mm, page_alloc: do not rely on the order of page_poison and init_on_alloc/free parameters
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
1da177e4 75
7ee3d4e8 76#include <asm/sections.h>
1da177e4 77#include <asm/tlbflush.h>
ac924c60 78#include <asm/div64.h>
1da177e4 79#include "internal.h"
e900a918 80#include "shuffle.h"
36e66c55 81#include "page_reporting.h"
1da177e4 82
f04a5d5d
DH
83/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84typedef int __bitwise fpi_t;
85
86/* No special request */
87#define FPI_NONE ((__force fpi_t)0)
88
89/*
90 * Skip free page reporting notification for the (possibly merged) page.
91 * This does not hinder free page reporting from grabbing the page,
92 * reporting it and marking it "reported" - it only skips notifying
93 * the free page reporting infrastructure about a newly freed page. For
94 * example, used when temporarily pulling a page from a freelist and
95 * putting it back unmodified.
96 */
97#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
98
47b6a24a
DH
99/*
100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
101 * page shuffling (relevant code - e.g., memory onlining - is expected to
102 * shuffle the whole zone).
103 *
104 * Note: No code should rely on this flag for correctness - it's purely
105 * to allow for optimizations when handing back either fresh pages
106 * (memory onlining) or untouched pages (page isolation, free page
107 * reporting).
108 */
109#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
110
c8e251fa
CS
111/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 113#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 114
72812019
LS
115#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116DEFINE_PER_CPU(int, numa_node);
117EXPORT_PER_CPU_SYMBOL(numa_node);
118#endif
119
4518085e
KW
120DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121
7aac7898
LS
122#ifdef CONFIG_HAVE_MEMORYLESS_NODES
123/*
124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127 * defined in <linux/topology.h>.
128 */
129DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
130EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131#endif
132
bd233f53 133/* work_structs for global per-cpu drains */
d9367bd0
WY
134struct pcpu_drain {
135 struct zone *zone;
136 struct work_struct work;
137};
8b885f53
JY
138static DEFINE_MUTEX(pcpu_drain_mutex);
139static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 140
38addce8 141#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 142volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
143EXPORT_SYMBOL(latent_entropy);
144#endif
145
1da177e4 146/*
13808910 147 * Array of node states.
1da177e4 148 */
13808910
CL
149nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 [N_POSSIBLE] = NODE_MASK_ALL,
151 [N_ONLINE] = { { [0] = 1UL } },
152#ifndef CONFIG_NUMA
153 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
154#ifdef CONFIG_HIGHMEM
155 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 156#endif
20b2f52b 157 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
158 [N_CPU] = { { [0] = 1UL } },
159#endif /* NUMA */
160};
161EXPORT_SYMBOL(node_states);
162
ca79b0c2
AK
163atomic_long_t _totalram_pages __read_mostly;
164EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 165unsigned long totalreserve_pages __read_mostly;
e48322ab 166unsigned long totalcma_pages __read_mostly;
ab8fabd4 167
1b76b02f 168int percpu_pagelist_fraction;
dcce284a 169gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a 170DEFINE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
171EXPORT_SYMBOL(init_on_alloc);
172
6471384a 173DEFINE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
174EXPORT_SYMBOL(init_on_free);
175
04013513
VB
176static bool _init_on_alloc_enabled_early __read_mostly
177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
178static int __init early_init_on_alloc(char *buf)
179{
6471384a 180
04013513 181 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
182}
183early_param("init_on_alloc", early_init_on_alloc);
184
04013513
VB
185static bool _init_on_free_enabled_early __read_mostly
186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
187static int __init early_init_on_free(char *buf)
188{
04013513 189 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
190}
191early_param("init_on_free", early_init_on_free);
1da177e4 192
bb14c2c7
VB
193/*
194 * A cached value of the page's pageblock's migratetype, used when the page is
195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197 * Also the migratetype set in the page does not necessarily match the pcplist
198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199 * other index - this ensures that it will be put on the correct CMA freelist.
200 */
201static inline int get_pcppage_migratetype(struct page *page)
202{
203 return page->index;
204}
205
206static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207{
208 page->index = migratetype;
209}
210
452aa699
RW
211#ifdef CONFIG_PM_SLEEP
212/*
213 * The following functions are used by the suspend/hibernate code to temporarily
214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
216 * they should always be called with system_transition_mutex held
217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219 * with that modification).
452aa699 220 */
c9e664f1
RW
221
222static gfp_t saved_gfp_mask;
223
224void pm_restore_gfp_mask(void)
452aa699 225{
55f2503c 226 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
227 if (saved_gfp_mask) {
228 gfp_allowed_mask = saved_gfp_mask;
229 saved_gfp_mask = 0;
230 }
452aa699
RW
231}
232
c9e664f1 233void pm_restrict_gfp_mask(void)
452aa699 234{
55f2503c 235 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
236 WARN_ON(saved_gfp_mask);
237 saved_gfp_mask = gfp_allowed_mask;
d0164adc 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 239}
f90ac398
MG
240
241bool pm_suspended_storage(void)
242{
d0164adc 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
244 return false;
245 return true;
246}
452aa699
RW
247#endif /* CONFIG_PM_SLEEP */
248
d9c23400 249#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 250unsigned int pageblock_order __read_mostly;
d9c23400
MG
251#endif
252
7fef431b
DH
253static void __free_pages_ok(struct page *page, unsigned int order,
254 fpi_t fpi_flags);
a226f6c8 255
1da177e4
LT
256/*
257 * results with 256, 32 in the lowmem_reserve sysctl:
258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259 * 1G machine -> (16M dma, 784M normal, 224M high)
260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
263 *
264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
265 * don't need any ZONE_NORMAL reservation
1da177e4 266 */
d3cda233 267int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 268#ifdef CONFIG_ZONE_DMA
d3cda233 269 [ZONE_DMA] = 256,
4b51d669 270#endif
fb0e7942 271#ifdef CONFIG_ZONE_DMA32
d3cda233 272 [ZONE_DMA32] = 256,
fb0e7942 273#endif
d3cda233 274 [ZONE_NORMAL] = 32,
e53ef38d 275#ifdef CONFIG_HIGHMEM
d3cda233 276 [ZONE_HIGHMEM] = 0,
e53ef38d 277#endif
d3cda233 278 [ZONE_MOVABLE] = 0,
2f1b6248 279};
1da177e4 280
15ad7cdc 281static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 282#ifdef CONFIG_ZONE_DMA
2f1b6248 283 "DMA",
4b51d669 284#endif
fb0e7942 285#ifdef CONFIG_ZONE_DMA32
2f1b6248 286 "DMA32",
fb0e7942 287#endif
2f1b6248 288 "Normal",
e53ef38d 289#ifdef CONFIG_HIGHMEM
2a1e274a 290 "HighMem",
e53ef38d 291#endif
2a1e274a 292 "Movable",
033fbae9
DW
293#ifdef CONFIG_ZONE_DEVICE
294 "Device",
295#endif
2f1b6248
CL
296};
297
c999fbd3 298const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
299 "Unmovable",
300 "Movable",
301 "Reclaimable",
302 "HighAtomic",
303#ifdef CONFIG_CMA
304 "CMA",
305#endif
306#ifdef CONFIG_MEMORY_ISOLATION
307 "Isolate",
308#endif
309};
310
ae70eddd
AK
311compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 [NULL_COMPOUND_DTOR] = NULL,
313 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 314#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 315 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 316#endif
9a982250 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 319#endif
f1e61557
KS
320};
321
1da177e4 322int min_free_kbytes = 1024;
42aa83cb 323int user_min_free_kbytes = -1;
24512228
MG
324#ifdef CONFIG_DISCONTIGMEM
325/*
326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327 * are not on separate NUMA nodes. Functionally this works but with
328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329 * quite small. By default, do not boost watermarks on discontigmem as in
330 * many cases very high-order allocations like THP are likely to be
331 * unsupported and the premature reclaim offsets the advantage of long-term
332 * fragmentation avoidance.
333 */
334int watermark_boost_factor __read_mostly;
335#else
1c30844d 336int watermark_boost_factor __read_mostly = 15000;
24512228 337#endif
795ae7a0 338int watermark_scale_factor = 10;
1da177e4 339
bbe5d993
OS
340static unsigned long nr_kernel_pages __initdata;
341static unsigned long nr_all_pages __initdata;
342static unsigned long dma_reserve __initdata;
1da177e4 343
bbe5d993
OS
344static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 346static unsigned long required_kernelcore __initdata;
a5c6d650 347static unsigned long required_kernelcore_percent __initdata;
7f16f91f 348static unsigned long required_movablecore __initdata;
a5c6d650 349static unsigned long required_movablecore_percent __initdata;
bbe5d993 350static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 351static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
352
353/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354int movable_zone;
355EXPORT_SYMBOL(movable_zone);
c713216d 356
418508c1 357#if MAX_NUMNODES > 1
b9726c26 358unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 359unsigned int nr_online_nodes __read_mostly = 1;
418508c1 360EXPORT_SYMBOL(nr_node_ids);
62bc62a8 361EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
362#endif
363
9ef9acb0
MG
364int page_group_by_mobility_disabled __read_mostly;
365
3a80a7fa 366#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
367/*
368 * During boot we initialize deferred pages on-demand, as needed, but once
369 * page_alloc_init_late() has finished, the deferred pages are all initialized,
370 * and we can permanently disable that path.
371 */
372static DEFINE_STATIC_KEY_TRUE(deferred_pages);
373
374/*
375 * Calling kasan_free_pages() only after deferred memory initialization
376 * has completed. Poisoning pages during deferred memory init will greatly
377 * lengthen the process and cause problem in large memory systems as the
378 * deferred pages initialization is done with interrupt disabled.
379 *
380 * Assuming that there will be no reference to those newly initialized
381 * pages before they are ever allocated, this should have no effect on
382 * KASAN memory tracking as the poison will be properly inserted at page
383 * allocation time. The only corner case is when pages are allocated by
384 * on-demand allocation and then freed again before the deferred pages
385 * initialization is done, but this is not likely to happen.
386 */
387static inline void kasan_free_nondeferred_pages(struct page *page, int order)
388{
389 if (!static_branch_unlikely(&deferred_pages))
390 kasan_free_pages(page, order);
391}
392
3a80a7fa 393/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 394static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 395{
ef70b6f4
MG
396 int nid = early_pfn_to_nid(pfn);
397
398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
399 return true;
400
401 return false;
402}
403
404/*
d3035be4 405 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
406 * later in the boot cycle when it can be parallelised.
407 */
d3035be4
PT
408static bool __meminit
409defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 410{
d3035be4
PT
411 static unsigned long prev_end_pfn, nr_initialised;
412
413 /*
414 * prev_end_pfn static that contains the end of previous zone
415 * No need to protect because called very early in boot before smp_init.
416 */
417 if (prev_end_pfn != end_pfn) {
418 prev_end_pfn = end_pfn;
419 nr_initialised = 0;
420 }
421
3c2c6488 422 /* Always populate low zones for address-constrained allocations */
d3035be4 423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 424 return false;
23b68cfa
WY
425
426 /*
427 * We start only with one section of pages, more pages are added as
428 * needed until the rest of deferred pages are initialized.
429 */
d3035be4 430 nr_initialised++;
23b68cfa 431 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
432 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
433 NODE_DATA(nid)->first_deferred_pfn = pfn;
434 return true;
3a80a7fa 435 }
d3035be4 436 return false;
3a80a7fa
MG
437}
438#else
3c0c12cc
WL
439#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
440
3a80a7fa
MG
441static inline bool early_page_uninitialised(unsigned long pfn)
442{
443 return false;
444}
445
d3035be4 446static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 447{
d3035be4 448 return false;
3a80a7fa
MG
449}
450#endif
451
0b423ca2
MG
452/* Return a pointer to the bitmap storing bits affecting a block of pages */
453static inline unsigned long *get_pageblock_bitmap(struct page *page,
454 unsigned long pfn)
455{
456#ifdef CONFIG_SPARSEMEM
f1eca35a 457 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
458#else
459 return page_zone(page)->pageblock_flags;
460#endif /* CONFIG_SPARSEMEM */
461}
462
463static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
464{
465#ifdef CONFIG_SPARSEMEM
466 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
467#else
468 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 469#endif /* CONFIG_SPARSEMEM */
399b795b 470 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
471}
472
473/**
474 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
475 * @page: The page within the block of interest
476 * @pfn: The target page frame number
0b423ca2
MG
477 * @mask: mask of bits that the caller is interested in
478 *
479 * Return: pageblock_bits flags
480 */
535b81e2
WY
481static __always_inline
482unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 483 unsigned long pfn,
0b423ca2
MG
484 unsigned long mask)
485{
486 unsigned long *bitmap;
487 unsigned long bitidx, word_bitidx;
488 unsigned long word;
489
490 bitmap = get_pageblock_bitmap(page, pfn);
491 bitidx = pfn_to_bitidx(page, pfn);
492 word_bitidx = bitidx / BITS_PER_LONG;
493 bitidx &= (BITS_PER_LONG-1);
494
495 word = bitmap[word_bitidx];
d93d5ab9 496 return (word >> bitidx) & mask;
0b423ca2
MG
497}
498
499unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
500 unsigned long mask)
501{
535b81e2 502 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
535b81e2 507 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
0b423ca2
MG
515 * @mask: mask of bits that the caller is interested in
516 */
517void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 unsigned long pfn,
0b423ca2
MG
519 unsigned long mask)
520{
521 unsigned long *bitmap;
522 unsigned long bitidx, word_bitidx;
523 unsigned long old_word, word;
524
525 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 526 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
527
528 bitmap = get_pageblock_bitmap(page, pfn);
529 bitidx = pfn_to_bitidx(page, pfn);
530 word_bitidx = bitidx / BITS_PER_LONG;
531 bitidx &= (BITS_PER_LONG-1);
532
533 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534
d93d5ab9
WY
535 mask <<= bitidx;
536 flags <<= bitidx;
0b423ca2
MG
537
538 word = READ_ONCE(bitmap[word_bitidx]);
539 for (;;) {
540 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
541 if (word == old_word)
542 break;
543 word = old_word;
544 }
545}
3a80a7fa 546
ee6f509c 547void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 548{
5d0f3f72
KM
549 if (unlikely(page_group_by_mobility_disabled &&
550 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
551 migratetype = MIGRATE_UNMOVABLE;
552
d93d5ab9 553 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 554 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
555}
556
13e7444b 557#ifdef CONFIG_DEBUG_VM
c6a57e19 558static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 559{
bdc8cb98
DH
560 int ret = 0;
561 unsigned seq;
562 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 563 unsigned long sp, start_pfn;
c6a57e19 564
bdc8cb98
DH
565 do {
566 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
567 start_pfn = zone->zone_start_pfn;
568 sp = zone->spanned_pages;
108bcc96 569 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
570 ret = 1;
571 } while (zone_span_seqretry(zone, seq));
572
b5e6a5a2 573 if (ret)
613813e8
DH
574 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
575 pfn, zone_to_nid(zone), zone->name,
576 start_pfn, start_pfn + sp);
b5e6a5a2 577
bdc8cb98 578 return ret;
c6a57e19
DH
579}
580
581static int page_is_consistent(struct zone *zone, struct page *page)
582{
14e07298 583 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 584 return 0;
1da177e4 585 if (zone != page_zone(page))
c6a57e19
DH
586 return 0;
587
588 return 1;
589}
590/*
591 * Temporary debugging check for pages not lying within a given zone.
592 */
d73d3c9f 593static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
594{
595 if (page_outside_zone_boundaries(zone, page))
1da177e4 596 return 1;
c6a57e19
DH
597 if (!page_is_consistent(zone, page))
598 return 1;
599
1da177e4
LT
600 return 0;
601}
13e7444b 602#else
d73d3c9f 603static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
604{
605 return 0;
606}
607#endif
608
82a3241a 609static void bad_page(struct page *page, const char *reason)
1da177e4 610{
d936cf9b
HD
611 static unsigned long resume;
612 static unsigned long nr_shown;
613 static unsigned long nr_unshown;
614
615 /*
616 * Allow a burst of 60 reports, then keep quiet for that minute;
617 * or allow a steady drip of one report per second.
618 */
619 if (nr_shown == 60) {
620 if (time_before(jiffies, resume)) {
621 nr_unshown++;
622 goto out;
623 }
624 if (nr_unshown) {
ff8e8116 625 pr_alert(
1e9e6365 626 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
627 nr_unshown);
628 nr_unshown = 0;
629 }
630 nr_shown = 0;
631 }
632 if (nr_shown++ == 0)
633 resume = jiffies + 60 * HZ;
634
ff8e8116 635 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 636 current->comm, page_to_pfn(page));
ff8e8116 637 __dump_page(page, reason);
4e462112 638 dump_page_owner(page);
3dc14741 639
4f31888c 640 print_modules();
1da177e4 641 dump_stack();
d936cf9b 642out:
8cc3b392 643 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 644 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 645 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
646}
647
1da177e4
LT
648/*
649 * Higher-order pages are called "compound pages". They are structured thusly:
650 *
1d798ca3 651 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 652 *
1d798ca3
KS
653 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
654 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 655 *
1d798ca3
KS
656 * The first tail page's ->compound_dtor holds the offset in array of compound
657 * page destructors. See compound_page_dtors.
1da177e4 658 *
1d798ca3 659 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 660 * This usage means that zero-order pages may not be compound.
1da177e4 661 */
d98c7a09 662
9a982250 663void free_compound_page(struct page *page)
d98c7a09 664{
7ae88534 665 mem_cgroup_uncharge(page);
7fef431b 666 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
667}
668
d00181b9 669void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
670{
671 int i;
672 int nr_pages = 1 << order;
673
18229df5
AW
674 __SetPageHead(page);
675 for (i = 1; i < nr_pages; i++) {
676 struct page *p = page + i;
58a84aa9 677 set_page_count(p, 0);
1c290f64 678 p->mapping = TAIL_MAPPING;
1d798ca3 679 set_compound_head(p, page);
18229df5 680 }
1378a5ee
MWO
681
682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 set_compound_order(page, order);
53f9263b 684 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
685 if (hpage_pincount_available(page))
686 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
687}
688
c0a32fc5
SG
689#ifdef CONFIG_DEBUG_PAGEALLOC
690unsigned int _debug_guardpage_minorder;
96a2b03f 691
8e57f8ac
VB
692bool _debug_pagealloc_enabled_early __read_mostly
693 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
694EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 695DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 696EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
697
698DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 699
031bc574
JK
700static int __init early_debug_pagealloc(char *buf)
701{
8e57f8ac 702 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
703}
704early_param("debug_pagealloc", early_debug_pagealloc);
705
c0a32fc5
SG
706static int __init debug_guardpage_minorder_setup(char *buf)
707{
708 unsigned long res;
709
710 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 711 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
712 return 0;
713 }
714 _debug_guardpage_minorder = res;
1170532b 715 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
716 return 0;
717}
f1c1e9f7 718early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 719
acbc15a4 720static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 721 unsigned int order, int migratetype)
c0a32fc5 722{
e30825f1 723 if (!debug_guardpage_enabled())
acbc15a4
JK
724 return false;
725
726 if (order >= debug_guardpage_minorder())
727 return false;
e30825f1 728
3972f6bb 729 __SetPageGuard(page);
2847cf95
JK
730 INIT_LIST_HEAD(&page->lru);
731 set_page_private(page, order);
732 /* Guard pages are not available for any usage */
733 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
734
735 return true;
c0a32fc5
SG
736}
737
2847cf95
JK
738static inline void clear_page_guard(struct zone *zone, struct page *page,
739 unsigned int order, int migratetype)
c0a32fc5 740{
e30825f1
JK
741 if (!debug_guardpage_enabled())
742 return;
743
3972f6bb 744 __ClearPageGuard(page);
e30825f1 745
2847cf95
JK
746 set_page_private(page, 0);
747 if (!is_migrate_isolate(migratetype))
748 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
749}
750#else
acbc15a4
JK
751static inline bool set_page_guard(struct zone *zone, struct page *page,
752 unsigned int order, int migratetype) { return false; }
2847cf95
JK
753static inline void clear_page_guard(struct zone *zone, struct page *page,
754 unsigned int order, int migratetype) {}
c0a32fc5
SG
755#endif
756
04013513
VB
757/*
758 * Enable static keys related to various memory debugging and hardening options.
759 * Some override others, and depend on early params that are evaluated in the
760 * order of appearance. So we need to first gather the full picture of what was
761 * enabled, and then make decisions.
762 */
763void init_mem_debugging_and_hardening(void)
764{
765 if (_init_on_alloc_enabled_early) {
766 if (page_poisoning_enabled())
767 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
768 "will take precedence over init_on_alloc\n");
769 else
770 static_branch_enable(&init_on_alloc);
771 }
772 if (_init_on_free_enabled_early) {
773 if (page_poisoning_enabled())
774 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
775 "will take precedence over init_on_free\n");
776 else
777 static_branch_enable(&init_on_free);
778 }
779
780#ifdef CONFIG_DEBUG_PAGEALLOC
781 if (!debug_pagealloc_enabled())
782 return;
783
784 static_branch_enable(&_debug_pagealloc_enabled);
785
786 if (!debug_guardpage_minorder())
787 return;
788
789 static_branch_enable(&_debug_guardpage_enabled);
790#endif
791}
792
ab130f91 793static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 794{
4c21e2f2 795 set_page_private(page, order);
676165a8 796 __SetPageBuddy(page);
1da177e4
LT
797}
798
1da177e4
LT
799/*
800 * This function checks whether a page is free && is the buddy
6e292b9b 801 * we can coalesce a page and its buddy if
13ad59df 802 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 803 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
804 * (c) a page and its buddy have the same order &&
805 * (d) a page and its buddy are in the same zone.
676165a8 806 *
6e292b9b
MW
807 * For recording whether a page is in the buddy system, we set PageBuddy.
808 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 809 *
676165a8 810 * For recording page's order, we use page_private(page).
1da177e4 811 */
fe925c0c 812static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 813 unsigned int order)
1da177e4 814{
fe925c0c 815 if (!page_is_guard(buddy) && !PageBuddy(buddy))
816 return false;
4c5018ce 817
ab130f91 818 if (buddy_order(buddy) != order)
fe925c0c 819 return false;
c0a32fc5 820
fe925c0c 821 /*
822 * zone check is done late to avoid uselessly calculating
823 * zone/node ids for pages that could never merge.
824 */
825 if (page_zone_id(page) != page_zone_id(buddy))
826 return false;
d34c5fa0 827
fe925c0c 828 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 829
fe925c0c 830 return true;
1da177e4
LT
831}
832
5e1f0f09
MG
833#ifdef CONFIG_COMPACTION
834static inline struct capture_control *task_capc(struct zone *zone)
835{
836 struct capture_control *capc = current->capture_control;
837
deba0487 838 return unlikely(capc) &&
5e1f0f09
MG
839 !(current->flags & PF_KTHREAD) &&
840 !capc->page &&
deba0487 841 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
842}
843
844static inline bool
845compaction_capture(struct capture_control *capc, struct page *page,
846 int order, int migratetype)
847{
848 if (!capc || order != capc->cc->order)
849 return false;
850
851 /* Do not accidentally pollute CMA or isolated regions*/
852 if (is_migrate_cma(migratetype) ||
853 is_migrate_isolate(migratetype))
854 return false;
855
856 /*
857 * Do not let lower order allocations polluate a movable pageblock.
858 * This might let an unmovable request use a reclaimable pageblock
859 * and vice-versa but no more than normal fallback logic which can
860 * have trouble finding a high-order free page.
861 */
862 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
863 return false;
864
865 capc->page = page;
866 return true;
867}
868
869#else
870static inline struct capture_control *task_capc(struct zone *zone)
871{
872 return NULL;
873}
874
875static inline bool
876compaction_capture(struct capture_control *capc, struct page *page,
877 int order, int migratetype)
878{
879 return false;
880}
881#endif /* CONFIG_COMPACTION */
882
6ab01363
AD
883/* Used for pages not on another list */
884static inline void add_to_free_list(struct page *page, struct zone *zone,
885 unsigned int order, int migratetype)
886{
887 struct free_area *area = &zone->free_area[order];
888
889 list_add(&page->lru, &area->free_list[migratetype]);
890 area->nr_free++;
891}
892
893/* Used for pages not on another list */
894static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
895 unsigned int order, int migratetype)
896{
897 struct free_area *area = &zone->free_area[order];
898
899 list_add_tail(&page->lru, &area->free_list[migratetype]);
900 area->nr_free++;
901}
902
293ffa5e
DH
903/*
904 * Used for pages which are on another list. Move the pages to the tail
905 * of the list - so the moved pages won't immediately be considered for
906 * allocation again (e.g., optimization for memory onlining).
907 */
6ab01363
AD
908static inline void move_to_free_list(struct page *page, struct zone *zone,
909 unsigned int order, int migratetype)
910{
911 struct free_area *area = &zone->free_area[order];
912
293ffa5e 913 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
914}
915
916static inline void del_page_from_free_list(struct page *page, struct zone *zone,
917 unsigned int order)
918{
36e66c55
AD
919 /* clear reported state and update reported page count */
920 if (page_reported(page))
921 __ClearPageReported(page);
922
6ab01363
AD
923 list_del(&page->lru);
924 __ClearPageBuddy(page);
925 set_page_private(page, 0);
926 zone->free_area[order].nr_free--;
927}
928
a2129f24
AD
929/*
930 * If this is not the largest possible page, check if the buddy
931 * of the next-highest order is free. If it is, it's possible
932 * that pages are being freed that will coalesce soon. In case,
933 * that is happening, add the free page to the tail of the list
934 * so it's less likely to be used soon and more likely to be merged
935 * as a higher order page
936 */
937static inline bool
938buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
939 struct page *page, unsigned int order)
940{
941 struct page *higher_page, *higher_buddy;
942 unsigned long combined_pfn;
943
944 if (order >= MAX_ORDER - 2)
945 return false;
946
947 if (!pfn_valid_within(buddy_pfn))
948 return false;
949
950 combined_pfn = buddy_pfn & pfn;
951 higher_page = page + (combined_pfn - pfn);
952 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
953 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
954
955 return pfn_valid_within(buddy_pfn) &&
956 page_is_buddy(higher_page, higher_buddy, order + 1);
957}
958
1da177e4
LT
959/*
960 * Freeing function for a buddy system allocator.
961 *
962 * The concept of a buddy system is to maintain direct-mapped table
963 * (containing bit values) for memory blocks of various "orders".
964 * The bottom level table contains the map for the smallest allocatable
965 * units of memory (here, pages), and each level above it describes
966 * pairs of units from the levels below, hence, "buddies".
967 * At a high level, all that happens here is marking the table entry
968 * at the bottom level available, and propagating the changes upward
969 * as necessary, plus some accounting needed to play nicely with other
970 * parts of the VM system.
971 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
972 * free pages of length of (1 << order) and marked with PageBuddy.
973 * Page's order is recorded in page_private(page) field.
1da177e4 974 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
975 * other. That is, if we allocate a small block, and both were
976 * free, the remainder of the region must be split into blocks.
1da177e4 977 * If a block is freed, and its buddy is also free, then this
5f63b720 978 * triggers coalescing into a block of larger size.
1da177e4 979 *
6d49e352 980 * -- nyc
1da177e4
LT
981 */
982
48db57f8 983static inline void __free_one_page(struct page *page,
dc4b0caf 984 unsigned long pfn,
ed0ae21d 985 struct zone *zone, unsigned int order,
f04a5d5d 986 int migratetype, fpi_t fpi_flags)
1da177e4 987{
a2129f24 988 struct capture_control *capc = task_capc(zone);
3f649ab7 989 unsigned long buddy_pfn;
a2129f24 990 unsigned long combined_pfn;
d9dddbf5 991 unsigned int max_order;
a2129f24
AD
992 struct page *buddy;
993 bool to_tail;
d9dddbf5 994
7ad69832 995 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 996
d29bb978 997 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 998 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 999
ed0ae21d 1000 VM_BUG_ON(migratetype == -1);
d9dddbf5 1001 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1002 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1003
76741e77 1004 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1005 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1006
d9dddbf5 1007continue_merging:
7ad69832 1008 while (order < max_order) {
5e1f0f09
MG
1009 if (compaction_capture(capc, page, order, migratetype)) {
1010 __mod_zone_freepage_state(zone, -(1 << order),
1011 migratetype);
1012 return;
1013 }
76741e77
VB
1014 buddy_pfn = __find_buddy_pfn(pfn, order);
1015 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1016
1017 if (!pfn_valid_within(buddy_pfn))
1018 goto done_merging;
cb2b95e1 1019 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1020 goto done_merging;
c0a32fc5
SG
1021 /*
1022 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1023 * merge with it and move up one order.
1024 */
b03641af 1025 if (page_is_guard(buddy))
2847cf95 1026 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1027 else
6ab01363 1028 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1029 combined_pfn = buddy_pfn & pfn;
1030 page = page + (combined_pfn - pfn);
1031 pfn = combined_pfn;
1da177e4
LT
1032 order++;
1033 }
7ad69832 1034 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1035 /* If we are here, it means order is >= pageblock_order.
1036 * We want to prevent merge between freepages on isolate
1037 * pageblock and normal pageblock. Without this, pageblock
1038 * isolation could cause incorrect freepage or CMA accounting.
1039 *
1040 * We don't want to hit this code for the more frequent
1041 * low-order merging.
1042 */
1043 if (unlikely(has_isolate_pageblock(zone))) {
1044 int buddy_mt;
1045
76741e77
VB
1046 buddy_pfn = __find_buddy_pfn(pfn, order);
1047 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1048 buddy_mt = get_pageblock_migratetype(buddy);
1049
1050 if (migratetype != buddy_mt
1051 && (is_migrate_isolate(migratetype) ||
1052 is_migrate_isolate(buddy_mt)))
1053 goto done_merging;
1054 }
7ad69832 1055 max_order = order + 1;
d9dddbf5
VB
1056 goto continue_merging;
1057 }
1058
1059done_merging:
ab130f91 1060 set_buddy_order(page, order);
6dda9d55 1061
47b6a24a
DH
1062 if (fpi_flags & FPI_TO_TAIL)
1063 to_tail = true;
1064 else if (is_shuffle_order(order))
a2129f24 1065 to_tail = shuffle_pick_tail();
97500a4a 1066 else
a2129f24 1067 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1068
a2129f24 1069 if (to_tail)
6ab01363 1070 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1071 else
6ab01363 1072 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1073
1074 /* Notify page reporting subsystem of freed page */
f04a5d5d 1075 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1076 page_reporting_notify_free(order);
1da177e4
LT
1077}
1078
7bfec6f4
MG
1079/*
1080 * A bad page could be due to a number of fields. Instead of multiple branches,
1081 * try and check multiple fields with one check. The caller must do a detailed
1082 * check if necessary.
1083 */
1084static inline bool page_expected_state(struct page *page,
1085 unsigned long check_flags)
1086{
1087 if (unlikely(atomic_read(&page->_mapcount) != -1))
1088 return false;
1089
1090 if (unlikely((unsigned long)page->mapping |
1091 page_ref_count(page) |
1092#ifdef CONFIG_MEMCG
1093 (unsigned long)page->mem_cgroup |
1094#endif
1095 (page->flags & check_flags)))
1096 return false;
1097
1098 return true;
1099}
1100
58b7f119 1101static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1102{
82a3241a 1103 const char *bad_reason = NULL;
f0b791a3 1104
53f9263b 1105 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1106 bad_reason = "nonzero mapcount";
1107 if (unlikely(page->mapping != NULL))
1108 bad_reason = "non-NULL mapping";
fe896d18 1109 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1110 bad_reason = "nonzero _refcount";
58b7f119
WY
1111 if (unlikely(page->flags & flags)) {
1112 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1113 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1114 else
1115 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1116 }
9edad6ea
JW
1117#ifdef CONFIG_MEMCG
1118 if (unlikely(page->mem_cgroup))
1119 bad_reason = "page still charged to cgroup";
1120#endif
58b7f119
WY
1121 return bad_reason;
1122}
1123
1124static void check_free_page_bad(struct page *page)
1125{
1126 bad_page(page,
1127 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1128}
1129
534fe5e3 1130static inline int check_free_page(struct page *page)
bb552ac6 1131{
da838d4f 1132 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1133 return 0;
bb552ac6
MG
1134
1135 /* Something has gone sideways, find it */
0d0c48a2 1136 check_free_page_bad(page);
7bfec6f4 1137 return 1;
1da177e4
LT
1138}
1139
4db7548c
MG
1140static int free_tail_pages_check(struct page *head_page, struct page *page)
1141{
1142 int ret = 1;
1143
1144 /*
1145 * We rely page->lru.next never has bit 0 set, unless the page
1146 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1147 */
1148 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1149
1150 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1151 ret = 0;
1152 goto out;
1153 }
1154 switch (page - head_page) {
1155 case 1:
4da1984e 1156 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1157 if (unlikely(compound_mapcount(page))) {
82a3241a 1158 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1159 goto out;
1160 }
1161 break;
1162 case 2:
1163 /*
1164 * the second tail page: ->mapping is
fa3015b7 1165 * deferred_list.next -- ignore value.
4db7548c
MG
1166 */
1167 break;
1168 default:
1169 if (page->mapping != TAIL_MAPPING) {
82a3241a 1170 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1171 goto out;
1172 }
1173 break;
1174 }
1175 if (unlikely(!PageTail(page))) {
82a3241a 1176 bad_page(page, "PageTail not set");
4db7548c
MG
1177 goto out;
1178 }
1179 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1180 bad_page(page, "compound_head not consistent");
4db7548c
MG
1181 goto out;
1182 }
1183 ret = 0;
1184out:
1185 page->mapping = NULL;
1186 clear_compound_head(page);
1187 return ret;
1188}
1189
6471384a
AP
1190static void kernel_init_free_pages(struct page *page, int numpages)
1191{
1192 int i;
1193
9e15afa5
QC
1194 /* s390's use of memset() could override KASAN redzones. */
1195 kasan_disable_current();
6471384a
AP
1196 for (i = 0; i < numpages; i++)
1197 clear_highpage(page + i);
9e15afa5 1198 kasan_enable_current();
6471384a
AP
1199}
1200
e2769dbd
MG
1201static __always_inline bool free_pages_prepare(struct page *page,
1202 unsigned int order, bool check_free)
4db7548c 1203{
e2769dbd 1204 int bad = 0;
4db7548c 1205
4db7548c
MG
1206 VM_BUG_ON_PAGE(PageTail(page), page);
1207
e2769dbd 1208 trace_mm_page_free(page, order);
e2769dbd 1209
79f5f8fa
OS
1210 if (unlikely(PageHWPoison(page)) && !order) {
1211 /*
1212 * Do not let hwpoison pages hit pcplists/buddy
1213 * Untie memcg state and reset page's owner
1214 */
1215 if (memcg_kmem_enabled() && PageKmemcg(page))
1216 __memcg_kmem_uncharge_page(page, order);
1217 reset_page_owner(page, order);
1218 return false;
1219 }
1220
e2769dbd
MG
1221 /*
1222 * Check tail pages before head page information is cleared to
1223 * avoid checking PageCompound for order-0 pages.
1224 */
1225 if (unlikely(order)) {
1226 bool compound = PageCompound(page);
1227 int i;
1228
1229 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1230
9a73f61b
KS
1231 if (compound)
1232 ClearPageDoubleMap(page);
e2769dbd
MG
1233 for (i = 1; i < (1 << order); i++) {
1234 if (compound)
1235 bad += free_tail_pages_check(page, page + i);
534fe5e3 1236 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1237 bad++;
1238 continue;
1239 }
1240 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1241 }
1242 }
bda807d4 1243 if (PageMappingFlags(page))
4db7548c 1244 page->mapping = NULL;
c4159a75 1245 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1246 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1247 if (check_free)
534fe5e3 1248 bad += check_free_page(page);
e2769dbd
MG
1249 if (bad)
1250 return false;
4db7548c 1251
e2769dbd
MG
1252 page_cpupid_reset_last(page);
1253 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1254 reset_page_owner(page, order);
4db7548c
MG
1255
1256 if (!PageHighMem(page)) {
1257 debug_check_no_locks_freed(page_address(page),
e2769dbd 1258 PAGE_SIZE << order);
4db7548c 1259 debug_check_no_obj_freed(page_address(page),
e2769dbd 1260 PAGE_SIZE << order);
4db7548c 1261 }
6471384a
AP
1262 if (want_init_on_free())
1263 kernel_init_free_pages(page, 1 << order);
1264
e2769dbd 1265 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1266 /*
1267 * arch_free_page() can make the page's contents inaccessible. s390
1268 * does this. So nothing which can access the page's contents should
1269 * happen after this.
1270 */
1271 arch_free_page(page, order);
1272
77bc7fd6 1273 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1274
3c0c12cc 1275 kasan_free_nondeferred_pages(page, order);
4db7548c 1276
4db7548c
MG
1277 return true;
1278}
1279
e2769dbd 1280#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1281/*
1282 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1283 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1284 * moved from pcp lists to free lists.
1285 */
1286static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1287{
1288 return free_pages_prepare(page, 0, true);
1289}
1290
4462b32c 1291static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1292{
8e57f8ac 1293 if (debug_pagealloc_enabled_static())
534fe5e3 1294 return check_free_page(page);
4462b32c
VB
1295 else
1296 return false;
e2769dbd
MG
1297}
1298#else
4462b32c
VB
1299/*
1300 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1301 * moving from pcp lists to free list in order to reduce overhead. With
1302 * debug_pagealloc enabled, they are checked also immediately when being freed
1303 * to the pcp lists.
1304 */
e2769dbd
MG
1305static bool free_pcp_prepare(struct page *page)
1306{
8e57f8ac 1307 if (debug_pagealloc_enabled_static())
4462b32c
VB
1308 return free_pages_prepare(page, 0, true);
1309 else
1310 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1311}
1312
4db7548c
MG
1313static bool bulkfree_pcp_prepare(struct page *page)
1314{
534fe5e3 1315 return check_free_page(page);
4db7548c
MG
1316}
1317#endif /* CONFIG_DEBUG_VM */
1318
97334162
AL
1319static inline void prefetch_buddy(struct page *page)
1320{
1321 unsigned long pfn = page_to_pfn(page);
1322 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1323 struct page *buddy = page + (buddy_pfn - pfn);
1324
1325 prefetch(buddy);
1326}
1327
1da177e4 1328/*
5f8dcc21 1329 * Frees a number of pages from the PCP lists
1da177e4 1330 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1331 * count is the number of pages to free.
1da177e4
LT
1332 *
1333 * If the zone was previously in an "all pages pinned" state then look to
1334 * see if this freeing clears that state.
1335 *
1336 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1337 * pinned" detection logic.
1338 */
5f8dcc21
MG
1339static void free_pcppages_bulk(struct zone *zone, int count,
1340 struct per_cpu_pages *pcp)
1da177e4 1341{
5f8dcc21 1342 int migratetype = 0;
a6f9edd6 1343 int batch_free = 0;
5c3ad2eb 1344 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1345 bool isolated_pageblocks;
0a5f4e5b
AL
1346 struct page *page, *tmp;
1347 LIST_HEAD(head);
f2260e6b 1348
88e8ac11
CTR
1349 /*
1350 * Ensure proper count is passed which otherwise would stuck in the
1351 * below while (list_empty(list)) loop.
1352 */
1353 count = min(pcp->count, count);
e5b31ac2 1354 while (count) {
5f8dcc21
MG
1355 struct list_head *list;
1356
1357 /*
a6f9edd6
MG
1358 * Remove pages from lists in a round-robin fashion. A
1359 * batch_free count is maintained that is incremented when an
1360 * empty list is encountered. This is so more pages are freed
1361 * off fuller lists instead of spinning excessively around empty
1362 * lists
5f8dcc21
MG
1363 */
1364 do {
a6f9edd6 1365 batch_free++;
5f8dcc21
MG
1366 if (++migratetype == MIGRATE_PCPTYPES)
1367 migratetype = 0;
1368 list = &pcp->lists[migratetype];
1369 } while (list_empty(list));
48db57f8 1370
1d16871d
NK
1371 /* This is the only non-empty list. Free them all. */
1372 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1373 batch_free = count;
1d16871d 1374
a6f9edd6 1375 do {
a16601c5 1376 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1377 /* must delete to avoid corrupting pcp list */
a6f9edd6 1378 list_del(&page->lru);
77ba9062 1379 pcp->count--;
aa016d14 1380
4db7548c
MG
1381 if (bulkfree_pcp_prepare(page))
1382 continue;
1383
0a5f4e5b 1384 list_add_tail(&page->lru, &head);
97334162
AL
1385
1386 /*
1387 * We are going to put the page back to the global
1388 * pool, prefetch its buddy to speed up later access
1389 * under zone->lock. It is believed the overhead of
1390 * an additional test and calculating buddy_pfn here
1391 * can be offset by reduced memory latency later. To
1392 * avoid excessive prefetching due to large count, only
1393 * prefetch buddy for the first pcp->batch nr of pages.
1394 */
5c3ad2eb 1395 if (prefetch_nr) {
97334162 1396 prefetch_buddy(page);
5c3ad2eb
VB
1397 prefetch_nr--;
1398 }
e5b31ac2 1399 } while (--count && --batch_free && !list_empty(list));
1da177e4 1400 }
0a5f4e5b
AL
1401
1402 spin_lock(&zone->lock);
1403 isolated_pageblocks = has_isolate_pageblock(zone);
1404
1405 /*
1406 * Use safe version since after __free_one_page(),
1407 * page->lru.next will not point to original list.
1408 */
1409 list_for_each_entry_safe(page, tmp, &head, lru) {
1410 int mt = get_pcppage_migratetype(page);
1411 /* MIGRATE_ISOLATE page should not go to pcplists */
1412 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1413 /* Pageblock could have been isolated meanwhile */
1414 if (unlikely(isolated_pageblocks))
1415 mt = get_pageblock_migratetype(page);
1416
f04a5d5d 1417 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1418 trace_mm_page_pcpu_drain(page, 0, mt);
1419 }
d34b0733 1420 spin_unlock(&zone->lock);
1da177e4
LT
1421}
1422
dc4b0caf
MG
1423static void free_one_page(struct zone *zone,
1424 struct page *page, unsigned long pfn,
7aeb09f9 1425 unsigned int order,
7fef431b 1426 int migratetype, fpi_t fpi_flags)
1da177e4 1427{
d34b0733 1428 spin_lock(&zone->lock);
ad53f92e
JK
1429 if (unlikely(has_isolate_pageblock(zone) ||
1430 is_migrate_isolate(migratetype))) {
1431 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1432 }
7fef431b 1433 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1434 spin_unlock(&zone->lock);
48db57f8
NP
1435}
1436
1e8ce83c 1437static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1438 unsigned long zone, int nid)
1e8ce83c 1439{
d0dc12e8 1440 mm_zero_struct_page(page);
1e8ce83c 1441 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1442 init_page_count(page);
1443 page_mapcount_reset(page);
1444 page_cpupid_reset_last(page);
2813b9c0 1445 page_kasan_tag_reset(page);
1e8ce83c 1446
1e8ce83c
RH
1447 INIT_LIST_HEAD(&page->lru);
1448#ifdef WANT_PAGE_VIRTUAL
1449 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1450 if (!is_highmem_idx(zone))
1451 set_page_address(page, __va(pfn << PAGE_SHIFT));
1452#endif
1453}
1454
7e18adb4 1455#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1456static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1457{
1458 pg_data_t *pgdat;
1459 int nid, zid;
1460
1461 if (!early_page_uninitialised(pfn))
1462 return;
1463
1464 nid = early_pfn_to_nid(pfn);
1465 pgdat = NODE_DATA(nid);
1466
1467 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1468 struct zone *zone = &pgdat->node_zones[zid];
1469
1470 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1471 break;
1472 }
d0dc12e8 1473 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1474}
1475#else
1476static inline void init_reserved_page(unsigned long pfn)
1477{
1478}
1479#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1480
92923ca3
NZ
1481/*
1482 * Initialised pages do not have PageReserved set. This function is
1483 * called for each range allocated by the bootmem allocator and
1484 * marks the pages PageReserved. The remaining valid pages are later
1485 * sent to the buddy page allocator.
1486 */
4b50bcc7 1487void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1488{
1489 unsigned long start_pfn = PFN_DOWN(start);
1490 unsigned long end_pfn = PFN_UP(end);
1491
7e18adb4
MG
1492 for (; start_pfn < end_pfn; start_pfn++) {
1493 if (pfn_valid(start_pfn)) {
1494 struct page *page = pfn_to_page(start_pfn);
1495
1496 init_reserved_page(start_pfn);
1d798ca3
KS
1497
1498 /* Avoid false-positive PageTail() */
1499 INIT_LIST_HEAD(&page->lru);
1500
d483da5b
AD
1501 /*
1502 * no need for atomic set_bit because the struct
1503 * page is not visible yet so nobody should
1504 * access it yet.
1505 */
1506 __SetPageReserved(page);
7e18adb4
MG
1507 }
1508 }
92923ca3
NZ
1509}
1510
7fef431b
DH
1511static void __free_pages_ok(struct page *page, unsigned int order,
1512 fpi_t fpi_flags)
ec95f53a 1513{
d34b0733 1514 unsigned long flags;
95e34412 1515 int migratetype;
dc4b0caf 1516 unsigned long pfn = page_to_pfn(page);
ec95f53a 1517
e2769dbd 1518 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1519 return;
1520
cfc47a28 1521 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1522 local_irq_save(flags);
1523 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1524 free_one_page(page_zone(page), page, pfn, order, migratetype,
1525 fpi_flags);
d34b0733 1526 local_irq_restore(flags);
1da177e4
LT
1527}
1528
a9cd410a 1529void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1530{
c3993076 1531 unsigned int nr_pages = 1 << order;
e2d0bd2b 1532 struct page *p = page;
c3993076 1533 unsigned int loop;
a226f6c8 1534
7fef431b
DH
1535 /*
1536 * When initializing the memmap, __init_single_page() sets the refcount
1537 * of all pages to 1 ("allocated"/"not free"). We have to set the
1538 * refcount of all involved pages to 0.
1539 */
e2d0bd2b
YL
1540 prefetchw(p);
1541 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1542 prefetchw(p + 1);
c3993076
JW
1543 __ClearPageReserved(p);
1544 set_page_count(p, 0);
a226f6c8 1545 }
e2d0bd2b
YL
1546 __ClearPageReserved(p);
1547 set_page_count(p, 0);
c3993076 1548
9705bea5 1549 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1550
1551 /*
1552 * Bypass PCP and place fresh pages right to the tail, primarily
1553 * relevant for memory onlining.
1554 */
1555 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1556}
1557
3f08a302 1558#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1559
03e92a5e
MR
1560/*
1561 * During memory init memblocks map pfns to nids. The search is expensive and
1562 * this caches recent lookups. The implementation of __early_pfn_to_nid
1563 * treats start/end as pfns.
1564 */
1565struct mminit_pfnnid_cache {
1566 unsigned long last_start;
1567 unsigned long last_end;
1568 int last_nid;
1569};
75a592a4 1570
03e92a5e 1571static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1572
1573/*
1574 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1575 */
03e92a5e 1576static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1577 struct mminit_pfnnid_cache *state)
75a592a4 1578{
6f24fbd3 1579 unsigned long start_pfn, end_pfn;
75a592a4
MG
1580 int nid;
1581
6f24fbd3
MR
1582 if (state->last_start <= pfn && pfn < state->last_end)
1583 return state->last_nid;
1584
1585 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1586 if (nid != NUMA_NO_NODE) {
1587 state->last_start = start_pfn;
1588 state->last_end = end_pfn;
1589 state->last_nid = nid;
1590 }
7ace9917
MG
1591
1592 return nid;
75a592a4 1593}
75a592a4 1594
75a592a4 1595int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1596{
7ace9917 1597 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1598 int nid;
1599
7ace9917 1600 spin_lock(&early_pfn_lock);
56ec43d8 1601 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1602 if (nid < 0)
e4568d38 1603 nid = first_online_node;
7ace9917 1604 spin_unlock(&early_pfn_lock);
75a592a4 1605
7ace9917 1606 return nid;
75a592a4 1607}
3f08a302 1608#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1609
7c2ee349 1610void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1611 unsigned int order)
1612{
1613 if (early_page_uninitialised(pfn))
1614 return;
a9cd410a 1615 __free_pages_core(page, order);
3a80a7fa
MG
1616}
1617
7cf91a98
JK
1618/*
1619 * Check that the whole (or subset of) a pageblock given by the interval of
1620 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1621 * with the migration of free compaction scanner. The scanners then need to
1622 * use only pfn_valid_within() check for arches that allow holes within
1623 * pageblocks.
1624 *
1625 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1626 *
1627 * It's possible on some configurations to have a setup like node0 node1 node0
1628 * i.e. it's possible that all pages within a zones range of pages do not
1629 * belong to a single zone. We assume that a border between node0 and node1
1630 * can occur within a single pageblock, but not a node0 node1 node0
1631 * interleaving within a single pageblock. It is therefore sufficient to check
1632 * the first and last page of a pageblock and avoid checking each individual
1633 * page in a pageblock.
1634 */
1635struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1636 unsigned long end_pfn, struct zone *zone)
1637{
1638 struct page *start_page;
1639 struct page *end_page;
1640
1641 /* end_pfn is one past the range we are checking */
1642 end_pfn--;
1643
1644 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1645 return NULL;
1646
2d070eab
MH
1647 start_page = pfn_to_online_page(start_pfn);
1648 if (!start_page)
1649 return NULL;
7cf91a98
JK
1650
1651 if (page_zone(start_page) != zone)
1652 return NULL;
1653
1654 end_page = pfn_to_page(end_pfn);
1655
1656 /* This gives a shorter code than deriving page_zone(end_page) */
1657 if (page_zone_id(start_page) != page_zone_id(end_page))
1658 return NULL;
1659
1660 return start_page;
1661}
1662
1663void set_zone_contiguous(struct zone *zone)
1664{
1665 unsigned long block_start_pfn = zone->zone_start_pfn;
1666 unsigned long block_end_pfn;
1667
1668 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1669 for (; block_start_pfn < zone_end_pfn(zone);
1670 block_start_pfn = block_end_pfn,
1671 block_end_pfn += pageblock_nr_pages) {
1672
1673 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1674
1675 if (!__pageblock_pfn_to_page(block_start_pfn,
1676 block_end_pfn, zone))
1677 return;
e84fe99b 1678 cond_resched();
7cf91a98
JK
1679 }
1680
1681 /* We confirm that there is no hole */
1682 zone->contiguous = true;
1683}
1684
1685void clear_zone_contiguous(struct zone *zone)
1686{
1687 zone->contiguous = false;
1688}
1689
7e18adb4 1690#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1691static void __init deferred_free_range(unsigned long pfn,
1692 unsigned long nr_pages)
a4de83dd 1693{
2f47a91f
PT
1694 struct page *page;
1695 unsigned long i;
a4de83dd 1696
2f47a91f 1697 if (!nr_pages)
a4de83dd
MG
1698 return;
1699
2f47a91f
PT
1700 page = pfn_to_page(pfn);
1701
a4de83dd 1702 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1703 if (nr_pages == pageblock_nr_pages &&
1704 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1705 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1706 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1707 return;
1708 }
1709
e780149b
XQ
1710 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1711 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1712 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1713 __free_pages_core(page, 0);
e780149b 1714 }
a4de83dd
MG
1715}
1716
d3cd131d
NS
1717/* Completion tracking for deferred_init_memmap() threads */
1718static atomic_t pgdat_init_n_undone __initdata;
1719static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1720
1721static inline void __init pgdat_init_report_one_done(void)
1722{
1723 if (atomic_dec_and_test(&pgdat_init_n_undone))
1724 complete(&pgdat_init_all_done_comp);
1725}
0e1cc95b 1726
2f47a91f 1727/*
80b1f41c
PT
1728 * Returns true if page needs to be initialized or freed to buddy allocator.
1729 *
1730 * First we check if pfn is valid on architectures where it is possible to have
1731 * holes within pageblock_nr_pages. On systems where it is not possible, this
1732 * function is optimized out.
1733 *
1734 * Then, we check if a current large page is valid by only checking the validity
1735 * of the head pfn.
2f47a91f 1736 */
56ec43d8 1737static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1738{
80b1f41c
PT
1739 if (!pfn_valid_within(pfn))
1740 return false;
1741 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1742 return false;
80b1f41c
PT
1743 return true;
1744}
2f47a91f 1745
80b1f41c
PT
1746/*
1747 * Free pages to buddy allocator. Try to free aligned pages in
1748 * pageblock_nr_pages sizes.
1749 */
56ec43d8 1750static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1751 unsigned long end_pfn)
1752{
80b1f41c
PT
1753 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1754 unsigned long nr_free = 0;
2f47a91f 1755
80b1f41c 1756 for (; pfn < end_pfn; pfn++) {
56ec43d8 1757 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1758 deferred_free_range(pfn - nr_free, nr_free);
1759 nr_free = 0;
1760 } else if (!(pfn & nr_pgmask)) {
1761 deferred_free_range(pfn - nr_free, nr_free);
1762 nr_free = 1;
80b1f41c
PT
1763 } else {
1764 nr_free++;
1765 }
1766 }
1767 /* Free the last block of pages to allocator */
1768 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1769}
1770
80b1f41c
PT
1771/*
1772 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1773 * by performing it only once every pageblock_nr_pages.
1774 * Return number of pages initialized.
1775 */
56ec43d8 1776static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1777 unsigned long pfn,
1778 unsigned long end_pfn)
2f47a91f 1779{
2f47a91f 1780 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1781 int nid = zone_to_nid(zone);
2f47a91f 1782 unsigned long nr_pages = 0;
56ec43d8 1783 int zid = zone_idx(zone);
2f47a91f 1784 struct page *page = NULL;
2f47a91f 1785
80b1f41c 1786 for (; pfn < end_pfn; pfn++) {
56ec43d8 1787 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1788 page = NULL;
2f47a91f 1789 continue;
80b1f41c 1790 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1791 page = pfn_to_page(pfn);
80b1f41c
PT
1792 } else {
1793 page++;
2f47a91f 1794 }
d0dc12e8 1795 __init_single_page(page, pfn, zid, nid);
80b1f41c 1796 nr_pages++;
2f47a91f 1797 }
80b1f41c 1798 return (nr_pages);
2f47a91f
PT
1799}
1800
0e56acae
AD
1801/*
1802 * This function is meant to pre-load the iterator for the zone init.
1803 * Specifically it walks through the ranges until we are caught up to the
1804 * first_init_pfn value and exits there. If we never encounter the value we
1805 * return false indicating there are no valid ranges left.
1806 */
1807static bool __init
1808deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1809 unsigned long *spfn, unsigned long *epfn,
1810 unsigned long first_init_pfn)
1811{
1812 u64 j;
1813
1814 /*
1815 * Start out by walking through the ranges in this zone that have
1816 * already been initialized. We don't need to do anything with them
1817 * so we just need to flush them out of the system.
1818 */
1819 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1820 if (*epfn <= first_init_pfn)
1821 continue;
1822 if (*spfn < first_init_pfn)
1823 *spfn = first_init_pfn;
1824 *i = j;
1825 return true;
1826 }
1827
1828 return false;
1829}
1830
1831/*
1832 * Initialize and free pages. We do it in two loops: first we initialize
1833 * struct page, then free to buddy allocator, because while we are
1834 * freeing pages we can access pages that are ahead (computing buddy
1835 * page in __free_one_page()).
1836 *
1837 * In order to try and keep some memory in the cache we have the loop
1838 * broken along max page order boundaries. This way we will not cause
1839 * any issues with the buddy page computation.
1840 */
1841static unsigned long __init
1842deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1843 unsigned long *end_pfn)
1844{
1845 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1846 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1847 unsigned long nr_pages = 0;
1848 u64 j = *i;
1849
1850 /* First we loop through and initialize the page values */
1851 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1852 unsigned long t;
1853
1854 if (mo_pfn <= *start_pfn)
1855 break;
1856
1857 t = min(mo_pfn, *end_pfn);
1858 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1859
1860 if (mo_pfn < *end_pfn) {
1861 *start_pfn = mo_pfn;
1862 break;
1863 }
1864 }
1865
1866 /* Reset values and now loop through freeing pages as needed */
1867 swap(j, *i);
1868
1869 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1870 unsigned long t;
1871
1872 if (mo_pfn <= spfn)
1873 break;
1874
1875 t = min(mo_pfn, epfn);
1876 deferred_free_pages(spfn, t);
1877
1878 if (mo_pfn <= epfn)
1879 break;
1880 }
1881
1882 return nr_pages;
1883}
1884
e4443149
DJ
1885static void __init
1886deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1887 void *arg)
1888{
1889 unsigned long spfn, epfn;
1890 struct zone *zone = arg;
1891 u64 i;
1892
1893 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1894
1895 /*
1896 * Initialize and free pages in MAX_ORDER sized increments so that we
1897 * can avoid introducing any issues with the buddy allocator.
1898 */
1899 while (spfn < end_pfn) {
1900 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1901 cond_resched();
1902 }
1903}
1904
ecd09650
DJ
1905/* An arch may override for more concurrency. */
1906__weak int __init
1907deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1908{
1909 return 1;
1910}
1911
7e18adb4 1912/* Initialise remaining memory on a node */
0e1cc95b 1913static int __init deferred_init_memmap(void *data)
7e18adb4 1914{
0e1cc95b 1915 pg_data_t *pgdat = data;
0e56acae 1916 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1917 unsigned long spfn = 0, epfn = 0;
0e56acae 1918 unsigned long first_init_pfn, flags;
7e18adb4 1919 unsigned long start = jiffies;
7e18adb4 1920 struct zone *zone;
e4443149 1921 int zid, max_threads;
2f47a91f 1922 u64 i;
7e18adb4 1923
3a2d7fa8
PT
1924 /* Bind memory initialisation thread to a local node if possible */
1925 if (!cpumask_empty(cpumask))
1926 set_cpus_allowed_ptr(current, cpumask);
1927
1928 pgdat_resize_lock(pgdat, &flags);
1929 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1930 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1931 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1932 pgdat_init_report_one_done();
0e1cc95b
MG
1933 return 0;
1934 }
1935
7e18adb4
MG
1936 /* Sanity check boundaries */
1937 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1938 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1939 pgdat->first_deferred_pfn = ULONG_MAX;
1940
3d060856
PT
1941 /*
1942 * Once we unlock here, the zone cannot be grown anymore, thus if an
1943 * interrupt thread must allocate this early in boot, zone must be
1944 * pre-grown prior to start of deferred page initialization.
1945 */
1946 pgdat_resize_unlock(pgdat, &flags);
1947
7e18adb4
MG
1948 /* Only the highest zone is deferred so find it */
1949 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1950 zone = pgdat->node_zones + zid;
1951 if (first_init_pfn < zone_end_pfn(zone))
1952 break;
1953 }
0e56acae
AD
1954
1955 /* If the zone is empty somebody else may have cleared out the zone */
1956 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1957 first_init_pfn))
1958 goto zone_empty;
7e18adb4 1959
ecd09650 1960 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 1961
117003c3 1962 while (spfn < epfn) {
e4443149
DJ
1963 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1964 struct padata_mt_job job = {
1965 .thread_fn = deferred_init_memmap_chunk,
1966 .fn_arg = zone,
1967 .start = spfn,
1968 .size = epfn_align - spfn,
1969 .align = PAGES_PER_SECTION,
1970 .min_chunk = PAGES_PER_SECTION,
1971 .max_threads = max_threads,
1972 };
1973
1974 padata_do_multithreaded(&job);
1975 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1976 epfn_align);
117003c3 1977 }
0e56acae 1978zone_empty:
7e18adb4
MG
1979 /* Sanity check that the next zone really is unpopulated */
1980 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1981
89c7c402
DJ
1982 pr_info("node %d deferred pages initialised in %ums\n",
1983 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1984
1985 pgdat_init_report_one_done();
0e1cc95b
MG
1986 return 0;
1987}
c9e97a19 1988
c9e97a19
PT
1989/*
1990 * If this zone has deferred pages, try to grow it by initializing enough
1991 * deferred pages to satisfy the allocation specified by order, rounded up to
1992 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1993 * of SECTION_SIZE bytes by initializing struct pages in increments of
1994 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1995 *
1996 * Return true when zone was grown, otherwise return false. We return true even
1997 * when we grow less than requested, to let the caller decide if there are
1998 * enough pages to satisfy the allocation.
1999 *
2000 * Note: We use noinline because this function is needed only during boot, and
2001 * it is called from a __ref function _deferred_grow_zone. This way we are
2002 * making sure that it is not inlined into permanent text section.
2003 */
2004static noinline bool __init
2005deferred_grow_zone(struct zone *zone, unsigned int order)
2006{
c9e97a19 2007 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2008 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2009 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2010 unsigned long spfn, epfn, flags;
2011 unsigned long nr_pages = 0;
c9e97a19
PT
2012 u64 i;
2013
2014 /* Only the last zone may have deferred pages */
2015 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2016 return false;
2017
2018 pgdat_resize_lock(pgdat, &flags);
2019
c9e97a19
PT
2020 /*
2021 * If someone grew this zone while we were waiting for spinlock, return
2022 * true, as there might be enough pages already.
2023 */
2024 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2025 pgdat_resize_unlock(pgdat, &flags);
2026 return true;
2027 }
2028
0e56acae
AD
2029 /* If the zone is empty somebody else may have cleared out the zone */
2030 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2031 first_deferred_pfn)) {
2032 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2033 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2034 /* Retry only once. */
2035 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2036 }
2037
0e56acae
AD
2038 /*
2039 * Initialize and free pages in MAX_ORDER sized increments so
2040 * that we can avoid introducing any issues with the buddy
2041 * allocator.
2042 */
2043 while (spfn < epfn) {
2044 /* update our first deferred PFN for this section */
2045 first_deferred_pfn = spfn;
2046
2047 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2048 touch_nmi_watchdog();
c9e97a19 2049
0e56acae
AD
2050 /* We should only stop along section boundaries */
2051 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2052 continue;
c9e97a19 2053
0e56acae 2054 /* If our quota has been met we can stop here */
c9e97a19
PT
2055 if (nr_pages >= nr_pages_needed)
2056 break;
2057 }
2058
0e56acae 2059 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2060 pgdat_resize_unlock(pgdat, &flags);
2061
2062 return nr_pages > 0;
2063}
2064
2065/*
2066 * deferred_grow_zone() is __init, but it is called from
2067 * get_page_from_freelist() during early boot until deferred_pages permanently
2068 * disables this call. This is why we have refdata wrapper to avoid warning,
2069 * and to ensure that the function body gets unloaded.
2070 */
2071static bool __ref
2072_deferred_grow_zone(struct zone *zone, unsigned int order)
2073{
2074 return deferred_grow_zone(zone, order);
2075}
2076
7cf91a98 2077#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2078
2079void __init page_alloc_init_late(void)
2080{
7cf91a98 2081 struct zone *zone;
e900a918 2082 int nid;
7cf91a98
JK
2083
2084#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2085
d3cd131d
NS
2086 /* There will be num_node_state(N_MEMORY) threads */
2087 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2088 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2089 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2090 }
2091
2092 /* Block until all are initialised */
d3cd131d 2093 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2094
3e8fc007
MG
2095 /*
2096 * The number of managed pages has changed due to the initialisation
2097 * so the pcpu batch and high limits needs to be updated or the limits
2098 * will be artificially small.
2099 */
2100 for_each_populated_zone(zone)
2101 zone_pcp_update(zone);
2102
c9e97a19
PT
2103 /*
2104 * We initialized the rest of the deferred pages. Permanently disable
2105 * on-demand struct page initialization.
2106 */
2107 static_branch_disable(&deferred_pages);
2108
4248b0da
MG
2109 /* Reinit limits that are based on free pages after the kernel is up */
2110 files_maxfiles_init();
7cf91a98 2111#endif
350e88ba 2112
ba8f3587
LF
2113 buffer_init();
2114
3010f876
PT
2115 /* Discard memblock private memory */
2116 memblock_discard();
7cf91a98 2117
e900a918
DW
2118 for_each_node_state(nid, N_MEMORY)
2119 shuffle_free_memory(NODE_DATA(nid));
2120
7cf91a98
JK
2121 for_each_populated_zone(zone)
2122 set_zone_contiguous(zone);
7e18adb4 2123}
7e18adb4 2124
47118af0 2125#ifdef CONFIG_CMA
9cf510a5 2126/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2127void __init init_cma_reserved_pageblock(struct page *page)
2128{
2129 unsigned i = pageblock_nr_pages;
2130 struct page *p = page;
2131
2132 do {
2133 __ClearPageReserved(p);
2134 set_page_count(p, 0);
d883c6cf 2135 } while (++p, --i);
47118af0 2136
47118af0 2137 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2138
2139 if (pageblock_order >= MAX_ORDER) {
2140 i = pageblock_nr_pages;
2141 p = page;
2142 do {
2143 set_page_refcounted(p);
2144 __free_pages(p, MAX_ORDER - 1);
2145 p += MAX_ORDER_NR_PAGES;
2146 } while (i -= MAX_ORDER_NR_PAGES);
2147 } else {
2148 set_page_refcounted(page);
2149 __free_pages(page, pageblock_order);
2150 }
2151
3dcc0571 2152 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2153}
2154#endif
1da177e4
LT
2155
2156/*
2157 * The order of subdivision here is critical for the IO subsystem.
2158 * Please do not alter this order without good reasons and regression
2159 * testing. Specifically, as large blocks of memory are subdivided,
2160 * the order in which smaller blocks are delivered depends on the order
2161 * they're subdivided in this function. This is the primary factor
2162 * influencing the order in which pages are delivered to the IO
2163 * subsystem according to empirical testing, and this is also justified
2164 * by considering the behavior of a buddy system containing a single
2165 * large block of memory acted on by a series of small allocations.
2166 * This behavior is a critical factor in sglist merging's success.
2167 *
6d49e352 2168 * -- nyc
1da177e4 2169 */
085cc7d5 2170static inline void expand(struct zone *zone, struct page *page,
6ab01363 2171 int low, int high, int migratetype)
1da177e4
LT
2172{
2173 unsigned long size = 1 << high;
2174
2175 while (high > low) {
1da177e4
LT
2176 high--;
2177 size >>= 1;
309381fe 2178 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2179
acbc15a4
JK
2180 /*
2181 * Mark as guard pages (or page), that will allow to
2182 * merge back to allocator when buddy will be freed.
2183 * Corresponding page table entries will not be touched,
2184 * pages will stay not present in virtual address space
2185 */
2186 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2187 continue;
acbc15a4 2188
6ab01363 2189 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2190 set_buddy_order(&page[size], high);
1da177e4 2191 }
1da177e4
LT
2192}
2193
4e611801 2194static void check_new_page_bad(struct page *page)
1da177e4 2195{
f4c18e6f 2196 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2197 /* Don't complain about hwpoisoned pages */
2198 page_mapcount_reset(page); /* remove PageBuddy */
2199 return;
f4c18e6f 2200 }
58b7f119
WY
2201
2202 bad_page(page,
2203 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2204}
2205
2206/*
2207 * This page is about to be returned from the page allocator
2208 */
2209static inline int check_new_page(struct page *page)
2210{
2211 if (likely(page_expected_state(page,
2212 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2213 return 0;
2214
2215 check_new_page_bad(page);
2216 return 1;
2a7684a2
WF
2217}
2218
bd33ef36 2219static inline bool free_pages_prezeroed(void)
1414c7f4 2220{
6471384a
AP
2221 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2222 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2223}
2224
479f854a 2225#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2226/*
2227 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2228 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2229 * also checked when pcp lists are refilled from the free lists.
2230 */
2231static inline bool check_pcp_refill(struct page *page)
479f854a 2232{
8e57f8ac 2233 if (debug_pagealloc_enabled_static())
4462b32c
VB
2234 return check_new_page(page);
2235 else
2236 return false;
479f854a
MG
2237}
2238
4462b32c 2239static inline bool check_new_pcp(struct page *page)
479f854a
MG
2240{
2241 return check_new_page(page);
2242}
2243#else
4462b32c
VB
2244/*
2245 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2246 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2247 * enabled, they are also checked when being allocated from the pcp lists.
2248 */
2249static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2250{
2251 return check_new_page(page);
2252}
4462b32c 2253static inline bool check_new_pcp(struct page *page)
479f854a 2254{
8e57f8ac 2255 if (debug_pagealloc_enabled_static())
4462b32c
VB
2256 return check_new_page(page);
2257 else
2258 return false;
479f854a
MG
2259}
2260#endif /* CONFIG_DEBUG_VM */
2261
2262static bool check_new_pages(struct page *page, unsigned int order)
2263{
2264 int i;
2265 for (i = 0; i < (1 << order); i++) {
2266 struct page *p = page + i;
2267
2268 if (unlikely(check_new_page(p)))
2269 return true;
2270 }
2271
2272 return false;
2273}
2274
46f24fd8
JK
2275inline void post_alloc_hook(struct page *page, unsigned int order,
2276 gfp_t gfp_flags)
2277{
2278 set_page_private(page, 0);
2279 set_page_refcounted(page);
2280
2281 arch_alloc_page(page, order);
77bc7fd6 2282 debug_pagealloc_map_pages(page, 1 << order);
46f24fd8 2283 kasan_alloc_pages(page, order);
4117992d 2284 kernel_poison_pages(page, 1 << order, 1);
46f24fd8 2285 set_page_owner(page, order, gfp_flags);
862b6dee
DH
2286
2287 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2288 kernel_init_free_pages(page, 1 << order);
46f24fd8
JK
2289}
2290
479f854a 2291static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2292 unsigned int alloc_flags)
2a7684a2 2293{
46f24fd8 2294 post_alloc_hook(page, order, gfp_flags);
17cf4406 2295
17cf4406
NP
2296 if (order && (gfp_flags & __GFP_COMP))
2297 prep_compound_page(page, order);
2298
75379191 2299 /*
2f064f34 2300 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2301 * allocate the page. The expectation is that the caller is taking
2302 * steps that will free more memory. The caller should avoid the page
2303 * being used for !PFMEMALLOC purposes.
2304 */
2f064f34
MH
2305 if (alloc_flags & ALLOC_NO_WATERMARKS)
2306 set_page_pfmemalloc(page);
2307 else
2308 clear_page_pfmemalloc(page);
1da177e4
LT
2309}
2310
56fd56b8
MG
2311/*
2312 * Go through the free lists for the given migratetype and remove
2313 * the smallest available page from the freelists
2314 */
85ccc8fa 2315static __always_inline
728ec980 2316struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2317 int migratetype)
2318{
2319 unsigned int current_order;
b8af2941 2320 struct free_area *area;
56fd56b8
MG
2321 struct page *page;
2322
2323 /* Find a page of the appropriate size in the preferred list */
2324 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2325 area = &(zone->free_area[current_order]);
b03641af 2326 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2327 if (!page)
2328 continue;
6ab01363
AD
2329 del_page_from_free_list(page, zone, current_order);
2330 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2331 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2332 return page;
2333 }
2334
2335 return NULL;
2336}
2337
2338
b2a0ac88
MG
2339/*
2340 * This array describes the order lists are fallen back to when
2341 * the free lists for the desirable migrate type are depleted
2342 */
da415663 2343static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2344 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2345 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2346 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2347#ifdef CONFIG_CMA
974a786e 2348 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2349#endif
194159fb 2350#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2351 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2352#endif
b2a0ac88
MG
2353};
2354
dc67647b 2355#ifdef CONFIG_CMA
85ccc8fa 2356static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2357 unsigned int order)
2358{
2359 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2360}
2361#else
2362static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2363 unsigned int order) { return NULL; }
2364#endif
2365
c361be55 2366/*
293ffa5e 2367 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2368 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2369 * boundary. If alignment is required, use move_freepages_block()
2370 */
02aa0cdd 2371static int move_freepages(struct zone *zone,
b69a7288 2372 struct page *start_page, struct page *end_page,
02aa0cdd 2373 int migratetype, int *num_movable)
c361be55
MG
2374{
2375 struct page *page;
d00181b9 2376 unsigned int order;
d100313f 2377 int pages_moved = 0;
c361be55 2378
c361be55
MG
2379 for (page = start_page; page <= end_page;) {
2380 if (!pfn_valid_within(page_to_pfn(page))) {
2381 page++;
2382 continue;
2383 }
2384
2385 if (!PageBuddy(page)) {
02aa0cdd
VB
2386 /*
2387 * We assume that pages that could be isolated for
2388 * migration are movable. But we don't actually try
2389 * isolating, as that would be expensive.
2390 */
2391 if (num_movable &&
2392 (PageLRU(page) || __PageMovable(page)))
2393 (*num_movable)++;
2394
c361be55
MG
2395 page++;
2396 continue;
2397 }
2398
cd961038
DR
2399 /* Make sure we are not inadvertently changing nodes */
2400 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2401 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2402
ab130f91 2403 order = buddy_order(page);
6ab01363 2404 move_to_free_list(page, zone, order, migratetype);
c361be55 2405 page += 1 << order;
d100313f 2406 pages_moved += 1 << order;
c361be55
MG
2407 }
2408
d100313f 2409 return pages_moved;
c361be55
MG
2410}
2411
ee6f509c 2412int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2413 int migratetype, int *num_movable)
c361be55
MG
2414{
2415 unsigned long start_pfn, end_pfn;
2416 struct page *start_page, *end_page;
2417
4a222127
DR
2418 if (num_movable)
2419 *num_movable = 0;
2420
c361be55 2421 start_pfn = page_to_pfn(page);
d9c23400 2422 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2423 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2424 end_page = start_page + pageblock_nr_pages - 1;
2425 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2426
2427 /* Do not cross zone boundaries */
108bcc96 2428 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2429 start_page = page;
108bcc96 2430 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2431 return 0;
2432
02aa0cdd
VB
2433 return move_freepages(zone, start_page, end_page, migratetype,
2434 num_movable);
c361be55
MG
2435}
2436
2f66a68f
MG
2437static void change_pageblock_range(struct page *pageblock_page,
2438 int start_order, int migratetype)
2439{
2440 int nr_pageblocks = 1 << (start_order - pageblock_order);
2441
2442 while (nr_pageblocks--) {
2443 set_pageblock_migratetype(pageblock_page, migratetype);
2444 pageblock_page += pageblock_nr_pages;
2445 }
2446}
2447
fef903ef 2448/*
9c0415eb
VB
2449 * When we are falling back to another migratetype during allocation, try to
2450 * steal extra free pages from the same pageblocks to satisfy further
2451 * allocations, instead of polluting multiple pageblocks.
2452 *
2453 * If we are stealing a relatively large buddy page, it is likely there will
2454 * be more free pages in the pageblock, so try to steal them all. For
2455 * reclaimable and unmovable allocations, we steal regardless of page size,
2456 * as fragmentation caused by those allocations polluting movable pageblocks
2457 * is worse than movable allocations stealing from unmovable and reclaimable
2458 * pageblocks.
fef903ef 2459 */
4eb7dce6
JK
2460static bool can_steal_fallback(unsigned int order, int start_mt)
2461{
2462 /*
2463 * Leaving this order check is intended, although there is
2464 * relaxed order check in next check. The reason is that
2465 * we can actually steal whole pageblock if this condition met,
2466 * but, below check doesn't guarantee it and that is just heuristic
2467 * so could be changed anytime.
2468 */
2469 if (order >= pageblock_order)
2470 return true;
2471
2472 if (order >= pageblock_order / 2 ||
2473 start_mt == MIGRATE_RECLAIMABLE ||
2474 start_mt == MIGRATE_UNMOVABLE ||
2475 page_group_by_mobility_disabled)
2476 return true;
2477
2478 return false;
2479}
2480
597c8920 2481static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2482{
2483 unsigned long max_boost;
2484
2485 if (!watermark_boost_factor)
597c8920 2486 return false;
14f69140
HW
2487 /*
2488 * Don't bother in zones that are unlikely to produce results.
2489 * On small machines, including kdump capture kernels running
2490 * in a small area, boosting the watermark can cause an out of
2491 * memory situation immediately.
2492 */
2493 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2494 return false;
1c30844d
MG
2495
2496 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2497 watermark_boost_factor, 10000);
94b3334c
MG
2498
2499 /*
2500 * high watermark may be uninitialised if fragmentation occurs
2501 * very early in boot so do not boost. We do not fall
2502 * through and boost by pageblock_nr_pages as failing
2503 * allocations that early means that reclaim is not going
2504 * to help and it may even be impossible to reclaim the
2505 * boosted watermark resulting in a hang.
2506 */
2507 if (!max_boost)
597c8920 2508 return false;
94b3334c 2509
1c30844d
MG
2510 max_boost = max(pageblock_nr_pages, max_boost);
2511
2512 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2513 max_boost);
597c8920
JW
2514
2515 return true;
1c30844d
MG
2516}
2517
4eb7dce6
JK
2518/*
2519 * This function implements actual steal behaviour. If order is large enough,
2520 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2521 * pageblock to our migratetype and determine how many already-allocated pages
2522 * are there in the pageblock with a compatible migratetype. If at least half
2523 * of pages are free or compatible, we can change migratetype of the pageblock
2524 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2525 */
2526static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2527 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2528{
ab130f91 2529 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2530 int free_pages, movable_pages, alike_pages;
2531 int old_block_type;
2532
2533 old_block_type = get_pageblock_migratetype(page);
fef903ef 2534
3bc48f96
VB
2535 /*
2536 * This can happen due to races and we want to prevent broken
2537 * highatomic accounting.
2538 */
02aa0cdd 2539 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2540 goto single_page;
2541
fef903ef
SB
2542 /* Take ownership for orders >= pageblock_order */
2543 if (current_order >= pageblock_order) {
2544 change_pageblock_range(page, current_order, start_type);
3bc48f96 2545 goto single_page;
fef903ef
SB
2546 }
2547
1c30844d
MG
2548 /*
2549 * Boost watermarks to increase reclaim pressure to reduce the
2550 * likelihood of future fallbacks. Wake kswapd now as the node
2551 * may be balanced overall and kswapd will not wake naturally.
2552 */
597c8920 2553 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2554 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2555
3bc48f96
VB
2556 /* We are not allowed to try stealing from the whole block */
2557 if (!whole_block)
2558 goto single_page;
2559
02aa0cdd
VB
2560 free_pages = move_freepages_block(zone, page, start_type,
2561 &movable_pages);
2562 /*
2563 * Determine how many pages are compatible with our allocation.
2564 * For movable allocation, it's the number of movable pages which
2565 * we just obtained. For other types it's a bit more tricky.
2566 */
2567 if (start_type == MIGRATE_MOVABLE) {
2568 alike_pages = movable_pages;
2569 } else {
2570 /*
2571 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2572 * to MOVABLE pageblock, consider all non-movable pages as
2573 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2574 * vice versa, be conservative since we can't distinguish the
2575 * exact migratetype of non-movable pages.
2576 */
2577 if (old_block_type == MIGRATE_MOVABLE)
2578 alike_pages = pageblock_nr_pages
2579 - (free_pages + movable_pages);
2580 else
2581 alike_pages = 0;
2582 }
2583
3bc48f96 2584 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2585 if (!free_pages)
3bc48f96 2586 goto single_page;
fef903ef 2587
02aa0cdd
VB
2588 /*
2589 * If a sufficient number of pages in the block are either free or of
2590 * comparable migratability as our allocation, claim the whole block.
2591 */
2592 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2593 page_group_by_mobility_disabled)
2594 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2595
2596 return;
2597
2598single_page:
6ab01363 2599 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2600}
2601
2149cdae
JK
2602/*
2603 * Check whether there is a suitable fallback freepage with requested order.
2604 * If only_stealable is true, this function returns fallback_mt only if
2605 * we can steal other freepages all together. This would help to reduce
2606 * fragmentation due to mixed migratetype pages in one pageblock.
2607 */
2608int find_suitable_fallback(struct free_area *area, unsigned int order,
2609 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2610{
2611 int i;
2612 int fallback_mt;
2613
2614 if (area->nr_free == 0)
2615 return -1;
2616
2617 *can_steal = false;
2618 for (i = 0;; i++) {
2619 fallback_mt = fallbacks[migratetype][i];
974a786e 2620 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2621 break;
2622
b03641af 2623 if (free_area_empty(area, fallback_mt))
4eb7dce6 2624 continue;
fef903ef 2625
4eb7dce6
JK
2626 if (can_steal_fallback(order, migratetype))
2627 *can_steal = true;
2628
2149cdae
JK
2629 if (!only_stealable)
2630 return fallback_mt;
2631
2632 if (*can_steal)
2633 return fallback_mt;
fef903ef 2634 }
4eb7dce6
JK
2635
2636 return -1;
fef903ef
SB
2637}
2638
0aaa29a5
MG
2639/*
2640 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2641 * there are no empty page blocks that contain a page with a suitable order
2642 */
2643static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2644 unsigned int alloc_order)
2645{
2646 int mt;
2647 unsigned long max_managed, flags;
2648
2649 /*
2650 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2651 * Check is race-prone but harmless.
2652 */
9705bea5 2653 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2654 if (zone->nr_reserved_highatomic >= max_managed)
2655 return;
2656
2657 spin_lock_irqsave(&zone->lock, flags);
2658
2659 /* Recheck the nr_reserved_highatomic limit under the lock */
2660 if (zone->nr_reserved_highatomic >= max_managed)
2661 goto out_unlock;
2662
2663 /* Yoink! */
2664 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2665 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2666 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2667 zone->nr_reserved_highatomic += pageblock_nr_pages;
2668 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2669 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2670 }
2671
2672out_unlock:
2673 spin_unlock_irqrestore(&zone->lock, flags);
2674}
2675
2676/*
2677 * Used when an allocation is about to fail under memory pressure. This
2678 * potentially hurts the reliability of high-order allocations when under
2679 * intense memory pressure but failed atomic allocations should be easier
2680 * to recover from than an OOM.
29fac03b
MK
2681 *
2682 * If @force is true, try to unreserve a pageblock even though highatomic
2683 * pageblock is exhausted.
0aaa29a5 2684 */
29fac03b
MK
2685static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2686 bool force)
0aaa29a5
MG
2687{
2688 struct zonelist *zonelist = ac->zonelist;
2689 unsigned long flags;
2690 struct zoneref *z;
2691 struct zone *zone;
2692 struct page *page;
2693 int order;
04c8716f 2694 bool ret;
0aaa29a5 2695
97a225e6 2696 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2697 ac->nodemask) {
29fac03b
MK
2698 /*
2699 * Preserve at least one pageblock unless memory pressure
2700 * is really high.
2701 */
2702 if (!force && zone->nr_reserved_highatomic <=
2703 pageblock_nr_pages)
0aaa29a5
MG
2704 continue;
2705
2706 spin_lock_irqsave(&zone->lock, flags);
2707 for (order = 0; order < MAX_ORDER; order++) {
2708 struct free_area *area = &(zone->free_area[order]);
2709
b03641af 2710 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2711 if (!page)
0aaa29a5
MG
2712 continue;
2713
0aaa29a5 2714 /*
4855e4a7
MK
2715 * In page freeing path, migratetype change is racy so
2716 * we can counter several free pages in a pageblock
2717 * in this loop althoug we changed the pageblock type
2718 * from highatomic to ac->migratetype. So we should
2719 * adjust the count once.
0aaa29a5 2720 */
a6ffdc07 2721 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2722 /*
2723 * It should never happen but changes to
2724 * locking could inadvertently allow a per-cpu
2725 * drain to add pages to MIGRATE_HIGHATOMIC
2726 * while unreserving so be safe and watch for
2727 * underflows.
2728 */
2729 zone->nr_reserved_highatomic -= min(
2730 pageblock_nr_pages,
2731 zone->nr_reserved_highatomic);
2732 }
0aaa29a5
MG
2733
2734 /*
2735 * Convert to ac->migratetype and avoid the normal
2736 * pageblock stealing heuristics. Minimally, the caller
2737 * is doing the work and needs the pages. More
2738 * importantly, if the block was always converted to
2739 * MIGRATE_UNMOVABLE or another type then the number
2740 * of pageblocks that cannot be completely freed
2741 * may increase.
2742 */
2743 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2744 ret = move_freepages_block(zone, page, ac->migratetype,
2745 NULL);
29fac03b
MK
2746 if (ret) {
2747 spin_unlock_irqrestore(&zone->lock, flags);
2748 return ret;
2749 }
0aaa29a5
MG
2750 }
2751 spin_unlock_irqrestore(&zone->lock, flags);
2752 }
04c8716f
MK
2753
2754 return false;
0aaa29a5
MG
2755}
2756
3bc48f96
VB
2757/*
2758 * Try finding a free buddy page on the fallback list and put it on the free
2759 * list of requested migratetype, possibly along with other pages from the same
2760 * block, depending on fragmentation avoidance heuristics. Returns true if
2761 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2762 *
2763 * The use of signed ints for order and current_order is a deliberate
2764 * deviation from the rest of this file, to make the for loop
2765 * condition simpler.
3bc48f96 2766 */
85ccc8fa 2767static __always_inline bool
6bb15450
MG
2768__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2769 unsigned int alloc_flags)
b2a0ac88 2770{
b8af2941 2771 struct free_area *area;
b002529d 2772 int current_order;
6bb15450 2773 int min_order = order;
b2a0ac88 2774 struct page *page;
4eb7dce6
JK
2775 int fallback_mt;
2776 bool can_steal;
b2a0ac88 2777
6bb15450
MG
2778 /*
2779 * Do not steal pages from freelists belonging to other pageblocks
2780 * i.e. orders < pageblock_order. If there are no local zones free,
2781 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2782 */
2783 if (alloc_flags & ALLOC_NOFRAGMENT)
2784 min_order = pageblock_order;
2785
7a8f58f3
VB
2786 /*
2787 * Find the largest available free page in the other list. This roughly
2788 * approximates finding the pageblock with the most free pages, which
2789 * would be too costly to do exactly.
2790 */
6bb15450 2791 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2792 --current_order) {
4eb7dce6
JK
2793 area = &(zone->free_area[current_order]);
2794 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2795 start_migratetype, false, &can_steal);
4eb7dce6
JK
2796 if (fallback_mt == -1)
2797 continue;
b2a0ac88 2798
7a8f58f3
VB
2799 /*
2800 * We cannot steal all free pages from the pageblock and the
2801 * requested migratetype is movable. In that case it's better to
2802 * steal and split the smallest available page instead of the
2803 * largest available page, because even if the next movable
2804 * allocation falls back into a different pageblock than this
2805 * one, it won't cause permanent fragmentation.
2806 */
2807 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2808 && current_order > order)
2809 goto find_smallest;
b2a0ac88 2810
7a8f58f3
VB
2811 goto do_steal;
2812 }
e0fff1bd 2813
7a8f58f3 2814 return false;
e0fff1bd 2815
7a8f58f3
VB
2816find_smallest:
2817 for (current_order = order; current_order < MAX_ORDER;
2818 current_order++) {
2819 area = &(zone->free_area[current_order]);
2820 fallback_mt = find_suitable_fallback(area, current_order,
2821 start_migratetype, false, &can_steal);
2822 if (fallback_mt != -1)
2823 break;
b2a0ac88
MG
2824 }
2825
7a8f58f3
VB
2826 /*
2827 * This should not happen - we already found a suitable fallback
2828 * when looking for the largest page.
2829 */
2830 VM_BUG_ON(current_order == MAX_ORDER);
2831
2832do_steal:
b03641af 2833 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2834
1c30844d
MG
2835 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2836 can_steal);
7a8f58f3
VB
2837
2838 trace_mm_page_alloc_extfrag(page, order, current_order,
2839 start_migratetype, fallback_mt);
2840
2841 return true;
2842
b2a0ac88
MG
2843}
2844
56fd56b8 2845/*
1da177e4
LT
2846 * Do the hard work of removing an element from the buddy allocator.
2847 * Call me with the zone->lock already held.
2848 */
85ccc8fa 2849static __always_inline struct page *
6bb15450
MG
2850__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2851 unsigned int alloc_flags)
1da177e4 2852{
1da177e4
LT
2853 struct page *page;
2854
16867664
RG
2855#ifdef CONFIG_CMA
2856 /*
2857 * Balance movable allocations between regular and CMA areas by
2858 * allocating from CMA when over half of the zone's free memory
2859 * is in the CMA area.
2860 */
8510e69c 2861 if (alloc_flags & ALLOC_CMA &&
16867664
RG
2862 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2863 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2864 page = __rmqueue_cma_fallback(zone, order);
2865 if (page)
2866 return page;
2867 }
2868#endif
3bc48f96 2869retry:
56fd56b8 2870 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2871 if (unlikely(!page)) {
8510e69c 2872 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2873 page = __rmqueue_cma_fallback(zone, order);
2874
6bb15450
MG
2875 if (!page && __rmqueue_fallback(zone, order, migratetype,
2876 alloc_flags))
3bc48f96 2877 goto retry;
728ec980
MG
2878 }
2879
0d3d062a 2880 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2881 return page;
1da177e4
LT
2882}
2883
5f63b720 2884/*
1da177e4
LT
2885 * Obtain a specified number of elements from the buddy allocator, all under
2886 * a single hold of the lock, for efficiency. Add them to the supplied list.
2887 * Returns the number of new pages which were placed at *list.
2888 */
5f63b720 2889static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2890 unsigned long count, struct list_head *list,
6bb15450 2891 int migratetype, unsigned int alloc_flags)
1da177e4 2892{
a6de734b 2893 int i, alloced = 0;
5f63b720 2894
d34b0733 2895 spin_lock(&zone->lock);
1da177e4 2896 for (i = 0; i < count; ++i) {
6bb15450
MG
2897 struct page *page = __rmqueue(zone, order, migratetype,
2898 alloc_flags);
085cc7d5 2899 if (unlikely(page == NULL))
1da177e4 2900 break;
81eabcbe 2901
479f854a
MG
2902 if (unlikely(check_pcp_refill(page)))
2903 continue;
2904
81eabcbe 2905 /*
0fac3ba5
VB
2906 * Split buddy pages returned by expand() are received here in
2907 * physical page order. The page is added to the tail of
2908 * caller's list. From the callers perspective, the linked list
2909 * is ordered by page number under some conditions. This is
2910 * useful for IO devices that can forward direction from the
2911 * head, thus also in the physical page order. This is useful
2912 * for IO devices that can merge IO requests if the physical
2913 * pages are ordered properly.
81eabcbe 2914 */
0fac3ba5 2915 list_add_tail(&page->lru, list);
a6de734b 2916 alloced++;
bb14c2c7 2917 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2918 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2919 -(1 << order));
1da177e4 2920 }
a6de734b
MG
2921
2922 /*
2923 * i pages were removed from the buddy list even if some leak due
2924 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2925 * on i. Do not confuse with 'alloced' which is the number of
2926 * pages added to the pcp list.
2927 */
f2260e6b 2928 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2929 spin_unlock(&zone->lock);
a6de734b 2930 return alloced;
1da177e4
LT
2931}
2932
4ae7c039 2933#ifdef CONFIG_NUMA
8fce4d8e 2934/*
4037d452
CL
2935 * Called from the vmstat counter updater to drain pagesets of this
2936 * currently executing processor on remote nodes after they have
2937 * expired.
2938 *
879336c3
CL
2939 * Note that this function must be called with the thread pinned to
2940 * a single processor.
8fce4d8e 2941 */
4037d452 2942void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2943{
4ae7c039 2944 unsigned long flags;
7be12fc9 2945 int to_drain, batch;
4ae7c039 2946
4037d452 2947 local_irq_save(flags);
4db0c3c2 2948 batch = READ_ONCE(pcp->batch);
7be12fc9 2949 to_drain = min(pcp->count, batch);
77ba9062 2950 if (to_drain > 0)
2a13515c 2951 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2952 local_irq_restore(flags);
4ae7c039
CL
2953}
2954#endif
2955
9f8f2172 2956/*
93481ff0 2957 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2958 *
2959 * The processor must either be the current processor and the
2960 * thread pinned to the current processor or a processor that
2961 * is not online.
2962 */
93481ff0 2963static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2964{
c54ad30c 2965 unsigned long flags;
93481ff0
VB
2966 struct per_cpu_pageset *pset;
2967 struct per_cpu_pages *pcp;
1da177e4 2968
93481ff0
VB
2969 local_irq_save(flags);
2970 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2971
93481ff0 2972 pcp = &pset->pcp;
77ba9062 2973 if (pcp->count)
93481ff0 2974 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2975 local_irq_restore(flags);
2976}
3dfa5721 2977
93481ff0
VB
2978/*
2979 * Drain pcplists of all zones on the indicated processor.
2980 *
2981 * The processor must either be the current processor and the
2982 * thread pinned to the current processor or a processor that
2983 * is not online.
2984 */
2985static void drain_pages(unsigned int cpu)
2986{
2987 struct zone *zone;
2988
2989 for_each_populated_zone(zone) {
2990 drain_pages_zone(cpu, zone);
1da177e4
LT
2991 }
2992}
1da177e4 2993
9f8f2172
CL
2994/*
2995 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2996 *
2997 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2998 * the single zone's pages.
9f8f2172 2999 */
93481ff0 3000void drain_local_pages(struct zone *zone)
9f8f2172 3001{
93481ff0
VB
3002 int cpu = smp_processor_id();
3003
3004 if (zone)
3005 drain_pages_zone(cpu, zone);
3006 else
3007 drain_pages(cpu);
9f8f2172
CL
3008}
3009
0ccce3b9
MG
3010static void drain_local_pages_wq(struct work_struct *work)
3011{
d9367bd0
WY
3012 struct pcpu_drain *drain;
3013
3014 drain = container_of(work, struct pcpu_drain, work);
3015
a459eeb7
MH
3016 /*
3017 * drain_all_pages doesn't use proper cpu hotplug protection so
3018 * we can race with cpu offline when the WQ can move this from
3019 * a cpu pinned worker to an unbound one. We can operate on a different
3020 * cpu which is allright but we also have to make sure to not move to
3021 * a different one.
3022 */
3023 preempt_disable();
d9367bd0 3024 drain_local_pages(drain->zone);
a459eeb7 3025 preempt_enable();
0ccce3b9
MG
3026}
3027
9f8f2172 3028/*
ec6e8c7e
VB
3029 * The implementation of drain_all_pages(), exposing an extra parameter to
3030 * drain on all cpus.
93481ff0 3031 *
ec6e8c7e
VB
3032 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3033 * not empty. The check for non-emptiness can however race with a free to
3034 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3035 * that need the guarantee that every CPU has drained can disable the
3036 * optimizing racy check.
9f8f2172 3037 */
3b1f3658 3038static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3039{
74046494 3040 int cpu;
74046494
GBY
3041
3042 /*
3043 * Allocate in the BSS so we wont require allocation in
3044 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3045 */
3046 static cpumask_t cpus_with_pcps;
3047
ce612879
MH
3048 /*
3049 * Make sure nobody triggers this path before mm_percpu_wq is fully
3050 * initialized.
3051 */
3052 if (WARN_ON_ONCE(!mm_percpu_wq))
3053 return;
3054
bd233f53
MG
3055 /*
3056 * Do not drain if one is already in progress unless it's specific to
3057 * a zone. Such callers are primarily CMA and memory hotplug and need
3058 * the drain to be complete when the call returns.
3059 */
3060 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3061 if (!zone)
3062 return;
3063 mutex_lock(&pcpu_drain_mutex);
3064 }
0ccce3b9 3065
74046494
GBY
3066 /*
3067 * We don't care about racing with CPU hotplug event
3068 * as offline notification will cause the notified
3069 * cpu to drain that CPU pcps and on_each_cpu_mask
3070 * disables preemption as part of its processing
3071 */
3072 for_each_online_cpu(cpu) {
93481ff0
VB
3073 struct per_cpu_pageset *pcp;
3074 struct zone *z;
74046494 3075 bool has_pcps = false;
93481ff0 3076
ec6e8c7e
VB
3077 if (force_all_cpus) {
3078 /*
3079 * The pcp.count check is racy, some callers need a
3080 * guarantee that no cpu is missed.
3081 */
3082 has_pcps = true;
3083 } else if (zone) {
74046494 3084 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3085 if (pcp->pcp.count)
74046494 3086 has_pcps = true;
93481ff0
VB
3087 } else {
3088 for_each_populated_zone(z) {
3089 pcp = per_cpu_ptr(z->pageset, cpu);
3090 if (pcp->pcp.count) {
3091 has_pcps = true;
3092 break;
3093 }
74046494
GBY
3094 }
3095 }
93481ff0 3096
74046494
GBY
3097 if (has_pcps)
3098 cpumask_set_cpu(cpu, &cpus_with_pcps);
3099 else
3100 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3101 }
0ccce3b9 3102
bd233f53 3103 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3104 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3105
3106 drain->zone = zone;
3107 INIT_WORK(&drain->work, drain_local_pages_wq);
3108 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3109 }
bd233f53 3110 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3111 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3112
3113 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3114}
3115
ec6e8c7e
VB
3116/*
3117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3118 *
3119 * When zone parameter is non-NULL, spill just the single zone's pages.
3120 *
3121 * Note that this can be extremely slow as the draining happens in a workqueue.
3122 */
3123void drain_all_pages(struct zone *zone)
3124{
3125 __drain_all_pages(zone, false);
3126}
3127
296699de 3128#ifdef CONFIG_HIBERNATION
1da177e4 3129
556b969a
CY
3130/*
3131 * Touch the watchdog for every WD_PAGE_COUNT pages.
3132 */
3133#define WD_PAGE_COUNT (128*1024)
3134
1da177e4
LT
3135void mark_free_pages(struct zone *zone)
3136{
556b969a 3137 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3138 unsigned long flags;
7aeb09f9 3139 unsigned int order, t;
86760a2c 3140 struct page *page;
1da177e4 3141
8080fc03 3142 if (zone_is_empty(zone))
1da177e4
LT
3143 return;
3144
3145 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3146
108bcc96 3147 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3148 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3149 if (pfn_valid(pfn)) {
86760a2c 3150 page = pfn_to_page(pfn);
ba6b0979 3151
556b969a
CY
3152 if (!--page_count) {
3153 touch_nmi_watchdog();
3154 page_count = WD_PAGE_COUNT;
3155 }
3156
ba6b0979
JK
3157 if (page_zone(page) != zone)
3158 continue;
3159
7be98234
RW
3160 if (!swsusp_page_is_forbidden(page))
3161 swsusp_unset_page_free(page);
f623f0db 3162 }
1da177e4 3163
b2a0ac88 3164 for_each_migratetype_order(order, t) {
86760a2c
GT
3165 list_for_each_entry(page,
3166 &zone->free_area[order].free_list[t], lru) {
f623f0db 3167 unsigned long i;
1da177e4 3168
86760a2c 3169 pfn = page_to_pfn(page);
556b969a
CY
3170 for (i = 0; i < (1UL << order); i++) {
3171 if (!--page_count) {
3172 touch_nmi_watchdog();
3173 page_count = WD_PAGE_COUNT;
3174 }
7be98234 3175 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3176 }
f623f0db 3177 }
b2a0ac88 3178 }
1da177e4
LT
3179 spin_unlock_irqrestore(&zone->lock, flags);
3180}
e2c55dc8 3181#endif /* CONFIG_PM */
1da177e4 3182
2d4894b5 3183static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3184{
5f8dcc21 3185 int migratetype;
1da177e4 3186
4db7548c 3187 if (!free_pcp_prepare(page))
9cca35d4 3188 return false;
689bcebf 3189
dc4b0caf 3190 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3191 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3192 return true;
3193}
3194
2d4894b5 3195static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3196{
3197 struct zone *zone = page_zone(page);
3198 struct per_cpu_pages *pcp;
3199 int migratetype;
3200
3201 migratetype = get_pcppage_migratetype(page);
d34b0733 3202 __count_vm_event(PGFREE);
da456f14 3203
5f8dcc21
MG
3204 /*
3205 * We only track unmovable, reclaimable and movable on pcp lists.
3206 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3207 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3208 * areas back if necessary. Otherwise, we may have to free
3209 * excessively into the page allocator
3210 */
3211 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3212 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3213 free_one_page(zone, page, pfn, 0, migratetype,
3214 FPI_NONE);
9cca35d4 3215 return;
5f8dcc21
MG
3216 }
3217 migratetype = MIGRATE_MOVABLE;
3218 }
3219
99dcc3e5 3220 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3221 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3222 pcp->count++;
5c3ad2eb
VB
3223 if (pcp->count >= READ_ONCE(pcp->high))
3224 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
9cca35d4 3225}
5f8dcc21 3226
9cca35d4
MG
3227/*
3228 * Free a 0-order page
9cca35d4 3229 */
2d4894b5 3230void free_unref_page(struct page *page)
9cca35d4
MG
3231{
3232 unsigned long flags;
3233 unsigned long pfn = page_to_pfn(page);
3234
2d4894b5 3235 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3236 return;
3237
3238 local_irq_save(flags);
2d4894b5 3239 free_unref_page_commit(page, pfn);
d34b0733 3240 local_irq_restore(flags);
1da177e4
LT
3241}
3242
cc59850e
KK
3243/*
3244 * Free a list of 0-order pages
3245 */
2d4894b5 3246void free_unref_page_list(struct list_head *list)
cc59850e
KK
3247{
3248 struct page *page, *next;
9cca35d4 3249 unsigned long flags, pfn;
c24ad77d 3250 int batch_count = 0;
9cca35d4
MG
3251
3252 /* Prepare pages for freeing */
3253 list_for_each_entry_safe(page, next, list, lru) {
3254 pfn = page_to_pfn(page);
2d4894b5 3255 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3256 list_del(&page->lru);
3257 set_page_private(page, pfn);
3258 }
cc59850e 3259
9cca35d4 3260 local_irq_save(flags);
cc59850e 3261 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3262 unsigned long pfn = page_private(page);
3263
3264 set_page_private(page, 0);
2d4894b5
MG
3265 trace_mm_page_free_batched(page);
3266 free_unref_page_commit(page, pfn);
c24ad77d
LS
3267
3268 /*
3269 * Guard against excessive IRQ disabled times when we get
3270 * a large list of pages to free.
3271 */
3272 if (++batch_count == SWAP_CLUSTER_MAX) {
3273 local_irq_restore(flags);
3274 batch_count = 0;
3275 local_irq_save(flags);
3276 }
cc59850e 3277 }
9cca35d4 3278 local_irq_restore(flags);
cc59850e
KK
3279}
3280
8dfcc9ba
NP
3281/*
3282 * split_page takes a non-compound higher-order page, and splits it into
3283 * n (1<<order) sub-pages: page[0..n]
3284 * Each sub-page must be freed individually.
3285 *
3286 * Note: this is probably too low level an operation for use in drivers.
3287 * Please consult with lkml before using this in your driver.
3288 */
3289void split_page(struct page *page, unsigned int order)
3290{
3291 int i;
3292
309381fe
SL
3293 VM_BUG_ON_PAGE(PageCompound(page), page);
3294 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3295
a9627bc5 3296 for (i = 1; i < (1 << order); i++)
7835e98b 3297 set_page_refcounted(page + i);
8fb156c9 3298 split_page_owner(page, 1 << order);
8dfcc9ba 3299}
5853ff23 3300EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3301
3c605096 3302int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3303{
748446bb
MG
3304 unsigned long watermark;
3305 struct zone *zone;
2139cbe6 3306 int mt;
748446bb
MG
3307
3308 BUG_ON(!PageBuddy(page));
3309
3310 zone = page_zone(page);
2e30abd1 3311 mt = get_pageblock_migratetype(page);
748446bb 3312
194159fb 3313 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3314 /*
3315 * Obey watermarks as if the page was being allocated. We can
3316 * emulate a high-order watermark check with a raised order-0
3317 * watermark, because we already know our high-order page
3318 * exists.
3319 */
fd1444b2 3320 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3321 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3322 return 0;
3323
8fb74b9f 3324 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3325 }
748446bb
MG
3326
3327 /* Remove page from free list */
b03641af 3328
6ab01363 3329 del_page_from_free_list(page, zone, order);
2139cbe6 3330
400bc7fd 3331 /*
3332 * Set the pageblock if the isolated page is at least half of a
3333 * pageblock
3334 */
748446bb
MG
3335 if (order >= pageblock_order - 1) {
3336 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3337 for (; page < endpage; page += pageblock_nr_pages) {
3338 int mt = get_pageblock_migratetype(page);
88ed365e 3339 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3340 && !is_migrate_highatomic(mt))
47118af0
MN
3341 set_pageblock_migratetype(page,
3342 MIGRATE_MOVABLE);
3343 }
748446bb
MG
3344 }
3345
f3a14ced 3346
8fb74b9f 3347 return 1UL << order;
1fb3f8ca
MG
3348}
3349
624f58d8
AD
3350/**
3351 * __putback_isolated_page - Return a now-isolated page back where we got it
3352 * @page: Page that was isolated
3353 * @order: Order of the isolated page
e6a0a7ad 3354 * @mt: The page's pageblock's migratetype
624f58d8
AD
3355 *
3356 * This function is meant to return a page pulled from the free lists via
3357 * __isolate_free_page back to the free lists they were pulled from.
3358 */
3359void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3360{
3361 struct zone *zone = page_zone(page);
3362
3363 /* zone lock should be held when this function is called */
3364 lockdep_assert_held(&zone->lock);
3365
3366 /* Return isolated page to tail of freelist. */
f04a5d5d 3367 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3368 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3369}
3370
060e7417
MG
3371/*
3372 * Update NUMA hit/miss statistics
3373 *
3374 * Must be called with interrupts disabled.
060e7417 3375 */
41b6167e 3376static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3377{
3378#ifdef CONFIG_NUMA
3a321d2a 3379 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3380
4518085e
KW
3381 /* skip numa counters update if numa stats is disabled */
3382 if (!static_branch_likely(&vm_numa_stat_key))
3383 return;
3384
c1093b74 3385 if (zone_to_nid(z) != numa_node_id())
060e7417 3386 local_stat = NUMA_OTHER;
060e7417 3387
c1093b74 3388 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3389 __inc_numa_state(z, NUMA_HIT);
2df26639 3390 else {
3a321d2a
KW
3391 __inc_numa_state(z, NUMA_MISS);
3392 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3393 }
3a321d2a 3394 __inc_numa_state(z, local_stat);
060e7417
MG
3395#endif
3396}
3397
066b2393
MG
3398/* Remove page from the per-cpu list, caller must protect the list */
3399static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3400 unsigned int alloc_flags,
453f85d4 3401 struct per_cpu_pages *pcp,
066b2393
MG
3402 struct list_head *list)
3403{
3404 struct page *page;
3405
3406 do {
3407 if (list_empty(list)) {
3408 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3409 READ_ONCE(pcp->batch), list,
6bb15450 3410 migratetype, alloc_flags);
066b2393
MG
3411 if (unlikely(list_empty(list)))
3412 return NULL;
3413 }
3414
453f85d4 3415 page = list_first_entry(list, struct page, lru);
066b2393
MG
3416 list_del(&page->lru);
3417 pcp->count--;
3418 } while (check_new_pcp(page));
3419
3420 return page;
3421}
3422
3423/* Lock and remove page from the per-cpu list */
3424static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3425 struct zone *zone, gfp_t gfp_flags,
3426 int migratetype, unsigned int alloc_flags)
066b2393
MG
3427{
3428 struct per_cpu_pages *pcp;
3429 struct list_head *list;
066b2393 3430 struct page *page;
d34b0733 3431 unsigned long flags;
066b2393 3432
d34b0733 3433 local_irq_save(flags);
066b2393
MG
3434 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3435 list = &pcp->lists[migratetype];
6bb15450 3436 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3437 if (page) {
1c52e6d0 3438 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3439 zone_statistics(preferred_zone, zone);
3440 }
d34b0733 3441 local_irq_restore(flags);
066b2393
MG
3442 return page;
3443}
3444
1da177e4 3445/*
75379191 3446 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3447 */
0a15c3e9 3448static inline
066b2393 3449struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3450 struct zone *zone, unsigned int order,
c603844b
MG
3451 gfp_t gfp_flags, unsigned int alloc_flags,
3452 int migratetype)
1da177e4
LT
3453{
3454 unsigned long flags;
689bcebf 3455 struct page *page;
1da177e4 3456
d34b0733 3457 if (likely(order == 0)) {
1d91df85
JK
3458 /*
3459 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3460 * we need to skip it when CMA area isn't allowed.
3461 */
3462 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3463 migratetype != MIGRATE_MOVABLE) {
3464 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3465 migratetype, alloc_flags);
1d91df85
JK
3466 goto out;
3467 }
066b2393 3468 }
83b9355b 3469
066b2393
MG
3470 /*
3471 * We most definitely don't want callers attempting to
3472 * allocate greater than order-1 page units with __GFP_NOFAIL.
3473 */
3474 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3475 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3476
066b2393
MG
3477 do {
3478 page = NULL;
1d91df85
JK
3479 /*
3480 * order-0 request can reach here when the pcplist is skipped
3481 * due to non-CMA allocation context. HIGHATOMIC area is
3482 * reserved for high-order atomic allocation, so order-0
3483 * request should skip it.
3484 */
3485 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3486 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3487 if (page)
3488 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3489 }
a74609fa 3490 if (!page)
6bb15450 3491 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3492 } while (page && check_new_pages(page, order));
3493 spin_unlock(&zone->lock);
3494 if (!page)
3495 goto failed;
3496 __mod_zone_freepage_state(zone, -(1 << order),
3497 get_pcppage_migratetype(page));
1da177e4 3498
16709d1d 3499 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3500 zone_statistics(preferred_zone, zone);
a74609fa 3501 local_irq_restore(flags);
1da177e4 3502
066b2393 3503out:
73444bc4
MG
3504 /* Separate test+clear to avoid unnecessary atomics */
3505 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3506 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3507 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3508 }
3509
066b2393 3510 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3511 return page;
a74609fa
NP
3512
3513failed:
3514 local_irq_restore(flags);
a74609fa 3515 return NULL;
1da177e4
LT
3516}
3517
933e312e
AM
3518#ifdef CONFIG_FAIL_PAGE_ALLOC
3519
b2588c4b 3520static struct {
933e312e
AM
3521 struct fault_attr attr;
3522
621a5f7a 3523 bool ignore_gfp_highmem;
71baba4b 3524 bool ignore_gfp_reclaim;
54114994 3525 u32 min_order;
933e312e
AM
3526} fail_page_alloc = {
3527 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3528 .ignore_gfp_reclaim = true,
621a5f7a 3529 .ignore_gfp_highmem = true,
54114994 3530 .min_order = 1,
933e312e
AM
3531};
3532
3533static int __init setup_fail_page_alloc(char *str)
3534{
3535 return setup_fault_attr(&fail_page_alloc.attr, str);
3536}
3537__setup("fail_page_alloc=", setup_fail_page_alloc);
3538
af3b8544 3539static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3540{
54114994 3541 if (order < fail_page_alloc.min_order)
deaf386e 3542 return false;
933e312e 3543 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3544 return false;
933e312e 3545 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3546 return false;
71baba4b
MG
3547 if (fail_page_alloc.ignore_gfp_reclaim &&
3548 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3549 return false;
933e312e
AM
3550
3551 return should_fail(&fail_page_alloc.attr, 1 << order);
3552}
3553
3554#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3555
3556static int __init fail_page_alloc_debugfs(void)
3557{
0825a6f9 3558 umode_t mode = S_IFREG | 0600;
933e312e 3559 struct dentry *dir;
933e312e 3560
dd48c085
AM
3561 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3562 &fail_page_alloc.attr);
b2588c4b 3563
d9f7979c
GKH
3564 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3565 &fail_page_alloc.ignore_gfp_reclaim);
3566 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3567 &fail_page_alloc.ignore_gfp_highmem);
3568 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3569
d9f7979c 3570 return 0;
933e312e
AM
3571}
3572
3573late_initcall(fail_page_alloc_debugfs);
3574
3575#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3576
3577#else /* CONFIG_FAIL_PAGE_ALLOC */
3578
af3b8544 3579static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3580{
deaf386e 3581 return false;
933e312e
AM
3582}
3583
3584#endif /* CONFIG_FAIL_PAGE_ALLOC */
3585
76cd6173 3586noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3587{
3588 return __should_fail_alloc_page(gfp_mask, order);
3589}
3590ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3591
f27ce0e1
JK
3592static inline long __zone_watermark_unusable_free(struct zone *z,
3593 unsigned int order, unsigned int alloc_flags)
3594{
3595 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3596 long unusable_free = (1 << order) - 1;
3597
3598 /*
3599 * If the caller does not have rights to ALLOC_HARDER then subtract
3600 * the high-atomic reserves. This will over-estimate the size of the
3601 * atomic reserve but it avoids a search.
3602 */
3603 if (likely(!alloc_harder))
3604 unusable_free += z->nr_reserved_highatomic;
3605
3606#ifdef CONFIG_CMA
3607 /* If allocation can't use CMA areas don't use free CMA pages */
3608 if (!(alloc_flags & ALLOC_CMA))
3609 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3610#endif
3611
3612 return unusable_free;
3613}
3614
1da177e4 3615/*
97a16fc8
MG
3616 * Return true if free base pages are above 'mark'. For high-order checks it
3617 * will return true of the order-0 watermark is reached and there is at least
3618 * one free page of a suitable size. Checking now avoids taking the zone lock
3619 * to check in the allocation paths if no pages are free.
1da177e4 3620 */
86a294a8 3621bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3622 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3623 long free_pages)
1da177e4 3624{
d23ad423 3625 long min = mark;
1da177e4 3626 int o;
cd04ae1e 3627 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3628
0aaa29a5 3629 /* free_pages may go negative - that's OK */
f27ce0e1 3630 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3631
7fb1d9fc 3632 if (alloc_flags & ALLOC_HIGH)
1da177e4 3633 min -= min / 2;
0aaa29a5 3634
f27ce0e1 3635 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3636 /*
3637 * OOM victims can try even harder than normal ALLOC_HARDER
3638 * users on the grounds that it's definitely going to be in
3639 * the exit path shortly and free memory. Any allocation it
3640 * makes during the free path will be small and short-lived.
3641 */
3642 if (alloc_flags & ALLOC_OOM)
3643 min -= min / 2;
3644 else
3645 min -= min / 4;
3646 }
3647
97a16fc8
MG
3648 /*
3649 * Check watermarks for an order-0 allocation request. If these
3650 * are not met, then a high-order request also cannot go ahead
3651 * even if a suitable page happened to be free.
3652 */
97a225e6 3653 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3654 return false;
1da177e4 3655
97a16fc8
MG
3656 /* If this is an order-0 request then the watermark is fine */
3657 if (!order)
3658 return true;
3659
3660 /* For a high-order request, check at least one suitable page is free */
3661 for (o = order; o < MAX_ORDER; o++) {
3662 struct free_area *area = &z->free_area[o];
3663 int mt;
3664
3665 if (!area->nr_free)
3666 continue;
3667
97a16fc8 3668 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3669 if (!free_area_empty(area, mt))
97a16fc8
MG
3670 return true;
3671 }
3672
3673#ifdef CONFIG_CMA
d883c6cf 3674 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3675 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3676 return true;
d883c6cf 3677 }
97a16fc8 3678#endif
76089d00 3679 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3680 return true;
1da177e4 3681 }
97a16fc8 3682 return false;
88f5acf8
MG
3683}
3684
7aeb09f9 3685bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3686 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3687{
97a225e6 3688 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3689 zone_page_state(z, NR_FREE_PAGES));
3690}
3691
48ee5f36 3692static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3693 unsigned long mark, int highest_zoneidx,
f80b08fc 3694 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3695{
f27ce0e1 3696 long free_pages;
d883c6cf 3697
f27ce0e1 3698 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3699
3700 /*
3701 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3702 * need to be calculated.
48ee5f36 3703 */
f27ce0e1
JK
3704 if (!order) {
3705 long fast_free;
3706
3707 fast_free = free_pages;
3708 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3709 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3710 return true;
3711 }
48ee5f36 3712
f80b08fc
CTR
3713 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3714 free_pages))
3715 return true;
3716 /*
3717 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3718 * when checking the min watermark. The min watermark is the
3719 * point where boosting is ignored so that kswapd is woken up
3720 * when below the low watermark.
3721 */
3722 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3723 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3724 mark = z->_watermark[WMARK_MIN];
3725 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3726 alloc_flags, free_pages);
3727 }
3728
3729 return false;
48ee5f36
MG
3730}
3731
7aeb09f9 3732bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3733 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3734{
3735 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3736
3737 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3738 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3739
97a225e6 3740 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3741 free_pages);
1da177e4
LT
3742}
3743
9276b1bc 3744#ifdef CONFIG_NUMA
957f822a
DR
3745static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3746{
e02dc017 3747 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3748 node_reclaim_distance;
957f822a 3749}
9276b1bc 3750#else /* CONFIG_NUMA */
957f822a
DR
3751static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3752{
3753 return true;
3754}
9276b1bc
PJ
3755#endif /* CONFIG_NUMA */
3756
6bb15450
MG
3757/*
3758 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3759 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3760 * premature use of a lower zone may cause lowmem pressure problems that
3761 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3762 * probably too small. It only makes sense to spread allocations to avoid
3763 * fragmentation between the Normal and DMA32 zones.
3764 */
3765static inline unsigned int
0a79cdad 3766alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3767{
736838e9 3768 unsigned int alloc_flags;
0a79cdad 3769
736838e9
MN
3770 /*
3771 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3772 * to save a branch.
3773 */
3774 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3775
3776#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3777 if (!zone)
3778 return alloc_flags;
3779
6bb15450 3780 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3781 return alloc_flags;
6bb15450
MG
3782
3783 /*
3784 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3785 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3786 * on UMA that if Normal is populated then so is DMA32.
3787 */
3788 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3789 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3790 return alloc_flags;
6bb15450 3791
8118b82e 3792 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3793#endif /* CONFIG_ZONE_DMA32 */
3794 return alloc_flags;
6bb15450 3795}
6bb15450 3796
8510e69c
JK
3797static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3798 unsigned int alloc_flags)
3799{
3800#ifdef CONFIG_CMA
3801 unsigned int pflags = current->flags;
3802
3803 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3804 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3805 alloc_flags |= ALLOC_CMA;
3806
3807#endif
3808 return alloc_flags;
3809}
3810
7fb1d9fc 3811/*
0798e519 3812 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3813 * a page.
3814 */
3815static struct page *
a9263751
VB
3816get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3817 const struct alloc_context *ac)
753ee728 3818{
6bb15450 3819 struct zoneref *z;
5117f45d 3820 struct zone *zone;
3b8c0be4 3821 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3822 bool no_fallback;
3b8c0be4 3823
6bb15450 3824retry:
7fb1d9fc 3825 /*
9276b1bc 3826 * Scan zonelist, looking for a zone with enough free.
344736f2 3827 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3828 */
6bb15450
MG
3829 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3830 z = ac->preferred_zoneref;
30d8ec73
MN
3831 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3832 ac->nodemask) {
be06af00 3833 struct page *page;
e085dbc5
JW
3834 unsigned long mark;
3835
664eedde
MG
3836 if (cpusets_enabled() &&
3837 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3838 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3839 continue;
a756cf59
JW
3840 /*
3841 * When allocating a page cache page for writing, we
281e3726
MG
3842 * want to get it from a node that is within its dirty
3843 * limit, such that no single node holds more than its
a756cf59 3844 * proportional share of globally allowed dirty pages.
281e3726 3845 * The dirty limits take into account the node's
a756cf59
JW
3846 * lowmem reserves and high watermark so that kswapd
3847 * should be able to balance it without having to
3848 * write pages from its LRU list.
3849 *
a756cf59 3850 * XXX: For now, allow allocations to potentially
281e3726 3851 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3852 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3853 * which is important when on a NUMA setup the allowed
281e3726 3854 * nodes are together not big enough to reach the
a756cf59 3855 * global limit. The proper fix for these situations
281e3726 3856 * will require awareness of nodes in the
a756cf59
JW
3857 * dirty-throttling and the flusher threads.
3858 */
3b8c0be4
MG
3859 if (ac->spread_dirty_pages) {
3860 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3861 continue;
3862
3863 if (!node_dirty_ok(zone->zone_pgdat)) {
3864 last_pgdat_dirty_limit = zone->zone_pgdat;
3865 continue;
3866 }
3867 }
7fb1d9fc 3868
6bb15450
MG
3869 if (no_fallback && nr_online_nodes > 1 &&
3870 zone != ac->preferred_zoneref->zone) {
3871 int local_nid;
3872
3873 /*
3874 * If moving to a remote node, retry but allow
3875 * fragmenting fallbacks. Locality is more important
3876 * than fragmentation avoidance.
3877 */
3878 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3879 if (zone_to_nid(zone) != local_nid) {
3880 alloc_flags &= ~ALLOC_NOFRAGMENT;
3881 goto retry;
3882 }
3883 }
3884
a9214443 3885 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3886 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3887 ac->highest_zoneidx, alloc_flags,
3888 gfp_mask)) {
fa5e084e
MG
3889 int ret;
3890
c9e97a19
PT
3891#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3892 /*
3893 * Watermark failed for this zone, but see if we can
3894 * grow this zone if it contains deferred pages.
3895 */
3896 if (static_branch_unlikely(&deferred_pages)) {
3897 if (_deferred_grow_zone(zone, order))
3898 goto try_this_zone;
3899 }
3900#endif
5dab2911
MG
3901 /* Checked here to keep the fast path fast */
3902 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3903 if (alloc_flags & ALLOC_NO_WATERMARKS)
3904 goto try_this_zone;
3905
a5f5f91d 3906 if (node_reclaim_mode == 0 ||
c33d6c06 3907 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3908 continue;
3909
a5f5f91d 3910 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3911 switch (ret) {
a5f5f91d 3912 case NODE_RECLAIM_NOSCAN:
fa5e084e 3913 /* did not scan */
cd38b115 3914 continue;
a5f5f91d 3915 case NODE_RECLAIM_FULL:
fa5e084e 3916 /* scanned but unreclaimable */
cd38b115 3917 continue;
fa5e084e
MG
3918 default:
3919 /* did we reclaim enough */
fed2719e 3920 if (zone_watermark_ok(zone, order, mark,
97a225e6 3921 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3922 goto try_this_zone;
3923
fed2719e 3924 continue;
0798e519 3925 }
7fb1d9fc
RS
3926 }
3927
fa5e084e 3928try_this_zone:
066b2393 3929 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3930 gfp_mask, alloc_flags, ac->migratetype);
75379191 3931 if (page) {
479f854a 3932 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3933
3934 /*
3935 * If this is a high-order atomic allocation then check
3936 * if the pageblock should be reserved for the future
3937 */
3938 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3939 reserve_highatomic_pageblock(page, zone, order);
3940
75379191 3941 return page;
c9e97a19
PT
3942 } else {
3943#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3944 /* Try again if zone has deferred pages */
3945 if (static_branch_unlikely(&deferred_pages)) {
3946 if (_deferred_grow_zone(zone, order))
3947 goto try_this_zone;
3948 }
3949#endif
75379191 3950 }
54a6eb5c 3951 }
9276b1bc 3952
6bb15450
MG
3953 /*
3954 * It's possible on a UMA machine to get through all zones that are
3955 * fragmented. If avoiding fragmentation, reset and try again.
3956 */
3957 if (no_fallback) {
3958 alloc_flags &= ~ALLOC_NOFRAGMENT;
3959 goto retry;
3960 }
3961
4ffeaf35 3962 return NULL;
753ee728
MH
3963}
3964
9af744d7 3965static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3966{
a238ab5b 3967 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3968
3969 /*
3970 * This documents exceptions given to allocations in certain
3971 * contexts that are allowed to allocate outside current's set
3972 * of allowed nodes.
3973 */
3974 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3975 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3976 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3977 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3978 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3979 filter &= ~SHOW_MEM_FILTER_NODES;
3980
9af744d7 3981 show_mem(filter, nodemask);
aa187507
MH
3982}
3983
a8e99259 3984void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3985{
3986 struct va_format vaf;
3987 va_list args;
1be334e5 3988 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3989
0f7896f1 3990 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3991 return;
3992
7877cdcc
MH
3993 va_start(args, fmt);
3994 vaf.fmt = fmt;
3995 vaf.va = &args;
ef8444ea 3996 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3997 current->comm, &vaf, gfp_mask, &gfp_mask,
3998 nodemask_pr_args(nodemask));
7877cdcc 3999 va_end(args);
3ee9a4f0 4000
a8e99259 4001 cpuset_print_current_mems_allowed();
ef8444ea 4002 pr_cont("\n");
a238ab5b 4003 dump_stack();
685dbf6f 4004 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4005}
4006
6c18ba7a
MH
4007static inline struct page *
4008__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4009 unsigned int alloc_flags,
4010 const struct alloc_context *ac)
4011{
4012 struct page *page;
4013
4014 page = get_page_from_freelist(gfp_mask, order,
4015 alloc_flags|ALLOC_CPUSET, ac);
4016 /*
4017 * fallback to ignore cpuset restriction if our nodes
4018 * are depleted
4019 */
4020 if (!page)
4021 page = get_page_from_freelist(gfp_mask, order,
4022 alloc_flags, ac);
4023
4024 return page;
4025}
4026
11e33f6a
MG
4027static inline struct page *
4028__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4029 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4030{
6e0fc46d
DR
4031 struct oom_control oc = {
4032 .zonelist = ac->zonelist,
4033 .nodemask = ac->nodemask,
2a966b77 4034 .memcg = NULL,
6e0fc46d
DR
4035 .gfp_mask = gfp_mask,
4036 .order = order,
6e0fc46d 4037 };
11e33f6a
MG
4038 struct page *page;
4039
9879de73
JW
4040 *did_some_progress = 0;
4041
9879de73 4042 /*
dc56401f
JW
4043 * Acquire the oom lock. If that fails, somebody else is
4044 * making progress for us.
9879de73 4045 */
dc56401f 4046 if (!mutex_trylock(&oom_lock)) {
9879de73 4047 *did_some_progress = 1;
11e33f6a 4048 schedule_timeout_uninterruptible(1);
1da177e4
LT
4049 return NULL;
4050 }
6b1de916 4051
11e33f6a
MG
4052 /*
4053 * Go through the zonelist yet one more time, keep very high watermark
4054 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4055 * we're still under heavy pressure. But make sure that this reclaim
4056 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4057 * allocation which will never fail due to oom_lock already held.
11e33f6a 4058 */
e746bf73
TH
4059 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4060 ~__GFP_DIRECT_RECLAIM, order,
4061 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4062 if (page)
11e33f6a
MG
4063 goto out;
4064
06ad276a
MH
4065 /* Coredumps can quickly deplete all memory reserves */
4066 if (current->flags & PF_DUMPCORE)
4067 goto out;
4068 /* The OOM killer will not help higher order allocs */
4069 if (order > PAGE_ALLOC_COSTLY_ORDER)
4070 goto out;
dcda9b04
MH
4071 /*
4072 * We have already exhausted all our reclaim opportunities without any
4073 * success so it is time to admit defeat. We will skip the OOM killer
4074 * because it is very likely that the caller has a more reasonable
4075 * fallback than shooting a random task.
cfb4a541
MN
4076 *
4077 * The OOM killer may not free memory on a specific node.
dcda9b04 4078 */
cfb4a541 4079 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4080 goto out;
06ad276a 4081 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4082 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4083 goto out;
4084 if (pm_suspended_storage())
4085 goto out;
4086 /*
4087 * XXX: GFP_NOFS allocations should rather fail than rely on
4088 * other request to make a forward progress.
4089 * We are in an unfortunate situation where out_of_memory cannot
4090 * do much for this context but let's try it to at least get
4091 * access to memory reserved if the current task is killed (see
4092 * out_of_memory). Once filesystems are ready to handle allocation
4093 * failures more gracefully we should just bail out here.
4094 */
4095
3c2c6488 4096 /* Exhausted what can be done so it's blame time */
5020e285 4097 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4098 *did_some_progress = 1;
5020e285 4099
6c18ba7a
MH
4100 /*
4101 * Help non-failing allocations by giving them access to memory
4102 * reserves
4103 */
4104 if (gfp_mask & __GFP_NOFAIL)
4105 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4106 ALLOC_NO_WATERMARKS, ac);
5020e285 4107 }
11e33f6a 4108out:
dc56401f 4109 mutex_unlock(&oom_lock);
11e33f6a
MG
4110 return page;
4111}
4112
33c2d214
MH
4113/*
4114 * Maximum number of compaction retries wit a progress before OOM
4115 * killer is consider as the only way to move forward.
4116 */
4117#define MAX_COMPACT_RETRIES 16
4118
56de7263
MG
4119#ifdef CONFIG_COMPACTION
4120/* Try memory compaction for high-order allocations before reclaim */
4121static struct page *
4122__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4123 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4124 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4125{
5e1f0f09 4126 struct page *page = NULL;
eb414681 4127 unsigned long pflags;
499118e9 4128 unsigned int noreclaim_flag;
53853e2d
VB
4129
4130 if (!order)
66199712 4131 return NULL;
66199712 4132
eb414681 4133 psi_memstall_enter(&pflags);
499118e9 4134 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4135
c5d01d0d 4136 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4137 prio, &page);
eb414681 4138
499118e9 4139 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4140 psi_memstall_leave(&pflags);
56de7263 4141
98dd3b48
VB
4142 /*
4143 * At least in one zone compaction wasn't deferred or skipped, so let's
4144 * count a compaction stall
4145 */
4146 count_vm_event(COMPACTSTALL);
8fb74b9f 4147
5e1f0f09
MG
4148 /* Prep a captured page if available */
4149 if (page)
4150 prep_new_page(page, order, gfp_mask, alloc_flags);
4151
4152 /* Try get a page from the freelist if available */
4153 if (!page)
4154 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4155
98dd3b48
VB
4156 if (page) {
4157 struct zone *zone = page_zone(page);
53853e2d 4158
98dd3b48
VB
4159 zone->compact_blockskip_flush = false;
4160 compaction_defer_reset(zone, order, true);
4161 count_vm_event(COMPACTSUCCESS);
4162 return page;
4163 }
56de7263 4164
98dd3b48
VB
4165 /*
4166 * It's bad if compaction run occurs and fails. The most likely reason
4167 * is that pages exist, but not enough to satisfy watermarks.
4168 */
4169 count_vm_event(COMPACTFAIL);
66199712 4170
98dd3b48 4171 cond_resched();
56de7263
MG
4172
4173 return NULL;
4174}
33c2d214 4175
3250845d
VB
4176static inline bool
4177should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4178 enum compact_result compact_result,
4179 enum compact_priority *compact_priority,
d9436498 4180 int *compaction_retries)
3250845d
VB
4181{
4182 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4183 int min_priority;
65190cff
MH
4184 bool ret = false;
4185 int retries = *compaction_retries;
4186 enum compact_priority priority = *compact_priority;
3250845d
VB
4187
4188 if (!order)
4189 return false;
4190
d9436498
VB
4191 if (compaction_made_progress(compact_result))
4192 (*compaction_retries)++;
4193
3250845d
VB
4194 /*
4195 * compaction considers all the zone as desperately out of memory
4196 * so it doesn't really make much sense to retry except when the
4197 * failure could be caused by insufficient priority
4198 */
d9436498
VB
4199 if (compaction_failed(compact_result))
4200 goto check_priority;
3250845d 4201
49433085
VB
4202 /*
4203 * compaction was skipped because there are not enough order-0 pages
4204 * to work with, so we retry only if it looks like reclaim can help.
4205 */
4206 if (compaction_needs_reclaim(compact_result)) {
4207 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4208 goto out;
4209 }
4210
3250845d
VB
4211 /*
4212 * make sure the compaction wasn't deferred or didn't bail out early
4213 * due to locks contention before we declare that we should give up.
49433085
VB
4214 * But the next retry should use a higher priority if allowed, so
4215 * we don't just keep bailing out endlessly.
3250845d 4216 */
65190cff 4217 if (compaction_withdrawn(compact_result)) {
49433085 4218 goto check_priority;
65190cff 4219 }
3250845d
VB
4220
4221 /*
dcda9b04 4222 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4223 * costly ones because they are de facto nofail and invoke OOM
4224 * killer to move on while costly can fail and users are ready
4225 * to cope with that. 1/4 retries is rather arbitrary but we
4226 * would need much more detailed feedback from compaction to
4227 * make a better decision.
4228 */
4229 if (order > PAGE_ALLOC_COSTLY_ORDER)
4230 max_retries /= 4;
65190cff
MH
4231 if (*compaction_retries <= max_retries) {
4232 ret = true;
4233 goto out;
4234 }
3250845d 4235
d9436498
VB
4236 /*
4237 * Make sure there are attempts at the highest priority if we exhausted
4238 * all retries or failed at the lower priorities.
4239 */
4240check_priority:
c2033b00
VB
4241 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4242 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4243
c2033b00 4244 if (*compact_priority > min_priority) {
d9436498
VB
4245 (*compact_priority)--;
4246 *compaction_retries = 0;
65190cff 4247 ret = true;
d9436498 4248 }
65190cff
MH
4249out:
4250 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4251 return ret;
3250845d 4252}
56de7263
MG
4253#else
4254static inline struct page *
4255__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4256 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4257 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4258{
33c2d214 4259 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4260 return NULL;
4261}
33c2d214
MH
4262
4263static inline bool
86a294a8
MH
4264should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4265 enum compact_result compact_result,
a5508cd8 4266 enum compact_priority *compact_priority,
d9436498 4267 int *compaction_retries)
33c2d214 4268{
31e49bfd
MH
4269 struct zone *zone;
4270 struct zoneref *z;
4271
4272 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4273 return false;
4274
4275 /*
4276 * There are setups with compaction disabled which would prefer to loop
4277 * inside the allocator rather than hit the oom killer prematurely.
4278 * Let's give them a good hope and keep retrying while the order-0
4279 * watermarks are OK.
4280 */
97a225e6
JK
4281 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4282 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4283 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4284 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4285 return true;
4286 }
33c2d214
MH
4287 return false;
4288}
3250845d 4289#endif /* CONFIG_COMPACTION */
56de7263 4290
d92a8cfc 4291#ifdef CONFIG_LOCKDEP
93781325 4292static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4293 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4294
f920e413 4295static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4296{
d92a8cfc
PZ
4297 /* no reclaim without waiting on it */
4298 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4299 return false;
4300
4301 /* this guy won't enter reclaim */
2e517d68 4302 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4303 return false;
4304
d92a8cfc
PZ
4305 if (gfp_mask & __GFP_NOLOCKDEP)
4306 return false;
4307
4308 return true;
4309}
4310
93781325
OS
4311void __fs_reclaim_acquire(void)
4312{
4313 lock_map_acquire(&__fs_reclaim_map);
4314}
4315
4316void __fs_reclaim_release(void)
4317{
4318 lock_map_release(&__fs_reclaim_map);
4319}
4320
d92a8cfc
PZ
4321void fs_reclaim_acquire(gfp_t gfp_mask)
4322{
f920e413
DV
4323 gfp_mask = current_gfp_context(gfp_mask);
4324
4325 if (__need_reclaim(gfp_mask)) {
4326 if (gfp_mask & __GFP_FS)
4327 __fs_reclaim_acquire();
4328
4329#ifdef CONFIG_MMU_NOTIFIER
4330 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4331 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4332#endif
4333
4334 }
d92a8cfc
PZ
4335}
4336EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4337
4338void fs_reclaim_release(gfp_t gfp_mask)
4339{
f920e413
DV
4340 gfp_mask = current_gfp_context(gfp_mask);
4341
4342 if (__need_reclaim(gfp_mask)) {
4343 if (gfp_mask & __GFP_FS)
4344 __fs_reclaim_release();
4345 }
d92a8cfc
PZ
4346}
4347EXPORT_SYMBOL_GPL(fs_reclaim_release);
4348#endif
4349
bba90710 4350/* Perform direct synchronous page reclaim */
2187e17b 4351static unsigned long
a9263751
VB
4352__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4353 const struct alloc_context *ac)
11e33f6a 4354{
499118e9 4355 unsigned int noreclaim_flag;
2187e17b 4356 unsigned long pflags, progress;
11e33f6a
MG
4357
4358 cond_resched();
4359
4360 /* We now go into synchronous reclaim */
4361 cpuset_memory_pressure_bump();
eb414681 4362 psi_memstall_enter(&pflags);
d92a8cfc 4363 fs_reclaim_acquire(gfp_mask);
93781325 4364 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4365
a9263751
VB
4366 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4367 ac->nodemask);
11e33f6a 4368
499118e9 4369 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4370 fs_reclaim_release(gfp_mask);
eb414681 4371 psi_memstall_leave(&pflags);
11e33f6a
MG
4372
4373 cond_resched();
4374
bba90710
MS
4375 return progress;
4376}
4377
4378/* The really slow allocator path where we enter direct reclaim */
4379static inline struct page *
4380__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4381 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4382 unsigned long *did_some_progress)
bba90710
MS
4383{
4384 struct page *page = NULL;
4385 bool drained = false;
4386
a9263751 4387 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4388 if (unlikely(!(*did_some_progress)))
4389 return NULL;
11e33f6a 4390
9ee493ce 4391retry:
31a6c190 4392 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4393
4394 /*
4395 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4396 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4397 * Shrink them and try again
9ee493ce
MG
4398 */
4399 if (!page && !drained) {
29fac03b 4400 unreserve_highatomic_pageblock(ac, false);
93481ff0 4401 drain_all_pages(NULL);
9ee493ce
MG
4402 drained = true;
4403 goto retry;
4404 }
4405
11e33f6a
MG
4406 return page;
4407}
4408
5ecd9d40
DR
4409static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4410 const struct alloc_context *ac)
3a025760
JW
4411{
4412 struct zoneref *z;
4413 struct zone *zone;
e1a55637 4414 pg_data_t *last_pgdat = NULL;
97a225e6 4415 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4416
97a225e6 4417 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4418 ac->nodemask) {
e1a55637 4419 if (last_pgdat != zone->zone_pgdat)
97a225e6 4420 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4421 last_pgdat = zone->zone_pgdat;
4422 }
3a025760
JW
4423}
4424
c603844b 4425static inline unsigned int
341ce06f
PZ
4426gfp_to_alloc_flags(gfp_t gfp_mask)
4427{
c603844b 4428 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4429
736838e9
MN
4430 /*
4431 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4432 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4433 * to save two branches.
4434 */
e6223a3b 4435 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4436 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4437
341ce06f
PZ
4438 /*
4439 * The caller may dip into page reserves a bit more if the caller
4440 * cannot run direct reclaim, or if the caller has realtime scheduling
4441 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4442 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4443 */
736838e9
MN
4444 alloc_flags |= (__force int)
4445 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4446
d0164adc 4447 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4448 /*
b104a35d
DR
4449 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4450 * if it can't schedule.
5c3240d9 4451 */
b104a35d 4452 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4453 alloc_flags |= ALLOC_HARDER;
523b9458 4454 /*
b104a35d 4455 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4456 * comment for __cpuset_node_allowed().
523b9458 4457 */
341ce06f 4458 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4459 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4460 alloc_flags |= ALLOC_HARDER;
4461
8510e69c
JK
4462 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4463
341ce06f
PZ
4464 return alloc_flags;
4465}
4466
cd04ae1e 4467static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4468{
cd04ae1e
MH
4469 if (!tsk_is_oom_victim(tsk))
4470 return false;
4471
4472 /*
4473 * !MMU doesn't have oom reaper so give access to memory reserves
4474 * only to the thread with TIF_MEMDIE set
4475 */
4476 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4477 return false;
4478
cd04ae1e
MH
4479 return true;
4480}
4481
4482/*
4483 * Distinguish requests which really need access to full memory
4484 * reserves from oom victims which can live with a portion of it
4485 */
4486static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4487{
4488 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4489 return 0;
31a6c190 4490 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4491 return ALLOC_NO_WATERMARKS;
31a6c190 4492 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4493 return ALLOC_NO_WATERMARKS;
4494 if (!in_interrupt()) {
4495 if (current->flags & PF_MEMALLOC)
4496 return ALLOC_NO_WATERMARKS;
4497 else if (oom_reserves_allowed(current))
4498 return ALLOC_OOM;
4499 }
31a6c190 4500
cd04ae1e
MH
4501 return 0;
4502}
4503
4504bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4505{
4506 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4507}
4508
0a0337e0
MH
4509/*
4510 * Checks whether it makes sense to retry the reclaim to make a forward progress
4511 * for the given allocation request.
491d79ae
JW
4512 *
4513 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4514 * without success, or when we couldn't even meet the watermark if we
4515 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4516 *
4517 * Returns true if a retry is viable or false to enter the oom path.
4518 */
4519static inline bool
4520should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4521 struct alloc_context *ac, int alloc_flags,
423b452e 4522 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4523{
4524 struct zone *zone;
4525 struct zoneref *z;
15f570bf 4526 bool ret = false;
0a0337e0 4527
423b452e
VB
4528 /*
4529 * Costly allocations might have made a progress but this doesn't mean
4530 * their order will become available due to high fragmentation so
4531 * always increment the no progress counter for them
4532 */
4533 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4534 *no_progress_loops = 0;
4535 else
4536 (*no_progress_loops)++;
4537
0a0337e0
MH
4538 /*
4539 * Make sure we converge to OOM if we cannot make any progress
4540 * several times in the row.
4541 */
04c8716f
MK
4542 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4543 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4544 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4545 }
0a0337e0 4546
bca67592
MG
4547 /*
4548 * Keep reclaiming pages while there is a chance this will lead
4549 * somewhere. If none of the target zones can satisfy our allocation
4550 * request even if all reclaimable pages are considered then we are
4551 * screwed and have to go OOM.
0a0337e0 4552 */
97a225e6
JK
4553 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4554 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4555 unsigned long available;
ede37713 4556 unsigned long reclaimable;
d379f01d
MH
4557 unsigned long min_wmark = min_wmark_pages(zone);
4558 bool wmark;
0a0337e0 4559
5a1c84b4 4560 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4561 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4562
4563 /*
491d79ae
JW
4564 * Would the allocation succeed if we reclaimed all
4565 * reclaimable pages?
0a0337e0 4566 */
d379f01d 4567 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4568 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4569 trace_reclaim_retry_zone(z, order, reclaimable,
4570 available, min_wmark, *no_progress_loops, wmark);
4571 if (wmark) {
ede37713
MH
4572 /*
4573 * If we didn't make any progress and have a lot of
4574 * dirty + writeback pages then we should wait for
4575 * an IO to complete to slow down the reclaim and
4576 * prevent from pre mature OOM
4577 */
4578 if (!did_some_progress) {
11fb9989 4579 unsigned long write_pending;
ede37713 4580
5a1c84b4
MG
4581 write_pending = zone_page_state_snapshot(zone,
4582 NR_ZONE_WRITE_PENDING);
ede37713 4583
11fb9989 4584 if (2 * write_pending > reclaimable) {
ede37713
MH
4585 congestion_wait(BLK_RW_ASYNC, HZ/10);
4586 return true;
4587 }
4588 }
5a1c84b4 4589
15f570bf
MH
4590 ret = true;
4591 goto out;
0a0337e0
MH
4592 }
4593 }
4594
15f570bf
MH
4595out:
4596 /*
4597 * Memory allocation/reclaim might be called from a WQ context and the
4598 * current implementation of the WQ concurrency control doesn't
4599 * recognize that a particular WQ is congested if the worker thread is
4600 * looping without ever sleeping. Therefore we have to do a short sleep
4601 * here rather than calling cond_resched().
4602 */
4603 if (current->flags & PF_WQ_WORKER)
4604 schedule_timeout_uninterruptible(1);
4605 else
4606 cond_resched();
4607 return ret;
0a0337e0
MH
4608}
4609
902b6281
VB
4610static inline bool
4611check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4612{
4613 /*
4614 * It's possible that cpuset's mems_allowed and the nodemask from
4615 * mempolicy don't intersect. This should be normally dealt with by
4616 * policy_nodemask(), but it's possible to race with cpuset update in
4617 * such a way the check therein was true, and then it became false
4618 * before we got our cpuset_mems_cookie here.
4619 * This assumes that for all allocations, ac->nodemask can come only
4620 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4621 * when it does not intersect with the cpuset restrictions) or the
4622 * caller can deal with a violated nodemask.
4623 */
4624 if (cpusets_enabled() && ac->nodemask &&
4625 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4626 ac->nodemask = NULL;
4627 return true;
4628 }
4629
4630 /*
4631 * When updating a task's mems_allowed or mempolicy nodemask, it is
4632 * possible to race with parallel threads in such a way that our
4633 * allocation can fail while the mask is being updated. If we are about
4634 * to fail, check if the cpuset changed during allocation and if so,
4635 * retry.
4636 */
4637 if (read_mems_allowed_retry(cpuset_mems_cookie))
4638 return true;
4639
4640 return false;
4641}
4642
11e33f6a
MG
4643static inline struct page *
4644__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4645 struct alloc_context *ac)
11e33f6a 4646{
d0164adc 4647 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4648 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4649 struct page *page = NULL;
c603844b 4650 unsigned int alloc_flags;
11e33f6a 4651 unsigned long did_some_progress;
5ce9bfef 4652 enum compact_priority compact_priority;
c5d01d0d 4653 enum compact_result compact_result;
5ce9bfef
VB
4654 int compaction_retries;
4655 int no_progress_loops;
5ce9bfef 4656 unsigned int cpuset_mems_cookie;
cd04ae1e 4657 int reserve_flags;
1da177e4 4658
d0164adc
MG
4659 /*
4660 * We also sanity check to catch abuse of atomic reserves being used by
4661 * callers that are not in atomic context.
4662 */
4663 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4664 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4665 gfp_mask &= ~__GFP_ATOMIC;
4666
5ce9bfef
VB
4667retry_cpuset:
4668 compaction_retries = 0;
4669 no_progress_loops = 0;
4670 compact_priority = DEF_COMPACT_PRIORITY;
4671 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4672
4673 /*
4674 * The fast path uses conservative alloc_flags to succeed only until
4675 * kswapd needs to be woken up, and to avoid the cost of setting up
4676 * alloc_flags precisely. So we do that now.
4677 */
4678 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4679
e47483bc
VB
4680 /*
4681 * We need to recalculate the starting point for the zonelist iterator
4682 * because we might have used different nodemask in the fast path, or
4683 * there was a cpuset modification and we are retrying - otherwise we
4684 * could end up iterating over non-eligible zones endlessly.
4685 */
4686 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4687 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4688 if (!ac->preferred_zoneref->zone)
4689 goto nopage;
4690
0a79cdad 4691 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4692 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4693
4694 /*
4695 * The adjusted alloc_flags might result in immediate success, so try
4696 * that first
4697 */
4698 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4699 if (page)
4700 goto got_pg;
4701
a8161d1e
VB
4702 /*
4703 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4704 * that we have enough base pages and don't need to reclaim. For non-
4705 * movable high-order allocations, do that as well, as compaction will
4706 * try prevent permanent fragmentation by migrating from blocks of the
4707 * same migratetype.
4708 * Don't try this for allocations that are allowed to ignore
4709 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4710 */
282722b0
VB
4711 if (can_direct_reclaim &&
4712 (costly_order ||
4713 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4714 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4715 page = __alloc_pages_direct_compact(gfp_mask, order,
4716 alloc_flags, ac,
a5508cd8 4717 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4718 &compact_result);
4719 if (page)
4720 goto got_pg;
4721
cc638f32
VB
4722 /*
4723 * Checks for costly allocations with __GFP_NORETRY, which
4724 * includes some THP page fault allocations
4725 */
4726 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4727 /*
4728 * If allocating entire pageblock(s) and compaction
4729 * failed because all zones are below low watermarks
4730 * or is prohibited because it recently failed at this
3f36d866
DR
4731 * order, fail immediately unless the allocator has
4732 * requested compaction and reclaim retry.
b39d0ee2
DR
4733 *
4734 * Reclaim is
4735 * - potentially very expensive because zones are far
4736 * below their low watermarks or this is part of very
4737 * bursty high order allocations,
4738 * - not guaranteed to help because isolate_freepages()
4739 * may not iterate over freed pages as part of its
4740 * linear scan, and
4741 * - unlikely to make entire pageblocks free on its
4742 * own.
4743 */
4744 if (compact_result == COMPACT_SKIPPED ||
4745 compact_result == COMPACT_DEFERRED)
4746 goto nopage;
a8161d1e 4747
a8161d1e 4748 /*
3eb2771b
VB
4749 * Looks like reclaim/compaction is worth trying, but
4750 * sync compaction could be very expensive, so keep
25160354 4751 * using async compaction.
a8161d1e 4752 */
a5508cd8 4753 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4754 }
4755 }
23771235 4756
31a6c190 4757retry:
23771235 4758 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4759 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4760 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4761
cd04ae1e
MH
4762 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4763 if (reserve_flags)
8510e69c 4764 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4765
e46e7b77 4766 /*
d6a24df0
VB
4767 * Reset the nodemask and zonelist iterators if memory policies can be
4768 * ignored. These allocations are high priority and system rather than
4769 * user oriented.
e46e7b77 4770 */
cd04ae1e 4771 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4772 ac->nodemask = NULL;
e46e7b77 4773 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4774 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4775 }
4776
23771235 4777 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4778 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4779 if (page)
4780 goto got_pg;
1da177e4 4781
d0164adc 4782 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4783 if (!can_direct_reclaim)
1da177e4
LT
4784 goto nopage;
4785
9a67f648
MH
4786 /* Avoid recursion of direct reclaim */
4787 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4788 goto nopage;
4789
a8161d1e
VB
4790 /* Try direct reclaim and then allocating */
4791 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4792 &did_some_progress);
4793 if (page)
4794 goto got_pg;
4795
4796 /* Try direct compaction and then allocating */
a9263751 4797 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4798 compact_priority, &compact_result);
56de7263
MG
4799 if (page)
4800 goto got_pg;
75f30861 4801
9083905a
JW
4802 /* Do not loop if specifically requested */
4803 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4804 goto nopage;
9083905a 4805
0a0337e0
MH
4806 /*
4807 * Do not retry costly high order allocations unless they are
dcda9b04 4808 * __GFP_RETRY_MAYFAIL
0a0337e0 4809 */
dcda9b04 4810 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4811 goto nopage;
0a0337e0 4812
0a0337e0 4813 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4814 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4815 goto retry;
4816
33c2d214
MH
4817 /*
4818 * It doesn't make any sense to retry for the compaction if the order-0
4819 * reclaim is not able to make any progress because the current
4820 * implementation of the compaction depends on the sufficient amount
4821 * of free memory (see __compaction_suitable)
4822 */
4823 if (did_some_progress > 0 &&
86a294a8 4824 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4825 compact_result, &compact_priority,
d9436498 4826 &compaction_retries))
33c2d214
MH
4827 goto retry;
4828
902b6281
VB
4829
4830 /* Deal with possible cpuset update races before we start OOM killing */
4831 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4832 goto retry_cpuset;
4833
9083905a
JW
4834 /* Reclaim has failed us, start killing things */
4835 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4836 if (page)
4837 goto got_pg;
4838
9a67f648 4839 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4840 if (tsk_is_oom_victim(current) &&
8510e69c 4841 (alloc_flags & ALLOC_OOM ||
c288983d 4842 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4843 goto nopage;
4844
9083905a 4845 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4846 if (did_some_progress) {
4847 no_progress_loops = 0;
9083905a 4848 goto retry;
0a0337e0 4849 }
9083905a 4850
1da177e4 4851nopage:
902b6281
VB
4852 /* Deal with possible cpuset update races before we fail */
4853 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4854 goto retry_cpuset;
4855
9a67f648
MH
4856 /*
4857 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4858 * we always retry
4859 */
4860 if (gfp_mask & __GFP_NOFAIL) {
4861 /*
4862 * All existing users of the __GFP_NOFAIL are blockable, so warn
4863 * of any new users that actually require GFP_NOWAIT
4864 */
4865 if (WARN_ON_ONCE(!can_direct_reclaim))
4866 goto fail;
4867
4868 /*
4869 * PF_MEMALLOC request from this context is rather bizarre
4870 * because we cannot reclaim anything and only can loop waiting
4871 * for somebody to do a work for us
4872 */
4873 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4874
4875 /*
4876 * non failing costly orders are a hard requirement which we
4877 * are not prepared for much so let's warn about these users
4878 * so that we can identify them and convert them to something
4879 * else.
4880 */
4881 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4882
6c18ba7a
MH
4883 /*
4884 * Help non-failing allocations by giving them access to memory
4885 * reserves but do not use ALLOC_NO_WATERMARKS because this
4886 * could deplete whole memory reserves which would just make
4887 * the situation worse
4888 */
4889 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4890 if (page)
4891 goto got_pg;
4892
9a67f648
MH
4893 cond_resched();
4894 goto retry;
4895 }
4896fail:
a8e99259 4897 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4898 "page allocation failure: order:%u", order);
1da177e4 4899got_pg:
072bb0aa 4900 return page;
1da177e4 4901}
11e33f6a 4902
9cd75558 4903static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4904 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4905 struct alloc_context *ac, gfp_t *alloc_mask,
4906 unsigned int *alloc_flags)
11e33f6a 4907{
97a225e6 4908 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4909 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4910 ac->nodemask = nodemask;
01c0bfe0 4911 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4912
682a3385 4913 if (cpusets_enabled()) {
9cd75558 4914 *alloc_mask |= __GFP_HARDWALL;
182f3d7a
MS
4915 /*
4916 * When we are in the interrupt context, it is irrelevant
4917 * to the current task context. It means that any node ok.
4918 */
4919 if (!in_interrupt() && !ac->nodemask)
9cd75558 4920 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4921 else
4922 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4923 }
4924
d92a8cfc
PZ
4925 fs_reclaim_acquire(gfp_mask);
4926 fs_reclaim_release(gfp_mask);
11e33f6a 4927
d0164adc 4928 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4929
4930 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4931 return false;
11e33f6a 4932
8510e69c 4933 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 4934
c9ab0c4f 4935 /* Dirty zone balancing only done in the fast path */
9cd75558 4936 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4937
e46e7b77
MG
4938 /*
4939 * The preferred zone is used for statistics but crucially it is
4940 * also used as the starting point for the zonelist iterator. It
4941 * may get reset for allocations that ignore memory policies.
4942 */
9cd75558 4943 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4944 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4945
4946 return true;
9cd75558
MG
4947}
4948
4949/*
4950 * This is the 'heart' of the zoned buddy allocator.
4951 */
4952struct page *
04ec6264
VB
4953__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4954 nodemask_t *nodemask)
9cd75558
MG
4955{
4956 struct page *page;
4957 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4958 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4959 struct alloc_context ac = { };
4960
c63ae43b
MH
4961 /*
4962 * There are several places where we assume that the order value is sane
4963 * so bail out early if the request is out of bound.
4964 */
4965 if (unlikely(order >= MAX_ORDER)) {
4966 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4967 return NULL;
4968 }
4969
9cd75558 4970 gfp_mask &= gfp_allowed_mask;
f19360f0 4971 alloc_mask = gfp_mask;
04ec6264 4972 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4973 return NULL;
4974
6bb15450
MG
4975 /*
4976 * Forbid the first pass from falling back to types that fragment
4977 * memory until all local zones are considered.
4978 */
0a79cdad 4979 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4980
5117f45d 4981 /* First allocation attempt */
a9263751 4982 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4983 if (likely(page))
4984 goto out;
11e33f6a 4985
4fcb0971 4986 /*
7dea19f9
MH
4987 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4988 * resp. GFP_NOIO which has to be inherited for all allocation requests
4989 * from a particular context which has been marked by
4990 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4991 */
7dea19f9 4992 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4993 ac.spread_dirty_pages = false;
23f086f9 4994
4741526b
MG
4995 /*
4996 * Restore the original nodemask if it was potentially replaced with
4997 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4998 */
97ce86f9 4999 ac.nodemask = nodemask;
16096c25 5000
4fcb0971 5001 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 5002
4fcb0971 5003out:
c4159a75 5004 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 5005 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
5006 __free_pages(page, order);
5007 page = NULL;
4949148a
VD
5008 }
5009
4fcb0971
MG
5010 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5011
11e33f6a 5012 return page;
1da177e4 5013}
d239171e 5014EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
5015
5016/*
9ea9a680
MH
5017 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5018 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5019 * you need to access high mem.
1da177e4 5020 */
920c7a5d 5021unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5022{
945a1113
AM
5023 struct page *page;
5024
9ea9a680 5025 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5026 if (!page)
5027 return 0;
5028 return (unsigned long) page_address(page);
5029}
1da177e4
LT
5030EXPORT_SYMBOL(__get_free_pages);
5031
920c7a5d 5032unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5033{
945a1113 5034 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5035}
1da177e4
LT
5036EXPORT_SYMBOL(get_zeroed_page);
5037
742aa7fb 5038static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5039{
742aa7fb
AL
5040 if (order == 0) /* Via pcp? */
5041 free_unref_page(page);
5042 else
7fef431b 5043 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5044}
5045
7f194fbb
MWO
5046/**
5047 * __free_pages - Free pages allocated with alloc_pages().
5048 * @page: The page pointer returned from alloc_pages().
5049 * @order: The order of the allocation.
5050 *
5051 * This function can free multi-page allocations that are not compound
5052 * pages. It does not check that the @order passed in matches that of
5053 * the allocation, so it is easy to leak memory. Freeing more memory
5054 * than was allocated will probably emit a warning.
5055 *
5056 * If the last reference to this page is speculative, it will be released
5057 * by put_page() which only frees the first page of a non-compound
5058 * allocation. To prevent the remaining pages from being leaked, we free
5059 * the subsequent pages here. If you want to use the page's reference
5060 * count to decide when to free the allocation, you should allocate a
5061 * compound page, and use put_page() instead of __free_pages().
5062 *
5063 * Context: May be called in interrupt context or while holding a normal
5064 * spinlock, but not in NMI context or while holding a raw spinlock.
5065 */
742aa7fb
AL
5066void __free_pages(struct page *page, unsigned int order)
5067{
5068 if (put_page_testzero(page))
5069 free_the_page(page, order);
e320d301
MWO
5070 else if (!PageHead(page))
5071 while (order-- > 0)
5072 free_the_page(page + (1 << order), order);
742aa7fb 5073}
1da177e4
LT
5074EXPORT_SYMBOL(__free_pages);
5075
920c7a5d 5076void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5077{
5078 if (addr != 0) {
725d704e 5079 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5080 __free_pages(virt_to_page((void *)addr), order);
5081 }
5082}
5083
5084EXPORT_SYMBOL(free_pages);
5085
b63ae8ca
AD
5086/*
5087 * Page Fragment:
5088 * An arbitrary-length arbitrary-offset area of memory which resides
5089 * within a 0 or higher order page. Multiple fragments within that page
5090 * are individually refcounted, in the page's reference counter.
5091 *
5092 * The page_frag functions below provide a simple allocation framework for
5093 * page fragments. This is used by the network stack and network device
5094 * drivers to provide a backing region of memory for use as either an
5095 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5096 */
2976db80
AD
5097static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5098 gfp_t gfp_mask)
b63ae8ca
AD
5099{
5100 struct page *page = NULL;
5101 gfp_t gfp = gfp_mask;
5102
5103#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5104 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5105 __GFP_NOMEMALLOC;
5106 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5107 PAGE_FRAG_CACHE_MAX_ORDER);
5108 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5109#endif
5110 if (unlikely(!page))
5111 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5112
5113 nc->va = page ? page_address(page) : NULL;
5114
5115 return page;
5116}
5117
2976db80 5118void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5119{
5120 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5121
742aa7fb
AL
5122 if (page_ref_sub_and_test(page, count))
5123 free_the_page(page, compound_order(page));
44fdffd7 5124}
2976db80 5125EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5126
8c2dd3e4
AD
5127void *page_frag_alloc(struct page_frag_cache *nc,
5128 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
5129{
5130 unsigned int size = PAGE_SIZE;
5131 struct page *page;
5132 int offset;
5133
5134 if (unlikely(!nc->va)) {
5135refill:
2976db80 5136 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5137 if (!page)
5138 return NULL;
5139
5140#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5141 /* if size can vary use size else just use PAGE_SIZE */
5142 size = nc->size;
5143#endif
5144 /* Even if we own the page, we do not use atomic_set().
5145 * This would break get_page_unless_zero() users.
5146 */
86447726 5147 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5148
5149 /* reset page count bias and offset to start of new frag */
2f064f34 5150 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5151 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5152 nc->offset = size;
5153 }
5154
5155 offset = nc->offset - fragsz;
5156 if (unlikely(offset < 0)) {
5157 page = virt_to_page(nc->va);
5158
fe896d18 5159 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5160 goto refill;
5161
d8c19014
DZ
5162 if (unlikely(nc->pfmemalloc)) {
5163 free_the_page(page, compound_order(page));
5164 goto refill;
5165 }
5166
b63ae8ca
AD
5167#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5168 /* if size can vary use size else just use PAGE_SIZE */
5169 size = nc->size;
5170#endif
5171 /* OK, page count is 0, we can safely set it */
86447726 5172 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5173
5174 /* reset page count bias and offset to start of new frag */
86447726 5175 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5176 offset = size - fragsz;
5177 }
5178
5179 nc->pagecnt_bias--;
5180 nc->offset = offset;
5181
5182 return nc->va + offset;
5183}
8c2dd3e4 5184EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
5185
5186/*
5187 * Frees a page fragment allocated out of either a compound or order 0 page.
5188 */
8c2dd3e4 5189void page_frag_free(void *addr)
b63ae8ca
AD
5190{
5191 struct page *page = virt_to_head_page(addr);
5192
742aa7fb
AL
5193 if (unlikely(put_page_testzero(page)))
5194 free_the_page(page, compound_order(page));
b63ae8ca 5195}
8c2dd3e4 5196EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5197
d00181b9
KS
5198static void *make_alloc_exact(unsigned long addr, unsigned int order,
5199 size_t size)
ee85c2e1
AK
5200{
5201 if (addr) {
5202 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5203 unsigned long used = addr + PAGE_ALIGN(size);
5204
5205 split_page(virt_to_page((void *)addr), order);
5206 while (used < alloc_end) {
5207 free_page(used);
5208 used += PAGE_SIZE;
5209 }
5210 }
5211 return (void *)addr;
5212}
5213
2be0ffe2
TT
5214/**
5215 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5216 * @size: the number of bytes to allocate
63931eb9 5217 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5218 *
5219 * This function is similar to alloc_pages(), except that it allocates the
5220 * minimum number of pages to satisfy the request. alloc_pages() can only
5221 * allocate memory in power-of-two pages.
5222 *
5223 * This function is also limited by MAX_ORDER.
5224 *
5225 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5226 *
5227 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5228 */
5229void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5230{
5231 unsigned int order = get_order(size);
5232 unsigned long addr;
5233
63931eb9
VB
5234 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5235 gfp_mask &= ~__GFP_COMP;
5236
2be0ffe2 5237 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5238 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5239}
5240EXPORT_SYMBOL(alloc_pages_exact);
5241
ee85c2e1
AK
5242/**
5243 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5244 * pages on a node.
b5e6ab58 5245 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5246 * @size: the number of bytes to allocate
63931eb9 5247 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5248 *
5249 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5250 * back.
a862f68a
MR
5251 *
5252 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5253 */
e1931811 5254void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5255{
d00181b9 5256 unsigned int order = get_order(size);
63931eb9
VB
5257 struct page *p;
5258
5259 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5260 gfp_mask &= ~__GFP_COMP;
5261
5262 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5263 if (!p)
5264 return NULL;
5265 return make_alloc_exact((unsigned long)page_address(p), order, size);
5266}
ee85c2e1 5267
2be0ffe2
TT
5268/**
5269 * free_pages_exact - release memory allocated via alloc_pages_exact()
5270 * @virt: the value returned by alloc_pages_exact.
5271 * @size: size of allocation, same value as passed to alloc_pages_exact().
5272 *
5273 * Release the memory allocated by a previous call to alloc_pages_exact.
5274 */
5275void free_pages_exact(void *virt, size_t size)
5276{
5277 unsigned long addr = (unsigned long)virt;
5278 unsigned long end = addr + PAGE_ALIGN(size);
5279
5280 while (addr < end) {
5281 free_page(addr);
5282 addr += PAGE_SIZE;
5283 }
5284}
5285EXPORT_SYMBOL(free_pages_exact);
5286
e0fb5815
ZY
5287/**
5288 * nr_free_zone_pages - count number of pages beyond high watermark
5289 * @offset: The zone index of the highest zone
5290 *
a862f68a 5291 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5292 * high watermark within all zones at or below a given zone index. For each
5293 * zone, the number of pages is calculated as:
0e056eb5 5294 *
5295 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5296 *
5297 * Return: number of pages beyond high watermark.
e0fb5815 5298 */
ebec3862 5299static unsigned long nr_free_zone_pages(int offset)
1da177e4 5300{
dd1a239f 5301 struct zoneref *z;
54a6eb5c
MG
5302 struct zone *zone;
5303
e310fd43 5304 /* Just pick one node, since fallback list is circular */
ebec3862 5305 unsigned long sum = 0;
1da177e4 5306
0e88460d 5307 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5308
54a6eb5c 5309 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5310 unsigned long size = zone_managed_pages(zone);
41858966 5311 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5312 if (size > high)
5313 sum += size - high;
1da177e4
LT
5314 }
5315
5316 return sum;
5317}
5318
e0fb5815
ZY
5319/**
5320 * nr_free_buffer_pages - count number of pages beyond high watermark
5321 *
5322 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5323 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5324 *
5325 * Return: number of pages beyond high watermark within ZONE_DMA and
5326 * ZONE_NORMAL.
1da177e4 5327 */
ebec3862 5328unsigned long nr_free_buffer_pages(void)
1da177e4 5329{
af4ca457 5330 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5331}
c2f1a551 5332EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5333
08e0f6a9 5334static inline void show_node(struct zone *zone)
1da177e4 5335{
e5adfffc 5336 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5337 printk("Node %d ", zone_to_nid(zone));
1da177e4 5338}
1da177e4 5339
d02bd27b
IR
5340long si_mem_available(void)
5341{
5342 long available;
5343 unsigned long pagecache;
5344 unsigned long wmark_low = 0;
5345 unsigned long pages[NR_LRU_LISTS];
b29940c1 5346 unsigned long reclaimable;
d02bd27b
IR
5347 struct zone *zone;
5348 int lru;
5349
5350 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5351 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5352
5353 for_each_zone(zone)
a9214443 5354 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5355
5356 /*
5357 * Estimate the amount of memory available for userspace allocations,
5358 * without causing swapping.
5359 */
c41f012a 5360 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5361
5362 /*
5363 * Not all the page cache can be freed, otherwise the system will
5364 * start swapping. Assume at least half of the page cache, or the
5365 * low watermark worth of cache, needs to stay.
5366 */
5367 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5368 pagecache -= min(pagecache / 2, wmark_low);
5369 available += pagecache;
5370
5371 /*
b29940c1
VB
5372 * Part of the reclaimable slab and other kernel memory consists of
5373 * items that are in use, and cannot be freed. Cap this estimate at the
5374 * low watermark.
d02bd27b 5375 */
d42f3245
RG
5376 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5377 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5378 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5379
d02bd27b
IR
5380 if (available < 0)
5381 available = 0;
5382 return available;
5383}
5384EXPORT_SYMBOL_GPL(si_mem_available);
5385
1da177e4
LT
5386void si_meminfo(struct sysinfo *val)
5387{
ca79b0c2 5388 val->totalram = totalram_pages();
11fb9989 5389 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5390 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5391 val->bufferram = nr_blockdev_pages();
ca79b0c2 5392 val->totalhigh = totalhigh_pages();
1da177e4 5393 val->freehigh = nr_free_highpages();
1da177e4
LT
5394 val->mem_unit = PAGE_SIZE;
5395}
5396
5397EXPORT_SYMBOL(si_meminfo);
5398
5399#ifdef CONFIG_NUMA
5400void si_meminfo_node(struct sysinfo *val, int nid)
5401{
cdd91a77
JL
5402 int zone_type; /* needs to be signed */
5403 unsigned long managed_pages = 0;
fc2bd799
JK
5404 unsigned long managed_highpages = 0;
5405 unsigned long free_highpages = 0;
1da177e4
LT
5406 pg_data_t *pgdat = NODE_DATA(nid);
5407
cdd91a77 5408 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5409 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5410 val->totalram = managed_pages;
11fb9989 5411 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5412 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5413#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5414 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5415 struct zone *zone = &pgdat->node_zones[zone_type];
5416
5417 if (is_highmem(zone)) {
9705bea5 5418 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5419 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5420 }
5421 }
5422 val->totalhigh = managed_highpages;
5423 val->freehigh = free_highpages;
98d2b0eb 5424#else
fc2bd799
JK
5425 val->totalhigh = managed_highpages;
5426 val->freehigh = free_highpages;
98d2b0eb 5427#endif
1da177e4
LT
5428 val->mem_unit = PAGE_SIZE;
5429}
5430#endif
5431
ddd588b5 5432/*
7bf02ea2
DR
5433 * Determine whether the node should be displayed or not, depending on whether
5434 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5435 */
9af744d7 5436static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5437{
ddd588b5 5438 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5439 return false;
ddd588b5 5440
9af744d7
MH
5441 /*
5442 * no node mask - aka implicit memory numa policy. Do not bother with
5443 * the synchronization - read_mems_allowed_begin - because we do not
5444 * have to be precise here.
5445 */
5446 if (!nodemask)
5447 nodemask = &cpuset_current_mems_allowed;
5448
5449 return !node_isset(nid, *nodemask);
ddd588b5
DR
5450}
5451
1da177e4
LT
5452#define K(x) ((x) << (PAGE_SHIFT-10))
5453
377e4f16
RV
5454static void show_migration_types(unsigned char type)
5455{
5456 static const char types[MIGRATE_TYPES] = {
5457 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5458 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5459 [MIGRATE_RECLAIMABLE] = 'E',
5460 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5461#ifdef CONFIG_CMA
5462 [MIGRATE_CMA] = 'C',
5463#endif
194159fb 5464#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5465 [MIGRATE_ISOLATE] = 'I',
194159fb 5466#endif
377e4f16
RV
5467 };
5468 char tmp[MIGRATE_TYPES + 1];
5469 char *p = tmp;
5470 int i;
5471
5472 for (i = 0; i < MIGRATE_TYPES; i++) {
5473 if (type & (1 << i))
5474 *p++ = types[i];
5475 }
5476
5477 *p = '\0';
1f84a18f 5478 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5479}
5480
1da177e4
LT
5481/*
5482 * Show free area list (used inside shift_scroll-lock stuff)
5483 * We also calculate the percentage fragmentation. We do this by counting the
5484 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5485 *
5486 * Bits in @filter:
5487 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5488 * cpuset.
1da177e4 5489 */
9af744d7 5490void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5491{
d1bfcdb8 5492 unsigned long free_pcp = 0;
c7241913 5493 int cpu;
1da177e4 5494 struct zone *zone;
599d0c95 5495 pg_data_t *pgdat;
1da177e4 5496
ee99c71c 5497 for_each_populated_zone(zone) {
9af744d7 5498 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5499 continue;
d1bfcdb8 5500
761b0677
KK
5501 for_each_online_cpu(cpu)
5502 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5503 }
5504
a731286d
KM
5505 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5506 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5507 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5508 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5509 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5510 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5511 global_node_page_state(NR_ACTIVE_ANON),
5512 global_node_page_state(NR_INACTIVE_ANON),
5513 global_node_page_state(NR_ISOLATED_ANON),
5514 global_node_page_state(NR_ACTIVE_FILE),
5515 global_node_page_state(NR_INACTIVE_FILE),
5516 global_node_page_state(NR_ISOLATED_FILE),
5517 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5518 global_node_page_state(NR_FILE_DIRTY),
5519 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5520 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5521 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5522 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5523 global_node_page_state(NR_SHMEM),
f0c0c115 5524 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5525 global_zone_page_state(NR_BOUNCE),
5526 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5527 free_pcp,
c41f012a 5528 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5529
599d0c95 5530 for_each_online_pgdat(pgdat) {
9af744d7 5531 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5532 continue;
5533
599d0c95
MG
5534 printk("Node %d"
5535 " active_anon:%lukB"
5536 " inactive_anon:%lukB"
5537 " active_file:%lukB"
5538 " inactive_file:%lukB"
5539 " unevictable:%lukB"
5540 " isolated(anon):%lukB"
5541 " isolated(file):%lukB"
50658e2e 5542 " mapped:%lukB"
11fb9989
MG
5543 " dirty:%lukB"
5544 " writeback:%lukB"
5545 " shmem:%lukB"
5546#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5547 " shmem_thp: %lukB"
5548 " shmem_pmdmapped: %lukB"
5549 " anon_thp: %lukB"
5550#endif
5551 " writeback_tmp:%lukB"
991e7673
SB
5552 " kernel_stack:%lukB"
5553#ifdef CONFIG_SHADOW_CALL_STACK
5554 " shadow_call_stack:%lukB"
5555#endif
f0c0c115 5556 " pagetables:%lukB"
599d0c95
MG
5557 " all_unreclaimable? %s"
5558 "\n",
5559 pgdat->node_id,
5560 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5561 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5562 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5563 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5564 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5565 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5566 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5567 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5568 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5569 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5570 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5572 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5573 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5574 * HPAGE_PMD_NR),
5575 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5576#endif
11fb9989 5577 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5578 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5579#ifdef CONFIG_SHADOW_CALL_STACK
5580 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5581#endif
f0c0c115 5582 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5583 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5584 "yes" : "no");
599d0c95
MG
5585 }
5586
ee99c71c 5587 for_each_populated_zone(zone) {
1da177e4
LT
5588 int i;
5589
9af744d7 5590 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5591 continue;
d1bfcdb8
KK
5592
5593 free_pcp = 0;
5594 for_each_online_cpu(cpu)
5595 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5596
1da177e4 5597 show_node(zone);
1f84a18f
JP
5598 printk(KERN_CONT
5599 "%s"
1da177e4
LT
5600 " free:%lukB"
5601 " min:%lukB"
5602 " low:%lukB"
5603 " high:%lukB"
e47b346a 5604 " reserved_highatomic:%luKB"
71c799f4
MK
5605 " active_anon:%lukB"
5606 " inactive_anon:%lukB"
5607 " active_file:%lukB"
5608 " inactive_file:%lukB"
5609 " unevictable:%lukB"
5a1c84b4 5610 " writepending:%lukB"
1da177e4 5611 " present:%lukB"
9feedc9d 5612 " managed:%lukB"
4a0aa73f 5613 " mlocked:%lukB"
4a0aa73f 5614 " bounce:%lukB"
d1bfcdb8
KK
5615 " free_pcp:%lukB"
5616 " local_pcp:%ukB"
d1ce749a 5617 " free_cma:%lukB"
1da177e4
LT
5618 "\n",
5619 zone->name,
88f5acf8 5620 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5621 K(min_wmark_pages(zone)),
5622 K(low_wmark_pages(zone)),
5623 K(high_wmark_pages(zone)),
e47b346a 5624 K(zone->nr_reserved_highatomic),
71c799f4
MK
5625 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5626 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5627 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5628 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5629 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5630 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5631 K(zone->present_pages),
9705bea5 5632 K(zone_managed_pages(zone)),
4a0aa73f 5633 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5634 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5635 K(free_pcp),
5636 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5637 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5638 printk("lowmem_reserve[]:");
5639 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5640 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5641 printk(KERN_CONT "\n");
1da177e4
LT
5642 }
5643
ee99c71c 5644 for_each_populated_zone(zone) {
d00181b9
KS
5645 unsigned int order;
5646 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5647 unsigned char types[MAX_ORDER];
1da177e4 5648
9af744d7 5649 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5650 continue;
1da177e4 5651 show_node(zone);
1f84a18f 5652 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5653
5654 spin_lock_irqsave(&zone->lock, flags);
5655 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5656 struct free_area *area = &zone->free_area[order];
5657 int type;
5658
5659 nr[order] = area->nr_free;
8f9de51a 5660 total += nr[order] << order;
377e4f16
RV
5661
5662 types[order] = 0;
5663 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5664 if (!free_area_empty(area, type))
377e4f16
RV
5665 types[order] |= 1 << type;
5666 }
1da177e4
LT
5667 }
5668 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5669 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5670 printk(KERN_CONT "%lu*%lukB ",
5671 nr[order], K(1UL) << order);
377e4f16
RV
5672 if (nr[order])
5673 show_migration_types(types[order]);
5674 }
1f84a18f 5675 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5676 }
5677
949f7ec5
DR
5678 hugetlb_show_meminfo();
5679
11fb9989 5680 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5681
1da177e4
LT
5682 show_swap_cache_info();
5683}
5684
19770b32
MG
5685static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5686{
5687 zoneref->zone = zone;
5688 zoneref->zone_idx = zone_idx(zone);
5689}
5690
1da177e4
LT
5691/*
5692 * Builds allocation fallback zone lists.
1a93205b
CL
5693 *
5694 * Add all populated zones of a node to the zonelist.
1da177e4 5695 */
9d3be21b 5696static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5697{
1a93205b 5698 struct zone *zone;
bc732f1d 5699 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5700 int nr_zones = 0;
02a68a5e
CL
5701
5702 do {
2f6726e5 5703 zone_type--;
070f8032 5704 zone = pgdat->node_zones + zone_type;
6aa303de 5705 if (managed_zone(zone)) {
9d3be21b 5706 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5707 check_highest_zone(zone_type);
1da177e4 5708 }
2f6726e5 5709 } while (zone_type);
bc732f1d 5710
070f8032 5711 return nr_zones;
1da177e4
LT
5712}
5713
5714#ifdef CONFIG_NUMA
f0c0b2b8
KH
5715
5716static int __parse_numa_zonelist_order(char *s)
5717{
c9bff3ee
MH
5718 /*
5719 * We used to support different zonlists modes but they turned
5720 * out to be just not useful. Let's keep the warning in place
5721 * if somebody still use the cmd line parameter so that we do
5722 * not fail it silently
5723 */
5724 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5725 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5726 return -EINVAL;
5727 }
5728 return 0;
5729}
5730
c9bff3ee
MH
5731char numa_zonelist_order[] = "Node";
5732
f0c0b2b8
KH
5733/*
5734 * sysctl handler for numa_zonelist_order
5735 */
cccad5b9 5736int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5737 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5738{
32927393
CH
5739 if (write)
5740 return __parse_numa_zonelist_order(buffer);
5741 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5742}
5743
5744
62bc62a8 5745#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5746static int node_load[MAX_NUMNODES];
5747
1da177e4 5748/**
4dc3b16b 5749 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5750 * @node: node whose fallback list we're appending
5751 * @used_node_mask: nodemask_t of already used nodes
5752 *
5753 * We use a number of factors to determine which is the next node that should
5754 * appear on a given node's fallback list. The node should not have appeared
5755 * already in @node's fallback list, and it should be the next closest node
5756 * according to the distance array (which contains arbitrary distance values
5757 * from each node to each node in the system), and should also prefer nodes
5758 * with no CPUs, since presumably they'll have very little allocation pressure
5759 * on them otherwise.
a862f68a
MR
5760 *
5761 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5762 */
f0c0b2b8 5763static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5764{
4cf808eb 5765 int n, val;
1da177e4 5766 int min_val = INT_MAX;
00ef2d2f 5767 int best_node = NUMA_NO_NODE;
1da177e4 5768
4cf808eb
LT
5769 /* Use the local node if we haven't already */
5770 if (!node_isset(node, *used_node_mask)) {
5771 node_set(node, *used_node_mask);
5772 return node;
5773 }
1da177e4 5774
4b0ef1fe 5775 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5776
5777 /* Don't want a node to appear more than once */
5778 if (node_isset(n, *used_node_mask))
5779 continue;
5780
1da177e4
LT
5781 /* Use the distance array to find the distance */
5782 val = node_distance(node, n);
5783
4cf808eb
LT
5784 /* Penalize nodes under us ("prefer the next node") */
5785 val += (n < node);
5786
1da177e4 5787 /* Give preference to headless and unused nodes */
b630749f 5788 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5789 val += PENALTY_FOR_NODE_WITH_CPUS;
5790
5791 /* Slight preference for less loaded node */
5792 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5793 val += node_load[n];
5794
5795 if (val < min_val) {
5796 min_val = val;
5797 best_node = n;
5798 }
5799 }
5800
5801 if (best_node >= 0)
5802 node_set(best_node, *used_node_mask);
5803
5804 return best_node;
5805}
5806
f0c0b2b8
KH
5807
5808/*
5809 * Build zonelists ordered by node and zones within node.
5810 * This results in maximum locality--normal zone overflows into local
5811 * DMA zone, if any--but risks exhausting DMA zone.
5812 */
9d3be21b
MH
5813static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5814 unsigned nr_nodes)
1da177e4 5815{
9d3be21b
MH
5816 struct zoneref *zonerefs;
5817 int i;
5818
5819 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5820
5821 for (i = 0; i < nr_nodes; i++) {
5822 int nr_zones;
5823
5824 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5825
9d3be21b
MH
5826 nr_zones = build_zonerefs_node(node, zonerefs);
5827 zonerefs += nr_zones;
5828 }
5829 zonerefs->zone = NULL;
5830 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5831}
5832
523b9458
CL
5833/*
5834 * Build gfp_thisnode zonelists
5835 */
5836static void build_thisnode_zonelists(pg_data_t *pgdat)
5837{
9d3be21b
MH
5838 struct zoneref *zonerefs;
5839 int nr_zones;
523b9458 5840
9d3be21b
MH
5841 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5842 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5843 zonerefs += nr_zones;
5844 zonerefs->zone = NULL;
5845 zonerefs->zone_idx = 0;
523b9458
CL
5846}
5847
f0c0b2b8
KH
5848/*
5849 * Build zonelists ordered by zone and nodes within zones.
5850 * This results in conserving DMA zone[s] until all Normal memory is
5851 * exhausted, but results in overflowing to remote node while memory
5852 * may still exist in local DMA zone.
5853 */
f0c0b2b8 5854
f0c0b2b8
KH
5855static void build_zonelists(pg_data_t *pgdat)
5856{
9d3be21b
MH
5857 static int node_order[MAX_NUMNODES];
5858 int node, load, nr_nodes = 0;
d0ddf49b 5859 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5860 int local_node, prev_node;
1da177e4
LT
5861
5862 /* NUMA-aware ordering of nodes */
5863 local_node = pgdat->node_id;
62bc62a8 5864 load = nr_online_nodes;
1da177e4 5865 prev_node = local_node;
f0c0b2b8 5866
f0c0b2b8 5867 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5868 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5869 /*
5870 * We don't want to pressure a particular node.
5871 * So adding penalty to the first node in same
5872 * distance group to make it round-robin.
5873 */
957f822a
DR
5874 if (node_distance(local_node, node) !=
5875 node_distance(local_node, prev_node))
f0c0b2b8
KH
5876 node_load[node] = load;
5877
9d3be21b 5878 node_order[nr_nodes++] = node;
1da177e4
LT
5879 prev_node = node;
5880 load--;
1da177e4 5881 }
523b9458 5882
9d3be21b 5883 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5884 build_thisnode_zonelists(pgdat);
1da177e4
LT
5885}
5886
7aac7898
LS
5887#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5888/*
5889 * Return node id of node used for "local" allocations.
5890 * I.e., first node id of first zone in arg node's generic zonelist.
5891 * Used for initializing percpu 'numa_mem', which is used primarily
5892 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5893 */
5894int local_memory_node(int node)
5895{
c33d6c06 5896 struct zoneref *z;
7aac7898 5897
c33d6c06 5898 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5899 gfp_zone(GFP_KERNEL),
c33d6c06 5900 NULL);
c1093b74 5901 return zone_to_nid(z->zone);
7aac7898
LS
5902}
5903#endif
f0c0b2b8 5904
6423aa81
JK
5905static void setup_min_unmapped_ratio(void);
5906static void setup_min_slab_ratio(void);
1da177e4
LT
5907#else /* CONFIG_NUMA */
5908
f0c0b2b8 5909static void build_zonelists(pg_data_t *pgdat)
1da177e4 5910{
19655d34 5911 int node, local_node;
9d3be21b
MH
5912 struct zoneref *zonerefs;
5913 int nr_zones;
1da177e4
LT
5914
5915 local_node = pgdat->node_id;
1da177e4 5916
9d3be21b
MH
5917 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5918 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5919 zonerefs += nr_zones;
1da177e4 5920
54a6eb5c
MG
5921 /*
5922 * Now we build the zonelist so that it contains the zones
5923 * of all the other nodes.
5924 * We don't want to pressure a particular node, so when
5925 * building the zones for node N, we make sure that the
5926 * zones coming right after the local ones are those from
5927 * node N+1 (modulo N)
5928 */
5929 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5930 if (!node_online(node))
5931 continue;
9d3be21b
MH
5932 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5933 zonerefs += nr_zones;
1da177e4 5934 }
54a6eb5c
MG
5935 for (node = 0; node < local_node; node++) {
5936 if (!node_online(node))
5937 continue;
9d3be21b
MH
5938 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5939 zonerefs += nr_zones;
54a6eb5c
MG
5940 }
5941
9d3be21b
MH
5942 zonerefs->zone = NULL;
5943 zonerefs->zone_idx = 0;
1da177e4
LT
5944}
5945
5946#endif /* CONFIG_NUMA */
5947
99dcc3e5
CL
5948/*
5949 * Boot pageset table. One per cpu which is going to be used for all
5950 * zones and all nodes. The parameters will be set in such a way
5951 * that an item put on a list will immediately be handed over to
5952 * the buddy list. This is safe since pageset manipulation is done
5953 * with interrupts disabled.
5954 *
5955 * The boot_pagesets must be kept even after bootup is complete for
5956 * unused processors and/or zones. They do play a role for bootstrapping
5957 * hotplugged processors.
5958 *
5959 * zoneinfo_show() and maybe other functions do
5960 * not check if the processor is online before following the pageset pointer.
5961 * Other parts of the kernel may not check if the zone is available.
5962 */
69a8396a 5963static void pageset_init(struct per_cpu_pageset *p);
952eaf81
VB
5964/* These effectively disable the pcplists in the boot pageset completely */
5965#define BOOT_PAGESET_HIGH 0
5966#define BOOT_PAGESET_BATCH 1
99dcc3e5 5967static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5968static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5969
11cd8638 5970static void __build_all_zonelists(void *data)
1da177e4 5971{
6811378e 5972 int nid;
afb6ebb3 5973 int __maybe_unused cpu;
9adb62a5 5974 pg_data_t *self = data;
b93e0f32
MH
5975 static DEFINE_SPINLOCK(lock);
5976
5977 spin_lock(&lock);
9276b1bc 5978
7f9cfb31
BL
5979#ifdef CONFIG_NUMA
5980 memset(node_load, 0, sizeof(node_load));
5981#endif
9adb62a5 5982
c1152583
WY
5983 /*
5984 * This node is hotadded and no memory is yet present. So just
5985 * building zonelists is fine - no need to touch other nodes.
5986 */
9adb62a5
JL
5987 if (self && !node_online(self->node_id)) {
5988 build_zonelists(self);
c1152583
WY
5989 } else {
5990 for_each_online_node(nid) {
5991 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5992
c1152583
WY
5993 build_zonelists(pgdat);
5994 }
99dcc3e5 5995
7aac7898
LS
5996#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5997 /*
5998 * We now know the "local memory node" for each node--
5999 * i.e., the node of the first zone in the generic zonelist.
6000 * Set up numa_mem percpu variable for on-line cpus. During
6001 * boot, only the boot cpu should be on-line; we'll init the
6002 * secondary cpus' numa_mem as they come on-line. During
6003 * node/memory hotplug, we'll fixup all on-line cpus.
6004 */
d9c9a0b9 6005 for_each_online_cpu(cpu)
7aac7898 6006 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6007#endif
d9c9a0b9 6008 }
b93e0f32
MH
6009
6010 spin_unlock(&lock);
6811378e
YG
6011}
6012
061f67bc
RV
6013static noinline void __init
6014build_all_zonelists_init(void)
6015{
afb6ebb3
MH
6016 int cpu;
6017
061f67bc 6018 __build_all_zonelists(NULL);
afb6ebb3
MH
6019
6020 /*
6021 * Initialize the boot_pagesets that are going to be used
6022 * for bootstrapping processors. The real pagesets for
6023 * each zone will be allocated later when the per cpu
6024 * allocator is available.
6025 *
6026 * boot_pagesets are used also for bootstrapping offline
6027 * cpus if the system is already booted because the pagesets
6028 * are needed to initialize allocators on a specific cpu too.
6029 * F.e. the percpu allocator needs the page allocator which
6030 * needs the percpu allocator in order to allocate its pagesets
6031 * (a chicken-egg dilemma).
6032 */
6033 for_each_possible_cpu(cpu)
69a8396a 6034 pageset_init(&per_cpu(boot_pageset, cpu));
afb6ebb3 6035
061f67bc
RV
6036 mminit_verify_zonelist();
6037 cpuset_init_current_mems_allowed();
6038}
6039
4eaf3f64 6040/*
4eaf3f64 6041 * unless system_state == SYSTEM_BOOTING.
061f67bc 6042 *
72675e13 6043 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6044 * [protected by SYSTEM_BOOTING].
4eaf3f64 6045 */
72675e13 6046void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6047{
0a18e607
DH
6048 unsigned long vm_total_pages;
6049
6811378e 6050 if (system_state == SYSTEM_BOOTING) {
061f67bc 6051 build_all_zonelists_init();
6811378e 6052 } else {
11cd8638 6053 __build_all_zonelists(pgdat);
6811378e
YG
6054 /* cpuset refresh routine should be here */
6055 }
56b9413b
DH
6056 /* Get the number of free pages beyond high watermark in all zones. */
6057 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6058 /*
6059 * Disable grouping by mobility if the number of pages in the
6060 * system is too low to allow the mechanism to work. It would be
6061 * more accurate, but expensive to check per-zone. This check is
6062 * made on memory-hotadd so a system can start with mobility
6063 * disabled and enable it later
6064 */
d9c23400 6065 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6066 page_group_by_mobility_disabled = 1;
6067 else
6068 page_group_by_mobility_disabled = 0;
6069
ce0725f7 6070 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6071 nr_online_nodes,
756a025f
JP
6072 page_group_by_mobility_disabled ? "off" : "on",
6073 vm_total_pages);
f0c0b2b8 6074#ifdef CONFIG_NUMA
f88dfff5 6075 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6076#endif
1da177e4
LT
6077}
6078
a9a9e77f
PT
6079/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6080static bool __meminit
6081overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6082{
a9a9e77f
PT
6083 static struct memblock_region *r;
6084
6085 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6086 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6087 for_each_mem_region(r) {
a9a9e77f
PT
6088 if (*pfn < memblock_region_memory_end_pfn(r))
6089 break;
6090 }
6091 }
6092 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6093 memblock_is_mirror(r)) {
6094 *pfn = memblock_region_memory_end_pfn(r);
6095 return true;
6096 }
6097 }
a9a9e77f
PT
6098 return false;
6099}
6100
1da177e4
LT
6101/*
6102 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6103 * up by memblock_free_all() once the early boot process is
1da177e4 6104 * done. Non-atomic initialization, single-pass.
d882c006
DH
6105 *
6106 * All aligned pageblocks are initialized to the specified migratetype
6107 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6108 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6109 */
c09b4240 6110void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
d882c006
DH
6111 unsigned long start_pfn,
6112 enum meminit_context context,
6113 struct vmem_altmap *altmap, int migratetype)
1da177e4 6114{
a9a9e77f 6115 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6116 struct page *page;
1da177e4 6117
22b31eec
HD
6118 if (highest_memmap_pfn < end_pfn - 1)
6119 highest_memmap_pfn = end_pfn - 1;
6120
966cf44f 6121#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6122 /*
6123 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6124 * memory. We limit the total number of pages to initialize to just
6125 * those that might contain the memory mapping. We will defer the
6126 * ZONE_DEVICE page initialization until after we have released
6127 * the hotplug lock.
4b94ffdc 6128 */
966cf44f
AD
6129 if (zone == ZONE_DEVICE) {
6130 if (!altmap)
6131 return;
6132
6133 if (start_pfn == altmap->base_pfn)
6134 start_pfn += altmap->reserve;
6135 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6136 }
6137#endif
4b94ffdc 6138
948c436e 6139 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6140 /*
b72d0ffb
AM
6141 * There can be holes in boot-time mem_map[]s handed to this
6142 * function. They do not exist on hotplugged memory.
a2f3aa02 6143 */
c1d0da83 6144 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6145 if (overlap_memmap_init(zone, &pfn))
6146 continue;
6147 if (defer_init(nid, pfn, end_pfn))
6148 break;
a2f3aa02 6149 }
ac5d2539 6150
d0dc12e8
PT
6151 page = pfn_to_page(pfn);
6152 __init_single_page(page, pfn, zone, nid);
c1d0da83 6153 if (context == MEMINIT_HOTPLUG)
d483da5b 6154 __SetPageReserved(page);
d0dc12e8 6155
ac5d2539 6156 /*
d882c006
DH
6157 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6158 * such that unmovable allocations won't be scattered all
6159 * over the place during system boot.
ac5d2539 6160 */
4eb29bd9 6161 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6162 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6163 cond_resched();
ac5d2539 6164 }
948c436e 6165 pfn++;
1da177e4
LT
6166 }
6167}
6168
966cf44f
AD
6169#ifdef CONFIG_ZONE_DEVICE
6170void __ref memmap_init_zone_device(struct zone *zone,
6171 unsigned long start_pfn,
1f8d75c1 6172 unsigned long nr_pages,
966cf44f
AD
6173 struct dev_pagemap *pgmap)
6174{
1f8d75c1 6175 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6176 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6177 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6178 unsigned long zone_idx = zone_idx(zone);
6179 unsigned long start = jiffies;
6180 int nid = pgdat->node_id;
6181
46d945ae 6182 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6183 return;
6184
6185 /*
6186 * The call to memmap_init_zone should have already taken care
6187 * of the pages reserved for the memmap, so we can just jump to
6188 * the end of that region and start processing the device pages.
6189 */
514caf23 6190 if (altmap) {
966cf44f 6191 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6192 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6193 }
6194
6195 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6196 struct page *page = pfn_to_page(pfn);
6197
6198 __init_single_page(page, pfn, zone_idx, nid);
6199
6200 /*
6201 * Mark page reserved as it will need to wait for onlining
6202 * phase for it to be fully associated with a zone.
6203 *
6204 * We can use the non-atomic __set_bit operation for setting
6205 * the flag as we are still initializing the pages.
6206 */
6207 __SetPageReserved(page);
6208
6209 /*
8a164fef
CH
6210 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6211 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6212 * ever freed or placed on a driver-private list.
966cf44f
AD
6213 */
6214 page->pgmap = pgmap;
8a164fef 6215 page->zone_device_data = NULL;
966cf44f
AD
6216
6217 /*
6218 * Mark the block movable so that blocks are reserved for
6219 * movable at startup. This will force kernel allocations
6220 * to reserve their blocks rather than leaking throughout
6221 * the address space during boot when many long-lived
6222 * kernel allocations are made.
6223 *
c1d0da83 6224 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6225 * because this is done early in section_activate()
966cf44f 6226 */
4eb29bd9 6227 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6228 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6229 cond_resched();
6230 }
6231 }
6232
fdc029b1 6233 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6234 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6235}
6236
6237#endif
1e548deb 6238static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6239{
7aeb09f9 6240 unsigned int order, t;
b2a0ac88
MG
6241 for_each_migratetype_order(order, t) {
6242 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6243 zone->free_area[order].nr_free = 0;
6244 }
6245}
6246
dfb3ccd0 6247void __meminit __weak memmap_init(unsigned long size, int nid,
73a6e474
BH
6248 unsigned long zone,
6249 unsigned long range_start_pfn)
dfb3ccd0 6250{
73a6e474
BH
6251 unsigned long start_pfn, end_pfn;
6252 unsigned long range_end_pfn = range_start_pfn + size;
6253 int i;
6254
6255 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6256 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6257 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6258
6259 if (end_pfn > start_pfn) {
6260 size = end_pfn - start_pfn;
6261 memmap_init_zone(size, nid, zone, start_pfn,
d882c006 6262 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
73a6e474
BH
6263 }
6264 }
dfb3ccd0 6265}
1da177e4 6266
7cd2b0a3 6267static int zone_batchsize(struct zone *zone)
e7c8d5c9 6268{
3a6be87f 6269#ifdef CONFIG_MMU
e7c8d5c9
CL
6270 int batch;
6271
6272 /*
6273 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6274 * size of the zone.
e7c8d5c9 6275 */
9705bea5 6276 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6277 /* But no more than a meg. */
6278 if (batch * PAGE_SIZE > 1024 * 1024)
6279 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6280 batch /= 4; /* We effectively *= 4 below */
6281 if (batch < 1)
6282 batch = 1;
6283
6284 /*
0ceaacc9
NP
6285 * Clamp the batch to a 2^n - 1 value. Having a power
6286 * of 2 value was found to be more likely to have
6287 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6288 *
0ceaacc9
NP
6289 * For example if 2 tasks are alternately allocating
6290 * batches of pages, one task can end up with a lot
6291 * of pages of one half of the possible page colors
6292 * and the other with pages of the other colors.
e7c8d5c9 6293 */
9155203a 6294 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6295
e7c8d5c9 6296 return batch;
3a6be87f
DH
6297
6298#else
6299 /* The deferral and batching of frees should be suppressed under NOMMU
6300 * conditions.
6301 *
6302 * The problem is that NOMMU needs to be able to allocate large chunks
6303 * of contiguous memory as there's no hardware page translation to
6304 * assemble apparent contiguous memory from discontiguous pages.
6305 *
6306 * Queueing large contiguous runs of pages for batching, however,
6307 * causes the pages to actually be freed in smaller chunks. As there
6308 * can be a significant delay between the individual batches being
6309 * recycled, this leads to the once large chunks of space being
6310 * fragmented and becoming unavailable for high-order allocations.
6311 */
6312 return 0;
6313#endif
e7c8d5c9
CL
6314}
6315
8d7a8fa9 6316/*
5c3ad2eb
VB
6317 * pcp->high and pcp->batch values are related and generally batch is lower
6318 * than high. They are also related to pcp->count such that count is lower
6319 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6320 *
5c3ad2eb
VB
6321 * However, guaranteeing these relations at all times would require e.g. write
6322 * barriers here but also careful usage of read barriers at the read side, and
6323 * thus be prone to error and bad for performance. Thus the update only prevents
6324 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6325 * can cope with those fields changing asynchronously, and fully trust only the
6326 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6327 *
6328 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6329 * outside of boot time (or some other assurance that no concurrent updaters
6330 * exist).
6331 */
6332static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6333 unsigned long batch)
6334{
5c3ad2eb
VB
6335 WRITE_ONCE(pcp->batch, batch);
6336 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6337}
6338
88c90dbc 6339static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6340{
6341 struct per_cpu_pages *pcp;
5f8dcc21 6342 int migratetype;
2caaad41 6343
1c6fe946
MD
6344 memset(p, 0, sizeof(*p));
6345
3dfa5721 6346 pcp = &p->pcp;
5f8dcc21
MG
6347 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6348 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6349
69a8396a
VB
6350 /*
6351 * Set batch and high values safe for a boot pageset. A true percpu
6352 * pageset's initialization will update them subsequently. Here we don't
6353 * need to be as careful as pageset_update() as nobody can access the
6354 * pageset yet.
6355 */
952eaf81
VB
6356 pcp->high = BOOT_PAGESET_HIGH;
6357 pcp->batch = BOOT_PAGESET_BATCH;
88c90dbc
CS
6358}
6359
3b1f3658 6360static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6361 unsigned long batch)
6362{
6363 struct per_cpu_pageset *p;
6364 int cpu;
6365
6366 for_each_possible_cpu(cpu) {
6367 p = per_cpu_ptr(zone->pageset, cpu);
6368 pageset_update(&p->pcp, high, batch);
6369 }
6370}
6371
8ad4b1fb 6372/*
0a8b4f1d 6373 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6374 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6375 */
0a8b4f1d 6376static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6377{
7115ac6e
VB
6378 unsigned long new_high, new_batch;
6379
6380 if (percpu_pagelist_fraction) {
6381 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6382 new_batch = max(1UL, new_high / 4);
6383 if ((new_high / 4) > (PAGE_SHIFT * 8))
6384 new_batch = PAGE_SHIFT * 8;
6385 } else {
6386 new_batch = zone_batchsize(zone);
6387 new_high = 6 * new_batch;
6388 new_batch = max(1UL, 1 * new_batch);
6389 }
169f6c19 6390
952eaf81
VB
6391 if (zone->pageset_high == new_high &&
6392 zone->pageset_batch == new_batch)
6393 return;
6394
6395 zone->pageset_high = new_high;
6396 zone->pageset_batch = new_batch;
6397
ec6e8c7e 6398 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6399}
6400
72675e13 6401void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6402{
0a8b4f1d 6403 struct per_cpu_pageset *p;
319774e2 6404 int cpu;
0a8b4f1d 6405
319774e2 6406 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6407 for_each_possible_cpu(cpu) {
6408 p = per_cpu_ptr(zone->pageset, cpu);
6409 pageset_init(p);
6410 }
6411
6412 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6413}
6414
2caaad41 6415/*
99dcc3e5
CL
6416 * Allocate per cpu pagesets and initialize them.
6417 * Before this call only boot pagesets were available.
e7c8d5c9 6418 */
99dcc3e5 6419void __init setup_per_cpu_pageset(void)
e7c8d5c9 6420{
b4911ea2 6421 struct pglist_data *pgdat;
99dcc3e5 6422 struct zone *zone;
b418a0f9 6423 int __maybe_unused cpu;
e7c8d5c9 6424
319774e2
WF
6425 for_each_populated_zone(zone)
6426 setup_zone_pageset(zone);
b4911ea2 6427
b418a0f9
SD
6428#ifdef CONFIG_NUMA
6429 /*
6430 * Unpopulated zones continue using the boot pagesets.
6431 * The numa stats for these pagesets need to be reset.
6432 * Otherwise, they will end up skewing the stats of
6433 * the nodes these zones are associated with.
6434 */
6435 for_each_possible_cpu(cpu) {
6436 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6437 memset(pcp->vm_numa_stat_diff, 0,
6438 sizeof(pcp->vm_numa_stat_diff));
6439 }
6440#endif
6441
b4911ea2
MG
6442 for_each_online_pgdat(pgdat)
6443 pgdat->per_cpu_nodestats =
6444 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6445}
6446
c09b4240 6447static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6448{
99dcc3e5
CL
6449 /*
6450 * per cpu subsystem is not up at this point. The following code
6451 * relies on the ability of the linker to provide the
6452 * offset of a (static) per cpu variable into the per cpu area.
6453 */
6454 zone->pageset = &boot_pageset;
952eaf81
VB
6455 zone->pageset_high = BOOT_PAGESET_HIGH;
6456 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6457
b38a8725 6458 if (populated_zone(zone))
99dcc3e5
CL
6459 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6460 zone->name, zone->present_pages,
6461 zone_batchsize(zone));
ed8ece2e
DH
6462}
6463
dc0bbf3b 6464void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6465 unsigned long zone_start_pfn,
b171e409 6466 unsigned long size)
ed8ece2e
DH
6467{
6468 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6469 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6470
8f416836
WY
6471 if (zone_idx > pgdat->nr_zones)
6472 pgdat->nr_zones = zone_idx;
ed8ece2e 6473
ed8ece2e
DH
6474 zone->zone_start_pfn = zone_start_pfn;
6475
708614e6
MG
6476 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6477 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6478 pgdat->node_id,
6479 (unsigned long)zone_idx(zone),
6480 zone_start_pfn, (zone_start_pfn + size));
6481
1e548deb 6482 zone_init_free_lists(zone);
9dcb8b68 6483 zone->initialized = 1;
ed8ece2e
DH
6484}
6485
c713216d
MG
6486/**
6487 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6488 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6489 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6490 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6491 *
6492 * It returns the start and end page frame of a node based on information
7d018176 6493 * provided by memblock_set_node(). If called for a node
c713216d 6494 * with no available memory, a warning is printed and the start and end
88ca3b94 6495 * PFNs will be 0.
c713216d 6496 */
bbe5d993 6497void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6498 unsigned long *start_pfn, unsigned long *end_pfn)
6499{
c13291a5 6500 unsigned long this_start_pfn, this_end_pfn;
c713216d 6501 int i;
c13291a5 6502
c713216d
MG
6503 *start_pfn = -1UL;
6504 *end_pfn = 0;
6505
c13291a5
TH
6506 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6507 *start_pfn = min(*start_pfn, this_start_pfn);
6508 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6509 }
6510
633c0666 6511 if (*start_pfn == -1UL)
c713216d 6512 *start_pfn = 0;
c713216d
MG
6513}
6514
2a1e274a
MG
6515/*
6516 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6517 * assumption is made that zones within a node are ordered in monotonic
6518 * increasing memory addresses so that the "highest" populated zone is used
6519 */
b69a7288 6520static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6521{
6522 int zone_index;
6523 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6524 if (zone_index == ZONE_MOVABLE)
6525 continue;
6526
6527 if (arch_zone_highest_possible_pfn[zone_index] >
6528 arch_zone_lowest_possible_pfn[zone_index])
6529 break;
6530 }
6531
6532 VM_BUG_ON(zone_index == -1);
6533 movable_zone = zone_index;
6534}
6535
6536/*
6537 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6538 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6539 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6540 * in each node depending on the size of each node and how evenly kernelcore
6541 * is distributed. This helper function adjusts the zone ranges
6542 * provided by the architecture for a given node by using the end of the
6543 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6544 * zones within a node are in order of monotonic increases memory addresses
6545 */
bbe5d993 6546static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6547 unsigned long zone_type,
6548 unsigned long node_start_pfn,
6549 unsigned long node_end_pfn,
6550 unsigned long *zone_start_pfn,
6551 unsigned long *zone_end_pfn)
6552{
6553 /* Only adjust if ZONE_MOVABLE is on this node */
6554 if (zone_movable_pfn[nid]) {
6555 /* Size ZONE_MOVABLE */
6556 if (zone_type == ZONE_MOVABLE) {
6557 *zone_start_pfn = zone_movable_pfn[nid];
6558 *zone_end_pfn = min(node_end_pfn,
6559 arch_zone_highest_possible_pfn[movable_zone]);
6560
e506b996
XQ
6561 /* Adjust for ZONE_MOVABLE starting within this range */
6562 } else if (!mirrored_kernelcore &&
6563 *zone_start_pfn < zone_movable_pfn[nid] &&
6564 *zone_end_pfn > zone_movable_pfn[nid]) {
6565 *zone_end_pfn = zone_movable_pfn[nid];
6566
2a1e274a
MG
6567 /* Check if this whole range is within ZONE_MOVABLE */
6568 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6569 *zone_start_pfn = *zone_end_pfn;
6570 }
6571}
6572
c713216d
MG
6573/*
6574 * Return the number of pages a zone spans in a node, including holes
6575 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6576 */
bbe5d993 6577static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6578 unsigned long zone_type,
7960aedd
ZY
6579 unsigned long node_start_pfn,
6580 unsigned long node_end_pfn,
d91749c1 6581 unsigned long *zone_start_pfn,
854e8848 6582 unsigned long *zone_end_pfn)
c713216d 6583{
299c83dc
LF
6584 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6585 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6586 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6587 if (!node_start_pfn && !node_end_pfn)
6588 return 0;
6589
7960aedd 6590 /* Get the start and end of the zone */
299c83dc
LF
6591 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6592 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6593 adjust_zone_range_for_zone_movable(nid, zone_type,
6594 node_start_pfn, node_end_pfn,
d91749c1 6595 zone_start_pfn, zone_end_pfn);
c713216d
MG
6596
6597 /* Check that this node has pages within the zone's required range */
d91749c1 6598 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6599 return 0;
6600
6601 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6602 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6603 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6604
6605 /* Return the spanned pages */
d91749c1 6606 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6607}
6608
6609/*
6610 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6611 * then all holes in the requested range will be accounted for.
c713216d 6612 */
bbe5d993 6613unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6614 unsigned long range_start_pfn,
6615 unsigned long range_end_pfn)
6616{
96e907d1
TH
6617 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6618 unsigned long start_pfn, end_pfn;
6619 int i;
c713216d 6620
96e907d1
TH
6621 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6622 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6623 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6624 nr_absent -= end_pfn - start_pfn;
c713216d 6625 }
96e907d1 6626 return nr_absent;
c713216d
MG
6627}
6628
6629/**
6630 * absent_pages_in_range - Return number of page frames in holes within a range
6631 * @start_pfn: The start PFN to start searching for holes
6632 * @end_pfn: The end PFN to stop searching for holes
6633 *
a862f68a 6634 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6635 */
6636unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6637 unsigned long end_pfn)
6638{
6639 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6640}
6641
6642/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6643static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6644 unsigned long zone_type,
7960aedd 6645 unsigned long node_start_pfn,
854e8848 6646 unsigned long node_end_pfn)
c713216d 6647{
96e907d1
TH
6648 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6649 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6650 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6651 unsigned long nr_absent;
9c7cd687 6652
b5685e92 6653 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6654 if (!node_start_pfn && !node_end_pfn)
6655 return 0;
6656
96e907d1
TH
6657 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6658 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6659
2a1e274a
MG
6660 adjust_zone_range_for_zone_movable(nid, zone_type,
6661 node_start_pfn, node_end_pfn,
6662 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6663 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6664
6665 /*
6666 * ZONE_MOVABLE handling.
6667 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6668 * and vice versa.
6669 */
e506b996
XQ
6670 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6671 unsigned long start_pfn, end_pfn;
6672 struct memblock_region *r;
6673
cc6de168 6674 for_each_mem_region(r) {
e506b996
XQ
6675 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6676 zone_start_pfn, zone_end_pfn);
6677 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6678 zone_start_pfn, zone_end_pfn);
6679
6680 if (zone_type == ZONE_MOVABLE &&
6681 memblock_is_mirror(r))
6682 nr_absent += end_pfn - start_pfn;
6683
6684 if (zone_type == ZONE_NORMAL &&
6685 !memblock_is_mirror(r))
6686 nr_absent += end_pfn - start_pfn;
342332e6
TI
6687 }
6688 }
6689
6690 return nr_absent;
c713216d 6691}
0e0b864e 6692
bbe5d993 6693static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6694 unsigned long node_start_pfn,
854e8848 6695 unsigned long node_end_pfn)
c713216d 6696{
febd5949 6697 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6698 enum zone_type i;
6699
febd5949
GZ
6700 for (i = 0; i < MAX_NR_ZONES; i++) {
6701 struct zone *zone = pgdat->node_zones + i;
d91749c1 6702 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6703 unsigned long spanned, absent;
febd5949 6704 unsigned long size, real_size;
c713216d 6705
854e8848
MR
6706 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6707 node_start_pfn,
6708 node_end_pfn,
6709 &zone_start_pfn,
6710 &zone_end_pfn);
6711 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6712 node_start_pfn,
6713 node_end_pfn);
3f08a302
MR
6714
6715 size = spanned;
6716 real_size = size - absent;
6717
d91749c1
TI
6718 if (size)
6719 zone->zone_start_pfn = zone_start_pfn;
6720 else
6721 zone->zone_start_pfn = 0;
febd5949
GZ
6722 zone->spanned_pages = size;
6723 zone->present_pages = real_size;
6724
6725 totalpages += size;
6726 realtotalpages += real_size;
6727 }
6728
6729 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6730 pgdat->node_present_pages = realtotalpages;
6731 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6732 realtotalpages);
6733}
6734
835c134e
MG
6735#ifndef CONFIG_SPARSEMEM
6736/*
6737 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6738 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6739 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6740 * round what is now in bits to nearest long in bits, then return it in
6741 * bytes.
6742 */
7c45512d 6743static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6744{
6745 unsigned long usemapsize;
6746
7c45512d 6747 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6748 usemapsize = roundup(zonesize, pageblock_nr_pages);
6749 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6750 usemapsize *= NR_PAGEBLOCK_BITS;
6751 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6752
6753 return usemapsize / 8;
6754}
6755
7cc2a959 6756static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6757 struct zone *zone,
6758 unsigned long zone_start_pfn,
6759 unsigned long zonesize)
835c134e 6760{
7c45512d 6761 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6762 zone->pageblock_flags = NULL;
23a7052a 6763 if (usemapsize) {
6782832e 6764 zone->pageblock_flags =
26fb3dae
MR
6765 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6766 pgdat->node_id);
23a7052a
MR
6767 if (!zone->pageblock_flags)
6768 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6769 usemapsize, zone->name, pgdat->node_id);
6770 }
835c134e
MG
6771}
6772#else
7c45512d
LT
6773static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6774 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6775#endif /* CONFIG_SPARSEMEM */
6776
d9c23400 6777#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6778
d9c23400 6779/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6780void __init set_pageblock_order(void)
d9c23400 6781{
955c1cd7
AM
6782 unsigned int order;
6783
d9c23400
MG
6784 /* Check that pageblock_nr_pages has not already been setup */
6785 if (pageblock_order)
6786 return;
6787
955c1cd7
AM
6788 if (HPAGE_SHIFT > PAGE_SHIFT)
6789 order = HUGETLB_PAGE_ORDER;
6790 else
6791 order = MAX_ORDER - 1;
6792
d9c23400
MG
6793 /*
6794 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6795 * This value may be variable depending on boot parameters on IA64 and
6796 * powerpc.
d9c23400
MG
6797 */
6798 pageblock_order = order;
6799}
6800#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6801
ba72cb8c
MG
6802/*
6803 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6804 * is unused as pageblock_order is set at compile-time. See
6805 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6806 * the kernel config
ba72cb8c 6807 */
03e85f9d 6808void __init set_pageblock_order(void)
ba72cb8c 6809{
ba72cb8c 6810}
d9c23400
MG
6811
6812#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6813
03e85f9d 6814static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6815 unsigned long present_pages)
01cefaef
JL
6816{
6817 unsigned long pages = spanned_pages;
6818
6819 /*
6820 * Provide a more accurate estimation if there are holes within
6821 * the zone and SPARSEMEM is in use. If there are holes within the
6822 * zone, each populated memory region may cost us one or two extra
6823 * memmap pages due to alignment because memmap pages for each
89d790ab 6824 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6825 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6826 */
6827 if (spanned_pages > present_pages + (present_pages >> 4) &&
6828 IS_ENABLED(CONFIG_SPARSEMEM))
6829 pages = present_pages;
6830
6831 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6832}
6833
ace1db39
OS
6834#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6835static void pgdat_init_split_queue(struct pglist_data *pgdat)
6836{
364c1eeb
YS
6837 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6838
6839 spin_lock_init(&ds_queue->split_queue_lock);
6840 INIT_LIST_HEAD(&ds_queue->split_queue);
6841 ds_queue->split_queue_len = 0;
ace1db39
OS
6842}
6843#else
6844static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6845#endif
6846
6847#ifdef CONFIG_COMPACTION
6848static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6849{
6850 init_waitqueue_head(&pgdat->kcompactd_wait);
6851}
6852#else
6853static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6854#endif
6855
03e85f9d 6856static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6857{
208d54e5 6858 pgdat_resize_init(pgdat);
ace1db39 6859
ace1db39
OS
6860 pgdat_init_split_queue(pgdat);
6861 pgdat_init_kcompactd(pgdat);
6862
1da177e4 6863 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6864 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6865
eefa864b 6866 pgdat_page_ext_init(pgdat);
a52633d8 6867 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6868 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6869}
6870
6871static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6872 unsigned long remaining_pages)
6873{
9705bea5 6874 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6875 zone_set_nid(zone, nid);
6876 zone->name = zone_names[idx];
6877 zone->zone_pgdat = NODE_DATA(nid);
6878 spin_lock_init(&zone->lock);
6879 zone_seqlock_init(zone);
6880 zone_pcp_init(zone);
6881}
6882
6883/*
6884 * Set up the zone data structures
6885 * - init pgdat internals
6886 * - init all zones belonging to this node
6887 *
6888 * NOTE: this function is only called during memory hotplug
6889 */
6890#ifdef CONFIG_MEMORY_HOTPLUG
6891void __ref free_area_init_core_hotplug(int nid)
6892{
6893 enum zone_type z;
6894 pg_data_t *pgdat = NODE_DATA(nid);
6895
6896 pgdat_init_internals(pgdat);
6897 for (z = 0; z < MAX_NR_ZONES; z++)
6898 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6899}
6900#endif
6901
6902/*
6903 * Set up the zone data structures:
6904 * - mark all pages reserved
6905 * - mark all memory queues empty
6906 * - clear the memory bitmaps
6907 *
6908 * NOTE: pgdat should get zeroed by caller.
6909 * NOTE: this function is only called during early init.
6910 */
6911static void __init free_area_init_core(struct pglist_data *pgdat)
6912{
6913 enum zone_type j;
6914 int nid = pgdat->node_id;
5f63b720 6915
03e85f9d 6916 pgdat_init_internals(pgdat);
385386cf
JW
6917 pgdat->per_cpu_nodestats = &boot_nodestats;
6918
1da177e4
LT
6919 for (j = 0; j < MAX_NR_ZONES; j++) {
6920 struct zone *zone = pgdat->node_zones + j;
e6943859 6921 unsigned long size, freesize, memmap_pages;
d91749c1 6922 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6923
febd5949 6924 size = zone->spanned_pages;
e6943859 6925 freesize = zone->present_pages;
1da177e4 6926
0e0b864e 6927 /*
9feedc9d 6928 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6929 * is used by this zone for memmap. This affects the watermark
6930 * and per-cpu initialisations
6931 */
e6943859 6932 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6933 if (!is_highmem_idx(j)) {
6934 if (freesize >= memmap_pages) {
6935 freesize -= memmap_pages;
6936 if (memmap_pages)
6937 printk(KERN_DEBUG
6938 " %s zone: %lu pages used for memmap\n",
6939 zone_names[j], memmap_pages);
6940 } else
1170532b 6941 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6942 zone_names[j], memmap_pages, freesize);
6943 }
0e0b864e 6944
6267276f 6945 /* Account for reserved pages */
9feedc9d
JL
6946 if (j == 0 && freesize > dma_reserve) {
6947 freesize -= dma_reserve;
d903ef9f 6948 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6949 zone_names[0], dma_reserve);
0e0b864e
MG
6950 }
6951
98d2b0eb 6952 if (!is_highmem_idx(j))
9feedc9d 6953 nr_kernel_pages += freesize;
01cefaef
JL
6954 /* Charge for highmem memmap if there are enough kernel pages */
6955 else if (nr_kernel_pages > memmap_pages * 2)
6956 nr_kernel_pages -= memmap_pages;
9feedc9d 6957 nr_all_pages += freesize;
1da177e4 6958
9feedc9d
JL
6959 /*
6960 * Set an approximate value for lowmem here, it will be adjusted
6961 * when the bootmem allocator frees pages into the buddy system.
6962 * And all highmem pages will be managed by the buddy system.
6963 */
03e85f9d 6964 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6965
d883c6cf 6966 if (!size)
1da177e4
LT
6967 continue;
6968
955c1cd7 6969 set_pageblock_order();
d883c6cf
JK
6970 setup_usemap(pgdat, zone, zone_start_pfn, size);
6971 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6972 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6973 }
6974}
6975
0cd842f9 6976#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6977static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6978{
b0aeba74 6979 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6980 unsigned long __maybe_unused offset = 0;
6981
1da177e4
LT
6982 /* Skip empty nodes */
6983 if (!pgdat->node_spanned_pages)
6984 return;
6985
b0aeba74
TL
6986 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6987 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6988 /* ia64 gets its own node_mem_map, before this, without bootmem */
6989 if (!pgdat->node_mem_map) {
b0aeba74 6990 unsigned long size, end;
d41dee36
AW
6991 struct page *map;
6992
e984bb43
BP
6993 /*
6994 * The zone's endpoints aren't required to be MAX_ORDER
6995 * aligned but the node_mem_map endpoints must be in order
6996 * for the buddy allocator to function correctly.
6997 */
108bcc96 6998 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6999 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7000 size = (end - start) * sizeof(struct page);
26fb3dae
MR
7001 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7002 pgdat->node_id);
23a7052a
MR
7003 if (!map)
7004 panic("Failed to allocate %ld bytes for node %d memory map\n",
7005 size, pgdat->node_id);
a1c34a3b 7006 pgdat->node_mem_map = map + offset;
1da177e4 7007 }
0cd842f9
OS
7008 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7009 __func__, pgdat->node_id, (unsigned long)pgdat,
7010 (unsigned long)pgdat->node_mem_map);
12d810c1 7011#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
7012 /*
7013 * With no DISCONTIG, the global mem_map is just set as node 0's
7014 */
c713216d 7015 if (pgdat == NODE_DATA(0)) {
1da177e4 7016 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7017 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7018 mem_map -= offset;
c713216d 7019 }
1da177e4
LT
7020#endif
7021}
0cd842f9
OS
7022#else
7023static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7024#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 7025
0188dc98
OS
7026#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7027static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7028{
0188dc98
OS
7029 pgdat->first_deferred_pfn = ULONG_MAX;
7030}
7031#else
7032static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7033#endif
7034
854e8848 7035static void __init free_area_init_node(int nid)
1da177e4 7036{
9109fb7b 7037 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7038 unsigned long start_pfn = 0;
7039 unsigned long end_pfn = 0;
9109fb7b 7040
88fdf75d 7041 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7042 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7043
854e8848 7044 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7045
1da177e4 7046 pgdat->node_id = nid;
854e8848 7047 pgdat->node_start_pfn = start_pfn;
75ef7184 7048 pgdat->per_cpu_nodestats = NULL;
854e8848 7049
8d29e18a 7050 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7051 (u64)start_pfn << PAGE_SHIFT,
7052 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7053 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7054
7055 alloc_node_mem_map(pgdat);
0188dc98 7056 pgdat_set_deferred_range(pgdat);
1da177e4 7057
7f3eb55b 7058 free_area_init_core(pgdat);
1da177e4
LT
7059}
7060
bc9331a1 7061void __init free_area_init_memoryless_node(int nid)
3f08a302 7062{
854e8848 7063 free_area_init_node(nid);
3f08a302
MR
7064}
7065
aca52c39 7066#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 7067/*
4b094b78
DH
7068 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7069 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 7070 */
4b094b78 7071static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
7072{
7073 unsigned long pfn;
7074 u64 pgcnt = 0;
7075
7076 for (pfn = spfn; pfn < epfn; pfn++) {
7077 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7078 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7079 + pageblock_nr_pages - 1;
7080 continue;
7081 }
4b094b78
DH
7082 /*
7083 * Use a fake node/zone (0) for now. Some of these pages
7084 * (in memblock.reserved but not in memblock.memory) will
7085 * get re-initialized via reserve_bootmem_region() later.
7086 */
7087 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7088 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
7089 pgcnt++;
7090 }
7091
7092 return pgcnt;
7093}
7094
a4a3ede2
PT
7095/*
7096 * Only struct pages that are backed by physical memory are zeroed and
7097 * initialized by going through __init_single_page(). But, there are some
7098 * struct pages which are reserved in memblock allocator and their fields
7099 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 7100 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
7101 *
7102 * This function also addresses a similar issue where struct pages are left
7103 * uninitialized because the physical address range is not covered by
7104 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
7105 * layout is manually configured via memmap=, or when the highest physical
7106 * address (max_pfn) does not end on a section boundary.
a4a3ede2 7107 */
4b094b78 7108static void __init init_unavailable_mem(void)
a4a3ede2
PT
7109{
7110 phys_addr_t start, end;
a4a3ede2 7111 u64 i, pgcnt;
907ec5fc 7112 phys_addr_t next = 0;
a4a3ede2
PT
7113
7114 /*
907ec5fc 7115 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
7116 */
7117 pgcnt = 0;
6e245ad4 7118 for_each_mem_range(i, &start, &end) {
ec393a0f 7119 if (next < start)
4b094b78
DH
7120 pgcnt += init_unavailable_range(PFN_DOWN(next),
7121 PFN_UP(start));
907ec5fc
NH
7122 next = end;
7123 }
e822969c
DH
7124
7125 /*
7126 * Early sections always have a fully populated memmap for the whole
7127 * section - see pfn_valid(). If the last section has holes at the
7128 * end and that section is marked "online", the memmap will be
7129 * considered initialized. Make sure that memmap has a well defined
7130 * state.
7131 */
4b094b78
DH
7132 pgcnt += init_unavailable_range(PFN_DOWN(next),
7133 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7134
a4a3ede2
PT
7135 /*
7136 * Struct pages that do not have backing memory. This could be because
7137 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7138 */
7139 if (pgcnt)
907ec5fc 7140 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7141}
4b094b78
DH
7142#else
7143static inline void __init init_unavailable_mem(void)
7144{
7145}
aca52c39 7146#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7147
418508c1
MS
7148#if MAX_NUMNODES > 1
7149/*
7150 * Figure out the number of possible node ids.
7151 */
f9872caf 7152void __init setup_nr_node_ids(void)
418508c1 7153{
904a9553 7154 unsigned int highest;
418508c1 7155
904a9553 7156 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7157 nr_node_ids = highest + 1;
7158}
418508c1
MS
7159#endif
7160
1e01979c
TH
7161/**
7162 * node_map_pfn_alignment - determine the maximum internode alignment
7163 *
7164 * This function should be called after node map is populated and sorted.
7165 * It calculates the maximum power of two alignment which can distinguish
7166 * all the nodes.
7167 *
7168 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7169 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7170 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7171 * shifted, 1GiB is enough and this function will indicate so.
7172 *
7173 * This is used to test whether pfn -> nid mapping of the chosen memory
7174 * model has fine enough granularity to avoid incorrect mapping for the
7175 * populated node map.
7176 *
a862f68a 7177 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7178 * requirement (single node).
7179 */
7180unsigned long __init node_map_pfn_alignment(void)
7181{
7182 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7183 unsigned long start, end, mask;
98fa15f3 7184 int last_nid = NUMA_NO_NODE;
c13291a5 7185 int i, nid;
1e01979c 7186
c13291a5 7187 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7188 if (!start || last_nid < 0 || last_nid == nid) {
7189 last_nid = nid;
7190 last_end = end;
7191 continue;
7192 }
7193
7194 /*
7195 * Start with a mask granular enough to pin-point to the
7196 * start pfn and tick off bits one-by-one until it becomes
7197 * too coarse to separate the current node from the last.
7198 */
7199 mask = ~((1 << __ffs(start)) - 1);
7200 while (mask && last_end <= (start & (mask << 1)))
7201 mask <<= 1;
7202
7203 /* accumulate all internode masks */
7204 accl_mask |= mask;
7205 }
7206
7207 /* convert mask to number of pages */
7208 return ~accl_mask + 1;
7209}
7210
c713216d
MG
7211/**
7212 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7213 *
a862f68a 7214 * Return: the minimum PFN based on information provided via
7d018176 7215 * memblock_set_node().
c713216d
MG
7216 */
7217unsigned long __init find_min_pfn_with_active_regions(void)
7218{
8a1b25fe 7219 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7220}
7221
37b07e41
LS
7222/*
7223 * early_calculate_totalpages()
7224 * Sum pages in active regions for movable zone.
4b0ef1fe 7225 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7226 */
484f51f8 7227static unsigned long __init early_calculate_totalpages(void)
7e63efef 7228{
7e63efef 7229 unsigned long totalpages = 0;
c13291a5
TH
7230 unsigned long start_pfn, end_pfn;
7231 int i, nid;
7232
7233 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7234 unsigned long pages = end_pfn - start_pfn;
7e63efef 7235
37b07e41
LS
7236 totalpages += pages;
7237 if (pages)
4b0ef1fe 7238 node_set_state(nid, N_MEMORY);
37b07e41 7239 }
b8af2941 7240 return totalpages;
7e63efef
MG
7241}
7242
2a1e274a
MG
7243/*
7244 * Find the PFN the Movable zone begins in each node. Kernel memory
7245 * is spread evenly between nodes as long as the nodes have enough
7246 * memory. When they don't, some nodes will have more kernelcore than
7247 * others
7248 */
b224ef85 7249static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7250{
7251 int i, nid;
7252 unsigned long usable_startpfn;
7253 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7254 /* save the state before borrow the nodemask */
4b0ef1fe 7255 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7256 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7257 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7258 struct memblock_region *r;
b2f3eebe
TC
7259
7260 /* Need to find movable_zone earlier when movable_node is specified. */
7261 find_usable_zone_for_movable();
7262
7263 /*
7264 * If movable_node is specified, ignore kernelcore and movablecore
7265 * options.
7266 */
7267 if (movable_node_is_enabled()) {
cc6de168 7268 for_each_mem_region(r) {
136199f0 7269 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7270 continue;
7271
d622abf7 7272 nid = memblock_get_region_node(r);
b2f3eebe 7273
136199f0 7274 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7275 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7276 min(usable_startpfn, zone_movable_pfn[nid]) :
7277 usable_startpfn;
7278 }
7279
7280 goto out2;
7281 }
2a1e274a 7282
342332e6
TI
7283 /*
7284 * If kernelcore=mirror is specified, ignore movablecore option
7285 */
7286 if (mirrored_kernelcore) {
7287 bool mem_below_4gb_not_mirrored = false;
7288
cc6de168 7289 for_each_mem_region(r) {
342332e6
TI
7290 if (memblock_is_mirror(r))
7291 continue;
7292
d622abf7 7293 nid = memblock_get_region_node(r);
342332e6
TI
7294
7295 usable_startpfn = memblock_region_memory_base_pfn(r);
7296
7297 if (usable_startpfn < 0x100000) {
7298 mem_below_4gb_not_mirrored = true;
7299 continue;
7300 }
7301
7302 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7303 min(usable_startpfn, zone_movable_pfn[nid]) :
7304 usable_startpfn;
7305 }
7306
7307 if (mem_below_4gb_not_mirrored)
633bf2fe 7308 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7309
7310 goto out2;
7311 }
7312
7e63efef 7313 /*
a5c6d650
DR
7314 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7315 * amount of necessary memory.
7316 */
7317 if (required_kernelcore_percent)
7318 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7319 10000UL;
7320 if (required_movablecore_percent)
7321 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7322 10000UL;
7323
7324 /*
7325 * If movablecore= was specified, calculate what size of
7e63efef
MG
7326 * kernelcore that corresponds so that memory usable for
7327 * any allocation type is evenly spread. If both kernelcore
7328 * and movablecore are specified, then the value of kernelcore
7329 * will be used for required_kernelcore if it's greater than
7330 * what movablecore would have allowed.
7331 */
7332 if (required_movablecore) {
7e63efef
MG
7333 unsigned long corepages;
7334
7335 /*
7336 * Round-up so that ZONE_MOVABLE is at least as large as what
7337 * was requested by the user
7338 */
7339 required_movablecore =
7340 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7341 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7342 corepages = totalpages - required_movablecore;
7343
7344 required_kernelcore = max(required_kernelcore, corepages);
7345 }
7346
bde304bd
XQ
7347 /*
7348 * If kernelcore was not specified or kernelcore size is larger
7349 * than totalpages, there is no ZONE_MOVABLE.
7350 */
7351 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7352 goto out;
2a1e274a
MG
7353
7354 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7355 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7356
7357restart:
7358 /* Spread kernelcore memory as evenly as possible throughout nodes */
7359 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7360 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7361 unsigned long start_pfn, end_pfn;
7362
2a1e274a
MG
7363 /*
7364 * Recalculate kernelcore_node if the division per node
7365 * now exceeds what is necessary to satisfy the requested
7366 * amount of memory for the kernel
7367 */
7368 if (required_kernelcore < kernelcore_node)
7369 kernelcore_node = required_kernelcore / usable_nodes;
7370
7371 /*
7372 * As the map is walked, we track how much memory is usable
7373 * by the kernel using kernelcore_remaining. When it is
7374 * 0, the rest of the node is usable by ZONE_MOVABLE
7375 */
7376 kernelcore_remaining = kernelcore_node;
7377
7378 /* Go through each range of PFNs within this node */
c13291a5 7379 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7380 unsigned long size_pages;
7381
c13291a5 7382 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7383 if (start_pfn >= end_pfn)
7384 continue;
7385
7386 /* Account for what is only usable for kernelcore */
7387 if (start_pfn < usable_startpfn) {
7388 unsigned long kernel_pages;
7389 kernel_pages = min(end_pfn, usable_startpfn)
7390 - start_pfn;
7391
7392 kernelcore_remaining -= min(kernel_pages,
7393 kernelcore_remaining);
7394 required_kernelcore -= min(kernel_pages,
7395 required_kernelcore);
7396
7397 /* Continue if range is now fully accounted */
7398 if (end_pfn <= usable_startpfn) {
7399
7400 /*
7401 * Push zone_movable_pfn to the end so
7402 * that if we have to rebalance
7403 * kernelcore across nodes, we will
7404 * not double account here
7405 */
7406 zone_movable_pfn[nid] = end_pfn;
7407 continue;
7408 }
7409 start_pfn = usable_startpfn;
7410 }
7411
7412 /*
7413 * The usable PFN range for ZONE_MOVABLE is from
7414 * start_pfn->end_pfn. Calculate size_pages as the
7415 * number of pages used as kernelcore
7416 */
7417 size_pages = end_pfn - start_pfn;
7418 if (size_pages > kernelcore_remaining)
7419 size_pages = kernelcore_remaining;
7420 zone_movable_pfn[nid] = start_pfn + size_pages;
7421
7422 /*
7423 * Some kernelcore has been met, update counts and
7424 * break if the kernelcore for this node has been
b8af2941 7425 * satisfied
2a1e274a
MG
7426 */
7427 required_kernelcore -= min(required_kernelcore,
7428 size_pages);
7429 kernelcore_remaining -= size_pages;
7430 if (!kernelcore_remaining)
7431 break;
7432 }
7433 }
7434
7435 /*
7436 * If there is still required_kernelcore, we do another pass with one
7437 * less node in the count. This will push zone_movable_pfn[nid] further
7438 * along on the nodes that still have memory until kernelcore is
b8af2941 7439 * satisfied
2a1e274a
MG
7440 */
7441 usable_nodes--;
7442 if (usable_nodes && required_kernelcore > usable_nodes)
7443 goto restart;
7444
b2f3eebe 7445out2:
2a1e274a
MG
7446 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7447 for (nid = 0; nid < MAX_NUMNODES; nid++)
7448 zone_movable_pfn[nid] =
7449 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7450
20e6926d 7451out:
66918dcd 7452 /* restore the node_state */
4b0ef1fe 7453 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7454}
7455
4b0ef1fe
LJ
7456/* Any regular or high memory on that node ? */
7457static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7458{
37b07e41
LS
7459 enum zone_type zone_type;
7460
4b0ef1fe 7461 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7462 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7463 if (populated_zone(zone)) {
7b0e0c0e
OS
7464 if (IS_ENABLED(CONFIG_HIGHMEM))
7465 node_set_state(nid, N_HIGH_MEMORY);
7466 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7467 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7468 break;
7469 }
37b07e41 7470 }
37b07e41
LS
7471}
7472
51930df5
MR
7473/*
7474 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7475 * such cases we allow max_zone_pfn sorted in the descending order
7476 */
7477bool __weak arch_has_descending_max_zone_pfns(void)
7478{
7479 return false;
7480}
7481
c713216d 7482/**
9691a071 7483 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7484 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7485 *
7486 * This will call free_area_init_node() for each active node in the system.
7d018176 7487 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7488 * zone in each node and their holes is calculated. If the maximum PFN
7489 * between two adjacent zones match, it is assumed that the zone is empty.
7490 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7491 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7492 * starts where the previous one ended. For example, ZONE_DMA32 starts
7493 * at arch_max_dma_pfn.
7494 */
9691a071 7495void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7496{
c13291a5 7497 unsigned long start_pfn, end_pfn;
51930df5
MR
7498 int i, nid, zone;
7499 bool descending;
a6af2bc3 7500
c713216d
MG
7501 /* Record where the zone boundaries are */
7502 memset(arch_zone_lowest_possible_pfn, 0,
7503 sizeof(arch_zone_lowest_possible_pfn));
7504 memset(arch_zone_highest_possible_pfn, 0,
7505 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7506
7507 start_pfn = find_min_pfn_with_active_regions();
51930df5 7508 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7509
7510 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7511 if (descending)
7512 zone = MAX_NR_ZONES - i - 1;
7513 else
7514 zone = i;
7515
7516 if (zone == ZONE_MOVABLE)
2a1e274a 7517 continue;
90cae1fe 7518
51930df5
MR
7519 end_pfn = max(max_zone_pfn[zone], start_pfn);
7520 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7521 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7522
7523 start_pfn = end_pfn;
c713216d 7524 }
2a1e274a
MG
7525
7526 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7527 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7528 find_zone_movable_pfns_for_nodes();
c713216d 7529
c713216d 7530 /* Print out the zone ranges */
f88dfff5 7531 pr_info("Zone ranges:\n");
2a1e274a
MG
7532 for (i = 0; i < MAX_NR_ZONES; i++) {
7533 if (i == ZONE_MOVABLE)
7534 continue;
f88dfff5 7535 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7536 if (arch_zone_lowest_possible_pfn[i] ==
7537 arch_zone_highest_possible_pfn[i])
f88dfff5 7538 pr_cont("empty\n");
72f0ba02 7539 else
8d29e18a
JG
7540 pr_cont("[mem %#018Lx-%#018Lx]\n",
7541 (u64)arch_zone_lowest_possible_pfn[i]
7542 << PAGE_SHIFT,
7543 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7544 << PAGE_SHIFT) - 1);
2a1e274a
MG
7545 }
7546
7547 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7548 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7549 for (i = 0; i < MAX_NUMNODES; i++) {
7550 if (zone_movable_pfn[i])
8d29e18a
JG
7551 pr_info(" Node %d: %#018Lx\n", i,
7552 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7553 }
c713216d 7554
f46edbd1
DW
7555 /*
7556 * Print out the early node map, and initialize the
7557 * subsection-map relative to active online memory ranges to
7558 * enable future "sub-section" extensions of the memory map.
7559 */
f88dfff5 7560 pr_info("Early memory node ranges\n");
f46edbd1 7561 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7562 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7563 (u64)start_pfn << PAGE_SHIFT,
7564 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7565 subsection_map_init(start_pfn, end_pfn - start_pfn);
7566 }
c713216d
MG
7567
7568 /* Initialise every node */
708614e6 7569 mminit_verify_pageflags_layout();
8ef82866 7570 setup_nr_node_ids();
4b094b78 7571 init_unavailable_mem();
c713216d
MG
7572 for_each_online_node(nid) {
7573 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7574 free_area_init_node(nid);
37b07e41
LS
7575
7576 /* Any memory on that node */
7577 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7578 node_set_state(nid, N_MEMORY);
7579 check_for_memory(pgdat, nid);
c713216d
MG
7580 }
7581}
2a1e274a 7582
a5c6d650
DR
7583static int __init cmdline_parse_core(char *p, unsigned long *core,
7584 unsigned long *percent)
2a1e274a
MG
7585{
7586 unsigned long long coremem;
a5c6d650
DR
7587 char *endptr;
7588
2a1e274a
MG
7589 if (!p)
7590 return -EINVAL;
7591
a5c6d650
DR
7592 /* Value may be a percentage of total memory, otherwise bytes */
7593 coremem = simple_strtoull(p, &endptr, 0);
7594 if (*endptr == '%') {
7595 /* Paranoid check for percent values greater than 100 */
7596 WARN_ON(coremem > 100);
2a1e274a 7597
a5c6d650
DR
7598 *percent = coremem;
7599 } else {
7600 coremem = memparse(p, &p);
7601 /* Paranoid check that UL is enough for the coremem value */
7602 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7603
a5c6d650
DR
7604 *core = coremem >> PAGE_SHIFT;
7605 *percent = 0UL;
7606 }
2a1e274a
MG
7607 return 0;
7608}
ed7ed365 7609
7e63efef
MG
7610/*
7611 * kernelcore=size sets the amount of memory for use for allocations that
7612 * cannot be reclaimed or migrated.
7613 */
7614static int __init cmdline_parse_kernelcore(char *p)
7615{
342332e6
TI
7616 /* parse kernelcore=mirror */
7617 if (parse_option_str(p, "mirror")) {
7618 mirrored_kernelcore = true;
7619 return 0;
7620 }
7621
a5c6d650
DR
7622 return cmdline_parse_core(p, &required_kernelcore,
7623 &required_kernelcore_percent);
7e63efef
MG
7624}
7625
7626/*
7627 * movablecore=size sets the amount of memory for use for allocations that
7628 * can be reclaimed or migrated.
7629 */
7630static int __init cmdline_parse_movablecore(char *p)
7631{
a5c6d650
DR
7632 return cmdline_parse_core(p, &required_movablecore,
7633 &required_movablecore_percent);
7e63efef
MG
7634}
7635
ed7ed365 7636early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7637early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7638
c3d5f5f0
JL
7639void adjust_managed_page_count(struct page *page, long count)
7640{
9705bea5 7641 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7642 totalram_pages_add(count);
3dcc0571
JL
7643#ifdef CONFIG_HIGHMEM
7644 if (PageHighMem(page))
ca79b0c2 7645 totalhigh_pages_add(count);
3dcc0571 7646#endif
c3d5f5f0 7647}
3dcc0571 7648EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7649
e5cb113f 7650unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7651{
11199692
JL
7652 void *pos;
7653 unsigned long pages = 0;
69afade7 7654
11199692
JL
7655 start = (void *)PAGE_ALIGN((unsigned long)start);
7656 end = (void *)((unsigned long)end & PAGE_MASK);
7657 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7658 struct page *page = virt_to_page(pos);
7659 void *direct_map_addr;
7660
7661 /*
7662 * 'direct_map_addr' might be different from 'pos'
7663 * because some architectures' virt_to_page()
7664 * work with aliases. Getting the direct map
7665 * address ensures that we get a _writeable_
7666 * alias for the memset().
7667 */
7668 direct_map_addr = page_address(page);
dbe67df4 7669 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7670 memset(direct_map_addr, poison, PAGE_SIZE);
7671
7672 free_reserved_page(page);
69afade7
JL
7673 }
7674
7675 if (pages && s)
adb1fe9a
JP
7676 pr_info("Freeing %s memory: %ldK\n",
7677 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7678
7679 return pages;
7680}
7681
cfa11e08
JL
7682#ifdef CONFIG_HIGHMEM
7683void free_highmem_page(struct page *page)
7684{
7685 __free_reserved_page(page);
ca79b0c2 7686 totalram_pages_inc();
9705bea5 7687 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7688 totalhigh_pages_inc();
cfa11e08
JL
7689}
7690#endif
7691
7ee3d4e8
JL
7692
7693void __init mem_init_print_info(const char *str)
7694{
7695 unsigned long physpages, codesize, datasize, rosize, bss_size;
7696 unsigned long init_code_size, init_data_size;
7697
7698 physpages = get_num_physpages();
7699 codesize = _etext - _stext;
7700 datasize = _edata - _sdata;
7701 rosize = __end_rodata - __start_rodata;
7702 bss_size = __bss_stop - __bss_start;
7703 init_data_size = __init_end - __init_begin;
7704 init_code_size = _einittext - _sinittext;
7705
7706 /*
7707 * Detect special cases and adjust section sizes accordingly:
7708 * 1) .init.* may be embedded into .data sections
7709 * 2) .init.text.* may be out of [__init_begin, __init_end],
7710 * please refer to arch/tile/kernel/vmlinux.lds.S.
7711 * 3) .rodata.* may be embedded into .text or .data sections.
7712 */
7713#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7714 do { \
7715 if (start <= pos && pos < end && size > adj) \
7716 size -= adj; \
7717 } while (0)
7ee3d4e8
JL
7718
7719 adj_init_size(__init_begin, __init_end, init_data_size,
7720 _sinittext, init_code_size);
7721 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7722 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7723 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7724 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7725
7726#undef adj_init_size
7727
756a025f 7728 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7729#ifdef CONFIG_HIGHMEM
756a025f 7730 ", %luK highmem"
7ee3d4e8 7731#endif
756a025f
JP
7732 "%s%s)\n",
7733 nr_free_pages() << (PAGE_SHIFT - 10),
7734 physpages << (PAGE_SHIFT - 10),
7735 codesize >> 10, datasize >> 10, rosize >> 10,
7736 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7737 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7738 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7739#ifdef CONFIG_HIGHMEM
ca79b0c2 7740 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7741#endif
756a025f 7742 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7743}
7744
0e0b864e 7745/**
88ca3b94
RD
7746 * set_dma_reserve - set the specified number of pages reserved in the first zone
7747 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7748 *
013110a7 7749 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7750 * In the DMA zone, a significant percentage may be consumed by kernel image
7751 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7752 * function may optionally be used to account for unfreeable pages in the
7753 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7754 * smaller per-cpu batchsize.
0e0b864e
MG
7755 */
7756void __init set_dma_reserve(unsigned long new_dma_reserve)
7757{
7758 dma_reserve = new_dma_reserve;
7759}
7760
005fd4bb 7761static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7762{
1da177e4 7763
005fd4bb
SAS
7764 lru_add_drain_cpu(cpu);
7765 drain_pages(cpu);
9f8f2172 7766
005fd4bb
SAS
7767 /*
7768 * Spill the event counters of the dead processor
7769 * into the current processors event counters.
7770 * This artificially elevates the count of the current
7771 * processor.
7772 */
7773 vm_events_fold_cpu(cpu);
9f8f2172 7774
005fd4bb
SAS
7775 /*
7776 * Zero the differential counters of the dead processor
7777 * so that the vm statistics are consistent.
7778 *
7779 * This is only okay since the processor is dead and cannot
7780 * race with what we are doing.
7781 */
7782 cpu_vm_stats_fold(cpu);
7783 return 0;
1da177e4 7784}
1da177e4 7785
e03a5125
NP
7786#ifdef CONFIG_NUMA
7787int hashdist = HASHDIST_DEFAULT;
7788
7789static int __init set_hashdist(char *str)
7790{
7791 if (!str)
7792 return 0;
7793 hashdist = simple_strtoul(str, &str, 0);
7794 return 1;
7795}
7796__setup("hashdist=", set_hashdist);
7797#endif
7798
1da177e4
LT
7799void __init page_alloc_init(void)
7800{
005fd4bb
SAS
7801 int ret;
7802
e03a5125
NP
7803#ifdef CONFIG_NUMA
7804 if (num_node_state(N_MEMORY) == 1)
7805 hashdist = 0;
7806#endif
7807
005fd4bb
SAS
7808 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7809 "mm/page_alloc:dead", NULL,
7810 page_alloc_cpu_dead);
7811 WARN_ON(ret < 0);
1da177e4
LT
7812}
7813
cb45b0e9 7814/*
34b10060 7815 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7816 * or min_free_kbytes changes.
7817 */
7818static void calculate_totalreserve_pages(void)
7819{
7820 struct pglist_data *pgdat;
7821 unsigned long reserve_pages = 0;
2f6726e5 7822 enum zone_type i, j;
cb45b0e9
HA
7823
7824 for_each_online_pgdat(pgdat) {
281e3726
MG
7825
7826 pgdat->totalreserve_pages = 0;
7827
cb45b0e9
HA
7828 for (i = 0; i < MAX_NR_ZONES; i++) {
7829 struct zone *zone = pgdat->node_zones + i;
3484b2de 7830 long max = 0;
9705bea5 7831 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7832
7833 /* Find valid and maximum lowmem_reserve in the zone */
7834 for (j = i; j < MAX_NR_ZONES; j++) {
7835 if (zone->lowmem_reserve[j] > max)
7836 max = zone->lowmem_reserve[j];
7837 }
7838
41858966
MG
7839 /* we treat the high watermark as reserved pages. */
7840 max += high_wmark_pages(zone);
cb45b0e9 7841
3d6357de
AK
7842 if (max > managed_pages)
7843 max = managed_pages;
a8d01437 7844
281e3726 7845 pgdat->totalreserve_pages += max;
a8d01437 7846
cb45b0e9
HA
7847 reserve_pages += max;
7848 }
7849 }
7850 totalreserve_pages = reserve_pages;
7851}
7852
1da177e4
LT
7853/*
7854 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7855 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7856 * has a correct pages reserved value, so an adequate number of
7857 * pages are left in the zone after a successful __alloc_pages().
7858 */
7859static void setup_per_zone_lowmem_reserve(void)
7860{
7861 struct pglist_data *pgdat;
470c61d7 7862 enum zone_type i, j;
1da177e4 7863
ec936fc5 7864 for_each_online_pgdat(pgdat) {
470c61d7
LS
7865 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7866 struct zone *zone = &pgdat->node_zones[i];
7867 int ratio = sysctl_lowmem_reserve_ratio[i];
7868 bool clear = !ratio || !zone_managed_pages(zone);
7869 unsigned long managed_pages = 0;
7870
7871 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7872 if (clear) {
7873 zone->lowmem_reserve[j] = 0;
d3cda233 7874 } else {
470c61d7
LS
7875 struct zone *upper_zone = &pgdat->node_zones[j];
7876
7877 managed_pages += zone_managed_pages(upper_zone);
7878 zone->lowmem_reserve[j] = managed_pages / ratio;
d3cda233 7879 }
1da177e4
LT
7880 }
7881 }
7882 }
cb45b0e9
HA
7883
7884 /* update totalreserve_pages */
7885 calculate_totalreserve_pages();
1da177e4
LT
7886}
7887
cfd3da1e 7888static void __setup_per_zone_wmarks(void)
1da177e4
LT
7889{
7890 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7891 unsigned long lowmem_pages = 0;
7892 struct zone *zone;
7893 unsigned long flags;
7894
7895 /* Calculate total number of !ZONE_HIGHMEM pages */
7896 for_each_zone(zone) {
7897 if (!is_highmem(zone))
9705bea5 7898 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7899 }
7900
7901 for_each_zone(zone) {
ac924c60
AM
7902 u64 tmp;
7903
1125b4e3 7904 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7905 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7906 do_div(tmp, lowmem_pages);
1da177e4
LT
7907 if (is_highmem(zone)) {
7908 /*
669ed175
NP
7909 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7910 * need highmem pages, so cap pages_min to a small
7911 * value here.
7912 *
41858966 7913 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7914 * deltas control async page reclaim, and so should
669ed175 7915 * not be capped for highmem.
1da177e4 7916 */
90ae8d67 7917 unsigned long min_pages;
1da177e4 7918
9705bea5 7919 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7920 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7921 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7922 } else {
669ed175
NP
7923 /*
7924 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7925 * proportionate to the zone's size.
7926 */
a9214443 7927 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7928 }
7929
795ae7a0
JW
7930 /*
7931 * Set the kswapd watermarks distance according to the
7932 * scale factor in proportion to available memory, but
7933 * ensure a minimum size on small systems.
7934 */
7935 tmp = max_t(u64, tmp >> 2,
9705bea5 7936 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7937 watermark_scale_factor, 10000));
7938
aa092591 7939 zone->watermark_boost = 0;
a9214443
MG
7940 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7941 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7942
1125b4e3 7943 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7944 }
cb45b0e9
HA
7945
7946 /* update totalreserve_pages */
7947 calculate_totalreserve_pages();
1da177e4
LT
7948}
7949
cfd3da1e
MG
7950/**
7951 * setup_per_zone_wmarks - called when min_free_kbytes changes
7952 * or when memory is hot-{added|removed}
7953 *
7954 * Ensures that the watermark[min,low,high] values for each zone are set
7955 * correctly with respect to min_free_kbytes.
7956 */
7957void setup_per_zone_wmarks(void)
7958{
b93e0f32
MH
7959 static DEFINE_SPINLOCK(lock);
7960
7961 spin_lock(&lock);
cfd3da1e 7962 __setup_per_zone_wmarks();
b93e0f32 7963 spin_unlock(&lock);
cfd3da1e
MG
7964}
7965
1da177e4
LT
7966/*
7967 * Initialise min_free_kbytes.
7968 *
7969 * For small machines we want it small (128k min). For large machines
8beeae86 7970 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
7971 * bandwidth does not increase linearly with machine size. We use
7972 *
b8af2941 7973 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7974 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7975 *
7976 * which yields
7977 *
7978 * 16MB: 512k
7979 * 32MB: 724k
7980 * 64MB: 1024k
7981 * 128MB: 1448k
7982 * 256MB: 2048k
7983 * 512MB: 2896k
7984 * 1024MB: 4096k
7985 * 2048MB: 5792k
7986 * 4096MB: 8192k
7987 * 8192MB: 11584k
7988 * 16384MB: 16384k
7989 */
1b79acc9 7990int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7991{
7992 unsigned long lowmem_kbytes;
5f12733e 7993 int new_min_free_kbytes;
1da177e4
LT
7994
7995 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7996 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7997
7998 if (new_min_free_kbytes > user_min_free_kbytes) {
7999 min_free_kbytes = new_min_free_kbytes;
8000 if (min_free_kbytes < 128)
8001 min_free_kbytes = 128;
ee8eb9a5
JS
8002 if (min_free_kbytes > 262144)
8003 min_free_kbytes = 262144;
5f12733e
MH
8004 } else {
8005 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8006 new_min_free_kbytes, user_min_free_kbytes);
8007 }
bc75d33f 8008 setup_per_zone_wmarks();
a6cccdc3 8009 refresh_zone_stat_thresholds();
1da177e4 8010 setup_per_zone_lowmem_reserve();
6423aa81
JK
8011
8012#ifdef CONFIG_NUMA
8013 setup_min_unmapped_ratio();
8014 setup_min_slab_ratio();
8015#endif
8016
4aab2be0
VB
8017 khugepaged_min_free_kbytes_update();
8018
1da177e4
LT
8019 return 0;
8020}
e08d3fdf 8021postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8022
8023/*
b8af2941 8024 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8025 * that we can call two helper functions whenever min_free_kbytes
8026 * changes.
8027 */
cccad5b9 8028int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8029 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8030{
da8c757b
HP
8031 int rc;
8032
8033 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8034 if (rc)
8035 return rc;
8036
5f12733e
MH
8037 if (write) {
8038 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8039 setup_per_zone_wmarks();
5f12733e 8040 }
1da177e4
LT
8041 return 0;
8042}
8043
795ae7a0 8044int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8045 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8046{
8047 int rc;
8048
8049 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8050 if (rc)
8051 return rc;
8052
8053 if (write)
8054 setup_per_zone_wmarks();
8055
8056 return 0;
8057}
8058
9614634f 8059#ifdef CONFIG_NUMA
6423aa81 8060static void setup_min_unmapped_ratio(void)
9614634f 8061{
6423aa81 8062 pg_data_t *pgdat;
9614634f 8063 struct zone *zone;
9614634f 8064
a5f5f91d 8065 for_each_online_pgdat(pgdat)
81cbcbc2 8066 pgdat->min_unmapped_pages = 0;
a5f5f91d 8067
9614634f 8068 for_each_zone(zone)
9705bea5
AK
8069 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8070 sysctl_min_unmapped_ratio) / 100;
9614634f 8071}
0ff38490 8072
6423aa81
JK
8073
8074int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8075 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8076{
0ff38490
CL
8077 int rc;
8078
8d65af78 8079 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8080 if (rc)
8081 return rc;
8082
6423aa81
JK
8083 setup_min_unmapped_ratio();
8084
8085 return 0;
8086}
8087
8088static void setup_min_slab_ratio(void)
8089{
8090 pg_data_t *pgdat;
8091 struct zone *zone;
8092
a5f5f91d
MG
8093 for_each_online_pgdat(pgdat)
8094 pgdat->min_slab_pages = 0;
8095
0ff38490 8096 for_each_zone(zone)
9705bea5
AK
8097 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8098 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8099}
8100
8101int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8102 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8103{
8104 int rc;
8105
8106 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8107 if (rc)
8108 return rc;
8109
8110 setup_min_slab_ratio();
8111
0ff38490
CL
8112 return 0;
8113}
9614634f
CL
8114#endif
8115
1da177e4
LT
8116/*
8117 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8118 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8119 * whenever sysctl_lowmem_reserve_ratio changes.
8120 *
8121 * The reserve ratio obviously has absolutely no relation with the
41858966 8122 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8123 * if in function of the boot time zone sizes.
8124 */
cccad5b9 8125int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8126 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8127{
86aaf255
BH
8128 int i;
8129
8d65af78 8130 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8131
8132 for (i = 0; i < MAX_NR_ZONES; i++) {
8133 if (sysctl_lowmem_reserve_ratio[i] < 1)
8134 sysctl_lowmem_reserve_ratio[i] = 0;
8135 }
8136
1da177e4
LT
8137 setup_per_zone_lowmem_reserve();
8138 return 0;
8139}
8140
8ad4b1fb
RS
8141/*
8142 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8143 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8144 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8145 */
cccad5b9 8146int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8147 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8148{
8149 struct zone *zone;
7cd2b0a3 8150 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8151 int ret;
8152
7cd2b0a3
DR
8153 mutex_lock(&pcp_batch_high_lock);
8154 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8155
8d65af78 8156 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8157 if (!write || ret < 0)
8158 goto out;
8159
8160 /* Sanity checking to avoid pcp imbalance */
8161 if (percpu_pagelist_fraction &&
8162 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8163 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8164 ret = -EINVAL;
8165 goto out;
8166 }
8167
8168 /* No change? */
8169 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8170 goto out;
c8e251fa 8171
cb1ef534 8172 for_each_populated_zone(zone)
0a8b4f1d 8173 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8174out:
c8e251fa 8175 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8176 return ret;
8ad4b1fb
RS
8177}
8178
f6f34b43
SD
8179#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8180/*
8181 * Returns the number of pages that arch has reserved but
8182 * is not known to alloc_large_system_hash().
8183 */
8184static unsigned long __init arch_reserved_kernel_pages(void)
8185{
8186 return 0;
8187}
8188#endif
8189
9017217b
PT
8190/*
8191 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8192 * machines. As memory size is increased the scale is also increased but at
8193 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8194 * quadruples the scale is increased by one, which means the size of hash table
8195 * only doubles, instead of quadrupling as well.
8196 * Because 32-bit systems cannot have large physical memory, where this scaling
8197 * makes sense, it is disabled on such platforms.
8198 */
8199#if __BITS_PER_LONG > 32
8200#define ADAPT_SCALE_BASE (64ul << 30)
8201#define ADAPT_SCALE_SHIFT 2
8202#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8203#endif
8204
1da177e4
LT
8205/*
8206 * allocate a large system hash table from bootmem
8207 * - it is assumed that the hash table must contain an exact power-of-2
8208 * quantity of entries
8209 * - limit is the number of hash buckets, not the total allocation size
8210 */
8211void *__init alloc_large_system_hash(const char *tablename,
8212 unsigned long bucketsize,
8213 unsigned long numentries,
8214 int scale,
8215 int flags,
8216 unsigned int *_hash_shift,
8217 unsigned int *_hash_mask,
31fe62b9
TB
8218 unsigned long low_limit,
8219 unsigned long high_limit)
1da177e4 8220{
31fe62b9 8221 unsigned long long max = high_limit;
1da177e4
LT
8222 unsigned long log2qty, size;
8223 void *table = NULL;
3749a8f0 8224 gfp_t gfp_flags;
ec11408a 8225 bool virt;
1da177e4
LT
8226
8227 /* allow the kernel cmdline to have a say */
8228 if (!numentries) {
8229 /* round applicable memory size up to nearest megabyte */
04903664 8230 numentries = nr_kernel_pages;
f6f34b43 8231 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8232
8233 /* It isn't necessary when PAGE_SIZE >= 1MB */
8234 if (PAGE_SHIFT < 20)
8235 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8236
9017217b
PT
8237#if __BITS_PER_LONG > 32
8238 if (!high_limit) {
8239 unsigned long adapt;
8240
8241 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8242 adapt <<= ADAPT_SCALE_SHIFT)
8243 scale++;
8244 }
8245#endif
8246
1da177e4
LT
8247 /* limit to 1 bucket per 2^scale bytes of low memory */
8248 if (scale > PAGE_SHIFT)
8249 numentries >>= (scale - PAGE_SHIFT);
8250 else
8251 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8252
8253 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8254 if (unlikely(flags & HASH_SMALL)) {
8255 /* Makes no sense without HASH_EARLY */
8256 WARN_ON(!(flags & HASH_EARLY));
8257 if (!(numentries >> *_hash_shift)) {
8258 numentries = 1UL << *_hash_shift;
8259 BUG_ON(!numentries);
8260 }
8261 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8262 numentries = PAGE_SIZE / bucketsize;
1da177e4 8263 }
6e692ed3 8264 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8265
8266 /* limit allocation size to 1/16 total memory by default */
8267 if (max == 0) {
8268 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8269 do_div(max, bucketsize);
8270 }
074b8517 8271 max = min(max, 0x80000000ULL);
1da177e4 8272
31fe62b9
TB
8273 if (numentries < low_limit)
8274 numentries = low_limit;
1da177e4
LT
8275 if (numentries > max)
8276 numentries = max;
8277
f0d1b0b3 8278 log2qty = ilog2(numentries);
1da177e4 8279
3749a8f0 8280 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8281 do {
ec11408a 8282 virt = false;
1da177e4 8283 size = bucketsize << log2qty;
ea1f5f37
PT
8284 if (flags & HASH_EARLY) {
8285 if (flags & HASH_ZERO)
26fb3dae 8286 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8287 else
7e1c4e27
MR
8288 table = memblock_alloc_raw(size,
8289 SMP_CACHE_BYTES);
ec11408a 8290 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8291 table = __vmalloc(size, gfp_flags);
ec11408a 8292 virt = true;
ea1f5f37 8293 } else {
1037b83b
ED
8294 /*
8295 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8296 * some pages at the end of hash table which
8297 * alloc_pages_exact() automatically does
1037b83b 8298 */
ec11408a
NP
8299 table = alloc_pages_exact(size, gfp_flags);
8300 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8301 }
8302 } while (!table && size > PAGE_SIZE && --log2qty);
8303
8304 if (!table)
8305 panic("Failed to allocate %s hash table\n", tablename);
8306
ec11408a
NP
8307 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8308 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8309 virt ? "vmalloc" : "linear");
1da177e4
LT
8310
8311 if (_hash_shift)
8312 *_hash_shift = log2qty;
8313 if (_hash_mask)
8314 *_hash_mask = (1 << log2qty) - 1;
8315
8316 return table;
8317}
a117e66e 8318
a5d76b54 8319/*
80934513 8320 * This function checks whether pageblock includes unmovable pages or not.
80934513 8321 *
b8af2941 8322 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8323 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8324 * check without lock_page also may miss some movable non-lru pages at
8325 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8326 *
8327 * Returns a page without holding a reference. If the caller wants to
047b9967 8328 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8329 * cannot get removed (e.g., via memory unplug) concurrently.
8330 *
a5d76b54 8331 */
4a55c047
QC
8332struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8333 int migratetype, int flags)
49ac8255 8334{
1a9f2191
QC
8335 unsigned long iter = 0;
8336 unsigned long pfn = page_to_pfn(page);
6a654e36 8337 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8338
1a9f2191
QC
8339 if (is_migrate_cma_page(page)) {
8340 /*
8341 * CMA allocations (alloc_contig_range) really need to mark
8342 * isolate CMA pageblocks even when they are not movable in fact
8343 * so consider them movable here.
8344 */
8345 if (is_migrate_cma(migratetype))
4a55c047 8346 return NULL;
1a9f2191 8347
3d680bdf 8348 return page;
1a9f2191 8349 }
4da2ce25 8350
6a654e36 8351 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8352 if (!pfn_valid_within(pfn + iter))
49ac8255 8353 continue;
29723fcc 8354
fe4c86c9 8355 page = pfn_to_page(pfn + iter);
c8721bbb 8356
c9c510dc
DH
8357 /*
8358 * Both, bootmem allocations and memory holes are marked
8359 * PG_reserved and are unmovable. We can even have unmovable
8360 * allocations inside ZONE_MOVABLE, for example when
8361 * specifying "movablecore".
8362 */
d7ab3672 8363 if (PageReserved(page))
3d680bdf 8364 return page;
d7ab3672 8365
9d789999
MH
8366 /*
8367 * If the zone is movable and we have ruled out all reserved
8368 * pages then it should be reasonably safe to assume the rest
8369 * is movable.
8370 */
8371 if (zone_idx(zone) == ZONE_MOVABLE)
8372 continue;
8373
c8721bbb
NH
8374 /*
8375 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8376 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8377 * We need not scan over tail pages because we don't
c8721bbb
NH
8378 * handle each tail page individually in migration.
8379 */
1da2f328 8380 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8381 struct page *head = compound_head(page);
8382 unsigned int skip_pages;
464c7ffb 8383
1da2f328
RR
8384 if (PageHuge(page)) {
8385 if (!hugepage_migration_supported(page_hstate(head)))
8386 return page;
8387 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8388 return page;
1da2f328 8389 }
464c7ffb 8390
d8c6546b 8391 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8392 iter += skip_pages - 1;
c8721bbb
NH
8393 continue;
8394 }
8395
97d255c8
MK
8396 /*
8397 * We can't use page_count without pin a page
8398 * because another CPU can free compound page.
8399 * This check already skips compound tails of THP
0139aa7b 8400 * because their page->_refcount is zero at all time.
97d255c8 8401 */
fe896d18 8402 if (!page_ref_count(page)) {
49ac8255 8403 if (PageBuddy(page))
ab130f91 8404 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8405 continue;
8406 }
97d255c8 8407
b023f468
WC
8408 /*
8409 * The HWPoisoned page may be not in buddy system, and
8410 * page_count() is not 0.
8411 */
756d25be 8412 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8413 continue;
8414
aa218795
DH
8415 /*
8416 * We treat all PageOffline() pages as movable when offlining
8417 * to give drivers a chance to decrement their reference count
8418 * in MEM_GOING_OFFLINE in order to indicate that these pages
8419 * can be offlined as there are no direct references anymore.
8420 * For actually unmovable PageOffline() where the driver does
8421 * not support this, we will fail later when trying to actually
8422 * move these pages that still have a reference count > 0.
8423 * (false negatives in this function only)
8424 */
8425 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8426 continue;
8427
fe4c86c9 8428 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8429 continue;
8430
49ac8255 8431 /*
6b4f7799
JW
8432 * If there are RECLAIMABLE pages, we need to check
8433 * it. But now, memory offline itself doesn't call
8434 * shrink_node_slabs() and it still to be fixed.
49ac8255 8435 */
3d680bdf 8436 return page;
49ac8255 8437 }
4a55c047 8438 return NULL;
49ac8255
KH
8439}
8440
8df995f6 8441#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8442static unsigned long pfn_max_align_down(unsigned long pfn)
8443{
8444 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8445 pageblock_nr_pages) - 1);
8446}
8447
8448static unsigned long pfn_max_align_up(unsigned long pfn)
8449{
8450 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8451 pageblock_nr_pages));
8452}
8453
041d3a8c 8454/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8455static int __alloc_contig_migrate_range(struct compact_control *cc,
8456 unsigned long start, unsigned long end)
041d3a8c
MN
8457{
8458 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8459 unsigned int nr_reclaimed;
041d3a8c
MN
8460 unsigned long pfn = start;
8461 unsigned int tries = 0;
8462 int ret = 0;
8b94e0b8
JK
8463 struct migration_target_control mtc = {
8464 .nid = zone_to_nid(cc->zone),
8465 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8466 };
041d3a8c 8467
be49a6e1 8468 migrate_prep();
041d3a8c 8469
bb13ffeb 8470 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8471 if (fatal_signal_pending(current)) {
8472 ret = -EINTR;
8473 break;
8474 }
8475
bb13ffeb
MG
8476 if (list_empty(&cc->migratepages)) {
8477 cc->nr_migratepages = 0;
edc2ca61 8478 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8479 if (!pfn) {
8480 ret = -EINTR;
8481 break;
8482 }
8483 tries = 0;
8484 } else if (++tries == 5) {
8485 ret = ret < 0 ? ret : -EBUSY;
8486 break;
8487 }
8488
beb51eaa
MK
8489 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8490 &cc->migratepages);
8491 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8492
8b94e0b8
JK
8493 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8494 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8495 }
2a6f5124
SP
8496 if (ret < 0) {
8497 putback_movable_pages(&cc->migratepages);
8498 return ret;
8499 }
8500 return 0;
041d3a8c
MN
8501}
8502
8503/**
8504 * alloc_contig_range() -- tries to allocate given range of pages
8505 * @start: start PFN to allocate
8506 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8507 * @migratetype: migratetype of the underlaying pageblocks (either
8508 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8509 * in range must have the same migratetype and it must
8510 * be either of the two.
ca96b625 8511 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8512 *
8513 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8514 * aligned. The PFN range must belong to a single zone.
041d3a8c 8515 *
2c7452a0
MK
8516 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8517 * pageblocks in the range. Once isolated, the pageblocks should not
8518 * be modified by others.
041d3a8c 8519 *
a862f68a 8520 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8521 * pages which PFN is in [start, end) are allocated for the caller and
8522 * need to be freed with free_contig_range().
8523 */
0815f3d8 8524int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8525 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8526{
041d3a8c 8527 unsigned long outer_start, outer_end;
d00181b9
KS
8528 unsigned int order;
8529 int ret = 0;
041d3a8c 8530
bb13ffeb
MG
8531 struct compact_control cc = {
8532 .nr_migratepages = 0,
8533 .order = -1,
8534 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8535 .mode = MIGRATE_SYNC,
bb13ffeb 8536 .ignore_skip_hint = true,
2583d671 8537 .no_set_skip_hint = true,
7dea19f9 8538 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8539 .alloc_contig = true,
bb13ffeb
MG
8540 };
8541 INIT_LIST_HEAD(&cc.migratepages);
8542
041d3a8c
MN
8543 /*
8544 * What we do here is we mark all pageblocks in range as
8545 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8546 * have different sizes, and due to the way page allocator
8547 * work, we align the range to biggest of the two pages so
8548 * that page allocator won't try to merge buddies from
8549 * different pageblocks and change MIGRATE_ISOLATE to some
8550 * other migration type.
8551 *
8552 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8553 * migrate the pages from an unaligned range (ie. pages that
8554 * we are interested in). This will put all the pages in
8555 * range back to page allocator as MIGRATE_ISOLATE.
8556 *
8557 * When this is done, we take the pages in range from page
8558 * allocator removing them from the buddy system. This way
8559 * page allocator will never consider using them.
8560 *
8561 * This lets us mark the pageblocks back as
8562 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8563 * aligned range but not in the unaligned, original range are
8564 * put back to page allocator so that buddy can use them.
8565 */
8566
8567 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8568 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8569 if (ret)
86a595f9 8570 return ret;
041d3a8c 8571
7612921f
VB
8572 drain_all_pages(cc.zone);
8573
8ef5849f
JK
8574 /*
8575 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8576 * So, just fall through. test_pages_isolated() has a tracepoint
8577 * which will report the busy page.
8578 *
8579 * It is possible that busy pages could become available before
8580 * the call to test_pages_isolated, and the range will actually be
8581 * allocated. So, if we fall through be sure to clear ret so that
8582 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8583 */
bb13ffeb 8584 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8585 if (ret && ret != -EBUSY)
041d3a8c 8586 goto done;
63cd4489 8587 ret =0;
041d3a8c
MN
8588
8589 /*
8590 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8591 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8592 * more, all pages in [start, end) are free in page allocator.
8593 * What we are going to do is to allocate all pages from
8594 * [start, end) (that is remove them from page allocator).
8595 *
8596 * The only problem is that pages at the beginning and at the
8597 * end of interesting range may be not aligned with pages that
8598 * page allocator holds, ie. they can be part of higher order
8599 * pages. Because of this, we reserve the bigger range and
8600 * once this is done free the pages we are not interested in.
8601 *
8602 * We don't have to hold zone->lock here because the pages are
8603 * isolated thus they won't get removed from buddy.
8604 */
8605
8606 lru_add_drain_all();
041d3a8c
MN
8607
8608 order = 0;
8609 outer_start = start;
8610 while (!PageBuddy(pfn_to_page(outer_start))) {
8611 if (++order >= MAX_ORDER) {
8ef5849f
JK
8612 outer_start = start;
8613 break;
041d3a8c
MN
8614 }
8615 outer_start &= ~0UL << order;
8616 }
8617
8ef5849f 8618 if (outer_start != start) {
ab130f91 8619 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8620
8621 /*
8622 * outer_start page could be small order buddy page and
8623 * it doesn't include start page. Adjust outer_start
8624 * in this case to report failed page properly
8625 * on tracepoint in test_pages_isolated()
8626 */
8627 if (outer_start + (1UL << order) <= start)
8628 outer_start = start;
8629 }
8630
041d3a8c 8631 /* Make sure the range is really isolated. */
756d25be 8632 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8633 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8634 __func__, outer_start, end);
041d3a8c
MN
8635 ret = -EBUSY;
8636 goto done;
8637 }
8638
49f223a9 8639 /* Grab isolated pages from freelists. */
bb13ffeb 8640 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8641 if (!outer_end) {
8642 ret = -EBUSY;
8643 goto done;
8644 }
8645
8646 /* Free head and tail (if any) */
8647 if (start != outer_start)
8648 free_contig_range(outer_start, start - outer_start);
8649 if (end != outer_end)
8650 free_contig_range(end, outer_end - end);
8651
8652done:
8653 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8654 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8655 return ret;
8656}
255f5985 8657EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8658
8659static int __alloc_contig_pages(unsigned long start_pfn,
8660 unsigned long nr_pages, gfp_t gfp_mask)
8661{
8662 unsigned long end_pfn = start_pfn + nr_pages;
8663
8664 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8665 gfp_mask);
8666}
8667
8668static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8669 unsigned long nr_pages)
8670{
8671 unsigned long i, end_pfn = start_pfn + nr_pages;
8672 struct page *page;
8673
8674 for (i = start_pfn; i < end_pfn; i++) {
8675 page = pfn_to_online_page(i);
8676 if (!page)
8677 return false;
8678
8679 if (page_zone(page) != z)
8680 return false;
8681
8682 if (PageReserved(page))
8683 return false;
8684
8685 if (page_count(page) > 0)
8686 return false;
8687
8688 if (PageHuge(page))
8689 return false;
8690 }
8691 return true;
8692}
8693
8694static bool zone_spans_last_pfn(const struct zone *zone,
8695 unsigned long start_pfn, unsigned long nr_pages)
8696{
8697 unsigned long last_pfn = start_pfn + nr_pages - 1;
8698
8699 return zone_spans_pfn(zone, last_pfn);
8700}
8701
8702/**
8703 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8704 * @nr_pages: Number of contiguous pages to allocate
8705 * @gfp_mask: GFP mask to limit search and used during compaction
8706 * @nid: Target node
8707 * @nodemask: Mask for other possible nodes
8708 *
8709 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8710 * on an applicable zonelist to find a contiguous pfn range which can then be
8711 * tried for allocation with alloc_contig_range(). This routine is intended
8712 * for allocation requests which can not be fulfilled with the buddy allocator.
8713 *
8714 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8715 * power of two then the alignment is guaranteed to be to the given nr_pages
8716 * (e.g. 1GB request would be aligned to 1GB).
8717 *
8718 * Allocated pages can be freed with free_contig_range() or by manually calling
8719 * __free_page() on each allocated page.
8720 *
8721 * Return: pointer to contiguous pages on success, or NULL if not successful.
8722 */
8723struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8724 int nid, nodemask_t *nodemask)
8725{
8726 unsigned long ret, pfn, flags;
8727 struct zonelist *zonelist;
8728 struct zone *zone;
8729 struct zoneref *z;
8730
8731 zonelist = node_zonelist(nid, gfp_mask);
8732 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8733 gfp_zone(gfp_mask), nodemask) {
8734 spin_lock_irqsave(&zone->lock, flags);
8735
8736 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8737 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8738 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8739 /*
8740 * We release the zone lock here because
8741 * alloc_contig_range() will also lock the zone
8742 * at some point. If there's an allocation
8743 * spinning on this lock, it may win the race
8744 * and cause alloc_contig_range() to fail...
8745 */
8746 spin_unlock_irqrestore(&zone->lock, flags);
8747 ret = __alloc_contig_pages(pfn, nr_pages,
8748 gfp_mask);
8749 if (!ret)
8750 return pfn_to_page(pfn);
8751 spin_lock_irqsave(&zone->lock, flags);
8752 }
8753 pfn += nr_pages;
8754 }
8755 spin_unlock_irqrestore(&zone->lock, flags);
8756 }
8757 return NULL;
8758}
4eb0716e 8759#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8760
4eb0716e 8761void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8762{
bcc2b02f
MS
8763 unsigned int count = 0;
8764
8765 for (; nr_pages--; pfn++) {
8766 struct page *page = pfn_to_page(pfn);
8767
8768 count += page_count(page) != 1;
8769 __free_page(page);
8770 }
8771 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8772}
255f5985 8773EXPORT_SYMBOL(free_contig_range);
041d3a8c 8774
0a647f38
CS
8775/*
8776 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8777 * page high values need to be recalulated.
8778 */
4ed7e022
JL
8779void __meminit zone_pcp_update(struct zone *zone)
8780{
c8e251fa 8781 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8782 zone_set_pageset_high_and_batch(zone);
c8e251fa 8783 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8784}
4ed7e022 8785
ec6e8c7e
VB
8786/*
8787 * Effectively disable pcplists for the zone by setting the high limit to 0
8788 * and draining all cpus. A concurrent page freeing on another CPU that's about
8789 * to put the page on pcplist will either finish before the drain and the page
8790 * will be drained, or observe the new high limit and skip the pcplist.
8791 *
8792 * Must be paired with a call to zone_pcp_enable().
8793 */
8794void zone_pcp_disable(struct zone *zone)
8795{
8796 mutex_lock(&pcp_batch_high_lock);
8797 __zone_set_pageset_high_and_batch(zone, 0, 1);
8798 __drain_all_pages(zone, true);
8799}
8800
8801void zone_pcp_enable(struct zone *zone)
8802{
8803 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8804 mutex_unlock(&pcp_batch_high_lock);
8805}
8806
340175b7
JL
8807void zone_pcp_reset(struct zone *zone)
8808{
8809 unsigned long flags;
5a883813
MK
8810 int cpu;
8811 struct per_cpu_pageset *pset;
340175b7
JL
8812
8813 /* avoid races with drain_pages() */
8814 local_irq_save(flags);
8815 if (zone->pageset != &boot_pageset) {
5a883813
MK
8816 for_each_online_cpu(cpu) {
8817 pset = per_cpu_ptr(zone->pageset, cpu);
8818 drain_zonestat(zone, pset);
8819 }
340175b7
JL
8820 free_percpu(zone->pageset);
8821 zone->pageset = &boot_pageset;
8822 }
8823 local_irq_restore(flags);
8824}
8825
6dcd73d7 8826#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8827/*
257bea71
DH
8828 * All pages in the range must be in a single zone, must not contain holes,
8829 * must span full sections, and must be isolated before calling this function.
0c0e6195 8830 */
257bea71 8831void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 8832{
257bea71 8833 unsigned long pfn = start_pfn;
0c0e6195
KH
8834 struct page *page;
8835 struct zone *zone;
0ee5f4f3 8836 unsigned int order;
0c0e6195 8837 unsigned long flags;
5557c766 8838
2d070eab 8839 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8840 zone = page_zone(pfn_to_page(pfn));
8841 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 8842 while (pfn < end_pfn) {
0c0e6195 8843 page = pfn_to_page(pfn);
b023f468
WC
8844 /*
8845 * The HWPoisoned page may be not in buddy system, and
8846 * page_count() is not 0.
8847 */
8848 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8849 pfn++;
b023f468
WC
8850 continue;
8851 }
aa218795
DH
8852 /*
8853 * At this point all remaining PageOffline() pages have a
8854 * reference count of 0 and can simply be skipped.
8855 */
8856 if (PageOffline(page)) {
8857 BUG_ON(page_count(page));
8858 BUG_ON(PageBuddy(page));
8859 pfn++;
aa218795
DH
8860 continue;
8861 }
b023f468 8862
0c0e6195
KH
8863 BUG_ON(page_count(page));
8864 BUG_ON(!PageBuddy(page));
ab130f91 8865 order = buddy_order(page);
6ab01363 8866 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8867 pfn += (1 << order);
8868 }
8869 spin_unlock_irqrestore(&zone->lock, flags);
8870}
8871#endif
8d22ba1b 8872
8d22ba1b
WF
8873bool is_free_buddy_page(struct page *page)
8874{
8875 struct zone *zone = page_zone(page);
8876 unsigned long pfn = page_to_pfn(page);
8877 unsigned long flags;
7aeb09f9 8878 unsigned int order;
8d22ba1b
WF
8879
8880 spin_lock_irqsave(&zone->lock, flags);
8881 for (order = 0; order < MAX_ORDER; order++) {
8882 struct page *page_head = page - (pfn & ((1 << order) - 1));
8883
ab130f91 8884 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
8885 break;
8886 }
8887 spin_unlock_irqrestore(&zone->lock, flags);
8888
8889 return order < MAX_ORDER;
8890}
d4ae9916
NH
8891
8892#ifdef CONFIG_MEMORY_FAILURE
8893/*
06be6ff3
OS
8894 * Break down a higher-order page in sub-pages, and keep our target out of
8895 * buddy allocator.
d4ae9916 8896 */
06be6ff3
OS
8897static void break_down_buddy_pages(struct zone *zone, struct page *page,
8898 struct page *target, int low, int high,
8899 int migratetype)
8900{
8901 unsigned long size = 1 << high;
8902 struct page *current_buddy, *next_page;
8903
8904 while (high > low) {
8905 high--;
8906 size >>= 1;
8907
8908 if (target >= &page[size]) {
8909 next_page = page + size;
8910 current_buddy = page;
8911 } else {
8912 next_page = page;
8913 current_buddy = page + size;
8914 }
8915
8916 if (set_page_guard(zone, current_buddy, high, migratetype))
8917 continue;
8918
8919 if (current_buddy != target) {
8920 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 8921 set_buddy_order(current_buddy, high);
06be6ff3
OS
8922 page = next_page;
8923 }
8924 }
8925}
8926
8927/*
8928 * Take a page that will be marked as poisoned off the buddy allocator.
8929 */
8930bool take_page_off_buddy(struct page *page)
d4ae9916
NH
8931{
8932 struct zone *zone = page_zone(page);
8933 unsigned long pfn = page_to_pfn(page);
8934 unsigned long flags;
8935 unsigned int order;
06be6ff3 8936 bool ret = false;
d4ae9916
NH
8937
8938 spin_lock_irqsave(&zone->lock, flags);
8939 for (order = 0; order < MAX_ORDER; order++) {
8940 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 8941 int page_order = buddy_order(page_head);
d4ae9916 8942
ab130f91 8943 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
8944 unsigned long pfn_head = page_to_pfn(page_head);
8945 int migratetype = get_pfnblock_migratetype(page_head,
8946 pfn_head);
8947
ab130f91 8948 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 8949 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 8950 page_order, migratetype);
06be6ff3 8951 ret = true;
d4ae9916
NH
8952 break;
8953 }
06be6ff3
OS
8954 if (page_count(page_head) > 0)
8955 break;
d4ae9916
NH
8956 }
8957 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 8958 return ret;
d4ae9916
NH
8959}
8960#endif