mm, page_alloc: calculate pageset high and batch once per zone
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
1da177e4 74
7ee3d4e8 75#include <asm/sections.h>
1da177e4 76#include <asm/tlbflush.h>
ac924c60 77#include <asm/div64.h>
1da177e4 78#include "internal.h"
e900a918 79#include "shuffle.h"
36e66c55 80#include "page_reporting.h"
1da177e4 81
f04a5d5d
DH
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
47b6a24a
DH
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
c8e251fa
CS
110/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
111static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 112#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 113
72812019
LS
114#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
115DEFINE_PER_CPU(int, numa_node);
116EXPORT_PER_CPU_SYMBOL(numa_node);
117#endif
118
4518085e
KW
119DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
120
7aac7898
LS
121#ifdef CONFIG_HAVE_MEMORYLESS_NODES
122/*
123 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
124 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
125 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
126 * defined in <linux/topology.h>.
127 */
128DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
129EXPORT_PER_CPU_SYMBOL(_numa_mem_);
130#endif
131
bd233f53 132/* work_structs for global per-cpu drains */
d9367bd0
WY
133struct pcpu_drain {
134 struct zone *zone;
135 struct work_struct work;
136};
8b885f53
JY
137static DEFINE_MUTEX(pcpu_drain_mutex);
138static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 139
38addce8 140#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 141volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
142EXPORT_SYMBOL(latent_entropy);
143#endif
144
1da177e4 145/*
13808910 146 * Array of node states.
1da177e4 147 */
13808910
CL
148nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
149 [N_POSSIBLE] = NODE_MASK_ALL,
150 [N_ONLINE] = { { [0] = 1UL } },
151#ifndef CONFIG_NUMA
152 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
153#ifdef CONFIG_HIGHMEM
154 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 155#endif
20b2f52b 156 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
157 [N_CPU] = { { [0] = 1UL } },
158#endif /* NUMA */
159};
160EXPORT_SYMBOL(node_states);
161
ca79b0c2
AK
162atomic_long_t _totalram_pages __read_mostly;
163EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 164unsigned long totalreserve_pages __read_mostly;
e48322ab 165unsigned long totalcma_pages __read_mostly;
ab8fabd4 166
1b76b02f 167int percpu_pagelist_fraction;
dcce284a 168gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
169#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
170DEFINE_STATIC_KEY_TRUE(init_on_alloc);
171#else
172DEFINE_STATIC_KEY_FALSE(init_on_alloc);
173#endif
174EXPORT_SYMBOL(init_on_alloc);
175
176#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
177DEFINE_STATIC_KEY_TRUE(init_on_free);
178#else
179DEFINE_STATIC_KEY_FALSE(init_on_free);
180#endif
181EXPORT_SYMBOL(init_on_free);
182
183static int __init early_init_on_alloc(char *buf)
184{
185 int ret;
186 bool bool_result;
187
6471384a 188 ret = kstrtobool(buf, &bool_result);
fdd4fa1c
MN
189 if (ret)
190 return ret;
6471384a
AP
191 if (bool_result && page_poisoning_enabled())
192 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
193 if (bool_result)
194 static_branch_enable(&init_on_alloc);
195 else
196 static_branch_disable(&init_on_alloc);
fdd4fa1c 197 return 0;
6471384a
AP
198}
199early_param("init_on_alloc", early_init_on_alloc);
200
201static int __init early_init_on_free(char *buf)
202{
203 int ret;
204 bool bool_result;
205
6471384a 206 ret = kstrtobool(buf, &bool_result);
fdd4fa1c
MN
207 if (ret)
208 return ret;
6471384a
AP
209 if (bool_result && page_poisoning_enabled())
210 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
211 if (bool_result)
212 static_branch_enable(&init_on_free);
213 else
214 static_branch_disable(&init_on_free);
fdd4fa1c 215 return 0;
6471384a
AP
216}
217early_param("init_on_free", early_init_on_free);
1da177e4 218
bb14c2c7
VB
219/*
220 * A cached value of the page's pageblock's migratetype, used when the page is
221 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
222 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
223 * Also the migratetype set in the page does not necessarily match the pcplist
224 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
225 * other index - this ensures that it will be put on the correct CMA freelist.
226 */
227static inline int get_pcppage_migratetype(struct page *page)
228{
229 return page->index;
230}
231
232static inline void set_pcppage_migratetype(struct page *page, int migratetype)
233{
234 page->index = migratetype;
235}
236
452aa699
RW
237#ifdef CONFIG_PM_SLEEP
238/*
239 * The following functions are used by the suspend/hibernate code to temporarily
240 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
241 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
242 * they should always be called with system_transition_mutex held
243 * (gfp_allowed_mask also should only be modified with system_transition_mutex
244 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
245 * with that modification).
452aa699 246 */
c9e664f1
RW
247
248static gfp_t saved_gfp_mask;
249
250void pm_restore_gfp_mask(void)
452aa699 251{
55f2503c 252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
253 if (saved_gfp_mask) {
254 gfp_allowed_mask = saved_gfp_mask;
255 saved_gfp_mask = 0;
256 }
452aa699
RW
257}
258
c9e664f1 259void pm_restrict_gfp_mask(void)
452aa699 260{
55f2503c 261 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
262 WARN_ON(saved_gfp_mask);
263 saved_gfp_mask = gfp_allowed_mask;
d0164adc 264 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 265}
f90ac398
MG
266
267bool pm_suspended_storage(void)
268{
d0164adc 269 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
270 return false;
271 return true;
272}
452aa699
RW
273#endif /* CONFIG_PM_SLEEP */
274
d9c23400 275#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 276unsigned int pageblock_order __read_mostly;
d9c23400
MG
277#endif
278
7fef431b
DH
279static void __free_pages_ok(struct page *page, unsigned int order,
280 fpi_t fpi_flags);
a226f6c8 281
1da177e4
LT
282/*
283 * results with 256, 32 in the lowmem_reserve sysctl:
284 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
285 * 1G machine -> (16M dma, 784M normal, 224M high)
286 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
287 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 288 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
289 *
290 * TBD: should special case ZONE_DMA32 machines here - in those we normally
291 * don't need any ZONE_NORMAL reservation
1da177e4 292 */
d3cda233 293int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 294#ifdef CONFIG_ZONE_DMA
d3cda233 295 [ZONE_DMA] = 256,
4b51d669 296#endif
fb0e7942 297#ifdef CONFIG_ZONE_DMA32
d3cda233 298 [ZONE_DMA32] = 256,
fb0e7942 299#endif
d3cda233 300 [ZONE_NORMAL] = 32,
e53ef38d 301#ifdef CONFIG_HIGHMEM
d3cda233 302 [ZONE_HIGHMEM] = 0,
e53ef38d 303#endif
d3cda233 304 [ZONE_MOVABLE] = 0,
2f1b6248 305};
1da177e4 306
15ad7cdc 307static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 308#ifdef CONFIG_ZONE_DMA
2f1b6248 309 "DMA",
4b51d669 310#endif
fb0e7942 311#ifdef CONFIG_ZONE_DMA32
2f1b6248 312 "DMA32",
fb0e7942 313#endif
2f1b6248 314 "Normal",
e53ef38d 315#ifdef CONFIG_HIGHMEM
2a1e274a 316 "HighMem",
e53ef38d 317#endif
2a1e274a 318 "Movable",
033fbae9
DW
319#ifdef CONFIG_ZONE_DEVICE
320 "Device",
321#endif
2f1b6248
CL
322};
323
c999fbd3 324const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
325 "Unmovable",
326 "Movable",
327 "Reclaimable",
328 "HighAtomic",
329#ifdef CONFIG_CMA
330 "CMA",
331#endif
332#ifdef CONFIG_MEMORY_ISOLATION
333 "Isolate",
334#endif
335};
336
ae70eddd
AK
337compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
338 [NULL_COMPOUND_DTOR] = NULL,
339 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 340#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 341 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 342#endif
9a982250 343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 344 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 345#endif
f1e61557
KS
346};
347
1da177e4 348int min_free_kbytes = 1024;
42aa83cb 349int user_min_free_kbytes = -1;
24512228
MG
350#ifdef CONFIG_DISCONTIGMEM
351/*
352 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
353 * are not on separate NUMA nodes. Functionally this works but with
354 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
355 * quite small. By default, do not boost watermarks on discontigmem as in
356 * many cases very high-order allocations like THP are likely to be
357 * unsupported and the premature reclaim offsets the advantage of long-term
358 * fragmentation avoidance.
359 */
360int watermark_boost_factor __read_mostly;
361#else
1c30844d 362int watermark_boost_factor __read_mostly = 15000;
24512228 363#endif
795ae7a0 364int watermark_scale_factor = 10;
1da177e4 365
bbe5d993
OS
366static unsigned long nr_kernel_pages __initdata;
367static unsigned long nr_all_pages __initdata;
368static unsigned long dma_reserve __initdata;
1da177e4 369
bbe5d993
OS
370static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
371static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 372static unsigned long required_kernelcore __initdata;
a5c6d650 373static unsigned long required_kernelcore_percent __initdata;
7f16f91f 374static unsigned long required_movablecore __initdata;
a5c6d650 375static unsigned long required_movablecore_percent __initdata;
bbe5d993 376static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 377static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
378
379/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
380int movable_zone;
381EXPORT_SYMBOL(movable_zone);
c713216d 382
418508c1 383#if MAX_NUMNODES > 1
b9726c26 384unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 385unsigned int nr_online_nodes __read_mostly = 1;
418508c1 386EXPORT_SYMBOL(nr_node_ids);
62bc62a8 387EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
388#endif
389
9ef9acb0
MG
390int page_group_by_mobility_disabled __read_mostly;
391
3a80a7fa 392#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
393/*
394 * During boot we initialize deferred pages on-demand, as needed, but once
395 * page_alloc_init_late() has finished, the deferred pages are all initialized,
396 * and we can permanently disable that path.
397 */
398static DEFINE_STATIC_KEY_TRUE(deferred_pages);
399
400/*
401 * Calling kasan_free_pages() only after deferred memory initialization
402 * has completed. Poisoning pages during deferred memory init will greatly
403 * lengthen the process and cause problem in large memory systems as the
404 * deferred pages initialization is done with interrupt disabled.
405 *
406 * Assuming that there will be no reference to those newly initialized
407 * pages before they are ever allocated, this should have no effect on
408 * KASAN memory tracking as the poison will be properly inserted at page
409 * allocation time. The only corner case is when pages are allocated by
410 * on-demand allocation and then freed again before the deferred pages
411 * initialization is done, but this is not likely to happen.
412 */
413static inline void kasan_free_nondeferred_pages(struct page *page, int order)
414{
415 if (!static_branch_unlikely(&deferred_pages))
416 kasan_free_pages(page, order);
417}
418
3a80a7fa 419/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 420static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 421{
ef70b6f4
MG
422 int nid = early_pfn_to_nid(pfn);
423
424 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
425 return true;
426
427 return false;
428}
429
430/*
d3035be4 431 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
432 * later in the boot cycle when it can be parallelised.
433 */
d3035be4
PT
434static bool __meminit
435defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 436{
d3035be4
PT
437 static unsigned long prev_end_pfn, nr_initialised;
438
439 /*
440 * prev_end_pfn static that contains the end of previous zone
441 * No need to protect because called very early in boot before smp_init.
442 */
443 if (prev_end_pfn != end_pfn) {
444 prev_end_pfn = end_pfn;
445 nr_initialised = 0;
446 }
447
3c2c6488 448 /* Always populate low zones for address-constrained allocations */
d3035be4 449 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 450 return false;
23b68cfa
WY
451
452 /*
453 * We start only with one section of pages, more pages are added as
454 * needed until the rest of deferred pages are initialized.
455 */
d3035be4 456 nr_initialised++;
23b68cfa 457 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
458 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
459 NODE_DATA(nid)->first_deferred_pfn = pfn;
460 return true;
3a80a7fa 461 }
d3035be4 462 return false;
3a80a7fa
MG
463}
464#else
3c0c12cc
WL
465#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
466
3a80a7fa
MG
467static inline bool early_page_uninitialised(unsigned long pfn)
468{
469 return false;
470}
471
d3035be4 472static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 473{
d3035be4 474 return false;
3a80a7fa
MG
475}
476#endif
477
0b423ca2
MG
478/* Return a pointer to the bitmap storing bits affecting a block of pages */
479static inline unsigned long *get_pageblock_bitmap(struct page *page,
480 unsigned long pfn)
481{
482#ifdef CONFIG_SPARSEMEM
f1eca35a 483 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
484#else
485 return page_zone(page)->pageblock_flags;
486#endif /* CONFIG_SPARSEMEM */
487}
488
489static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
490{
491#ifdef CONFIG_SPARSEMEM
492 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
493#else
494 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 495#endif /* CONFIG_SPARSEMEM */
399b795b 496 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
497}
498
499/**
500 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
501 * @page: The page within the block of interest
502 * @pfn: The target page frame number
0b423ca2
MG
503 * @mask: mask of bits that the caller is interested in
504 *
505 * Return: pageblock_bits flags
506 */
535b81e2
WY
507static __always_inline
508unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 509 unsigned long pfn,
0b423ca2
MG
510 unsigned long mask)
511{
512 unsigned long *bitmap;
513 unsigned long bitidx, word_bitidx;
514 unsigned long word;
515
516 bitmap = get_pageblock_bitmap(page, pfn);
517 bitidx = pfn_to_bitidx(page, pfn);
518 word_bitidx = bitidx / BITS_PER_LONG;
519 bitidx &= (BITS_PER_LONG-1);
520
521 word = bitmap[word_bitidx];
d93d5ab9 522 return (word >> bitidx) & mask;
0b423ca2
MG
523}
524
525unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
526 unsigned long mask)
527{
535b81e2 528 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
529}
530
531static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
532{
535b81e2 533 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
534}
535
536/**
537 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
538 * @page: The page within the block of interest
539 * @flags: The flags to set
540 * @pfn: The target page frame number
0b423ca2
MG
541 * @mask: mask of bits that the caller is interested in
542 */
543void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
544 unsigned long pfn,
0b423ca2
MG
545 unsigned long mask)
546{
547 unsigned long *bitmap;
548 unsigned long bitidx, word_bitidx;
549 unsigned long old_word, word;
550
551 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 552 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
553
554 bitmap = get_pageblock_bitmap(page, pfn);
555 bitidx = pfn_to_bitidx(page, pfn);
556 word_bitidx = bitidx / BITS_PER_LONG;
557 bitidx &= (BITS_PER_LONG-1);
558
559 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
560
d93d5ab9
WY
561 mask <<= bitidx;
562 flags <<= bitidx;
0b423ca2
MG
563
564 word = READ_ONCE(bitmap[word_bitidx]);
565 for (;;) {
566 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
567 if (word == old_word)
568 break;
569 word = old_word;
570 }
571}
3a80a7fa 572
ee6f509c 573void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 574{
5d0f3f72
KM
575 if (unlikely(page_group_by_mobility_disabled &&
576 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
577 migratetype = MIGRATE_UNMOVABLE;
578
d93d5ab9 579 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 580 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
581}
582
13e7444b 583#ifdef CONFIG_DEBUG_VM
c6a57e19 584static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 585{
bdc8cb98
DH
586 int ret = 0;
587 unsigned seq;
588 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 589 unsigned long sp, start_pfn;
c6a57e19 590
bdc8cb98
DH
591 do {
592 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
593 start_pfn = zone->zone_start_pfn;
594 sp = zone->spanned_pages;
108bcc96 595 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
596 ret = 1;
597 } while (zone_span_seqretry(zone, seq));
598
b5e6a5a2 599 if (ret)
613813e8
DH
600 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
601 pfn, zone_to_nid(zone), zone->name,
602 start_pfn, start_pfn + sp);
b5e6a5a2 603
bdc8cb98 604 return ret;
c6a57e19
DH
605}
606
607static int page_is_consistent(struct zone *zone, struct page *page)
608{
14e07298 609 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 610 return 0;
1da177e4 611 if (zone != page_zone(page))
c6a57e19
DH
612 return 0;
613
614 return 1;
615}
616/*
617 * Temporary debugging check for pages not lying within a given zone.
618 */
d73d3c9f 619static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
620{
621 if (page_outside_zone_boundaries(zone, page))
1da177e4 622 return 1;
c6a57e19
DH
623 if (!page_is_consistent(zone, page))
624 return 1;
625
1da177e4
LT
626 return 0;
627}
13e7444b 628#else
d73d3c9f 629static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
630{
631 return 0;
632}
633#endif
634
82a3241a 635static void bad_page(struct page *page, const char *reason)
1da177e4 636{
d936cf9b
HD
637 static unsigned long resume;
638 static unsigned long nr_shown;
639 static unsigned long nr_unshown;
640
641 /*
642 * Allow a burst of 60 reports, then keep quiet for that minute;
643 * or allow a steady drip of one report per second.
644 */
645 if (nr_shown == 60) {
646 if (time_before(jiffies, resume)) {
647 nr_unshown++;
648 goto out;
649 }
650 if (nr_unshown) {
ff8e8116 651 pr_alert(
1e9e6365 652 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
653 nr_unshown);
654 nr_unshown = 0;
655 }
656 nr_shown = 0;
657 }
658 if (nr_shown++ == 0)
659 resume = jiffies + 60 * HZ;
660
ff8e8116 661 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 662 current->comm, page_to_pfn(page));
ff8e8116 663 __dump_page(page, reason);
4e462112 664 dump_page_owner(page);
3dc14741 665
4f31888c 666 print_modules();
1da177e4 667 dump_stack();
d936cf9b 668out:
8cc3b392 669 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 670 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 671 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
672}
673
1da177e4
LT
674/*
675 * Higher-order pages are called "compound pages". They are structured thusly:
676 *
1d798ca3 677 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 678 *
1d798ca3
KS
679 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
680 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 681 *
1d798ca3
KS
682 * The first tail page's ->compound_dtor holds the offset in array of compound
683 * page destructors. See compound_page_dtors.
1da177e4 684 *
1d798ca3 685 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 686 * This usage means that zero-order pages may not be compound.
1da177e4 687 */
d98c7a09 688
9a982250 689void free_compound_page(struct page *page)
d98c7a09 690{
7ae88534 691 mem_cgroup_uncharge(page);
7fef431b 692 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
693}
694
d00181b9 695void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
696{
697 int i;
698 int nr_pages = 1 << order;
699
18229df5
AW
700 __SetPageHead(page);
701 for (i = 1; i < nr_pages; i++) {
702 struct page *p = page + i;
58a84aa9 703 set_page_count(p, 0);
1c290f64 704 p->mapping = TAIL_MAPPING;
1d798ca3 705 set_compound_head(p, page);
18229df5 706 }
1378a5ee
MWO
707
708 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
709 set_compound_order(page, order);
53f9263b 710 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
711 if (hpage_pincount_available(page))
712 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
713}
714
c0a32fc5
SG
715#ifdef CONFIG_DEBUG_PAGEALLOC
716unsigned int _debug_guardpage_minorder;
96a2b03f 717
8e57f8ac
VB
718bool _debug_pagealloc_enabled_early __read_mostly
719 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
720EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 721DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 722EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
723
724DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 725
031bc574
JK
726static int __init early_debug_pagealloc(char *buf)
727{
8e57f8ac 728 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
729}
730early_param("debug_pagealloc", early_debug_pagealloc);
731
8e57f8ac 732void init_debug_pagealloc(void)
e30825f1 733{
031bc574
JK
734 if (!debug_pagealloc_enabled())
735 return;
736
8e57f8ac
VB
737 static_branch_enable(&_debug_pagealloc_enabled);
738
f1c1e9f7
JK
739 if (!debug_guardpage_minorder())
740 return;
741
96a2b03f 742 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
743}
744
c0a32fc5
SG
745static int __init debug_guardpage_minorder_setup(char *buf)
746{
747 unsigned long res;
748
749 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 750 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
751 return 0;
752 }
753 _debug_guardpage_minorder = res;
1170532b 754 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
755 return 0;
756}
f1c1e9f7 757early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 758
acbc15a4 759static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 760 unsigned int order, int migratetype)
c0a32fc5 761{
e30825f1 762 if (!debug_guardpage_enabled())
acbc15a4
JK
763 return false;
764
765 if (order >= debug_guardpage_minorder())
766 return false;
e30825f1 767
3972f6bb 768 __SetPageGuard(page);
2847cf95
JK
769 INIT_LIST_HEAD(&page->lru);
770 set_page_private(page, order);
771 /* Guard pages are not available for any usage */
772 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
773
774 return true;
c0a32fc5
SG
775}
776
2847cf95
JK
777static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype)
c0a32fc5 779{
e30825f1
JK
780 if (!debug_guardpage_enabled())
781 return;
782
3972f6bb 783 __ClearPageGuard(page);
e30825f1 784
2847cf95
JK
785 set_page_private(page, 0);
786 if (!is_migrate_isolate(migratetype))
787 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
788}
789#else
acbc15a4
JK
790static inline bool set_page_guard(struct zone *zone, struct page *page,
791 unsigned int order, int migratetype) { return false; }
2847cf95
JK
792static inline void clear_page_guard(struct zone *zone, struct page *page,
793 unsigned int order, int migratetype) {}
c0a32fc5
SG
794#endif
795
ab130f91 796static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 797{
4c21e2f2 798 set_page_private(page, order);
676165a8 799 __SetPageBuddy(page);
1da177e4
LT
800}
801
1da177e4
LT
802/*
803 * This function checks whether a page is free && is the buddy
6e292b9b 804 * we can coalesce a page and its buddy if
13ad59df 805 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 806 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
807 * (c) a page and its buddy have the same order &&
808 * (d) a page and its buddy are in the same zone.
676165a8 809 *
6e292b9b
MW
810 * For recording whether a page is in the buddy system, we set PageBuddy.
811 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 812 *
676165a8 813 * For recording page's order, we use page_private(page).
1da177e4 814 */
fe925c0c 815static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 816 unsigned int order)
1da177e4 817{
fe925c0c 818 if (!page_is_guard(buddy) && !PageBuddy(buddy))
819 return false;
4c5018ce 820
ab130f91 821 if (buddy_order(buddy) != order)
fe925c0c 822 return false;
c0a32fc5 823
fe925c0c 824 /*
825 * zone check is done late to avoid uselessly calculating
826 * zone/node ids for pages that could never merge.
827 */
828 if (page_zone_id(page) != page_zone_id(buddy))
829 return false;
d34c5fa0 830
fe925c0c 831 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 832
fe925c0c 833 return true;
1da177e4
LT
834}
835
5e1f0f09
MG
836#ifdef CONFIG_COMPACTION
837static inline struct capture_control *task_capc(struct zone *zone)
838{
839 struct capture_control *capc = current->capture_control;
840
deba0487 841 return unlikely(capc) &&
5e1f0f09
MG
842 !(current->flags & PF_KTHREAD) &&
843 !capc->page &&
deba0487 844 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
845}
846
847static inline bool
848compaction_capture(struct capture_control *capc, struct page *page,
849 int order, int migratetype)
850{
851 if (!capc || order != capc->cc->order)
852 return false;
853
854 /* Do not accidentally pollute CMA or isolated regions*/
855 if (is_migrate_cma(migratetype) ||
856 is_migrate_isolate(migratetype))
857 return false;
858
859 /*
860 * Do not let lower order allocations polluate a movable pageblock.
861 * This might let an unmovable request use a reclaimable pageblock
862 * and vice-versa but no more than normal fallback logic which can
863 * have trouble finding a high-order free page.
864 */
865 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
866 return false;
867
868 capc->page = page;
869 return true;
870}
871
872#else
873static inline struct capture_control *task_capc(struct zone *zone)
874{
875 return NULL;
876}
877
878static inline bool
879compaction_capture(struct capture_control *capc, struct page *page,
880 int order, int migratetype)
881{
882 return false;
883}
884#endif /* CONFIG_COMPACTION */
885
6ab01363
AD
886/* Used for pages not on another list */
887static inline void add_to_free_list(struct page *page, struct zone *zone,
888 unsigned int order, int migratetype)
889{
890 struct free_area *area = &zone->free_area[order];
891
892 list_add(&page->lru, &area->free_list[migratetype]);
893 area->nr_free++;
894}
895
896/* Used for pages not on another list */
897static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
898 unsigned int order, int migratetype)
899{
900 struct free_area *area = &zone->free_area[order];
901
902 list_add_tail(&page->lru, &area->free_list[migratetype]);
903 area->nr_free++;
904}
905
293ffa5e
DH
906/*
907 * Used for pages which are on another list. Move the pages to the tail
908 * of the list - so the moved pages won't immediately be considered for
909 * allocation again (e.g., optimization for memory onlining).
910 */
6ab01363
AD
911static inline void move_to_free_list(struct page *page, struct zone *zone,
912 unsigned int order, int migratetype)
913{
914 struct free_area *area = &zone->free_area[order];
915
293ffa5e 916 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
917}
918
919static inline void del_page_from_free_list(struct page *page, struct zone *zone,
920 unsigned int order)
921{
36e66c55
AD
922 /* clear reported state and update reported page count */
923 if (page_reported(page))
924 __ClearPageReported(page);
925
6ab01363
AD
926 list_del(&page->lru);
927 __ClearPageBuddy(page);
928 set_page_private(page, 0);
929 zone->free_area[order].nr_free--;
930}
931
a2129f24
AD
932/*
933 * If this is not the largest possible page, check if the buddy
934 * of the next-highest order is free. If it is, it's possible
935 * that pages are being freed that will coalesce soon. In case,
936 * that is happening, add the free page to the tail of the list
937 * so it's less likely to be used soon and more likely to be merged
938 * as a higher order page
939 */
940static inline bool
941buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
942 struct page *page, unsigned int order)
943{
944 struct page *higher_page, *higher_buddy;
945 unsigned long combined_pfn;
946
947 if (order >= MAX_ORDER - 2)
948 return false;
949
950 if (!pfn_valid_within(buddy_pfn))
951 return false;
952
953 combined_pfn = buddy_pfn & pfn;
954 higher_page = page + (combined_pfn - pfn);
955 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
956 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
957
958 return pfn_valid_within(buddy_pfn) &&
959 page_is_buddy(higher_page, higher_buddy, order + 1);
960}
961
1da177e4
LT
962/*
963 * Freeing function for a buddy system allocator.
964 *
965 * The concept of a buddy system is to maintain direct-mapped table
966 * (containing bit values) for memory blocks of various "orders".
967 * The bottom level table contains the map for the smallest allocatable
968 * units of memory (here, pages), and each level above it describes
969 * pairs of units from the levels below, hence, "buddies".
970 * At a high level, all that happens here is marking the table entry
971 * at the bottom level available, and propagating the changes upward
972 * as necessary, plus some accounting needed to play nicely with other
973 * parts of the VM system.
974 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
975 * free pages of length of (1 << order) and marked with PageBuddy.
976 * Page's order is recorded in page_private(page) field.
1da177e4 977 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
978 * other. That is, if we allocate a small block, and both were
979 * free, the remainder of the region must be split into blocks.
1da177e4 980 * If a block is freed, and its buddy is also free, then this
5f63b720 981 * triggers coalescing into a block of larger size.
1da177e4 982 *
6d49e352 983 * -- nyc
1da177e4
LT
984 */
985
48db57f8 986static inline void __free_one_page(struct page *page,
dc4b0caf 987 unsigned long pfn,
ed0ae21d 988 struct zone *zone, unsigned int order,
f04a5d5d 989 int migratetype, fpi_t fpi_flags)
1da177e4 990{
a2129f24 991 struct capture_control *capc = task_capc(zone);
3f649ab7 992 unsigned long buddy_pfn;
a2129f24 993 unsigned long combined_pfn;
d9dddbf5 994 unsigned int max_order;
a2129f24
AD
995 struct page *buddy;
996 bool to_tail;
d9dddbf5
VB
997
998 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 999
d29bb978 1000 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1001 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1002
ed0ae21d 1003 VM_BUG_ON(migratetype == -1);
d9dddbf5 1004 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1005 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1006
76741e77 1007 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1008 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1009
d9dddbf5 1010continue_merging:
3c605096 1011 while (order < max_order - 1) {
5e1f0f09
MG
1012 if (compaction_capture(capc, page, order, migratetype)) {
1013 __mod_zone_freepage_state(zone, -(1 << order),
1014 migratetype);
1015 return;
1016 }
76741e77
VB
1017 buddy_pfn = __find_buddy_pfn(pfn, order);
1018 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1019
1020 if (!pfn_valid_within(buddy_pfn))
1021 goto done_merging;
cb2b95e1 1022 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1023 goto done_merging;
c0a32fc5
SG
1024 /*
1025 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1026 * merge with it and move up one order.
1027 */
b03641af 1028 if (page_is_guard(buddy))
2847cf95 1029 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1030 else
6ab01363 1031 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1032 combined_pfn = buddy_pfn & pfn;
1033 page = page + (combined_pfn - pfn);
1034 pfn = combined_pfn;
1da177e4
LT
1035 order++;
1036 }
d9dddbf5
VB
1037 if (max_order < MAX_ORDER) {
1038 /* If we are here, it means order is >= pageblock_order.
1039 * We want to prevent merge between freepages on isolate
1040 * pageblock and normal pageblock. Without this, pageblock
1041 * isolation could cause incorrect freepage or CMA accounting.
1042 *
1043 * We don't want to hit this code for the more frequent
1044 * low-order merging.
1045 */
1046 if (unlikely(has_isolate_pageblock(zone))) {
1047 int buddy_mt;
1048
76741e77
VB
1049 buddy_pfn = __find_buddy_pfn(pfn, order);
1050 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1051 buddy_mt = get_pageblock_migratetype(buddy);
1052
1053 if (migratetype != buddy_mt
1054 && (is_migrate_isolate(migratetype) ||
1055 is_migrate_isolate(buddy_mt)))
1056 goto done_merging;
1057 }
1058 max_order++;
1059 goto continue_merging;
1060 }
1061
1062done_merging:
ab130f91 1063 set_buddy_order(page, order);
6dda9d55 1064
47b6a24a
DH
1065 if (fpi_flags & FPI_TO_TAIL)
1066 to_tail = true;
1067 else if (is_shuffle_order(order))
a2129f24 1068 to_tail = shuffle_pick_tail();
97500a4a 1069 else
a2129f24 1070 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1071
a2129f24 1072 if (to_tail)
6ab01363 1073 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1074 else
6ab01363 1075 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1076
1077 /* Notify page reporting subsystem of freed page */
f04a5d5d 1078 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1079 page_reporting_notify_free(order);
1da177e4
LT
1080}
1081
7bfec6f4
MG
1082/*
1083 * A bad page could be due to a number of fields. Instead of multiple branches,
1084 * try and check multiple fields with one check. The caller must do a detailed
1085 * check if necessary.
1086 */
1087static inline bool page_expected_state(struct page *page,
1088 unsigned long check_flags)
1089{
1090 if (unlikely(atomic_read(&page->_mapcount) != -1))
1091 return false;
1092
1093 if (unlikely((unsigned long)page->mapping |
1094 page_ref_count(page) |
1095#ifdef CONFIG_MEMCG
1096 (unsigned long)page->mem_cgroup |
1097#endif
1098 (page->flags & check_flags)))
1099 return false;
1100
1101 return true;
1102}
1103
58b7f119 1104static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1105{
82a3241a 1106 const char *bad_reason = NULL;
f0b791a3 1107
53f9263b 1108 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1109 bad_reason = "nonzero mapcount";
1110 if (unlikely(page->mapping != NULL))
1111 bad_reason = "non-NULL mapping";
fe896d18 1112 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1113 bad_reason = "nonzero _refcount";
58b7f119
WY
1114 if (unlikely(page->flags & flags)) {
1115 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1116 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1117 else
1118 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1119 }
9edad6ea
JW
1120#ifdef CONFIG_MEMCG
1121 if (unlikely(page->mem_cgroup))
1122 bad_reason = "page still charged to cgroup";
1123#endif
58b7f119
WY
1124 return bad_reason;
1125}
1126
1127static void check_free_page_bad(struct page *page)
1128{
1129 bad_page(page,
1130 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1131}
1132
534fe5e3 1133static inline int check_free_page(struct page *page)
bb552ac6 1134{
da838d4f 1135 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1136 return 0;
bb552ac6
MG
1137
1138 /* Something has gone sideways, find it */
0d0c48a2 1139 check_free_page_bad(page);
7bfec6f4 1140 return 1;
1da177e4
LT
1141}
1142
4db7548c
MG
1143static int free_tail_pages_check(struct page *head_page, struct page *page)
1144{
1145 int ret = 1;
1146
1147 /*
1148 * We rely page->lru.next never has bit 0 set, unless the page
1149 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1150 */
1151 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1152
1153 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1154 ret = 0;
1155 goto out;
1156 }
1157 switch (page - head_page) {
1158 case 1:
4da1984e 1159 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1160 if (unlikely(compound_mapcount(page))) {
82a3241a 1161 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1162 goto out;
1163 }
1164 break;
1165 case 2:
1166 /*
1167 * the second tail page: ->mapping is
fa3015b7 1168 * deferred_list.next -- ignore value.
4db7548c
MG
1169 */
1170 break;
1171 default:
1172 if (page->mapping != TAIL_MAPPING) {
82a3241a 1173 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1174 goto out;
1175 }
1176 break;
1177 }
1178 if (unlikely(!PageTail(page))) {
82a3241a 1179 bad_page(page, "PageTail not set");
4db7548c
MG
1180 goto out;
1181 }
1182 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1183 bad_page(page, "compound_head not consistent");
4db7548c
MG
1184 goto out;
1185 }
1186 ret = 0;
1187out:
1188 page->mapping = NULL;
1189 clear_compound_head(page);
1190 return ret;
1191}
1192
6471384a
AP
1193static void kernel_init_free_pages(struct page *page, int numpages)
1194{
1195 int i;
1196
9e15afa5
QC
1197 /* s390's use of memset() could override KASAN redzones. */
1198 kasan_disable_current();
6471384a
AP
1199 for (i = 0; i < numpages; i++)
1200 clear_highpage(page + i);
9e15afa5 1201 kasan_enable_current();
6471384a
AP
1202}
1203
e2769dbd
MG
1204static __always_inline bool free_pages_prepare(struct page *page,
1205 unsigned int order, bool check_free)
4db7548c 1206{
e2769dbd 1207 int bad = 0;
4db7548c 1208
4db7548c
MG
1209 VM_BUG_ON_PAGE(PageTail(page), page);
1210
e2769dbd 1211 trace_mm_page_free(page, order);
e2769dbd 1212
79f5f8fa
OS
1213 if (unlikely(PageHWPoison(page)) && !order) {
1214 /*
1215 * Do not let hwpoison pages hit pcplists/buddy
1216 * Untie memcg state and reset page's owner
1217 */
1218 if (memcg_kmem_enabled() && PageKmemcg(page))
1219 __memcg_kmem_uncharge_page(page, order);
1220 reset_page_owner(page, order);
1221 return false;
1222 }
1223
e2769dbd
MG
1224 /*
1225 * Check tail pages before head page information is cleared to
1226 * avoid checking PageCompound for order-0 pages.
1227 */
1228 if (unlikely(order)) {
1229 bool compound = PageCompound(page);
1230 int i;
1231
1232 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1233
9a73f61b
KS
1234 if (compound)
1235 ClearPageDoubleMap(page);
e2769dbd
MG
1236 for (i = 1; i < (1 << order); i++) {
1237 if (compound)
1238 bad += free_tail_pages_check(page, page + i);
534fe5e3 1239 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1240 bad++;
1241 continue;
1242 }
1243 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1244 }
1245 }
bda807d4 1246 if (PageMappingFlags(page))
4db7548c 1247 page->mapping = NULL;
c4159a75 1248 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1249 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1250 if (check_free)
534fe5e3 1251 bad += check_free_page(page);
e2769dbd
MG
1252 if (bad)
1253 return false;
4db7548c 1254
e2769dbd
MG
1255 page_cpupid_reset_last(page);
1256 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1257 reset_page_owner(page, order);
4db7548c
MG
1258
1259 if (!PageHighMem(page)) {
1260 debug_check_no_locks_freed(page_address(page),
e2769dbd 1261 PAGE_SIZE << order);
4db7548c 1262 debug_check_no_obj_freed(page_address(page),
e2769dbd 1263 PAGE_SIZE << order);
4db7548c 1264 }
6471384a
AP
1265 if (want_init_on_free())
1266 kernel_init_free_pages(page, 1 << order);
1267
e2769dbd 1268 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1269 /*
1270 * arch_free_page() can make the page's contents inaccessible. s390
1271 * does this. So nothing which can access the page's contents should
1272 * happen after this.
1273 */
1274 arch_free_page(page, order);
1275
77bc7fd6 1276 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1277
3c0c12cc 1278 kasan_free_nondeferred_pages(page, order);
4db7548c 1279
4db7548c
MG
1280 return true;
1281}
1282
e2769dbd 1283#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1284/*
1285 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1286 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1287 * moved from pcp lists to free lists.
1288 */
1289static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1290{
1291 return free_pages_prepare(page, 0, true);
1292}
1293
4462b32c 1294static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1295{
8e57f8ac 1296 if (debug_pagealloc_enabled_static())
534fe5e3 1297 return check_free_page(page);
4462b32c
VB
1298 else
1299 return false;
e2769dbd
MG
1300}
1301#else
4462b32c
VB
1302/*
1303 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1304 * moving from pcp lists to free list in order to reduce overhead. With
1305 * debug_pagealloc enabled, they are checked also immediately when being freed
1306 * to the pcp lists.
1307 */
e2769dbd
MG
1308static bool free_pcp_prepare(struct page *page)
1309{
8e57f8ac 1310 if (debug_pagealloc_enabled_static())
4462b32c
VB
1311 return free_pages_prepare(page, 0, true);
1312 else
1313 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1314}
1315
4db7548c
MG
1316static bool bulkfree_pcp_prepare(struct page *page)
1317{
534fe5e3 1318 return check_free_page(page);
4db7548c
MG
1319}
1320#endif /* CONFIG_DEBUG_VM */
1321
97334162
AL
1322static inline void prefetch_buddy(struct page *page)
1323{
1324 unsigned long pfn = page_to_pfn(page);
1325 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1326 struct page *buddy = page + (buddy_pfn - pfn);
1327
1328 prefetch(buddy);
1329}
1330
1da177e4 1331/*
5f8dcc21 1332 * Frees a number of pages from the PCP lists
1da177e4 1333 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1334 * count is the number of pages to free.
1da177e4
LT
1335 *
1336 * If the zone was previously in an "all pages pinned" state then look to
1337 * see if this freeing clears that state.
1338 *
1339 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1340 * pinned" detection logic.
1341 */
5f8dcc21
MG
1342static void free_pcppages_bulk(struct zone *zone, int count,
1343 struct per_cpu_pages *pcp)
1da177e4 1344{
5f8dcc21 1345 int migratetype = 0;
a6f9edd6 1346 int batch_free = 0;
97334162 1347 int prefetch_nr = 0;
3777999d 1348 bool isolated_pageblocks;
0a5f4e5b
AL
1349 struct page *page, *tmp;
1350 LIST_HEAD(head);
f2260e6b 1351
88e8ac11
CTR
1352 /*
1353 * Ensure proper count is passed which otherwise would stuck in the
1354 * below while (list_empty(list)) loop.
1355 */
1356 count = min(pcp->count, count);
e5b31ac2 1357 while (count) {
5f8dcc21
MG
1358 struct list_head *list;
1359
1360 /*
a6f9edd6
MG
1361 * Remove pages from lists in a round-robin fashion. A
1362 * batch_free count is maintained that is incremented when an
1363 * empty list is encountered. This is so more pages are freed
1364 * off fuller lists instead of spinning excessively around empty
1365 * lists
5f8dcc21
MG
1366 */
1367 do {
a6f9edd6 1368 batch_free++;
5f8dcc21
MG
1369 if (++migratetype == MIGRATE_PCPTYPES)
1370 migratetype = 0;
1371 list = &pcp->lists[migratetype];
1372 } while (list_empty(list));
48db57f8 1373
1d16871d
NK
1374 /* This is the only non-empty list. Free them all. */
1375 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1376 batch_free = count;
1d16871d 1377
a6f9edd6 1378 do {
a16601c5 1379 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1380 /* must delete to avoid corrupting pcp list */
a6f9edd6 1381 list_del(&page->lru);
77ba9062 1382 pcp->count--;
aa016d14 1383
4db7548c
MG
1384 if (bulkfree_pcp_prepare(page))
1385 continue;
1386
0a5f4e5b 1387 list_add_tail(&page->lru, &head);
97334162
AL
1388
1389 /*
1390 * We are going to put the page back to the global
1391 * pool, prefetch its buddy to speed up later access
1392 * under zone->lock. It is believed the overhead of
1393 * an additional test and calculating buddy_pfn here
1394 * can be offset by reduced memory latency later. To
1395 * avoid excessive prefetching due to large count, only
1396 * prefetch buddy for the first pcp->batch nr of pages.
1397 */
1398 if (prefetch_nr++ < pcp->batch)
1399 prefetch_buddy(page);
e5b31ac2 1400 } while (--count && --batch_free && !list_empty(list));
1da177e4 1401 }
0a5f4e5b
AL
1402
1403 spin_lock(&zone->lock);
1404 isolated_pageblocks = has_isolate_pageblock(zone);
1405
1406 /*
1407 * Use safe version since after __free_one_page(),
1408 * page->lru.next will not point to original list.
1409 */
1410 list_for_each_entry_safe(page, tmp, &head, lru) {
1411 int mt = get_pcppage_migratetype(page);
1412 /* MIGRATE_ISOLATE page should not go to pcplists */
1413 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1414 /* Pageblock could have been isolated meanwhile */
1415 if (unlikely(isolated_pageblocks))
1416 mt = get_pageblock_migratetype(page);
1417
f04a5d5d 1418 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1419 trace_mm_page_pcpu_drain(page, 0, mt);
1420 }
d34b0733 1421 spin_unlock(&zone->lock);
1da177e4
LT
1422}
1423
dc4b0caf
MG
1424static void free_one_page(struct zone *zone,
1425 struct page *page, unsigned long pfn,
7aeb09f9 1426 unsigned int order,
7fef431b 1427 int migratetype, fpi_t fpi_flags)
1da177e4 1428{
d34b0733 1429 spin_lock(&zone->lock);
ad53f92e
JK
1430 if (unlikely(has_isolate_pageblock(zone) ||
1431 is_migrate_isolate(migratetype))) {
1432 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1433 }
7fef431b 1434 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1435 spin_unlock(&zone->lock);
48db57f8
NP
1436}
1437
1e8ce83c 1438static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1439 unsigned long zone, int nid)
1e8ce83c 1440{
d0dc12e8 1441 mm_zero_struct_page(page);
1e8ce83c 1442 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1443 init_page_count(page);
1444 page_mapcount_reset(page);
1445 page_cpupid_reset_last(page);
2813b9c0 1446 page_kasan_tag_reset(page);
1e8ce83c 1447
1e8ce83c
RH
1448 INIT_LIST_HEAD(&page->lru);
1449#ifdef WANT_PAGE_VIRTUAL
1450 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1451 if (!is_highmem_idx(zone))
1452 set_page_address(page, __va(pfn << PAGE_SHIFT));
1453#endif
1454}
1455
7e18adb4 1456#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1457static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1458{
1459 pg_data_t *pgdat;
1460 int nid, zid;
1461
1462 if (!early_page_uninitialised(pfn))
1463 return;
1464
1465 nid = early_pfn_to_nid(pfn);
1466 pgdat = NODE_DATA(nid);
1467
1468 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1469 struct zone *zone = &pgdat->node_zones[zid];
1470
1471 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1472 break;
1473 }
d0dc12e8 1474 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1475}
1476#else
1477static inline void init_reserved_page(unsigned long pfn)
1478{
1479}
1480#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1481
92923ca3
NZ
1482/*
1483 * Initialised pages do not have PageReserved set. This function is
1484 * called for each range allocated by the bootmem allocator and
1485 * marks the pages PageReserved. The remaining valid pages are later
1486 * sent to the buddy page allocator.
1487 */
4b50bcc7 1488void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1489{
1490 unsigned long start_pfn = PFN_DOWN(start);
1491 unsigned long end_pfn = PFN_UP(end);
1492
7e18adb4
MG
1493 for (; start_pfn < end_pfn; start_pfn++) {
1494 if (pfn_valid(start_pfn)) {
1495 struct page *page = pfn_to_page(start_pfn);
1496
1497 init_reserved_page(start_pfn);
1d798ca3
KS
1498
1499 /* Avoid false-positive PageTail() */
1500 INIT_LIST_HEAD(&page->lru);
1501
d483da5b
AD
1502 /*
1503 * no need for atomic set_bit because the struct
1504 * page is not visible yet so nobody should
1505 * access it yet.
1506 */
1507 __SetPageReserved(page);
7e18adb4
MG
1508 }
1509 }
92923ca3
NZ
1510}
1511
7fef431b
DH
1512static void __free_pages_ok(struct page *page, unsigned int order,
1513 fpi_t fpi_flags)
ec95f53a 1514{
d34b0733 1515 unsigned long flags;
95e34412 1516 int migratetype;
dc4b0caf 1517 unsigned long pfn = page_to_pfn(page);
ec95f53a 1518
e2769dbd 1519 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1520 return;
1521
cfc47a28 1522 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1523 local_irq_save(flags);
1524 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1525 free_one_page(page_zone(page), page, pfn, order, migratetype,
1526 fpi_flags);
d34b0733 1527 local_irq_restore(flags);
1da177e4
LT
1528}
1529
a9cd410a 1530void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1531{
c3993076 1532 unsigned int nr_pages = 1 << order;
e2d0bd2b 1533 struct page *p = page;
c3993076 1534 unsigned int loop;
a226f6c8 1535
7fef431b
DH
1536 /*
1537 * When initializing the memmap, __init_single_page() sets the refcount
1538 * of all pages to 1 ("allocated"/"not free"). We have to set the
1539 * refcount of all involved pages to 0.
1540 */
e2d0bd2b
YL
1541 prefetchw(p);
1542 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1543 prefetchw(p + 1);
c3993076
JW
1544 __ClearPageReserved(p);
1545 set_page_count(p, 0);
a226f6c8 1546 }
e2d0bd2b
YL
1547 __ClearPageReserved(p);
1548 set_page_count(p, 0);
c3993076 1549
9705bea5 1550 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1551
1552 /*
1553 * Bypass PCP and place fresh pages right to the tail, primarily
1554 * relevant for memory onlining.
1555 */
1556 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1557}
1558
3f08a302 1559#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1560
03e92a5e
MR
1561/*
1562 * During memory init memblocks map pfns to nids. The search is expensive and
1563 * this caches recent lookups. The implementation of __early_pfn_to_nid
1564 * treats start/end as pfns.
1565 */
1566struct mminit_pfnnid_cache {
1567 unsigned long last_start;
1568 unsigned long last_end;
1569 int last_nid;
1570};
75a592a4 1571
03e92a5e 1572static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1573
1574/*
1575 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1576 */
03e92a5e 1577static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1578 struct mminit_pfnnid_cache *state)
75a592a4 1579{
6f24fbd3 1580 unsigned long start_pfn, end_pfn;
75a592a4
MG
1581 int nid;
1582
6f24fbd3
MR
1583 if (state->last_start <= pfn && pfn < state->last_end)
1584 return state->last_nid;
1585
1586 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1587 if (nid != NUMA_NO_NODE) {
1588 state->last_start = start_pfn;
1589 state->last_end = end_pfn;
1590 state->last_nid = nid;
1591 }
7ace9917
MG
1592
1593 return nid;
75a592a4 1594}
75a592a4 1595
75a592a4 1596int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1597{
7ace9917 1598 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1599 int nid;
1600
7ace9917 1601 spin_lock(&early_pfn_lock);
56ec43d8 1602 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1603 if (nid < 0)
e4568d38 1604 nid = first_online_node;
7ace9917 1605 spin_unlock(&early_pfn_lock);
75a592a4 1606
7ace9917 1607 return nid;
75a592a4 1608}
3f08a302 1609#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1610
7c2ee349 1611void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1612 unsigned int order)
1613{
1614 if (early_page_uninitialised(pfn))
1615 return;
a9cd410a 1616 __free_pages_core(page, order);
3a80a7fa
MG
1617}
1618
7cf91a98
JK
1619/*
1620 * Check that the whole (or subset of) a pageblock given by the interval of
1621 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1622 * with the migration of free compaction scanner. The scanners then need to
1623 * use only pfn_valid_within() check for arches that allow holes within
1624 * pageblocks.
1625 *
1626 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1627 *
1628 * It's possible on some configurations to have a setup like node0 node1 node0
1629 * i.e. it's possible that all pages within a zones range of pages do not
1630 * belong to a single zone. We assume that a border between node0 and node1
1631 * can occur within a single pageblock, but not a node0 node1 node0
1632 * interleaving within a single pageblock. It is therefore sufficient to check
1633 * the first and last page of a pageblock and avoid checking each individual
1634 * page in a pageblock.
1635 */
1636struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1637 unsigned long end_pfn, struct zone *zone)
1638{
1639 struct page *start_page;
1640 struct page *end_page;
1641
1642 /* end_pfn is one past the range we are checking */
1643 end_pfn--;
1644
1645 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1646 return NULL;
1647
2d070eab
MH
1648 start_page = pfn_to_online_page(start_pfn);
1649 if (!start_page)
1650 return NULL;
7cf91a98
JK
1651
1652 if (page_zone(start_page) != zone)
1653 return NULL;
1654
1655 end_page = pfn_to_page(end_pfn);
1656
1657 /* This gives a shorter code than deriving page_zone(end_page) */
1658 if (page_zone_id(start_page) != page_zone_id(end_page))
1659 return NULL;
1660
1661 return start_page;
1662}
1663
1664void set_zone_contiguous(struct zone *zone)
1665{
1666 unsigned long block_start_pfn = zone->zone_start_pfn;
1667 unsigned long block_end_pfn;
1668
1669 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1670 for (; block_start_pfn < zone_end_pfn(zone);
1671 block_start_pfn = block_end_pfn,
1672 block_end_pfn += pageblock_nr_pages) {
1673
1674 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1675
1676 if (!__pageblock_pfn_to_page(block_start_pfn,
1677 block_end_pfn, zone))
1678 return;
e84fe99b 1679 cond_resched();
7cf91a98
JK
1680 }
1681
1682 /* We confirm that there is no hole */
1683 zone->contiguous = true;
1684}
1685
1686void clear_zone_contiguous(struct zone *zone)
1687{
1688 zone->contiguous = false;
1689}
1690
7e18adb4 1691#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1692static void __init deferred_free_range(unsigned long pfn,
1693 unsigned long nr_pages)
a4de83dd 1694{
2f47a91f
PT
1695 struct page *page;
1696 unsigned long i;
a4de83dd 1697
2f47a91f 1698 if (!nr_pages)
a4de83dd
MG
1699 return;
1700
2f47a91f
PT
1701 page = pfn_to_page(pfn);
1702
a4de83dd 1703 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1704 if (nr_pages == pageblock_nr_pages &&
1705 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1706 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1707 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1708 return;
1709 }
1710
e780149b
XQ
1711 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1712 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1713 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1714 __free_pages_core(page, 0);
e780149b 1715 }
a4de83dd
MG
1716}
1717
d3cd131d
NS
1718/* Completion tracking for deferred_init_memmap() threads */
1719static atomic_t pgdat_init_n_undone __initdata;
1720static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1721
1722static inline void __init pgdat_init_report_one_done(void)
1723{
1724 if (atomic_dec_and_test(&pgdat_init_n_undone))
1725 complete(&pgdat_init_all_done_comp);
1726}
0e1cc95b 1727
2f47a91f 1728/*
80b1f41c
PT
1729 * Returns true if page needs to be initialized or freed to buddy allocator.
1730 *
1731 * First we check if pfn is valid on architectures where it is possible to have
1732 * holes within pageblock_nr_pages. On systems where it is not possible, this
1733 * function is optimized out.
1734 *
1735 * Then, we check if a current large page is valid by only checking the validity
1736 * of the head pfn.
2f47a91f 1737 */
56ec43d8 1738static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1739{
80b1f41c
PT
1740 if (!pfn_valid_within(pfn))
1741 return false;
1742 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1743 return false;
80b1f41c
PT
1744 return true;
1745}
2f47a91f 1746
80b1f41c
PT
1747/*
1748 * Free pages to buddy allocator. Try to free aligned pages in
1749 * pageblock_nr_pages sizes.
1750 */
56ec43d8 1751static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1752 unsigned long end_pfn)
1753{
80b1f41c
PT
1754 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1755 unsigned long nr_free = 0;
2f47a91f 1756
80b1f41c 1757 for (; pfn < end_pfn; pfn++) {
56ec43d8 1758 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1759 deferred_free_range(pfn - nr_free, nr_free);
1760 nr_free = 0;
1761 } else if (!(pfn & nr_pgmask)) {
1762 deferred_free_range(pfn - nr_free, nr_free);
1763 nr_free = 1;
80b1f41c
PT
1764 } else {
1765 nr_free++;
1766 }
1767 }
1768 /* Free the last block of pages to allocator */
1769 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1770}
1771
80b1f41c
PT
1772/*
1773 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1774 * by performing it only once every pageblock_nr_pages.
1775 * Return number of pages initialized.
1776 */
56ec43d8 1777static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1778 unsigned long pfn,
1779 unsigned long end_pfn)
2f47a91f 1780{
2f47a91f 1781 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1782 int nid = zone_to_nid(zone);
2f47a91f 1783 unsigned long nr_pages = 0;
56ec43d8 1784 int zid = zone_idx(zone);
2f47a91f 1785 struct page *page = NULL;
2f47a91f 1786
80b1f41c 1787 for (; pfn < end_pfn; pfn++) {
56ec43d8 1788 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1789 page = NULL;
2f47a91f 1790 continue;
80b1f41c 1791 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1792 page = pfn_to_page(pfn);
80b1f41c
PT
1793 } else {
1794 page++;
2f47a91f 1795 }
d0dc12e8 1796 __init_single_page(page, pfn, zid, nid);
80b1f41c 1797 nr_pages++;
2f47a91f 1798 }
80b1f41c 1799 return (nr_pages);
2f47a91f
PT
1800}
1801
0e56acae
AD
1802/*
1803 * This function is meant to pre-load the iterator for the zone init.
1804 * Specifically it walks through the ranges until we are caught up to the
1805 * first_init_pfn value and exits there. If we never encounter the value we
1806 * return false indicating there are no valid ranges left.
1807 */
1808static bool __init
1809deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1810 unsigned long *spfn, unsigned long *epfn,
1811 unsigned long first_init_pfn)
1812{
1813 u64 j;
1814
1815 /*
1816 * Start out by walking through the ranges in this zone that have
1817 * already been initialized. We don't need to do anything with them
1818 * so we just need to flush them out of the system.
1819 */
1820 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1821 if (*epfn <= first_init_pfn)
1822 continue;
1823 if (*spfn < first_init_pfn)
1824 *spfn = first_init_pfn;
1825 *i = j;
1826 return true;
1827 }
1828
1829 return false;
1830}
1831
1832/*
1833 * Initialize and free pages. We do it in two loops: first we initialize
1834 * struct page, then free to buddy allocator, because while we are
1835 * freeing pages we can access pages that are ahead (computing buddy
1836 * page in __free_one_page()).
1837 *
1838 * In order to try and keep some memory in the cache we have the loop
1839 * broken along max page order boundaries. This way we will not cause
1840 * any issues with the buddy page computation.
1841 */
1842static unsigned long __init
1843deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1844 unsigned long *end_pfn)
1845{
1846 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1847 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1848 unsigned long nr_pages = 0;
1849 u64 j = *i;
1850
1851 /* First we loop through and initialize the page values */
1852 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1853 unsigned long t;
1854
1855 if (mo_pfn <= *start_pfn)
1856 break;
1857
1858 t = min(mo_pfn, *end_pfn);
1859 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1860
1861 if (mo_pfn < *end_pfn) {
1862 *start_pfn = mo_pfn;
1863 break;
1864 }
1865 }
1866
1867 /* Reset values and now loop through freeing pages as needed */
1868 swap(j, *i);
1869
1870 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1871 unsigned long t;
1872
1873 if (mo_pfn <= spfn)
1874 break;
1875
1876 t = min(mo_pfn, epfn);
1877 deferred_free_pages(spfn, t);
1878
1879 if (mo_pfn <= epfn)
1880 break;
1881 }
1882
1883 return nr_pages;
1884}
1885
e4443149
DJ
1886static void __init
1887deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1888 void *arg)
1889{
1890 unsigned long spfn, epfn;
1891 struct zone *zone = arg;
1892 u64 i;
1893
1894 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1895
1896 /*
1897 * Initialize and free pages in MAX_ORDER sized increments so that we
1898 * can avoid introducing any issues with the buddy allocator.
1899 */
1900 while (spfn < end_pfn) {
1901 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1902 cond_resched();
1903 }
1904}
1905
ecd09650
DJ
1906/* An arch may override for more concurrency. */
1907__weak int __init
1908deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1909{
1910 return 1;
1911}
1912
7e18adb4 1913/* Initialise remaining memory on a node */
0e1cc95b 1914static int __init deferred_init_memmap(void *data)
7e18adb4 1915{
0e1cc95b 1916 pg_data_t *pgdat = data;
0e56acae 1917 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1918 unsigned long spfn = 0, epfn = 0;
0e56acae 1919 unsigned long first_init_pfn, flags;
7e18adb4 1920 unsigned long start = jiffies;
7e18adb4 1921 struct zone *zone;
e4443149 1922 int zid, max_threads;
2f47a91f 1923 u64 i;
7e18adb4 1924
3a2d7fa8
PT
1925 /* Bind memory initialisation thread to a local node if possible */
1926 if (!cpumask_empty(cpumask))
1927 set_cpus_allowed_ptr(current, cpumask);
1928
1929 pgdat_resize_lock(pgdat, &flags);
1930 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1931 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1932 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1933 pgdat_init_report_one_done();
0e1cc95b
MG
1934 return 0;
1935 }
1936
7e18adb4
MG
1937 /* Sanity check boundaries */
1938 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1939 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1940 pgdat->first_deferred_pfn = ULONG_MAX;
1941
3d060856
PT
1942 /*
1943 * Once we unlock here, the zone cannot be grown anymore, thus if an
1944 * interrupt thread must allocate this early in boot, zone must be
1945 * pre-grown prior to start of deferred page initialization.
1946 */
1947 pgdat_resize_unlock(pgdat, &flags);
1948
7e18adb4
MG
1949 /* Only the highest zone is deferred so find it */
1950 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1951 zone = pgdat->node_zones + zid;
1952 if (first_init_pfn < zone_end_pfn(zone))
1953 break;
1954 }
0e56acae
AD
1955
1956 /* If the zone is empty somebody else may have cleared out the zone */
1957 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1958 first_init_pfn))
1959 goto zone_empty;
7e18adb4 1960
ecd09650 1961 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1962
117003c3 1963 while (spfn < epfn) {
e4443149
DJ
1964 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1965 struct padata_mt_job job = {
1966 .thread_fn = deferred_init_memmap_chunk,
1967 .fn_arg = zone,
1968 .start = spfn,
1969 .size = epfn_align - spfn,
1970 .align = PAGES_PER_SECTION,
1971 .min_chunk = PAGES_PER_SECTION,
1972 .max_threads = max_threads,
1973 };
1974
1975 padata_do_multithreaded(&job);
1976 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1977 epfn_align);
117003c3 1978 }
0e56acae 1979zone_empty:
7e18adb4
MG
1980 /* Sanity check that the next zone really is unpopulated */
1981 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1982
89c7c402
DJ
1983 pr_info("node %d deferred pages initialised in %ums\n",
1984 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1985
1986 pgdat_init_report_one_done();
0e1cc95b
MG
1987 return 0;
1988}
c9e97a19 1989
c9e97a19
PT
1990/*
1991 * If this zone has deferred pages, try to grow it by initializing enough
1992 * deferred pages to satisfy the allocation specified by order, rounded up to
1993 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1994 * of SECTION_SIZE bytes by initializing struct pages in increments of
1995 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1996 *
1997 * Return true when zone was grown, otherwise return false. We return true even
1998 * when we grow less than requested, to let the caller decide if there are
1999 * enough pages to satisfy the allocation.
2000 *
2001 * Note: We use noinline because this function is needed only during boot, and
2002 * it is called from a __ref function _deferred_grow_zone. This way we are
2003 * making sure that it is not inlined into permanent text section.
2004 */
2005static noinline bool __init
2006deferred_grow_zone(struct zone *zone, unsigned int order)
2007{
c9e97a19 2008 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2009 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2010 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2011 unsigned long spfn, epfn, flags;
2012 unsigned long nr_pages = 0;
c9e97a19
PT
2013 u64 i;
2014
2015 /* Only the last zone may have deferred pages */
2016 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2017 return false;
2018
2019 pgdat_resize_lock(pgdat, &flags);
2020
c9e97a19
PT
2021 /*
2022 * If someone grew this zone while we were waiting for spinlock, return
2023 * true, as there might be enough pages already.
2024 */
2025 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2026 pgdat_resize_unlock(pgdat, &flags);
2027 return true;
2028 }
2029
0e56acae
AD
2030 /* If the zone is empty somebody else may have cleared out the zone */
2031 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2032 first_deferred_pfn)) {
2033 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2034 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2035 /* Retry only once. */
2036 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2037 }
2038
0e56acae
AD
2039 /*
2040 * Initialize and free pages in MAX_ORDER sized increments so
2041 * that we can avoid introducing any issues with the buddy
2042 * allocator.
2043 */
2044 while (spfn < epfn) {
2045 /* update our first deferred PFN for this section */
2046 first_deferred_pfn = spfn;
2047
2048 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2049 touch_nmi_watchdog();
c9e97a19 2050
0e56acae
AD
2051 /* We should only stop along section boundaries */
2052 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2053 continue;
c9e97a19 2054
0e56acae 2055 /* If our quota has been met we can stop here */
c9e97a19
PT
2056 if (nr_pages >= nr_pages_needed)
2057 break;
2058 }
2059
0e56acae 2060 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2061 pgdat_resize_unlock(pgdat, &flags);
2062
2063 return nr_pages > 0;
2064}
2065
2066/*
2067 * deferred_grow_zone() is __init, but it is called from
2068 * get_page_from_freelist() during early boot until deferred_pages permanently
2069 * disables this call. This is why we have refdata wrapper to avoid warning,
2070 * and to ensure that the function body gets unloaded.
2071 */
2072static bool __ref
2073_deferred_grow_zone(struct zone *zone, unsigned int order)
2074{
2075 return deferred_grow_zone(zone, order);
2076}
2077
7cf91a98 2078#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2079
2080void __init page_alloc_init_late(void)
2081{
7cf91a98 2082 struct zone *zone;
e900a918 2083 int nid;
7cf91a98
JK
2084
2085#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2086
d3cd131d
NS
2087 /* There will be num_node_state(N_MEMORY) threads */
2088 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2089 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2090 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2091 }
2092
2093 /* Block until all are initialised */
d3cd131d 2094 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2095
3e8fc007
MG
2096 /*
2097 * The number of managed pages has changed due to the initialisation
2098 * so the pcpu batch and high limits needs to be updated or the limits
2099 * will be artificially small.
2100 */
2101 for_each_populated_zone(zone)
2102 zone_pcp_update(zone);
2103
c9e97a19
PT
2104 /*
2105 * We initialized the rest of the deferred pages. Permanently disable
2106 * on-demand struct page initialization.
2107 */
2108 static_branch_disable(&deferred_pages);
2109
4248b0da
MG
2110 /* Reinit limits that are based on free pages after the kernel is up */
2111 files_maxfiles_init();
7cf91a98 2112#endif
350e88ba 2113
3010f876
PT
2114 /* Discard memblock private memory */
2115 memblock_discard();
7cf91a98 2116
e900a918
DW
2117 for_each_node_state(nid, N_MEMORY)
2118 shuffle_free_memory(NODE_DATA(nid));
2119
7cf91a98
JK
2120 for_each_populated_zone(zone)
2121 set_zone_contiguous(zone);
7e18adb4 2122}
7e18adb4 2123
47118af0 2124#ifdef CONFIG_CMA
9cf510a5 2125/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2126void __init init_cma_reserved_pageblock(struct page *page)
2127{
2128 unsigned i = pageblock_nr_pages;
2129 struct page *p = page;
2130
2131 do {
2132 __ClearPageReserved(p);
2133 set_page_count(p, 0);
d883c6cf 2134 } while (++p, --i);
47118af0 2135
47118af0 2136 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2137
2138 if (pageblock_order >= MAX_ORDER) {
2139 i = pageblock_nr_pages;
2140 p = page;
2141 do {
2142 set_page_refcounted(p);
2143 __free_pages(p, MAX_ORDER - 1);
2144 p += MAX_ORDER_NR_PAGES;
2145 } while (i -= MAX_ORDER_NR_PAGES);
2146 } else {
2147 set_page_refcounted(page);
2148 __free_pages(page, pageblock_order);
2149 }
2150
3dcc0571 2151 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2152}
2153#endif
1da177e4
LT
2154
2155/*
2156 * The order of subdivision here is critical for the IO subsystem.
2157 * Please do not alter this order without good reasons and regression
2158 * testing. Specifically, as large blocks of memory are subdivided,
2159 * the order in which smaller blocks are delivered depends on the order
2160 * they're subdivided in this function. This is the primary factor
2161 * influencing the order in which pages are delivered to the IO
2162 * subsystem according to empirical testing, and this is also justified
2163 * by considering the behavior of a buddy system containing a single
2164 * large block of memory acted on by a series of small allocations.
2165 * This behavior is a critical factor in sglist merging's success.
2166 *
6d49e352 2167 * -- nyc
1da177e4 2168 */
085cc7d5 2169static inline void expand(struct zone *zone, struct page *page,
6ab01363 2170 int low, int high, int migratetype)
1da177e4
LT
2171{
2172 unsigned long size = 1 << high;
2173
2174 while (high > low) {
1da177e4
LT
2175 high--;
2176 size >>= 1;
309381fe 2177 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2178
acbc15a4
JK
2179 /*
2180 * Mark as guard pages (or page), that will allow to
2181 * merge back to allocator when buddy will be freed.
2182 * Corresponding page table entries will not be touched,
2183 * pages will stay not present in virtual address space
2184 */
2185 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2186 continue;
acbc15a4 2187
6ab01363 2188 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2189 set_buddy_order(&page[size], high);
1da177e4 2190 }
1da177e4
LT
2191}
2192
4e611801 2193static void check_new_page_bad(struct page *page)
1da177e4 2194{
f4c18e6f 2195 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2196 /* Don't complain about hwpoisoned pages */
2197 page_mapcount_reset(page); /* remove PageBuddy */
2198 return;
f4c18e6f 2199 }
58b7f119
WY
2200
2201 bad_page(page,
2202 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2203}
2204
2205/*
2206 * This page is about to be returned from the page allocator
2207 */
2208static inline int check_new_page(struct page *page)
2209{
2210 if (likely(page_expected_state(page,
2211 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2212 return 0;
2213
2214 check_new_page_bad(page);
2215 return 1;
2a7684a2
WF
2216}
2217
bd33ef36 2218static inline bool free_pages_prezeroed(void)
1414c7f4 2219{
6471384a
AP
2220 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2221 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2222}
2223
479f854a 2224#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2225/*
2226 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2227 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2228 * also checked when pcp lists are refilled from the free lists.
2229 */
2230static inline bool check_pcp_refill(struct page *page)
479f854a 2231{
8e57f8ac 2232 if (debug_pagealloc_enabled_static())
4462b32c
VB
2233 return check_new_page(page);
2234 else
2235 return false;
479f854a
MG
2236}
2237
4462b32c 2238static inline bool check_new_pcp(struct page *page)
479f854a
MG
2239{
2240 return check_new_page(page);
2241}
2242#else
4462b32c
VB
2243/*
2244 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2245 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2246 * enabled, they are also checked when being allocated from the pcp lists.
2247 */
2248static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2249{
2250 return check_new_page(page);
2251}
4462b32c 2252static inline bool check_new_pcp(struct page *page)
479f854a 2253{
8e57f8ac 2254 if (debug_pagealloc_enabled_static())
4462b32c
VB
2255 return check_new_page(page);
2256 else
2257 return false;
479f854a
MG
2258}
2259#endif /* CONFIG_DEBUG_VM */
2260
2261static bool check_new_pages(struct page *page, unsigned int order)
2262{
2263 int i;
2264 for (i = 0; i < (1 << order); i++) {
2265 struct page *p = page + i;
2266
2267 if (unlikely(check_new_page(p)))
2268 return true;
2269 }
2270
2271 return false;
2272}
2273
46f24fd8
JK
2274inline void post_alloc_hook(struct page *page, unsigned int order,
2275 gfp_t gfp_flags)
2276{
2277 set_page_private(page, 0);
2278 set_page_refcounted(page);
2279
2280 arch_alloc_page(page, order);
77bc7fd6 2281 debug_pagealloc_map_pages(page, 1 << order);
46f24fd8 2282 kasan_alloc_pages(page, order);
4117992d 2283 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2284 set_page_owner(page, order, gfp_flags);
2285}
2286
479f854a 2287static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2288 unsigned int alloc_flags)
2a7684a2 2289{
46f24fd8 2290 post_alloc_hook(page, order, gfp_flags);
17cf4406 2291
6471384a
AP
2292 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2293 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2294
2295 if (order && (gfp_flags & __GFP_COMP))
2296 prep_compound_page(page, order);
2297
75379191 2298 /*
2f064f34 2299 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2300 * allocate the page. The expectation is that the caller is taking
2301 * steps that will free more memory. The caller should avoid the page
2302 * being used for !PFMEMALLOC purposes.
2303 */
2f064f34
MH
2304 if (alloc_flags & ALLOC_NO_WATERMARKS)
2305 set_page_pfmemalloc(page);
2306 else
2307 clear_page_pfmemalloc(page);
1da177e4
LT
2308}
2309
56fd56b8
MG
2310/*
2311 * Go through the free lists for the given migratetype and remove
2312 * the smallest available page from the freelists
2313 */
85ccc8fa 2314static __always_inline
728ec980 2315struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2316 int migratetype)
2317{
2318 unsigned int current_order;
b8af2941 2319 struct free_area *area;
56fd56b8
MG
2320 struct page *page;
2321
2322 /* Find a page of the appropriate size in the preferred list */
2323 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2324 area = &(zone->free_area[current_order]);
b03641af 2325 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2326 if (!page)
2327 continue;
6ab01363
AD
2328 del_page_from_free_list(page, zone, current_order);
2329 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2330 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2331 return page;
2332 }
2333
2334 return NULL;
2335}
2336
2337
b2a0ac88
MG
2338/*
2339 * This array describes the order lists are fallen back to when
2340 * the free lists for the desirable migrate type are depleted
2341 */
da415663 2342static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2343 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2344 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2345 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2346#ifdef CONFIG_CMA
974a786e 2347 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2348#endif
194159fb 2349#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2350 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2351#endif
b2a0ac88
MG
2352};
2353
dc67647b 2354#ifdef CONFIG_CMA
85ccc8fa 2355static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2356 unsigned int order)
2357{
2358 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2359}
2360#else
2361static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2362 unsigned int order) { return NULL; }
2363#endif
2364
c361be55 2365/*
293ffa5e 2366 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2367 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2368 * boundary. If alignment is required, use move_freepages_block()
2369 */
02aa0cdd 2370static int move_freepages(struct zone *zone,
b69a7288 2371 struct page *start_page, struct page *end_page,
02aa0cdd 2372 int migratetype, int *num_movable)
c361be55
MG
2373{
2374 struct page *page;
d00181b9 2375 unsigned int order;
d100313f 2376 int pages_moved = 0;
c361be55 2377
c361be55
MG
2378 for (page = start_page; page <= end_page;) {
2379 if (!pfn_valid_within(page_to_pfn(page))) {
2380 page++;
2381 continue;
2382 }
2383
2384 if (!PageBuddy(page)) {
02aa0cdd
VB
2385 /*
2386 * We assume that pages that could be isolated for
2387 * migration are movable. But we don't actually try
2388 * isolating, as that would be expensive.
2389 */
2390 if (num_movable &&
2391 (PageLRU(page) || __PageMovable(page)))
2392 (*num_movable)++;
2393
c361be55
MG
2394 page++;
2395 continue;
2396 }
2397
cd961038
DR
2398 /* Make sure we are not inadvertently changing nodes */
2399 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2400 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2401
ab130f91 2402 order = buddy_order(page);
6ab01363 2403 move_to_free_list(page, zone, order, migratetype);
c361be55 2404 page += 1 << order;
d100313f 2405 pages_moved += 1 << order;
c361be55
MG
2406 }
2407
d100313f 2408 return pages_moved;
c361be55
MG
2409}
2410
ee6f509c 2411int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2412 int migratetype, int *num_movable)
c361be55
MG
2413{
2414 unsigned long start_pfn, end_pfn;
2415 struct page *start_page, *end_page;
2416
4a222127
DR
2417 if (num_movable)
2418 *num_movable = 0;
2419
c361be55 2420 start_pfn = page_to_pfn(page);
d9c23400 2421 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2422 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2423 end_page = start_page + pageblock_nr_pages - 1;
2424 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2425
2426 /* Do not cross zone boundaries */
108bcc96 2427 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2428 start_page = page;
108bcc96 2429 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2430 return 0;
2431
02aa0cdd
VB
2432 return move_freepages(zone, start_page, end_page, migratetype,
2433 num_movable);
c361be55
MG
2434}
2435
2f66a68f
MG
2436static void change_pageblock_range(struct page *pageblock_page,
2437 int start_order, int migratetype)
2438{
2439 int nr_pageblocks = 1 << (start_order - pageblock_order);
2440
2441 while (nr_pageblocks--) {
2442 set_pageblock_migratetype(pageblock_page, migratetype);
2443 pageblock_page += pageblock_nr_pages;
2444 }
2445}
2446
fef903ef 2447/*
9c0415eb
VB
2448 * When we are falling back to another migratetype during allocation, try to
2449 * steal extra free pages from the same pageblocks to satisfy further
2450 * allocations, instead of polluting multiple pageblocks.
2451 *
2452 * If we are stealing a relatively large buddy page, it is likely there will
2453 * be more free pages in the pageblock, so try to steal them all. For
2454 * reclaimable and unmovable allocations, we steal regardless of page size,
2455 * as fragmentation caused by those allocations polluting movable pageblocks
2456 * is worse than movable allocations stealing from unmovable and reclaimable
2457 * pageblocks.
fef903ef 2458 */
4eb7dce6
JK
2459static bool can_steal_fallback(unsigned int order, int start_mt)
2460{
2461 /*
2462 * Leaving this order check is intended, although there is
2463 * relaxed order check in next check. The reason is that
2464 * we can actually steal whole pageblock if this condition met,
2465 * but, below check doesn't guarantee it and that is just heuristic
2466 * so could be changed anytime.
2467 */
2468 if (order >= pageblock_order)
2469 return true;
2470
2471 if (order >= pageblock_order / 2 ||
2472 start_mt == MIGRATE_RECLAIMABLE ||
2473 start_mt == MIGRATE_UNMOVABLE ||
2474 page_group_by_mobility_disabled)
2475 return true;
2476
2477 return false;
2478}
2479
1c30844d
MG
2480static inline void boost_watermark(struct zone *zone)
2481{
2482 unsigned long max_boost;
2483
2484 if (!watermark_boost_factor)
2485 return;
14f69140
HW
2486 /*
2487 * Don't bother in zones that are unlikely to produce results.
2488 * On small machines, including kdump capture kernels running
2489 * in a small area, boosting the watermark can cause an out of
2490 * memory situation immediately.
2491 */
2492 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2493 return;
1c30844d
MG
2494
2495 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2496 watermark_boost_factor, 10000);
94b3334c
MG
2497
2498 /*
2499 * high watermark may be uninitialised if fragmentation occurs
2500 * very early in boot so do not boost. We do not fall
2501 * through and boost by pageblock_nr_pages as failing
2502 * allocations that early means that reclaim is not going
2503 * to help and it may even be impossible to reclaim the
2504 * boosted watermark resulting in a hang.
2505 */
2506 if (!max_boost)
2507 return;
2508
1c30844d
MG
2509 max_boost = max(pageblock_nr_pages, max_boost);
2510
2511 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2512 max_boost);
2513}
2514
4eb7dce6
JK
2515/*
2516 * This function implements actual steal behaviour. If order is large enough,
2517 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2518 * pageblock to our migratetype and determine how many already-allocated pages
2519 * are there in the pageblock with a compatible migratetype. If at least half
2520 * of pages are free or compatible, we can change migratetype of the pageblock
2521 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2522 */
2523static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2524 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2525{
ab130f91 2526 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2527 int free_pages, movable_pages, alike_pages;
2528 int old_block_type;
2529
2530 old_block_type = get_pageblock_migratetype(page);
fef903ef 2531
3bc48f96
VB
2532 /*
2533 * This can happen due to races and we want to prevent broken
2534 * highatomic accounting.
2535 */
02aa0cdd 2536 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2537 goto single_page;
2538
fef903ef
SB
2539 /* Take ownership for orders >= pageblock_order */
2540 if (current_order >= pageblock_order) {
2541 change_pageblock_range(page, current_order, start_type);
3bc48f96 2542 goto single_page;
fef903ef
SB
2543 }
2544
1c30844d
MG
2545 /*
2546 * Boost watermarks to increase reclaim pressure to reduce the
2547 * likelihood of future fallbacks. Wake kswapd now as the node
2548 * may be balanced overall and kswapd will not wake naturally.
2549 */
2550 boost_watermark(zone);
2551 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2552 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2553
3bc48f96
VB
2554 /* We are not allowed to try stealing from the whole block */
2555 if (!whole_block)
2556 goto single_page;
2557
02aa0cdd
VB
2558 free_pages = move_freepages_block(zone, page, start_type,
2559 &movable_pages);
2560 /*
2561 * Determine how many pages are compatible with our allocation.
2562 * For movable allocation, it's the number of movable pages which
2563 * we just obtained. For other types it's a bit more tricky.
2564 */
2565 if (start_type == MIGRATE_MOVABLE) {
2566 alike_pages = movable_pages;
2567 } else {
2568 /*
2569 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2570 * to MOVABLE pageblock, consider all non-movable pages as
2571 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2572 * vice versa, be conservative since we can't distinguish the
2573 * exact migratetype of non-movable pages.
2574 */
2575 if (old_block_type == MIGRATE_MOVABLE)
2576 alike_pages = pageblock_nr_pages
2577 - (free_pages + movable_pages);
2578 else
2579 alike_pages = 0;
2580 }
2581
3bc48f96 2582 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2583 if (!free_pages)
3bc48f96 2584 goto single_page;
fef903ef 2585
02aa0cdd
VB
2586 /*
2587 * If a sufficient number of pages in the block are either free or of
2588 * comparable migratability as our allocation, claim the whole block.
2589 */
2590 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2591 page_group_by_mobility_disabled)
2592 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2593
2594 return;
2595
2596single_page:
6ab01363 2597 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2598}
2599
2149cdae
JK
2600/*
2601 * Check whether there is a suitable fallback freepage with requested order.
2602 * If only_stealable is true, this function returns fallback_mt only if
2603 * we can steal other freepages all together. This would help to reduce
2604 * fragmentation due to mixed migratetype pages in one pageblock.
2605 */
2606int find_suitable_fallback(struct free_area *area, unsigned int order,
2607 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2608{
2609 int i;
2610 int fallback_mt;
2611
2612 if (area->nr_free == 0)
2613 return -1;
2614
2615 *can_steal = false;
2616 for (i = 0;; i++) {
2617 fallback_mt = fallbacks[migratetype][i];
974a786e 2618 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2619 break;
2620
b03641af 2621 if (free_area_empty(area, fallback_mt))
4eb7dce6 2622 continue;
fef903ef 2623
4eb7dce6
JK
2624 if (can_steal_fallback(order, migratetype))
2625 *can_steal = true;
2626
2149cdae
JK
2627 if (!only_stealable)
2628 return fallback_mt;
2629
2630 if (*can_steal)
2631 return fallback_mt;
fef903ef 2632 }
4eb7dce6
JK
2633
2634 return -1;
fef903ef
SB
2635}
2636
0aaa29a5
MG
2637/*
2638 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2639 * there are no empty page blocks that contain a page with a suitable order
2640 */
2641static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2642 unsigned int alloc_order)
2643{
2644 int mt;
2645 unsigned long max_managed, flags;
2646
2647 /*
2648 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2649 * Check is race-prone but harmless.
2650 */
9705bea5 2651 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2652 if (zone->nr_reserved_highatomic >= max_managed)
2653 return;
2654
2655 spin_lock_irqsave(&zone->lock, flags);
2656
2657 /* Recheck the nr_reserved_highatomic limit under the lock */
2658 if (zone->nr_reserved_highatomic >= max_managed)
2659 goto out_unlock;
2660
2661 /* Yoink! */
2662 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2663 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2664 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2665 zone->nr_reserved_highatomic += pageblock_nr_pages;
2666 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2667 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2668 }
2669
2670out_unlock:
2671 spin_unlock_irqrestore(&zone->lock, flags);
2672}
2673
2674/*
2675 * Used when an allocation is about to fail under memory pressure. This
2676 * potentially hurts the reliability of high-order allocations when under
2677 * intense memory pressure but failed atomic allocations should be easier
2678 * to recover from than an OOM.
29fac03b
MK
2679 *
2680 * If @force is true, try to unreserve a pageblock even though highatomic
2681 * pageblock is exhausted.
0aaa29a5 2682 */
29fac03b
MK
2683static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2684 bool force)
0aaa29a5
MG
2685{
2686 struct zonelist *zonelist = ac->zonelist;
2687 unsigned long flags;
2688 struct zoneref *z;
2689 struct zone *zone;
2690 struct page *page;
2691 int order;
04c8716f 2692 bool ret;
0aaa29a5 2693
97a225e6 2694 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2695 ac->nodemask) {
29fac03b
MK
2696 /*
2697 * Preserve at least one pageblock unless memory pressure
2698 * is really high.
2699 */
2700 if (!force && zone->nr_reserved_highatomic <=
2701 pageblock_nr_pages)
0aaa29a5
MG
2702 continue;
2703
2704 spin_lock_irqsave(&zone->lock, flags);
2705 for (order = 0; order < MAX_ORDER; order++) {
2706 struct free_area *area = &(zone->free_area[order]);
2707
b03641af 2708 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2709 if (!page)
0aaa29a5
MG
2710 continue;
2711
0aaa29a5 2712 /*
4855e4a7
MK
2713 * In page freeing path, migratetype change is racy so
2714 * we can counter several free pages in a pageblock
2715 * in this loop althoug we changed the pageblock type
2716 * from highatomic to ac->migratetype. So we should
2717 * adjust the count once.
0aaa29a5 2718 */
a6ffdc07 2719 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2720 /*
2721 * It should never happen but changes to
2722 * locking could inadvertently allow a per-cpu
2723 * drain to add pages to MIGRATE_HIGHATOMIC
2724 * while unreserving so be safe and watch for
2725 * underflows.
2726 */
2727 zone->nr_reserved_highatomic -= min(
2728 pageblock_nr_pages,
2729 zone->nr_reserved_highatomic);
2730 }
0aaa29a5
MG
2731
2732 /*
2733 * Convert to ac->migratetype and avoid the normal
2734 * pageblock stealing heuristics. Minimally, the caller
2735 * is doing the work and needs the pages. More
2736 * importantly, if the block was always converted to
2737 * MIGRATE_UNMOVABLE or another type then the number
2738 * of pageblocks that cannot be completely freed
2739 * may increase.
2740 */
2741 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2742 ret = move_freepages_block(zone, page, ac->migratetype,
2743 NULL);
29fac03b
MK
2744 if (ret) {
2745 spin_unlock_irqrestore(&zone->lock, flags);
2746 return ret;
2747 }
0aaa29a5
MG
2748 }
2749 spin_unlock_irqrestore(&zone->lock, flags);
2750 }
04c8716f
MK
2751
2752 return false;
0aaa29a5
MG
2753}
2754
3bc48f96
VB
2755/*
2756 * Try finding a free buddy page on the fallback list and put it on the free
2757 * list of requested migratetype, possibly along with other pages from the same
2758 * block, depending on fragmentation avoidance heuristics. Returns true if
2759 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2760 *
2761 * The use of signed ints for order and current_order is a deliberate
2762 * deviation from the rest of this file, to make the for loop
2763 * condition simpler.
3bc48f96 2764 */
85ccc8fa 2765static __always_inline bool
6bb15450
MG
2766__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2767 unsigned int alloc_flags)
b2a0ac88 2768{
b8af2941 2769 struct free_area *area;
b002529d 2770 int current_order;
6bb15450 2771 int min_order = order;
b2a0ac88 2772 struct page *page;
4eb7dce6
JK
2773 int fallback_mt;
2774 bool can_steal;
b2a0ac88 2775
6bb15450
MG
2776 /*
2777 * Do not steal pages from freelists belonging to other pageblocks
2778 * i.e. orders < pageblock_order. If there are no local zones free,
2779 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2780 */
2781 if (alloc_flags & ALLOC_NOFRAGMENT)
2782 min_order = pageblock_order;
2783
7a8f58f3
VB
2784 /*
2785 * Find the largest available free page in the other list. This roughly
2786 * approximates finding the pageblock with the most free pages, which
2787 * would be too costly to do exactly.
2788 */
6bb15450 2789 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2790 --current_order) {
4eb7dce6
JK
2791 area = &(zone->free_area[current_order]);
2792 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2793 start_migratetype, false, &can_steal);
4eb7dce6
JK
2794 if (fallback_mt == -1)
2795 continue;
b2a0ac88 2796
7a8f58f3
VB
2797 /*
2798 * We cannot steal all free pages from the pageblock and the
2799 * requested migratetype is movable. In that case it's better to
2800 * steal and split the smallest available page instead of the
2801 * largest available page, because even if the next movable
2802 * allocation falls back into a different pageblock than this
2803 * one, it won't cause permanent fragmentation.
2804 */
2805 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2806 && current_order > order)
2807 goto find_smallest;
b2a0ac88 2808
7a8f58f3
VB
2809 goto do_steal;
2810 }
e0fff1bd 2811
7a8f58f3 2812 return false;
e0fff1bd 2813
7a8f58f3
VB
2814find_smallest:
2815 for (current_order = order; current_order < MAX_ORDER;
2816 current_order++) {
2817 area = &(zone->free_area[current_order]);
2818 fallback_mt = find_suitable_fallback(area, current_order,
2819 start_migratetype, false, &can_steal);
2820 if (fallback_mt != -1)
2821 break;
b2a0ac88
MG
2822 }
2823
7a8f58f3
VB
2824 /*
2825 * This should not happen - we already found a suitable fallback
2826 * when looking for the largest page.
2827 */
2828 VM_BUG_ON(current_order == MAX_ORDER);
2829
2830do_steal:
b03641af 2831 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2832
1c30844d
MG
2833 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2834 can_steal);
7a8f58f3
VB
2835
2836 trace_mm_page_alloc_extfrag(page, order, current_order,
2837 start_migratetype, fallback_mt);
2838
2839 return true;
2840
b2a0ac88
MG
2841}
2842
56fd56b8 2843/*
1da177e4
LT
2844 * Do the hard work of removing an element from the buddy allocator.
2845 * Call me with the zone->lock already held.
2846 */
85ccc8fa 2847static __always_inline struct page *
6bb15450
MG
2848__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2849 unsigned int alloc_flags)
1da177e4 2850{
1da177e4
LT
2851 struct page *page;
2852
16867664
RG
2853#ifdef CONFIG_CMA
2854 /*
2855 * Balance movable allocations between regular and CMA areas by
2856 * allocating from CMA when over half of the zone's free memory
2857 * is in the CMA area.
2858 */
8510e69c 2859 if (alloc_flags & ALLOC_CMA &&
16867664
RG
2860 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2861 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2862 page = __rmqueue_cma_fallback(zone, order);
2863 if (page)
2864 return page;
2865 }
2866#endif
3bc48f96 2867retry:
56fd56b8 2868 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2869 if (unlikely(!page)) {
8510e69c 2870 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2871 page = __rmqueue_cma_fallback(zone, order);
2872
6bb15450
MG
2873 if (!page && __rmqueue_fallback(zone, order, migratetype,
2874 alloc_flags))
3bc48f96 2875 goto retry;
728ec980
MG
2876 }
2877
0d3d062a 2878 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2879 return page;
1da177e4
LT
2880}
2881
5f63b720 2882/*
1da177e4
LT
2883 * Obtain a specified number of elements from the buddy allocator, all under
2884 * a single hold of the lock, for efficiency. Add them to the supplied list.
2885 * Returns the number of new pages which were placed at *list.
2886 */
5f63b720 2887static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2888 unsigned long count, struct list_head *list,
6bb15450 2889 int migratetype, unsigned int alloc_flags)
1da177e4 2890{
a6de734b 2891 int i, alloced = 0;
5f63b720 2892
d34b0733 2893 spin_lock(&zone->lock);
1da177e4 2894 for (i = 0; i < count; ++i) {
6bb15450
MG
2895 struct page *page = __rmqueue(zone, order, migratetype,
2896 alloc_flags);
085cc7d5 2897 if (unlikely(page == NULL))
1da177e4 2898 break;
81eabcbe 2899
479f854a
MG
2900 if (unlikely(check_pcp_refill(page)))
2901 continue;
2902
81eabcbe 2903 /*
0fac3ba5
VB
2904 * Split buddy pages returned by expand() are received here in
2905 * physical page order. The page is added to the tail of
2906 * caller's list. From the callers perspective, the linked list
2907 * is ordered by page number under some conditions. This is
2908 * useful for IO devices that can forward direction from the
2909 * head, thus also in the physical page order. This is useful
2910 * for IO devices that can merge IO requests if the physical
2911 * pages are ordered properly.
81eabcbe 2912 */
0fac3ba5 2913 list_add_tail(&page->lru, list);
a6de734b 2914 alloced++;
bb14c2c7 2915 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2916 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2917 -(1 << order));
1da177e4 2918 }
a6de734b
MG
2919
2920 /*
2921 * i pages were removed from the buddy list even if some leak due
2922 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2923 * on i. Do not confuse with 'alloced' which is the number of
2924 * pages added to the pcp list.
2925 */
f2260e6b 2926 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2927 spin_unlock(&zone->lock);
a6de734b 2928 return alloced;
1da177e4
LT
2929}
2930
4ae7c039 2931#ifdef CONFIG_NUMA
8fce4d8e 2932/*
4037d452
CL
2933 * Called from the vmstat counter updater to drain pagesets of this
2934 * currently executing processor on remote nodes after they have
2935 * expired.
2936 *
879336c3
CL
2937 * Note that this function must be called with the thread pinned to
2938 * a single processor.
8fce4d8e 2939 */
4037d452 2940void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2941{
4ae7c039 2942 unsigned long flags;
7be12fc9 2943 int to_drain, batch;
4ae7c039 2944
4037d452 2945 local_irq_save(flags);
4db0c3c2 2946 batch = READ_ONCE(pcp->batch);
7be12fc9 2947 to_drain = min(pcp->count, batch);
77ba9062 2948 if (to_drain > 0)
2a13515c 2949 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2950 local_irq_restore(flags);
4ae7c039
CL
2951}
2952#endif
2953
9f8f2172 2954/*
93481ff0 2955 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2956 *
2957 * The processor must either be the current processor and the
2958 * thread pinned to the current processor or a processor that
2959 * is not online.
2960 */
93481ff0 2961static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2962{
c54ad30c 2963 unsigned long flags;
93481ff0
VB
2964 struct per_cpu_pageset *pset;
2965 struct per_cpu_pages *pcp;
1da177e4 2966
93481ff0
VB
2967 local_irq_save(flags);
2968 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2969
93481ff0 2970 pcp = &pset->pcp;
77ba9062 2971 if (pcp->count)
93481ff0 2972 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2973 local_irq_restore(flags);
2974}
3dfa5721 2975
93481ff0
VB
2976/*
2977 * Drain pcplists of all zones on the indicated processor.
2978 *
2979 * The processor must either be the current processor and the
2980 * thread pinned to the current processor or a processor that
2981 * is not online.
2982 */
2983static void drain_pages(unsigned int cpu)
2984{
2985 struct zone *zone;
2986
2987 for_each_populated_zone(zone) {
2988 drain_pages_zone(cpu, zone);
1da177e4
LT
2989 }
2990}
1da177e4 2991
9f8f2172
CL
2992/*
2993 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2994 *
2995 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2996 * the single zone's pages.
9f8f2172 2997 */
93481ff0 2998void drain_local_pages(struct zone *zone)
9f8f2172 2999{
93481ff0
VB
3000 int cpu = smp_processor_id();
3001
3002 if (zone)
3003 drain_pages_zone(cpu, zone);
3004 else
3005 drain_pages(cpu);
9f8f2172
CL
3006}
3007
0ccce3b9
MG
3008static void drain_local_pages_wq(struct work_struct *work)
3009{
d9367bd0
WY
3010 struct pcpu_drain *drain;
3011
3012 drain = container_of(work, struct pcpu_drain, work);
3013
a459eeb7
MH
3014 /*
3015 * drain_all_pages doesn't use proper cpu hotplug protection so
3016 * we can race with cpu offline when the WQ can move this from
3017 * a cpu pinned worker to an unbound one. We can operate on a different
3018 * cpu which is allright but we also have to make sure to not move to
3019 * a different one.
3020 */
3021 preempt_disable();
d9367bd0 3022 drain_local_pages(drain->zone);
a459eeb7 3023 preempt_enable();
0ccce3b9
MG
3024}
3025
9f8f2172 3026/*
74046494
GBY
3027 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3028 *
93481ff0
VB
3029 * When zone parameter is non-NULL, spill just the single zone's pages.
3030 *
0ccce3b9 3031 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 3032 */
93481ff0 3033void drain_all_pages(struct zone *zone)
9f8f2172 3034{
74046494 3035 int cpu;
74046494
GBY
3036
3037 /*
3038 * Allocate in the BSS so we wont require allocation in
3039 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3040 */
3041 static cpumask_t cpus_with_pcps;
3042
ce612879
MH
3043 /*
3044 * Make sure nobody triggers this path before mm_percpu_wq is fully
3045 * initialized.
3046 */
3047 if (WARN_ON_ONCE(!mm_percpu_wq))
3048 return;
3049
bd233f53
MG
3050 /*
3051 * Do not drain if one is already in progress unless it's specific to
3052 * a zone. Such callers are primarily CMA and memory hotplug and need
3053 * the drain to be complete when the call returns.
3054 */
3055 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3056 if (!zone)
3057 return;
3058 mutex_lock(&pcpu_drain_mutex);
3059 }
0ccce3b9 3060
74046494
GBY
3061 /*
3062 * We don't care about racing with CPU hotplug event
3063 * as offline notification will cause the notified
3064 * cpu to drain that CPU pcps and on_each_cpu_mask
3065 * disables preemption as part of its processing
3066 */
3067 for_each_online_cpu(cpu) {
93481ff0
VB
3068 struct per_cpu_pageset *pcp;
3069 struct zone *z;
74046494 3070 bool has_pcps = false;
93481ff0
VB
3071
3072 if (zone) {
74046494 3073 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3074 if (pcp->pcp.count)
74046494 3075 has_pcps = true;
93481ff0
VB
3076 } else {
3077 for_each_populated_zone(z) {
3078 pcp = per_cpu_ptr(z->pageset, cpu);
3079 if (pcp->pcp.count) {
3080 has_pcps = true;
3081 break;
3082 }
74046494
GBY
3083 }
3084 }
93481ff0 3085
74046494
GBY
3086 if (has_pcps)
3087 cpumask_set_cpu(cpu, &cpus_with_pcps);
3088 else
3089 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3090 }
0ccce3b9 3091
bd233f53 3092 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3093 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3094
3095 drain->zone = zone;
3096 INIT_WORK(&drain->work, drain_local_pages_wq);
3097 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3098 }
bd233f53 3099 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3100 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3101
3102 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3103}
3104
296699de 3105#ifdef CONFIG_HIBERNATION
1da177e4 3106
556b969a
CY
3107/*
3108 * Touch the watchdog for every WD_PAGE_COUNT pages.
3109 */
3110#define WD_PAGE_COUNT (128*1024)
3111
1da177e4
LT
3112void mark_free_pages(struct zone *zone)
3113{
556b969a 3114 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3115 unsigned long flags;
7aeb09f9 3116 unsigned int order, t;
86760a2c 3117 struct page *page;
1da177e4 3118
8080fc03 3119 if (zone_is_empty(zone))
1da177e4
LT
3120 return;
3121
3122 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3123
108bcc96 3124 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3125 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3126 if (pfn_valid(pfn)) {
86760a2c 3127 page = pfn_to_page(pfn);
ba6b0979 3128
556b969a
CY
3129 if (!--page_count) {
3130 touch_nmi_watchdog();
3131 page_count = WD_PAGE_COUNT;
3132 }
3133
ba6b0979
JK
3134 if (page_zone(page) != zone)
3135 continue;
3136
7be98234
RW
3137 if (!swsusp_page_is_forbidden(page))
3138 swsusp_unset_page_free(page);
f623f0db 3139 }
1da177e4 3140
b2a0ac88 3141 for_each_migratetype_order(order, t) {
86760a2c
GT
3142 list_for_each_entry(page,
3143 &zone->free_area[order].free_list[t], lru) {
f623f0db 3144 unsigned long i;
1da177e4 3145
86760a2c 3146 pfn = page_to_pfn(page);
556b969a
CY
3147 for (i = 0; i < (1UL << order); i++) {
3148 if (!--page_count) {
3149 touch_nmi_watchdog();
3150 page_count = WD_PAGE_COUNT;
3151 }
7be98234 3152 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3153 }
f623f0db 3154 }
b2a0ac88 3155 }
1da177e4
LT
3156 spin_unlock_irqrestore(&zone->lock, flags);
3157}
e2c55dc8 3158#endif /* CONFIG_PM */
1da177e4 3159
2d4894b5 3160static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3161{
5f8dcc21 3162 int migratetype;
1da177e4 3163
4db7548c 3164 if (!free_pcp_prepare(page))
9cca35d4 3165 return false;
689bcebf 3166
dc4b0caf 3167 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3168 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3169 return true;
3170}
3171
2d4894b5 3172static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3173{
3174 struct zone *zone = page_zone(page);
3175 struct per_cpu_pages *pcp;
3176 int migratetype;
3177
3178 migratetype = get_pcppage_migratetype(page);
d34b0733 3179 __count_vm_event(PGFREE);
da456f14 3180
5f8dcc21
MG
3181 /*
3182 * We only track unmovable, reclaimable and movable on pcp lists.
3183 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3184 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3185 * areas back if necessary. Otherwise, we may have to free
3186 * excessively into the page allocator
3187 */
3188 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3189 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3190 free_one_page(zone, page, pfn, 0, migratetype,
3191 FPI_NONE);
9cca35d4 3192 return;
5f8dcc21
MG
3193 }
3194 migratetype = MIGRATE_MOVABLE;
3195 }
3196
99dcc3e5 3197 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3198 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3199 pcp->count++;
48db57f8 3200 if (pcp->count >= pcp->high) {
4db0c3c2 3201 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3202 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3203 }
9cca35d4 3204}
5f8dcc21 3205
9cca35d4
MG
3206/*
3207 * Free a 0-order page
9cca35d4 3208 */
2d4894b5 3209void free_unref_page(struct page *page)
9cca35d4
MG
3210{
3211 unsigned long flags;
3212 unsigned long pfn = page_to_pfn(page);
3213
2d4894b5 3214 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3215 return;
3216
3217 local_irq_save(flags);
2d4894b5 3218 free_unref_page_commit(page, pfn);
d34b0733 3219 local_irq_restore(flags);
1da177e4
LT
3220}
3221
cc59850e
KK
3222/*
3223 * Free a list of 0-order pages
3224 */
2d4894b5 3225void free_unref_page_list(struct list_head *list)
cc59850e
KK
3226{
3227 struct page *page, *next;
9cca35d4 3228 unsigned long flags, pfn;
c24ad77d 3229 int batch_count = 0;
9cca35d4
MG
3230
3231 /* Prepare pages for freeing */
3232 list_for_each_entry_safe(page, next, list, lru) {
3233 pfn = page_to_pfn(page);
2d4894b5 3234 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3235 list_del(&page->lru);
3236 set_page_private(page, pfn);
3237 }
cc59850e 3238
9cca35d4 3239 local_irq_save(flags);
cc59850e 3240 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3241 unsigned long pfn = page_private(page);
3242
3243 set_page_private(page, 0);
2d4894b5
MG
3244 trace_mm_page_free_batched(page);
3245 free_unref_page_commit(page, pfn);
c24ad77d
LS
3246
3247 /*
3248 * Guard against excessive IRQ disabled times when we get
3249 * a large list of pages to free.
3250 */
3251 if (++batch_count == SWAP_CLUSTER_MAX) {
3252 local_irq_restore(flags);
3253 batch_count = 0;
3254 local_irq_save(flags);
3255 }
cc59850e 3256 }
9cca35d4 3257 local_irq_restore(flags);
cc59850e
KK
3258}
3259
8dfcc9ba
NP
3260/*
3261 * split_page takes a non-compound higher-order page, and splits it into
3262 * n (1<<order) sub-pages: page[0..n]
3263 * Each sub-page must be freed individually.
3264 *
3265 * Note: this is probably too low level an operation for use in drivers.
3266 * Please consult with lkml before using this in your driver.
3267 */
3268void split_page(struct page *page, unsigned int order)
3269{
3270 int i;
3271
309381fe
SL
3272 VM_BUG_ON_PAGE(PageCompound(page), page);
3273 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3274
a9627bc5 3275 for (i = 1; i < (1 << order); i++)
7835e98b 3276 set_page_refcounted(page + i);
8fb156c9 3277 split_page_owner(page, 1 << order);
8dfcc9ba 3278}
5853ff23 3279EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3280
3c605096 3281int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3282{
748446bb
MG
3283 unsigned long watermark;
3284 struct zone *zone;
2139cbe6 3285 int mt;
748446bb
MG
3286
3287 BUG_ON(!PageBuddy(page));
3288
3289 zone = page_zone(page);
2e30abd1 3290 mt = get_pageblock_migratetype(page);
748446bb 3291
194159fb 3292 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3293 /*
3294 * Obey watermarks as if the page was being allocated. We can
3295 * emulate a high-order watermark check with a raised order-0
3296 * watermark, because we already know our high-order page
3297 * exists.
3298 */
fd1444b2 3299 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3300 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3301 return 0;
3302
8fb74b9f 3303 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3304 }
748446bb
MG
3305
3306 /* Remove page from free list */
b03641af 3307
6ab01363 3308 del_page_from_free_list(page, zone, order);
2139cbe6 3309
400bc7fd 3310 /*
3311 * Set the pageblock if the isolated page is at least half of a
3312 * pageblock
3313 */
748446bb
MG
3314 if (order >= pageblock_order - 1) {
3315 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3316 for (; page < endpage; page += pageblock_nr_pages) {
3317 int mt = get_pageblock_migratetype(page);
88ed365e 3318 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3319 && !is_migrate_highatomic(mt))
47118af0
MN
3320 set_pageblock_migratetype(page,
3321 MIGRATE_MOVABLE);
3322 }
748446bb
MG
3323 }
3324
f3a14ced 3325
8fb74b9f 3326 return 1UL << order;
1fb3f8ca
MG
3327}
3328
624f58d8
AD
3329/**
3330 * __putback_isolated_page - Return a now-isolated page back where we got it
3331 * @page: Page that was isolated
3332 * @order: Order of the isolated page
e6a0a7ad 3333 * @mt: The page's pageblock's migratetype
624f58d8
AD
3334 *
3335 * This function is meant to return a page pulled from the free lists via
3336 * __isolate_free_page back to the free lists they were pulled from.
3337 */
3338void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3339{
3340 struct zone *zone = page_zone(page);
3341
3342 /* zone lock should be held when this function is called */
3343 lockdep_assert_held(&zone->lock);
3344
3345 /* Return isolated page to tail of freelist. */
f04a5d5d 3346 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3347 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3348}
3349
060e7417
MG
3350/*
3351 * Update NUMA hit/miss statistics
3352 *
3353 * Must be called with interrupts disabled.
060e7417 3354 */
41b6167e 3355static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3356{
3357#ifdef CONFIG_NUMA
3a321d2a 3358 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3359
4518085e
KW
3360 /* skip numa counters update if numa stats is disabled */
3361 if (!static_branch_likely(&vm_numa_stat_key))
3362 return;
3363
c1093b74 3364 if (zone_to_nid(z) != numa_node_id())
060e7417 3365 local_stat = NUMA_OTHER;
060e7417 3366
c1093b74 3367 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3368 __inc_numa_state(z, NUMA_HIT);
2df26639 3369 else {
3a321d2a
KW
3370 __inc_numa_state(z, NUMA_MISS);
3371 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3372 }
3a321d2a 3373 __inc_numa_state(z, local_stat);
060e7417
MG
3374#endif
3375}
3376
066b2393
MG
3377/* Remove page from the per-cpu list, caller must protect the list */
3378static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3379 unsigned int alloc_flags,
453f85d4 3380 struct per_cpu_pages *pcp,
066b2393
MG
3381 struct list_head *list)
3382{
3383 struct page *page;
3384
3385 do {
3386 if (list_empty(list)) {
3387 pcp->count += rmqueue_bulk(zone, 0,
3388 pcp->batch, list,
6bb15450 3389 migratetype, alloc_flags);
066b2393
MG
3390 if (unlikely(list_empty(list)))
3391 return NULL;
3392 }
3393
453f85d4 3394 page = list_first_entry(list, struct page, lru);
066b2393
MG
3395 list_del(&page->lru);
3396 pcp->count--;
3397 } while (check_new_pcp(page));
3398
3399 return page;
3400}
3401
3402/* Lock and remove page from the per-cpu list */
3403static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3404 struct zone *zone, gfp_t gfp_flags,
3405 int migratetype, unsigned int alloc_flags)
066b2393
MG
3406{
3407 struct per_cpu_pages *pcp;
3408 struct list_head *list;
066b2393 3409 struct page *page;
d34b0733 3410 unsigned long flags;
066b2393 3411
d34b0733 3412 local_irq_save(flags);
066b2393
MG
3413 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3414 list = &pcp->lists[migratetype];
6bb15450 3415 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3416 if (page) {
1c52e6d0 3417 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3418 zone_statistics(preferred_zone, zone);
3419 }
d34b0733 3420 local_irq_restore(flags);
066b2393
MG
3421 return page;
3422}
3423
1da177e4 3424/*
75379191 3425 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3426 */
0a15c3e9 3427static inline
066b2393 3428struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3429 struct zone *zone, unsigned int order,
c603844b
MG
3430 gfp_t gfp_flags, unsigned int alloc_flags,
3431 int migratetype)
1da177e4
LT
3432{
3433 unsigned long flags;
689bcebf 3434 struct page *page;
1da177e4 3435
d34b0733 3436 if (likely(order == 0)) {
1d91df85
JK
3437 /*
3438 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3439 * we need to skip it when CMA area isn't allowed.
3440 */
3441 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3442 migratetype != MIGRATE_MOVABLE) {
3443 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3444 migratetype, alloc_flags);
1d91df85
JK
3445 goto out;
3446 }
066b2393 3447 }
83b9355b 3448
066b2393
MG
3449 /*
3450 * We most definitely don't want callers attempting to
3451 * allocate greater than order-1 page units with __GFP_NOFAIL.
3452 */
3453 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3454 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3455
066b2393
MG
3456 do {
3457 page = NULL;
1d91df85
JK
3458 /*
3459 * order-0 request can reach here when the pcplist is skipped
3460 * due to non-CMA allocation context. HIGHATOMIC area is
3461 * reserved for high-order atomic allocation, so order-0
3462 * request should skip it.
3463 */
3464 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3465 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3466 if (page)
3467 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3468 }
a74609fa 3469 if (!page)
6bb15450 3470 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3471 } while (page && check_new_pages(page, order));
3472 spin_unlock(&zone->lock);
3473 if (!page)
3474 goto failed;
3475 __mod_zone_freepage_state(zone, -(1 << order),
3476 get_pcppage_migratetype(page));
1da177e4 3477
16709d1d 3478 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3479 zone_statistics(preferred_zone, zone);
a74609fa 3480 local_irq_restore(flags);
1da177e4 3481
066b2393 3482out:
73444bc4
MG
3483 /* Separate test+clear to avoid unnecessary atomics */
3484 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3485 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3486 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3487 }
3488
066b2393 3489 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3490 return page;
a74609fa
NP
3491
3492failed:
3493 local_irq_restore(flags);
a74609fa 3494 return NULL;
1da177e4
LT
3495}
3496
933e312e
AM
3497#ifdef CONFIG_FAIL_PAGE_ALLOC
3498
b2588c4b 3499static struct {
933e312e
AM
3500 struct fault_attr attr;
3501
621a5f7a 3502 bool ignore_gfp_highmem;
71baba4b 3503 bool ignore_gfp_reclaim;
54114994 3504 u32 min_order;
933e312e
AM
3505} fail_page_alloc = {
3506 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3507 .ignore_gfp_reclaim = true,
621a5f7a 3508 .ignore_gfp_highmem = true,
54114994 3509 .min_order = 1,
933e312e
AM
3510};
3511
3512static int __init setup_fail_page_alloc(char *str)
3513{
3514 return setup_fault_attr(&fail_page_alloc.attr, str);
3515}
3516__setup("fail_page_alloc=", setup_fail_page_alloc);
3517
af3b8544 3518static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3519{
54114994 3520 if (order < fail_page_alloc.min_order)
deaf386e 3521 return false;
933e312e 3522 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3523 return false;
933e312e 3524 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3525 return false;
71baba4b
MG
3526 if (fail_page_alloc.ignore_gfp_reclaim &&
3527 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3528 return false;
933e312e
AM
3529
3530 return should_fail(&fail_page_alloc.attr, 1 << order);
3531}
3532
3533#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3534
3535static int __init fail_page_alloc_debugfs(void)
3536{
0825a6f9 3537 umode_t mode = S_IFREG | 0600;
933e312e 3538 struct dentry *dir;
933e312e 3539
dd48c085
AM
3540 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3541 &fail_page_alloc.attr);
b2588c4b 3542
d9f7979c
GKH
3543 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3544 &fail_page_alloc.ignore_gfp_reclaim);
3545 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3546 &fail_page_alloc.ignore_gfp_highmem);
3547 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3548
d9f7979c 3549 return 0;
933e312e
AM
3550}
3551
3552late_initcall(fail_page_alloc_debugfs);
3553
3554#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3555
3556#else /* CONFIG_FAIL_PAGE_ALLOC */
3557
af3b8544 3558static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3559{
deaf386e 3560 return false;
933e312e
AM
3561}
3562
3563#endif /* CONFIG_FAIL_PAGE_ALLOC */
3564
76cd6173 3565noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3566{
3567 return __should_fail_alloc_page(gfp_mask, order);
3568}
3569ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3570
f27ce0e1
JK
3571static inline long __zone_watermark_unusable_free(struct zone *z,
3572 unsigned int order, unsigned int alloc_flags)
3573{
3574 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3575 long unusable_free = (1 << order) - 1;
3576
3577 /*
3578 * If the caller does not have rights to ALLOC_HARDER then subtract
3579 * the high-atomic reserves. This will over-estimate the size of the
3580 * atomic reserve but it avoids a search.
3581 */
3582 if (likely(!alloc_harder))
3583 unusable_free += z->nr_reserved_highatomic;
3584
3585#ifdef CONFIG_CMA
3586 /* If allocation can't use CMA areas don't use free CMA pages */
3587 if (!(alloc_flags & ALLOC_CMA))
3588 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3589#endif
3590
3591 return unusable_free;
3592}
3593
1da177e4 3594/*
97a16fc8
MG
3595 * Return true if free base pages are above 'mark'. For high-order checks it
3596 * will return true of the order-0 watermark is reached and there is at least
3597 * one free page of a suitable size. Checking now avoids taking the zone lock
3598 * to check in the allocation paths if no pages are free.
1da177e4 3599 */
86a294a8 3600bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3601 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3602 long free_pages)
1da177e4 3603{
d23ad423 3604 long min = mark;
1da177e4 3605 int o;
cd04ae1e 3606 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3607
0aaa29a5 3608 /* free_pages may go negative - that's OK */
f27ce0e1 3609 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3610
7fb1d9fc 3611 if (alloc_flags & ALLOC_HIGH)
1da177e4 3612 min -= min / 2;
0aaa29a5 3613
f27ce0e1 3614 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3615 /*
3616 * OOM victims can try even harder than normal ALLOC_HARDER
3617 * users on the grounds that it's definitely going to be in
3618 * the exit path shortly and free memory. Any allocation it
3619 * makes during the free path will be small and short-lived.
3620 */
3621 if (alloc_flags & ALLOC_OOM)
3622 min -= min / 2;
3623 else
3624 min -= min / 4;
3625 }
3626
97a16fc8
MG
3627 /*
3628 * Check watermarks for an order-0 allocation request. If these
3629 * are not met, then a high-order request also cannot go ahead
3630 * even if a suitable page happened to be free.
3631 */
97a225e6 3632 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3633 return false;
1da177e4 3634
97a16fc8
MG
3635 /* If this is an order-0 request then the watermark is fine */
3636 if (!order)
3637 return true;
3638
3639 /* For a high-order request, check at least one suitable page is free */
3640 for (o = order; o < MAX_ORDER; o++) {
3641 struct free_area *area = &z->free_area[o];
3642 int mt;
3643
3644 if (!area->nr_free)
3645 continue;
3646
97a16fc8 3647 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3648 if (!free_area_empty(area, mt))
97a16fc8
MG
3649 return true;
3650 }
3651
3652#ifdef CONFIG_CMA
d883c6cf 3653 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3654 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3655 return true;
d883c6cf 3656 }
97a16fc8 3657#endif
76089d00 3658 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3659 return true;
1da177e4 3660 }
97a16fc8 3661 return false;
88f5acf8
MG
3662}
3663
7aeb09f9 3664bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3665 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3666{
97a225e6 3667 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3668 zone_page_state(z, NR_FREE_PAGES));
3669}
3670
48ee5f36 3671static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3672 unsigned long mark, int highest_zoneidx,
f80b08fc 3673 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3674{
f27ce0e1 3675 long free_pages;
d883c6cf 3676
f27ce0e1 3677 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3678
3679 /*
3680 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3681 * need to be calculated.
48ee5f36 3682 */
f27ce0e1
JK
3683 if (!order) {
3684 long fast_free;
3685
3686 fast_free = free_pages;
3687 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3688 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3689 return true;
3690 }
48ee5f36 3691
f80b08fc
CTR
3692 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3693 free_pages))
3694 return true;
3695 /*
3696 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3697 * when checking the min watermark. The min watermark is the
3698 * point where boosting is ignored so that kswapd is woken up
3699 * when below the low watermark.
3700 */
3701 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3702 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3703 mark = z->_watermark[WMARK_MIN];
3704 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3705 alloc_flags, free_pages);
3706 }
3707
3708 return false;
48ee5f36
MG
3709}
3710
7aeb09f9 3711bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3712 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3713{
3714 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3715
3716 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3717 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3718
97a225e6 3719 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3720 free_pages);
1da177e4
LT
3721}
3722
9276b1bc 3723#ifdef CONFIG_NUMA
957f822a
DR
3724static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3725{
e02dc017 3726 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3727 node_reclaim_distance;
957f822a 3728}
9276b1bc 3729#else /* CONFIG_NUMA */
957f822a
DR
3730static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3731{
3732 return true;
3733}
9276b1bc
PJ
3734#endif /* CONFIG_NUMA */
3735
6bb15450
MG
3736/*
3737 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3738 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3739 * premature use of a lower zone may cause lowmem pressure problems that
3740 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3741 * probably too small. It only makes sense to spread allocations to avoid
3742 * fragmentation between the Normal and DMA32 zones.
3743 */
3744static inline unsigned int
0a79cdad 3745alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3746{
736838e9 3747 unsigned int alloc_flags;
0a79cdad 3748
736838e9
MN
3749 /*
3750 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3751 * to save a branch.
3752 */
3753 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3754
3755#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3756 if (!zone)
3757 return alloc_flags;
3758
6bb15450 3759 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3760 return alloc_flags;
6bb15450
MG
3761
3762 /*
3763 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3764 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3765 * on UMA that if Normal is populated then so is DMA32.
3766 */
3767 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3768 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3769 return alloc_flags;
6bb15450 3770
8118b82e 3771 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3772#endif /* CONFIG_ZONE_DMA32 */
3773 return alloc_flags;
6bb15450 3774}
6bb15450 3775
8510e69c
JK
3776static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3777 unsigned int alloc_flags)
3778{
3779#ifdef CONFIG_CMA
3780 unsigned int pflags = current->flags;
3781
3782 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3783 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3784 alloc_flags |= ALLOC_CMA;
3785
3786#endif
3787 return alloc_flags;
3788}
3789
7fb1d9fc 3790/*
0798e519 3791 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3792 * a page.
3793 */
3794static struct page *
a9263751
VB
3795get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3796 const struct alloc_context *ac)
753ee728 3797{
6bb15450 3798 struct zoneref *z;
5117f45d 3799 struct zone *zone;
3b8c0be4 3800 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3801 bool no_fallback;
3b8c0be4 3802
6bb15450 3803retry:
7fb1d9fc 3804 /*
9276b1bc 3805 * Scan zonelist, looking for a zone with enough free.
344736f2 3806 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3807 */
6bb15450
MG
3808 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3809 z = ac->preferred_zoneref;
30d8ec73
MN
3810 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3811 ac->nodemask) {
be06af00 3812 struct page *page;
e085dbc5
JW
3813 unsigned long mark;
3814
664eedde
MG
3815 if (cpusets_enabled() &&
3816 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3817 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3818 continue;
a756cf59
JW
3819 /*
3820 * When allocating a page cache page for writing, we
281e3726
MG
3821 * want to get it from a node that is within its dirty
3822 * limit, such that no single node holds more than its
a756cf59 3823 * proportional share of globally allowed dirty pages.
281e3726 3824 * The dirty limits take into account the node's
a756cf59
JW
3825 * lowmem reserves and high watermark so that kswapd
3826 * should be able to balance it without having to
3827 * write pages from its LRU list.
3828 *
a756cf59 3829 * XXX: For now, allow allocations to potentially
281e3726 3830 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3831 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3832 * which is important when on a NUMA setup the allowed
281e3726 3833 * nodes are together not big enough to reach the
a756cf59 3834 * global limit. The proper fix for these situations
281e3726 3835 * will require awareness of nodes in the
a756cf59
JW
3836 * dirty-throttling and the flusher threads.
3837 */
3b8c0be4
MG
3838 if (ac->spread_dirty_pages) {
3839 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3840 continue;
3841
3842 if (!node_dirty_ok(zone->zone_pgdat)) {
3843 last_pgdat_dirty_limit = zone->zone_pgdat;
3844 continue;
3845 }
3846 }
7fb1d9fc 3847
6bb15450
MG
3848 if (no_fallback && nr_online_nodes > 1 &&
3849 zone != ac->preferred_zoneref->zone) {
3850 int local_nid;
3851
3852 /*
3853 * If moving to a remote node, retry but allow
3854 * fragmenting fallbacks. Locality is more important
3855 * than fragmentation avoidance.
3856 */
3857 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3858 if (zone_to_nid(zone) != local_nid) {
3859 alloc_flags &= ~ALLOC_NOFRAGMENT;
3860 goto retry;
3861 }
3862 }
3863
a9214443 3864 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3865 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3866 ac->highest_zoneidx, alloc_flags,
3867 gfp_mask)) {
fa5e084e
MG
3868 int ret;
3869
c9e97a19
PT
3870#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3871 /*
3872 * Watermark failed for this zone, but see if we can
3873 * grow this zone if it contains deferred pages.
3874 */
3875 if (static_branch_unlikely(&deferred_pages)) {
3876 if (_deferred_grow_zone(zone, order))
3877 goto try_this_zone;
3878 }
3879#endif
5dab2911
MG
3880 /* Checked here to keep the fast path fast */
3881 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3882 if (alloc_flags & ALLOC_NO_WATERMARKS)
3883 goto try_this_zone;
3884
a5f5f91d 3885 if (node_reclaim_mode == 0 ||
c33d6c06 3886 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3887 continue;
3888
a5f5f91d 3889 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3890 switch (ret) {
a5f5f91d 3891 case NODE_RECLAIM_NOSCAN:
fa5e084e 3892 /* did not scan */
cd38b115 3893 continue;
a5f5f91d 3894 case NODE_RECLAIM_FULL:
fa5e084e 3895 /* scanned but unreclaimable */
cd38b115 3896 continue;
fa5e084e
MG
3897 default:
3898 /* did we reclaim enough */
fed2719e 3899 if (zone_watermark_ok(zone, order, mark,
97a225e6 3900 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3901 goto try_this_zone;
3902
fed2719e 3903 continue;
0798e519 3904 }
7fb1d9fc
RS
3905 }
3906
fa5e084e 3907try_this_zone:
066b2393 3908 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3909 gfp_mask, alloc_flags, ac->migratetype);
75379191 3910 if (page) {
479f854a 3911 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3912
3913 /*
3914 * If this is a high-order atomic allocation then check
3915 * if the pageblock should be reserved for the future
3916 */
3917 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3918 reserve_highatomic_pageblock(page, zone, order);
3919
75379191 3920 return page;
c9e97a19
PT
3921 } else {
3922#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3923 /* Try again if zone has deferred pages */
3924 if (static_branch_unlikely(&deferred_pages)) {
3925 if (_deferred_grow_zone(zone, order))
3926 goto try_this_zone;
3927 }
3928#endif
75379191 3929 }
54a6eb5c 3930 }
9276b1bc 3931
6bb15450
MG
3932 /*
3933 * It's possible on a UMA machine to get through all zones that are
3934 * fragmented. If avoiding fragmentation, reset and try again.
3935 */
3936 if (no_fallback) {
3937 alloc_flags &= ~ALLOC_NOFRAGMENT;
3938 goto retry;
3939 }
3940
4ffeaf35 3941 return NULL;
753ee728
MH
3942}
3943
9af744d7 3944static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3945{
a238ab5b 3946 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3947
3948 /*
3949 * This documents exceptions given to allocations in certain
3950 * contexts that are allowed to allocate outside current's set
3951 * of allowed nodes.
3952 */
3953 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3954 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3955 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3956 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3957 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3958 filter &= ~SHOW_MEM_FILTER_NODES;
3959
9af744d7 3960 show_mem(filter, nodemask);
aa187507
MH
3961}
3962
a8e99259 3963void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3964{
3965 struct va_format vaf;
3966 va_list args;
1be334e5 3967 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3968
0f7896f1 3969 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3970 return;
3971
7877cdcc
MH
3972 va_start(args, fmt);
3973 vaf.fmt = fmt;
3974 vaf.va = &args;
ef8444ea 3975 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3976 current->comm, &vaf, gfp_mask, &gfp_mask,
3977 nodemask_pr_args(nodemask));
7877cdcc 3978 va_end(args);
3ee9a4f0 3979
a8e99259 3980 cpuset_print_current_mems_allowed();
ef8444ea 3981 pr_cont("\n");
a238ab5b 3982 dump_stack();
685dbf6f 3983 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3984}
3985
6c18ba7a
MH
3986static inline struct page *
3987__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3988 unsigned int alloc_flags,
3989 const struct alloc_context *ac)
3990{
3991 struct page *page;
3992
3993 page = get_page_from_freelist(gfp_mask, order,
3994 alloc_flags|ALLOC_CPUSET, ac);
3995 /*
3996 * fallback to ignore cpuset restriction if our nodes
3997 * are depleted
3998 */
3999 if (!page)
4000 page = get_page_from_freelist(gfp_mask, order,
4001 alloc_flags, ac);
4002
4003 return page;
4004}
4005
11e33f6a
MG
4006static inline struct page *
4007__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4008 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4009{
6e0fc46d
DR
4010 struct oom_control oc = {
4011 .zonelist = ac->zonelist,
4012 .nodemask = ac->nodemask,
2a966b77 4013 .memcg = NULL,
6e0fc46d
DR
4014 .gfp_mask = gfp_mask,
4015 .order = order,
6e0fc46d 4016 };
11e33f6a
MG
4017 struct page *page;
4018
9879de73
JW
4019 *did_some_progress = 0;
4020
9879de73 4021 /*
dc56401f
JW
4022 * Acquire the oom lock. If that fails, somebody else is
4023 * making progress for us.
9879de73 4024 */
dc56401f 4025 if (!mutex_trylock(&oom_lock)) {
9879de73 4026 *did_some_progress = 1;
11e33f6a 4027 schedule_timeout_uninterruptible(1);
1da177e4
LT
4028 return NULL;
4029 }
6b1de916 4030
11e33f6a
MG
4031 /*
4032 * Go through the zonelist yet one more time, keep very high watermark
4033 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4034 * we're still under heavy pressure. But make sure that this reclaim
4035 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4036 * allocation which will never fail due to oom_lock already held.
11e33f6a 4037 */
e746bf73
TH
4038 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4039 ~__GFP_DIRECT_RECLAIM, order,
4040 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4041 if (page)
11e33f6a
MG
4042 goto out;
4043
06ad276a
MH
4044 /* Coredumps can quickly deplete all memory reserves */
4045 if (current->flags & PF_DUMPCORE)
4046 goto out;
4047 /* The OOM killer will not help higher order allocs */
4048 if (order > PAGE_ALLOC_COSTLY_ORDER)
4049 goto out;
dcda9b04
MH
4050 /*
4051 * We have already exhausted all our reclaim opportunities without any
4052 * success so it is time to admit defeat. We will skip the OOM killer
4053 * because it is very likely that the caller has a more reasonable
4054 * fallback than shooting a random task.
cfb4a541
MN
4055 *
4056 * The OOM killer may not free memory on a specific node.
dcda9b04 4057 */
cfb4a541 4058 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4059 goto out;
06ad276a 4060 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4061 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4062 goto out;
4063 if (pm_suspended_storage())
4064 goto out;
4065 /*
4066 * XXX: GFP_NOFS allocations should rather fail than rely on
4067 * other request to make a forward progress.
4068 * We are in an unfortunate situation where out_of_memory cannot
4069 * do much for this context but let's try it to at least get
4070 * access to memory reserved if the current task is killed (see
4071 * out_of_memory). Once filesystems are ready to handle allocation
4072 * failures more gracefully we should just bail out here.
4073 */
4074
3c2c6488 4075 /* Exhausted what can be done so it's blame time */
5020e285 4076 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4077 *did_some_progress = 1;
5020e285 4078
6c18ba7a
MH
4079 /*
4080 * Help non-failing allocations by giving them access to memory
4081 * reserves
4082 */
4083 if (gfp_mask & __GFP_NOFAIL)
4084 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4085 ALLOC_NO_WATERMARKS, ac);
5020e285 4086 }
11e33f6a 4087out:
dc56401f 4088 mutex_unlock(&oom_lock);
11e33f6a
MG
4089 return page;
4090}
4091
33c2d214
MH
4092/*
4093 * Maximum number of compaction retries wit a progress before OOM
4094 * killer is consider as the only way to move forward.
4095 */
4096#define MAX_COMPACT_RETRIES 16
4097
56de7263
MG
4098#ifdef CONFIG_COMPACTION
4099/* Try memory compaction for high-order allocations before reclaim */
4100static struct page *
4101__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4102 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4103 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4104{
5e1f0f09 4105 struct page *page = NULL;
eb414681 4106 unsigned long pflags;
499118e9 4107 unsigned int noreclaim_flag;
53853e2d
VB
4108
4109 if (!order)
66199712 4110 return NULL;
66199712 4111
eb414681 4112 psi_memstall_enter(&pflags);
499118e9 4113 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4114
c5d01d0d 4115 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4116 prio, &page);
eb414681 4117
499118e9 4118 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4119 psi_memstall_leave(&pflags);
56de7263 4120
98dd3b48
VB
4121 /*
4122 * At least in one zone compaction wasn't deferred or skipped, so let's
4123 * count a compaction stall
4124 */
4125 count_vm_event(COMPACTSTALL);
8fb74b9f 4126
5e1f0f09
MG
4127 /* Prep a captured page if available */
4128 if (page)
4129 prep_new_page(page, order, gfp_mask, alloc_flags);
4130
4131 /* Try get a page from the freelist if available */
4132 if (!page)
4133 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4134
98dd3b48
VB
4135 if (page) {
4136 struct zone *zone = page_zone(page);
53853e2d 4137
98dd3b48
VB
4138 zone->compact_blockskip_flush = false;
4139 compaction_defer_reset(zone, order, true);
4140 count_vm_event(COMPACTSUCCESS);
4141 return page;
4142 }
56de7263 4143
98dd3b48
VB
4144 /*
4145 * It's bad if compaction run occurs and fails. The most likely reason
4146 * is that pages exist, but not enough to satisfy watermarks.
4147 */
4148 count_vm_event(COMPACTFAIL);
66199712 4149
98dd3b48 4150 cond_resched();
56de7263
MG
4151
4152 return NULL;
4153}
33c2d214 4154
3250845d
VB
4155static inline bool
4156should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4157 enum compact_result compact_result,
4158 enum compact_priority *compact_priority,
d9436498 4159 int *compaction_retries)
3250845d
VB
4160{
4161 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4162 int min_priority;
65190cff
MH
4163 bool ret = false;
4164 int retries = *compaction_retries;
4165 enum compact_priority priority = *compact_priority;
3250845d
VB
4166
4167 if (!order)
4168 return false;
4169
d9436498
VB
4170 if (compaction_made_progress(compact_result))
4171 (*compaction_retries)++;
4172
3250845d
VB
4173 /*
4174 * compaction considers all the zone as desperately out of memory
4175 * so it doesn't really make much sense to retry except when the
4176 * failure could be caused by insufficient priority
4177 */
d9436498
VB
4178 if (compaction_failed(compact_result))
4179 goto check_priority;
3250845d 4180
49433085
VB
4181 /*
4182 * compaction was skipped because there are not enough order-0 pages
4183 * to work with, so we retry only if it looks like reclaim can help.
4184 */
4185 if (compaction_needs_reclaim(compact_result)) {
4186 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4187 goto out;
4188 }
4189
3250845d
VB
4190 /*
4191 * make sure the compaction wasn't deferred or didn't bail out early
4192 * due to locks contention before we declare that we should give up.
49433085
VB
4193 * But the next retry should use a higher priority if allowed, so
4194 * we don't just keep bailing out endlessly.
3250845d 4195 */
65190cff 4196 if (compaction_withdrawn(compact_result)) {
49433085 4197 goto check_priority;
65190cff 4198 }
3250845d
VB
4199
4200 /*
dcda9b04 4201 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4202 * costly ones because they are de facto nofail and invoke OOM
4203 * killer to move on while costly can fail and users are ready
4204 * to cope with that. 1/4 retries is rather arbitrary but we
4205 * would need much more detailed feedback from compaction to
4206 * make a better decision.
4207 */
4208 if (order > PAGE_ALLOC_COSTLY_ORDER)
4209 max_retries /= 4;
65190cff
MH
4210 if (*compaction_retries <= max_retries) {
4211 ret = true;
4212 goto out;
4213 }
3250845d 4214
d9436498
VB
4215 /*
4216 * Make sure there are attempts at the highest priority if we exhausted
4217 * all retries or failed at the lower priorities.
4218 */
4219check_priority:
c2033b00
VB
4220 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4221 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4222
c2033b00 4223 if (*compact_priority > min_priority) {
d9436498
VB
4224 (*compact_priority)--;
4225 *compaction_retries = 0;
65190cff 4226 ret = true;
d9436498 4227 }
65190cff
MH
4228out:
4229 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4230 return ret;
3250845d 4231}
56de7263
MG
4232#else
4233static inline struct page *
4234__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4235 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4236 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4237{
33c2d214 4238 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4239 return NULL;
4240}
33c2d214
MH
4241
4242static inline bool
86a294a8
MH
4243should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4244 enum compact_result compact_result,
a5508cd8 4245 enum compact_priority *compact_priority,
d9436498 4246 int *compaction_retries)
33c2d214 4247{
31e49bfd
MH
4248 struct zone *zone;
4249 struct zoneref *z;
4250
4251 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4252 return false;
4253
4254 /*
4255 * There are setups with compaction disabled which would prefer to loop
4256 * inside the allocator rather than hit the oom killer prematurely.
4257 * Let's give them a good hope and keep retrying while the order-0
4258 * watermarks are OK.
4259 */
97a225e6
JK
4260 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4261 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4262 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4263 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4264 return true;
4265 }
33c2d214
MH
4266 return false;
4267}
3250845d 4268#endif /* CONFIG_COMPACTION */
56de7263 4269
d92a8cfc 4270#ifdef CONFIG_LOCKDEP
93781325 4271static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4272 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4273
f920e413 4274static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4275{
d92a8cfc
PZ
4276 /* no reclaim without waiting on it */
4277 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4278 return false;
4279
4280 /* this guy won't enter reclaim */
2e517d68 4281 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4282 return false;
4283
d92a8cfc
PZ
4284 if (gfp_mask & __GFP_NOLOCKDEP)
4285 return false;
4286
4287 return true;
4288}
4289
93781325
OS
4290void __fs_reclaim_acquire(void)
4291{
4292 lock_map_acquire(&__fs_reclaim_map);
4293}
4294
4295void __fs_reclaim_release(void)
4296{
4297 lock_map_release(&__fs_reclaim_map);
4298}
4299
d92a8cfc
PZ
4300void fs_reclaim_acquire(gfp_t gfp_mask)
4301{
f920e413
DV
4302 gfp_mask = current_gfp_context(gfp_mask);
4303
4304 if (__need_reclaim(gfp_mask)) {
4305 if (gfp_mask & __GFP_FS)
4306 __fs_reclaim_acquire();
4307
4308#ifdef CONFIG_MMU_NOTIFIER
4309 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4310 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4311#endif
4312
4313 }
d92a8cfc
PZ
4314}
4315EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4316
4317void fs_reclaim_release(gfp_t gfp_mask)
4318{
f920e413
DV
4319 gfp_mask = current_gfp_context(gfp_mask);
4320
4321 if (__need_reclaim(gfp_mask)) {
4322 if (gfp_mask & __GFP_FS)
4323 __fs_reclaim_release();
4324 }
d92a8cfc
PZ
4325}
4326EXPORT_SYMBOL_GPL(fs_reclaim_release);
4327#endif
4328
bba90710 4329/* Perform direct synchronous page reclaim */
2187e17b 4330static unsigned long
a9263751
VB
4331__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4332 const struct alloc_context *ac)
11e33f6a 4333{
499118e9 4334 unsigned int noreclaim_flag;
2187e17b 4335 unsigned long pflags, progress;
11e33f6a
MG
4336
4337 cond_resched();
4338
4339 /* We now go into synchronous reclaim */
4340 cpuset_memory_pressure_bump();
eb414681 4341 psi_memstall_enter(&pflags);
d92a8cfc 4342 fs_reclaim_acquire(gfp_mask);
93781325 4343 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4344
a9263751
VB
4345 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4346 ac->nodemask);
11e33f6a 4347
499118e9 4348 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4349 fs_reclaim_release(gfp_mask);
eb414681 4350 psi_memstall_leave(&pflags);
11e33f6a
MG
4351
4352 cond_resched();
4353
bba90710
MS
4354 return progress;
4355}
4356
4357/* The really slow allocator path where we enter direct reclaim */
4358static inline struct page *
4359__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4360 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4361 unsigned long *did_some_progress)
bba90710
MS
4362{
4363 struct page *page = NULL;
4364 bool drained = false;
4365
a9263751 4366 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4367 if (unlikely(!(*did_some_progress)))
4368 return NULL;
11e33f6a 4369
9ee493ce 4370retry:
31a6c190 4371 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4372
4373 /*
4374 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4375 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4376 * Shrink them and try again
9ee493ce
MG
4377 */
4378 if (!page && !drained) {
29fac03b 4379 unreserve_highatomic_pageblock(ac, false);
93481ff0 4380 drain_all_pages(NULL);
9ee493ce
MG
4381 drained = true;
4382 goto retry;
4383 }
4384
11e33f6a
MG
4385 return page;
4386}
4387
5ecd9d40
DR
4388static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4389 const struct alloc_context *ac)
3a025760
JW
4390{
4391 struct zoneref *z;
4392 struct zone *zone;
e1a55637 4393 pg_data_t *last_pgdat = NULL;
97a225e6 4394 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4395
97a225e6 4396 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4397 ac->nodemask) {
e1a55637 4398 if (last_pgdat != zone->zone_pgdat)
97a225e6 4399 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4400 last_pgdat = zone->zone_pgdat;
4401 }
3a025760
JW
4402}
4403
c603844b 4404static inline unsigned int
341ce06f
PZ
4405gfp_to_alloc_flags(gfp_t gfp_mask)
4406{
c603844b 4407 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4408
736838e9
MN
4409 /*
4410 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4411 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4412 * to save two branches.
4413 */
e6223a3b 4414 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4415 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4416
341ce06f
PZ
4417 /*
4418 * The caller may dip into page reserves a bit more if the caller
4419 * cannot run direct reclaim, or if the caller has realtime scheduling
4420 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4421 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4422 */
736838e9
MN
4423 alloc_flags |= (__force int)
4424 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4425
d0164adc 4426 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4427 /*
b104a35d
DR
4428 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4429 * if it can't schedule.
5c3240d9 4430 */
b104a35d 4431 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4432 alloc_flags |= ALLOC_HARDER;
523b9458 4433 /*
b104a35d 4434 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4435 * comment for __cpuset_node_allowed().
523b9458 4436 */
341ce06f 4437 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4438 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4439 alloc_flags |= ALLOC_HARDER;
4440
8510e69c
JK
4441 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4442
341ce06f
PZ
4443 return alloc_flags;
4444}
4445
cd04ae1e 4446static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4447{
cd04ae1e
MH
4448 if (!tsk_is_oom_victim(tsk))
4449 return false;
4450
4451 /*
4452 * !MMU doesn't have oom reaper so give access to memory reserves
4453 * only to the thread with TIF_MEMDIE set
4454 */
4455 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4456 return false;
4457
cd04ae1e
MH
4458 return true;
4459}
4460
4461/*
4462 * Distinguish requests which really need access to full memory
4463 * reserves from oom victims which can live with a portion of it
4464 */
4465static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4466{
4467 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4468 return 0;
31a6c190 4469 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4470 return ALLOC_NO_WATERMARKS;
31a6c190 4471 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4472 return ALLOC_NO_WATERMARKS;
4473 if (!in_interrupt()) {
4474 if (current->flags & PF_MEMALLOC)
4475 return ALLOC_NO_WATERMARKS;
4476 else if (oom_reserves_allowed(current))
4477 return ALLOC_OOM;
4478 }
31a6c190 4479
cd04ae1e
MH
4480 return 0;
4481}
4482
4483bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4484{
4485 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4486}
4487
0a0337e0
MH
4488/*
4489 * Checks whether it makes sense to retry the reclaim to make a forward progress
4490 * for the given allocation request.
491d79ae
JW
4491 *
4492 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4493 * without success, or when we couldn't even meet the watermark if we
4494 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4495 *
4496 * Returns true if a retry is viable or false to enter the oom path.
4497 */
4498static inline bool
4499should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4500 struct alloc_context *ac, int alloc_flags,
423b452e 4501 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4502{
4503 struct zone *zone;
4504 struct zoneref *z;
15f570bf 4505 bool ret = false;
0a0337e0 4506
423b452e
VB
4507 /*
4508 * Costly allocations might have made a progress but this doesn't mean
4509 * their order will become available due to high fragmentation so
4510 * always increment the no progress counter for them
4511 */
4512 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4513 *no_progress_loops = 0;
4514 else
4515 (*no_progress_loops)++;
4516
0a0337e0
MH
4517 /*
4518 * Make sure we converge to OOM if we cannot make any progress
4519 * several times in the row.
4520 */
04c8716f
MK
4521 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4522 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4523 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4524 }
0a0337e0 4525
bca67592
MG
4526 /*
4527 * Keep reclaiming pages while there is a chance this will lead
4528 * somewhere. If none of the target zones can satisfy our allocation
4529 * request even if all reclaimable pages are considered then we are
4530 * screwed and have to go OOM.
0a0337e0 4531 */
97a225e6
JK
4532 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4533 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4534 unsigned long available;
ede37713 4535 unsigned long reclaimable;
d379f01d
MH
4536 unsigned long min_wmark = min_wmark_pages(zone);
4537 bool wmark;
0a0337e0 4538
5a1c84b4 4539 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4540 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4541
4542 /*
491d79ae
JW
4543 * Would the allocation succeed if we reclaimed all
4544 * reclaimable pages?
0a0337e0 4545 */
d379f01d 4546 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4547 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4548 trace_reclaim_retry_zone(z, order, reclaimable,
4549 available, min_wmark, *no_progress_loops, wmark);
4550 if (wmark) {
ede37713
MH
4551 /*
4552 * If we didn't make any progress and have a lot of
4553 * dirty + writeback pages then we should wait for
4554 * an IO to complete to slow down the reclaim and
4555 * prevent from pre mature OOM
4556 */
4557 if (!did_some_progress) {
11fb9989 4558 unsigned long write_pending;
ede37713 4559
5a1c84b4
MG
4560 write_pending = zone_page_state_snapshot(zone,
4561 NR_ZONE_WRITE_PENDING);
ede37713 4562
11fb9989 4563 if (2 * write_pending > reclaimable) {
ede37713
MH
4564 congestion_wait(BLK_RW_ASYNC, HZ/10);
4565 return true;
4566 }
4567 }
5a1c84b4 4568
15f570bf
MH
4569 ret = true;
4570 goto out;
0a0337e0
MH
4571 }
4572 }
4573
15f570bf
MH
4574out:
4575 /*
4576 * Memory allocation/reclaim might be called from a WQ context and the
4577 * current implementation of the WQ concurrency control doesn't
4578 * recognize that a particular WQ is congested if the worker thread is
4579 * looping without ever sleeping. Therefore we have to do a short sleep
4580 * here rather than calling cond_resched().
4581 */
4582 if (current->flags & PF_WQ_WORKER)
4583 schedule_timeout_uninterruptible(1);
4584 else
4585 cond_resched();
4586 return ret;
0a0337e0
MH
4587}
4588
902b6281
VB
4589static inline bool
4590check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4591{
4592 /*
4593 * It's possible that cpuset's mems_allowed and the nodemask from
4594 * mempolicy don't intersect. This should be normally dealt with by
4595 * policy_nodemask(), but it's possible to race with cpuset update in
4596 * such a way the check therein was true, and then it became false
4597 * before we got our cpuset_mems_cookie here.
4598 * This assumes that for all allocations, ac->nodemask can come only
4599 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4600 * when it does not intersect with the cpuset restrictions) or the
4601 * caller can deal with a violated nodemask.
4602 */
4603 if (cpusets_enabled() && ac->nodemask &&
4604 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4605 ac->nodemask = NULL;
4606 return true;
4607 }
4608
4609 /*
4610 * When updating a task's mems_allowed or mempolicy nodemask, it is
4611 * possible to race with parallel threads in such a way that our
4612 * allocation can fail while the mask is being updated. If we are about
4613 * to fail, check if the cpuset changed during allocation and if so,
4614 * retry.
4615 */
4616 if (read_mems_allowed_retry(cpuset_mems_cookie))
4617 return true;
4618
4619 return false;
4620}
4621
11e33f6a
MG
4622static inline struct page *
4623__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4624 struct alloc_context *ac)
11e33f6a 4625{
d0164adc 4626 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4627 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4628 struct page *page = NULL;
c603844b 4629 unsigned int alloc_flags;
11e33f6a 4630 unsigned long did_some_progress;
5ce9bfef 4631 enum compact_priority compact_priority;
c5d01d0d 4632 enum compact_result compact_result;
5ce9bfef
VB
4633 int compaction_retries;
4634 int no_progress_loops;
5ce9bfef 4635 unsigned int cpuset_mems_cookie;
cd04ae1e 4636 int reserve_flags;
1da177e4 4637
d0164adc
MG
4638 /*
4639 * We also sanity check to catch abuse of atomic reserves being used by
4640 * callers that are not in atomic context.
4641 */
4642 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4643 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4644 gfp_mask &= ~__GFP_ATOMIC;
4645
5ce9bfef
VB
4646retry_cpuset:
4647 compaction_retries = 0;
4648 no_progress_loops = 0;
4649 compact_priority = DEF_COMPACT_PRIORITY;
4650 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4651
4652 /*
4653 * The fast path uses conservative alloc_flags to succeed only until
4654 * kswapd needs to be woken up, and to avoid the cost of setting up
4655 * alloc_flags precisely. So we do that now.
4656 */
4657 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4658
e47483bc
VB
4659 /*
4660 * We need to recalculate the starting point for the zonelist iterator
4661 * because we might have used different nodemask in the fast path, or
4662 * there was a cpuset modification and we are retrying - otherwise we
4663 * could end up iterating over non-eligible zones endlessly.
4664 */
4665 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4666 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4667 if (!ac->preferred_zoneref->zone)
4668 goto nopage;
4669
0a79cdad 4670 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4671 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4672
4673 /*
4674 * The adjusted alloc_flags might result in immediate success, so try
4675 * that first
4676 */
4677 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4678 if (page)
4679 goto got_pg;
4680
a8161d1e
VB
4681 /*
4682 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4683 * that we have enough base pages and don't need to reclaim. For non-
4684 * movable high-order allocations, do that as well, as compaction will
4685 * try prevent permanent fragmentation by migrating from blocks of the
4686 * same migratetype.
4687 * Don't try this for allocations that are allowed to ignore
4688 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4689 */
282722b0
VB
4690 if (can_direct_reclaim &&
4691 (costly_order ||
4692 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4693 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4694 page = __alloc_pages_direct_compact(gfp_mask, order,
4695 alloc_flags, ac,
a5508cd8 4696 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4697 &compact_result);
4698 if (page)
4699 goto got_pg;
4700
cc638f32
VB
4701 /*
4702 * Checks for costly allocations with __GFP_NORETRY, which
4703 * includes some THP page fault allocations
4704 */
4705 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4706 /*
4707 * If allocating entire pageblock(s) and compaction
4708 * failed because all zones are below low watermarks
4709 * or is prohibited because it recently failed at this
3f36d866
DR
4710 * order, fail immediately unless the allocator has
4711 * requested compaction and reclaim retry.
b39d0ee2
DR
4712 *
4713 * Reclaim is
4714 * - potentially very expensive because zones are far
4715 * below their low watermarks or this is part of very
4716 * bursty high order allocations,
4717 * - not guaranteed to help because isolate_freepages()
4718 * may not iterate over freed pages as part of its
4719 * linear scan, and
4720 * - unlikely to make entire pageblocks free on its
4721 * own.
4722 */
4723 if (compact_result == COMPACT_SKIPPED ||
4724 compact_result == COMPACT_DEFERRED)
4725 goto nopage;
a8161d1e 4726
a8161d1e 4727 /*
3eb2771b
VB
4728 * Looks like reclaim/compaction is worth trying, but
4729 * sync compaction could be very expensive, so keep
25160354 4730 * using async compaction.
a8161d1e 4731 */
a5508cd8 4732 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4733 }
4734 }
23771235 4735
31a6c190 4736retry:
23771235 4737 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4738 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4739 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4740
cd04ae1e
MH
4741 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4742 if (reserve_flags)
8510e69c 4743 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4744
e46e7b77 4745 /*
d6a24df0
VB
4746 * Reset the nodemask and zonelist iterators if memory policies can be
4747 * ignored. These allocations are high priority and system rather than
4748 * user oriented.
e46e7b77 4749 */
cd04ae1e 4750 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4751 ac->nodemask = NULL;
e46e7b77 4752 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4753 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4754 }
4755
23771235 4756 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4757 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4758 if (page)
4759 goto got_pg;
1da177e4 4760
d0164adc 4761 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4762 if (!can_direct_reclaim)
1da177e4
LT
4763 goto nopage;
4764
9a67f648
MH
4765 /* Avoid recursion of direct reclaim */
4766 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4767 goto nopage;
4768
a8161d1e
VB
4769 /* Try direct reclaim and then allocating */
4770 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4771 &did_some_progress);
4772 if (page)
4773 goto got_pg;
4774
4775 /* Try direct compaction and then allocating */
a9263751 4776 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4777 compact_priority, &compact_result);
56de7263
MG
4778 if (page)
4779 goto got_pg;
75f30861 4780
9083905a
JW
4781 /* Do not loop if specifically requested */
4782 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4783 goto nopage;
9083905a 4784
0a0337e0
MH
4785 /*
4786 * Do not retry costly high order allocations unless they are
dcda9b04 4787 * __GFP_RETRY_MAYFAIL
0a0337e0 4788 */
dcda9b04 4789 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4790 goto nopage;
0a0337e0 4791
0a0337e0 4792 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4793 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4794 goto retry;
4795
33c2d214
MH
4796 /*
4797 * It doesn't make any sense to retry for the compaction if the order-0
4798 * reclaim is not able to make any progress because the current
4799 * implementation of the compaction depends on the sufficient amount
4800 * of free memory (see __compaction_suitable)
4801 */
4802 if (did_some_progress > 0 &&
86a294a8 4803 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4804 compact_result, &compact_priority,
d9436498 4805 &compaction_retries))
33c2d214
MH
4806 goto retry;
4807
902b6281
VB
4808
4809 /* Deal with possible cpuset update races before we start OOM killing */
4810 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4811 goto retry_cpuset;
4812
9083905a
JW
4813 /* Reclaim has failed us, start killing things */
4814 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4815 if (page)
4816 goto got_pg;
4817
9a67f648 4818 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4819 if (tsk_is_oom_victim(current) &&
8510e69c 4820 (alloc_flags & ALLOC_OOM ||
c288983d 4821 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4822 goto nopage;
4823
9083905a 4824 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4825 if (did_some_progress) {
4826 no_progress_loops = 0;
9083905a 4827 goto retry;
0a0337e0 4828 }
9083905a 4829
1da177e4 4830nopage:
902b6281
VB
4831 /* Deal with possible cpuset update races before we fail */
4832 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4833 goto retry_cpuset;
4834
9a67f648
MH
4835 /*
4836 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4837 * we always retry
4838 */
4839 if (gfp_mask & __GFP_NOFAIL) {
4840 /*
4841 * All existing users of the __GFP_NOFAIL are blockable, so warn
4842 * of any new users that actually require GFP_NOWAIT
4843 */
4844 if (WARN_ON_ONCE(!can_direct_reclaim))
4845 goto fail;
4846
4847 /*
4848 * PF_MEMALLOC request from this context is rather bizarre
4849 * because we cannot reclaim anything and only can loop waiting
4850 * for somebody to do a work for us
4851 */
4852 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4853
4854 /*
4855 * non failing costly orders are a hard requirement which we
4856 * are not prepared for much so let's warn about these users
4857 * so that we can identify them and convert them to something
4858 * else.
4859 */
4860 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4861
6c18ba7a
MH
4862 /*
4863 * Help non-failing allocations by giving them access to memory
4864 * reserves but do not use ALLOC_NO_WATERMARKS because this
4865 * could deplete whole memory reserves which would just make
4866 * the situation worse
4867 */
4868 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4869 if (page)
4870 goto got_pg;
4871
9a67f648
MH
4872 cond_resched();
4873 goto retry;
4874 }
4875fail:
a8e99259 4876 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4877 "page allocation failure: order:%u", order);
1da177e4 4878got_pg:
072bb0aa 4879 return page;
1da177e4 4880}
11e33f6a 4881
9cd75558 4882static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4883 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4884 struct alloc_context *ac, gfp_t *alloc_mask,
4885 unsigned int *alloc_flags)
11e33f6a 4886{
97a225e6 4887 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4888 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4889 ac->nodemask = nodemask;
01c0bfe0 4890 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4891
682a3385 4892 if (cpusets_enabled()) {
9cd75558 4893 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4894 /*
4895 * When we are in the interrupt context, it is irrelevant
4896 * to the current task context. It means that any node ok.
4897 */
4898 if (!in_interrupt() && !ac->nodemask)
9cd75558 4899 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4900 else
4901 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4902 }
4903
d92a8cfc
PZ
4904 fs_reclaim_acquire(gfp_mask);
4905 fs_reclaim_release(gfp_mask);
11e33f6a 4906
d0164adc 4907 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4908
4909 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4910 return false;
11e33f6a 4911
8510e69c 4912 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4913
c9ab0c4f 4914 /* Dirty zone balancing only done in the fast path */
9cd75558 4915 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4916
e46e7b77
MG
4917 /*
4918 * The preferred zone is used for statistics but crucially it is
4919 * also used as the starting point for the zonelist iterator. It
4920 * may get reset for allocations that ignore memory policies.
4921 */
9cd75558 4922 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4923 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4924
4925 return true;
9cd75558
MG
4926}
4927
4928/*
4929 * This is the 'heart' of the zoned buddy allocator.
4930 */
4931struct page *
04ec6264
VB
4932__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4933 nodemask_t *nodemask)
9cd75558
MG
4934{
4935 struct page *page;
4936 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4937 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4938 struct alloc_context ac = { };
4939
c63ae43b
MH
4940 /*
4941 * There are several places where we assume that the order value is sane
4942 * so bail out early if the request is out of bound.
4943 */
4944 if (unlikely(order >= MAX_ORDER)) {
4945 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4946 return NULL;
4947 }
4948
9cd75558 4949 gfp_mask &= gfp_allowed_mask;
f19360f0 4950 alloc_mask = gfp_mask;
04ec6264 4951 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4952 return NULL;
4953
6bb15450
MG
4954 /*
4955 * Forbid the first pass from falling back to types that fragment
4956 * memory until all local zones are considered.
4957 */
0a79cdad 4958 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4959
5117f45d 4960 /* First allocation attempt */
a9263751 4961 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4962 if (likely(page))
4963 goto out;
11e33f6a 4964
4fcb0971 4965 /*
7dea19f9
MH
4966 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4967 * resp. GFP_NOIO which has to be inherited for all allocation requests
4968 * from a particular context which has been marked by
4969 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4970 */
7dea19f9 4971 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4972 ac.spread_dirty_pages = false;
23f086f9 4973
4741526b
MG
4974 /*
4975 * Restore the original nodemask if it was potentially replaced with
4976 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4977 */
97ce86f9 4978 ac.nodemask = nodemask;
16096c25 4979
4fcb0971 4980 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4981
4fcb0971 4982out:
c4159a75 4983 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4984 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4985 __free_pages(page, order);
4986 page = NULL;
4949148a
VD
4987 }
4988
4fcb0971
MG
4989 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4990
11e33f6a 4991 return page;
1da177e4 4992}
d239171e 4993EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4994
4995/*
9ea9a680
MH
4996 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4997 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4998 * you need to access high mem.
1da177e4 4999 */
920c7a5d 5000unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5001{
945a1113
AM
5002 struct page *page;
5003
9ea9a680 5004 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5005 if (!page)
5006 return 0;
5007 return (unsigned long) page_address(page);
5008}
1da177e4
LT
5009EXPORT_SYMBOL(__get_free_pages);
5010
920c7a5d 5011unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5012{
945a1113 5013 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5014}
1da177e4
LT
5015EXPORT_SYMBOL(get_zeroed_page);
5016
742aa7fb 5017static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5018{
742aa7fb
AL
5019 if (order == 0) /* Via pcp? */
5020 free_unref_page(page);
5021 else
7fef431b 5022 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5023}
5024
742aa7fb
AL
5025void __free_pages(struct page *page, unsigned int order)
5026{
5027 if (put_page_testzero(page))
5028 free_the_page(page, order);
e320d301
MWO
5029 else if (!PageHead(page))
5030 while (order-- > 0)
5031 free_the_page(page + (1 << order), order);
742aa7fb 5032}
1da177e4
LT
5033EXPORT_SYMBOL(__free_pages);
5034
920c7a5d 5035void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5036{
5037 if (addr != 0) {
725d704e 5038 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5039 __free_pages(virt_to_page((void *)addr), order);
5040 }
5041}
5042
5043EXPORT_SYMBOL(free_pages);
5044
b63ae8ca
AD
5045/*
5046 * Page Fragment:
5047 * An arbitrary-length arbitrary-offset area of memory which resides
5048 * within a 0 or higher order page. Multiple fragments within that page
5049 * are individually refcounted, in the page's reference counter.
5050 *
5051 * The page_frag functions below provide a simple allocation framework for
5052 * page fragments. This is used by the network stack and network device
5053 * drivers to provide a backing region of memory for use as either an
5054 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5055 */
2976db80
AD
5056static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5057 gfp_t gfp_mask)
b63ae8ca
AD
5058{
5059 struct page *page = NULL;
5060 gfp_t gfp = gfp_mask;
5061
5062#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5063 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5064 __GFP_NOMEMALLOC;
5065 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5066 PAGE_FRAG_CACHE_MAX_ORDER);
5067 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5068#endif
5069 if (unlikely(!page))
5070 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5071
5072 nc->va = page ? page_address(page) : NULL;
5073
5074 return page;
5075}
5076
2976db80 5077void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5078{
5079 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5080
742aa7fb
AL
5081 if (page_ref_sub_and_test(page, count))
5082 free_the_page(page, compound_order(page));
44fdffd7 5083}
2976db80 5084EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5085
8c2dd3e4
AD
5086void *page_frag_alloc(struct page_frag_cache *nc,
5087 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5088{
5089 unsigned int size = PAGE_SIZE;
5090 struct page *page;
5091 int offset;
5092
5093 if (unlikely(!nc->va)) {
5094refill:
2976db80 5095 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5096 if (!page)
5097 return NULL;
5098
5099#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5100 /* if size can vary use size else just use PAGE_SIZE */
5101 size = nc->size;
5102#endif
5103 /* Even if we own the page, we do not use atomic_set().
5104 * This would break get_page_unless_zero() users.
5105 */
86447726 5106 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5107
5108 /* reset page count bias and offset to start of new frag */
2f064f34 5109 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5110 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5111 nc->offset = size;
5112 }
5113
5114 offset = nc->offset - fragsz;
5115 if (unlikely(offset < 0)) {
5116 page = virt_to_page(nc->va);
5117
fe896d18 5118 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5119 goto refill;
5120
d8c19014
DZ
5121 if (unlikely(nc->pfmemalloc)) {
5122 free_the_page(page, compound_order(page));
5123 goto refill;
5124 }
5125
b63ae8ca
AD
5126#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5127 /* if size can vary use size else just use PAGE_SIZE */
5128 size = nc->size;
5129#endif
5130 /* OK, page count is 0, we can safely set it */
86447726 5131 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5132
5133 /* reset page count bias and offset to start of new frag */
86447726 5134 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5135 offset = size - fragsz;
5136 }
5137
5138 nc->pagecnt_bias--;
5139 nc->offset = offset;
5140
5141 return nc->va + offset;
5142}
8c2dd3e4 5143EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5144
5145/*
5146 * Frees a page fragment allocated out of either a compound or order 0 page.
5147 */
8c2dd3e4 5148void page_frag_free(void *addr)
b63ae8ca
AD
5149{
5150 struct page *page = virt_to_head_page(addr);
5151
742aa7fb
AL
5152 if (unlikely(put_page_testzero(page)))
5153 free_the_page(page, compound_order(page));
b63ae8ca 5154}
8c2dd3e4 5155EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5156
d00181b9
KS
5157static void *make_alloc_exact(unsigned long addr, unsigned int order,
5158 size_t size)
ee85c2e1
AK
5159{
5160 if (addr) {
5161 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5162 unsigned long used = addr + PAGE_ALIGN(size);
5163
5164 split_page(virt_to_page((void *)addr), order);
5165 while (used < alloc_end) {
5166 free_page(used);
5167 used += PAGE_SIZE;
5168 }
5169 }
5170 return (void *)addr;
5171}
5172
2be0ffe2
TT
5173/**
5174 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5175 * @size: the number of bytes to allocate
63931eb9 5176 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5177 *
5178 * This function is similar to alloc_pages(), except that it allocates the
5179 * minimum number of pages to satisfy the request. alloc_pages() can only
5180 * allocate memory in power-of-two pages.
5181 *
5182 * This function is also limited by MAX_ORDER.
5183 *
5184 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5185 *
5186 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5187 */
5188void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5189{
5190 unsigned int order = get_order(size);
5191 unsigned long addr;
5192
63931eb9
VB
5193 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5194 gfp_mask &= ~__GFP_COMP;
5195
2be0ffe2 5196 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5197 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5198}
5199EXPORT_SYMBOL(alloc_pages_exact);
5200
ee85c2e1
AK
5201/**
5202 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5203 * pages on a node.
b5e6ab58 5204 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5205 * @size: the number of bytes to allocate
63931eb9 5206 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5207 *
5208 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5209 * back.
a862f68a
MR
5210 *
5211 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5212 */
e1931811 5213void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5214{
d00181b9 5215 unsigned int order = get_order(size);
63931eb9
VB
5216 struct page *p;
5217
5218 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5219 gfp_mask &= ~__GFP_COMP;
5220
5221 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5222 if (!p)
5223 return NULL;
5224 return make_alloc_exact((unsigned long)page_address(p), order, size);
5225}
ee85c2e1 5226
2be0ffe2
TT
5227/**
5228 * free_pages_exact - release memory allocated via alloc_pages_exact()
5229 * @virt: the value returned by alloc_pages_exact.
5230 * @size: size of allocation, same value as passed to alloc_pages_exact().
5231 *
5232 * Release the memory allocated by a previous call to alloc_pages_exact.
5233 */
5234void free_pages_exact(void *virt, size_t size)
5235{
5236 unsigned long addr = (unsigned long)virt;
5237 unsigned long end = addr + PAGE_ALIGN(size);
5238
5239 while (addr < end) {
5240 free_page(addr);
5241 addr += PAGE_SIZE;
5242 }
5243}
5244EXPORT_SYMBOL(free_pages_exact);
5245
e0fb5815
ZY
5246/**
5247 * nr_free_zone_pages - count number of pages beyond high watermark
5248 * @offset: The zone index of the highest zone
5249 *
a862f68a 5250 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5251 * high watermark within all zones at or below a given zone index. For each
5252 * zone, the number of pages is calculated as:
0e056eb5 5253 *
5254 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5255 *
5256 * Return: number of pages beyond high watermark.
e0fb5815 5257 */
ebec3862 5258static unsigned long nr_free_zone_pages(int offset)
1da177e4 5259{
dd1a239f 5260 struct zoneref *z;
54a6eb5c
MG
5261 struct zone *zone;
5262
e310fd43 5263 /* Just pick one node, since fallback list is circular */
ebec3862 5264 unsigned long sum = 0;
1da177e4 5265
0e88460d 5266 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5267
54a6eb5c 5268 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5269 unsigned long size = zone_managed_pages(zone);
41858966 5270 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5271 if (size > high)
5272 sum += size - high;
1da177e4
LT
5273 }
5274
5275 return sum;
5276}
5277
e0fb5815
ZY
5278/**
5279 * nr_free_buffer_pages - count number of pages beyond high watermark
5280 *
5281 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5282 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5283 *
5284 * Return: number of pages beyond high watermark within ZONE_DMA and
5285 * ZONE_NORMAL.
1da177e4 5286 */
ebec3862 5287unsigned long nr_free_buffer_pages(void)
1da177e4 5288{
af4ca457 5289 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5290}
c2f1a551 5291EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5292
08e0f6a9 5293static inline void show_node(struct zone *zone)
1da177e4 5294{
e5adfffc 5295 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5296 printk("Node %d ", zone_to_nid(zone));
1da177e4 5297}
1da177e4 5298
d02bd27b
IR
5299long si_mem_available(void)
5300{
5301 long available;
5302 unsigned long pagecache;
5303 unsigned long wmark_low = 0;
5304 unsigned long pages[NR_LRU_LISTS];
b29940c1 5305 unsigned long reclaimable;
d02bd27b
IR
5306 struct zone *zone;
5307 int lru;
5308
5309 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5310 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5311
5312 for_each_zone(zone)
a9214443 5313 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5314
5315 /*
5316 * Estimate the amount of memory available for userspace allocations,
5317 * without causing swapping.
5318 */
c41f012a 5319 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5320
5321 /*
5322 * Not all the page cache can be freed, otherwise the system will
5323 * start swapping. Assume at least half of the page cache, or the
5324 * low watermark worth of cache, needs to stay.
5325 */
5326 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5327 pagecache -= min(pagecache / 2, wmark_low);
5328 available += pagecache;
5329
5330 /*
b29940c1
VB
5331 * Part of the reclaimable slab and other kernel memory consists of
5332 * items that are in use, and cannot be freed. Cap this estimate at the
5333 * low watermark.
d02bd27b 5334 */
d42f3245
RG
5335 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5336 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5337 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5338
d02bd27b
IR
5339 if (available < 0)
5340 available = 0;
5341 return available;
5342}
5343EXPORT_SYMBOL_GPL(si_mem_available);
5344
1da177e4
LT
5345void si_meminfo(struct sysinfo *val)
5346{
ca79b0c2 5347 val->totalram = totalram_pages();
11fb9989 5348 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5349 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5350 val->bufferram = nr_blockdev_pages();
ca79b0c2 5351 val->totalhigh = totalhigh_pages();
1da177e4 5352 val->freehigh = nr_free_highpages();
1da177e4
LT
5353 val->mem_unit = PAGE_SIZE;
5354}
5355
5356EXPORT_SYMBOL(si_meminfo);
5357
5358#ifdef CONFIG_NUMA
5359void si_meminfo_node(struct sysinfo *val, int nid)
5360{
cdd91a77
JL
5361 int zone_type; /* needs to be signed */
5362 unsigned long managed_pages = 0;
fc2bd799
JK
5363 unsigned long managed_highpages = 0;
5364 unsigned long free_highpages = 0;
1da177e4
LT
5365 pg_data_t *pgdat = NODE_DATA(nid);
5366
cdd91a77 5367 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5368 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5369 val->totalram = managed_pages;
11fb9989 5370 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5371 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5372#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5373 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5374 struct zone *zone = &pgdat->node_zones[zone_type];
5375
5376 if (is_highmem(zone)) {
9705bea5 5377 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5378 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5379 }
5380 }
5381 val->totalhigh = managed_highpages;
5382 val->freehigh = free_highpages;
98d2b0eb 5383#else
fc2bd799
JK
5384 val->totalhigh = managed_highpages;
5385 val->freehigh = free_highpages;
98d2b0eb 5386#endif
1da177e4
LT
5387 val->mem_unit = PAGE_SIZE;
5388}
5389#endif
5390
ddd588b5 5391/*
7bf02ea2
DR
5392 * Determine whether the node should be displayed or not, depending on whether
5393 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5394 */
9af744d7 5395static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5396{
ddd588b5 5397 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5398 return false;
ddd588b5 5399
9af744d7
MH
5400 /*
5401 * no node mask - aka implicit memory numa policy. Do not bother with
5402 * the synchronization - read_mems_allowed_begin - because we do not
5403 * have to be precise here.
5404 */
5405 if (!nodemask)
5406 nodemask = &cpuset_current_mems_allowed;
5407
5408 return !node_isset(nid, *nodemask);
ddd588b5
DR
5409}
5410
1da177e4
LT
5411#define K(x) ((x) << (PAGE_SHIFT-10))
5412
377e4f16
RV
5413static void show_migration_types(unsigned char type)
5414{
5415 static const char types[MIGRATE_TYPES] = {
5416 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5417 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5418 [MIGRATE_RECLAIMABLE] = 'E',
5419 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5420#ifdef CONFIG_CMA
5421 [MIGRATE_CMA] = 'C',
5422#endif
194159fb 5423#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5424 [MIGRATE_ISOLATE] = 'I',
194159fb 5425#endif
377e4f16
RV
5426 };
5427 char tmp[MIGRATE_TYPES + 1];
5428 char *p = tmp;
5429 int i;
5430
5431 for (i = 0; i < MIGRATE_TYPES; i++) {
5432 if (type & (1 << i))
5433 *p++ = types[i];
5434 }
5435
5436 *p = '\0';
1f84a18f 5437 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5438}
5439
1da177e4
LT
5440/*
5441 * Show free area list (used inside shift_scroll-lock stuff)
5442 * We also calculate the percentage fragmentation. We do this by counting the
5443 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5444 *
5445 * Bits in @filter:
5446 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5447 * cpuset.
1da177e4 5448 */
9af744d7 5449void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5450{
d1bfcdb8 5451 unsigned long free_pcp = 0;
c7241913 5452 int cpu;
1da177e4 5453 struct zone *zone;
599d0c95 5454 pg_data_t *pgdat;
1da177e4 5455
ee99c71c 5456 for_each_populated_zone(zone) {
9af744d7 5457 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5458 continue;
d1bfcdb8 5459
761b0677
KK
5460 for_each_online_cpu(cpu)
5461 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5462 }
5463
a731286d
KM
5464 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5465 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5466 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5467 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5468 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5469 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5470 global_node_page_state(NR_ACTIVE_ANON),
5471 global_node_page_state(NR_INACTIVE_ANON),
5472 global_node_page_state(NR_ISOLATED_ANON),
5473 global_node_page_state(NR_ACTIVE_FILE),
5474 global_node_page_state(NR_INACTIVE_FILE),
5475 global_node_page_state(NR_ISOLATED_FILE),
5476 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5477 global_node_page_state(NR_FILE_DIRTY),
5478 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5479 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5480 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5481 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5482 global_node_page_state(NR_SHMEM),
f0c0c115 5483 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5484 global_zone_page_state(NR_BOUNCE),
5485 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5486 free_pcp,
c41f012a 5487 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5488
599d0c95 5489 for_each_online_pgdat(pgdat) {
9af744d7 5490 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5491 continue;
5492
599d0c95
MG
5493 printk("Node %d"
5494 " active_anon:%lukB"
5495 " inactive_anon:%lukB"
5496 " active_file:%lukB"
5497 " inactive_file:%lukB"
5498 " unevictable:%lukB"
5499 " isolated(anon):%lukB"
5500 " isolated(file):%lukB"
50658e2e 5501 " mapped:%lukB"
11fb9989
MG
5502 " dirty:%lukB"
5503 " writeback:%lukB"
5504 " shmem:%lukB"
5505#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5506 " shmem_thp: %lukB"
5507 " shmem_pmdmapped: %lukB"
5508 " anon_thp: %lukB"
5509#endif
5510 " writeback_tmp:%lukB"
991e7673
SB
5511 " kernel_stack:%lukB"
5512#ifdef CONFIG_SHADOW_CALL_STACK
5513 " shadow_call_stack:%lukB"
5514#endif
f0c0c115 5515 " pagetables:%lukB"
599d0c95
MG
5516 " all_unreclaimable? %s"
5517 "\n",
5518 pgdat->node_id,
5519 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5520 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5521 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5522 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5523 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5524 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5525 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5526 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5527 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5528 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5529 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5531 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5532 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5533 * HPAGE_PMD_NR),
5534 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5535#endif
11fb9989 5536 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5537 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5538#ifdef CONFIG_SHADOW_CALL_STACK
5539 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5540#endif
f0c0c115 5541 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5542 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5543 "yes" : "no");
599d0c95
MG
5544 }
5545
ee99c71c 5546 for_each_populated_zone(zone) {
1da177e4
LT
5547 int i;
5548
9af744d7 5549 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5550 continue;
d1bfcdb8
KK
5551
5552 free_pcp = 0;
5553 for_each_online_cpu(cpu)
5554 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5555
1da177e4 5556 show_node(zone);
1f84a18f
JP
5557 printk(KERN_CONT
5558 "%s"
1da177e4
LT
5559 " free:%lukB"
5560 " min:%lukB"
5561 " low:%lukB"
5562 " high:%lukB"
e47b346a 5563 " reserved_highatomic:%luKB"
71c799f4
MK
5564 " active_anon:%lukB"
5565 " inactive_anon:%lukB"
5566 " active_file:%lukB"
5567 " inactive_file:%lukB"
5568 " unevictable:%lukB"
5a1c84b4 5569 " writepending:%lukB"
1da177e4 5570 " present:%lukB"
9feedc9d 5571 " managed:%lukB"
4a0aa73f 5572 " mlocked:%lukB"
4a0aa73f 5573 " bounce:%lukB"
d1bfcdb8
KK
5574 " free_pcp:%lukB"
5575 " local_pcp:%ukB"
d1ce749a 5576 " free_cma:%lukB"
1da177e4
LT
5577 "\n",
5578 zone->name,
88f5acf8 5579 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5580 K(min_wmark_pages(zone)),
5581 K(low_wmark_pages(zone)),
5582 K(high_wmark_pages(zone)),
e47b346a 5583 K(zone->nr_reserved_highatomic),
71c799f4
MK
5584 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5585 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5586 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5587 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5588 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5589 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5590 K(zone->present_pages),
9705bea5 5591 K(zone_managed_pages(zone)),
4a0aa73f 5592 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5593 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5594 K(free_pcp),
5595 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5596 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5597 printk("lowmem_reserve[]:");
5598 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5599 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5600 printk(KERN_CONT "\n");
1da177e4
LT
5601 }
5602
ee99c71c 5603 for_each_populated_zone(zone) {
d00181b9
KS
5604 unsigned int order;
5605 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5606 unsigned char types[MAX_ORDER];
1da177e4 5607
9af744d7 5608 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5609 continue;
1da177e4 5610 show_node(zone);
1f84a18f 5611 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5612
5613 spin_lock_irqsave(&zone->lock, flags);
5614 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5615 struct free_area *area = &zone->free_area[order];
5616 int type;
5617
5618 nr[order] = area->nr_free;
8f9de51a 5619 total += nr[order] << order;
377e4f16
RV
5620
5621 types[order] = 0;
5622 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5623 if (!free_area_empty(area, type))
377e4f16
RV
5624 types[order] |= 1 << type;
5625 }
1da177e4
LT
5626 }
5627 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5628 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5629 printk(KERN_CONT "%lu*%lukB ",
5630 nr[order], K(1UL) << order);
377e4f16
RV
5631 if (nr[order])
5632 show_migration_types(types[order]);
5633 }
1f84a18f 5634 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5635 }
5636
949f7ec5
DR
5637 hugetlb_show_meminfo();
5638
11fb9989 5639 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5640
1da177e4
LT
5641 show_swap_cache_info();
5642}
5643
19770b32
MG
5644static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5645{
5646 zoneref->zone = zone;
5647 zoneref->zone_idx = zone_idx(zone);
5648}
5649
1da177e4
LT
5650/*
5651 * Builds allocation fallback zone lists.
1a93205b
CL
5652 *
5653 * Add all populated zones of a node to the zonelist.
1da177e4 5654 */
9d3be21b 5655static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5656{
1a93205b 5657 struct zone *zone;
bc732f1d 5658 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5659 int nr_zones = 0;
02a68a5e
CL
5660
5661 do {
2f6726e5 5662 zone_type--;
070f8032 5663 zone = pgdat->node_zones + zone_type;
6aa303de 5664 if (managed_zone(zone)) {
9d3be21b 5665 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5666 check_highest_zone(zone_type);
1da177e4 5667 }
2f6726e5 5668 } while (zone_type);
bc732f1d 5669
070f8032 5670 return nr_zones;
1da177e4
LT
5671}
5672
5673#ifdef CONFIG_NUMA
f0c0b2b8
KH
5674
5675static int __parse_numa_zonelist_order(char *s)
5676{
c9bff3ee
MH
5677 /*
5678 * We used to support different zonlists modes but they turned
5679 * out to be just not useful. Let's keep the warning in place
5680 * if somebody still use the cmd line parameter so that we do
5681 * not fail it silently
5682 */
5683 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5684 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5685 return -EINVAL;
5686 }
5687 return 0;
5688}
5689
c9bff3ee
MH
5690char numa_zonelist_order[] = "Node";
5691
f0c0b2b8
KH
5692/*
5693 * sysctl handler for numa_zonelist_order
5694 */
cccad5b9 5695int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5696 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5697{
32927393
CH
5698 if (write)
5699 return __parse_numa_zonelist_order(buffer);
5700 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5701}
5702
5703
62bc62a8 5704#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5705static int node_load[MAX_NUMNODES];
5706
1da177e4 5707/**
4dc3b16b 5708 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5709 * @node: node whose fallback list we're appending
5710 * @used_node_mask: nodemask_t of already used nodes
5711 *
5712 * We use a number of factors to determine which is the next node that should
5713 * appear on a given node's fallback list. The node should not have appeared
5714 * already in @node's fallback list, and it should be the next closest node
5715 * according to the distance array (which contains arbitrary distance values
5716 * from each node to each node in the system), and should also prefer nodes
5717 * with no CPUs, since presumably they'll have very little allocation pressure
5718 * on them otherwise.
a862f68a
MR
5719 *
5720 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5721 */
f0c0b2b8 5722static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5723{
4cf808eb 5724 int n, val;
1da177e4 5725 int min_val = INT_MAX;
00ef2d2f 5726 int best_node = NUMA_NO_NODE;
1da177e4 5727
4cf808eb
LT
5728 /* Use the local node if we haven't already */
5729 if (!node_isset(node, *used_node_mask)) {
5730 node_set(node, *used_node_mask);
5731 return node;
5732 }
1da177e4 5733
4b0ef1fe 5734 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5735
5736 /* Don't want a node to appear more than once */
5737 if (node_isset(n, *used_node_mask))
5738 continue;
5739
1da177e4
LT
5740 /* Use the distance array to find the distance */
5741 val = node_distance(node, n);
5742
4cf808eb
LT
5743 /* Penalize nodes under us ("prefer the next node") */
5744 val += (n < node);
5745
1da177e4 5746 /* Give preference to headless and unused nodes */
b630749f 5747 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5748 val += PENALTY_FOR_NODE_WITH_CPUS;
5749
5750 /* Slight preference for less loaded node */
5751 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5752 val += node_load[n];
5753
5754 if (val < min_val) {
5755 min_val = val;
5756 best_node = n;
5757 }
5758 }
5759
5760 if (best_node >= 0)
5761 node_set(best_node, *used_node_mask);
5762
5763 return best_node;
5764}
5765
f0c0b2b8
KH
5766
5767/*
5768 * Build zonelists ordered by node and zones within node.
5769 * This results in maximum locality--normal zone overflows into local
5770 * DMA zone, if any--but risks exhausting DMA zone.
5771 */
9d3be21b
MH
5772static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5773 unsigned nr_nodes)
1da177e4 5774{
9d3be21b
MH
5775 struct zoneref *zonerefs;
5776 int i;
5777
5778 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5779
5780 for (i = 0; i < nr_nodes; i++) {
5781 int nr_zones;
5782
5783 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5784
9d3be21b
MH
5785 nr_zones = build_zonerefs_node(node, zonerefs);
5786 zonerefs += nr_zones;
5787 }
5788 zonerefs->zone = NULL;
5789 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5790}
5791
523b9458
CL
5792/*
5793 * Build gfp_thisnode zonelists
5794 */
5795static void build_thisnode_zonelists(pg_data_t *pgdat)
5796{
9d3be21b
MH
5797 struct zoneref *zonerefs;
5798 int nr_zones;
523b9458 5799
9d3be21b
MH
5800 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5801 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5802 zonerefs += nr_zones;
5803 zonerefs->zone = NULL;
5804 zonerefs->zone_idx = 0;
523b9458
CL
5805}
5806
f0c0b2b8
KH
5807/*
5808 * Build zonelists ordered by zone and nodes within zones.
5809 * This results in conserving DMA zone[s] until all Normal memory is
5810 * exhausted, but results in overflowing to remote node while memory
5811 * may still exist in local DMA zone.
5812 */
f0c0b2b8 5813
f0c0b2b8
KH
5814static void build_zonelists(pg_data_t *pgdat)
5815{
9d3be21b
MH
5816 static int node_order[MAX_NUMNODES];
5817 int node, load, nr_nodes = 0;
d0ddf49b 5818 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5819 int local_node, prev_node;
1da177e4
LT
5820
5821 /* NUMA-aware ordering of nodes */
5822 local_node = pgdat->node_id;
62bc62a8 5823 load = nr_online_nodes;
1da177e4 5824 prev_node = local_node;
f0c0b2b8 5825
f0c0b2b8 5826 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5827 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5828 /*
5829 * We don't want to pressure a particular node.
5830 * So adding penalty to the first node in same
5831 * distance group to make it round-robin.
5832 */
957f822a
DR
5833 if (node_distance(local_node, node) !=
5834 node_distance(local_node, prev_node))
f0c0b2b8
KH
5835 node_load[node] = load;
5836
9d3be21b 5837 node_order[nr_nodes++] = node;
1da177e4
LT
5838 prev_node = node;
5839 load--;
1da177e4 5840 }
523b9458 5841
9d3be21b 5842 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5843 build_thisnode_zonelists(pgdat);
1da177e4
LT
5844}
5845
7aac7898
LS
5846#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5847/*
5848 * Return node id of node used for "local" allocations.
5849 * I.e., first node id of first zone in arg node's generic zonelist.
5850 * Used for initializing percpu 'numa_mem', which is used primarily
5851 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5852 */
5853int local_memory_node(int node)
5854{
c33d6c06 5855 struct zoneref *z;
7aac7898 5856
c33d6c06 5857 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5858 gfp_zone(GFP_KERNEL),
c33d6c06 5859 NULL);
c1093b74 5860 return zone_to_nid(z->zone);
7aac7898
LS
5861}
5862#endif
f0c0b2b8 5863
6423aa81
JK
5864static void setup_min_unmapped_ratio(void);
5865static void setup_min_slab_ratio(void);
1da177e4
LT
5866#else /* CONFIG_NUMA */
5867
f0c0b2b8 5868static void build_zonelists(pg_data_t *pgdat)
1da177e4 5869{
19655d34 5870 int node, local_node;
9d3be21b
MH
5871 struct zoneref *zonerefs;
5872 int nr_zones;
1da177e4
LT
5873
5874 local_node = pgdat->node_id;
1da177e4 5875
9d3be21b
MH
5876 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5877 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5878 zonerefs += nr_zones;
1da177e4 5879
54a6eb5c
MG
5880 /*
5881 * Now we build the zonelist so that it contains the zones
5882 * of all the other nodes.
5883 * We don't want to pressure a particular node, so when
5884 * building the zones for node N, we make sure that the
5885 * zones coming right after the local ones are those from
5886 * node N+1 (modulo N)
5887 */
5888 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5889 if (!node_online(node))
5890 continue;
9d3be21b
MH
5891 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5892 zonerefs += nr_zones;
1da177e4 5893 }
54a6eb5c
MG
5894 for (node = 0; node < local_node; node++) {
5895 if (!node_online(node))
5896 continue;
9d3be21b
MH
5897 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5898 zonerefs += nr_zones;
54a6eb5c
MG
5899 }
5900
9d3be21b
MH
5901 zonerefs->zone = NULL;
5902 zonerefs->zone_idx = 0;
1da177e4
LT
5903}
5904
5905#endif /* CONFIG_NUMA */
5906
99dcc3e5
CL
5907/*
5908 * Boot pageset table. One per cpu which is going to be used for all
5909 * zones and all nodes. The parameters will be set in such a way
5910 * that an item put on a list will immediately be handed over to
5911 * the buddy list. This is safe since pageset manipulation is done
5912 * with interrupts disabled.
5913 *
5914 * The boot_pagesets must be kept even after bootup is complete for
5915 * unused processors and/or zones. They do play a role for bootstrapping
5916 * hotplugged processors.
5917 *
5918 * zoneinfo_show() and maybe other functions do
5919 * not check if the processor is online before following the pageset pointer.
5920 * Other parts of the kernel may not check if the zone is available.
5921 */
7115ac6e 5922static void setup_pageset(struct per_cpu_pageset *p);
99dcc3e5 5923static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5924static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5925
11cd8638 5926static void __build_all_zonelists(void *data)
1da177e4 5927{
6811378e 5928 int nid;
afb6ebb3 5929 int __maybe_unused cpu;
9adb62a5 5930 pg_data_t *self = data;
b93e0f32
MH
5931 static DEFINE_SPINLOCK(lock);
5932
5933 spin_lock(&lock);
9276b1bc 5934
7f9cfb31
BL
5935#ifdef CONFIG_NUMA
5936 memset(node_load, 0, sizeof(node_load));
5937#endif
9adb62a5 5938
c1152583
WY
5939 /*
5940 * This node is hotadded and no memory is yet present. So just
5941 * building zonelists is fine - no need to touch other nodes.
5942 */
9adb62a5
JL
5943 if (self && !node_online(self->node_id)) {
5944 build_zonelists(self);
c1152583
WY
5945 } else {
5946 for_each_online_node(nid) {
5947 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5948
c1152583
WY
5949 build_zonelists(pgdat);
5950 }
99dcc3e5 5951
7aac7898
LS
5952#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5953 /*
5954 * We now know the "local memory node" for each node--
5955 * i.e., the node of the first zone in the generic zonelist.
5956 * Set up numa_mem percpu variable for on-line cpus. During
5957 * boot, only the boot cpu should be on-line; we'll init the
5958 * secondary cpus' numa_mem as they come on-line. During
5959 * node/memory hotplug, we'll fixup all on-line cpus.
5960 */
d9c9a0b9 5961 for_each_online_cpu(cpu)
7aac7898 5962 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5963#endif
d9c9a0b9 5964 }
b93e0f32
MH
5965
5966 spin_unlock(&lock);
6811378e
YG
5967}
5968
061f67bc
RV
5969static noinline void __init
5970build_all_zonelists_init(void)
5971{
afb6ebb3
MH
5972 int cpu;
5973
061f67bc 5974 __build_all_zonelists(NULL);
afb6ebb3
MH
5975
5976 /*
5977 * Initialize the boot_pagesets that are going to be used
5978 * for bootstrapping processors. The real pagesets for
5979 * each zone will be allocated later when the per cpu
5980 * allocator is available.
5981 *
5982 * boot_pagesets are used also for bootstrapping offline
5983 * cpus if the system is already booted because the pagesets
5984 * are needed to initialize allocators on a specific cpu too.
5985 * F.e. the percpu allocator needs the page allocator which
5986 * needs the percpu allocator in order to allocate its pagesets
5987 * (a chicken-egg dilemma).
5988 */
5989 for_each_possible_cpu(cpu)
7115ac6e 5990 setup_pageset(&per_cpu(boot_pageset, cpu));
afb6ebb3 5991
061f67bc
RV
5992 mminit_verify_zonelist();
5993 cpuset_init_current_mems_allowed();
5994}
5995
4eaf3f64 5996/*
4eaf3f64 5997 * unless system_state == SYSTEM_BOOTING.
061f67bc 5998 *
72675e13 5999 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6000 * [protected by SYSTEM_BOOTING].
4eaf3f64 6001 */
72675e13 6002void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6003{
0a18e607
DH
6004 unsigned long vm_total_pages;
6005
6811378e 6006 if (system_state == SYSTEM_BOOTING) {
061f67bc 6007 build_all_zonelists_init();
6811378e 6008 } else {
11cd8638 6009 __build_all_zonelists(pgdat);
6811378e
YG
6010 /* cpuset refresh routine should be here */
6011 }
56b9413b
DH
6012 /* Get the number of free pages beyond high watermark in all zones. */
6013 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6014 /*
6015 * Disable grouping by mobility if the number of pages in the
6016 * system is too low to allow the mechanism to work. It would be
6017 * more accurate, but expensive to check per-zone. This check is
6018 * made on memory-hotadd so a system can start with mobility
6019 * disabled and enable it later
6020 */
d9c23400 6021 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6022 page_group_by_mobility_disabled = 1;
6023 else
6024 page_group_by_mobility_disabled = 0;
6025
ce0725f7 6026 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6027 nr_online_nodes,
756a025f
JP
6028 page_group_by_mobility_disabled ? "off" : "on",
6029 vm_total_pages);
f0c0b2b8 6030#ifdef CONFIG_NUMA
f88dfff5 6031 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6032#endif
1da177e4
LT
6033}
6034
a9a9e77f
PT
6035/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6036static bool __meminit
6037overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6038{
a9a9e77f
PT
6039 static struct memblock_region *r;
6040
6041 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6042 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6043 for_each_mem_region(r) {
a9a9e77f
PT
6044 if (*pfn < memblock_region_memory_end_pfn(r))
6045 break;
6046 }
6047 }
6048 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6049 memblock_is_mirror(r)) {
6050 *pfn = memblock_region_memory_end_pfn(r);
6051 return true;
6052 }
6053 }
a9a9e77f
PT
6054 return false;
6055}
6056
1da177e4
LT
6057/*
6058 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6059 * up by memblock_free_all() once the early boot process is
1da177e4 6060 * done. Non-atomic initialization, single-pass.
d882c006
DH
6061 *
6062 * All aligned pageblocks are initialized to the specified migratetype
6063 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6064 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6065 */
c09b4240 6066void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
d882c006
DH
6067 unsigned long start_pfn,
6068 enum meminit_context context,
6069 struct vmem_altmap *altmap, int migratetype)
1da177e4 6070{
a9a9e77f 6071 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6072 struct page *page;
1da177e4 6073
22b31eec
HD
6074 if (highest_memmap_pfn < end_pfn - 1)
6075 highest_memmap_pfn = end_pfn - 1;
6076
966cf44f 6077#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6078 /*
6079 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6080 * memory. We limit the total number of pages to initialize to just
6081 * those that might contain the memory mapping. We will defer the
6082 * ZONE_DEVICE page initialization until after we have released
6083 * the hotplug lock.
4b94ffdc 6084 */
966cf44f
AD
6085 if (zone == ZONE_DEVICE) {
6086 if (!altmap)
6087 return;
6088
6089 if (start_pfn == altmap->base_pfn)
6090 start_pfn += altmap->reserve;
6091 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6092 }
6093#endif
4b94ffdc 6094
948c436e 6095 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6096 /*
b72d0ffb
AM
6097 * There can be holes in boot-time mem_map[]s handed to this
6098 * function. They do not exist on hotplugged memory.
a2f3aa02 6099 */
c1d0da83 6100 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6101 if (overlap_memmap_init(zone, &pfn))
6102 continue;
6103 if (defer_init(nid, pfn, end_pfn))
6104 break;
a2f3aa02 6105 }
ac5d2539 6106
d0dc12e8
PT
6107 page = pfn_to_page(pfn);
6108 __init_single_page(page, pfn, zone, nid);
c1d0da83 6109 if (context == MEMINIT_HOTPLUG)
d483da5b 6110 __SetPageReserved(page);
d0dc12e8 6111
ac5d2539 6112 /*
d882c006
DH
6113 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6114 * such that unmovable allocations won't be scattered all
6115 * over the place during system boot.
ac5d2539 6116 */
4eb29bd9 6117 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6118 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6119 cond_resched();
ac5d2539 6120 }
948c436e 6121 pfn++;
1da177e4
LT
6122 }
6123}
6124
966cf44f
AD
6125#ifdef CONFIG_ZONE_DEVICE
6126void __ref memmap_init_zone_device(struct zone *zone,
6127 unsigned long start_pfn,
1f8d75c1 6128 unsigned long nr_pages,
966cf44f
AD
6129 struct dev_pagemap *pgmap)
6130{
1f8d75c1 6131 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6132 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6133 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6134 unsigned long zone_idx = zone_idx(zone);
6135 unsigned long start = jiffies;
6136 int nid = pgdat->node_id;
6137
46d945ae 6138 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6139 return;
6140
6141 /*
6142 * The call to memmap_init_zone should have already taken care
6143 * of the pages reserved for the memmap, so we can just jump to
6144 * the end of that region and start processing the device pages.
6145 */
514caf23 6146 if (altmap) {
966cf44f 6147 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6148 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6149 }
6150
6151 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6152 struct page *page = pfn_to_page(pfn);
6153
6154 __init_single_page(page, pfn, zone_idx, nid);
6155
6156 /*
6157 * Mark page reserved as it will need to wait for onlining
6158 * phase for it to be fully associated with a zone.
6159 *
6160 * We can use the non-atomic __set_bit operation for setting
6161 * the flag as we are still initializing the pages.
6162 */
6163 __SetPageReserved(page);
6164
6165 /*
8a164fef
CH
6166 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6167 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6168 * ever freed or placed on a driver-private list.
966cf44f
AD
6169 */
6170 page->pgmap = pgmap;
8a164fef 6171 page->zone_device_data = NULL;
966cf44f
AD
6172
6173 /*
6174 * Mark the block movable so that blocks are reserved for
6175 * movable at startup. This will force kernel allocations
6176 * to reserve their blocks rather than leaking throughout
6177 * the address space during boot when many long-lived
6178 * kernel allocations are made.
6179 *
c1d0da83 6180 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6181 * because this is done early in section_activate()
966cf44f 6182 */
4eb29bd9 6183 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6184 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6185 cond_resched();
6186 }
6187 }
6188
fdc029b1 6189 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6190 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6191}
6192
6193#endif
1e548deb 6194static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6195{
7aeb09f9 6196 unsigned int order, t;
b2a0ac88
MG
6197 for_each_migratetype_order(order, t) {
6198 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6199 zone->free_area[order].nr_free = 0;
6200 }
6201}
6202
dfb3ccd0 6203void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6204 unsigned long zone,
6205 unsigned long range_start_pfn)
dfb3ccd0 6206{
73a6e474
BH
6207 unsigned long start_pfn, end_pfn;
6208 unsigned long range_end_pfn = range_start_pfn + size;
6209 int i;
6210
6211 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6212 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6213 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6214
6215 if (end_pfn > start_pfn) {
6216 size = end_pfn - start_pfn;
6217 memmap_init_zone(size, nid, zone, start_pfn,
d882c006 6218 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
73a6e474
BH
6219 }
6220 }
dfb3ccd0 6221}
1da177e4 6222
7cd2b0a3 6223static int zone_batchsize(struct zone *zone)
e7c8d5c9 6224{
3a6be87f 6225#ifdef CONFIG_MMU
e7c8d5c9
CL
6226 int batch;
6227
6228 /*
6229 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6230 * size of the zone.
e7c8d5c9 6231 */
9705bea5 6232 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6233 /* But no more than a meg. */
6234 if (batch * PAGE_SIZE > 1024 * 1024)
6235 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6236 batch /= 4; /* We effectively *= 4 below */
6237 if (batch < 1)
6238 batch = 1;
6239
6240 /*
0ceaacc9
NP
6241 * Clamp the batch to a 2^n - 1 value. Having a power
6242 * of 2 value was found to be more likely to have
6243 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6244 *
0ceaacc9
NP
6245 * For example if 2 tasks are alternately allocating
6246 * batches of pages, one task can end up with a lot
6247 * of pages of one half of the possible page colors
6248 * and the other with pages of the other colors.
e7c8d5c9 6249 */
9155203a 6250 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6251
e7c8d5c9 6252 return batch;
3a6be87f
DH
6253
6254#else
6255 /* The deferral and batching of frees should be suppressed under NOMMU
6256 * conditions.
6257 *
6258 * The problem is that NOMMU needs to be able to allocate large chunks
6259 * of contiguous memory as there's no hardware page translation to
6260 * assemble apparent contiguous memory from discontiguous pages.
6261 *
6262 * Queueing large contiguous runs of pages for batching, however,
6263 * causes the pages to actually be freed in smaller chunks. As there
6264 * can be a significant delay between the individual batches being
6265 * recycled, this leads to the once large chunks of space being
6266 * fragmented and becoming unavailable for high-order allocations.
6267 */
6268 return 0;
6269#endif
e7c8d5c9
CL
6270}
6271
8d7a8fa9
CS
6272/*
6273 * pcp->high and pcp->batch values are related and dependent on one another:
6274 * ->batch must never be higher then ->high.
6275 * The following function updates them in a safe manner without read side
6276 * locking.
6277 *
6278 * Any new users of pcp->batch and pcp->high should ensure they can cope with
047b9967 6279 * those fields changing asynchronously (acording to the above rule).
8d7a8fa9
CS
6280 *
6281 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6282 * outside of boot time (or some other assurance that no concurrent updaters
6283 * exist).
6284 */
6285static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6286 unsigned long batch)
6287{
6288 /* start with a fail safe value for batch */
6289 pcp->batch = 1;
6290 smp_wmb();
6291
6292 /* Update high, then batch, in order */
6293 pcp->high = high;
6294 smp_wmb();
6295
6296 pcp->batch = batch;
6297}
6298
88c90dbc 6299static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6300{
6301 struct per_cpu_pages *pcp;
5f8dcc21 6302 int migratetype;
2caaad41 6303
1c6fe946
MD
6304 memset(p, 0, sizeof(*p));
6305
3dfa5721 6306 pcp = &p->pcp;
5f8dcc21
MG
6307 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6308 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6309}
6310
7115ac6e 6311static void setup_pageset(struct per_cpu_pageset *p)
88c90dbc
CS
6312{
6313 pageset_init(p);
7115ac6e 6314 pageset_update(&p->pcp, 0, 1);
88c90dbc
CS
6315}
6316
8ad4b1fb 6317/*
0a8b4f1d 6318 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6319 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6320 */
0a8b4f1d 6321static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6322{
7115ac6e 6323 unsigned long new_high, new_batch;
0a8b4f1d
VB
6324 struct per_cpu_pageset *p;
6325 int cpu;
7115ac6e
VB
6326
6327 if (percpu_pagelist_fraction) {
6328 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6329 new_batch = max(1UL, new_high / 4);
6330 if ((new_high / 4) > (PAGE_SHIFT * 8))
6331 new_batch = PAGE_SHIFT * 8;
6332 } else {
6333 new_batch = zone_batchsize(zone);
6334 new_high = 6 * new_batch;
6335 new_batch = max(1UL, 1 * new_batch);
6336 }
169f6c19 6337
0a8b4f1d
VB
6338 for_each_possible_cpu(cpu) {
6339 p = per_cpu_ptr(zone->pageset, cpu);
6340 pageset_update(&p->pcp, new_high, new_batch);
6341 }
169f6c19
CS
6342}
6343
72675e13 6344void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6345{
0a8b4f1d 6346 struct per_cpu_pageset *p;
319774e2 6347 int cpu;
0a8b4f1d 6348
319774e2 6349 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6350 for_each_possible_cpu(cpu) {
6351 p = per_cpu_ptr(zone->pageset, cpu);
6352 pageset_init(p);
6353 }
6354
6355 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6356}
6357
2caaad41 6358/*
99dcc3e5
CL
6359 * Allocate per cpu pagesets and initialize them.
6360 * Before this call only boot pagesets were available.
e7c8d5c9 6361 */
99dcc3e5 6362void __init setup_per_cpu_pageset(void)
e7c8d5c9 6363{
b4911ea2 6364 struct pglist_data *pgdat;
99dcc3e5 6365 struct zone *zone;
b418a0f9 6366 int __maybe_unused cpu;
e7c8d5c9 6367
319774e2
WF
6368 for_each_populated_zone(zone)
6369 setup_zone_pageset(zone);
b4911ea2 6370
b418a0f9
SD
6371#ifdef CONFIG_NUMA
6372 /*
6373 * Unpopulated zones continue using the boot pagesets.
6374 * The numa stats for these pagesets need to be reset.
6375 * Otherwise, they will end up skewing the stats of
6376 * the nodes these zones are associated with.
6377 */
6378 for_each_possible_cpu(cpu) {
6379 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6380 memset(pcp->vm_numa_stat_diff, 0,
6381 sizeof(pcp->vm_numa_stat_diff));
6382 }
6383#endif
6384
b4911ea2
MG
6385 for_each_online_pgdat(pgdat)
6386 pgdat->per_cpu_nodestats =
6387 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6388}
6389
c09b4240 6390static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6391{
99dcc3e5
CL
6392 /*
6393 * per cpu subsystem is not up at this point. The following code
6394 * relies on the ability of the linker to provide the
6395 * offset of a (static) per cpu variable into the per cpu area.
6396 */
6397 zone->pageset = &boot_pageset;
ed8ece2e 6398
b38a8725 6399 if (populated_zone(zone))
99dcc3e5
CL
6400 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6401 zone->name, zone->present_pages,
6402 zone_batchsize(zone));
ed8ece2e
DH
6403}
6404
dc0bbf3b 6405void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6406 unsigned long zone_start_pfn,
b171e409 6407 unsigned long size)
ed8ece2e
DH
6408{
6409 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6410 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6411
8f416836
WY
6412 if (zone_idx > pgdat->nr_zones)
6413 pgdat->nr_zones = zone_idx;
ed8ece2e 6414
ed8ece2e
DH
6415 zone->zone_start_pfn = zone_start_pfn;
6416
708614e6
MG
6417 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6418 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6419 pgdat->node_id,
6420 (unsigned long)zone_idx(zone),
6421 zone_start_pfn, (zone_start_pfn + size));
6422
1e548deb 6423 zone_init_free_lists(zone);
9dcb8b68 6424 zone->initialized = 1;
ed8ece2e
DH
6425}
6426
c713216d
MG
6427/**
6428 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6429 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6430 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6431 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6432 *
6433 * It returns the start and end page frame of a node based on information
7d018176 6434 * provided by memblock_set_node(). If called for a node
c713216d 6435 * with no available memory, a warning is printed and the start and end
88ca3b94 6436 * PFNs will be 0.
c713216d 6437 */
bbe5d993 6438void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6439 unsigned long *start_pfn, unsigned long *end_pfn)
6440{
c13291a5 6441 unsigned long this_start_pfn, this_end_pfn;
c713216d 6442 int i;
c13291a5 6443
c713216d
MG
6444 *start_pfn = -1UL;
6445 *end_pfn = 0;
6446
c13291a5
TH
6447 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6448 *start_pfn = min(*start_pfn, this_start_pfn);
6449 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6450 }
6451
633c0666 6452 if (*start_pfn == -1UL)
c713216d 6453 *start_pfn = 0;
c713216d
MG
6454}
6455
2a1e274a
MG
6456/*
6457 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6458 * assumption is made that zones within a node are ordered in monotonic
6459 * increasing memory addresses so that the "highest" populated zone is used
6460 */
b69a7288 6461static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6462{
6463 int zone_index;
6464 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6465 if (zone_index == ZONE_MOVABLE)
6466 continue;
6467
6468 if (arch_zone_highest_possible_pfn[zone_index] >
6469 arch_zone_lowest_possible_pfn[zone_index])
6470 break;
6471 }
6472
6473 VM_BUG_ON(zone_index == -1);
6474 movable_zone = zone_index;
6475}
6476
6477/*
6478 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6479 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6480 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6481 * in each node depending on the size of each node and how evenly kernelcore
6482 * is distributed. This helper function adjusts the zone ranges
6483 * provided by the architecture for a given node by using the end of the
6484 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6485 * zones within a node are in order of monotonic increases memory addresses
6486 */
bbe5d993 6487static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6488 unsigned long zone_type,
6489 unsigned long node_start_pfn,
6490 unsigned long node_end_pfn,
6491 unsigned long *zone_start_pfn,
6492 unsigned long *zone_end_pfn)
6493{
6494 /* Only adjust if ZONE_MOVABLE is on this node */
6495 if (zone_movable_pfn[nid]) {
6496 /* Size ZONE_MOVABLE */
6497 if (zone_type == ZONE_MOVABLE) {
6498 *zone_start_pfn = zone_movable_pfn[nid];
6499 *zone_end_pfn = min(node_end_pfn,
6500 arch_zone_highest_possible_pfn[movable_zone]);
6501
e506b996
XQ
6502 /* Adjust for ZONE_MOVABLE starting within this range */
6503 } else if (!mirrored_kernelcore &&
6504 *zone_start_pfn < zone_movable_pfn[nid] &&
6505 *zone_end_pfn > zone_movable_pfn[nid]) {
6506 *zone_end_pfn = zone_movable_pfn[nid];
6507
2a1e274a
MG
6508 /* Check if this whole range is within ZONE_MOVABLE */
6509 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6510 *zone_start_pfn = *zone_end_pfn;
6511 }
6512}
6513
c713216d
MG
6514/*
6515 * Return the number of pages a zone spans in a node, including holes
6516 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6517 */
bbe5d993 6518static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6519 unsigned long zone_type,
7960aedd
ZY
6520 unsigned long node_start_pfn,
6521 unsigned long node_end_pfn,
d91749c1 6522 unsigned long *zone_start_pfn,
854e8848 6523 unsigned long *zone_end_pfn)
c713216d 6524{
299c83dc
LF
6525 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6526 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6527 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6528 if (!node_start_pfn && !node_end_pfn)
6529 return 0;
6530
7960aedd 6531 /* Get the start and end of the zone */
299c83dc
LF
6532 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6533 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6534 adjust_zone_range_for_zone_movable(nid, zone_type,
6535 node_start_pfn, node_end_pfn,
d91749c1 6536 zone_start_pfn, zone_end_pfn);
c713216d
MG
6537
6538 /* Check that this node has pages within the zone's required range */
d91749c1 6539 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6540 return 0;
6541
6542 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6543 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6544 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6545
6546 /* Return the spanned pages */
d91749c1 6547 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6548}
6549
6550/*
6551 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6552 * then all holes in the requested range will be accounted for.
c713216d 6553 */
bbe5d993 6554unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6555 unsigned long range_start_pfn,
6556 unsigned long range_end_pfn)
6557{
96e907d1
TH
6558 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6559 unsigned long start_pfn, end_pfn;
6560 int i;
c713216d 6561
96e907d1
TH
6562 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6563 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6564 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6565 nr_absent -= end_pfn - start_pfn;
c713216d 6566 }
96e907d1 6567 return nr_absent;
c713216d
MG
6568}
6569
6570/**
6571 * absent_pages_in_range - Return number of page frames in holes within a range
6572 * @start_pfn: The start PFN to start searching for holes
6573 * @end_pfn: The end PFN to stop searching for holes
6574 *
a862f68a 6575 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6576 */
6577unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6578 unsigned long end_pfn)
6579{
6580 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6581}
6582
6583/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6584static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6585 unsigned long zone_type,
7960aedd 6586 unsigned long node_start_pfn,
854e8848 6587 unsigned long node_end_pfn)
c713216d 6588{
96e907d1
TH
6589 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6590 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6591 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6592 unsigned long nr_absent;
9c7cd687 6593
b5685e92 6594 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6595 if (!node_start_pfn && !node_end_pfn)
6596 return 0;
6597
96e907d1
TH
6598 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6599 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6600
2a1e274a
MG
6601 adjust_zone_range_for_zone_movable(nid, zone_type,
6602 node_start_pfn, node_end_pfn,
6603 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6604 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6605
6606 /*
6607 * ZONE_MOVABLE handling.
6608 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6609 * and vice versa.
6610 */
e506b996
XQ
6611 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6612 unsigned long start_pfn, end_pfn;
6613 struct memblock_region *r;
6614
cc6de168 6615 for_each_mem_region(r) {
e506b996
XQ
6616 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6617 zone_start_pfn, zone_end_pfn);
6618 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6619 zone_start_pfn, zone_end_pfn);
6620
6621 if (zone_type == ZONE_MOVABLE &&
6622 memblock_is_mirror(r))
6623 nr_absent += end_pfn - start_pfn;
6624
6625 if (zone_type == ZONE_NORMAL &&
6626 !memblock_is_mirror(r))
6627 nr_absent += end_pfn - start_pfn;
342332e6
TI
6628 }
6629 }
6630
6631 return nr_absent;
c713216d 6632}
0e0b864e 6633
bbe5d993 6634static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6635 unsigned long node_start_pfn,
854e8848 6636 unsigned long node_end_pfn)
c713216d 6637{
febd5949 6638 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6639 enum zone_type i;
6640
febd5949
GZ
6641 for (i = 0; i < MAX_NR_ZONES; i++) {
6642 struct zone *zone = pgdat->node_zones + i;
d91749c1 6643 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6644 unsigned long spanned, absent;
febd5949 6645 unsigned long size, real_size;
c713216d 6646
854e8848
MR
6647 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6648 node_start_pfn,
6649 node_end_pfn,
6650 &zone_start_pfn,
6651 &zone_end_pfn);
6652 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6653 node_start_pfn,
6654 node_end_pfn);
3f08a302
MR
6655
6656 size = spanned;
6657 real_size = size - absent;
6658
d91749c1
TI
6659 if (size)
6660 zone->zone_start_pfn = zone_start_pfn;
6661 else
6662 zone->zone_start_pfn = 0;
febd5949
GZ
6663 zone->spanned_pages = size;
6664 zone->present_pages = real_size;
6665
6666 totalpages += size;
6667 realtotalpages += real_size;
6668 }
6669
6670 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6671 pgdat->node_present_pages = realtotalpages;
6672 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6673 realtotalpages);
6674}
6675
835c134e
MG
6676#ifndef CONFIG_SPARSEMEM
6677/*
6678 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6679 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6680 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6681 * round what is now in bits to nearest long in bits, then return it in
6682 * bytes.
6683 */
7c45512d 6684static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6685{
6686 unsigned long usemapsize;
6687
7c45512d 6688 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6689 usemapsize = roundup(zonesize, pageblock_nr_pages);
6690 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6691 usemapsize *= NR_PAGEBLOCK_BITS;
6692 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6693
6694 return usemapsize / 8;
6695}
6696
7cc2a959 6697static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6698 struct zone *zone,
6699 unsigned long zone_start_pfn,
6700 unsigned long zonesize)
835c134e 6701{
7c45512d 6702 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6703 zone->pageblock_flags = NULL;
23a7052a 6704 if (usemapsize) {
6782832e 6705 zone->pageblock_flags =
26fb3dae
MR
6706 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6707 pgdat->node_id);
23a7052a
MR
6708 if (!zone->pageblock_flags)
6709 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6710 usemapsize, zone->name, pgdat->node_id);
6711 }
835c134e
MG
6712}
6713#else
7c45512d
LT
6714static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6715 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6716#endif /* CONFIG_SPARSEMEM */
6717
d9c23400 6718#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6719
d9c23400 6720/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6721void __init set_pageblock_order(void)
d9c23400 6722{
955c1cd7
AM
6723 unsigned int order;
6724
d9c23400
MG
6725 /* Check that pageblock_nr_pages has not already been setup */
6726 if (pageblock_order)
6727 return;
6728
955c1cd7
AM
6729 if (HPAGE_SHIFT > PAGE_SHIFT)
6730 order = HUGETLB_PAGE_ORDER;
6731 else
6732 order = MAX_ORDER - 1;
6733
d9c23400
MG
6734 /*
6735 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6736 * This value may be variable depending on boot parameters on IA64 and
6737 * powerpc.
d9c23400
MG
6738 */
6739 pageblock_order = order;
6740}
6741#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6742
ba72cb8c
MG
6743/*
6744 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6745 * is unused as pageblock_order is set at compile-time. See
6746 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6747 * the kernel config
ba72cb8c 6748 */
03e85f9d 6749void __init set_pageblock_order(void)
ba72cb8c 6750{
ba72cb8c 6751}
d9c23400
MG
6752
6753#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6754
03e85f9d 6755static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6756 unsigned long present_pages)
01cefaef
JL
6757{
6758 unsigned long pages = spanned_pages;
6759
6760 /*
6761 * Provide a more accurate estimation if there are holes within
6762 * the zone and SPARSEMEM is in use. If there are holes within the
6763 * zone, each populated memory region may cost us one or two extra
6764 * memmap pages due to alignment because memmap pages for each
89d790ab 6765 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6766 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6767 */
6768 if (spanned_pages > present_pages + (present_pages >> 4) &&
6769 IS_ENABLED(CONFIG_SPARSEMEM))
6770 pages = present_pages;
6771
6772 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6773}
6774
ace1db39
OS
6775#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6776static void pgdat_init_split_queue(struct pglist_data *pgdat)
6777{
364c1eeb
YS
6778 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6779
6780 spin_lock_init(&ds_queue->split_queue_lock);
6781 INIT_LIST_HEAD(&ds_queue->split_queue);
6782 ds_queue->split_queue_len = 0;
ace1db39
OS
6783}
6784#else
6785static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6786#endif
6787
6788#ifdef CONFIG_COMPACTION
6789static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6790{
6791 init_waitqueue_head(&pgdat->kcompactd_wait);
6792}
6793#else
6794static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6795#endif
6796
03e85f9d 6797static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6798{
208d54e5 6799 pgdat_resize_init(pgdat);
ace1db39 6800
ace1db39
OS
6801 pgdat_init_split_queue(pgdat);
6802 pgdat_init_kcompactd(pgdat);
6803
1da177e4 6804 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6805 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6806
eefa864b 6807 pgdat_page_ext_init(pgdat);
a52633d8 6808 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6809 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6810}
6811
6812static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6813 unsigned long remaining_pages)
6814{
9705bea5 6815 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6816 zone_set_nid(zone, nid);
6817 zone->name = zone_names[idx];
6818 zone->zone_pgdat = NODE_DATA(nid);
6819 spin_lock_init(&zone->lock);
6820 zone_seqlock_init(zone);
6821 zone_pcp_init(zone);
6822}
6823
6824/*
6825 * Set up the zone data structures
6826 * - init pgdat internals
6827 * - init all zones belonging to this node
6828 *
6829 * NOTE: this function is only called during memory hotplug
6830 */
6831#ifdef CONFIG_MEMORY_HOTPLUG
6832void __ref free_area_init_core_hotplug(int nid)
6833{
6834 enum zone_type z;
6835 pg_data_t *pgdat = NODE_DATA(nid);
6836
6837 pgdat_init_internals(pgdat);
6838 for (z = 0; z < MAX_NR_ZONES; z++)
6839 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6840}
6841#endif
6842
6843/*
6844 * Set up the zone data structures:
6845 * - mark all pages reserved
6846 * - mark all memory queues empty
6847 * - clear the memory bitmaps
6848 *
6849 * NOTE: pgdat should get zeroed by caller.
6850 * NOTE: this function is only called during early init.
6851 */
6852static void __init free_area_init_core(struct pglist_data *pgdat)
6853{
6854 enum zone_type j;
6855 int nid = pgdat->node_id;
5f63b720 6856
03e85f9d 6857 pgdat_init_internals(pgdat);
385386cf
JW
6858 pgdat->per_cpu_nodestats = &boot_nodestats;
6859
1da177e4
LT
6860 for (j = 0; j < MAX_NR_ZONES; j++) {
6861 struct zone *zone = pgdat->node_zones + j;
e6943859 6862 unsigned long size, freesize, memmap_pages;
d91749c1 6863 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6864
febd5949 6865 size = zone->spanned_pages;
e6943859 6866 freesize = zone->present_pages;
1da177e4 6867
0e0b864e 6868 /*
9feedc9d 6869 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6870 * is used by this zone for memmap. This affects the watermark
6871 * and per-cpu initialisations
6872 */
e6943859 6873 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6874 if (!is_highmem_idx(j)) {
6875 if (freesize >= memmap_pages) {
6876 freesize -= memmap_pages;
6877 if (memmap_pages)
6878 printk(KERN_DEBUG
6879 " %s zone: %lu pages used for memmap\n",
6880 zone_names[j], memmap_pages);
6881 } else
1170532b 6882 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6883 zone_names[j], memmap_pages, freesize);
6884 }
0e0b864e 6885
6267276f 6886 /* Account for reserved pages */
9feedc9d
JL
6887 if (j == 0 && freesize > dma_reserve) {
6888 freesize -= dma_reserve;
d903ef9f 6889 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6890 zone_names[0], dma_reserve);
0e0b864e
MG
6891 }
6892
98d2b0eb 6893 if (!is_highmem_idx(j))
9feedc9d 6894 nr_kernel_pages += freesize;
01cefaef
JL
6895 /* Charge for highmem memmap if there are enough kernel pages */
6896 else if (nr_kernel_pages > memmap_pages * 2)
6897 nr_kernel_pages -= memmap_pages;
9feedc9d 6898 nr_all_pages += freesize;
1da177e4 6899
9feedc9d
JL
6900 /*
6901 * Set an approximate value for lowmem here, it will be adjusted
6902 * when the bootmem allocator frees pages into the buddy system.
6903 * And all highmem pages will be managed by the buddy system.
6904 */
03e85f9d 6905 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6906
d883c6cf 6907 if (!size)
1da177e4
LT
6908 continue;
6909
955c1cd7 6910 set_pageblock_order();
d883c6cf
JK
6911 setup_usemap(pgdat, zone, zone_start_pfn, size);
6912 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6913 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6914 }
6915}
6916
0cd842f9 6917#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6918static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6919{
b0aeba74 6920 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6921 unsigned long __maybe_unused offset = 0;
6922
1da177e4
LT
6923 /* Skip empty nodes */
6924 if (!pgdat->node_spanned_pages)
6925 return;
6926
b0aeba74
TL
6927 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6928 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6929 /* ia64 gets its own node_mem_map, before this, without bootmem */
6930 if (!pgdat->node_mem_map) {
b0aeba74 6931 unsigned long size, end;
d41dee36
AW
6932 struct page *map;
6933
e984bb43
BP
6934 /*
6935 * The zone's endpoints aren't required to be MAX_ORDER
6936 * aligned but the node_mem_map endpoints must be in order
6937 * for the buddy allocator to function correctly.
6938 */
108bcc96 6939 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6940 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6941 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6942 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6943 pgdat->node_id);
23a7052a
MR
6944 if (!map)
6945 panic("Failed to allocate %ld bytes for node %d memory map\n",
6946 size, pgdat->node_id);
a1c34a3b 6947 pgdat->node_mem_map = map + offset;
1da177e4 6948 }
0cd842f9
OS
6949 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6950 __func__, pgdat->node_id, (unsigned long)pgdat,
6951 (unsigned long)pgdat->node_mem_map);
12d810c1 6952#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6953 /*
6954 * With no DISCONTIG, the global mem_map is just set as node 0's
6955 */
c713216d 6956 if (pgdat == NODE_DATA(0)) {
1da177e4 6957 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 6958 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6959 mem_map -= offset;
c713216d 6960 }
1da177e4
LT
6961#endif
6962}
0cd842f9
OS
6963#else
6964static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6965#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6966
0188dc98
OS
6967#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6968static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6969{
0188dc98
OS
6970 pgdat->first_deferred_pfn = ULONG_MAX;
6971}
6972#else
6973static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6974#endif
6975
854e8848 6976static void __init free_area_init_node(int nid)
1da177e4 6977{
9109fb7b 6978 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6979 unsigned long start_pfn = 0;
6980 unsigned long end_pfn = 0;
9109fb7b 6981
88fdf75d 6982 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 6983 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 6984
854e8848 6985 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 6986
1da177e4 6987 pgdat->node_id = nid;
854e8848 6988 pgdat->node_start_pfn = start_pfn;
75ef7184 6989 pgdat->per_cpu_nodestats = NULL;
854e8848 6990
8d29e18a 6991 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6992 (u64)start_pfn << PAGE_SHIFT,
6993 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 6994 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
6995
6996 alloc_node_mem_map(pgdat);
0188dc98 6997 pgdat_set_deferred_range(pgdat);
1da177e4 6998
7f3eb55b 6999 free_area_init_core(pgdat);
1da177e4
LT
7000}
7001
bc9331a1 7002void __init free_area_init_memoryless_node(int nid)
3f08a302 7003{
854e8848 7004 free_area_init_node(nid);
3f08a302
MR
7005}
7006
aca52c39 7007#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 7008/*
4b094b78
DH
7009 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7010 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 7011 */
4b094b78 7012static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
7013{
7014 unsigned long pfn;
7015 u64 pgcnt = 0;
7016
7017 for (pfn = spfn; pfn < epfn; pfn++) {
7018 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7019 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7020 + pageblock_nr_pages - 1;
7021 continue;
7022 }
4b094b78
DH
7023 /*
7024 * Use a fake node/zone (0) for now. Some of these pages
7025 * (in memblock.reserved but not in memblock.memory) will
7026 * get re-initialized via reserve_bootmem_region() later.
7027 */
7028 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7029 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
7030 pgcnt++;
7031 }
7032
7033 return pgcnt;
7034}
7035
a4a3ede2
PT
7036/*
7037 * Only struct pages that are backed by physical memory are zeroed and
7038 * initialized by going through __init_single_page(). But, there are some
7039 * struct pages which are reserved in memblock allocator and their fields
7040 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 7041 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
7042 *
7043 * This function also addresses a similar issue where struct pages are left
7044 * uninitialized because the physical address range is not covered by
7045 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
7046 * layout is manually configured via memmap=, or when the highest physical
7047 * address (max_pfn) does not end on a section boundary.
a4a3ede2 7048 */
4b094b78 7049static void __init init_unavailable_mem(void)
a4a3ede2
PT
7050{
7051 phys_addr_t start, end;
a4a3ede2 7052 u64 i, pgcnt;
907ec5fc 7053 phys_addr_t next = 0;
a4a3ede2
PT
7054
7055 /*
907ec5fc 7056 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
7057 */
7058 pgcnt = 0;
6e245ad4 7059 for_each_mem_range(i, &start, &end) {
ec393a0f 7060 if (next < start)
4b094b78
DH
7061 pgcnt += init_unavailable_range(PFN_DOWN(next),
7062 PFN_UP(start));
907ec5fc
NH
7063 next = end;
7064 }
e822969c
DH
7065
7066 /*
7067 * Early sections always have a fully populated memmap for the whole
7068 * section - see pfn_valid(). If the last section has holes at the
7069 * end and that section is marked "online", the memmap will be
7070 * considered initialized. Make sure that memmap has a well defined
7071 * state.
7072 */
4b094b78
DH
7073 pgcnt += init_unavailable_range(PFN_DOWN(next),
7074 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7075
a4a3ede2
PT
7076 /*
7077 * Struct pages that do not have backing memory. This could be because
7078 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7079 */
7080 if (pgcnt)
907ec5fc 7081 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7082}
4b094b78
DH
7083#else
7084static inline void __init init_unavailable_mem(void)
7085{
7086}
aca52c39 7087#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7088
418508c1
MS
7089#if MAX_NUMNODES > 1
7090/*
7091 * Figure out the number of possible node ids.
7092 */
f9872caf 7093void __init setup_nr_node_ids(void)
418508c1 7094{
904a9553 7095 unsigned int highest;
418508c1 7096
904a9553 7097 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7098 nr_node_ids = highest + 1;
7099}
418508c1
MS
7100#endif
7101
1e01979c
TH
7102/**
7103 * node_map_pfn_alignment - determine the maximum internode alignment
7104 *
7105 * This function should be called after node map is populated and sorted.
7106 * It calculates the maximum power of two alignment which can distinguish
7107 * all the nodes.
7108 *
7109 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7110 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7111 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7112 * shifted, 1GiB is enough and this function will indicate so.
7113 *
7114 * This is used to test whether pfn -> nid mapping of the chosen memory
7115 * model has fine enough granularity to avoid incorrect mapping for the
7116 * populated node map.
7117 *
a862f68a 7118 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7119 * requirement (single node).
7120 */
7121unsigned long __init node_map_pfn_alignment(void)
7122{
7123 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7124 unsigned long start, end, mask;
98fa15f3 7125 int last_nid = NUMA_NO_NODE;
c13291a5 7126 int i, nid;
1e01979c 7127
c13291a5 7128 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7129 if (!start || last_nid < 0 || last_nid == nid) {
7130 last_nid = nid;
7131 last_end = end;
7132 continue;
7133 }
7134
7135 /*
7136 * Start with a mask granular enough to pin-point to the
7137 * start pfn and tick off bits one-by-one until it becomes
7138 * too coarse to separate the current node from the last.
7139 */
7140 mask = ~((1 << __ffs(start)) - 1);
7141 while (mask && last_end <= (start & (mask << 1)))
7142 mask <<= 1;
7143
7144 /* accumulate all internode masks */
7145 accl_mask |= mask;
7146 }
7147
7148 /* convert mask to number of pages */
7149 return ~accl_mask + 1;
7150}
7151
c713216d
MG
7152/**
7153 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7154 *
a862f68a 7155 * Return: the minimum PFN based on information provided via
7d018176 7156 * memblock_set_node().
c713216d
MG
7157 */
7158unsigned long __init find_min_pfn_with_active_regions(void)
7159{
8a1b25fe 7160 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7161}
7162
37b07e41
LS
7163/*
7164 * early_calculate_totalpages()
7165 * Sum pages in active regions for movable zone.
4b0ef1fe 7166 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7167 */
484f51f8 7168static unsigned long __init early_calculate_totalpages(void)
7e63efef 7169{
7e63efef 7170 unsigned long totalpages = 0;
c13291a5
TH
7171 unsigned long start_pfn, end_pfn;
7172 int i, nid;
7173
7174 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7175 unsigned long pages = end_pfn - start_pfn;
7e63efef 7176
37b07e41
LS
7177 totalpages += pages;
7178 if (pages)
4b0ef1fe 7179 node_set_state(nid, N_MEMORY);
37b07e41 7180 }
b8af2941 7181 return totalpages;
7e63efef
MG
7182}
7183
2a1e274a
MG
7184/*
7185 * Find the PFN the Movable zone begins in each node. Kernel memory
7186 * is spread evenly between nodes as long as the nodes have enough
7187 * memory. When they don't, some nodes will have more kernelcore than
7188 * others
7189 */
b224ef85 7190static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7191{
7192 int i, nid;
7193 unsigned long usable_startpfn;
7194 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7195 /* save the state before borrow the nodemask */
4b0ef1fe 7196 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7197 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7198 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7199 struct memblock_region *r;
b2f3eebe
TC
7200
7201 /* Need to find movable_zone earlier when movable_node is specified. */
7202 find_usable_zone_for_movable();
7203
7204 /*
7205 * If movable_node is specified, ignore kernelcore and movablecore
7206 * options.
7207 */
7208 if (movable_node_is_enabled()) {
cc6de168 7209 for_each_mem_region(r) {
136199f0 7210 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7211 continue;
7212
d622abf7 7213 nid = memblock_get_region_node(r);
b2f3eebe 7214
136199f0 7215 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7216 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7217 min(usable_startpfn, zone_movable_pfn[nid]) :
7218 usable_startpfn;
7219 }
7220
7221 goto out2;
7222 }
2a1e274a 7223
342332e6
TI
7224 /*
7225 * If kernelcore=mirror is specified, ignore movablecore option
7226 */
7227 if (mirrored_kernelcore) {
7228 bool mem_below_4gb_not_mirrored = false;
7229
cc6de168 7230 for_each_mem_region(r) {
342332e6
TI
7231 if (memblock_is_mirror(r))
7232 continue;
7233
d622abf7 7234 nid = memblock_get_region_node(r);
342332e6
TI
7235
7236 usable_startpfn = memblock_region_memory_base_pfn(r);
7237
7238 if (usable_startpfn < 0x100000) {
7239 mem_below_4gb_not_mirrored = true;
7240 continue;
7241 }
7242
7243 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7244 min(usable_startpfn, zone_movable_pfn[nid]) :
7245 usable_startpfn;
7246 }
7247
7248 if (mem_below_4gb_not_mirrored)
633bf2fe 7249 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7250
7251 goto out2;
7252 }
7253
7e63efef 7254 /*
a5c6d650
DR
7255 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7256 * amount of necessary memory.
7257 */
7258 if (required_kernelcore_percent)
7259 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7260 10000UL;
7261 if (required_movablecore_percent)
7262 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7263 10000UL;
7264
7265 /*
7266 * If movablecore= was specified, calculate what size of
7e63efef
MG
7267 * kernelcore that corresponds so that memory usable for
7268 * any allocation type is evenly spread. If both kernelcore
7269 * and movablecore are specified, then the value of kernelcore
7270 * will be used for required_kernelcore if it's greater than
7271 * what movablecore would have allowed.
7272 */
7273 if (required_movablecore) {
7e63efef
MG
7274 unsigned long corepages;
7275
7276 /*
7277 * Round-up so that ZONE_MOVABLE is at least as large as what
7278 * was requested by the user
7279 */
7280 required_movablecore =
7281 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7282 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7283 corepages = totalpages - required_movablecore;
7284
7285 required_kernelcore = max(required_kernelcore, corepages);
7286 }
7287
bde304bd
XQ
7288 /*
7289 * If kernelcore was not specified or kernelcore size is larger
7290 * than totalpages, there is no ZONE_MOVABLE.
7291 */
7292 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7293 goto out;
2a1e274a
MG
7294
7295 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7296 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7297
7298restart:
7299 /* Spread kernelcore memory as evenly as possible throughout nodes */
7300 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7301 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7302 unsigned long start_pfn, end_pfn;
7303
2a1e274a
MG
7304 /*
7305 * Recalculate kernelcore_node if the division per node
7306 * now exceeds what is necessary to satisfy the requested
7307 * amount of memory for the kernel
7308 */
7309 if (required_kernelcore < kernelcore_node)
7310 kernelcore_node = required_kernelcore / usable_nodes;
7311
7312 /*
7313 * As the map is walked, we track how much memory is usable
7314 * by the kernel using kernelcore_remaining. When it is
7315 * 0, the rest of the node is usable by ZONE_MOVABLE
7316 */
7317 kernelcore_remaining = kernelcore_node;
7318
7319 /* Go through each range of PFNs within this node */
c13291a5 7320 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7321 unsigned long size_pages;
7322
c13291a5 7323 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7324 if (start_pfn >= end_pfn)
7325 continue;
7326
7327 /* Account for what is only usable for kernelcore */
7328 if (start_pfn < usable_startpfn) {
7329 unsigned long kernel_pages;
7330 kernel_pages = min(end_pfn, usable_startpfn)
7331 - start_pfn;
7332
7333 kernelcore_remaining -= min(kernel_pages,
7334 kernelcore_remaining);
7335 required_kernelcore -= min(kernel_pages,
7336 required_kernelcore);
7337
7338 /* Continue if range is now fully accounted */
7339 if (end_pfn <= usable_startpfn) {
7340
7341 /*
7342 * Push zone_movable_pfn to the end so
7343 * that if we have to rebalance
7344 * kernelcore across nodes, we will
7345 * not double account here
7346 */
7347 zone_movable_pfn[nid] = end_pfn;
7348 continue;
7349 }
7350 start_pfn = usable_startpfn;
7351 }
7352
7353 /*
7354 * The usable PFN range for ZONE_MOVABLE is from
7355 * start_pfn->end_pfn. Calculate size_pages as the
7356 * number of pages used as kernelcore
7357 */
7358 size_pages = end_pfn - start_pfn;
7359 if (size_pages > kernelcore_remaining)
7360 size_pages = kernelcore_remaining;
7361 zone_movable_pfn[nid] = start_pfn + size_pages;
7362
7363 /*
7364 * Some kernelcore has been met, update counts and
7365 * break if the kernelcore for this node has been
b8af2941 7366 * satisfied
2a1e274a
MG
7367 */
7368 required_kernelcore -= min(required_kernelcore,
7369 size_pages);
7370 kernelcore_remaining -= size_pages;
7371 if (!kernelcore_remaining)
7372 break;
7373 }
7374 }
7375
7376 /*
7377 * If there is still required_kernelcore, we do another pass with one
7378 * less node in the count. This will push zone_movable_pfn[nid] further
7379 * along on the nodes that still have memory until kernelcore is
b8af2941 7380 * satisfied
2a1e274a
MG
7381 */
7382 usable_nodes--;
7383 if (usable_nodes && required_kernelcore > usable_nodes)
7384 goto restart;
7385
b2f3eebe 7386out2:
2a1e274a
MG
7387 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7388 for (nid = 0; nid < MAX_NUMNODES; nid++)
7389 zone_movable_pfn[nid] =
7390 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7391
20e6926d 7392out:
66918dcd 7393 /* restore the node_state */
4b0ef1fe 7394 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7395}
7396
4b0ef1fe
LJ
7397/* Any regular or high memory on that node ? */
7398static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7399{
37b07e41
LS
7400 enum zone_type zone_type;
7401
4b0ef1fe 7402 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7403 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7404 if (populated_zone(zone)) {
7b0e0c0e
OS
7405 if (IS_ENABLED(CONFIG_HIGHMEM))
7406 node_set_state(nid, N_HIGH_MEMORY);
7407 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7408 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7409 break;
7410 }
37b07e41 7411 }
37b07e41
LS
7412}
7413
51930df5
MR
7414/*
7415 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7416 * such cases we allow max_zone_pfn sorted in the descending order
7417 */
7418bool __weak arch_has_descending_max_zone_pfns(void)
7419{
7420 return false;
7421}
7422
c713216d 7423/**
9691a071 7424 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7425 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7426 *
7427 * This will call free_area_init_node() for each active node in the system.
7d018176 7428 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7429 * zone in each node and their holes is calculated. If the maximum PFN
7430 * between two adjacent zones match, it is assumed that the zone is empty.
7431 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7432 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7433 * starts where the previous one ended. For example, ZONE_DMA32 starts
7434 * at arch_max_dma_pfn.
7435 */
9691a071 7436void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7437{
c13291a5 7438 unsigned long start_pfn, end_pfn;
51930df5
MR
7439 int i, nid, zone;
7440 bool descending;
a6af2bc3 7441
c713216d
MG
7442 /* Record where the zone boundaries are */
7443 memset(arch_zone_lowest_possible_pfn, 0,
7444 sizeof(arch_zone_lowest_possible_pfn));
7445 memset(arch_zone_highest_possible_pfn, 0,
7446 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7447
7448 start_pfn = find_min_pfn_with_active_regions();
51930df5 7449 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7450
7451 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7452 if (descending)
7453 zone = MAX_NR_ZONES - i - 1;
7454 else
7455 zone = i;
7456
7457 if (zone == ZONE_MOVABLE)
2a1e274a 7458 continue;
90cae1fe 7459
51930df5
MR
7460 end_pfn = max(max_zone_pfn[zone], start_pfn);
7461 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7462 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7463
7464 start_pfn = end_pfn;
c713216d 7465 }
2a1e274a
MG
7466
7467 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7468 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7469 find_zone_movable_pfns_for_nodes();
c713216d 7470
c713216d 7471 /* Print out the zone ranges */
f88dfff5 7472 pr_info("Zone ranges:\n");
2a1e274a
MG
7473 for (i = 0; i < MAX_NR_ZONES; i++) {
7474 if (i == ZONE_MOVABLE)
7475 continue;
f88dfff5 7476 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7477 if (arch_zone_lowest_possible_pfn[i] ==
7478 arch_zone_highest_possible_pfn[i])
f88dfff5 7479 pr_cont("empty\n");
72f0ba02 7480 else
8d29e18a
JG
7481 pr_cont("[mem %#018Lx-%#018Lx]\n",
7482 (u64)arch_zone_lowest_possible_pfn[i]
7483 << PAGE_SHIFT,
7484 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7485 << PAGE_SHIFT) - 1);
2a1e274a
MG
7486 }
7487
7488 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7489 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7490 for (i = 0; i < MAX_NUMNODES; i++) {
7491 if (zone_movable_pfn[i])
8d29e18a
JG
7492 pr_info(" Node %d: %#018Lx\n", i,
7493 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7494 }
c713216d 7495
f46edbd1
DW
7496 /*
7497 * Print out the early node map, and initialize the
7498 * subsection-map relative to active online memory ranges to
7499 * enable future "sub-section" extensions of the memory map.
7500 */
f88dfff5 7501 pr_info("Early memory node ranges\n");
f46edbd1 7502 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7503 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7504 (u64)start_pfn << PAGE_SHIFT,
7505 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7506 subsection_map_init(start_pfn, end_pfn - start_pfn);
7507 }
c713216d
MG
7508
7509 /* Initialise every node */
708614e6 7510 mminit_verify_pageflags_layout();
8ef82866 7511 setup_nr_node_ids();
4b094b78 7512 init_unavailable_mem();
c713216d
MG
7513 for_each_online_node(nid) {
7514 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7515 free_area_init_node(nid);
37b07e41
LS
7516
7517 /* Any memory on that node */
7518 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7519 node_set_state(nid, N_MEMORY);
7520 check_for_memory(pgdat, nid);
c713216d
MG
7521 }
7522}
2a1e274a 7523
a5c6d650
DR
7524static int __init cmdline_parse_core(char *p, unsigned long *core,
7525 unsigned long *percent)
2a1e274a
MG
7526{
7527 unsigned long long coremem;
a5c6d650
DR
7528 char *endptr;
7529
2a1e274a
MG
7530 if (!p)
7531 return -EINVAL;
7532
a5c6d650
DR
7533 /* Value may be a percentage of total memory, otherwise bytes */
7534 coremem = simple_strtoull(p, &endptr, 0);
7535 if (*endptr == '%') {
7536 /* Paranoid check for percent values greater than 100 */
7537 WARN_ON(coremem > 100);
2a1e274a 7538
a5c6d650
DR
7539 *percent = coremem;
7540 } else {
7541 coremem = memparse(p, &p);
7542 /* Paranoid check that UL is enough for the coremem value */
7543 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7544
a5c6d650
DR
7545 *core = coremem >> PAGE_SHIFT;
7546 *percent = 0UL;
7547 }
2a1e274a
MG
7548 return 0;
7549}
ed7ed365 7550
7e63efef
MG
7551/*
7552 * kernelcore=size sets the amount of memory for use for allocations that
7553 * cannot be reclaimed or migrated.
7554 */
7555static int __init cmdline_parse_kernelcore(char *p)
7556{
342332e6
TI
7557 /* parse kernelcore=mirror */
7558 if (parse_option_str(p, "mirror")) {
7559 mirrored_kernelcore = true;
7560 return 0;
7561 }
7562
a5c6d650
DR
7563 return cmdline_parse_core(p, &required_kernelcore,
7564 &required_kernelcore_percent);
7e63efef
MG
7565}
7566
7567/*
7568 * movablecore=size sets the amount of memory for use for allocations that
7569 * can be reclaimed or migrated.
7570 */
7571static int __init cmdline_parse_movablecore(char *p)
7572{
a5c6d650
DR
7573 return cmdline_parse_core(p, &required_movablecore,
7574 &required_movablecore_percent);
7e63efef
MG
7575}
7576
ed7ed365 7577early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7578early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7579
c3d5f5f0
JL
7580void adjust_managed_page_count(struct page *page, long count)
7581{
9705bea5 7582 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7583 totalram_pages_add(count);
3dcc0571
JL
7584#ifdef CONFIG_HIGHMEM
7585 if (PageHighMem(page))
ca79b0c2 7586 totalhigh_pages_add(count);
3dcc0571 7587#endif
c3d5f5f0 7588}
3dcc0571 7589EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7590
e5cb113f 7591unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7592{
11199692
JL
7593 void *pos;
7594 unsigned long pages = 0;
69afade7 7595
11199692
JL
7596 start = (void *)PAGE_ALIGN((unsigned long)start);
7597 end = (void *)((unsigned long)end & PAGE_MASK);
7598 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7599 struct page *page = virt_to_page(pos);
7600 void *direct_map_addr;
7601
7602 /*
7603 * 'direct_map_addr' might be different from 'pos'
7604 * because some architectures' virt_to_page()
7605 * work with aliases. Getting the direct map
7606 * address ensures that we get a _writeable_
7607 * alias for the memset().
7608 */
7609 direct_map_addr = page_address(page);
dbe67df4 7610 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7611 memset(direct_map_addr, poison, PAGE_SIZE);
7612
7613 free_reserved_page(page);
69afade7
JL
7614 }
7615
7616 if (pages && s)
adb1fe9a
JP
7617 pr_info("Freeing %s memory: %ldK\n",
7618 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7619
7620 return pages;
7621}
7622
cfa11e08
JL
7623#ifdef CONFIG_HIGHMEM
7624void free_highmem_page(struct page *page)
7625{
7626 __free_reserved_page(page);
ca79b0c2 7627 totalram_pages_inc();
9705bea5 7628 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7629 totalhigh_pages_inc();
cfa11e08
JL
7630}
7631#endif
7632
7ee3d4e8
JL
7633
7634void __init mem_init_print_info(const char *str)
7635{
7636 unsigned long physpages, codesize, datasize, rosize, bss_size;
7637 unsigned long init_code_size, init_data_size;
7638
7639 physpages = get_num_physpages();
7640 codesize = _etext - _stext;
7641 datasize = _edata - _sdata;
7642 rosize = __end_rodata - __start_rodata;
7643 bss_size = __bss_stop - __bss_start;
7644 init_data_size = __init_end - __init_begin;
7645 init_code_size = _einittext - _sinittext;
7646
7647 /*
7648 * Detect special cases and adjust section sizes accordingly:
7649 * 1) .init.* may be embedded into .data sections
7650 * 2) .init.text.* may be out of [__init_begin, __init_end],
7651 * please refer to arch/tile/kernel/vmlinux.lds.S.
7652 * 3) .rodata.* may be embedded into .text or .data sections.
7653 */
7654#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7655 do { \
7656 if (start <= pos && pos < end && size > adj) \
7657 size -= adj; \
7658 } while (0)
7ee3d4e8
JL
7659
7660 adj_init_size(__init_begin, __init_end, init_data_size,
7661 _sinittext, init_code_size);
7662 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7663 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7664 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7665 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7666
7667#undef adj_init_size
7668
756a025f 7669 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7670#ifdef CONFIG_HIGHMEM
756a025f 7671 ", %luK highmem"
7ee3d4e8 7672#endif
756a025f
JP
7673 "%s%s)\n",
7674 nr_free_pages() << (PAGE_SHIFT - 10),
7675 physpages << (PAGE_SHIFT - 10),
7676 codesize >> 10, datasize >> 10, rosize >> 10,
7677 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7678 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7679 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7680#ifdef CONFIG_HIGHMEM
ca79b0c2 7681 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7682#endif
756a025f 7683 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7684}
7685
0e0b864e 7686/**
88ca3b94
RD
7687 * set_dma_reserve - set the specified number of pages reserved in the first zone
7688 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7689 *
013110a7 7690 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7691 * In the DMA zone, a significant percentage may be consumed by kernel image
7692 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7693 * function may optionally be used to account for unfreeable pages in the
7694 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7695 * smaller per-cpu batchsize.
0e0b864e
MG
7696 */
7697void __init set_dma_reserve(unsigned long new_dma_reserve)
7698{
7699 dma_reserve = new_dma_reserve;
7700}
7701
005fd4bb 7702static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7703{
1da177e4 7704
005fd4bb
SAS
7705 lru_add_drain_cpu(cpu);
7706 drain_pages(cpu);
9f8f2172 7707
005fd4bb
SAS
7708 /*
7709 * Spill the event counters of the dead processor
7710 * into the current processors event counters.
7711 * This artificially elevates the count of the current
7712 * processor.
7713 */
7714 vm_events_fold_cpu(cpu);
9f8f2172 7715
005fd4bb
SAS
7716 /*
7717 * Zero the differential counters of the dead processor
7718 * so that the vm statistics are consistent.
7719 *
7720 * This is only okay since the processor is dead and cannot
7721 * race with what we are doing.
7722 */
7723 cpu_vm_stats_fold(cpu);
7724 return 0;
1da177e4 7725}
1da177e4 7726
e03a5125
NP
7727#ifdef CONFIG_NUMA
7728int hashdist = HASHDIST_DEFAULT;
7729
7730static int __init set_hashdist(char *str)
7731{
7732 if (!str)
7733 return 0;
7734 hashdist = simple_strtoul(str, &str, 0);
7735 return 1;
7736}
7737__setup("hashdist=", set_hashdist);
7738#endif
7739
1da177e4
LT
7740void __init page_alloc_init(void)
7741{
005fd4bb
SAS
7742 int ret;
7743
e03a5125
NP
7744#ifdef CONFIG_NUMA
7745 if (num_node_state(N_MEMORY) == 1)
7746 hashdist = 0;
7747#endif
7748
005fd4bb
SAS
7749 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7750 "mm/page_alloc:dead", NULL,
7751 page_alloc_cpu_dead);
7752 WARN_ON(ret < 0);
1da177e4
LT
7753}
7754
cb45b0e9 7755/*
34b10060 7756 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7757 * or min_free_kbytes changes.
7758 */
7759static void calculate_totalreserve_pages(void)
7760{
7761 struct pglist_data *pgdat;
7762 unsigned long reserve_pages = 0;
2f6726e5 7763 enum zone_type i, j;
cb45b0e9
HA
7764
7765 for_each_online_pgdat(pgdat) {
281e3726
MG
7766
7767 pgdat->totalreserve_pages = 0;
7768
cb45b0e9
HA
7769 for (i = 0; i < MAX_NR_ZONES; i++) {
7770 struct zone *zone = pgdat->node_zones + i;
3484b2de 7771 long max = 0;
9705bea5 7772 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7773
7774 /* Find valid and maximum lowmem_reserve in the zone */
7775 for (j = i; j < MAX_NR_ZONES; j++) {
7776 if (zone->lowmem_reserve[j] > max)
7777 max = zone->lowmem_reserve[j];
7778 }
7779
41858966
MG
7780 /* we treat the high watermark as reserved pages. */
7781 max += high_wmark_pages(zone);
cb45b0e9 7782
3d6357de
AK
7783 if (max > managed_pages)
7784 max = managed_pages;
a8d01437 7785
281e3726 7786 pgdat->totalreserve_pages += max;
a8d01437 7787
cb45b0e9
HA
7788 reserve_pages += max;
7789 }
7790 }
7791 totalreserve_pages = reserve_pages;
7792}
7793
1da177e4
LT
7794/*
7795 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7796 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7797 * has a correct pages reserved value, so an adequate number of
7798 * pages are left in the zone after a successful __alloc_pages().
7799 */
7800static void setup_per_zone_lowmem_reserve(void)
7801{
7802 struct pglist_data *pgdat;
2f6726e5 7803 enum zone_type j, idx;
1da177e4 7804
ec936fc5 7805 for_each_online_pgdat(pgdat) {
1da177e4
LT
7806 for (j = 0; j < MAX_NR_ZONES; j++) {
7807 struct zone *zone = pgdat->node_zones + j;
9705bea5 7808 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7809
7810 zone->lowmem_reserve[j] = 0;
7811
2f6726e5
CL
7812 idx = j;
7813 while (idx) {
1da177e4
LT
7814 struct zone *lower_zone;
7815
2f6726e5 7816 idx--;
1da177e4 7817 lower_zone = pgdat->node_zones + idx;
d3cda233 7818
f6366156
BH
7819 if (!sysctl_lowmem_reserve_ratio[idx] ||
7820 !zone_managed_pages(lower_zone)) {
d3cda233 7821 lower_zone->lowmem_reserve[j] = 0;
f6366156 7822 continue;
d3cda233
JK
7823 } else {
7824 lower_zone->lowmem_reserve[j] =
7825 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7826 }
9705bea5 7827 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7828 }
7829 }
7830 }
cb45b0e9
HA
7831
7832 /* update totalreserve_pages */
7833 calculate_totalreserve_pages();
1da177e4
LT
7834}
7835
cfd3da1e 7836static void __setup_per_zone_wmarks(void)
1da177e4
LT
7837{
7838 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7839 unsigned long lowmem_pages = 0;
7840 struct zone *zone;
7841 unsigned long flags;
7842
7843 /* Calculate total number of !ZONE_HIGHMEM pages */
7844 for_each_zone(zone) {
7845 if (!is_highmem(zone))
9705bea5 7846 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7847 }
7848
7849 for_each_zone(zone) {
ac924c60
AM
7850 u64 tmp;
7851
1125b4e3 7852 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7853 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7854 do_div(tmp, lowmem_pages);
1da177e4
LT
7855 if (is_highmem(zone)) {
7856 /*
669ed175
NP
7857 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7858 * need highmem pages, so cap pages_min to a small
7859 * value here.
7860 *
41858966 7861 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7862 * deltas control async page reclaim, and so should
669ed175 7863 * not be capped for highmem.
1da177e4 7864 */
90ae8d67 7865 unsigned long min_pages;
1da177e4 7866
9705bea5 7867 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7868 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7869 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7870 } else {
669ed175
NP
7871 /*
7872 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7873 * proportionate to the zone's size.
7874 */
a9214443 7875 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7876 }
7877
795ae7a0
JW
7878 /*
7879 * Set the kswapd watermarks distance according to the
7880 * scale factor in proportion to available memory, but
7881 * ensure a minimum size on small systems.
7882 */
7883 tmp = max_t(u64, tmp >> 2,
9705bea5 7884 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7885 watermark_scale_factor, 10000));
7886
aa092591 7887 zone->watermark_boost = 0;
a9214443
MG
7888 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7889 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7890
1125b4e3 7891 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7892 }
cb45b0e9
HA
7893
7894 /* update totalreserve_pages */
7895 calculate_totalreserve_pages();
1da177e4
LT
7896}
7897
cfd3da1e
MG
7898/**
7899 * setup_per_zone_wmarks - called when min_free_kbytes changes
7900 * or when memory is hot-{added|removed}
7901 *
7902 * Ensures that the watermark[min,low,high] values for each zone are set
7903 * correctly with respect to min_free_kbytes.
7904 */
7905void setup_per_zone_wmarks(void)
7906{
b93e0f32
MH
7907 static DEFINE_SPINLOCK(lock);
7908
7909 spin_lock(&lock);
cfd3da1e 7910 __setup_per_zone_wmarks();
b93e0f32 7911 spin_unlock(&lock);
cfd3da1e
MG
7912}
7913
1da177e4
LT
7914/*
7915 * Initialise min_free_kbytes.
7916 *
7917 * For small machines we want it small (128k min). For large machines
8beeae86 7918 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7919 * bandwidth does not increase linearly with machine size. We use
7920 *
b8af2941 7921 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7922 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7923 *
7924 * which yields
7925 *
7926 * 16MB: 512k
7927 * 32MB: 724k
7928 * 64MB: 1024k
7929 * 128MB: 1448k
7930 * 256MB: 2048k
7931 * 512MB: 2896k
7932 * 1024MB: 4096k
7933 * 2048MB: 5792k
7934 * 4096MB: 8192k
7935 * 8192MB: 11584k
7936 * 16384MB: 16384k
7937 */
1b79acc9 7938int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7939{
7940 unsigned long lowmem_kbytes;
5f12733e 7941 int new_min_free_kbytes;
1da177e4
LT
7942
7943 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7944 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7945
7946 if (new_min_free_kbytes > user_min_free_kbytes) {
7947 min_free_kbytes = new_min_free_kbytes;
7948 if (min_free_kbytes < 128)
7949 min_free_kbytes = 128;
ee8eb9a5
JS
7950 if (min_free_kbytes > 262144)
7951 min_free_kbytes = 262144;
5f12733e
MH
7952 } else {
7953 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7954 new_min_free_kbytes, user_min_free_kbytes);
7955 }
bc75d33f 7956 setup_per_zone_wmarks();
a6cccdc3 7957 refresh_zone_stat_thresholds();
1da177e4 7958 setup_per_zone_lowmem_reserve();
6423aa81
JK
7959
7960#ifdef CONFIG_NUMA
7961 setup_min_unmapped_ratio();
7962 setup_min_slab_ratio();
7963#endif
7964
4aab2be0
VB
7965 khugepaged_min_free_kbytes_update();
7966
1da177e4
LT
7967 return 0;
7968}
e08d3fdf 7969postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
7970
7971/*
b8af2941 7972 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7973 * that we can call two helper functions whenever min_free_kbytes
7974 * changes.
7975 */
cccad5b9 7976int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 7977 void *buffer, size_t *length, loff_t *ppos)
1da177e4 7978{
da8c757b
HP
7979 int rc;
7980
7981 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7982 if (rc)
7983 return rc;
7984
5f12733e
MH
7985 if (write) {
7986 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7987 setup_per_zone_wmarks();
5f12733e 7988 }
1da177e4
LT
7989 return 0;
7990}
7991
795ae7a0 7992int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 7993 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
7994{
7995 int rc;
7996
7997 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7998 if (rc)
7999 return rc;
8000
8001 if (write)
8002 setup_per_zone_wmarks();
8003
8004 return 0;
8005}
8006
9614634f 8007#ifdef CONFIG_NUMA
6423aa81 8008static void setup_min_unmapped_ratio(void)
9614634f 8009{
6423aa81 8010 pg_data_t *pgdat;
9614634f 8011 struct zone *zone;
9614634f 8012
a5f5f91d 8013 for_each_online_pgdat(pgdat)
81cbcbc2 8014 pgdat->min_unmapped_pages = 0;
a5f5f91d 8015
9614634f 8016 for_each_zone(zone)
9705bea5
AK
8017 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8018 sysctl_min_unmapped_ratio) / 100;
9614634f 8019}
0ff38490 8020
6423aa81
JK
8021
8022int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8023 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8024{
0ff38490
CL
8025 int rc;
8026
8d65af78 8027 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8028 if (rc)
8029 return rc;
8030
6423aa81
JK
8031 setup_min_unmapped_ratio();
8032
8033 return 0;
8034}
8035
8036static void setup_min_slab_ratio(void)
8037{
8038 pg_data_t *pgdat;
8039 struct zone *zone;
8040
a5f5f91d
MG
8041 for_each_online_pgdat(pgdat)
8042 pgdat->min_slab_pages = 0;
8043
0ff38490 8044 for_each_zone(zone)
9705bea5
AK
8045 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8046 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8047}
8048
8049int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8050 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8051{
8052 int rc;
8053
8054 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8055 if (rc)
8056 return rc;
8057
8058 setup_min_slab_ratio();
8059
0ff38490
CL
8060 return 0;
8061}
9614634f
CL
8062#endif
8063
1da177e4
LT
8064/*
8065 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8066 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8067 * whenever sysctl_lowmem_reserve_ratio changes.
8068 *
8069 * The reserve ratio obviously has absolutely no relation with the
41858966 8070 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8071 * if in function of the boot time zone sizes.
8072 */
cccad5b9 8073int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8074 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8075{
86aaf255
BH
8076 int i;
8077
8d65af78 8078 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8079
8080 for (i = 0; i < MAX_NR_ZONES; i++) {
8081 if (sysctl_lowmem_reserve_ratio[i] < 1)
8082 sysctl_lowmem_reserve_ratio[i] = 0;
8083 }
8084
1da177e4
LT
8085 setup_per_zone_lowmem_reserve();
8086 return 0;
8087}
8088
8ad4b1fb
RS
8089/*
8090 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8091 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8092 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8093 */
cccad5b9 8094int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8095 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8096{
8097 struct zone *zone;
7cd2b0a3 8098 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8099 int ret;
8100
7cd2b0a3
DR
8101 mutex_lock(&pcp_batch_high_lock);
8102 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8103
8d65af78 8104 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8105 if (!write || ret < 0)
8106 goto out;
8107
8108 /* Sanity checking to avoid pcp imbalance */
8109 if (percpu_pagelist_fraction &&
8110 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8111 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8112 ret = -EINVAL;
8113 goto out;
8114 }
8115
8116 /* No change? */
8117 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8118 goto out;
c8e251fa 8119
cb1ef534 8120 for_each_populated_zone(zone)
0a8b4f1d 8121 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8122out:
c8e251fa 8123 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8124 return ret;
8ad4b1fb
RS
8125}
8126
f6f34b43
SD
8127#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8128/*
8129 * Returns the number of pages that arch has reserved but
8130 * is not known to alloc_large_system_hash().
8131 */
8132static unsigned long __init arch_reserved_kernel_pages(void)
8133{
8134 return 0;
8135}
8136#endif
8137
9017217b
PT
8138/*
8139 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8140 * machines. As memory size is increased the scale is also increased but at
8141 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8142 * quadruples the scale is increased by one, which means the size of hash table
8143 * only doubles, instead of quadrupling as well.
8144 * Because 32-bit systems cannot have large physical memory, where this scaling
8145 * makes sense, it is disabled on such platforms.
8146 */
8147#if __BITS_PER_LONG > 32
8148#define ADAPT_SCALE_BASE (64ul << 30)
8149#define ADAPT_SCALE_SHIFT 2
8150#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8151#endif
8152
1da177e4
LT
8153/*
8154 * allocate a large system hash table from bootmem
8155 * - it is assumed that the hash table must contain an exact power-of-2
8156 * quantity of entries
8157 * - limit is the number of hash buckets, not the total allocation size
8158 */
8159void *__init alloc_large_system_hash(const char *tablename,
8160 unsigned long bucketsize,
8161 unsigned long numentries,
8162 int scale,
8163 int flags,
8164 unsigned int *_hash_shift,
8165 unsigned int *_hash_mask,
31fe62b9
TB
8166 unsigned long low_limit,
8167 unsigned long high_limit)
1da177e4 8168{
31fe62b9 8169 unsigned long long max = high_limit;
1da177e4
LT
8170 unsigned long log2qty, size;
8171 void *table = NULL;
3749a8f0 8172 gfp_t gfp_flags;
ec11408a 8173 bool virt;
1da177e4
LT
8174
8175 /* allow the kernel cmdline to have a say */
8176 if (!numentries) {
8177 /* round applicable memory size up to nearest megabyte */
04903664 8178 numentries = nr_kernel_pages;
f6f34b43 8179 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8180
8181 /* It isn't necessary when PAGE_SIZE >= 1MB */
8182 if (PAGE_SHIFT < 20)
8183 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8184
9017217b
PT
8185#if __BITS_PER_LONG > 32
8186 if (!high_limit) {
8187 unsigned long adapt;
8188
8189 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8190 adapt <<= ADAPT_SCALE_SHIFT)
8191 scale++;
8192 }
8193#endif
8194
1da177e4
LT
8195 /* limit to 1 bucket per 2^scale bytes of low memory */
8196 if (scale > PAGE_SHIFT)
8197 numentries >>= (scale - PAGE_SHIFT);
8198 else
8199 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8200
8201 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8202 if (unlikely(flags & HASH_SMALL)) {
8203 /* Makes no sense without HASH_EARLY */
8204 WARN_ON(!(flags & HASH_EARLY));
8205 if (!(numentries >> *_hash_shift)) {
8206 numentries = 1UL << *_hash_shift;
8207 BUG_ON(!numentries);
8208 }
8209 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8210 numentries = PAGE_SIZE / bucketsize;
1da177e4 8211 }
6e692ed3 8212 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8213
8214 /* limit allocation size to 1/16 total memory by default */
8215 if (max == 0) {
8216 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8217 do_div(max, bucketsize);
8218 }
074b8517 8219 max = min(max, 0x80000000ULL);
1da177e4 8220
31fe62b9
TB
8221 if (numentries < low_limit)
8222 numentries = low_limit;
1da177e4
LT
8223 if (numentries > max)
8224 numentries = max;
8225
f0d1b0b3 8226 log2qty = ilog2(numentries);
1da177e4 8227
3749a8f0 8228 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8229 do {
ec11408a 8230 virt = false;
1da177e4 8231 size = bucketsize << log2qty;
ea1f5f37
PT
8232 if (flags & HASH_EARLY) {
8233 if (flags & HASH_ZERO)
26fb3dae 8234 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8235 else
7e1c4e27
MR
8236 table = memblock_alloc_raw(size,
8237 SMP_CACHE_BYTES);
ec11408a 8238 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8239 table = __vmalloc(size, gfp_flags);
ec11408a 8240 virt = true;
ea1f5f37 8241 } else {
1037b83b
ED
8242 /*
8243 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8244 * some pages at the end of hash table which
8245 * alloc_pages_exact() automatically does
1037b83b 8246 */
ec11408a
NP
8247 table = alloc_pages_exact(size, gfp_flags);
8248 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8249 }
8250 } while (!table && size > PAGE_SIZE && --log2qty);
8251
8252 if (!table)
8253 panic("Failed to allocate %s hash table\n", tablename);
8254
ec11408a
NP
8255 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8256 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8257 virt ? "vmalloc" : "linear");
1da177e4
LT
8258
8259 if (_hash_shift)
8260 *_hash_shift = log2qty;
8261 if (_hash_mask)
8262 *_hash_mask = (1 << log2qty) - 1;
8263
8264 return table;
8265}
a117e66e 8266
a5d76b54 8267/*
80934513 8268 * This function checks whether pageblock includes unmovable pages or not.
80934513 8269 *
b8af2941 8270 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8271 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8272 * check without lock_page also may miss some movable non-lru pages at
8273 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8274 *
8275 * Returns a page without holding a reference. If the caller wants to
047b9967 8276 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8277 * cannot get removed (e.g., via memory unplug) concurrently.
8278 *
a5d76b54 8279 */
4a55c047
QC
8280struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8281 int migratetype, int flags)
49ac8255 8282{
1a9f2191
QC
8283 unsigned long iter = 0;
8284 unsigned long pfn = page_to_pfn(page);
6a654e36 8285 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8286
1a9f2191
QC
8287 if (is_migrate_cma_page(page)) {
8288 /*
8289 * CMA allocations (alloc_contig_range) really need to mark
8290 * isolate CMA pageblocks even when they are not movable in fact
8291 * so consider them movable here.
8292 */
8293 if (is_migrate_cma(migratetype))
4a55c047 8294 return NULL;
1a9f2191 8295
3d680bdf 8296 return page;
1a9f2191 8297 }
4da2ce25 8298
6a654e36 8299 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8300 if (!pfn_valid_within(pfn + iter))
49ac8255 8301 continue;
29723fcc 8302
fe4c86c9 8303 page = pfn_to_page(pfn + iter);
c8721bbb 8304
c9c510dc
DH
8305 /*
8306 * Both, bootmem allocations and memory holes are marked
8307 * PG_reserved and are unmovable. We can even have unmovable
8308 * allocations inside ZONE_MOVABLE, for example when
8309 * specifying "movablecore".
8310 */
d7ab3672 8311 if (PageReserved(page))
3d680bdf 8312 return page;
d7ab3672 8313
9d789999
MH
8314 /*
8315 * If the zone is movable and we have ruled out all reserved
8316 * pages then it should be reasonably safe to assume the rest
8317 * is movable.
8318 */
8319 if (zone_idx(zone) == ZONE_MOVABLE)
8320 continue;
8321
c8721bbb
NH
8322 /*
8323 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8324 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8325 * We need not scan over tail pages because we don't
c8721bbb
NH
8326 * handle each tail page individually in migration.
8327 */
1da2f328 8328 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8329 struct page *head = compound_head(page);
8330 unsigned int skip_pages;
464c7ffb 8331
1da2f328
RR
8332 if (PageHuge(page)) {
8333 if (!hugepage_migration_supported(page_hstate(head)))
8334 return page;
8335 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8336 return page;
1da2f328 8337 }
464c7ffb 8338
d8c6546b 8339 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8340 iter += skip_pages - 1;
c8721bbb
NH
8341 continue;
8342 }
8343
97d255c8
MK
8344 /*
8345 * We can't use page_count without pin a page
8346 * because another CPU can free compound page.
8347 * This check already skips compound tails of THP
0139aa7b 8348 * because their page->_refcount is zero at all time.
97d255c8 8349 */
fe896d18 8350 if (!page_ref_count(page)) {
49ac8255 8351 if (PageBuddy(page))
ab130f91 8352 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8353 continue;
8354 }
97d255c8 8355
b023f468
WC
8356 /*
8357 * The HWPoisoned page may be not in buddy system, and
8358 * page_count() is not 0.
8359 */
756d25be 8360 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8361 continue;
8362
aa218795
DH
8363 /*
8364 * We treat all PageOffline() pages as movable when offlining
8365 * to give drivers a chance to decrement their reference count
8366 * in MEM_GOING_OFFLINE in order to indicate that these pages
8367 * can be offlined as there are no direct references anymore.
8368 * For actually unmovable PageOffline() where the driver does
8369 * not support this, we will fail later when trying to actually
8370 * move these pages that still have a reference count > 0.
8371 * (false negatives in this function only)
8372 */
8373 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8374 continue;
8375
fe4c86c9 8376 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8377 continue;
8378
49ac8255 8379 /*
6b4f7799
JW
8380 * If there are RECLAIMABLE pages, we need to check
8381 * it. But now, memory offline itself doesn't call
8382 * shrink_node_slabs() and it still to be fixed.
49ac8255 8383 */
3d680bdf 8384 return page;
49ac8255 8385 }
4a55c047 8386 return NULL;
49ac8255
KH
8387}
8388
8df995f6 8389#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8390static unsigned long pfn_max_align_down(unsigned long pfn)
8391{
8392 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8393 pageblock_nr_pages) - 1);
8394}
8395
8396static unsigned long pfn_max_align_up(unsigned long pfn)
8397{
8398 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8399 pageblock_nr_pages));
8400}
8401
041d3a8c 8402/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8403static int __alloc_contig_migrate_range(struct compact_control *cc,
8404 unsigned long start, unsigned long end)
041d3a8c
MN
8405{
8406 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8407 unsigned int nr_reclaimed;
041d3a8c
MN
8408 unsigned long pfn = start;
8409 unsigned int tries = 0;
8410 int ret = 0;
8b94e0b8
JK
8411 struct migration_target_control mtc = {
8412 .nid = zone_to_nid(cc->zone),
8413 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8414 };
041d3a8c 8415
be49a6e1 8416 migrate_prep();
041d3a8c 8417
bb13ffeb 8418 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8419 if (fatal_signal_pending(current)) {
8420 ret = -EINTR;
8421 break;
8422 }
8423
bb13ffeb
MG
8424 if (list_empty(&cc->migratepages)) {
8425 cc->nr_migratepages = 0;
edc2ca61 8426 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8427 if (!pfn) {
8428 ret = -EINTR;
8429 break;
8430 }
8431 tries = 0;
8432 } else if (++tries == 5) {
8433 ret = ret < 0 ? ret : -EBUSY;
8434 break;
8435 }
8436
beb51eaa
MK
8437 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8438 &cc->migratepages);
8439 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8440
8b94e0b8
JK
8441 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8442 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8443 }
2a6f5124
SP
8444 if (ret < 0) {
8445 putback_movable_pages(&cc->migratepages);
8446 return ret;
8447 }
8448 return 0;
041d3a8c
MN
8449}
8450
8451/**
8452 * alloc_contig_range() -- tries to allocate given range of pages
8453 * @start: start PFN to allocate
8454 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8455 * @migratetype: migratetype of the underlaying pageblocks (either
8456 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8457 * in range must have the same migratetype and it must
8458 * be either of the two.
ca96b625 8459 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8460 *
8461 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8462 * aligned. The PFN range must belong to a single zone.
041d3a8c 8463 *
2c7452a0
MK
8464 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8465 * pageblocks in the range. Once isolated, the pageblocks should not
8466 * be modified by others.
041d3a8c 8467 *
a862f68a 8468 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8469 * pages which PFN is in [start, end) are allocated for the caller and
8470 * need to be freed with free_contig_range().
8471 */
0815f3d8 8472int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8473 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8474{
041d3a8c 8475 unsigned long outer_start, outer_end;
d00181b9
KS
8476 unsigned int order;
8477 int ret = 0;
041d3a8c 8478
bb13ffeb
MG
8479 struct compact_control cc = {
8480 .nr_migratepages = 0,
8481 .order = -1,
8482 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8483 .mode = MIGRATE_SYNC,
bb13ffeb 8484 .ignore_skip_hint = true,
2583d671 8485 .no_set_skip_hint = true,
7dea19f9 8486 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8487 .alloc_contig = true,
bb13ffeb
MG
8488 };
8489 INIT_LIST_HEAD(&cc.migratepages);
8490
041d3a8c
MN
8491 /*
8492 * What we do here is we mark all pageblocks in range as
8493 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8494 * have different sizes, and due to the way page allocator
8495 * work, we align the range to biggest of the two pages so
8496 * that page allocator won't try to merge buddies from
8497 * different pageblocks and change MIGRATE_ISOLATE to some
8498 * other migration type.
8499 *
8500 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8501 * migrate the pages from an unaligned range (ie. pages that
8502 * we are interested in). This will put all the pages in
8503 * range back to page allocator as MIGRATE_ISOLATE.
8504 *
8505 * When this is done, we take the pages in range from page
8506 * allocator removing them from the buddy system. This way
8507 * page allocator will never consider using them.
8508 *
8509 * This lets us mark the pageblocks back as
8510 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8511 * aligned range but not in the unaligned, original range are
8512 * put back to page allocator so that buddy can use them.
8513 */
8514
8515 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8516 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8517 if (ret)
86a595f9 8518 return ret;
041d3a8c 8519
8ef5849f
JK
8520 /*
8521 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8522 * So, just fall through. test_pages_isolated() has a tracepoint
8523 * which will report the busy page.
8524 *
8525 * It is possible that busy pages could become available before
8526 * the call to test_pages_isolated, and the range will actually be
8527 * allocated. So, if we fall through be sure to clear ret so that
8528 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8529 */
bb13ffeb 8530 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8531 if (ret && ret != -EBUSY)
041d3a8c 8532 goto done;
63cd4489 8533 ret =0;
041d3a8c
MN
8534
8535 /*
8536 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8537 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8538 * more, all pages in [start, end) are free in page allocator.
8539 * What we are going to do is to allocate all pages from
8540 * [start, end) (that is remove them from page allocator).
8541 *
8542 * The only problem is that pages at the beginning and at the
8543 * end of interesting range may be not aligned with pages that
8544 * page allocator holds, ie. they can be part of higher order
8545 * pages. Because of this, we reserve the bigger range and
8546 * once this is done free the pages we are not interested in.
8547 *
8548 * We don't have to hold zone->lock here because the pages are
8549 * isolated thus they won't get removed from buddy.
8550 */
8551
8552 lru_add_drain_all();
041d3a8c
MN
8553
8554 order = 0;
8555 outer_start = start;
8556 while (!PageBuddy(pfn_to_page(outer_start))) {
8557 if (++order >= MAX_ORDER) {
8ef5849f
JK
8558 outer_start = start;
8559 break;
041d3a8c
MN
8560 }
8561 outer_start &= ~0UL << order;
8562 }
8563
8ef5849f 8564 if (outer_start != start) {
ab130f91 8565 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8566
8567 /*
8568 * outer_start page could be small order buddy page and
8569 * it doesn't include start page. Adjust outer_start
8570 * in this case to report failed page properly
8571 * on tracepoint in test_pages_isolated()
8572 */
8573 if (outer_start + (1UL << order) <= start)
8574 outer_start = start;
8575 }
8576
041d3a8c 8577 /* Make sure the range is really isolated. */
756d25be 8578 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8579 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8580 __func__, outer_start, end);
041d3a8c
MN
8581 ret = -EBUSY;
8582 goto done;
8583 }
8584
49f223a9 8585 /* Grab isolated pages from freelists. */
bb13ffeb 8586 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8587 if (!outer_end) {
8588 ret = -EBUSY;
8589 goto done;
8590 }
8591
8592 /* Free head and tail (if any) */
8593 if (start != outer_start)
8594 free_contig_range(outer_start, start - outer_start);
8595 if (end != outer_end)
8596 free_contig_range(end, outer_end - end);
8597
8598done:
8599 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8600 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8601 return ret;
8602}
255f5985 8603EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8604
8605static int __alloc_contig_pages(unsigned long start_pfn,
8606 unsigned long nr_pages, gfp_t gfp_mask)
8607{
8608 unsigned long end_pfn = start_pfn + nr_pages;
8609
8610 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8611 gfp_mask);
8612}
8613
8614static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8615 unsigned long nr_pages)
8616{
8617 unsigned long i, end_pfn = start_pfn + nr_pages;
8618 struct page *page;
8619
8620 for (i = start_pfn; i < end_pfn; i++) {
8621 page = pfn_to_online_page(i);
8622 if (!page)
8623 return false;
8624
8625 if (page_zone(page) != z)
8626 return false;
8627
8628 if (PageReserved(page))
8629 return false;
8630
8631 if (page_count(page) > 0)
8632 return false;
8633
8634 if (PageHuge(page))
8635 return false;
8636 }
8637 return true;
8638}
8639
8640static bool zone_spans_last_pfn(const struct zone *zone,
8641 unsigned long start_pfn, unsigned long nr_pages)
8642{
8643 unsigned long last_pfn = start_pfn + nr_pages - 1;
8644
8645 return zone_spans_pfn(zone, last_pfn);
8646}
8647
8648/**
8649 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8650 * @nr_pages: Number of contiguous pages to allocate
8651 * @gfp_mask: GFP mask to limit search and used during compaction
8652 * @nid: Target node
8653 * @nodemask: Mask for other possible nodes
8654 *
8655 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8656 * on an applicable zonelist to find a contiguous pfn range which can then be
8657 * tried for allocation with alloc_contig_range(). This routine is intended
8658 * for allocation requests which can not be fulfilled with the buddy allocator.
8659 *
8660 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8661 * power of two then the alignment is guaranteed to be to the given nr_pages
8662 * (e.g. 1GB request would be aligned to 1GB).
8663 *
8664 * Allocated pages can be freed with free_contig_range() or by manually calling
8665 * __free_page() on each allocated page.
8666 *
8667 * Return: pointer to contiguous pages on success, or NULL if not successful.
8668 */
8669struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8670 int nid, nodemask_t *nodemask)
8671{
8672 unsigned long ret, pfn, flags;
8673 struct zonelist *zonelist;
8674 struct zone *zone;
8675 struct zoneref *z;
8676
8677 zonelist = node_zonelist(nid, gfp_mask);
8678 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8679 gfp_zone(gfp_mask), nodemask) {
8680 spin_lock_irqsave(&zone->lock, flags);
8681
8682 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8683 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8684 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8685 /*
8686 * We release the zone lock here because
8687 * alloc_contig_range() will also lock the zone
8688 * at some point. If there's an allocation
8689 * spinning on this lock, it may win the race
8690 * and cause alloc_contig_range() to fail...
8691 */
8692 spin_unlock_irqrestore(&zone->lock, flags);
8693 ret = __alloc_contig_pages(pfn, nr_pages,
8694 gfp_mask);
8695 if (!ret)
8696 return pfn_to_page(pfn);
8697 spin_lock_irqsave(&zone->lock, flags);
8698 }
8699 pfn += nr_pages;
8700 }
8701 spin_unlock_irqrestore(&zone->lock, flags);
8702 }
8703 return NULL;
8704}
4eb0716e 8705#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8706
4eb0716e 8707void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8708{
bcc2b02f
MS
8709 unsigned int count = 0;
8710
8711 for (; nr_pages--; pfn++) {
8712 struct page *page = pfn_to_page(pfn);
8713
8714 count += page_count(page) != 1;
8715 __free_page(page);
8716 }
8717 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8718}
255f5985 8719EXPORT_SYMBOL(free_contig_range);
041d3a8c 8720
0a647f38
CS
8721/*
8722 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8723 * page high values need to be recalulated.
8724 */
4ed7e022
JL
8725void __meminit zone_pcp_update(struct zone *zone)
8726{
c8e251fa 8727 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8728 zone_set_pageset_high_and_batch(zone);
c8e251fa 8729 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8730}
4ed7e022 8731
340175b7
JL
8732void zone_pcp_reset(struct zone *zone)
8733{
8734 unsigned long flags;
5a883813
MK
8735 int cpu;
8736 struct per_cpu_pageset *pset;
340175b7
JL
8737
8738 /* avoid races with drain_pages() */
8739 local_irq_save(flags);
8740 if (zone->pageset != &boot_pageset) {
5a883813
MK
8741 for_each_online_cpu(cpu) {
8742 pset = per_cpu_ptr(zone->pageset, cpu);
8743 drain_zonestat(zone, pset);
8744 }
340175b7
JL
8745 free_percpu(zone->pageset);
8746 zone->pageset = &boot_pageset;
8747 }
8748 local_irq_restore(flags);
8749}
8750
6dcd73d7 8751#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8752/*
257bea71
DH
8753 * All pages in the range must be in a single zone, must not contain holes,
8754 * must span full sections, and must be isolated before calling this function.
0c0e6195 8755 */
257bea71 8756void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8757{
257bea71 8758 unsigned long pfn = start_pfn;
0c0e6195
KH
8759 struct page *page;
8760 struct zone *zone;
0ee5f4f3 8761 unsigned int order;
0c0e6195 8762 unsigned long flags;
5557c766 8763
2d070eab 8764 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8765 zone = page_zone(pfn_to_page(pfn));
8766 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8767 while (pfn < end_pfn) {
0c0e6195 8768 page = pfn_to_page(pfn);
b023f468
WC
8769 /*
8770 * The HWPoisoned page may be not in buddy system, and
8771 * page_count() is not 0.
8772 */
8773 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8774 pfn++;
b023f468
WC
8775 continue;
8776 }
aa218795
DH
8777 /*
8778 * At this point all remaining PageOffline() pages have a
8779 * reference count of 0 and can simply be skipped.
8780 */
8781 if (PageOffline(page)) {
8782 BUG_ON(page_count(page));
8783 BUG_ON(PageBuddy(page));
8784 pfn++;
aa218795
DH
8785 continue;
8786 }
b023f468 8787
0c0e6195
KH
8788 BUG_ON(page_count(page));
8789 BUG_ON(!PageBuddy(page));
ab130f91 8790 order = buddy_order(page);
6ab01363 8791 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8792 pfn += (1 << order);
8793 }
8794 spin_unlock_irqrestore(&zone->lock, flags);
8795}
8796#endif
8d22ba1b 8797
8d22ba1b
WF
8798bool is_free_buddy_page(struct page *page)
8799{
8800 struct zone *zone = page_zone(page);
8801 unsigned long pfn = page_to_pfn(page);
8802 unsigned long flags;
7aeb09f9 8803 unsigned int order;
8d22ba1b
WF
8804
8805 spin_lock_irqsave(&zone->lock, flags);
8806 for (order = 0; order < MAX_ORDER; order++) {
8807 struct page *page_head = page - (pfn & ((1 << order) - 1));
8808
ab130f91 8809 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
8810 break;
8811 }
8812 spin_unlock_irqrestore(&zone->lock, flags);
8813
8814 return order < MAX_ORDER;
8815}
d4ae9916
NH
8816
8817#ifdef CONFIG_MEMORY_FAILURE
8818/*
06be6ff3
OS
8819 * Break down a higher-order page in sub-pages, and keep our target out of
8820 * buddy allocator.
d4ae9916 8821 */
06be6ff3
OS
8822static void break_down_buddy_pages(struct zone *zone, struct page *page,
8823 struct page *target, int low, int high,
8824 int migratetype)
8825{
8826 unsigned long size = 1 << high;
8827 struct page *current_buddy, *next_page;
8828
8829 while (high > low) {
8830 high--;
8831 size >>= 1;
8832
8833 if (target >= &page[size]) {
8834 next_page = page + size;
8835 current_buddy = page;
8836 } else {
8837 next_page = page;
8838 current_buddy = page + size;
8839 }
8840
8841 if (set_page_guard(zone, current_buddy, high, migratetype))
8842 continue;
8843
8844 if (current_buddy != target) {
8845 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 8846 set_buddy_order(current_buddy, high);
06be6ff3
OS
8847 page = next_page;
8848 }
8849 }
8850}
8851
8852/*
8853 * Take a page that will be marked as poisoned off the buddy allocator.
8854 */
8855bool take_page_off_buddy(struct page *page)
d4ae9916
NH
8856{
8857 struct zone *zone = page_zone(page);
8858 unsigned long pfn = page_to_pfn(page);
8859 unsigned long flags;
8860 unsigned int order;
06be6ff3 8861 bool ret = false;
d4ae9916
NH
8862
8863 spin_lock_irqsave(&zone->lock, flags);
8864 for (order = 0; order < MAX_ORDER; order++) {
8865 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 8866 int page_order = buddy_order(page_head);
d4ae9916 8867
ab130f91 8868 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
8869 unsigned long pfn_head = page_to_pfn(page_head);
8870 int migratetype = get_pfnblock_migratetype(page_head,
8871 pfn_head);
8872
ab130f91 8873 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 8874 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 8875 page_order, migratetype);
06be6ff3 8876 ret = true;
d4ae9916
NH
8877 break;
8878 }
06be6ff3
OS
8879 if (page_count(page_head) > 0)
8880 break;
d4ae9916
NH
8881 }
8882 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 8883 return ret;
d4ae9916
NH
8884}
8885#endif