurely.
4191 * Let's give them a good hope and keep retrying while the order-0
4192 * watermarks are OK.
4193 */
97a225e6
JK
4194 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4195 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4196 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4197 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4198 return true;
4199 }
33c2d214
MH
4200 return false;
4201}
3250845d 4202#endif /* CONFIG_COMPACTION */
56de7263 4203
d92a8cfc 4204#ifdef CONFIG_LOCKDEP
93781325 4205static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4206 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4207
4208static bool __need_fs_reclaim(gfp_t gfp_mask)
4209{
4210 gfp_mask = current_gfp_context(gfp_mask);
4211
4212 /* no reclaim without waiting on it */
4213 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4214 return false;
4215
4216 /* this guy won't enter reclaim */
2e517d68 4217 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4218 return false;
4219
4220 /* We're only interested __GFP_FS allocations for now */
4221 if (!(gfp_mask & __GFP_FS))
4222 return false;
4223
4224 if (gfp_mask & __GFP_NOLOCKDEP)
4225 return false;
4226
4227 return true;
4228}
4229
93781325
OS
4230void __fs_reclaim_acquire(void)
4231{
4232 lock_map_acquire(&__fs_reclaim_map);
4233}
4234
4235void __fs_reclaim_release(void)
4236{
4237 lock_map_release(&__fs_reclaim_map);
4238}
4239
d92a8cfc
PZ
4240void fs_reclaim_acquire(gfp_t gfp_mask)
4241{
4242 if (__need_fs_reclaim(gfp_mask))
93781325 4243 __fs_reclaim_acquire();
d92a8cfc
PZ
4244}
4245EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4246
4247void fs_reclaim_release(gfp_t gfp_mask)
4248{
4249 if (__need_fs_reclaim(gfp_mask))
93781325 4250 __fs_reclaim_release();
d92a8cfc
PZ
4251}
4252EXPORT_SYMBOL_GPL(fs_reclaim_release);
4253#endif
4254
bba90710 4255/* Perform direct synchronous page reclaim */
2187e17b 4256static unsigned long
a9263751
VB
4257__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4258 const struct alloc_context *ac)
11e33f6a 4259{
499118e9 4260 unsigned int noreclaim_flag;
2187e17b 4261 unsigned long pflags, progress;
11e33f6a
MG
4262
4263 cond_resched();
4264
4265 /* We now go into synchronous reclaim */
4266 cpuset_memory_pressure_bump();
eb414681 4267 psi_memstall_enter(&pflags);
d92a8cfc 4268 fs_reclaim_acquire(gfp_mask);
93781325 4269 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4270
a9263751
VB
4271 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4272 ac->nodemask);
11e33f6a 4273
499118e9 4274 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4275 fs_reclaim_release(gfp_mask);
eb414681 4276 psi_memstall_leave(&pflags);
11e33f6a
MG
4277
4278 cond_resched();
4279
bba90710
MS
4280 return progress;
4281}
4282
4283/* The really slow allocator path where we enter direct reclaim */
4284static inline struct page *
4285__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4286 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4287 unsigned long *did_some_progress)
bba90710
MS
4288{
4289 struct page *page = NULL;
4290 bool drained = false;
4291
a9263751 4292 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4293 if (unlikely(!(*did_some_progress)))
4294 return NULL;
11e33f6a 4295
9ee493ce 4296retry:
31a6c190 4297 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4298
4299 /*
4300 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4301 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4302 * Shrink them and try again
9ee493ce
MG
4303 */
4304 if (!page && !drained) {
29fac03b 4305 unreserve_highatomic_pageblock(ac, false);
93481ff0 4306 drain_all_pages(NULL);
9ee493ce
MG
4307 drained = true;
4308 goto retry;
4309 }
4310
11e33f6a
MG
4311 return page;
4312}
4313
5ecd9d40
DR
4314static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4315 const struct alloc_context *ac)
3a025760
JW
4316{
4317 struct zoneref *z;
4318 struct zone *zone;
e1a55637 4319 pg_data_t *last_pgdat = NULL;
97a225e6 4320 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4321
97a225e6 4322 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4323 ac->nodemask) {
e1a55637 4324 if (last_pgdat != zone->zone_pgdat)
97a225e6 4325 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4326 last_pgdat = zone->zone_pgdat;
4327 }
3a025760
JW
4328}
4329
c603844b 4330static inline unsigned int
341ce06f
PZ
4331gfp_to_alloc_flags(gfp_t gfp_mask)
4332{
c603844b 4333 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4334
736838e9
MN
4335 /*
4336 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4337 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4338 * to save two branches.
4339 */
e6223a3b 4340 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4341 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4342
341ce06f
PZ
4343 /*
4344 * The caller may dip into page reserves a bit more if the caller
4345 * cannot run direct reclaim, or if the caller has realtime scheduling
4346 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4347 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4348 */
736838e9
MN
4349 alloc_flags |= (__force int)
4350 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4351
d0164adc 4352 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4353 /*
b104a35d
DR
4354 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4355 * if it can't schedule.
5c3240d9 4356 */
b104a35d 4357 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4358 alloc_flags |= ALLOC_HARDER;
523b9458 4359 /*
b104a35d 4360 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4361 * comment for __cpuset_node_allowed().
523b9458 4362 */
341ce06f 4363 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4364 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4365 alloc_flags |= ALLOC_HARDER;
4366
8510e69c
JK
4367 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4368
341ce06f
PZ
4369 return alloc_flags;
4370}
4371
cd04ae1e 4372static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4373{
cd04ae1e
MH
4374 if (!tsk_is_oom_victim(tsk))
4375 return false;
4376
4377 /*
4378 * !MMU doesn't have oom reaper so give access to memory reserves
4379 * only to the thread with TIF_MEMDIE set
4380 */
4381 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4382 return false;
4383
cd04ae1e
MH
4384 return true;
4385}
4386
4387/*
4388 * Distinguish requests which really need access to full memory
4389 * reserves from oom victims which can live with a portion of it
4390 */
4391static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4392{
4393 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4394 return 0;
31a6c190 4395 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4396 return ALLOC_NO_WATERMARKS;
31a6c190 4397 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4398 return ALLOC_NO_WATERMARKS;
4399 if (!in_interrupt()) {
4400 if (current->flags & PF_MEMALLOC)
4401 return ALLOC_NO_WATERMARKS;
4402 else if (oom_reserves_allowed(current))
4403 return ALLOC_OOM;
4404 }
31a6c190 4405
cd04ae1e
MH
4406 return 0;
4407}
4408
4409bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4410{
4411 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4412}
4413
0a0337e0
MH
4414/*
4415 * Checks whether it makes sense to retry the reclaim to make a forward progress
4416 * for the given allocation request.
491d79ae
JW
4417 *
4418 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4419 * without success, or when we couldn't even meet the watermark if we
4420 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4421 *
4422 * Returns true if a retry is viable or false to enter the oom path.
4423 */
4424static inline bool
4425should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4426 struct alloc_context *ac, int alloc_flags,
423b452e 4427 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4428{
4429 struct zone *zone;
4430 struct zoneref *z;
15f570bf 4431 bool ret = false;
0a0337e0 4432
423b452e
VB
4433 /*
4434 * Costly allocations might have made a progress but this doesn't mean
4435 * their order will become available due to high fragmentation so
4436 * always increment the no progress counter for them
4437 */
4438 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4439 *no_progress_loops = 0;
4440 else
4441 (*no_progress_loops)++;
4442
0a0337e0
MH
4443 /*
4444 * Make sure we converge to OOM if we cannot make any progress
4445 * several times in the row.
4446 */
04c8716f
MK
4447 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4448 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4449 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4450 }
0a0337e0 4451
bca67592
MG
4452 /*
4453 * Keep reclaiming pages while there is a chance this will lead
4454 * somewhere. If none of the target zones can satisfy our allocation
4455 * request even if all reclaimable pages are considered then we are
4456 * screwed and have to go OOM.
0a0337e0 4457 */
97a225e6
JK
4458 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4459 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4460 unsigned long available;
ede37713 4461 unsigned long reclaimable;
d379f01d
MH
4462 unsigned long min_wmark = min_wmark_pages(zone);
4463 bool wmark;
0a0337e0 4464
5a1c84b4 4465 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4466 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4467
4468 /*
491d79ae
JW
4469 * Would the allocation succeed if we reclaimed all
4470 * reclaimable pages?
0a0337e0 4471 */
d379f01d 4472 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4473 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4474 trace_reclaim_retry_zone(z, order, reclaimable,
4475 available, min_wmark, *no_progress_loops, wmark);
4476 if (wmark) {
ede37713
MH
4477 /*
4478 * If we didn't make any progress and have a lot of
4479 * dirty + writeback pages then we should wait for
4480 * an IO to complete to slow down the reclaim and
4481 * prevent from pre mature OOM
4482 */
4483 if (!did_some_progress) {
11fb9989 4484 unsigned long write_pending;
ede37713 4485
5a1c84b4
MG
4486 write_pending = zone_page_state_snapshot(zone,
4487 NR_ZONE_WRITE_PENDING);
ede37713 4488
11fb9989 4489 if (2 * write_pending > reclaimable) {
ede37713
MH
4490 congestion_wait(BLK_RW_ASYNC, HZ/10);
4491 return true;
4492 }
4493 }
5a1c84b4 4494
15f570bf
MH
4495 ret = true;
4496 goto out;
0a0337e0
MH
4497 }
4498 }
4499
15f570bf
MH
4500out:
4501 /*
4502 * Memory allocation/reclaim might be called from a WQ context and the
4503 * current implementation of the WQ concurrency control doesn't
4504 * recognize that a particular WQ is congested if the worker thread is
4505 * looping without ever sleeping. Therefore we have to do a short sleep
4506 * here rather than calling cond_resched().
4507 */
4508 if (current->flags & PF_WQ_WORKER)
4509 schedule_timeout_uninterruptible(1);
4510 else
4511 cond_resched();
4512 return ret;
0a0337e0
MH
4513}
4514
902b6281
VB
4515static inline bool
4516check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4517{
4518 /*
4519 * It's possible that cpuset's mems_allowed and the nodemask from
4520 * mempolicy don't intersect. This should be normally dealt with by
4521 * policy_nodemask(), but it's possible to race with cpuset update in
4522 * such a way the check therein was true, and then it became false
4523 * before we got our cpuset_mems_cookie here.
4524 * This assumes that for all allocations, ac->nodemask can come only
4525 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4526 * when it does not intersect with the cpuset restrictions) or the
4527 * caller can deal with a violated nodemask.
4528 */
4529 if (cpusets_enabled() && ac->nodemask &&
4530 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4531 ac->nodemask = NULL;
4532 return true;
4533 }
4534
4535 /*
4536 * When updating a task's mems_allowed or mempolicy nodemask, it is
4537 * possible to race with parallel threads in such a way that our
4538 * allocation can fail while the mask is being updated. If we are about
4539 * to fail, check if the cpuset changed during allocation and if so,
4540 * retry.
4541 */
4542 if (read_mems_allowed_retry(cpuset_mems_cookie))
4543 return true;
4544
4545 return false;
4546}
4547
11e33f6a
MG
4548static inline struct page *
4549__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4550 struct alloc_context *ac)
11e33f6a 4551{
d0164adc 4552 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4553 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4554 struct page *page = NULL;
c603844b 4555 unsigned int alloc_flags;
11e33f6a 4556 unsigned long did_some_progress;
5ce9bfef 4557 enum compact_priority compact_priority;
c5d01d0d 4558 enum compact_result compact_result;
5ce9bfef
VB
4559 int compaction_retries;
4560 int no_progress_loops;
5ce9bfef 4561 unsigned int cpuset_mems_cookie;
cd04ae1e 4562 int reserve_flags;
1da177e4 4563
d0164adc
MG
4564 /*
4565 * We also sanity check to catch abuse of atomic reserves being used by
4566 * callers that are not in atomic context.
4567 */
4568 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4569 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4570 gfp_mask &= ~__GFP_ATOMIC;
4571
5ce9bfef
VB
4572retry_cpuset:
4573 compaction_retries = 0;
4574 no_progress_loops = 0;
4575 compact_priority = DEF_COMPACT_PRIORITY;
4576 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4577
4578 /*
4579 * The fast path uses conservative alloc_flags to succeed only until
4580 * kswapd needs to be woken up, and to avoid the cost of setting up
4581 * alloc_flags precisely. So we do that now.
4582 */
4583 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4584
e47483bc
VB
4585 /*
4586 * We need to recalculate the starting point for the zonelist iterator
4587 * because we might have used different nodemask in the fast path, or
4588 * there was a cpuset modification and we are retrying - otherwise we
4589 * could end up iterating over non-eligible zones endlessly.
4590 */
4591 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4592 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4593 if (!ac->preferred_zoneref->zone)
4594 goto nopage;
4595
0a79cdad 4596 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4597 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4598
4599 /*
4600 * The adjusted alloc_flags might result in immediate success, so try
4601 * that first
4602 */
4603 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4604 if (page)
4605 goto got_pg;
4606
a8161d1e
VB
4607 /*
4608 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4609 * that we have enough base pages and don't need to reclaim. For non-
4610 * movable high-order allocations, do that as well, as compaction will
4611 * try prevent permanent fragmentation by migrating from blocks of the
4612 * same migratetype.
4613 * Don't try this for allocations that are allowed to ignore
4614 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4615 */
282722b0
VB
4616 if (can_direct_reclaim &&
4617 (costly_order ||
4618 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4619 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4620 page = __alloc_pages_direct_compact(gfp_mask, order,
4621 alloc_flags, ac,
a5508cd8 4622 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4623 &compact_result);
4624 if (page)
4625 goto got_pg;
4626
cc638f32
VB
4627 /*
4628 * Checks for costly allocations with __GFP_NORETRY, which
4629 * includes some THP page fault allocations
4630 */
4631 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4632 /*
4633 * If allocating entire pageblock(s) and compaction
4634 * failed because all zones are below low watermarks
4635 * or is prohibited because it recently failed at this
3f36d866
DR
4636 * order, fail immediately unless the allocator has
4637 * requested compaction and reclaim retry.
b39d0ee2
DR
4638 *
4639 * Reclaim is
4640 * - potentially very expensive because zones are far
4641 * below their low watermarks or this is part of very
4642 * bursty high order allocations,
4643 * - not guaranteed to help because isolate_freepages()
4644 * may not iterate over freed pages as part of its
4645 * linear scan, and
4646 * - unlikely to make entire pageblocks free on its
4647 * own.
4648 */
4649 if (compact_result == COMPACT_SKIPPED ||
4650 compact_result == COMPACT_DEFERRED)
4651 goto nopage;
a8161d1e 4652
a8161d1e 4653 /*
3eb2771b
VB
4654 * Looks like reclaim/compaction is worth trying, but
4655 * sync compaction could be very expensive, so keep
25160354 4656 * using async compaction.
a8161d1e 4657 */
a5508cd8 4658 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4659 }
4660 }
23771235 4661
31a6c190 4662retry:
23771235 4663 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4664 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4665 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4666
cd04ae1e
MH
4667 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4668 if (reserve_flags)
8510e69c 4669 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4670
e46e7b77 4671 /*
d6a24df0
VB
4672 * Reset the nodemask and zonelist iterators if memory policies can be
4673 * ignored. These allocations are high priority and system rather than
4674 * user oriented.
e46e7b77 4675 */
cd04ae1e 4676 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4677 ac->nodemask = NULL;
e46e7b77 4678 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4679 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4680 }
4681
23771235 4682 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4683 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4684 if (page)
4685 goto got_pg;
1da177e4 4686
d0164adc 4687 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4688 if (!can_direct_reclaim)
1da177e4
LT
4689 goto nopage;
4690
9a67f648
MH
4691 /* Avoid recursion of direct reclaim */
4692 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4693 goto nopage;
4694
a8161d1e
VB
4695 /* Try direct reclaim and then allocating */
4696 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4697 &did_some_progress);
4698 if (page)
4699 goto got_pg;
4700
4701 /* Try direct compaction and then allocating */
a9263751 4702 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4703 compact_priority, &compact_result);
56de7263
MG
4704 if (page)
4705 goto got_pg;
75f30861 4706
9083905a
JW
4707 /* Do not loop if specifically requested */
4708 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4709 goto nopage;
9083905a 4710
0a0337e0
MH
4711 /*
4712 * Do not retry costly high order allocations unless they are
dcda9b04 4713 * __GFP_RETRY_MAYFAIL
0a0337e0 4714 */
dcda9b04 4715 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4716 goto nopage;
0a0337e0 4717
0a0337e0 4718 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4719 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4720 goto retry;
4721
33c2d214
MH
4722 /*
4723 * It doesn't make any sense to retry for the compaction if the order-0
4724 * reclaim is not able to make any progress because the current
4725 * implementation of the compaction depends on the sufficient amount
4726 * of free memory (see __compaction_suitable)
4727 */
4728 if (did_some_progress > 0 &&
86a294a8 4729 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4730 compact_result, &compact_priority,
d9436498 4731 &compaction_retries))
33c2d214
MH
4732 goto retry;
4733
902b6281
VB
4734
4735 /* Deal with possible cpuset update races before we start OOM killing */
4736 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4737 goto retry_cpuset;
4738
9083905a
JW
4739 /* Reclaim has failed us, start killing things */
4740 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4741 if (page)
4742 goto got_pg;
4743
9a67f648 4744 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4745 if (tsk_is_oom_victim(current) &&
8510e69c 4746 (alloc_flags & ALLOC_OOM ||
c288983d 4747 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4748 goto nopage;
4749
9083905a 4750 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4751 if (did_some_progress) {
4752 no_progress_loops = 0;
9083905a 4753 goto retry;
0a0337e0 4754 }
9083905a 4755
1da177e4 4756nopage:
902b6281
VB
4757 /* Deal with possible cpuset update races before we fail */
4758 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4759 goto retry_cpuset;
4760
9a67f648
MH
4761 /*
4762 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4763 * we always retry
4764 */
4765 if (gfp_mask & __GFP_NOFAIL) {
4766 /*
4767 * All existing users of the __GFP_NOFAIL are blockable, so warn
4768 * of any new users that actually require GFP_NOWAIT
4769 */
4770 if (WARN_ON_ONCE(!can_direct_reclaim))
4771 goto fail;
4772
4773 /*
4774 * PF_MEMALLOC request from this context is rather bizarre
4775 * because we cannot reclaim anything and only can loop waiting
4776 * for somebody to do a work for us
4777 */
4778 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4779
4780 /*
4781 * non failing costly orders are a hard requirement which we
4782 * are not prepared for much so let's warn about these users
4783 * so that we can identify them and convert them to something
4784 * else.
4785 */
4786 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4787
6c18ba7a
MH
4788 /*
4789 * Help non-failing allocations by giving them access to memory
4790 * reserves but do not use ALLOC_NO_WATERMARKS because this
4791 * could deplete whole memory reserves which would just make
4792 * the situation worse
4793 */
4794 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4795 if (page)
4796 goto got_pg;
4797
9a67f648
MH
4798 cond_resched();
4799 goto retry;
4800 }
4801fail:
a8e99259 4802 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4803 "page allocation failure: order:%u", order);
1da177e4 4804got_pg:
072bb0aa 4805 return page;
1da177e4 4806}
11e33f6a 4807
9cd75558 4808static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4809 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4810 struct alloc_context *ac, gfp_t *alloc_mask,
4811 unsigned int *alloc_flags)
11e33f6a 4812{
97a225e6 4813 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4814 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4815 ac->nodemask = nodemask;
01c0bfe0 4816 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4817
682a3385 4818 if (cpusets_enabled()) {
9cd75558 4819 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4820 /*
4821 * When we are in the interrupt context, it is irrelevant
4822 * to the current task context. It means that any node ok.
4823 */
4824 if (!in_interrupt() && !ac->nodemask)
9cd75558 4825 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4826 else
4827 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4828 }
4829
d92a8cfc
PZ
4830 fs_reclaim_acquire(gfp_mask);
4831 fs_reclaim_release(gfp_mask);
11e33f6a 4832
d0164adc 4833 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4834
4835 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4836 return false;
11e33f6a 4837
8510e69c 4838 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4839
c9ab0c4f 4840 /* Dirty zone balancing only done in the fast path */
9cd75558 4841 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4842
e46e7b77
MG
4843 /*
4844 * The preferred zone is used for statistics but crucially it is
4845 * also used as the starting point for the zonelist iterator. It
4846 * may get reset for allocations that ignore memory policies.
4847 */
9cd75558 4848 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4849 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4850
4851 return true;
9cd75558
MG
4852}
4853
4854/*
4855 * This is the 'heart' of the zoned buddy allocator.
4856 */
4857struct page *
04ec6264
VB
4858__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4859 nodemask_t *nodemask)
9cd75558
MG
4860{
4861 struct page *page;
4862 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4863 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4864 struct alloc_context ac = { };
4865
c63ae43b
MH
4866 /*
4867 * There are several places where we assume that the order value is sane
4868 * so bail out early if the request is out of bound.
4869 */
4870 if (unlikely(order >= MAX_ORDER)) {
4871 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4872 return NULL;
4873 }
4874
9cd75558 4875 gfp_mask &= gfp_allowed_mask;
f19360f0 4876 alloc_mask = gfp_mask;
04ec6264 4877 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4878 return NULL;
4879
6bb15450
MG
4880 /*
4881 * Forbid the first pass from falling back to types that fragment
4882 * memory until all local zones are considered.
4883 */
0a79cdad 4884 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4885
5117f45d 4886 /* First allocation attempt */
a9263751 4887 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4888 if (likely(page))
4889 goto out;
11e33f6a 4890
4fcb0971 4891 /*
7dea19f9
MH
4892 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4893 * resp. GFP_NOIO which has to be inherited for all allocation requests
4894 * from a particular context which has been marked by
4895 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4896 */
7dea19f9 4897 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4898 ac.spread_dirty_pages = false;
23f086f9 4899
4741526b
MG
4900 /*
4901 * Restore the original nodemask if it was potentially replaced with
4902 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4903 */
97ce86f9 4904 ac.nodemask = nodemask;
16096c25 4905
4fcb0971 4906 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4907
4fcb0971 4908out:
c4159a75 4909 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4910 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4911 __free_pages(page, order);
4912 page = NULL;
4949148a
VD
4913 }
4914
4fcb0971
MG
4915 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4916
11e33f6a 4917 return page;
1da177e4 4918}
d239171e 4919EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4920
4921/*
9ea9a680
MH
4922 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4923 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4924 * you need to access high mem.
1da177e4 4925 */
920c7a5d 4926unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4927{
945a1113
AM
4928 struct page *page;
4929
9ea9a680 4930 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4931 if (!page)
4932 return 0;
4933 return (unsigned long) page_address(page);
4934}
1da177e4
LT
4935EXPORT_SYMBOL(__get_free_pages);
4936
920c7a5d 4937unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4938{
945a1113 4939 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4940}
1da177e4
LT
4941EXPORT_SYMBOL(get_zeroed_page);
4942
742aa7fb 4943static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4944{
742aa7fb
AL
4945 if (order == 0) /* Via pcp? */
4946 free_unref_page(page);
4947 else
4948 __free_pages_ok(page, order);
1da177e4
LT
4949}
4950
742aa7fb
AL
4951void __free_pages(struct page *page, unsigned int order)
4952{
4953 if (put_page_testzero(page))
4954 free_the_page(page, order);
4955}
1da177e4
LT
4956EXPORT_SYMBOL(__free_pages);
4957
920c7a5d 4958void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4959{
4960 if (addr != 0) {
725d704e 4961 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4962 __free_pages(virt_to_page((void *)addr), order);
4963 }
4964}
4965
4966EXPORT_SYMBOL(free_pages);
4967
b63ae8ca
AD
4968/*
4969 * Page Fragment:
4970 * An arbitrary-length arbitrary-offset area of memory which resides
4971 * within a 0 or higher order page. Multiple fragments within that page
4972 * are individually refcounted, in the page's reference counter.
4973 *
4974 * The page_frag functions below provide a simple allocation framework for
4975 * page fragments. This is used by the network stack and network device
4976 * drivers to provide a backing region of memory for use as either an
4977 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4978 */
2976db80
AD
4979static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4980 gfp_t gfp_mask)
b63ae8ca
AD
4981{
4982 struct page *page = NULL;
4983 gfp_t gfp = gfp_mask;
4984
4985#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4986 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4987 __GFP_NOMEMALLOC;
4988 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4989 PAGE_FRAG_CACHE_MAX_ORDER);
4990 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4991#endif
4992 if (unlikely(!page))
4993 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4994
4995 nc->va = page ? page_address(page) : NULL;
4996
4997 return page;
4998}
4999
2976db80 5000void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5001{
5002 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5003
742aa7fb
AL
5004 if (page_ref_sub_and_test(page, count))
5005 free_the_page(page, compound_order(page));
44fdffd7 5006}
2976db80 5007EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5008
8c2dd3e4
AD
5009void *page_frag_alloc(struct page_frag_cache *nc,
5010 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5011{
5012 unsigned int size = PAGE_SIZE;
5013 struct page *page;
5014 int offset;
5015
5016 if (unlikely(!nc->va)) {
5017refill:
2976db80 5018 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5019 if (!page)
5020 return NULL;
5021
5022#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5023 /* if size can vary use size else just use PAGE_SIZE */
5024 size = nc->size;
5025#endif
5026 /* Even if we own the page, we do not use atomic_set().
5027 * This would break get_page_unless_zero() users.
5028 */
86447726 5029 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5030
5031 /* reset page count bias and offset to start of new frag */
2f064f34 5032 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5033 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5034 nc->offset = size;
5035 }
5036
5037 offset = nc->offset - fragsz;
5038 if (unlikely(offset < 0)) {
5039 page = virt_to_page(nc->va);
5040
fe896d18 5041 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5042 goto refill;
5043
5044#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5045 /* if size can vary use size else just use PAGE_SIZE */
5046 size = nc->size;
5047#endif
5048 /* OK, page count is 0, we can safely set it */
86447726 5049 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5050
5051 /* reset page count bias and offset to start of new frag */
86447726 5052 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5053 offset = size - fragsz;
5054 }
5055
5056 nc->pagecnt_bias--;
5057 nc->offset = offset;
5058
5059 return nc->va + offset;
5060}
8c2dd3e4 5061EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5062
5063/*
5064 * Frees a page fragment allocated out of either a compound or order 0 page.
5065 */
8c2dd3e4 5066void page_frag_free(void *addr)
b63ae8ca
AD
5067{
5068 struct page *page = virt_to_head_page(addr);
5069
742aa7fb
AL
5070 if (unlikely(put_page_testzero(page)))
5071 free_the_page(page, compound_order(page));
b63ae8ca 5072}
8c2dd3e4 5073EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5074
d00181b9
KS
5075static void *make_alloc_exact(unsigned long addr, unsigned int order,
5076 size_t size)
ee85c2e1
AK
5077{
5078 if (addr) {
5079 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5080 unsigned long used = addr + PAGE_ALIGN(size);
5081
5082 split_page(virt_to_page((void *)addr), order);
5083 while (used < alloc_end) {
5084 free_page(used);
5085 used += PAGE_SIZE;
5086 }
5087 }
5088 return (void *)addr;
5089}
5090
2be0ffe2
TT
5091/**
5092 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5093 * @size: the number of bytes to allocate
63931eb9 5094 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5095 *
5096 * This function is similar to alloc_pages(), except that it allocates the
5097 * minimum number of pages to satisfy the request. alloc_pages() can only
5098 * allocate memory in power-of-two pages.
5099 *
5100 * This function is also limited by MAX_ORDER.
5101 *
5102 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5103 *
5104 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5105 */
5106void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5107{
5108 unsigned int order = get_order(size);
5109 unsigned long addr;
5110
63931eb9
VB
5111 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5112 gfp_mask &= ~__GFP_COMP;
5113
2be0ffe2 5114 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5115 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5116}
5117EXPORT_SYMBOL(alloc_pages_exact);
5118
ee85c2e1
AK
5119/**
5120 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5121 * pages on a node.
b5e6ab58 5122 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5123 * @size: the number of bytes to allocate
63931eb9 5124 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5125 *
5126 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5127 * back.
a862f68a
MR
5128 *
5129 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5130 */
e1931811 5131void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5132{
d00181b9 5133 unsigned int order = get_order(size);
63931eb9
VB
5134 struct page *p;
5135
5136 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5137 gfp_mask &= ~__GFP_COMP;
5138
5139 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5140 if (!p)
5141 return NULL;
5142 return make_alloc_exact((unsigned long)page_address(p), order, size);
5143}
ee85c2e1 5144
2be0ffe2
TT
5145/**
5146 * free_pages_exact - release memory allocated via alloc_pages_exact()
5147 * @virt: the value returned by alloc_pages_exact.
5148 * @size: size of allocation, same value as passed to alloc_pages_exact().
5149 *
5150 * Release the memory allocated by a previous call to alloc_pages_exact.
5151 */
5152void free_pages_exact(void *virt, size_t size)
5153{
5154 unsigned long addr = (unsigned long)virt;
5155 unsigned long end = addr + PAGE_ALIGN(size);
5156
5157 while (addr < end) {
5158 free_page(addr);
5159 addr += PAGE_SIZE;
5160 }
5161}
5162EXPORT_SYMBOL(free_pages_exact);
5163
e0fb5815
ZY
5164/**
5165 * nr_free_zone_pages - count number of pages beyond high watermark
5166 * @offset: The zone index of the highest zone
5167 *
a862f68a 5168 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5169 * high watermark within all zones at or below a given zone index. For each
5170 * zone, the number of pages is calculated as:
0e056eb5 5171 *
5172 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5173 *
5174 * Return: number of pages beyond high watermark.
e0fb5815 5175 */
ebec3862 5176static unsigned long nr_free_zone_pages(int offset)
1da177e4 5177{
dd1a239f 5178 struct zoneref *z;
54a6eb5c
MG
5179 struct zone *zone;
5180
e310fd43 5181 /* Just pick one node, since fallback list is circular */
ebec3862 5182 unsigned long sum = 0;
1da177e4 5183
0e88460d 5184 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5185
54a6eb5c 5186 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5187 unsigned long size = zone_managed_pages(zone);
41858966 5188 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5189 if (size > high)
5190 sum += size - high;
1da177e4
LT
5191 }
5192
5193 return sum;
5194}
5195
e0fb5815
ZY
5196/**
5197 * nr_free_buffer_pages - count number of pages beyond high watermark
5198 *
5199 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5200 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5201 *
5202 * Return: number of pages beyond high watermark within ZONE_DMA and
5203 * ZONE_NORMAL.
1da177e4 5204 */
ebec3862 5205unsigned long nr_free_buffer_pages(void)
1da177e4 5206{
af4ca457 5207 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5208}
c2f1a551 5209EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5210
08e0f6a9 5211static inline void show_node(struct zone *zone)
1da177e4 5212{
e5adfffc 5213 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5214 printk("Node %d ", zone_to_nid(zone));
1da177e4 5215}
1da177e4 5216
d02bd27b
IR
5217long si_mem_available(void)
5218{
5219 long available;
5220 unsigned long pagecache;
5221 unsigned long wmark_low = 0;
5222 unsigned long pages[NR_LRU_LISTS];
b29940c1 5223 unsigned long reclaimable;
d02bd27b
IR
5224 struct zone *zone;
5225 int lru;
5226
5227 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5228 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5229
5230 for_each_zone(zone)
a9214443 5231 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5232
5233 /*
5234 * Estimate the amount of memory available for userspace allocations,
5235 * without causing swapping.
5236 */
c41f012a 5237 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5238
5239 /*
5240 * Not all the page cache can be freed, otherwise the system will
5241 * start swapping. Assume at least half of the page cache, or the
5242 * low watermark worth of cache, needs to stay.
5243 */
5244 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5245 pagecache -= min(pagecache / 2, wmark_low);
5246 available += pagecache;
5247
5248 /*
b29940c1
VB
5249 * Part of the reclaimable slab and other kernel memory consists of
5250 * items that are in use, and cannot be freed. Cap this estimate at the
5251 * low watermark.
d02bd27b 5252 */
d42f3245
RG
5253 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5254 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5255 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5256
d02bd27b
IR
5257 if (available < 0)
5258 available = 0;
5259 return available;
5260}
5261EXPORT_SYMBOL_GPL(si_mem_available);
5262
1da177e4
LT
5263void si_meminfo(struct sysinfo *val)
5264{
ca79b0c2 5265 val->totalram = totalram_pages();
11fb9989 5266 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5267 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5268 val->bufferram = nr_blockdev_pages();
ca79b0c2 5269 val->totalhigh = totalhigh_pages();
1da177e4 5270 val->freehigh = nr_free_highpages();
1da177e4
LT
5271 val->mem_unit = PAGE_SIZE;
5272}
5273
5274EXPORT_SYMBOL(si_meminfo);
5275
5276#ifdef CONFIG_NUMA
5277void si_meminfo_node(struct sysinfo *val, int nid)
5278{
cdd91a77
JL
5279 int zone_type; /* needs to be signed */
5280 unsigned long managed_pages = 0;
fc2bd799
JK
5281 unsigned long managed_highpages = 0;
5282 unsigned long free_highpages = 0;
1da177e4
LT
5283 pg_data_t *pgdat = NODE_DATA(nid);
5284
cdd91a77 5285 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5286 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5287 val->totalram = managed_pages;
11fb9989 5288 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5289 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5290#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5291 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5292 struct zone *zone = &pgdat->node_zones[zone_type];
5293
5294 if (is_highmem(zone)) {
9705bea5 5295 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5296 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5297 }
5298 }
5299 val->totalhigh = managed_highpages;
5300 val->freehigh = free_highpages;
98d2b0eb 5301#else
fc2bd799
JK
5302 val->totalhigh = managed_highpages;
5303 val->freehigh = free_highpages;
98d2b0eb 5304#endif
1da177e4
LT
5305 val->mem_unit = PAGE_SIZE;
5306}
5307#endif
5308
ddd588b5 5309/*
7bf02ea2
DR
5310 * Determine whether the node should be displayed or not, depending on whether
5311 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5312 */
9af744d7 5313static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5314{
ddd588b5 5315 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5316 return false;
ddd588b5 5317
9af744d7
MH
5318 /*
5319 * no node mask - aka implicit memory numa policy. Do not bother with
5320 * the synchronization - read_mems_allowed_begin - because we do not
5321 * have to be precise here.
5322 */
5323 if (!nodemask)
5324 nodemask = &cpuset_current_mems_allowed;
5325
5326 return !node_isset(nid, *nodemask);
ddd588b5
DR
5327}
5328
1da177e4
LT
5329#define K(x) ((x) << (PAGE_SHIFT-10))
5330
377e4f16
RV
5331static void show_migration_types(unsigned char type)
5332{
5333 static const char types[MIGRATE_TYPES] = {
5334 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5335 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5336 [MIGRATE_RECLAIMABLE] = 'E',
5337 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5338#ifdef CONFIG_CMA
5339 [MIGRATE_CMA] = 'C',
5340#endif
194159fb 5341#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5342 [MIGRATE_ISOLATE] = 'I',
194159fb 5343#endif
377e4f16
RV
5344 };
5345 char tmp[MIGRATE_TYPES + 1];
5346 char *p = tmp;
5347 int i;
5348
5349 for (i = 0; i < MIGRATE_TYPES; i++) {
5350 if (type & (1 << i))
5351 *p++ = types[i];
5352 }
5353
5354 *p = '\0';
1f84a18f 5355 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5356}
5357
1da177e4
LT
5358/*
5359 * Show free area list (used inside shift_scroll-lock stuff)
5360 * We also calculate the percentage fragmentation. We do this by counting the
5361 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5362 *
5363 * Bits in @filter:
5364 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5365 * cpuset.
1da177e4 5366 */
9af744d7 5367void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5368{
d1bfcdb8 5369 unsigned long free_pcp = 0;
c7241913 5370 int cpu;
1da177e4 5371 struct zone *zone;
599d0c95 5372 pg_data_t *pgdat;
1da177e4 5373
ee99c71c 5374 for_each_populated_zone(zone) {
9af744d7 5375 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5376 continue;
d1bfcdb8 5377
761b0677
KK
5378 for_each_online_cpu(cpu)
5379 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5380 }
5381
a731286d
KM
5382 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5383 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5384 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5385 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5386 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5387 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5388 global_node_page_state(NR_ACTIVE_ANON),
5389 global_node_page_state(NR_INACTIVE_ANON),
5390 global_node_page_state(NR_ISOLATED_ANON),
5391 global_node_page_state(NR_ACTIVE_FILE),
5392 global_node_page_state(NR_INACTIVE_FILE),
5393 global_node_page_state(NR_ISOLATED_FILE),
5394 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5395 global_node_page_state(NR_FILE_DIRTY),
5396 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5397 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5398 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5399 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5400 global_node_page_state(NR_SHMEM),
c41f012a
MH
5401 global_zone_page_state(NR_PAGETABLE),
5402 global_zone_page_state(NR_BOUNCE),
5403 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5404 free_pcp,
c41f012a 5405 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5406
599d0c95 5407 for_each_online_pgdat(pgdat) {
9af744d7 5408 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5409 continue;
5410
599d0c95
MG
5411 printk("Node %d"
5412 " active_anon:%lukB"
5413 " inactive_anon:%lukB"
5414 " active_file:%lukB"
5415 " inactive_file:%lukB"
5416 " unevictable:%lukB"
5417 " isolated(anon):%lukB"
5418 " isolated(file):%lukB"
50658e2e 5419 " mapped:%lukB"
11fb9989
MG
5420 " dirty:%lukB"
5421 " writeback:%lukB"
5422 " shmem:%lukB"
5423#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5424 " shmem_thp: %lukB"
5425 " shmem_pmdmapped: %lukB"
5426 " anon_thp: %lukB"
5427#endif
5428 " writeback_tmp:%lukB"
991e7673
SB
5429 " kernel_stack:%lukB"
5430#ifdef CONFIG_SHADOW_CALL_STACK
5431 " shadow_call_stack:%lukB"
5432#endif
599d0c95
MG
5433 " all_unreclaimable? %s"
5434 "\n",
5435 pgdat->node_id,
5436 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5437 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5438 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5439 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5440 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5441 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5442 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5443 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5444 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5445 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5446 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5447#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5448 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5449 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5450 * HPAGE_PMD_NR),
5451 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5452#endif
11fb9989 5453 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5454 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5455#ifdef CONFIG_SHADOW_CALL_STACK
5456 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5457#endif
c73322d0
JW
5458 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5459 "yes" : "no");
599d0c95
MG
5460 }
5461
ee99c71c 5462 for_each_populated_zone(zone) {
1da177e4
LT
5463 int i;
5464
9af744d7 5465 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5466 continue;
d1bfcdb8
KK
5467
5468 free_pcp = 0;
5469 for_each_online_cpu(cpu)
5470 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5471
1da177e4 5472 show_node(zone);
1f84a18f
JP
5473 printk(KERN_CONT
5474 "%s"
1da177e4
LT
5475 " free:%lukB"
5476 " min:%lukB"
5477 " low:%lukB"
5478 " high:%lukB"
e47b346a 5479 " reserved_highatomic:%luKB"
71c799f4
MK
5480 " active_anon:%lukB"
5481 " inactive_anon:%lukB"
5482 " active_file:%lukB"
5483 " inactive_file:%lukB"
5484 " unevictable:%lukB"
5a1c84b4 5485 " writepending:%lukB"
1da177e4 5486 " present:%lukB"
9feedc9d 5487 " managed:%lukB"
4a0aa73f 5488 " mlocked:%lukB"
4a0aa73f 5489 " pagetables:%lukB"
4a0aa73f 5490 " bounce:%lukB"
d1bfcdb8
KK
5491 " free_pcp:%lukB"
5492 " local_pcp:%ukB"
d1ce749a 5493 " free_cma:%lukB"
1da177e4
LT
5494 "\n",
5495 zone->name,
88f5acf8 5496 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5497 K(min_wmark_pages(zone)),
5498 K(low_wmark_pages(zone)),
5499 K(high_wmark_pages(zone)),
e47b346a 5500 K(zone->nr_reserved_highatomic),
71c799f4
MK
5501 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5502 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5503 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5504 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5505 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5506 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5507 K(zone->present_pages),
9705bea5 5508 K(zone_managed_pages(zone)),
4a0aa73f 5509 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5510 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5511 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5512 K(free_pcp),
5513 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5514 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5515 printk("lowmem_reserve[]:");
5516 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5517 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5518 printk(KERN_CONT "\n");
1da177e4
LT
5519 }
5520
ee99c71c 5521 for_each_populated_zone(zone) {
d00181b9
KS
5522 unsigned int order;
5523 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5524 unsigned char types[MAX_ORDER];
1da177e4 5525
9af744d7 5526 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5527 continue;
1da177e4 5528 show_node(zone);
1f84a18f 5529 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5530
5531 spin_lock_irqsave(&zone->lock, flags);
5532 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5533 struct free_area *area = &zone->free_area[order];
5534 int type;
5535
5536 nr[order] = area->nr_free;
8f9de51a 5537 total += nr[order] << order;
377e4f16
RV
5538
5539 types[order] = 0;
5540 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5541 if (!free_area_empty(area, type))
377e4f16
RV
5542 types[order] |= 1 << type;
5543 }
1da177e4
LT
5544 }
5545 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5546 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5547 printk(KERN_CONT "%lu*%lukB ",
5548 nr[order], K(1UL) << order);
377e4f16
RV
5549 if (nr[order])
5550 show_migration_types(types[order]);
5551 }
1f84a18f 5552 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5553 }
5554
949f7ec5
DR
5555 hugetlb_show_meminfo();
5556
11fb9989 5557 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5558
1da177e4
LT
5559 show_swap_cache_info();
5560}
5561
19770b32
MG
5562static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5563{
5564 zoneref->zone = zone;
5565 zoneref->zone_idx = zone_idx(zone);
5566}
5567
1da177e4
LT
5568/*
5569 * Builds allocation fallback zone lists.
1a93205b
CL
5570 *
5571 * Add all populated zones of a node to the zonelist.
1da177e4 5572 */
9d3be21b 5573static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5574{
1a93205b 5575 struct zone *zone;
bc732f1d 5576 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5577 int nr_zones = 0;
02a68a5e
CL
5578
5579 do {
2f6726e5 5580 zone_type--;
070f8032 5581 zone = pgdat->node_zones + zone_type;
6aa303de 5582 if (managed_zone(zone)) {
9d3be21b 5583 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5584 check_highest_zone(zone_type);
1da177e4 5585 }
2f6726e5 5586 } while (zone_type);
bc732f1d 5587
070f8032 5588 return nr_zones;
1da177e4
LT
5589}
5590
5591#ifdef CONFIG_NUMA
f0c0b2b8
KH
5592
5593static int __parse_numa_zonelist_order(char *s)
5594{
c9bff3ee
MH
5595 /*
5596 * We used to support different zonlists modes but they turned
5597 * out to be just not useful. Let's keep the warning in place
5598 * if somebody still use the cmd line parameter so that we do
5599 * not fail it silently
5600 */
5601 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5602 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5603 return -EINVAL;
5604 }
5605 return 0;
5606}
5607
c9bff3ee
MH
5608char numa_zonelist_order[] = "Node";
5609
f0c0b2b8
KH
5610/*
5611 * sysctl handler for numa_zonelist_order
5612 */
cccad5b9 5613int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5614 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5615{
32927393
CH
5616 if (write)
5617 return __parse_numa_zonelist_order(buffer);
5618 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5619}
5620
5621
62bc62a8 5622#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5623static int node_load[MAX_NUMNODES];
5624
1da177e4 5625/**
4dc3b16b 5626 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5627 * @node: node whose fallback list we're appending
5628 * @used_node_mask: nodemask_t of already used nodes
5629 *
5630 * We use a number of factors to determine which is the next node that should
5631 * appear on a given node's fallback list. The node should not have appeared
5632 * already in @node's fallback list, and it should be the next closest node
5633 * according to the distance array (which contains arbitrary distance values
5634 * from each node to each node in the system), and should also prefer nodes
5635 * with no CPUs, since presumably they'll have very little allocation pressure
5636 * on them otherwise.
a862f68a
MR
5637 *
5638 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5639 */
f0c0b2b8 5640static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5641{
4cf808eb 5642 int n, val;
1da177e4 5643 int min_val = INT_MAX;
00ef2d2f 5644 int best_node = NUMA_NO_NODE;
1da177e4 5645
4cf808eb
LT
5646 /* Use the local node if we haven't already */
5647 if (!node_isset(node, *used_node_mask)) {
5648 node_set(node, *used_node_mask);
5649 return node;
5650 }
1da177e4 5651
4b0ef1fe 5652 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5653
5654 /* Don't want a node to appear more than once */
5655 if (node_isset(n, *used_node_mask))
5656 continue;
5657
1da177e4
LT
5658 /* Use the distance array to find the distance */
5659 val = node_distance(node, n);
5660
4cf808eb
LT
5661 /* Penalize nodes under us ("prefer the next node") */
5662 val += (n < node);
5663
1da177e4 5664 /* Give preference to headless and unused nodes */
b630749f 5665 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5666 val += PENALTY_FOR_NODE_WITH_CPUS;
5667
5668 /* Slight preference for less loaded node */
5669 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5670 val += node_load[n];
5671
5672 if (val < min_val) {
5673 min_val = val;
5674 best_node = n;
5675 }
5676 }
5677
5678 if (best_node >= 0)
5679 node_set(best_node, *used_node_mask);
5680
5681 return best_node;
5682}
5683
f0c0b2b8
KH
5684
5685/*
5686 * Build zonelists ordered by node and zones within node.
5687 * This results in maximum locality--normal zone overflows into local
5688 * DMA zone, if any--but risks exhausting DMA zone.
5689 */
9d3be21b
MH
5690static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5691 unsigned nr_nodes)
1da177e4 5692{
9d3be21b
MH
5693 struct zoneref *zonerefs;
5694 int i;
5695
5696 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5697
5698 for (i = 0; i < nr_nodes; i++) {
5699 int nr_zones;
5700
5701 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5702
9d3be21b
MH
5703 nr_zones = build_zonerefs_node(node, zonerefs);
5704 zonerefs += nr_zones;
5705 }
5706 zonerefs->zone = NULL;
5707 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5708}
5709
523b9458
CL
5710/*
5711 * Build gfp_thisnode zonelists
5712 */
5713static void build_thisnode_zonelists(pg_data_t *pgdat)
5714{
9d3be21b
MH
5715 struct zoneref *zonerefs;
5716 int nr_zones;
523b9458 5717
9d3be21b
MH
5718 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5719 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5720 zonerefs += nr_zones;
5721 zonerefs->zone = NULL;
5722 zonerefs->zone_idx = 0;
523b9458
CL
5723}
5724
f0c0b2b8
KH
5725/*
5726 * Build zonelists ordered by zone and nodes within zones.
5727 * This results in conserving DMA zone[s] until all Normal memory is
5728 * exhausted, but results in overflowing to remote node while memory
5729 * may still exist in local DMA zone.
5730 */
f0c0b2b8 5731
f0c0b2b8
KH
5732static void build_zonelists(pg_data_t *pgdat)
5733{
9d3be21b
MH
5734 static int node_order[MAX_NUMNODES];
5735 int node, load, nr_nodes = 0;
d0ddf49b 5736 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5737 int local_node, prev_node;
1da177e4
LT
5738
5739 /* NUMA-aware ordering of nodes */
5740 local_node = pgdat->node_id;
62bc62a8 5741 load = nr_online_nodes;
1da177e4 5742 prev_node = local_node;
f0c0b2b8 5743
f0c0b2b8 5744 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5745 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5746 /*
5747 * We don't want to pressure a particular node.
5748 * So adding penalty to the first node in same
5749 * distance group to make it round-robin.
5750 */
957f822a
DR
5751 if (node_distance(local_node, node) !=
5752 node_distance(local_node, prev_node))
f0c0b2b8
KH
5753 node_load[node] = load;
5754
9d3be21b 5755 node_order[nr_nodes++] = node;
1da177e4
LT
5756 prev_node = node;
5757 load--;
1da177e4 5758 }
523b9458 5759
9d3be21b 5760 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5761 build_thisnode_zonelists(pgdat);
1da177e4
LT
5762}
5763
7aac7898
LS
5764#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5765/*
5766 * Return node id of node used for "local" allocations.
5767 * I.e., first node id of first zone in arg node's generic zonelist.
5768 * Used for initializing percpu 'numa_mem', which is used primarily
5769 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5770 */
5771int local_memory_node(int node)
5772{
c33d6c06 5773 struct zoneref *z;
7aac7898 5774
c33d6c06 5775 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5776 gfp_zone(GFP_KERNEL),
c33d6c06 5777 NULL);
c1093b74 5778 return zone_to_nid(z->zone);
7aac7898
LS
5779}
5780#endif
f0c0b2b8 5781
6423aa81
JK
5782static void setup_min_unmapped_ratio(void);
5783static void setup_min_slab_ratio(void);
1da177e4
LT
5784#else /* CONFIG_NUMA */
5785
f0c0b2b8 5786static void build_zonelists(pg_data_t *pgdat)
1da177e4 5787{
19655d34 5788 int node, local_node;
9d3be21b
MH
5789 struct zoneref *zonerefs;
5790 int nr_zones;
1da177e4
LT
5791
5792 local_node = pgdat->node_id;
1da177e4 5793
9d3be21b
MH
5794 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5795 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5796 zonerefs += nr_zones;
1da177e4 5797
54a6eb5c
MG
5798 /*
5799 * Now we build the zonelist so that it contains the zones
5800 * of all the other nodes.
5801 * We don't want to pressure a particular node, so when
5802 * building the zones for node N, we make sure that the
5803 * zones coming right after the local ones are those from
5804 * node N+1 (modulo N)
5805 */
5806 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5807 if (!node_online(node))
5808 continue;
9d3be21b
MH
5809 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5810 zonerefs += nr_zones;
1da177e4 5811 }
54a6eb5c
MG
5812 for (node = 0; node < local_node; node++) {
5813 if (!node_online(node))
5814 continue;
9d3be21b
MH
5815 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5816 zonerefs += nr_zones;
54a6eb5c
MG
5817 }
5818
9d3be21b
MH
5819 zonerefs->zone = NULL;
5820 zonerefs->zone_idx = 0;
1da177e4
LT
5821}
5822
5823#endif /* CONFIG_NUMA */
5824
99dcc3e5
CL
5825/*
5826 * Boot pageset table. One per cpu which is going to be used for all
5827 * zones and all nodes. The parameters will be set in such a way
5828 * that an item put on a list will immediately be handed over to
5829 * the buddy list. This is safe since pageset manipulation is done
5830 * with interrupts disabled.
5831 *
5832 * The boot_pagesets must be kept even after bootup is complete for
5833 * unused processors and/or zones. They do play a role for bootstrapping
5834 * hotplugged processors.
5835 *
5836 * zoneinfo_show() and maybe other functions do
5837 * not check if the processor is online before following the pageset pointer.
5838 * Other parts of the kernel may not check if the zone is available.
5839 */
5840static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5841static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5842static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5843
11cd8638 5844static void __build_all_zonelists(void *data)
1da177e4 5845{
6811378e 5846 int nid;
afb6ebb3 5847 int __maybe_unused cpu;
9adb62a5 5848 pg_data_t *self = data;
b93e0f32
MH
5849 static DEFINE_SPINLOCK(lock);
5850
5851 spin_lock(&lock);
9276b1bc 5852
7f9cfb31
BL
5853#ifdef CONFIG_NUMA
5854 memset(node_load, 0, sizeof(node_load));
5855#endif
9adb62a5 5856
c1152583
WY
5857 /*
5858 * This node is hotadded and no memory is yet present. So just
5859 * building zonelists is fine - no need to touch other nodes.
5860 */
9adb62a5
JL
5861 if (self && !node_online(self->node_id)) {
5862 build_zonelists(self);
c1152583
WY
5863 } else {
5864 for_each_online_node(nid) {
5865 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5866
c1152583
WY
5867 build_zonelists(pgdat);
5868 }
99dcc3e5 5869
7aac7898
LS
5870#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5871 /*
5872 * We now know the "local memory node" for each node--
5873 * i.e., the node of the first zone in the generic zonelist.
5874 * Set up numa_mem percpu variable for on-line cpus. During
5875 * boot, only the boot cpu should be on-line; we'll init the
5876 * secondary cpus' numa_mem as they come on-line. During
5877 * node/memory hotplug, we'll fixup all on-line cpus.
5878 */
d9c9a0b9 5879 for_each_online_cpu(cpu)
7aac7898 5880 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5881#endif
d9c9a0b9 5882 }
b93e0f32
MH
5883
5884 spin_unlock(&lock);
6811378e
YG
5885}
5886
061f67bc
RV
5887static noinline void __init
5888build_all_zonelists_init(void)
5889{
afb6ebb3
MH
5890 int cpu;
5891
061f67bc 5892 __build_all_zonelists(NULL);
afb6ebb3
MH
5893
5894 /*
5895 * Initialize the boot_pagesets that are going to be used
5896 * for bootstrapping processors. The real pagesets for
5897 * each zone will be allocated later when the per cpu
5898 * allocator is available.
5899 *
5900 * boot_pagesets are used also for bootstrapping offline
5901 * cpus if the system is already booted because the pagesets
5902 * are needed to initialize allocators on a specific cpu too.
5903 * F.e. the percpu allocator needs the page allocator which
5904 * needs the percpu allocator in order to allocate its pagesets
5905 * (a chicken-egg dilemma).
5906 */
5907 for_each_possible_cpu(cpu)
5908 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5909
061f67bc
RV
5910 mminit_verify_zonelist();
5911 cpuset_init_current_mems_allowed();
5912}
5913
4eaf3f64 5914/*
4eaf3f64 5915 * unless system_state == SYSTEM_BOOTING.
061f67bc 5916 *
72675e13 5917 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5918 * [protected by SYSTEM_BOOTING].
4eaf3f64 5919 */
72675e13 5920void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5921{
0a18e607
DH
5922 unsigned long vm_total_pages;
5923
6811378e 5924 if (system_state == SYSTEM_BOOTING) {
061f67bc 5925 build_all_zonelists_init();
6811378e 5926 } else {
11cd8638 5927 __build_all_zonelists(pgdat);
6811378e
YG
5928 /* cpuset refresh routine should be here */
5929 }
56b9413b
DH
5930 /* Get the number of free pages beyond high watermark in all zones. */
5931 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5932 /*
5933 * Disable grouping by mobility if the number of pages in the
5934 * system is too low to allow the mechanism to work. It would be
5935 * more accurate, but expensive to check per-zone. This check is
5936 * made on memory-hotadd so a system can start with mobility
5937 * disabled and enable it later
5938 */
d9c23400 5939 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5940 page_group_by_mobility_disabled = 1;
5941 else
5942 page_group_by_mobility_disabled = 0;
5943
ce0725f7 5944 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5945 nr_online_nodes,
756a025f
JP
5946 page_group_by_mobility_disabled ? "off" : "on",
5947 vm_total_pages);
f0c0b2b8 5948#ifdef CONFIG_NUMA
f88dfff5 5949 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5950#endif
1da177e4
LT
5951}
5952
a9a9e77f
PT
5953/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5954static bool __meminit
5955overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5956{
a9a9e77f
PT
5957 static struct memblock_region *r;
5958
5959 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5960 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5961 for_each_memblock(memory, r) {
5962 if (*pfn < memblock_region_memory_end_pfn(r))
5963 break;
5964 }
5965 }
5966 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5967 memblock_is_mirror(r)) {
5968 *pfn = memblock_region_memory_end_pfn(r);
5969 return true;
5970 }
5971 }
a9a9e77f
PT
5972 return false;
5973}
5974
1da177e4
LT
5975/*
5976 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5977 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5978 * done. Non-atomic initialization, single-pass.
5979 */
c09b4240 5980void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
c1d0da83 5981 unsigned long start_pfn, enum meminit_context context,
a99583e7 5982 struct vmem_altmap *altmap)
1da177e4 5983{
a9a9e77f 5984 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5985 struct page *page;
1da177e4 5986
22b31eec
HD
5987 if (highest_memmap_pfn < end_pfn - 1)
5988 highest_memmap_pfn = end_pfn - 1;
5989
966cf44f 5990#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5991 /*
5992 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5993 * memory. We limit the total number of pages to initialize to just
5994 * those that might contain the memory mapping. We will defer the
5995 * ZONE_DEVICE page initialization until after we have released
5996 * the hotplug lock.
4b94ffdc 5997 */
966cf44f
AD
5998 if (zone == ZONE_DEVICE) {
5999 if (!altmap)
6000 return;
6001
6002 if (start_pfn == altmap->base_pfn)
6003 start_pfn += altmap->reserve;
6004 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6005 }
6006#endif
4b94ffdc 6007
948c436e 6008 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6009 /*
b72d0ffb
AM
6010 * There can be holes in boot-time mem_map[]s handed to this
6011 * function. They do not exist on hotplugged memory.
a2f3aa02 6012 */
c1d0da83 6013 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6014 if (overlap_memmap_init(zone, &pfn))
6015 continue;
6016 if (defer_init(nid, pfn, end_pfn))
6017 break;
a2f3aa02 6018 }
ac5d2539 6019
d0dc12e8
PT
6020 page = pfn_to_page(pfn);
6021 __init_single_page(page, pfn, zone, nid);
c1d0da83 6022 if (context == MEMINIT_HOTPLUG)
d483da5b 6023 __SetPageReserved(page);
d0dc12e8 6024
ac5d2539
MG
6025 /*
6026 * Mark the block movable so that blocks are reserved for
6027 * movable at startup. This will force kernel allocations
6028 * to reserve their blocks rather than leaking throughout
6029 * the address space during boot when many long-lived
974a786e 6030 * kernel allocations are made.
ac5d2539
MG
6031 *
6032 * bitmap is created for zone's valid pfn range. but memmap
6033 * can be created for invalid pages (for alignment)
6034 * check here not to call set_pageblock_migratetype() against
6035 * pfn out of zone.
6036 */
6037 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 6038 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 6039 cond_resched();
ac5d2539 6040 }
948c436e 6041 pfn++;
1da177e4
LT
6042 }
6043}
6044
966cf44f
AD
6045#ifdef CONFIG_ZONE_DEVICE
6046void __ref memmap_init_zone_device(struct zone *zone,
6047 unsigned long start_pfn,
1f8d75c1 6048 unsigned long nr_pages,
966cf44f
AD
6049 struct dev_pagemap *pgmap)
6050{
1f8d75c1 6051 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6052 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6053 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6054 unsigned long zone_idx = zone_idx(zone);
6055 unsigned long start = jiffies;
6056 int nid = pgdat->node_id;
6057
46d945ae 6058 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6059 return;
6060
6061 /*
6062 * The call to memmap_init_zone should have already taken care
6063 * of the pages reserved for the memmap, so we can just jump to
6064 * the end of that region and start processing the device pages.
6065 */
514caf23 6066 if (altmap) {
966cf44f 6067 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6068 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6069 }
6070
6071 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6072 struct page *page = pfn_to_page(pfn);
6073
6074 __init_single_page(page, pfn, zone_idx, nid);
6075
6076 /*
6077 * Mark page reserved as it will need to wait for onlining
6078 * phase for it to be fully associated with a zone.
6079 *
6080 * We can use the non-atomic __set_bit operation for setting
6081 * the flag as we are still initializing the pages.
6082 */
6083 __SetPageReserved(page);
6084
6085 /*
8a164fef
CH
6086 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6087 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6088 * ever freed or placed on a driver-private list.
966cf44f
AD
6089 */
6090 page->pgmap = pgmap;
8a164fef 6091 page->zone_device_data = NULL;
966cf44f
AD
6092
6093 /*
6094 * Mark the block movable so that blocks are reserved for
6095 * movable at startup. This will force kernel allocations
6096 * to reserve their blocks rather than leaking throughout
6097 * the address space during boot when many long-lived
6098 * kernel allocations are made.
6099 *
6100 * bitmap is created for zone's valid pfn range. but memmap
6101 * can be created for invalid pages (for alignment)
6102 * check here not to call set_pageblock_migratetype() against
6103 * pfn out of zone.
6104 *
c1d0da83 6105 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6106 * because this is done early in section_activate()
966cf44f
AD
6107 */
6108 if (!(pfn & (pageblock_nr_pages - 1))) {
6109 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6110 cond_resched();
6111 }
6112 }
6113
fdc029b1 6114 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6115 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6116}
6117
6118#endif
1e548deb 6119static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6120{
7aeb09f9 6121 unsigned int order, t;
b2a0ac88
MG
6122 for_each_migratetype_order(order, t) {
6123 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6124 zone->free_area[order].nr_free = 0;
6125 }
6126}
6127
dfb3ccd0 6128void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6129 unsigned long zone,
6130 unsigned long range_start_pfn)
dfb3ccd0 6131{
73a6e474
BH
6132 unsigned long start_pfn, end_pfn;
6133 unsigned long range_end_pfn = range_start_pfn + size;
6134 int i;
6135
6136 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6137 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6138 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6139
6140 if (end_pfn > start_pfn) {
6141 size = end_pfn - start_pfn;
6142 memmap_init_zone(size, nid, zone, start_pfn,
c1d0da83 6143 MEMINIT_EARLY, NULL);
73a6e474
BH
6144 }
6145 }
dfb3ccd0 6146}
1da177e4 6147
7cd2b0a3 6148static int zone_batchsize(struct zone *zone)
e7c8d5c9 6149{
3a6be87f 6150#ifdef CONFIG_MMU
e7c8d5c9
CL
6151 int batch;
6152
6153 /*
6154 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6155 * size of the zone.
e7c8d5c9 6156 */
9705bea5 6157 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6158 /* But no more than a meg. */
6159 if (batch * PAGE_SIZE > 1024 * 1024)
6160 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6161 batch /= 4; /* We effectively *= 4 below */
6162 if (batch < 1)
6163 batch = 1;
6164
6165 /*
0ceaacc9
NP
6166 * Clamp the batch to a 2^n - 1 value. Having a power
6167 * of 2 value was found to be more likely to have
6168 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6169 *
0ceaacc9
NP
6170 * For example if 2 tasks are alternately allocating
6171 * batches of pages, one task can end up with a lot
6172 * of pages of one half of the possible page colors
6173 * and the other with pages of the other colors.
e7c8d5c9 6174 */
9155203a 6175 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6176
e7c8d5c9 6177 return batch;
3a6be87f
DH
6178
6179#else
6180 /* The deferral and batching of frees should be suppressed under NOMMU
6181 * conditions.
6182 *
6183 * The problem is that NOMMU needs to be able to allocate large chunks
6184 * of contiguous memory as there's no hardware page translation to
6185 * assemble apparent contiguous memory from discontiguous pages.
6186 *
6187 * Queueing large contiguous runs of pages for batching, however,
6188 * causes the pages to actually be freed in smaller chunks. As there
6189 * can be a significant delay between the individual batches being
6190 * recycled, this leads to the once large chunks of space being
6191 * fragmented and becoming unavailable for high-order allocations.
6192 */
6193 return 0;
6194#endif
e7c8d5c9
CL
6195}
6196
8d7a8fa9
CS
6197/*
6198 * pcp->high and pcp->batch values are related and dependent on one another:
6199 * ->batch must never be higher then ->high.
6200 * The following function updates them in a safe manner without read side
6201 * locking.
6202 *
6203 * Any new users of pcp->batch and pcp->high should ensure they can cope with
047b9967 6204 * those fields changing asynchronously (acording to the above rule).
8d7a8fa9
CS
6205 *
6206 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6207 * outside of boot time (or some other assurance that no concurrent updaters
6208 * exist).
6209 */
6210static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6211 unsigned long batch)
6212{
6213 /* start with a fail safe value for batch */
6214 pcp->batch = 1;
6215 smp_wmb();
6216
6217 /* Update high, then batch, in order */
6218 pcp->high = high;
6219 smp_wmb();
6220
6221 pcp->batch = batch;
6222}
6223
3664033c 6224/* a companion to pageset_set_high() */
4008bab7
CS
6225static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6226{
8d7a8fa9 6227 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6228}
6229
88c90dbc 6230static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6231{
6232 struct per_cpu_pages *pcp;
5f8dcc21 6233 int migratetype;
2caaad41 6234
1c6fe946
MD
6235 memset(p, 0, sizeof(*p));
6236
3dfa5721 6237 pcp = &p->pcp;
5f8dcc21
MG
6238 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6239 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6240}
6241
88c90dbc
CS
6242static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6243{
6244 pageset_init(p);
6245 pageset_set_batch(p, batch);
6246}
6247
8ad4b1fb 6248/*
3664033c 6249 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6250 * to the value high for the pageset p.
6251 */
3664033c 6252static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6253 unsigned long high)
6254{
8d7a8fa9
CS
6255 unsigned long batch = max(1UL, high / 4);
6256 if ((high / 4) > (PAGE_SHIFT * 8))
6257 batch = PAGE_SHIFT * 8;
8ad4b1fb 6258
8d7a8fa9 6259 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6260}
6261
7cd2b0a3
DR
6262static void pageset_set_high_and_batch(struct zone *zone,
6263 struct per_cpu_pageset *pcp)
56cef2b8 6264{
56cef2b8 6265 if (percpu_pagelist_fraction)
3664033c 6266 pageset_set_high(pcp,
9705bea5 6267 (zone_managed_pages(zone) /
56cef2b8
CS
6268 percpu_pagelist_fraction));
6269 else
6270 pageset_set_batch(pcp, zone_batchsize(zone));
6271}
6272
169f6c19
CS
6273static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6274{
6275 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6276
6277 pageset_init(pcp);
6278 pageset_set_high_and_batch(zone, pcp);
6279}
6280
72675e13 6281void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6282{
6283 int cpu;
319774e2 6284 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6285 for_each_possible_cpu(cpu)
6286 zone_pageset_init(zone, cpu);
319774e2
WF
6287}
6288
2caaad41 6289/*
99dcc3e5
CL
6290 * Allocate per cpu pagesets and initialize them.
6291 * Before this call only boot pagesets were available.
e7c8d5c9 6292 */
99dcc3e5 6293void __init setup_per_cpu_pageset(void)
e7c8d5c9 6294{
b4911ea2 6295 struct pglist_data *pgdat;
99dcc3e5 6296 struct zone *zone;
b418a0f9 6297 int __maybe_unused cpu;
e7c8d5c9 6298
319774e2
WF
6299 for_each_populated_zone(zone)
6300 setup_zone_pageset(zone);
b4911ea2 6301
b418a0f9
SD
6302#ifdef CONFIG_NUMA
6303 /*
6304 * Unpopulated zones continue using the boot pagesets.
6305 * The numa stats for these pagesets need to be reset.
6306 * Otherwise, they will end up skewing the stats of
6307 * the nodes these zones are associated with.
6308 */
6309 for_each_possible_cpu(cpu) {
6310 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6311 memset(pcp->vm_numa_stat_diff, 0,
6312 sizeof(pcp->vm_numa_stat_diff));
6313 }
6314#endif
6315
b4911ea2
MG
6316 for_each_online_pgdat(pgdat)
6317 pgdat->per_cpu_nodestats =
6318 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6319}
6320
c09b4240 6321static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6322{
99dcc3e5
CL
6323 /*
6324 * per cpu subsystem is not up at this point. The following code
6325 * relies on the ability of the linker to provide the
6326 * offset of a (static) per cpu variable into the per cpu area.
6327 */
6328 zone->pageset = &boot_pageset;
ed8ece2e 6329
b38a8725 6330 if (populated_zone(zone))
99dcc3e5
CL
6331 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6332 zone->name, zone->present_pages,
6333 zone_batchsize(zone));
ed8ece2e
DH
6334}
6335
dc0bbf3b 6336void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6337 unsigned long zone_start_pfn,
b171e409 6338 unsigned long size)
ed8ece2e
DH
6339{
6340 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6341 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6342
8f416836
WY
6343 if (zone_idx > pgdat->nr_zones)
6344 pgdat->nr_zones = zone_idx;
ed8ece2e 6345
ed8ece2e
DH
6346 zone->zone_start_pfn = zone_start_pfn;
6347
708614e6
MG
6348 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6349 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6350 pgdat->node_id,
6351 (unsigned long)zone_idx(zone),
6352 zone_start_pfn, (zone_start_pfn + size));
6353
1e548deb 6354 zone_init_free_lists(zone);
9dcb8b68 6355 zone->initialized = 1;
ed8ece2e
DH
6356}
6357
c713216d
MG
6358/**
6359 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6360 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6361 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6362 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6363 *
6364 * It returns the start and end page frame of a node based on information
7d018176 6365 * provided by memblock_set_node(). If called for a node
c713216d 6366 * with no available memory, a warning is printed and the start and end
88ca3b94 6367 * PFNs will be 0.
c713216d 6368 */
bbe5d993 6369void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6370 unsigned long *start_pfn, unsigned long *end_pfn)
6371{
c13291a5 6372 unsigned long this_start_pfn, this_end_pfn;
c713216d 6373 int i;
c13291a5 6374
c713216d
MG
6375 *start_pfn = -1UL;
6376 *end_pfn = 0;
6377
c13291a5
TH
6378 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6379 *start_pfn = min(*start_pfn, this_start_pfn);
6380 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6381 }
6382
633c0666 6383 if (*start_pfn == -1UL)
c713216d 6384 *start_pfn = 0;
c713216d
MG
6385}
6386
2a1e274a
MG
6387/*
6388 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6389 * assumption is made that zones within a node are ordered in monotonic
6390 * increasing memory addresses so that the "highest" populated zone is used
6391 */
b69a7288 6392static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6393{
6394 int zone_index;
6395 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6396 if (zone_index == ZONE_MOVABLE)
6397 continue;
6398
6399 if (arch_zone_highest_possible_pfn[zone_index] >
6400 arch_zone_lowest_possible_pfn[zone_index])
6401 break;
6402 }
6403
6404 VM_BUG_ON(zone_index == -1);
6405 movable_zone = zone_index;
6406}
6407
6408/*
6409 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6410 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6411 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6412 * in each node depending on the size of each node and how evenly kernelcore
6413 * is distributed. This helper function adjusts the zone ranges
6414 * provided by the architecture for a given node by using the end of the
6415 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6416 * zones within a node are in order of monotonic increases memory addresses
6417 */
bbe5d993 6418static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6419 unsigned long zone_type,
6420 unsigned long node_start_pfn,
6421 unsigned long node_end_pfn,
6422 unsigned long *zone_start_pfn,
6423 unsigned long *zone_end_pfn)
6424{
6425 /* Only adjust if ZONE_MOVABLE is on this node */
6426 if (zone_movable_pfn[nid]) {
6427 /* Size ZONE_MOVABLE */
6428 if (zone_type == ZONE_MOVABLE) {
6429 *zone_start_pfn = zone_movable_pfn[nid];
6430 *zone_end_pfn = min(node_end_pfn,
6431 arch_zone_highest_possible_pfn[movable_zone]);
6432
e506b996
XQ
6433 /* Adjust for ZONE_MOVABLE starting within this range */
6434 } else if (!mirrored_kernelcore &&
6435 *zone_start_pfn < zone_movable_pfn[nid] &&
6436 *zone_end_pfn > zone_movable_pfn[nid]) {
6437 *zone_end_pfn = zone_movable_pfn[nid];
6438
2a1e274a
MG
6439 /* Check if this whole range is within ZONE_MOVABLE */
6440 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6441 *zone_start_pfn = *zone_end_pfn;
6442 }
6443}
6444
c713216d
MG
6445/*
6446 * Return the number of pages a zone spans in a node, including holes
6447 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6448 */
bbe5d993 6449static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6450 unsigned long zone_type,
7960aedd
ZY
6451 unsigned long node_start_pfn,
6452 unsigned long node_end_pfn,
d91749c1 6453 unsigned long *zone_start_pfn,
854e8848 6454 unsigned long *zone_end_pfn)
c713216d 6455{
299c83dc
LF
6456 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6457 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6458 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6459 if (!node_start_pfn && !node_end_pfn)
6460 return 0;
6461
7960aedd 6462 /* Get the start and end of the zone */
299c83dc
LF
6463 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6464 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6465 adjust_zone_range_for_zone_movable(nid, zone_type,
6466 node_start_pfn, node_end_pfn,
d91749c1 6467 zone_start_pfn, zone_end_pfn);
c713216d
MG
6468
6469 /* Check that this node has pages within the zone's required range */
d91749c1 6470 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6471 return 0;
6472
6473 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6474 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6475 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6476
6477 /* Return the spanned pages */
d91749c1 6478 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6479}
6480
6481/*
6482 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6483 * then all holes in the requested range will be accounted for.
c713216d 6484 */
bbe5d993 6485unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6486 unsigned long range_start_pfn,
6487 unsigned long range_end_pfn)
6488{
96e907d1
TH
6489 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6490 unsigned long start_pfn, end_pfn;
6491 int i;
c713216d 6492
96e907d1
TH
6493 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6494 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6495 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6496 nr_absent -= end_pfn - start_pfn;
c713216d 6497 }
96e907d1 6498 return nr_absent;
c713216d
MG
6499}
6500
6501/**
6502 * absent_pages_in_range - Return number of page frames in holes within a range
6503 * @start_pfn: The start PFN to start searching for holes
6504 * @end_pfn: The end PFN to stop searching for holes
6505 *
a862f68a 6506 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6507 */
6508unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6509 unsigned long end_pfn)
6510{
6511 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6512}
6513
6514/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6515static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6516 unsigned long zone_type,
7960aedd 6517 unsigned long node_start_pfn,
854e8848 6518 unsigned long node_end_pfn)
c713216d 6519{
96e907d1
TH
6520 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6521 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6522 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6523 unsigned long nr_absent;
9c7cd687 6524
b5685e92 6525 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6526 if (!node_start_pfn && !node_end_pfn)
6527 return 0;
6528
96e907d1
TH
6529 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6530 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6531
2a1e274a
MG
6532 adjust_zone_range_for_zone_movable(nid, zone_type,
6533 node_start_pfn, node_end_pfn,
6534 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6535 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6536
6537 /*
6538 * ZONE_MOVABLE handling.
6539 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6540 * and vice versa.
6541 */
e506b996
XQ
6542 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6543 unsigned long start_pfn, end_pfn;
6544 struct memblock_region *r;
6545
6546 for_each_memblock(memory, r) {
6547 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6548 zone_start_pfn, zone_end_pfn);
6549 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6550 zone_start_pfn, zone_end_pfn);
6551
6552 if (zone_type == ZONE_MOVABLE &&
6553 memblock_is_mirror(r))
6554 nr_absent += end_pfn - start_pfn;
6555
6556 if (zone_type == ZONE_NORMAL &&
6557 !memblock_is_mirror(r))
6558 nr_absent += end_pfn - start_pfn;
342332e6
TI
6559 }
6560 }
6561
6562 return nr_absent;
c713216d 6563}
0e0b864e 6564
bbe5d993 6565static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6566 unsigned long node_start_pfn,
854e8848 6567 unsigned long node_end_pfn)
c713216d 6568{
febd5949 6569 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6570 enum zone_type i;
6571
febd5949
GZ
6572 for (i = 0; i < MAX_NR_ZONES; i++) {
6573 struct zone *zone = pgdat->node_zones + i;
d91749c1 6574 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6575 unsigned long spanned, absent;
febd5949 6576 unsigned long size, real_size;
c713216d 6577
854e8848
MR
6578 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6579 node_start_pfn,
6580 node_end_pfn,
6581 &zone_start_pfn,
6582 &zone_end_pfn);
6583 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6584 node_start_pfn,
6585 node_end_pfn);
3f08a302
MR
6586
6587 size = spanned;
6588 real_size = size - absent;
6589
d91749c1
TI
6590 if (size)
6591 zone->zone_start_pfn = zone_start_pfn;
6592 else
6593 zone->zone_start_pfn = 0;
febd5949
GZ
6594 zone->spanned_pages = size;
6595 zone->present_pages = real_size;
6596
6597 totalpages += size;
6598 realtotalpages += real_size;
6599 }
6600
6601 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6602 pgdat->node_present_pages = realtotalpages;
6603 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6604 realtotalpages);
6605}
6606
835c134e
MG
6607#ifndef CONFIG_SPARSEMEM
6608/*
6609 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6610 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6611 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6612 * round what is now in bits to nearest long in bits, then return it in
6613 * bytes.
6614 */
7c45512d 6615static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6616{
6617 unsigned long usemapsize;
6618
7c45512d 6619 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6620 usemapsize = roundup(zonesize, pageblock_nr_pages);
6621 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6622 usemapsize *= NR_PAGEBLOCK_BITS;
6623 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6624
6625 return usemapsize / 8;
6626}
6627
7cc2a959 6628static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6629 struct zone *zone,
6630 unsigned long zone_start_pfn,
6631 unsigned long zonesize)
835c134e 6632{
7c45512d 6633 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6634 zone->pageblock_flags = NULL;
23a7052a 6635 if (usemapsize) {
6782832e 6636 zone->pageblock_flags =
26fb3dae
MR
6637 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6638 pgdat->node_id);
23a7052a
MR
6639 if (!zone->pageblock_flags)
6640 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6641 usemapsize, zone->name, pgdat->node_id);
6642 }
835c134e
MG
6643}
6644#else
7c45512d
LT
6645static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6646 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6647#endif /* CONFIG_SPARSEMEM */
6648
d9c23400 6649#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6650
d9c23400 6651/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6652void __init set_pageblock_order(void)
d9c23400 6653{
955c1cd7
AM
6654 unsigned int order;
6655
d9c23400
MG
6656 /* Check that pageblock_nr_pages has not already been setup */
6657 if (pageblock_order)
6658 return;
6659
955c1cd7
AM
6660 if (HPAGE_SHIFT > PAGE_SHIFT)
6661 order = HUGETLB_PAGE_ORDER;
6662 else
6663 order = MAX_ORDER - 1;
6664
d9c23400
MG
6665 /*
6666 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6667 * This value may be variable depending on boot parameters on IA64 and
6668 * powerpc.
d9c23400
MG
6669 */
6670 pageblock_order = order;
6671}
6672#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6673
ba72cb8c
MG
6674/*
6675 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6676 * is unused as pageblock_order is set at compile-time. See
6677 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6678 * the kernel config
ba72cb8c 6679 */
03e85f9d 6680void __init set_pageblock_order(void)
ba72cb8c 6681{
ba72cb8c 6682}
d9c23400
MG
6683
6684#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6685
03e85f9d 6686static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6687 unsigned long present_pages)
01cefaef
JL
6688{
6689 unsigned long pages = spanned_pages;
6690
6691 /*
6692 * Provide a more accurate estimation if there are holes within
6693 * the zone and SPARSEMEM is in use. If there are holes within the
6694 * zone, each populated memory region may cost us one or two extra
6695 * memmap pages due to alignment because memmap pages for each
89d790ab 6696 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6697 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6698 */
6699 if (spanned_pages > present_pages + (present_pages >> 4) &&
6700 IS_ENABLED(CONFIG_SPARSEMEM))
6701 pages = present_pages;
6702
6703 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6704}
6705
ace1db39
OS
6706#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6707static void pgdat_init_split_queue(struct pglist_data *pgdat)
6708{
364c1eeb
YS
6709 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6710
6711 spin_lock_init(&ds_queue->split_queue_lock);
6712 INIT_LIST_HEAD(&ds_queue->split_queue);
6713 ds_queue->split_queue_len = 0;
ace1db39
OS
6714}
6715#else
6716static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6717#endif
6718
6719#ifdef CONFIG_COMPACTION
6720static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6721{
6722 init_waitqueue_head(&pgdat->kcompactd_wait);
6723}
6724#else
6725static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6726#endif
6727
03e85f9d 6728static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6729{
208d54e5 6730 pgdat_resize_init(pgdat);
ace1db39 6731
ace1db39
OS
6732 pgdat_init_split_queue(pgdat);
6733 pgdat_init_kcompactd(pgdat);
6734
1da177e4 6735 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6736 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6737
eefa864b 6738 pgdat_page_ext_init(pgdat);
a52633d8 6739 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6740 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6741}
6742
6743static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6744 unsigned long remaining_pages)
6745{
9705bea5 6746 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6747 zone_set_nid(zone, nid);
6748 zone->name = zone_names[idx];
6749 zone->zone_pgdat = NODE_DATA(nid);
6750 spin_lock_init(&zone->lock);
6751 zone_seqlock_init(zone);
6752 zone_pcp_init(zone);
6753}
6754
6755/*
6756 * Set up the zone data structures
6757 * - init pgdat internals
6758 * - init all zones belonging to this node
6759 *
6760 * NOTE: this function is only called during memory hotplug
6761 */
6762#ifdef CONFIG_MEMORY_HOTPLUG
6763void __ref free_area_init_core_hotplug(int nid)
6764{
6765 enum zone_type z;
6766 pg_data_t *pgdat = NODE_DATA(nid);
6767
6768 pgdat_init_internals(pgdat);
6769 for (z = 0; z < MAX_NR_ZONES; z++)
6770 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6771}
6772#endif
6773
6774/*
6775 * Set up the zone data structures:
6776 * - mark all pages reserved
6777 * - mark all memory queues empty
6778 * - clear the memory bitmaps
6779 *
6780 * NOTE: pgdat should get zeroed by caller.
6781 * NOTE: this function is only called during early init.
6782 */
6783static void __init free_area_init_core(struct pglist_data *pgdat)
6784{
6785 enum zone_type j;
6786 int nid = pgdat->node_id;
5f63b720 6787
03e85f9d 6788 pgdat_init_internals(pgdat);
385386cf
JW
6789 pgdat->per_cpu_nodestats = &boot_nodestats;
6790
1da177e4
LT
6791 for (j = 0; j < MAX_NR_ZONES; j++) {
6792 struct zone *zone = pgdat->node_zones + j;
e6943859 6793 unsigned long size, freesize, memmap_pages;
d91749c1 6794 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6795
febd5949 6796 size = zone->spanned_pages;
e6943859 6797 freesize = zone->present_pages;
1da177e4 6798
0e0b864e 6799 /*
9feedc9d 6800 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6801 * is used by this zone for memmap. This affects the watermark
6802 * and per-cpu initialisations
6803 */
e6943859 6804 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6805 if (!is_highmem_idx(j)) {
6806 if (freesize >= memmap_pages) {
6807 freesize -= memmap_pages;
6808 if (memmap_pages)
6809 printk(KERN_DEBUG
6810 " %s zone: %lu pages used for memmap\n",
6811 zone_names[j], memmap_pages);
6812 } else
1170532b 6813 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6814 zone_names[j], memmap_pages, freesize);
6815 }
0e0b864e 6816
6267276f 6817 /* Account for reserved pages */
9feedc9d
JL
6818 if (j == 0 && freesize > dma_reserve) {
6819 freesize -= dma_reserve;
d903ef9f 6820 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6821 zone_names[0], dma_reserve);
0e0b864e
MG
6822 }
6823
98d2b0eb 6824 if (!is_highmem_idx(j))
9feedc9d 6825 nr_kernel_pages += freesize;
01cefaef
JL
6826 /* Charge for highmem memmap if there are enough kernel pages */
6827 else if (nr_kernel_pages > memmap_pages * 2)
6828 nr_kernel_pages -= memmap_pages;
9feedc9d 6829 nr_all_pages += freesize;
1da177e4 6830
9feedc9d
JL
6831 /*
6832 * Set an approximate value for lowmem here, it will be adjusted
6833 * when the bootmem allocator frees pages into the buddy system.
6834 * And all highmem pages will be managed by the buddy system.
6835 */
03e85f9d 6836 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6837
d883c6cf 6838 if (!size)
1da177e4
LT
6839 continue;
6840
955c1cd7 6841 set_pageblock_order();
d883c6cf
JK
6842 setup_usemap(pgdat, zone, zone_start_pfn, size);
6843 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6844 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6845 }
6846}
6847
0cd842f9 6848#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6849static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6850{
b0aeba74 6851 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6852 unsigned long __maybe_unused offset = 0;
6853
1da177e4
LT
6854 /* Skip empty nodes */
6855 if (!pgdat->node_spanned_pages)
6856 return;
6857
b0aeba74
TL
6858 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6859 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6860 /* ia64 gets its own node_mem_map, before this, without bootmem */
6861 if (!pgdat->node_mem_map) {
b0aeba74 6862 unsigned long size, end;
d41dee36
AW
6863 struct page *map;
6864
e984bb43
BP
6865 /*
6866 * The zone's endpoints aren't required to be MAX_ORDER
6867 * aligned but the node_mem_map endpoints must be in order
6868 * for the buddy allocator to function correctly.
6869 */
108bcc96 6870 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6871 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6872 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6873 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6874 pgdat->node_id);
23a7052a
MR
6875 if (!map)
6876 panic("Failed to allocate %ld bytes for node %d memory map\n",
6877 size, pgdat->node_id);
a1c34a3b 6878 pgdat->node_mem_map = map + offset;
1da177e4 6879 }
0cd842f9
OS
6880 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6881 __func__, pgdat->node_id, (unsigned long)pgdat,
6882 (unsigned long)pgdat->node_mem_map);
12d810c1 6883#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6884 /*
6885 * With no DISCONTIG, the global mem_map is just set as node 0's
6886 */
c713216d 6887 if (pgdat == NODE_DATA(0)) {
1da177e4 6888 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6889 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6890 mem_map -= offset;
c713216d 6891 }
1da177e4
LT
6892#endif
6893}
0cd842f9
OS
6894#else
6895static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6896#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6897
0188dc98
OS
6898#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6899static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6900{
0188dc98
OS
6901 pgdat->first_deferred_pfn = ULONG_MAX;
6902}
6903#else
6904static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6905#endif
6906
854e8848 6907static void __init free_area_init_node(int nid)
1da177e4 6908{
9109fb7b 6909 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6910 unsigned long start_pfn = 0;
6911 unsigned long end_pfn = 0;
9109fb7b 6912
88fdf75d 6913 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 6914 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 6915
854e8848 6916 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 6917
1da177e4 6918 pgdat->node_id = nid;
854e8848 6919 pgdat->node_start_pfn = start_pfn;
75ef7184 6920 pgdat->per_cpu_nodestats = NULL;
854e8848 6921
8d29e18a 6922 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6923 (u64)start_pfn << PAGE_SHIFT,
6924 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 6925 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
6926
6927 alloc_node_mem_map(pgdat);
0188dc98 6928 pgdat_set_deferred_range(pgdat);
1da177e4 6929
7f3eb55b 6930 free_area_init_core(pgdat);
1da177e4
LT
6931}
6932
bc9331a1 6933void __init free_area_init_memoryless_node(int nid)
3f08a302 6934{
854e8848 6935 free_area_init_node(nid);
3f08a302
MR
6936}
6937
aca52c39 6938#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6939/*
4b094b78
DH
6940 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6941 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6942 */
4b094b78 6943static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6944{
6945 unsigned long pfn;
6946 u64 pgcnt = 0;
6947
6948 for (pfn = spfn; pfn < epfn; pfn++) {
6949 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6950 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6951 + pageblock_nr_pages - 1;
6952 continue;
6953 }
4b094b78
DH
6954 /*
6955 * Use a fake node/zone (0) for now. Some of these pages
6956 * (in memblock.reserved but not in memblock.memory) will
6957 * get re-initialized via reserve_bootmem_region() later.
6958 */
6959 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6960 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
6961 pgcnt++;
6962 }
6963
6964 return pgcnt;
6965}
6966
a4a3ede2
PT
6967/*
6968 * Only struct pages that are backed by physical memory are zeroed and
6969 * initialized by going through __init_single_page(). But, there are some
6970 * struct pages which are reserved in memblock allocator and their fields
6971 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 6972 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
6973 *
6974 * This function also addresses a similar issue where struct pages are left
6975 * uninitialized because the physical address range is not covered by
6976 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
6977 * layout is manually configured via memmap=, or when the highest physical
6978 * address (max_pfn) does not end on a section boundary.
a4a3ede2 6979 */
4b094b78 6980static void __init init_unavailable_mem(void)
a4a3ede2
PT
6981{
6982 phys_addr_t start, end;
a4a3ede2 6983 u64 i, pgcnt;
907ec5fc 6984 phys_addr_t next = 0;
a4a3ede2
PT
6985
6986 /*
907ec5fc 6987 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6988 */
6989 pgcnt = 0;
907ec5fc
NH
6990 for_each_mem_range(i, &memblock.memory, NULL,
6991 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 6992 if (next < start)
4b094b78
DH
6993 pgcnt += init_unavailable_range(PFN_DOWN(next),
6994 PFN_UP(start));
907ec5fc
NH
6995 next = end;
6996 }
e822969c
DH
6997
6998 /*
6999 * Early sections always have a fully populated memmap for the whole
7000 * section - see pfn_valid(). If the last section has holes at the
7001 * end and that section is marked "online", the memmap will be
7002 * considered initialized. Make sure that memmap has a well defined
7003 * state.
7004 */
4b094b78
DH
7005 pgcnt += init_unavailable_range(PFN_DOWN(next),
7006 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7007
a4a3ede2
PT
7008 /*
7009 * Struct pages that do not have backing memory. This could be because
7010 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7011 */
7012 if (pgcnt)
907ec5fc 7013 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7014}
4b094b78
DH
7015#else
7016static inline void __init init_unavailable_mem(void)
7017{
7018}
aca52c39 7019#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7020
418508c1
MS
7021#if MAX_NUMNODES > 1
7022/*
7023 * Figure out the number of possible node ids.
7024 */
f9872caf 7025void __init setup_nr_node_ids(void)
418508c1 7026{
904a9553 7027 unsigned int highest;
418508c1 7028
904a9553 7029 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7030 nr_node_ids = highest + 1;
7031}
418508c1
MS
7032#endif
7033
1e01979c
TH
7034/**
7035 * node_map_pfn_alignment - determine the maximum internode alignment
7036 *
7037 * This function should be called after node map is populated and sorted.
7038 * It calculates the maximum power of two alignment which can distinguish
7039 * all the nodes.
7040 *
7041 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7042 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7043 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7044 * shifted, 1GiB is enough and this function will indicate so.
7045 *
7046 * This is used to test whether pfn -> nid mapping of the chosen memory
7047 * model has fine enough granularity to avoid incorrect mapping for the
7048 * populated node map.
7049 *
a862f68a 7050 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7051 * requirement (single node).
7052 */
7053unsigned long __init node_map_pfn_alignment(void)
7054{
7055 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7056 unsigned long start, end, mask;
98fa15f3 7057 int last_nid = NUMA_NO_NODE;
c13291a5 7058 int i, nid;
1e01979c 7059
c13291a5 7060 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7061 if (!start || last_nid < 0 || last_nid == nid) {
7062 last_nid = nid;
7063 last_end = end;
7064 continue;
7065 }
7066
7067 /*
7068 * Start with a mask granular enough to pin-point to the
7069 * start pfn and tick off bits one-by-one until it becomes
7070 * too coarse to separate the current node from the last.
7071 */
7072 mask = ~((1 << __ffs(start)) - 1);
7073 while (mask && last_end <= (start & (mask << 1)))
7074 mask <<= 1;
7075
7076 /* accumulate all internode masks */
7077 accl_mask |= mask;
7078 }
7079
7080 /* convert mask to number of pages */
7081 return ~accl_mask + 1;
7082}
7083
c713216d
MG
7084/**
7085 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7086 *
a862f68a 7087 * Return: the minimum PFN based on information provided via
7d018176 7088 * memblock_set_node().
c713216d
MG
7089 */
7090unsigned long __init find_min_pfn_with_active_regions(void)
7091{
8a1b25fe 7092 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7093}
7094
37b07e41
LS
7095/*
7096 * early_calculate_totalpages()
7097 * Sum pages in active regions for movable zone.
4b0ef1fe 7098 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7099 */
484f51f8 7100static unsigned long __init early_calculate_totalpages(void)
7e63efef 7101{
7e63efef 7102 unsigned long totalpages = 0;
c13291a5
TH
7103 unsigned long start_pfn, end_pfn;
7104 int i, nid;
7105
7106 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7107 unsigned long pages = end_pfn - start_pfn;
7e63efef 7108
37b07e41
LS
7109 totalpages += pages;
7110 if (pages)
4b0ef1fe 7111 node_set_state(nid, N_MEMORY);
37b07e41 7112 }
b8af2941 7113 return totalpages;
7e63efef
MG
7114}
7115
2a1e274a
MG
7116/*
7117 * Find the PFN the Movable zone begins in each node. Kernel memory
7118 * is spread evenly between nodes as long as the nodes have enough
7119 * memory. When they don't, some nodes will have more kernelcore than
7120 * others
7121 */
b224ef85 7122static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7123{
7124 int i, nid;
7125 unsigned long usable_startpfn;
7126 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7127 /* save the state before borrow the nodemask */
4b0ef1fe 7128 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7129 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7130 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7131 struct memblock_region *r;
b2f3eebe
TC
7132
7133 /* Need to find movable_zone earlier when movable_node is specified. */
7134 find_usable_zone_for_movable();
7135
7136 /*
7137 * If movable_node is specified, ignore kernelcore and movablecore
7138 * options.
7139 */
7140 if (movable_node_is_enabled()) {
136199f0
EM
7141 for_each_memblock(memory, r) {
7142 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7143 continue;
7144
d622abf7 7145 nid = memblock_get_region_node(r);
b2f3eebe 7146
136199f0 7147 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7148 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7149 min(usable_startpfn, zone_movable_pfn[nid]) :
7150 usable_startpfn;
7151 }
7152
7153 goto out2;
7154 }
2a1e274a 7155
342332e6
TI
7156 /*
7157 * If kernelcore=mirror is specified, ignore movablecore option
7158 */
7159 if (mirrored_kernelcore) {
7160 bool mem_below_4gb_not_mirrored = false;
7161
7162 for_each_memblock(memory, r) {
7163 if (memblock_is_mirror(r))
7164 continue;
7165
d622abf7 7166 nid = memblock_get_region_node(r);
342332e6
TI
7167
7168 usable_startpfn = memblock_region_memory_base_pfn(r);
7169
7170 if (usable_startpfn < 0x100000) {
7171 mem_below_4gb_not_mirrored = true;
7172 continue;
7173 }
7174
7175 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7176 min(usable_startpfn, zone_movable_pfn[nid]) :
7177 usable_startpfn;
7178 }
7179
7180 if (mem_below_4gb_not_mirrored)
633bf2fe 7181 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7182
7183 goto out2;
7184 }
7185
7e63efef 7186 /*
a5c6d650
DR
7187 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7188 * amount of necessary memory.
7189 */
7190 if (required_kernelcore_percent)
7191 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7192 10000UL;
7193 if (required_movablecore_percent)
7194 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7195 10000UL;
7196
7197 /*
7198 * If movablecore= was specified, calculate what size of
7e63efef
MG
7199 * kernelcore that corresponds so that memory usable for
7200 * any allocation type is evenly spread. If both kernelcore
7201 * and movablecore are specified, then the value of kernelcore
7202 * will be used for required_kernelcore if it's greater than
7203 * what movablecore would have allowed.
7204 */
7205 if (required_movablecore) {
7e63efef
MG
7206 unsigned long corepages;
7207
7208 /*
7209 * Round-up so that ZONE_MOVABLE is at least as large as what
7210 * was requested by the user
7211 */
7212 required_movablecore =
7213 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7214 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7215 corepages = totalpages - required_movablecore;
7216
7217 required_kernelcore = max(required_kernelcore, corepages);
7218 }
7219
bde304bd
XQ
7220 /*
7221 * If kernelcore was not specified or kernelcore size is larger
7222 * than totalpages, there is no ZONE_MOVABLE.
7223 */
7224 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7225 goto out;
2a1e274a
MG
7226
7227 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7228 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7229
7230restart:
7231 /* Spread kernelcore memory as evenly as possible throughout nodes */
7232 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7233 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7234 unsigned long start_pfn, end_pfn;
7235
2a1e274a
MG
7236 /*
7237 * Recalculate kernelcore_node if the division per node
7238 * now exceeds what is necessary to satisfy the requested
7239 * amount of memory for the kernel
7240 */
7241 if (required_kernelcore < kernelcore_node)
7242 kernelcore_node = required_kernelcore / usable_nodes;
7243
7244 /*
7245 * As the map is walked, we track how much memory is usable
7246 * by the kernel using kernelcore_remaining. When it is
7247 * 0, the rest of the node is usable by ZONE_MOVABLE
7248 */
7249 kernelcore_remaining = kernelcore_node;
7250
7251 /* Go through each range of PFNs within this node */
c13291a5 7252 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7253 unsigned long size_pages;
7254
c13291a5 7255 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7256 if (start_pfn >= end_pfn)
7257 continue;
7258
7259 /* Account for what is only usable for kernelcore */
7260 if (start_pfn < usable_startpfn) {
7261 unsigned long kernel_pages;
7262 kernel_pages = min(end_pfn, usable_startpfn)
7263 - start_pfn;
7264
7265 kernelcore_remaining -= min(kernel_pages,
7266 kernelcore_remaining);
7267 required_kernelcore -= min(kernel_pages,
7268 required_kernelcore);
7269
7270 /* Continue if range is now fully accounted */
7271 if (end_pfn <= usable_startpfn) {
7272
7273 /*
7274 * Push zone_movable_pfn to the end so
7275 * that if we have to rebalance
7276 * kernelcore across nodes, we will
7277 * not double account here
7278 */
7279 zone_movable_pfn[nid] = end_pfn;
7280 continue;
7281 }
7282 start_pfn = usable_startpfn;
7283 }
7284
7285 /*
7286 * The usable PFN range for ZONE_MOVABLE is from
7287 * start_pfn->end_pfn. Calculate size_pages as the
7288 * number of pages used as kernelcore
7289 */
7290 size_pages = end_pfn - start_pfn;
7291 if (size_pages > kernelcore_remaining)
7292 size_pages = kernelcore_remaining;
7293 zone_movable_pfn[nid] = start_pfn + size_pages;
7294
7295 /*
7296 * Some kernelcore has been met, update counts and
7297 * break if the kernelcore for this node has been
b8af2941 7298 * satisfied
2a1e274a
MG
7299 */
7300 required_kernelcore -= min(required_kernelcore,
7301 size_pages);
7302 kernelcore_remaining -= size_pages;
7303 if (!kernelcore_remaining)
7304 break;
7305 }
7306 }
7307
7308 /*
7309 * If there is still required_kernelcore, we do another pass with one
7310 * less node in the count. This will push zone_movable_pfn[nid] further
7311 * along on the nodes that still have memory until kernelcore is
b8af2941 7312 * satisfied
2a1e274a
MG
7313 */
7314 usable_nodes--;
7315 if (usable_nodes && required_kernelcore > usable_nodes)
7316 goto restart;
7317
b2f3eebe 7318out2:
2a1e274a
MG
7319 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7320 for (nid = 0; nid < MAX_NUMNODES; nid++)
7321 zone_movable_pfn[nid] =
7322 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7323
20e6926d 7324out:
66918dcd 7325 /* restore the node_state */
4b0ef1fe 7326 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7327}
7328
4b0ef1fe
LJ
7329/* Any regular or high memory on that node ? */
7330static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7331{
37b07e41
LS
7332 enum zone_type zone_type;
7333
4b0ef1fe 7334 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7335 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7336 if (populated_zone(zone)) {
7b0e0c0e
OS
7337 if (IS_ENABLED(CONFIG_HIGHMEM))
7338 node_set_state(nid, N_HIGH_MEMORY);
7339 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7340 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7341 break;
7342 }
37b07e41 7343 }
37b07e41
LS
7344}
7345
51930df5
MR
7346/*
7347 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7348 * such cases we allow max_zone_pfn sorted in the descending order
7349 */
7350bool __weak arch_has_descending_max_zone_pfns(void)
7351{
7352 return false;
7353}
7354
c713216d 7355/**
9691a071 7356 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7357 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7358 *
7359 * This will call free_area_init_node() for each active node in the system.
7d018176 7360 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7361 * zone in each node and their holes is calculated. If the maximum PFN
7362 * between two adjacent zones match, it is assumed that the zone is empty.
7363 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7364 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7365 * starts where the previous one ended. For example, ZONE_DMA32 starts
7366 * at arch_max_dma_pfn.
7367 */
9691a071 7368void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7369{
c13291a5 7370 unsigned long start_pfn, end_pfn;
51930df5
MR
7371 int i, nid, zone;
7372 bool descending;
a6af2bc3 7373
c713216d
MG
7374 /* Record where the zone boundaries are */
7375 memset(arch_zone_lowest_possible_pfn, 0,
7376 sizeof(arch_zone_lowest_possible_pfn));
7377 memset(arch_zone_highest_possible_pfn, 0,
7378 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7379
7380 start_pfn = find_min_pfn_with_active_regions();
51930df5 7381 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7382
7383 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7384 if (descending)
7385 zone = MAX_NR_ZONES - i - 1;
7386 else
7387 zone = i;
7388
7389 if (zone == ZONE_MOVABLE)
2a1e274a 7390 continue;
90cae1fe 7391
51930df5
MR
7392 end_pfn = max(max_zone_pfn[zone], start_pfn);
7393 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7394 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7395
7396 start_pfn = end_pfn;
c713216d 7397 }
2a1e274a
MG
7398
7399 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7400 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7401 find_zone_movable_pfns_for_nodes();
c713216d 7402
c713216d 7403 /* Print out the zone ranges */
f88dfff5 7404 pr_info("Zone ranges:\n");
2a1e274a
MG
7405 for (i = 0; i < MAX_NR_ZONES; i++) {
7406 if (i == ZONE_MOVABLE)
7407 continue;
f88dfff5 7408 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7409 if (arch_zone_lowest_possible_pfn[i] ==
7410 arch_zone_highest_possible_pfn[i])
f88dfff5 7411 pr_cont("empty\n");
72f0ba02 7412 else
8d29e18a
JG
7413 pr_cont("[mem %#018Lx-%#018Lx]\n",
7414 (u64)arch_zone_lowest_possible_pfn[i]
7415 << PAGE_SHIFT,
7416 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7417 << PAGE_SHIFT) - 1);
2a1e274a
MG
7418 }
7419
7420 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7421 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7422 for (i = 0; i < MAX_NUMNODES; i++) {
7423 if (zone_movable_pfn[i])
8d29e18a
JG
7424 pr_info(" Node %d: %#018Lx\n", i,
7425 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7426 }
c713216d 7427
f46edbd1
DW
7428 /*
7429 * Print out the early node map, and initialize the
7430 * subsection-map relative to active online memory ranges to
7431 * enable future "sub-section" extensions of the memory map.
7432 */
f88dfff5 7433 pr_info("Early memory node ranges\n");
f46edbd1 7434 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7435 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7436 (u64)start_pfn << PAGE_SHIFT,
7437 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7438 subsection_map_init(start_pfn, end_pfn - start_pfn);
7439 }
c713216d
MG
7440
7441 /* Initialise every node */
708614e6 7442 mminit_verify_pageflags_layout();
8ef82866 7443 setup_nr_node_ids();
4b094b78 7444 init_unavailable_mem();
c713216d
MG
7445 for_each_online_node(nid) {
7446 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7447 free_area_init_node(nid);
37b07e41
LS
7448
7449 /* Any memory on that node */
7450 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7451 node_set_state(nid, N_MEMORY);
7452 check_for_memory(pgdat, nid);
c713216d
MG
7453 }
7454}
2a1e274a 7455
a5c6d650
DR
7456static int __init cmdline_parse_core(char *p, unsigned long *core,
7457 unsigned long *percent)
2a1e274a
MG
7458{
7459 unsigned long long coremem;
a5c6d650
DR
7460 char *endptr;
7461
2a1e274a
MG
7462 if (!p)
7463 return -EINVAL;
7464
a5c6d650
DR
7465 /* Value may be a percentage of total memory, otherwise bytes */
7466 coremem = simple_strtoull(p, &endptr, 0);
7467 if (*endptr == '%') {
7468 /* Paranoid check for percent values greater than 100 */
7469 WARN_ON(coremem > 100);
2a1e274a 7470
a5c6d650
DR
7471 *percent = coremem;
7472 } else {
7473 coremem = memparse(p, &p);
7474 /* Paranoid check that UL is enough for the coremem value */
7475 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7476
a5c6d650
DR
7477 *core = coremem >> PAGE_SHIFT;
7478 *percent = 0UL;
7479 }
2a1e274a
MG
7480 return 0;
7481}
ed7ed365 7482
7e63efef
MG
7483/*
7484 * kernelcore=size sets the amount of memory for use for allocations that
7485 * cannot be reclaimed or migrated.
7486 */
7487static int __init cmdline_parse_kernelcore(char *p)
7488{
342332e6
TI
7489 /* parse kernelcore=mirror */
7490 if (parse_option_str(p, "mirror")) {
7491 mirrored_kernelcore = true;
7492 return 0;
7493 }
7494
a5c6d650
DR
7495 return cmdline_parse_core(p, &required_kernelcore,
7496 &required_kernelcore_percent);
7e63efef
MG
7497}
7498
7499/*
7500 * movablecore=size sets the amount of memory for use for allocations that
7501 * can be reclaimed or migrated.
7502 */
7503static int __init cmdline_parse_movablecore(char *p)
7504{
a5c6d650
DR
7505 return cmdline_parse_core(p, &required_movablecore,
7506 &required_movablecore_percent);
7e63efef
MG
7507}
7508
ed7ed365 7509early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7510early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7511
c3d5f5f0
JL
7512void adjust_managed_page_count(struct page *page, long count)
7513{
9705bea5 7514 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7515 totalram_pages_add(count);
3dcc0571
JL
7516#ifdef CONFIG_HIGHMEM
7517 if (PageHighMem(page))
ca79b0c2 7518 totalhigh_pages_add(count);
3dcc0571 7519#endif
c3d5f5f0 7520}
3dcc0571 7521EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7522
e5cb113f 7523unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7524{
11199692
JL
7525 void *pos;
7526 unsigned long pages = 0;
69afade7 7527
11199692
JL
7528 start = (void *)PAGE_ALIGN((unsigned long)start);
7529 end = (void *)((unsigned long)end & PAGE_MASK);
7530 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7531 struct page *page = virt_to_page(pos);
7532 void *direct_map_addr;
7533
7534 /*
7535 * 'direct_map_addr' might be different from 'pos'
7536 * because some architectures' virt_to_page()
7537 * work with aliases. Getting the direct map
7538 * address ensures that we get a _writeable_
7539 * alias for the memset().
7540 */
7541 direct_map_addr = page_address(page);
dbe67df4 7542 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7543 memset(direct_map_addr, poison, PAGE_SIZE);
7544
7545 free_reserved_page(page);
69afade7
JL
7546 }
7547
7548 if (pages && s)
adb1fe9a
JP
7549 pr_info("Freeing %s memory: %ldK\n",
7550 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7551
7552 return pages;
7553}
7554
cfa11e08
JL
7555#ifdef CONFIG_HIGHMEM
7556void free_highmem_page(struct page *page)
7557{
7558 __free_reserved_page(page);
ca79b0c2 7559 totalram_pages_inc();
9705bea5 7560 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7561 totalhigh_pages_inc();
cfa11e08
JL
7562}
7563#endif
7564
7ee3d4e8
JL
7565
7566void __init mem_init_print_info(const char *str)
7567{
7568 unsigned long physpages, codesize, datasize, rosize, bss_size;
7569 unsigned long init_code_size, init_data_size;
7570
7571 physpages = get_num_physpages();
7572 codesize = _etext - _stext;
7573 datasize = _edata - _sdata;
7574 rosize = __end_rodata - __start_rodata;
7575 bss_size = __bss_stop - __bss_start;
7576 init_data_size = __init_end - __init_begin;
7577 init_code_size = _einittext - _sinittext;
7578
7579 /*
7580 * Detect special cases and adjust section sizes accordingly:
7581 * 1) .init.* may be embedded into .data sections
7582 * 2) .init.text.* may be out of [__init_begin, __init_end],
7583 * please refer to arch/tile/kernel/vmlinux.lds.S.
7584 * 3) .rodata.* may be embedded into .text or .data sections.
7585 */
7586#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7587 do { \
7588 if (start <= pos && pos < end && size > adj) \
7589 size -= adj; \
7590 } while (0)
7ee3d4e8
JL
7591
7592 adj_init_size(__init_begin, __init_end, init_data_size,
7593 _sinittext, init_code_size);
7594 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7595 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7596 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7597 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7598
7599#undef adj_init_size
7600
756a025f 7601 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7602#ifdef CONFIG_HIGHMEM
756a025f 7603 ", %luK highmem"
7ee3d4e8 7604#endif
756a025f
JP
7605 "%s%s)\n",
7606 nr_free_pages() << (PAGE_SHIFT - 10),
7607 physpages << (PAGE_SHIFT - 10),
7608 codesize >> 10, datasize >> 10, rosize >> 10,
7609 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7610 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7611 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7612#ifdef CONFIG_HIGHMEM
ca79b0c2 7613 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7614#endif
756a025f 7615 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7616}
7617
0e0b864e 7618/**
88ca3b94
RD
7619 * set_dma_reserve - set the specified number of pages reserved in the first zone
7620 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7621 *
013110a7 7622 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7623 * In the DMA zone, a significant percentage may be consumed by kernel image
7624 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7625 * function may optionally be used to account for unfreeable pages in the
7626 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7627 * smaller per-cpu batchsize.
0e0b864e
MG
7628 */
7629void __init set_dma_reserve(unsigned long new_dma_reserve)
7630{
7631 dma_reserve = new_dma_reserve;
7632}
7633
005fd4bb 7634static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7635{
1da177e4 7636
005fd4bb
SAS
7637 lru_add_drain_cpu(cpu);
7638 drain_pages(cpu);
9f8f2172 7639
005fd4bb
SAS
7640 /*
7641 * Spill the event counters of the dead processor
7642 * into the current processors event counters.
7643 * This artificially elevates the count of the current
7644 * processor.
7645 */
7646 vm_events_fold_cpu(cpu);
9f8f2172 7647
005fd4bb
SAS
7648 /*
7649 * Zero the differential counters of the dead processor
7650 * so that the vm statistics are consistent.
7651 *
7652 * This is only okay since the processor is dead and cannot
7653 * race with what we are doing.
7654 */
7655 cpu_vm_stats_fold(cpu);
7656 return 0;
1da177e4 7657}
1da177e4 7658
e03a5125
NP
7659#ifdef CONFIG_NUMA
7660int hashdist = HASHDIST_DEFAULT;
7661
7662static int __init set_hashdist(char *str)
7663{
7664 if (!str)
7665 return 0;
7666 hashdist = simple_strtoul(str, &str, 0);
7667 return 1;
7668}
7669__setup("hashdist=", set_hashdist);
7670#endif
7671
1da177e4
LT
7672void __init page_alloc_init(void)
7673{
005fd4bb
SAS
7674 int ret;
7675
e03a5125
NP
7676#ifdef CONFIG_NUMA
7677 if (num_node_state(N_MEMORY) == 1)
7678 hashdist = 0;
7679#endif
7680
005fd4bb
SAS
7681 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7682 "mm/page_alloc:dead", NULL,
7683 page_alloc_cpu_dead);
7684 WARN_ON(ret < 0);
1da177e4
LT
7685}
7686
cb45b0e9 7687/*
34b10060 7688 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7689 * or min_free_kbytes changes.
7690 */
7691static void calculate_totalreserve_pages(void)
7692{
7693 struct pglist_data *pgdat;
7694 unsigned long reserve_pages = 0;
2f6726e5 7695 enum zone_type i, j;
cb45b0e9
HA
7696
7697 for_each_online_pgdat(pgdat) {
281e3726
MG
7698
7699 pgdat->totalreserve_pages = 0;
7700
cb45b0e9
HA
7701 for (i = 0; i < MAX_NR_ZONES; i++) {
7702 struct zone *zone = pgdat->node_zones + i;
3484b2de 7703 long max = 0;
9705bea5 7704 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7705
7706 /* Find valid and maximum lowmem_reserve in the zone */
7707 for (j = i; j < MAX_NR_ZONES; j++) {
7708 if (zone->lowmem_reserve[j] > max)
7709 max = zone->lowmem_reserve[j];
7710 }
7711
41858966
MG
7712 /* we treat the high watermark as reserved pages. */
7713 max += high_wmark_pages(zone);
cb45b0e9 7714
3d6357de
AK
7715 if (max > managed_pages)
7716 max = managed_pages;
a8d01437 7717
281e3726 7718 pgdat->totalreserve_pages += max;
a8d01437 7719
cb45b0e9
HA
7720 reserve_pages += max;
7721 }
7722 }
7723 totalreserve_pages = reserve_pages;
7724}
7725
1da177e4
LT
7726/*
7727 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7728 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7729 * has a correct pages reserved value, so an adequate number of
7730 * pages are left in the zone after a successful __alloc_pages().
7731 */
7732static void setup_per_zone_lowmem_reserve(void)
7733{
7734 struct pglist_data *pgdat;
2f6726e5 7735 enum zone_type j, idx;
1da177e4 7736
ec936fc5 7737 for_each_online_pgdat(pgdat) {
1da177e4
LT
7738 for (j = 0; j < MAX_NR_ZONES; j++) {
7739 struct zone *zone = pgdat->node_zones + j;
9705bea5 7740 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7741
7742 zone->lowmem_reserve[j] = 0;
7743
2f6726e5
CL
7744 idx = j;
7745 while (idx) {
1da177e4
LT
7746 struct zone *lower_zone;
7747
2f6726e5 7748 idx--;
1da177e4 7749 lower_zone = pgdat->node_zones + idx;
d3cda233 7750
f6366156
BH
7751 if (!sysctl_lowmem_reserve_ratio[idx] ||
7752 !zone_managed_pages(lower_zone)) {
d3cda233 7753 lower_zone->lowmem_reserve[j] = 0;
f6366156 7754 continue;
d3cda233
JK
7755 } else {
7756 lower_zone->lowmem_reserve[j] =
7757 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7758 }
9705bea5 7759 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7760 }
7761 }
7762 }
cb45b0e9
HA
7763
7764 /* update totalreserve_pages */
7765 calculate_totalreserve_pages();
1da177e4
LT
7766}
7767
cfd3da1e 7768static void __setup_per_zone_wmarks(void)
1da177e4
LT
7769{
7770 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7771 unsigned long lowmem_pages = 0;
7772 struct zone *zone;
7773 unsigned long flags;
7774
7775 /* Calculate total number of !ZONE_HIGHMEM pages */
7776 for_each_zone(zone) {
7777 if (!is_highmem(zone))
9705bea5 7778 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7779 }
7780
7781 for_each_zone(zone) {
ac924c60
AM
7782 u64 tmp;
7783
1125b4e3 7784 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7785 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7786 do_div(tmp, lowmem_pages);
1da177e4
LT
7787 if (is_highmem(zone)) {
7788 /*
669ed175
NP
7789 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7790 * need highmem pages, so cap pages_min to a small
7791 * value here.
7792 *
41858966 7793 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7794 * deltas control async page reclaim, and so should
669ed175 7795 * not be capped for highmem.
1da177e4 7796 */
90ae8d67 7797 unsigned long min_pages;
1da177e4 7798
9705bea5 7799 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7800 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7801 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7802 } else {
669ed175
NP
7803 /*
7804 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7805 * proportionate to the zone's size.
7806 */
a9214443 7807 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7808 }
7809
795ae7a0
JW
7810 /*
7811 * Set the kswapd watermarks distance according to the
7812 * scale factor in proportion to available memory, but
7813 * ensure a minimum size on small systems.
7814 */
7815 tmp = max_t(u64, tmp >> 2,
9705bea5 7816 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7817 watermark_scale_factor, 10000));
7818
aa092591 7819 zone->watermark_boost = 0;
a9214443
MG
7820 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7821 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7822
1125b4e3 7823 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7824 }
cb45b0e9
HA
7825
7826 /* update totalreserve_pages */
7827 calculate_totalreserve_pages();
1da177e4
LT
7828}
7829
cfd3da1e
MG
7830/**
7831 * setup_per_zone_wmarks - called when min_free_kbytes changes
7832 * or when memory is hot-{added|removed}
7833 *
7834 * Ensures that the watermark[min,low,high] values for each zone are set
7835 * correctly with respect to min_free_kbytes.
7836 */
7837void setup_per_zone_wmarks(void)
7838{
b93e0f32
MH
7839 static DEFINE_SPINLOCK(lock);
7840
7841 spin_lock(&lock);
cfd3da1e 7842 __setup_per_zone_wmarks();
b93e0f32 7843 spin_unlock(&lock);
cfd3da1e
MG
7844}
7845
1da177e4
LT
7846/*
7847 * Initialise min_free_kbytes.
7848 *
7849 * For small machines we want it small (128k min). For large machines
8beeae86 7850 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7851 * bandwidth does not increase linearly with machine size. We use
7852 *
b8af2941 7853 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7854 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7855 *
7856 * which yields
7857 *
7858 * 16MB: 512k
7859 * 32MB: 724k
7860 * 64MB: 1024k
7861 * 128MB: 1448k
7862 * 256MB: 2048k
7863 * 512MB: 2896k
7864 * 1024MB: 4096k
7865 * 2048MB: 5792k
7866 * 4096MB: 8192k
7867 * 8192MB: 11584k
7868 * 16384MB: 16384k
7869 */
1b79acc9 7870int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7871{
7872 unsigned long lowmem_kbytes;
5f12733e 7873 int new_min_free_kbytes;
1da177e4
LT
7874
7875 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7876 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7877
7878 if (new_min_free_kbytes > user_min_free_kbytes) {
7879 min_free_kbytes = new_min_free_kbytes;
7880 if (min_free_kbytes < 128)
7881 min_free_kbytes = 128;
ee8eb9a5
JS
7882 if (min_free_kbytes > 262144)
7883 min_free_kbytes = 262144;
5f12733e
MH
7884 } else {
7885 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7886 new_min_free_kbytes, user_min_free_kbytes);
7887 }
bc75d33f 7888 setup_per_zone_wmarks();
a6cccdc3 7889 refresh_zone_stat_thresholds();
1da177e4 7890 setup_per_zone_lowmem_reserve();
6423aa81
JK
7891
7892#ifdef CONFIG_NUMA
7893 setup_min_unmapped_ratio();
7894 setup_min_slab_ratio();
7895#endif
7896
4aab2be0
VB
7897 khugepaged_min_free_kbytes_update();
7898
1da177e4
LT
7899 return 0;
7900}
e08d3fdf 7901postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
7902
7903/*
b8af2941 7904 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7905 * that we can call two helper functions whenever min_free_kbytes
7906 * changes.
7907 */
cccad5b9 7908int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 7909 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7910{
da8c757b
HP
7911 int rc;
7912
7913 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7914 if (rc)
7915 return rc;
7916
5f12733e
MH
7917 if (write) {
7918 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7919 setup_per_zone_wmarks();
5f12733e 7920 }
1da177e4
LT
7921 return 0;
7922}
7923
795ae7a0 7924int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 7925 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
7926{
7927 int rc;
7928
7929 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7930 if (rc)
7931 return rc;
7932
7933 if (write)
7934 setup_per_zone_wmarks();
7935
7936 return 0;
7937}
7938
9614634f 7939#ifdef CONFIG_NUMA
6423aa81 7940static void setup_min_unmapped_ratio(void)
9614634f 7941{
6423aa81 7942 pg_data_t *pgdat;
9614634f 7943 struct zone *zone;
9614634f 7944
a5f5f91d 7945 for_each_online_pgdat(pgdat)
81cbcbc2 7946 pgdat->min_unmapped_pages = 0;
a5f5f91d 7947
9614634f 7948 for_each_zone(zone)
9705bea5
AK
7949 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7950 sysctl_min_unmapped_ratio) / 100;
9614634f 7951}
0ff38490 7952
6423aa81
JK
7953
7954int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7955 void *buffer, size_t *length, loff_t *ppos)
0ff38490 7956{
0ff38490
CL
7957 int rc;
7958
8d65af78 7959 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7960 if (rc)
7961 return rc;
7962
6423aa81
JK
7963 setup_min_unmapped_ratio();
7964
7965 return 0;
7966}
7967
7968static void setup_min_slab_ratio(void)
7969{
7970 pg_data_t *pgdat;
7971 struct zone *zone;
7972
a5f5f91d
MG
7973 for_each_online_pgdat(pgdat)
7974 pgdat->min_slab_pages = 0;
7975
0ff38490 7976 for_each_zone(zone)
9705bea5
AK
7977 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7978 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7979}
7980
7981int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 7982 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
7983{
7984 int rc;
7985
7986 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7987 if (rc)
7988 return rc;
7989
7990 setup_min_slab_ratio();
7991
0ff38490
CL
7992 return 0;
7993}
9614634f
CL
7994#endif
7995
1da177e4
LT
7996/*
7997 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7998 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7999 * whenever sysctl_lowmem_reserve_ratio changes.
8000 *
8001 * The reserve ratio obviously has absolutely no relation with the
41858966 8002 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8003 * if in function of the boot time zone sizes.
8004 */
cccad5b9 8005int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8006 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8007{
86aaf255
BH
8008 int i;
8009
8d65af78 8010 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8011
8012 for (i = 0; i < MAX_NR_ZONES; i++) {
8013 if (sysctl_lowmem_reserve_ratio[i] < 1)
8014 sysctl_lowmem_reserve_ratio[i] = 0;
8015 }
8016
1da177e4
LT
8017 setup_per_zone_lowmem_reserve();
8018 return 0;
8019}
8020
cb1ef534
MG
8021static void __zone_pcp_update(struct zone *zone)
8022{
8023 unsigned int cpu;
8024
8025 for_each_possible_cpu(cpu)
8026 pageset_set_high_and_batch(zone,
8027 per_cpu_ptr(zone->pageset, cpu));
8028}
8029
8ad4b1fb
RS
8030/*
8031 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8032 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8033 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8034 */
cccad5b9 8035int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8036 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8037{
8038 struct zone *zone;
7cd2b0a3 8039 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8040 int ret;
8041
7cd2b0a3
DR
8042 mutex_lock(&pcp_batch_high_lock);
8043 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8044
8d65af78 8045 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8046 if (!write || ret < 0)
8047 goto out;
8048
8049 /* Sanity checking to avoid pcp imbalance */
8050 if (percpu_pagelist_fraction &&
8051 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8052 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8053 ret = -EINVAL;
8054 goto out;
8055 }
8056
8057 /* No change? */
8058 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8059 goto out;
c8e251fa 8060
cb1ef534
MG
8061 for_each_populated_zone(zone)
8062 __zone_pcp_update(zone);
7cd2b0a3 8063out:
c8e251fa 8064 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8065 return ret;
8ad4b1fb
RS
8066}
8067
f6f34b43
SD
8068#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8069/*
8070 * Returns the number of pages that arch has reserved but
8071 * is not known to alloc_large_system_hash().
8072 */
8073static unsigned long __init arch_reserved_kernel_pages(void)
8074{
8075 return 0;
8076}
8077#endif
8078
9017217b
PT
8079/*
8080 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8081 * machines. As memory size is increased the scale is also increased but at
8082 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8083 * quadruples the scale is increased by one, which means the size of hash table
8084 * only doubles, instead of quadrupling as well.
8085 * Because 32-bit systems cannot have large physical memory, where this scaling
8086 * makes sense, it is disabled on such platforms.
8087 */
8088#if __BITS_PER_LONG > 32
8089#define ADAPT_SCALE_BASE (64ul << 30)
8090#define ADAPT_SCALE_SHIFT 2
8091#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8092#endif
8093
1da177e4
LT
8094/*
8095 * allocate a large system hash table from bootmem
8096 * - it is assumed that the hash table must contain an exact power-of-2
8097 * quantity of entries
8098 * - limit is the number of hash buckets, not the total allocation size
8099 */
8100void *__init alloc_large_system_hash(const char *tablename,
8101 unsigned long bucketsize,
8102 unsigned long numentries,
8103 int scale,
8104 int flags,
8105 unsigned int *_hash_shift,
8106 unsigned int *_hash_mask,
31fe62b9
TB
8107 unsigned long low_limit,
8108 unsigned long high_limit)
1da177e4 8109{
31fe62b9 8110 unsigned long long max = high_limit;
1da177e4
LT
8111 unsigned long log2qty, size;
8112 void *table = NULL;
3749a8f0 8113 gfp_t gfp_flags;
ec11408a 8114 bool virt;
1da177e4
LT
8115
8116 /* allow the kernel cmdline to have a say */
8117 if (!numentries) {
8118 /* round applicable memory size up to nearest megabyte */
04903664 8119 numentries = nr_kernel_pages;
f6f34b43 8120 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8121
8122 /* It isn't necessary when PAGE_SIZE >= 1MB */
8123 if (PAGE_SHIFT < 20)
8124 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8125
9017217b
PT
8126#if __BITS_PER_LONG > 32
8127 if (!high_limit) {
8128 unsigned long adapt;
8129
8130 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8131 adapt <<= ADAPT_SCALE_SHIFT)
8132 scale++;
8133 }
8134#endif
8135
1da177e4
LT
8136 /* limit to 1 bucket per 2^scale bytes of low memory */
8137 if (scale > PAGE_SHIFT)
8138 numentries >>= (scale - PAGE_SHIFT);
8139 else
8140 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8141
8142 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8143 if (unlikely(flags & HASH_SMALL)) {
8144 /* Makes no sense without HASH_EARLY */
8145 WARN_ON(!(flags & HASH_EARLY));
8146 if (!(numentries >> *_hash_shift)) {
8147 numentries = 1UL << *_hash_shift;
8148 BUG_ON(!numentries);
8149 }
8150 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8151 numentries = PAGE_SIZE / bucketsize;
1da177e4 8152 }
6e692ed3 8153 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8154
8155 /* limit allocation size to 1/16 total memory by default */
8156 if (max == 0) {
8157 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8158 do_div(max, bucketsize);
8159 }
074b8517 8160 max = min(max, 0x80000000ULL);
1da177e4 8161
31fe62b9
TB
8162 if (numentries < low_limit)
8163 numentries = low_limit;
1da177e4
LT
8164 if (numentries > max)
8165 numentries = max;
8166
f0d1b0b3 8167 log2qty = ilog2(numentries);
1da177e4 8168
3749a8f0 8169 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8170 do {
ec11408a 8171 virt = false;
1da177e4 8172 size = bucketsize << log2qty;
ea1f5f37
PT
8173 if (flags & HASH_EARLY) {
8174 if (flags & HASH_ZERO)
26fb3dae 8175 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8176 else
7e1c4e27
MR
8177 table = memblock_alloc_raw(size,
8178 SMP_CACHE_BYTES);
ec11408a 8179 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8180 table = __vmalloc(size, gfp_flags);
ec11408a 8181 virt = true;
ea1f5f37 8182 } else {
1037b83b
ED
8183 /*
8184 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8185 * some pages at the end of hash table which
8186 * alloc_pages_exact() automatically does
1037b83b 8187 */
ec11408a
NP
8188 table = alloc_pages_exact(size, gfp_flags);
8189 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8190 }
8191 } while (!table && size > PAGE_SIZE && --log2qty);
8192
8193 if (!table)
8194 panic("Failed to allocate %s hash table\n", tablename);
8195
ec11408a
NP
8196 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8197 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8198 virt ? "vmalloc" : "linear");
1da177e4
LT
8199
8200 if (_hash_shift)
8201 *_hash_shift = log2qty;
8202 if (_hash_mask)
8203 *_hash_mask = (1 << log2qty) - 1;
8204
8205 return table;
8206}
a117e66e 8207
a5d76b54 8208/*
80934513 8209 * This function checks whether pageblock includes unmovable pages or not.
80934513 8210 *
b8af2941 8211 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8212 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8213 * check without lock_page also may miss some movable non-lru pages at
8214 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8215 *
8216 * Returns a page without holding a reference. If the caller wants to
047b9967 8217 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8218 * cannot get removed (e.g., via memory unplug) concurrently.
8219 *
a5d76b54 8220 */
4a55c047
QC
8221struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8222 int migratetype, int flags)
49ac8255 8223{
1a9f2191
QC
8224 unsigned long iter = 0;
8225 unsigned long pfn = page_to_pfn(page);
6a654e36 8226 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8227
1a9f2191
QC
8228 if (is_migrate_cma_page(page)) {
8229 /*
8230 * CMA allocations (alloc_contig_range) really need to mark
8231 * isolate CMA pageblocks even when they are not movable in fact
8232 * so consider them movable here.
8233 */
8234 if (is_migrate_cma(migratetype))
4a55c047 8235 return NULL;
1a9f2191 8236
3d680bdf 8237 return page;
1a9f2191 8238 }
4da2ce25 8239
6a654e36 8240 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8241 if (!pfn_valid_within(pfn + iter))
49ac8255 8242 continue;
29723fcc 8243
fe4c86c9 8244 page = pfn_to_page(pfn + iter);
c8721bbb 8245
c9c510dc
DH
8246 /*
8247 * Both, bootmem allocations and memory holes are marked
8248 * PG_reserved and are unmovable. We can even have unmovable
8249 * allocations inside ZONE_MOVABLE, for example when
8250 * specifying "movablecore".
8251 */
d7ab3672 8252 if (PageReserved(page))
3d680bdf 8253 return page;
d7ab3672 8254
9d789999
MH
8255 /*
8256 * If the zone is movable and we have ruled out all reserved
8257 * pages then it should be reasonably safe to assume the rest
8258 * is movable.
8259 */
8260 if (zone_idx(zone) == ZONE_MOVABLE)
8261 continue;
8262
c8721bbb
NH
8263 /*
8264 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8265 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8266 * We need not scan over tail pages because we don't
c8721bbb
NH
8267 * handle each tail page individually in migration.
8268 */
1da2f328 8269 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8270 struct page *head = compound_head(page);
8271 unsigned int skip_pages;
464c7ffb 8272
1da2f328
RR
8273 if (PageHuge(page)) {
8274 if (!hugepage_migration_supported(page_hstate(head)))
8275 return page;
8276 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8277 return page;
1da2f328 8278 }
464c7ffb 8279
d8c6546b 8280 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8281 iter += skip_pages - 1;
c8721bbb
NH
8282 continue;
8283 }
8284
97d255c8
MK
8285 /*
8286 * We can't use page_count without pin a page
8287 * because another CPU can free compound page.
8288 * This check already skips compound tails of THP
0139aa7b 8289 * because their page->_refcount is zero at all time.
97d255c8 8290 */
fe896d18 8291 if (!page_ref_count(page)) {
49ac8255
KH
8292 if (PageBuddy(page))
8293 iter += (1 << page_order(page)) - 1;
8294 continue;
8295 }
97d255c8 8296
b023f468
WC
8297 /*
8298 * The HWPoisoned page may be not in buddy system, and
8299 * page_count() is not 0.
8300 */
756d25be 8301 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8302 continue;
8303
aa218795
DH
8304 /*
8305 * We treat all PageOffline() pages as movable when offlining
8306 * to give drivers a chance to decrement their reference count
8307 * in MEM_GOING_OFFLINE in order to indicate that these pages
8308 * can be offlined as there are no direct references anymore.
8309 * For actually unmovable PageOffline() where the driver does
8310 * not support this, we will fail later when trying to actually
8311 * move these pages that still have a reference count > 0.
8312 * (false negatives in this function only)
8313 */
8314 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8315 continue;
8316
fe4c86c9 8317 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8318 continue;
8319
49ac8255 8320 /*
6b4f7799
JW
8321 * If there are RECLAIMABLE pages, we need to check
8322 * it. But now, memory offline itself doesn't call
8323 * shrink_node_slabs() and it still to be fixed.
49ac8255 8324 */
3d680bdf 8325 return page;
49ac8255 8326 }
4a55c047 8327 return NULL;
49ac8255
KH
8328}
8329
8df995f6 8330#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8331static unsigned long pfn_max_align_down(unsigned long pfn)
8332{
8333 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8334 pageblock_nr_pages) - 1);
8335}
8336
8337static unsigned long pfn_max_align_up(unsigned long pfn)
8338{
8339 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8340 pageblock_nr_pages));
8341}
8342
041d3a8c 8343/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8344static int __alloc_contig_migrate_range(struct compact_control *cc,
8345 unsigned long start, unsigned long end)
041d3a8c
MN
8346{
8347 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8348 unsigned int nr_reclaimed;
041d3a8c
MN
8349 unsigned long pfn = start;
8350 unsigned int tries = 0;
8351 int ret = 0;
8b94e0b8
JK
8352 struct migration_target_control mtc = {
8353 .nid = zone_to_nid(cc->zone),
8354 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8355 };
041d3a8c 8356
be49a6e1 8357 migrate_prep();
041d3a8c 8358
bb13ffeb 8359 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8360 if (fatal_signal_pending(current)) {
8361 ret = -EINTR;
8362 break;
8363 }
8364
bb13ffeb
MG
8365 if (list_empty(&cc->migratepages)) {
8366 cc->nr_migratepages = 0;
edc2ca61 8367 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8368 if (!pfn) {
8369 ret = -EINTR;
8370 break;
8371 }
8372 tries = 0;
8373 } else if (++tries == 5) {
8374 ret = ret < 0 ? ret : -EBUSY;
8375 break;
8376 }
8377
beb51eaa
MK
8378 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8379 &cc->migratepages);
8380 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8381
8b94e0b8
JK
8382 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8383 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8384 }
2a6f5124
SP
8385 if (ret < 0) {
8386 putback_movable_pages(&cc->migratepages);
8387 return ret;
8388 }
8389 return 0;
041d3a8c
MN
8390}
8391
8392/**
8393 * alloc_contig_range() -- tries to allocate given range of pages
8394 * @start: start PFN to allocate
8395 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8396 * @migratetype: migratetype of the underlaying pageblocks (either
8397 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8398 * in range must have the same migratetype and it must
8399 * be either of the two.
ca96b625 8400 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8401 *
8402 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8403 * aligned. The PFN range must belong to a single zone.
041d3a8c 8404 *
2c7452a0
MK
8405 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8406 * pageblocks in the range. Once isolated, the pageblocks should not
8407 * be modified by others.
041d3a8c 8408 *
a862f68a 8409 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8410 * pages which PFN is in [start, end) are allocated for the caller and
8411 * need to be freed with free_contig_range().
8412 */
0815f3d8 8413int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8414 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8415{
041d3a8c 8416 unsigned long outer_start, outer_end;
d00181b9
KS
8417 unsigned int order;
8418 int ret = 0;
041d3a8c 8419
bb13ffeb
MG
8420 struct compact_control cc = {
8421 .nr_migratepages = 0,
8422 .order = -1,
8423 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8424 .mode = MIGRATE_SYNC,
bb13ffeb 8425 .ignore_skip_hint = true,
2583d671 8426 .no_set_skip_hint = true,
7dea19f9 8427 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8428 .alloc_contig = true,
bb13ffeb
MG
8429 };
8430 INIT_LIST_HEAD(&cc.migratepages);
8431
041d3a8c
MN
8432 /*
8433 * What we do here is we mark all pageblocks in range as
8434 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8435 * have different sizes, and due to the way page allocator
8436 * work, we align the range to biggest of the two pages so
8437 * that page allocator won't try to merge buddies from
8438 * different pageblocks and change MIGRATE_ISOLATE to some
8439 * other migration type.
8440 *
8441 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8442 * migrate the pages from an unaligned range (ie. pages that
8443 * we are interested in). This will put all the pages in
8444 * range back to page allocator as MIGRATE_ISOLATE.
8445 *
8446 * When this is done, we take the pages in range from page
8447 * allocator removing them from the buddy system. This way
8448 * page allocator will never consider using them.
8449 *
8450 * This lets us mark the pageblocks back as
8451 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8452 * aligned range but not in the unaligned, original range are
8453 * put back to page allocator so that buddy can use them.
8454 */
8455
8456 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8457 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8458 if (ret < 0)
86a595f9 8459 return ret;
041d3a8c 8460
8ef5849f
JK
8461 /*
8462 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8463 * So, just fall through. test_pages_isolated() has a tracepoint
8464 * which will report the busy page.
8465 *
8466 * It is possible that busy pages could become available before
8467 * the call to test_pages_isolated, and the range will actually be
8468 * allocated. So, if we fall through be sure to clear ret so that
8469 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8470 */
bb13ffeb 8471 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8472 if (ret && ret != -EBUSY)
041d3a8c 8473 goto done;
63cd4489 8474 ret =0;
041d3a8c
MN
8475
8476 /*
8477 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8478 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8479 * more, all pages in [start, end) are free in page allocator.
8480 * What we are going to do is to allocate all pages from
8481 * [start, end) (that is remove them from page allocator).
8482 *
8483 * The only problem is that pages at the beginning and at the
8484 * end of interesting range may be not aligned with pages that
8485 * page allocator holds, ie. they can be part of higher order
8486 * pages. Because of this, we reserve the bigger range and
8487 * once this is done free the pages we are not interested in.
8488 *
8489 * We don't have to hold zone->lock here because the pages are
8490 * isolated thus they won't get removed from buddy.
8491 */
8492
8493 lru_add_drain_all();
041d3a8c
MN
8494
8495 order = 0;
8496 outer_start = start;
8497 while (!PageBuddy(pfn_to_page(outer_start))) {
8498 if (++order >= MAX_ORDER) {
8ef5849f
JK
8499 outer_start = start;
8500 break;
041d3a8c
MN
8501 }
8502 outer_start &= ~0UL << order;
8503 }
8504
8ef5849f
JK
8505 if (outer_start != start) {
8506 order = page_order(pfn_to_page(outer_start));
8507
8508 /*
8509 * outer_start page could be small order buddy page and
8510 * it doesn't include start page. Adjust outer_start
8511 * in this case to report failed page properly
8512 * on tracepoint in test_pages_isolated()
8513 */
8514 if (outer_start + (1UL << order) <= start)
8515 outer_start = start;
8516 }
8517
041d3a8c 8518 /* Make sure the range is really isolated. */
756d25be 8519 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8520 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8521 __func__, outer_start, end);
041d3a8c
MN
8522 ret = -EBUSY;
8523 goto done;
8524 }
8525
49f223a9 8526 /* Grab isolated pages from freelists. */
bb13ffeb 8527 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8528 if (!outer_end) {
8529 ret = -EBUSY;
8530 goto done;
8531 }
8532
8533 /* Free head and tail (if any) */
8534 if (start != outer_start)
8535 free_contig_range(outer_start, start - outer_start);
8536 if (end != outer_end)
8537 free_contig_range(end, outer_end - end);
8538
8539done:
8540 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8541 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8542 return ret;
8543}
255f5985 8544EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8545
8546static int __alloc_contig_pages(unsigned long start_pfn,
8547 unsigned long nr_pages, gfp_t gfp_mask)
8548{
8549 unsigned long end_pfn = start_pfn + nr_pages;
8550
8551 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8552 gfp_mask);
8553}
8554
8555static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8556 unsigned long nr_pages)
8557{
8558 unsigned long i, end_pfn = start_pfn + nr_pages;
8559 struct page *page;
8560
8561 for (i = start_pfn; i < end_pfn; i++) {
8562 page = pfn_to_online_page(i);
8563 if (!page)
8564 return false;
8565
8566 if (page_zone(page) != z)
8567 return false;
8568
8569 if (PageReserved(page))
8570 return false;
8571
8572 if (page_count(page) > 0)
8573 return false;
8574
8575 if (PageHuge(page))
8576 return false;
8577 }
8578 return true;
8579}
8580
8581static bool zone_spans_last_pfn(const struct zone *zone,
8582 unsigned long start_pfn, unsigned long nr_pages)
8583{
8584 unsigned long last_pfn = start_pfn + nr_pages - 1;
8585
8586 return zone_spans_pfn(zone, last_pfn);
8587}
8588
8589/**
8590 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8591 * @nr_pages: Number of contiguous pages to allocate
8592 * @gfp_mask: GFP mask to limit search and used during compaction
8593 * @nid: Target node
8594 * @nodemask: Mask for other possible nodes
8595 *
8596 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8597 * on an applicable zonelist to find a contiguous pfn range which can then be
8598 * tried for allocation with alloc_contig_range(). This routine is intended
8599 * for allocation requests which can not be fulfilled with the buddy allocator.
8600 *
8601 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8602 * power of two then the alignment is guaranteed to be to the given nr_pages
8603 * (e.g. 1GB request would be aligned to 1GB).
8604 *
8605 * Allocated pages can be freed with free_contig_range() or by manually calling
8606 * __free_page() on each allocated page.
8607 *
8608 * Return: pointer to contiguous pages on success, or NULL if not successful.
8609 */
8610struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8611 int nid, nodemask_t *nodemask)
8612{
8613 unsigned long ret, pfn, flags;
8614 struct zonelist *zonelist;
8615 struct zone *zone;
8616 struct zoneref *z;
8617
8618 zonelist = node_zonelist(nid, gfp_mask);
8619 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8620 gfp_zone(gfp_mask), nodemask) {
8621 spin_lock_irqsave(&zone->lock, flags);
8622
8623 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8624 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8625 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8626 /*
8627 * We release the zone lock here because
8628 * alloc_contig_range() will also lock the zone
8629 * at some point. If there's an allocation
8630 * spinning on this lock, it may win the race
8631 * and cause alloc_contig_range() to fail...
8632 */
8633 spin_unlock_irqrestore(&zone->lock, flags);
8634 ret = __alloc_contig_pages(pfn, nr_pages,
8635 gfp_mask);
8636 if (!ret)
8637 return pfn_to_page(pfn);
8638 spin_lock_irqsave(&zone->lock, flags);
8639 }
8640 pfn += nr_pages;
8641 }
8642 spin_unlock_irqrestore(&zone->lock, flags);
8643 }
8644 return NULL;
8645}
4eb0716e 8646#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8647
4eb0716e 8648void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8649{
bcc2b02f
MS
8650 unsigned int count = 0;
8651
8652 for (; nr_pages--; pfn++) {
8653 struct page *page = pfn_to_page(pfn);
8654
8655 count += page_count(page) != 1;
8656 __free_page(page);
8657 }
8658 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8659}
255f5985 8660EXPORT_SYMBOL(free_contig_range);
041d3a8c 8661
0a647f38
CS
8662/*
8663 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8664 * page high values need to be recalulated.
8665 */
4ed7e022
JL
8666void __meminit zone_pcp_update(struct zone *zone)
8667{
c8e251fa 8668 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8669 __zone_pcp_update(zone);
c8e251fa 8670 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8671}
4ed7e022 8672
340175b7
JL
8673void zone_pcp_reset(struct zone *zone)
8674{
8675 unsigned long flags;
5a883813
MK
8676 int cpu;
8677 struct per_cpu_pageset *pset;
340175b7
JL
8678
8679 /* avoid races with drain_pages() */
8680 local_irq_save(flags);
8681 if (zone->pageset != &boot_pageset) {
5a883813
MK
8682 for_each_online_cpu(cpu) {
8683 pset = per_cpu_ptr(zone->pageset, cpu);
8684 drain_zonestat(zone, pset);
8685 }
340175b7
JL
8686 free_percpu(zone->pageset);
8687 zone->pageset = &boot_pageset;
8688 }
8689 local_irq_restore(flags);
8690}
8691
6dcd73d7 8692#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8693/*
b9eb6319
JK
8694 * All pages in the range must be in a single zone and isolated
8695 * before calling this.
0c0e6195 8696 */
5557c766 8697unsigned long
0c0e6195
KH
8698__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8699{
8700 struct page *page;
8701 struct zone *zone;
0ee5f4f3 8702 unsigned int order;
0c0e6195
KH
8703 unsigned long pfn;
8704 unsigned long flags;
5557c766
MH
8705 unsigned long offlined_pages = 0;
8706
0c0e6195
KH
8707 /* find the first valid pfn */
8708 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8709 if (pfn_valid(pfn))
8710 break;
8711 if (pfn == end_pfn)
5557c766
MH
8712 return offlined_pages;
8713
2d070eab 8714 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8715 zone = page_zone(pfn_to_page(pfn));
8716 spin_lock_irqsave(&zone->lock, flags);
8717 pfn = start_pfn;
8718 while (pfn < end_pfn) {
8719 if (!pfn_valid(pfn)) {
8720 pfn++;
8721 continue;
8722 }
8723 page = pfn_to_page(pfn);
b023f468
WC
8724 /*
8725 * The HWPoisoned page may be not in buddy system, and
8726 * page_count() is not 0.
8727 */
8728 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8729 pfn++;
5557c766 8730 offlined_pages++;
b023f468
WC
8731 continue;
8732 }
aa218795
DH
8733 /*
8734 * At this point all remaining PageOffline() pages have a
8735 * reference count of 0 and can simply be skipped.
8736 */
8737 if (PageOffline(page)) {
8738 BUG_ON(page_count(page));
8739 BUG_ON(PageBuddy(page));
8740 pfn++;
8741 offlined_pages++;
8742 continue;
8743 }
b023f468 8744
0c0e6195
KH
8745 BUG_ON(page_count(page));
8746 BUG_ON(!PageBuddy(page));
8747 order = page_order(page);
5557c766 8748 offlined_pages += 1 << order;
6ab01363 8749 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8750 pfn += (1 << order);
8751 }
8752 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8753
8754 return offlined_pages;
0c0e6195
KH
8755}
8756#endif
8d22ba1b 8757
8d22ba1b
WF
8758bool is_free_buddy_page(struct page *page)
8759{
8760 struct zone *zone = page_zone(page);
8761 unsigned long pfn = page_to_pfn(page);
8762 unsigned long flags;
7aeb09f9 8763 unsigned int order;
8d22ba1b
WF
8764
8765 spin_lock_irqsave(&zone->lock, flags);
8766 for (order = 0; order < MAX_ORDER; order++) {
8767 struct page *page_head = page - (pfn & ((1 << order) - 1));
8768
8769 if (PageBuddy(page_head) && page_order(page_head) >= order)
8770 break;
8771 }
8772 spin_unlock_irqrestore(&zone->lock, flags);
8773
8774 return order < MAX_ORDER;
8775}
d4ae9916
NH
8776
8777#ifdef CONFIG_MEMORY_FAILURE
8778/*
8779 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8780 * test is performed under the zone lock to prevent a race against page
8781 * allocation.
8782 */
8783bool set_hwpoison_free_buddy_page(struct page *page)
8784{
8785 struct zone *zone = page_zone(page);
8786 unsigned long pfn = page_to_pfn(page);
8787 unsigned long flags;
8788 unsigned int order;
8789 bool hwpoisoned = false;
8790
8791 spin_lock_irqsave(&zone->lock, flags);
8792 for (order = 0; order < MAX_ORDER; order++) {
8793 struct page *page_head = page - (pfn & ((1 << order) - 1));
8794
8795 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8796 if (!TestSetPageHWPoison(page))
8797 hwpoisoned = true;
8798 break;
8799 }
8800 }
8801 spin_unlock_irqrestore(&zone->lock, flags);
8802
8803 return hwpoisoned;
8804}
8805#endif