Merge tag 'nfs-for-5.0-2' of git://git.linux-nfs.org/projects/anna/linux-nfs
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
ca79b0c2 19#include <linux/highmem.h>
1da177e4
LT
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
10ed273f 23#include <linux/jiffies.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
a6cccdc3 42#include <linux/vmstat.h>
4be38e35 43#include <linux/mempolicy.h>
4b94ffdc 44#include <linux/memremap.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
d379f01d 56#include <trace/events/oom.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
5b3cc15a 62#include <linux/sched/mm.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
4949148a 65#include <linux/memcontrol.h>
42c269c8 66#include <linux/ftrace.h>
d92a8cfc 67#include <linux/lockdep.h>
556b969a 68#include <linux/nmi.h>
eb414681 69#include <linux/psi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53 99/* work_structs for global per-cpu drains */
d9367bd0
WY
100struct pcpu_drain {
101 struct zone *zone;
102 struct work_struct work;
103};
bd233f53 104DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 105DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 106
38addce8 107#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 108volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
109EXPORT_SYMBOL(latent_entropy);
110#endif
111
1da177e4 112/*
13808910 113 * Array of node states.
1da177e4 114 */
13808910
CL
115nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
116 [N_POSSIBLE] = NODE_MASK_ALL,
117 [N_ONLINE] = { { [0] = 1UL } },
118#ifndef CONFIG_NUMA
119 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
120#ifdef CONFIG_HIGHMEM
121 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 122#endif
20b2f52b 123 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
124 [N_CPU] = { { [0] = 1UL } },
125#endif /* NUMA */
126};
127EXPORT_SYMBOL(node_states);
128
ca79b0c2
AK
129atomic_long_t _totalram_pages __read_mostly;
130EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 131unsigned long totalreserve_pages __read_mostly;
e48322ab 132unsigned long totalcma_pages __read_mostly;
ab8fabd4 133
1b76b02f 134int percpu_pagelist_fraction;
dcce284a 135gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 136
bb14c2c7
VB
137/*
138 * A cached value of the page's pageblock's migratetype, used when the page is
139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
140 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
141 * Also the migratetype set in the page does not necessarily match the pcplist
142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
143 * other index - this ensures that it will be put on the correct CMA freelist.
144 */
145static inline int get_pcppage_migratetype(struct page *page)
146{
147 return page->index;
148}
149
150static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151{
152 page->index = migratetype;
153}
154
452aa699
RW
155#ifdef CONFIG_PM_SLEEP
156/*
157 * The following functions are used by the suspend/hibernate code to temporarily
158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
159 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
160 * they should always be called with system_transition_mutex held
161 * (gfp_allowed_mask also should only be modified with system_transition_mutex
162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
163 * with that modification).
452aa699 164 */
c9e664f1
RW
165
166static gfp_t saved_gfp_mask;
167
168void pm_restore_gfp_mask(void)
452aa699 169{
55f2503c 170 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
171 if (saved_gfp_mask) {
172 gfp_allowed_mask = saved_gfp_mask;
173 saved_gfp_mask = 0;
174 }
452aa699
RW
175}
176
c9e664f1 177void pm_restrict_gfp_mask(void)
452aa699 178{
55f2503c 179 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
180 WARN_ON(saved_gfp_mask);
181 saved_gfp_mask = gfp_allowed_mask;
d0164adc 182 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 183}
f90ac398
MG
184
185bool pm_suspended_storage(void)
186{
d0164adc 187 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
188 return false;
189 return true;
190}
452aa699
RW
191#endif /* CONFIG_PM_SLEEP */
192
d9c23400 193#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 194unsigned int pageblock_order __read_mostly;
d9c23400
MG
195#endif
196
d98c7a09 197static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 198
1da177e4
LT
199/*
200 * results with 256, 32 in the lowmem_reserve sysctl:
201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
202 * 1G machine -> (16M dma, 784M normal, 224M high)
203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
206 *
207 * TBD: should special case ZONE_DMA32 machines here - in those we normally
208 * don't need any ZONE_NORMAL reservation
1da177e4 209 */
d3cda233 210int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
d3cda233 212 [ZONE_DMA] = 256,
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
d3cda233 215 [ZONE_DMA32] = 256,
fb0e7942 216#endif
d3cda233 217 [ZONE_NORMAL] = 32,
e53ef38d 218#ifdef CONFIG_HIGHMEM
d3cda233 219 [ZONE_HIGHMEM] = 0,
e53ef38d 220#endif
d3cda233 221 [ZONE_MOVABLE] = 0,
2f1b6248 222};
1da177e4
LT
223
224EXPORT_SYMBOL(totalram_pages);
1da177e4 225
15ad7cdc 226static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 227#ifdef CONFIG_ZONE_DMA
2f1b6248 228 "DMA",
4b51d669 229#endif
fb0e7942 230#ifdef CONFIG_ZONE_DMA32
2f1b6248 231 "DMA32",
fb0e7942 232#endif
2f1b6248 233 "Normal",
e53ef38d 234#ifdef CONFIG_HIGHMEM
2a1e274a 235 "HighMem",
e53ef38d 236#endif
2a1e274a 237 "Movable",
033fbae9
DW
238#ifdef CONFIG_ZONE_DEVICE
239 "Device",
240#endif
2f1b6248
CL
241};
242
c999fbd3 243const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
244 "Unmovable",
245 "Movable",
246 "Reclaimable",
247 "HighAtomic",
248#ifdef CONFIG_CMA
249 "CMA",
250#endif
251#ifdef CONFIG_MEMORY_ISOLATION
252 "Isolate",
253#endif
254};
255
f1e61557
KS
256compound_page_dtor * const compound_page_dtors[] = {
257 NULL,
258 free_compound_page,
259#ifdef CONFIG_HUGETLB_PAGE
260 free_huge_page,
261#endif
9a982250
KS
262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 free_transhuge_page,
264#endif
f1e61557
KS
265};
266
1da177e4 267int min_free_kbytes = 1024;
42aa83cb 268int user_min_free_kbytes = -1;
1c30844d 269int watermark_boost_factor __read_mostly = 15000;
795ae7a0 270int watermark_scale_factor = 10;
1da177e4 271
bbe5d993
OS
272static unsigned long nr_kernel_pages __initdata;
273static unsigned long nr_all_pages __initdata;
274static unsigned long dma_reserve __initdata;
1da177e4 275
0ee332c1 276#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
277static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
278static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 279static unsigned long required_kernelcore __initdata;
a5c6d650 280static unsigned long required_kernelcore_percent __initdata;
7f16f91f 281static unsigned long required_movablecore __initdata;
a5c6d650 282static unsigned long required_movablecore_percent __initdata;
bbe5d993 283static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 284static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
285
286/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
287int movable_zone;
288EXPORT_SYMBOL(movable_zone);
289#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 290
418508c1
MS
291#if MAX_NUMNODES > 1
292int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 293int nr_online_nodes __read_mostly = 1;
418508c1 294EXPORT_SYMBOL(nr_node_ids);
62bc62a8 295EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
296#endif
297
9ef9acb0
MG
298int page_group_by_mobility_disabled __read_mostly;
299
3a80a7fa 300#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
301/*
302 * During boot we initialize deferred pages on-demand, as needed, but once
303 * page_alloc_init_late() has finished, the deferred pages are all initialized,
304 * and we can permanently disable that path.
305 */
306static DEFINE_STATIC_KEY_TRUE(deferred_pages);
307
308/*
309 * Calling kasan_free_pages() only after deferred memory initialization
310 * has completed. Poisoning pages during deferred memory init will greatly
311 * lengthen the process and cause problem in large memory systems as the
312 * deferred pages initialization is done with interrupt disabled.
313 *
314 * Assuming that there will be no reference to those newly initialized
315 * pages before they are ever allocated, this should have no effect on
316 * KASAN memory tracking as the poison will be properly inserted at page
317 * allocation time. The only corner case is when pages are allocated by
318 * on-demand allocation and then freed again before the deferred pages
319 * initialization is done, but this is not likely to happen.
320 */
321static inline void kasan_free_nondeferred_pages(struct page *page, int order)
322{
323 if (!static_branch_unlikely(&deferred_pages))
324 kasan_free_pages(page, order);
325}
326
3a80a7fa 327/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 328static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 329{
ef70b6f4
MG
330 int nid = early_pfn_to_nid(pfn);
331
332 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
333 return true;
334
335 return false;
336}
337
338/*
d3035be4 339 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
340 * later in the boot cycle when it can be parallelised.
341 */
d3035be4
PT
342static bool __meminit
343defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 344{
d3035be4
PT
345 static unsigned long prev_end_pfn, nr_initialised;
346
347 /*
348 * prev_end_pfn static that contains the end of previous zone
349 * No need to protect because called very early in boot before smp_init.
350 */
351 if (prev_end_pfn != end_pfn) {
352 prev_end_pfn = end_pfn;
353 nr_initialised = 0;
354 }
355
3c2c6488 356 /* Always populate low zones for address-constrained allocations */
d3035be4 357 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 358 return false;
23b68cfa
WY
359
360 /*
361 * We start only with one section of pages, more pages are added as
362 * needed until the rest of deferred pages are initialized.
363 */
d3035be4 364 nr_initialised++;
23b68cfa 365 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
366 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
367 NODE_DATA(nid)->first_deferred_pfn = pfn;
368 return true;
3a80a7fa 369 }
d3035be4 370 return false;
3a80a7fa
MG
371}
372#else
3c0c12cc
WL
373#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
374
3a80a7fa
MG
375static inline bool early_page_uninitialised(unsigned long pfn)
376{
377 return false;
378}
379
d3035be4 380static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 381{
d3035be4 382 return false;
3a80a7fa
MG
383}
384#endif
385
0b423ca2
MG
386/* Return a pointer to the bitmap storing bits affecting a block of pages */
387static inline unsigned long *get_pageblock_bitmap(struct page *page,
388 unsigned long pfn)
389{
390#ifdef CONFIG_SPARSEMEM
391 return __pfn_to_section(pfn)->pageblock_flags;
392#else
393 return page_zone(page)->pageblock_flags;
394#endif /* CONFIG_SPARSEMEM */
395}
396
397static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
398{
399#ifdef CONFIG_SPARSEMEM
400 pfn &= (PAGES_PER_SECTION-1);
401 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
402#else
403 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
404 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
405#endif /* CONFIG_SPARSEMEM */
406}
407
408/**
409 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
410 * @page: The page within the block of interest
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest to retrieve
413 * @mask: mask of bits that the caller is interested in
414 *
415 * Return: pageblock_bits flags
416 */
417static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
418 unsigned long pfn,
419 unsigned long end_bitidx,
420 unsigned long mask)
421{
422 unsigned long *bitmap;
423 unsigned long bitidx, word_bitidx;
424 unsigned long word;
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 word = bitmap[word_bitidx];
432 bitidx += end_bitidx;
433 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
434}
435
436unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
437 unsigned long end_bitidx,
438 unsigned long mask)
439{
440 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
441}
442
443static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
444{
445 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
446}
447
448/**
449 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
450 * @page: The page within the block of interest
451 * @flags: The flags to set
452 * @pfn: The target page frame number
453 * @end_bitidx: The last bit of interest
454 * @mask: mask of bits that the caller is interested in
455 */
456void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
457 unsigned long pfn,
458 unsigned long end_bitidx,
459 unsigned long mask)
460{
461 unsigned long *bitmap;
462 unsigned long bitidx, word_bitidx;
463 unsigned long old_word, word;
464
465 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 466 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
467
468 bitmap = get_pageblock_bitmap(page, pfn);
469 bitidx = pfn_to_bitidx(page, pfn);
470 word_bitidx = bitidx / BITS_PER_LONG;
471 bitidx &= (BITS_PER_LONG-1);
472
473 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
474
475 bitidx += end_bitidx;
476 mask <<= (BITS_PER_LONG - bitidx - 1);
477 flags <<= (BITS_PER_LONG - bitidx - 1);
478
479 word = READ_ONCE(bitmap[word_bitidx]);
480 for (;;) {
481 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
482 if (word == old_word)
483 break;
484 word = old_word;
485 }
486}
3a80a7fa 487
ee6f509c 488void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 489{
5d0f3f72
KM
490 if (unlikely(page_group_by_mobility_disabled &&
491 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
492 migratetype = MIGRATE_UNMOVABLE;
493
b2a0ac88
MG
494 set_pageblock_flags_group(page, (unsigned long)migratetype,
495 PB_migrate, PB_migrate_end);
496}
497
13e7444b 498#ifdef CONFIG_DEBUG_VM
c6a57e19 499static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 500{
bdc8cb98
DH
501 int ret = 0;
502 unsigned seq;
503 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 504 unsigned long sp, start_pfn;
c6a57e19 505
bdc8cb98
DH
506 do {
507 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
508 start_pfn = zone->zone_start_pfn;
509 sp = zone->spanned_pages;
108bcc96 510 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
511 ret = 1;
512 } while (zone_span_seqretry(zone, seq));
513
b5e6a5a2 514 if (ret)
613813e8
DH
515 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
516 pfn, zone_to_nid(zone), zone->name,
517 start_pfn, start_pfn + sp);
b5e6a5a2 518
bdc8cb98 519 return ret;
c6a57e19
DH
520}
521
522static int page_is_consistent(struct zone *zone, struct page *page)
523{
14e07298 524 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 525 return 0;
1da177e4 526 if (zone != page_zone(page))
c6a57e19
DH
527 return 0;
528
529 return 1;
530}
531/*
532 * Temporary debugging check for pages not lying within a given zone.
533 */
d73d3c9f 534static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
535{
536 if (page_outside_zone_boundaries(zone, page))
1da177e4 537 return 1;
c6a57e19
DH
538 if (!page_is_consistent(zone, page))
539 return 1;
540
1da177e4
LT
541 return 0;
542}
13e7444b 543#else
d73d3c9f 544static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
545{
546 return 0;
547}
548#endif
549
d230dec1
KS
550static void bad_page(struct page *page, const char *reason,
551 unsigned long bad_flags)
1da177e4 552{
d936cf9b
HD
553 static unsigned long resume;
554 static unsigned long nr_shown;
555 static unsigned long nr_unshown;
556
557 /*
558 * Allow a burst of 60 reports, then keep quiet for that minute;
559 * or allow a steady drip of one report per second.
560 */
561 if (nr_shown == 60) {
562 if (time_before(jiffies, resume)) {
563 nr_unshown++;
564 goto out;
565 }
566 if (nr_unshown) {
ff8e8116 567 pr_alert(
1e9e6365 568 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
569 nr_unshown);
570 nr_unshown = 0;
571 }
572 nr_shown = 0;
573 }
574 if (nr_shown++ == 0)
575 resume = jiffies + 60 * HZ;
576
ff8e8116 577 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 578 current->comm, page_to_pfn(page));
ff8e8116
VB
579 __dump_page(page, reason);
580 bad_flags &= page->flags;
581 if (bad_flags)
582 pr_alert("bad because of flags: %#lx(%pGp)\n",
583 bad_flags, &bad_flags);
4e462112 584 dump_page_owner(page);
3dc14741 585
4f31888c 586 print_modules();
1da177e4 587 dump_stack();
d936cf9b 588out:
8cc3b392 589 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 590 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
592}
593
1da177e4
LT
594/*
595 * Higher-order pages are called "compound pages". They are structured thusly:
596 *
1d798ca3 597 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 598 *
1d798ca3
KS
599 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
600 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 601 *
1d798ca3
KS
602 * The first tail page's ->compound_dtor holds the offset in array of compound
603 * page destructors. See compound_page_dtors.
1da177e4 604 *
1d798ca3 605 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 606 * This usage means that zero-order pages may not be compound.
1da177e4 607 */
d98c7a09 608
9a982250 609void free_compound_page(struct page *page)
d98c7a09 610{
d85f3385 611 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
612}
613
d00181b9 614void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
615{
616 int i;
617 int nr_pages = 1 << order;
618
f1e61557 619 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
620 set_compound_order(page, order);
621 __SetPageHead(page);
622 for (i = 1; i < nr_pages; i++) {
623 struct page *p = page + i;
58a84aa9 624 set_page_count(p, 0);
1c290f64 625 p->mapping = TAIL_MAPPING;
1d798ca3 626 set_compound_head(p, page);
18229df5 627 }
53f9263b 628 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
629}
630
c0a32fc5
SG
631#ifdef CONFIG_DEBUG_PAGEALLOC
632unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
633bool _debug_pagealloc_enabled __read_mostly
634 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 635EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
636bool _debug_guardpage_enabled __read_mostly;
637
031bc574
JK
638static int __init early_debug_pagealloc(char *buf)
639{
640 if (!buf)
641 return -EINVAL;
2a138dc7 642 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
643}
644early_param("debug_pagealloc", early_debug_pagealloc);
645
e30825f1
JK
646static bool need_debug_guardpage(void)
647{
031bc574
JK
648 /* If we don't use debug_pagealloc, we don't need guard page */
649 if (!debug_pagealloc_enabled())
650 return false;
651
f1c1e9f7
JK
652 if (!debug_guardpage_minorder())
653 return false;
654
e30825f1
JK
655 return true;
656}
657
658static void init_debug_guardpage(void)
659{
031bc574
JK
660 if (!debug_pagealloc_enabled())
661 return;
662
f1c1e9f7
JK
663 if (!debug_guardpage_minorder())
664 return;
665
e30825f1
JK
666 _debug_guardpage_enabled = true;
667}
668
669struct page_ext_operations debug_guardpage_ops = {
670 .need = need_debug_guardpage,
671 .init = init_debug_guardpage,
672};
c0a32fc5
SG
673
674static int __init debug_guardpage_minorder_setup(char *buf)
675{
676 unsigned long res;
677
678 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 679 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
680 return 0;
681 }
682 _debug_guardpage_minorder = res;
1170532b 683 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
684 return 0;
685}
f1c1e9f7 686early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 687
acbc15a4 688static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 689 unsigned int order, int migratetype)
c0a32fc5 690{
e30825f1
JK
691 struct page_ext *page_ext;
692
693 if (!debug_guardpage_enabled())
acbc15a4
JK
694 return false;
695
696 if (order >= debug_guardpage_minorder())
697 return false;
e30825f1
JK
698
699 page_ext = lookup_page_ext(page);
f86e4271 700 if (unlikely(!page_ext))
acbc15a4 701 return false;
f86e4271 702
e30825f1
JK
703 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704
2847cf95
JK
705 INIT_LIST_HEAD(&page->lru);
706 set_page_private(page, order);
707 /* Guard pages are not available for any usage */
708 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
709
710 return true;
c0a32fc5
SG
711}
712
2847cf95
JK
713static inline void clear_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype)
c0a32fc5 715{
e30825f1
JK
716 struct page_ext *page_ext;
717
718 if (!debug_guardpage_enabled())
719 return;
720
721 page_ext = lookup_page_ext(page);
f86e4271
YS
722 if (unlikely(!page_ext))
723 return;
724
e30825f1
JK
725 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
726
2847cf95
JK
727 set_page_private(page, 0);
728 if (!is_migrate_isolate(migratetype))
729 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
730}
731#else
980ac167 732struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
733static inline bool set_page_guard(struct zone *zone, struct page *page,
734 unsigned int order, int migratetype) { return false; }
2847cf95
JK
735static inline void clear_page_guard(struct zone *zone, struct page *page,
736 unsigned int order, int migratetype) {}
c0a32fc5
SG
737#endif
738
7aeb09f9 739static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 740{
4c21e2f2 741 set_page_private(page, order);
676165a8 742 __SetPageBuddy(page);
1da177e4
LT
743}
744
745static inline void rmv_page_order(struct page *page)
746{
676165a8 747 __ClearPageBuddy(page);
4c21e2f2 748 set_page_private(page, 0);
1da177e4
LT
749}
750
1da177e4
LT
751/*
752 * This function checks whether a page is free && is the buddy
6e292b9b 753 * we can coalesce a page and its buddy if
13ad59df 754 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 755 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
756 * (c) a page and its buddy have the same order &&
757 * (d) a page and its buddy are in the same zone.
676165a8 758 *
6e292b9b
MW
759 * For recording whether a page is in the buddy system, we set PageBuddy.
760 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 761 *
676165a8 762 * For recording page's order, we use page_private(page).
1da177e4 763 */
cb2b95e1 764static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 765 unsigned int order)
1da177e4 766{
c0a32fc5 767 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
768 if (page_zone_id(page) != page_zone_id(buddy))
769 return 0;
770
4c5018ce
WY
771 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
772
c0a32fc5
SG
773 return 1;
774 }
775
cb2b95e1 776 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
777 /*
778 * zone check is done late to avoid uselessly
779 * calculating zone/node ids for pages that could
780 * never merge.
781 */
782 if (page_zone_id(page) != page_zone_id(buddy))
783 return 0;
784
4c5018ce
WY
785 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
786
6aa3001b 787 return 1;
676165a8 788 }
6aa3001b 789 return 0;
1da177e4
LT
790}
791
792/*
793 * Freeing function for a buddy system allocator.
794 *
795 * The concept of a buddy system is to maintain direct-mapped table
796 * (containing bit values) for memory blocks of various "orders".
797 * The bottom level table contains the map for the smallest allocatable
798 * units of memory (here, pages), and each level above it describes
799 * pairs of units from the levels below, hence, "buddies".
800 * At a high level, all that happens here is marking the table entry
801 * at the bottom level available, and propagating the changes upward
802 * as necessary, plus some accounting needed to play nicely with other
803 * parts of the VM system.
804 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
805 * free pages of length of (1 << order) and marked with PageBuddy.
806 * Page's order is recorded in page_private(page) field.
1da177e4 807 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
808 * other. That is, if we allocate a small block, and both were
809 * free, the remainder of the region must be split into blocks.
1da177e4 810 * If a block is freed, and its buddy is also free, then this
5f63b720 811 * triggers coalescing into a block of larger size.
1da177e4 812 *
6d49e352 813 * -- nyc
1da177e4
LT
814 */
815
48db57f8 816static inline void __free_one_page(struct page *page,
dc4b0caf 817 unsigned long pfn,
ed0ae21d
MG
818 struct zone *zone, unsigned int order,
819 int migratetype)
1da177e4 820{
76741e77
VB
821 unsigned long combined_pfn;
822 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 823 struct page *buddy;
d9dddbf5
VB
824 unsigned int max_order;
825
826 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 827
d29bb978 828 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 829 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 830
ed0ae21d 831 VM_BUG_ON(migratetype == -1);
d9dddbf5 832 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 833 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 834
76741e77 835 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 836 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 837
d9dddbf5 838continue_merging:
3c605096 839 while (order < max_order - 1) {
76741e77
VB
840 buddy_pfn = __find_buddy_pfn(pfn, order);
841 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
842
843 if (!pfn_valid_within(buddy_pfn))
844 goto done_merging;
cb2b95e1 845 if (!page_is_buddy(page, buddy, order))
d9dddbf5 846 goto done_merging;
c0a32fc5
SG
847 /*
848 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
849 * merge with it and move up one order.
850 */
851 if (page_is_guard(buddy)) {
2847cf95 852 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
853 } else {
854 list_del(&buddy->lru);
855 zone->free_area[order].nr_free--;
856 rmv_page_order(buddy);
857 }
76741e77
VB
858 combined_pfn = buddy_pfn & pfn;
859 page = page + (combined_pfn - pfn);
860 pfn = combined_pfn;
1da177e4
LT
861 order++;
862 }
d9dddbf5
VB
863 if (max_order < MAX_ORDER) {
864 /* If we are here, it means order is >= pageblock_order.
865 * We want to prevent merge between freepages on isolate
866 * pageblock and normal pageblock. Without this, pageblock
867 * isolation could cause incorrect freepage or CMA accounting.
868 *
869 * We don't want to hit this code for the more frequent
870 * low-order merging.
871 */
872 if (unlikely(has_isolate_pageblock(zone))) {
873 int buddy_mt;
874
76741e77
VB
875 buddy_pfn = __find_buddy_pfn(pfn, order);
876 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
877 buddy_mt = get_pageblock_migratetype(buddy);
878
879 if (migratetype != buddy_mt
880 && (is_migrate_isolate(migratetype) ||
881 is_migrate_isolate(buddy_mt)))
882 goto done_merging;
883 }
884 max_order++;
885 goto continue_merging;
886 }
887
888done_merging:
1da177e4 889 set_page_order(page, order);
6dda9d55
CZ
890
891 /*
892 * If this is not the largest possible page, check if the buddy
893 * of the next-highest order is free. If it is, it's possible
894 * that pages are being freed that will coalesce soon. In case,
895 * that is happening, add the free page to the tail of the list
896 * so it's less likely to be used soon and more likely to be merged
897 * as a higher order page
898 */
13ad59df 899 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 900 struct page *higher_page, *higher_buddy;
76741e77
VB
901 combined_pfn = buddy_pfn & pfn;
902 higher_page = page + (combined_pfn - pfn);
903 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
904 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
905 if (pfn_valid_within(buddy_pfn) &&
906 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
907 list_add_tail(&page->lru,
908 &zone->free_area[order].free_list[migratetype]);
909 goto out;
910 }
911 }
912
913 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
914out:
1da177e4
LT
915 zone->free_area[order].nr_free++;
916}
917
7bfec6f4
MG
918/*
919 * A bad page could be due to a number of fields. Instead of multiple branches,
920 * try and check multiple fields with one check. The caller must do a detailed
921 * check if necessary.
922 */
923static inline bool page_expected_state(struct page *page,
924 unsigned long check_flags)
925{
926 if (unlikely(atomic_read(&page->_mapcount) != -1))
927 return false;
928
929 if (unlikely((unsigned long)page->mapping |
930 page_ref_count(page) |
931#ifdef CONFIG_MEMCG
932 (unsigned long)page->mem_cgroup |
933#endif
934 (page->flags & check_flags)))
935 return false;
936
937 return true;
938}
939
bb552ac6 940static void free_pages_check_bad(struct page *page)
1da177e4 941{
7bfec6f4
MG
942 const char *bad_reason;
943 unsigned long bad_flags;
944
7bfec6f4
MG
945 bad_reason = NULL;
946 bad_flags = 0;
f0b791a3 947
53f9263b 948 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
949 bad_reason = "nonzero mapcount";
950 if (unlikely(page->mapping != NULL))
951 bad_reason = "non-NULL mapping";
fe896d18 952 if (unlikely(page_ref_count(page) != 0))
0139aa7b 953 bad_reason = "nonzero _refcount";
f0b791a3
DH
954 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
955 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
956 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
957 }
9edad6ea
JW
958#ifdef CONFIG_MEMCG
959 if (unlikely(page->mem_cgroup))
960 bad_reason = "page still charged to cgroup";
961#endif
7bfec6f4 962 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
963}
964
965static inline int free_pages_check(struct page *page)
966{
da838d4f 967 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 968 return 0;
bb552ac6
MG
969
970 /* Something has gone sideways, find it */
971 free_pages_check_bad(page);
7bfec6f4 972 return 1;
1da177e4
LT
973}
974
4db7548c
MG
975static int free_tail_pages_check(struct page *head_page, struct page *page)
976{
977 int ret = 1;
978
979 /*
980 * We rely page->lru.next never has bit 0 set, unless the page
981 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
982 */
983 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
984
985 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
986 ret = 0;
987 goto out;
988 }
989 switch (page - head_page) {
990 case 1:
4da1984e 991 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
992 if (unlikely(compound_mapcount(page))) {
993 bad_page(page, "nonzero compound_mapcount", 0);
994 goto out;
995 }
996 break;
997 case 2:
998 /*
999 * the second tail page: ->mapping is
fa3015b7 1000 * deferred_list.next -- ignore value.
4db7548c
MG
1001 */
1002 break;
1003 default:
1004 if (page->mapping != TAIL_MAPPING) {
1005 bad_page(page, "corrupted mapping in tail page", 0);
1006 goto out;
1007 }
1008 break;
1009 }
1010 if (unlikely(!PageTail(page))) {
1011 bad_page(page, "PageTail not set", 0);
1012 goto out;
1013 }
1014 if (unlikely(compound_head(page) != head_page)) {
1015 bad_page(page, "compound_head not consistent", 0);
1016 goto out;
1017 }
1018 ret = 0;
1019out:
1020 page->mapping = NULL;
1021 clear_compound_head(page);
1022 return ret;
1023}
1024
e2769dbd
MG
1025static __always_inline bool free_pages_prepare(struct page *page,
1026 unsigned int order, bool check_free)
4db7548c 1027{
e2769dbd 1028 int bad = 0;
4db7548c 1029
4db7548c
MG
1030 VM_BUG_ON_PAGE(PageTail(page), page);
1031
e2769dbd 1032 trace_mm_page_free(page, order);
e2769dbd
MG
1033
1034 /*
1035 * Check tail pages before head page information is cleared to
1036 * avoid checking PageCompound for order-0 pages.
1037 */
1038 if (unlikely(order)) {
1039 bool compound = PageCompound(page);
1040 int i;
1041
1042 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1043
9a73f61b
KS
1044 if (compound)
1045 ClearPageDoubleMap(page);
e2769dbd
MG
1046 for (i = 1; i < (1 << order); i++) {
1047 if (compound)
1048 bad += free_tail_pages_check(page, page + i);
1049 if (unlikely(free_pages_check(page + i))) {
1050 bad++;
1051 continue;
1052 }
1053 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1054 }
1055 }
bda807d4 1056 if (PageMappingFlags(page))
4db7548c 1057 page->mapping = NULL;
c4159a75 1058 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1059 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1060 if (check_free)
1061 bad += free_pages_check(page);
1062 if (bad)
1063 return false;
4db7548c 1064
e2769dbd
MG
1065 page_cpupid_reset_last(page);
1066 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1067 reset_page_owner(page, order);
4db7548c
MG
1068
1069 if (!PageHighMem(page)) {
1070 debug_check_no_locks_freed(page_address(page),
e2769dbd 1071 PAGE_SIZE << order);
4db7548c 1072 debug_check_no_obj_freed(page_address(page),
e2769dbd 1073 PAGE_SIZE << order);
4db7548c 1074 }
e2769dbd
MG
1075 arch_free_page(page, order);
1076 kernel_poison_pages(page, 1 << order, 0);
1077 kernel_map_pages(page, 1 << order, 0);
3c0c12cc 1078 kasan_free_nondeferred_pages(page, order);
4db7548c 1079
4db7548c
MG
1080 return true;
1081}
1082
e2769dbd
MG
1083#ifdef CONFIG_DEBUG_VM
1084static inline bool free_pcp_prepare(struct page *page)
1085{
1086 return free_pages_prepare(page, 0, true);
1087}
1088
1089static inline bool bulkfree_pcp_prepare(struct page *page)
1090{
1091 return false;
1092}
1093#else
1094static bool free_pcp_prepare(struct page *page)
1095{
1096 return free_pages_prepare(page, 0, false);
1097}
1098
4db7548c
MG
1099static bool bulkfree_pcp_prepare(struct page *page)
1100{
1101 return free_pages_check(page);
1102}
1103#endif /* CONFIG_DEBUG_VM */
1104
97334162
AL
1105static inline void prefetch_buddy(struct page *page)
1106{
1107 unsigned long pfn = page_to_pfn(page);
1108 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1109 struct page *buddy = page + (buddy_pfn - pfn);
1110
1111 prefetch(buddy);
1112}
1113
1da177e4 1114/*
5f8dcc21 1115 * Frees a number of pages from the PCP lists
1da177e4 1116 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1117 * count is the number of pages to free.
1da177e4
LT
1118 *
1119 * If the zone was previously in an "all pages pinned" state then look to
1120 * see if this freeing clears that state.
1121 *
1122 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1123 * pinned" detection logic.
1124 */
5f8dcc21
MG
1125static void free_pcppages_bulk(struct zone *zone, int count,
1126 struct per_cpu_pages *pcp)
1da177e4 1127{
5f8dcc21 1128 int migratetype = 0;
a6f9edd6 1129 int batch_free = 0;
97334162 1130 int prefetch_nr = 0;
3777999d 1131 bool isolated_pageblocks;
0a5f4e5b
AL
1132 struct page *page, *tmp;
1133 LIST_HEAD(head);
f2260e6b 1134
e5b31ac2 1135 while (count) {
5f8dcc21
MG
1136 struct list_head *list;
1137
1138 /*
a6f9edd6
MG
1139 * Remove pages from lists in a round-robin fashion. A
1140 * batch_free count is maintained that is incremented when an
1141 * empty list is encountered. This is so more pages are freed
1142 * off fuller lists instead of spinning excessively around empty
1143 * lists
5f8dcc21
MG
1144 */
1145 do {
a6f9edd6 1146 batch_free++;
5f8dcc21
MG
1147 if (++migratetype == MIGRATE_PCPTYPES)
1148 migratetype = 0;
1149 list = &pcp->lists[migratetype];
1150 } while (list_empty(list));
48db57f8 1151
1d16871d
NK
1152 /* This is the only non-empty list. Free them all. */
1153 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1154 batch_free = count;
1d16871d 1155
a6f9edd6 1156 do {
a16601c5 1157 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1158 /* must delete to avoid corrupting pcp list */
a6f9edd6 1159 list_del(&page->lru);
77ba9062 1160 pcp->count--;
aa016d14 1161
4db7548c
MG
1162 if (bulkfree_pcp_prepare(page))
1163 continue;
1164
0a5f4e5b 1165 list_add_tail(&page->lru, &head);
97334162
AL
1166
1167 /*
1168 * We are going to put the page back to the global
1169 * pool, prefetch its buddy to speed up later access
1170 * under zone->lock. It is believed the overhead of
1171 * an additional test and calculating buddy_pfn here
1172 * can be offset by reduced memory latency later. To
1173 * avoid excessive prefetching due to large count, only
1174 * prefetch buddy for the first pcp->batch nr of pages.
1175 */
1176 if (prefetch_nr++ < pcp->batch)
1177 prefetch_buddy(page);
e5b31ac2 1178 } while (--count && --batch_free && !list_empty(list));
1da177e4 1179 }
0a5f4e5b
AL
1180
1181 spin_lock(&zone->lock);
1182 isolated_pageblocks = has_isolate_pageblock(zone);
1183
1184 /*
1185 * Use safe version since after __free_one_page(),
1186 * page->lru.next will not point to original list.
1187 */
1188 list_for_each_entry_safe(page, tmp, &head, lru) {
1189 int mt = get_pcppage_migratetype(page);
1190 /* MIGRATE_ISOLATE page should not go to pcplists */
1191 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1192 /* Pageblock could have been isolated meanwhile */
1193 if (unlikely(isolated_pageblocks))
1194 mt = get_pageblock_migratetype(page);
1195
1196 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1197 trace_mm_page_pcpu_drain(page, 0, mt);
1198 }
d34b0733 1199 spin_unlock(&zone->lock);
1da177e4
LT
1200}
1201
dc4b0caf
MG
1202static void free_one_page(struct zone *zone,
1203 struct page *page, unsigned long pfn,
7aeb09f9 1204 unsigned int order,
ed0ae21d 1205 int migratetype)
1da177e4 1206{
d34b0733 1207 spin_lock(&zone->lock);
ad53f92e
JK
1208 if (unlikely(has_isolate_pageblock(zone) ||
1209 is_migrate_isolate(migratetype))) {
1210 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1211 }
dc4b0caf 1212 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1213 spin_unlock(&zone->lock);
48db57f8
NP
1214}
1215
1e8ce83c 1216static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1217 unsigned long zone, int nid)
1e8ce83c 1218{
d0dc12e8 1219 mm_zero_struct_page(page);
1e8ce83c 1220 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1221 init_page_count(page);
1222 page_mapcount_reset(page);
1223 page_cpupid_reset_last(page);
2813b9c0 1224 page_kasan_tag_reset(page);
1e8ce83c 1225
1e8ce83c
RH
1226 INIT_LIST_HEAD(&page->lru);
1227#ifdef WANT_PAGE_VIRTUAL
1228 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1229 if (!is_highmem_idx(zone))
1230 set_page_address(page, __va(pfn << PAGE_SHIFT));
1231#endif
1232}
1233
7e18adb4 1234#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1235static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1236{
1237 pg_data_t *pgdat;
1238 int nid, zid;
1239
1240 if (!early_page_uninitialised(pfn))
1241 return;
1242
1243 nid = early_pfn_to_nid(pfn);
1244 pgdat = NODE_DATA(nid);
1245
1246 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1247 struct zone *zone = &pgdat->node_zones[zid];
1248
1249 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1250 break;
1251 }
d0dc12e8 1252 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1253}
1254#else
1255static inline void init_reserved_page(unsigned long pfn)
1256{
1257}
1258#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1259
92923ca3
NZ
1260/*
1261 * Initialised pages do not have PageReserved set. This function is
1262 * called for each range allocated by the bootmem allocator and
1263 * marks the pages PageReserved. The remaining valid pages are later
1264 * sent to the buddy page allocator.
1265 */
4b50bcc7 1266void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1267{
1268 unsigned long start_pfn = PFN_DOWN(start);
1269 unsigned long end_pfn = PFN_UP(end);
1270
7e18adb4
MG
1271 for (; start_pfn < end_pfn; start_pfn++) {
1272 if (pfn_valid(start_pfn)) {
1273 struct page *page = pfn_to_page(start_pfn);
1274
1275 init_reserved_page(start_pfn);
1d798ca3
KS
1276
1277 /* Avoid false-positive PageTail() */
1278 INIT_LIST_HEAD(&page->lru);
1279
d483da5b
AD
1280 /*
1281 * no need for atomic set_bit because the struct
1282 * page is not visible yet so nobody should
1283 * access it yet.
1284 */
1285 __SetPageReserved(page);
7e18adb4
MG
1286 }
1287 }
92923ca3
NZ
1288}
1289
ec95f53a
KM
1290static void __free_pages_ok(struct page *page, unsigned int order)
1291{
d34b0733 1292 unsigned long flags;
95e34412 1293 int migratetype;
dc4b0caf 1294 unsigned long pfn = page_to_pfn(page);
ec95f53a 1295
e2769dbd 1296 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1297 return;
1298
cfc47a28 1299 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1300 local_irq_save(flags);
1301 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1302 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1303 local_irq_restore(flags);
1da177e4
LT
1304}
1305
949698a3 1306static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1307{
c3993076 1308 unsigned int nr_pages = 1 << order;
e2d0bd2b 1309 struct page *p = page;
c3993076 1310 unsigned int loop;
a226f6c8 1311
e2d0bd2b
YL
1312 prefetchw(p);
1313 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1314 prefetchw(p + 1);
c3993076
JW
1315 __ClearPageReserved(p);
1316 set_page_count(p, 0);
a226f6c8 1317 }
e2d0bd2b
YL
1318 __ClearPageReserved(p);
1319 set_page_count(p, 0);
c3993076 1320
9705bea5 1321 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1322 set_page_refcounted(page);
1323 __free_pages(page, order);
a226f6c8
DH
1324}
1325
75a592a4
MG
1326#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1327 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1328
75a592a4
MG
1329static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1330
1331int __meminit early_pfn_to_nid(unsigned long pfn)
1332{
7ace9917 1333 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1334 int nid;
1335
7ace9917 1336 spin_lock(&early_pfn_lock);
75a592a4 1337 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1338 if (nid < 0)
e4568d38 1339 nid = first_online_node;
7ace9917
MG
1340 spin_unlock(&early_pfn_lock);
1341
1342 return nid;
75a592a4
MG
1343}
1344#endif
1345
1346#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1347static inline bool __meminit __maybe_unused
1348meminit_pfn_in_nid(unsigned long pfn, int node,
1349 struct mminit_pfnnid_cache *state)
75a592a4
MG
1350{
1351 int nid;
1352
1353 nid = __early_pfn_to_nid(pfn, state);
1354 if (nid >= 0 && nid != node)
1355 return false;
1356 return true;
1357}
1358
1359/* Only safe to use early in boot when initialisation is single-threaded */
1360static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1361{
1362 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1363}
1364
1365#else
1366
1367static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1368{
1369 return true;
1370}
d73d3c9f
MK
1371static inline bool __meminit __maybe_unused
1372meminit_pfn_in_nid(unsigned long pfn, int node,
1373 struct mminit_pfnnid_cache *state)
75a592a4
MG
1374{
1375 return true;
1376}
1377#endif
1378
1379
7c2ee349 1380void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1381 unsigned int order)
1382{
1383 if (early_page_uninitialised(pfn))
1384 return;
949698a3 1385 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1386}
1387
7cf91a98
JK
1388/*
1389 * Check that the whole (or subset of) a pageblock given by the interval of
1390 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1391 * with the migration of free compaction scanner. The scanners then need to
1392 * use only pfn_valid_within() check for arches that allow holes within
1393 * pageblocks.
1394 *
1395 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1396 *
1397 * It's possible on some configurations to have a setup like node0 node1 node0
1398 * i.e. it's possible that all pages within a zones range of pages do not
1399 * belong to a single zone. We assume that a border between node0 and node1
1400 * can occur within a single pageblock, but not a node0 node1 node0
1401 * interleaving within a single pageblock. It is therefore sufficient to check
1402 * the first and last page of a pageblock and avoid checking each individual
1403 * page in a pageblock.
1404 */
1405struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1406 unsigned long end_pfn, struct zone *zone)
1407{
1408 struct page *start_page;
1409 struct page *end_page;
1410
1411 /* end_pfn is one past the range we are checking */
1412 end_pfn--;
1413
1414 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1415 return NULL;
1416
2d070eab
MH
1417 start_page = pfn_to_online_page(start_pfn);
1418 if (!start_page)
1419 return NULL;
7cf91a98
JK
1420
1421 if (page_zone(start_page) != zone)
1422 return NULL;
1423
1424 end_page = pfn_to_page(end_pfn);
1425
1426 /* This gives a shorter code than deriving page_zone(end_page) */
1427 if (page_zone_id(start_page) != page_zone_id(end_page))
1428 return NULL;
1429
1430 return start_page;
1431}
1432
1433void set_zone_contiguous(struct zone *zone)
1434{
1435 unsigned long block_start_pfn = zone->zone_start_pfn;
1436 unsigned long block_end_pfn;
1437
1438 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1439 for (; block_start_pfn < zone_end_pfn(zone);
1440 block_start_pfn = block_end_pfn,
1441 block_end_pfn += pageblock_nr_pages) {
1442
1443 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1444
1445 if (!__pageblock_pfn_to_page(block_start_pfn,
1446 block_end_pfn, zone))
1447 return;
1448 }
1449
1450 /* We confirm that there is no hole */
1451 zone->contiguous = true;
1452}
1453
1454void clear_zone_contiguous(struct zone *zone)
1455{
1456 zone->contiguous = false;
1457}
1458
7e18adb4 1459#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1460static void __init deferred_free_range(unsigned long pfn,
1461 unsigned long nr_pages)
a4de83dd 1462{
2f47a91f
PT
1463 struct page *page;
1464 unsigned long i;
a4de83dd 1465
2f47a91f 1466 if (!nr_pages)
a4de83dd
MG
1467 return;
1468
2f47a91f
PT
1469 page = pfn_to_page(pfn);
1470
a4de83dd 1471 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1472 if (nr_pages == pageblock_nr_pages &&
1473 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1474 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1475 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1476 return;
1477 }
1478
e780149b
XQ
1479 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1480 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1481 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1482 __free_pages_boot_core(page, 0);
e780149b 1483 }
a4de83dd
MG
1484}
1485
d3cd131d
NS
1486/* Completion tracking for deferred_init_memmap() threads */
1487static atomic_t pgdat_init_n_undone __initdata;
1488static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1489
1490static inline void __init pgdat_init_report_one_done(void)
1491{
1492 if (atomic_dec_and_test(&pgdat_init_n_undone))
1493 complete(&pgdat_init_all_done_comp);
1494}
0e1cc95b 1495
2f47a91f 1496/*
80b1f41c
PT
1497 * Returns true if page needs to be initialized or freed to buddy allocator.
1498 *
1499 * First we check if pfn is valid on architectures where it is possible to have
1500 * holes within pageblock_nr_pages. On systems where it is not possible, this
1501 * function is optimized out.
1502 *
1503 * Then, we check if a current large page is valid by only checking the validity
1504 * of the head pfn.
1505 *
1506 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1507 * within a node: a pfn is between start and end of a node, but does not belong
1508 * to this memory node.
2f47a91f 1509 */
80b1f41c
PT
1510static inline bool __init
1511deferred_pfn_valid(int nid, unsigned long pfn,
1512 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1513{
80b1f41c
PT
1514 if (!pfn_valid_within(pfn))
1515 return false;
1516 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1517 return false;
1518 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1519 return false;
1520 return true;
1521}
2f47a91f 1522
80b1f41c
PT
1523/*
1524 * Free pages to buddy allocator. Try to free aligned pages in
1525 * pageblock_nr_pages sizes.
1526 */
1527static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1528 unsigned long end_pfn)
1529{
1530 struct mminit_pfnnid_cache nid_init_state = { };
1531 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1532 unsigned long nr_free = 0;
2f47a91f 1533
80b1f41c
PT
1534 for (; pfn < end_pfn; pfn++) {
1535 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1536 deferred_free_range(pfn - nr_free, nr_free);
1537 nr_free = 0;
1538 } else if (!(pfn & nr_pgmask)) {
1539 deferred_free_range(pfn - nr_free, nr_free);
1540 nr_free = 1;
3a2d7fa8 1541 touch_nmi_watchdog();
80b1f41c
PT
1542 } else {
1543 nr_free++;
1544 }
1545 }
1546 /* Free the last block of pages to allocator */
1547 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1548}
1549
80b1f41c
PT
1550/*
1551 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1552 * by performing it only once every pageblock_nr_pages.
1553 * Return number of pages initialized.
1554 */
1555static unsigned long __init deferred_init_pages(int nid, int zid,
1556 unsigned long pfn,
1557 unsigned long end_pfn)
2f47a91f
PT
1558{
1559 struct mminit_pfnnid_cache nid_init_state = { };
1560 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1561 unsigned long nr_pages = 0;
2f47a91f 1562 struct page *page = NULL;
2f47a91f 1563
80b1f41c
PT
1564 for (; pfn < end_pfn; pfn++) {
1565 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1566 page = NULL;
2f47a91f 1567 continue;
80b1f41c 1568 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1569 page = pfn_to_page(pfn);
3a2d7fa8 1570 touch_nmi_watchdog();
80b1f41c
PT
1571 } else {
1572 page++;
2f47a91f 1573 }
d0dc12e8 1574 __init_single_page(page, pfn, zid, nid);
80b1f41c 1575 nr_pages++;
2f47a91f 1576 }
80b1f41c 1577 return (nr_pages);
2f47a91f
PT
1578}
1579
7e18adb4 1580/* Initialise remaining memory on a node */
0e1cc95b 1581static int __init deferred_init_memmap(void *data)
7e18adb4 1582{
0e1cc95b
MG
1583 pg_data_t *pgdat = data;
1584 int nid = pgdat->node_id;
7e18adb4
MG
1585 unsigned long start = jiffies;
1586 unsigned long nr_pages = 0;
3a2d7fa8 1587 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1588 phys_addr_t spa, epa;
1589 int zid;
7e18adb4 1590 struct zone *zone;
0e1cc95b 1591 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1592 u64 i;
7e18adb4 1593
3a2d7fa8
PT
1594 /* Bind memory initialisation thread to a local node if possible */
1595 if (!cpumask_empty(cpumask))
1596 set_cpus_allowed_ptr(current, cpumask);
1597
1598 pgdat_resize_lock(pgdat, &flags);
1599 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1600 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1601 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1602 pgdat_init_report_one_done();
0e1cc95b
MG
1603 return 0;
1604 }
1605
7e18adb4
MG
1606 /* Sanity check boundaries */
1607 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1608 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1609 pgdat->first_deferred_pfn = ULONG_MAX;
1610
1611 /* Only the highest zone is deferred so find it */
1612 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1613 zone = pgdat->node_zones + zid;
1614 if (first_init_pfn < zone_end_pfn(zone))
1615 break;
1616 }
2f47a91f 1617 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1618
80b1f41c
PT
1619 /*
1620 * Initialize and free pages. We do it in two loops: first we initialize
1621 * struct page, than free to buddy allocator, because while we are
1622 * freeing pages we can access pages that are ahead (computing buddy
1623 * page in __free_one_page()).
1624 */
1625 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1626 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1627 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1628 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1629 }
2f47a91f
PT
1630 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1631 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1632 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1633 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1634 }
3a2d7fa8 1635 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1636
1637 /* Sanity check that the next zone really is unpopulated */
1638 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1639
0e1cc95b 1640 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1641 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1642
1643 pgdat_init_report_one_done();
0e1cc95b
MG
1644 return 0;
1645}
c9e97a19 1646
c9e97a19
PT
1647/*
1648 * If this zone has deferred pages, try to grow it by initializing enough
1649 * deferred pages to satisfy the allocation specified by order, rounded up to
1650 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1651 * of SECTION_SIZE bytes by initializing struct pages in increments of
1652 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1653 *
1654 * Return true when zone was grown, otherwise return false. We return true even
1655 * when we grow less than requested, to let the caller decide if there are
1656 * enough pages to satisfy the allocation.
1657 *
1658 * Note: We use noinline because this function is needed only during boot, and
1659 * it is called from a __ref function _deferred_grow_zone. This way we are
1660 * making sure that it is not inlined into permanent text section.
1661 */
1662static noinline bool __init
1663deferred_grow_zone(struct zone *zone, unsigned int order)
1664{
1665 int zid = zone_idx(zone);
1666 int nid = zone_to_nid(zone);
1667 pg_data_t *pgdat = NODE_DATA(nid);
1668 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1669 unsigned long nr_pages = 0;
1670 unsigned long first_init_pfn, spfn, epfn, t, flags;
1671 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1672 phys_addr_t spa, epa;
1673 u64 i;
1674
1675 /* Only the last zone may have deferred pages */
1676 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1677 return false;
1678
1679 pgdat_resize_lock(pgdat, &flags);
1680
1681 /*
1682 * If deferred pages have been initialized while we were waiting for
1683 * the lock, return true, as the zone was grown. The caller will retry
1684 * this zone. We won't return to this function since the caller also
1685 * has this static branch.
1686 */
1687 if (!static_branch_unlikely(&deferred_pages)) {
1688 pgdat_resize_unlock(pgdat, &flags);
1689 return true;
1690 }
1691
1692 /*
1693 * If someone grew this zone while we were waiting for spinlock, return
1694 * true, as there might be enough pages already.
1695 */
1696 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1697 pgdat_resize_unlock(pgdat, &flags);
1698 return true;
1699 }
1700
1701 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1702
1703 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1704 pgdat_resize_unlock(pgdat, &flags);
1705 return false;
1706 }
1707
1708 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1709 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1710 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1711
1712 while (spfn < epfn && nr_pages < nr_pages_needed) {
1713 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1714 first_deferred_pfn = min(t, epfn);
1715 nr_pages += deferred_init_pages(nid, zid, spfn,
1716 first_deferred_pfn);
1717 spfn = first_deferred_pfn;
1718 }
1719
1720 if (nr_pages >= nr_pages_needed)
1721 break;
1722 }
1723
1724 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1725 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1726 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1727 deferred_free_pages(nid, zid, spfn, epfn);
1728
1729 if (first_deferred_pfn == epfn)
1730 break;
1731 }
1732 pgdat->first_deferred_pfn = first_deferred_pfn;
1733 pgdat_resize_unlock(pgdat, &flags);
1734
1735 return nr_pages > 0;
1736}
1737
1738/*
1739 * deferred_grow_zone() is __init, but it is called from
1740 * get_page_from_freelist() during early boot until deferred_pages permanently
1741 * disables this call. This is why we have refdata wrapper to avoid warning,
1742 * and to ensure that the function body gets unloaded.
1743 */
1744static bool __ref
1745_deferred_grow_zone(struct zone *zone, unsigned int order)
1746{
1747 return deferred_grow_zone(zone, order);
1748}
1749
7cf91a98 1750#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1751
1752void __init page_alloc_init_late(void)
1753{
7cf91a98
JK
1754 struct zone *zone;
1755
1756#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1757 int nid;
1758
d3cd131d
NS
1759 /* There will be num_node_state(N_MEMORY) threads */
1760 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1761 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1762 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1763 }
1764
1765 /* Block until all are initialised */
d3cd131d 1766 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1767
c9e97a19
PT
1768 /*
1769 * We initialized the rest of the deferred pages. Permanently disable
1770 * on-demand struct page initialization.
1771 */
1772 static_branch_disable(&deferred_pages);
1773
4248b0da
MG
1774 /* Reinit limits that are based on free pages after the kernel is up */
1775 files_maxfiles_init();
7cf91a98 1776#endif
3010f876
PT
1777#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1778 /* Discard memblock private memory */
1779 memblock_discard();
1780#endif
7cf91a98
JK
1781
1782 for_each_populated_zone(zone)
1783 set_zone_contiguous(zone);
7e18adb4 1784}
7e18adb4 1785
47118af0 1786#ifdef CONFIG_CMA
9cf510a5 1787/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1788void __init init_cma_reserved_pageblock(struct page *page)
1789{
1790 unsigned i = pageblock_nr_pages;
1791 struct page *p = page;
1792
1793 do {
1794 __ClearPageReserved(p);
1795 set_page_count(p, 0);
d883c6cf 1796 } while (++p, --i);
47118af0 1797
47118af0 1798 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1799
1800 if (pageblock_order >= MAX_ORDER) {
1801 i = pageblock_nr_pages;
1802 p = page;
1803 do {
1804 set_page_refcounted(p);
1805 __free_pages(p, MAX_ORDER - 1);
1806 p += MAX_ORDER_NR_PAGES;
1807 } while (i -= MAX_ORDER_NR_PAGES);
1808 } else {
1809 set_page_refcounted(page);
1810 __free_pages(page, pageblock_order);
1811 }
1812
3dcc0571 1813 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1814}
1815#endif
1da177e4
LT
1816
1817/*
1818 * The order of subdivision here is critical for the IO subsystem.
1819 * Please do not alter this order without good reasons and regression
1820 * testing. Specifically, as large blocks of memory are subdivided,
1821 * the order in which smaller blocks are delivered depends on the order
1822 * they're subdivided in this function. This is the primary factor
1823 * influencing the order in which pages are delivered to the IO
1824 * subsystem according to empirical testing, and this is also justified
1825 * by considering the behavior of a buddy system containing a single
1826 * large block of memory acted on by a series of small allocations.
1827 * This behavior is a critical factor in sglist merging's success.
1828 *
6d49e352 1829 * -- nyc
1da177e4 1830 */
085cc7d5 1831static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1832 int low, int high, struct free_area *area,
1833 int migratetype)
1da177e4
LT
1834{
1835 unsigned long size = 1 << high;
1836
1837 while (high > low) {
1838 area--;
1839 high--;
1840 size >>= 1;
309381fe 1841 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1842
acbc15a4
JK
1843 /*
1844 * Mark as guard pages (or page), that will allow to
1845 * merge back to allocator when buddy will be freed.
1846 * Corresponding page table entries will not be touched,
1847 * pages will stay not present in virtual address space
1848 */
1849 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1850 continue;
acbc15a4 1851
b2a0ac88 1852 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1853 area->nr_free++;
1854 set_page_order(&page[size], high);
1855 }
1da177e4
LT
1856}
1857
4e611801 1858static void check_new_page_bad(struct page *page)
1da177e4 1859{
4e611801
VB
1860 const char *bad_reason = NULL;
1861 unsigned long bad_flags = 0;
7bfec6f4 1862
53f9263b 1863 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1864 bad_reason = "nonzero mapcount";
1865 if (unlikely(page->mapping != NULL))
1866 bad_reason = "non-NULL mapping";
fe896d18 1867 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1868 bad_reason = "nonzero _count";
f4c18e6f
NH
1869 if (unlikely(page->flags & __PG_HWPOISON)) {
1870 bad_reason = "HWPoisoned (hardware-corrupted)";
1871 bad_flags = __PG_HWPOISON;
e570f56c
NH
1872 /* Don't complain about hwpoisoned pages */
1873 page_mapcount_reset(page); /* remove PageBuddy */
1874 return;
f4c18e6f 1875 }
f0b791a3
DH
1876 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1877 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1878 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1879 }
9edad6ea
JW
1880#ifdef CONFIG_MEMCG
1881 if (unlikely(page->mem_cgroup))
1882 bad_reason = "page still charged to cgroup";
1883#endif
4e611801
VB
1884 bad_page(page, bad_reason, bad_flags);
1885}
1886
1887/*
1888 * This page is about to be returned from the page allocator
1889 */
1890static inline int check_new_page(struct page *page)
1891{
1892 if (likely(page_expected_state(page,
1893 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1894 return 0;
1895
1896 check_new_page_bad(page);
1897 return 1;
2a7684a2
WF
1898}
1899
bd33ef36 1900static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1901{
1902 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1903 page_poisoning_enabled();
1414c7f4
LA
1904}
1905
479f854a
MG
1906#ifdef CONFIG_DEBUG_VM
1907static bool check_pcp_refill(struct page *page)
1908{
1909 return false;
1910}
1911
1912static bool check_new_pcp(struct page *page)
1913{
1914 return check_new_page(page);
1915}
1916#else
1917static bool check_pcp_refill(struct page *page)
1918{
1919 return check_new_page(page);
1920}
1921static bool check_new_pcp(struct page *page)
1922{
1923 return false;
1924}
1925#endif /* CONFIG_DEBUG_VM */
1926
1927static bool check_new_pages(struct page *page, unsigned int order)
1928{
1929 int i;
1930 for (i = 0; i < (1 << order); i++) {
1931 struct page *p = page + i;
1932
1933 if (unlikely(check_new_page(p)))
1934 return true;
1935 }
1936
1937 return false;
1938}
1939
46f24fd8
JK
1940inline void post_alloc_hook(struct page *page, unsigned int order,
1941 gfp_t gfp_flags)
1942{
1943 set_page_private(page, 0);
1944 set_page_refcounted(page);
1945
1946 arch_alloc_page(page, order);
1947 kernel_map_pages(page, 1 << order, 1);
1948 kernel_poison_pages(page, 1 << order, 1);
1949 kasan_alloc_pages(page, order);
1950 set_page_owner(page, order, gfp_flags);
1951}
1952
479f854a 1953static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1954 unsigned int alloc_flags)
2a7684a2
WF
1955{
1956 int i;
689bcebf 1957
46f24fd8 1958 post_alloc_hook(page, order, gfp_flags);
17cf4406 1959
bd33ef36 1960 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1961 for (i = 0; i < (1 << order); i++)
1962 clear_highpage(page + i);
17cf4406
NP
1963
1964 if (order && (gfp_flags & __GFP_COMP))
1965 prep_compound_page(page, order);
1966
75379191 1967 /*
2f064f34 1968 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1969 * allocate the page. The expectation is that the caller is taking
1970 * steps that will free more memory. The caller should avoid the page
1971 * being used for !PFMEMALLOC purposes.
1972 */
2f064f34
MH
1973 if (alloc_flags & ALLOC_NO_WATERMARKS)
1974 set_page_pfmemalloc(page);
1975 else
1976 clear_page_pfmemalloc(page);
1da177e4
LT
1977}
1978
56fd56b8
MG
1979/*
1980 * Go through the free lists for the given migratetype and remove
1981 * the smallest available page from the freelists
1982 */
85ccc8fa 1983static __always_inline
728ec980 1984struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1985 int migratetype)
1986{
1987 unsigned int current_order;
b8af2941 1988 struct free_area *area;
56fd56b8
MG
1989 struct page *page;
1990
1991 /* Find a page of the appropriate size in the preferred list */
1992 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1993 area = &(zone->free_area[current_order]);
a16601c5 1994 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1995 struct page, lru);
a16601c5
GT
1996 if (!page)
1997 continue;
56fd56b8
MG
1998 list_del(&page->lru);
1999 rmv_page_order(page);
2000 area->nr_free--;
56fd56b8 2001 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2002 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2003 return page;
2004 }
2005
2006 return NULL;
2007}
2008
2009
b2a0ac88
MG
2010/*
2011 * This array describes the order lists are fallen back to when
2012 * the free lists for the desirable migrate type are depleted
2013 */
47118af0 2014static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2015 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2016 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2017 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2018#ifdef CONFIG_CMA
974a786e 2019 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2020#endif
194159fb 2021#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2022 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2023#endif
b2a0ac88
MG
2024};
2025
dc67647b 2026#ifdef CONFIG_CMA
85ccc8fa 2027static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2028 unsigned int order)
2029{
2030 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2031}
2032#else
2033static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2034 unsigned int order) { return NULL; }
2035#endif
2036
c361be55
MG
2037/*
2038 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2039 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2040 * boundary. If alignment is required, use move_freepages_block()
2041 */
02aa0cdd 2042static int move_freepages(struct zone *zone,
b69a7288 2043 struct page *start_page, struct page *end_page,
02aa0cdd 2044 int migratetype, int *num_movable)
c361be55
MG
2045{
2046 struct page *page;
d00181b9 2047 unsigned int order;
d100313f 2048 int pages_moved = 0;
c361be55
MG
2049
2050#ifndef CONFIG_HOLES_IN_ZONE
2051 /*
2052 * page_zone is not safe to call in this context when
2053 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2054 * anyway as we check zone boundaries in move_freepages_block().
2055 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2056 * grouping pages by mobility
c361be55 2057 */
3e04040d
AB
2058 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2059 pfn_valid(page_to_pfn(end_page)) &&
2060 page_zone(start_page) != page_zone(end_page));
c361be55 2061#endif
c361be55
MG
2062 for (page = start_page; page <= end_page;) {
2063 if (!pfn_valid_within(page_to_pfn(page))) {
2064 page++;
2065 continue;
2066 }
2067
f073bdc5
AB
2068 /* Make sure we are not inadvertently changing nodes */
2069 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2070
c361be55 2071 if (!PageBuddy(page)) {
02aa0cdd
VB
2072 /*
2073 * We assume that pages that could be isolated for
2074 * migration are movable. But we don't actually try
2075 * isolating, as that would be expensive.
2076 */
2077 if (num_movable &&
2078 (PageLRU(page) || __PageMovable(page)))
2079 (*num_movable)++;
2080
c361be55
MG
2081 page++;
2082 continue;
2083 }
2084
2085 order = page_order(page);
84be48d8
KS
2086 list_move(&page->lru,
2087 &zone->free_area[order].free_list[migratetype]);
c361be55 2088 page += 1 << order;
d100313f 2089 pages_moved += 1 << order;
c361be55
MG
2090 }
2091
d100313f 2092 return pages_moved;
c361be55
MG
2093}
2094
ee6f509c 2095int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2096 int migratetype, int *num_movable)
c361be55
MG
2097{
2098 unsigned long start_pfn, end_pfn;
2099 struct page *start_page, *end_page;
2100
4a222127
DR
2101 if (num_movable)
2102 *num_movable = 0;
2103
c361be55 2104 start_pfn = page_to_pfn(page);
d9c23400 2105 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2106 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2107 end_page = start_page + pageblock_nr_pages - 1;
2108 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2109
2110 /* Do not cross zone boundaries */
108bcc96 2111 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2112 start_page = page;
108bcc96 2113 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2114 return 0;
2115
02aa0cdd
VB
2116 return move_freepages(zone, start_page, end_page, migratetype,
2117 num_movable);
c361be55
MG
2118}
2119
2f66a68f
MG
2120static void change_pageblock_range(struct page *pageblock_page,
2121 int start_order, int migratetype)
2122{
2123 int nr_pageblocks = 1 << (start_order - pageblock_order);
2124
2125 while (nr_pageblocks--) {
2126 set_pageblock_migratetype(pageblock_page, migratetype);
2127 pageblock_page += pageblock_nr_pages;
2128 }
2129}
2130
fef903ef 2131/*
9c0415eb
VB
2132 * When we are falling back to another migratetype during allocation, try to
2133 * steal extra free pages from the same pageblocks to satisfy further
2134 * allocations, instead of polluting multiple pageblocks.
2135 *
2136 * If we are stealing a relatively large buddy page, it is likely there will
2137 * be more free pages in the pageblock, so try to steal them all. For
2138 * reclaimable and unmovable allocations, we steal regardless of page size,
2139 * as fragmentation caused by those allocations polluting movable pageblocks
2140 * is worse than movable allocations stealing from unmovable and reclaimable
2141 * pageblocks.
fef903ef 2142 */
4eb7dce6
JK
2143static bool can_steal_fallback(unsigned int order, int start_mt)
2144{
2145 /*
2146 * Leaving this order check is intended, although there is
2147 * relaxed order check in next check. The reason is that
2148 * we can actually steal whole pageblock if this condition met,
2149 * but, below check doesn't guarantee it and that is just heuristic
2150 * so could be changed anytime.
2151 */
2152 if (order >= pageblock_order)
2153 return true;
2154
2155 if (order >= pageblock_order / 2 ||
2156 start_mt == MIGRATE_RECLAIMABLE ||
2157 start_mt == MIGRATE_UNMOVABLE ||
2158 page_group_by_mobility_disabled)
2159 return true;
2160
2161 return false;
2162}
2163
1c30844d
MG
2164static inline void boost_watermark(struct zone *zone)
2165{
2166 unsigned long max_boost;
2167
2168 if (!watermark_boost_factor)
2169 return;
2170
2171 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2172 watermark_boost_factor, 10000);
2173 max_boost = max(pageblock_nr_pages, max_boost);
2174
2175 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2176 max_boost);
2177}
2178
4eb7dce6
JK
2179/*
2180 * This function implements actual steal behaviour. If order is large enough,
2181 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2182 * pageblock to our migratetype and determine how many already-allocated pages
2183 * are there in the pageblock with a compatible migratetype. If at least half
2184 * of pages are free or compatible, we can change migratetype of the pageblock
2185 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2186 */
2187static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2188 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2189{
d00181b9 2190 unsigned int current_order = page_order(page);
3bc48f96 2191 struct free_area *area;
02aa0cdd
VB
2192 int free_pages, movable_pages, alike_pages;
2193 int old_block_type;
2194
2195 old_block_type = get_pageblock_migratetype(page);
fef903ef 2196
3bc48f96
VB
2197 /*
2198 * This can happen due to races and we want to prevent broken
2199 * highatomic accounting.
2200 */
02aa0cdd 2201 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2202 goto single_page;
2203
fef903ef
SB
2204 /* Take ownership for orders >= pageblock_order */
2205 if (current_order >= pageblock_order) {
2206 change_pageblock_range(page, current_order, start_type);
3bc48f96 2207 goto single_page;
fef903ef
SB
2208 }
2209
1c30844d
MG
2210 /*
2211 * Boost watermarks to increase reclaim pressure to reduce the
2212 * likelihood of future fallbacks. Wake kswapd now as the node
2213 * may be balanced overall and kswapd will not wake naturally.
2214 */
2215 boost_watermark(zone);
2216 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2217 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2218
3bc48f96
VB
2219 /* We are not allowed to try stealing from the whole block */
2220 if (!whole_block)
2221 goto single_page;
2222
02aa0cdd
VB
2223 free_pages = move_freepages_block(zone, page, start_type,
2224 &movable_pages);
2225 /*
2226 * Determine how many pages are compatible with our allocation.
2227 * For movable allocation, it's the number of movable pages which
2228 * we just obtained. For other types it's a bit more tricky.
2229 */
2230 if (start_type == MIGRATE_MOVABLE) {
2231 alike_pages = movable_pages;
2232 } else {
2233 /*
2234 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2235 * to MOVABLE pageblock, consider all non-movable pages as
2236 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2237 * vice versa, be conservative since we can't distinguish the
2238 * exact migratetype of non-movable pages.
2239 */
2240 if (old_block_type == MIGRATE_MOVABLE)
2241 alike_pages = pageblock_nr_pages
2242 - (free_pages + movable_pages);
2243 else
2244 alike_pages = 0;
2245 }
2246
3bc48f96 2247 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2248 if (!free_pages)
3bc48f96 2249 goto single_page;
fef903ef 2250
02aa0cdd
VB
2251 /*
2252 * If a sufficient number of pages in the block are either free or of
2253 * comparable migratability as our allocation, claim the whole block.
2254 */
2255 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2256 page_group_by_mobility_disabled)
2257 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2258
2259 return;
2260
2261single_page:
2262 area = &zone->free_area[current_order];
2263 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2264}
2265
2149cdae
JK
2266/*
2267 * Check whether there is a suitable fallback freepage with requested order.
2268 * If only_stealable is true, this function returns fallback_mt only if
2269 * we can steal other freepages all together. This would help to reduce
2270 * fragmentation due to mixed migratetype pages in one pageblock.
2271 */
2272int find_suitable_fallback(struct free_area *area, unsigned int order,
2273 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2274{
2275 int i;
2276 int fallback_mt;
2277
2278 if (area->nr_free == 0)
2279 return -1;
2280
2281 *can_steal = false;
2282 for (i = 0;; i++) {
2283 fallback_mt = fallbacks[migratetype][i];
974a786e 2284 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2285 break;
2286
2287 if (list_empty(&area->free_list[fallback_mt]))
2288 continue;
fef903ef 2289
4eb7dce6
JK
2290 if (can_steal_fallback(order, migratetype))
2291 *can_steal = true;
2292
2149cdae
JK
2293 if (!only_stealable)
2294 return fallback_mt;
2295
2296 if (*can_steal)
2297 return fallback_mt;
fef903ef 2298 }
4eb7dce6
JK
2299
2300 return -1;
fef903ef
SB
2301}
2302
0aaa29a5
MG
2303/*
2304 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2305 * there are no empty page blocks that contain a page with a suitable order
2306 */
2307static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2308 unsigned int alloc_order)
2309{
2310 int mt;
2311 unsigned long max_managed, flags;
2312
2313 /*
2314 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2315 * Check is race-prone but harmless.
2316 */
9705bea5 2317 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2318 if (zone->nr_reserved_highatomic >= max_managed)
2319 return;
2320
2321 spin_lock_irqsave(&zone->lock, flags);
2322
2323 /* Recheck the nr_reserved_highatomic limit under the lock */
2324 if (zone->nr_reserved_highatomic >= max_managed)
2325 goto out_unlock;
2326
2327 /* Yoink! */
2328 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2329 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2330 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2331 zone->nr_reserved_highatomic += pageblock_nr_pages;
2332 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2333 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2334 }
2335
2336out_unlock:
2337 spin_unlock_irqrestore(&zone->lock, flags);
2338}
2339
2340/*
2341 * Used when an allocation is about to fail under memory pressure. This
2342 * potentially hurts the reliability of high-order allocations when under
2343 * intense memory pressure but failed atomic allocations should be easier
2344 * to recover from than an OOM.
29fac03b
MK
2345 *
2346 * If @force is true, try to unreserve a pageblock even though highatomic
2347 * pageblock is exhausted.
0aaa29a5 2348 */
29fac03b
MK
2349static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2350 bool force)
0aaa29a5
MG
2351{
2352 struct zonelist *zonelist = ac->zonelist;
2353 unsigned long flags;
2354 struct zoneref *z;
2355 struct zone *zone;
2356 struct page *page;
2357 int order;
04c8716f 2358 bool ret;
0aaa29a5
MG
2359
2360 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2361 ac->nodemask) {
29fac03b
MK
2362 /*
2363 * Preserve at least one pageblock unless memory pressure
2364 * is really high.
2365 */
2366 if (!force && zone->nr_reserved_highatomic <=
2367 pageblock_nr_pages)
0aaa29a5
MG
2368 continue;
2369
2370 spin_lock_irqsave(&zone->lock, flags);
2371 for (order = 0; order < MAX_ORDER; order++) {
2372 struct free_area *area = &(zone->free_area[order]);
2373
a16601c5
GT
2374 page = list_first_entry_or_null(
2375 &area->free_list[MIGRATE_HIGHATOMIC],
2376 struct page, lru);
2377 if (!page)
0aaa29a5
MG
2378 continue;
2379
0aaa29a5 2380 /*
4855e4a7
MK
2381 * In page freeing path, migratetype change is racy so
2382 * we can counter several free pages in a pageblock
2383 * in this loop althoug we changed the pageblock type
2384 * from highatomic to ac->migratetype. So we should
2385 * adjust the count once.
0aaa29a5 2386 */
a6ffdc07 2387 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2388 /*
2389 * It should never happen but changes to
2390 * locking could inadvertently allow a per-cpu
2391 * drain to add pages to MIGRATE_HIGHATOMIC
2392 * while unreserving so be safe and watch for
2393 * underflows.
2394 */
2395 zone->nr_reserved_highatomic -= min(
2396 pageblock_nr_pages,
2397 zone->nr_reserved_highatomic);
2398 }
0aaa29a5
MG
2399
2400 /*
2401 * Convert to ac->migratetype and avoid the normal
2402 * pageblock stealing heuristics. Minimally, the caller
2403 * is doing the work and needs the pages. More
2404 * importantly, if the block was always converted to
2405 * MIGRATE_UNMOVABLE or another type then the number
2406 * of pageblocks that cannot be completely freed
2407 * may increase.
2408 */
2409 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2410 ret = move_freepages_block(zone, page, ac->migratetype,
2411 NULL);
29fac03b
MK
2412 if (ret) {
2413 spin_unlock_irqrestore(&zone->lock, flags);
2414 return ret;
2415 }
0aaa29a5
MG
2416 }
2417 spin_unlock_irqrestore(&zone->lock, flags);
2418 }
04c8716f
MK
2419
2420 return false;
0aaa29a5
MG
2421}
2422
3bc48f96
VB
2423/*
2424 * Try finding a free buddy page on the fallback list and put it on the free
2425 * list of requested migratetype, possibly along with other pages from the same
2426 * block, depending on fragmentation avoidance heuristics. Returns true if
2427 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2428 *
2429 * The use of signed ints for order and current_order is a deliberate
2430 * deviation from the rest of this file, to make the for loop
2431 * condition simpler.
3bc48f96 2432 */
85ccc8fa 2433static __always_inline bool
6bb15450
MG
2434__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2435 unsigned int alloc_flags)
b2a0ac88 2436{
b8af2941 2437 struct free_area *area;
b002529d 2438 int current_order;
6bb15450 2439 int min_order = order;
b2a0ac88 2440 struct page *page;
4eb7dce6
JK
2441 int fallback_mt;
2442 bool can_steal;
b2a0ac88 2443
6bb15450
MG
2444 /*
2445 * Do not steal pages from freelists belonging to other pageblocks
2446 * i.e. orders < pageblock_order. If there are no local zones free,
2447 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2448 */
2449 if (alloc_flags & ALLOC_NOFRAGMENT)
2450 min_order = pageblock_order;
2451
7a8f58f3
VB
2452 /*
2453 * Find the largest available free page in the other list. This roughly
2454 * approximates finding the pageblock with the most free pages, which
2455 * would be too costly to do exactly.
2456 */
6bb15450 2457 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2458 --current_order) {
4eb7dce6
JK
2459 area = &(zone->free_area[current_order]);
2460 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2461 start_migratetype, false, &can_steal);
4eb7dce6
JK
2462 if (fallback_mt == -1)
2463 continue;
b2a0ac88 2464
7a8f58f3
VB
2465 /*
2466 * We cannot steal all free pages from the pageblock and the
2467 * requested migratetype is movable. In that case it's better to
2468 * steal and split the smallest available page instead of the
2469 * largest available page, because even if the next movable
2470 * allocation falls back into a different pageblock than this
2471 * one, it won't cause permanent fragmentation.
2472 */
2473 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2474 && current_order > order)
2475 goto find_smallest;
b2a0ac88 2476
7a8f58f3
VB
2477 goto do_steal;
2478 }
e0fff1bd 2479
7a8f58f3 2480 return false;
e0fff1bd 2481
7a8f58f3
VB
2482find_smallest:
2483 for (current_order = order; current_order < MAX_ORDER;
2484 current_order++) {
2485 area = &(zone->free_area[current_order]);
2486 fallback_mt = find_suitable_fallback(area, current_order,
2487 start_migratetype, false, &can_steal);
2488 if (fallback_mt != -1)
2489 break;
b2a0ac88
MG
2490 }
2491
7a8f58f3
VB
2492 /*
2493 * This should not happen - we already found a suitable fallback
2494 * when looking for the largest page.
2495 */
2496 VM_BUG_ON(current_order == MAX_ORDER);
2497
2498do_steal:
2499 page = list_first_entry(&area->free_list[fallback_mt],
2500 struct page, lru);
2501
1c30844d
MG
2502 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2503 can_steal);
7a8f58f3
VB
2504
2505 trace_mm_page_alloc_extfrag(page, order, current_order,
2506 start_migratetype, fallback_mt);
2507
2508 return true;
2509
b2a0ac88
MG
2510}
2511
56fd56b8 2512/*
1da177e4
LT
2513 * Do the hard work of removing an element from the buddy allocator.
2514 * Call me with the zone->lock already held.
2515 */
85ccc8fa 2516static __always_inline struct page *
6bb15450
MG
2517__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2518 unsigned int alloc_flags)
1da177e4 2519{
1da177e4
LT
2520 struct page *page;
2521
3bc48f96 2522retry:
56fd56b8 2523 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2524 if (unlikely(!page)) {
dc67647b
JK
2525 if (migratetype == MIGRATE_MOVABLE)
2526 page = __rmqueue_cma_fallback(zone, order);
2527
6bb15450
MG
2528 if (!page && __rmqueue_fallback(zone, order, migratetype,
2529 alloc_flags))
3bc48f96 2530 goto retry;
728ec980
MG
2531 }
2532
0d3d062a 2533 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2534 return page;
1da177e4
LT
2535}
2536
5f63b720 2537/*
1da177e4
LT
2538 * Obtain a specified number of elements from the buddy allocator, all under
2539 * a single hold of the lock, for efficiency. Add them to the supplied list.
2540 * Returns the number of new pages which were placed at *list.
2541 */
5f63b720 2542static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2543 unsigned long count, struct list_head *list,
6bb15450 2544 int migratetype, unsigned int alloc_flags)
1da177e4 2545{
a6de734b 2546 int i, alloced = 0;
5f63b720 2547
d34b0733 2548 spin_lock(&zone->lock);
1da177e4 2549 for (i = 0; i < count; ++i) {
6bb15450
MG
2550 struct page *page = __rmqueue(zone, order, migratetype,
2551 alloc_flags);
085cc7d5 2552 if (unlikely(page == NULL))
1da177e4 2553 break;
81eabcbe 2554
479f854a
MG
2555 if (unlikely(check_pcp_refill(page)))
2556 continue;
2557
81eabcbe 2558 /*
0fac3ba5
VB
2559 * Split buddy pages returned by expand() are received here in
2560 * physical page order. The page is added to the tail of
2561 * caller's list. From the callers perspective, the linked list
2562 * is ordered by page number under some conditions. This is
2563 * useful for IO devices that can forward direction from the
2564 * head, thus also in the physical page order. This is useful
2565 * for IO devices that can merge IO requests if the physical
2566 * pages are ordered properly.
81eabcbe 2567 */
0fac3ba5 2568 list_add_tail(&page->lru, list);
a6de734b 2569 alloced++;
bb14c2c7 2570 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2571 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2572 -(1 << order));
1da177e4 2573 }
a6de734b
MG
2574
2575 /*
2576 * i pages were removed from the buddy list even if some leak due
2577 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2578 * on i. Do not confuse with 'alloced' which is the number of
2579 * pages added to the pcp list.
2580 */
f2260e6b 2581 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2582 spin_unlock(&zone->lock);
a6de734b 2583 return alloced;
1da177e4
LT
2584}
2585
4ae7c039 2586#ifdef CONFIG_NUMA
8fce4d8e 2587/*
4037d452
CL
2588 * Called from the vmstat counter updater to drain pagesets of this
2589 * currently executing processor on remote nodes after they have
2590 * expired.
2591 *
879336c3
CL
2592 * Note that this function must be called with the thread pinned to
2593 * a single processor.
8fce4d8e 2594 */
4037d452 2595void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2596{
4ae7c039 2597 unsigned long flags;
7be12fc9 2598 int to_drain, batch;
4ae7c039 2599
4037d452 2600 local_irq_save(flags);
4db0c3c2 2601 batch = READ_ONCE(pcp->batch);
7be12fc9 2602 to_drain = min(pcp->count, batch);
77ba9062 2603 if (to_drain > 0)
2a13515c 2604 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2605 local_irq_restore(flags);
4ae7c039
CL
2606}
2607#endif
2608
9f8f2172 2609/*
93481ff0 2610 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2611 *
2612 * The processor must either be the current processor and the
2613 * thread pinned to the current processor or a processor that
2614 * is not online.
2615 */
93481ff0 2616static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2617{
c54ad30c 2618 unsigned long flags;
93481ff0
VB
2619 struct per_cpu_pageset *pset;
2620 struct per_cpu_pages *pcp;
1da177e4 2621
93481ff0
VB
2622 local_irq_save(flags);
2623 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2624
93481ff0 2625 pcp = &pset->pcp;
77ba9062 2626 if (pcp->count)
93481ff0 2627 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2628 local_irq_restore(flags);
2629}
3dfa5721 2630
93481ff0
VB
2631/*
2632 * Drain pcplists of all zones on the indicated processor.
2633 *
2634 * The processor must either be the current processor and the
2635 * thread pinned to the current processor or a processor that
2636 * is not online.
2637 */
2638static void drain_pages(unsigned int cpu)
2639{
2640 struct zone *zone;
2641
2642 for_each_populated_zone(zone) {
2643 drain_pages_zone(cpu, zone);
1da177e4
LT
2644 }
2645}
1da177e4 2646
9f8f2172
CL
2647/*
2648 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2649 *
2650 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2651 * the single zone's pages.
9f8f2172 2652 */
93481ff0 2653void drain_local_pages(struct zone *zone)
9f8f2172 2654{
93481ff0
VB
2655 int cpu = smp_processor_id();
2656
2657 if (zone)
2658 drain_pages_zone(cpu, zone);
2659 else
2660 drain_pages(cpu);
9f8f2172
CL
2661}
2662
0ccce3b9
MG
2663static void drain_local_pages_wq(struct work_struct *work)
2664{
d9367bd0
WY
2665 struct pcpu_drain *drain;
2666
2667 drain = container_of(work, struct pcpu_drain, work);
2668
a459eeb7
MH
2669 /*
2670 * drain_all_pages doesn't use proper cpu hotplug protection so
2671 * we can race with cpu offline when the WQ can move this from
2672 * a cpu pinned worker to an unbound one. We can operate on a different
2673 * cpu which is allright but we also have to make sure to not move to
2674 * a different one.
2675 */
2676 preempt_disable();
d9367bd0 2677 drain_local_pages(drain->zone);
a459eeb7 2678 preempt_enable();
0ccce3b9
MG
2679}
2680
9f8f2172 2681/*
74046494
GBY
2682 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2683 *
93481ff0
VB
2684 * When zone parameter is non-NULL, spill just the single zone's pages.
2685 *
0ccce3b9 2686 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2687 */
93481ff0 2688void drain_all_pages(struct zone *zone)
9f8f2172 2689{
74046494 2690 int cpu;
74046494
GBY
2691
2692 /*
2693 * Allocate in the BSS so we wont require allocation in
2694 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2695 */
2696 static cpumask_t cpus_with_pcps;
2697
ce612879
MH
2698 /*
2699 * Make sure nobody triggers this path before mm_percpu_wq is fully
2700 * initialized.
2701 */
2702 if (WARN_ON_ONCE(!mm_percpu_wq))
2703 return;
2704
bd233f53
MG
2705 /*
2706 * Do not drain if one is already in progress unless it's specific to
2707 * a zone. Such callers are primarily CMA and memory hotplug and need
2708 * the drain to be complete when the call returns.
2709 */
2710 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2711 if (!zone)
2712 return;
2713 mutex_lock(&pcpu_drain_mutex);
2714 }
0ccce3b9 2715
74046494
GBY
2716 /*
2717 * We don't care about racing with CPU hotplug event
2718 * as offline notification will cause the notified
2719 * cpu to drain that CPU pcps and on_each_cpu_mask
2720 * disables preemption as part of its processing
2721 */
2722 for_each_online_cpu(cpu) {
93481ff0
VB
2723 struct per_cpu_pageset *pcp;
2724 struct zone *z;
74046494 2725 bool has_pcps = false;
93481ff0
VB
2726
2727 if (zone) {
74046494 2728 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2729 if (pcp->pcp.count)
74046494 2730 has_pcps = true;
93481ff0
VB
2731 } else {
2732 for_each_populated_zone(z) {
2733 pcp = per_cpu_ptr(z->pageset, cpu);
2734 if (pcp->pcp.count) {
2735 has_pcps = true;
2736 break;
2737 }
74046494
GBY
2738 }
2739 }
93481ff0 2740
74046494
GBY
2741 if (has_pcps)
2742 cpumask_set_cpu(cpu, &cpus_with_pcps);
2743 else
2744 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2745 }
0ccce3b9 2746
bd233f53 2747 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2748 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2749
2750 drain->zone = zone;
2751 INIT_WORK(&drain->work, drain_local_pages_wq);
2752 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2753 }
bd233f53 2754 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2755 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2756
2757 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2758}
2759
296699de 2760#ifdef CONFIG_HIBERNATION
1da177e4 2761
556b969a
CY
2762/*
2763 * Touch the watchdog for every WD_PAGE_COUNT pages.
2764 */
2765#define WD_PAGE_COUNT (128*1024)
2766
1da177e4
LT
2767void mark_free_pages(struct zone *zone)
2768{
556b969a 2769 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2770 unsigned long flags;
7aeb09f9 2771 unsigned int order, t;
86760a2c 2772 struct page *page;
1da177e4 2773
8080fc03 2774 if (zone_is_empty(zone))
1da177e4
LT
2775 return;
2776
2777 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2778
108bcc96 2779 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2780 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2781 if (pfn_valid(pfn)) {
86760a2c 2782 page = pfn_to_page(pfn);
ba6b0979 2783
556b969a
CY
2784 if (!--page_count) {
2785 touch_nmi_watchdog();
2786 page_count = WD_PAGE_COUNT;
2787 }
2788
ba6b0979
JK
2789 if (page_zone(page) != zone)
2790 continue;
2791
7be98234
RW
2792 if (!swsusp_page_is_forbidden(page))
2793 swsusp_unset_page_free(page);
f623f0db 2794 }
1da177e4 2795
b2a0ac88 2796 for_each_migratetype_order(order, t) {
86760a2c
GT
2797 list_for_each_entry(page,
2798 &zone->free_area[order].free_list[t], lru) {
f623f0db 2799 unsigned long i;
1da177e4 2800
86760a2c 2801 pfn = page_to_pfn(page);
556b969a
CY
2802 for (i = 0; i < (1UL << order); i++) {
2803 if (!--page_count) {
2804 touch_nmi_watchdog();
2805 page_count = WD_PAGE_COUNT;
2806 }
7be98234 2807 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2808 }
f623f0db 2809 }
b2a0ac88 2810 }
1da177e4
LT
2811 spin_unlock_irqrestore(&zone->lock, flags);
2812}
e2c55dc8 2813#endif /* CONFIG_PM */
1da177e4 2814
2d4894b5 2815static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2816{
5f8dcc21 2817 int migratetype;
1da177e4 2818
4db7548c 2819 if (!free_pcp_prepare(page))
9cca35d4 2820 return false;
689bcebf 2821
dc4b0caf 2822 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2823 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2824 return true;
2825}
2826
2d4894b5 2827static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2828{
2829 struct zone *zone = page_zone(page);
2830 struct per_cpu_pages *pcp;
2831 int migratetype;
2832
2833 migratetype = get_pcppage_migratetype(page);
d34b0733 2834 __count_vm_event(PGFREE);
da456f14 2835
5f8dcc21
MG
2836 /*
2837 * We only track unmovable, reclaimable and movable on pcp lists.
2838 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2839 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2840 * areas back if necessary. Otherwise, we may have to free
2841 * excessively into the page allocator
2842 */
2843 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2844 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2845 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2846 return;
5f8dcc21
MG
2847 }
2848 migratetype = MIGRATE_MOVABLE;
2849 }
2850
99dcc3e5 2851 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2852 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2853 pcp->count++;
48db57f8 2854 if (pcp->count >= pcp->high) {
4db0c3c2 2855 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2856 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2857 }
9cca35d4 2858}
5f8dcc21 2859
9cca35d4
MG
2860/*
2861 * Free a 0-order page
9cca35d4 2862 */
2d4894b5 2863void free_unref_page(struct page *page)
9cca35d4
MG
2864{
2865 unsigned long flags;
2866 unsigned long pfn = page_to_pfn(page);
2867
2d4894b5 2868 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2869 return;
2870
2871 local_irq_save(flags);
2d4894b5 2872 free_unref_page_commit(page, pfn);
d34b0733 2873 local_irq_restore(flags);
1da177e4
LT
2874}
2875
cc59850e
KK
2876/*
2877 * Free a list of 0-order pages
2878 */
2d4894b5 2879void free_unref_page_list(struct list_head *list)
cc59850e
KK
2880{
2881 struct page *page, *next;
9cca35d4 2882 unsigned long flags, pfn;
c24ad77d 2883 int batch_count = 0;
9cca35d4
MG
2884
2885 /* Prepare pages for freeing */
2886 list_for_each_entry_safe(page, next, list, lru) {
2887 pfn = page_to_pfn(page);
2d4894b5 2888 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2889 list_del(&page->lru);
2890 set_page_private(page, pfn);
2891 }
cc59850e 2892
9cca35d4 2893 local_irq_save(flags);
cc59850e 2894 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2895 unsigned long pfn = page_private(page);
2896
2897 set_page_private(page, 0);
2d4894b5
MG
2898 trace_mm_page_free_batched(page);
2899 free_unref_page_commit(page, pfn);
c24ad77d
LS
2900
2901 /*
2902 * Guard against excessive IRQ disabled times when we get
2903 * a large list of pages to free.
2904 */
2905 if (++batch_count == SWAP_CLUSTER_MAX) {
2906 local_irq_restore(flags);
2907 batch_count = 0;
2908 local_irq_save(flags);
2909 }
cc59850e 2910 }
9cca35d4 2911 local_irq_restore(flags);
cc59850e
KK
2912}
2913
8dfcc9ba
NP
2914/*
2915 * split_page takes a non-compound higher-order page, and splits it into
2916 * n (1<<order) sub-pages: page[0..n]
2917 * Each sub-page must be freed individually.
2918 *
2919 * Note: this is probably too low level an operation for use in drivers.
2920 * Please consult with lkml before using this in your driver.
2921 */
2922void split_page(struct page *page, unsigned int order)
2923{
2924 int i;
2925
309381fe
SL
2926 VM_BUG_ON_PAGE(PageCompound(page), page);
2927 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2928
a9627bc5 2929 for (i = 1; i < (1 << order); i++)
7835e98b 2930 set_page_refcounted(page + i);
a9627bc5 2931 split_page_owner(page, order);
8dfcc9ba 2932}
5853ff23 2933EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2934
3c605096 2935int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2936{
748446bb
MG
2937 unsigned long watermark;
2938 struct zone *zone;
2139cbe6 2939 int mt;
748446bb
MG
2940
2941 BUG_ON(!PageBuddy(page));
2942
2943 zone = page_zone(page);
2e30abd1 2944 mt = get_pageblock_migratetype(page);
748446bb 2945
194159fb 2946 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2947 /*
2948 * Obey watermarks as if the page was being allocated. We can
2949 * emulate a high-order watermark check with a raised order-0
2950 * watermark, because we already know our high-order page
2951 * exists.
2952 */
2953 watermark = min_wmark_pages(zone) + (1UL << order);
d883c6cf 2954 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2955 return 0;
2956
8fb74b9f 2957 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2958 }
748446bb
MG
2959
2960 /* Remove page from free list */
2961 list_del(&page->lru);
2962 zone->free_area[order].nr_free--;
2963 rmv_page_order(page);
2139cbe6 2964
400bc7fd 2965 /*
2966 * Set the pageblock if the isolated page is at least half of a
2967 * pageblock
2968 */
748446bb
MG
2969 if (order >= pageblock_order - 1) {
2970 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2971 for (; page < endpage; page += pageblock_nr_pages) {
2972 int mt = get_pageblock_migratetype(page);
88ed365e 2973 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2974 && !is_migrate_highatomic(mt))
47118af0
MN
2975 set_pageblock_migratetype(page,
2976 MIGRATE_MOVABLE);
2977 }
748446bb
MG
2978 }
2979
f3a14ced 2980
8fb74b9f 2981 return 1UL << order;
1fb3f8ca
MG
2982}
2983
060e7417
MG
2984/*
2985 * Update NUMA hit/miss statistics
2986 *
2987 * Must be called with interrupts disabled.
060e7417 2988 */
41b6167e 2989static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2990{
2991#ifdef CONFIG_NUMA
3a321d2a 2992 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2993
4518085e
KW
2994 /* skip numa counters update if numa stats is disabled */
2995 if (!static_branch_likely(&vm_numa_stat_key))
2996 return;
2997
c1093b74 2998 if (zone_to_nid(z) != numa_node_id())
060e7417 2999 local_stat = NUMA_OTHER;
060e7417 3000
c1093b74 3001 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3002 __inc_numa_state(z, NUMA_HIT);
2df26639 3003 else {
3a321d2a
KW
3004 __inc_numa_state(z, NUMA_MISS);
3005 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3006 }
3a321d2a 3007 __inc_numa_state(z, local_stat);
060e7417
MG
3008#endif
3009}
3010
066b2393
MG
3011/* Remove page from the per-cpu list, caller must protect the list */
3012static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3013 unsigned int alloc_flags,
453f85d4 3014 struct per_cpu_pages *pcp,
066b2393
MG
3015 struct list_head *list)
3016{
3017 struct page *page;
3018
3019 do {
3020 if (list_empty(list)) {
3021 pcp->count += rmqueue_bulk(zone, 0,
3022 pcp->batch, list,
6bb15450 3023 migratetype, alloc_flags);
066b2393
MG
3024 if (unlikely(list_empty(list)))
3025 return NULL;
3026 }
3027
453f85d4 3028 page = list_first_entry(list, struct page, lru);
066b2393
MG
3029 list_del(&page->lru);
3030 pcp->count--;
3031 } while (check_new_pcp(page));
3032
3033 return page;
3034}
3035
3036/* Lock and remove page from the per-cpu list */
3037static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3038 struct zone *zone, unsigned int order,
6bb15450
MG
3039 gfp_t gfp_flags, int migratetype,
3040 unsigned int alloc_flags)
066b2393
MG
3041{
3042 struct per_cpu_pages *pcp;
3043 struct list_head *list;
066b2393 3044 struct page *page;
d34b0733 3045 unsigned long flags;
066b2393 3046
d34b0733 3047 local_irq_save(flags);
066b2393
MG
3048 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3049 list = &pcp->lists[migratetype];
6bb15450 3050 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393
MG
3051 if (page) {
3052 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3053 zone_statistics(preferred_zone, zone);
3054 }
d34b0733 3055 local_irq_restore(flags);
066b2393
MG
3056 return page;
3057}
3058
1da177e4 3059/*
75379191 3060 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3061 */
0a15c3e9 3062static inline
066b2393 3063struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3064 struct zone *zone, unsigned int order,
c603844b
MG
3065 gfp_t gfp_flags, unsigned int alloc_flags,
3066 int migratetype)
1da177e4
LT
3067{
3068 unsigned long flags;
689bcebf 3069 struct page *page;
1da177e4 3070
d34b0733 3071 if (likely(order == 0)) {
066b2393 3072 page = rmqueue_pcplist(preferred_zone, zone, order,
6bb15450 3073 gfp_flags, migratetype, alloc_flags);
066b2393
MG
3074 goto out;
3075 }
83b9355b 3076
066b2393
MG
3077 /*
3078 * We most definitely don't want callers attempting to
3079 * allocate greater than order-1 page units with __GFP_NOFAIL.
3080 */
3081 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3082 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3083
066b2393
MG
3084 do {
3085 page = NULL;
3086 if (alloc_flags & ALLOC_HARDER) {
3087 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3088 if (page)
3089 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3090 }
a74609fa 3091 if (!page)
6bb15450 3092 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3093 } while (page && check_new_pages(page, order));
3094 spin_unlock(&zone->lock);
3095 if (!page)
3096 goto failed;
3097 __mod_zone_freepage_state(zone, -(1 << order),
3098 get_pcppage_migratetype(page));
1da177e4 3099
16709d1d 3100 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3101 zone_statistics(preferred_zone, zone);
a74609fa 3102 local_irq_restore(flags);
1da177e4 3103
066b2393 3104out:
73444bc4
MG
3105 /* Separate test+clear to avoid unnecessary atomics */
3106 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3107 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3108 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3109 }
3110
066b2393 3111 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3112 return page;
a74609fa
NP
3113
3114failed:
3115 local_irq_restore(flags);
a74609fa 3116 return NULL;
1da177e4
LT
3117}
3118
933e312e
AM
3119#ifdef CONFIG_FAIL_PAGE_ALLOC
3120
b2588c4b 3121static struct {
933e312e
AM
3122 struct fault_attr attr;
3123
621a5f7a 3124 bool ignore_gfp_highmem;
71baba4b 3125 bool ignore_gfp_reclaim;
54114994 3126 u32 min_order;
933e312e
AM
3127} fail_page_alloc = {
3128 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3129 .ignore_gfp_reclaim = true,
621a5f7a 3130 .ignore_gfp_highmem = true,
54114994 3131 .min_order = 1,
933e312e
AM
3132};
3133
3134static int __init setup_fail_page_alloc(char *str)
3135{
3136 return setup_fault_attr(&fail_page_alloc.attr, str);
3137}
3138__setup("fail_page_alloc=", setup_fail_page_alloc);
3139
af3b8544 3140static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3141{
54114994 3142 if (order < fail_page_alloc.min_order)
deaf386e 3143 return false;
933e312e 3144 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3145 return false;
933e312e 3146 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3147 return false;
71baba4b
MG
3148 if (fail_page_alloc.ignore_gfp_reclaim &&
3149 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3150 return false;
933e312e
AM
3151
3152 return should_fail(&fail_page_alloc.attr, 1 << order);
3153}
3154
3155#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3156
3157static int __init fail_page_alloc_debugfs(void)
3158{
0825a6f9 3159 umode_t mode = S_IFREG | 0600;
933e312e 3160 struct dentry *dir;
933e312e 3161
dd48c085
AM
3162 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3163 &fail_page_alloc.attr);
3164 if (IS_ERR(dir))
3165 return PTR_ERR(dir);
933e312e 3166
b2588c4b 3167 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 3168 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
3169 goto fail;
3170 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3171 &fail_page_alloc.ignore_gfp_highmem))
3172 goto fail;
3173 if (!debugfs_create_u32("min-order", mode, dir,
3174 &fail_page_alloc.min_order))
3175 goto fail;
3176
3177 return 0;
3178fail:
dd48c085 3179 debugfs_remove_recursive(dir);
933e312e 3180
b2588c4b 3181 return -ENOMEM;
933e312e
AM
3182}
3183
3184late_initcall(fail_page_alloc_debugfs);
3185
3186#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3187
3188#else /* CONFIG_FAIL_PAGE_ALLOC */
3189
af3b8544 3190static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3191{
deaf386e 3192 return false;
933e312e
AM
3193}
3194
3195#endif /* CONFIG_FAIL_PAGE_ALLOC */
3196
af3b8544
BP
3197static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3198{
3199 return __should_fail_alloc_page(gfp_mask, order);
3200}
3201ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3202
1da177e4 3203/*
97a16fc8
MG
3204 * Return true if free base pages are above 'mark'. For high-order checks it
3205 * will return true of the order-0 watermark is reached and there is at least
3206 * one free page of a suitable size. Checking now avoids taking the zone lock
3207 * to check in the allocation paths if no pages are free.
1da177e4 3208 */
86a294a8
MH
3209bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3210 int classzone_idx, unsigned int alloc_flags,
3211 long free_pages)
1da177e4 3212{
d23ad423 3213 long min = mark;
1da177e4 3214 int o;
cd04ae1e 3215 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3216
0aaa29a5 3217 /* free_pages may go negative - that's OK */
df0a6daa 3218 free_pages -= (1 << order) - 1;
0aaa29a5 3219
7fb1d9fc 3220 if (alloc_flags & ALLOC_HIGH)
1da177e4 3221 min -= min / 2;
0aaa29a5
MG
3222
3223 /*
3224 * If the caller does not have rights to ALLOC_HARDER then subtract
3225 * the high-atomic reserves. This will over-estimate the size of the
3226 * atomic reserve but it avoids a search.
3227 */
cd04ae1e 3228 if (likely(!alloc_harder)) {
0aaa29a5 3229 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3230 } else {
3231 /*
3232 * OOM victims can try even harder than normal ALLOC_HARDER
3233 * users on the grounds that it's definitely going to be in
3234 * the exit path shortly and free memory. Any allocation it
3235 * makes during the free path will be small and short-lived.
3236 */
3237 if (alloc_flags & ALLOC_OOM)
3238 min -= min / 2;
3239 else
3240 min -= min / 4;
3241 }
3242
e2b19197 3243
d883c6cf
JK
3244#ifdef CONFIG_CMA
3245 /* If allocation can't use CMA areas don't use free CMA pages */
3246 if (!(alloc_flags & ALLOC_CMA))
3247 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3248#endif
3249
97a16fc8
MG
3250 /*
3251 * Check watermarks for an order-0 allocation request. If these
3252 * are not met, then a high-order request also cannot go ahead
3253 * even if a suitable page happened to be free.
3254 */
3255 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3256 return false;
1da177e4 3257
97a16fc8
MG
3258 /* If this is an order-0 request then the watermark is fine */
3259 if (!order)
3260 return true;
3261
3262 /* For a high-order request, check at least one suitable page is free */
3263 for (o = order; o < MAX_ORDER; o++) {
3264 struct free_area *area = &z->free_area[o];
3265 int mt;
3266
3267 if (!area->nr_free)
3268 continue;
3269
97a16fc8
MG
3270 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3271 if (!list_empty(&area->free_list[mt]))
3272 return true;
3273 }
3274
3275#ifdef CONFIG_CMA
d883c6cf
JK
3276 if ((alloc_flags & ALLOC_CMA) &&
3277 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3278 return true;
d883c6cf 3279 }
97a16fc8 3280#endif
b050e376
VB
3281 if (alloc_harder &&
3282 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3283 return true;
1da177e4 3284 }
97a16fc8 3285 return false;
88f5acf8
MG
3286}
3287
7aeb09f9 3288bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3289 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3290{
3291 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3292 zone_page_state(z, NR_FREE_PAGES));
3293}
3294
48ee5f36
MG
3295static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3296 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3297{
3298 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3299 long cma_pages = 0;
3300
3301#ifdef CONFIG_CMA
3302 /* If allocation can't use CMA areas don't use free CMA pages */
3303 if (!(alloc_flags & ALLOC_CMA))
3304 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3305#endif
48ee5f36
MG
3306
3307 /*
3308 * Fast check for order-0 only. If this fails then the reserves
3309 * need to be calculated. There is a corner case where the check
3310 * passes but only the high-order atomic reserve are free. If
3311 * the caller is !atomic then it'll uselessly search the free
3312 * list. That corner case is then slower but it is harmless.
3313 */
d883c6cf 3314 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3315 return true;
3316
3317 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3318 free_pages);
3319}
3320
7aeb09f9 3321bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3322 unsigned long mark, int classzone_idx)
88f5acf8
MG
3323{
3324 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3325
3326 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3327 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3328
e2b19197 3329 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3330 free_pages);
1da177e4
LT
3331}
3332
9276b1bc 3333#ifdef CONFIG_NUMA
957f822a
DR
3334static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3335{
e02dc017 3336 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3337 RECLAIM_DISTANCE;
957f822a 3338}
9276b1bc 3339#else /* CONFIG_NUMA */
957f822a
DR
3340static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3341{
3342 return true;
3343}
9276b1bc
PJ
3344#endif /* CONFIG_NUMA */
3345
6bb15450
MG
3346/*
3347 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3348 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3349 * premature use of a lower zone may cause lowmem pressure problems that
3350 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3351 * probably too small. It only makes sense to spread allocations to avoid
3352 * fragmentation between the Normal and DMA32 zones.
3353 */
3354static inline unsigned int
0a79cdad 3355alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3356{
0a79cdad
MG
3357 unsigned int alloc_flags = 0;
3358
3359 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3360 alloc_flags |= ALLOC_KSWAPD;
3361
3362#ifdef CONFIG_ZONE_DMA32
6bb15450 3363 if (zone_idx(zone) != ZONE_NORMAL)
0a79cdad 3364 goto out;
6bb15450
MG
3365
3366 /*
3367 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3368 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3369 * on UMA that if Normal is populated then so is DMA32.
3370 */
3371 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3372 if (nr_online_nodes > 1 && !populated_zone(--zone))
0a79cdad 3373 goto out;
6bb15450 3374
0a79cdad
MG
3375out:
3376#endif /* CONFIG_ZONE_DMA32 */
3377 return alloc_flags;
6bb15450 3378}
6bb15450 3379
7fb1d9fc 3380/*
0798e519 3381 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3382 * a page.
3383 */
3384static struct page *
a9263751
VB
3385get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3386 const struct alloc_context *ac)
753ee728 3387{
6bb15450 3388 struct zoneref *z;
5117f45d 3389 struct zone *zone;
3b8c0be4 3390 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3391 bool no_fallback;
3b8c0be4 3392
6bb15450 3393retry:
7fb1d9fc 3394 /*
9276b1bc 3395 * Scan zonelist, looking for a zone with enough free.
344736f2 3396 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3397 */
6bb15450
MG
3398 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3399 z = ac->preferred_zoneref;
c33d6c06 3400 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3401 ac->nodemask) {
be06af00 3402 struct page *page;
e085dbc5
JW
3403 unsigned long mark;
3404
664eedde
MG
3405 if (cpusets_enabled() &&
3406 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3407 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3408 continue;
a756cf59
JW
3409 /*
3410 * When allocating a page cache page for writing, we
281e3726
MG
3411 * want to get it from a node that is within its dirty
3412 * limit, such that no single node holds more than its
a756cf59 3413 * proportional share of globally allowed dirty pages.
281e3726 3414 * The dirty limits take into account the node's
a756cf59
JW
3415 * lowmem reserves and high watermark so that kswapd
3416 * should be able to balance it without having to
3417 * write pages from its LRU list.
3418 *
a756cf59 3419 * XXX: For now, allow allocations to potentially
281e3726 3420 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3421 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3422 * which is important when on a NUMA setup the allowed
281e3726 3423 * nodes are together not big enough to reach the
a756cf59 3424 * global limit. The proper fix for these situations
281e3726 3425 * will require awareness of nodes in the
a756cf59
JW
3426 * dirty-throttling and the flusher threads.
3427 */
3b8c0be4
MG
3428 if (ac->spread_dirty_pages) {
3429 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3430 continue;
3431
3432 if (!node_dirty_ok(zone->zone_pgdat)) {
3433 last_pgdat_dirty_limit = zone->zone_pgdat;
3434 continue;
3435 }
3436 }
7fb1d9fc 3437
6bb15450
MG
3438 if (no_fallback && nr_online_nodes > 1 &&
3439 zone != ac->preferred_zoneref->zone) {
3440 int local_nid;
3441
3442 /*
3443 * If moving to a remote node, retry but allow
3444 * fragmenting fallbacks. Locality is more important
3445 * than fragmentation avoidance.
3446 */
3447 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3448 if (zone_to_nid(zone) != local_nid) {
3449 alloc_flags &= ~ALLOC_NOFRAGMENT;
3450 goto retry;
3451 }
3452 }
3453
a9214443 3454 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3455 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3456 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3457 int ret;
3458
c9e97a19
PT
3459#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3460 /*
3461 * Watermark failed for this zone, but see if we can
3462 * grow this zone if it contains deferred pages.
3463 */
3464 if (static_branch_unlikely(&deferred_pages)) {
3465 if (_deferred_grow_zone(zone, order))
3466 goto try_this_zone;
3467 }
3468#endif
5dab2911
MG
3469 /* Checked here to keep the fast path fast */
3470 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3471 if (alloc_flags & ALLOC_NO_WATERMARKS)
3472 goto try_this_zone;
3473
a5f5f91d 3474 if (node_reclaim_mode == 0 ||
c33d6c06 3475 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3476 continue;
3477
a5f5f91d 3478 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3479 switch (ret) {
a5f5f91d 3480 case NODE_RECLAIM_NOSCAN:
fa5e084e 3481 /* did not scan */
cd38b115 3482 continue;
a5f5f91d 3483 case NODE_RECLAIM_FULL:
fa5e084e 3484 /* scanned but unreclaimable */
cd38b115 3485 continue;
fa5e084e
MG
3486 default:
3487 /* did we reclaim enough */
fed2719e 3488 if (zone_watermark_ok(zone, order, mark,
93ea9964 3489 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3490 goto try_this_zone;
3491
fed2719e 3492 continue;
0798e519 3493 }
7fb1d9fc
RS
3494 }
3495
fa5e084e 3496try_this_zone:
066b2393 3497 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3498 gfp_mask, alloc_flags, ac->migratetype);
75379191 3499 if (page) {
479f854a 3500 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3501
3502 /*
3503 * If this is a high-order atomic allocation then check
3504 * if the pageblock should be reserved for the future
3505 */
3506 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3507 reserve_highatomic_pageblock(page, zone, order);
3508
75379191 3509 return page;
c9e97a19
PT
3510 } else {
3511#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3512 /* Try again if zone has deferred pages */
3513 if (static_branch_unlikely(&deferred_pages)) {
3514 if (_deferred_grow_zone(zone, order))
3515 goto try_this_zone;
3516 }
3517#endif
75379191 3518 }
54a6eb5c 3519 }
9276b1bc 3520
6bb15450
MG
3521 /*
3522 * It's possible on a UMA machine to get through all zones that are
3523 * fragmented. If avoiding fragmentation, reset and try again.
3524 */
3525 if (no_fallback) {
3526 alloc_flags &= ~ALLOC_NOFRAGMENT;
3527 goto retry;
3528 }
3529
4ffeaf35 3530 return NULL;
753ee728
MH
3531}
3532
9af744d7 3533static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3534{
a238ab5b 3535 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3536 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3537
2c029a1e 3538 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3539 return;
3540
3541 /*
3542 * This documents exceptions given to allocations in certain
3543 * contexts that are allowed to allocate outside current's set
3544 * of allowed nodes.
3545 */
3546 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3547 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3548 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3549 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3550 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3551 filter &= ~SHOW_MEM_FILTER_NODES;
3552
9af744d7 3553 show_mem(filter, nodemask);
aa187507
MH
3554}
3555
a8e99259 3556void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3557{
3558 struct va_format vaf;
3559 va_list args;
3560 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3561 DEFAULT_RATELIMIT_BURST);
3562
0f7896f1 3563 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3564 return;
3565
7877cdcc
MH
3566 va_start(args, fmt);
3567 vaf.fmt = fmt;
3568 vaf.va = &args;
ef8444ea 3569 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3570 current->comm, &vaf, gfp_mask, &gfp_mask,
3571 nodemask_pr_args(nodemask));
7877cdcc 3572 va_end(args);
3ee9a4f0 3573
a8e99259 3574 cpuset_print_current_mems_allowed();
ef8444ea 3575 pr_cont("\n");
a238ab5b 3576 dump_stack();
685dbf6f 3577 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3578}
3579
6c18ba7a
MH
3580static inline struct page *
3581__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3582 unsigned int alloc_flags,
3583 const struct alloc_context *ac)
3584{
3585 struct page *page;
3586
3587 page = get_page_from_freelist(gfp_mask, order,
3588 alloc_flags|ALLOC_CPUSET, ac);
3589 /*
3590 * fallback to ignore cpuset restriction if our nodes
3591 * are depleted
3592 */
3593 if (!page)
3594 page = get_page_from_freelist(gfp_mask, order,
3595 alloc_flags, ac);
3596
3597 return page;
3598}
3599
11e33f6a
MG
3600static inline struct page *
3601__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3602 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3603{
6e0fc46d
DR
3604 struct oom_control oc = {
3605 .zonelist = ac->zonelist,
3606 .nodemask = ac->nodemask,
2a966b77 3607 .memcg = NULL,
6e0fc46d
DR
3608 .gfp_mask = gfp_mask,
3609 .order = order,
6e0fc46d 3610 };
11e33f6a
MG
3611 struct page *page;
3612
9879de73
JW
3613 *did_some_progress = 0;
3614
9879de73 3615 /*
dc56401f
JW
3616 * Acquire the oom lock. If that fails, somebody else is
3617 * making progress for us.
9879de73 3618 */
dc56401f 3619 if (!mutex_trylock(&oom_lock)) {
9879de73 3620 *did_some_progress = 1;
11e33f6a 3621 schedule_timeout_uninterruptible(1);
1da177e4
LT
3622 return NULL;
3623 }
6b1de916 3624
11e33f6a
MG
3625 /*
3626 * Go through the zonelist yet one more time, keep very high watermark
3627 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3628 * we're still under heavy pressure. But make sure that this reclaim
3629 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3630 * allocation which will never fail due to oom_lock already held.
11e33f6a 3631 */
e746bf73
TH
3632 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3633 ~__GFP_DIRECT_RECLAIM, order,
3634 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3635 if (page)
11e33f6a
MG
3636 goto out;
3637
06ad276a
MH
3638 /* Coredumps can quickly deplete all memory reserves */
3639 if (current->flags & PF_DUMPCORE)
3640 goto out;
3641 /* The OOM killer will not help higher order allocs */
3642 if (order > PAGE_ALLOC_COSTLY_ORDER)
3643 goto out;
dcda9b04
MH
3644 /*
3645 * We have already exhausted all our reclaim opportunities without any
3646 * success so it is time to admit defeat. We will skip the OOM killer
3647 * because it is very likely that the caller has a more reasonable
3648 * fallback than shooting a random task.
3649 */
3650 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3651 goto out;
06ad276a
MH
3652 /* The OOM killer does not needlessly kill tasks for lowmem */
3653 if (ac->high_zoneidx < ZONE_NORMAL)
3654 goto out;
3655 if (pm_suspended_storage())
3656 goto out;
3657 /*
3658 * XXX: GFP_NOFS allocations should rather fail than rely on
3659 * other request to make a forward progress.
3660 * We are in an unfortunate situation where out_of_memory cannot
3661 * do much for this context but let's try it to at least get
3662 * access to memory reserved if the current task is killed (see
3663 * out_of_memory). Once filesystems are ready to handle allocation
3664 * failures more gracefully we should just bail out here.
3665 */
3666
3667 /* The OOM killer may not free memory on a specific node */
3668 if (gfp_mask & __GFP_THISNODE)
3669 goto out;
3da88fb3 3670
3c2c6488 3671 /* Exhausted what can be done so it's blame time */
5020e285 3672 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3673 *did_some_progress = 1;
5020e285 3674
6c18ba7a
MH
3675 /*
3676 * Help non-failing allocations by giving them access to memory
3677 * reserves
3678 */
3679 if (gfp_mask & __GFP_NOFAIL)
3680 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3681 ALLOC_NO_WATERMARKS, ac);
5020e285 3682 }
11e33f6a 3683out:
dc56401f 3684 mutex_unlock(&oom_lock);
11e33f6a
MG
3685 return page;
3686}
3687
33c2d214
MH
3688/*
3689 * Maximum number of compaction retries wit a progress before OOM
3690 * killer is consider as the only way to move forward.
3691 */
3692#define MAX_COMPACT_RETRIES 16
3693
56de7263
MG
3694#ifdef CONFIG_COMPACTION
3695/* Try memory compaction for high-order allocations before reclaim */
3696static struct page *
3697__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3698 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3699 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3700{
98dd3b48 3701 struct page *page;
eb414681 3702 unsigned long pflags;
499118e9 3703 unsigned int noreclaim_flag;
53853e2d
VB
3704
3705 if (!order)
66199712 3706 return NULL;
66199712 3707
eb414681 3708 psi_memstall_enter(&pflags);
499118e9 3709 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3710
c5d01d0d 3711 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3712 prio);
eb414681 3713
499118e9 3714 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3715 psi_memstall_leave(&pflags);
56de7263 3716
c5d01d0d 3717 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3718 return NULL;
53853e2d 3719
98dd3b48
VB
3720 /*
3721 * At least in one zone compaction wasn't deferred or skipped, so let's
3722 * count a compaction stall
3723 */
3724 count_vm_event(COMPACTSTALL);
8fb74b9f 3725
31a6c190 3726 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3727
98dd3b48
VB
3728 if (page) {
3729 struct zone *zone = page_zone(page);
53853e2d 3730
98dd3b48
VB
3731 zone->compact_blockskip_flush = false;
3732 compaction_defer_reset(zone, order, true);
3733 count_vm_event(COMPACTSUCCESS);
3734 return page;
3735 }
56de7263 3736
98dd3b48
VB
3737 /*
3738 * It's bad if compaction run occurs and fails. The most likely reason
3739 * is that pages exist, but not enough to satisfy watermarks.
3740 */
3741 count_vm_event(COMPACTFAIL);
66199712 3742
98dd3b48 3743 cond_resched();
56de7263
MG
3744
3745 return NULL;
3746}
33c2d214 3747
3250845d
VB
3748static inline bool
3749should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3750 enum compact_result compact_result,
3751 enum compact_priority *compact_priority,
d9436498 3752 int *compaction_retries)
3250845d
VB
3753{
3754 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3755 int min_priority;
65190cff
MH
3756 bool ret = false;
3757 int retries = *compaction_retries;
3758 enum compact_priority priority = *compact_priority;
3250845d
VB
3759
3760 if (!order)
3761 return false;
3762
d9436498
VB
3763 if (compaction_made_progress(compact_result))
3764 (*compaction_retries)++;
3765
3250845d
VB
3766 /*
3767 * compaction considers all the zone as desperately out of memory
3768 * so it doesn't really make much sense to retry except when the
3769 * failure could be caused by insufficient priority
3770 */
d9436498
VB
3771 if (compaction_failed(compact_result))
3772 goto check_priority;
3250845d
VB
3773
3774 /*
3775 * make sure the compaction wasn't deferred or didn't bail out early
3776 * due to locks contention before we declare that we should give up.
3777 * But do not retry if the given zonelist is not suitable for
3778 * compaction.
3779 */
65190cff
MH
3780 if (compaction_withdrawn(compact_result)) {
3781 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3782 goto out;
3783 }
3250845d
VB
3784
3785 /*
dcda9b04 3786 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3787 * costly ones because they are de facto nofail and invoke OOM
3788 * killer to move on while costly can fail and users are ready
3789 * to cope with that. 1/4 retries is rather arbitrary but we
3790 * would need much more detailed feedback from compaction to
3791 * make a better decision.
3792 */
3793 if (order > PAGE_ALLOC_COSTLY_ORDER)
3794 max_retries /= 4;
65190cff
MH
3795 if (*compaction_retries <= max_retries) {
3796 ret = true;
3797 goto out;
3798 }
3250845d 3799
d9436498
VB
3800 /*
3801 * Make sure there are attempts at the highest priority if we exhausted
3802 * all retries or failed at the lower priorities.
3803 */
3804check_priority:
c2033b00
VB
3805 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3806 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3807
c2033b00 3808 if (*compact_priority > min_priority) {
d9436498
VB
3809 (*compact_priority)--;
3810 *compaction_retries = 0;
65190cff 3811 ret = true;
d9436498 3812 }
65190cff
MH
3813out:
3814 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3815 return ret;
3250845d 3816}
56de7263
MG
3817#else
3818static inline struct page *
3819__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3820 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3821 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3822{
33c2d214 3823 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3824 return NULL;
3825}
33c2d214
MH
3826
3827static inline bool
86a294a8
MH
3828should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3829 enum compact_result compact_result,
a5508cd8 3830 enum compact_priority *compact_priority,
d9436498 3831 int *compaction_retries)
33c2d214 3832{
31e49bfd
MH
3833 struct zone *zone;
3834 struct zoneref *z;
3835
3836 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3837 return false;
3838
3839 /*
3840 * There are setups with compaction disabled which would prefer to loop
3841 * inside the allocator rather than hit the oom killer prematurely.
3842 * Let's give them a good hope and keep retrying while the order-0
3843 * watermarks are OK.
3844 */
3845 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3846 ac->nodemask) {
3847 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3848 ac_classzone_idx(ac), alloc_flags))
3849 return true;
3850 }
33c2d214
MH
3851 return false;
3852}
3250845d 3853#endif /* CONFIG_COMPACTION */
56de7263 3854
d92a8cfc 3855#ifdef CONFIG_LOCKDEP
93781325 3856static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3857 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3858
3859static bool __need_fs_reclaim(gfp_t gfp_mask)
3860{
3861 gfp_mask = current_gfp_context(gfp_mask);
3862
3863 /* no reclaim without waiting on it */
3864 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3865 return false;
3866
3867 /* this guy won't enter reclaim */
2e517d68 3868 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3869 return false;
3870
3871 /* We're only interested __GFP_FS allocations for now */
3872 if (!(gfp_mask & __GFP_FS))
3873 return false;
3874
3875 if (gfp_mask & __GFP_NOLOCKDEP)
3876 return false;
3877
3878 return true;
3879}
3880
93781325
OS
3881void __fs_reclaim_acquire(void)
3882{
3883 lock_map_acquire(&__fs_reclaim_map);
3884}
3885
3886void __fs_reclaim_release(void)
3887{
3888 lock_map_release(&__fs_reclaim_map);
3889}
3890
d92a8cfc
PZ
3891void fs_reclaim_acquire(gfp_t gfp_mask)
3892{
3893 if (__need_fs_reclaim(gfp_mask))
93781325 3894 __fs_reclaim_acquire();
d92a8cfc
PZ
3895}
3896EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3897
3898void fs_reclaim_release(gfp_t gfp_mask)
3899{
3900 if (__need_fs_reclaim(gfp_mask))
93781325 3901 __fs_reclaim_release();
d92a8cfc
PZ
3902}
3903EXPORT_SYMBOL_GPL(fs_reclaim_release);
3904#endif
3905
bba90710
MS
3906/* Perform direct synchronous page reclaim */
3907static int
a9263751
VB
3908__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3909 const struct alloc_context *ac)
11e33f6a 3910{
11e33f6a 3911 struct reclaim_state reclaim_state;
bba90710 3912 int progress;
499118e9 3913 unsigned int noreclaim_flag;
eb414681 3914 unsigned long pflags;
11e33f6a
MG
3915
3916 cond_resched();
3917
3918 /* We now go into synchronous reclaim */
3919 cpuset_memory_pressure_bump();
eb414681 3920 psi_memstall_enter(&pflags);
d92a8cfc 3921 fs_reclaim_acquire(gfp_mask);
93781325 3922 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3923 reclaim_state.reclaimed_slab = 0;
c06b1fca 3924 current->reclaim_state = &reclaim_state;
11e33f6a 3925
a9263751
VB
3926 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3927 ac->nodemask);
11e33f6a 3928
c06b1fca 3929 current->reclaim_state = NULL;
499118e9 3930 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3931 fs_reclaim_release(gfp_mask);
eb414681 3932 psi_memstall_leave(&pflags);
11e33f6a
MG
3933
3934 cond_resched();
3935
bba90710
MS
3936 return progress;
3937}
3938
3939/* The really slow allocator path where we enter direct reclaim */
3940static inline struct page *
3941__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3942 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3943 unsigned long *did_some_progress)
bba90710
MS
3944{
3945 struct page *page = NULL;
3946 bool drained = false;
3947
a9263751 3948 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3949 if (unlikely(!(*did_some_progress)))
3950 return NULL;
11e33f6a 3951
9ee493ce 3952retry:
31a6c190 3953 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3954
3955 /*
3956 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3957 * pages are pinned on the per-cpu lists or in high alloc reserves.
3958 * Shrink them them and try again
9ee493ce
MG
3959 */
3960 if (!page && !drained) {
29fac03b 3961 unreserve_highatomic_pageblock(ac, false);
93481ff0 3962 drain_all_pages(NULL);
9ee493ce
MG
3963 drained = true;
3964 goto retry;
3965 }
3966
11e33f6a
MG
3967 return page;
3968}
3969
5ecd9d40
DR
3970static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3971 const struct alloc_context *ac)
3a025760
JW
3972{
3973 struct zoneref *z;
3974 struct zone *zone;
e1a55637 3975 pg_data_t *last_pgdat = NULL;
5ecd9d40 3976 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 3977
5ecd9d40
DR
3978 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3979 ac->nodemask) {
e1a55637 3980 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 3981 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
3982 last_pgdat = zone->zone_pgdat;
3983 }
3a025760
JW
3984}
3985
c603844b 3986static inline unsigned int
341ce06f
PZ
3987gfp_to_alloc_flags(gfp_t gfp_mask)
3988{
c603844b 3989 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3990
a56f57ff 3991 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3992 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3993
341ce06f
PZ
3994 /*
3995 * The caller may dip into page reserves a bit more if the caller
3996 * cannot run direct reclaim, or if the caller has realtime scheduling
3997 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3998 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3999 */
e6223a3b 4000 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4001
d0164adc 4002 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4003 /*
b104a35d
DR
4004 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4005 * if it can't schedule.
5c3240d9 4006 */
b104a35d 4007 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4008 alloc_flags |= ALLOC_HARDER;
523b9458 4009 /*
b104a35d 4010 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4011 * comment for __cpuset_node_allowed().
523b9458 4012 */
341ce06f 4013 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4014 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4015 alloc_flags |= ALLOC_HARDER;
4016
0a79cdad
MG
4017 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4018 alloc_flags |= ALLOC_KSWAPD;
4019
d883c6cf
JK
4020#ifdef CONFIG_CMA
4021 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4022 alloc_flags |= ALLOC_CMA;
4023#endif
341ce06f
PZ
4024 return alloc_flags;
4025}
4026
cd04ae1e 4027static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4028{
cd04ae1e
MH
4029 if (!tsk_is_oom_victim(tsk))
4030 return false;
4031
4032 /*
4033 * !MMU doesn't have oom reaper so give access to memory reserves
4034 * only to the thread with TIF_MEMDIE set
4035 */
4036 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4037 return false;
4038
cd04ae1e
MH
4039 return true;
4040}
4041
4042/*
4043 * Distinguish requests which really need access to full memory
4044 * reserves from oom victims which can live with a portion of it
4045 */
4046static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4047{
4048 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4049 return 0;
31a6c190 4050 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4051 return ALLOC_NO_WATERMARKS;
31a6c190 4052 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4053 return ALLOC_NO_WATERMARKS;
4054 if (!in_interrupt()) {
4055 if (current->flags & PF_MEMALLOC)
4056 return ALLOC_NO_WATERMARKS;
4057 else if (oom_reserves_allowed(current))
4058 return ALLOC_OOM;
4059 }
31a6c190 4060
cd04ae1e
MH
4061 return 0;
4062}
4063
4064bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4065{
4066 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4067}
4068
0a0337e0
MH
4069/*
4070 * Checks whether it makes sense to retry the reclaim to make a forward progress
4071 * for the given allocation request.
491d79ae
JW
4072 *
4073 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4074 * without success, or when we couldn't even meet the watermark if we
4075 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4076 *
4077 * Returns true if a retry is viable or false to enter the oom path.
4078 */
4079static inline bool
4080should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4081 struct alloc_context *ac, int alloc_flags,
423b452e 4082 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4083{
4084 struct zone *zone;
4085 struct zoneref *z;
15f570bf 4086 bool ret = false;
0a0337e0 4087
423b452e
VB
4088 /*
4089 * Costly allocations might have made a progress but this doesn't mean
4090 * their order will become available due to high fragmentation so
4091 * always increment the no progress counter for them
4092 */
4093 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4094 *no_progress_loops = 0;
4095 else
4096 (*no_progress_loops)++;
4097
0a0337e0
MH
4098 /*
4099 * Make sure we converge to OOM if we cannot make any progress
4100 * several times in the row.
4101 */
04c8716f
MK
4102 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4103 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4104 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4105 }
0a0337e0 4106
bca67592
MG
4107 /*
4108 * Keep reclaiming pages while there is a chance this will lead
4109 * somewhere. If none of the target zones can satisfy our allocation
4110 * request even if all reclaimable pages are considered then we are
4111 * screwed and have to go OOM.
0a0337e0
MH
4112 */
4113 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4114 ac->nodemask) {
4115 unsigned long available;
ede37713 4116 unsigned long reclaimable;
d379f01d
MH
4117 unsigned long min_wmark = min_wmark_pages(zone);
4118 bool wmark;
0a0337e0 4119
5a1c84b4 4120 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4121 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4122
4123 /*
491d79ae
JW
4124 * Would the allocation succeed if we reclaimed all
4125 * reclaimable pages?
0a0337e0 4126 */
d379f01d
MH
4127 wmark = __zone_watermark_ok(zone, order, min_wmark,
4128 ac_classzone_idx(ac), alloc_flags, available);
4129 trace_reclaim_retry_zone(z, order, reclaimable,
4130 available, min_wmark, *no_progress_loops, wmark);
4131 if (wmark) {
ede37713
MH
4132 /*
4133 * If we didn't make any progress and have a lot of
4134 * dirty + writeback pages then we should wait for
4135 * an IO to complete to slow down the reclaim and
4136 * prevent from pre mature OOM
4137 */
4138 if (!did_some_progress) {
11fb9989 4139 unsigned long write_pending;
ede37713 4140
5a1c84b4
MG
4141 write_pending = zone_page_state_snapshot(zone,
4142 NR_ZONE_WRITE_PENDING);
ede37713 4143
11fb9989 4144 if (2 * write_pending > reclaimable) {
ede37713
MH
4145 congestion_wait(BLK_RW_ASYNC, HZ/10);
4146 return true;
4147 }
4148 }
5a1c84b4 4149
15f570bf
MH
4150 ret = true;
4151 goto out;
0a0337e0
MH
4152 }
4153 }
4154
15f570bf
MH
4155out:
4156 /*
4157 * Memory allocation/reclaim might be called from a WQ context and the
4158 * current implementation of the WQ concurrency control doesn't
4159 * recognize that a particular WQ is congested if the worker thread is
4160 * looping without ever sleeping. Therefore we have to do a short sleep
4161 * here rather than calling cond_resched().
4162 */
4163 if (current->flags & PF_WQ_WORKER)
4164 schedule_timeout_uninterruptible(1);
4165 else
4166 cond_resched();
4167 return ret;
0a0337e0
MH
4168}
4169
902b6281
VB
4170static inline bool
4171check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4172{
4173 /*
4174 * It's possible that cpuset's mems_allowed and the nodemask from
4175 * mempolicy don't intersect. This should be normally dealt with by
4176 * policy_nodemask(), but it's possible to race with cpuset update in
4177 * such a way the check therein was true, and then it became false
4178 * before we got our cpuset_mems_cookie here.
4179 * This assumes that for all allocations, ac->nodemask can come only
4180 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4181 * when it does not intersect with the cpuset restrictions) or the
4182 * caller can deal with a violated nodemask.
4183 */
4184 if (cpusets_enabled() && ac->nodemask &&
4185 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4186 ac->nodemask = NULL;
4187 return true;
4188 }
4189
4190 /*
4191 * When updating a task's mems_allowed or mempolicy nodemask, it is
4192 * possible to race with parallel threads in such a way that our
4193 * allocation can fail while the mask is being updated. If we are about
4194 * to fail, check if the cpuset changed during allocation and if so,
4195 * retry.
4196 */
4197 if (read_mems_allowed_retry(cpuset_mems_cookie))
4198 return true;
4199
4200 return false;
4201}
4202
11e33f6a
MG
4203static inline struct page *
4204__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4205 struct alloc_context *ac)
11e33f6a 4206{
d0164adc 4207 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4208 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4209 struct page *page = NULL;
c603844b 4210 unsigned int alloc_flags;
11e33f6a 4211 unsigned long did_some_progress;
5ce9bfef 4212 enum compact_priority compact_priority;
c5d01d0d 4213 enum compact_result compact_result;
5ce9bfef
VB
4214 int compaction_retries;
4215 int no_progress_loops;
5ce9bfef 4216 unsigned int cpuset_mems_cookie;
cd04ae1e 4217 int reserve_flags;
1da177e4 4218
d0164adc
MG
4219 /*
4220 * We also sanity check to catch abuse of atomic reserves being used by
4221 * callers that are not in atomic context.
4222 */
4223 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4224 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4225 gfp_mask &= ~__GFP_ATOMIC;
4226
5ce9bfef
VB
4227retry_cpuset:
4228 compaction_retries = 0;
4229 no_progress_loops = 0;
4230 compact_priority = DEF_COMPACT_PRIORITY;
4231 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4232
4233 /*
4234 * The fast path uses conservative alloc_flags to succeed only until
4235 * kswapd needs to be woken up, and to avoid the cost of setting up
4236 * alloc_flags precisely. So we do that now.
4237 */
4238 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4239
e47483bc
VB
4240 /*
4241 * We need to recalculate the starting point for the zonelist iterator
4242 * because we might have used different nodemask in the fast path, or
4243 * there was a cpuset modification and we are retrying - otherwise we
4244 * could end up iterating over non-eligible zones endlessly.
4245 */
4246 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4247 ac->high_zoneidx, ac->nodemask);
4248 if (!ac->preferred_zoneref->zone)
4249 goto nopage;
4250
0a79cdad 4251 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4252 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4253
4254 /*
4255 * The adjusted alloc_flags might result in immediate success, so try
4256 * that first
4257 */
4258 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4259 if (page)
4260 goto got_pg;
4261
a8161d1e
VB
4262 /*
4263 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4264 * that we have enough base pages and don't need to reclaim. For non-
4265 * movable high-order allocations, do that as well, as compaction will
4266 * try prevent permanent fragmentation by migrating from blocks of the
4267 * same migratetype.
4268 * Don't try this for allocations that are allowed to ignore
4269 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4270 */
282722b0
VB
4271 if (can_direct_reclaim &&
4272 (costly_order ||
4273 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4274 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4275 page = __alloc_pages_direct_compact(gfp_mask, order,
4276 alloc_flags, ac,
a5508cd8 4277 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4278 &compact_result);
4279 if (page)
4280 goto got_pg;
4281
3eb2771b
VB
4282 /*
4283 * Checks for costly allocations with __GFP_NORETRY, which
4284 * includes THP page fault allocations
4285 */
282722b0 4286 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4287 /*
4288 * If compaction is deferred for high-order allocations,
4289 * it is because sync compaction recently failed. If
4290 * this is the case and the caller requested a THP
4291 * allocation, we do not want to heavily disrupt the
4292 * system, so we fail the allocation instead of entering
4293 * direct reclaim.
4294 */
4295 if (compact_result == COMPACT_DEFERRED)
4296 goto nopage;
4297
a8161d1e 4298 /*
3eb2771b
VB
4299 * Looks like reclaim/compaction is worth trying, but
4300 * sync compaction could be very expensive, so keep
25160354 4301 * using async compaction.
a8161d1e 4302 */
a5508cd8 4303 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4304 }
4305 }
23771235 4306
31a6c190 4307retry:
23771235 4308 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4309 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4310 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4311
cd04ae1e
MH
4312 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4313 if (reserve_flags)
4314 alloc_flags = reserve_flags;
23771235 4315
e46e7b77 4316 /*
d6a24df0
VB
4317 * Reset the nodemask and zonelist iterators if memory policies can be
4318 * ignored. These allocations are high priority and system rather than
4319 * user oriented.
e46e7b77 4320 */
cd04ae1e 4321 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4322 ac->nodemask = NULL;
e46e7b77
MG
4323 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4324 ac->high_zoneidx, ac->nodemask);
4325 }
4326
23771235 4327 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4328 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4329 if (page)
4330 goto got_pg;
1da177e4 4331
d0164adc 4332 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4333 if (!can_direct_reclaim)
1da177e4
LT
4334 goto nopage;
4335
9a67f648
MH
4336 /* Avoid recursion of direct reclaim */
4337 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4338 goto nopage;
4339
a8161d1e
VB
4340 /* Try direct reclaim and then allocating */
4341 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4342 &did_some_progress);
4343 if (page)
4344 goto got_pg;
4345
4346 /* Try direct compaction and then allocating */
a9263751 4347 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4348 compact_priority, &compact_result);
56de7263
MG
4349 if (page)
4350 goto got_pg;
75f30861 4351
9083905a
JW
4352 /* Do not loop if specifically requested */
4353 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4354 goto nopage;
9083905a 4355
0a0337e0
MH
4356 /*
4357 * Do not retry costly high order allocations unless they are
dcda9b04 4358 * __GFP_RETRY_MAYFAIL
0a0337e0 4359 */
dcda9b04 4360 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4361 goto nopage;
0a0337e0 4362
0a0337e0 4363 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4364 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4365 goto retry;
4366
33c2d214
MH
4367 /*
4368 * It doesn't make any sense to retry for the compaction if the order-0
4369 * reclaim is not able to make any progress because the current
4370 * implementation of the compaction depends on the sufficient amount
4371 * of free memory (see __compaction_suitable)
4372 */
4373 if (did_some_progress > 0 &&
86a294a8 4374 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4375 compact_result, &compact_priority,
d9436498 4376 &compaction_retries))
33c2d214
MH
4377 goto retry;
4378
902b6281
VB
4379
4380 /* Deal with possible cpuset update races before we start OOM killing */
4381 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4382 goto retry_cpuset;
4383
9083905a
JW
4384 /* Reclaim has failed us, start killing things */
4385 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4386 if (page)
4387 goto got_pg;
4388
9a67f648 4389 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4390 if (tsk_is_oom_victim(current) &&
4391 (alloc_flags == ALLOC_OOM ||
c288983d 4392 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4393 goto nopage;
4394
9083905a 4395 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4396 if (did_some_progress) {
4397 no_progress_loops = 0;
9083905a 4398 goto retry;
0a0337e0 4399 }
9083905a 4400
1da177e4 4401nopage:
902b6281
VB
4402 /* Deal with possible cpuset update races before we fail */
4403 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4404 goto retry_cpuset;
4405
9a67f648
MH
4406 /*
4407 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4408 * we always retry
4409 */
4410 if (gfp_mask & __GFP_NOFAIL) {
4411 /*
4412 * All existing users of the __GFP_NOFAIL are blockable, so warn
4413 * of any new users that actually require GFP_NOWAIT
4414 */
4415 if (WARN_ON_ONCE(!can_direct_reclaim))
4416 goto fail;
4417
4418 /*
4419 * PF_MEMALLOC request from this context is rather bizarre
4420 * because we cannot reclaim anything and only can loop waiting
4421 * for somebody to do a work for us
4422 */
4423 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4424
4425 /*
4426 * non failing costly orders are a hard requirement which we
4427 * are not prepared for much so let's warn about these users
4428 * so that we can identify them and convert them to something
4429 * else.
4430 */
4431 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4432
6c18ba7a
MH
4433 /*
4434 * Help non-failing allocations by giving them access to memory
4435 * reserves but do not use ALLOC_NO_WATERMARKS because this
4436 * could deplete whole memory reserves which would just make
4437 * the situation worse
4438 */
4439 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4440 if (page)
4441 goto got_pg;
4442
9a67f648
MH
4443 cond_resched();
4444 goto retry;
4445 }
4446fail:
a8e99259 4447 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4448 "page allocation failure: order:%u", order);
1da177e4 4449got_pg:
072bb0aa 4450 return page;
1da177e4 4451}
11e33f6a 4452
9cd75558 4453static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4454 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4455 struct alloc_context *ac, gfp_t *alloc_mask,
4456 unsigned int *alloc_flags)
11e33f6a 4457{
9cd75558 4458 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4459 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4460 ac->nodemask = nodemask;
4461 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4462
682a3385 4463 if (cpusets_enabled()) {
9cd75558 4464 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4465 if (!ac->nodemask)
4466 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4467 else
4468 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4469 }
4470
d92a8cfc
PZ
4471 fs_reclaim_acquire(gfp_mask);
4472 fs_reclaim_release(gfp_mask);
11e33f6a 4473
d0164adc 4474 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4475
4476 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4477 return false;
11e33f6a 4478
d883c6cf
JK
4479 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4480 *alloc_flags |= ALLOC_CMA;
4481
9cd75558
MG
4482 return true;
4483}
21bb9bd1 4484
9cd75558 4485/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4486static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4487{
c9ab0c4f 4488 /* Dirty zone balancing only done in the fast path */
9cd75558 4489 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4490
e46e7b77
MG
4491 /*
4492 * The preferred zone is used for statistics but crucially it is
4493 * also used as the starting point for the zonelist iterator. It
4494 * may get reset for allocations that ignore memory policies.
4495 */
9cd75558
MG
4496 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4497 ac->high_zoneidx, ac->nodemask);
4498}
4499
4500/*
4501 * This is the 'heart' of the zoned buddy allocator.
4502 */
4503struct page *
04ec6264
VB
4504__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4505 nodemask_t *nodemask)
9cd75558
MG
4506{
4507 struct page *page;
4508 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4509 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4510 struct alloc_context ac = { };
4511
c63ae43b
MH
4512 /*
4513 * There are several places where we assume that the order value is sane
4514 * so bail out early if the request is out of bound.
4515 */
4516 if (unlikely(order >= MAX_ORDER)) {
4517 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4518 return NULL;
4519 }
4520
9cd75558 4521 gfp_mask &= gfp_allowed_mask;
f19360f0 4522 alloc_mask = gfp_mask;
04ec6264 4523 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4524 return NULL;
4525
a380b40a 4526 finalise_ac(gfp_mask, &ac);
5bb1b169 4527
6bb15450
MG
4528 /*
4529 * Forbid the first pass from falling back to types that fragment
4530 * memory until all local zones are considered.
4531 */
0a79cdad 4532 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4533
5117f45d 4534 /* First allocation attempt */
a9263751 4535 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4536 if (likely(page))
4537 goto out;
11e33f6a 4538
4fcb0971 4539 /*
7dea19f9
MH
4540 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4541 * resp. GFP_NOIO which has to be inherited for all allocation requests
4542 * from a particular context which has been marked by
4543 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4544 */
7dea19f9 4545 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4546 ac.spread_dirty_pages = false;
23f086f9 4547
4741526b
MG
4548 /*
4549 * Restore the original nodemask if it was potentially replaced with
4550 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4551 */
e47483bc 4552 if (unlikely(ac.nodemask != nodemask))
4741526b 4553 ac.nodemask = nodemask;
16096c25 4554
4fcb0971 4555 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4556
4fcb0971 4557out:
c4159a75
VD
4558 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4559 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4560 __free_pages(page, order);
4561 page = NULL;
4949148a
VD
4562 }
4563
4fcb0971
MG
4564 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4565
11e33f6a 4566 return page;
1da177e4 4567}
d239171e 4568EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4569
4570/*
9ea9a680
MH
4571 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4572 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4573 * you need to access high mem.
1da177e4 4574 */
920c7a5d 4575unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4576{
945a1113
AM
4577 struct page *page;
4578
9ea9a680 4579 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4580 if (!page)
4581 return 0;
4582 return (unsigned long) page_address(page);
4583}
1da177e4
LT
4584EXPORT_SYMBOL(__get_free_pages);
4585
920c7a5d 4586unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4587{
945a1113 4588 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4589}
1da177e4
LT
4590EXPORT_SYMBOL(get_zeroed_page);
4591
742aa7fb 4592static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4593{
742aa7fb
AL
4594 if (order == 0) /* Via pcp? */
4595 free_unref_page(page);
4596 else
4597 __free_pages_ok(page, order);
1da177e4
LT
4598}
4599
742aa7fb
AL
4600void __free_pages(struct page *page, unsigned int order)
4601{
4602 if (put_page_testzero(page))
4603 free_the_page(page, order);
4604}
1da177e4
LT
4605EXPORT_SYMBOL(__free_pages);
4606
920c7a5d 4607void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4608{
4609 if (addr != 0) {
725d704e 4610 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4611 __free_pages(virt_to_page((void *)addr), order);
4612 }
4613}
4614
4615EXPORT_SYMBOL(free_pages);
4616
b63ae8ca
AD
4617/*
4618 * Page Fragment:
4619 * An arbitrary-length arbitrary-offset area of memory which resides
4620 * within a 0 or higher order page. Multiple fragments within that page
4621 * are individually refcounted, in the page's reference counter.
4622 *
4623 * The page_frag functions below provide a simple allocation framework for
4624 * page fragments. This is used by the network stack and network device
4625 * drivers to provide a backing region of memory for use as either an
4626 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4627 */
2976db80
AD
4628static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4629 gfp_t gfp_mask)
b63ae8ca
AD
4630{
4631 struct page *page = NULL;
4632 gfp_t gfp = gfp_mask;
4633
4634#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4635 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4636 __GFP_NOMEMALLOC;
4637 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4638 PAGE_FRAG_CACHE_MAX_ORDER);
4639 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4640#endif
4641 if (unlikely(!page))
4642 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4643
4644 nc->va = page ? page_address(page) : NULL;
4645
4646 return page;
4647}
4648
2976db80 4649void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4650{
4651 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4652
742aa7fb
AL
4653 if (page_ref_sub_and_test(page, count))
4654 free_the_page(page, compound_order(page));
44fdffd7 4655}
2976db80 4656EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4657
8c2dd3e4
AD
4658void *page_frag_alloc(struct page_frag_cache *nc,
4659 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4660{
4661 unsigned int size = PAGE_SIZE;
4662 struct page *page;
4663 int offset;
4664
4665 if (unlikely(!nc->va)) {
4666refill:
2976db80 4667 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4668 if (!page)
4669 return NULL;
4670
4671#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4672 /* if size can vary use size else just use PAGE_SIZE */
4673 size = nc->size;
4674#endif
4675 /* Even if we own the page, we do not use atomic_set().
4676 * This would break get_page_unless_zero() users.
4677 */
fe896d18 4678 page_ref_add(page, size - 1);
b63ae8ca
AD
4679
4680 /* reset page count bias and offset to start of new frag */
2f064f34 4681 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4682 nc->pagecnt_bias = size;
4683 nc->offset = size;
4684 }
4685
4686 offset = nc->offset - fragsz;
4687 if (unlikely(offset < 0)) {
4688 page = virt_to_page(nc->va);
4689
fe896d18 4690 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4691 goto refill;
4692
4693#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4694 /* if size can vary use size else just use PAGE_SIZE */
4695 size = nc->size;
4696#endif
4697 /* OK, page count is 0, we can safely set it */
fe896d18 4698 set_page_count(page, size);
b63ae8ca
AD
4699
4700 /* reset page count bias and offset to start of new frag */
4701 nc->pagecnt_bias = size;
4702 offset = size - fragsz;
4703 }
4704
4705 nc->pagecnt_bias--;
4706 nc->offset = offset;
4707
4708 return nc->va + offset;
4709}
8c2dd3e4 4710EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4711
4712/*
4713 * Frees a page fragment allocated out of either a compound or order 0 page.
4714 */
8c2dd3e4 4715void page_frag_free(void *addr)
b63ae8ca
AD
4716{
4717 struct page *page = virt_to_head_page(addr);
4718
742aa7fb
AL
4719 if (unlikely(put_page_testzero(page)))
4720 free_the_page(page, compound_order(page));
b63ae8ca 4721}
8c2dd3e4 4722EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4723
d00181b9
KS
4724static void *make_alloc_exact(unsigned long addr, unsigned int order,
4725 size_t size)
ee85c2e1
AK
4726{
4727 if (addr) {
4728 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4729 unsigned long used = addr + PAGE_ALIGN(size);
4730
4731 split_page(virt_to_page((void *)addr), order);
4732 while (used < alloc_end) {
4733 free_page(used);
4734 used += PAGE_SIZE;
4735 }
4736 }
4737 return (void *)addr;
4738}
4739
2be0ffe2
TT
4740/**
4741 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4742 * @size: the number of bytes to allocate
4743 * @gfp_mask: GFP flags for the allocation
4744 *
4745 * This function is similar to alloc_pages(), except that it allocates the
4746 * minimum number of pages to satisfy the request. alloc_pages() can only
4747 * allocate memory in power-of-two pages.
4748 *
4749 * This function is also limited by MAX_ORDER.
4750 *
4751 * Memory allocated by this function must be released by free_pages_exact().
4752 */
4753void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4754{
4755 unsigned int order = get_order(size);
4756 unsigned long addr;
4757
4758 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4759 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4760}
4761EXPORT_SYMBOL(alloc_pages_exact);
4762
ee85c2e1
AK
4763/**
4764 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4765 * pages on a node.
b5e6ab58 4766 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4767 * @size: the number of bytes to allocate
4768 * @gfp_mask: GFP flags for the allocation
4769 *
4770 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4771 * back.
ee85c2e1 4772 */
e1931811 4773void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4774{
d00181b9 4775 unsigned int order = get_order(size);
ee85c2e1
AK
4776 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4777 if (!p)
4778 return NULL;
4779 return make_alloc_exact((unsigned long)page_address(p), order, size);
4780}
ee85c2e1 4781
2be0ffe2
TT
4782/**
4783 * free_pages_exact - release memory allocated via alloc_pages_exact()
4784 * @virt: the value returned by alloc_pages_exact.
4785 * @size: size of allocation, same value as passed to alloc_pages_exact().
4786 *
4787 * Release the memory allocated by a previous call to alloc_pages_exact.
4788 */
4789void free_pages_exact(void *virt, size_t size)
4790{
4791 unsigned long addr = (unsigned long)virt;
4792 unsigned long end = addr + PAGE_ALIGN(size);
4793
4794 while (addr < end) {
4795 free_page(addr);
4796 addr += PAGE_SIZE;
4797 }
4798}
4799EXPORT_SYMBOL(free_pages_exact);
4800
e0fb5815
ZY
4801/**
4802 * nr_free_zone_pages - count number of pages beyond high watermark
4803 * @offset: The zone index of the highest zone
4804 *
4805 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4806 * high watermark within all zones at or below a given zone index. For each
4807 * zone, the number of pages is calculated as:
0e056eb5 4808 *
4809 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4810 */
ebec3862 4811static unsigned long nr_free_zone_pages(int offset)
1da177e4 4812{
dd1a239f 4813 struct zoneref *z;
54a6eb5c
MG
4814 struct zone *zone;
4815
e310fd43 4816 /* Just pick one node, since fallback list is circular */
ebec3862 4817 unsigned long sum = 0;
1da177e4 4818
0e88460d 4819 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4820
54a6eb5c 4821 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4822 unsigned long size = zone_managed_pages(zone);
41858966 4823 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4824 if (size > high)
4825 sum += size - high;
1da177e4
LT
4826 }
4827
4828 return sum;
4829}
4830
e0fb5815
ZY
4831/**
4832 * nr_free_buffer_pages - count number of pages beyond high watermark
4833 *
4834 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4835 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4836 */
ebec3862 4837unsigned long nr_free_buffer_pages(void)
1da177e4 4838{
af4ca457 4839 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4840}
c2f1a551 4841EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4842
e0fb5815
ZY
4843/**
4844 * nr_free_pagecache_pages - count number of pages beyond high watermark
4845 *
4846 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4847 * high watermark within all zones.
1da177e4 4848 */
ebec3862 4849unsigned long nr_free_pagecache_pages(void)
1da177e4 4850{
2a1e274a 4851 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4852}
08e0f6a9
CL
4853
4854static inline void show_node(struct zone *zone)
1da177e4 4855{
e5adfffc 4856 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4857 printk("Node %d ", zone_to_nid(zone));
1da177e4 4858}
1da177e4 4859
d02bd27b
IR
4860long si_mem_available(void)
4861{
4862 long available;
4863 unsigned long pagecache;
4864 unsigned long wmark_low = 0;
4865 unsigned long pages[NR_LRU_LISTS];
b29940c1 4866 unsigned long reclaimable;
d02bd27b
IR
4867 struct zone *zone;
4868 int lru;
4869
4870 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4871 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4872
4873 for_each_zone(zone)
a9214443 4874 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
4875
4876 /*
4877 * Estimate the amount of memory available for userspace allocations,
4878 * without causing swapping.
4879 */
c41f012a 4880 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4881
4882 /*
4883 * Not all the page cache can be freed, otherwise the system will
4884 * start swapping. Assume at least half of the page cache, or the
4885 * low watermark worth of cache, needs to stay.
4886 */
4887 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4888 pagecache -= min(pagecache / 2, wmark_low);
4889 available += pagecache;
4890
4891 /*
b29940c1
VB
4892 * Part of the reclaimable slab and other kernel memory consists of
4893 * items that are in use, and cannot be freed. Cap this estimate at the
4894 * low watermark.
d02bd27b 4895 */
b29940c1
VB
4896 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4897 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4898 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4899
d02bd27b
IR
4900 if (available < 0)
4901 available = 0;
4902 return available;
4903}
4904EXPORT_SYMBOL_GPL(si_mem_available);
4905
1da177e4
LT
4906void si_meminfo(struct sysinfo *val)
4907{
ca79b0c2 4908 val->totalram = totalram_pages();
11fb9989 4909 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4910 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4911 val->bufferram = nr_blockdev_pages();
ca79b0c2 4912 val->totalhigh = totalhigh_pages();
1da177e4 4913 val->freehigh = nr_free_highpages();
1da177e4
LT
4914 val->mem_unit = PAGE_SIZE;
4915}
4916
4917EXPORT_SYMBOL(si_meminfo);
4918
4919#ifdef CONFIG_NUMA
4920void si_meminfo_node(struct sysinfo *val, int nid)
4921{
cdd91a77
JL
4922 int zone_type; /* needs to be signed */
4923 unsigned long managed_pages = 0;
fc2bd799
JK
4924 unsigned long managed_highpages = 0;
4925 unsigned long free_highpages = 0;
1da177e4
LT
4926 pg_data_t *pgdat = NODE_DATA(nid);
4927
cdd91a77 4928 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 4929 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 4930 val->totalram = managed_pages;
11fb9989 4931 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4932 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4933#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4934 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4935 struct zone *zone = &pgdat->node_zones[zone_type];
4936
4937 if (is_highmem(zone)) {
9705bea5 4938 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
4939 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4940 }
4941 }
4942 val->totalhigh = managed_highpages;
4943 val->freehigh = free_highpages;
98d2b0eb 4944#else
fc2bd799
JK
4945 val->totalhigh = managed_highpages;
4946 val->freehigh = free_highpages;
98d2b0eb 4947#endif
1da177e4
LT
4948 val->mem_unit = PAGE_SIZE;
4949}
4950#endif
4951
ddd588b5 4952/*
7bf02ea2
DR
4953 * Determine whether the node should be displayed or not, depending on whether
4954 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4955 */
9af744d7 4956static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4957{
ddd588b5 4958 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4959 return false;
ddd588b5 4960
9af744d7
MH
4961 /*
4962 * no node mask - aka implicit memory numa policy. Do not bother with
4963 * the synchronization - read_mems_allowed_begin - because we do not
4964 * have to be precise here.
4965 */
4966 if (!nodemask)
4967 nodemask = &cpuset_current_mems_allowed;
4968
4969 return !node_isset(nid, *nodemask);
ddd588b5
DR
4970}
4971
1da177e4
LT
4972#define K(x) ((x) << (PAGE_SHIFT-10))
4973
377e4f16
RV
4974static void show_migration_types(unsigned char type)
4975{
4976 static const char types[MIGRATE_TYPES] = {
4977 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4978 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4979 [MIGRATE_RECLAIMABLE] = 'E',
4980 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4981#ifdef CONFIG_CMA
4982 [MIGRATE_CMA] = 'C',
4983#endif
194159fb 4984#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4985 [MIGRATE_ISOLATE] = 'I',
194159fb 4986#endif
377e4f16
RV
4987 };
4988 char tmp[MIGRATE_TYPES + 1];
4989 char *p = tmp;
4990 int i;
4991
4992 for (i = 0; i < MIGRATE_TYPES; i++) {
4993 if (type & (1 << i))
4994 *p++ = types[i];
4995 }
4996
4997 *p = '\0';
1f84a18f 4998 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4999}
5000
1da177e4
LT
5001/*
5002 * Show free area list (used inside shift_scroll-lock stuff)
5003 * We also calculate the percentage fragmentation. We do this by counting the
5004 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5005 *
5006 * Bits in @filter:
5007 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5008 * cpuset.
1da177e4 5009 */
9af744d7 5010void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5011{
d1bfcdb8 5012 unsigned long free_pcp = 0;
c7241913 5013 int cpu;
1da177e4 5014 struct zone *zone;
599d0c95 5015 pg_data_t *pgdat;
1da177e4 5016
ee99c71c 5017 for_each_populated_zone(zone) {
9af744d7 5018 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5019 continue;
d1bfcdb8 5020
761b0677
KK
5021 for_each_online_cpu(cpu)
5022 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5023 }
5024
a731286d
KM
5025 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5026 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5027 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5028 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5029 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5030 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5031 global_node_page_state(NR_ACTIVE_ANON),
5032 global_node_page_state(NR_INACTIVE_ANON),
5033 global_node_page_state(NR_ISOLATED_ANON),
5034 global_node_page_state(NR_ACTIVE_FILE),
5035 global_node_page_state(NR_INACTIVE_FILE),
5036 global_node_page_state(NR_ISOLATED_FILE),
5037 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5038 global_node_page_state(NR_FILE_DIRTY),
5039 global_node_page_state(NR_WRITEBACK),
5040 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5041 global_node_page_state(NR_SLAB_RECLAIMABLE),
5042 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5043 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5044 global_node_page_state(NR_SHMEM),
c41f012a
MH
5045 global_zone_page_state(NR_PAGETABLE),
5046 global_zone_page_state(NR_BOUNCE),
5047 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5048 free_pcp,
c41f012a 5049 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5050
599d0c95 5051 for_each_online_pgdat(pgdat) {
9af744d7 5052 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5053 continue;
5054
599d0c95
MG
5055 printk("Node %d"
5056 " active_anon:%lukB"
5057 " inactive_anon:%lukB"
5058 " active_file:%lukB"
5059 " inactive_file:%lukB"
5060 " unevictable:%lukB"
5061 " isolated(anon):%lukB"
5062 " isolated(file):%lukB"
50658e2e 5063 " mapped:%lukB"
11fb9989
MG
5064 " dirty:%lukB"
5065 " writeback:%lukB"
5066 " shmem:%lukB"
5067#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5068 " shmem_thp: %lukB"
5069 " shmem_pmdmapped: %lukB"
5070 " anon_thp: %lukB"
5071#endif
5072 " writeback_tmp:%lukB"
5073 " unstable:%lukB"
599d0c95
MG
5074 " all_unreclaimable? %s"
5075 "\n",
5076 pgdat->node_id,
5077 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5078 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5079 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5080 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5081 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5082 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5083 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5084 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5085 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5086 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5087 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5088#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5089 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5090 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5091 * HPAGE_PMD_NR),
5092 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5093#endif
11fb9989
MG
5094 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5095 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5096 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5097 "yes" : "no");
599d0c95
MG
5098 }
5099
ee99c71c 5100 for_each_populated_zone(zone) {
1da177e4
LT
5101 int i;
5102
9af744d7 5103 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5104 continue;
d1bfcdb8
KK
5105
5106 free_pcp = 0;
5107 for_each_online_cpu(cpu)
5108 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5109
1da177e4 5110 show_node(zone);
1f84a18f
JP
5111 printk(KERN_CONT
5112 "%s"
1da177e4
LT
5113 " free:%lukB"
5114 " min:%lukB"
5115 " low:%lukB"
5116 " high:%lukB"
71c799f4
MK
5117 " active_anon:%lukB"
5118 " inactive_anon:%lukB"
5119 " active_file:%lukB"
5120 " inactive_file:%lukB"
5121 " unevictable:%lukB"
5a1c84b4 5122 " writepending:%lukB"
1da177e4 5123 " present:%lukB"
9feedc9d 5124 " managed:%lukB"
4a0aa73f 5125 " mlocked:%lukB"
c6a7f572 5126 " kernel_stack:%lukB"
4a0aa73f 5127 " pagetables:%lukB"
4a0aa73f 5128 " bounce:%lukB"
d1bfcdb8
KK
5129 " free_pcp:%lukB"
5130 " local_pcp:%ukB"
d1ce749a 5131 " free_cma:%lukB"
1da177e4
LT
5132 "\n",
5133 zone->name,
88f5acf8 5134 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5135 K(min_wmark_pages(zone)),
5136 K(low_wmark_pages(zone)),
5137 K(high_wmark_pages(zone)),
71c799f4
MK
5138 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5139 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5140 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5141 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5142 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5143 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5144 K(zone->present_pages),
9705bea5 5145 K(zone_managed_pages(zone)),
4a0aa73f 5146 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5147 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5148 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5149 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5150 K(free_pcp),
5151 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5152 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5153 printk("lowmem_reserve[]:");
5154 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5155 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5156 printk(KERN_CONT "\n");
1da177e4
LT
5157 }
5158
ee99c71c 5159 for_each_populated_zone(zone) {
d00181b9
KS
5160 unsigned int order;
5161 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5162 unsigned char types[MAX_ORDER];
1da177e4 5163
9af744d7 5164 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5165 continue;
1da177e4 5166 show_node(zone);
1f84a18f 5167 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5168
5169 spin_lock_irqsave(&zone->lock, flags);
5170 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5171 struct free_area *area = &zone->free_area[order];
5172 int type;
5173
5174 nr[order] = area->nr_free;
8f9de51a 5175 total += nr[order] << order;
377e4f16
RV
5176
5177 types[order] = 0;
5178 for (type = 0; type < MIGRATE_TYPES; type++) {
5179 if (!list_empty(&area->free_list[type]))
5180 types[order] |= 1 << type;
5181 }
1da177e4
LT
5182 }
5183 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5184 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5185 printk(KERN_CONT "%lu*%lukB ",
5186 nr[order], K(1UL) << order);
377e4f16
RV
5187 if (nr[order])
5188 show_migration_types(types[order]);
5189 }
1f84a18f 5190 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5191 }
5192
949f7ec5
DR
5193 hugetlb_show_meminfo();
5194
11fb9989 5195 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5196
1da177e4
LT
5197 show_swap_cache_info();
5198}
5199
19770b32
MG
5200static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5201{
5202 zoneref->zone = zone;
5203 zoneref->zone_idx = zone_idx(zone);
5204}
5205
1da177e4
LT
5206/*
5207 * Builds allocation fallback zone lists.
1a93205b
CL
5208 *
5209 * Add all populated zones of a node to the zonelist.
1da177e4 5210 */
9d3be21b 5211static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5212{
1a93205b 5213 struct zone *zone;
bc732f1d 5214 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5215 int nr_zones = 0;
02a68a5e
CL
5216
5217 do {
2f6726e5 5218 zone_type--;
070f8032 5219 zone = pgdat->node_zones + zone_type;
6aa303de 5220 if (managed_zone(zone)) {
9d3be21b 5221 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5222 check_highest_zone(zone_type);
1da177e4 5223 }
2f6726e5 5224 } while (zone_type);
bc732f1d 5225
070f8032 5226 return nr_zones;
1da177e4
LT
5227}
5228
5229#ifdef CONFIG_NUMA
f0c0b2b8
KH
5230
5231static int __parse_numa_zonelist_order(char *s)
5232{
c9bff3ee
MH
5233 /*
5234 * We used to support different zonlists modes but they turned
5235 * out to be just not useful. Let's keep the warning in place
5236 * if somebody still use the cmd line parameter so that we do
5237 * not fail it silently
5238 */
5239 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5240 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5241 return -EINVAL;
5242 }
5243 return 0;
5244}
5245
5246static __init int setup_numa_zonelist_order(char *s)
5247{
ecb256f8
VL
5248 if (!s)
5249 return 0;
5250
c9bff3ee 5251 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5252}
5253early_param("numa_zonelist_order", setup_numa_zonelist_order);
5254
c9bff3ee
MH
5255char numa_zonelist_order[] = "Node";
5256
f0c0b2b8
KH
5257/*
5258 * sysctl handler for numa_zonelist_order
5259 */
cccad5b9 5260int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5261 void __user *buffer, size_t *length,
f0c0b2b8
KH
5262 loff_t *ppos)
5263{
c9bff3ee 5264 char *str;
f0c0b2b8
KH
5265 int ret;
5266
c9bff3ee
MH
5267 if (!write)
5268 return proc_dostring(table, write, buffer, length, ppos);
5269 str = memdup_user_nul(buffer, 16);
5270 if (IS_ERR(str))
5271 return PTR_ERR(str);
dacbde09 5272
c9bff3ee
MH
5273 ret = __parse_numa_zonelist_order(str);
5274 kfree(str);
443c6f14 5275 return ret;
f0c0b2b8
KH
5276}
5277
5278
62bc62a8 5279#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5280static int node_load[MAX_NUMNODES];
5281
1da177e4 5282/**
4dc3b16b 5283 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5284 * @node: node whose fallback list we're appending
5285 * @used_node_mask: nodemask_t of already used nodes
5286 *
5287 * We use a number of factors to determine which is the next node that should
5288 * appear on a given node's fallback list. The node should not have appeared
5289 * already in @node's fallback list, and it should be the next closest node
5290 * according to the distance array (which contains arbitrary distance values
5291 * from each node to each node in the system), and should also prefer nodes
5292 * with no CPUs, since presumably they'll have very little allocation pressure
5293 * on them otherwise.
5294 * It returns -1 if no node is found.
5295 */
f0c0b2b8 5296static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5297{
4cf808eb 5298 int n, val;
1da177e4 5299 int min_val = INT_MAX;
00ef2d2f 5300 int best_node = NUMA_NO_NODE;
a70f7302 5301 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5302
4cf808eb
LT
5303 /* Use the local node if we haven't already */
5304 if (!node_isset(node, *used_node_mask)) {
5305 node_set(node, *used_node_mask);
5306 return node;
5307 }
1da177e4 5308
4b0ef1fe 5309 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5310
5311 /* Don't want a node to appear more than once */
5312 if (node_isset(n, *used_node_mask))
5313 continue;
5314
1da177e4
LT
5315 /* Use the distance array to find the distance */
5316 val = node_distance(node, n);
5317
4cf808eb
LT
5318 /* Penalize nodes under us ("prefer the next node") */
5319 val += (n < node);
5320
1da177e4 5321 /* Give preference to headless and unused nodes */
a70f7302
RR
5322 tmp = cpumask_of_node(n);
5323 if (!cpumask_empty(tmp))
1da177e4
LT
5324 val += PENALTY_FOR_NODE_WITH_CPUS;
5325
5326 /* Slight preference for less loaded node */
5327 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5328 val += node_load[n];
5329
5330 if (val < min_val) {
5331 min_val = val;
5332 best_node = n;
5333 }
5334 }
5335
5336 if (best_node >= 0)
5337 node_set(best_node, *used_node_mask);
5338
5339 return best_node;
5340}
5341
f0c0b2b8
KH
5342
5343/*
5344 * Build zonelists ordered by node and zones within node.
5345 * This results in maximum locality--normal zone overflows into local
5346 * DMA zone, if any--but risks exhausting DMA zone.
5347 */
9d3be21b
MH
5348static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5349 unsigned nr_nodes)
1da177e4 5350{
9d3be21b
MH
5351 struct zoneref *zonerefs;
5352 int i;
5353
5354 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5355
5356 for (i = 0; i < nr_nodes; i++) {
5357 int nr_zones;
5358
5359 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5360
9d3be21b
MH
5361 nr_zones = build_zonerefs_node(node, zonerefs);
5362 zonerefs += nr_zones;
5363 }
5364 zonerefs->zone = NULL;
5365 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5366}
5367
523b9458
CL
5368/*
5369 * Build gfp_thisnode zonelists
5370 */
5371static void build_thisnode_zonelists(pg_data_t *pgdat)
5372{
9d3be21b
MH
5373 struct zoneref *zonerefs;
5374 int nr_zones;
523b9458 5375
9d3be21b
MH
5376 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5377 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5378 zonerefs += nr_zones;
5379 zonerefs->zone = NULL;
5380 zonerefs->zone_idx = 0;
523b9458
CL
5381}
5382
f0c0b2b8
KH
5383/*
5384 * Build zonelists ordered by zone and nodes within zones.
5385 * This results in conserving DMA zone[s] until all Normal memory is
5386 * exhausted, but results in overflowing to remote node while memory
5387 * may still exist in local DMA zone.
5388 */
f0c0b2b8 5389
f0c0b2b8
KH
5390static void build_zonelists(pg_data_t *pgdat)
5391{
9d3be21b
MH
5392 static int node_order[MAX_NUMNODES];
5393 int node, load, nr_nodes = 0;
1da177e4 5394 nodemask_t used_mask;
f0c0b2b8 5395 int local_node, prev_node;
1da177e4
LT
5396
5397 /* NUMA-aware ordering of nodes */
5398 local_node = pgdat->node_id;
62bc62a8 5399 load = nr_online_nodes;
1da177e4
LT
5400 prev_node = local_node;
5401 nodes_clear(used_mask);
f0c0b2b8 5402
f0c0b2b8 5403 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5404 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5405 /*
5406 * We don't want to pressure a particular node.
5407 * So adding penalty to the first node in same
5408 * distance group to make it round-robin.
5409 */
957f822a
DR
5410 if (node_distance(local_node, node) !=
5411 node_distance(local_node, prev_node))
f0c0b2b8
KH
5412 node_load[node] = load;
5413
9d3be21b 5414 node_order[nr_nodes++] = node;
1da177e4
LT
5415 prev_node = node;
5416 load--;
1da177e4 5417 }
523b9458 5418
9d3be21b 5419 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5420 build_thisnode_zonelists(pgdat);
1da177e4
LT
5421}
5422
7aac7898
LS
5423#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5424/*
5425 * Return node id of node used for "local" allocations.
5426 * I.e., first node id of first zone in arg node's generic zonelist.
5427 * Used for initializing percpu 'numa_mem', which is used primarily
5428 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5429 */
5430int local_memory_node(int node)
5431{
c33d6c06 5432 struct zoneref *z;
7aac7898 5433
c33d6c06 5434 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5435 gfp_zone(GFP_KERNEL),
c33d6c06 5436 NULL);
c1093b74 5437 return zone_to_nid(z->zone);
7aac7898
LS
5438}
5439#endif
f0c0b2b8 5440
6423aa81
JK
5441static void setup_min_unmapped_ratio(void);
5442static void setup_min_slab_ratio(void);
1da177e4
LT
5443#else /* CONFIG_NUMA */
5444
f0c0b2b8 5445static void build_zonelists(pg_data_t *pgdat)
1da177e4 5446{
19655d34 5447 int node, local_node;
9d3be21b
MH
5448 struct zoneref *zonerefs;
5449 int nr_zones;
1da177e4
LT
5450
5451 local_node = pgdat->node_id;
1da177e4 5452
9d3be21b
MH
5453 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5454 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5455 zonerefs += nr_zones;
1da177e4 5456
54a6eb5c
MG
5457 /*
5458 * Now we build the zonelist so that it contains the zones
5459 * of all the other nodes.
5460 * We don't want to pressure a particular node, so when
5461 * building the zones for node N, we make sure that the
5462 * zones coming right after the local ones are those from
5463 * node N+1 (modulo N)
5464 */
5465 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5466 if (!node_online(node))
5467 continue;
9d3be21b
MH
5468 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5469 zonerefs += nr_zones;
1da177e4 5470 }
54a6eb5c
MG
5471 for (node = 0; node < local_node; node++) {
5472 if (!node_online(node))
5473 continue;
9d3be21b
MH
5474 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5475 zonerefs += nr_zones;
54a6eb5c
MG
5476 }
5477
9d3be21b
MH
5478 zonerefs->zone = NULL;
5479 zonerefs->zone_idx = 0;
1da177e4
LT
5480}
5481
5482#endif /* CONFIG_NUMA */
5483
99dcc3e5
CL
5484/*
5485 * Boot pageset table. One per cpu which is going to be used for all
5486 * zones and all nodes. The parameters will be set in such a way
5487 * that an item put on a list will immediately be handed over to
5488 * the buddy list. This is safe since pageset manipulation is done
5489 * with interrupts disabled.
5490 *
5491 * The boot_pagesets must be kept even after bootup is complete for
5492 * unused processors and/or zones. They do play a role for bootstrapping
5493 * hotplugged processors.
5494 *
5495 * zoneinfo_show() and maybe other functions do
5496 * not check if the processor is online before following the pageset pointer.
5497 * Other parts of the kernel may not check if the zone is available.
5498 */
5499static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5500static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5501static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5502
11cd8638 5503static void __build_all_zonelists(void *data)
1da177e4 5504{
6811378e 5505 int nid;
afb6ebb3 5506 int __maybe_unused cpu;
9adb62a5 5507 pg_data_t *self = data;
b93e0f32
MH
5508 static DEFINE_SPINLOCK(lock);
5509
5510 spin_lock(&lock);
9276b1bc 5511
7f9cfb31
BL
5512#ifdef CONFIG_NUMA
5513 memset(node_load, 0, sizeof(node_load));
5514#endif
9adb62a5 5515
c1152583
WY
5516 /*
5517 * This node is hotadded and no memory is yet present. So just
5518 * building zonelists is fine - no need to touch other nodes.
5519 */
9adb62a5
JL
5520 if (self && !node_online(self->node_id)) {
5521 build_zonelists(self);
c1152583
WY
5522 } else {
5523 for_each_online_node(nid) {
5524 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5525
c1152583
WY
5526 build_zonelists(pgdat);
5527 }
99dcc3e5 5528
7aac7898
LS
5529#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5530 /*
5531 * We now know the "local memory node" for each node--
5532 * i.e., the node of the first zone in the generic zonelist.
5533 * Set up numa_mem percpu variable for on-line cpus. During
5534 * boot, only the boot cpu should be on-line; we'll init the
5535 * secondary cpus' numa_mem as they come on-line. During
5536 * node/memory hotplug, we'll fixup all on-line cpus.
5537 */
d9c9a0b9 5538 for_each_online_cpu(cpu)
7aac7898 5539 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5540#endif
d9c9a0b9 5541 }
b93e0f32
MH
5542
5543 spin_unlock(&lock);
6811378e
YG
5544}
5545
061f67bc
RV
5546static noinline void __init
5547build_all_zonelists_init(void)
5548{
afb6ebb3
MH
5549 int cpu;
5550
061f67bc 5551 __build_all_zonelists(NULL);
afb6ebb3
MH
5552
5553 /*
5554 * Initialize the boot_pagesets that are going to be used
5555 * for bootstrapping processors. The real pagesets for
5556 * each zone will be allocated later when the per cpu
5557 * allocator is available.
5558 *
5559 * boot_pagesets are used also for bootstrapping offline
5560 * cpus if the system is already booted because the pagesets
5561 * are needed to initialize allocators on a specific cpu too.
5562 * F.e. the percpu allocator needs the page allocator which
5563 * needs the percpu allocator in order to allocate its pagesets
5564 * (a chicken-egg dilemma).
5565 */
5566 for_each_possible_cpu(cpu)
5567 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5568
061f67bc
RV
5569 mminit_verify_zonelist();
5570 cpuset_init_current_mems_allowed();
5571}
5572
4eaf3f64 5573/*
4eaf3f64 5574 * unless system_state == SYSTEM_BOOTING.
061f67bc 5575 *
72675e13 5576 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5577 * [protected by SYSTEM_BOOTING].
4eaf3f64 5578 */
72675e13 5579void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5580{
5581 if (system_state == SYSTEM_BOOTING) {
061f67bc 5582 build_all_zonelists_init();
6811378e 5583 } else {
11cd8638 5584 __build_all_zonelists(pgdat);
6811378e
YG
5585 /* cpuset refresh routine should be here */
5586 }
bd1e22b8 5587 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5588 /*
5589 * Disable grouping by mobility if the number of pages in the
5590 * system is too low to allow the mechanism to work. It would be
5591 * more accurate, but expensive to check per-zone. This check is
5592 * made on memory-hotadd so a system can start with mobility
5593 * disabled and enable it later
5594 */
d9c23400 5595 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5596 page_group_by_mobility_disabled = 1;
5597 else
5598 page_group_by_mobility_disabled = 0;
5599
c9bff3ee 5600 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5601 nr_online_nodes,
756a025f
JP
5602 page_group_by_mobility_disabled ? "off" : "on",
5603 vm_total_pages);
f0c0b2b8 5604#ifdef CONFIG_NUMA
f88dfff5 5605 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5606#endif
1da177e4
LT
5607}
5608
a9a9e77f
PT
5609/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5610static bool __meminit
5611overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5612{
5613#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5614 static struct memblock_region *r;
5615
5616 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5617 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5618 for_each_memblock(memory, r) {
5619 if (*pfn < memblock_region_memory_end_pfn(r))
5620 break;
5621 }
5622 }
5623 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5624 memblock_is_mirror(r)) {
5625 *pfn = memblock_region_memory_end_pfn(r);
5626 return true;
5627 }
5628 }
5629#endif
5630 return false;
5631}
5632
1da177e4
LT
5633/*
5634 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5635 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5636 * done. Non-atomic initialization, single-pass.
5637 */
c09b4240 5638void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5639 unsigned long start_pfn, enum memmap_context context,
5640 struct vmem_altmap *altmap)
1da177e4 5641{
a9a9e77f 5642 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5643 struct page *page;
1da177e4 5644
22b31eec
HD
5645 if (highest_memmap_pfn < end_pfn - 1)
5646 highest_memmap_pfn = end_pfn - 1;
5647
966cf44f 5648#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5649 /*
5650 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5651 * memory. We limit the total number of pages to initialize to just
5652 * those that might contain the memory mapping. We will defer the
5653 * ZONE_DEVICE page initialization until after we have released
5654 * the hotplug lock.
4b94ffdc 5655 */
966cf44f
AD
5656 if (zone == ZONE_DEVICE) {
5657 if (!altmap)
5658 return;
5659
5660 if (start_pfn == altmap->base_pfn)
5661 start_pfn += altmap->reserve;
5662 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5663 }
5664#endif
4b94ffdc 5665
cbe8dd4a 5666 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5667 /*
b72d0ffb
AM
5668 * There can be holes in boot-time mem_map[]s handed to this
5669 * function. They do not exist on hotplugged memory.
a2f3aa02 5670 */
a9a9e77f
PT
5671 if (context == MEMMAP_EARLY) {
5672 if (!early_pfn_valid(pfn))
b72d0ffb 5673 continue;
a9a9e77f
PT
5674 if (!early_pfn_in_nid(pfn, nid))
5675 continue;
5676 if (overlap_memmap_init(zone, &pfn))
5677 continue;
5678 if (defer_init(nid, pfn, end_pfn))
5679 break;
a2f3aa02 5680 }
ac5d2539 5681
d0dc12e8
PT
5682 page = pfn_to_page(pfn);
5683 __init_single_page(page, pfn, zone, nid);
5684 if (context == MEMMAP_HOTPLUG)
d483da5b 5685 __SetPageReserved(page);
d0dc12e8 5686
ac5d2539
MG
5687 /*
5688 * Mark the block movable so that blocks are reserved for
5689 * movable at startup. This will force kernel allocations
5690 * to reserve their blocks rather than leaking throughout
5691 * the address space during boot when many long-lived
974a786e 5692 * kernel allocations are made.
ac5d2539
MG
5693 *
5694 * bitmap is created for zone's valid pfn range. but memmap
5695 * can be created for invalid pages (for alignment)
5696 * check here not to call set_pageblock_migratetype() against
5697 * pfn out of zone.
5698 */
5699 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5700 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5701 cond_resched();
ac5d2539 5702 }
1da177e4 5703 }
2830bf6f
MZ
5704#ifdef CONFIG_SPARSEMEM
5705 /*
5706 * If the zone does not span the rest of the section then
5707 * we should at least initialize those pages. Otherwise we
5708 * could blow up on a poisoned page in some paths which depend
5709 * on full sections being initialized (e.g. memory hotplug).
5710 */
5711 while (end_pfn % PAGES_PER_SECTION) {
5712 __init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
5713 end_pfn++;
5714 }
5715#endif
1da177e4
LT
5716}
5717
966cf44f
AD
5718#ifdef CONFIG_ZONE_DEVICE
5719void __ref memmap_init_zone_device(struct zone *zone,
5720 unsigned long start_pfn,
5721 unsigned long size,
5722 struct dev_pagemap *pgmap)
5723{
5724 unsigned long pfn, end_pfn = start_pfn + size;
5725 struct pglist_data *pgdat = zone->zone_pgdat;
5726 unsigned long zone_idx = zone_idx(zone);
5727 unsigned long start = jiffies;
5728 int nid = pgdat->node_id;
5729
5730 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5731 return;
5732
5733 /*
5734 * The call to memmap_init_zone should have already taken care
5735 * of the pages reserved for the memmap, so we can just jump to
5736 * the end of that region and start processing the device pages.
5737 */
5738 if (pgmap->altmap_valid) {
5739 struct vmem_altmap *altmap = &pgmap->altmap;
5740
5741 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5742 size = end_pfn - start_pfn;
5743 }
5744
5745 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5746 struct page *page = pfn_to_page(pfn);
5747
5748 __init_single_page(page, pfn, zone_idx, nid);
5749
5750 /*
5751 * Mark page reserved as it will need to wait for onlining
5752 * phase for it to be fully associated with a zone.
5753 *
5754 * We can use the non-atomic __set_bit operation for setting
5755 * the flag as we are still initializing the pages.
5756 */
5757 __SetPageReserved(page);
5758
5759 /*
5760 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5761 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5762 * page is ever freed or placed on a driver-private list.
5763 */
5764 page->pgmap = pgmap;
5765 page->hmm_data = 0;
5766
5767 /*
5768 * Mark the block movable so that blocks are reserved for
5769 * movable at startup. This will force kernel allocations
5770 * to reserve their blocks rather than leaking throughout
5771 * the address space during boot when many long-lived
5772 * kernel allocations are made.
5773 *
5774 * bitmap is created for zone's valid pfn range. but memmap
5775 * can be created for invalid pages (for alignment)
5776 * check here not to call set_pageblock_migratetype() against
5777 * pfn out of zone.
5778 *
5779 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5780 * because this is done early in sparse_add_one_section
5781 */
5782 if (!(pfn & (pageblock_nr_pages - 1))) {
5783 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5784 cond_resched();
5785 }
5786 }
5787
5788 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5789 size, jiffies_to_msecs(jiffies - start));
5790}
5791
5792#endif
1e548deb 5793static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5794{
7aeb09f9 5795 unsigned int order, t;
b2a0ac88
MG
5796 for_each_migratetype_order(order, t) {
5797 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5798 zone->free_area[order].nr_free = 0;
5799 }
5800}
5801
dfb3ccd0
PT
5802void __meminit __weak memmap_init(unsigned long size, int nid,
5803 unsigned long zone, unsigned long start_pfn)
5804{
5805 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5806}
1da177e4 5807
7cd2b0a3 5808static int zone_batchsize(struct zone *zone)
e7c8d5c9 5809{
3a6be87f 5810#ifdef CONFIG_MMU
e7c8d5c9
CL
5811 int batch;
5812
5813 /*
5814 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5815 * size of the zone.
e7c8d5c9 5816 */
9705bea5 5817 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
5818 /* But no more than a meg. */
5819 if (batch * PAGE_SIZE > 1024 * 1024)
5820 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5821 batch /= 4; /* We effectively *= 4 below */
5822 if (batch < 1)
5823 batch = 1;
5824
5825 /*
0ceaacc9
NP
5826 * Clamp the batch to a 2^n - 1 value. Having a power
5827 * of 2 value was found to be more likely to have
5828 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5829 *
0ceaacc9
NP
5830 * For example if 2 tasks are alternately allocating
5831 * batches of pages, one task can end up with a lot
5832 * of pages of one half of the possible page colors
5833 * and the other with pages of the other colors.
e7c8d5c9 5834 */
9155203a 5835 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5836
e7c8d5c9 5837 return batch;
3a6be87f
DH
5838
5839#else
5840 /* The deferral and batching of frees should be suppressed under NOMMU
5841 * conditions.
5842 *
5843 * The problem is that NOMMU needs to be able to allocate large chunks
5844 * of contiguous memory as there's no hardware page translation to
5845 * assemble apparent contiguous memory from discontiguous pages.
5846 *
5847 * Queueing large contiguous runs of pages for batching, however,
5848 * causes the pages to actually be freed in smaller chunks. As there
5849 * can be a significant delay between the individual batches being
5850 * recycled, this leads to the once large chunks of space being
5851 * fragmented and becoming unavailable for high-order allocations.
5852 */
5853 return 0;
5854#endif
e7c8d5c9
CL
5855}
5856
8d7a8fa9
CS
5857/*
5858 * pcp->high and pcp->batch values are related and dependent on one another:
5859 * ->batch must never be higher then ->high.
5860 * The following function updates them in a safe manner without read side
5861 * locking.
5862 *
5863 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5864 * those fields changing asynchronously (acording the the above rule).
5865 *
5866 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5867 * outside of boot time (or some other assurance that no concurrent updaters
5868 * exist).
5869 */
5870static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5871 unsigned long batch)
5872{
5873 /* start with a fail safe value for batch */
5874 pcp->batch = 1;
5875 smp_wmb();
5876
5877 /* Update high, then batch, in order */
5878 pcp->high = high;
5879 smp_wmb();
5880
5881 pcp->batch = batch;
5882}
5883
3664033c 5884/* a companion to pageset_set_high() */
4008bab7
CS
5885static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5886{
8d7a8fa9 5887 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5888}
5889
88c90dbc 5890static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5891{
5892 struct per_cpu_pages *pcp;
5f8dcc21 5893 int migratetype;
2caaad41 5894
1c6fe946
MD
5895 memset(p, 0, sizeof(*p));
5896
3dfa5721 5897 pcp = &p->pcp;
5f8dcc21
MG
5898 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5899 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5900}
5901
88c90dbc
CS
5902static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5903{
5904 pageset_init(p);
5905 pageset_set_batch(p, batch);
5906}
5907
8ad4b1fb 5908/*
3664033c 5909 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5910 * to the value high for the pageset p.
5911 */
3664033c 5912static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5913 unsigned long high)
5914{
8d7a8fa9
CS
5915 unsigned long batch = max(1UL, high / 4);
5916 if ((high / 4) > (PAGE_SHIFT * 8))
5917 batch = PAGE_SHIFT * 8;
8ad4b1fb 5918
8d7a8fa9 5919 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5920}
5921
7cd2b0a3
DR
5922static void pageset_set_high_and_batch(struct zone *zone,
5923 struct per_cpu_pageset *pcp)
56cef2b8 5924{
56cef2b8 5925 if (percpu_pagelist_fraction)
3664033c 5926 pageset_set_high(pcp,
9705bea5 5927 (zone_managed_pages(zone) /
56cef2b8
CS
5928 percpu_pagelist_fraction));
5929 else
5930 pageset_set_batch(pcp, zone_batchsize(zone));
5931}
5932
169f6c19
CS
5933static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5934{
5935 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5936
5937 pageset_init(pcp);
5938 pageset_set_high_and_batch(zone, pcp);
5939}
5940
72675e13 5941void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5942{
5943 int cpu;
319774e2 5944 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5945 for_each_possible_cpu(cpu)
5946 zone_pageset_init(zone, cpu);
319774e2
WF
5947}
5948
2caaad41 5949/*
99dcc3e5
CL
5950 * Allocate per cpu pagesets and initialize them.
5951 * Before this call only boot pagesets were available.
e7c8d5c9 5952 */
99dcc3e5 5953void __init setup_per_cpu_pageset(void)
e7c8d5c9 5954{
b4911ea2 5955 struct pglist_data *pgdat;
99dcc3e5 5956 struct zone *zone;
e7c8d5c9 5957
319774e2
WF
5958 for_each_populated_zone(zone)
5959 setup_zone_pageset(zone);
b4911ea2
MG
5960
5961 for_each_online_pgdat(pgdat)
5962 pgdat->per_cpu_nodestats =
5963 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5964}
5965
c09b4240 5966static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5967{
99dcc3e5
CL
5968 /*
5969 * per cpu subsystem is not up at this point. The following code
5970 * relies on the ability of the linker to provide the
5971 * offset of a (static) per cpu variable into the per cpu area.
5972 */
5973 zone->pageset = &boot_pageset;
ed8ece2e 5974
b38a8725 5975 if (populated_zone(zone))
99dcc3e5
CL
5976 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5977 zone->name, zone->present_pages,
5978 zone_batchsize(zone));
ed8ece2e
DH
5979}
5980
dc0bbf3b 5981void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5982 unsigned long zone_start_pfn,
b171e409 5983 unsigned long size)
ed8ece2e
DH
5984{
5985 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 5986 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 5987
8f416836
WY
5988 if (zone_idx > pgdat->nr_zones)
5989 pgdat->nr_zones = zone_idx;
ed8ece2e 5990
ed8ece2e
DH
5991 zone->zone_start_pfn = zone_start_pfn;
5992
708614e6
MG
5993 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5994 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5995 pgdat->node_id,
5996 (unsigned long)zone_idx(zone),
5997 zone_start_pfn, (zone_start_pfn + size));
5998
1e548deb 5999 zone_init_free_lists(zone);
9dcb8b68 6000 zone->initialized = 1;
ed8ece2e
DH
6001}
6002
0ee332c1 6003#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6004#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6005
c713216d
MG
6006/*
6007 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6008 */
8a942fde
MG
6009int __meminit __early_pfn_to_nid(unsigned long pfn,
6010 struct mminit_pfnnid_cache *state)
c713216d 6011{
c13291a5 6012 unsigned long start_pfn, end_pfn;
e76b63f8 6013 int nid;
7c243c71 6014
8a942fde
MG
6015 if (state->last_start <= pfn && pfn < state->last_end)
6016 return state->last_nid;
c713216d 6017
e76b63f8
YL
6018 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6019 if (nid != -1) {
8a942fde
MG
6020 state->last_start = start_pfn;
6021 state->last_end = end_pfn;
6022 state->last_nid = nid;
e76b63f8
YL
6023 }
6024
6025 return nid;
c713216d
MG
6026}
6027#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6028
c713216d 6029/**
6782832e 6030 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6031 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6032 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6033 *
7d018176
ZZ
6034 * If an architecture guarantees that all ranges registered contain no holes
6035 * and may be freed, this this function may be used instead of calling
6036 * memblock_free_early_nid() manually.
c713216d 6037 */
c13291a5 6038void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6039{
c13291a5
TH
6040 unsigned long start_pfn, end_pfn;
6041 int i, this_nid;
edbe7d23 6042
c13291a5
TH
6043 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6044 start_pfn = min(start_pfn, max_low_pfn);
6045 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6046
c13291a5 6047 if (start_pfn < end_pfn)
6782832e
SS
6048 memblock_free_early_nid(PFN_PHYS(start_pfn),
6049 (end_pfn - start_pfn) << PAGE_SHIFT,
6050 this_nid);
edbe7d23 6051 }
edbe7d23 6052}
edbe7d23 6053
c713216d
MG
6054/**
6055 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6056 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6057 *
7d018176
ZZ
6058 * If an architecture guarantees that all ranges registered contain no holes and may
6059 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6060 */
6061void __init sparse_memory_present_with_active_regions(int nid)
6062{
c13291a5
TH
6063 unsigned long start_pfn, end_pfn;
6064 int i, this_nid;
c713216d 6065
c13291a5
TH
6066 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6067 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6068}
6069
6070/**
6071 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6072 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6073 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6074 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6075 *
6076 * It returns the start and end page frame of a node based on information
7d018176 6077 * provided by memblock_set_node(). If called for a node
c713216d 6078 * with no available memory, a warning is printed and the start and end
88ca3b94 6079 * PFNs will be 0.
c713216d 6080 */
bbe5d993 6081void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6082 unsigned long *start_pfn, unsigned long *end_pfn)
6083{
c13291a5 6084 unsigned long this_start_pfn, this_end_pfn;
c713216d 6085 int i;
c13291a5 6086
c713216d
MG
6087 *start_pfn = -1UL;
6088 *end_pfn = 0;
6089
c13291a5
TH
6090 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6091 *start_pfn = min(*start_pfn, this_start_pfn);
6092 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6093 }
6094
633c0666 6095 if (*start_pfn == -1UL)
c713216d 6096 *start_pfn = 0;
c713216d
MG
6097}
6098
2a1e274a
MG
6099/*
6100 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6101 * assumption is made that zones within a node are ordered in monotonic
6102 * increasing memory addresses so that the "highest" populated zone is used
6103 */
b69a7288 6104static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6105{
6106 int zone_index;
6107 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6108 if (zone_index == ZONE_MOVABLE)
6109 continue;
6110
6111 if (arch_zone_highest_possible_pfn[zone_index] >
6112 arch_zone_lowest_possible_pfn[zone_index])
6113 break;
6114 }
6115
6116 VM_BUG_ON(zone_index == -1);
6117 movable_zone = zone_index;
6118}
6119
6120/*
6121 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6122 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6123 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6124 * in each node depending on the size of each node and how evenly kernelcore
6125 * is distributed. This helper function adjusts the zone ranges
6126 * provided by the architecture for a given node by using the end of the
6127 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6128 * zones within a node are in order of monotonic increases memory addresses
6129 */
bbe5d993 6130static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6131 unsigned long zone_type,
6132 unsigned long node_start_pfn,
6133 unsigned long node_end_pfn,
6134 unsigned long *zone_start_pfn,
6135 unsigned long *zone_end_pfn)
6136{
6137 /* Only adjust if ZONE_MOVABLE is on this node */
6138 if (zone_movable_pfn[nid]) {
6139 /* Size ZONE_MOVABLE */
6140 if (zone_type == ZONE_MOVABLE) {
6141 *zone_start_pfn = zone_movable_pfn[nid];
6142 *zone_end_pfn = min(node_end_pfn,
6143 arch_zone_highest_possible_pfn[movable_zone]);
6144
e506b996
XQ
6145 /* Adjust for ZONE_MOVABLE starting within this range */
6146 } else if (!mirrored_kernelcore &&
6147 *zone_start_pfn < zone_movable_pfn[nid] &&
6148 *zone_end_pfn > zone_movable_pfn[nid]) {
6149 *zone_end_pfn = zone_movable_pfn[nid];
6150
2a1e274a
MG
6151 /* Check if this whole range is within ZONE_MOVABLE */
6152 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6153 *zone_start_pfn = *zone_end_pfn;
6154 }
6155}
6156
c713216d
MG
6157/*
6158 * Return the number of pages a zone spans in a node, including holes
6159 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6160 */
bbe5d993 6161static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6162 unsigned long zone_type,
7960aedd
ZY
6163 unsigned long node_start_pfn,
6164 unsigned long node_end_pfn,
d91749c1
TI
6165 unsigned long *zone_start_pfn,
6166 unsigned long *zone_end_pfn,
c713216d
MG
6167 unsigned long *ignored)
6168{
b5685e92 6169 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6170 if (!node_start_pfn && !node_end_pfn)
6171 return 0;
6172
7960aedd 6173 /* Get the start and end of the zone */
d91749c1
TI
6174 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6175 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
6176 adjust_zone_range_for_zone_movable(nid, zone_type,
6177 node_start_pfn, node_end_pfn,
d91749c1 6178 zone_start_pfn, zone_end_pfn);
c713216d
MG
6179
6180 /* Check that this node has pages within the zone's required range */
d91749c1 6181 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6182 return 0;
6183
6184 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6185 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6186 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6187
6188 /* Return the spanned pages */
d91749c1 6189 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6190}
6191
6192/*
6193 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6194 * then all holes in the requested range will be accounted for.
c713216d 6195 */
bbe5d993 6196unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6197 unsigned long range_start_pfn,
6198 unsigned long range_end_pfn)
6199{
96e907d1
TH
6200 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6201 unsigned long start_pfn, end_pfn;
6202 int i;
c713216d 6203
96e907d1
TH
6204 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6205 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6206 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6207 nr_absent -= end_pfn - start_pfn;
c713216d 6208 }
96e907d1 6209 return nr_absent;
c713216d
MG
6210}
6211
6212/**
6213 * absent_pages_in_range - Return number of page frames in holes within a range
6214 * @start_pfn: The start PFN to start searching for holes
6215 * @end_pfn: The end PFN to stop searching for holes
6216 *
88ca3b94 6217 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
6218 */
6219unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6220 unsigned long end_pfn)
6221{
6222 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6223}
6224
6225/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6226static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6227 unsigned long zone_type,
7960aedd
ZY
6228 unsigned long node_start_pfn,
6229 unsigned long node_end_pfn,
c713216d
MG
6230 unsigned long *ignored)
6231{
96e907d1
TH
6232 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6233 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6234 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6235 unsigned long nr_absent;
9c7cd687 6236
b5685e92 6237 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6238 if (!node_start_pfn && !node_end_pfn)
6239 return 0;
6240
96e907d1
TH
6241 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6242 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6243
2a1e274a
MG
6244 adjust_zone_range_for_zone_movable(nid, zone_type,
6245 node_start_pfn, node_end_pfn,
6246 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6247 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6248
6249 /*
6250 * ZONE_MOVABLE handling.
6251 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6252 * and vice versa.
6253 */
e506b996
XQ
6254 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6255 unsigned long start_pfn, end_pfn;
6256 struct memblock_region *r;
6257
6258 for_each_memblock(memory, r) {
6259 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6260 zone_start_pfn, zone_end_pfn);
6261 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6262 zone_start_pfn, zone_end_pfn);
6263
6264 if (zone_type == ZONE_MOVABLE &&
6265 memblock_is_mirror(r))
6266 nr_absent += end_pfn - start_pfn;
6267
6268 if (zone_type == ZONE_NORMAL &&
6269 !memblock_is_mirror(r))
6270 nr_absent += end_pfn - start_pfn;
342332e6
TI
6271 }
6272 }
6273
6274 return nr_absent;
c713216d 6275}
0e0b864e 6276
0ee332c1 6277#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6278static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6279 unsigned long zone_type,
7960aedd
ZY
6280 unsigned long node_start_pfn,
6281 unsigned long node_end_pfn,
d91749c1
TI
6282 unsigned long *zone_start_pfn,
6283 unsigned long *zone_end_pfn,
c713216d
MG
6284 unsigned long *zones_size)
6285{
d91749c1
TI
6286 unsigned int zone;
6287
6288 *zone_start_pfn = node_start_pfn;
6289 for (zone = 0; zone < zone_type; zone++)
6290 *zone_start_pfn += zones_size[zone];
6291
6292 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6293
c713216d
MG
6294 return zones_size[zone_type];
6295}
6296
bbe5d993 6297static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6298 unsigned long zone_type,
7960aedd
ZY
6299 unsigned long node_start_pfn,
6300 unsigned long node_end_pfn,
c713216d
MG
6301 unsigned long *zholes_size)
6302{
6303 if (!zholes_size)
6304 return 0;
6305
6306 return zholes_size[zone_type];
6307}
20e6926d 6308
0ee332c1 6309#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6310
bbe5d993 6311static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6312 unsigned long node_start_pfn,
6313 unsigned long node_end_pfn,
6314 unsigned long *zones_size,
6315 unsigned long *zholes_size)
c713216d 6316{
febd5949 6317 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6318 enum zone_type i;
6319
febd5949
GZ
6320 for (i = 0; i < MAX_NR_ZONES; i++) {
6321 struct zone *zone = pgdat->node_zones + i;
d91749c1 6322 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6323 unsigned long size, real_size;
c713216d 6324
febd5949
GZ
6325 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6326 node_start_pfn,
6327 node_end_pfn,
d91749c1
TI
6328 &zone_start_pfn,
6329 &zone_end_pfn,
febd5949
GZ
6330 zones_size);
6331 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6332 node_start_pfn, node_end_pfn,
6333 zholes_size);
d91749c1
TI
6334 if (size)
6335 zone->zone_start_pfn = zone_start_pfn;
6336 else
6337 zone->zone_start_pfn = 0;
febd5949
GZ
6338 zone->spanned_pages = size;
6339 zone->present_pages = real_size;
6340
6341 totalpages += size;
6342 realtotalpages += real_size;
6343 }
6344
6345 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6346 pgdat->node_present_pages = realtotalpages;
6347 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6348 realtotalpages);
6349}
6350
835c134e
MG
6351#ifndef CONFIG_SPARSEMEM
6352/*
6353 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6354 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6355 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6356 * round what is now in bits to nearest long in bits, then return it in
6357 * bytes.
6358 */
7c45512d 6359static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6360{
6361 unsigned long usemapsize;
6362
7c45512d 6363 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6364 usemapsize = roundup(zonesize, pageblock_nr_pages);
6365 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6366 usemapsize *= NR_PAGEBLOCK_BITS;
6367 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6368
6369 return usemapsize / 8;
6370}
6371
7cc2a959 6372static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6373 struct zone *zone,
6374 unsigned long zone_start_pfn,
6375 unsigned long zonesize)
835c134e 6376{
7c45512d 6377 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6378 zone->pageblock_flags = NULL;
58a01a45 6379 if (usemapsize)
6782832e 6380 zone->pageblock_flags =
eb31d559 6381 memblock_alloc_node_nopanic(usemapsize,
6782832e 6382 pgdat->node_id);
835c134e
MG
6383}
6384#else
7c45512d
LT
6385static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6386 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6387#endif /* CONFIG_SPARSEMEM */
6388
d9c23400 6389#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6390
d9c23400 6391/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6392void __init set_pageblock_order(void)
d9c23400 6393{
955c1cd7
AM
6394 unsigned int order;
6395
d9c23400
MG
6396 /* Check that pageblock_nr_pages has not already been setup */
6397 if (pageblock_order)
6398 return;
6399
955c1cd7
AM
6400 if (HPAGE_SHIFT > PAGE_SHIFT)
6401 order = HUGETLB_PAGE_ORDER;
6402 else
6403 order = MAX_ORDER - 1;
6404
d9c23400
MG
6405 /*
6406 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6407 * This value may be variable depending on boot parameters on IA64 and
6408 * powerpc.
d9c23400
MG
6409 */
6410 pageblock_order = order;
6411}
6412#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6413
ba72cb8c
MG
6414/*
6415 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6416 * is unused as pageblock_order is set at compile-time. See
6417 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6418 * the kernel config
ba72cb8c 6419 */
03e85f9d 6420void __init set_pageblock_order(void)
ba72cb8c 6421{
ba72cb8c 6422}
d9c23400
MG
6423
6424#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6425
03e85f9d 6426static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6427 unsigned long present_pages)
01cefaef
JL
6428{
6429 unsigned long pages = spanned_pages;
6430
6431 /*
6432 * Provide a more accurate estimation if there are holes within
6433 * the zone and SPARSEMEM is in use. If there are holes within the
6434 * zone, each populated memory region may cost us one or two extra
6435 * memmap pages due to alignment because memmap pages for each
89d790ab 6436 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6437 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6438 */
6439 if (spanned_pages > present_pages + (present_pages >> 4) &&
6440 IS_ENABLED(CONFIG_SPARSEMEM))
6441 pages = present_pages;
6442
6443 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6444}
6445
ace1db39
OS
6446#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6447static void pgdat_init_split_queue(struct pglist_data *pgdat)
6448{
6449 spin_lock_init(&pgdat->split_queue_lock);
6450 INIT_LIST_HEAD(&pgdat->split_queue);
6451 pgdat->split_queue_len = 0;
6452}
6453#else
6454static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6455#endif
6456
6457#ifdef CONFIG_COMPACTION
6458static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6459{
6460 init_waitqueue_head(&pgdat->kcompactd_wait);
6461}
6462#else
6463static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6464#endif
6465
03e85f9d 6466static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6467{
208d54e5 6468 pgdat_resize_init(pgdat);
ace1db39 6469
ace1db39
OS
6470 pgdat_init_split_queue(pgdat);
6471 pgdat_init_kcompactd(pgdat);
6472
1da177e4 6473 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6474 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6475
eefa864b 6476 pgdat_page_ext_init(pgdat);
a52633d8 6477 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6478 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6479}
6480
6481static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6482 unsigned long remaining_pages)
6483{
9705bea5 6484 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6485 zone_set_nid(zone, nid);
6486 zone->name = zone_names[idx];
6487 zone->zone_pgdat = NODE_DATA(nid);
6488 spin_lock_init(&zone->lock);
6489 zone_seqlock_init(zone);
6490 zone_pcp_init(zone);
6491}
6492
6493/*
6494 * Set up the zone data structures
6495 * - init pgdat internals
6496 * - init all zones belonging to this node
6497 *
6498 * NOTE: this function is only called during memory hotplug
6499 */
6500#ifdef CONFIG_MEMORY_HOTPLUG
6501void __ref free_area_init_core_hotplug(int nid)
6502{
6503 enum zone_type z;
6504 pg_data_t *pgdat = NODE_DATA(nid);
6505
6506 pgdat_init_internals(pgdat);
6507 for (z = 0; z < MAX_NR_ZONES; z++)
6508 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6509}
6510#endif
6511
6512/*
6513 * Set up the zone data structures:
6514 * - mark all pages reserved
6515 * - mark all memory queues empty
6516 * - clear the memory bitmaps
6517 *
6518 * NOTE: pgdat should get zeroed by caller.
6519 * NOTE: this function is only called during early init.
6520 */
6521static void __init free_area_init_core(struct pglist_data *pgdat)
6522{
6523 enum zone_type j;
6524 int nid = pgdat->node_id;
5f63b720 6525
03e85f9d 6526 pgdat_init_internals(pgdat);
385386cf
JW
6527 pgdat->per_cpu_nodestats = &boot_nodestats;
6528
1da177e4
LT
6529 for (j = 0; j < MAX_NR_ZONES; j++) {
6530 struct zone *zone = pgdat->node_zones + j;
e6943859 6531 unsigned long size, freesize, memmap_pages;
d91749c1 6532 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6533
febd5949 6534 size = zone->spanned_pages;
e6943859 6535 freesize = zone->present_pages;
1da177e4 6536
0e0b864e 6537 /*
9feedc9d 6538 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6539 * is used by this zone for memmap. This affects the watermark
6540 * and per-cpu initialisations
6541 */
e6943859 6542 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6543 if (!is_highmem_idx(j)) {
6544 if (freesize >= memmap_pages) {
6545 freesize -= memmap_pages;
6546 if (memmap_pages)
6547 printk(KERN_DEBUG
6548 " %s zone: %lu pages used for memmap\n",
6549 zone_names[j], memmap_pages);
6550 } else
1170532b 6551 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6552 zone_names[j], memmap_pages, freesize);
6553 }
0e0b864e 6554
6267276f 6555 /* Account for reserved pages */
9feedc9d
JL
6556 if (j == 0 && freesize > dma_reserve) {
6557 freesize -= dma_reserve;
d903ef9f 6558 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6559 zone_names[0], dma_reserve);
0e0b864e
MG
6560 }
6561
98d2b0eb 6562 if (!is_highmem_idx(j))
9feedc9d 6563 nr_kernel_pages += freesize;
01cefaef
JL
6564 /* Charge for highmem memmap if there are enough kernel pages */
6565 else if (nr_kernel_pages > memmap_pages * 2)
6566 nr_kernel_pages -= memmap_pages;
9feedc9d 6567 nr_all_pages += freesize;
1da177e4 6568
9feedc9d
JL
6569 /*
6570 * Set an approximate value for lowmem here, it will be adjusted
6571 * when the bootmem allocator frees pages into the buddy system.
6572 * And all highmem pages will be managed by the buddy system.
6573 */
03e85f9d 6574 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6575
d883c6cf 6576 if (!size)
1da177e4
LT
6577 continue;
6578
955c1cd7 6579 set_pageblock_order();
d883c6cf
JK
6580 setup_usemap(pgdat, zone, zone_start_pfn, size);
6581 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6582 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6583 }
6584}
6585
0cd842f9 6586#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6587static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6588{
b0aeba74 6589 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6590 unsigned long __maybe_unused offset = 0;
6591
1da177e4
LT
6592 /* Skip empty nodes */
6593 if (!pgdat->node_spanned_pages)
6594 return;
6595
b0aeba74
TL
6596 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6597 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6598 /* ia64 gets its own node_mem_map, before this, without bootmem */
6599 if (!pgdat->node_mem_map) {
b0aeba74 6600 unsigned long size, end;
d41dee36
AW
6601 struct page *map;
6602
e984bb43
BP
6603 /*
6604 * The zone's endpoints aren't required to be MAX_ORDER
6605 * aligned but the node_mem_map endpoints must be in order
6606 * for the buddy allocator to function correctly.
6607 */
108bcc96 6608 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6609 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6610 size = (end - start) * sizeof(struct page);
eb31d559 6611 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6612 pgdat->node_mem_map = map + offset;
1da177e4 6613 }
0cd842f9
OS
6614 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6615 __func__, pgdat->node_id, (unsigned long)pgdat,
6616 (unsigned long)pgdat->node_mem_map);
12d810c1 6617#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6618 /*
6619 * With no DISCONTIG, the global mem_map is just set as node 0's
6620 */
c713216d 6621 if (pgdat == NODE_DATA(0)) {
1da177e4 6622 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6623#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6624 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6625 mem_map -= offset;
0ee332c1 6626#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6627 }
1da177e4
LT
6628#endif
6629}
0cd842f9
OS
6630#else
6631static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6632#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6633
0188dc98
OS
6634#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6635static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6636{
0188dc98
OS
6637 pgdat->first_deferred_pfn = ULONG_MAX;
6638}
6639#else
6640static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6641#endif
6642
03e85f9d 6643void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6644 unsigned long node_start_pfn,
6645 unsigned long *zholes_size)
1da177e4 6646{
9109fb7b 6647 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6648 unsigned long start_pfn = 0;
6649 unsigned long end_pfn = 0;
9109fb7b 6650
88fdf75d 6651 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6652 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6653
1da177e4
LT
6654 pgdat->node_id = nid;
6655 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6656 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6657#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6658 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6659 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6660 (u64)start_pfn << PAGE_SHIFT,
6661 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6662#else
6663 start_pfn = node_start_pfn;
7960aedd
ZY
6664#endif
6665 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6666 zones_size, zholes_size);
1da177e4
LT
6667
6668 alloc_node_mem_map(pgdat);
0188dc98 6669 pgdat_set_deferred_range(pgdat);
1da177e4 6670
7f3eb55b 6671 free_area_init_core(pgdat);
1da177e4
LT
6672}
6673
aca52c39 6674#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6675/*
6676 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6677 * pages zeroed
6678 */
6679static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6680{
6681 unsigned long pfn;
6682 u64 pgcnt = 0;
6683
6684 for (pfn = spfn; pfn < epfn; pfn++) {
6685 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6686 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6687 + pageblock_nr_pages - 1;
6688 continue;
6689 }
6690 mm_zero_struct_page(pfn_to_page(pfn));
6691 pgcnt++;
6692 }
6693
6694 return pgcnt;
6695}
6696
a4a3ede2
PT
6697/*
6698 * Only struct pages that are backed by physical memory are zeroed and
6699 * initialized by going through __init_single_page(). But, there are some
6700 * struct pages which are reserved in memblock allocator and their fields
6701 * may be accessed (for example page_to_pfn() on some configuration accesses
6702 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6703 *
6704 * This function also addresses a similar issue where struct pages are left
6705 * uninitialized because the physical address range is not covered by
6706 * memblock.memory or memblock.reserved. That could happen when memblock
6707 * layout is manually configured via memmap=.
a4a3ede2 6708 */
03e85f9d 6709void __init zero_resv_unavail(void)
a4a3ede2
PT
6710{
6711 phys_addr_t start, end;
a4a3ede2 6712 u64 i, pgcnt;
907ec5fc 6713 phys_addr_t next = 0;
a4a3ede2
PT
6714
6715 /*
907ec5fc 6716 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6717 */
6718 pgcnt = 0;
907ec5fc
NH
6719 for_each_mem_range(i, &memblock.memory, NULL,
6720 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6721 if (next < start)
6722 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6723 next = end;
6724 }
ec393a0f 6725 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6726
a4a3ede2
PT
6727 /*
6728 * Struct pages that do not have backing memory. This could be because
6729 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6730 */
6731 if (pgcnt)
907ec5fc 6732 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6733}
aca52c39 6734#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6735
0ee332c1 6736#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6737
6738#if MAX_NUMNODES > 1
6739/*
6740 * Figure out the number of possible node ids.
6741 */
f9872caf 6742void __init setup_nr_node_ids(void)
418508c1 6743{
904a9553 6744 unsigned int highest;
418508c1 6745
904a9553 6746 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6747 nr_node_ids = highest + 1;
6748}
418508c1
MS
6749#endif
6750
1e01979c
TH
6751/**
6752 * node_map_pfn_alignment - determine the maximum internode alignment
6753 *
6754 * This function should be called after node map is populated and sorted.
6755 * It calculates the maximum power of two alignment which can distinguish
6756 * all the nodes.
6757 *
6758 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6759 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6760 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6761 * shifted, 1GiB is enough and this function will indicate so.
6762 *
6763 * This is used to test whether pfn -> nid mapping of the chosen memory
6764 * model has fine enough granularity to avoid incorrect mapping for the
6765 * populated node map.
6766 *
6767 * Returns the determined alignment in pfn's. 0 if there is no alignment
6768 * requirement (single node).
6769 */
6770unsigned long __init node_map_pfn_alignment(void)
6771{
6772 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6773 unsigned long start, end, mask;
1e01979c 6774 int last_nid = -1;
c13291a5 6775 int i, nid;
1e01979c 6776
c13291a5 6777 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6778 if (!start || last_nid < 0 || last_nid == nid) {
6779 last_nid = nid;
6780 last_end = end;
6781 continue;
6782 }
6783
6784 /*
6785 * Start with a mask granular enough to pin-point to the
6786 * start pfn and tick off bits one-by-one until it becomes
6787 * too coarse to separate the current node from the last.
6788 */
6789 mask = ~((1 << __ffs(start)) - 1);
6790 while (mask && last_end <= (start & (mask << 1)))
6791 mask <<= 1;
6792
6793 /* accumulate all internode masks */
6794 accl_mask |= mask;
6795 }
6796
6797 /* convert mask to number of pages */
6798 return ~accl_mask + 1;
6799}
6800
a6af2bc3 6801/* Find the lowest pfn for a node */
b69a7288 6802static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6803{
a6af2bc3 6804 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6805 unsigned long start_pfn;
6806 int i;
1abbfb41 6807
c13291a5
TH
6808 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6809 min_pfn = min(min_pfn, start_pfn);
c713216d 6810
a6af2bc3 6811 if (min_pfn == ULONG_MAX) {
1170532b 6812 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6813 return 0;
6814 }
6815
6816 return min_pfn;
c713216d
MG
6817}
6818
6819/**
6820 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6821 *
6822 * It returns the minimum PFN based on information provided via
7d018176 6823 * memblock_set_node().
c713216d
MG
6824 */
6825unsigned long __init find_min_pfn_with_active_regions(void)
6826{
6827 return find_min_pfn_for_node(MAX_NUMNODES);
6828}
6829
37b07e41
LS
6830/*
6831 * early_calculate_totalpages()
6832 * Sum pages in active regions for movable zone.
4b0ef1fe 6833 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6834 */
484f51f8 6835static unsigned long __init early_calculate_totalpages(void)
7e63efef 6836{
7e63efef 6837 unsigned long totalpages = 0;
c13291a5
TH
6838 unsigned long start_pfn, end_pfn;
6839 int i, nid;
6840
6841 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6842 unsigned long pages = end_pfn - start_pfn;
7e63efef 6843
37b07e41
LS
6844 totalpages += pages;
6845 if (pages)
4b0ef1fe 6846 node_set_state(nid, N_MEMORY);
37b07e41 6847 }
b8af2941 6848 return totalpages;
7e63efef
MG
6849}
6850
2a1e274a
MG
6851/*
6852 * Find the PFN the Movable zone begins in each node. Kernel memory
6853 * is spread evenly between nodes as long as the nodes have enough
6854 * memory. When they don't, some nodes will have more kernelcore than
6855 * others
6856 */
b224ef85 6857static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6858{
6859 int i, nid;
6860 unsigned long usable_startpfn;
6861 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6862 /* save the state before borrow the nodemask */
4b0ef1fe 6863 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6864 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6865 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6866 struct memblock_region *r;
b2f3eebe
TC
6867
6868 /* Need to find movable_zone earlier when movable_node is specified. */
6869 find_usable_zone_for_movable();
6870
6871 /*
6872 * If movable_node is specified, ignore kernelcore and movablecore
6873 * options.
6874 */
6875 if (movable_node_is_enabled()) {
136199f0
EM
6876 for_each_memblock(memory, r) {
6877 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6878 continue;
6879
136199f0 6880 nid = r->nid;
b2f3eebe 6881
136199f0 6882 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6883 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6884 min(usable_startpfn, zone_movable_pfn[nid]) :
6885 usable_startpfn;
6886 }
6887
6888 goto out2;
6889 }
2a1e274a 6890
342332e6
TI
6891 /*
6892 * If kernelcore=mirror is specified, ignore movablecore option
6893 */
6894 if (mirrored_kernelcore) {
6895 bool mem_below_4gb_not_mirrored = false;
6896
6897 for_each_memblock(memory, r) {
6898 if (memblock_is_mirror(r))
6899 continue;
6900
6901 nid = r->nid;
6902
6903 usable_startpfn = memblock_region_memory_base_pfn(r);
6904
6905 if (usable_startpfn < 0x100000) {
6906 mem_below_4gb_not_mirrored = true;
6907 continue;
6908 }
6909
6910 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6911 min(usable_startpfn, zone_movable_pfn[nid]) :
6912 usable_startpfn;
6913 }
6914
6915 if (mem_below_4gb_not_mirrored)
6916 pr_warn("This configuration results in unmirrored kernel memory.");
6917
6918 goto out2;
6919 }
6920
7e63efef 6921 /*
a5c6d650
DR
6922 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6923 * amount of necessary memory.
6924 */
6925 if (required_kernelcore_percent)
6926 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6927 10000UL;
6928 if (required_movablecore_percent)
6929 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6930 10000UL;
6931
6932 /*
6933 * If movablecore= was specified, calculate what size of
7e63efef
MG
6934 * kernelcore that corresponds so that memory usable for
6935 * any allocation type is evenly spread. If both kernelcore
6936 * and movablecore are specified, then the value of kernelcore
6937 * will be used for required_kernelcore if it's greater than
6938 * what movablecore would have allowed.
6939 */
6940 if (required_movablecore) {
7e63efef
MG
6941 unsigned long corepages;
6942
6943 /*
6944 * Round-up so that ZONE_MOVABLE is at least as large as what
6945 * was requested by the user
6946 */
6947 required_movablecore =
6948 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6949 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6950 corepages = totalpages - required_movablecore;
6951
6952 required_kernelcore = max(required_kernelcore, corepages);
6953 }
6954
bde304bd
XQ
6955 /*
6956 * If kernelcore was not specified or kernelcore size is larger
6957 * than totalpages, there is no ZONE_MOVABLE.
6958 */
6959 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6960 goto out;
2a1e274a
MG
6961
6962 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6963 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6964
6965restart:
6966 /* Spread kernelcore memory as evenly as possible throughout nodes */
6967 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6968 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6969 unsigned long start_pfn, end_pfn;
6970
2a1e274a
MG
6971 /*
6972 * Recalculate kernelcore_node if the division per node
6973 * now exceeds what is necessary to satisfy the requested
6974 * amount of memory for the kernel
6975 */
6976 if (required_kernelcore < kernelcore_node)
6977 kernelcore_node = required_kernelcore / usable_nodes;
6978
6979 /*
6980 * As the map is walked, we track how much memory is usable
6981 * by the kernel using kernelcore_remaining. When it is
6982 * 0, the rest of the node is usable by ZONE_MOVABLE
6983 */
6984 kernelcore_remaining = kernelcore_node;
6985
6986 /* Go through each range of PFNs within this node */
c13291a5 6987 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6988 unsigned long size_pages;
6989
c13291a5 6990 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6991 if (start_pfn >= end_pfn)
6992 continue;
6993
6994 /* Account for what is only usable for kernelcore */
6995 if (start_pfn < usable_startpfn) {
6996 unsigned long kernel_pages;
6997 kernel_pages = min(end_pfn, usable_startpfn)
6998 - start_pfn;
6999
7000 kernelcore_remaining -= min(kernel_pages,
7001 kernelcore_remaining);
7002 required_kernelcore -= min(kernel_pages,
7003 required_kernelcore);
7004
7005 /* Continue if range is now fully accounted */
7006 if (end_pfn <= usable_startpfn) {
7007
7008 /*
7009 * Push zone_movable_pfn to the end so
7010 * that if we have to rebalance
7011 * kernelcore across nodes, we will
7012 * not double account here
7013 */
7014 zone_movable_pfn[nid] = end_pfn;
7015 continue;
7016 }
7017 start_pfn = usable_startpfn;
7018 }
7019
7020 /*
7021 * The usable PFN range for ZONE_MOVABLE is from
7022 * start_pfn->end_pfn. Calculate size_pages as the
7023 * number of pages used as kernelcore
7024 */
7025 size_pages = end_pfn - start_pfn;
7026 if (size_pages > kernelcore_remaining)
7027 size_pages = kernelcore_remaining;
7028 zone_movable_pfn[nid] = start_pfn + size_pages;
7029
7030 /*
7031 * Some kernelcore has been met, update counts and
7032 * break if the kernelcore for this node has been
b8af2941 7033 * satisfied
2a1e274a
MG
7034 */
7035 required_kernelcore -= min(required_kernelcore,
7036 size_pages);
7037 kernelcore_remaining -= size_pages;
7038 if (!kernelcore_remaining)
7039 break;
7040 }
7041 }
7042
7043 /*
7044 * If there is still required_kernelcore, we do another pass with one
7045 * less node in the count. This will push zone_movable_pfn[nid] further
7046 * along on the nodes that still have memory until kernelcore is
b8af2941 7047 * satisfied
2a1e274a
MG
7048 */
7049 usable_nodes--;
7050 if (usable_nodes && required_kernelcore > usable_nodes)
7051 goto restart;
7052
b2f3eebe 7053out2:
2a1e274a
MG
7054 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7055 for (nid = 0; nid < MAX_NUMNODES; nid++)
7056 zone_movable_pfn[nid] =
7057 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7058
20e6926d 7059out:
66918dcd 7060 /* restore the node_state */
4b0ef1fe 7061 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7062}
7063
4b0ef1fe
LJ
7064/* Any regular or high memory on that node ? */
7065static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7066{
37b07e41
LS
7067 enum zone_type zone_type;
7068
4b0ef1fe 7069 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7070 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7071 if (populated_zone(zone)) {
7b0e0c0e
OS
7072 if (IS_ENABLED(CONFIG_HIGHMEM))
7073 node_set_state(nid, N_HIGH_MEMORY);
7074 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7075 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7076 break;
7077 }
37b07e41 7078 }
37b07e41
LS
7079}
7080
c713216d
MG
7081/**
7082 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7083 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7084 *
7085 * This will call free_area_init_node() for each active node in the system.
7d018176 7086 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7087 * zone in each node and their holes is calculated. If the maximum PFN
7088 * between two adjacent zones match, it is assumed that the zone is empty.
7089 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7090 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7091 * starts where the previous one ended. For example, ZONE_DMA32 starts
7092 * at arch_max_dma_pfn.
7093 */
7094void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7095{
c13291a5
TH
7096 unsigned long start_pfn, end_pfn;
7097 int i, nid;
a6af2bc3 7098
c713216d
MG
7099 /* Record where the zone boundaries are */
7100 memset(arch_zone_lowest_possible_pfn, 0,
7101 sizeof(arch_zone_lowest_possible_pfn));
7102 memset(arch_zone_highest_possible_pfn, 0,
7103 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7104
7105 start_pfn = find_min_pfn_with_active_regions();
7106
7107 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7108 if (i == ZONE_MOVABLE)
7109 continue;
90cae1fe
OH
7110
7111 end_pfn = max(max_zone_pfn[i], start_pfn);
7112 arch_zone_lowest_possible_pfn[i] = start_pfn;
7113 arch_zone_highest_possible_pfn[i] = end_pfn;
7114
7115 start_pfn = end_pfn;
c713216d 7116 }
2a1e274a
MG
7117
7118 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7119 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7120 find_zone_movable_pfns_for_nodes();
c713216d 7121
c713216d 7122 /* Print out the zone ranges */
f88dfff5 7123 pr_info("Zone ranges:\n");
2a1e274a
MG
7124 for (i = 0; i < MAX_NR_ZONES; i++) {
7125 if (i == ZONE_MOVABLE)
7126 continue;
f88dfff5 7127 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7128 if (arch_zone_lowest_possible_pfn[i] ==
7129 arch_zone_highest_possible_pfn[i])
f88dfff5 7130 pr_cont("empty\n");
72f0ba02 7131 else
8d29e18a
JG
7132 pr_cont("[mem %#018Lx-%#018Lx]\n",
7133 (u64)arch_zone_lowest_possible_pfn[i]
7134 << PAGE_SHIFT,
7135 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7136 << PAGE_SHIFT) - 1);
2a1e274a
MG
7137 }
7138
7139 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7140 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7141 for (i = 0; i < MAX_NUMNODES; i++) {
7142 if (zone_movable_pfn[i])
8d29e18a
JG
7143 pr_info(" Node %d: %#018Lx\n", i,
7144 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7145 }
c713216d 7146
f2d52fe5 7147 /* Print out the early node map */
f88dfff5 7148 pr_info("Early memory node ranges\n");
c13291a5 7149 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
7150 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7151 (u64)start_pfn << PAGE_SHIFT,
7152 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7153
7154 /* Initialise every node */
708614e6 7155 mminit_verify_pageflags_layout();
8ef82866 7156 setup_nr_node_ids();
e181ae0c 7157 zero_resv_unavail();
c713216d
MG
7158 for_each_online_node(nid) {
7159 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7160 free_area_init_node(nid, NULL,
c713216d 7161 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7162
7163 /* Any memory on that node */
7164 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7165 node_set_state(nid, N_MEMORY);
7166 check_for_memory(pgdat, nid);
c713216d
MG
7167 }
7168}
2a1e274a 7169
a5c6d650
DR
7170static int __init cmdline_parse_core(char *p, unsigned long *core,
7171 unsigned long *percent)
2a1e274a
MG
7172{
7173 unsigned long long coremem;
a5c6d650
DR
7174 char *endptr;
7175
2a1e274a
MG
7176 if (!p)
7177 return -EINVAL;
7178
a5c6d650
DR
7179 /* Value may be a percentage of total memory, otherwise bytes */
7180 coremem = simple_strtoull(p, &endptr, 0);
7181 if (*endptr == '%') {
7182 /* Paranoid check for percent values greater than 100 */
7183 WARN_ON(coremem > 100);
2a1e274a 7184
a5c6d650
DR
7185 *percent = coremem;
7186 } else {
7187 coremem = memparse(p, &p);
7188 /* Paranoid check that UL is enough for the coremem value */
7189 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7190
a5c6d650
DR
7191 *core = coremem >> PAGE_SHIFT;
7192 *percent = 0UL;
7193 }
2a1e274a
MG
7194 return 0;
7195}
ed7ed365 7196
7e63efef
MG
7197/*
7198 * kernelcore=size sets the amount of memory for use for allocations that
7199 * cannot be reclaimed or migrated.
7200 */
7201static int __init cmdline_parse_kernelcore(char *p)
7202{
342332e6
TI
7203 /* parse kernelcore=mirror */
7204 if (parse_option_str(p, "mirror")) {
7205 mirrored_kernelcore = true;
7206 return 0;
7207 }
7208
a5c6d650
DR
7209 return cmdline_parse_core(p, &required_kernelcore,
7210 &required_kernelcore_percent);
7e63efef
MG
7211}
7212
7213/*
7214 * movablecore=size sets the amount of memory for use for allocations that
7215 * can be reclaimed or migrated.
7216 */
7217static int __init cmdline_parse_movablecore(char *p)
7218{
a5c6d650
DR
7219 return cmdline_parse_core(p, &required_movablecore,
7220 &required_movablecore_percent);
7e63efef
MG
7221}
7222
ed7ed365 7223early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7224early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7225
0ee332c1 7226#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7227
c3d5f5f0
JL
7228void adjust_managed_page_count(struct page *page, long count)
7229{
9705bea5 7230 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7231 totalram_pages_add(count);
3dcc0571
JL
7232#ifdef CONFIG_HIGHMEM
7233 if (PageHighMem(page))
ca79b0c2 7234 totalhigh_pages_add(count);
3dcc0571 7235#endif
c3d5f5f0 7236}
3dcc0571 7237EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7238
e5cb113f 7239unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7240{
11199692
JL
7241 void *pos;
7242 unsigned long pages = 0;
69afade7 7243
11199692
JL
7244 start = (void *)PAGE_ALIGN((unsigned long)start);
7245 end = (void *)((unsigned long)end & PAGE_MASK);
7246 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7247 struct page *page = virt_to_page(pos);
7248 void *direct_map_addr;
7249
7250 /*
7251 * 'direct_map_addr' might be different from 'pos'
7252 * because some architectures' virt_to_page()
7253 * work with aliases. Getting the direct map
7254 * address ensures that we get a _writeable_
7255 * alias for the memset().
7256 */
7257 direct_map_addr = page_address(page);
dbe67df4 7258 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7259 memset(direct_map_addr, poison, PAGE_SIZE);
7260
7261 free_reserved_page(page);
69afade7
JL
7262 }
7263
7264 if (pages && s)
adb1fe9a
JP
7265 pr_info("Freeing %s memory: %ldK\n",
7266 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7267
7268 return pages;
7269}
11199692 7270EXPORT_SYMBOL(free_reserved_area);
69afade7 7271
cfa11e08
JL
7272#ifdef CONFIG_HIGHMEM
7273void free_highmem_page(struct page *page)
7274{
7275 __free_reserved_page(page);
ca79b0c2 7276 totalram_pages_inc();
9705bea5 7277 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7278 totalhigh_pages_inc();
cfa11e08
JL
7279}
7280#endif
7281
7ee3d4e8
JL
7282
7283void __init mem_init_print_info(const char *str)
7284{
7285 unsigned long physpages, codesize, datasize, rosize, bss_size;
7286 unsigned long init_code_size, init_data_size;
7287
7288 physpages = get_num_physpages();
7289 codesize = _etext - _stext;
7290 datasize = _edata - _sdata;
7291 rosize = __end_rodata - __start_rodata;
7292 bss_size = __bss_stop - __bss_start;
7293 init_data_size = __init_end - __init_begin;
7294 init_code_size = _einittext - _sinittext;
7295
7296 /*
7297 * Detect special cases and adjust section sizes accordingly:
7298 * 1) .init.* may be embedded into .data sections
7299 * 2) .init.text.* may be out of [__init_begin, __init_end],
7300 * please refer to arch/tile/kernel/vmlinux.lds.S.
7301 * 3) .rodata.* may be embedded into .text or .data sections.
7302 */
7303#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7304 do { \
7305 if (start <= pos && pos < end && size > adj) \
7306 size -= adj; \
7307 } while (0)
7ee3d4e8
JL
7308
7309 adj_init_size(__init_begin, __init_end, init_data_size,
7310 _sinittext, init_code_size);
7311 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7312 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7313 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7314 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7315
7316#undef adj_init_size
7317
756a025f 7318 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7319#ifdef CONFIG_HIGHMEM
756a025f 7320 ", %luK highmem"
7ee3d4e8 7321#endif
756a025f
JP
7322 "%s%s)\n",
7323 nr_free_pages() << (PAGE_SHIFT - 10),
7324 physpages << (PAGE_SHIFT - 10),
7325 codesize >> 10, datasize >> 10, rosize >> 10,
7326 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7327 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7328 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7329#ifdef CONFIG_HIGHMEM
ca79b0c2 7330 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7331#endif
756a025f 7332 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7333}
7334
0e0b864e 7335/**
88ca3b94
RD
7336 * set_dma_reserve - set the specified number of pages reserved in the first zone
7337 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7338 *
013110a7 7339 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7340 * In the DMA zone, a significant percentage may be consumed by kernel image
7341 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7342 * function may optionally be used to account for unfreeable pages in the
7343 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7344 * smaller per-cpu batchsize.
0e0b864e
MG
7345 */
7346void __init set_dma_reserve(unsigned long new_dma_reserve)
7347{
7348 dma_reserve = new_dma_reserve;
7349}
7350
1da177e4
LT
7351void __init free_area_init(unsigned long *zones_size)
7352{
e181ae0c 7353 zero_resv_unavail();
9109fb7b 7354 free_area_init_node(0, zones_size,
1da177e4
LT
7355 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7356}
1da177e4 7357
005fd4bb 7358static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7359{
1da177e4 7360
005fd4bb
SAS
7361 lru_add_drain_cpu(cpu);
7362 drain_pages(cpu);
9f8f2172 7363
005fd4bb
SAS
7364 /*
7365 * Spill the event counters of the dead processor
7366 * into the current processors event counters.
7367 * This artificially elevates the count of the current
7368 * processor.
7369 */
7370 vm_events_fold_cpu(cpu);
9f8f2172 7371
005fd4bb
SAS
7372 /*
7373 * Zero the differential counters of the dead processor
7374 * so that the vm statistics are consistent.
7375 *
7376 * This is only okay since the processor is dead and cannot
7377 * race with what we are doing.
7378 */
7379 cpu_vm_stats_fold(cpu);
7380 return 0;
1da177e4 7381}
1da177e4
LT
7382
7383void __init page_alloc_init(void)
7384{
005fd4bb
SAS
7385 int ret;
7386
7387 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7388 "mm/page_alloc:dead", NULL,
7389 page_alloc_cpu_dead);
7390 WARN_ON(ret < 0);
1da177e4
LT
7391}
7392
cb45b0e9 7393/*
34b10060 7394 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7395 * or min_free_kbytes changes.
7396 */
7397static void calculate_totalreserve_pages(void)
7398{
7399 struct pglist_data *pgdat;
7400 unsigned long reserve_pages = 0;
2f6726e5 7401 enum zone_type i, j;
cb45b0e9
HA
7402
7403 for_each_online_pgdat(pgdat) {
281e3726
MG
7404
7405 pgdat->totalreserve_pages = 0;
7406
cb45b0e9
HA
7407 for (i = 0; i < MAX_NR_ZONES; i++) {
7408 struct zone *zone = pgdat->node_zones + i;
3484b2de 7409 long max = 0;
9705bea5 7410 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7411
7412 /* Find valid and maximum lowmem_reserve in the zone */
7413 for (j = i; j < MAX_NR_ZONES; j++) {
7414 if (zone->lowmem_reserve[j] > max)
7415 max = zone->lowmem_reserve[j];
7416 }
7417
41858966
MG
7418 /* we treat the high watermark as reserved pages. */
7419 max += high_wmark_pages(zone);
cb45b0e9 7420
3d6357de
AK
7421 if (max > managed_pages)
7422 max = managed_pages;
a8d01437 7423
281e3726 7424 pgdat->totalreserve_pages += max;
a8d01437 7425
cb45b0e9
HA
7426 reserve_pages += max;
7427 }
7428 }
7429 totalreserve_pages = reserve_pages;
7430}
7431
1da177e4
LT
7432/*
7433 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7434 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7435 * has a correct pages reserved value, so an adequate number of
7436 * pages are left in the zone after a successful __alloc_pages().
7437 */
7438static void setup_per_zone_lowmem_reserve(void)
7439{
7440 struct pglist_data *pgdat;
2f6726e5 7441 enum zone_type j, idx;
1da177e4 7442
ec936fc5 7443 for_each_online_pgdat(pgdat) {
1da177e4
LT
7444 for (j = 0; j < MAX_NR_ZONES; j++) {
7445 struct zone *zone = pgdat->node_zones + j;
9705bea5 7446 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7447
7448 zone->lowmem_reserve[j] = 0;
7449
2f6726e5
CL
7450 idx = j;
7451 while (idx) {
1da177e4
LT
7452 struct zone *lower_zone;
7453
2f6726e5 7454 idx--;
1da177e4 7455 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7456
7457 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7458 sysctl_lowmem_reserve_ratio[idx] = 0;
7459 lower_zone->lowmem_reserve[j] = 0;
7460 } else {
7461 lower_zone->lowmem_reserve[j] =
7462 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7463 }
9705bea5 7464 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7465 }
7466 }
7467 }
cb45b0e9
HA
7468
7469 /* update totalreserve_pages */
7470 calculate_totalreserve_pages();
1da177e4
LT
7471}
7472
cfd3da1e 7473static void __setup_per_zone_wmarks(void)
1da177e4
LT
7474{
7475 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7476 unsigned long lowmem_pages = 0;
7477 struct zone *zone;
7478 unsigned long flags;
7479
7480 /* Calculate total number of !ZONE_HIGHMEM pages */
7481 for_each_zone(zone) {
7482 if (!is_highmem(zone))
9705bea5 7483 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7484 }
7485
7486 for_each_zone(zone) {
ac924c60
AM
7487 u64 tmp;
7488
1125b4e3 7489 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7490 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7491 do_div(tmp, lowmem_pages);
1da177e4
LT
7492 if (is_highmem(zone)) {
7493 /*
669ed175
NP
7494 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7495 * need highmem pages, so cap pages_min to a small
7496 * value here.
7497 *
41858966 7498 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7499 * deltas control asynch page reclaim, and so should
669ed175 7500 * not be capped for highmem.
1da177e4 7501 */
90ae8d67 7502 unsigned long min_pages;
1da177e4 7503
9705bea5 7504 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7505 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7506 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7507 } else {
669ed175
NP
7508 /*
7509 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7510 * proportionate to the zone's size.
7511 */
a9214443 7512 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7513 }
7514
795ae7a0
JW
7515 /*
7516 * Set the kswapd watermarks distance according to the
7517 * scale factor in proportion to available memory, but
7518 * ensure a minimum size on small systems.
7519 */
7520 tmp = max_t(u64, tmp >> 2,
9705bea5 7521 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7522 watermark_scale_factor, 10000));
7523
a9214443
MG
7524 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7525 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7526 zone->watermark_boost = 0;
49f223a9 7527
1125b4e3 7528 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7529 }
cb45b0e9
HA
7530
7531 /* update totalreserve_pages */
7532 calculate_totalreserve_pages();
1da177e4
LT
7533}
7534
cfd3da1e
MG
7535/**
7536 * setup_per_zone_wmarks - called when min_free_kbytes changes
7537 * or when memory is hot-{added|removed}
7538 *
7539 * Ensures that the watermark[min,low,high] values for each zone are set
7540 * correctly with respect to min_free_kbytes.
7541 */
7542void setup_per_zone_wmarks(void)
7543{
b93e0f32
MH
7544 static DEFINE_SPINLOCK(lock);
7545
7546 spin_lock(&lock);
cfd3da1e 7547 __setup_per_zone_wmarks();
b93e0f32 7548 spin_unlock(&lock);
cfd3da1e
MG
7549}
7550
1da177e4
LT
7551/*
7552 * Initialise min_free_kbytes.
7553 *
7554 * For small machines we want it small (128k min). For large machines
7555 * we want it large (64MB max). But it is not linear, because network
7556 * bandwidth does not increase linearly with machine size. We use
7557 *
b8af2941 7558 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7559 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7560 *
7561 * which yields
7562 *
7563 * 16MB: 512k
7564 * 32MB: 724k
7565 * 64MB: 1024k
7566 * 128MB: 1448k
7567 * 256MB: 2048k
7568 * 512MB: 2896k
7569 * 1024MB: 4096k
7570 * 2048MB: 5792k
7571 * 4096MB: 8192k
7572 * 8192MB: 11584k
7573 * 16384MB: 16384k
7574 */
1b79acc9 7575int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7576{
7577 unsigned long lowmem_kbytes;
5f12733e 7578 int new_min_free_kbytes;
1da177e4
LT
7579
7580 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7581 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7582
7583 if (new_min_free_kbytes > user_min_free_kbytes) {
7584 min_free_kbytes = new_min_free_kbytes;
7585 if (min_free_kbytes < 128)
7586 min_free_kbytes = 128;
7587 if (min_free_kbytes > 65536)
7588 min_free_kbytes = 65536;
7589 } else {
7590 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7591 new_min_free_kbytes, user_min_free_kbytes);
7592 }
bc75d33f 7593 setup_per_zone_wmarks();
a6cccdc3 7594 refresh_zone_stat_thresholds();
1da177e4 7595 setup_per_zone_lowmem_reserve();
6423aa81
JK
7596
7597#ifdef CONFIG_NUMA
7598 setup_min_unmapped_ratio();
7599 setup_min_slab_ratio();
7600#endif
7601
1da177e4
LT
7602 return 0;
7603}
bc22af74 7604core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7605
7606/*
b8af2941 7607 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7608 * that we can call two helper functions whenever min_free_kbytes
7609 * changes.
7610 */
cccad5b9 7611int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7612 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7613{
da8c757b
HP
7614 int rc;
7615
7616 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7617 if (rc)
7618 return rc;
7619
5f12733e
MH
7620 if (write) {
7621 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7622 setup_per_zone_wmarks();
5f12733e 7623 }
1da177e4
LT
7624 return 0;
7625}
7626
1c30844d
MG
7627int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7628 void __user *buffer, size_t *length, loff_t *ppos)
7629{
7630 int rc;
7631
7632 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7633 if (rc)
7634 return rc;
7635
7636 return 0;
7637}
7638
795ae7a0
JW
7639int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7640 void __user *buffer, size_t *length, loff_t *ppos)
7641{
7642 int rc;
7643
7644 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7645 if (rc)
7646 return rc;
7647
7648 if (write)
7649 setup_per_zone_wmarks();
7650
7651 return 0;
7652}
7653
9614634f 7654#ifdef CONFIG_NUMA
6423aa81 7655static void setup_min_unmapped_ratio(void)
9614634f 7656{
6423aa81 7657 pg_data_t *pgdat;
9614634f 7658 struct zone *zone;
9614634f 7659
a5f5f91d 7660 for_each_online_pgdat(pgdat)
81cbcbc2 7661 pgdat->min_unmapped_pages = 0;
a5f5f91d 7662
9614634f 7663 for_each_zone(zone)
9705bea5
AK
7664 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7665 sysctl_min_unmapped_ratio) / 100;
9614634f 7666}
0ff38490 7667
6423aa81
JK
7668
7669int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7670 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7671{
0ff38490
CL
7672 int rc;
7673
8d65af78 7674 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7675 if (rc)
7676 return rc;
7677
6423aa81
JK
7678 setup_min_unmapped_ratio();
7679
7680 return 0;
7681}
7682
7683static void setup_min_slab_ratio(void)
7684{
7685 pg_data_t *pgdat;
7686 struct zone *zone;
7687
a5f5f91d
MG
7688 for_each_online_pgdat(pgdat)
7689 pgdat->min_slab_pages = 0;
7690
0ff38490 7691 for_each_zone(zone)
9705bea5
AK
7692 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7693 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7694}
7695
7696int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7697 void __user *buffer, size_t *length, loff_t *ppos)
7698{
7699 int rc;
7700
7701 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7702 if (rc)
7703 return rc;
7704
7705 setup_min_slab_ratio();
7706
0ff38490
CL
7707 return 0;
7708}
9614634f
CL
7709#endif
7710
1da177e4
LT
7711/*
7712 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7713 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7714 * whenever sysctl_lowmem_reserve_ratio changes.
7715 *
7716 * The reserve ratio obviously has absolutely no relation with the
41858966 7717 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7718 * if in function of the boot time zone sizes.
7719 */
cccad5b9 7720int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7721 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7722{
8d65af78 7723 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7724 setup_per_zone_lowmem_reserve();
7725 return 0;
7726}
7727
8ad4b1fb
RS
7728/*
7729 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7730 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7731 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7732 */
cccad5b9 7733int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7734 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7735{
7736 struct zone *zone;
7cd2b0a3 7737 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7738 int ret;
7739
7cd2b0a3
DR
7740 mutex_lock(&pcp_batch_high_lock);
7741 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7742
8d65af78 7743 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7744 if (!write || ret < 0)
7745 goto out;
7746
7747 /* Sanity checking to avoid pcp imbalance */
7748 if (percpu_pagelist_fraction &&
7749 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7750 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7751 ret = -EINVAL;
7752 goto out;
7753 }
7754
7755 /* No change? */
7756 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7757 goto out;
c8e251fa 7758
364df0eb 7759 for_each_populated_zone(zone) {
7cd2b0a3
DR
7760 unsigned int cpu;
7761
22a7f12b 7762 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7763 pageset_set_high_and_batch(zone,
7764 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7765 }
7cd2b0a3 7766out:
c8e251fa 7767 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7768 return ret;
8ad4b1fb
RS
7769}
7770
a9919c79 7771#ifdef CONFIG_NUMA
f034b5d4 7772int hashdist = HASHDIST_DEFAULT;
1da177e4 7773
1da177e4
LT
7774static int __init set_hashdist(char *str)
7775{
7776 if (!str)
7777 return 0;
7778 hashdist = simple_strtoul(str, &str, 0);
7779 return 1;
7780}
7781__setup("hashdist=", set_hashdist);
7782#endif
7783
f6f34b43
SD
7784#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7785/*
7786 * Returns the number of pages that arch has reserved but
7787 * is not known to alloc_large_system_hash().
7788 */
7789static unsigned long __init arch_reserved_kernel_pages(void)
7790{
7791 return 0;
7792}
7793#endif
7794
9017217b
PT
7795/*
7796 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7797 * machines. As memory size is increased the scale is also increased but at
7798 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7799 * quadruples the scale is increased by one, which means the size of hash table
7800 * only doubles, instead of quadrupling as well.
7801 * Because 32-bit systems cannot have large physical memory, where this scaling
7802 * makes sense, it is disabled on such platforms.
7803 */
7804#if __BITS_PER_LONG > 32
7805#define ADAPT_SCALE_BASE (64ul << 30)
7806#define ADAPT_SCALE_SHIFT 2
7807#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7808#endif
7809
1da177e4
LT
7810/*
7811 * allocate a large system hash table from bootmem
7812 * - it is assumed that the hash table must contain an exact power-of-2
7813 * quantity of entries
7814 * - limit is the number of hash buckets, not the total allocation size
7815 */
7816void *__init alloc_large_system_hash(const char *tablename,
7817 unsigned long bucketsize,
7818 unsigned long numentries,
7819 int scale,
7820 int flags,
7821 unsigned int *_hash_shift,
7822 unsigned int *_hash_mask,
31fe62b9
TB
7823 unsigned long low_limit,
7824 unsigned long high_limit)
1da177e4 7825{
31fe62b9 7826 unsigned long long max = high_limit;
1da177e4
LT
7827 unsigned long log2qty, size;
7828 void *table = NULL;
3749a8f0 7829 gfp_t gfp_flags;
1da177e4
LT
7830
7831 /* allow the kernel cmdline to have a say */
7832 if (!numentries) {
7833 /* round applicable memory size up to nearest megabyte */
04903664 7834 numentries = nr_kernel_pages;
f6f34b43 7835 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7836
7837 /* It isn't necessary when PAGE_SIZE >= 1MB */
7838 if (PAGE_SHIFT < 20)
7839 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7840
9017217b
PT
7841#if __BITS_PER_LONG > 32
7842 if (!high_limit) {
7843 unsigned long adapt;
7844
7845 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7846 adapt <<= ADAPT_SCALE_SHIFT)
7847 scale++;
7848 }
7849#endif
7850
1da177e4
LT
7851 /* limit to 1 bucket per 2^scale bytes of low memory */
7852 if (scale > PAGE_SHIFT)
7853 numentries >>= (scale - PAGE_SHIFT);
7854 else
7855 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7856
7857 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7858 if (unlikely(flags & HASH_SMALL)) {
7859 /* Makes no sense without HASH_EARLY */
7860 WARN_ON(!(flags & HASH_EARLY));
7861 if (!(numentries >> *_hash_shift)) {
7862 numentries = 1UL << *_hash_shift;
7863 BUG_ON(!numentries);
7864 }
7865 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7866 numentries = PAGE_SIZE / bucketsize;
1da177e4 7867 }
6e692ed3 7868 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7869
7870 /* limit allocation size to 1/16 total memory by default */
7871 if (max == 0) {
7872 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7873 do_div(max, bucketsize);
7874 }
074b8517 7875 max = min(max, 0x80000000ULL);
1da177e4 7876
31fe62b9
TB
7877 if (numentries < low_limit)
7878 numentries = low_limit;
1da177e4
LT
7879 if (numentries > max)
7880 numentries = max;
7881
f0d1b0b3 7882 log2qty = ilog2(numentries);
1da177e4 7883
3749a8f0 7884 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7885 do {
7886 size = bucketsize << log2qty;
ea1f5f37
PT
7887 if (flags & HASH_EARLY) {
7888 if (flags & HASH_ZERO)
7e1c4e27
MR
7889 table = memblock_alloc_nopanic(size,
7890 SMP_CACHE_BYTES);
ea1f5f37 7891 else
7e1c4e27
MR
7892 table = memblock_alloc_raw(size,
7893 SMP_CACHE_BYTES);
ea1f5f37 7894 } else if (hashdist) {
3749a8f0 7895 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7896 } else {
1037b83b
ED
7897 /*
7898 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7899 * some pages at the end of hash table which
7900 * alloc_pages_exact() automatically does
1037b83b 7901 */
264ef8a9 7902 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7903 table = alloc_pages_exact(size, gfp_flags);
7904 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7905 }
1da177e4
LT
7906 }
7907 } while (!table && size > PAGE_SIZE && --log2qty);
7908
7909 if (!table)
7910 panic("Failed to allocate %s hash table\n", tablename);
7911
1170532b
JP
7912 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7913 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7914
7915 if (_hash_shift)
7916 *_hash_shift = log2qty;
7917 if (_hash_mask)
7918 *_hash_mask = (1 << log2qty) - 1;
7919
7920 return table;
7921}
a117e66e 7922
a5d76b54 7923/*
80934513
MK
7924 * This function checks whether pageblock includes unmovable pages or not.
7925 * If @count is not zero, it is okay to include less @count unmovable pages
7926 *
b8af2941 7927 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7928 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7929 * check without lock_page also may miss some movable non-lru pages at
7930 * race condition. So you can't expect this function should be exact.
a5d76b54 7931 */
b023f468 7932bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 7933 int migratetype, int flags)
49ac8255
KH
7934{
7935 unsigned long pfn, iter, found;
47118af0 7936
49ac8255 7937 /*
15c30bc0
MH
7938 * TODO we could make this much more efficient by not checking every
7939 * page in the range if we know all of them are in MOVABLE_ZONE and
7940 * that the movable zone guarantees that pages are migratable but
7941 * the later is not the case right now unfortunatelly. E.g. movablecore
7942 * can still lead to having bootmem allocations in zone_movable.
49ac8255 7943 */
49ac8255 7944
4da2ce25
MH
7945 /*
7946 * CMA allocations (alloc_contig_range) really need to mark isolate
7947 * CMA pageblocks even when they are not movable in fact so consider
7948 * them movable here.
7949 */
7950 if (is_migrate_cma(migratetype) &&
7951 is_migrate_cma(get_pageblock_migratetype(page)))
7952 return false;
7953
49ac8255
KH
7954 pfn = page_to_pfn(page);
7955 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7956 unsigned long check = pfn + iter;
7957
29723fcc 7958 if (!pfn_valid_within(check))
49ac8255 7959 continue;
29723fcc 7960
49ac8255 7961 page = pfn_to_page(check);
c8721bbb 7962
d7ab3672 7963 if (PageReserved(page))
15c30bc0 7964 goto unmovable;
d7ab3672 7965
9d789999
MH
7966 /*
7967 * If the zone is movable and we have ruled out all reserved
7968 * pages then it should be reasonably safe to assume the rest
7969 * is movable.
7970 */
7971 if (zone_idx(zone) == ZONE_MOVABLE)
7972 continue;
7973
c8721bbb
NH
7974 /*
7975 * Hugepages are not in LRU lists, but they're movable.
7976 * We need not scan over tail pages bacause we don't
7977 * handle each tail page individually in migration.
7978 */
7979 if (PageHuge(page)) {
17e2e7d7
OS
7980 struct page *head = compound_head(page);
7981 unsigned int skip_pages;
464c7ffb 7982
17e2e7d7 7983 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
7984 goto unmovable;
7985
17e2e7d7
OS
7986 skip_pages = (1 << compound_order(head)) - (page - head);
7987 iter += skip_pages - 1;
c8721bbb
NH
7988 continue;
7989 }
7990
97d255c8
MK
7991 /*
7992 * We can't use page_count without pin a page
7993 * because another CPU can free compound page.
7994 * This check already skips compound tails of THP
0139aa7b 7995 * because their page->_refcount is zero at all time.
97d255c8 7996 */
fe896d18 7997 if (!page_ref_count(page)) {
49ac8255
KH
7998 if (PageBuddy(page))
7999 iter += (1 << page_order(page)) - 1;
8000 continue;
8001 }
97d255c8 8002
b023f468
WC
8003 /*
8004 * The HWPoisoned page may be not in buddy system, and
8005 * page_count() is not 0.
8006 */
d381c547 8007 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
8008 continue;
8009
0efadf48
YX
8010 if (__PageMovable(page))
8011 continue;
8012
49ac8255
KH
8013 if (!PageLRU(page))
8014 found++;
8015 /*
6b4f7799
JW
8016 * If there are RECLAIMABLE pages, we need to check
8017 * it. But now, memory offline itself doesn't call
8018 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8019 */
8020 /*
8021 * If the page is not RAM, page_count()should be 0.
8022 * we don't need more check. This is an _used_ not-movable page.
8023 *
8024 * The problematic thing here is PG_reserved pages. PG_reserved
8025 * is set to both of a memory hole page and a _used_ kernel
8026 * page at boot.
8027 */
8028 if (found > count)
15c30bc0 8029 goto unmovable;
49ac8255 8030 }
80934513 8031 return false;
15c30bc0
MH
8032unmovable:
8033 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547
MH
8034 if (flags & REPORT_FAILURE)
8035 dump_page(pfn_to_page(pfn+iter), "unmovable page");
15c30bc0 8036 return true;
49ac8255
KH
8037}
8038
080fe206 8039#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
8040
8041static unsigned long pfn_max_align_down(unsigned long pfn)
8042{
8043 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8044 pageblock_nr_pages) - 1);
8045}
8046
8047static unsigned long pfn_max_align_up(unsigned long pfn)
8048{
8049 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8050 pageblock_nr_pages));
8051}
8052
041d3a8c 8053/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8054static int __alloc_contig_migrate_range(struct compact_control *cc,
8055 unsigned long start, unsigned long end)
041d3a8c
MN
8056{
8057 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8058 unsigned long nr_reclaimed;
041d3a8c
MN
8059 unsigned long pfn = start;
8060 unsigned int tries = 0;
8061 int ret = 0;
8062
be49a6e1 8063 migrate_prep();
041d3a8c 8064
bb13ffeb 8065 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8066 if (fatal_signal_pending(current)) {
8067 ret = -EINTR;
8068 break;
8069 }
8070
bb13ffeb
MG
8071 if (list_empty(&cc->migratepages)) {
8072 cc->nr_migratepages = 0;
edc2ca61 8073 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8074 if (!pfn) {
8075 ret = -EINTR;
8076 break;
8077 }
8078 tries = 0;
8079 } else if (++tries == 5) {
8080 ret = ret < 0 ? ret : -EBUSY;
8081 break;
8082 }
8083
beb51eaa
MK
8084 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8085 &cc->migratepages);
8086 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8087
9c620e2b 8088 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8089 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8090 }
2a6f5124
SP
8091 if (ret < 0) {
8092 putback_movable_pages(&cc->migratepages);
8093 return ret;
8094 }
8095 return 0;
041d3a8c
MN
8096}
8097
8098/**
8099 * alloc_contig_range() -- tries to allocate given range of pages
8100 * @start: start PFN to allocate
8101 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8102 * @migratetype: migratetype of the underlaying pageblocks (either
8103 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8104 * in range must have the same migratetype and it must
8105 * be either of the two.
ca96b625 8106 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8107 *
8108 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8109 * aligned. The PFN range must belong to a single zone.
041d3a8c 8110 *
2c7452a0
MK
8111 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8112 * pageblocks in the range. Once isolated, the pageblocks should not
8113 * be modified by others.
041d3a8c
MN
8114 *
8115 * Returns zero on success or negative error code. On success all
8116 * pages which PFN is in [start, end) are allocated for the caller and
8117 * need to be freed with free_contig_range().
8118 */
0815f3d8 8119int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8120 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8121{
041d3a8c 8122 unsigned long outer_start, outer_end;
d00181b9
KS
8123 unsigned int order;
8124 int ret = 0;
041d3a8c 8125
bb13ffeb
MG
8126 struct compact_control cc = {
8127 .nr_migratepages = 0,
8128 .order = -1,
8129 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8130 .mode = MIGRATE_SYNC,
bb13ffeb 8131 .ignore_skip_hint = true,
2583d671 8132 .no_set_skip_hint = true,
7dea19f9 8133 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8134 };
8135 INIT_LIST_HEAD(&cc.migratepages);
8136
041d3a8c
MN
8137 /*
8138 * What we do here is we mark all pageblocks in range as
8139 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8140 * have different sizes, and due to the way page allocator
8141 * work, we align the range to biggest of the two pages so
8142 * that page allocator won't try to merge buddies from
8143 * different pageblocks and change MIGRATE_ISOLATE to some
8144 * other migration type.
8145 *
8146 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8147 * migrate the pages from an unaligned range (ie. pages that
8148 * we are interested in). This will put all the pages in
8149 * range back to page allocator as MIGRATE_ISOLATE.
8150 *
8151 * When this is done, we take the pages in range from page
8152 * allocator removing them from the buddy system. This way
8153 * page allocator will never consider using them.
8154 *
8155 * This lets us mark the pageblocks back as
8156 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8157 * aligned range but not in the unaligned, original range are
8158 * put back to page allocator so that buddy can use them.
8159 */
8160
8161 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8162 pfn_max_align_up(end), migratetype, 0);
041d3a8c 8163 if (ret)
86a595f9 8164 return ret;
041d3a8c 8165
8ef5849f
JK
8166 /*
8167 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8168 * So, just fall through. test_pages_isolated() has a tracepoint
8169 * which will report the busy page.
8170 *
8171 * It is possible that busy pages could become available before
8172 * the call to test_pages_isolated, and the range will actually be
8173 * allocated. So, if we fall through be sure to clear ret so that
8174 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8175 */
bb13ffeb 8176 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8177 if (ret && ret != -EBUSY)
041d3a8c 8178 goto done;
63cd4489 8179 ret =0;
041d3a8c
MN
8180
8181 /*
8182 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8183 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8184 * more, all pages in [start, end) are free in page allocator.
8185 * What we are going to do is to allocate all pages from
8186 * [start, end) (that is remove them from page allocator).
8187 *
8188 * The only problem is that pages at the beginning and at the
8189 * end of interesting range may be not aligned with pages that
8190 * page allocator holds, ie. they can be part of higher order
8191 * pages. Because of this, we reserve the bigger range and
8192 * once this is done free the pages we are not interested in.
8193 *
8194 * We don't have to hold zone->lock here because the pages are
8195 * isolated thus they won't get removed from buddy.
8196 */
8197
8198 lru_add_drain_all();
510f5507 8199 drain_all_pages(cc.zone);
041d3a8c
MN
8200
8201 order = 0;
8202 outer_start = start;
8203 while (!PageBuddy(pfn_to_page(outer_start))) {
8204 if (++order >= MAX_ORDER) {
8ef5849f
JK
8205 outer_start = start;
8206 break;
041d3a8c
MN
8207 }
8208 outer_start &= ~0UL << order;
8209 }
8210
8ef5849f
JK
8211 if (outer_start != start) {
8212 order = page_order(pfn_to_page(outer_start));
8213
8214 /*
8215 * outer_start page could be small order buddy page and
8216 * it doesn't include start page. Adjust outer_start
8217 * in this case to report failed page properly
8218 * on tracepoint in test_pages_isolated()
8219 */
8220 if (outer_start + (1UL << order) <= start)
8221 outer_start = start;
8222 }
8223
041d3a8c 8224 /* Make sure the range is really isolated. */
b023f468 8225 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8226 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8227 __func__, outer_start, end);
041d3a8c
MN
8228 ret = -EBUSY;
8229 goto done;
8230 }
8231
49f223a9 8232 /* Grab isolated pages from freelists. */
bb13ffeb 8233 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8234 if (!outer_end) {
8235 ret = -EBUSY;
8236 goto done;
8237 }
8238
8239 /* Free head and tail (if any) */
8240 if (start != outer_start)
8241 free_contig_range(outer_start, start - outer_start);
8242 if (end != outer_end)
8243 free_contig_range(end, outer_end - end);
8244
8245done:
8246 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8247 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8248 return ret;
8249}
8250
8251void free_contig_range(unsigned long pfn, unsigned nr_pages)
8252{
bcc2b02f
MS
8253 unsigned int count = 0;
8254
8255 for (; nr_pages--; pfn++) {
8256 struct page *page = pfn_to_page(pfn);
8257
8258 count += page_count(page) != 1;
8259 __free_page(page);
8260 }
8261 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
8262}
8263#endif
8264
d883c6cf 8265#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8266/*
8267 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8268 * page high values need to be recalulated.
8269 */
4ed7e022
JL
8270void __meminit zone_pcp_update(struct zone *zone)
8271{
0a647f38 8272 unsigned cpu;
c8e251fa 8273 mutex_lock(&pcp_batch_high_lock);
0a647f38 8274 for_each_possible_cpu(cpu)
169f6c19
CS
8275 pageset_set_high_and_batch(zone,
8276 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8277 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8278}
8279#endif
8280
340175b7
JL
8281void zone_pcp_reset(struct zone *zone)
8282{
8283 unsigned long flags;
5a883813
MK
8284 int cpu;
8285 struct per_cpu_pageset *pset;
340175b7
JL
8286
8287 /* avoid races with drain_pages() */
8288 local_irq_save(flags);
8289 if (zone->pageset != &boot_pageset) {
5a883813
MK
8290 for_each_online_cpu(cpu) {
8291 pset = per_cpu_ptr(zone->pageset, cpu);
8292 drain_zonestat(zone, pset);
8293 }
340175b7
JL
8294 free_percpu(zone->pageset);
8295 zone->pageset = &boot_pageset;
8296 }
8297 local_irq_restore(flags);
8298}
8299
6dcd73d7 8300#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8301/*
b9eb6319
JK
8302 * All pages in the range must be in a single zone and isolated
8303 * before calling this.
0c0e6195
KH
8304 */
8305void
8306__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8307{
8308 struct page *page;
8309 struct zone *zone;
7aeb09f9 8310 unsigned int order, i;
0c0e6195
KH
8311 unsigned long pfn;
8312 unsigned long flags;
8313 /* find the first valid pfn */
8314 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8315 if (pfn_valid(pfn))
8316 break;
8317 if (pfn == end_pfn)
8318 return;
2d070eab 8319 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8320 zone = page_zone(pfn_to_page(pfn));
8321 spin_lock_irqsave(&zone->lock, flags);
8322 pfn = start_pfn;
8323 while (pfn < end_pfn) {
8324 if (!pfn_valid(pfn)) {
8325 pfn++;
8326 continue;
8327 }
8328 page = pfn_to_page(pfn);
b023f468
WC
8329 /*
8330 * The HWPoisoned page may be not in buddy system, and
8331 * page_count() is not 0.
8332 */
8333 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8334 pfn++;
8335 SetPageReserved(page);
8336 continue;
8337 }
8338
0c0e6195
KH
8339 BUG_ON(page_count(page));
8340 BUG_ON(!PageBuddy(page));
8341 order = page_order(page);
8342#ifdef CONFIG_DEBUG_VM
1170532b
JP
8343 pr_info("remove from free list %lx %d %lx\n",
8344 pfn, 1 << order, end_pfn);
0c0e6195
KH
8345#endif
8346 list_del(&page->lru);
8347 rmv_page_order(page);
8348 zone->free_area[order].nr_free--;
0c0e6195
KH
8349 for (i = 0; i < (1 << order); i++)
8350 SetPageReserved((page+i));
8351 pfn += (1 << order);
8352 }
8353 spin_unlock_irqrestore(&zone->lock, flags);
8354}
8355#endif
8d22ba1b 8356
8d22ba1b
WF
8357bool is_free_buddy_page(struct page *page)
8358{
8359 struct zone *zone = page_zone(page);
8360 unsigned long pfn = page_to_pfn(page);
8361 unsigned long flags;
7aeb09f9 8362 unsigned int order;
8d22ba1b
WF
8363
8364 spin_lock_irqsave(&zone->lock, flags);
8365 for (order = 0; order < MAX_ORDER; order++) {
8366 struct page *page_head = page - (pfn & ((1 << order) - 1));
8367
8368 if (PageBuddy(page_head) && page_order(page_head) >= order)
8369 break;
8370 }
8371 spin_unlock_irqrestore(&zone->lock, flags);
8372
8373 return order < MAX_ORDER;
8374}
d4ae9916
NH
8375
8376#ifdef CONFIG_MEMORY_FAILURE
8377/*
8378 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8379 * test is performed under the zone lock to prevent a race against page
8380 * allocation.
8381 */
8382bool set_hwpoison_free_buddy_page(struct page *page)
8383{
8384 struct zone *zone = page_zone(page);
8385 unsigned long pfn = page_to_pfn(page);
8386 unsigned long flags;
8387 unsigned int order;
8388 bool hwpoisoned = false;
8389
8390 spin_lock_irqsave(&zone->lock, flags);
8391 for (order = 0; order < MAX_ORDER; order++) {
8392 struct page *page_head = page - (pfn & ((1 << order) - 1));
8393
8394 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8395 if (!TestSetPageHWPoison(page))
8396 hwpoisoned = true;
8397 break;
8398 }
8399 }
8400 spin_unlock_irqrestore(&zone->lock, flags);
8401
8402 return hwpoisoned;
8403}
8404#endif