mm/page_alloc.c: rename free_pages_check_bad() to check_free_page_bad()
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
36e66c55 77#include "page_reporting.h"
1da177e4 78
c8e251fa
CS
79/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 81#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 82
72812019
LS
83#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84DEFINE_PER_CPU(int, numa_node);
85EXPORT_PER_CPU_SYMBOL(numa_node);
86#endif
87
4518085e
KW
88DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
7aac7898
LS
90#ifdef CONFIG_HAVE_MEMORYLESS_NODES
91/*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
8b885f53
JY
106static DEFINE_MUTEX(pcpu_drain_mutex);
107static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
bbe5d993
OS
338static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
339static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 340static unsigned long required_kernelcore __initdata;
a5c6d650 341static unsigned long required_kernelcore_percent __initdata;
7f16f91f 342static unsigned long required_movablecore __initdata;
a5c6d650 343static unsigned long required_movablecore_percent __initdata;
bbe5d993 344static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 345static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
346
347/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
348int movable_zone;
349EXPORT_SYMBOL(movable_zone);
c713216d 350
418508c1 351#if MAX_NUMNODES > 1
b9726c26 352unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 353unsigned int nr_online_nodes __read_mostly = 1;
418508c1 354EXPORT_SYMBOL(nr_node_ids);
62bc62a8 355EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
356#endif
357
9ef9acb0
MG
358int page_group_by_mobility_disabled __read_mostly;
359
3a80a7fa 360#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
361/*
362 * During boot we initialize deferred pages on-demand, as needed, but once
363 * page_alloc_init_late() has finished, the deferred pages are all initialized,
364 * and we can permanently disable that path.
365 */
366static DEFINE_STATIC_KEY_TRUE(deferred_pages);
367
368/*
369 * Calling kasan_free_pages() only after deferred memory initialization
370 * has completed. Poisoning pages during deferred memory init will greatly
371 * lengthen the process and cause problem in large memory systems as the
372 * deferred pages initialization is done with interrupt disabled.
373 *
374 * Assuming that there will be no reference to those newly initialized
375 * pages before they are ever allocated, this should have no effect on
376 * KASAN memory tracking as the poison will be properly inserted at page
377 * allocation time. The only corner case is when pages are allocated by
378 * on-demand allocation and then freed again before the deferred pages
379 * initialization is done, but this is not likely to happen.
380 */
381static inline void kasan_free_nondeferred_pages(struct page *page, int order)
382{
383 if (!static_branch_unlikely(&deferred_pages))
384 kasan_free_pages(page, order);
385}
386
3a80a7fa 387/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 388static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 389{
ef70b6f4
MG
390 int nid = early_pfn_to_nid(pfn);
391
392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
393 return true;
394
395 return false;
396}
397
398/*
d3035be4 399 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
400 * later in the boot cycle when it can be parallelised.
401 */
d3035be4
PT
402static bool __meminit
403defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 404{
d3035be4
PT
405 static unsigned long prev_end_pfn, nr_initialised;
406
407 /*
408 * prev_end_pfn static that contains the end of previous zone
409 * No need to protect because called very early in boot before smp_init.
410 */
411 if (prev_end_pfn != end_pfn) {
412 prev_end_pfn = end_pfn;
413 nr_initialised = 0;
414 }
415
3c2c6488 416 /* Always populate low zones for address-constrained allocations */
d3035be4 417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 418 return false;
23b68cfa
WY
419
420 /*
421 * We start only with one section of pages, more pages are added as
422 * needed until the rest of deferred pages are initialized.
423 */
d3035be4 424 nr_initialised++;
23b68cfa 425 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
426 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
427 NODE_DATA(nid)->first_deferred_pfn = pfn;
428 return true;
3a80a7fa 429 }
d3035be4 430 return false;
3a80a7fa
MG
431}
432#else
3c0c12cc
WL
433#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
434
3a80a7fa
MG
435static inline bool early_page_uninitialised(unsigned long pfn)
436{
437 return false;
438}
439
d3035be4 440static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 441{
d3035be4 442 return false;
3a80a7fa
MG
443}
444#endif
445
0b423ca2
MG
446/* Return a pointer to the bitmap storing bits affecting a block of pages */
447static inline unsigned long *get_pageblock_bitmap(struct page *page,
448 unsigned long pfn)
449{
450#ifdef CONFIG_SPARSEMEM
f1eca35a 451 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
452#else
453 return page_zone(page)->pageblock_flags;
454#endif /* CONFIG_SPARSEMEM */
455}
456
457static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
458{
459#ifdef CONFIG_SPARSEMEM
460 pfn &= (PAGES_PER_SECTION-1);
461 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
462#else
463 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
464 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
465#endif /* CONFIG_SPARSEMEM */
466}
467
468/**
469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470 * @page: The page within the block of interest
471 * @pfn: The target page frame number
472 * @end_bitidx: The last bit of interest to retrieve
473 * @mask: mask of bits that the caller is interested in
474 *
475 * Return: pageblock_bits flags
476 */
477static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
478 unsigned long pfn,
479 unsigned long end_bitidx,
480 unsigned long mask)
481{
482 unsigned long *bitmap;
483 unsigned long bitidx, word_bitidx;
484 unsigned long word;
485
486 bitmap = get_pageblock_bitmap(page, pfn);
487 bitidx = pfn_to_bitidx(page, pfn);
488 word_bitidx = bitidx / BITS_PER_LONG;
489 bitidx &= (BITS_PER_LONG-1);
490
491 word = bitmap[word_bitidx];
492 bitidx += end_bitidx;
493 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
494}
495
496unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
497 unsigned long end_bitidx,
498 unsigned long mask)
499{
500 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
501}
502
503static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
504{
505 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
506}
507
508/**
509 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
510 * @page: The page within the block of interest
511 * @flags: The flags to set
512 * @pfn: The target page frame number
513 * @end_bitidx: The last bit of interest
514 * @mask: mask of bits that the caller is interested in
515 */
516void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
517 unsigned long pfn,
518 unsigned long end_bitidx,
519 unsigned long mask)
520{
521 unsigned long *bitmap;
522 unsigned long bitidx, word_bitidx;
523 unsigned long old_word, word;
524
525 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 526 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
527
528 bitmap = get_pageblock_bitmap(page, pfn);
529 bitidx = pfn_to_bitidx(page, pfn);
530 word_bitidx = bitidx / BITS_PER_LONG;
531 bitidx &= (BITS_PER_LONG-1);
532
533 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534
535 bitidx += end_bitidx;
536 mask <<= (BITS_PER_LONG - bitidx - 1);
537 flags <<= (BITS_PER_LONG - bitidx - 1);
538
539 word = READ_ONCE(bitmap[word_bitidx]);
540 for (;;) {
541 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
542 if (word == old_word)
543 break;
544 word = old_word;
545 }
546}
3a80a7fa 547
ee6f509c 548void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 549{
5d0f3f72
KM
550 if (unlikely(page_group_by_mobility_disabled &&
551 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
552 migratetype = MIGRATE_UNMOVABLE;
553
b2a0ac88
MG
554 set_pageblock_flags_group(page, (unsigned long)migratetype,
555 PB_migrate, PB_migrate_end);
556}
557
13e7444b 558#ifdef CONFIG_DEBUG_VM
c6a57e19 559static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 560{
bdc8cb98
DH
561 int ret = 0;
562 unsigned seq;
563 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 564 unsigned long sp, start_pfn;
c6a57e19 565
bdc8cb98
DH
566 do {
567 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
568 start_pfn = zone->zone_start_pfn;
569 sp = zone->spanned_pages;
108bcc96 570 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
571 ret = 1;
572 } while (zone_span_seqretry(zone, seq));
573
b5e6a5a2 574 if (ret)
613813e8
DH
575 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
576 pfn, zone_to_nid(zone), zone->name,
577 start_pfn, start_pfn + sp);
b5e6a5a2 578
bdc8cb98 579 return ret;
c6a57e19
DH
580}
581
582static int page_is_consistent(struct zone *zone, struct page *page)
583{
14e07298 584 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 585 return 0;
1da177e4 586 if (zone != page_zone(page))
c6a57e19
DH
587 return 0;
588
589 return 1;
590}
591/*
592 * Temporary debugging check for pages not lying within a given zone.
593 */
d73d3c9f 594static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
595{
596 if (page_outside_zone_boundaries(zone, page))
1da177e4 597 return 1;
c6a57e19
DH
598 if (!page_is_consistent(zone, page))
599 return 1;
600
1da177e4
LT
601 return 0;
602}
13e7444b 603#else
d73d3c9f 604static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
605{
606 return 0;
607}
608#endif
609
82a3241a 610static void bad_page(struct page *page, const char *reason)
1da177e4 611{
d936cf9b
HD
612 static unsigned long resume;
613 static unsigned long nr_shown;
614 static unsigned long nr_unshown;
615
616 /*
617 * Allow a burst of 60 reports, then keep quiet for that minute;
618 * or allow a steady drip of one report per second.
619 */
620 if (nr_shown == 60) {
621 if (time_before(jiffies, resume)) {
622 nr_unshown++;
623 goto out;
624 }
625 if (nr_unshown) {
ff8e8116 626 pr_alert(
1e9e6365 627 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
628 nr_unshown);
629 nr_unshown = 0;
630 }
631 nr_shown = 0;
632 }
633 if (nr_shown++ == 0)
634 resume = jiffies + 60 * HZ;
635
ff8e8116 636 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 637 current->comm, page_to_pfn(page));
ff8e8116 638 __dump_page(page, reason);
4e462112 639 dump_page_owner(page);
3dc14741 640
4f31888c 641 print_modules();
1da177e4 642 dump_stack();
d936cf9b 643out:
8cc3b392 644 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 645 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
647}
648
1da177e4
LT
649/*
650 * Higher-order pages are called "compound pages". They are structured thusly:
651 *
1d798ca3 652 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 653 *
1d798ca3
KS
654 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
655 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 656 *
1d798ca3
KS
657 * The first tail page's ->compound_dtor holds the offset in array of compound
658 * page destructors. See compound_page_dtors.
1da177e4 659 *
1d798ca3 660 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 661 * This usage means that zero-order pages may not be compound.
1da177e4 662 */
d98c7a09 663
9a982250 664void free_compound_page(struct page *page)
d98c7a09 665{
7ae88534 666 mem_cgroup_uncharge(page);
d85f3385 667 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
668}
669
d00181b9 670void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
671{
672 int i;
673 int nr_pages = 1 << order;
674
f1e61557 675 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
676 set_compound_order(page, order);
677 __SetPageHead(page);
678 for (i = 1; i < nr_pages; i++) {
679 struct page *p = page + i;
58a84aa9 680 set_page_count(p, 0);
1c290f64 681 p->mapping = TAIL_MAPPING;
1d798ca3 682 set_compound_head(p, page);
18229df5 683 }
53f9263b 684 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
685 if (hpage_pincount_available(page))
686 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
687}
688
c0a32fc5
SG
689#ifdef CONFIG_DEBUG_PAGEALLOC
690unsigned int _debug_guardpage_minorder;
96a2b03f 691
8e57f8ac
VB
692bool _debug_pagealloc_enabled_early __read_mostly
693 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
694EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 695DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 696EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
697
698DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 699
031bc574
JK
700static int __init early_debug_pagealloc(char *buf)
701{
8e57f8ac 702 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
703}
704early_param("debug_pagealloc", early_debug_pagealloc);
705
8e57f8ac 706void init_debug_pagealloc(void)
e30825f1 707{
031bc574
JK
708 if (!debug_pagealloc_enabled())
709 return;
710
8e57f8ac
VB
711 static_branch_enable(&_debug_pagealloc_enabled);
712
f1c1e9f7
JK
713 if (!debug_guardpage_minorder())
714 return;
715
96a2b03f 716 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
717}
718
c0a32fc5
SG
719static int __init debug_guardpage_minorder_setup(char *buf)
720{
721 unsigned long res;
722
723 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 724 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
725 return 0;
726 }
727 _debug_guardpage_minorder = res;
1170532b 728 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
729 return 0;
730}
f1c1e9f7 731early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 732
acbc15a4 733static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 734 unsigned int order, int migratetype)
c0a32fc5 735{
e30825f1 736 if (!debug_guardpage_enabled())
acbc15a4
JK
737 return false;
738
739 if (order >= debug_guardpage_minorder())
740 return false;
e30825f1 741
3972f6bb 742 __SetPageGuard(page);
2847cf95
JK
743 INIT_LIST_HEAD(&page->lru);
744 set_page_private(page, order);
745 /* Guard pages are not available for any usage */
746 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
747
748 return true;
c0a32fc5
SG
749}
750
2847cf95
JK
751static inline void clear_page_guard(struct zone *zone, struct page *page,
752 unsigned int order, int migratetype)
c0a32fc5 753{
e30825f1
JK
754 if (!debug_guardpage_enabled())
755 return;
756
3972f6bb 757 __ClearPageGuard(page);
e30825f1 758
2847cf95
JK
759 set_page_private(page, 0);
760 if (!is_migrate_isolate(migratetype))
761 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
762}
763#else
acbc15a4
JK
764static inline bool set_page_guard(struct zone *zone, struct page *page,
765 unsigned int order, int migratetype) { return false; }
2847cf95
JK
766static inline void clear_page_guard(struct zone *zone, struct page *page,
767 unsigned int order, int migratetype) {}
c0a32fc5
SG
768#endif
769
7aeb09f9 770static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 771{
4c21e2f2 772 set_page_private(page, order);
676165a8 773 __SetPageBuddy(page);
1da177e4
LT
774}
775
1da177e4
LT
776/*
777 * This function checks whether a page is free && is the buddy
6e292b9b 778 * we can coalesce a page and its buddy if
13ad59df 779 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 780 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
781 * (c) a page and its buddy have the same order &&
782 * (d) a page and its buddy are in the same zone.
676165a8 783 *
6e292b9b
MW
784 * For recording whether a page is in the buddy system, we set PageBuddy.
785 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 786 *
676165a8 787 * For recording page's order, we use page_private(page).
1da177e4 788 */
fe925c0c 789static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 790 unsigned int order)
1da177e4 791{
fe925c0c 792 if (!page_is_guard(buddy) && !PageBuddy(buddy))
793 return false;
4c5018ce 794
fe925c0c 795 if (page_order(buddy) != order)
796 return false;
c0a32fc5 797
fe925c0c 798 /*
799 * zone check is done late to avoid uselessly calculating
800 * zone/node ids for pages that could never merge.
801 */
802 if (page_zone_id(page) != page_zone_id(buddy))
803 return false;
d34c5fa0 804
fe925c0c 805 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 806
fe925c0c 807 return true;
1da177e4
LT
808}
809
5e1f0f09
MG
810#ifdef CONFIG_COMPACTION
811static inline struct capture_control *task_capc(struct zone *zone)
812{
813 struct capture_control *capc = current->capture_control;
814
815 return capc &&
816 !(current->flags & PF_KTHREAD) &&
817 !capc->page &&
818 capc->cc->zone == zone &&
819 capc->cc->direct_compaction ? capc : NULL;
820}
821
822static inline bool
823compaction_capture(struct capture_control *capc, struct page *page,
824 int order, int migratetype)
825{
826 if (!capc || order != capc->cc->order)
827 return false;
828
829 /* Do not accidentally pollute CMA or isolated regions*/
830 if (is_migrate_cma(migratetype) ||
831 is_migrate_isolate(migratetype))
832 return false;
833
834 /*
835 * Do not let lower order allocations polluate a movable pageblock.
836 * This might let an unmovable request use a reclaimable pageblock
837 * and vice-versa but no more than normal fallback logic which can
838 * have trouble finding a high-order free page.
839 */
840 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
841 return false;
842
843 capc->page = page;
844 return true;
845}
846
847#else
848static inline struct capture_control *task_capc(struct zone *zone)
849{
850 return NULL;
851}
852
853static inline bool
854compaction_capture(struct capture_control *capc, struct page *page,
855 int order, int migratetype)
856{
857 return false;
858}
859#endif /* CONFIG_COMPACTION */
860
6ab01363
AD
861/* Used for pages not on another list */
862static inline void add_to_free_list(struct page *page, struct zone *zone,
863 unsigned int order, int migratetype)
864{
865 struct free_area *area = &zone->free_area[order];
866
867 list_add(&page->lru, &area->free_list[migratetype]);
868 area->nr_free++;
869}
870
871/* Used for pages not on another list */
872static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
873 unsigned int order, int migratetype)
874{
875 struct free_area *area = &zone->free_area[order];
876
877 list_add_tail(&page->lru, &area->free_list[migratetype]);
878 area->nr_free++;
879}
880
881/* Used for pages which are on another list */
882static inline void move_to_free_list(struct page *page, struct zone *zone,
883 unsigned int order, int migratetype)
884{
885 struct free_area *area = &zone->free_area[order];
886
887 list_move(&page->lru, &area->free_list[migratetype]);
888}
889
890static inline void del_page_from_free_list(struct page *page, struct zone *zone,
891 unsigned int order)
892{
36e66c55
AD
893 /* clear reported state and update reported page count */
894 if (page_reported(page))
895 __ClearPageReported(page);
896
6ab01363
AD
897 list_del(&page->lru);
898 __ClearPageBuddy(page);
899 set_page_private(page, 0);
900 zone->free_area[order].nr_free--;
901}
902
a2129f24
AD
903/*
904 * If this is not the largest possible page, check if the buddy
905 * of the next-highest order is free. If it is, it's possible
906 * that pages are being freed that will coalesce soon. In case,
907 * that is happening, add the free page to the tail of the list
908 * so it's less likely to be used soon and more likely to be merged
909 * as a higher order page
910 */
911static inline bool
912buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
913 struct page *page, unsigned int order)
914{
915 struct page *higher_page, *higher_buddy;
916 unsigned long combined_pfn;
917
918 if (order >= MAX_ORDER - 2)
919 return false;
920
921 if (!pfn_valid_within(buddy_pfn))
922 return false;
923
924 combined_pfn = buddy_pfn & pfn;
925 higher_page = page + (combined_pfn - pfn);
926 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
927 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
928
929 return pfn_valid_within(buddy_pfn) &&
930 page_is_buddy(higher_page, higher_buddy, order + 1);
931}
932
1da177e4
LT
933/*
934 * Freeing function for a buddy system allocator.
935 *
936 * The concept of a buddy system is to maintain direct-mapped table
937 * (containing bit values) for memory blocks of various "orders".
938 * The bottom level table contains the map for the smallest allocatable
939 * units of memory (here, pages), and each level above it describes
940 * pairs of units from the levels below, hence, "buddies".
941 * At a high level, all that happens here is marking the table entry
942 * at the bottom level available, and propagating the changes upward
943 * as necessary, plus some accounting needed to play nicely with other
944 * parts of the VM system.
945 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
946 * free pages of length of (1 << order) and marked with PageBuddy.
947 * Page's order is recorded in page_private(page) field.
1da177e4 948 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
949 * other. That is, if we allocate a small block, and both were
950 * free, the remainder of the region must be split into blocks.
1da177e4 951 * If a block is freed, and its buddy is also free, then this
5f63b720 952 * triggers coalescing into a block of larger size.
1da177e4 953 *
6d49e352 954 * -- nyc
1da177e4
LT
955 */
956
48db57f8 957static inline void __free_one_page(struct page *page,
dc4b0caf 958 unsigned long pfn,
ed0ae21d 959 struct zone *zone, unsigned int order,
36e66c55 960 int migratetype, bool report)
1da177e4 961{
a2129f24 962 struct capture_control *capc = task_capc(zone);
76741e77 963 unsigned long uninitialized_var(buddy_pfn);
a2129f24 964 unsigned long combined_pfn;
d9dddbf5 965 unsigned int max_order;
a2129f24
AD
966 struct page *buddy;
967 bool to_tail;
d9dddbf5
VB
968
969 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 970
d29bb978 971 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 972 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 973
ed0ae21d 974 VM_BUG_ON(migratetype == -1);
d9dddbf5 975 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 976 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 977
76741e77 978 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 979 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 980
d9dddbf5 981continue_merging:
3c605096 982 while (order < max_order - 1) {
5e1f0f09
MG
983 if (compaction_capture(capc, page, order, migratetype)) {
984 __mod_zone_freepage_state(zone, -(1 << order),
985 migratetype);
986 return;
987 }
76741e77
VB
988 buddy_pfn = __find_buddy_pfn(pfn, order);
989 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
990
991 if (!pfn_valid_within(buddy_pfn))
992 goto done_merging;
cb2b95e1 993 if (!page_is_buddy(page, buddy, order))
d9dddbf5 994 goto done_merging;
c0a32fc5
SG
995 /*
996 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
997 * merge with it and move up one order.
998 */
b03641af 999 if (page_is_guard(buddy))
2847cf95 1000 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1001 else
6ab01363 1002 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1003 combined_pfn = buddy_pfn & pfn;
1004 page = page + (combined_pfn - pfn);
1005 pfn = combined_pfn;
1da177e4
LT
1006 order++;
1007 }
d9dddbf5
VB
1008 if (max_order < MAX_ORDER) {
1009 /* If we are here, it means order is >= pageblock_order.
1010 * We want to prevent merge between freepages on isolate
1011 * pageblock and normal pageblock. Without this, pageblock
1012 * isolation could cause incorrect freepage or CMA accounting.
1013 *
1014 * We don't want to hit this code for the more frequent
1015 * low-order merging.
1016 */
1017 if (unlikely(has_isolate_pageblock(zone))) {
1018 int buddy_mt;
1019
76741e77
VB
1020 buddy_pfn = __find_buddy_pfn(pfn, order);
1021 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1022 buddy_mt = get_pageblock_migratetype(buddy);
1023
1024 if (migratetype != buddy_mt
1025 && (is_migrate_isolate(migratetype) ||
1026 is_migrate_isolate(buddy_mt)))
1027 goto done_merging;
1028 }
1029 max_order++;
1030 goto continue_merging;
1031 }
1032
1033done_merging:
1da177e4 1034 set_page_order(page, order);
6dda9d55 1035
97500a4a 1036 if (is_shuffle_order(order))
a2129f24 1037 to_tail = shuffle_pick_tail();
97500a4a 1038 else
a2129f24 1039 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1040
a2129f24 1041 if (to_tail)
6ab01363 1042 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1043 else
6ab01363 1044 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1045
1046 /* Notify page reporting subsystem of freed page */
1047 if (report)
1048 page_reporting_notify_free(order);
1da177e4
LT
1049}
1050
7bfec6f4
MG
1051/*
1052 * A bad page could be due to a number of fields. Instead of multiple branches,
1053 * try and check multiple fields with one check. The caller must do a detailed
1054 * check if necessary.
1055 */
1056static inline bool page_expected_state(struct page *page,
1057 unsigned long check_flags)
1058{
1059 if (unlikely(atomic_read(&page->_mapcount) != -1))
1060 return false;
1061
1062 if (unlikely((unsigned long)page->mapping |
1063 page_ref_count(page) |
1064#ifdef CONFIG_MEMCG
1065 (unsigned long)page->mem_cgroup |
1066#endif
1067 (page->flags & check_flags)))
1068 return false;
1069
1070 return true;
1071}
1072
0d0c48a2 1073static void check_free_page_bad(struct page *page)
1da177e4 1074{
82a3241a 1075 const char *bad_reason = NULL;
f0b791a3 1076
53f9263b 1077 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1078 bad_reason = "nonzero mapcount";
1079 if (unlikely(page->mapping != NULL))
1080 bad_reason = "non-NULL mapping";
fe896d18 1081 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1082 bad_reason = "nonzero _refcount";
82a3241a 1083 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE))
f0b791a3 1084 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
9edad6ea
JW
1085#ifdef CONFIG_MEMCG
1086 if (unlikely(page->mem_cgroup))
1087 bad_reason = "page still charged to cgroup";
1088#endif
82a3241a 1089 bad_page(page, bad_reason);
bb552ac6
MG
1090}
1091
1092static inline int free_pages_check(struct page *page)
1093{
da838d4f 1094 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1095 return 0;
bb552ac6
MG
1096
1097 /* Something has gone sideways, find it */
0d0c48a2 1098 check_free_page_bad(page);
7bfec6f4 1099 return 1;
1da177e4
LT
1100}
1101
4db7548c
MG
1102static int free_tail_pages_check(struct page *head_page, struct page *page)
1103{
1104 int ret = 1;
1105
1106 /*
1107 * We rely page->lru.next never has bit 0 set, unless the page
1108 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1109 */
1110 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1111
1112 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1113 ret = 0;
1114 goto out;
1115 }
1116 switch (page - head_page) {
1117 case 1:
4da1984e 1118 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1119 if (unlikely(compound_mapcount(page))) {
82a3241a 1120 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1121 goto out;
1122 }
1123 break;
1124 case 2:
1125 /*
1126 * the second tail page: ->mapping is
fa3015b7 1127 * deferred_list.next -- ignore value.
4db7548c
MG
1128 */
1129 break;
1130 default:
1131 if (page->mapping != TAIL_MAPPING) {
82a3241a 1132 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1133 goto out;
1134 }
1135 break;
1136 }
1137 if (unlikely(!PageTail(page))) {
82a3241a 1138 bad_page(page, "PageTail not set");
4db7548c
MG
1139 goto out;
1140 }
1141 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1142 bad_page(page, "compound_head not consistent");
4db7548c
MG
1143 goto out;
1144 }
1145 ret = 0;
1146out:
1147 page->mapping = NULL;
1148 clear_compound_head(page);
1149 return ret;
1150}
1151
6471384a
AP
1152static void kernel_init_free_pages(struct page *page, int numpages)
1153{
1154 int i;
1155
1156 for (i = 0; i < numpages; i++)
1157 clear_highpage(page + i);
1158}
1159
e2769dbd
MG
1160static __always_inline bool free_pages_prepare(struct page *page,
1161 unsigned int order, bool check_free)
4db7548c 1162{
e2769dbd 1163 int bad = 0;
4db7548c 1164
4db7548c
MG
1165 VM_BUG_ON_PAGE(PageTail(page), page);
1166
e2769dbd 1167 trace_mm_page_free(page, order);
e2769dbd
MG
1168
1169 /*
1170 * Check tail pages before head page information is cleared to
1171 * avoid checking PageCompound for order-0 pages.
1172 */
1173 if (unlikely(order)) {
1174 bool compound = PageCompound(page);
1175 int i;
1176
1177 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1178
9a73f61b
KS
1179 if (compound)
1180 ClearPageDoubleMap(page);
e2769dbd
MG
1181 for (i = 1; i < (1 << order); i++) {
1182 if (compound)
1183 bad += free_tail_pages_check(page, page + i);
1184 if (unlikely(free_pages_check(page + i))) {
1185 bad++;
1186 continue;
1187 }
1188 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1189 }
1190 }
bda807d4 1191 if (PageMappingFlags(page))
4db7548c 1192 page->mapping = NULL;
c4159a75 1193 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1194 __memcg_kmem_uncharge_page(page, order);
e2769dbd
MG
1195 if (check_free)
1196 bad += free_pages_check(page);
1197 if (bad)
1198 return false;
4db7548c 1199
e2769dbd
MG
1200 page_cpupid_reset_last(page);
1201 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1202 reset_page_owner(page, order);
4db7548c
MG
1203
1204 if (!PageHighMem(page)) {
1205 debug_check_no_locks_freed(page_address(page),
e2769dbd 1206 PAGE_SIZE << order);
4db7548c 1207 debug_check_no_obj_freed(page_address(page),
e2769dbd 1208 PAGE_SIZE << order);
4db7548c 1209 }
6471384a
AP
1210 if (want_init_on_free())
1211 kernel_init_free_pages(page, 1 << order);
1212
e2769dbd 1213 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1214 /*
1215 * arch_free_page() can make the page's contents inaccessible. s390
1216 * does this. So nothing which can access the page's contents should
1217 * happen after this.
1218 */
1219 arch_free_page(page, order);
1220
8e57f8ac 1221 if (debug_pagealloc_enabled_static())
d6332692
RE
1222 kernel_map_pages(page, 1 << order, 0);
1223
3c0c12cc 1224 kasan_free_nondeferred_pages(page, order);
4db7548c 1225
4db7548c
MG
1226 return true;
1227}
1228
e2769dbd 1229#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1230/*
1231 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1232 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1233 * moved from pcp lists to free lists.
1234 */
1235static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1236{
1237 return free_pages_prepare(page, 0, true);
1238}
1239
4462b32c 1240static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1241{
8e57f8ac 1242 if (debug_pagealloc_enabled_static())
4462b32c
VB
1243 return free_pages_check(page);
1244 else
1245 return false;
e2769dbd
MG
1246}
1247#else
4462b32c
VB
1248/*
1249 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1250 * moving from pcp lists to free list in order to reduce overhead. With
1251 * debug_pagealloc enabled, they are checked also immediately when being freed
1252 * to the pcp lists.
1253 */
e2769dbd
MG
1254static bool free_pcp_prepare(struct page *page)
1255{
8e57f8ac 1256 if (debug_pagealloc_enabled_static())
4462b32c
VB
1257 return free_pages_prepare(page, 0, true);
1258 else
1259 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1260}
1261
4db7548c
MG
1262static bool bulkfree_pcp_prepare(struct page *page)
1263{
1264 return free_pages_check(page);
1265}
1266#endif /* CONFIG_DEBUG_VM */
1267
97334162
AL
1268static inline void prefetch_buddy(struct page *page)
1269{
1270 unsigned long pfn = page_to_pfn(page);
1271 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1272 struct page *buddy = page + (buddy_pfn - pfn);
1273
1274 prefetch(buddy);
1275}
1276
1da177e4 1277/*
5f8dcc21 1278 * Frees a number of pages from the PCP lists
1da177e4 1279 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1280 * count is the number of pages to free.
1da177e4
LT
1281 *
1282 * If the zone was previously in an "all pages pinned" state then look to
1283 * see if this freeing clears that state.
1284 *
1285 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1286 * pinned" detection logic.
1287 */
5f8dcc21
MG
1288static void free_pcppages_bulk(struct zone *zone, int count,
1289 struct per_cpu_pages *pcp)
1da177e4 1290{
5f8dcc21 1291 int migratetype = 0;
a6f9edd6 1292 int batch_free = 0;
97334162 1293 int prefetch_nr = 0;
3777999d 1294 bool isolated_pageblocks;
0a5f4e5b
AL
1295 struct page *page, *tmp;
1296 LIST_HEAD(head);
f2260e6b 1297
e5b31ac2 1298 while (count) {
5f8dcc21
MG
1299 struct list_head *list;
1300
1301 /*
a6f9edd6
MG
1302 * Remove pages from lists in a round-robin fashion. A
1303 * batch_free count is maintained that is incremented when an
1304 * empty list is encountered. This is so more pages are freed
1305 * off fuller lists instead of spinning excessively around empty
1306 * lists
5f8dcc21
MG
1307 */
1308 do {
a6f9edd6 1309 batch_free++;
5f8dcc21
MG
1310 if (++migratetype == MIGRATE_PCPTYPES)
1311 migratetype = 0;
1312 list = &pcp->lists[migratetype];
1313 } while (list_empty(list));
48db57f8 1314
1d16871d
NK
1315 /* This is the only non-empty list. Free them all. */
1316 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1317 batch_free = count;
1d16871d 1318
a6f9edd6 1319 do {
a16601c5 1320 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1321 /* must delete to avoid corrupting pcp list */
a6f9edd6 1322 list_del(&page->lru);
77ba9062 1323 pcp->count--;
aa016d14 1324
4db7548c
MG
1325 if (bulkfree_pcp_prepare(page))
1326 continue;
1327
0a5f4e5b 1328 list_add_tail(&page->lru, &head);
97334162
AL
1329
1330 /*
1331 * We are going to put the page back to the global
1332 * pool, prefetch its buddy to speed up later access
1333 * under zone->lock. It is believed the overhead of
1334 * an additional test and calculating buddy_pfn here
1335 * can be offset by reduced memory latency later. To
1336 * avoid excessive prefetching due to large count, only
1337 * prefetch buddy for the first pcp->batch nr of pages.
1338 */
1339 if (prefetch_nr++ < pcp->batch)
1340 prefetch_buddy(page);
e5b31ac2 1341 } while (--count && --batch_free && !list_empty(list));
1da177e4 1342 }
0a5f4e5b
AL
1343
1344 spin_lock(&zone->lock);
1345 isolated_pageblocks = has_isolate_pageblock(zone);
1346
1347 /*
1348 * Use safe version since after __free_one_page(),
1349 * page->lru.next will not point to original list.
1350 */
1351 list_for_each_entry_safe(page, tmp, &head, lru) {
1352 int mt = get_pcppage_migratetype(page);
1353 /* MIGRATE_ISOLATE page should not go to pcplists */
1354 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1355 /* Pageblock could have been isolated meanwhile */
1356 if (unlikely(isolated_pageblocks))
1357 mt = get_pageblock_migratetype(page);
1358
36e66c55 1359 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1360 trace_mm_page_pcpu_drain(page, 0, mt);
1361 }
d34b0733 1362 spin_unlock(&zone->lock);
1da177e4
LT
1363}
1364
dc4b0caf
MG
1365static void free_one_page(struct zone *zone,
1366 struct page *page, unsigned long pfn,
7aeb09f9 1367 unsigned int order,
ed0ae21d 1368 int migratetype)
1da177e4 1369{
d34b0733 1370 spin_lock(&zone->lock);
ad53f92e
JK
1371 if (unlikely(has_isolate_pageblock(zone) ||
1372 is_migrate_isolate(migratetype))) {
1373 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1374 }
36e66c55 1375 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1376 spin_unlock(&zone->lock);
48db57f8
NP
1377}
1378
1e8ce83c 1379static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1380 unsigned long zone, int nid)
1e8ce83c 1381{
d0dc12e8 1382 mm_zero_struct_page(page);
1e8ce83c 1383 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1384 init_page_count(page);
1385 page_mapcount_reset(page);
1386 page_cpupid_reset_last(page);
2813b9c0 1387 page_kasan_tag_reset(page);
1e8ce83c 1388
1e8ce83c
RH
1389 INIT_LIST_HEAD(&page->lru);
1390#ifdef WANT_PAGE_VIRTUAL
1391 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1392 if (!is_highmem_idx(zone))
1393 set_page_address(page, __va(pfn << PAGE_SHIFT));
1394#endif
1395}
1396
7e18adb4 1397#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1398static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1399{
1400 pg_data_t *pgdat;
1401 int nid, zid;
1402
1403 if (!early_page_uninitialised(pfn))
1404 return;
1405
1406 nid = early_pfn_to_nid(pfn);
1407 pgdat = NODE_DATA(nid);
1408
1409 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1410 struct zone *zone = &pgdat->node_zones[zid];
1411
1412 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1413 break;
1414 }
d0dc12e8 1415 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1416}
1417#else
1418static inline void init_reserved_page(unsigned long pfn)
1419{
1420}
1421#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1422
92923ca3
NZ
1423/*
1424 * Initialised pages do not have PageReserved set. This function is
1425 * called for each range allocated by the bootmem allocator and
1426 * marks the pages PageReserved. The remaining valid pages are later
1427 * sent to the buddy page allocator.
1428 */
4b50bcc7 1429void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1430{
1431 unsigned long start_pfn = PFN_DOWN(start);
1432 unsigned long end_pfn = PFN_UP(end);
1433
7e18adb4
MG
1434 for (; start_pfn < end_pfn; start_pfn++) {
1435 if (pfn_valid(start_pfn)) {
1436 struct page *page = pfn_to_page(start_pfn);
1437
1438 init_reserved_page(start_pfn);
1d798ca3
KS
1439
1440 /* Avoid false-positive PageTail() */
1441 INIT_LIST_HEAD(&page->lru);
1442
d483da5b
AD
1443 /*
1444 * no need for atomic set_bit because the struct
1445 * page is not visible yet so nobody should
1446 * access it yet.
1447 */
1448 __SetPageReserved(page);
7e18adb4
MG
1449 }
1450 }
92923ca3
NZ
1451}
1452
ec95f53a
KM
1453static void __free_pages_ok(struct page *page, unsigned int order)
1454{
d34b0733 1455 unsigned long flags;
95e34412 1456 int migratetype;
dc4b0caf 1457 unsigned long pfn = page_to_pfn(page);
ec95f53a 1458
e2769dbd 1459 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1460 return;
1461
cfc47a28 1462 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1463 local_irq_save(flags);
1464 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1465 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1466 local_irq_restore(flags);
1da177e4
LT
1467}
1468
a9cd410a 1469void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1470{
c3993076 1471 unsigned int nr_pages = 1 << order;
e2d0bd2b 1472 struct page *p = page;
c3993076 1473 unsigned int loop;
a226f6c8 1474
e2d0bd2b
YL
1475 prefetchw(p);
1476 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1477 prefetchw(p + 1);
c3993076
JW
1478 __ClearPageReserved(p);
1479 set_page_count(p, 0);
a226f6c8 1480 }
e2d0bd2b
YL
1481 __ClearPageReserved(p);
1482 set_page_count(p, 0);
c3993076 1483
9705bea5 1484 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1485 set_page_refcounted(page);
1486 __free_pages(page, order);
a226f6c8
DH
1487}
1488
3f08a302 1489#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1490
75a592a4
MG
1491static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1492
6f24fbd3
MR
1493#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1494
1495/*
1496 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1497 */
1498int __meminit __early_pfn_to_nid(unsigned long pfn,
1499 struct mminit_pfnnid_cache *state)
1500{
1501 unsigned long start_pfn, end_pfn;
1502 int nid;
1503
1504 if (state->last_start <= pfn && pfn < state->last_end)
1505 return state->last_nid;
1506
1507 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1508 if (nid != NUMA_NO_NODE) {
1509 state->last_start = start_pfn;
1510 state->last_end = end_pfn;
1511 state->last_nid = nid;
1512 }
1513
1514 return nid;
1515}
1516#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1517
75a592a4
MG
1518int __meminit early_pfn_to_nid(unsigned long pfn)
1519{
7ace9917 1520 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1521 int nid;
1522
7ace9917 1523 spin_lock(&early_pfn_lock);
75a592a4 1524 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1525 if (nid < 0)
e4568d38 1526 nid = first_online_node;
7ace9917
MG
1527 spin_unlock(&early_pfn_lock);
1528
1529 return nid;
75a592a4 1530}
3f08a302 1531#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1532
7c2ee349 1533void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1534 unsigned int order)
1535{
1536 if (early_page_uninitialised(pfn))
1537 return;
a9cd410a 1538 __free_pages_core(page, order);
3a80a7fa
MG
1539}
1540
7cf91a98
JK
1541/*
1542 * Check that the whole (or subset of) a pageblock given by the interval of
1543 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1544 * with the migration of free compaction scanner. The scanners then need to
1545 * use only pfn_valid_within() check for arches that allow holes within
1546 * pageblocks.
1547 *
1548 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1549 *
1550 * It's possible on some configurations to have a setup like node0 node1 node0
1551 * i.e. it's possible that all pages within a zones range of pages do not
1552 * belong to a single zone. We assume that a border between node0 and node1
1553 * can occur within a single pageblock, but not a node0 node1 node0
1554 * interleaving within a single pageblock. It is therefore sufficient to check
1555 * the first and last page of a pageblock and avoid checking each individual
1556 * page in a pageblock.
1557 */
1558struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1559 unsigned long end_pfn, struct zone *zone)
1560{
1561 struct page *start_page;
1562 struct page *end_page;
1563
1564 /* end_pfn is one past the range we are checking */
1565 end_pfn--;
1566
1567 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1568 return NULL;
1569
2d070eab
MH
1570 start_page = pfn_to_online_page(start_pfn);
1571 if (!start_page)
1572 return NULL;
7cf91a98
JK
1573
1574 if (page_zone(start_page) != zone)
1575 return NULL;
1576
1577 end_page = pfn_to_page(end_pfn);
1578
1579 /* This gives a shorter code than deriving page_zone(end_page) */
1580 if (page_zone_id(start_page) != page_zone_id(end_page))
1581 return NULL;
1582
1583 return start_page;
1584}
1585
1586void set_zone_contiguous(struct zone *zone)
1587{
1588 unsigned long block_start_pfn = zone->zone_start_pfn;
1589 unsigned long block_end_pfn;
1590
1591 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1592 for (; block_start_pfn < zone_end_pfn(zone);
1593 block_start_pfn = block_end_pfn,
1594 block_end_pfn += pageblock_nr_pages) {
1595
1596 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1597
1598 if (!__pageblock_pfn_to_page(block_start_pfn,
1599 block_end_pfn, zone))
1600 return;
e84fe99b 1601 cond_resched();
7cf91a98
JK
1602 }
1603
1604 /* We confirm that there is no hole */
1605 zone->contiguous = true;
1606}
1607
1608void clear_zone_contiguous(struct zone *zone)
1609{
1610 zone->contiguous = false;
1611}
1612
7e18adb4 1613#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1614static void __init deferred_free_range(unsigned long pfn,
1615 unsigned long nr_pages)
a4de83dd 1616{
2f47a91f
PT
1617 struct page *page;
1618 unsigned long i;
a4de83dd 1619
2f47a91f 1620 if (!nr_pages)
a4de83dd
MG
1621 return;
1622
2f47a91f
PT
1623 page = pfn_to_page(pfn);
1624
a4de83dd 1625 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1626 if (nr_pages == pageblock_nr_pages &&
1627 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1628 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1629 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1630 return;
1631 }
1632
e780149b
XQ
1633 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1634 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1635 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1636 __free_pages_core(page, 0);
e780149b 1637 }
a4de83dd
MG
1638}
1639
d3cd131d
NS
1640/* Completion tracking for deferred_init_memmap() threads */
1641static atomic_t pgdat_init_n_undone __initdata;
1642static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1643
1644static inline void __init pgdat_init_report_one_done(void)
1645{
1646 if (atomic_dec_and_test(&pgdat_init_n_undone))
1647 complete(&pgdat_init_all_done_comp);
1648}
0e1cc95b 1649
2f47a91f 1650/*
80b1f41c
PT
1651 * Returns true if page needs to be initialized or freed to buddy allocator.
1652 *
1653 * First we check if pfn is valid on architectures where it is possible to have
1654 * holes within pageblock_nr_pages. On systems where it is not possible, this
1655 * function is optimized out.
1656 *
1657 * Then, we check if a current large page is valid by only checking the validity
1658 * of the head pfn.
2f47a91f 1659 */
56ec43d8 1660static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1661{
80b1f41c
PT
1662 if (!pfn_valid_within(pfn))
1663 return false;
1664 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1665 return false;
80b1f41c
PT
1666 return true;
1667}
2f47a91f 1668
80b1f41c
PT
1669/*
1670 * Free pages to buddy allocator. Try to free aligned pages in
1671 * pageblock_nr_pages sizes.
1672 */
56ec43d8 1673static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1674 unsigned long end_pfn)
1675{
80b1f41c
PT
1676 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1677 unsigned long nr_free = 0;
2f47a91f 1678
80b1f41c 1679 for (; pfn < end_pfn; pfn++) {
56ec43d8 1680 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1681 deferred_free_range(pfn - nr_free, nr_free);
1682 nr_free = 0;
1683 } else if (!(pfn & nr_pgmask)) {
1684 deferred_free_range(pfn - nr_free, nr_free);
1685 nr_free = 1;
3a2d7fa8 1686 touch_nmi_watchdog();
80b1f41c
PT
1687 } else {
1688 nr_free++;
1689 }
1690 }
1691 /* Free the last block of pages to allocator */
1692 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1693}
1694
80b1f41c
PT
1695/*
1696 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1697 * by performing it only once every pageblock_nr_pages.
1698 * Return number of pages initialized.
1699 */
56ec43d8 1700static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1701 unsigned long pfn,
1702 unsigned long end_pfn)
2f47a91f 1703{
2f47a91f 1704 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1705 int nid = zone_to_nid(zone);
2f47a91f 1706 unsigned long nr_pages = 0;
56ec43d8 1707 int zid = zone_idx(zone);
2f47a91f 1708 struct page *page = NULL;
2f47a91f 1709
80b1f41c 1710 for (; pfn < end_pfn; pfn++) {
56ec43d8 1711 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1712 page = NULL;
2f47a91f 1713 continue;
80b1f41c 1714 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1715 page = pfn_to_page(pfn);
3a2d7fa8 1716 touch_nmi_watchdog();
80b1f41c
PT
1717 } else {
1718 page++;
2f47a91f 1719 }
d0dc12e8 1720 __init_single_page(page, pfn, zid, nid);
80b1f41c 1721 nr_pages++;
2f47a91f 1722 }
80b1f41c 1723 return (nr_pages);
2f47a91f
PT
1724}
1725
0e56acae
AD
1726/*
1727 * This function is meant to pre-load the iterator for the zone init.
1728 * Specifically it walks through the ranges until we are caught up to the
1729 * first_init_pfn value and exits there. If we never encounter the value we
1730 * return false indicating there are no valid ranges left.
1731 */
1732static bool __init
1733deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1734 unsigned long *spfn, unsigned long *epfn,
1735 unsigned long first_init_pfn)
1736{
1737 u64 j;
1738
1739 /*
1740 * Start out by walking through the ranges in this zone that have
1741 * already been initialized. We don't need to do anything with them
1742 * so we just need to flush them out of the system.
1743 */
1744 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1745 if (*epfn <= first_init_pfn)
1746 continue;
1747 if (*spfn < first_init_pfn)
1748 *spfn = first_init_pfn;
1749 *i = j;
1750 return true;
1751 }
1752
1753 return false;
1754}
1755
1756/*
1757 * Initialize and free pages. We do it in two loops: first we initialize
1758 * struct page, then free to buddy allocator, because while we are
1759 * freeing pages we can access pages that are ahead (computing buddy
1760 * page in __free_one_page()).
1761 *
1762 * In order to try and keep some memory in the cache we have the loop
1763 * broken along max page order boundaries. This way we will not cause
1764 * any issues with the buddy page computation.
1765 */
1766static unsigned long __init
1767deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1768 unsigned long *end_pfn)
1769{
1770 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1771 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1772 unsigned long nr_pages = 0;
1773 u64 j = *i;
1774
1775 /* First we loop through and initialize the page values */
1776 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1777 unsigned long t;
1778
1779 if (mo_pfn <= *start_pfn)
1780 break;
1781
1782 t = min(mo_pfn, *end_pfn);
1783 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1784
1785 if (mo_pfn < *end_pfn) {
1786 *start_pfn = mo_pfn;
1787 break;
1788 }
1789 }
1790
1791 /* Reset values and now loop through freeing pages as needed */
1792 swap(j, *i);
1793
1794 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1795 unsigned long t;
1796
1797 if (mo_pfn <= spfn)
1798 break;
1799
1800 t = min(mo_pfn, epfn);
1801 deferred_free_pages(spfn, t);
1802
1803 if (mo_pfn <= epfn)
1804 break;
1805 }
1806
1807 return nr_pages;
1808}
1809
7e18adb4 1810/* Initialise remaining memory on a node */
0e1cc95b 1811static int __init deferred_init_memmap(void *data)
7e18adb4 1812{
0e1cc95b 1813 pg_data_t *pgdat = data;
0e56acae
AD
1814 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1815 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1816 unsigned long first_init_pfn, flags;
7e18adb4 1817 unsigned long start = jiffies;
7e18adb4 1818 struct zone *zone;
0e56acae 1819 int zid;
2f47a91f 1820 u64 i;
7e18adb4 1821
3a2d7fa8
PT
1822 /* Bind memory initialisation thread to a local node if possible */
1823 if (!cpumask_empty(cpumask))
1824 set_cpus_allowed_ptr(current, cpumask);
1825
1826 pgdat_resize_lock(pgdat, &flags);
1827 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1828 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1829 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1830 pgdat_init_report_one_done();
0e1cc95b
MG
1831 return 0;
1832 }
1833
7e18adb4
MG
1834 /* Sanity check boundaries */
1835 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1836 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1837 pgdat->first_deferred_pfn = ULONG_MAX;
1838
1839 /* Only the highest zone is deferred so find it */
1840 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1841 zone = pgdat->node_zones + zid;
1842 if (first_init_pfn < zone_end_pfn(zone))
1843 break;
1844 }
0e56acae
AD
1845
1846 /* If the zone is empty somebody else may have cleared out the zone */
1847 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1848 first_init_pfn))
1849 goto zone_empty;
7e18adb4 1850
80b1f41c 1851 /*
0e56acae
AD
1852 * Initialize and free pages in MAX_ORDER sized increments so
1853 * that we can avoid introducing any issues with the buddy
1854 * allocator.
80b1f41c 1855 */
0e56acae
AD
1856 while (spfn < epfn)
1857 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1858zone_empty:
3a2d7fa8 1859 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1860
1861 /* Sanity check that the next zone really is unpopulated */
1862 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1863
837566e7
AD
1864 pr_info("node %d initialised, %lu pages in %ums\n",
1865 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1866
1867 pgdat_init_report_one_done();
0e1cc95b
MG
1868 return 0;
1869}
c9e97a19 1870
c9e97a19
PT
1871/*
1872 * If this zone has deferred pages, try to grow it by initializing enough
1873 * deferred pages to satisfy the allocation specified by order, rounded up to
1874 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1875 * of SECTION_SIZE bytes by initializing struct pages in increments of
1876 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1877 *
1878 * Return true when zone was grown, otherwise return false. We return true even
1879 * when we grow less than requested, to let the caller decide if there are
1880 * enough pages to satisfy the allocation.
1881 *
1882 * Note: We use noinline because this function is needed only during boot, and
1883 * it is called from a __ref function _deferred_grow_zone. This way we are
1884 * making sure that it is not inlined into permanent text section.
1885 */
1886static noinline bool __init
1887deferred_grow_zone(struct zone *zone, unsigned int order)
1888{
c9e97a19 1889 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1890 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1891 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1892 unsigned long spfn, epfn, flags;
1893 unsigned long nr_pages = 0;
c9e97a19
PT
1894 u64 i;
1895
1896 /* Only the last zone may have deferred pages */
1897 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1898 return false;
1899
1900 pgdat_resize_lock(pgdat, &flags);
1901
1902 /*
1903 * If deferred pages have been initialized while we were waiting for
1904 * the lock, return true, as the zone was grown. The caller will retry
1905 * this zone. We won't return to this function since the caller also
1906 * has this static branch.
1907 */
1908 if (!static_branch_unlikely(&deferred_pages)) {
1909 pgdat_resize_unlock(pgdat, &flags);
1910 return true;
1911 }
1912
1913 /*
1914 * If someone grew this zone while we were waiting for spinlock, return
1915 * true, as there might be enough pages already.
1916 */
1917 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1918 pgdat_resize_unlock(pgdat, &flags);
1919 return true;
1920 }
1921
0e56acae
AD
1922 /* If the zone is empty somebody else may have cleared out the zone */
1923 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1924 first_deferred_pfn)) {
1925 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1926 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1927 /* Retry only once. */
1928 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1929 }
1930
0e56acae
AD
1931 /*
1932 * Initialize and free pages in MAX_ORDER sized increments so
1933 * that we can avoid introducing any issues with the buddy
1934 * allocator.
1935 */
1936 while (spfn < epfn) {
1937 /* update our first deferred PFN for this section */
1938 first_deferred_pfn = spfn;
1939
1940 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1941
0e56acae
AD
1942 /* We should only stop along section boundaries */
1943 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1944 continue;
c9e97a19 1945
0e56acae 1946 /* If our quota has been met we can stop here */
c9e97a19
PT
1947 if (nr_pages >= nr_pages_needed)
1948 break;
1949 }
1950
0e56acae 1951 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1952 pgdat_resize_unlock(pgdat, &flags);
1953
1954 return nr_pages > 0;
1955}
1956
1957/*
1958 * deferred_grow_zone() is __init, but it is called from
1959 * get_page_from_freelist() during early boot until deferred_pages permanently
1960 * disables this call. This is why we have refdata wrapper to avoid warning,
1961 * and to ensure that the function body gets unloaded.
1962 */
1963static bool __ref
1964_deferred_grow_zone(struct zone *zone, unsigned int order)
1965{
1966 return deferred_grow_zone(zone, order);
1967}
1968
7cf91a98 1969#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1970
1971void __init page_alloc_init_late(void)
1972{
7cf91a98 1973 struct zone *zone;
e900a918 1974 int nid;
7cf91a98
JK
1975
1976#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1977
d3cd131d
NS
1978 /* There will be num_node_state(N_MEMORY) threads */
1979 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1980 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1981 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1982 }
1983
1984 /* Block until all are initialised */
d3cd131d 1985 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1986
3e8fc007
MG
1987 /*
1988 * The number of managed pages has changed due to the initialisation
1989 * so the pcpu batch and high limits needs to be updated or the limits
1990 * will be artificially small.
1991 */
1992 for_each_populated_zone(zone)
1993 zone_pcp_update(zone);
1994
c9e97a19
PT
1995 /*
1996 * We initialized the rest of the deferred pages. Permanently disable
1997 * on-demand struct page initialization.
1998 */
1999 static_branch_disable(&deferred_pages);
2000
4248b0da
MG
2001 /* Reinit limits that are based on free pages after the kernel is up */
2002 files_maxfiles_init();
7cf91a98 2003#endif
350e88ba 2004
3010f876
PT
2005 /* Discard memblock private memory */
2006 memblock_discard();
7cf91a98 2007
e900a918
DW
2008 for_each_node_state(nid, N_MEMORY)
2009 shuffle_free_memory(NODE_DATA(nid));
2010
7cf91a98
JK
2011 for_each_populated_zone(zone)
2012 set_zone_contiguous(zone);
7e18adb4 2013}
7e18adb4 2014
47118af0 2015#ifdef CONFIG_CMA
9cf510a5 2016/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2017void __init init_cma_reserved_pageblock(struct page *page)
2018{
2019 unsigned i = pageblock_nr_pages;
2020 struct page *p = page;
2021
2022 do {
2023 __ClearPageReserved(p);
2024 set_page_count(p, 0);
d883c6cf 2025 } while (++p, --i);
47118af0 2026
47118af0 2027 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2028
2029 if (pageblock_order >= MAX_ORDER) {
2030 i = pageblock_nr_pages;
2031 p = page;
2032 do {
2033 set_page_refcounted(p);
2034 __free_pages(p, MAX_ORDER - 1);
2035 p += MAX_ORDER_NR_PAGES;
2036 } while (i -= MAX_ORDER_NR_PAGES);
2037 } else {
2038 set_page_refcounted(page);
2039 __free_pages(page, pageblock_order);
2040 }
2041
3dcc0571 2042 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2043}
2044#endif
1da177e4
LT
2045
2046/*
2047 * The order of subdivision here is critical for the IO subsystem.
2048 * Please do not alter this order without good reasons and regression
2049 * testing. Specifically, as large blocks of memory are subdivided,
2050 * the order in which smaller blocks are delivered depends on the order
2051 * they're subdivided in this function. This is the primary factor
2052 * influencing the order in which pages are delivered to the IO
2053 * subsystem according to empirical testing, and this is also justified
2054 * by considering the behavior of a buddy system containing a single
2055 * large block of memory acted on by a series of small allocations.
2056 * This behavior is a critical factor in sglist merging's success.
2057 *
6d49e352 2058 * -- nyc
1da177e4 2059 */
085cc7d5 2060static inline void expand(struct zone *zone, struct page *page,
6ab01363 2061 int low, int high, int migratetype)
1da177e4
LT
2062{
2063 unsigned long size = 1 << high;
2064
2065 while (high > low) {
1da177e4
LT
2066 high--;
2067 size >>= 1;
309381fe 2068 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2069
acbc15a4
JK
2070 /*
2071 * Mark as guard pages (or page), that will allow to
2072 * merge back to allocator when buddy will be freed.
2073 * Corresponding page table entries will not be touched,
2074 * pages will stay not present in virtual address space
2075 */
2076 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2077 continue;
acbc15a4 2078
6ab01363 2079 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2080 set_page_order(&page[size], high);
2081 }
1da177e4
LT
2082}
2083
4e611801 2084static void check_new_page_bad(struct page *page)
1da177e4 2085{
4e611801 2086 const char *bad_reason = NULL;
7bfec6f4 2087
833d8a42
WY
2088 if (unlikely(page->flags & __PG_HWPOISON)) {
2089 /* Don't complain about hwpoisoned pages */
2090 page_mapcount_reset(page); /* remove PageBuddy */
2091 return;
2092 }
53f9263b 2093 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
2094 bad_reason = "nonzero mapcount";
2095 if (unlikely(page->mapping != NULL))
2096 bad_reason = "non-NULL mapping";
fe896d18 2097 if (unlikely(page_ref_count(page) != 0))
136ac591 2098 bad_reason = "nonzero _refcount";
82a3241a 2099 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP))
f0b791a3 2100 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
9edad6ea
JW
2101#ifdef CONFIG_MEMCG
2102 if (unlikely(page->mem_cgroup))
2103 bad_reason = "page still charged to cgroup";
2104#endif
82a3241a 2105 bad_page(page, bad_reason);
4e611801
VB
2106}
2107
2108/*
2109 * This page is about to be returned from the page allocator
2110 */
2111static inline int check_new_page(struct page *page)
2112{
2113 if (likely(page_expected_state(page,
2114 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2115 return 0;
2116
2117 check_new_page_bad(page);
2118 return 1;
2a7684a2
WF
2119}
2120
bd33ef36 2121static inline bool free_pages_prezeroed(void)
1414c7f4 2122{
6471384a
AP
2123 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2124 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2125}
2126
479f854a 2127#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2128/*
2129 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2130 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2131 * also checked when pcp lists are refilled from the free lists.
2132 */
2133static inline bool check_pcp_refill(struct page *page)
479f854a 2134{
8e57f8ac 2135 if (debug_pagealloc_enabled_static())
4462b32c
VB
2136 return check_new_page(page);
2137 else
2138 return false;
479f854a
MG
2139}
2140
4462b32c 2141static inline bool check_new_pcp(struct page *page)
479f854a
MG
2142{
2143 return check_new_page(page);
2144}
2145#else
4462b32c
VB
2146/*
2147 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2148 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2149 * enabled, they are also checked when being allocated from the pcp lists.
2150 */
2151static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2152{
2153 return check_new_page(page);
2154}
4462b32c 2155static inline bool check_new_pcp(struct page *page)
479f854a 2156{
8e57f8ac 2157 if (debug_pagealloc_enabled_static())
4462b32c
VB
2158 return check_new_page(page);
2159 else
2160 return false;
479f854a
MG
2161}
2162#endif /* CONFIG_DEBUG_VM */
2163
2164static bool check_new_pages(struct page *page, unsigned int order)
2165{
2166 int i;
2167 for (i = 0; i < (1 << order); i++) {
2168 struct page *p = page + i;
2169
2170 if (unlikely(check_new_page(p)))
2171 return true;
2172 }
2173
2174 return false;
2175}
2176
46f24fd8
JK
2177inline void post_alloc_hook(struct page *page, unsigned int order,
2178 gfp_t gfp_flags)
2179{
2180 set_page_private(page, 0);
2181 set_page_refcounted(page);
2182
2183 arch_alloc_page(page, order);
8e57f8ac 2184 if (debug_pagealloc_enabled_static())
d6332692 2185 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2186 kasan_alloc_pages(page, order);
4117992d 2187 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2188 set_page_owner(page, order, gfp_flags);
2189}
2190
479f854a 2191static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2192 unsigned int alloc_flags)
2a7684a2 2193{
46f24fd8 2194 post_alloc_hook(page, order, gfp_flags);
17cf4406 2195
6471384a
AP
2196 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2197 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2198
2199 if (order && (gfp_flags & __GFP_COMP))
2200 prep_compound_page(page, order);
2201
75379191 2202 /*
2f064f34 2203 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2204 * allocate the page. The expectation is that the caller is taking
2205 * steps that will free more memory. The caller should avoid the page
2206 * being used for !PFMEMALLOC purposes.
2207 */
2f064f34
MH
2208 if (alloc_flags & ALLOC_NO_WATERMARKS)
2209 set_page_pfmemalloc(page);
2210 else
2211 clear_page_pfmemalloc(page);
1da177e4
LT
2212}
2213
56fd56b8
MG
2214/*
2215 * Go through the free lists for the given migratetype and remove
2216 * the smallest available page from the freelists
2217 */
85ccc8fa 2218static __always_inline
728ec980 2219struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2220 int migratetype)
2221{
2222 unsigned int current_order;
b8af2941 2223 struct free_area *area;
56fd56b8
MG
2224 struct page *page;
2225
2226 /* Find a page of the appropriate size in the preferred list */
2227 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2228 area = &(zone->free_area[current_order]);
b03641af 2229 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2230 if (!page)
2231 continue;
6ab01363
AD
2232 del_page_from_free_list(page, zone, current_order);
2233 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2234 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2235 return page;
2236 }
2237
2238 return NULL;
2239}
2240
2241
b2a0ac88
MG
2242/*
2243 * This array describes the order lists are fallen back to when
2244 * the free lists for the desirable migrate type are depleted
2245 */
47118af0 2246static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2247 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2248 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2249 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2250#ifdef CONFIG_CMA
974a786e 2251 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2252#endif
194159fb 2253#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2254 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2255#endif
b2a0ac88
MG
2256};
2257
dc67647b 2258#ifdef CONFIG_CMA
85ccc8fa 2259static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2260 unsigned int order)
2261{
2262 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2263}
2264#else
2265static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2266 unsigned int order) { return NULL; }
2267#endif
2268
c361be55
MG
2269/*
2270 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2271 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2272 * boundary. If alignment is required, use move_freepages_block()
2273 */
02aa0cdd 2274static int move_freepages(struct zone *zone,
b69a7288 2275 struct page *start_page, struct page *end_page,
02aa0cdd 2276 int migratetype, int *num_movable)
c361be55
MG
2277{
2278 struct page *page;
d00181b9 2279 unsigned int order;
d100313f 2280 int pages_moved = 0;
c361be55 2281
c361be55
MG
2282 for (page = start_page; page <= end_page;) {
2283 if (!pfn_valid_within(page_to_pfn(page))) {
2284 page++;
2285 continue;
2286 }
2287
2288 if (!PageBuddy(page)) {
02aa0cdd
VB
2289 /*
2290 * We assume that pages that could be isolated for
2291 * migration are movable. But we don't actually try
2292 * isolating, as that would be expensive.
2293 */
2294 if (num_movable &&
2295 (PageLRU(page) || __PageMovable(page)))
2296 (*num_movable)++;
2297
c361be55
MG
2298 page++;
2299 continue;
2300 }
2301
cd961038
DR
2302 /* Make sure we are not inadvertently changing nodes */
2303 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2304 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2305
c361be55 2306 order = page_order(page);
6ab01363 2307 move_to_free_list(page, zone, order, migratetype);
c361be55 2308 page += 1 << order;
d100313f 2309 pages_moved += 1 << order;
c361be55
MG
2310 }
2311
d100313f 2312 return pages_moved;
c361be55
MG
2313}
2314
ee6f509c 2315int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2316 int migratetype, int *num_movable)
c361be55
MG
2317{
2318 unsigned long start_pfn, end_pfn;
2319 struct page *start_page, *end_page;
2320
4a222127
DR
2321 if (num_movable)
2322 *num_movable = 0;
2323
c361be55 2324 start_pfn = page_to_pfn(page);
d9c23400 2325 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2326 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2327 end_page = start_page + pageblock_nr_pages - 1;
2328 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2329
2330 /* Do not cross zone boundaries */
108bcc96 2331 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2332 start_page = page;
108bcc96 2333 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2334 return 0;
2335
02aa0cdd
VB
2336 return move_freepages(zone, start_page, end_page, migratetype,
2337 num_movable);
c361be55
MG
2338}
2339
2f66a68f
MG
2340static void change_pageblock_range(struct page *pageblock_page,
2341 int start_order, int migratetype)
2342{
2343 int nr_pageblocks = 1 << (start_order - pageblock_order);
2344
2345 while (nr_pageblocks--) {
2346 set_pageblock_migratetype(pageblock_page, migratetype);
2347 pageblock_page += pageblock_nr_pages;
2348 }
2349}
2350
fef903ef 2351/*
9c0415eb
VB
2352 * When we are falling back to another migratetype during allocation, try to
2353 * steal extra free pages from the same pageblocks to satisfy further
2354 * allocations, instead of polluting multiple pageblocks.
2355 *
2356 * If we are stealing a relatively large buddy page, it is likely there will
2357 * be more free pages in the pageblock, so try to steal them all. For
2358 * reclaimable and unmovable allocations, we steal regardless of page size,
2359 * as fragmentation caused by those allocations polluting movable pageblocks
2360 * is worse than movable allocations stealing from unmovable and reclaimable
2361 * pageblocks.
fef903ef 2362 */
4eb7dce6
JK
2363static bool can_steal_fallback(unsigned int order, int start_mt)
2364{
2365 /*
2366 * Leaving this order check is intended, although there is
2367 * relaxed order check in next check. The reason is that
2368 * we can actually steal whole pageblock if this condition met,
2369 * but, below check doesn't guarantee it and that is just heuristic
2370 * so could be changed anytime.
2371 */
2372 if (order >= pageblock_order)
2373 return true;
2374
2375 if (order >= pageblock_order / 2 ||
2376 start_mt == MIGRATE_RECLAIMABLE ||
2377 start_mt == MIGRATE_UNMOVABLE ||
2378 page_group_by_mobility_disabled)
2379 return true;
2380
2381 return false;
2382}
2383
1c30844d
MG
2384static inline void boost_watermark(struct zone *zone)
2385{
2386 unsigned long max_boost;
2387
2388 if (!watermark_boost_factor)
2389 return;
14f69140
HW
2390 /*
2391 * Don't bother in zones that are unlikely to produce results.
2392 * On small machines, including kdump capture kernels running
2393 * in a small area, boosting the watermark can cause an out of
2394 * memory situation immediately.
2395 */
2396 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2397 return;
1c30844d
MG
2398
2399 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2400 watermark_boost_factor, 10000);
94b3334c
MG
2401
2402 /*
2403 * high watermark may be uninitialised if fragmentation occurs
2404 * very early in boot so do not boost. We do not fall
2405 * through and boost by pageblock_nr_pages as failing
2406 * allocations that early means that reclaim is not going
2407 * to help and it may even be impossible to reclaim the
2408 * boosted watermark resulting in a hang.
2409 */
2410 if (!max_boost)
2411 return;
2412
1c30844d
MG
2413 max_boost = max(pageblock_nr_pages, max_boost);
2414
2415 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2416 max_boost);
2417}
2418
4eb7dce6
JK
2419/*
2420 * This function implements actual steal behaviour. If order is large enough,
2421 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2422 * pageblock to our migratetype and determine how many already-allocated pages
2423 * are there in the pageblock with a compatible migratetype. If at least half
2424 * of pages are free or compatible, we can change migratetype of the pageblock
2425 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2426 */
2427static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2428 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2429{
d00181b9 2430 unsigned int current_order = page_order(page);
02aa0cdd
VB
2431 int free_pages, movable_pages, alike_pages;
2432 int old_block_type;
2433
2434 old_block_type = get_pageblock_migratetype(page);
fef903ef 2435
3bc48f96
VB
2436 /*
2437 * This can happen due to races and we want to prevent broken
2438 * highatomic accounting.
2439 */
02aa0cdd 2440 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2441 goto single_page;
2442
fef903ef
SB
2443 /* Take ownership for orders >= pageblock_order */
2444 if (current_order >= pageblock_order) {
2445 change_pageblock_range(page, current_order, start_type);
3bc48f96 2446 goto single_page;
fef903ef
SB
2447 }
2448
1c30844d
MG
2449 /*
2450 * Boost watermarks to increase reclaim pressure to reduce the
2451 * likelihood of future fallbacks. Wake kswapd now as the node
2452 * may be balanced overall and kswapd will not wake naturally.
2453 */
2454 boost_watermark(zone);
2455 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2456 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2457
3bc48f96
VB
2458 /* We are not allowed to try stealing from the whole block */
2459 if (!whole_block)
2460 goto single_page;
2461
02aa0cdd
VB
2462 free_pages = move_freepages_block(zone, page, start_type,
2463 &movable_pages);
2464 /*
2465 * Determine how many pages are compatible with our allocation.
2466 * For movable allocation, it's the number of movable pages which
2467 * we just obtained. For other types it's a bit more tricky.
2468 */
2469 if (start_type == MIGRATE_MOVABLE) {
2470 alike_pages = movable_pages;
2471 } else {
2472 /*
2473 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2474 * to MOVABLE pageblock, consider all non-movable pages as
2475 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2476 * vice versa, be conservative since we can't distinguish the
2477 * exact migratetype of non-movable pages.
2478 */
2479 if (old_block_type == MIGRATE_MOVABLE)
2480 alike_pages = pageblock_nr_pages
2481 - (free_pages + movable_pages);
2482 else
2483 alike_pages = 0;
2484 }
2485
3bc48f96 2486 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2487 if (!free_pages)
3bc48f96 2488 goto single_page;
fef903ef 2489
02aa0cdd
VB
2490 /*
2491 * If a sufficient number of pages in the block are either free or of
2492 * comparable migratability as our allocation, claim the whole block.
2493 */
2494 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2495 page_group_by_mobility_disabled)
2496 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2497
2498 return;
2499
2500single_page:
6ab01363 2501 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2502}
2503
2149cdae
JK
2504/*
2505 * Check whether there is a suitable fallback freepage with requested order.
2506 * If only_stealable is true, this function returns fallback_mt only if
2507 * we can steal other freepages all together. This would help to reduce
2508 * fragmentation due to mixed migratetype pages in one pageblock.
2509 */
2510int find_suitable_fallback(struct free_area *area, unsigned int order,
2511 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2512{
2513 int i;
2514 int fallback_mt;
2515
2516 if (area->nr_free == 0)
2517 return -1;
2518
2519 *can_steal = false;
2520 for (i = 0;; i++) {
2521 fallback_mt = fallbacks[migratetype][i];
974a786e 2522 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2523 break;
2524
b03641af 2525 if (free_area_empty(area, fallback_mt))
4eb7dce6 2526 continue;
fef903ef 2527
4eb7dce6
JK
2528 if (can_steal_fallback(order, migratetype))
2529 *can_steal = true;
2530
2149cdae
JK
2531 if (!only_stealable)
2532 return fallback_mt;
2533
2534 if (*can_steal)
2535 return fallback_mt;
fef903ef 2536 }
4eb7dce6
JK
2537
2538 return -1;
fef903ef
SB
2539}
2540
0aaa29a5
MG
2541/*
2542 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2543 * there are no empty page blocks that contain a page with a suitable order
2544 */
2545static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2546 unsigned int alloc_order)
2547{
2548 int mt;
2549 unsigned long max_managed, flags;
2550
2551 /*
2552 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2553 * Check is race-prone but harmless.
2554 */
9705bea5 2555 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2556 if (zone->nr_reserved_highatomic >= max_managed)
2557 return;
2558
2559 spin_lock_irqsave(&zone->lock, flags);
2560
2561 /* Recheck the nr_reserved_highatomic limit under the lock */
2562 if (zone->nr_reserved_highatomic >= max_managed)
2563 goto out_unlock;
2564
2565 /* Yoink! */
2566 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2567 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2568 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2569 zone->nr_reserved_highatomic += pageblock_nr_pages;
2570 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2571 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2572 }
2573
2574out_unlock:
2575 spin_unlock_irqrestore(&zone->lock, flags);
2576}
2577
2578/*
2579 * Used when an allocation is about to fail under memory pressure. This
2580 * potentially hurts the reliability of high-order allocations when under
2581 * intense memory pressure but failed atomic allocations should be easier
2582 * to recover from than an OOM.
29fac03b
MK
2583 *
2584 * If @force is true, try to unreserve a pageblock even though highatomic
2585 * pageblock is exhausted.
0aaa29a5 2586 */
29fac03b
MK
2587static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2588 bool force)
0aaa29a5
MG
2589{
2590 struct zonelist *zonelist = ac->zonelist;
2591 unsigned long flags;
2592 struct zoneref *z;
2593 struct zone *zone;
2594 struct page *page;
2595 int order;
04c8716f 2596 bool ret;
0aaa29a5
MG
2597
2598 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2599 ac->nodemask) {
29fac03b
MK
2600 /*
2601 * Preserve at least one pageblock unless memory pressure
2602 * is really high.
2603 */
2604 if (!force && zone->nr_reserved_highatomic <=
2605 pageblock_nr_pages)
0aaa29a5
MG
2606 continue;
2607
2608 spin_lock_irqsave(&zone->lock, flags);
2609 for (order = 0; order < MAX_ORDER; order++) {
2610 struct free_area *area = &(zone->free_area[order]);
2611
b03641af 2612 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2613 if (!page)
0aaa29a5
MG
2614 continue;
2615
0aaa29a5 2616 /*
4855e4a7
MK
2617 * In page freeing path, migratetype change is racy so
2618 * we can counter several free pages in a pageblock
2619 * in this loop althoug we changed the pageblock type
2620 * from highatomic to ac->migratetype. So we should
2621 * adjust the count once.
0aaa29a5 2622 */
a6ffdc07 2623 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2624 /*
2625 * It should never happen but changes to
2626 * locking could inadvertently allow a per-cpu
2627 * drain to add pages to MIGRATE_HIGHATOMIC
2628 * while unreserving so be safe and watch for
2629 * underflows.
2630 */
2631 zone->nr_reserved_highatomic -= min(
2632 pageblock_nr_pages,
2633 zone->nr_reserved_highatomic);
2634 }
0aaa29a5
MG
2635
2636 /*
2637 * Convert to ac->migratetype and avoid the normal
2638 * pageblock stealing heuristics. Minimally, the caller
2639 * is doing the work and needs the pages. More
2640 * importantly, if the block was always converted to
2641 * MIGRATE_UNMOVABLE or another type then the number
2642 * of pageblocks that cannot be completely freed
2643 * may increase.
2644 */
2645 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2646 ret = move_freepages_block(zone, page, ac->migratetype,
2647 NULL);
29fac03b
MK
2648 if (ret) {
2649 spin_unlock_irqrestore(&zone->lock, flags);
2650 return ret;
2651 }
0aaa29a5
MG
2652 }
2653 spin_unlock_irqrestore(&zone->lock, flags);
2654 }
04c8716f
MK
2655
2656 return false;
0aaa29a5
MG
2657}
2658
3bc48f96
VB
2659/*
2660 * Try finding a free buddy page on the fallback list and put it on the free
2661 * list of requested migratetype, possibly along with other pages from the same
2662 * block, depending on fragmentation avoidance heuristics. Returns true if
2663 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2664 *
2665 * The use of signed ints for order and current_order is a deliberate
2666 * deviation from the rest of this file, to make the for loop
2667 * condition simpler.
3bc48f96 2668 */
85ccc8fa 2669static __always_inline bool
6bb15450
MG
2670__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2671 unsigned int alloc_flags)
b2a0ac88 2672{
b8af2941 2673 struct free_area *area;
b002529d 2674 int current_order;
6bb15450 2675 int min_order = order;
b2a0ac88 2676 struct page *page;
4eb7dce6
JK
2677 int fallback_mt;
2678 bool can_steal;
b2a0ac88 2679
6bb15450
MG
2680 /*
2681 * Do not steal pages from freelists belonging to other pageblocks
2682 * i.e. orders < pageblock_order. If there are no local zones free,
2683 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2684 */
2685 if (alloc_flags & ALLOC_NOFRAGMENT)
2686 min_order = pageblock_order;
2687
7a8f58f3
VB
2688 /*
2689 * Find the largest available free page in the other list. This roughly
2690 * approximates finding the pageblock with the most free pages, which
2691 * would be too costly to do exactly.
2692 */
6bb15450 2693 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2694 --current_order) {
4eb7dce6
JK
2695 area = &(zone->free_area[current_order]);
2696 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2697 start_migratetype, false, &can_steal);
4eb7dce6
JK
2698 if (fallback_mt == -1)
2699 continue;
b2a0ac88 2700
7a8f58f3
VB
2701 /*
2702 * We cannot steal all free pages from the pageblock and the
2703 * requested migratetype is movable. In that case it's better to
2704 * steal and split the smallest available page instead of the
2705 * largest available page, because even if the next movable
2706 * allocation falls back into a different pageblock than this
2707 * one, it won't cause permanent fragmentation.
2708 */
2709 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2710 && current_order > order)
2711 goto find_smallest;
b2a0ac88 2712
7a8f58f3
VB
2713 goto do_steal;
2714 }
e0fff1bd 2715
7a8f58f3 2716 return false;
e0fff1bd 2717
7a8f58f3
VB
2718find_smallest:
2719 for (current_order = order; current_order < MAX_ORDER;
2720 current_order++) {
2721 area = &(zone->free_area[current_order]);
2722 fallback_mt = find_suitable_fallback(area, current_order,
2723 start_migratetype, false, &can_steal);
2724 if (fallback_mt != -1)
2725 break;
b2a0ac88
MG
2726 }
2727
7a8f58f3
VB
2728 /*
2729 * This should not happen - we already found a suitable fallback
2730 * when looking for the largest page.
2731 */
2732 VM_BUG_ON(current_order == MAX_ORDER);
2733
2734do_steal:
b03641af 2735 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2736
1c30844d
MG
2737 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2738 can_steal);
7a8f58f3
VB
2739
2740 trace_mm_page_alloc_extfrag(page, order, current_order,
2741 start_migratetype, fallback_mt);
2742
2743 return true;
2744
b2a0ac88
MG
2745}
2746
56fd56b8 2747/*
1da177e4
LT
2748 * Do the hard work of removing an element from the buddy allocator.
2749 * Call me with the zone->lock already held.
2750 */
85ccc8fa 2751static __always_inline struct page *
6bb15450
MG
2752__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2753 unsigned int alloc_flags)
1da177e4 2754{
1da177e4
LT
2755 struct page *page;
2756
3bc48f96 2757retry:
56fd56b8 2758 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2759 if (unlikely(!page)) {
dc67647b
JK
2760 if (migratetype == MIGRATE_MOVABLE)
2761 page = __rmqueue_cma_fallback(zone, order);
2762
6bb15450
MG
2763 if (!page && __rmqueue_fallback(zone, order, migratetype,
2764 alloc_flags))
3bc48f96 2765 goto retry;
728ec980
MG
2766 }
2767
0d3d062a 2768 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2769 return page;
1da177e4
LT
2770}
2771
5f63b720 2772/*
1da177e4
LT
2773 * Obtain a specified number of elements from the buddy allocator, all under
2774 * a single hold of the lock, for efficiency. Add them to the supplied list.
2775 * Returns the number of new pages which were placed at *list.
2776 */
5f63b720 2777static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2778 unsigned long count, struct list_head *list,
6bb15450 2779 int migratetype, unsigned int alloc_flags)
1da177e4 2780{
a6de734b 2781 int i, alloced = 0;
5f63b720 2782
d34b0733 2783 spin_lock(&zone->lock);
1da177e4 2784 for (i = 0; i < count; ++i) {
6bb15450
MG
2785 struct page *page = __rmqueue(zone, order, migratetype,
2786 alloc_flags);
085cc7d5 2787 if (unlikely(page == NULL))
1da177e4 2788 break;
81eabcbe 2789
479f854a
MG
2790 if (unlikely(check_pcp_refill(page)))
2791 continue;
2792
81eabcbe 2793 /*
0fac3ba5
VB
2794 * Split buddy pages returned by expand() are received here in
2795 * physical page order. The page is added to the tail of
2796 * caller's list. From the callers perspective, the linked list
2797 * is ordered by page number under some conditions. This is
2798 * useful for IO devices that can forward direction from the
2799 * head, thus also in the physical page order. This is useful
2800 * for IO devices that can merge IO requests if the physical
2801 * pages are ordered properly.
81eabcbe 2802 */
0fac3ba5 2803 list_add_tail(&page->lru, list);
a6de734b 2804 alloced++;
bb14c2c7 2805 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2806 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2807 -(1 << order));
1da177e4 2808 }
a6de734b
MG
2809
2810 /*
2811 * i pages were removed from the buddy list even if some leak due
2812 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2813 * on i. Do not confuse with 'alloced' which is the number of
2814 * pages added to the pcp list.
2815 */
f2260e6b 2816 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2817 spin_unlock(&zone->lock);
a6de734b 2818 return alloced;
1da177e4
LT
2819}
2820
4ae7c039 2821#ifdef CONFIG_NUMA
8fce4d8e 2822/*
4037d452
CL
2823 * Called from the vmstat counter updater to drain pagesets of this
2824 * currently executing processor on remote nodes after they have
2825 * expired.
2826 *
879336c3
CL
2827 * Note that this function must be called with the thread pinned to
2828 * a single processor.
8fce4d8e 2829 */
4037d452 2830void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2831{
4ae7c039 2832 unsigned long flags;
7be12fc9 2833 int to_drain, batch;
4ae7c039 2834
4037d452 2835 local_irq_save(flags);
4db0c3c2 2836 batch = READ_ONCE(pcp->batch);
7be12fc9 2837 to_drain = min(pcp->count, batch);
77ba9062 2838 if (to_drain > 0)
2a13515c 2839 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2840 local_irq_restore(flags);
4ae7c039
CL
2841}
2842#endif
2843
9f8f2172 2844/*
93481ff0 2845 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2846 *
2847 * The processor must either be the current processor and the
2848 * thread pinned to the current processor or a processor that
2849 * is not online.
2850 */
93481ff0 2851static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2852{
c54ad30c 2853 unsigned long flags;
93481ff0
VB
2854 struct per_cpu_pageset *pset;
2855 struct per_cpu_pages *pcp;
1da177e4 2856
93481ff0
VB
2857 local_irq_save(flags);
2858 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2859
93481ff0 2860 pcp = &pset->pcp;
77ba9062 2861 if (pcp->count)
93481ff0 2862 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2863 local_irq_restore(flags);
2864}
3dfa5721 2865
93481ff0
VB
2866/*
2867 * Drain pcplists of all zones on the indicated processor.
2868 *
2869 * The processor must either be the current processor and the
2870 * thread pinned to the current processor or a processor that
2871 * is not online.
2872 */
2873static void drain_pages(unsigned int cpu)
2874{
2875 struct zone *zone;
2876
2877 for_each_populated_zone(zone) {
2878 drain_pages_zone(cpu, zone);
1da177e4
LT
2879 }
2880}
1da177e4 2881
9f8f2172
CL
2882/*
2883 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2884 *
2885 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2886 * the single zone's pages.
9f8f2172 2887 */
93481ff0 2888void drain_local_pages(struct zone *zone)
9f8f2172 2889{
93481ff0
VB
2890 int cpu = smp_processor_id();
2891
2892 if (zone)
2893 drain_pages_zone(cpu, zone);
2894 else
2895 drain_pages(cpu);
9f8f2172
CL
2896}
2897
0ccce3b9
MG
2898static void drain_local_pages_wq(struct work_struct *work)
2899{
d9367bd0
WY
2900 struct pcpu_drain *drain;
2901
2902 drain = container_of(work, struct pcpu_drain, work);
2903
a459eeb7
MH
2904 /*
2905 * drain_all_pages doesn't use proper cpu hotplug protection so
2906 * we can race with cpu offline when the WQ can move this from
2907 * a cpu pinned worker to an unbound one. We can operate on a different
2908 * cpu which is allright but we also have to make sure to not move to
2909 * a different one.
2910 */
2911 preempt_disable();
d9367bd0 2912 drain_local_pages(drain->zone);
a459eeb7 2913 preempt_enable();
0ccce3b9
MG
2914}
2915
9f8f2172 2916/*
74046494
GBY
2917 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2918 *
93481ff0
VB
2919 * When zone parameter is non-NULL, spill just the single zone's pages.
2920 *
0ccce3b9 2921 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2922 */
93481ff0 2923void drain_all_pages(struct zone *zone)
9f8f2172 2924{
74046494 2925 int cpu;
74046494
GBY
2926
2927 /*
2928 * Allocate in the BSS so we wont require allocation in
2929 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2930 */
2931 static cpumask_t cpus_with_pcps;
2932
ce612879
MH
2933 /*
2934 * Make sure nobody triggers this path before mm_percpu_wq is fully
2935 * initialized.
2936 */
2937 if (WARN_ON_ONCE(!mm_percpu_wq))
2938 return;
2939
bd233f53
MG
2940 /*
2941 * Do not drain if one is already in progress unless it's specific to
2942 * a zone. Such callers are primarily CMA and memory hotplug and need
2943 * the drain to be complete when the call returns.
2944 */
2945 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2946 if (!zone)
2947 return;
2948 mutex_lock(&pcpu_drain_mutex);
2949 }
0ccce3b9 2950
74046494
GBY
2951 /*
2952 * We don't care about racing with CPU hotplug event
2953 * as offline notification will cause the notified
2954 * cpu to drain that CPU pcps and on_each_cpu_mask
2955 * disables preemption as part of its processing
2956 */
2957 for_each_online_cpu(cpu) {
93481ff0
VB
2958 struct per_cpu_pageset *pcp;
2959 struct zone *z;
74046494 2960 bool has_pcps = false;
93481ff0
VB
2961
2962 if (zone) {
74046494 2963 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2964 if (pcp->pcp.count)
74046494 2965 has_pcps = true;
93481ff0
VB
2966 } else {
2967 for_each_populated_zone(z) {
2968 pcp = per_cpu_ptr(z->pageset, cpu);
2969 if (pcp->pcp.count) {
2970 has_pcps = true;
2971 break;
2972 }
74046494
GBY
2973 }
2974 }
93481ff0 2975
74046494
GBY
2976 if (has_pcps)
2977 cpumask_set_cpu(cpu, &cpus_with_pcps);
2978 else
2979 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2980 }
0ccce3b9 2981
bd233f53 2982 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2983 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2984
2985 drain->zone = zone;
2986 INIT_WORK(&drain->work, drain_local_pages_wq);
2987 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2988 }
bd233f53 2989 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2990 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2991
2992 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2993}
2994
296699de 2995#ifdef CONFIG_HIBERNATION
1da177e4 2996
556b969a
CY
2997/*
2998 * Touch the watchdog for every WD_PAGE_COUNT pages.
2999 */
3000#define WD_PAGE_COUNT (128*1024)
3001
1da177e4
LT
3002void mark_free_pages(struct zone *zone)
3003{
556b969a 3004 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3005 unsigned long flags;
7aeb09f9 3006 unsigned int order, t;
86760a2c 3007 struct page *page;
1da177e4 3008
8080fc03 3009 if (zone_is_empty(zone))
1da177e4
LT
3010 return;
3011
3012 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3013
108bcc96 3014 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3015 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3016 if (pfn_valid(pfn)) {
86760a2c 3017 page = pfn_to_page(pfn);
ba6b0979 3018
556b969a
CY
3019 if (!--page_count) {
3020 touch_nmi_watchdog();
3021 page_count = WD_PAGE_COUNT;
3022 }
3023
ba6b0979
JK
3024 if (page_zone(page) != zone)
3025 continue;
3026
7be98234
RW
3027 if (!swsusp_page_is_forbidden(page))
3028 swsusp_unset_page_free(page);
f623f0db 3029 }
1da177e4 3030
b2a0ac88 3031 for_each_migratetype_order(order, t) {
86760a2c
GT
3032 list_for_each_entry(page,
3033 &zone->free_area[order].free_list[t], lru) {
f623f0db 3034 unsigned long i;
1da177e4 3035
86760a2c 3036 pfn = page_to_pfn(page);
556b969a
CY
3037 for (i = 0; i < (1UL << order); i++) {
3038 if (!--page_count) {
3039 touch_nmi_watchdog();
3040 page_count = WD_PAGE_COUNT;
3041 }
7be98234 3042 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3043 }
f623f0db 3044 }
b2a0ac88 3045 }
1da177e4
LT
3046 spin_unlock_irqrestore(&zone->lock, flags);
3047}
e2c55dc8 3048#endif /* CONFIG_PM */
1da177e4 3049
2d4894b5 3050static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3051{
5f8dcc21 3052 int migratetype;
1da177e4 3053
4db7548c 3054 if (!free_pcp_prepare(page))
9cca35d4 3055 return false;
689bcebf 3056
dc4b0caf 3057 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3058 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3059 return true;
3060}
3061
2d4894b5 3062static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3063{
3064 struct zone *zone = page_zone(page);
3065 struct per_cpu_pages *pcp;
3066 int migratetype;
3067
3068 migratetype = get_pcppage_migratetype(page);
d34b0733 3069 __count_vm_event(PGFREE);
da456f14 3070
5f8dcc21
MG
3071 /*
3072 * We only track unmovable, reclaimable and movable on pcp lists.
3073 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3074 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3075 * areas back if necessary. Otherwise, we may have to free
3076 * excessively into the page allocator
3077 */
3078 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3079 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3080 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3081 return;
5f8dcc21
MG
3082 }
3083 migratetype = MIGRATE_MOVABLE;
3084 }
3085
99dcc3e5 3086 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3087 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3088 pcp->count++;
48db57f8 3089 if (pcp->count >= pcp->high) {
4db0c3c2 3090 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3091 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3092 }
9cca35d4 3093}
5f8dcc21 3094
9cca35d4
MG
3095/*
3096 * Free a 0-order page
9cca35d4 3097 */
2d4894b5 3098void free_unref_page(struct page *page)
9cca35d4
MG
3099{
3100 unsigned long flags;
3101 unsigned long pfn = page_to_pfn(page);
3102
2d4894b5 3103 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3104 return;
3105
3106 local_irq_save(flags);
2d4894b5 3107 free_unref_page_commit(page, pfn);
d34b0733 3108 local_irq_restore(flags);
1da177e4
LT
3109}
3110
cc59850e
KK
3111/*
3112 * Free a list of 0-order pages
3113 */
2d4894b5 3114void free_unref_page_list(struct list_head *list)
cc59850e
KK
3115{
3116 struct page *page, *next;
9cca35d4 3117 unsigned long flags, pfn;
c24ad77d 3118 int batch_count = 0;
9cca35d4
MG
3119
3120 /* Prepare pages for freeing */
3121 list_for_each_entry_safe(page, next, list, lru) {
3122 pfn = page_to_pfn(page);
2d4894b5 3123 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3124 list_del(&page->lru);
3125 set_page_private(page, pfn);
3126 }
cc59850e 3127
9cca35d4 3128 local_irq_save(flags);
cc59850e 3129 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3130 unsigned long pfn = page_private(page);
3131
3132 set_page_private(page, 0);
2d4894b5
MG
3133 trace_mm_page_free_batched(page);
3134 free_unref_page_commit(page, pfn);
c24ad77d
LS
3135
3136 /*
3137 * Guard against excessive IRQ disabled times when we get
3138 * a large list of pages to free.
3139 */
3140 if (++batch_count == SWAP_CLUSTER_MAX) {
3141 local_irq_restore(flags);
3142 batch_count = 0;
3143 local_irq_save(flags);
3144 }
cc59850e 3145 }
9cca35d4 3146 local_irq_restore(flags);
cc59850e
KK
3147}
3148
8dfcc9ba
NP
3149/*
3150 * split_page takes a non-compound higher-order page, and splits it into
3151 * n (1<<order) sub-pages: page[0..n]
3152 * Each sub-page must be freed individually.
3153 *
3154 * Note: this is probably too low level an operation for use in drivers.
3155 * Please consult with lkml before using this in your driver.
3156 */
3157void split_page(struct page *page, unsigned int order)
3158{
3159 int i;
3160
309381fe
SL
3161 VM_BUG_ON_PAGE(PageCompound(page), page);
3162 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3163
a9627bc5 3164 for (i = 1; i < (1 << order); i++)
7835e98b 3165 set_page_refcounted(page + i);
a9627bc5 3166 split_page_owner(page, order);
8dfcc9ba 3167}
5853ff23 3168EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3169
3c605096 3170int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3171{
748446bb
MG
3172 unsigned long watermark;
3173 struct zone *zone;
2139cbe6 3174 int mt;
748446bb
MG
3175
3176 BUG_ON(!PageBuddy(page));
3177
3178 zone = page_zone(page);
2e30abd1 3179 mt = get_pageblock_migratetype(page);
748446bb 3180
194159fb 3181 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3182 /*
3183 * Obey watermarks as if the page was being allocated. We can
3184 * emulate a high-order watermark check with a raised order-0
3185 * watermark, because we already know our high-order page
3186 * exists.
3187 */
fd1444b2 3188 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3189 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3190 return 0;
3191
8fb74b9f 3192 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3193 }
748446bb
MG
3194
3195 /* Remove page from free list */
b03641af 3196
6ab01363 3197 del_page_from_free_list(page, zone, order);
2139cbe6 3198
400bc7fd 3199 /*
3200 * Set the pageblock if the isolated page is at least half of a
3201 * pageblock
3202 */
748446bb
MG
3203 if (order >= pageblock_order - 1) {
3204 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3205 for (; page < endpage; page += pageblock_nr_pages) {
3206 int mt = get_pageblock_migratetype(page);
88ed365e 3207 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3208 && !is_migrate_highatomic(mt))
47118af0
MN
3209 set_pageblock_migratetype(page,
3210 MIGRATE_MOVABLE);
3211 }
748446bb
MG
3212 }
3213
f3a14ced 3214
8fb74b9f 3215 return 1UL << order;
1fb3f8ca
MG
3216}
3217
624f58d8
AD
3218/**
3219 * __putback_isolated_page - Return a now-isolated page back where we got it
3220 * @page: Page that was isolated
3221 * @order: Order of the isolated page
e6a0a7ad 3222 * @mt: The page's pageblock's migratetype
624f58d8
AD
3223 *
3224 * This function is meant to return a page pulled from the free lists via
3225 * __isolate_free_page back to the free lists they were pulled from.
3226 */
3227void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3228{
3229 struct zone *zone = page_zone(page);
3230
3231 /* zone lock should be held when this function is called */
3232 lockdep_assert_held(&zone->lock);
3233
3234 /* Return isolated page to tail of freelist. */
36e66c55 3235 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3236}
3237
060e7417
MG
3238/*
3239 * Update NUMA hit/miss statistics
3240 *
3241 * Must be called with interrupts disabled.
060e7417 3242 */
41b6167e 3243static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3244{
3245#ifdef CONFIG_NUMA
3a321d2a 3246 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3247
4518085e
KW
3248 /* skip numa counters update if numa stats is disabled */
3249 if (!static_branch_likely(&vm_numa_stat_key))
3250 return;
3251
c1093b74 3252 if (zone_to_nid(z) != numa_node_id())
060e7417 3253 local_stat = NUMA_OTHER;
060e7417 3254
c1093b74 3255 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3256 __inc_numa_state(z, NUMA_HIT);
2df26639 3257 else {
3a321d2a
KW
3258 __inc_numa_state(z, NUMA_MISS);
3259 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3260 }
3a321d2a 3261 __inc_numa_state(z, local_stat);
060e7417
MG
3262#endif
3263}
3264
066b2393
MG
3265/* Remove page from the per-cpu list, caller must protect the list */
3266static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3267 unsigned int alloc_flags,
453f85d4 3268 struct per_cpu_pages *pcp,
066b2393
MG
3269 struct list_head *list)
3270{
3271 struct page *page;
3272
3273 do {
3274 if (list_empty(list)) {
3275 pcp->count += rmqueue_bulk(zone, 0,
3276 pcp->batch, list,
6bb15450 3277 migratetype, alloc_flags);
066b2393
MG
3278 if (unlikely(list_empty(list)))
3279 return NULL;
3280 }
3281
453f85d4 3282 page = list_first_entry(list, struct page, lru);
066b2393
MG
3283 list_del(&page->lru);
3284 pcp->count--;
3285 } while (check_new_pcp(page));
3286
3287 return page;
3288}
3289
3290/* Lock and remove page from the per-cpu list */
3291static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3292 struct zone *zone, gfp_t gfp_flags,
3293 int migratetype, unsigned int alloc_flags)
066b2393
MG
3294{
3295 struct per_cpu_pages *pcp;
3296 struct list_head *list;
066b2393 3297 struct page *page;
d34b0733 3298 unsigned long flags;
066b2393 3299
d34b0733 3300 local_irq_save(flags);
066b2393
MG
3301 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3302 list = &pcp->lists[migratetype];
6bb15450 3303 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3304 if (page) {
1c52e6d0 3305 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3306 zone_statistics(preferred_zone, zone);
3307 }
d34b0733 3308 local_irq_restore(flags);
066b2393
MG
3309 return page;
3310}
3311
1da177e4 3312/*
75379191 3313 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3314 */
0a15c3e9 3315static inline
066b2393 3316struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3317 struct zone *zone, unsigned int order,
c603844b
MG
3318 gfp_t gfp_flags, unsigned int alloc_flags,
3319 int migratetype)
1da177e4
LT
3320{
3321 unsigned long flags;
689bcebf 3322 struct page *page;
1da177e4 3323
d34b0733 3324 if (likely(order == 0)) {
1c52e6d0
YS
3325 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3326 migratetype, alloc_flags);
066b2393
MG
3327 goto out;
3328 }
83b9355b 3329
066b2393
MG
3330 /*
3331 * We most definitely don't want callers attempting to
3332 * allocate greater than order-1 page units with __GFP_NOFAIL.
3333 */
3334 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3335 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3336
066b2393
MG
3337 do {
3338 page = NULL;
3339 if (alloc_flags & ALLOC_HARDER) {
3340 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3341 if (page)
3342 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3343 }
a74609fa 3344 if (!page)
6bb15450 3345 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3346 } while (page && check_new_pages(page, order));
3347 spin_unlock(&zone->lock);
3348 if (!page)
3349 goto failed;
3350 __mod_zone_freepage_state(zone, -(1 << order),
3351 get_pcppage_migratetype(page));
1da177e4 3352
16709d1d 3353 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3354 zone_statistics(preferred_zone, zone);
a74609fa 3355 local_irq_restore(flags);
1da177e4 3356
066b2393 3357out:
73444bc4
MG
3358 /* Separate test+clear to avoid unnecessary atomics */
3359 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3360 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3361 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3362 }
3363
066b2393 3364 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3365 return page;
a74609fa
NP
3366
3367failed:
3368 local_irq_restore(flags);
a74609fa 3369 return NULL;
1da177e4
LT
3370}
3371
933e312e
AM
3372#ifdef CONFIG_FAIL_PAGE_ALLOC
3373
b2588c4b 3374static struct {
933e312e
AM
3375 struct fault_attr attr;
3376
621a5f7a 3377 bool ignore_gfp_highmem;
71baba4b 3378 bool ignore_gfp_reclaim;
54114994 3379 u32 min_order;
933e312e
AM
3380} fail_page_alloc = {
3381 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3382 .ignore_gfp_reclaim = true,
621a5f7a 3383 .ignore_gfp_highmem = true,
54114994 3384 .min_order = 1,
933e312e
AM
3385};
3386
3387static int __init setup_fail_page_alloc(char *str)
3388{
3389 return setup_fault_attr(&fail_page_alloc.attr, str);
3390}
3391__setup("fail_page_alloc=", setup_fail_page_alloc);
3392
af3b8544 3393static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3394{
54114994 3395 if (order < fail_page_alloc.min_order)
deaf386e 3396 return false;
933e312e 3397 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3398 return false;
933e312e 3399 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3400 return false;
71baba4b
MG
3401 if (fail_page_alloc.ignore_gfp_reclaim &&
3402 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3403 return false;
933e312e
AM
3404
3405 return should_fail(&fail_page_alloc.attr, 1 << order);
3406}
3407
3408#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3409
3410static int __init fail_page_alloc_debugfs(void)
3411{
0825a6f9 3412 umode_t mode = S_IFREG | 0600;
933e312e 3413 struct dentry *dir;
933e312e 3414
dd48c085
AM
3415 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3416 &fail_page_alloc.attr);
b2588c4b 3417
d9f7979c
GKH
3418 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3419 &fail_page_alloc.ignore_gfp_reclaim);
3420 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3421 &fail_page_alloc.ignore_gfp_highmem);
3422 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3423
d9f7979c 3424 return 0;
933e312e
AM
3425}
3426
3427late_initcall(fail_page_alloc_debugfs);
3428
3429#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3430
3431#else /* CONFIG_FAIL_PAGE_ALLOC */
3432
af3b8544 3433static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3434{
deaf386e 3435 return false;
933e312e
AM
3436}
3437
3438#endif /* CONFIG_FAIL_PAGE_ALLOC */
3439
af3b8544
BP
3440static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3441{
3442 return __should_fail_alloc_page(gfp_mask, order);
3443}
3444ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3445
1da177e4 3446/*
97a16fc8
MG
3447 * Return true if free base pages are above 'mark'. For high-order checks it
3448 * will return true of the order-0 watermark is reached and there is at least
3449 * one free page of a suitable size. Checking now avoids taking the zone lock
3450 * to check in the allocation paths if no pages are free.
1da177e4 3451 */
86a294a8
MH
3452bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3453 int classzone_idx, unsigned int alloc_flags,
3454 long free_pages)
1da177e4 3455{
d23ad423 3456 long min = mark;
1da177e4 3457 int o;
cd04ae1e 3458 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3459
0aaa29a5 3460 /* free_pages may go negative - that's OK */
df0a6daa 3461 free_pages -= (1 << order) - 1;
0aaa29a5 3462
7fb1d9fc 3463 if (alloc_flags & ALLOC_HIGH)
1da177e4 3464 min -= min / 2;
0aaa29a5
MG
3465
3466 /*
3467 * If the caller does not have rights to ALLOC_HARDER then subtract
3468 * the high-atomic reserves. This will over-estimate the size of the
3469 * atomic reserve but it avoids a search.
3470 */
cd04ae1e 3471 if (likely(!alloc_harder)) {
0aaa29a5 3472 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3473 } else {
3474 /*
3475 * OOM victims can try even harder than normal ALLOC_HARDER
3476 * users on the grounds that it's definitely going to be in
3477 * the exit path shortly and free memory. Any allocation it
3478 * makes during the free path will be small and short-lived.
3479 */
3480 if (alloc_flags & ALLOC_OOM)
3481 min -= min / 2;
3482 else
3483 min -= min / 4;
3484 }
3485
e2b19197 3486
d883c6cf
JK
3487#ifdef CONFIG_CMA
3488 /* If allocation can't use CMA areas don't use free CMA pages */
3489 if (!(alloc_flags & ALLOC_CMA))
3490 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3491#endif
3492
97a16fc8
MG
3493 /*
3494 * Check watermarks for an order-0 allocation request. If these
3495 * are not met, then a high-order request also cannot go ahead
3496 * even if a suitable page happened to be free.
3497 */
3498 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3499 return false;
1da177e4 3500
97a16fc8
MG
3501 /* If this is an order-0 request then the watermark is fine */
3502 if (!order)
3503 return true;
3504
3505 /* For a high-order request, check at least one suitable page is free */
3506 for (o = order; o < MAX_ORDER; o++) {
3507 struct free_area *area = &z->free_area[o];
3508 int mt;
3509
3510 if (!area->nr_free)
3511 continue;
3512
97a16fc8 3513 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3514 if (!free_area_empty(area, mt))
97a16fc8
MG
3515 return true;
3516 }
3517
3518#ifdef CONFIG_CMA
d883c6cf 3519 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3520 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3521 return true;
d883c6cf 3522 }
97a16fc8 3523#endif
76089d00 3524 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3525 return true;
1da177e4 3526 }
97a16fc8 3527 return false;
88f5acf8
MG
3528}
3529
7aeb09f9 3530bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3531 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3532{
3533 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3534 zone_page_state(z, NR_FREE_PAGES));
3535}
3536
48ee5f36
MG
3537static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3538 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3539{
3540 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3541 long cma_pages = 0;
3542
3543#ifdef CONFIG_CMA
3544 /* If allocation can't use CMA areas don't use free CMA pages */
3545 if (!(alloc_flags & ALLOC_CMA))
3546 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3547#endif
48ee5f36
MG
3548
3549 /*
3550 * Fast check for order-0 only. If this fails then the reserves
3551 * need to be calculated. There is a corner case where the check
3552 * passes but only the high-order atomic reserve are free. If
3553 * the caller is !atomic then it'll uselessly search the free
3554 * list. That corner case is then slower but it is harmless.
3555 */
d883c6cf 3556 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3557 return true;
3558
3559 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3560 free_pages);
3561}
3562
7aeb09f9 3563bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3564 unsigned long mark, int classzone_idx)
88f5acf8
MG
3565{
3566 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3567
3568 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3569 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3570
e2b19197 3571 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3572 free_pages);
1da177e4
LT
3573}
3574
9276b1bc 3575#ifdef CONFIG_NUMA
957f822a
DR
3576static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3577{
e02dc017 3578 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3579 node_reclaim_distance;
957f822a 3580}
9276b1bc 3581#else /* CONFIG_NUMA */
957f822a
DR
3582static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3583{
3584 return true;
3585}
9276b1bc
PJ
3586#endif /* CONFIG_NUMA */
3587
6bb15450
MG
3588/*
3589 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3590 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3591 * premature use of a lower zone may cause lowmem pressure problems that
3592 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3593 * probably too small. It only makes sense to spread allocations to avoid
3594 * fragmentation between the Normal and DMA32 zones.
3595 */
3596static inline unsigned int
0a79cdad 3597alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3598{
736838e9 3599 unsigned int alloc_flags;
0a79cdad 3600
736838e9
MN
3601 /*
3602 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3603 * to save a branch.
3604 */
3605 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3606
3607#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3608 if (!zone)
3609 return alloc_flags;
3610
6bb15450 3611 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3612 return alloc_flags;
6bb15450
MG
3613
3614 /*
3615 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3616 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3617 * on UMA that if Normal is populated then so is DMA32.
3618 */
3619 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3620 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3621 return alloc_flags;
6bb15450 3622
8118b82e 3623 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3624#endif /* CONFIG_ZONE_DMA32 */
3625 return alloc_flags;
6bb15450 3626}
6bb15450 3627
7fb1d9fc 3628/*
0798e519 3629 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3630 * a page.
3631 */
3632static struct page *
a9263751
VB
3633get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3634 const struct alloc_context *ac)
753ee728 3635{
6bb15450 3636 struct zoneref *z;
5117f45d 3637 struct zone *zone;
3b8c0be4 3638 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3639 bool no_fallback;
3b8c0be4 3640
6bb15450 3641retry:
7fb1d9fc 3642 /*
9276b1bc 3643 * Scan zonelist, looking for a zone with enough free.
344736f2 3644 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3645 */
6bb15450
MG
3646 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3647 z = ac->preferred_zoneref;
c33d6c06 3648 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3649 ac->nodemask) {
be06af00 3650 struct page *page;
e085dbc5
JW
3651 unsigned long mark;
3652
664eedde
MG
3653 if (cpusets_enabled() &&
3654 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3655 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3656 continue;
a756cf59
JW
3657 /*
3658 * When allocating a page cache page for writing, we
281e3726
MG
3659 * want to get it from a node that is within its dirty
3660 * limit, such that no single node holds more than its
a756cf59 3661 * proportional share of globally allowed dirty pages.
281e3726 3662 * The dirty limits take into account the node's
a756cf59
JW
3663 * lowmem reserves and high watermark so that kswapd
3664 * should be able to balance it without having to
3665 * write pages from its LRU list.
3666 *
a756cf59 3667 * XXX: For now, allow allocations to potentially
281e3726 3668 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3669 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3670 * which is important when on a NUMA setup the allowed
281e3726 3671 * nodes are together not big enough to reach the
a756cf59 3672 * global limit. The proper fix for these situations
281e3726 3673 * will require awareness of nodes in the
a756cf59
JW
3674 * dirty-throttling and the flusher threads.
3675 */
3b8c0be4
MG
3676 if (ac->spread_dirty_pages) {
3677 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3678 continue;
3679
3680 if (!node_dirty_ok(zone->zone_pgdat)) {
3681 last_pgdat_dirty_limit = zone->zone_pgdat;
3682 continue;
3683 }
3684 }
7fb1d9fc 3685
6bb15450
MG
3686 if (no_fallback && nr_online_nodes > 1 &&
3687 zone != ac->preferred_zoneref->zone) {
3688 int local_nid;
3689
3690 /*
3691 * If moving to a remote node, retry but allow
3692 * fragmenting fallbacks. Locality is more important
3693 * than fragmentation avoidance.
3694 */
3695 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3696 if (zone_to_nid(zone) != local_nid) {
3697 alloc_flags &= ~ALLOC_NOFRAGMENT;
3698 goto retry;
3699 }
3700 }
3701
a9214443 3702 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3703 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3704 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3705 int ret;
3706
c9e97a19
PT
3707#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3708 /*
3709 * Watermark failed for this zone, but see if we can
3710 * grow this zone if it contains deferred pages.
3711 */
3712 if (static_branch_unlikely(&deferred_pages)) {
3713 if (_deferred_grow_zone(zone, order))
3714 goto try_this_zone;
3715 }
3716#endif
5dab2911
MG
3717 /* Checked here to keep the fast path fast */
3718 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3719 if (alloc_flags & ALLOC_NO_WATERMARKS)
3720 goto try_this_zone;
3721
a5f5f91d 3722 if (node_reclaim_mode == 0 ||
c33d6c06 3723 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3724 continue;
3725
a5f5f91d 3726 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3727 switch (ret) {
a5f5f91d 3728 case NODE_RECLAIM_NOSCAN:
fa5e084e 3729 /* did not scan */
cd38b115 3730 continue;
a5f5f91d 3731 case NODE_RECLAIM_FULL:
fa5e084e 3732 /* scanned but unreclaimable */
cd38b115 3733 continue;
fa5e084e
MG
3734 default:
3735 /* did we reclaim enough */
fed2719e 3736 if (zone_watermark_ok(zone, order, mark,
93ea9964 3737 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3738 goto try_this_zone;
3739
fed2719e 3740 continue;
0798e519 3741 }
7fb1d9fc
RS
3742 }
3743
fa5e084e 3744try_this_zone:
066b2393 3745 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3746 gfp_mask, alloc_flags, ac->migratetype);
75379191 3747 if (page) {
479f854a 3748 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3749
3750 /*
3751 * If this is a high-order atomic allocation then check
3752 * if the pageblock should be reserved for the future
3753 */
3754 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3755 reserve_highatomic_pageblock(page, zone, order);
3756
75379191 3757 return page;
c9e97a19
PT
3758 } else {
3759#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3760 /* Try again if zone has deferred pages */
3761 if (static_branch_unlikely(&deferred_pages)) {
3762 if (_deferred_grow_zone(zone, order))
3763 goto try_this_zone;
3764 }
3765#endif
75379191 3766 }
54a6eb5c 3767 }
9276b1bc 3768
6bb15450
MG
3769 /*
3770 * It's possible on a UMA machine to get through all zones that are
3771 * fragmented. If avoiding fragmentation, reset and try again.
3772 */
3773 if (no_fallback) {
3774 alloc_flags &= ~ALLOC_NOFRAGMENT;
3775 goto retry;
3776 }
3777
4ffeaf35 3778 return NULL;
753ee728
MH
3779}
3780
9af744d7 3781static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3782{
a238ab5b 3783 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3784
3785 /*
3786 * This documents exceptions given to allocations in certain
3787 * contexts that are allowed to allocate outside current's set
3788 * of allowed nodes.
3789 */
3790 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3791 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3792 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3793 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3794 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3795 filter &= ~SHOW_MEM_FILTER_NODES;
3796
9af744d7 3797 show_mem(filter, nodemask);
aa187507
MH
3798}
3799
a8e99259 3800void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3801{
3802 struct va_format vaf;
3803 va_list args;
1be334e5 3804 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3805
0f7896f1 3806 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3807 return;
3808
7877cdcc
MH
3809 va_start(args, fmt);
3810 vaf.fmt = fmt;
3811 vaf.va = &args;
ef8444ea 3812 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3813 current->comm, &vaf, gfp_mask, &gfp_mask,
3814 nodemask_pr_args(nodemask));
7877cdcc 3815 va_end(args);
3ee9a4f0 3816
a8e99259 3817 cpuset_print_current_mems_allowed();
ef8444ea 3818 pr_cont("\n");
a238ab5b 3819 dump_stack();
685dbf6f 3820 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3821}
3822
6c18ba7a
MH
3823static inline struct page *
3824__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3825 unsigned int alloc_flags,
3826 const struct alloc_context *ac)
3827{
3828 struct page *page;
3829
3830 page = get_page_from_freelist(gfp_mask, order,
3831 alloc_flags|ALLOC_CPUSET, ac);
3832 /*
3833 * fallback to ignore cpuset restriction if our nodes
3834 * are depleted
3835 */
3836 if (!page)
3837 page = get_page_from_freelist(gfp_mask, order,
3838 alloc_flags, ac);
3839
3840 return page;
3841}
3842
11e33f6a
MG
3843static inline struct page *
3844__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3845 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3846{
6e0fc46d
DR
3847 struct oom_control oc = {
3848 .zonelist = ac->zonelist,
3849 .nodemask = ac->nodemask,
2a966b77 3850 .memcg = NULL,
6e0fc46d
DR
3851 .gfp_mask = gfp_mask,
3852 .order = order,
6e0fc46d 3853 };
11e33f6a
MG
3854 struct page *page;
3855
9879de73
JW
3856 *did_some_progress = 0;
3857
9879de73 3858 /*
dc56401f
JW
3859 * Acquire the oom lock. If that fails, somebody else is
3860 * making progress for us.
9879de73 3861 */
dc56401f 3862 if (!mutex_trylock(&oom_lock)) {
9879de73 3863 *did_some_progress = 1;
11e33f6a 3864 schedule_timeout_uninterruptible(1);
1da177e4
LT
3865 return NULL;
3866 }
6b1de916 3867
11e33f6a
MG
3868 /*
3869 * Go through the zonelist yet one more time, keep very high watermark
3870 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3871 * we're still under heavy pressure. But make sure that this reclaim
3872 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3873 * allocation which will never fail due to oom_lock already held.
11e33f6a 3874 */
e746bf73
TH
3875 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3876 ~__GFP_DIRECT_RECLAIM, order,
3877 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3878 if (page)
11e33f6a
MG
3879 goto out;
3880
06ad276a
MH
3881 /* Coredumps can quickly deplete all memory reserves */
3882 if (current->flags & PF_DUMPCORE)
3883 goto out;
3884 /* The OOM killer will not help higher order allocs */
3885 if (order > PAGE_ALLOC_COSTLY_ORDER)
3886 goto out;
dcda9b04
MH
3887 /*
3888 * We have already exhausted all our reclaim opportunities without any
3889 * success so it is time to admit defeat. We will skip the OOM killer
3890 * because it is very likely that the caller has a more reasonable
3891 * fallback than shooting a random task.
3892 */
3893 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3894 goto out;
06ad276a
MH
3895 /* The OOM killer does not needlessly kill tasks for lowmem */
3896 if (ac->high_zoneidx < ZONE_NORMAL)
3897 goto out;
3898 if (pm_suspended_storage())
3899 goto out;
3900 /*
3901 * XXX: GFP_NOFS allocations should rather fail than rely on
3902 * other request to make a forward progress.
3903 * We are in an unfortunate situation where out_of_memory cannot
3904 * do much for this context but let's try it to at least get
3905 * access to memory reserved if the current task is killed (see
3906 * out_of_memory). Once filesystems are ready to handle allocation
3907 * failures more gracefully we should just bail out here.
3908 */
3909
3910 /* The OOM killer may not free memory on a specific node */
3911 if (gfp_mask & __GFP_THISNODE)
3912 goto out;
3da88fb3 3913
3c2c6488 3914 /* Exhausted what can be done so it's blame time */
5020e285 3915 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3916 *did_some_progress = 1;
5020e285 3917
6c18ba7a
MH
3918 /*
3919 * Help non-failing allocations by giving them access to memory
3920 * reserves
3921 */
3922 if (gfp_mask & __GFP_NOFAIL)
3923 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3924 ALLOC_NO_WATERMARKS, ac);
5020e285 3925 }
11e33f6a 3926out:
dc56401f 3927 mutex_unlock(&oom_lock);
11e33f6a
MG
3928 return page;
3929}
3930
33c2d214
MH
3931/*
3932 * Maximum number of compaction retries wit a progress before OOM
3933 * killer is consider as the only way to move forward.
3934 */
3935#define MAX_COMPACT_RETRIES 16
3936
56de7263
MG
3937#ifdef CONFIG_COMPACTION
3938/* Try memory compaction for high-order allocations before reclaim */
3939static struct page *
3940__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3941 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3942 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3943{
5e1f0f09 3944 struct page *page = NULL;
eb414681 3945 unsigned long pflags;
499118e9 3946 unsigned int noreclaim_flag;
53853e2d
VB
3947
3948 if (!order)
66199712 3949 return NULL;
66199712 3950
eb414681 3951 psi_memstall_enter(&pflags);
499118e9 3952 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3953
c5d01d0d 3954 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3955 prio, &page);
eb414681 3956
499118e9 3957 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3958 psi_memstall_leave(&pflags);
56de7263 3959
98dd3b48
VB
3960 /*
3961 * At least in one zone compaction wasn't deferred or skipped, so let's
3962 * count a compaction stall
3963 */
3964 count_vm_event(COMPACTSTALL);
8fb74b9f 3965
5e1f0f09
MG
3966 /* Prep a captured page if available */
3967 if (page)
3968 prep_new_page(page, order, gfp_mask, alloc_flags);
3969
3970 /* Try get a page from the freelist if available */
3971 if (!page)
3972 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3973
98dd3b48
VB
3974 if (page) {
3975 struct zone *zone = page_zone(page);
53853e2d 3976
98dd3b48
VB
3977 zone->compact_blockskip_flush = false;
3978 compaction_defer_reset(zone, order, true);
3979 count_vm_event(COMPACTSUCCESS);
3980 return page;
3981 }
56de7263 3982
98dd3b48
VB
3983 /*
3984 * It's bad if compaction run occurs and fails. The most likely reason
3985 * is that pages exist, but not enough to satisfy watermarks.
3986 */
3987 count_vm_event(COMPACTFAIL);
66199712 3988
98dd3b48 3989 cond_resched();
56de7263
MG
3990
3991 return NULL;
3992}
33c2d214 3993
3250845d
VB
3994static inline bool
3995should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3996 enum compact_result compact_result,
3997 enum compact_priority *compact_priority,
d9436498 3998 int *compaction_retries)
3250845d
VB
3999{
4000 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4001 int min_priority;
65190cff
MH
4002 bool ret = false;
4003 int retries = *compaction_retries;
4004 enum compact_priority priority = *compact_priority;
3250845d
VB
4005
4006 if (!order)
4007 return false;
4008
d9436498
VB
4009 if (compaction_made_progress(compact_result))
4010 (*compaction_retries)++;
4011
3250845d
VB
4012 /*
4013 * compaction considers all the zone as desperately out of memory
4014 * so it doesn't really make much sense to retry except when the
4015 * failure could be caused by insufficient priority
4016 */
d9436498
VB
4017 if (compaction_failed(compact_result))
4018 goto check_priority;
3250845d 4019
49433085
VB
4020 /*
4021 * compaction was skipped because there are not enough order-0 pages
4022 * to work with, so we retry only if it looks like reclaim can help.
4023 */
4024 if (compaction_needs_reclaim(compact_result)) {
4025 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4026 goto out;
4027 }
4028
3250845d
VB
4029 /*
4030 * make sure the compaction wasn't deferred or didn't bail out early
4031 * due to locks contention before we declare that we should give up.
49433085
VB
4032 * But the next retry should use a higher priority if allowed, so
4033 * we don't just keep bailing out endlessly.
3250845d 4034 */
65190cff 4035 if (compaction_withdrawn(compact_result)) {
49433085 4036 goto check_priority;
65190cff 4037 }
3250845d
VB
4038
4039 /*
dcda9b04 4040 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4041 * costly ones because they are de facto nofail and invoke OOM
4042 * killer to move on while costly can fail and users are ready
4043 * to cope with that. 1/4 retries is rather arbitrary but we
4044 * would need much more detailed feedback from compaction to
4045 * make a better decision.
4046 */
4047 if (order > PAGE_ALLOC_COSTLY_ORDER)
4048 max_retries /= 4;
65190cff
MH
4049 if (*compaction_retries <= max_retries) {
4050 ret = true;
4051 goto out;
4052 }
3250845d 4053
d9436498
VB
4054 /*
4055 * Make sure there are attempts at the highest priority if we exhausted
4056 * all retries or failed at the lower priorities.
4057 */
4058check_priority:
c2033b00
VB
4059 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4060 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4061
c2033b00 4062 if (*compact_priority > min_priority) {
d9436498
VB
4063 (*compact_priority)--;
4064 *compaction_retries = 0;
65190cff 4065 ret = true;
d9436498 4066 }
65190cff
MH
4067out:
4068 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4069 return ret;
3250845d 4070}
56de7263
MG
4071#else
4072static inline struct page *
4073__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4074 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4075 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4076{
33c2d214 4077 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4078 return NULL;
4079}
33c2d214
MH
4080
4081static inline bool
86a294a8
MH
4082should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4083 enum compact_result compact_result,
a5508cd8 4084 enum compact_priority *compact_priority,
d9436498 4085 int *compaction_retries)
33c2d214 4086{
31e49bfd
MH
4087 struct zone *zone;
4088 struct zoneref *z;
4089
4090 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4091 return false;
4092
4093 /*
4094 * There are setups with compaction disabled which would prefer to loop
4095 * inside the allocator rather than hit the oom killer prematurely.
4096 * Let's give them a good hope and keep retrying while the order-0
4097 * watermarks are OK.
4098 */
4099 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4100 ac->nodemask) {
4101 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4102 ac_classzone_idx(ac), alloc_flags))
4103 return true;
4104 }
33c2d214
MH
4105 return false;
4106}
3250845d 4107#endif /* CONFIG_COMPACTION */
56de7263 4108
d92a8cfc 4109#ifdef CONFIG_LOCKDEP
93781325 4110static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4111 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4112
4113static bool __need_fs_reclaim(gfp_t gfp_mask)
4114{
4115 gfp_mask = current_gfp_context(gfp_mask);
4116
4117 /* no reclaim without waiting on it */
4118 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4119 return false;
4120
4121 /* this guy won't enter reclaim */
2e517d68 4122 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4123 return false;
4124
4125 /* We're only interested __GFP_FS allocations for now */
4126 if (!(gfp_mask & __GFP_FS))
4127 return false;
4128
4129 if (gfp_mask & __GFP_NOLOCKDEP)
4130 return false;
4131
4132 return true;
4133}
4134
93781325
OS
4135void __fs_reclaim_acquire(void)
4136{
4137 lock_map_acquire(&__fs_reclaim_map);
4138}
4139
4140void __fs_reclaim_release(void)
4141{
4142 lock_map_release(&__fs_reclaim_map);
4143}
4144
d92a8cfc
PZ
4145void fs_reclaim_acquire(gfp_t gfp_mask)
4146{
4147 if (__need_fs_reclaim(gfp_mask))
93781325 4148 __fs_reclaim_acquire();
d92a8cfc
PZ
4149}
4150EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4151
4152void fs_reclaim_release(gfp_t gfp_mask)
4153{
4154 if (__need_fs_reclaim(gfp_mask))
93781325 4155 __fs_reclaim_release();
d92a8cfc
PZ
4156}
4157EXPORT_SYMBOL_GPL(fs_reclaim_release);
4158#endif
4159
bba90710
MS
4160/* Perform direct synchronous page reclaim */
4161static int
a9263751
VB
4162__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4163 const struct alloc_context *ac)
11e33f6a 4164{
bba90710 4165 int progress;
499118e9 4166 unsigned int noreclaim_flag;
eb414681 4167 unsigned long pflags;
11e33f6a
MG
4168
4169 cond_resched();
4170
4171 /* We now go into synchronous reclaim */
4172 cpuset_memory_pressure_bump();
eb414681 4173 psi_memstall_enter(&pflags);
d92a8cfc 4174 fs_reclaim_acquire(gfp_mask);
93781325 4175 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4176
a9263751
VB
4177 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4178 ac->nodemask);
11e33f6a 4179
499118e9 4180 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4181 fs_reclaim_release(gfp_mask);
eb414681 4182 psi_memstall_leave(&pflags);
11e33f6a
MG
4183
4184 cond_resched();
4185
bba90710
MS
4186 return progress;
4187}
4188
4189/* The really slow allocator path where we enter direct reclaim */
4190static inline struct page *
4191__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4192 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4193 unsigned long *did_some_progress)
bba90710
MS
4194{
4195 struct page *page = NULL;
4196 bool drained = false;
4197
a9263751 4198 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4199 if (unlikely(!(*did_some_progress)))
4200 return NULL;
11e33f6a 4201
9ee493ce 4202retry:
31a6c190 4203 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4204
4205 /*
4206 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4207 * pages are pinned on the per-cpu lists or in high alloc reserves.
4208 * Shrink them them and try again
9ee493ce
MG
4209 */
4210 if (!page && !drained) {
29fac03b 4211 unreserve_highatomic_pageblock(ac, false);
93481ff0 4212 drain_all_pages(NULL);
9ee493ce
MG
4213 drained = true;
4214 goto retry;
4215 }
4216
11e33f6a
MG
4217 return page;
4218}
4219
5ecd9d40
DR
4220static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4221 const struct alloc_context *ac)
3a025760
JW
4222{
4223 struct zoneref *z;
4224 struct zone *zone;
e1a55637 4225 pg_data_t *last_pgdat = NULL;
5ecd9d40 4226 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4227
5ecd9d40
DR
4228 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4229 ac->nodemask) {
e1a55637 4230 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4231 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4232 last_pgdat = zone->zone_pgdat;
4233 }
3a025760
JW
4234}
4235
c603844b 4236static inline unsigned int
341ce06f
PZ
4237gfp_to_alloc_flags(gfp_t gfp_mask)
4238{
c603844b 4239 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4240
736838e9
MN
4241 /*
4242 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4243 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4244 * to save two branches.
4245 */
e6223a3b 4246 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4247 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4248
341ce06f
PZ
4249 /*
4250 * The caller may dip into page reserves a bit more if the caller
4251 * cannot run direct reclaim, or if the caller has realtime scheduling
4252 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4253 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4254 */
736838e9
MN
4255 alloc_flags |= (__force int)
4256 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4257
d0164adc 4258 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4259 /*
b104a35d
DR
4260 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4261 * if it can't schedule.
5c3240d9 4262 */
b104a35d 4263 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4264 alloc_flags |= ALLOC_HARDER;
523b9458 4265 /*
b104a35d 4266 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4267 * comment for __cpuset_node_allowed().
523b9458 4268 */
341ce06f 4269 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4270 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4271 alloc_flags |= ALLOC_HARDER;
4272
d883c6cf
JK
4273#ifdef CONFIG_CMA
4274 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4275 alloc_flags |= ALLOC_CMA;
4276#endif
341ce06f
PZ
4277 return alloc_flags;
4278}
4279
cd04ae1e 4280static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4281{
cd04ae1e
MH
4282 if (!tsk_is_oom_victim(tsk))
4283 return false;
4284
4285 /*
4286 * !MMU doesn't have oom reaper so give access to memory reserves
4287 * only to the thread with TIF_MEMDIE set
4288 */
4289 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4290 return false;
4291
cd04ae1e
MH
4292 return true;
4293}
4294
4295/*
4296 * Distinguish requests which really need access to full memory
4297 * reserves from oom victims which can live with a portion of it
4298 */
4299static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4300{
4301 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4302 return 0;
31a6c190 4303 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4304 return ALLOC_NO_WATERMARKS;
31a6c190 4305 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4306 return ALLOC_NO_WATERMARKS;
4307 if (!in_interrupt()) {
4308 if (current->flags & PF_MEMALLOC)
4309 return ALLOC_NO_WATERMARKS;
4310 else if (oom_reserves_allowed(current))
4311 return ALLOC_OOM;
4312 }
31a6c190 4313
cd04ae1e
MH
4314 return 0;
4315}
4316
4317bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4318{
4319 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4320}
4321
0a0337e0
MH
4322/*
4323 * Checks whether it makes sense to retry the reclaim to make a forward progress
4324 * for the given allocation request.
491d79ae
JW
4325 *
4326 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4327 * without success, or when we couldn't even meet the watermark if we
4328 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4329 *
4330 * Returns true if a retry is viable or false to enter the oom path.
4331 */
4332static inline bool
4333should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4334 struct alloc_context *ac, int alloc_flags,
423b452e 4335 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4336{
4337 struct zone *zone;
4338 struct zoneref *z;
15f570bf 4339 bool ret = false;
0a0337e0 4340
423b452e
VB
4341 /*
4342 * Costly allocations might have made a progress but this doesn't mean
4343 * their order will become available due to high fragmentation so
4344 * always increment the no progress counter for them
4345 */
4346 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4347 *no_progress_loops = 0;
4348 else
4349 (*no_progress_loops)++;
4350
0a0337e0
MH
4351 /*
4352 * Make sure we converge to OOM if we cannot make any progress
4353 * several times in the row.
4354 */
04c8716f
MK
4355 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4356 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4357 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4358 }
0a0337e0 4359
bca67592
MG
4360 /*
4361 * Keep reclaiming pages while there is a chance this will lead
4362 * somewhere. If none of the target zones can satisfy our allocation
4363 * request even if all reclaimable pages are considered then we are
4364 * screwed and have to go OOM.
0a0337e0
MH
4365 */
4366 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4367 ac->nodemask) {
4368 unsigned long available;
ede37713 4369 unsigned long reclaimable;
d379f01d
MH
4370 unsigned long min_wmark = min_wmark_pages(zone);
4371 bool wmark;
0a0337e0 4372
5a1c84b4 4373 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4374 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4375
4376 /*
491d79ae
JW
4377 * Would the allocation succeed if we reclaimed all
4378 * reclaimable pages?
0a0337e0 4379 */
d379f01d
MH
4380 wmark = __zone_watermark_ok(zone, order, min_wmark,
4381 ac_classzone_idx(ac), alloc_flags, available);
4382 trace_reclaim_retry_zone(z, order, reclaimable,
4383 available, min_wmark, *no_progress_loops, wmark);
4384 if (wmark) {
ede37713
MH
4385 /*
4386 * If we didn't make any progress and have a lot of
4387 * dirty + writeback pages then we should wait for
4388 * an IO to complete to slow down the reclaim and
4389 * prevent from pre mature OOM
4390 */
4391 if (!did_some_progress) {
11fb9989 4392 unsigned long write_pending;
ede37713 4393
5a1c84b4
MG
4394 write_pending = zone_page_state_snapshot(zone,
4395 NR_ZONE_WRITE_PENDING);
ede37713 4396
11fb9989 4397 if (2 * write_pending > reclaimable) {
ede37713
MH
4398 congestion_wait(BLK_RW_ASYNC, HZ/10);
4399 return true;
4400 }
4401 }
5a1c84b4 4402
15f570bf
MH
4403 ret = true;
4404 goto out;
0a0337e0
MH
4405 }
4406 }
4407
15f570bf
MH
4408out:
4409 /*
4410 * Memory allocation/reclaim might be called from a WQ context and the
4411 * current implementation of the WQ concurrency control doesn't
4412 * recognize that a particular WQ is congested if the worker thread is
4413 * looping without ever sleeping. Therefore we have to do a short sleep
4414 * here rather than calling cond_resched().
4415 */
4416 if (current->flags & PF_WQ_WORKER)
4417 schedule_timeout_uninterruptible(1);
4418 else
4419 cond_resched();
4420 return ret;
0a0337e0
MH
4421}
4422
902b6281
VB
4423static inline bool
4424check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4425{
4426 /*
4427 * It's possible that cpuset's mems_allowed and the nodemask from
4428 * mempolicy don't intersect. This should be normally dealt with by
4429 * policy_nodemask(), but it's possible to race with cpuset update in
4430 * such a way the check therein was true, and then it became false
4431 * before we got our cpuset_mems_cookie here.
4432 * This assumes that for all allocations, ac->nodemask can come only
4433 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4434 * when it does not intersect with the cpuset restrictions) or the
4435 * caller can deal with a violated nodemask.
4436 */
4437 if (cpusets_enabled() && ac->nodemask &&
4438 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4439 ac->nodemask = NULL;
4440 return true;
4441 }
4442
4443 /*
4444 * When updating a task's mems_allowed or mempolicy nodemask, it is
4445 * possible to race with parallel threads in such a way that our
4446 * allocation can fail while the mask is being updated. If we are about
4447 * to fail, check if the cpuset changed during allocation and if so,
4448 * retry.
4449 */
4450 if (read_mems_allowed_retry(cpuset_mems_cookie))
4451 return true;
4452
4453 return false;
4454}
4455
11e33f6a
MG
4456static inline struct page *
4457__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4458 struct alloc_context *ac)
11e33f6a 4459{
d0164adc 4460 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4461 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4462 struct page *page = NULL;
c603844b 4463 unsigned int alloc_flags;
11e33f6a 4464 unsigned long did_some_progress;
5ce9bfef 4465 enum compact_priority compact_priority;
c5d01d0d 4466 enum compact_result compact_result;
5ce9bfef
VB
4467 int compaction_retries;
4468 int no_progress_loops;
5ce9bfef 4469 unsigned int cpuset_mems_cookie;
cd04ae1e 4470 int reserve_flags;
1da177e4 4471
d0164adc
MG
4472 /*
4473 * We also sanity check to catch abuse of atomic reserves being used by
4474 * callers that are not in atomic context.
4475 */
4476 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4477 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4478 gfp_mask &= ~__GFP_ATOMIC;
4479
5ce9bfef
VB
4480retry_cpuset:
4481 compaction_retries = 0;
4482 no_progress_loops = 0;
4483 compact_priority = DEF_COMPACT_PRIORITY;
4484 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4485
4486 /*
4487 * The fast path uses conservative alloc_flags to succeed only until
4488 * kswapd needs to be woken up, and to avoid the cost of setting up
4489 * alloc_flags precisely. So we do that now.
4490 */
4491 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4492
e47483bc
VB
4493 /*
4494 * We need to recalculate the starting point for the zonelist iterator
4495 * because we might have used different nodemask in the fast path, or
4496 * there was a cpuset modification and we are retrying - otherwise we
4497 * could end up iterating over non-eligible zones endlessly.
4498 */
4499 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4500 ac->high_zoneidx, ac->nodemask);
4501 if (!ac->preferred_zoneref->zone)
4502 goto nopage;
4503
0a79cdad 4504 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4505 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4506
4507 /*
4508 * The adjusted alloc_flags might result in immediate success, so try
4509 * that first
4510 */
4511 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4512 if (page)
4513 goto got_pg;
4514
a8161d1e
VB
4515 /*
4516 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4517 * that we have enough base pages and don't need to reclaim. For non-
4518 * movable high-order allocations, do that as well, as compaction will
4519 * try prevent permanent fragmentation by migrating from blocks of the
4520 * same migratetype.
4521 * Don't try this for allocations that are allowed to ignore
4522 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4523 */
282722b0
VB
4524 if (can_direct_reclaim &&
4525 (costly_order ||
4526 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4527 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4528 page = __alloc_pages_direct_compact(gfp_mask, order,
4529 alloc_flags, ac,
a5508cd8 4530 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4531 &compact_result);
4532 if (page)
4533 goto got_pg;
4534
cc638f32
VB
4535 /*
4536 * Checks for costly allocations with __GFP_NORETRY, which
4537 * includes some THP page fault allocations
4538 */
4539 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4540 /*
4541 * If allocating entire pageblock(s) and compaction
4542 * failed because all zones are below low watermarks
4543 * or is prohibited because it recently failed at this
3f36d866
DR
4544 * order, fail immediately unless the allocator has
4545 * requested compaction and reclaim retry.
b39d0ee2
DR
4546 *
4547 * Reclaim is
4548 * - potentially very expensive because zones are far
4549 * below their low watermarks or this is part of very
4550 * bursty high order allocations,
4551 * - not guaranteed to help because isolate_freepages()
4552 * may not iterate over freed pages as part of its
4553 * linear scan, and
4554 * - unlikely to make entire pageblocks free on its
4555 * own.
4556 */
4557 if (compact_result == COMPACT_SKIPPED ||
4558 compact_result == COMPACT_DEFERRED)
4559 goto nopage;
a8161d1e 4560
a8161d1e 4561 /*
3eb2771b
VB
4562 * Looks like reclaim/compaction is worth trying, but
4563 * sync compaction could be very expensive, so keep
25160354 4564 * using async compaction.
a8161d1e 4565 */
a5508cd8 4566 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4567 }
4568 }
23771235 4569
31a6c190 4570retry:
23771235 4571 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4572 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4573 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4574
cd04ae1e
MH
4575 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4576 if (reserve_flags)
4577 alloc_flags = reserve_flags;
23771235 4578
e46e7b77 4579 /*
d6a24df0
VB
4580 * Reset the nodemask and zonelist iterators if memory policies can be
4581 * ignored. These allocations are high priority and system rather than
4582 * user oriented.
e46e7b77 4583 */
cd04ae1e 4584 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4585 ac->nodemask = NULL;
e46e7b77
MG
4586 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4587 ac->high_zoneidx, ac->nodemask);
4588 }
4589
23771235 4590 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4591 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4592 if (page)
4593 goto got_pg;
1da177e4 4594
d0164adc 4595 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4596 if (!can_direct_reclaim)
1da177e4
LT
4597 goto nopage;
4598
9a67f648
MH
4599 /* Avoid recursion of direct reclaim */
4600 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4601 goto nopage;
4602
a8161d1e
VB
4603 /* Try direct reclaim and then allocating */
4604 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4605 &did_some_progress);
4606 if (page)
4607 goto got_pg;
4608
4609 /* Try direct compaction and then allocating */
a9263751 4610 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4611 compact_priority, &compact_result);
56de7263
MG
4612 if (page)
4613 goto got_pg;
75f30861 4614
9083905a
JW
4615 /* Do not loop if specifically requested */
4616 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4617 goto nopage;
9083905a 4618
0a0337e0
MH
4619 /*
4620 * Do not retry costly high order allocations unless they are
dcda9b04 4621 * __GFP_RETRY_MAYFAIL
0a0337e0 4622 */
dcda9b04 4623 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4624 goto nopage;
0a0337e0 4625
0a0337e0 4626 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4627 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4628 goto retry;
4629
33c2d214
MH
4630 /*
4631 * It doesn't make any sense to retry for the compaction if the order-0
4632 * reclaim is not able to make any progress because the current
4633 * implementation of the compaction depends on the sufficient amount
4634 * of free memory (see __compaction_suitable)
4635 */
4636 if (did_some_progress > 0 &&
86a294a8 4637 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4638 compact_result, &compact_priority,
d9436498 4639 &compaction_retries))
33c2d214
MH
4640 goto retry;
4641
902b6281
VB
4642
4643 /* Deal with possible cpuset update races before we start OOM killing */
4644 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4645 goto retry_cpuset;
4646
9083905a
JW
4647 /* Reclaim has failed us, start killing things */
4648 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4649 if (page)
4650 goto got_pg;
4651
9a67f648 4652 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4653 if (tsk_is_oom_victim(current) &&
4654 (alloc_flags == ALLOC_OOM ||
c288983d 4655 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4656 goto nopage;
4657
9083905a 4658 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4659 if (did_some_progress) {
4660 no_progress_loops = 0;
9083905a 4661 goto retry;
0a0337e0 4662 }
9083905a 4663
1da177e4 4664nopage:
902b6281
VB
4665 /* Deal with possible cpuset update races before we fail */
4666 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4667 goto retry_cpuset;
4668
9a67f648
MH
4669 /*
4670 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4671 * we always retry
4672 */
4673 if (gfp_mask & __GFP_NOFAIL) {
4674 /*
4675 * All existing users of the __GFP_NOFAIL are blockable, so warn
4676 * of any new users that actually require GFP_NOWAIT
4677 */
4678 if (WARN_ON_ONCE(!can_direct_reclaim))
4679 goto fail;
4680
4681 /*
4682 * PF_MEMALLOC request from this context is rather bizarre
4683 * because we cannot reclaim anything and only can loop waiting
4684 * for somebody to do a work for us
4685 */
4686 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4687
4688 /*
4689 * non failing costly orders are a hard requirement which we
4690 * are not prepared for much so let's warn about these users
4691 * so that we can identify them and convert them to something
4692 * else.
4693 */
4694 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4695
6c18ba7a
MH
4696 /*
4697 * Help non-failing allocations by giving them access to memory
4698 * reserves but do not use ALLOC_NO_WATERMARKS because this
4699 * could deplete whole memory reserves which would just make
4700 * the situation worse
4701 */
4702 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4703 if (page)
4704 goto got_pg;
4705
9a67f648
MH
4706 cond_resched();
4707 goto retry;
4708 }
4709fail:
a8e99259 4710 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4711 "page allocation failure: order:%u", order);
1da177e4 4712got_pg:
072bb0aa 4713 return page;
1da177e4 4714}
11e33f6a 4715
9cd75558 4716static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4717 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4718 struct alloc_context *ac, gfp_t *alloc_mask,
4719 unsigned int *alloc_flags)
11e33f6a 4720{
9cd75558 4721 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4722 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4723 ac->nodemask = nodemask;
4724 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4725
682a3385 4726 if (cpusets_enabled()) {
9cd75558 4727 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4728 if (!ac->nodemask)
4729 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4730 else
4731 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4732 }
4733
d92a8cfc
PZ
4734 fs_reclaim_acquire(gfp_mask);
4735 fs_reclaim_release(gfp_mask);
11e33f6a 4736
d0164adc 4737 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4738
4739 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4740 return false;
11e33f6a 4741
d883c6cf
JK
4742 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4743 *alloc_flags |= ALLOC_CMA;
4744
9cd75558
MG
4745 return true;
4746}
21bb9bd1 4747
9cd75558 4748/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4749static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4750{
c9ab0c4f 4751 /* Dirty zone balancing only done in the fast path */
9cd75558 4752 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4753
e46e7b77
MG
4754 /*
4755 * The preferred zone is used for statistics but crucially it is
4756 * also used as the starting point for the zonelist iterator. It
4757 * may get reset for allocations that ignore memory policies.
4758 */
9cd75558
MG
4759 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4760 ac->high_zoneidx, ac->nodemask);
4761}
4762
4763/*
4764 * This is the 'heart' of the zoned buddy allocator.
4765 */
4766struct page *
04ec6264
VB
4767__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4768 nodemask_t *nodemask)
9cd75558
MG
4769{
4770 struct page *page;
4771 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4772 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4773 struct alloc_context ac = { };
4774
c63ae43b
MH
4775 /*
4776 * There are several places where we assume that the order value is sane
4777 * so bail out early if the request is out of bound.
4778 */
4779 if (unlikely(order >= MAX_ORDER)) {
4780 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4781 return NULL;
4782 }
4783
9cd75558 4784 gfp_mask &= gfp_allowed_mask;
f19360f0 4785 alloc_mask = gfp_mask;
04ec6264 4786 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4787 return NULL;
4788
a380b40a 4789 finalise_ac(gfp_mask, &ac);
5bb1b169 4790
6bb15450
MG
4791 /*
4792 * Forbid the first pass from falling back to types that fragment
4793 * memory until all local zones are considered.
4794 */
0a79cdad 4795 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4796
5117f45d 4797 /* First allocation attempt */
a9263751 4798 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4799 if (likely(page))
4800 goto out;
11e33f6a 4801
4fcb0971 4802 /*
7dea19f9
MH
4803 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4804 * resp. GFP_NOIO which has to be inherited for all allocation requests
4805 * from a particular context which has been marked by
4806 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4807 */
7dea19f9 4808 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4809 ac.spread_dirty_pages = false;
23f086f9 4810
4741526b
MG
4811 /*
4812 * Restore the original nodemask if it was potentially replaced with
4813 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4814 */
97ce86f9 4815 ac.nodemask = nodemask;
16096c25 4816
4fcb0971 4817 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4818
4fcb0971 4819out:
c4159a75 4820 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4821 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4822 __free_pages(page, order);
4823 page = NULL;
4949148a
VD
4824 }
4825
4fcb0971
MG
4826 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4827
11e33f6a 4828 return page;
1da177e4 4829}
d239171e 4830EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4831
4832/*
9ea9a680
MH
4833 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4834 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4835 * you need to access high mem.
1da177e4 4836 */
920c7a5d 4837unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4838{
945a1113
AM
4839 struct page *page;
4840
9ea9a680 4841 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4842 if (!page)
4843 return 0;
4844 return (unsigned long) page_address(page);
4845}
1da177e4
LT
4846EXPORT_SYMBOL(__get_free_pages);
4847
920c7a5d 4848unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4849{
945a1113 4850 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4851}
1da177e4
LT
4852EXPORT_SYMBOL(get_zeroed_page);
4853
742aa7fb 4854static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4855{
742aa7fb
AL
4856 if (order == 0) /* Via pcp? */
4857 free_unref_page(page);
4858 else
4859 __free_pages_ok(page, order);
1da177e4
LT
4860}
4861
742aa7fb
AL
4862void __free_pages(struct page *page, unsigned int order)
4863{
4864 if (put_page_testzero(page))
4865 free_the_page(page, order);
4866}
1da177e4
LT
4867EXPORT_SYMBOL(__free_pages);
4868
920c7a5d 4869void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4870{
4871 if (addr != 0) {
725d704e 4872 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4873 __free_pages(virt_to_page((void *)addr), order);
4874 }
4875}
4876
4877EXPORT_SYMBOL(free_pages);
4878
b63ae8ca
AD
4879/*
4880 * Page Fragment:
4881 * An arbitrary-length arbitrary-offset area of memory which resides
4882 * within a 0 or higher order page. Multiple fragments within that page
4883 * are individually refcounted, in the page's reference counter.
4884 *
4885 * The page_frag functions below provide a simple allocation framework for
4886 * page fragments. This is used by the network stack and network device
4887 * drivers to provide a backing region of memory for use as either an
4888 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4889 */
2976db80
AD
4890static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4891 gfp_t gfp_mask)
b63ae8ca
AD
4892{
4893 struct page *page = NULL;
4894 gfp_t gfp = gfp_mask;
4895
4896#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4897 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4898 __GFP_NOMEMALLOC;
4899 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4900 PAGE_FRAG_CACHE_MAX_ORDER);
4901 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4902#endif
4903 if (unlikely(!page))
4904 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4905
4906 nc->va = page ? page_address(page) : NULL;
4907
4908 return page;
4909}
4910
2976db80 4911void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4912{
4913 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4914
742aa7fb
AL
4915 if (page_ref_sub_and_test(page, count))
4916 free_the_page(page, compound_order(page));
44fdffd7 4917}
2976db80 4918EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4919
8c2dd3e4
AD
4920void *page_frag_alloc(struct page_frag_cache *nc,
4921 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4922{
4923 unsigned int size = PAGE_SIZE;
4924 struct page *page;
4925 int offset;
4926
4927 if (unlikely(!nc->va)) {
4928refill:
2976db80 4929 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4930 if (!page)
4931 return NULL;
4932
4933#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4934 /* if size can vary use size else just use PAGE_SIZE */
4935 size = nc->size;
4936#endif
4937 /* Even if we own the page, we do not use atomic_set().
4938 * This would break get_page_unless_zero() users.
4939 */
86447726 4940 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4941
4942 /* reset page count bias and offset to start of new frag */
2f064f34 4943 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4944 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4945 nc->offset = size;
4946 }
4947
4948 offset = nc->offset - fragsz;
4949 if (unlikely(offset < 0)) {
4950 page = virt_to_page(nc->va);
4951
fe896d18 4952 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4953 goto refill;
4954
4955#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4956 /* if size can vary use size else just use PAGE_SIZE */
4957 size = nc->size;
4958#endif
4959 /* OK, page count is 0, we can safely set it */
86447726 4960 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4961
4962 /* reset page count bias and offset to start of new frag */
86447726 4963 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4964 offset = size - fragsz;
4965 }
4966
4967 nc->pagecnt_bias--;
4968 nc->offset = offset;
4969
4970 return nc->va + offset;
4971}
8c2dd3e4 4972EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4973
4974/*
4975 * Frees a page fragment allocated out of either a compound or order 0 page.
4976 */
8c2dd3e4 4977void page_frag_free(void *addr)
b63ae8ca
AD
4978{
4979 struct page *page = virt_to_head_page(addr);
4980
742aa7fb
AL
4981 if (unlikely(put_page_testzero(page)))
4982 free_the_page(page, compound_order(page));
b63ae8ca 4983}
8c2dd3e4 4984EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4985
d00181b9
KS
4986static void *make_alloc_exact(unsigned long addr, unsigned int order,
4987 size_t size)
ee85c2e1
AK
4988{
4989 if (addr) {
4990 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4991 unsigned long used = addr + PAGE_ALIGN(size);
4992
4993 split_page(virt_to_page((void *)addr), order);
4994 while (used < alloc_end) {
4995 free_page(used);
4996 used += PAGE_SIZE;
4997 }
4998 }
4999 return (void *)addr;
5000}
5001
2be0ffe2
TT
5002/**
5003 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5004 * @size: the number of bytes to allocate
63931eb9 5005 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5006 *
5007 * This function is similar to alloc_pages(), except that it allocates the
5008 * minimum number of pages to satisfy the request. alloc_pages() can only
5009 * allocate memory in power-of-two pages.
5010 *
5011 * This function is also limited by MAX_ORDER.
5012 *
5013 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5014 *
5015 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5016 */
5017void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5018{
5019 unsigned int order = get_order(size);
5020 unsigned long addr;
5021
63931eb9
VB
5022 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5023 gfp_mask &= ~__GFP_COMP;
5024
2be0ffe2 5025 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5026 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5027}
5028EXPORT_SYMBOL(alloc_pages_exact);
5029
ee85c2e1
AK
5030/**
5031 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5032 * pages on a node.
b5e6ab58 5033 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5034 * @size: the number of bytes to allocate
63931eb9 5035 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5036 *
5037 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5038 * back.
a862f68a
MR
5039 *
5040 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5041 */
e1931811 5042void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5043{
d00181b9 5044 unsigned int order = get_order(size);
63931eb9
VB
5045 struct page *p;
5046
5047 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5048 gfp_mask &= ~__GFP_COMP;
5049
5050 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5051 if (!p)
5052 return NULL;
5053 return make_alloc_exact((unsigned long)page_address(p), order, size);
5054}
ee85c2e1 5055
2be0ffe2
TT
5056/**
5057 * free_pages_exact - release memory allocated via alloc_pages_exact()
5058 * @virt: the value returned by alloc_pages_exact.
5059 * @size: size of allocation, same value as passed to alloc_pages_exact().
5060 *
5061 * Release the memory allocated by a previous call to alloc_pages_exact.
5062 */
5063void free_pages_exact(void *virt, size_t size)
5064{
5065 unsigned long addr = (unsigned long)virt;
5066 unsigned long end = addr + PAGE_ALIGN(size);
5067
5068 while (addr < end) {
5069 free_page(addr);
5070 addr += PAGE_SIZE;
5071 }
5072}
5073EXPORT_SYMBOL(free_pages_exact);
5074
e0fb5815
ZY
5075/**
5076 * nr_free_zone_pages - count number of pages beyond high watermark
5077 * @offset: The zone index of the highest zone
5078 *
a862f68a 5079 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5080 * high watermark within all zones at or below a given zone index. For each
5081 * zone, the number of pages is calculated as:
0e056eb5 5082 *
5083 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5084 *
5085 * Return: number of pages beyond high watermark.
e0fb5815 5086 */
ebec3862 5087static unsigned long nr_free_zone_pages(int offset)
1da177e4 5088{
dd1a239f 5089 struct zoneref *z;
54a6eb5c
MG
5090 struct zone *zone;
5091
e310fd43 5092 /* Just pick one node, since fallback list is circular */
ebec3862 5093 unsigned long sum = 0;
1da177e4 5094
0e88460d 5095 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5096
54a6eb5c 5097 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5098 unsigned long size = zone_managed_pages(zone);
41858966 5099 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5100 if (size > high)
5101 sum += size - high;
1da177e4
LT
5102 }
5103
5104 return sum;
5105}
5106
e0fb5815
ZY
5107/**
5108 * nr_free_buffer_pages - count number of pages beyond high watermark
5109 *
5110 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5111 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5112 *
5113 * Return: number of pages beyond high watermark within ZONE_DMA and
5114 * ZONE_NORMAL.
1da177e4 5115 */
ebec3862 5116unsigned long nr_free_buffer_pages(void)
1da177e4 5117{
af4ca457 5118 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5119}
c2f1a551 5120EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5121
e0fb5815
ZY
5122/**
5123 * nr_free_pagecache_pages - count number of pages beyond high watermark
5124 *
5125 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5126 * high watermark within all zones.
a862f68a
MR
5127 *
5128 * Return: number of pages beyond high watermark within all zones.
1da177e4 5129 */
ebec3862 5130unsigned long nr_free_pagecache_pages(void)
1da177e4 5131{
2a1e274a 5132 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5133}
08e0f6a9
CL
5134
5135static inline void show_node(struct zone *zone)
1da177e4 5136{
e5adfffc 5137 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5138 printk("Node %d ", zone_to_nid(zone));
1da177e4 5139}
1da177e4 5140
d02bd27b
IR
5141long si_mem_available(void)
5142{
5143 long available;
5144 unsigned long pagecache;
5145 unsigned long wmark_low = 0;
5146 unsigned long pages[NR_LRU_LISTS];
b29940c1 5147 unsigned long reclaimable;
d02bd27b
IR
5148 struct zone *zone;
5149 int lru;
5150
5151 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5152 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5153
5154 for_each_zone(zone)
a9214443 5155 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5156
5157 /*
5158 * Estimate the amount of memory available for userspace allocations,
5159 * without causing swapping.
5160 */
c41f012a 5161 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5162
5163 /*
5164 * Not all the page cache can be freed, otherwise the system will
5165 * start swapping. Assume at least half of the page cache, or the
5166 * low watermark worth of cache, needs to stay.
5167 */
5168 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5169 pagecache -= min(pagecache / 2, wmark_low);
5170 available += pagecache;
5171
5172 /*
b29940c1
VB
5173 * Part of the reclaimable slab and other kernel memory consists of
5174 * items that are in use, and cannot be freed. Cap this estimate at the
5175 * low watermark.
d02bd27b 5176 */
b29940c1
VB
5177 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5178 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5179 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5180
d02bd27b
IR
5181 if (available < 0)
5182 available = 0;
5183 return available;
5184}
5185EXPORT_SYMBOL_GPL(si_mem_available);
5186
1da177e4
LT
5187void si_meminfo(struct sysinfo *val)
5188{
ca79b0c2 5189 val->totalram = totalram_pages();
11fb9989 5190 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5191 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5192 val->bufferram = nr_blockdev_pages();
ca79b0c2 5193 val->totalhigh = totalhigh_pages();
1da177e4 5194 val->freehigh = nr_free_highpages();
1da177e4
LT
5195 val->mem_unit = PAGE_SIZE;
5196}
5197
5198EXPORT_SYMBOL(si_meminfo);
5199
5200#ifdef CONFIG_NUMA
5201void si_meminfo_node(struct sysinfo *val, int nid)
5202{
cdd91a77
JL
5203 int zone_type; /* needs to be signed */
5204 unsigned long managed_pages = 0;
fc2bd799
JK
5205 unsigned long managed_highpages = 0;
5206 unsigned long free_highpages = 0;
1da177e4
LT
5207 pg_data_t *pgdat = NODE_DATA(nid);
5208
cdd91a77 5209 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5210 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5211 val->totalram = managed_pages;
11fb9989 5212 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5213 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5214#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5215 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5216 struct zone *zone = &pgdat->node_zones[zone_type];
5217
5218 if (is_highmem(zone)) {
9705bea5 5219 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5220 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5221 }
5222 }
5223 val->totalhigh = managed_highpages;
5224 val->freehigh = free_highpages;
98d2b0eb 5225#else
fc2bd799
JK
5226 val->totalhigh = managed_highpages;
5227 val->freehigh = free_highpages;
98d2b0eb 5228#endif
1da177e4
LT
5229 val->mem_unit = PAGE_SIZE;
5230}
5231#endif
5232
ddd588b5 5233/*
7bf02ea2
DR
5234 * Determine whether the node should be displayed or not, depending on whether
5235 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5236 */
9af744d7 5237static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5238{
ddd588b5 5239 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5240 return false;
ddd588b5 5241
9af744d7
MH
5242 /*
5243 * no node mask - aka implicit memory numa policy. Do not bother with
5244 * the synchronization - read_mems_allowed_begin - because we do not
5245 * have to be precise here.
5246 */
5247 if (!nodemask)
5248 nodemask = &cpuset_current_mems_allowed;
5249
5250 return !node_isset(nid, *nodemask);
ddd588b5
DR
5251}
5252
1da177e4
LT
5253#define K(x) ((x) << (PAGE_SHIFT-10))
5254
377e4f16
RV
5255static void show_migration_types(unsigned char type)
5256{
5257 static const char types[MIGRATE_TYPES] = {
5258 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5259 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5260 [MIGRATE_RECLAIMABLE] = 'E',
5261 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5262#ifdef CONFIG_CMA
5263 [MIGRATE_CMA] = 'C',
5264#endif
194159fb 5265#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5266 [MIGRATE_ISOLATE] = 'I',
194159fb 5267#endif
377e4f16
RV
5268 };
5269 char tmp[MIGRATE_TYPES + 1];
5270 char *p = tmp;
5271 int i;
5272
5273 for (i = 0; i < MIGRATE_TYPES; i++) {
5274 if (type & (1 << i))
5275 *p++ = types[i];
5276 }
5277
5278 *p = '\0';
1f84a18f 5279 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5280}
5281
1da177e4
LT
5282/*
5283 * Show free area list (used inside shift_scroll-lock stuff)
5284 * We also calculate the percentage fragmentation. We do this by counting the
5285 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5286 *
5287 * Bits in @filter:
5288 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5289 * cpuset.
1da177e4 5290 */
9af744d7 5291void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5292{
d1bfcdb8 5293 unsigned long free_pcp = 0;
c7241913 5294 int cpu;
1da177e4 5295 struct zone *zone;
599d0c95 5296 pg_data_t *pgdat;
1da177e4 5297
ee99c71c 5298 for_each_populated_zone(zone) {
9af744d7 5299 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5300 continue;
d1bfcdb8 5301
761b0677
KK
5302 for_each_online_cpu(cpu)
5303 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5304 }
5305
a731286d
KM
5306 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5307 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5308 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5309 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5310 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5311 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5312 global_node_page_state(NR_ACTIVE_ANON),
5313 global_node_page_state(NR_INACTIVE_ANON),
5314 global_node_page_state(NR_ISOLATED_ANON),
5315 global_node_page_state(NR_ACTIVE_FILE),
5316 global_node_page_state(NR_INACTIVE_FILE),
5317 global_node_page_state(NR_ISOLATED_FILE),
5318 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5319 global_node_page_state(NR_FILE_DIRTY),
5320 global_node_page_state(NR_WRITEBACK),
d507e2eb
JW
5321 global_node_page_state(NR_SLAB_RECLAIMABLE),
5322 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5323 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5324 global_node_page_state(NR_SHMEM),
c41f012a
MH
5325 global_zone_page_state(NR_PAGETABLE),
5326 global_zone_page_state(NR_BOUNCE),
5327 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5328 free_pcp,
c41f012a 5329 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5330
599d0c95 5331 for_each_online_pgdat(pgdat) {
9af744d7 5332 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5333 continue;
5334
599d0c95
MG
5335 printk("Node %d"
5336 " active_anon:%lukB"
5337 " inactive_anon:%lukB"
5338 " active_file:%lukB"
5339 " inactive_file:%lukB"
5340 " unevictable:%lukB"
5341 " isolated(anon):%lukB"
5342 " isolated(file):%lukB"
50658e2e 5343 " mapped:%lukB"
11fb9989
MG
5344 " dirty:%lukB"
5345 " writeback:%lukB"
5346 " shmem:%lukB"
5347#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5348 " shmem_thp: %lukB"
5349 " shmem_pmdmapped: %lukB"
5350 " anon_thp: %lukB"
5351#endif
5352 " writeback_tmp:%lukB"
599d0c95
MG
5353 " all_unreclaimable? %s"
5354 "\n",
5355 pgdat->node_id,
5356 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5357 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5358 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5359 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5360 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5361 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5362 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5363 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5364 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5365 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5366 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5367#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5368 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5369 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5370 * HPAGE_PMD_NR),
5371 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5372#endif
11fb9989 5373 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
c73322d0
JW
5374 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5375 "yes" : "no");
599d0c95
MG
5376 }
5377
ee99c71c 5378 for_each_populated_zone(zone) {
1da177e4
LT
5379 int i;
5380
9af744d7 5381 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5382 continue;
d1bfcdb8
KK
5383
5384 free_pcp = 0;
5385 for_each_online_cpu(cpu)
5386 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5387
1da177e4 5388 show_node(zone);
1f84a18f
JP
5389 printk(KERN_CONT
5390 "%s"
1da177e4
LT
5391 " free:%lukB"
5392 " min:%lukB"
5393 " low:%lukB"
5394 " high:%lukB"
e47b346a 5395 " reserved_highatomic:%luKB"
71c799f4
MK
5396 " active_anon:%lukB"
5397 " inactive_anon:%lukB"
5398 " active_file:%lukB"
5399 " inactive_file:%lukB"
5400 " unevictable:%lukB"
5a1c84b4 5401 " writepending:%lukB"
1da177e4 5402 " present:%lukB"
9feedc9d 5403 " managed:%lukB"
4a0aa73f 5404 " mlocked:%lukB"
c6a7f572 5405 " kernel_stack:%lukB"
628d06a4
ST
5406#ifdef CONFIG_SHADOW_CALL_STACK
5407 " shadow_call_stack:%lukB"
5408#endif
4a0aa73f 5409 " pagetables:%lukB"
4a0aa73f 5410 " bounce:%lukB"
d1bfcdb8
KK
5411 " free_pcp:%lukB"
5412 " local_pcp:%ukB"
d1ce749a 5413 " free_cma:%lukB"
1da177e4
LT
5414 "\n",
5415 zone->name,
88f5acf8 5416 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5417 K(min_wmark_pages(zone)),
5418 K(low_wmark_pages(zone)),
5419 K(high_wmark_pages(zone)),
e47b346a 5420 K(zone->nr_reserved_highatomic),
71c799f4
MK
5421 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5422 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5423 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5424 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5425 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5426 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5427 K(zone->present_pages),
9705bea5 5428 K(zone_managed_pages(zone)),
4a0aa73f 5429 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5430 zone_page_state(zone, NR_KERNEL_STACK_KB),
628d06a4
ST
5431#ifdef CONFIG_SHADOW_CALL_STACK
5432 zone_page_state(zone, NR_KERNEL_SCS_KB),
5433#endif
4a0aa73f 5434 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5435 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5436 K(free_pcp),
5437 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5438 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5439 printk("lowmem_reserve[]:");
5440 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5441 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5442 printk(KERN_CONT "\n");
1da177e4
LT
5443 }
5444
ee99c71c 5445 for_each_populated_zone(zone) {
d00181b9
KS
5446 unsigned int order;
5447 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5448 unsigned char types[MAX_ORDER];
1da177e4 5449
9af744d7 5450 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5451 continue;
1da177e4 5452 show_node(zone);
1f84a18f 5453 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5454
5455 spin_lock_irqsave(&zone->lock, flags);
5456 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5457 struct free_area *area = &zone->free_area[order];
5458 int type;
5459
5460 nr[order] = area->nr_free;
8f9de51a 5461 total += nr[order] << order;
377e4f16
RV
5462
5463 types[order] = 0;
5464 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5465 if (!free_area_empty(area, type))
377e4f16
RV
5466 types[order] |= 1 << type;
5467 }
1da177e4
LT
5468 }
5469 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5470 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5471 printk(KERN_CONT "%lu*%lukB ",
5472 nr[order], K(1UL) << order);
377e4f16
RV
5473 if (nr[order])
5474 show_migration_types(types[order]);
5475 }
1f84a18f 5476 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5477 }
5478
949f7ec5
DR
5479 hugetlb_show_meminfo();
5480
11fb9989 5481 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5482
1da177e4
LT
5483 show_swap_cache_info();
5484}
5485
19770b32
MG
5486static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5487{
5488 zoneref->zone = zone;
5489 zoneref->zone_idx = zone_idx(zone);
5490}
5491
1da177e4
LT
5492/*
5493 * Builds allocation fallback zone lists.
1a93205b
CL
5494 *
5495 * Add all populated zones of a node to the zonelist.
1da177e4 5496 */
9d3be21b 5497static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5498{
1a93205b 5499 struct zone *zone;
bc732f1d 5500 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5501 int nr_zones = 0;
02a68a5e
CL
5502
5503 do {
2f6726e5 5504 zone_type--;
070f8032 5505 zone = pgdat->node_zones + zone_type;
6aa303de 5506 if (managed_zone(zone)) {
9d3be21b 5507 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5508 check_highest_zone(zone_type);
1da177e4 5509 }
2f6726e5 5510 } while (zone_type);
bc732f1d 5511
070f8032 5512 return nr_zones;
1da177e4
LT
5513}
5514
5515#ifdef CONFIG_NUMA
f0c0b2b8
KH
5516
5517static int __parse_numa_zonelist_order(char *s)
5518{
c9bff3ee
MH
5519 /*
5520 * We used to support different zonlists modes but they turned
5521 * out to be just not useful. Let's keep the warning in place
5522 * if somebody still use the cmd line parameter so that we do
5523 * not fail it silently
5524 */
5525 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5526 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5527 return -EINVAL;
5528 }
5529 return 0;
5530}
5531
5532static __init int setup_numa_zonelist_order(char *s)
5533{
ecb256f8
VL
5534 if (!s)
5535 return 0;
5536
c9bff3ee 5537 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5538}
5539early_param("numa_zonelist_order", setup_numa_zonelist_order);
5540
c9bff3ee
MH
5541char numa_zonelist_order[] = "Node";
5542
f0c0b2b8
KH
5543/*
5544 * sysctl handler for numa_zonelist_order
5545 */
cccad5b9 5546int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5547 void __user *buffer, size_t *length,
f0c0b2b8
KH
5548 loff_t *ppos)
5549{
c9bff3ee 5550 char *str;
f0c0b2b8
KH
5551 int ret;
5552
c9bff3ee
MH
5553 if (!write)
5554 return proc_dostring(table, write, buffer, length, ppos);
5555 str = memdup_user_nul(buffer, 16);
5556 if (IS_ERR(str))
5557 return PTR_ERR(str);
dacbde09 5558
c9bff3ee
MH
5559 ret = __parse_numa_zonelist_order(str);
5560 kfree(str);
443c6f14 5561 return ret;
f0c0b2b8
KH
5562}
5563
5564
62bc62a8 5565#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5566static int node_load[MAX_NUMNODES];
5567
1da177e4 5568/**
4dc3b16b 5569 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5570 * @node: node whose fallback list we're appending
5571 * @used_node_mask: nodemask_t of already used nodes
5572 *
5573 * We use a number of factors to determine which is the next node that should
5574 * appear on a given node's fallback list. The node should not have appeared
5575 * already in @node's fallback list, and it should be the next closest node
5576 * according to the distance array (which contains arbitrary distance values
5577 * from each node to each node in the system), and should also prefer nodes
5578 * with no CPUs, since presumably they'll have very little allocation pressure
5579 * on them otherwise.
a862f68a
MR
5580 *
5581 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5582 */
f0c0b2b8 5583static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5584{
4cf808eb 5585 int n, val;
1da177e4 5586 int min_val = INT_MAX;
00ef2d2f 5587 int best_node = NUMA_NO_NODE;
a70f7302 5588 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5589
4cf808eb
LT
5590 /* Use the local node if we haven't already */
5591 if (!node_isset(node, *used_node_mask)) {
5592 node_set(node, *used_node_mask);
5593 return node;
5594 }
1da177e4 5595
4b0ef1fe 5596 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5597
5598 /* Don't want a node to appear more than once */
5599 if (node_isset(n, *used_node_mask))
5600 continue;
5601
1da177e4
LT
5602 /* Use the distance array to find the distance */
5603 val = node_distance(node, n);
5604
4cf808eb
LT
5605 /* Penalize nodes under us ("prefer the next node") */
5606 val += (n < node);
5607
1da177e4 5608 /* Give preference to headless and unused nodes */
a70f7302
RR
5609 tmp = cpumask_of_node(n);
5610 if (!cpumask_empty(tmp))
1da177e4
LT
5611 val += PENALTY_FOR_NODE_WITH_CPUS;
5612
5613 /* Slight preference for less loaded node */
5614 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5615 val += node_load[n];
5616
5617 if (val < min_val) {
5618 min_val = val;
5619 best_node = n;
5620 }
5621 }
5622
5623 if (best_node >= 0)
5624 node_set(best_node, *used_node_mask);
5625
5626 return best_node;
5627}
5628
f0c0b2b8
KH
5629
5630/*
5631 * Build zonelists ordered by node and zones within node.
5632 * This results in maximum locality--normal zone overflows into local
5633 * DMA zone, if any--but risks exhausting DMA zone.
5634 */
9d3be21b
MH
5635static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5636 unsigned nr_nodes)
1da177e4 5637{
9d3be21b
MH
5638 struct zoneref *zonerefs;
5639 int i;
5640
5641 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5642
5643 for (i = 0; i < nr_nodes; i++) {
5644 int nr_zones;
5645
5646 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5647
9d3be21b
MH
5648 nr_zones = build_zonerefs_node(node, zonerefs);
5649 zonerefs += nr_zones;
5650 }
5651 zonerefs->zone = NULL;
5652 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5653}
5654
523b9458
CL
5655/*
5656 * Build gfp_thisnode zonelists
5657 */
5658static void build_thisnode_zonelists(pg_data_t *pgdat)
5659{
9d3be21b
MH
5660 struct zoneref *zonerefs;
5661 int nr_zones;
523b9458 5662
9d3be21b
MH
5663 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5664 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5665 zonerefs += nr_zones;
5666 zonerefs->zone = NULL;
5667 zonerefs->zone_idx = 0;
523b9458
CL
5668}
5669
f0c0b2b8
KH
5670/*
5671 * Build zonelists ordered by zone and nodes within zones.
5672 * This results in conserving DMA zone[s] until all Normal memory is
5673 * exhausted, but results in overflowing to remote node while memory
5674 * may still exist in local DMA zone.
5675 */
f0c0b2b8 5676
f0c0b2b8
KH
5677static void build_zonelists(pg_data_t *pgdat)
5678{
9d3be21b
MH
5679 static int node_order[MAX_NUMNODES];
5680 int node, load, nr_nodes = 0;
1da177e4 5681 nodemask_t used_mask;
f0c0b2b8 5682 int local_node, prev_node;
1da177e4
LT
5683
5684 /* NUMA-aware ordering of nodes */
5685 local_node = pgdat->node_id;
62bc62a8 5686 load = nr_online_nodes;
1da177e4
LT
5687 prev_node = local_node;
5688 nodes_clear(used_mask);
f0c0b2b8 5689
f0c0b2b8 5690 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5691 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5692 /*
5693 * We don't want to pressure a particular node.
5694 * So adding penalty to the first node in same
5695 * distance group to make it round-robin.
5696 */
957f822a
DR
5697 if (node_distance(local_node, node) !=
5698 node_distance(local_node, prev_node))
f0c0b2b8
KH
5699 node_load[node] = load;
5700
9d3be21b 5701 node_order[nr_nodes++] = node;
1da177e4
LT
5702 prev_node = node;
5703 load--;
1da177e4 5704 }
523b9458 5705
9d3be21b 5706 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5707 build_thisnode_zonelists(pgdat);
1da177e4
LT
5708}
5709
7aac7898
LS
5710#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5711/*
5712 * Return node id of node used for "local" allocations.
5713 * I.e., first node id of first zone in arg node's generic zonelist.
5714 * Used for initializing percpu 'numa_mem', which is used primarily
5715 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5716 */
5717int local_memory_node(int node)
5718{
c33d6c06 5719 struct zoneref *z;
7aac7898 5720
c33d6c06 5721 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5722 gfp_zone(GFP_KERNEL),
c33d6c06 5723 NULL);
c1093b74 5724 return zone_to_nid(z->zone);
7aac7898
LS
5725}
5726#endif
f0c0b2b8 5727
6423aa81
JK
5728static void setup_min_unmapped_ratio(void);
5729static void setup_min_slab_ratio(void);
1da177e4
LT
5730#else /* CONFIG_NUMA */
5731
f0c0b2b8 5732static void build_zonelists(pg_data_t *pgdat)
1da177e4 5733{
19655d34 5734 int node, local_node;
9d3be21b
MH
5735 struct zoneref *zonerefs;
5736 int nr_zones;
1da177e4
LT
5737
5738 local_node = pgdat->node_id;
1da177e4 5739
9d3be21b
MH
5740 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5741 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5742 zonerefs += nr_zones;
1da177e4 5743
54a6eb5c
MG
5744 /*
5745 * Now we build the zonelist so that it contains the zones
5746 * of all the other nodes.
5747 * We don't want to pressure a particular node, so when
5748 * building the zones for node N, we make sure that the
5749 * zones coming right after the local ones are those from
5750 * node N+1 (modulo N)
5751 */
5752 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5753 if (!node_online(node))
5754 continue;
9d3be21b
MH
5755 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5756 zonerefs += nr_zones;
1da177e4 5757 }
54a6eb5c
MG
5758 for (node = 0; node < local_node; node++) {
5759 if (!node_online(node))
5760 continue;
9d3be21b
MH
5761 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5762 zonerefs += nr_zones;
54a6eb5c
MG
5763 }
5764
9d3be21b
MH
5765 zonerefs->zone = NULL;
5766 zonerefs->zone_idx = 0;
1da177e4
LT
5767}
5768
5769#endif /* CONFIG_NUMA */
5770
99dcc3e5
CL
5771/*
5772 * Boot pageset table. One per cpu which is going to be used for all
5773 * zones and all nodes. The parameters will be set in such a way
5774 * that an item put on a list will immediately be handed over to
5775 * the buddy list. This is safe since pageset manipulation is done
5776 * with interrupts disabled.
5777 *
5778 * The boot_pagesets must be kept even after bootup is complete for
5779 * unused processors and/or zones. They do play a role for bootstrapping
5780 * hotplugged processors.
5781 *
5782 * zoneinfo_show() and maybe other functions do
5783 * not check if the processor is online before following the pageset pointer.
5784 * Other parts of the kernel may not check if the zone is available.
5785 */
5786static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5787static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5788static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5789
11cd8638 5790static void __build_all_zonelists(void *data)
1da177e4 5791{
6811378e 5792 int nid;
afb6ebb3 5793 int __maybe_unused cpu;
9adb62a5 5794 pg_data_t *self = data;
b93e0f32
MH
5795 static DEFINE_SPINLOCK(lock);
5796
5797 spin_lock(&lock);
9276b1bc 5798
7f9cfb31
BL
5799#ifdef CONFIG_NUMA
5800 memset(node_load, 0, sizeof(node_load));
5801#endif
9adb62a5 5802
c1152583
WY
5803 /*
5804 * This node is hotadded and no memory is yet present. So just
5805 * building zonelists is fine - no need to touch other nodes.
5806 */
9adb62a5
JL
5807 if (self && !node_online(self->node_id)) {
5808 build_zonelists(self);
c1152583
WY
5809 } else {
5810 for_each_online_node(nid) {
5811 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5812
c1152583
WY
5813 build_zonelists(pgdat);
5814 }
99dcc3e5 5815
7aac7898
LS
5816#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5817 /*
5818 * We now know the "local memory node" for each node--
5819 * i.e., the node of the first zone in the generic zonelist.
5820 * Set up numa_mem percpu variable for on-line cpus. During
5821 * boot, only the boot cpu should be on-line; we'll init the
5822 * secondary cpus' numa_mem as they come on-line. During
5823 * node/memory hotplug, we'll fixup all on-line cpus.
5824 */
d9c9a0b9 5825 for_each_online_cpu(cpu)
7aac7898 5826 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5827#endif
d9c9a0b9 5828 }
b93e0f32
MH
5829
5830 spin_unlock(&lock);
6811378e
YG
5831}
5832
061f67bc
RV
5833static noinline void __init
5834build_all_zonelists_init(void)
5835{
afb6ebb3
MH
5836 int cpu;
5837
061f67bc 5838 __build_all_zonelists(NULL);
afb6ebb3
MH
5839
5840 /*
5841 * Initialize the boot_pagesets that are going to be used
5842 * for bootstrapping processors. The real pagesets for
5843 * each zone will be allocated later when the per cpu
5844 * allocator is available.
5845 *
5846 * boot_pagesets are used also for bootstrapping offline
5847 * cpus if the system is already booted because the pagesets
5848 * are needed to initialize allocators on a specific cpu too.
5849 * F.e. the percpu allocator needs the page allocator which
5850 * needs the percpu allocator in order to allocate its pagesets
5851 * (a chicken-egg dilemma).
5852 */
5853 for_each_possible_cpu(cpu)
5854 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5855
061f67bc
RV
5856 mminit_verify_zonelist();
5857 cpuset_init_current_mems_allowed();
5858}
5859
4eaf3f64 5860/*
4eaf3f64 5861 * unless system_state == SYSTEM_BOOTING.
061f67bc 5862 *
72675e13 5863 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5864 * [protected by SYSTEM_BOOTING].
4eaf3f64 5865 */
72675e13 5866void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5867{
5868 if (system_state == SYSTEM_BOOTING) {
061f67bc 5869 build_all_zonelists_init();
6811378e 5870 } else {
11cd8638 5871 __build_all_zonelists(pgdat);
6811378e
YG
5872 /* cpuset refresh routine should be here */
5873 }
bd1e22b8 5874 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5875 /*
5876 * Disable grouping by mobility if the number of pages in the
5877 * system is too low to allow the mechanism to work. It would be
5878 * more accurate, but expensive to check per-zone. This check is
5879 * made on memory-hotadd so a system can start with mobility
5880 * disabled and enable it later
5881 */
d9c23400 5882 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5883 page_group_by_mobility_disabled = 1;
5884 else
5885 page_group_by_mobility_disabled = 0;
5886
ce0725f7 5887 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5888 nr_online_nodes,
756a025f
JP
5889 page_group_by_mobility_disabled ? "off" : "on",
5890 vm_total_pages);
f0c0b2b8 5891#ifdef CONFIG_NUMA
f88dfff5 5892 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5893#endif
1da177e4
LT
5894}
5895
a9a9e77f
PT
5896/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5897static bool __meminit
5898overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5899{
a9a9e77f
PT
5900 static struct memblock_region *r;
5901
5902 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5903 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5904 for_each_memblock(memory, r) {
5905 if (*pfn < memblock_region_memory_end_pfn(r))
5906 break;
5907 }
5908 }
5909 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5910 memblock_is_mirror(r)) {
5911 *pfn = memblock_region_memory_end_pfn(r);
5912 return true;
5913 }
5914 }
a9a9e77f
PT
5915 return false;
5916}
5917
1da177e4
LT
5918/*
5919 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5920 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5921 * done. Non-atomic initialization, single-pass.
5922 */
c09b4240 5923void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5924 unsigned long start_pfn, enum memmap_context context,
5925 struct vmem_altmap *altmap)
1da177e4 5926{
a9a9e77f 5927 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5928 struct page *page;
1da177e4 5929
22b31eec
HD
5930 if (highest_memmap_pfn < end_pfn - 1)
5931 highest_memmap_pfn = end_pfn - 1;
5932
966cf44f 5933#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5934 /*
5935 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5936 * memory. We limit the total number of pages to initialize to just
5937 * those that might contain the memory mapping. We will defer the
5938 * ZONE_DEVICE page initialization until after we have released
5939 * the hotplug lock.
4b94ffdc 5940 */
966cf44f
AD
5941 if (zone == ZONE_DEVICE) {
5942 if (!altmap)
5943 return;
5944
5945 if (start_pfn == altmap->base_pfn)
5946 start_pfn += altmap->reserve;
5947 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5948 }
5949#endif
4b94ffdc 5950
948c436e 5951 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 5952 /*
b72d0ffb
AM
5953 * There can be holes in boot-time mem_map[]s handed to this
5954 * function. They do not exist on hotplugged memory.
a2f3aa02 5955 */
a9a9e77f 5956 if (context == MEMMAP_EARLY) {
a9a9e77f
PT
5957 if (overlap_memmap_init(zone, &pfn))
5958 continue;
5959 if (defer_init(nid, pfn, end_pfn))
5960 break;
a2f3aa02 5961 }
ac5d2539 5962
d0dc12e8
PT
5963 page = pfn_to_page(pfn);
5964 __init_single_page(page, pfn, zone, nid);
5965 if (context == MEMMAP_HOTPLUG)
d483da5b 5966 __SetPageReserved(page);
d0dc12e8 5967
ac5d2539
MG
5968 /*
5969 * Mark the block movable so that blocks are reserved for
5970 * movable at startup. This will force kernel allocations
5971 * to reserve their blocks rather than leaking throughout
5972 * the address space during boot when many long-lived
974a786e 5973 * kernel allocations are made.
ac5d2539
MG
5974 *
5975 * bitmap is created for zone's valid pfn range. but memmap
5976 * can be created for invalid pages (for alignment)
5977 * check here not to call set_pageblock_migratetype() against
5978 * pfn out of zone.
5979 */
5980 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5981 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5982 cond_resched();
ac5d2539 5983 }
948c436e 5984 pfn++;
1da177e4
LT
5985 }
5986}
5987
966cf44f
AD
5988#ifdef CONFIG_ZONE_DEVICE
5989void __ref memmap_init_zone_device(struct zone *zone,
5990 unsigned long start_pfn,
1f8d75c1 5991 unsigned long nr_pages,
966cf44f
AD
5992 struct dev_pagemap *pgmap)
5993{
1f8d75c1 5994 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 5995 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 5996 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
5997 unsigned long zone_idx = zone_idx(zone);
5998 unsigned long start = jiffies;
5999 int nid = pgdat->node_id;
6000
46d945ae 6001 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6002 return;
6003
6004 /*
6005 * The call to memmap_init_zone should have already taken care
6006 * of the pages reserved for the memmap, so we can just jump to
6007 * the end of that region and start processing the device pages.
6008 */
514caf23 6009 if (altmap) {
966cf44f 6010 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6011 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6012 }
6013
6014 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6015 struct page *page = pfn_to_page(pfn);
6016
6017 __init_single_page(page, pfn, zone_idx, nid);
6018
6019 /*
6020 * Mark page reserved as it will need to wait for onlining
6021 * phase for it to be fully associated with a zone.
6022 *
6023 * We can use the non-atomic __set_bit operation for setting
6024 * the flag as we are still initializing the pages.
6025 */
6026 __SetPageReserved(page);
6027
6028 /*
8a164fef
CH
6029 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6030 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6031 * ever freed or placed on a driver-private list.
966cf44f
AD
6032 */
6033 page->pgmap = pgmap;
8a164fef 6034 page->zone_device_data = NULL;
966cf44f
AD
6035
6036 /*
6037 * Mark the block movable so that blocks are reserved for
6038 * movable at startup. This will force kernel allocations
6039 * to reserve their blocks rather than leaking throughout
6040 * the address space during boot when many long-lived
6041 * kernel allocations are made.
6042 *
6043 * bitmap is created for zone's valid pfn range. but memmap
6044 * can be created for invalid pages (for alignment)
6045 * check here not to call set_pageblock_migratetype() against
6046 * pfn out of zone.
6047 *
6048 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 6049 * because this is done early in section_activate()
966cf44f
AD
6050 */
6051 if (!(pfn & (pageblock_nr_pages - 1))) {
6052 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6053 cond_resched();
6054 }
6055 }
6056
fdc029b1 6057 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6058 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6059}
6060
6061#endif
1e548deb 6062static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6063{
7aeb09f9 6064 unsigned int order, t;
b2a0ac88
MG
6065 for_each_migratetype_order(order, t) {
6066 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6067 zone->free_area[order].nr_free = 0;
6068 }
6069}
6070
dfb3ccd0 6071void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6072 unsigned long zone,
6073 unsigned long range_start_pfn)
dfb3ccd0 6074{
73a6e474
BH
6075 unsigned long start_pfn, end_pfn;
6076 unsigned long range_end_pfn = range_start_pfn + size;
6077 int i;
6078
6079 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6080 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6081 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6082
6083 if (end_pfn > start_pfn) {
6084 size = end_pfn - start_pfn;
6085 memmap_init_zone(size, nid, zone, start_pfn,
6086 MEMMAP_EARLY, NULL);
6087 }
6088 }
dfb3ccd0 6089}
1da177e4 6090
7cd2b0a3 6091static int zone_batchsize(struct zone *zone)
e7c8d5c9 6092{
3a6be87f 6093#ifdef CONFIG_MMU
e7c8d5c9
CL
6094 int batch;
6095
6096 /*
6097 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6098 * size of the zone.
e7c8d5c9 6099 */
9705bea5 6100 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6101 /* But no more than a meg. */
6102 if (batch * PAGE_SIZE > 1024 * 1024)
6103 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6104 batch /= 4; /* We effectively *= 4 below */
6105 if (batch < 1)
6106 batch = 1;
6107
6108 /*
0ceaacc9
NP
6109 * Clamp the batch to a 2^n - 1 value. Having a power
6110 * of 2 value was found to be more likely to have
6111 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6112 *
0ceaacc9
NP
6113 * For example if 2 tasks are alternately allocating
6114 * batches of pages, one task can end up with a lot
6115 * of pages of one half of the possible page colors
6116 * and the other with pages of the other colors.
e7c8d5c9 6117 */
9155203a 6118 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6119
e7c8d5c9 6120 return batch;
3a6be87f
DH
6121
6122#else
6123 /* The deferral and batching of frees should be suppressed under NOMMU
6124 * conditions.
6125 *
6126 * The problem is that NOMMU needs to be able to allocate large chunks
6127 * of contiguous memory as there's no hardware page translation to
6128 * assemble apparent contiguous memory from discontiguous pages.
6129 *
6130 * Queueing large contiguous runs of pages for batching, however,
6131 * causes the pages to actually be freed in smaller chunks. As there
6132 * can be a significant delay between the individual batches being
6133 * recycled, this leads to the once large chunks of space being
6134 * fragmented and becoming unavailable for high-order allocations.
6135 */
6136 return 0;
6137#endif
e7c8d5c9
CL
6138}
6139
8d7a8fa9
CS
6140/*
6141 * pcp->high and pcp->batch values are related and dependent on one another:
6142 * ->batch must never be higher then ->high.
6143 * The following function updates them in a safe manner without read side
6144 * locking.
6145 *
6146 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6147 * those fields changing asynchronously (acording the the above rule).
6148 *
6149 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6150 * outside of boot time (or some other assurance that no concurrent updaters
6151 * exist).
6152 */
6153static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6154 unsigned long batch)
6155{
6156 /* start with a fail safe value for batch */
6157 pcp->batch = 1;
6158 smp_wmb();
6159
6160 /* Update high, then batch, in order */
6161 pcp->high = high;
6162 smp_wmb();
6163
6164 pcp->batch = batch;
6165}
6166
3664033c 6167/* a companion to pageset_set_high() */
4008bab7
CS
6168static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6169{
8d7a8fa9 6170 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6171}
6172
88c90dbc 6173static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6174{
6175 struct per_cpu_pages *pcp;
5f8dcc21 6176 int migratetype;
2caaad41 6177
1c6fe946
MD
6178 memset(p, 0, sizeof(*p));
6179
3dfa5721 6180 pcp = &p->pcp;
5f8dcc21
MG
6181 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6182 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6183}
6184
88c90dbc
CS
6185static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6186{
6187 pageset_init(p);
6188 pageset_set_batch(p, batch);
6189}
6190
8ad4b1fb 6191/*
3664033c 6192 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6193 * to the value high for the pageset p.
6194 */
3664033c 6195static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6196 unsigned long high)
6197{
8d7a8fa9
CS
6198 unsigned long batch = max(1UL, high / 4);
6199 if ((high / 4) > (PAGE_SHIFT * 8))
6200 batch = PAGE_SHIFT * 8;
8ad4b1fb 6201
8d7a8fa9 6202 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6203}
6204
7cd2b0a3
DR
6205static void pageset_set_high_and_batch(struct zone *zone,
6206 struct per_cpu_pageset *pcp)
56cef2b8 6207{
56cef2b8 6208 if (percpu_pagelist_fraction)
3664033c 6209 pageset_set_high(pcp,
9705bea5 6210 (zone_managed_pages(zone) /
56cef2b8
CS
6211 percpu_pagelist_fraction));
6212 else
6213 pageset_set_batch(pcp, zone_batchsize(zone));
6214}
6215
169f6c19
CS
6216static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6217{
6218 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6219
6220 pageset_init(pcp);
6221 pageset_set_high_and_batch(zone, pcp);
6222}
6223
72675e13 6224void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6225{
6226 int cpu;
319774e2 6227 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6228 for_each_possible_cpu(cpu)
6229 zone_pageset_init(zone, cpu);
319774e2
WF
6230}
6231
2caaad41 6232/*
99dcc3e5
CL
6233 * Allocate per cpu pagesets and initialize them.
6234 * Before this call only boot pagesets were available.
e7c8d5c9 6235 */
99dcc3e5 6236void __init setup_per_cpu_pageset(void)
e7c8d5c9 6237{
b4911ea2 6238 struct pglist_data *pgdat;
99dcc3e5 6239 struct zone *zone;
e7c8d5c9 6240
319774e2
WF
6241 for_each_populated_zone(zone)
6242 setup_zone_pageset(zone);
b4911ea2
MG
6243
6244 for_each_online_pgdat(pgdat)
6245 pgdat->per_cpu_nodestats =
6246 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6247}
6248
c09b4240 6249static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6250{
99dcc3e5
CL
6251 /*
6252 * per cpu subsystem is not up at this point. The following code
6253 * relies on the ability of the linker to provide the
6254 * offset of a (static) per cpu variable into the per cpu area.
6255 */
6256 zone->pageset = &boot_pageset;
ed8ece2e 6257
b38a8725 6258 if (populated_zone(zone))
99dcc3e5
CL
6259 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6260 zone->name, zone->present_pages,
6261 zone_batchsize(zone));
ed8ece2e
DH
6262}
6263
dc0bbf3b 6264void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6265 unsigned long zone_start_pfn,
b171e409 6266 unsigned long size)
ed8ece2e
DH
6267{
6268 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6269 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6270
8f416836
WY
6271 if (zone_idx > pgdat->nr_zones)
6272 pgdat->nr_zones = zone_idx;
ed8ece2e 6273
ed8ece2e
DH
6274 zone->zone_start_pfn = zone_start_pfn;
6275
708614e6
MG
6276 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6277 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6278 pgdat->node_id,
6279 (unsigned long)zone_idx(zone),
6280 zone_start_pfn, (zone_start_pfn + size));
6281
1e548deb 6282 zone_init_free_lists(zone);
9dcb8b68 6283 zone->initialized = 1;
ed8ece2e
DH
6284}
6285
c713216d 6286/**
6782832e 6287 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6288 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6289 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6290 *
7d018176
ZZ
6291 * If an architecture guarantees that all ranges registered contain no holes
6292 * and may be freed, this this function may be used instead of calling
6293 * memblock_free_early_nid() manually.
c713216d 6294 */
c13291a5 6295void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6296{
c13291a5
TH
6297 unsigned long start_pfn, end_pfn;
6298 int i, this_nid;
edbe7d23 6299
c13291a5
TH
6300 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6301 start_pfn = min(start_pfn, max_low_pfn);
6302 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6303
c13291a5 6304 if (start_pfn < end_pfn)
6782832e
SS
6305 memblock_free_early_nid(PFN_PHYS(start_pfn),
6306 (end_pfn - start_pfn) << PAGE_SHIFT,
6307 this_nid);
edbe7d23 6308 }
edbe7d23 6309}
edbe7d23 6310
c713216d
MG
6311/**
6312 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6313 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6314 *
7d018176
ZZ
6315 * If an architecture guarantees that all ranges registered contain no holes and may
6316 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6317 */
6318void __init sparse_memory_present_with_active_regions(int nid)
6319{
c13291a5
TH
6320 unsigned long start_pfn, end_pfn;
6321 int i, this_nid;
c713216d 6322
c13291a5
TH
6323 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6324 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6325}
6326
6327/**
6328 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6329 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6330 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6331 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6332 *
6333 * It returns the start and end page frame of a node based on information
7d018176 6334 * provided by memblock_set_node(). If called for a node
c713216d 6335 * with no available memory, a warning is printed and the start and end
88ca3b94 6336 * PFNs will be 0.
c713216d 6337 */
bbe5d993 6338void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6339 unsigned long *start_pfn, unsigned long *end_pfn)
6340{
c13291a5 6341 unsigned long this_start_pfn, this_end_pfn;
c713216d 6342 int i;
c13291a5 6343
c713216d
MG
6344 *start_pfn = -1UL;
6345 *end_pfn = 0;
6346
c13291a5
TH
6347 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6348 *start_pfn = min(*start_pfn, this_start_pfn);
6349 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6350 }
6351
633c0666 6352 if (*start_pfn == -1UL)
c713216d 6353 *start_pfn = 0;
c713216d
MG
6354}
6355
2a1e274a
MG
6356/*
6357 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6358 * assumption is made that zones within a node are ordered in monotonic
6359 * increasing memory addresses so that the "highest" populated zone is used
6360 */
b69a7288 6361static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6362{
6363 int zone_index;
6364 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6365 if (zone_index == ZONE_MOVABLE)
6366 continue;
6367
6368 if (arch_zone_highest_possible_pfn[zone_index] >
6369 arch_zone_lowest_possible_pfn[zone_index])
6370 break;
6371 }
6372
6373 VM_BUG_ON(zone_index == -1);
6374 movable_zone = zone_index;
6375}
6376
6377/*
6378 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6379 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6380 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6381 * in each node depending on the size of each node and how evenly kernelcore
6382 * is distributed. This helper function adjusts the zone ranges
6383 * provided by the architecture for a given node by using the end of the
6384 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6385 * zones within a node are in order of monotonic increases memory addresses
6386 */
bbe5d993 6387static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6388 unsigned long zone_type,
6389 unsigned long node_start_pfn,
6390 unsigned long node_end_pfn,
6391 unsigned long *zone_start_pfn,
6392 unsigned long *zone_end_pfn)
6393{
6394 /* Only adjust if ZONE_MOVABLE is on this node */
6395 if (zone_movable_pfn[nid]) {
6396 /* Size ZONE_MOVABLE */
6397 if (zone_type == ZONE_MOVABLE) {
6398 *zone_start_pfn = zone_movable_pfn[nid];
6399 *zone_end_pfn = min(node_end_pfn,
6400 arch_zone_highest_possible_pfn[movable_zone]);
6401
e506b996
XQ
6402 /* Adjust for ZONE_MOVABLE starting within this range */
6403 } else if (!mirrored_kernelcore &&
6404 *zone_start_pfn < zone_movable_pfn[nid] &&
6405 *zone_end_pfn > zone_movable_pfn[nid]) {
6406 *zone_end_pfn = zone_movable_pfn[nid];
6407
2a1e274a
MG
6408 /* Check if this whole range is within ZONE_MOVABLE */
6409 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6410 *zone_start_pfn = *zone_end_pfn;
6411 }
6412}
6413
c713216d
MG
6414/*
6415 * Return the number of pages a zone spans in a node, including holes
6416 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6417 */
bbe5d993 6418static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6419 unsigned long zone_type,
7960aedd
ZY
6420 unsigned long node_start_pfn,
6421 unsigned long node_end_pfn,
d91749c1 6422 unsigned long *zone_start_pfn,
854e8848 6423 unsigned long *zone_end_pfn)
c713216d 6424{
299c83dc
LF
6425 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6426 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6427 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6428 if (!node_start_pfn && !node_end_pfn)
6429 return 0;
6430
7960aedd 6431 /* Get the start and end of the zone */
299c83dc
LF
6432 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6433 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6434 adjust_zone_range_for_zone_movable(nid, zone_type,
6435 node_start_pfn, node_end_pfn,
d91749c1 6436 zone_start_pfn, zone_end_pfn);
c713216d
MG
6437
6438 /* Check that this node has pages within the zone's required range */
d91749c1 6439 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6440 return 0;
6441
6442 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6443 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6444 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6445
6446 /* Return the spanned pages */
d91749c1 6447 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6448}
6449
6450/*
6451 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6452 * then all holes in the requested range will be accounted for.
c713216d 6453 */
bbe5d993 6454unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6455 unsigned long range_start_pfn,
6456 unsigned long range_end_pfn)
6457{
96e907d1
TH
6458 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6459 unsigned long start_pfn, end_pfn;
6460 int i;
c713216d 6461
96e907d1
TH
6462 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6463 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6464 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6465 nr_absent -= end_pfn - start_pfn;
c713216d 6466 }
96e907d1 6467 return nr_absent;
c713216d
MG
6468}
6469
6470/**
6471 * absent_pages_in_range - Return number of page frames in holes within a range
6472 * @start_pfn: The start PFN to start searching for holes
6473 * @end_pfn: The end PFN to stop searching for holes
6474 *
a862f68a 6475 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6476 */
6477unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6478 unsigned long end_pfn)
6479{
6480 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6481}
6482
6483/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6484static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6485 unsigned long zone_type,
7960aedd 6486 unsigned long node_start_pfn,
854e8848 6487 unsigned long node_end_pfn)
c713216d 6488{
96e907d1
TH
6489 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6490 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6491 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6492 unsigned long nr_absent;
9c7cd687 6493
b5685e92 6494 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6495 if (!node_start_pfn && !node_end_pfn)
6496 return 0;
6497
96e907d1
TH
6498 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6499 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6500
2a1e274a
MG
6501 adjust_zone_range_for_zone_movable(nid, zone_type,
6502 node_start_pfn, node_end_pfn,
6503 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6504 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6505
6506 /*
6507 * ZONE_MOVABLE handling.
6508 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6509 * and vice versa.
6510 */
e506b996
XQ
6511 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6512 unsigned long start_pfn, end_pfn;
6513 struct memblock_region *r;
6514
6515 for_each_memblock(memory, r) {
6516 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6517 zone_start_pfn, zone_end_pfn);
6518 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6519 zone_start_pfn, zone_end_pfn);
6520
6521 if (zone_type == ZONE_MOVABLE &&
6522 memblock_is_mirror(r))
6523 nr_absent += end_pfn - start_pfn;
6524
6525 if (zone_type == ZONE_NORMAL &&
6526 !memblock_is_mirror(r))
6527 nr_absent += end_pfn - start_pfn;
342332e6
TI
6528 }
6529 }
6530
6531 return nr_absent;
c713216d 6532}
0e0b864e 6533
bbe5d993 6534static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6535 unsigned long node_start_pfn,
854e8848 6536 unsigned long node_end_pfn)
c713216d 6537{
febd5949 6538 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6539 enum zone_type i;
6540
febd5949
GZ
6541 for (i = 0; i < MAX_NR_ZONES; i++) {
6542 struct zone *zone = pgdat->node_zones + i;
d91749c1 6543 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6544 unsigned long spanned, absent;
febd5949 6545 unsigned long size, real_size;
c713216d 6546
854e8848
MR
6547 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6548 node_start_pfn,
6549 node_end_pfn,
6550 &zone_start_pfn,
6551 &zone_end_pfn);
6552 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6553 node_start_pfn,
6554 node_end_pfn);
3f08a302
MR
6555
6556 size = spanned;
6557 real_size = size - absent;
6558
d91749c1
TI
6559 if (size)
6560 zone->zone_start_pfn = zone_start_pfn;
6561 else
6562 zone->zone_start_pfn = 0;
febd5949
GZ
6563 zone->spanned_pages = size;
6564 zone->present_pages = real_size;
6565
6566 totalpages += size;
6567 realtotalpages += real_size;
6568 }
6569
6570 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6571 pgdat->node_present_pages = realtotalpages;
6572 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6573 realtotalpages);
6574}
6575
835c134e
MG
6576#ifndef CONFIG_SPARSEMEM
6577/*
6578 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6579 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6580 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6581 * round what is now in bits to nearest long in bits, then return it in
6582 * bytes.
6583 */
7c45512d 6584static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6585{
6586 unsigned long usemapsize;
6587
7c45512d 6588 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6589 usemapsize = roundup(zonesize, pageblock_nr_pages);
6590 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6591 usemapsize *= NR_PAGEBLOCK_BITS;
6592 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6593
6594 return usemapsize / 8;
6595}
6596
7cc2a959 6597static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6598 struct zone *zone,
6599 unsigned long zone_start_pfn,
6600 unsigned long zonesize)
835c134e 6601{
7c45512d 6602 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6603 zone->pageblock_flags = NULL;
23a7052a 6604 if (usemapsize) {
6782832e 6605 zone->pageblock_flags =
26fb3dae
MR
6606 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6607 pgdat->node_id);
23a7052a
MR
6608 if (!zone->pageblock_flags)
6609 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6610 usemapsize, zone->name, pgdat->node_id);
6611 }
835c134e
MG
6612}
6613#else
7c45512d
LT
6614static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6615 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6616#endif /* CONFIG_SPARSEMEM */
6617
d9c23400 6618#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6619
d9c23400 6620/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6621void __init set_pageblock_order(void)
d9c23400 6622{
955c1cd7
AM
6623 unsigned int order;
6624
d9c23400
MG
6625 /* Check that pageblock_nr_pages has not already been setup */
6626 if (pageblock_order)
6627 return;
6628
955c1cd7
AM
6629 if (HPAGE_SHIFT > PAGE_SHIFT)
6630 order = HUGETLB_PAGE_ORDER;
6631 else
6632 order = MAX_ORDER - 1;
6633
d9c23400
MG
6634 /*
6635 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6636 * This value may be variable depending on boot parameters on IA64 and
6637 * powerpc.
d9c23400
MG
6638 */
6639 pageblock_order = order;
6640}
6641#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6642
ba72cb8c
MG
6643/*
6644 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6645 * is unused as pageblock_order is set at compile-time. See
6646 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6647 * the kernel config
ba72cb8c 6648 */
03e85f9d 6649void __init set_pageblock_order(void)
ba72cb8c 6650{
ba72cb8c 6651}
d9c23400
MG
6652
6653#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6654
03e85f9d 6655static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6656 unsigned long present_pages)
01cefaef
JL
6657{
6658 unsigned long pages = spanned_pages;
6659
6660 /*
6661 * Provide a more accurate estimation if there are holes within
6662 * the zone and SPARSEMEM is in use. If there are holes within the
6663 * zone, each populated memory region may cost us one or two extra
6664 * memmap pages due to alignment because memmap pages for each
89d790ab 6665 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6666 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6667 */
6668 if (spanned_pages > present_pages + (present_pages >> 4) &&
6669 IS_ENABLED(CONFIG_SPARSEMEM))
6670 pages = present_pages;
6671
6672 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6673}
6674
ace1db39
OS
6675#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6676static void pgdat_init_split_queue(struct pglist_data *pgdat)
6677{
364c1eeb
YS
6678 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6679
6680 spin_lock_init(&ds_queue->split_queue_lock);
6681 INIT_LIST_HEAD(&ds_queue->split_queue);
6682 ds_queue->split_queue_len = 0;
ace1db39
OS
6683}
6684#else
6685static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6686#endif
6687
6688#ifdef CONFIG_COMPACTION
6689static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6690{
6691 init_waitqueue_head(&pgdat->kcompactd_wait);
6692}
6693#else
6694static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6695#endif
6696
03e85f9d 6697static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6698{
208d54e5 6699 pgdat_resize_init(pgdat);
ace1db39 6700
ace1db39
OS
6701 pgdat_init_split_queue(pgdat);
6702 pgdat_init_kcompactd(pgdat);
6703
1da177e4 6704 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6705 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6706
eefa864b 6707 pgdat_page_ext_init(pgdat);
a52633d8 6708 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6709 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6710}
6711
6712static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6713 unsigned long remaining_pages)
6714{
9705bea5 6715 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6716 zone_set_nid(zone, nid);
6717 zone->name = zone_names[idx];
6718 zone->zone_pgdat = NODE_DATA(nid);
6719 spin_lock_init(&zone->lock);
6720 zone_seqlock_init(zone);
6721 zone_pcp_init(zone);
6722}
6723
6724/*
6725 * Set up the zone data structures
6726 * - init pgdat internals
6727 * - init all zones belonging to this node
6728 *
6729 * NOTE: this function is only called during memory hotplug
6730 */
6731#ifdef CONFIG_MEMORY_HOTPLUG
6732void __ref free_area_init_core_hotplug(int nid)
6733{
6734 enum zone_type z;
6735 pg_data_t *pgdat = NODE_DATA(nid);
6736
6737 pgdat_init_internals(pgdat);
6738 for (z = 0; z < MAX_NR_ZONES; z++)
6739 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6740}
6741#endif
6742
6743/*
6744 * Set up the zone data structures:
6745 * - mark all pages reserved
6746 * - mark all memory queues empty
6747 * - clear the memory bitmaps
6748 *
6749 * NOTE: pgdat should get zeroed by caller.
6750 * NOTE: this function is only called during early init.
6751 */
6752static void __init free_area_init_core(struct pglist_data *pgdat)
6753{
6754 enum zone_type j;
6755 int nid = pgdat->node_id;
5f63b720 6756
03e85f9d 6757 pgdat_init_internals(pgdat);
385386cf
JW
6758 pgdat->per_cpu_nodestats = &boot_nodestats;
6759
1da177e4
LT
6760 for (j = 0; j < MAX_NR_ZONES; j++) {
6761 struct zone *zone = pgdat->node_zones + j;
e6943859 6762 unsigned long size, freesize, memmap_pages;
d91749c1 6763 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6764
febd5949 6765 size = zone->spanned_pages;
e6943859 6766 freesize = zone->present_pages;
1da177e4 6767
0e0b864e 6768 /*
9feedc9d 6769 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6770 * is used by this zone for memmap. This affects the watermark
6771 * and per-cpu initialisations
6772 */
e6943859 6773 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6774 if (!is_highmem_idx(j)) {
6775 if (freesize >= memmap_pages) {
6776 freesize -= memmap_pages;
6777 if (memmap_pages)
6778 printk(KERN_DEBUG
6779 " %s zone: %lu pages used for memmap\n",
6780 zone_names[j], memmap_pages);
6781 } else
1170532b 6782 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6783 zone_names[j], memmap_pages, freesize);
6784 }
0e0b864e 6785
6267276f 6786 /* Account for reserved pages */
9feedc9d
JL
6787 if (j == 0 && freesize > dma_reserve) {
6788 freesize -= dma_reserve;
d903ef9f 6789 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6790 zone_names[0], dma_reserve);
0e0b864e
MG
6791 }
6792
98d2b0eb 6793 if (!is_highmem_idx(j))
9feedc9d 6794 nr_kernel_pages += freesize;
01cefaef
JL
6795 /* Charge for highmem memmap if there are enough kernel pages */
6796 else if (nr_kernel_pages > memmap_pages * 2)
6797 nr_kernel_pages -= memmap_pages;
9feedc9d 6798 nr_all_pages += freesize;
1da177e4 6799
9feedc9d
JL
6800 /*
6801 * Set an approximate value for lowmem here, it will be adjusted
6802 * when the bootmem allocator frees pages into the buddy system.
6803 * And all highmem pages will be managed by the buddy system.
6804 */
03e85f9d 6805 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6806
d883c6cf 6807 if (!size)
1da177e4
LT
6808 continue;
6809
955c1cd7 6810 set_pageblock_order();
d883c6cf
JK
6811 setup_usemap(pgdat, zone, zone_start_pfn, size);
6812 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6813 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6814 }
6815}
6816
0cd842f9 6817#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6818static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6819{
b0aeba74 6820 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6821 unsigned long __maybe_unused offset = 0;
6822
1da177e4
LT
6823 /* Skip empty nodes */
6824 if (!pgdat->node_spanned_pages)
6825 return;
6826
b0aeba74
TL
6827 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6828 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6829 /* ia64 gets its own node_mem_map, before this, without bootmem */
6830 if (!pgdat->node_mem_map) {
b0aeba74 6831 unsigned long size, end;
d41dee36
AW
6832 struct page *map;
6833
e984bb43
BP
6834 /*
6835 * The zone's endpoints aren't required to be MAX_ORDER
6836 * aligned but the node_mem_map endpoints must be in order
6837 * for the buddy allocator to function correctly.
6838 */
108bcc96 6839 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6840 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6841 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6842 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6843 pgdat->node_id);
23a7052a
MR
6844 if (!map)
6845 panic("Failed to allocate %ld bytes for node %d memory map\n",
6846 size, pgdat->node_id);
a1c34a3b 6847 pgdat->node_mem_map = map + offset;
1da177e4 6848 }
0cd842f9
OS
6849 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6850 __func__, pgdat->node_id, (unsigned long)pgdat,
6851 (unsigned long)pgdat->node_mem_map);
12d810c1 6852#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6853 /*
6854 * With no DISCONTIG, the global mem_map is just set as node 0's
6855 */
c713216d 6856 if (pgdat == NODE_DATA(0)) {
1da177e4 6857 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6858 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6859 mem_map -= offset;
c713216d 6860 }
1da177e4
LT
6861#endif
6862}
0cd842f9
OS
6863#else
6864static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6865#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6866
0188dc98
OS
6867#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6868static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6869{
0188dc98
OS
6870 pgdat->first_deferred_pfn = ULONG_MAX;
6871}
6872#else
6873static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6874#endif
6875
854e8848 6876static void __init free_area_init_node(int nid)
1da177e4 6877{
9109fb7b 6878 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6879 unsigned long start_pfn = 0;
6880 unsigned long end_pfn = 0;
9109fb7b 6881
88fdf75d 6882 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6883 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6884
854e8848
MR
6885 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6886
1da177e4 6887 pgdat->node_id = nid;
854e8848 6888 pgdat->node_start_pfn = start_pfn;
75ef7184 6889 pgdat->per_cpu_nodestats = NULL;
854e8848
MR
6890
6891 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6892 (u64)start_pfn << PAGE_SHIFT,
6893 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6894 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
6895
6896 alloc_node_mem_map(pgdat);
0188dc98 6897 pgdat_set_deferred_range(pgdat);
1da177e4 6898
7f3eb55b 6899 free_area_init_core(pgdat);
1da177e4
LT
6900}
6901
bc9331a1 6902void __init free_area_init_memoryless_node(int nid)
3f08a302 6903{
854e8848 6904 free_area_init_node(nid);
3f08a302
MR
6905}
6906
aca52c39 6907#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6908/*
4b094b78
DH
6909 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6910 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6911 */
4b094b78 6912static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6913{
6914 unsigned long pfn;
6915 u64 pgcnt = 0;
6916
6917 for (pfn = spfn; pfn < epfn; pfn++) {
6918 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6919 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6920 + pageblock_nr_pages - 1;
6921 continue;
6922 }
4b094b78
DH
6923 /*
6924 * Use a fake node/zone (0) for now. Some of these pages
6925 * (in memblock.reserved but not in memblock.memory) will
6926 * get re-initialized via reserve_bootmem_region() later.
6927 */
6928 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6929 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
6930 pgcnt++;
6931 }
6932
6933 return pgcnt;
6934}
6935
a4a3ede2
PT
6936/*
6937 * Only struct pages that are backed by physical memory are zeroed and
6938 * initialized by going through __init_single_page(). But, there are some
6939 * struct pages which are reserved in memblock allocator and their fields
6940 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 6941 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
6942 *
6943 * This function also addresses a similar issue where struct pages are left
6944 * uninitialized because the physical address range is not covered by
6945 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
6946 * layout is manually configured via memmap=, or when the highest physical
6947 * address (max_pfn) does not end on a section boundary.
a4a3ede2 6948 */
4b094b78 6949static void __init init_unavailable_mem(void)
a4a3ede2
PT
6950{
6951 phys_addr_t start, end;
a4a3ede2 6952 u64 i, pgcnt;
907ec5fc 6953 phys_addr_t next = 0;
a4a3ede2
PT
6954
6955 /*
907ec5fc 6956 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6957 */
6958 pgcnt = 0;
907ec5fc
NH
6959 for_each_mem_range(i, &memblock.memory, NULL,
6960 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 6961 if (next < start)
4b094b78
DH
6962 pgcnt += init_unavailable_range(PFN_DOWN(next),
6963 PFN_UP(start));
907ec5fc
NH
6964 next = end;
6965 }
e822969c
DH
6966
6967 /*
6968 * Early sections always have a fully populated memmap for the whole
6969 * section - see pfn_valid(). If the last section has holes at the
6970 * end and that section is marked "online", the memmap will be
6971 * considered initialized. Make sure that memmap has a well defined
6972 * state.
6973 */
4b094b78
DH
6974 pgcnt += init_unavailable_range(PFN_DOWN(next),
6975 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 6976
a4a3ede2
PT
6977 /*
6978 * Struct pages that do not have backing memory. This could be because
6979 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6980 */
6981 if (pgcnt)
907ec5fc 6982 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6983}
4b094b78
DH
6984#else
6985static inline void __init init_unavailable_mem(void)
6986{
6987}
aca52c39 6988#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6989
418508c1
MS
6990#if MAX_NUMNODES > 1
6991/*
6992 * Figure out the number of possible node ids.
6993 */
f9872caf 6994void __init setup_nr_node_ids(void)
418508c1 6995{
904a9553 6996 unsigned int highest;
418508c1 6997
904a9553 6998 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6999 nr_node_ids = highest + 1;
7000}
418508c1
MS
7001#endif
7002
1e01979c
TH
7003/**
7004 * node_map_pfn_alignment - determine the maximum internode alignment
7005 *
7006 * This function should be called after node map is populated and sorted.
7007 * It calculates the maximum power of two alignment which can distinguish
7008 * all the nodes.
7009 *
7010 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7011 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7012 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7013 * shifted, 1GiB is enough and this function will indicate so.
7014 *
7015 * This is used to test whether pfn -> nid mapping of the chosen memory
7016 * model has fine enough granularity to avoid incorrect mapping for the
7017 * populated node map.
7018 *
a862f68a 7019 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7020 * requirement (single node).
7021 */
7022unsigned long __init node_map_pfn_alignment(void)
7023{
7024 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7025 unsigned long start, end, mask;
98fa15f3 7026 int last_nid = NUMA_NO_NODE;
c13291a5 7027 int i, nid;
1e01979c 7028
c13291a5 7029 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7030 if (!start || last_nid < 0 || last_nid == nid) {
7031 last_nid = nid;
7032 last_end = end;
7033 continue;
7034 }
7035
7036 /*
7037 * Start with a mask granular enough to pin-point to the
7038 * start pfn and tick off bits one-by-one until it becomes
7039 * too coarse to separate the current node from the last.
7040 */
7041 mask = ~((1 << __ffs(start)) - 1);
7042 while (mask && last_end <= (start & (mask << 1)))
7043 mask <<= 1;
7044
7045 /* accumulate all internode masks */
7046 accl_mask |= mask;
7047 }
7048
7049 /* convert mask to number of pages */
7050 return ~accl_mask + 1;
7051}
7052
c713216d
MG
7053/**
7054 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7055 *
a862f68a 7056 * Return: the minimum PFN based on information provided via
7d018176 7057 * memblock_set_node().
c713216d
MG
7058 */
7059unsigned long __init find_min_pfn_with_active_regions(void)
7060{
8a1b25fe 7061 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7062}
7063
37b07e41
LS
7064/*
7065 * early_calculate_totalpages()
7066 * Sum pages in active regions for movable zone.
4b0ef1fe 7067 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7068 */
484f51f8 7069static unsigned long __init early_calculate_totalpages(void)
7e63efef 7070{
7e63efef 7071 unsigned long totalpages = 0;
c13291a5
TH
7072 unsigned long start_pfn, end_pfn;
7073 int i, nid;
7074
7075 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7076 unsigned long pages = end_pfn - start_pfn;
7e63efef 7077
37b07e41
LS
7078 totalpages += pages;
7079 if (pages)
4b0ef1fe 7080 node_set_state(nid, N_MEMORY);
37b07e41 7081 }
b8af2941 7082 return totalpages;
7e63efef
MG
7083}
7084
2a1e274a
MG
7085/*
7086 * Find the PFN the Movable zone begins in each node. Kernel memory
7087 * is spread evenly between nodes as long as the nodes have enough
7088 * memory. When they don't, some nodes will have more kernelcore than
7089 * others
7090 */
b224ef85 7091static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7092{
7093 int i, nid;
7094 unsigned long usable_startpfn;
7095 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7096 /* save the state before borrow the nodemask */
4b0ef1fe 7097 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7098 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7099 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7100 struct memblock_region *r;
b2f3eebe
TC
7101
7102 /* Need to find movable_zone earlier when movable_node is specified. */
7103 find_usable_zone_for_movable();
7104
7105 /*
7106 * If movable_node is specified, ignore kernelcore and movablecore
7107 * options.
7108 */
7109 if (movable_node_is_enabled()) {
136199f0
EM
7110 for_each_memblock(memory, r) {
7111 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7112 continue;
7113
d622abf7 7114 nid = memblock_get_region_node(r);
b2f3eebe 7115
136199f0 7116 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7117 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7118 min(usable_startpfn, zone_movable_pfn[nid]) :
7119 usable_startpfn;
7120 }
7121
7122 goto out2;
7123 }
2a1e274a 7124
342332e6
TI
7125 /*
7126 * If kernelcore=mirror is specified, ignore movablecore option
7127 */
7128 if (mirrored_kernelcore) {
7129 bool mem_below_4gb_not_mirrored = false;
7130
7131 for_each_memblock(memory, r) {
7132 if (memblock_is_mirror(r))
7133 continue;
7134
d622abf7 7135 nid = memblock_get_region_node(r);
342332e6
TI
7136
7137 usable_startpfn = memblock_region_memory_base_pfn(r);
7138
7139 if (usable_startpfn < 0x100000) {
7140 mem_below_4gb_not_mirrored = true;
7141 continue;
7142 }
7143
7144 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7145 min(usable_startpfn, zone_movable_pfn[nid]) :
7146 usable_startpfn;
7147 }
7148
7149 if (mem_below_4gb_not_mirrored)
7150 pr_warn("This configuration results in unmirrored kernel memory.");
7151
7152 goto out2;
7153 }
7154
7e63efef 7155 /*
a5c6d650
DR
7156 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7157 * amount of necessary memory.
7158 */
7159 if (required_kernelcore_percent)
7160 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7161 10000UL;
7162 if (required_movablecore_percent)
7163 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7164 10000UL;
7165
7166 /*
7167 * If movablecore= was specified, calculate what size of
7e63efef
MG
7168 * kernelcore that corresponds so that memory usable for
7169 * any allocation type is evenly spread. If both kernelcore
7170 * and movablecore are specified, then the value of kernelcore
7171 * will be used for required_kernelcore if it's greater than
7172 * what movablecore would have allowed.
7173 */
7174 if (required_movablecore) {
7e63efef
MG
7175 unsigned long corepages;
7176
7177 /*
7178 * Round-up so that ZONE_MOVABLE is at least as large as what
7179 * was requested by the user
7180 */
7181 required_movablecore =
7182 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7183 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7184 corepages = totalpages - required_movablecore;
7185
7186 required_kernelcore = max(required_kernelcore, corepages);
7187 }
7188
bde304bd
XQ
7189 /*
7190 * If kernelcore was not specified or kernelcore size is larger
7191 * than totalpages, there is no ZONE_MOVABLE.
7192 */
7193 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7194 goto out;
2a1e274a
MG
7195
7196 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7197 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7198
7199restart:
7200 /* Spread kernelcore memory as evenly as possible throughout nodes */
7201 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7202 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7203 unsigned long start_pfn, end_pfn;
7204
2a1e274a
MG
7205 /*
7206 * Recalculate kernelcore_node if the division per node
7207 * now exceeds what is necessary to satisfy the requested
7208 * amount of memory for the kernel
7209 */
7210 if (required_kernelcore < kernelcore_node)
7211 kernelcore_node = required_kernelcore / usable_nodes;
7212
7213 /*
7214 * As the map is walked, we track how much memory is usable
7215 * by the kernel using kernelcore_remaining. When it is
7216 * 0, the rest of the node is usable by ZONE_MOVABLE
7217 */
7218 kernelcore_remaining = kernelcore_node;
7219
7220 /* Go through each range of PFNs within this node */
c13291a5 7221 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7222 unsigned long size_pages;
7223
c13291a5 7224 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7225 if (start_pfn >= end_pfn)
7226 continue;
7227
7228 /* Account for what is only usable for kernelcore */
7229 if (start_pfn < usable_startpfn) {
7230 unsigned long kernel_pages;
7231 kernel_pages = min(end_pfn, usable_startpfn)
7232 - start_pfn;
7233
7234 kernelcore_remaining -= min(kernel_pages,
7235 kernelcore_remaining);
7236 required_kernelcore -= min(kernel_pages,
7237 required_kernelcore);
7238
7239 /* Continue if range is now fully accounted */
7240 if (end_pfn <= usable_startpfn) {
7241
7242 /*
7243 * Push zone_movable_pfn to the end so
7244 * that if we have to rebalance
7245 * kernelcore across nodes, we will
7246 * not double account here
7247 */
7248 zone_movable_pfn[nid] = end_pfn;
7249 continue;
7250 }
7251 start_pfn = usable_startpfn;
7252 }
7253
7254 /*
7255 * The usable PFN range for ZONE_MOVABLE is from
7256 * start_pfn->end_pfn. Calculate size_pages as the
7257 * number of pages used as kernelcore
7258 */
7259 size_pages = end_pfn - start_pfn;
7260 if (size_pages > kernelcore_remaining)
7261 size_pages = kernelcore_remaining;
7262 zone_movable_pfn[nid] = start_pfn + size_pages;
7263
7264 /*
7265 * Some kernelcore has been met, update counts and
7266 * break if the kernelcore for this node has been
b8af2941 7267 * satisfied
2a1e274a
MG
7268 */
7269 required_kernelcore -= min(required_kernelcore,
7270 size_pages);
7271 kernelcore_remaining -= size_pages;
7272 if (!kernelcore_remaining)
7273 break;
7274 }
7275 }
7276
7277 /*
7278 * If there is still required_kernelcore, we do another pass with one
7279 * less node in the count. This will push zone_movable_pfn[nid] further
7280 * along on the nodes that still have memory until kernelcore is
b8af2941 7281 * satisfied
2a1e274a
MG
7282 */
7283 usable_nodes--;
7284 if (usable_nodes && required_kernelcore > usable_nodes)
7285 goto restart;
7286
b2f3eebe 7287out2:
2a1e274a
MG
7288 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7289 for (nid = 0; nid < MAX_NUMNODES; nid++)
7290 zone_movable_pfn[nid] =
7291 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7292
20e6926d 7293out:
66918dcd 7294 /* restore the node_state */
4b0ef1fe 7295 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7296}
7297
4b0ef1fe
LJ
7298/* Any regular or high memory on that node ? */
7299static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7300{
37b07e41
LS
7301 enum zone_type zone_type;
7302
4b0ef1fe 7303 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7304 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7305 if (populated_zone(zone)) {
7b0e0c0e
OS
7306 if (IS_ENABLED(CONFIG_HIGHMEM))
7307 node_set_state(nid, N_HIGH_MEMORY);
7308 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7309 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7310 break;
7311 }
37b07e41 7312 }
37b07e41
LS
7313}
7314
51930df5
MR
7315/*
7316 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7317 * such cases we allow max_zone_pfn sorted in the descending order
7318 */
7319bool __weak arch_has_descending_max_zone_pfns(void)
7320{
7321 return false;
7322}
7323
c713216d 7324/**
9691a071 7325 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7326 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7327 *
7328 * This will call free_area_init_node() for each active node in the system.
7d018176 7329 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7330 * zone in each node and their holes is calculated. If the maximum PFN
7331 * between two adjacent zones match, it is assumed that the zone is empty.
7332 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7333 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7334 * starts where the previous one ended. For example, ZONE_DMA32 starts
7335 * at arch_max_dma_pfn.
7336 */
9691a071 7337void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7338{
c13291a5 7339 unsigned long start_pfn, end_pfn;
51930df5
MR
7340 int i, nid, zone;
7341 bool descending;
a6af2bc3 7342
c713216d
MG
7343 /* Record where the zone boundaries are */
7344 memset(arch_zone_lowest_possible_pfn, 0,
7345 sizeof(arch_zone_lowest_possible_pfn));
7346 memset(arch_zone_highest_possible_pfn, 0,
7347 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7348
7349 start_pfn = find_min_pfn_with_active_regions();
51930df5 7350 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7351
7352 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7353 if (descending)
7354 zone = MAX_NR_ZONES - i - 1;
7355 else
7356 zone = i;
7357
7358 if (zone == ZONE_MOVABLE)
2a1e274a 7359 continue;
90cae1fe 7360
51930df5
MR
7361 end_pfn = max(max_zone_pfn[zone], start_pfn);
7362 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7363 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7364
7365 start_pfn = end_pfn;
c713216d 7366 }
2a1e274a
MG
7367
7368 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7369 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7370 find_zone_movable_pfns_for_nodes();
c713216d 7371
c713216d 7372 /* Print out the zone ranges */
f88dfff5 7373 pr_info("Zone ranges:\n");
2a1e274a
MG
7374 for (i = 0; i < MAX_NR_ZONES; i++) {
7375 if (i == ZONE_MOVABLE)
7376 continue;
f88dfff5 7377 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7378 if (arch_zone_lowest_possible_pfn[i] ==
7379 arch_zone_highest_possible_pfn[i])
f88dfff5 7380 pr_cont("empty\n");
72f0ba02 7381 else
8d29e18a
JG
7382 pr_cont("[mem %#018Lx-%#018Lx]\n",
7383 (u64)arch_zone_lowest_possible_pfn[i]
7384 << PAGE_SHIFT,
7385 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7386 << PAGE_SHIFT) - 1);
2a1e274a
MG
7387 }
7388
7389 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7390 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7391 for (i = 0; i < MAX_NUMNODES; i++) {
7392 if (zone_movable_pfn[i])
8d29e18a
JG
7393 pr_info(" Node %d: %#018Lx\n", i,
7394 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7395 }
c713216d 7396
f46edbd1
DW
7397 /*
7398 * Print out the early node map, and initialize the
7399 * subsection-map relative to active online memory ranges to
7400 * enable future "sub-section" extensions of the memory map.
7401 */
f88dfff5 7402 pr_info("Early memory node ranges\n");
f46edbd1 7403 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7404 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7405 (u64)start_pfn << PAGE_SHIFT,
7406 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7407 subsection_map_init(start_pfn, end_pfn - start_pfn);
7408 }
c713216d
MG
7409
7410 /* Initialise every node */
708614e6 7411 mminit_verify_pageflags_layout();
8ef82866 7412 setup_nr_node_ids();
4b094b78 7413 init_unavailable_mem();
c713216d
MG
7414 for_each_online_node(nid) {
7415 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7416 free_area_init_node(nid);
37b07e41
LS
7417
7418 /* Any memory on that node */
7419 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7420 node_set_state(nid, N_MEMORY);
7421 check_for_memory(pgdat, nid);
c713216d
MG
7422 }
7423}
2a1e274a 7424
a5c6d650
DR
7425static int __init cmdline_parse_core(char *p, unsigned long *core,
7426 unsigned long *percent)
2a1e274a
MG
7427{
7428 unsigned long long coremem;
a5c6d650
DR
7429 char *endptr;
7430
2a1e274a
MG
7431 if (!p)
7432 return -EINVAL;
7433
a5c6d650
DR
7434 /* Value may be a percentage of total memory, otherwise bytes */
7435 coremem = simple_strtoull(p, &endptr, 0);
7436 if (*endptr == '%') {
7437 /* Paranoid check for percent values greater than 100 */
7438 WARN_ON(coremem > 100);
2a1e274a 7439
a5c6d650
DR
7440 *percent = coremem;
7441 } else {
7442 coremem = memparse(p, &p);
7443 /* Paranoid check that UL is enough for the coremem value */
7444 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7445
a5c6d650
DR
7446 *core = coremem >> PAGE_SHIFT;
7447 *percent = 0UL;
7448 }
2a1e274a
MG
7449 return 0;
7450}
ed7ed365 7451
7e63efef
MG
7452/*
7453 * kernelcore=size sets the amount of memory for use for allocations that
7454 * cannot be reclaimed or migrated.
7455 */
7456static int __init cmdline_parse_kernelcore(char *p)
7457{
342332e6
TI
7458 /* parse kernelcore=mirror */
7459 if (parse_option_str(p, "mirror")) {
7460 mirrored_kernelcore = true;
7461 return 0;
7462 }
7463
a5c6d650
DR
7464 return cmdline_parse_core(p, &required_kernelcore,
7465 &required_kernelcore_percent);
7e63efef
MG
7466}
7467
7468/*
7469 * movablecore=size sets the amount of memory for use for allocations that
7470 * can be reclaimed or migrated.
7471 */
7472static int __init cmdline_parse_movablecore(char *p)
7473{
a5c6d650
DR
7474 return cmdline_parse_core(p, &required_movablecore,
7475 &required_movablecore_percent);
7e63efef
MG
7476}
7477
ed7ed365 7478early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7479early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7480
c3d5f5f0
JL
7481void adjust_managed_page_count(struct page *page, long count)
7482{
9705bea5 7483 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7484 totalram_pages_add(count);
3dcc0571
JL
7485#ifdef CONFIG_HIGHMEM
7486 if (PageHighMem(page))
ca79b0c2 7487 totalhigh_pages_add(count);
3dcc0571 7488#endif
c3d5f5f0 7489}
3dcc0571 7490EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7491
e5cb113f 7492unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7493{
11199692
JL
7494 void *pos;
7495 unsigned long pages = 0;
69afade7 7496
11199692
JL
7497 start = (void *)PAGE_ALIGN((unsigned long)start);
7498 end = (void *)((unsigned long)end & PAGE_MASK);
7499 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7500 struct page *page = virt_to_page(pos);
7501 void *direct_map_addr;
7502
7503 /*
7504 * 'direct_map_addr' might be different from 'pos'
7505 * because some architectures' virt_to_page()
7506 * work with aliases. Getting the direct map
7507 * address ensures that we get a _writeable_
7508 * alias for the memset().
7509 */
7510 direct_map_addr = page_address(page);
dbe67df4 7511 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7512 memset(direct_map_addr, poison, PAGE_SIZE);
7513
7514 free_reserved_page(page);
69afade7
JL
7515 }
7516
7517 if (pages && s)
adb1fe9a
JP
7518 pr_info("Freeing %s memory: %ldK\n",
7519 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7520
7521 return pages;
7522}
7523
cfa11e08
JL
7524#ifdef CONFIG_HIGHMEM
7525void free_highmem_page(struct page *page)
7526{
7527 __free_reserved_page(page);
ca79b0c2 7528 totalram_pages_inc();
9705bea5 7529 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7530 totalhigh_pages_inc();
cfa11e08
JL
7531}
7532#endif
7533
7ee3d4e8
JL
7534
7535void __init mem_init_print_info(const char *str)
7536{
7537 unsigned long physpages, codesize, datasize, rosize, bss_size;
7538 unsigned long init_code_size, init_data_size;
7539
7540 physpages = get_num_physpages();
7541 codesize = _etext - _stext;
7542 datasize = _edata - _sdata;
7543 rosize = __end_rodata - __start_rodata;
7544 bss_size = __bss_stop - __bss_start;
7545 init_data_size = __init_end - __init_begin;
7546 init_code_size = _einittext - _sinittext;
7547
7548 /*
7549 * Detect special cases and adjust section sizes accordingly:
7550 * 1) .init.* may be embedded into .data sections
7551 * 2) .init.text.* may be out of [__init_begin, __init_end],
7552 * please refer to arch/tile/kernel/vmlinux.lds.S.
7553 * 3) .rodata.* may be embedded into .text or .data sections.
7554 */
7555#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7556 do { \
7557 if (start <= pos && pos < end && size > adj) \
7558 size -= adj; \
7559 } while (0)
7ee3d4e8
JL
7560
7561 adj_init_size(__init_begin, __init_end, init_data_size,
7562 _sinittext, init_code_size);
7563 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7564 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7565 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7566 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7567
7568#undef adj_init_size
7569
756a025f 7570 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7571#ifdef CONFIG_HIGHMEM
756a025f 7572 ", %luK highmem"
7ee3d4e8 7573#endif
756a025f
JP
7574 "%s%s)\n",
7575 nr_free_pages() << (PAGE_SHIFT - 10),
7576 physpages << (PAGE_SHIFT - 10),
7577 codesize >> 10, datasize >> 10, rosize >> 10,
7578 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7579 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7580 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7581#ifdef CONFIG_HIGHMEM
ca79b0c2 7582 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7583#endif
756a025f 7584 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7585}
7586
0e0b864e 7587/**
88ca3b94
RD
7588 * set_dma_reserve - set the specified number of pages reserved in the first zone
7589 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7590 *
013110a7 7591 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7592 * In the DMA zone, a significant percentage may be consumed by kernel image
7593 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7594 * function may optionally be used to account for unfreeable pages in the
7595 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7596 * smaller per-cpu batchsize.
0e0b864e
MG
7597 */
7598void __init set_dma_reserve(unsigned long new_dma_reserve)
7599{
7600 dma_reserve = new_dma_reserve;
7601}
7602
005fd4bb 7603static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7604{
1da177e4 7605
005fd4bb
SAS
7606 lru_add_drain_cpu(cpu);
7607 drain_pages(cpu);
9f8f2172 7608
005fd4bb
SAS
7609 /*
7610 * Spill the event counters of the dead processor
7611 * into the current processors event counters.
7612 * This artificially elevates the count of the current
7613 * processor.
7614 */
7615 vm_events_fold_cpu(cpu);
9f8f2172 7616
005fd4bb
SAS
7617 /*
7618 * Zero the differential counters of the dead processor
7619 * so that the vm statistics are consistent.
7620 *
7621 * This is only okay since the processor is dead and cannot
7622 * race with what we are doing.
7623 */
7624 cpu_vm_stats_fold(cpu);
7625 return 0;
1da177e4 7626}
1da177e4 7627
e03a5125
NP
7628#ifdef CONFIG_NUMA
7629int hashdist = HASHDIST_DEFAULT;
7630
7631static int __init set_hashdist(char *str)
7632{
7633 if (!str)
7634 return 0;
7635 hashdist = simple_strtoul(str, &str, 0);
7636 return 1;
7637}
7638__setup("hashdist=", set_hashdist);
7639#endif
7640
1da177e4
LT
7641void __init page_alloc_init(void)
7642{
005fd4bb
SAS
7643 int ret;
7644
e03a5125
NP
7645#ifdef CONFIG_NUMA
7646 if (num_node_state(N_MEMORY) == 1)
7647 hashdist = 0;
7648#endif
7649
005fd4bb
SAS
7650 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7651 "mm/page_alloc:dead", NULL,
7652 page_alloc_cpu_dead);
7653 WARN_ON(ret < 0);
1da177e4
LT
7654}
7655
cb45b0e9 7656/*
34b10060 7657 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7658 * or min_free_kbytes changes.
7659 */
7660static void calculate_totalreserve_pages(void)
7661{
7662 struct pglist_data *pgdat;
7663 unsigned long reserve_pages = 0;
2f6726e5 7664 enum zone_type i, j;
cb45b0e9
HA
7665
7666 for_each_online_pgdat(pgdat) {
281e3726
MG
7667
7668 pgdat->totalreserve_pages = 0;
7669
cb45b0e9
HA
7670 for (i = 0; i < MAX_NR_ZONES; i++) {
7671 struct zone *zone = pgdat->node_zones + i;
3484b2de 7672 long max = 0;
9705bea5 7673 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7674
7675 /* Find valid and maximum lowmem_reserve in the zone */
7676 for (j = i; j < MAX_NR_ZONES; j++) {
7677 if (zone->lowmem_reserve[j] > max)
7678 max = zone->lowmem_reserve[j];
7679 }
7680
41858966
MG
7681 /* we treat the high watermark as reserved pages. */
7682 max += high_wmark_pages(zone);
cb45b0e9 7683
3d6357de
AK
7684 if (max > managed_pages)
7685 max = managed_pages;
a8d01437 7686
281e3726 7687 pgdat->totalreserve_pages += max;
a8d01437 7688
cb45b0e9
HA
7689 reserve_pages += max;
7690 }
7691 }
7692 totalreserve_pages = reserve_pages;
7693}
7694
1da177e4
LT
7695/*
7696 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7697 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7698 * has a correct pages reserved value, so an adequate number of
7699 * pages are left in the zone after a successful __alloc_pages().
7700 */
7701static void setup_per_zone_lowmem_reserve(void)
7702{
7703 struct pglist_data *pgdat;
2f6726e5 7704 enum zone_type j, idx;
1da177e4 7705
ec936fc5 7706 for_each_online_pgdat(pgdat) {
1da177e4
LT
7707 for (j = 0; j < MAX_NR_ZONES; j++) {
7708 struct zone *zone = pgdat->node_zones + j;
9705bea5 7709 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7710
7711 zone->lowmem_reserve[j] = 0;
7712
2f6726e5
CL
7713 idx = j;
7714 while (idx) {
1da177e4
LT
7715 struct zone *lower_zone;
7716
2f6726e5 7717 idx--;
1da177e4 7718 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7719
7720 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7721 sysctl_lowmem_reserve_ratio[idx] = 0;
7722 lower_zone->lowmem_reserve[j] = 0;
7723 } else {
7724 lower_zone->lowmem_reserve[j] =
7725 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7726 }
9705bea5 7727 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7728 }
7729 }
7730 }
cb45b0e9
HA
7731
7732 /* update totalreserve_pages */
7733 calculate_totalreserve_pages();
1da177e4
LT
7734}
7735
cfd3da1e 7736static void __setup_per_zone_wmarks(void)
1da177e4
LT
7737{
7738 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7739 unsigned long lowmem_pages = 0;
7740 struct zone *zone;
7741 unsigned long flags;
7742
7743 /* Calculate total number of !ZONE_HIGHMEM pages */
7744 for_each_zone(zone) {
7745 if (!is_highmem(zone))
9705bea5 7746 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7747 }
7748
7749 for_each_zone(zone) {
ac924c60
AM
7750 u64 tmp;
7751
1125b4e3 7752 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7753 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7754 do_div(tmp, lowmem_pages);
1da177e4
LT
7755 if (is_highmem(zone)) {
7756 /*
669ed175
NP
7757 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7758 * need highmem pages, so cap pages_min to a small
7759 * value here.
7760 *
41858966 7761 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7762 * deltas control async page reclaim, and so should
669ed175 7763 * not be capped for highmem.
1da177e4 7764 */
90ae8d67 7765 unsigned long min_pages;
1da177e4 7766
9705bea5 7767 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7768 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7769 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7770 } else {
669ed175
NP
7771 /*
7772 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7773 * proportionate to the zone's size.
7774 */
a9214443 7775 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7776 }
7777
795ae7a0
JW
7778 /*
7779 * Set the kswapd watermarks distance according to the
7780 * scale factor in proportion to available memory, but
7781 * ensure a minimum size on small systems.
7782 */
7783 tmp = max_t(u64, tmp >> 2,
9705bea5 7784 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7785 watermark_scale_factor, 10000));
7786
a9214443
MG
7787 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7788 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7789 zone->watermark_boost = 0;
49f223a9 7790
1125b4e3 7791 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7792 }
cb45b0e9
HA
7793
7794 /* update totalreserve_pages */
7795 calculate_totalreserve_pages();
1da177e4
LT
7796}
7797
cfd3da1e
MG
7798/**
7799 * setup_per_zone_wmarks - called when min_free_kbytes changes
7800 * or when memory is hot-{added|removed}
7801 *
7802 * Ensures that the watermark[min,low,high] values for each zone are set
7803 * correctly with respect to min_free_kbytes.
7804 */
7805void setup_per_zone_wmarks(void)
7806{
b93e0f32
MH
7807 static DEFINE_SPINLOCK(lock);
7808
7809 spin_lock(&lock);
cfd3da1e 7810 __setup_per_zone_wmarks();
b93e0f32 7811 spin_unlock(&lock);
cfd3da1e
MG
7812}
7813
1da177e4
LT
7814/*
7815 * Initialise min_free_kbytes.
7816 *
7817 * For small machines we want it small (128k min). For large machines
7818 * we want it large (64MB max). But it is not linear, because network
7819 * bandwidth does not increase linearly with machine size. We use
7820 *
b8af2941 7821 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7822 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7823 *
7824 * which yields
7825 *
7826 * 16MB: 512k
7827 * 32MB: 724k
7828 * 64MB: 1024k
7829 * 128MB: 1448k
7830 * 256MB: 2048k
7831 * 512MB: 2896k
7832 * 1024MB: 4096k
7833 * 2048MB: 5792k
7834 * 4096MB: 8192k
7835 * 8192MB: 11584k
7836 * 16384MB: 16384k
7837 */
1b79acc9 7838int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7839{
7840 unsigned long lowmem_kbytes;
5f12733e 7841 int new_min_free_kbytes;
1da177e4
LT
7842
7843 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7844 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7845
7846 if (new_min_free_kbytes > user_min_free_kbytes) {
7847 min_free_kbytes = new_min_free_kbytes;
7848 if (min_free_kbytes < 128)
7849 min_free_kbytes = 128;
ee8eb9a5
JS
7850 if (min_free_kbytes > 262144)
7851 min_free_kbytes = 262144;
5f12733e
MH
7852 } else {
7853 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7854 new_min_free_kbytes, user_min_free_kbytes);
7855 }
bc75d33f 7856 setup_per_zone_wmarks();
a6cccdc3 7857 refresh_zone_stat_thresholds();
1da177e4 7858 setup_per_zone_lowmem_reserve();
6423aa81
JK
7859
7860#ifdef CONFIG_NUMA
7861 setup_min_unmapped_ratio();
7862 setup_min_slab_ratio();
7863#endif
7864
1da177e4
LT
7865 return 0;
7866}
bc22af74 7867core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7868
7869/*
b8af2941 7870 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7871 * that we can call two helper functions whenever min_free_kbytes
7872 * changes.
7873 */
cccad5b9 7874int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7875 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7876{
da8c757b
HP
7877 int rc;
7878
7879 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7880 if (rc)
7881 return rc;
7882
5f12733e
MH
7883 if (write) {
7884 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7885 setup_per_zone_wmarks();
5f12733e 7886 }
1da177e4
LT
7887 return 0;
7888}
7889
1c30844d
MG
7890int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7891 void __user *buffer, size_t *length, loff_t *ppos)
7892{
7893 int rc;
7894
7895 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7896 if (rc)
7897 return rc;
7898
7899 return 0;
7900}
7901
795ae7a0
JW
7902int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7903 void __user *buffer, size_t *length, loff_t *ppos)
7904{
7905 int rc;
7906
7907 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7908 if (rc)
7909 return rc;
7910
7911 if (write)
7912 setup_per_zone_wmarks();
7913
7914 return 0;
7915}
7916
9614634f 7917#ifdef CONFIG_NUMA
6423aa81 7918static void setup_min_unmapped_ratio(void)
9614634f 7919{
6423aa81 7920 pg_data_t *pgdat;
9614634f 7921 struct zone *zone;
9614634f 7922
a5f5f91d 7923 for_each_online_pgdat(pgdat)
81cbcbc2 7924 pgdat->min_unmapped_pages = 0;
a5f5f91d 7925
9614634f 7926 for_each_zone(zone)
9705bea5
AK
7927 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7928 sysctl_min_unmapped_ratio) / 100;
9614634f 7929}
0ff38490 7930
6423aa81
JK
7931
7932int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7933 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7934{
0ff38490
CL
7935 int rc;
7936
8d65af78 7937 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7938 if (rc)
7939 return rc;
7940
6423aa81
JK
7941 setup_min_unmapped_ratio();
7942
7943 return 0;
7944}
7945
7946static void setup_min_slab_ratio(void)
7947{
7948 pg_data_t *pgdat;
7949 struct zone *zone;
7950
a5f5f91d
MG
7951 for_each_online_pgdat(pgdat)
7952 pgdat->min_slab_pages = 0;
7953
0ff38490 7954 for_each_zone(zone)
9705bea5
AK
7955 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7956 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7957}
7958
7959int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7960 void __user *buffer, size_t *length, loff_t *ppos)
7961{
7962 int rc;
7963
7964 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7965 if (rc)
7966 return rc;
7967
7968 setup_min_slab_ratio();
7969
0ff38490
CL
7970 return 0;
7971}
9614634f
CL
7972#endif
7973
1da177e4
LT
7974/*
7975 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7976 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7977 * whenever sysctl_lowmem_reserve_ratio changes.
7978 *
7979 * The reserve ratio obviously has absolutely no relation with the
41858966 7980 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7981 * if in function of the boot time zone sizes.
7982 */
cccad5b9 7983int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7984 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7985{
8d65af78 7986 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7987 setup_per_zone_lowmem_reserve();
7988 return 0;
7989}
7990
cb1ef534
MG
7991static void __zone_pcp_update(struct zone *zone)
7992{
7993 unsigned int cpu;
7994
7995 for_each_possible_cpu(cpu)
7996 pageset_set_high_and_batch(zone,
7997 per_cpu_ptr(zone->pageset, cpu));
7998}
7999
8ad4b1fb
RS
8000/*
8001 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8002 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8003 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8004 */
cccad5b9 8005int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8006 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8007{
8008 struct zone *zone;
7cd2b0a3 8009 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8010 int ret;
8011
7cd2b0a3
DR
8012 mutex_lock(&pcp_batch_high_lock);
8013 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8014
8d65af78 8015 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8016 if (!write || ret < 0)
8017 goto out;
8018
8019 /* Sanity checking to avoid pcp imbalance */
8020 if (percpu_pagelist_fraction &&
8021 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8022 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8023 ret = -EINVAL;
8024 goto out;
8025 }
8026
8027 /* No change? */
8028 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8029 goto out;
c8e251fa 8030
cb1ef534
MG
8031 for_each_populated_zone(zone)
8032 __zone_pcp_update(zone);
7cd2b0a3 8033out:
c8e251fa 8034 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8035 return ret;
8ad4b1fb
RS
8036}
8037
f6f34b43
SD
8038#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8039/*
8040 * Returns the number of pages that arch has reserved but
8041 * is not known to alloc_large_system_hash().
8042 */
8043static unsigned long __init arch_reserved_kernel_pages(void)
8044{
8045 return 0;
8046}
8047#endif
8048
9017217b
PT
8049/*
8050 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8051 * machines. As memory size is increased the scale is also increased but at
8052 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8053 * quadruples the scale is increased by one, which means the size of hash table
8054 * only doubles, instead of quadrupling as well.
8055 * Because 32-bit systems cannot have large physical memory, where this scaling
8056 * makes sense, it is disabled on such platforms.
8057 */
8058#if __BITS_PER_LONG > 32
8059#define ADAPT_SCALE_BASE (64ul << 30)
8060#define ADAPT_SCALE_SHIFT 2
8061#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8062#endif
8063
1da177e4
LT
8064/*
8065 * allocate a large system hash table from bootmem
8066 * - it is assumed that the hash table must contain an exact power-of-2
8067 * quantity of entries
8068 * - limit is the number of hash buckets, not the total allocation size
8069 */
8070void *__init alloc_large_system_hash(const char *tablename,
8071 unsigned long bucketsize,
8072 unsigned long numentries,
8073 int scale,
8074 int flags,
8075 unsigned int *_hash_shift,
8076 unsigned int *_hash_mask,
31fe62b9
TB
8077 unsigned long low_limit,
8078 unsigned long high_limit)
1da177e4 8079{
31fe62b9 8080 unsigned long long max = high_limit;
1da177e4
LT
8081 unsigned long log2qty, size;
8082 void *table = NULL;
3749a8f0 8083 gfp_t gfp_flags;
ec11408a 8084 bool virt;
1da177e4
LT
8085
8086 /* allow the kernel cmdline to have a say */
8087 if (!numentries) {
8088 /* round applicable memory size up to nearest megabyte */
04903664 8089 numentries = nr_kernel_pages;
f6f34b43 8090 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8091
8092 /* It isn't necessary when PAGE_SIZE >= 1MB */
8093 if (PAGE_SHIFT < 20)
8094 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8095
9017217b
PT
8096#if __BITS_PER_LONG > 32
8097 if (!high_limit) {
8098 unsigned long adapt;
8099
8100 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8101 adapt <<= ADAPT_SCALE_SHIFT)
8102 scale++;
8103 }
8104#endif
8105
1da177e4
LT
8106 /* limit to 1 bucket per 2^scale bytes of low memory */
8107 if (scale > PAGE_SHIFT)
8108 numentries >>= (scale - PAGE_SHIFT);
8109 else
8110 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8111
8112 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8113 if (unlikely(flags & HASH_SMALL)) {
8114 /* Makes no sense without HASH_EARLY */
8115 WARN_ON(!(flags & HASH_EARLY));
8116 if (!(numentries >> *_hash_shift)) {
8117 numentries = 1UL << *_hash_shift;
8118 BUG_ON(!numentries);
8119 }
8120 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8121 numentries = PAGE_SIZE / bucketsize;
1da177e4 8122 }
6e692ed3 8123 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8124
8125 /* limit allocation size to 1/16 total memory by default */
8126 if (max == 0) {
8127 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8128 do_div(max, bucketsize);
8129 }
074b8517 8130 max = min(max, 0x80000000ULL);
1da177e4 8131
31fe62b9
TB
8132 if (numentries < low_limit)
8133 numentries = low_limit;
1da177e4
LT
8134 if (numentries > max)
8135 numentries = max;
8136
f0d1b0b3 8137 log2qty = ilog2(numentries);
1da177e4 8138
3749a8f0 8139 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8140 do {
ec11408a 8141 virt = false;
1da177e4 8142 size = bucketsize << log2qty;
ea1f5f37
PT
8143 if (flags & HASH_EARLY) {
8144 if (flags & HASH_ZERO)
26fb3dae 8145 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8146 else
7e1c4e27
MR
8147 table = memblock_alloc_raw(size,
8148 SMP_CACHE_BYTES);
ec11408a 8149 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8150 table = __vmalloc(size, gfp_flags);
ec11408a 8151 virt = true;
ea1f5f37 8152 } else {
1037b83b
ED
8153 /*
8154 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8155 * some pages at the end of hash table which
8156 * alloc_pages_exact() automatically does
1037b83b 8157 */
ec11408a
NP
8158 table = alloc_pages_exact(size, gfp_flags);
8159 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8160 }
8161 } while (!table && size > PAGE_SIZE && --log2qty);
8162
8163 if (!table)
8164 panic("Failed to allocate %s hash table\n", tablename);
8165
ec11408a
NP
8166 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8167 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8168 virt ? "vmalloc" : "linear");
1da177e4
LT
8169
8170 if (_hash_shift)
8171 *_hash_shift = log2qty;
8172 if (_hash_mask)
8173 *_hash_mask = (1 << log2qty) - 1;
8174
8175 return table;
8176}
a117e66e 8177
a5d76b54 8178/*
80934513 8179 * This function checks whether pageblock includes unmovable pages or not.
80934513 8180 *
b8af2941 8181 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8182 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8183 * check without lock_page also may miss some movable non-lru pages at
8184 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8185 *
8186 * Returns a page without holding a reference. If the caller wants to
8187 * dereference that page (e.g., dumping), it has to make sure that that it
8188 * cannot get removed (e.g., via memory unplug) concurrently.
8189 *
a5d76b54 8190 */
4a55c047
QC
8191struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8192 int migratetype, int flags)
49ac8255 8193{
1a9f2191
QC
8194 unsigned long iter = 0;
8195 unsigned long pfn = page_to_pfn(page);
47118af0 8196
49ac8255 8197 /*
15c30bc0
MH
8198 * TODO we could make this much more efficient by not checking every
8199 * page in the range if we know all of them are in MOVABLE_ZONE and
8200 * that the movable zone guarantees that pages are migratable but
8201 * the later is not the case right now unfortunatelly. E.g. movablecore
8202 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8203 */
49ac8255 8204
1a9f2191
QC
8205 if (is_migrate_cma_page(page)) {
8206 /*
8207 * CMA allocations (alloc_contig_range) really need to mark
8208 * isolate CMA pageblocks even when they are not movable in fact
8209 * so consider them movable here.
8210 */
8211 if (is_migrate_cma(migratetype))
4a55c047 8212 return NULL;
1a9f2191 8213
3d680bdf 8214 return page;
1a9f2191 8215 }
4da2ce25 8216
fe4c86c9
DH
8217 for (; iter < pageblock_nr_pages; iter++) {
8218 if (!pfn_valid_within(pfn + iter))
49ac8255 8219 continue;
29723fcc 8220
fe4c86c9 8221 page = pfn_to_page(pfn + iter);
c8721bbb 8222
d7ab3672 8223 if (PageReserved(page))
3d680bdf 8224 return page;
d7ab3672 8225
9d789999
MH
8226 /*
8227 * If the zone is movable and we have ruled out all reserved
8228 * pages then it should be reasonably safe to assume the rest
8229 * is movable.
8230 */
8231 if (zone_idx(zone) == ZONE_MOVABLE)
8232 continue;
8233
c8721bbb
NH
8234 /*
8235 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8236 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8237 * We need not scan over tail pages because we don't
c8721bbb
NH
8238 * handle each tail page individually in migration.
8239 */
1da2f328 8240 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8241 struct page *head = compound_head(page);
8242 unsigned int skip_pages;
464c7ffb 8243
1da2f328
RR
8244 if (PageHuge(page)) {
8245 if (!hugepage_migration_supported(page_hstate(head)))
8246 return page;
8247 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8248 return page;
1da2f328 8249 }
464c7ffb 8250
d8c6546b 8251 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8252 iter += skip_pages - 1;
c8721bbb
NH
8253 continue;
8254 }
8255
97d255c8
MK
8256 /*
8257 * We can't use page_count without pin a page
8258 * because another CPU can free compound page.
8259 * This check already skips compound tails of THP
0139aa7b 8260 * because their page->_refcount is zero at all time.
97d255c8 8261 */
fe896d18 8262 if (!page_ref_count(page)) {
49ac8255
KH
8263 if (PageBuddy(page))
8264 iter += (1 << page_order(page)) - 1;
8265 continue;
8266 }
97d255c8 8267
b023f468
WC
8268 /*
8269 * The HWPoisoned page may be not in buddy system, and
8270 * page_count() is not 0.
8271 */
756d25be 8272 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8273 continue;
8274
fe4c86c9 8275 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8276 continue;
8277
49ac8255 8278 /*
6b4f7799
JW
8279 * If there are RECLAIMABLE pages, we need to check
8280 * it. But now, memory offline itself doesn't call
8281 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8282 */
8283 /*
8284 * If the page is not RAM, page_count()should be 0.
8285 * we don't need more check. This is an _used_ not-movable page.
8286 *
8287 * The problematic thing here is PG_reserved pages. PG_reserved
8288 * is set to both of a memory hole page and a _used_ kernel
8289 * page at boot.
8290 */
3d680bdf 8291 return page;
49ac8255 8292 }
4a55c047 8293 return NULL;
49ac8255
KH
8294}
8295
8df995f6 8296#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8297static unsigned long pfn_max_align_down(unsigned long pfn)
8298{
8299 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8300 pageblock_nr_pages) - 1);
8301}
8302
8303static unsigned long pfn_max_align_up(unsigned long pfn)
8304{
8305 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8306 pageblock_nr_pages));
8307}
8308
041d3a8c 8309/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8310static int __alloc_contig_migrate_range(struct compact_control *cc,
8311 unsigned long start, unsigned long end)
041d3a8c
MN
8312{
8313 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8314 unsigned long nr_reclaimed;
041d3a8c
MN
8315 unsigned long pfn = start;
8316 unsigned int tries = 0;
8317 int ret = 0;
8318
be49a6e1 8319 migrate_prep();
041d3a8c 8320
bb13ffeb 8321 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8322 if (fatal_signal_pending(current)) {
8323 ret = -EINTR;
8324 break;
8325 }
8326
bb13ffeb
MG
8327 if (list_empty(&cc->migratepages)) {
8328 cc->nr_migratepages = 0;
edc2ca61 8329 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8330 if (!pfn) {
8331 ret = -EINTR;
8332 break;
8333 }
8334 tries = 0;
8335 } else if (++tries == 5) {
8336 ret = ret < 0 ? ret : -EBUSY;
8337 break;
8338 }
8339
beb51eaa
MK
8340 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8341 &cc->migratepages);
8342 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8343
9c620e2b 8344 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8345 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8346 }
2a6f5124
SP
8347 if (ret < 0) {
8348 putback_movable_pages(&cc->migratepages);
8349 return ret;
8350 }
8351 return 0;
041d3a8c
MN
8352}
8353
8354/**
8355 * alloc_contig_range() -- tries to allocate given range of pages
8356 * @start: start PFN to allocate
8357 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8358 * @migratetype: migratetype of the underlaying pageblocks (either
8359 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8360 * in range must have the same migratetype and it must
8361 * be either of the two.
ca96b625 8362 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8363 *
8364 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8365 * aligned. The PFN range must belong to a single zone.
041d3a8c 8366 *
2c7452a0
MK
8367 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8368 * pageblocks in the range. Once isolated, the pageblocks should not
8369 * be modified by others.
041d3a8c 8370 *
a862f68a 8371 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8372 * pages which PFN is in [start, end) are allocated for the caller and
8373 * need to be freed with free_contig_range().
8374 */
0815f3d8 8375int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8376 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8377{
041d3a8c 8378 unsigned long outer_start, outer_end;
d00181b9
KS
8379 unsigned int order;
8380 int ret = 0;
041d3a8c 8381
bb13ffeb
MG
8382 struct compact_control cc = {
8383 .nr_migratepages = 0,
8384 .order = -1,
8385 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8386 .mode = MIGRATE_SYNC,
bb13ffeb 8387 .ignore_skip_hint = true,
2583d671 8388 .no_set_skip_hint = true,
7dea19f9 8389 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8390 .alloc_contig = true,
bb13ffeb
MG
8391 };
8392 INIT_LIST_HEAD(&cc.migratepages);
8393
041d3a8c
MN
8394 /*
8395 * What we do here is we mark all pageblocks in range as
8396 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8397 * have different sizes, and due to the way page allocator
8398 * work, we align the range to biggest of the two pages so
8399 * that page allocator won't try to merge buddies from
8400 * different pageblocks and change MIGRATE_ISOLATE to some
8401 * other migration type.
8402 *
8403 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8404 * migrate the pages from an unaligned range (ie. pages that
8405 * we are interested in). This will put all the pages in
8406 * range back to page allocator as MIGRATE_ISOLATE.
8407 *
8408 * When this is done, we take the pages in range from page
8409 * allocator removing them from the buddy system. This way
8410 * page allocator will never consider using them.
8411 *
8412 * This lets us mark the pageblocks back as
8413 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8414 * aligned range but not in the unaligned, original range are
8415 * put back to page allocator so that buddy can use them.
8416 */
8417
8418 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8419 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8420 if (ret < 0)
86a595f9 8421 return ret;
041d3a8c 8422
8ef5849f
JK
8423 /*
8424 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8425 * So, just fall through. test_pages_isolated() has a tracepoint
8426 * which will report the busy page.
8427 *
8428 * It is possible that busy pages could become available before
8429 * the call to test_pages_isolated, and the range will actually be
8430 * allocated. So, if we fall through be sure to clear ret so that
8431 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8432 */
bb13ffeb 8433 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8434 if (ret && ret != -EBUSY)
041d3a8c 8435 goto done;
63cd4489 8436 ret =0;
041d3a8c
MN
8437
8438 /*
8439 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8440 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8441 * more, all pages in [start, end) are free in page allocator.
8442 * What we are going to do is to allocate all pages from
8443 * [start, end) (that is remove them from page allocator).
8444 *
8445 * The only problem is that pages at the beginning and at the
8446 * end of interesting range may be not aligned with pages that
8447 * page allocator holds, ie. they can be part of higher order
8448 * pages. Because of this, we reserve the bigger range and
8449 * once this is done free the pages we are not interested in.
8450 *
8451 * We don't have to hold zone->lock here because the pages are
8452 * isolated thus they won't get removed from buddy.
8453 */
8454
8455 lru_add_drain_all();
041d3a8c
MN
8456
8457 order = 0;
8458 outer_start = start;
8459 while (!PageBuddy(pfn_to_page(outer_start))) {
8460 if (++order >= MAX_ORDER) {
8ef5849f
JK
8461 outer_start = start;
8462 break;
041d3a8c
MN
8463 }
8464 outer_start &= ~0UL << order;
8465 }
8466
8ef5849f
JK
8467 if (outer_start != start) {
8468 order = page_order(pfn_to_page(outer_start));
8469
8470 /*
8471 * outer_start page could be small order buddy page and
8472 * it doesn't include start page. Adjust outer_start
8473 * in this case to report failed page properly
8474 * on tracepoint in test_pages_isolated()
8475 */
8476 if (outer_start + (1UL << order) <= start)
8477 outer_start = start;
8478 }
8479
041d3a8c 8480 /* Make sure the range is really isolated. */
756d25be 8481 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8482 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8483 __func__, outer_start, end);
041d3a8c
MN
8484 ret = -EBUSY;
8485 goto done;
8486 }
8487
49f223a9 8488 /* Grab isolated pages from freelists. */
bb13ffeb 8489 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8490 if (!outer_end) {
8491 ret = -EBUSY;
8492 goto done;
8493 }
8494
8495 /* Free head and tail (if any) */
8496 if (start != outer_start)
8497 free_contig_range(outer_start, start - outer_start);
8498 if (end != outer_end)
8499 free_contig_range(end, outer_end - end);
8500
8501done:
8502 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8503 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8504 return ret;
8505}
5e27a2df
AK
8506
8507static int __alloc_contig_pages(unsigned long start_pfn,
8508 unsigned long nr_pages, gfp_t gfp_mask)
8509{
8510 unsigned long end_pfn = start_pfn + nr_pages;
8511
8512 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8513 gfp_mask);
8514}
8515
8516static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8517 unsigned long nr_pages)
8518{
8519 unsigned long i, end_pfn = start_pfn + nr_pages;
8520 struct page *page;
8521
8522 for (i = start_pfn; i < end_pfn; i++) {
8523 page = pfn_to_online_page(i);
8524 if (!page)
8525 return false;
8526
8527 if (page_zone(page) != z)
8528 return false;
8529
8530 if (PageReserved(page))
8531 return false;
8532
8533 if (page_count(page) > 0)
8534 return false;
8535
8536 if (PageHuge(page))
8537 return false;
8538 }
8539 return true;
8540}
8541
8542static bool zone_spans_last_pfn(const struct zone *zone,
8543 unsigned long start_pfn, unsigned long nr_pages)
8544{
8545 unsigned long last_pfn = start_pfn + nr_pages - 1;
8546
8547 return zone_spans_pfn(zone, last_pfn);
8548}
8549
8550/**
8551 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8552 * @nr_pages: Number of contiguous pages to allocate
8553 * @gfp_mask: GFP mask to limit search and used during compaction
8554 * @nid: Target node
8555 * @nodemask: Mask for other possible nodes
8556 *
8557 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8558 * on an applicable zonelist to find a contiguous pfn range which can then be
8559 * tried for allocation with alloc_contig_range(). This routine is intended
8560 * for allocation requests which can not be fulfilled with the buddy allocator.
8561 *
8562 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8563 * power of two then the alignment is guaranteed to be to the given nr_pages
8564 * (e.g. 1GB request would be aligned to 1GB).
8565 *
8566 * Allocated pages can be freed with free_contig_range() or by manually calling
8567 * __free_page() on each allocated page.
8568 *
8569 * Return: pointer to contiguous pages on success, or NULL if not successful.
8570 */
8571struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8572 int nid, nodemask_t *nodemask)
8573{
8574 unsigned long ret, pfn, flags;
8575 struct zonelist *zonelist;
8576 struct zone *zone;
8577 struct zoneref *z;
8578
8579 zonelist = node_zonelist(nid, gfp_mask);
8580 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8581 gfp_zone(gfp_mask), nodemask) {
8582 spin_lock_irqsave(&zone->lock, flags);
8583
8584 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8585 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8586 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8587 /*
8588 * We release the zone lock here because
8589 * alloc_contig_range() will also lock the zone
8590 * at some point. If there's an allocation
8591 * spinning on this lock, it may win the race
8592 * and cause alloc_contig_range() to fail...
8593 */
8594 spin_unlock_irqrestore(&zone->lock, flags);
8595 ret = __alloc_contig_pages(pfn, nr_pages,
8596 gfp_mask);
8597 if (!ret)
8598 return pfn_to_page(pfn);
8599 spin_lock_irqsave(&zone->lock, flags);
8600 }
8601 pfn += nr_pages;
8602 }
8603 spin_unlock_irqrestore(&zone->lock, flags);
8604 }
8605 return NULL;
8606}
4eb0716e 8607#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8608
4eb0716e 8609void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8610{
bcc2b02f
MS
8611 unsigned int count = 0;
8612
8613 for (; nr_pages--; pfn++) {
8614 struct page *page = pfn_to_page(pfn);
8615
8616 count += page_count(page) != 1;
8617 __free_page(page);
8618 }
8619 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8620}
041d3a8c 8621
0a647f38
CS
8622/*
8623 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8624 * page high values need to be recalulated.
8625 */
4ed7e022
JL
8626void __meminit zone_pcp_update(struct zone *zone)
8627{
c8e251fa 8628 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8629 __zone_pcp_update(zone);
c8e251fa 8630 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8631}
4ed7e022 8632
340175b7
JL
8633void zone_pcp_reset(struct zone *zone)
8634{
8635 unsigned long flags;
5a883813
MK
8636 int cpu;
8637 struct per_cpu_pageset *pset;
340175b7
JL
8638
8639 /* avoid races with drain_pages() */
8640 local_irq_save(flags);
8641 if (zone->pageset != &boot_pageset) {
5a883813
MK
8642 for_each_online_cpu(cpu) {
8643 pset = per_cpu_ptr(zone->pageset, cpu);
8644 drain_zonestat(zone, pset);
8645 }
340175b7
JL
8646 free_percpu(zone->pageset);
8647 zone->pageset = &boot_pageset;
8648 }
8649 local_irq_restore(flags);
8650}
8651
6dcd73d7 8652#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8653/*
b9eb6319
JK
8654 * All pages in the range must be in a single zone and isolated
8655 * before calling this.
0c0e6195 8656 */
5557c766 8657unsigned long
0c0e6195
KH
8658__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8659{
8660 struct page *page;
8661 struct zone *zone;
0ee5f4f3 8662 unsigned int order;
0c0e6195
KH
8663 unsigned long pfn;
8664 unsigned long flags;
5557c766
MH
8665 unsigned long offlined_pages = 0;
8666
0c0e6195
KH
8667 /* find the first valid pfn */
8668 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8669 if (pfn_valid(pfn))
8670 break;
8671 if (pfn == end_pfn)
5557c766
MH
8672 return offlined_pages;
8673
2d070eab 8674 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8675 zone = page_zone(pfn_to_page(pfn));
8676 spin_lock_irqsave(&zone->lock, flags);
8677 pfn = start_pfn;
8678 while (pfn < end_pfn) {
8679 if (!pfn_valid(pfn)) {
8680 pfn++;
8681 continue;
8682 }
8683 page = pfn_to_page(pfn);
b023f468
WC
8684 /*
8685 * The HWPoisoned page may be not in buddy system, and
8686 * page_count() is not 0.
8687 */
8688 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8689 pfn++;
5557c766 8690 offlined_pages++;
b023f468
WC
8691 continue;
8692 }
8693
0c0e6195
KH
8694 BUG_ON(page_count(page));
8695 BUG_ON(!PageBuddy(page));
8696 order = page_order(page);
5557c766 8697 offlined_pages += 1 << order;
6ab01363 8698 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8699 pfn += (1 << order);
8700 }
8701 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8702
8703 return offlined_pages;
0c0e6195
KH
8704}
8705#endif
8d22ba1b 8706
8d22ba1b
WF
8707bool is_free_buddy_page(struct page *page)
8708{
8709 struct zone *zone = page_zone(page);
8710 unsigned long pfn = page_to_pfn(page);
8711 unsigned long flags;
7aeb09f9 8712 unsigned int order;
8d22ba1b
WF
8713
8714 spin_lock_irqsave(&zone->lock, flags);
8715 for (order = 0; order < MAX_ORDER; order++) {
8716 struct page *page_head = page - (pfn & ((1 << order) - 1));
8717
8718 if (PageBuddy(page_head) && page_order(page_head) >= order)
8719 break;
8720 }
8721 spin_unlock_irqrestore(&zone->lock, flags);
8722
8723 return order < MAX_ORDER;
8724}
d4ae9916
NH
8725
8726#ifdef CONFIG_MEMORY_FAILURE
8727/*
8728 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8729 * test is performed under the zone lock to prevent a race against page
8730 * allocation.
8731 */
8732bool set_hwpoison_free_buddy_page(struct page *page)
8733{
8734 struct zone *zone = page_zone(page);
8735 unsigned long pfn = page_to_pfn(page);
8736 unsigned long flags;
8737 unsigned int order;
8738 bool hwpoisoned = false;
8739
8740 spin_lock_irqsave(&zone->lock, flags);
8741 for (order = 0; order < MAX_ORDER; order++) {
8742 struct page *page_head = page - (pfn & ((1 << order) - 1));
8743
8744 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8745 if (!TestSetPageHWPoison(page))
8746 hwpoisoned = true;
8747 break;
8748 }
8749 }
8750 spin_unlock_irqrestore(&zone->lock, flags);
8751
8752 return hwpoisoned;
8753}
8754#endif