Merge tag 'drm-next-2019-07-16' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
1da177e4 77
c8e251fa
CS
78/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 80#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 81
72812019
LS
82#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83DEFINE_PER_CPU(int, numa_node);
84EXPORT_PER_CPU_SYMBOL(numa_node);
85#endif
86
4518085e
KW
87DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
7aac7898
LS
89#ifdef CONFIG_HAVE_MEMORYLESS_NODES
90/*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 98int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
bd233f53 106DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 107DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
0ee332c1 338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
351#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
453 return __pfn_to_section(pfn)->pageblock_flags;
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464#else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467#endif /* CONFIG_SPARSEMEM */
468}
469
470/**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483{
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496}
497
498unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501{
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548}
3a80a7fa 549
ee6f509c 550void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 551{
5d0f3f72
KM
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
554 migratetype = MIGRATE_UNMOVABLE;
555
b2a0ac88
MG
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558}
559
13e7444b 560#ifdef CONFIG_DEBUG_VM
c6a57e19 561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 562{
bdc8cb98
DH
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 566 unsigned long sp, start_pfn;
c6a57e19 567
bdc8cb98
DH
568 do {
569 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
108bcc96 572 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
b5e6a5a2 576 if (ret)
613813e8
DH
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
b5e6a5a2 580
bdc8cb98 581 return ret;
c6a57e19
DH
582}
583
584static int page_is_consistent(struct zone *zone, struct page *page)
585{
14e07298 586 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 587 return 0;
1da177e4 588 if (zone != page_zone(page))
c6a57e19
DH
589 return 0;
590
591 return 1;
592}
593/*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
d73d3c9f 596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
597{
598 if (page_outside_zone_boundaries(zone, page))
1da177e4 599 return 1;
c6a57e19
DH
600 if (!page_is_consistent(zone, page))
601 return 1;
602
1da177e4
LT
603 return 0;
604}
13e7444b 605#else
d73d3c9f 606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
607{
608 return 0;
609}
610#endif
611
d230dec1
KS
612static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
1da177e4 614{
d936cf9b
HD
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
ff8e8116 629 pr_alert(
1e9e6365 630 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
ff8e8116 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 640 current->comm, page_to_pfn(page));
ff8e8116
VB
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
4e462112 646 dump_page_owner(page);
3dc14741 647
4f31888c 648 print_modules();
1da177e4 649 dump_stack();
d936cf9b 650out:
8cc3b392 651 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 652 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
654}
655
1da177e4
LT
656/*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
1d798ca3 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 660 *
1d798ca3
KS
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 663 *
1d798ca3
KS
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
1da177e4 666 *
1d798ca3 667 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 668 * This usage means that zero-order pages may not be compound.
1da177e4 669 */
d98c7a09 670
9a982250 671void free_compound_page(struct page *page)
d98c7a09 672{
d85f3385 673 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
674}
675
d00181b9 676void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
677{
678 int i;
679 int nr_pages = 1 << order;
680
f1e61557 681 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
682 set_compound_order(page, order);
683 __SetPageHead(page);
684 for (i = 1; i < nr_pages; i++) {
685 struct page *p = page + i;
58a84aa9 686 set_page_count(p, 0);
1c290f64 687 p->mapping = TAIL_MAPPING;
1d798ca3 688 set_compound_head(p, page);
18229df5 689 }
53f9263b 690 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
691}
692
c0a32fc5
SG
693#ifdef CONFIG_DEBUG_PAGEALLOC
694unsigned int _debug_guardpage_minorder;
96a2b03f
VB
695
696#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
697DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
698#else
699DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
700#endif
505f6d22 701EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
702
703DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 704
031bc574
JK
705static int __init early_debug_pagealloc(char *buf)
706{
96a2b03f
VB
707 bool enable = false;
708
709 if (kstrtobool(buf, &enable))
031bc574 710 return -EINVAL;
96a2b03f
VB
711
712 if (enable)
713 static_branch_enable(&_debug_pagealloc_enabled);
714
715 return 0;
031bc574
JK
716}
717early_param("debug_pagealloc", early_debug_pagealloc);
718
e30825f1
JK
719static void init_debug_guardpage(void)
720{
031bc574
JK
721 if (!debug_pagealloc_enabled())
722 return;
723
f1c1e9f7
JK
724 if (!debug_guardpage_minorder())
725 return;
726
96a2b03f 727 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
728}
729
c0a32fc5
SG
730static int __init debug_guardpage_minorder_setup(char *buf)
731{
732 unsigned long res;
733
734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 735 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
736 return 0;
737 }
738 _debug_guardpage_minorder = res;
1170532b 739 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
740 return 0;
741}
f1c1e9f7 742early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 743
acbc15a4 744static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 745 unsigned int order, int migratetype)
c0a32fc5 746{
e30825f1 747 if (!debug_guardpage_enabled())
acbc15a4
JK
748 return false;
749
750 if (order >= debug_guardpage_minorder())
751 return false;
e30825f1 752
3972f6bb 753 __SetPageGuard(page);
2847cf95
JK
754 INIT_LIST_HEAD(&page->lru);
755 set_page_private(page, order);
756 /* Guard pages are not available for any usage */
757 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
758
759 return true;
c0a32fc5
SG
760}
761
2847cf95
JK
762static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype)
c0a32fc5 764{
e30825f1
JK
765 if (!debug_guardpage_enabled())
766 return;
767
3972f6bb 768 __ClearPageGuard(page);
e30825f1 769
2847cf95
JK
770 set_page_private(page, 0);
771 if (!is_migrate_isolate(migratetype))
772 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
773}
774#else
acbc15a4
JK
775static inline bool set_page_guard(struct zone *zone, struct page *page,
776 unsigned int order, int migratetype) { return false; }
2847cf95
JK
777static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype) {}
c0a32fc5
SG
779#endif
780
7aeb09f9 781static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 782{
4c21e2f2 783 set_page_private(page, order);
676165a8 784 __SetPageBuddy(page);
1da177e4
LT
785}
786
1da177e4
LT
787/*
788 * This function checks whether a page is free && is the buddy
6e292b9b 789 * we can coalesce a page and its buddy if
13ad59df 790 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 791 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
792 * (c) a page and its buddy have the same order &&
793 * (d) a page and its buddy are in the same zone.
676165a8 794 *
6e292b9b
MW
795 * For recording whether a page is in the buddy system, we set PageBuddy.
796 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 797 *
676165a8 798 * For recording page's order, we use page_private(page).
1da177e4 799 */
cb2b95e1 800static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 801 unsigned int order)
1da177e4 802{
c0a32fc5 803 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
804 if (page_zone_id(page) != page_zone_id(buddy))
805 return 0;
806
4c5018ce
WY
807 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
808
c0a32fc5
SG
809 return 1;
810 }
811
cb2b95e1 812 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
813 /*
814 * zone check is done late to avoid uselessly
815 * calculating zone/node ids for pages that could
816 * never merge.
817 */
818 if (page_zone_id(page) != page_zone_id(buddy))
819 return 0;
820
4c5018ce
WY
821 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
822
6aa3001b 823 return 1;
676165a8 824 }
6aa3001b 825 return 0;
1da177e4
LT
826}
827
5e1f0f09
MG
828#ifdef CONFIG_COMPACTION
829static inline struct capture_control *task_capc(struct zone *zone)
830{
831 struct capture_control *capc = current->capture_control;
832
833 return capc &&
834 !(current->flags & PF_KTHREAD) &&
835 !capc->page &&
836 capc->cc->zone == zone &&
837 capc->cc->direct_compaction ? capc : NULL;
838}
839
840static inline bool
841compaction_capture(struct capture_control *capc, struct page *page,
842 int order, int migratetype)
843{
844 if (!capc || order != capc->cc->order)
845 return false;
846
847 /* Do not accidentally pollute CMA or isolated regions*/
848 if (is_migrate_cma(migratetype) ||
849 is_migrate_isolate(migratetype))
850 return false;
851
852 /*
853 * Do not let lower order allocations polluate a movable pageblock.
854 * This might let an unmovable request use a reclaimable pageblock
855 * and vice-versa but no more than normal fallback logic which can
856 * have trouble finding a high-order free page.
857 */
858 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
859 return false;
860
861 capc->page = page;
862 return true;
863}
864
865#else
866static inline struct capture_control *task_capc(struct zone *zone)
867{
868 return NULL;
869}
870
871static inline bool
872compaction_capture(struct capture_control *capc, struct page *page,
873 int order, int migratetype)
874{
875 return false;
876}
877#endif /* CONFIG_COMPACTION */
878
1da177e4
LT
879/*
880 * Freeing function for a buddy system allocator.
881 *
882 * The concept of a buddy system is to maintain direct-mapped table
883 * (containing bit values) for memory blocks of various "orders".
884 * The bottom level table contains the map for the smallest allocatable
885 * units of memory (here, pages), and each level above it describes
886 * pairs of units from the levels below, hence, "buddies".
887 * At a high level, all that happens here is marking the table entry
888 * at the bottom level available, and propagating the changes upward
889 * as necessary, plus some accounting needed to play nicely with other
890 * parts of the VM system.
891 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
892 * free pages of length of (1 << order) and marked with PageBuddy.
893 * Page's order is recorded in page_private(page) field.
1da177e4 894 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
895 * other. That is, if we allocate a small block, and both were
896 * free, the remainder of the region must be split into blocks.
1da177e4 897 * If a block is freed, and its buddy is also free, then this
5f63b720 898 * triggers coalescing into a block of larger size.
1da177e4 899 *
6d49e352 900 * -- nyc
1da177e4
LT
901 */
902
48db57f8 903static inline void __free_one_page(struct page *page,
dc4b0caf 904 unsigned long pfn,
ed0ae21d
MG
905 struct zone *zone, unsigned int order,
906 int migratetype)
1da177e4 907{
76741e77
VB
908 unsigned long combined_pfn;
909 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 910 struct page *buddy;
d9dddbf5 911 unsigned int max_order;
5e1f0f09 912 struct capture_control *capc = task_capc(zone);
d9dddbf5
VB
913
914 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 915
d29bb978 916 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 917 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 918
ed0ae21d 919 VM_BUG_ON(migratetype == -1);
d9dddbf5 920 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 921 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 922
76741e77 923 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 924 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 925
d9dddbf5 926continue_merging:
3c605096 927 while (order < max_order - 1) {
5e1f0f09
MG
928 if (compaction_capture(capc, page, order, migratetype)) {
929 __mod_zone_freepage_state(zone, -(1 << order),
930 migratetype);
931 return;
932 }
76741e77
VB
933 buddy_pfn = __find_buddy_pfn(pfn, order);
934 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
935
936 if (!pfn_valid_within(buddy_pfn))
937 goto done_merging;
cb2b95e1 938 if (!page_is_buddy(page, buddy, order))
d9dddbf5 939 goto done_merging;
c0a32fc5
SG
940 /*
941 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
942 * merge with it and move up one order.
943 */
b03641af 944 if (page_is_guard(buddy))
2847cf95 945 clear_page_guard(zone, buddy, order, migratetype);
b03641af
DW
946 else
947 del_page_from_free_area(buddy, &zone->free_area[order]);
76741e77
VB
948 combined_pfn = buddy_pfn & pfn;
949 page = page + (combined_pfn - pfn);
950 pfn = combined_pfn;
1da177e4
LT
951 order++;
952 }
d9dddbf5
VB
953 if (max_order < MAX_ORDER) {
954 /* If we are here, it means order is >= pageblock_order.
955 * We want to prevent merge between freepages on isolate
956 * pageblock and normal pageblock. Without this, pageblock
957 * isolation could cause incorrect freepage or CMA accounting.
958 *
959 * We don't want to hit this code for the more frequent
960 * low-order merging.
961 */
962 if (unlikely(has_isolate_pageblock(zone))) {
963 int buddy_mt;
964
76741e77
VB
965 buddy_pfn = __find_buddy_pfn(pfn, order);
966 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
967 buddy_mt = get_pageblock_migratetype(buddy);
968
969 if (migratetype != buddy_mt
970 && (is_migrate_isolate(migratetype) ||
971 is_migrate_isolate(buddy_mt)))
972 goto done_merging;
973 }
974 max_order++;
975 goto continue_merging;
976 }
977
978done_merging:
1da177e4 979 set_page_order(page, order);
6dda9d55
CZ
980
981 /*
982 * If this is not the largest possible page, check if the buddy
983 * of the next-highest order is free. If it is, it's possible
984 * that pages are being freed that will coalesce soon. In case,
985 * that is happening, add the free page to the tail of the list
986 * so it's less likely to be used soon and more likely to be merged
987 * as a higher order page
988 */
97500a4a
DW
989 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
990 && !is_shuffle_order(order)) {
6dda9d55 991 struct page *higher_page, *higher_buddy;
76741e77
VB
992 combined_pfn = buddy_pfn & pfn;
993 higher_page = page + (combined_pfn - pfn);
994 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
995 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
996 if (pfn_valid_within(buddy_pfn) &&
997 page_is_buddy(higher_page, higher_buddy, order + 1)) {
b03641af
DW
998 add_to_free_area_tail(page, &zone->free_area[order],
999 migratetype);
1000 return;
6dda9d55
CZ
1001 }
1002 }
1003
97500a4a
DW
1004 if (is_shuffle_order(order))
1005 add_to_free_area_random(page, &zone->free_area[order],
1006 migratetype);
1007 else
1008 add_to_free_area(page, &zone->free_area[order], migratetype);
1009
1da177e4
LT
1010}
1011
7bfec6f4
MG
1012/*
1013 * A bad page could be due to a number of fields. Instead of multiple branches,
1014 * try and check multiple fields with one check. The caller must do a detailed
1015 * check if necessary.
1016 */
1017static inline bool page_expected_state(struct page *page,
1018 unsigned long check_flags)
1019{
1020 if (unlikely(atomic_read(&page->_mapcount) != -1))
1021 return false;
1022
1023 if (unlikely((unsigned long)page->mapping |
1024 page_ref_count(page) |
1025#ifdef CONFIG_MEMCG
1026 (unsigned long)page->mem_cgroup |
1027#endif
1028 (page->flags & check_flags)))
1029 return false;
1030
1031 return true;
1032}
1033
bb552ac6 1034static void free_pages_check_bad(struct page *page)
1da177e4 1035{
7bfec6f4
MG
1036 const char *bad_reason;
1037 unsigned long bad_flags;
1038
7bfec6f4
MG
1039 bad_reason = NULL;
1040 bad_flags = 0;
f0b791a3 1041
53f9263b 1042 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1043 bad_reason = "nonzero mapcount";
1044 if (unlikely(page->mapping != NULL))
1045 bad_reason = "non-NULL mapping";
fe896d18 1046 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1047 bad_reason = "nonzero _refcount";
f0b791a3
DH
1048 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1049 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1050 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1051 }
9edad6ea
JW
1052#ifdef CONFIG_MEMCG
1053 if (unlikely(page->mem_cgroup))
1054 bad_reason = "page still charged to cgroup";
1055#endif
7bfec6f4 1056 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1057}
1058
1059static inline int free_pages_check(struct page *page)
1060{
da838d4f 1061 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1062 return 0;
bb552ac6
MG
1063
1064 /* Something has gone sideways, find it */
1065 free_pages_check_bad(page);
7bfec6f4 1066 return 1;
1da177e4
LT
1067}
1068
4db7548c
MG
1069static int free_tail_pages_check(struct page *head_page, struct page *page)
1070{
1071 int ret = 1;
1072
1073 /*
1074 * We rely page->lru.next never has bit 0 set, unless the page
1075 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1076 */
1077 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1078
1079 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1080 ret = 0;
1081 goto out;
1082 }
1083 switch (page - head_page) {
1084 case 1:
4da1984e 1085 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1086 if (unlikely(compound_mapcount(page))) {
1087 bad_page(page, "nonzero compound_mapcount", 0);
1088 goto out;
1089 }
1090 break;
1091 case 2:
1092 /*
1093 * the second tail page: ->mapping is
fa3015b7 1094 * deferred_list.next -- ignore value.
4db7548c
MG
1095 */
1096 break;
1097 default:
1098 if (page->mapping != TAIL_MAPPING) {
1099 bad_page(page, "corrupted mapping in tail page", 0);
1100 goto out;
1101 }
1102 break;
1103 }
1104 if (unlikely(!PageTail(page))) {
1105 bad_page(page, "PageTail not set", 0);
1106 goto out;
1107 }
1108 if (unlikely(compound_head(page) != head_page)) {
1109 bad_page(page, "compound_head not consistent", 0);
1110 goto out;
1111 }
1112 ret = 0;
1113out:
1114 page->mapping = NULL;
1115 clear_compound_head(page);
1116 return ret;
1117}
1118
6471384a
AP
1119static void kernel_init_free_pages(struct page *page, int numpages)
1120{
1121 int i;
1122
1123 for (i = 0; i < numpages; i++)
1124 clear_highpage(page + i);
1125}
1126
e2769dbd
MG
1127static __always_inline bool free_pages_prepare(struct page *page,
1128 unsigned int order, bool check_free)
4db7548c 1129{
e2769dbd 1130 int bad = 0;
4db7548c 1131
4db7548c
MG
1132 VM_BUG_ON_PAGE(PageTail(page), page);
1133
e2769dbd 1134 trace_mm_page_free(page, order);
e2769dbd
MG
1135
1136 /*
1137 * Check tail pages before head page information is cleared to
1138 * avoid checking PageCompound for order-0 pages.
1139 */
1140 if (unlikely(order)) {
1141 bool compound = PageCompound(page);
1142 int i;
1143
1144 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1145
9a73f61b
KS
1146 if (compound)
1147 ClearPageDoubleMap(page);
e2769dbd
MG
1148 for (i = 1; i < (1 << order); i++) {
1149 if (compound)
1150 bad += free_tail_pages_check(page, page + i);
1151 if (unlikely(free_pages_check(page + i))) {
1152 bad++;
1153 continue;
1154 }
1155 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1156 }
1157 }
bda807d4 1158 if (PageMappingFlags(page))
4db7548c 1159 page->mapping = NULL;
c4159a75 1160 if (memcg_kmem_enabled() && PageKmemcg(page))
60cd4bcd 1161 __memcg_kmem_uncharge(page, order);
e2769dbd
MG
1162 if (check_free)
1163 bad += free_pages_check(page);
1164 if (bad)
1165 return false;
4db7548c 1166
e2769dbd
MG
1167 page_cpupid_reset_last(page);
1168 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1169 reset_page_owner(page, order);
4db7548c
MG
1170
1171 if (!PageHighMem(page)) {
1172 debug_check_no_locks_freed(page_address(page),
e2769dbd 1173 PAGE_SIZE << order);
4db7548c 1174 debug_check_no_obj_freed(page_address(page),
e2769dbd 1175 PAGE_SIZE << order);
4db7548c 1176 }
e2769dbd 1177 arch_free_page(page, order);
6471384a
AP
1178 if (want_init_on_free())
1179 kernel_init_free_pages(page, 1 << order);
1180
e2769dbd 1181 kernel_poison_pages(page, 1 << order, 0);
d6332692
RE
1182 if (debug_pagealloc_enabled())
1183 kernel_map_pages(page, 1 << order, 0);
1184
3c0c12cc 1185 kasan_free_nondeferred_pages(page, order);
4db7548c 1186
4db7548c
MG
1187 return true;
1188}
1189
e2769dbd 1190#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1191/*
1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1194 * moved from pcp lists to free lists.
1195 */
1196static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1197{
1198 return free_pages_prepare(page, 0, true);
1199}
1200
4462b32c 1201static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1202{
4462b32c
VB
1203 if (debug_pagealloc_enabled())
1204 return free_pages_check(page);
1205 else
1206 return false;
e2769dbd
MG
1207}
1208#else
4462b32c
VB
1209/*
1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1211 * moving from pcp lists to free list in order to reduce overhead. With
1212 * debug_pagealloc enabled, they are checked also immediately when being freed
1213 * to the pcp lists.
1214 */
e2769dbd
MG
1215static bool free_pcp_prepare(struct page *page)
1216{
4462b32c
VB
1217 if (debug_pagealloc_enabled())
1218 return free_pages_prepare(page, 0, true);
1219 else
1220 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1221}
1222
4db7548c
MG
1223static bool bulkfree_pcp_prepare(struct page *page)
1224{
1225 return free_pages_check(page);
1226}
1227#endif /* CONFIG_DEBUG_VM */
1228
97334162
AL
1229static inline void prefetch_buddy(struct page *page)
1230{
1231 unsigned long pfn = page_to_pfn(page);
1232 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1233 struct page *buddy = page + (buddy_pfn - pfn);
1234
1235 prefetch(buddy);
1236}
1237
1da177e4 1238/*
5f8dcc21 1239 * Frees a number of pages from the PCP lists
1da177e4 1240 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1241 * count is the number of pages to free.
1da177e4
LT
1242 *
1243 * If the zone was previously in an "all pages pinned" state then look to
1244 * see if this freeing clears that state.
1245 *
1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1247 * pinned" detection logic.
1248 */
5f8dcc21
MG
1249static void free_pcppages_bulk(struct zone *zone, int count,
1250 struct per_cpu_pages *pcp)
1da177e4 1251{
5f8dcc21 1252 int migratetype = 0;
a6f9edd6 1253 int batch_free = 0;
97334162 1254 int prefetch_nr = 0;
3777999d 1255 bool isolated_pageblocks;
0a5f4e5b
AL
1256 struct page *page, *tmp;
1257 LIST_HEAD(head);
f2260e6b 1258
e5b31ac2 1259 while (count) {
5f8dcc21
MG
1260 struct list_head *list;
1261
1262 /*
a6f9edd6
MG
1263 * Remove pages from lists in a round-robin fashion. A
1264 * batch_free count is maintained that is incremented when an
1265 * empty list is encountered. This is so more pages are freed
1266 * off fuller lists instead of spinning excessively around empty
1267 * lists
5f8dcc21
MG
1268 */
1269 do {
a6f9edd6 1270 batch_free++;
5f8dcc21
MG
1271 if (++migratetype == MIGRATE_PCPTYPES)
1272 migratetype = 0;
1273 list = &pcp->lists[migratetype];
1274 } while (list_empty(list));
48db57f8 1275
1d16871d
NK
1276 /* This is the only non-empty list. Free them all. */
1277 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1278 batch_free = count;
1d16871d 1279
a6f9edd6 1280 do {
a16601c5 1281 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1282 /* must delete to avoid corrupting pcp list */
a6f9edd6 1283 list_del(&page->lru);
77ba9062 1284 pcp->count--;
aa016d14 1285
4db7548c
MG
1286 if (bulkfree_pcp_prepare(page))
1287 continue;
1288
0a5f4e5b 1289 list_add_tail(&page->lru, &head);
97334162
AL
1290
1291 /*
1292 * We are going to put the page back to the global
1293 * pool, prefetch its buddy to speed up later access
1294 * under zone->lock. It is believed the overhead of
1295 * an additional test and calculating buddy_pfn here
1296 * can be offset by reduced memory latency later. To
1297 * avoid excessive prefetching due to large count, only
1298 * prefetch buddy for the first pcp->batch nr of pages.
1299 */
1300 if (prefetch_nr++ < pcp->batch)
1301 prefetch_buddy(page);
e5b31ac2 1302 } while (--count && --batch_free && !list_empty(list));
1da177e4 1303 }
0a5f4e5b
AL
1304
1305 spin_lock(&zone->lock);
1306 isolated_pageblocks = has_isolate_pageblock(zone);
1307
1308 /*
1309 * Use safe version since after __free_one_page(),
1310 * page->lru.next will not point to original list.
1311 */
1312 list_for_each_entry_safe(page, tmp, &head, lru) {
1313 int mt = get_pcppage_migratetype(page);
1314 /* MIGRATE_ISOLATE page should not go to pcplists */
1315 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1316 /* Pageblock could have been isolated meanwhile */
1317 if (unlikely(isolated_pageblocks))
1318 mt = get_pageblock_migratetype(page);
1319
1320 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1321 trace_mm_page_pcpu_drain(page, 0, mt);
1322 }
d34b0733 1323 spin_unlock(&zone->lock);
1da177e4
LT
1324}
1325
dc4b0caf
MG
1326static void free_one_page(struct zone *zone,
1327 struct page *page, unsigned long pfn,
7aeb09f9 1328 unsigned int order,
ed0ae21d 1329 int migratetype)
1da177e4 1330{
d34b0733 1331 spin_lock(&zone->lock);
ad53f92e
JK
1332 if (unlikely(has_isolate_pageblock(zone) ||
1333 is_migrate_isolate(migratetype))) {
1334 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1335 }
dc4b0caf 1336 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1337 spin_unlock(&zone->lock);
48db57f8
NP
1338}
1339
1e8ce83c 1340static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1341 unsigned long zone, int nid)
1e8ce83c 1342{
d0dc12e8 1343 mm_zero_struct_page(page);
1e8ce83c 1344 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1345 init_page_count(page);
1346 page_mapcount_reset(page);
1347 page_cpupid_reset_last(page);
2813b9c0 1348 page_kasan_tag_reset(page);
1e8ce83c 1349
1e8ce83c
RH
1350 INIT_LIST_HEAD(&page->lru);
1351#ifdef WANT_PAGE_VIRTUAL
1352 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1353 if (!is_highmem_idx(zone))
1354 set_page_address(page, __va(pfn << PAGE_SHIFT));
1355#endif
1356}
1357
7e18adb4 1358#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1359static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1360{
1361 pg_data_t *pgdat;
1362 int nid, zid;
1363
1364 if (!early_page_uninitialised(pfn))
1365 return;
1366
1367 nid = early_pfn_to_nid(pfn);
1368 pgdat = NODE_DATA(nid);
1369
1370 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1371 struct zone *zone = &pgdat->node_zones[zid];
1372
1373 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1374 break;
1375 }
d0dc12e8 1376 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1377}
1378#else
1379static inline void init_reserved_page(unsigned long pfn)
1380{
1381}
1382#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1383
92923ca3
NZ
1384/*
1385 * Initialised pages do not have PageReserved set. This function is
1386 * called for each range allocated by the bootmem allocator and
1387 * marks the pages PageReserved. The remaining valid pages are later
1388 * sent to the buddy page allocator.
1389 */
4b50bcc7 1390void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1391{
1392 unsigned long start_pfn = PFN_DOWN(start);
1393 unsigned long end_pfn = PFN_UP(end);
1394
7e18adb4
MG
1395 for (; start_pfn < end_pfn; start_pfn++) {
1396 if (pfn_valid(start_pfn)) {
1397 struct page *page = pfn_to_page(start_pfn);
1398
1399 init_reserved_page(start_pfn);
1d798ca3
KS
1400
1401 /* Avoid false-positive PageTail() */
1402 INIT_LIST_HEAD(&page->lru);
1403
d483da5b
AD
1404 /*
1405 * no need for atomic set_bit because the struct
1406 * page is not visible yet so nobody should
1407 * access it yet.
1408 */
1409 __SetPageReserved(page);
7e18adb4
MG
1410 }
1411 }
92923ca3
NZ
1412}
1413
ec95f53a
KM
1414static void __free_pages_ok(struct page *page, unsigned int order)
1415{
d34b0733 1416 unsigned long flags;
95e34412 1417 int migratetype;
dc4b0caf 1418 unsigned long pfn = page_to_pfn(page);
ec95f53a 1419
e2769dbd 1420 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1421 return;
1422
cfc47a28 1423 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1424 local_irq_save(flags);
1425 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1426 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1427 local_irq_restore(flags);
1da177e4
LT
1428}
1429
a9cd410a 1430void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1431{
c3993076 1432 unsigned int nr_pages = 1 << order;
e2d0bd2b 1433 struct page *p = page;
c3993076 1434 unsigned int loop;
a226f6c8 1435
e2d0bd2b
YL
1436 prefetchw(p);
1437 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1438 prefetchw(p + 1);
c3993076
JW
1439 __ClearPageReserved(p);
1440 set_page_count(p, 0);
a226f6c8 1441 }
e2d0bd2b
YL
1442 __ClearPageReserved(p);
1443 set_page_count(p, 0);
c3993076 1444
9705bea5 1445 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1446 set_page_refcounted(page);
1447 __free_pages(page, order);
a226f6c8
DH
1448}
1449
75a592a4
MG
1450#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1451 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1452
75a592a4
MG
1453static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1454
1455int __meminit early_pfn_to_nid(unsigned long pfn)
1456{
7ace9917 1457 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1458 int nid;
1459
7ace9917 1460 spin_lock(&early_pfn_lock);
75a592a4 1461 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1462 if (nid < 0)
e4568d38 1463 nid = first_online_node;
7ace9917
MG
1464 spin_unlock(&early_pfn_lock);
1465
1466 return nid;
75a592a4
MG
1467}
1468#endif
1469
1470#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1471/* Only safe to use early in boot when initialisation is single-threaded */
1472static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1473{
1474 int nid;
1475
56ec43d8 1476 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1477 if (nid >= 0 && nid != node)
1478 return false;
1479 return true;
1480}
1481
75a592a4 1482#else
75a592a4
MG
1483static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1484{
1485 return true;
1486}
75a592a4
MG
1487#endif
1488
1489
7c2ee349 1490void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1491 unsigned int order)
1492{
1493 if (early_page_uninitialised(pfn))
1494 return;
a9cd410a 1495 __free_pages_core(page, order);
3a80a7fa
MG
1496}
1497
7cf91a98
JK
1498/*
1499 * Check that the whole (or subset of) a pageblock given by the interval of
1500 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1501 * with the migration of free compaction scanner. The scanners then need to
1502 * use only pfn_valid_within() check for arches that allow holes within
1503 * pageblocks.
1504 *
1505 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1506 *
1507 * It's possible on some configurations to have a setup like node0 node1 node0
1508 * i.e. it's possible that all pages within a zones range of pages do not
1509 * belong to a single zone. We assume that a border between node0 and node1
1510 * can occur within a single pageblock, but not a node0 node1 node0
1511 * interleaving within a single pageblock. It is therefore sufficient to check
1512 * the first and last page of a pageblock and avoid checking each individual
1513 * page in a pageblock.
1514 */
1515struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1516 unsigned long end_pfn, struct zone *zone)
1517{
1518 struct page *start_page;
1519 struct page *end_page;
1520
1521 /* end_pfn is one past the range we are checking */
1522 end_pfn--;
1523
1524 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1525 return NULL;
1526
2d070eab
MH
1527 start_page = pfn_to_online_page(start_pfn);
1528 if (!start_page)
1529 return NULL;
7cf91a98
JK
1530
1531 if (page_zone(start_page) != zone)
1532 return NULL;
1533
1534 end_page = pfn_to_page(end_pfn);
1535
1536 /* This gives a shorter code than deriving page_zone(end_page) */
1537 if (page_zone_id(start_page) != page_zone_id(end_page))
1538 return NULL;
1539
1540 return start_page;
1541}
1542
1543void set_zone_contiguous(struct zone *zone)
1544{
1545 unsigned long block_start_pfn = zone->zone_start_pfn;
1546 unsigned long block_end_pfn;
1547
1548 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1549 for (; block_start_pfn < zone_end_pfn(zone);
1550 block_start_pfn = block_end_pfn,
1551 block_end_pfn += pageblock_nr_pages) {
1552
1553 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1554
1555 if (!__pageblock_pfn_to_page(block_start_pfn,
1556 block_end_pfn, zone))
1557 return;
1558 }
1559
1560 /* We confirm that there is no hole */
1561 zone->contiguous = true;
1562}
1563
1564void clear_zone_contiguous(struct zone *zone)
1565{
1566 zone->contiguous = false;
1567}
1568
7e18adb4 1569#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1570static void __init deferred_free_range(unsigned long pfn,
1571 unsigned long nr_pages)
a4de83dd 1572{
2f47a91f
PT
1573 struct page *page;
1574 unsigned long i;
a4de83dd 1575
2f47a91f 1576 if (!nr_pages)
a4de83dd
MG
1577 return;
1578
2f47a91f
PT
1579 page = pfn_to_page(pfn);
1580
a4de83dd 1581 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1582 if (nr_pages == pageblock_nr_pages &&
1583 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1584 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1585 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1586 return;
1587 }
1588
e780149b
XQ
1589 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1590 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1592 __free_pages_core(page, 0);
e780149b 1593 }
a4de83dd
MG
1594}
1595
d3cd131d
NS
1596/* Completion tracking for deferred_init_memmap() threads */
1597static atomic_t pgdat_init_n_undone __initdata;
1598static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1599
1600static inline void __init pgdat_init_report_one_done(void)
1601{
1602 if (atomic_dec_and_test(&pgdat_init_n_undone))
1603 complete(&pgdat_init_all_done_comp);
1604}
0e1cc95b 1605
2f47a91f 1606/*
80b1f41c
PT
1607 * Returns true if page needs to be initialized or freed to buddy allocator.
1608 *
1609 * First we check if pfn is valid on architectures where it is possible to have
1610 * holes within pageblock_nr_pages. On systems where it is not possible, this
1611 * function is optimized out.
1612 *
1613 * Then, we check if a current large page is valid by only checking the validity
1614 * of the head pfn.
2f47a91f 1615 */
56ec43d8 1616static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1617{
80b1f41c
PT
1618 if (!pfn_valid_within(pfn))
1619 return false;
1620 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1621 return false;
80b1f41c
PT
1622 return true;
1623}
2f47a91f 1624
80b1f41c
PT
1625/*
1626 * Free pages to buddy allocator. Try to free aligned pages in
1627 * pageblock_nr_pages sizes.
1628 */
56ec43d8 1629static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1630 unsigned long end_pfn)
1631{
80b1f41c
PT
1632 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1633 unsigned long nr_free = 0;
2f47a91f 1634
80b1f41c 1635 for (; pfn < end_pfn; pfn++) {
56ec43d8 1636 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1637 deferred_free_range(pfn - nr_free, nr_free);
1638 nr_free = 0;
1639 } else if (!(pfn & nr_pgmask)) {
1640 deferred_free_range(pfn - nr_free, nr_free);
1641 nr_free = 1;
3a2d7fa8 1642 touch_nmi_watchdog();
80b1f41c
PT
1643 } else {
1644 nr_free++;
1645 }
1646 }
1647 /* Free the last block of pages to allocator */
1648 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1649}
1650
80b1f41c
PT
1651/*
1652 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1653 * by performing it only once every pageblock_nr_pages.
1654 * Return number of pages initialized.
1655 */
56ec43d8 1656static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1657 unsigned long pfn,
1658 unsigned long end_pfn)
2f47a91f 1659{
2f47a91f 1660 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1661 int nid = zone_to_nid(zone);
2f47a91f 1662 unsigned long nr_pages = 0;
56ec43d8 1663 int zid = zone_idx(zone);
2f47a91f 1664 struct page *page = NULL;
2f47a91f 1665
80b1f41c 1666 for (; pfn < end_pfn; pfn++) {
56ec43d8 1667 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1668 page = NULL;
2f47a91f 1669 continue;
80b1f41c 1670 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1671 page = pfn_to_page(pfn);
3a2d7fa8 1672 touch_nmi_watchdog();
80b1f41c
PT
1673 } else {
1674 page++;
2f47a91f 1675 }
d0dc12e8 1676 __init_single_page(page, pfn, zid, nid);
80b1f41c 1677 nr_pages++;
2f47a91f 1678 }
80b1f41c 1679 return (nr_pages);
2f47a91f
PT
1680}
1681
0e56acae
AD
1682/*
1683 * This function is meant to pre-load the iterator for the zone init.
1684 * Specifically it walks through the ranges until we are caught up to the
1685 * first_init_pfn value and exits there. If we never encounter the value we
1686 * return false indicating there are no valid ranges left.
1687 */
1688static bool __init
1689deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1690 unsigned long *spfn, unsigned long *epfn,
1691 unsigned long first_init_pfn)
1692{
1693 u64 j;
1694
1695 /*
1696 * Start out by walking through the ranges in this zone that have
1697 * already been initialized. We don't need to do anything with them
1698 * so we just need to flush them out of the system.
1699 */
1700 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1701 if (*epfn <= first_init_pfn)
1702 continue;
1703 if (*spfn < first_init_pfn)
1704 *spfn = first_init_pfn;
1705 *i = j;
1706 return true;
1707 }
1708
1709 return false;
1710}
1711
1712/*
1713 * Initialize and free pages. We do it in two loops: first we initialize
1714 * struct page, then free to buddy allocator, because while we are
1715 * freeing pages we can access pages that are ahead (computing buddy
1716 * page in __free_one_page()).
1717 *
1718 * In order to try and keep some memory in the cache we have the loop
1719 * broken along max page order boundaries. This way we will not cause
1720 * any issues with the buddy page computation.
1721 */
1722static unsigned long __init
1723deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1724 unsigned long *end_pfn)
1725{
1726 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1727 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1728 unsigned long nr_pages = 0;
1729 u64 j = *i;
1730
1731 /* First we loop through and initialize the page values */
1732 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1733 unsigned long t;
1734
1735 if (mo_pfn <= *start_pfn)
1736 break;
1737
1738 t = min(mo_pfn, *end_pfn);
1739 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1740
1741 if (mo_pfn < *end_pfn) {
1742 *start_pfn = mo_pfn;
1743 break;
1744 }
1745 }
1746
1747 /* Reset values and now loop through freeing pages as needed */
1748 swap(j, *i);
1749
1750 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1751 unsigned long t;
1752
1753 if (mo_pfn <= spfn)
1754 break;
1755
1756 t = min(mo_pfn, epfn);
1757 deferred_free_pages(spfn, t);
1758
1759 if (mo_pfn <= epfn)
1760 break;
1761 }
1762
1763 return nr_pages;
1764}
1765
7e18adb4 1766/* Initialise remaining memory on a node */
0e1cc95b 1767static int __init deferred_init_memmap(void *data)
7e18adb4 1768{
0e1cc95b 1769 pg_data_t *pgdat = data;
0e56acae
AD
1770 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1771 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1772 unsigned long first_init_pfn, flags;
7e18adb4 1773 unsigned long start = jiffies;
7e18adb4 1774 struct zone *zone;
0e56acae 1775 int zid;
2f47a91f 1776 u64 i;
7e18adb4 1777
3a2d7fa8
PT
1778 /* Bind memory initialisation thread to a local node if possible */
1779 if (!cpumask_empty(cpumask))
1780 set_cpus_allowed_ptr(current, cpumask);
1781
1782 pgdat_resize_lock(pgdat, &flags);
1783 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1784 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1785 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1786 pgdat_init_report_one_done();
0e1cc95b
MG
1787 return 0;
1788 }
1789
7e18adb4
MG
1790 /* Sanity check boundaries */
1791 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1792 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1793 pgdat->first_deferred_pfn = ULONG_MAX;
1794
1795 /* Only the highest zone is deferred so find it */
1796 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1797 zone = pgdat->node_zones + zid;
1798 if (first_init_pfn < zone_end_pfn(zone))
1799 break;
1800 }
0e56acae
AD
1801
1802 /* If the zone is empty somebody else may have cleared out the zone */
1803 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1804 first_init_pfn))
1805 goto zone_empty;
7e18adb4 1806
80b1f41c 1807 /*
0e56acae
AD
1808 * Initialize and free pages in MAX_ORDER sized increments so
1809 * that we can avoid introducing any issues with the buddy
1810 * allocator.
80b1f41c 1811 */
0e56acae
AD
1812 while (spfn < epfn)
1813 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1814zone_empty:
3a2d7fa8 1815 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1816
1817 /* Sanity check that the next zone really is unpopulated */
1818 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1819
837566e7
AD
1820 pr_info("node %d initialised, %lu pages in %ums\n",
1821 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1822
1823 pgdat_init_report_one_done();
0e1cc95b
MG
1824 return 0;
1825}
c9e97a19 1826
c9e97a19
PT
1827/*
1828 * If this zone has deferred pages, try to grow it by initializing enough
1829 * deferred pages to satisfy the allocation specified by order, rounded up to
1830 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1831 * of SECTION_SIZE bytes by initializing struct pages in increments of
1832 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1833 *
1834 * Return true when zone was grown, otherwise return false. We return true even
1835 * when we grow less than requested, to let the caller decide if there are
1836 * enough pages to satisfy the allocation.
1837 *
1838 * Note: We use noinline because this function is needed only during boot, and
1839 * it is called from a __ref function _deferred_grow_zone. This way we are
1840 * making sure that it is not inlined into permanent text section.
1841 */
1842static noinline bool __init
1843deferred_grow_zone(struct zone *zone, unsigned int order)
1844{
c9e97a19 1845 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1846 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1847 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1848 unsigned long spfn, epfn, flags;
1849 unsigned long nr_pages = 0;
c9e97a19
PT
1850 u64 i;
1851
1852 /* Only the last zone may have deferred pages */
1853 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1854 return false;
1855
1856 pgdat_resize_lock(pgdat, &flags);
1857
1858 /*
1859 * If deferred pages have been initialized while we were waiting for
1860 * the lock, return true, as the zone was grown. The caller will retry
1861 * this zone. We won't return to this function since the caller also
1862 * has this static branch.
1863 */
1864 if (!static_branch_unlikely(&deferred_pages)) {
1865 pgdat_resize_unlock(pgdat, &flags);
1866 return true;
1867 }
1868
1869 /*
1870 * If someone grew this zone while we were waiting for spinlock, return
1871 * true, as there might be enough pages already.
1872 */
1873 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1874 pgdat_resize_unlock(pgdat, &flags);
1875 return true;
1876 }
1877
0e56acae
AD
1878 /* If the zone is empty somebody else may have cleared out the zone */
1879 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1880 first_deferred_pfn)) {
1881 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1882 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1883 /* Retry only once. */
1884 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1885 }
1886
0e56acae
AD
1887 /*
1888 * Initialize and free pages in MAX_ORDER sized increments so
1889 * that we can avoid introducing any issues with the buddy
1890 * allocator.
1891 */
1892 while (spfn < epfn) {
1893 /* update our first deferred PFN for this section */
1894 first_deferred_pfn = spfn;
1895
1896 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1897
0e56acae
AD
1898 /* We should only stop along section boundaries */
1899 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1900 continue;
c9e97a19 1901
0e56acae 1902 /* If our quota has been met we can stop here */
c9e97a19
PT
1903 if (nr_pages >= nr_pages_needed)
1904 break;
1905 }
1906
0e56acae 1907 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1908 pgdat_resize_unlock(pgdat, &flags);
1909
1910 return nr_pages > 0;
1911}
1912
1913/*
1914 * deferred_grow_zone() is __init, but it is called from
1915 * get_page_from_freelist() during early boot until deferred_pages permanently
1916 * disables this call. This is why we have refdata wrapper to avoid warning,
1917 * and to ensure that the function body gets unloaded.
1918 */
1919static bool __ref
1920_deferred_grow_zone(struct zone *zone, unsigned int order)
1921{
1922 return deferred_grow_zone(zone, order);
1923}
1924
7cf91a98 1925#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1926
1927void __init page_alloc_init_late(void)
1928{
7cf91a98 1929 struct zone *zone;
e900a918 1930 int nid;
7cf91a98
JK
1931
1932#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1933
d3cd131d
NS
1934 /* There will be num_node_state(N_MEMORY) threads */
1935 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1936 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1937 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1938 }
1939
1940 /* Block until all are initialised */
d3cd131d 1941 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1942
c9e97a19
PT
1943 /*
1944 * We initialized the rest of the deferred pages. Permanently disable
1945 * on-demand struct page initialization.
1946 */
1947 static_branch_disable(&deferred_pages);
1948
4248b0da
MG
1949 /* Reinit limits that are based on free pages after the kernel is up */
1950 files_maxfiles_init();
7cf91a98 1951#endif
350e88ba 1952
3010f876
PT
1953 /* Discard memblock private memory */
1954 memblock_discard();
7cf91a98 1955
e900a918
DW
1956 for_each_node_state(nid, N_MEMORY)
1957 shuffle_free_memory(NODE_DATA(nid));
1958
7cf91a98
JK
1959 for_each_populated_zone(zone)
1960 set_zone_contiguous(zone);
3972f6bb
VB
1961
1962#ifdef CONFIG_DEBUG_PAGEALLOC
1963 init_debug_guardpage();
1964#endif
7e18adb4 1965}
7e18adb4 1966
47118af0 1967#ifdef CONFIG_CMA
9cf510a5 1968/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1969void __init init_cma_reserved_pageblock(struct page *page)
1970{
1971 unsigned i = pageblock_nr_pages;
1972 struct page *p = page;
1973
1974 do {
1975 __ClearPageReserved(p);
1976 set_page_count(p, 0);
d883c6cf 1977 } while (++p, --i);
47118af0 1978
47118af0 1979 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1980
1981 if (pageblock_order >= MAX_ORDER) {
1982 i = pageblock_nr_pages;
1983 p = page;
1984 do {
1985 set_page_refcounted(p);
1986 __free_pages(p, MAX_ORDER - 1);
1987 p += MAX_ORDER_NR_PAGES;
1988 } while (i -= MAX_ORDER_NR_PAGES);
1989 } else {
1990 set_page_refcounted(page);
1991 __free_pages(page, pageblock_order);
1992 }
1993
3dcc0571 1994 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1995}
1996#endif
1da177e4
LT
1997
1998/*
1999 * The order of subdivision here is critical for the IO subsystem.
2000 * Please do not alter this order without good reasons and regression
2001 * testing. Specifically, as large blocks of memory are subdivided,
2002 * the order in which smaller blocks are delivered depends on the order
2003 * they're subdivided in this function. This is the primary factor
2004 * influencing the order in which pages are delivered to the IO
2005 * subsystem according to empirical testing, and this is also justified
2006 * by considering the behavior of a buddy system containing a single
2007 * large block of memory acted on by a series of small allocations.
2008 * This behavior is a critical factor in sglist merging's success.
2009 *
6d49e352 2010 * -- nyc
1da177e4 2011 */
085cc7d5 2012static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
2013 int low, int high, struct free_area *area,
2014 int migratetype)
1da177e4
LT
2015{
2016 unsigned long size = 1 << high;
2017
2018 while (high > low) {
2019 area--;
2020 high--;
2021 size >>= 1;
309381fe 2022 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2023
acbc15a4
JK
2024 /*
2025 * Mark as guard pages (or page), that will allow to
2026 * merge back to allocator when buddy will be freed.
2027 * Corresponding page table entries will not be touched,
2028 * pages will stay not present in virtual address space
2029 */
2030 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2031 continue;
acbc15a4 2032
b03641af 2033 add_to_free_area(&page[size], area, migratetype);
1da177e4
LT
2034 set_page_order(&page[size], high);
2035 }
1da177e4
LT
2036}
2037
4e611801 2038static void check_new_page_bad(struct page *page)
1da177e4 2039{
4e611801
VB
2040 const char *bad_reason = NULL;
2041 unsigned long bad_flags = 0;
7bfec6f4 2042
53f9263b 2043 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
2044 bad_reason = "nonzero mapcount";
2045 if (unlikely(page->mapping != NULL))
2046 bad_reason = "non-NULL mapping";
fe896d18 2047 if (unlikely(page_ref_count(page) != 0))
136ac591 2048 bad_reason = "nonzero _refcount";
f4c18e6f
NH
2049 if (unlikely(page->flags & __PG_HWPOISON)) {
2050 bad_reason = "HWPoisoned (hardware-corrupted)";
2051 bad_flags = __PG_HWPOISON;
e570f56c
NH
2052 /* Don't complain about hwpoisoned pages */
2053 page_mapcount_reset(page); /* remove PageBuddy */
2054 return;
f4c18e6f 2055 }
f0b791a3
DH
2056 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2057 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2058 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2059 }
9edad6ea
JW
2060#ifdef CONFIG_MEMCG
2061 if (unlikely(page->mem_cgroup))
2062 bad_reason = "page still charged to cgroup";
2063#endif
4e611801
VB
2064 bad_page(page, bad_reason, bad_flags);
2065}
2066
2067/*
2068 * This page is about to be returned from the page allocator
2069 */
2070static inline int check_new_page(struct page *page)
2071{
2072 if (likely(page_expected_state(page,
2073 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2074 return 0;
2075
2076 check_new_page_bad(page);
2077 return 1;
2a7684a2
WF
2078}
2079
bd33ef36 2080static inline bool free_pages_prezeroed(void)
1414c7f4 2081{
6471384a
AP
2082 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2083 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2084}
2085
479f854a 2086#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2087/*
2088 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2089 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2090 * also checked when pcp lists are refilled from the free lists.
2091 */
2092static inline bool check_pcp_refill(struct page *page)
479f854a 2093{
4462b32c
VB
2094 if (debug_pagealloc_enabled())
2095 return check_new_page(page);
2096 else
2097 return false;
479f854a
MG
2098}
2099
4462b32c 2100static inline bool check_new_pcp(struct page *page)
479f854a
MG
2101{
2102 return check_new_page(page);
2103}
2104#else
4462b32c
VB
2105/*
2106 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2107 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2108 * enabled, they are also checked when being allocated from the pcp lists.
2109 */
2110static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2111{
2112 return check_new_page(page);
2113}
4462b32c 2114static inline bool check_new_pcp(struct page *page)
479f854a 2115{
4462b32c
VB
2116 if (debug_pagealloc_enabled())
2117 return check_new_page(page);
2118 else
2119 return false;
479f854a
MG
2120}
2121#endif /* CONFIG_DEBUG_VM */
2122
2123static bool check_new_pages(struct page *page, unsigned int order)
2124{
2125 int i;
2126 for (i = 0; i < (1 << order); i++) {
2127 struct page *p = page + i;
2128
2129 if (unlikely(check_new_page(p)))
2130 return true;
2131 }
2132
2133 return false;
2134}
2135
46f24fd8
JK
2136inline void post_alloc_hook(struct page *page, unsigned int order,
2137 gfp_t gfp_flags)
2138{
2139 set_page_private(page, 0);
2140 set_page_refcounted(page);
2141
2142 arch_alloc_page(page, order);
d6332692
RE
2143 if (debug_pagealloc_enabled())
2144 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2145 kasan_alloc_pages(page, order);
4117992d 2146 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2147 set_page_owner(page, order, gfp_flags);
2148}
2149
479f854a 2150static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2151 unsigned int alloc_flags)
2a7684a2 2152{
46f24fd8 2153 post_alloc_hook(page, order, gfp_flags);
17cf4406 2154
6471384a
AP
2155 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2156 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2157
2158 if (order && (gfp_flags & __GFP_COMP))
2159 prep_compound_page(page, order);
2160
75379191 2161 /*
2f064f34 2162 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2163 * allocate the page. The expectation is that the caller is taking
2164 * steps that will free more memory. The caller should avoid the page
2165 * being used for !PFMEMALLOC purposes.
2166 */
2f064f34
MH
2167 if (alloc_flags & ALLOC_NO_WATERMARKS)
2168 set_page_pfmemalloc(page);
2169 else
2170 clear_page_pfmemalloc(page);
1da177e4
LT
2171}
2172
56fd56b8
MG
2173/*
2174 * Go through the free lists for the given migratetype and remove
2175 * the smallest available page from the freelists
2176 */
85ccc8fa 2177static __always_inline
728ec980 2178struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2179 int migratetype)
2180{
2181 unsigned int current_order;
b8af2941 2182 struct free_area *area;
56fd56b8
MG
2183 struct page *page;
2184
2185 /* Find a page of the appropriate size in the preferred list */
2186 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2187 area = &(zone->free_area[current_order]);
b03641af 2188 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2189 if (!page)
2190 continue;
b03641af 2191 del_page_from_free_area(page, area);
56fd56b8 2192 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2193 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2194 return page;
2195 }
2196
2197 return NULL;
2198}
2199
2200
b2a0ac88
MG
2201/*
2202 * This array describes the order lists are fallen back to when
2203 * the free lists for the desirable migrate type are depleted
2204 */
47118af0 2205static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2206 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2207 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2208 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2209#ifdef CONFIG_CMA
974a786e 2210 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2211#endif
194159fb 2212#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2213 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2214#endif
b2a0ac88
MG
2215};
2216
dc67647b 2217#ifdef CONFIG_CMA
85ccc8fa 2218static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2219 unsigned int order)
2220{
2221 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2222}
2223#else
2224static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2225 unsigned int order) { return NULL; }
2226#endif
2227
c361be55
MG
2228/*
2229 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2230 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2231 * boundary. If alignment is required, use move_freepages_block()
2232 */
02aa0cdd 2233static int move_freepages(struct zone *zone,
b69a7288 2234 struct page *start_page, struct page *end_page,
02aa0cdd 2235 int migratetype, int *num_movable)
c361be55
MG
2236{
2237 struct page *page;
d00181b9 2238 unsigned int order;
d100313f 2239 int pages_moved = 0;
c361be55
MG
2240
2241#ifndef CONFIG_HOLES_IN_ZONE
2242 /*
2243 * page_zone is not safe to call in this context when
2244 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2245 * anyway as we check zone boundaries in move_freepages_block().
2246 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2247 * grouping pages by mobility
c361be55 2248 */
3e04040d
AB
2249 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2250 pfn_valid(page_to_pfn(end_page)) &&
2251 page_zone(start_page) != page_zone(end_page));
c361be55 2252#endif
c361be55
MG
2253 for (page = start_page; page <= end_page;) {
2254 if (!pfn_valid_within(page_to_pfn(page))) {
2255 page++;
2256 continue;
2257 }
2258
f073bdc5
AB
2259 /* Make sure we are not inadvertently changing nodes */
2260 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2261
c361be55 2262 if (!PageBuddy(page)) {
02aa0cdd
VB
2263 /*
2264 * We assume that pages that could be isolated for
2265 * migration are movable. But we don't actually try
2266 * isolating, as that would be expensive.
2267 */
2268 if (num_movable &&
2269 (PageLRU(page) || __PageMovable(page)))
2270 (*num_movable)++;
2271
c361be55
MG
2272 page++;
2273 continue;
2274 }
2275
2276 order = page_order(page);
b03641af 2277 move_to_free_area(page, &zone->free_area[order], migratetype);
c361be55 2278 page += 1 << order;
d100313f 2279 pages_moved += 1 << order;
c361be55
MG
2280 }
2281
d100313f 2282 return pages_moved;
c361be55
MG
2283}
2284
ee6f509c 2285int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2286 int migratetype, int *num_movable)
c361be55
MG
2287{
2288 unsigned long start_pfn, end_pfn;
2289 struct page *start_page, *end_page;
2290
4a222127
DR
2291 if (num_movable)
2292 *num_movable = 0;
2293
c361be55 2294 start_pfn = page_to_pfn(page);
d9c23400 2295 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2296 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2297 end_page = start_page + pageblock_nr_pages - 1;
2298 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2299
2300 /* Do not cross zone boundaries */
108bcc96 2301 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2302 start_page = page;
108bcc96 2303 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2304 return 0;
2305
02aa0cdd
VB
2306 return move_freepages(zone, start_page, end_page, migratetype,
2307 num_movable);
c361be55
MG
2308}
2309
2f66a68f
MG
2310static void change_pageblock_range(struct page *pageblock_page,
2311 int start_order, int migratetype)
2312{
2313 int nr_pageblocks = 1 << (start_order - pageblock_order);
2314
2315 while (nr_pageblocks--) {
2316 set_pageblock_migratetype(pageblock_page, migratetype);
2317 pageblock_page += pageblock_nr_pages;
2318 }
2319}
2320
fef903ef 2321/*
9c0415eb
VB
2322 * When we are falling back to another migratetype during allocation, try to
2323 * steal extra free pages from the same pageblocks to satisfy further
2324 * allocations, instead of polluting multiple pageblocks.
2325 *
2326 * If we are stealing a relatively large buddy page, it is likely there will
2327 * be more free pages in the pageblock, so try to steal them all. For
2328 * reclaimable and unmovable allocations, we steal regardless of page size,
2329 * as fragmentation caused by those allocations polluting movable pageblocks
2330 * is worse than movable allocations stealing from unmovable and reclaimable
2331 * pageblocks.
fef903ef 2332 */
4eb7dce6
JK
2333static bool can_steal_fallback(unsigned int order, int start_mt)
2334{
2335 /*
2336 * Leaving this order check is intended, although there is
2337 * relaxed order check in next check. The reason is that
2338 * we can actually steal whole pageblock if this condition met,
2339 * but, below check doesn't guarantee it and that is just heuristic
2340 * so could be changed anytime.
2341 */
2342 if (order >= pageblock_order)
2343 return true;
2344
2345 if (order >= pageblock_order / 2 ||
2346 start_mt == MIGRATE_RECLAIMABLE ||
2347 start_mt == MIGRATE_UNMOVABLE ||
2348 page_group_by_mobility_disabled)
2349 return true;
2350
2351 return false;
2352}
2353
1c30844d
MG
2354static inline void boost_watermark(struct zone *zone)
2355{
2356 unsigned long max_boost;
2357
2358 if (!watermark_boost_factor)
2359 return;
2360
2361 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2362 watermark_boost_factor, 10000);
94b3334c
MG
2363
2364 /*
2365 * high watermark may be uninitialised if fragmentation occurs
2366 * very early in boot so do not boost. We do not fall
2367 * through and boost by pageblock_nr_pages as failing
2368 * allocations that early means that reclaim is not going
2369 * to help and it may even be impossible to reclaim the
2370 * boosted watermark resulting in a hang.
2371 */
2372 if (!max_boost)
2373 return;
2374
1c30844d
MG
2375 max_boost = max(pageblock_nr_pages, max_boost);
2376
2377 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2378 max_boost);
2379}
2380
4eb7dce6
JK
2381/*
2382 * This function implements actual steal behaviour. If order is large enough,
2383 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2384 * pageblock to our migratetype and determine how many already-allocated pages
2385 * are there in the pageblock with a compatible migratetype. If at least half
2386 * of pages are free or compatible, we can change migratetype of the pageblock
2387 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2388 */
2389static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2390 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2391{
d00181b9 2392 unsigned int current_order = page_order(page);
3bc48f96 2393 struct free_area *area;
02aa0cdd
VB
2394 int free_pages, movable_pages, alike_pages;
2395 int old_block_type;
2396
2397 old_block_type = get_pageblock_migratetype(page);
fef903ef 2398
3bc48f96
VB
2399 /*
2400 * This can happen due to races and we want to prevent broken
2401 * highatomic accounting.
2402 */
02aa0cdd 2403 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2404 goto single_page;
2405
fef903ef
SB
2406 /* Take ownership for orders >= pageblock_order */
2407 if (current_order >= pageblock_order) {
2408 change_pageblock_range(page, current_order, start_type);
3bc48f96 2409 goto single_page;
fef903ef
SB
2410 }
2411
1c30844d
MG
2412 /*
2413 * Boost watermarks to increase reclaim pressure to reduce the
2414 * likelihood of future fallbacks. Wake kswapd now as the node
2415 * may be balanced overall and kswapd will not wake naturally.
2416 */
2417 boost_watermark(zone);
2418 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2419 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2420
3bc48f96
VB
2421 /* We are not allowed to try stealing from the whole block */
2422 if (!whole_block)
2423 goto single_page;
2424
02aa0cdd
VB
2425 free_pages = move_freepages_block(zone, page, start_type,
2426 &movable_pages);
2427 /*
2428 * Determine how many pages are compatible with our allocation.
2429 * For movable allocation, it's the number of movable pages which
2430 * we just obtained. For other types it's a bit more tricky.
2431 */
2432 if (start_type == MIGRATE_MOVABLE) {
2433 alike_pages = movable_pages;
2434 } else {
2435 /*
2436 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2437 * to MOVABLE pageblock, consider all non-movable pages as
2438 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2439 * vice versa, be conservative since we can't distinguish the
2440 * exact migratetype of non-movable pages.
2441 */
2442 if (old_block_type == MIGRATE_MOVABLE)
2443 alike_pages = pageblock_nr_pages
2444 - (free_pages + movable_pages);
2445 else
2446 alike_pages = 0;
2447 }
2448
3bc48f96 2449 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2450 if (!free_pages)
3bc48f96 2451 goto single_page;
fef903ef 2452
02aa0cdd
VB
2453 /*
2454 * If a sufficient number of pages in the block are either free or of
2455 * comparable migratability as our allocation, claim the whole block.
2456 */
2457 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2458 page_group_by_mobility_disabled)
2459 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2460
2461 return;
2462
2463single_page:
2464 area = &zone->free_area[current_order];
b03641af 2465 move_to_free_area(page, area, start_type);
4eb7dce6
JK
2466}
2467
2149cdae
JK
2468/*
2469 * Check whether there is a suitable fallback freepage with requested order.
2470 * If only_stealable is true, this function returns fallback_mt only if
2471 * we can steal other freepages all together. This would help to reduce
2472 * fragmentation due to mixed migratetype pages in one pageblock.
2473 */
2474int find_suitable_fallback(struct free_area *area, unsigned int order,
2475 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2476{
2477 int i;
2478 int fallback_mt;
2479
2480 if (area->nr_free == 0)
2481 return -1;
2482
2483 *can_steal = false;
2484 for (i = 0;; i++) {
2485 fallback_mt = fallbacks[migratetype][i];
974a786e 2486 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2487 break;
2488
b03641af 2489 if (free_area_empty(area, fallback_mt))
4eb7dce6 2490 continue;
fef903ef 2491
4eb7dce6
JK
2492 if (can_steal_fallback(order, migratetype))
2493 *can_steal = true;
2494
2149cdae
JK
2495 if (!only_stealable)
2496 return fallback_mt;
2497
2498 if (*can_steal)
2499 return fallback_mt;
fef903ef 2500 }
4eb7dce6
JK
2501
2502 return -1;
fef903ef
SB
2503}
2504
0aaa29a5
MG
2505/*
2506 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2507 * there are no empty page blocks that contain a page with a suitable order
2508 */
2509static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2510 unsigned int alloc_order)
2511{
2512 int mt;
2513 unsigned long max_managed, flags;
2514
2515 /*
2516 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2517 * Check is race-prone but harmless.
2518 */
9705bea5 2519 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2520 if (zone->nr_reserved_highatomic >= max_managed)
2521 return;
2522
2523 spin_lock_irqsave(&zone->lock, flags);
2524
2525 /* Recheck the nr_reserved_highatomic limit under the lock */
2526 if (zone->nr_reserved_highatomic >= max_managed)
2527 goto out_unlock;
2528
2529 /* Yoink! */
2530 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2531 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2532 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2533 zone->nr_reserved_highatomic += pageblock_nr_pages;
2534 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2535 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2536 }
2537
2538out_unlock:
2539 spin_unlock_irqrestore(&zone->lock, flags);
2540}
2541
2542/*
2543 * Used when an allocation is about to fail under memory pressure. This
2544 * potentially hurts the reliability of high-order allocations when under
2545 * intense memory pressure but failed atomic allocations should be easier
2546 * to recover from than an OOM.
29fac03b
MK
2547 *
2548 * If @force is true, try to unreserve a pageblock even though highatomic
2549 * pageblock is exhausted.
0aaa29a5 2550 */
29fac03b
MK
2551static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2552 bool force)
0aaa29a5
MG
2553{
2554 struct zonelist *zonelist = ac->zonelist;
2555 unsigned long flags;
2556 struct zoneref *z;
2557 struct zone *zone;
2558 struct page *page;
2559 int order;
04c8716f 2560 bool ret;
0aaa29a5
MG
2561
2562 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2563 ac->nodemask) {
29fac03b
MK
2564 /*
2565 * Preserve at least one pageblock unless memory pressure
2566 * is really high.
2567 */
2568 if (!force && zone->nr_reserved_highatomic <=
2569 pageblock_nr_pages)
0aaa29a5
MG
2570 continue;
2571
2572 spin_lock_irqsave(&zone->lock, flags);
2573 for (order = 0; order < MAX_ORDER; order++) {
2574 struct free_area *area = &(zone->free_area[order]);
2575
b03641af 2576 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2577 if (!page)
0aaa29a5
MG
2578 continue;
2579
0aaa29a5 2580 /*
4855e4a7
MK
2581 * In page freeing path, migratetype change is racy so
2582 * we can counter several free pages in a pageblock
2583 * in this loop althoug we changed the pageblock type
2584 * from highatomic to ac->migratetype. So we should
2585 * adjust the count once.
0aaa29a5 2586 */
a6ffdc07 2587 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2588 /*
2589 * It should never happen but changes to
2590 * locking could inadvertently allow a per-cpu
2591 * drain to add pages to MIGRATE_HIGHATOMIC
2592 * while unreserving so be safe and watch for
2593 * underflows.
2594 */
2595 zone->nr_reserved_highatomic -= min(
2596 pageblock_nr_pages,
2597 zone->nr_reserved_highatomic);
2598 }
0aaa29a5
MG
2599
2600 /*
2601 * Convert to ac->migratetype and avoid the normal
2602 * pageblock stealing heuristics. Minimally, the caller
2603 * is doing the work and needs the pages. More
2604 * importantly, if the block was always converted to
2605 * MIGRATE_UNMOVABLE or another type then the number
2606 * of pageblocks that cannot be completely freed
2607 * may increase.
2608 */
2609 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2610 ret = move_freepages_block(zone, page, ac->migratetype,
2611 NULL);
29fac03b
MK
2612 if (ret) {
2613 spin_unlock_irqrestore(&zone->lock, flags);
2614 return ret;
2615 }
0aaa29a5
MG
2616 }
2617 spin_unlock_irqrestore(&zone->lock, flags);
2618 }
04c8716f
MK
2619
2620 return false;
0aaa29a5
MG
2621}
2622
3bc48f96
VB
2623/*
2624 * Try finding a free buddy page on the fallback list and put it on the free
2625 * list of requested migratetype, possibly along with other pages from the same
2626 * block, depending on fragmentation avoidance heuristics. Returns true if
2627 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2628 *
2629 * The use of signed ints for order and current_order is a deliberate
2630 * deviation from the rest of this file, to make the for loop
2631 * condition simpler.
3bc48f96 2632 */
85ccc8fa 2633static __always_inline bool
6bb15450
MG
2634__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2635 unsigned int alloc_flags)
b2a0ac88 2636{
b8af2941 2637 struct free_area *area;
b002529d 2638 int current_order;
6bb15450 2639 int min_order = order;
b2a0ac88 2640 struct page *page;
4eb7dce6
JK
2641 int fallback_mt;
2642 bool can_steal;
b2a0ac88 2643
6bb15450
MG
2644 /*
2645 * Do not steal pages from freelists belonging to other pageblocks
2646 * i.e. orders < pageblock_order. If there are no local zones free,
2647 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2648 */
2649 if (alloc_flags & ALLOC_NOFRAGMENT)
2650 min_order = pageblock_order;
2651
7a8f58f3
VB
2652 /*
2653 * Find the largest available free page in the other list. This roughly
2654 * approximates finding the pageblock with the most free pages, which
2655 * would be too costly to do exactly.
2656 */
6bb15450 2657 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2658 --current_order) {
4eb7dce6
JK
2659 area = &(zone->free_area[current_order]);
2660 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2661 start_migratetype, false, &can_steal);
4eb7dce6
JK
2662 if (fallback_mt == -1)
2663 continue;
b2a0ac88 2664
7a8f58f3
VB
2665 /*
2666 * We cannot steal all free pages from the pageblock and the
2667 * requested migratetype is movable. In that case it's better to
2668 * steal and split the smallest available page instead of the
2669 * largest available page, because even if the next movable
2670 * allocation falls back into a different pageblock than this
2671 * one, it won't cause permanent fragmentation.
2672 */
2673 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2674 && current_order > order)
2675 goto find_smallest;
b2a0ac88 2676
7a8f58f3
VB
2677 goto do_steal;
2678 }
e0fff1bd 2679
7a8f58f3 2680 return false;
e0fff1bd 2681
7a8f58f3
VB
2682find_smallest:
2683 for (current_order = order; current_order < MAX_ORDER;
2684 current_order++) {
2685 area = &(zone->free_area[current_order]);
2686 fallback_mt = find_suitable_fallback(area, current_order,
2687 start_migratetype, false, &can_steal);
2688 if (fallback_mt != -1)
2689 break;
b2a0ac88
MG
2690 }
2691
7a8f58f3
VB
2692 /*
2693 * This should not happen - we already found a suitable fallback
2694 * when looking for the largest page.
2695 */
2696 VM_BUG_ON(current_order == MAX_ORDER);
2697
2698do_steal:
b03641af 2699 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2700
1c30844d
MG
2701 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2702 can_steal);
7a8f58f3
VB
2703
2704 trace_mm_page_alloc_extfrag(page, order, current_order,
2705 start_migratetype, fallback_mt);
2706
2707 return true;
2708
b2a0ac88
MG
2709}
2710
56fd56b8 2711/*
1da177e4
LT
2712 * Do the hard work of removing an element from the buddy allocator.
2713 * Call me with the zone->lock already held.
2714 */
85ccc8fa 2715static __always_inline struct page *
6bb15450
MG
2716__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2717 unsigned int alloc_flags)
1da177e4 2718{
1da177e4
LT
2719 struct page *page;
2720
3bc48f96 2721retry:
56fd56b8 2722 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2723 if (unlikely(!page)) {
dc67647b
JK
2724 if (migratetype == MIGRATE_MOVABLE)
2725 page = __rmqueue_cma_fallback(zone, order);
2726
6bb15450
MG
2727 if (!page && __rmqueue_fallback(zone, order, migratetype,
2728 alloc_flags))
3bc48f96 2729 goto retry;
728ec980
MG
2730 }
2731
0d3d062a 2732 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2733 return page;
1da177e4
LT
2734}
2735
5f63b720 2736/*
1da177e4
LT
2737 * Obtain a specified number of elements from the buddy allocator, all under
2738 * a single hold of the lock, for efficiency. Add them to the supplied list.
2739 * Returns the number of new pages which were placed at *list.
2740 */
5f63b720 2741static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2742 unsigned long count, struct list_head *list,
6bb15450 2743 int migratetype, unsigned int alloc_flags)
1da177e4 2744{
a6de734b 2745 int i, alloced = 0;
5f63b720 2746
d34b0733 2747 spin_lock(&zone->lock);
1da177e4 2748 for (i = 0; i < count; ++i) {
6bb15450
MG
2749 struct page *page = __rmqueue(zone, order, migratetype,
2750 alloc_flags);
085cc7d5 2751 if (unlikely(page == NULL))
1da177e4 2752 break;
81eabcbe 2753
479f854a
MG
2754 if (unlikely(check_pcp_refill(page)))
2755 continue;
2756
81eabcbe 2757 /*
0fac3ba5
VB
2758 * Split buddy pages returned by expand() are received here in
2759 * physical page order. The page is added to the tail of
2760 * caller's list. From the callers perspective, the linked list
2761 * is ordered by page number under some conditions. This is
2762 * useful for IO devices that can forward direction from the
2763 * head, thus also in the physical page order. This is useful
2764 * for IO devices that can merge IO requests if the physical
2765 * pages are ordered properly.
81eabcbe 2766 */
0fac3ba5 2767 list_add_tail(&page->lru, list);
a6de734b 2768 alloced++;
bb14c2c7 2769 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2770 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2771 -(1 << order));
1da177e4 2772 }
a6de734b
MG
2773
2774 /*
2775 * i pages were removed from the buddy list even if some leak due
2776 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2777 * on i. Do not confuse with 'alloced' which is the number of
2778 * pages added to the pcp list.
2779 */
f2260e6b 2780 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2781 spin_unlock(&zone->lock);
a6de734b 2782 return alloced;
1da177e4
LT
2783}
2784
4ae7c039 2785#ifdef CONFIG_NUMA
8fce4d8e 2786/*
4037d452
CL
2787 * Called from the vmstat counter updater to drain pagesets of this
2788 * currently executing processor on remote nodes after they have
2789 * expired.
2790 *
879336c3
CL
2791 * Note that this function must be called with the thread pinned to
2792 * a single processor.
8fce4d8e 2793 */
4037d452 2794void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2795{
4ae7c039 2796 unsigned long flags;
7be12fc9 2797 int to_drain, batch;
4ae7c039 2798
4037d452 2799 local_irq_save(flags);
4db0c3c2 2800 batch = READ_ONCE(pcp->batch);
7be12fc9 2801 to_drain = min(pcp->count, batch);
77ba9062 2802 if (to_drain > 0)
2a13515c 2803 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2804 local_irq_restore(flags);
4ae7c039
CL
2805}
2806#endif
2807
9f8f2172 2808/*
93481ff0 2809 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2810 *
2811 * The processor must either be the current processor and the
2812 * thread pinned to the current processor or a processor that
2813 * is not online.
2814 */
93481ff0 2815static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2816{
c54ad30c 2817 unsigned long flags;
93481ff0
VB
2818 struct per_cpu_pageset *pset;
2819 struct per_cpu_pages *pcp;
1da177e4 2820
93481ff0
VB
2821 local_irq_save(flags);
2822 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2823
93481ff0 2824 pcp = &pset->pcp;
77ba9062 2825 if (pcp->count)
93481ff0 2826 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2827 local_irq_restore(flags);
2828}
3dfa5721 2829
93481ff0
VB
2830/*
2831 * Drain pcplists of all zones on the indicated processor.
2832 *
2833 * The processor must either be the current processor and the
2834 * thread pinned to the current processor or a processor that
2835 * is not online.
2836 */
2837static void drain_pages(unsigned int cpu)
2838{
2839 struct zone *zone;
2840
2841 for_each_populated_zone(zone) {
2842 drain_pages_zone(cpu, zone);
1da177e4
LT
2843 }
2844}
1da177e4 2845
9f8f2172
CL
2846/*
2847 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2848 *
2849 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2850 * the single zone's pages.
9f8f2172 2851 */
93481ff0 2852void drain_local_pages(struct zone *zone)
9f8f2172 2853{
93481ff0
VB
2854 int cpu = smp_processor_id();
2855
2856 if (zone)
2857 drain_pages_zone(cpu, zone);
2858 else
2859 drain_pages(cpu);
9f8f2172
CL
2860}
2861
0ccce3b9
MG
2862static void drain_local_pages_wq(struct work_struct *work)
2863{
d9367bd0
WY
2864 struct pcpu_drain *drain;
2865
2866 drain = container_of(work, struct pcpu_drain, work);
2867
a459eeb7
MH
2868 /*
2869 * drain_all_pages doesn't use proper cpu hotplug protection so
2870 * we can race with cpu offline when the WQ can move this from
2871 * a cpu pinned worker to an unbound one. We can operate on a different
2872 * cpu which is allright but we also have to make sure to not move to
2873 * a different one.
2874 */
2875 preempt_disable();
d9367bd0 2876 drain_local_pages(drain->zone);
a459eeb7 2877 preempt_enable();
0ccce3b9
MG
2878}
2879
9f8f2172 2880/*
74046494
GBY
2881 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2882 *
93481ff0
VB
2883 * When zone parameter is non-NULL, spill just the single zone's pages.
2884 *
0ccce3b9 2885 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2886 */
93481ff0 2887void drain_all_pages(struct zone *zone)
9f8f2172 2888{
74046494 2889 int cpu;
74046494
GBY
2890
2891 /*
2892 * Allocate in the BSS so we wont require allocation in
2893 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2894 */
2895 static cpumask_t cpus_with_pcps;
2896
ce612879
MH
2897 /*
2898 * Make sure nobody triggers this path before mm_percpu_wq is fully
2899 * initialized.
2900 */
2901 if (WARN_ON_ONCE(!mm_percpu_wq))
2902 return;
2903
bd233f53
MG
2904 /*
2905 * Do not drain if one is already in progress unless it's specific to
2906 * a zone. Such callers are primarily CMA and memory hotplug and need
2907 * the drain to be complete when the call returns.
2908 */
2909 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2910 if (!zone)
2911 return;
2912 mutex_lock(&pcpu_drain_mutex);
2913 }
0ccce3b9 2914
74046494
GBY
2915 /*
2916 * We don't care about racing with CPU hotplug event
2917 * as offline notification will cause the notified
2918 * cpu to drain that CPU pcps and on_each_cpu_mask
2919 * disables preemption as part of its processing
2920 */
2921 for_each_online_cpu(cpu) {
93481ff0
VB
2922 struct per_cpu_pageset *pcp;
2923 struct zone *z;
74046494 2924 bool has_pcps = false;
93481ff0
VB
2925
2926 if (zone) {
74046494 2927 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2928 if (pcp->pcp.count)
74046494 2929 has_pcps = true;
93481ff0
VB
2930 } else {
2931 for_each_populated_zone(z) {
2932 pcp = per_cpu_ptr(z->pageset, cpu);
2933 if (pcp->pcp.count) {
2934 has_pcps = true;
2935 break;
2936 }
74046494
GBY
2937 }
2938 }
93481ff0 2939
74046494
GBY
2940 if (has_pcps)
2941 cpumask_set_cpu(cpu, &cpus_with_pcps);
2942 else
2943 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2944 }
0ccce3b9 2945
bd233f53 2946 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2947 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2948
2949 drain->zone = zone;
2950 INIT_WORK(&drain->work, drain_local_pages_wq);
2951 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2952 }
bd233f53 2953 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2954 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2955
2956 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2957}
2958
296699de 2959#ifdef CONFIG_HIBERNATION
1da177e4 2960
556b969a
CY
2961/*
2962 * Touch the watchdog for every WD_PAGE_COUNT pages.
2963 */
2964#define WD_PAGE_COUNT (128*1024)
2965
1da177e4
LT
2966void mark_free_pages(struct zone *zone)
2967{
556b969a 2968 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2969 unsigned long flags;
7aeb09f9 2970 unsigned int order, t;
86760a2c 2971 struct page *page;
1da177e4 2972
8080fc03 2973 if (zone_is_empty(zone))
1da177e4
LT
2974 return;
2975
2976 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2977
108bcc96 2978 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2979 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2980 if (pfn_valid(pfn)) {
86760a2c 2981 page = pfn_to_page(pfn);
ba6b0979 2982
556b969a
CY
2983 if (!--page_count) {
2984 touch_nmi_watchdog();
2985 page_count = WD_PAGE_COUNT;
2986 }
2987
ba6b0979
JK
2988 if (page_zone(page) != zone)
2989 continue;
2990
7be98234
RW
2991 if (!swsusp_page_is_forbidden(page))
2992 swsusp_unset_page_free(page);
f623f0db 2993 }
1da177e4 2994
b2a0ac88 2995 for_each_migratetype_order(order, t) {
86760a2c
GT
2996 list_for_each_entry(page,
2997 &zone->free_area[order].free_list[t], lru) {
f623f0db 2998 unsigned long i;
1da177e4 2999
86760a2c 3000 pfn = page_to_pfn(page);
556b969a
CY
3001 for (i = 0; i < (1UL << order); i++) {
3002 if (!--page_count) {
3003 touch_nmi_watchdog();
3004 page_count = WD_PAGE_COUNT;
3005 }
7be98234 3006 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3007 }
f623f0db 3008 }
b2a0ac88 3009 }
1da177e4
LT
3010 spin_unlock_irqrestore(&zone->lock, flags);
3011}
e2c55dc8 3012#endif /* CONFIG_PM */
1da177e4 3013
2d4894b5 3014static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3015{
5f8dcc21 3016 int migratetype;
1da177e4 3017
4db7548c 3018 if (!free_pcp_prepare(page))
9cca35d4 3019 return false;
689bcebf 3020
dc4b0caf 3021 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3022 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3023 return true;
3024}
3025
2d4894b5 3026static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3027{
3028 struct zone *zone = page_zone(page);
3029 struct per_cpu_pages *pcp;
3030 int migratetype;
3031
3032 migratetype = get_pcppage_migratetype(page);
d34b0733 3033 __count_vm_event(PGFREE);
da456f14 3034
5f8dcc21
MG
3035 /*
3036 * We only track unmovable, reclaimable and movable on pcp lists.
3037 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3038 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3039 * areas back if necessary. Otherwise, we may have to free
3040 * excessively into the page allocator
3041 */
3042 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3043 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3044 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3045 return;
5f8dcc21
MG
3046 }
3047 migratetype = MIGRATE_MOVABLE;
3048 }
3049
99dcc3e5 3050 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3051 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3052 pcp->count++;
48db57f8 3053 if (pcp->count >= pcp->high) {
4db0c3c2 3054 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3055 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3056 }
9cca35d4 3057}
5f8dcc21 3058
9cca35d4
MG
3059/*
3060 * Free a 0-order page
9cca35d4 3061 */
2d4894b5 3062void free_unref_page(struct page *page)
9cca35d4
MG
3063{
3064 unsigned long flags;
3065 unsigned long pfn = page_to_pfn(page);
3066
2d4894b5 3067 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3068 return;
3069
3070 local_irq_save(flags);
2d4894b5 3071 free_unref_page_commit(page, pfn);
d34b0733 3072 local_irq_restore(flags);
1da177e4
LT
3073}
3074
cc59850e
KK
3075/*
3076 * Free a list of 0-order pages
3077 */
2d4894b5 3078void free_unref_page_list(struct list_head *list)
cc59850e
KK
3079{
3080 struct page *page, *next;
9cca35d4 3081 unsigned long flags, pfn;
c24ad77d 3082 int batch_count = 0;
9cca35d4
MG
3083
3084 /* Prepare pages for freeing */
3085 list_for_each_entry_safe(page, next, list, lru) {
3086 pfn = page_to_pfn(page);
2d4894b5 3087 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3088 list_del(&page->lru);
3089 set_page_private(page, pfn);
3090 }
cc59850e 3091
9cca35d4 3092 local_irq_save(flags);
cc59850e 3093 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3094 unsigned long pfn = page_private(page);
3095
3096 set_page_private(page, 0);
2d4894b5
MG
3097 trace_mm_page_free_batched(page);
3098 free_unref_page_commit(page, pfn);
c24ad77d
LS
3099
3100 /*
3101 * Guard against excessive IRQ disabled times when we get
3102 * a large list of pages to free.
3103 */
3104 if (++batch_count == SWAP_CLUSTER_MAX) {
3105 local_irq_restore(flags);
3106 batch_count = 0;
3107 local_irq_save(flags);
3108 }
cc59850e 3109 }
9cca35d4 3110 local_irq_restore(flags);
cc59850e
KK
3111}
3112
8dfcc9ba
NP
3113/*
3114 * split_page takes a non-compound higher-order page, and splits it into
3115 * n (1<<order) sub-pages: page[0..n]
3116 * Each sub-page must be freed individually.
3117 *
3118 * Note: this is probably too low level an operation for use in drivers.
3119 * Please consult with lkml before using this in your driver.
3120 */
3121void split_page(struct page *page, unsigned int order)
3122{
3123 int i;
3124
309381fe
SL
3125 VM_BUG_ON_PAGE(PageCompound(page), page);
3126 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3127
a9627bc5 3128 for (i = 1; i < (1 << order); i++)
7835e98b 3129 set_page_refcounted(page + i);
a9627bc5 3130 split_page_owner(page, order);
8dfcc9ba 3131}
5853ff23 3132EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3133
3c605096 3134int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3135{
b03641af 3136 struct free_area *area = &page_zone(page)->free_area[order];
748446bb
MG
3137 unsigned long watermark;
3138 struct zone *zone;
2139cbe6 3139 int mt;
748446bb
MG
3140
3141 BUG_ON(!PageBuddy(page));
3142
3143 zone = page_zone(page);
2e30abd1 3144 mt = get_pageblock_migratetype(page);
748446bb 3145
194159fb 3146 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3147 /*
3148 * Obey watermarks as if the page was being allocated. We can
3149 * emulate a high-order watermark check with a raised order-0
3150 * watermark, because we already know our high-order page
3151 * exists.
3152 */
fd1444b2 3153 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3154 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3155 return 0;
3156
8fb74b9f 3157 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3158 }
748446bb
MG
3159
3160 /* Remove page from free list */
b03641af
DW
3161
3162 del_page_from_free_area(page, area);
2139cbe6 3163
400bc7fd 3164 /*
3165 * Set the pageblock if the isolated page is at least half of a
3166 * pageblock
3167 */
748446bb
MG
3168 if (order >= pageblock_order - 1) {
3169 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3170 for (; page < endpage; page += pageblock_nr_pages) {
3171 int mt = get_pageblock_migratetype(page);
88ed365e 3172 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3173 && !is_migrate_highatomic(mt))
47118af0
MN
3174 set_pageblock_migratetype(page,
3175 MIGRATE_MOVABLE);
3176 }
748446bb
MG
3177 }
3178
f3a14ced 3179
8fb74b9f 3180 return 1UL << order;
1fb3f8ca
MG
3181}
3182
060e7417
MG
3183/*
3184 * Update NUMA hit/miss statistics
3185 *
3186 * Must be called with interrupts disabled.
060e7417 3187 */
41b6167e 3188static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3189{
3190#ifdef CONFIG_NUMA
3a321d2a 3191 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3192
4518085e
KW
3193 /* skip numa counters update if numa stats is disabled */
3194 if (!static_branch_likely(&vm_numa_stat_key))
3195 return;
3196
c1093b74 3197 if (zone_to_nid(z) != numa_node_id())
060e7417 3198 local_stat = NUMA_OTHER;
060e7417 3199
c1093b74 3200 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3201 __inc_numa_state(z, NUMA_HIT);
2df26639 3202 else {
3a321d2a
KW
3203 __inc_numa_state(z, NUMA_MISS);
3204 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3205 }
3a321d2a 3206 __inc_numa_state(z, local_stat);
060e7417
MG
3207#endif
3208}
3209
066b2393
MG
3210/* Remove page from the per-cpu list, caller must protect the list */
3211static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3212 unsigned int alloc_flags,
453f85d4 3213 struct per_cpu_pages *pcp,
066b2393
MG
3214 struct list_head *list)
3215{
3216 struct page *page;
3217
3218 do {
3219 if (list_empty(list)) {
3220 pcp->count += rmqueue_bulk(zone, 0,
3221 pcp->batch, list,
6bb15450 3222 migratetype, alloc_flags);
066b2393
MG
3223 if (unlikely(list_empty(list)))
3224 return NULL;
3225 }
3226
453f85d4 3227 page = list_first_entry(list, struct page, lru);
066b2393
MG
3228 list_del(&page->lru);
3229 pcp->count--;
3230 } while (check_new_pcp(page));
3231
3232 return page;
3233}
3234
3235/* Lock and remove page from the per-cpu list */
3236static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3237 struct zone *zone, gfp_t gfp_flags,
3238 int migratetype, unsigned int alloc_flags)
066b2393
MG
3239{
3240 struct per_cpu_pages *pcp;
3241 struct list_head *list;
066b2393 3242 struct page *page;
d34b0733 3243 unsigned long flags;
066b2393 3244
d34b0733 3245 local_irq_save(flags);
066b2393
MG
3246 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3247 list = &pcp->lists[migratetype];
6bb15450 3248 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3249 if (page) {
1c52e6d0 3250 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3251 zone_statistics(preferred_zone, zone);
3252 }
d34b0733 3253 local_irq_restore(flags);
066b2393
MG
3254 return page;
3255}
3256
1da177e4 3257/*
75379191 3258 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3259 */
0a15c3e9 3260static inline
066b2393 3261struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3262 struct zone *zone, unsigned int order,
c603844b
MG
3263 gfp_t gfp_flags, unsigned int alloc_flags,
3264 int migratetype)
1da177e4
LT
3265{
3266 unsigned long flags;
689bcebf 3267 struct page *page;
1da177e4 3268
d34b0733 3269 if (likely(order == 0)) {
1c52e6d0
YS
3270 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3271 migratetype, alloc_flags);
066b2393
MG
3272 goto out;
3273 }
83b9355b 3274
066b2393
MG
3275 /*
3276 * We most definitely don't want callers attempting to
3277 * allocate greater than order-1 page units with __GFP_NOFAIL.
3278 */
3279 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3280 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3281
066b2393
MG
3282 do {
3283 page = NULL;
3284 if (alloc_flags & ALLOC_HARDER) {
3285 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3286 if (page)
3287 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3288 }
a74609fa 3289 if (!page)
6bb15450 3290 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3291 } while (page && check_new_pages(page, order));
3292 spin_unlock(&zone->lock);
3293 if (!page)
3294 goto failed;
3295 __mod_zone_freepage_state(zone, -(1 << order),
3296 get_pcppage_migratetype(page));
1da177e4 3297
16709d1d 3298 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3299 zone_statistics(preferred_zone, zone);
a74609fa 3300 local_irq_restore(flags);
1da177e4 3301
066b2393 3302out:
73444bc4
MG
3303 /* Separate test+clear to avoid unnecessary atomics */
3304 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3305 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3306 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3307 }
3308
066b2393 3309 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3310 return page;
a74609fa
NP
3311
3312failed:
3313 local_irq_restore(flags);
a74609fa 3314 return NULL;
1da177e4
LT
3315}
3316
933e312e
AM
3317#ifdef CONFIG_FAIL_PAGE_ALLOC
3318
b2588c4b 3319static struct {
933e312e
AM
3320 struct fault_attr attr;
3321
621a5f7a 3322 bool ignore_gfp_highmem;
71baba4b 3323 bool ignore_gfp_reclaim;
54114994 3324 u32 min_order;
933e312e
AM
3325} fail_page_alloc = {
3326 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3327 .ignore_gfp_reclaim = true,
621a5f7a 3328 .ignore_gfp_highmem = true,
54114994 3329 .min_order = 1,
933e312e
AM
3330};
3331
3332static int __init setup_fail_page_alloc(char *str)
3333{
3334 return setup_fault_attr(&fail_page_alloc.attr, str);
3335}
3336__setup("fail_page_alloc=", setup_fail_page_alloc);
3337
af3b8544 3338static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3339{
54114994 3340 if (order < fail_page_alloc.min_order)
deaf386e 3341 return false;
933e312e 3342 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3343 return false;
933e312e 3344 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3345 return false;
71baba4b
MG
3346 if (fail_page_alloc.ignore_gfp_reclaim &&
3347 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3348 return false;
933e312e
AM
3349
3350 return should_fail(&fail_page_alloc.attr, 1 << order);
3351}
3352
3353#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3354
3355static int __init fail_page_alloc_debugfs(void)
3356{
0825a6f9 3357 umode_t mode = S_IFREG | 0600;
933e312e 3358 struct dentry *dir;
933e312e 3359
dd48c085
AM
3360 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3361 &fail_page_alloc.attr);
b2588c4b 3362
d9f7979c
GKH
3363 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3364 &fail_page_alloc.ignore_gfp_reclaim);
3365 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3366 &fail_page_alloc.ignore_gfp_highmem);
3367 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3368
d9f7979c 3369 return 0;
933e312e
AM
3370}
3371
3372late_initcall(fail_page_alloc_debugfs);
3373
3374#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3375
3376#else /* CONFIG_FAIL_PAGE_ALLOC */
3377
af3b8544 3378static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3379{
deaf386e 3380 return false;
933e312e
AM
3381}
3382
3383#endif /* CONFIG_FAIL_PAGE_ALLOC */
3384
af3b8544
BP
3385static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3386{
3387 return __should_fail_alloc_page(gfp_mask, order);
3388}
3389ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3390
1da177e4 3391/*
97a16fc8
MG
3392 * Return true if free base pages are above 'mark'. For high-order checks it
3393 * will return true of the order-0 watermark is reached and there is at least
3394 * one free page of a suitable size. Checking now avoids taking the zone lock
3395 * to check in the allocation paths if no pages are free.
1da177e4 3396 */
86a294a8
MH
3397bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3398 int classzone_idx, unsigned int alloc_flags,
3399 long free_pages)
1da177e4 3400{
d23ad423 3401 long min = mark;
1da177e4 3402 int o;
cd04ae1e 3403 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3404
0aaa29a5 3405 /* free_pages may go negative - that's OK */
df0a6daa 3406 free_pages -= (1 << order) - 1;
0aaa29a5 3407
7fb1d9fc 3408 if (alloc_flags & ALLOC_HIGH)
1da177e4 3409 min -= min / 2;
0aaa29a5
MG
3410
3411 /*
3412 * If the caller does not have rights to ALLOC_HARDER then subtract
3413 * the high-atomic reserves. This will over-estimate the size of the
3414 * atomic reserve but it avoids a search.
3415 */
cd04ae1e 3416 if (likely(!alloc_harder)) {
0aaa29a5 3417 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3418 } else {
3419 /*
3420 * OOM victims can try even harder than normal ALLOC_HARDER
3421 * users on the grounds that it's definitely going to be in
3422 * the exit path shortly and free memory. Any allocation it
3423 * makes during the free path will be small and short-lived.
3424 */
3425 if (alloc_flags & ALLOC_OOM)
3426 min -= min / 2;
3427 else
3428 min -= min / 4;
3429 }
3430
e2b19197 3431
d883c6cf
JK
3432#ifdef CONFIG_CMA
3433 /* If allocation can't use CMA areas don't use free CMA pages */
3434 if (!(alloc_flags & ALLOC_CMA))
3435 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3436#endif
3437
97a16fc8
MG
3438 /*
3439 * Check watermarks for an order-0 allocation request. If these
3440 * are not met, then a high-order request also cannot go ahead
3441 * even if a suitable page happened to be free.
3442 */
3443 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3444 return false;
1da177e4 3445
97a16fc8
MG
3446 /* If this is an order-0 request then the watermark is fine */
3447 if (!order)
3448 return true;
3449
3450 /* For a high-order request, check at least one suitable page is free */
3451 for (o = order; o < MAX_ORDER; o++) {
3452 struct free_area *area = &z->free_area[o];
3453 int mt;
3454
3455 if (!area->nr_free)
3456 continue;
3457
97a16fc8 3458 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3459 if (!free_area_empty(area, mt))
97a16fc8
MG
3460 return true;
3461 }
3462
3463#ifdef CONFIG_CMA
d883c6cf 3464 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3465 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3466 return true;
d883c6cf 3467 }
97a16fc8 3468#endif
b050e376
VB
3469 if (alloc_harder &&
3470 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3471 return true;
1da177e4 3472 }
97a16fc8 3473 return false;
88f5acf8
MG
3474}
3475
7aeb09f9 3476bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3477 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3478{
3479 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3480 zone_page_state(z, NR_FREE_PAGES));
3481}
3482
48ee5f36
MG
3483static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3484 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3485{
3486 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3487 long cma_pages = 0;
3488
3489#ifdef CONFIG_CMA
3490 /* If allocation can't use CMA areas don't use free CMA pages */
3491 if (!(alloc_flags & ALLOC_CMA))
3492 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3493#endif
48ee5f36
MG
3494
3495 /*
3496 * Fast check for order-0 only. If this fails then the reserves
3497 * need to be calculated. There is a corner case where the check
3498 * passes but only the high-order atomic reserve are free. If
3499 * the caller is !atomic then it'll uselessly search the free
3500 * list. That corner case is then slower but it is harmless.
3501 */
d883c6cf 3502 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3503 return true;
3504
3505 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3506 free_pages);
3507}
3508
7aeb09f9 3509bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3510 unsigned long mark, int classzone_idx)
88f5acf8
MG
3511{
3512 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3513
3514 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3515 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3516
e2b19197 3517 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3518 free_pages);
1da177e4
LT
3519}
3520
9276b1bc 3521#ifdef CONFIG_NUMA
957f822a
DR
3522static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3523{
e02dc017 3524 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3525 RECLAIM_DISTANCE;
957f822a 3526}
9276b1bc 3527#else /* CONFIG_NUMA */
957f822a
DR
3528static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3529{
3530 return true;
3531}
9276b1bc
PJ
3532#endif /* CONFIG_NUMA */
3533
6bb15450
MG
3534/*
3535 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3536 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3537 * premature use of a lower zone may cause lowmem pressure problems that
3538 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3539 * probably too small. It only makes sense to spread allocations to avoid
3540 * fragmentation between the Normal and DMA32 zones.
3541 */
3542static inline unsigned int
0a79cdad 3543alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3544{
0a79cdad
MG
3545 unsigned int alloc_flags = 0;
3546
3547 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3548 alloc_flags |= ALLOC_KSWAPD;
3549
3550#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3551 if (!zone)
3552 return alloc_flags;
3553
6bb15450 3554 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3555 return alloc_flags;
6bb15450
MG
3556
3557 /*
3558 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3559 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3560 * on UMA that if Normal is populated then so is DMA32.
3561 */
3562 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3563 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3564 return alloc_flags;
6bb15450 3565
8118b82e 3566 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3567#endif /* CONFIG_ZONE_DMA32 */
3568 return alloc_flags;
6bb15450 3569}
6bb15450 3570
7fb1d9fc 3571/*
0798e519 3572 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3573 * a page.
3574 */
3575static struct page *
a9263751
VB
3576get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3577 const struct alloc_context *ac)
753ee728 3578{
6bb15450 3579 struct zoneref *z;
5117f45d 3580 struct zone *zone;
3b8c0be4 3581 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3582 bool no_fallback;
3b8c0be4 3583
6bb15450 3584retry:
7fb1d9fc 3585 /*
9276b1bc 3586 * Scan zonelist, looking for a zone with enough free.
344736f2 3587 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3588 */
6bb15450
MG
3589 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3590 z = ac->preferred_zoneref;
c33d6c06 3591 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3592 ac->nodemask) {
be06af00 3593 struct page *page;
e085dbc5
JW
3594 unsigned long mark;
3595
664eedde
MG
3596 if (cpusets_enabled() &&
3597 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3598 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3599 continue;
a756cf59
JW
3600 /*
3601 * When allocating a page cache page for writing, we
281e3726
MG
3602 * want to get it from a node that is within its dirty
3603 * limit, such that no single node holds more than its
a756cf59 3604 * proportional share of globally allowed dirty pages.
281e3726 3605 * The dirty limits take into account the node's
a756cf59
JW
3606 * lowmem reserves and high watermark so that kswapd
3607 * should be able to balance it without having to
3608 * write pages from its LRU list.
3609 *
a756cf59 3610 * XXX: For now, allow allocations to potentially
281e3726 3611 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3612 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3613 * which is important when on a NUMA setup the allowed
281e3726 3614 * nodes are together not big enough to reach the
a756cf59 3615 * global limit. The proper fix for these situations
281e3726 3616 * will require awareness of nodes in the
a756cf59
JW
3617 * dirty-throttling and the flusher threads.
3618 */
3b8c0be4
MG
3619 if (ac->spread_dirty_pages) {
3620 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3621 continue;
3622
3623 if (!node_dirty_ok(zone->zone_pgdat)) {
3624 last_pgdat_dirty_limit = zone->zone_pgdat;
3625 continue;
3626 }
3627 }
7fb1d9fc 3628
6bb15450
MG
3629 if (no_fallback && nr_online_nodes > 1 &&
3630 zone != ac->preferred_zoneref->zone) {
3631 int local_nid;
3632
3633 /*
3634 * If moving to a remote node, retry but allow
3635 * fragmenting fallbacks. Locality is more important
3636 * than fragmentation avoidance.
3637 */
3638 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3639 if (zone_to_nid(zone) != local_nid) {
3640 alloc_flags &= ~ALLOC_NOFRAGMENT;
3641 goto retry;
3642 }
3643 }
3644
a9214443 3645 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3646 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3647 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3648 int ret;
3649
c9e97a19
PT
3650#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3651 /*
3652 * Watermark failed for this zone, but see if we can
3653 * grow this zone if it contains deferred pages.
3654 */
3655 if (static_branch_unlikely(&deferred_pages)) {
3656 if (_deferred_grow_zone(zone, order))
3657 goto try_this_zone;
3658 }
3659#endif
5dab2911
MG
3660 /* Checked here to keep the fast path fast */
3661 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3662 if (alloc_flags & ALLOC_NO_WATERMARKS)
3663 goto try_this_zone;
3664
a5f5f91d 3665 if (node_reclaim_mode == 0 ||
c33d6c06 3666 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3667 continue;
3668
a5f5f91d 3669 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3670 switch (ret) {
a5f5f91d 3671 case NODE_RECLAIM_NOSCAN:
fa5e084e 3672 /* did not scan */
cd38b115 3673 continue;
a5f5f91d 3674 case NODE_RECLAIM_FULL:
fa5e084e 3675 /* scanned but unreclaimable */
cd38b115 3676 continue;
fa5e084e
MG
3677 default:
3678 /* did we reclaim enough */
fed2719e 3679 if (zone_watermark_ok(zone, order, mark,
93ea9964 3680 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3681 goto try_this_zone;
3682
fed2719e 3683 continue;
0798e519 3684 }
7fb1d9fc
RS
3685 }
3686
fa5e084e 3687try_this_zone:
066b2393 3688 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3689 gfp_mask, alloc_flags, ac->migratetype);
75379191 3690 if (page) {
479f854a 3691 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3692
3693 /*
3694 * If this is a high-order atomic allocation then check
3695 * if the pageblock should be reserved for the future
3696 */
3697 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3698 reserve_highatomic_pageblock(page, zone, order);
3699
75379191 3700 return page;
c9e97a19
PT
3701 } else {
3702#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3703 /* Try again if zone has deferred pages */
3704 if (static_branch_unlikely(&deferred_pages)) {
3705 if (_deferred_grow_zone(zone, order))
3706 goto try_this_zone;
3707 }
3708#endif
75379191 3709 }
54a6eb5c 3710 }
9276b1bc 3711
6bb15450
MG
3712 /*
3713 * It's possible on a UMA machine to get through all zones that are
3714 * fragmented. If avoiding fragmentation, reset and try again.
3715 */
3716 if (no_fallback) {
3717 alloc_flags &= ~ALLOC_NOFRAGMENT;
3718 goto retry;
3719 }
3720
4ffeaf35 3721 return NULL;
753ee728
MH
3722}
3723
9af744d7 3724static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3725{
a238ab5b 3726 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3727 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3728
2c029a1e 3729 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3730 return;
3731
3732 /*
3733 * This documents exceptions given to allocations in certain
3734 * contexts that are allowed to allocate outside current's set
3735 * of allowed nodes.
3736 */
3737 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3738 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3739 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3740 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3741 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3742 filter &= ~SHOW_MEM_FILTER_NODES;
3743
9af744d7 3744 show_mem(filter, nodemask);
aa187507
MH
3745}
3746
a8e99259 3747void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3748{
3749 struct va_format vaf;
3750 va_list args;
3751 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3752 DEFAULT_RATELIMIT_BURST);
3753
0f7896f1 3754 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3755 return;
3756
7877cdcc
MH
3757 va_start(args, fmt);
3758 vaf.fmt = fmt;
3759 vaf.va = &args;
ef8444ea 3760 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3761 current->comm, &vaf, gfp_mask, &gfp_mask,
3762 nodemask_pr_args(nodemask));
7877cdcc 3763 va_end(args);
3ee9a4f0 3764
a8e99259 3765 cpuset_print_current_mems_allowed();
ef8444ea 3766 pr_cont("\n");
a238ab5b 3767 dump_stack();
685dbf6f 3768 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3769}
3770
6c18ba7a
MH
3771static inline struct page *
3772__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3773 unsigned int alloc_flags,
3774 const struct alloc_context *ac)
3775{
3776 struct page *page;
3777
3778 page = get_page_from_freelist(gfp_mask, order,
3779 alloc_flags|ALLOC_CPUSET, ac);
3780 /*
3781 * fallback to ignore cpuset restriction if our nodes
3782 * are depleted
3783 */
3784 if (!page)
3785 page = get_page_from_freelist(gfp_mask, order,
3786 alloc_flags, ac);
3787
3788 return page;
3789}
3790
11e33f6a
MG
3791static inline struct page *
3792__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3793 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3794{
6e0fc46d
DR
3795 struct oom_control oc = {
3796 .zonelist = ac->zonelist,
3797 .nodemask = ac->nodemask,
2a966b77 3798 .memcg = NULL,
6e0fc46d
DR
3799 .gfp_mask = gfp_mask,
3800 .order = order,
6e0fc46d 3801 };
11e33f6a
MG
3802 struct page *page;
3803
9879de73
JW
3804 *did_some_progress = 0;
3805
9879de73 3806 /*
dc56401f
JW
3807 * Acquire the oom lock. If that fails, somebody else is
3808 * making progress for us.
9879de73 3809 */
dc56401f 3810 if (!mutex_trylock(&oom_lock)) {
9879de73 3811 *did_some_progress = 1;
11e33f6a 3812 schedule_timeout_uninterruptible(1);
1da177e4
LT
3813 return NULL;
3814 }
6b1de916 3815
11e33f6a
MG
3816 /*
3817 * Go through the zonelist yet one more time, keep very high watermark
3818 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3819 * we're still under heavy pressure. But make sure that this reclaim
3820 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3821 * allocation which will never fail due to oom_lock already held.
11e33f6a 3822 */
e746bf73
TH
3823 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3824 ~__GFP_DIRECT_RECLAIM, order,
3825 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3826 if (page)
11e33f6a
MG
3827 goto out;
3828
06ad276a
MH
3829 /* Coredumps can quickly deplete all memory reserves */
3830 if (current->flags & PF_DUMPCORE)
3831 goto out;
3832 /* The OOM killer will not help higher order allocs */
3833 if (order > PAGE_ALLOC_COSTLY_ORDER)
3834 goto out;
dcda9b04
MH
3835 /*
3836 * We have already exhausted all our reclaim opportunities without any
3837 * success so it is time to admit defeat. We will skip the OOM killer
3838 * because it is very likely that the caller has a more reasonable
3839 * fallback than shooting a random task.
3840 */
3841 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3842 goto out;
06ad276a
MH
3843 /* The OOM killer does not needlessly kill tasks for lowmem */
3844 if (ac->high_zoneidx < ZONE_NORMAL)
3845 goto out;
3846 if (pm_suspended_storage())
3847 goto out;
3848 /*
3849 * XXX: GFP_NOFS allocations should rather fail than rely on
3850 * other request to make a forward progress.
3851 * We are in an unfortunate situation where out_of_memory cannot
3852 * do much for this context but let's try it to at least get
3853 * access to memory reserved if the current task is killed (see
3854 * out_of_memory). Once filesystems are ready to handle allocation
3855 * failures more gracefully we should just bail out here.
3856 */
3857
3858 /* The OOM killer may not free memory on a specific node */
3859 if (gfp_mask & __GFP_THISNODE)
3860 goto out;
3da88fb3 3861
3c2c6488 3862 /* Exhausted what can be done so it's blame time */
5020e285 3863 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3864 *did_some_progress = 1;
5020e285 3865
6c18ba7a
MH
3866 /*
3867 * Help non-failing allocations by giving them access to memory
3868 * reserves
3869 */
3870 if (gfp_mask & __GFP_NOFAIL)
3871 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3872 ALLOC_NO_WATERMARKS, ac);
5020e285 3873 }
11e33f6a 3874out:
dc56401f 3875 mutex_unlock(&oom_lock);
11e33f6a
MG
3876 return page;
3877}
3878
33c2d214
MH
3879/*
3880 * Maximum number of compaction retries wit a progress before OOM
3881 * killer is consider as the only way to move forward.
3882 */
3883#define MAX_COMPACT_RETRIES 16
3884
56de7263
MG
3885#ifdef CONFIG_COMPACTION
3886/* Try memory compaction for high-order allocations before reclaim */
3887static struct page *
3888__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3889 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3890 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3891{
5e1f0f09 3892 struct page *page = NULL;
eb414681 3893 unsigned long pflags;
499118e9 3894 unsigned int noreclaim_flag;
53853e2d
VB
3895
3896 if (!order)
66199712 3897 return NULL;
66199712 3898
eb414681 3899 psi_memstall_enter(&pflags);
499118e9 3900 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3901
c5d01d0d 3902 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3903 prio, &page);
eb414681 3904
499118e9 3905 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3906 psi_memstall_leave(&pflags);
56de7263 3907
98dd3b48
VB
3908 /*
3909 * At least in one zone compaction wasn't deferred or skipped, so let's
3910 * count a compaction stall
3911 */
3912 count_vm_event(COMPACTSTALL);
8fb74b9f 3913
5e1f0f09
MG
3914 /* Prep a captured page if available */
3915 if (page)
3916 prep_new_page(page, order, gfp_mask, alloc_flags);
3917
3918 /* Try get a page from the freelist if available */
3919 if (!page)
3920 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3921
98dd3b48
VB
3922 if (page) {
3923 struct zone *zone = page_zone(page);
53853e2d 3924
98dd3b48
VB
3925 zone->compact_blockskip_flush = false;
3926 compaction_defer_reset(zone, order, true);
3927 count_vm_event(COMPACTSUCCESS);
3928 return page;
3929 }
56de7263 3930
98dd3b48
VB
3931 /*
3932 * It's bad if compaction run occurs and fails. The most likely reason
3933 * is that pages exist, but not enough to satisfy watermarks.
3934 */
3935 count_vm_event(COMPACTFAIL);
66199712 3936
98dd3b48 3937 cond_resched();
56de7263
MG
3938
3939 return NULL;
3940}
33c2d214 3941
3250845d
VB
3942static inline bool
3943should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3944 enum compact_result compact_result,
3945 enum compact_priority *compact_priority,
d9436498 3946 int *compaction_retries)
3250845d
VB
3947{
3948 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3949 int min_priority;
65190cff
MH
3950 bool ret = false;
3951 int retries = *compaction_retries;
3952 enum compact_priority priority = *compact_priority;
3250845d
VB
3953
3954 if (!order)
3955 return false;
3956
d9436498
VB
3957 if (compaction_made_progress(compact_result))
3958 (*compaction_retries)++;
3959
3250845d
VB
3960 /*
3961 * compaction considers all the zone as desperately out of memory
3962 * so it doesn't really make much sense to retry except when the
3963 * failure could be caused by insufficient priority
3964 */
d9436498
VB
3965 if (compaction_failed(compact_result))
3966 goto check_priority;
3250845d
VB
3967
3968 /*
3969 * make sure the compaction wasn't deferred or didn't bail out early
3970 * due to locks contention before we declare that we should give up.
3971 * But do not retry if the given zonelist is not suitable for
3972 * compaction.
3973 */
65190cff
MH
3974 if (compaction_withdrawn(compact_result)) {
3975 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3976 goto out;
3977 }
3250845d
VB
3978
3979 /*
dcda9b04 3980 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3981 * costly ones because they are de facto nofail and invoke OOM
3982 * killer to move on while costly can fail and users are ready
3983 * to cope with that. 1/4 retries is rather arbitrary but we
3984 * would need much more detailed feedback from compaction to
3985 * make a better decision.
3986 */
3987 if (order > PAGE_ALLOC_COSTLY_ORDER)
3988 max_retries /= 4;
65190cff
MH
3989 if (*compaction_retries <= max_retries) {
3990 ret = true;
3991 goto out;
3992 }
3250845d 3993
d9436498
VB
3994 /*
3995 * Make sure there are attempts at the highest priority if we exhausted
3996 * all retries or failed at the lower priorities.
3997 */
3998check_priority:
c2033b00
VB
3999 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4000 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4001
c2033b00 4002 if (*compact_priority > min_priority) {
d9436498
VB
4003 (*compact_priority)--;
4004 *compaction_retries = 0;
65190cff 4005 ret = true;
d9436498 4006 }
65190cff
MH
4007out:
4008 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4009 return ret;
3250845d 4010}
56de7263
MG
4011#else
4012static inline struct page *
4013__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4014 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4015 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4016{
33c2d214 4017 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4018 return NULL;
4019}
33c2d214
MH
4020
4021static inline bool
86a294a8
MH
4022should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4023 enum compact_result compact_result,
a5508cd8 4024 enum compact_priority *compact_priority,
d9436498 4025 int *compaction_retries)
33c2d214 4026{
31e49bfd
MH
4027 struct zone *zone;
4028 struct zoneref *z;
4029
4030 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4031 return false;
4032
4033 /*
4034 * There are setups with compaction disabled which would prefer to loop
4035 * inside the allocator rather than hit the oom killer prematurely.
4036 * Let's give them a good hope and keep retrying while the order-0
4037 * watermarks are OK.
4038 */
4039 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4040 ac->nodemask) {
4041 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4042 ac_classzone_idx(ac), alloc_flags))
4043 return true;
4044 }
33c2d214
MH
4045 return false;
4046}
3250845d 4047#endif /* CONFIG_COMPACTION */
56de7263 4048
d92a8cfc 4049#ifdef CONFIG_LOCKDEP
93781325 4050static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4051 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4052
4053static bool __need_fs_reclaim(gfp_t gfp_mask)
4054{
4055 gfp_mask = current_gfp_context(gfp_mask);
4056
4057 /* no reclaim without waiting on it */
4058 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4059 return false;
4060
4061 /* this guy won't enter reclaim */
2e517d68 4062 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4063 return false;
4064
4065 /* We're only interested __GFP_FS allocations for now */
4066 if (!(gfp_mask & __GFP_FS))
4067 return false;
4068
4069 if (gfp_mask & __GFP_NOLOCKDEP)
4070 return false;
4071
4072 return true;
4073}
4074
93781325
OS
4075void __fs_reclaim_acquire(void)
4076{
4077 lock_map_acquire(&__fs_reclaim_map);
4078}
4079
4080void __fs_reclaim_release(void)
4081{
4082 lock_map_release(&__fs_reclaim_map);
4083}
4084
d92a8cfc
PZ
4085void fs_reclaim_acquire(gfp_t gfp_mask)
4086{
4087 if (__need_fs_reclaim(gfp_mask))
93781325 4088 __fs_reclaim_acquire();
d92a8cfc
PZ
4089}
4090EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4091
4092void fs_reclaim_release(gfp_t gfp_mask)
4093{
4094 if (__need_fs_reclaim(gfp_mask))
93781325 4095 __fs_reclaim_release();
d92a8cfc
PZ
4096}
4097EXPORT_SYMBOL_GPL(fs_reclaim_release);
4098#endif
4099
bba90710
MS
4100/* Perform direct synchronous page reclaim */
4101static int
a9263751
VB
4102__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4103 const struct alloc_context *ac)
11e33f6a 4104{
11e33f6a 4105 struct reclaim_state reclaim_state;
bba90710 4106 int progress;
499118e9 4107 unsigned int noreclaim_flag;
eb414681 4108 unsigned long pflags;
11e33f6a
MG
4109
4110 cond_resched();
4111
4112 /* We now go into synchronous reclaim */
4113 cpuset_memory_pressure_bump();
eb414681 4114 psi_memstall_enter(&pflags);
d92a8cfc 4115 fs_reclaim_acquire(gfp_mask);
93781325 4116 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4117 reclaim_state.reclaimed_slab = 0;
c06b1fca 4118 current->reclaim_state = &reclaim_state;
11e33f6a 4119
a9263751
VB
4120 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4121 ac->nodemask);
11e33f6a 4122
c06b1fca 4123 current->reclaim_state = NULL;
499118e9 4124 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4125 fs_reclaim_release(gfp_mask);
eb414681 4126 psi_memstall_leave(&pflags);
11e33f6a
MG
4127
4128 cond_resched();
4129
bba90710
MS
4130 return progress;
4131}
4132
4133/* The really slow allocator path where we enter direct reclaim */
4134static inline struct page *
4135__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4136 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4137 unsigned long *did_some_progress)
bba90710
MS
4138{
4139 struct page *page = NULL;
4140 bool drained = false;
4141
a9263751 4142 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4143 if (unlikely(!(*did_some_progress)))
4144 return NULL;
11e33f6a 4145
9ee493ce 4146retry:
31a6c190 4147 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4148
4149 /*
4150 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4151 * pages are pinned on the per-cpu lists or in high alloc reserves.
4152 * Shrink them them and try again
9ee493ce
MG
4153 */
4154 if (!page && !drained) {
29fac03b 4155 unreserve_highatomic_pageblock(ac, false);
93481ff0 4156 drain_all_pages(NULL);
9ee493ce
MG
4157 drained = true;
4158 goto retry;
4159 }
4160
11e33f6a
MG
4161 return page;
4162}
4163
5ecd9d40
DR
4164static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4165 const struct alloc_context *ac)
3a025760
JW
4166{
4167 struct zoneref *z;
4168 struct zone *zone;
e1a55637 4169 pg_data_t *last_pgdat = NULL;
5ecd9d40 4170 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4171
5ecd9d40
DR
4172 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4173 ac->nodemask) {
e1a55637 4174 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4175 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4176 last_pgdat = zone->zone_pgdat;
4177 }
3a025760
JW
4178}
4179
c603844b 4180static inline unsigned int
341ce06f
PZ
4181gfp_to_alloc_flags(gfp_t gfp_mask)
4182{
c603844b 4183 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4184
a56f57ff 4185 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 4186 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 4187
341ce06f
PZ
4188 /*
4189 * The caller may dip into page reserves a bit more if the caller
4190 * cannot run direct reclaim, or if the caller has realtime scheduling
4191 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4192 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4193 */
e6223a3b 4194 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4195
d0164adc 4196 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4197 /*
b104a35d
DR
4198 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4199 * if it can't schedule.
5c3240d9 4200 */
b104a35d 4201 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4202 alloc_flags |= ALLOC_HARDER;
523b9458 4203 /*
b104a35d 4204 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4205 * comment for __cpuset_node_allowed().
523b9458 4206 */
341ce06f 4207 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4208 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4209 alloc_flags |= ALLOC_HARDER;
4210
0a79cdad
MG
4211 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4212 alloc_flags |= ALLOC_KSWAPD;
4213
d883c6cf
JK
4214#ifdef CONFIG_CMA
4215 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4216 alloc_flags |= ALLOC_CMA;
4217#endif
341ce06f
PZ
4218 return alloc_flags;
4219}
4220
cd04ae1e 4221static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4222{
cd04ae1e
MH
4223 if (!tsk_is_oom_victim(tsk))
4224 return false;
4225
4226 /*
4227 * !MMU doesn't have oom reaper so give access to memory reserves
4228 * only to the thread with TIF_MEMDIE set
4229 */
4230 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4231 return false;
4232
cd04ae1e
MH
4233 return true;
4234}
4235
4236/*
4237 * Distinguish requests which really need access to full memory
4238 * reserves from oom victims which can live with a portion of it
4239 */
4240static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4241{
4242 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4243 return 0;
31a6c190 4244 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4245 return ALLOC_NO_WATERMARKS;
31a6c190 4246 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4247 return ALLOC_NO_WATERMARKS;
4248 if (!in_interrupt()) {
4249 if (current->flags & PF_MEMALLOC)
4250 return ALLOC_NO_WATERMARKS;
4251 else if (oom_reserves_allowed(current))
4252 return ALLOC_OOM;
4253 }
31a6c190 4254
cd04ae1e
MH
4255 return 0;
4256}
4257
4258bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4259{
4260 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4261}
4262
0a0337e0
MH
4263/*
4264 * Checks whether it makes sense to retry the reclaim to make a forward progress
4265 * for the given allocation request.
491d79ae
JW
4266 *
4267 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4268 * without success, or when we couldn't even meet the watermark if we
4269 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4270 *
4271 * Returns true if a retry is viable or false to enter the oom path.
4272 */
4273static inline bool
4274should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4275 struct alloc_context *ac, int alloc_flags,
423b452e 4276 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4277{
4278 struct zone *zone;
4279 struct zoneref *z;
15f570bf 4280 bool ret = false;
0a0337e0 4281
423b452e
VB
4282 /*
4283 * Costly allocations might have made a progress but this doesn't mean
4284 * their order will become available due to high fragmentation so
4285 * always increment the no progress counter for them
4286 */
4287 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4288 *no_progress_loops = 0;
4289 else
4290 (*no_progress_loops)++;
4291
0a0337e0
MH
4292 /*
4293 * Make sure we converge to OOM if we cannot make any progress
4294 * several times in the row.
4295 */
04c8716f
MK
4296 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4297 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4298 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4299 }
0a0337e0 4300
bca67592
MG
4301 /*
4302 * Keep reclaiming pages while there is a chance this will lead
4303 * somewhere. If none of the target zones can satisfy our allocation
4304 * request even if all reclaimable pages are considered then we are
4305 * screwed and have to go OOM.
0a0337e0
MH
4306 */
4307 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4308 ac->nodemask) {
4309 unsigned long available;
ede37713 4310 unsigned long reclaimable;
d379f01d
MH
4311 unsigned long min_wmark = min_wmark_pages(zone);
4312 bool wmark;
0a0337e0 4313
5a1c84b4 4314 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4315 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4316
4317 /*
491d79ae
JW
4318 * Would the allocation succeed if we reclaimed all
4319 * reclaimable pages?
0a0337e0 4320 */
d379f01d
MH
4321 wmark = __zone_watermark_ok(zone, order, min_wmark,
4322 ac_classzone_idx(ac), alloc_flags, available);
4323 trace_reclaim_retry_zone(z, order, reclaimable,
4324 available, min_wmark, *no_progress_loops, wmark);
4325 if (wmark) {
ede37713
MH
4326 /*
4327 * If we didn't make any progress and have a lot of
4328 * dirty + writeback pages then we should wait for
4329 * an IO to complete to slow down the reclaim and
4330 * prevent from pre mature OOM
4331 */
4332 if (!did_some_progress) {
11fb9989 4333 unsigned long write_pending;
ede37713 4334
5a1c84b4
MG
4335 write_pending = zone_page_state_snapshot(zone,
4336 NR_ZONE_WRITE_PENDING);
ede37713 4337
11fb9989 4338 if (2 * write_pending > reclaimable) {
ede37713
MH
4339 congestion_wait(BLK_RW_ASYNC, HZ/10);
4340 return true;
4341 }
4342 }
5a1c84b4 4343
15f570bf
MH
4344 ret = true;
4345 goto out;
0a0337e0
MH
4346 }
4347 }
4348
15f570bf
MH
4349out:
4350 /*
4351 * Memory allocation/reclaim might be called from a WQ context and the
4352 * current implementation of the WQ concurrency control doesn't
4353 * recognize that a particular WQ is congested if the worker thread is
4354 * looping without ever sleeping. Therefore we have to do a short sleep
4355 * here rather than calling cond_resched().
4356 */
4357 if (current->flags & PF_WQ_WORKER)
4358 schedule_timeout_uninterruptible(1);
4359 else
4360 cond_resched();
4361 return ret;
0a0337e0
MH
4362}
4363
902b6281
VB
4364static inline bool
4365check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4366{
4367 /*
4368 * It's possible that cpuset's mems_allowed and the nodemask from
4369 * mempolicy don't intersect. This should be normally dealt with by
4370 * policy_nodemask(), but it's possible to race with cpuset update in
4371 * such a way the check therein was true, and then it became false
4372 * before we got our cpuset_mems_cookie here.
4373 * This assumes that for all allocations, ac->nodemask can come only
4374 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4375 * when it does not intersect with the cpuset restrictions) or the
4376 * caller can deal with a violated nodemask.
4377 */
4378 if (cpusets_enabled() && ac->nodemask &&
4379 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4380 ac->nodemask = NULL;
4381 return true;
4382 }
4383
4384 /*
4385 * When updating a task's mems_allowed or mempolicy nodemask, it is
4386 * possible to race with parallel threads in such a way that our
4387 * allocation can fail while the mask is being updated. If we are about
4388 * to fail, check if the cpuset changed during allocation and if so,
4389 * retry.
4390 */
4391 if (read_mems_allowed_retry(cpuset_mems_cookie))
4392 return true;
4393
4394 return false;
4395}
4396
11e33f6a
MG
4397static inline struct page *
4398__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4399 struct alloc_context *ac)
11e33f6a 4400{
d0164adc 4401 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4402 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4403 struct page *page = NULL;
c603844b 4404 unsigned int alloc_flags;
11e33f6a 4405 unsigned long did_some_progress;
5ce9bfef 4406 enum compact_priority compact_priority;
c5d01d0d 4407 enum compact_result compact_result;
5ce9bfef
VB
4408 int compaction_retries;
4409 int no_progress_loops;
5ce9bfef 4410 unsigned int cpuset_mems_cookie;
cd04ae1e 4411 int reserve_flags;
1da177e4 4412
d0164adc
MG
4413 /*
4414 * We also sanity check to catch abuse of atomic reserves being used by
4415 * callers that are not in atomic context.
4416 */
4417 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4418 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4419 gfp_mask &= ~__GFP_ATOMIC;
4420
5ce9bfef
VB
4421retry_cpuset:
4422 compaction_retries = 0;
4423 no_progress_loops = 0;
4424 compact_priority = DEF_COMPACT_PRIORITY;
4425 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4426
4427 /*
4428 * The fast path uses conservative alloc_flags to succeed only until
4429 * kswapd needs to be woken up, and to avoid the cost of setting up
4430 * alloc_flags precisely. So we do that now.
4431 */
4432 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4433
e47483bc
VB
4434 /*
4435 * We need to recalculate the starting point for the zonelist iterator
4436 * because we might have used different nodemask in the fast path, or
4437 * there was a cpuset modification and we are retrying - otherwise we
4438 * could end up iterating over non-eligible zones endlessly.
4439 */
4440 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4441 ac->high_zoneidx, ac->nodemask);
4442 if (!ac->preferred_zoneref->zone)
4443 goto nopage;
4444
0a79cdad 4445 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4446 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4447
4448 /*
4449 * The adjusted alloc_flags might result in immediate success, so try
4450 * that first
4451 */
4452 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4453 if (page)
4454 goto got_pg;
4455
a8161d1e
VB
4456 /*
4457 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4458 * that we have enough base pages and don't need to reclaim. For non-
4459 * movable high-order allocations, do that as well, as compaction will
4460 * try prevent permanent fragmentation by migrating from blocks of the
4461 * same migratetype.
4462 * Don't try this for allocations that are allowed to ignore
4463 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4464 */
282722b0
VB
4465 if (can_direct_reclaim &&
4466 (costly_order ||
4467 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4468 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4469 page = __alloc_pages_direct_compact(gfp_mask, order,
4470 alloc_flags, ac,
a5508cd8 4471 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4472 &compact_result);
4473 if (page)
4474 goto got_pg;
4475
3eb2771b
VB
4476 /*
4477 * Checks for costly allocations with __GFP_NORETRY, which
4478 * includes THP page fault allocations
4479 */
282722b0 4480 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4481 /*
4482 * If compaction is deferred for high-order allocations,
4483 * it is because sync compaction recently failed. If
4484 * this is the case and the caller requested a THP
4485 * allocation, we do not want to heavily disrupt the
4486 * system, so we fail the allocation instead of entering
4487 * direct reclaim.
4488 */
4489 if (compact_result == COMPACT_DEFERRED)
4490 goto nopage;
4491
a8161d1e 4492 /*
3eb2771b
VB
4493 * Looks like reclaim/compaction is worth trying, but
4494 * sync compaction could be very expensive, so keep
25160354 4495 * using async compaction.
a8161d1e 4496 */
a5508cd8 4497 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4498 }
4499 }
23771235 4500
31a6c190 4501retry:
23771235 4502 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4503 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4504 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4505
cd04ae1e
MH
4506 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4507 if (reserve_flags)
4508 alloc_flags = reserve_flags;
23771235 4509
e46e7b77 4510 /*
d6a24df0
VB
4511 * Reset the nodemask and zonelist iterators if memory policies can be
4512 * ignored. These allocations are high priority and system rather than
4513 * user oriented.
e46e7b77 4514 */
cd04ae1e 4515 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4516 ac->nodemask = NULL;
e46e7b77
MG
4517 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4518 ac->high_zoneidx, ac->nodemask);
4519 }
4520
23771235 4521 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4522 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4523 if (page)
4524 goto got_pg;
1da177e4 4525
d0164adc 4526 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4527 if (!can_direct_reclaim)
1da177e4
LT
4528 goto nopage;
4529
9a67f648
MH
4530 /* Avoid recursion of direct reclaim */
4531 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4532 goto nopage;
4533
a8161d1e
VB
4534 /* Try direct reclaim and then allocating */
4535 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4536 &did_some_progress);
4537 if (page)
4538 goto got_pg;
4539
4540 /* Try direct compaction and then allocating */
a9263751 4541 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4542 compact_priority, &compact_result);
56de7263
MG
4543 if (page)
4544 goto got_pg;
75f30861 4545
9083905a
JW
4546 /* Do not loop if specifically requested */
4547 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4548 goto nopage;
9083905a 4549
0a0337e0
MH
4550 /*
4551 * Do not retry costly high order allocations unless they are
dcda9b04 4552 * __GFP_RETRY_MAYFAIL
0a0337e0 4553 */
dcda9b04 4554 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4555 goto nopage;
0a0337e0 4556
0a0337e0 4557 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4558 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4559 goto retry;
4560
33c2d214
MH
4561 /*
4562 * It doesn't make any sense to retry for the compaction if the order-0
4563 * reclaim is not able to make any progress because the current
4564 * implementation of the compaction depends on the sufficient amount
4565 * of free memory (see __compaction_suitable)
4566 */
4567 if (did_some_progress > 0 &&
86a294a8 4568 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4569 compact_result, &compact_priority,
d9436498 4570 &compaction_retries))
33c2d214
MH
4571 goto retry;
4572
902b6281
VB
4573
4574 /* Deal with possible cpuset update races before we start OOM killing */
4575 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4576 goto retry_cpuset;
4577
9083905a
JW
4578 /* Reclaim has failed us, start killing things */
4579 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4580 if (page)
4581 goto got_pg;
4582
9a67f648 4583 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4584 if (tsk_is_oom_victim(current) &&
4585 (alloc_flags == ALLOC_OOM ||
c288983d 4586 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4587 goto nopage;
4588
9083905a 4589 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4590 if (did_some_progress) {
4591 no_progress_loops = 0;
9083905a 4592 goto retry;
0a0337e0 4593 }
9083905a 4594
1da177e4 4595nopage:
902b6281
VB
4596 /* Deal with possible cpuset update races before we fail */
4597 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4598 goto retry_cpuset;
4599
9a67f648
MH
4600 /*
4601 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4602 * we always retry
4603 */
4604 if (gfp_mask & __GFP_NOFAIL) {
4605 /*
4606 * All existing users of the __GFP_NOFAIL are blockable, so warn
4607 * of any new users that actually require GFP_NOWAIT
4608 */
4609 if (WARN_ON_ONCE(!can_direct_reclaim))
4610 goto fail;
4611
4612 /*
4613 * PF_MEMALLOC request from this context is rather bizarre
4614 * because we cannot reclaim anything and only can loop waiting
4615 * for somebody to do a work for us
4616 */
4617 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4618
4619 /*
4620 * non failing costly orders are a hard requirement which we
4621 * are not prepared for much so let's warn about these users
4622 * so that we can identify them and convert them to something
4623 * else.
4624 */
4625 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4626
6c18ba7a
MH
4627 /*
4628 * Help non-failing allocations by giving them access to memory
4629 * reserves but do not use ALLOC_NO_WATERMARKS because this
4630 * could deplete whole memory reserves which would just make
4631 * the situation worse
4632 */
4633 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4634 if (page)
4635 goto got_pg;
4636
9a67f648
MH
4637 cond_resched();
4638 goto retry;
4639 }
4640fail:
a8e99259 4641 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4642 "page allocation failure: order:%u", order);
1da177e4 4643got_pg:
072bb0aa 4644 return page;
1da177e4 4645}
11e33f6a 4646
9cd75558 4647static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4648 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4649 struct alloc_context *ac, gfp_t *alloc_mask,
4650 unsigned int *alloc_flags)
11e33f6a 4651{
9cd75558 4652 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4653 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4654 ac->nodemask = nodemask;
4655 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4656
682a3385 4657 if (cpusets_enabled()) {
9cd75558 4658 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4659 if (!ac->nodemask)
4660 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4661 else
4662 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4663 }
4664
d92a8cfc
PZ
4665 fs_reclaim_acquire(gfp_mask);
4666 fs_reclaim_release(gfp_mask);
11e33f6a 4667
d0164adc 4668 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4669
4670 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4671 return false;
11e33f6a 4672
d883c6cf
JK
4673 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4674 *alloc_flags |= ALLOC_CMA;
4675
9cd75558
MG
4676 return true;
4677}
21bb9bd1 4678
9cd75558 4679/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4680static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4681{
c9ab0c4f 4682 /* Dirty zone balancing only done in the fast path */
9cd75558 4683 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4684
e46e7b77
MG
4685 /*
4686 * The preferred zone is used for statistics but crucially it is
4687 * also used as the starting point for the zonelist iterator. It
4688 * may get reset for allocations that ignore memory policies.
4689 */
9cd75558
MG
4690 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4691 ac->high_zoneidx, ac->nodemask);
4692}
4693
4694/*
4695 * This is the 'heart' of the zoned buddy allocator.
4696 */
4697struct page *
04ec6264
VB
4698__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4699 nodemask_t *nodemask)
9cd75558
MG
4700{
4701 struct page *page;
4702 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4703 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4704 struct alloc_context ac = { };
4705
c63ae43b
MH
4706 /*
4707 * There are several places where we assume that the order value is sane
4708 * so bail out early if the request is out of bound.
4709 */
4710 if (unlikely(order >= MAX_ORDER)) {
4711 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4712 return NULL;
4713 }
4714
9cd75558 4715 gfp_mask &= gfp_allowed_mask;
f19360f0 4716 alloc_mask = gfp_mask;
04ec6264 4717 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4718 return NULL;
4719
a380b40a 4720 finalise_ac(gfp_mask, &ac);
5bb1b169 4721
6bb15450
MG
4722 /*
4723 * Forbid the first pass from falling back to types that fragment
4724 * memory until all local zones are considered.
4725 */
0a79cdad 4726 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4727
5117f45d 4728 /* First allocation attempt */
a9263751 4729 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4730 if (likely(page))
4731 goto out;
11e33f6a 4732
4fcb0971 4733 /*
7dea19f9
MH
4734 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4735 * resp. GFP_NOIO which has to be inherited for all allocation requests
4736 * from a particular context which has been marked by
4737 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4738 */
7dea19f9 4739 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4740 ac.spread_dirty_pages = false;
23f086f9 4741
4741526b
MG
4742 /*
4743 * Restore the original nodemask if it was potentially replaced with
4744 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4745 */
e47483bc 4746 if (unlikely(ac.nodemask != nodemask))
4741526b 4747 ac.nodemask = nodemask;
16096c25 4748
4fcb0971 4749 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4750
4fcb0971 4751out:
c4159a75 4752 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
60cd4bcd 4753 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
c4159a75
VD
4754 __free_pages(page, order);
4755 page = NULL;
4949148a
VD
4756 }
4757
4fcb0971
MG
4758 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4759
11e33f6a 4760 return page;
1da177e4 4761}
d239171e 4762EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4763
4764/*
9ea9a680
MH
4765 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4766 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4767 * you need to access high mem.
1da177e4 4768 */
920c7a5d 4769unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4770{
945a1113
AM
4771 struct page *page;
4772
9ea9a680 4773 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4774 if (!page)
4775 return 0;
4776 return (unsigned long) page_address(page);
4777}
1da177e4
LT
4778EXPORT_SYMBOL(__get_free_pages);
4779
920c7a5d 4780unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4781{
945a1113 4782 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4783}
1da177e4
LT
4784EXPORT_SYMBOL(get_zeroed_page);
4785
742aa7fb 4786static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4787{
742aa7fb
AL
4788 if (order == 0) /* Via pcp? */
4789 free_unref_page(page);
4790 else
4791 __free_pages_ok(page, order);
1da177e4
LT
4792}
4793
742aa7fb
AL
4794void __free_pages(struct page *page, unsigned int order)
4795{
4796 if (put_page_testzero(page))
4797 free_the_page(page, order);
4798}
1da177e4
LT
4799EXPORT_SYMBOL(__free_pages);
4800
920c7a5d 4801void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4802{
4803 if (addr != 0) {
725d704e 4804 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4805 __free_pages(virt_to_page((void *)addr), order);
4806 }
4807}
4808
4809EXPORT_SYMBOL(free_pages);
4810
b63ae8ca
AD
4811/*
4812 * Page Fragment:
4813 * An arbitrary-length arbitrary-offset area of memory which resides
4814 * within a 0 or higher order page. Multiple fragments within that page
4815 * are individually refcounted, in the page's reference counter.
4816 *
4817 * The page_frag functions below provide a simple allocation framework for
4818 * page fragments. This is used by the network stack and network device
4819 * drivers to provide a backing region of memory for use as either an
4820 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4821 */
2976db80
AD
4822static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4823 gfp_t gfp_mask)
b63ae8ca
AD
4824{
4825 struct page *page = NULL;
4826 gfp_t gfp = gfp_mask;
4827
4828#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4829 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4830 __GFP_NOMEMALLOC;
4831 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4832 PAGE_FRAG_CACHE_MAX_ORDER);
4833 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4834#endif
4835 if (unlikely(!page))
4836 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4837
4838 nc->va = page ? page_address(page) : NULL;
4839
4840 return page;
4841}
4842
2976db80 4843void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4844{
4845 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4846
742aa7fb
AL
4847 if (page_ref_sub_and_test(page, count))
4848 free_the_page(page, compound_order(page));
44fdffd7 4849}
2976db80 4850EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4851
8c2dd3e4
AD
4852void *page_frag_alloc(struct page_frag_cache *nc,
4853 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4854{
4855 unsigned int size = PAGE_SIZE;
4856 struct page *page;
4857 int offset;
4858
4859 if (unlikely(!nc->va)) {
4860refill:
2976db80 4861 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4862 if (!page)
4863 return NULL;
4864
4865#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4866 /* if size can vary use size else just use PAGE_SIZE */
4867 size = nc->size;
4868#endif
4869 /* Even if we own the page, we do not use atomic_set().
4870 * This would break get_page_unless_zero() users.
4871 */
86447726 4872 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4873
4874 /* reset page count bias and offset to start of new frag */
2f064f34 4875 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4876 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4877 nc->offset = size;
4878 }
4879
4880 offset = nc->offset - fragsz;
4881 if (unlikely(offset < 0)) {
4882 page = virt_to_page(nc->va);
4883
fe896d18 4884 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4885 goto refill;
4886
4887#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4888 /* if size can vary use size else just use PAGE_SIZE */
4889 size = nc->size;
4890#endif
4891 /* OK, page count is 0, we can safely set it */
86447726 4892 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4893
4894 /* reset page count bias and offset to start of new frag */
86447726 4895 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4896 offset = size - fragsz;
4897 }
4898
4899 nc->pagecnt_bias--;
4900 nc->offset = offset;
4901
4902 return nc->va + offset;
4903}
8c2dd3e4 4904EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4905
4906/*
4907 * Frees a page fragment allocated out of either a compound or order 0 page.
4908 */
8c2dd3e4 4909void page_frag_free(void *addr)
b63ae8ca
AD
4910{
4911 struct page *page = virt_to_head_page(addr);
4912
742aa7fb
AL
4913 if (unlikely(put_page_testzero(page)))
4914 free_the_page(page, compound_order(page));
b63ae8ca 4915}
8c2dd3e4 4916EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4917
d00181b9
KS
4918static void *make_alloc_exact(unsigned long addr, unsigned int order,
4919 size_t size)
ee85c2e1
AK
4920{
4921 if (addr) {
4922 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4923 unsigned long used = addr + PAGE_ALIGN(size);
4924
4925 split_page(virt_to_page((void *)addr), order);
4926 while (used < alloc_end) {
4927 free_page(used);
4928 used += PAGE_SIZE;
4929 }
4930 }
4931 return (void *)addr;
4932}
4933
2be0ffe2
TT
4934/**
4935 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4936 * @size: the number of bytes to allocate
63931eb9 4937 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4938 *
4939 * This function is similar to alloc_pages(), except that it allocates the
4940 * minimum number of pages to satisfy the request. alloc_pages() can only
4941 * allocate memory in power-of-two pages.
4942 *
4943 * This function is also limited by MAX_ORDER.
4944 *
4945 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4946 *
4947 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4948 */
4949void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4950{
4951 unsigned int order = get_order(size);
4952 unsigned long addr;
4953
63931eb9
VB
4954 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4955 gfp_mask &= ~__GFP_COMP;
4956
2be0ffe2 4957 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4958 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4959}
4960EXPORT_SYMBOL(alloc_pages_exact);
4961
ee85c2e1
AK
4962/**
4963 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4964 * pages on a node.
b5e6ab58 4965 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4966 * @size: the number of bytes to allocate
63931eb9 4967 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4968 *
4969 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4970 * back.
a862f68a
MR
4971 *
4972 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4973 */
e1931811 4974void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4975{
d00181b9 4976 unsigned int order = get_order(size);
63931eb9
VB
4977 struct page *p;
4978
4979 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4980 gfp_mask &= ~__GFP_COMP;
4981
4982 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4983 if (!p)
4984 return NULL;
4985 return make_alloc_exact((unsigned long)page_address(p), order, size);
4986}
ee85c2e1 4987
2be0ffe2
TT
4988/**
4989 * free_pages_exact - release memory allocated via alloc_pages_exact()
4990 * @virt: the value returned by alloc_pages_exact.
4991 * @size: size of allocation, same value as passed to alloc_pages_exact().
4992 *
4993 * Release the memory allocated by a previous call to alloc_pages_exact.
4994 */
4995void free_pages_exact(void *virt, size_t size)
4996{
4997 unsigned long addr = (unsigned long)virt;
4998 unsigned long end = addr + PAGE_ALIGN(size);
4999
5000 while (addr < end) {
5001 free_page(addr);
5002 addr += PAGE_SIZE;
5003 }
5004}
5005EXPORT_SYMBOL(free_pages_exact);
5006
e0fb5815
ZY
5007/**
5008 * nr_free_zone_pages - count number of pages beyond high watermark
5009 * @offset: The zone index of the highest zone
5010 *
a862f68a 5011 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5012 * high watermark within all zones at or below a given zone index. For each
5013 * zone, the number of pages is calculated as:
0e056eb5 5014 *
5015 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5016 *
5017 * Return: number of pages beyond high watermark.
e0fb5815 5018 */
ebec3862 5019static unsigned long nr_free_zone_pages(int offset)
1da177e4 5020{
dd1a239f 5021 struct zoneref *z;
54a6eb5c
MG
5022 struct zone *zone;
5023
e310fd43 5024 /* Just pick one node, since fallback list is circular */
ebec3862 5025 unsigned long sum = 0;
1da177e4 5026
0e88460d 5027 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5028
54a6eb5c 5029 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5030 unsigned long size = zone_managed_pages(zone);
41858966 5031 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5032 if (size > high)
5033 sum += size - high;
1da177e4
LT
5034 }
5035
5036 return sum;
5037}
5038
e0fb5815
ZY
5039/**
5040 * nr_free_buffer_pages - count number of pages beyond high watermark
5041 *
5042 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5043 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5044 *
5045 * Return: number of pages beyond high watermark within ZONE_DMA and
5046 * ZONE_NORMAL.
1da177e4 5047 */
ebec3862 5048unsigned long nr_free_buffer_pages(void)
1da177e4 5049{
af4ca457 5050 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5051}
c2f1a551 5052EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5053
e0fb5815
ZY
5054/**
5055 * nr_free_pagecache_pages - count number of pages beyond high watermark
5056 *
5057 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5058 * high watermark within all zones.
a862f68a
MR
5059 *
5060 * Return: number of pages beyond high watermark within all zones.
1da177e4 5061 */
ebec3862 5062unsigned long nr_free_pagecache_pages(void)
1da177e4 5063{
2a1e274a 5064 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5065}
08e0f6a9
CL
5066
5067static inline void show_node(struct zone *zone)
1da177e4 5068{
e5adfffc 5069 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5070 printk("Node %d ", zone_to_nid(zone));
1da177e4 5071}
1da177e4 5072
d02bd27b
IR
5073long si_mem_available(void)
5074{
5075 long available;
5076 unsigned long pagecache;
5077 unsigned long wmark_low = 0;
5078 unsigned long pages[NR_LRU_LISTS];
b29940c1 5079 unsigned long reclaimable;
d02bd27b
IR
5080 struct zone *zone;
5081 int lru;
5082
5083 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5084 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5085
5086 for_each_zone(zone)
a9214443 5087 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5088
5089 /*
5090 * Estimate the amount of memory available for userspace allocations,
5091 * without causing swapping.
5092 */
c41f012a 5093 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5094
5095 /*
5096 * Not all the page cache can be freed, otherwise the system will
5097 * start swapping. Assume at least half of the page cache, or the
5098 * low watermark worth of cache, needs to stay.
5099 */
5100 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5101 pagecache -= min(pagecache / 2, wmark_low);
5102 available += pagecache;
5103
5104 /*
b29940c1
VB
5105 * Part of the reclaimable slab and other kernel memory consists of
5106 * items that are in use, and cannot be freed. Cap this estimate at the
5107 * low watermark.
d02bd27b 5108 */
b29940c1
VB
5109 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5110 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5111 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5112
d02bd27b
IR
5113 if (available < 0)
5114 available = 0;
5115 return available;
5116}
5117EXPORT_SYMBOL_GPL(si_mem_available);
5118
1da177e4
LT
5119void si_meminfo(struct sysinfo *val)
5120{
ca79b0c2 5121 val->totalram = totalram_pages();
11fb9989 5122 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5123 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5124 val->bufferram = nr_blockdev_pages();
ca79b0c2 5125 val->totalhigh = totalhigh_pages();
1da177e4 5126 val->freehigh = nr_free_highpages();
1da177e4
LT
5127 val->mem_unit = PAGE_SIZE;
5128}
5129
5130EXPORT_SYMBOL(si_meminfo);
5131
5132#ifdef CONFIG_NUMA
5133void si_meminfo_node(struct sysinfo *val, int nid)
5134{
cdd91a77
JL
5135 int zone_type; /* needs to be signed */
5136 unsigned long managed_pages = 0;
fc2bd799
JK
5137 unsigned long managed_highpages = 0;
5138 unsigned long free_highpages = 0;
1da177e4
LT
5139 pg_data_t *pgdat = NODE_DATA(nid);
5140
cdd91a77 5141 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5142 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5143 val->totalram = managed_pages;
11fb9989 5144 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5145 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5146#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5147 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5148 struct zone *zone = &pgdat->node_zones[zone_type];
5149
5150 if (is_highmem(zone)) {
9705bea5 5151 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5152 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5153 }
5154 }
5155 val->totalhigh = managed_highpages;
5156 val->freehigh = free_highpages;
98d2b0eb 5157#else
fc2bd799
JK
5158 val->totalhigh = managed_highpages;
5159 val->freehigh = free_highpages;
98d2b0eb 5160#endif
1da177e4
LT
5161 val->mem_unit = PAGE_SIZE;
5162}
5163#endif
5164
ddd588b5 5165/*
7bf02ea2
DR
5166 * Determine whether the node should be displayed or not, depending on whether
5167 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5168 */
9af744d7 5169static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5170{
ddd588b5 5171 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5172 return false;
ddd588b5 5173
9af744d7
MH
5174 /*
5175 * no node mask - aka implicit memory numa policy. Do not bother with
5176 * the synchronization - read_mems_allowed_begin - because we do not
5177 * have to be precise here.
5178 */
5179 if (!nodemask)
5180 nodemask = &cpuset_current_mems_allowed;
5181
5182 return !node_isset(nid, *nodemask);
ddd588b5
DR
5183}
5184
1da177e4
LT
5185#define K(x) ((x) << (PAGE_SHIFT-10))
5186
377e4f16
RV
5187static void show_migration_types(unsigned char type)
5188{
5189 static const char types[MIGRATE_TYPES] = {
5190 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5191 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5192 [MIGRATE_RECLAIMABLE] = 'E',
5193 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5194#ifdef CONFIG_CMA
5195 [MIGRATE_CMA] = 'C',
5196#endif
194159fb 5197#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5198 [MIGRATE_ISOLATE] = 'I',
194159fb 5199#endif
377e4f16
RV
5200 };
5201 char tmp[MIGRATE_TYPES + 1];
5202 char *p = tmp;
5203 int i;
5204
5205 for (i = 0; i < MIGRATE_TYPES; i++) {
5206 if (type & (1 << i))
5207 *p++ = types[i];
5208 }
5209
5210 *p = '\0';
1f84a18f 5211 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5212}
5213
1da177e4
LT
5214/*
5215 * Show free area list (used inside shift_scroll-lock stuff)
5216 * We also calculate the percentage fragmentation. We do this by counting the
5217 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5218 *
5219 * Bits in @filter:
5220 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5221 * cpuset.
1da177e4 5222 */
9af744d7 5223void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5224{
d1bfcdb8 5225 unsigned long free_pcp = 0;
c7241913 5226 int cpu;
1da177e4 5227 struct zone *zone;
599d0c95 5228 pg_data_t *pgdat;
1da177e4 5229
ee99c71c 5230 for_each_populated_zone(zone) {
9af744d7 5231 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5232 continue;
d1bfcdb8 5233
761b0677
KK
5234 for_each_online_cpu(cpu)
5235 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5236 }
5237
a731286d
KM
5238 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5239 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5240 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5241 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5242 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5243 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5244 global_node_page_state(NR_ACTIVE_ANON),
5245 global_node_page_state(NR_INACTIVE_ANON),
5246 global_node_page_state(NR_ISOLATED_ANON),
5247 global_node_page_state(NR_ACTIVE_FILE),
5248 global_node_page_state(NR_INACTIVE_FILE),
5249 global_node_page_state(NR_ISOLATED_FILE),
5250 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5251 global_node_page_state(NR_FILE_DIRTY),
5252 global_node_page_state(NR_WRITEBACK),
5253 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5254 global_node_page_state(NR_SLAB_RECLAIMABLE),
5255 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5256 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5257 global_node_page_state(NR_SHMEM),
c41f012a
MH
5258 global_zone_page_state(NR_PAGETABLE),
5259 global_zone_page_state(NR_BOUNCE),
5260 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5261 free_pcp,
c41f012a 5262 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5263
599d0c95 5264 for_each_online_pgdat(pgdat) {
9af744d7 5265 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5266 continue;
5267
599d0c95
MG
5268 printk("Node %d"
5269 " active_anon:%lukB"
5270 " inactive_anon:%lukB"
5271 " active_file:%lukB"
5272 " inactive_file:%lukB"
5273 " unevictable:%lukB"
5274 " isolated(anon):%lukB"
5275 " isolated(file):%lukB"
50658e2e 5276 " mapped:%lukB"
11fb9989
MG
5277 " dirty:%lukB"
5278 " writeback:%lukB"
5279 " shmem:%lukB"
5280#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5281 " shmem_thp: %lukB"
5282 " shmem_pmdmapped: %lukB"
5283 " anon_thp: %lukB"
5284#endif
5285 " writeback_tmp:%lukB"
5286 " unstable:%lukB"
599d0c95
MG
5287 " all_unreclaimable? %s"
5288 "\n",
5289 pgdat->node_id,
5290 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5291 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5292 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5293 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5294 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5295 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5296 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5297 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5298 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5299 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5300 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5301#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5302 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5303 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5304 * HPAGE_PMD_NR),
5305 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5306#endif
11fb9989
MG
5307 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5308 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5309 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5310 "yes" : "no");
599d0c95
MG
5311 }
5312
ee99c71c 5313 for_each_populated_zone(zone) {
1da177e4
LT
5314 int i;
5315
9af744d7 5316 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5317 continue;
d1bfcdb8
KK
5318
5319 free_pcp = 0;
5320 for_each_online_cpu(cpu)
5321 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5322
1da177e4 5323 show_node(zone);
1f84a18f
JP
5324 printk(KERN_CONT
5325 "%s"
1da177e4
LT
5326 " free:%lukB"
5327 " min:%lukB"
5328 " low:%lukB"
5329 " high:%lukB"
71c799f4
MK
5330 " active_anon:%lukB"
5331 " inactive_anon:%lukB"
5332 " active_file:%lukB"
5333 " inactive_file:%lukB"
5334 " unevictable:%lukB"
5a1c84b4 5335 " writepending:%lukB"
1da177e4 5336 " present:%lukB"
9feedc9d 5337 " managed:%lukB"
4a0aa73f 5338 " mlocked:%lukB"
c6a7f572 5339 " kernel_stack:%lukB"
4a0aa73f 5340 " pagetables:%lukB"
4a0aa73f 5341 " bounce:%lukB"
d1bfcdb8
KK
5342 " free_pcp:%lukB"
5343 " local_pcp:%ukB"
d1ce749a 5344 " free_cma:%lukB"
1da177e4
LT
5345 "\n",
5346 zone->name,
88f5acf8 5347 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5348 K(min_wmark_pages(zone)),
5349 K(low_wmark_pages(zone)),
5350 K(high_wmark_pages(zone)),
71c799f4
MK
5351 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5352 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5353 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5354 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5355 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5356 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5357 K(zone->present_pages),
9705bea5 5358 K(zone_managed_pages(zone)),
4a0aa73f 5359 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5360 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5361 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5362 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5363 K(free_pcp),
5364 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5365 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5366 printk("lowmem_reserve[]:");
5367 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5368 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5369 printk(KERN_CONT "\n");
1da177e4
LT
5370 }
5371
ee99c71c 5372 for_each_populated_zone(zone) {
d00181b9
KS
5373 unsigned int order;
5374 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5375 unsigned char types[MAX_ORDER];
1da177e4 5376
9af744d7 5377 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5378 continue;
1da177e4 5379 show_node(zone);
1f84a18f 5380 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5381
5382 spin_lock_irqsave(&zone->lock, flags);
5383 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5384 struct free_area *area = &zone->free_area[order];
5385 int type;
5386
5387 nr[order] = area->nr_free;
8f9de51a 5388 total += nr[order] << order;
377e4f16
RV
5389
5390 types[order] = 0;
5391 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5392 if (!free_area_empty(area, type))
377e4f16
RV
5393 types[order] |= 1 << type;
5394 }
1da177e4
LT
5395 }
5396 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5397 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5398 printk(KERN_CONT "%lu*%lukB ",
5399 nr[order], K(1UL) << order);
377e4f16
RV
5400 if (nr[order])
5401 show_migration_types(types[order]);
5402 }
1f84a18f 5403 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5404 }
5405
949f7ec5
DR
5406 hugetlb_show_meminfo();
5407
11fb9989 5408 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5409
1da177e4
LT
5410 show_swap_cache_info();
5411}
5412
19770b32
MG
5413static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5414{
5415 zoneref->zone = zone;
5416 zoneref->zone_idx = zone_idx(zone);
5417}
5418
1da177e4
LT
5419/*
5420 * Builds allocation fallback zone lists.
1a93205b
CL
5421 *
5422 * Add all populated zones of a node to the zonelist.
1da177e4 5423 */
9d3be21b 5424static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5425{
1a93205b 5426 struct zone *zone;
bc732f1d 5427 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5428 int nr_zones = 0;
02a68a5e
CL
5429
5430 do {
2f6726e5 5431 zone_type--;
070f8032 5432 zone = pgdat->node_zones + zone_type;
6aa303de 5433 if (managed_zone(zone)) {
9d3be21b 5434 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5435 check_highest_zone(zone_type);
1da177e4 5436 }
2f6726e5 5437 } while (zone_type);
bc732f1d 5438
070f8032 5439 return nr_zones;
1da177e4
LT
5440}
5441
5442#ifdef CONFIG_NUMA
f0c0b2b8
KH
5443
5444static int __parse_numa_zonelist_order(char *s)
5445{
c9bff3ee
MH
5446 /*
5447 * We used to support different zonlists modes but they turned
5448 * out to be just not useful. Let's keep the warning in place
5449 * if somebody still use the cmd line parameter so that we do
5450 * not fail it silently
5451 */
5452 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5453 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5454 return -EINVAL;
5455 }
5456 return 0;
5457}
5458
5459static __init int setup_numa_zonelist_order(char *s)
5460{
ecb256f8
VL
5461 if (!s)
5462 return 0;
5463
c9bff3ee 5464 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5465}
5466early_param("numa_zonelist_order", setup_numa_zonelist_order);
5467
c9bff3ee
MH
5468char numa_zonelist_order[] = "Node";
5469
f0c0b2b8
KH
5470/*
5471 * sysctl handler for numa_zonelist_order
5472 */
cccad5b9 5473int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5474 void __user *buffer, size_t *length,
f0c0b2b8
KH
5475 loff_t *ppos)
5476{
c9bff3ee 5477 char *str;
f0c0b2b8
KH
5478 int ret;
5479
c9bff3ee
MH
5480 if (!write)
5481 return proc_dostring(table, write, buffer, length, ppos);
5482 str = memdup_user_nul(buffer, 16);
5483 if (IS_ERR(str))
5484 return PTR_ERR(str);
dacbde09 5485
c9bff3ee
MH
5486 ret = __parse_numa_zonelist_order(str);
5487 kfree(str);
443c6f14 5488 return ret;
f0c0b2b8
KH
5489}
5490
5491
62bc62a8 5492#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5493static int node_load[MAX_NUMNODES];
5494
1da177e4 5495/**
4dc3b16b 5496 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5497 * @node: node whose fallback list we're appending
5498 * @used_node_mask: nodemask_t of already used nodes
5499 *
5500 * We use a number of factors to determine which is the next node that should
5501 * appear on a given node's fallback list. The node should not have appeared
5502 * already in @node's fallback list, and it should be the next closest node
5503 * according to the distance array (which contains arbitrary distance values
5504 * from each node to each node in the system), and should also prefer nodes
5505 * with no CPUs, since presumably they'll have very little allocation pressure
5506 * on them otherwise.
a862f68a
MR
5507 *
5508 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5509 */
f0c0b2b8 5510static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5511{
4cf808eb 5512 int n, val;
1da177e4 5513 int min_val = INT_MAX;
00ef2d2f 5514 int best_node = NUMA_NO_NODE;
a70f7302 5515 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5516
4cf808eb
LT
5517 /* Use the local node if we haven't already */
5518 if (!node_isset(node, *used_node_mask)) {
5519 node_set(node, *used_node_mask);
5520 return node;
5521 }
1da177e4 5522
4b0ef1fe 5523 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5524
5525 /* Don't want a node to appear more than once */
5526 if (node_isset(n, *used_node_mask))
5527 continue;
5528
1da177e4
LT
5529 /* Use the distance array to find the distance */
5530 val = node_distance(node, n);
5531
4cf808eb
LT
5532 /* Penalize nodes under us ("prefer the next node") */
5533 val += (n < node);
5534
1da177e4 5535 /* Give preference to headless and unused nodes */
a70f7302
RR
5536 tmp = cpumask_of_node(n);
5537 if (!cpumask_empty(tmp))
1da177e4
LT
5538 val += PENALTY_FOR_NODE_WITH_CPUS;
5539
5540 /* Slight preference for less loaded node */
5541 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5542 val += node_load[n];
5543
5544 if (val < min_val) {
5545 min_val = val;
5546 best_node = n;
5547 }
5548 }
5549
5550 if (best_node >= 0)
5551 node_set(best_node, *used_node_mask);
5552
5553 return best_node;
5554}
5555
f0c0b2b8
KH
5556
5557/*
5558 * Build zonelists ordered by node and zones within node.
5559 * This results in maximum locality--normal zone overflows into local
5560 * DMA zone, if any--but risks exhausting DMA zone.
5561 */
9d3be21b
MH
5562static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5563 unsigned nr_nodes)
1da177e4 5564{
9d3be21b
MH
5565 struct zoneref *zonerefs;
5566 int i;
5567
5568 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5569
5570 for (i = 0; i < nr_nodes; i++) {
5571 int nr_zones;
5572
5573 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5574
9d3be21b
MH
5575 nr_zones = build_zonerefs_node(node, zonerefs);
5576 zonerefs += nr_zones;
5577 }
5578 zonerefs->zone = NULL;
5579 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5580}
5581
523b9458
CL
5582/*
5583 * Build gfp_thisnode zonelists
5584 */
5585static void build_thisnode_zonelists(pg_data_t *pgdat)
5586{
9d3be21b
MH
5587 struct zoneref *zonerefs;
5588 int nr_zones;
523b9458 5589
9d3be21b
MH
5590 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5591 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5592 zonerefs += nr_zones;
5593 zonerefs->zone = NULL;
5594 zonerefs->zone_idx = 0;
523b9458
CL
5595}
5596
f0c0b2b8
KH
5597/*
5598 * Build zonelists ordered by zone and nodes within zones.
5599 * This results in conserving DMA zone[s] until all Normal memory is
5600 * exhausted, but results in overflowing to remote node while memory
5601 * may still exist in local DMA zone.
5602 */
f0c0b2b8 5603
f0c0b2b8
KH
5604static void build_zonelists(pg_data_t *pgdat)
5605{
9d3be21b
MH
5606 static int node_order[MAX_NUMNODES];
5607 int node, load, nr_nodes = 0;
1da177e4 5608 nodemask_t used_mask;
f0c0b2b8 5609 int local_node, prev_node;
1da177e4
LT
5610
5611 /* NUMA-aware ordering of nodes */
5612 local_node = pgdat->node_id;
62bc62a8 5613 load = nr_online_nodes;
1da177e4
LT
5614 prev_node = local_node;
5615 nodes_clear(used_mask);
f0c0b2b8 5616
f0c0b2b8 5617 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5618 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5619 /*
5620 * We don't want to pressure a particular node.
5621 * So adding penalty to the first node in same
5622 * distance group to make it round-robin.
5623 */
957f822a
DR
5624 if (node_distance(local_node, node) !=
5625 node_distance(local_node, prev_node))
f0c0b2b8
KH
5626 node_load[node] = load;
5627
9d3be21b 5628 node_order[nr_nodes++] = node;
1da177e4
LT
5629 prev_node = node;
5630 load--;
1da177e4 5631 }
523b9458 5632
9d3be21b 5633 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5634 build_thisnode_zonelists(pgdat);
1da177e4
LT
5635}
5636
7aac7898
LS
5637#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5638/*
5639 * Return node id of node used for "local" allocations.
5640 * I.e., first node id of first zone in arg node's generic zonelist.
5641 * Used for initializing percpu 'numa_mem', which is used primarily
5642 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5643 */
5644int local_memory_node(int node)
5645{
c33d6c06 5646 struct zoneref *z;
7aac7898 5647
c33d6c06 5648 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5649 gfp_zone(GFP_KERNEL),
c33d6c06 5650 NULL);
c1093b74 5651 return zone_to_nid(z->zone);
7aac7898
LS
5652}
5653#endif
f0c0b2b8 5654
6423aa81
JK
5655static void setup_min_unmapped_ratio(void);
5656static void setup_min_slab_ratio(void);
1da177e4
LT
5657#else /* CONFIG_NUMA */
5658
f0c0b2b8 5659static void build_zonelists(pg_data_t *pgdat)
1da177e4 5660{
19655d34 5661 int node, local_node;
9d3be21b
MH
5662 struct zoneref *zonerefs;
5663 int nr_zones;
1da177e4
LT
5664
5665 local_node = pgdat->node_id;
1da177e4 5666
9d3be21b
MH
5667 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5668 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5669 zonerefs += nr_zones;
1da177e4 5670
54a6eb5c
MG
5671 /*
5672 * Now we build the zonelist so that it contains the zones
5673 * of all the other nodes.
5674 * We don't want to pressure a particular node, so when
5675 * building the zones for node N, we make sure that the
5676 * zones coming right after the local ones are those from
5677 * node N+1 (modulo N)
5678 */
5679 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5680 if (!node_online(node))
5681 continue;
9d3be21b
MH
5682 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5683 zonerefs += nr_zones;
1da177e4 5684 }
54a6eb5c
MG
5685 for (node = 0; node < local_node; node++) {
5686 if (!node_online(node))
5687 continue;
9d3be21b
MH
5688 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5689 zonerefs += nr_zones;
54a6eb5c
MG
5690 }
5691
9d3be21b
MH
5692 zonerefs->zone = NULL;
5693 zonerefs->zone_idx = 0;
1da177e4
LT
5694}
5695
5696#endif /* CONFIG_NUMA */
5697
99dcc3e5
CL
5698/*
5699 * Boot pageset table. One per cpu which is going to be used for all
5700 * zones and all nodes. The parameters will be set in such a way
5701 * that an item put on a list will immediately be handed over to
5702 * the buddy list. This is safe since pageset manipulation is done
5703 * with interrupts disabled.
5704 *
5705 * The boot_pagesets must be kept even after bootup is complete for
5706 * unused processors and/or zones. They do play a role for bootstrapping
5707 * hotplugged processors.
5708 *
5709 * zoneinfo_show() and maybe other functions do
5710 * not check if the processor is online before following the pageset pointer.
5711 * Other parts of the kernel may not check if the zone is available.
5712 */
5713static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5714static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5715static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5716
11cd8638 5717static void __build_all_zonelists(void *data)
1da177e4 5718{
6811378e 5719 int nid;
afb6ebb3 5720 int __maybe_unused cpu;
9adb62a5 5721 pg_data_t *self = data;
b93e0f32
MH
5722 static DEFINE_SPINLOCK(lock);
5723
5724 spin_lock(&lock);
9276b1bc 5725
7f9cfb31
BL
5726#ifdef CONFIG_NUMA
5727 memset(node_load, 0, sizeof(node_load));
5728#endif
9adb62a5 5729
c1152583
WY
5730 /*
5731 * This node is hotadded and no memory is yet present. So just
5732 * building zonelists is fine - no need to touch other nodes.
5733 */
9adb62a5
JL
5734 if (self && !node_online(self->node_id)) {
5735 build_zonelists(self);
c1152583
WY
5736 } else {
5737 for_each_online_node(nid) {
5738 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5739
c1152583
WY
5740 build_zonelists(pgdat);
5741 }
99dcc3e5 5742
7aac7898
LS
5743#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5744 /*
5745 * We now know the "local memory node" for each node--
5746 * i.e., the node of the first zone in the generic zonelist.
5747 * Set up numa_mem percpu variable for on-line cpus. During
5748 * boot, only the boot cpu should be on-line; we'll init the
5749 * secondary cpus' numa_mem as they come on-line. During
5750 * node/memory hotplug, we'll fixup all on-line cpus.
5751 */
d9c9a0b9 5752 for_each_online_cpu(cpu)
7aac7898 5753 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5754#endif
d9c9a0b9 5755 }
b93e0f32
MH
5756
5757 spin_unlock(&lock);
6811378e
YG
5758}
5759
061f67bc
RV
5760static noinline void __init
5761build_all_zonelists_init(void)
5762{
afb6ebb3
MH
5763 int cpu;
5764
061f67bc 5765 __build_all_zonelists(NULL);
afb6ebb3
MH
5766
5767 /*
5768 * Initialize the boot_pagesets that are going to be used
5769 * for bootstrapping processors. The real pagesets for
5770 * each zone will be allocated later when the per cpu
5771 * allocator is available.
5772 *
5773 * boot_pagesets are used also for bootstrapping offline
5774 * cpus if the system is already booted because the pagesets
5775 * are needed to initialize allocators on a specific cpu too.
5776 * F.e. the percpu allocator needs the page allocator which
5777 * needs the percpu allocator in order to allocate its pagesets
5778 * (a chicken-egg dilemma).
5779 */
5780 for_each_possible_cpu(cpu)
5781 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5782
061f67bc
RV
5783 mminit_verify_zonelist();
5784 cpuset_init_current_mems_allowed();
5785}
5786
4eaf3f64 5787/*
4eaf3f64 5788 * unless system_state == SYSTEM_BOOTING.
061f67bc 5789 *
72675e13 5790 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5791 * [protected by SYSTEM_BOOTING].
4eaf3f64 5792 */
72675e13 5793void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5794{
5795 if (system_state == SYSTEM_BOOTING) {
061f67bc 5796 build_all_zonelists_init();
6811378e 5797 } else {
11cd8638 5798 __build_all_zonelists(pgdat);
6811378e
YG
5799 /* cpuset refresh routine should be here */
5800 }
bd1e22b8 5801 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5802 /*
5803 * Disable grouping by mobility if the number of pages in the
5804 * system is too low to allow the mechanism to work. It would be
5805 * more accurate, but expensive to check per-zone. This check is
5806 * made on memory-hotadd so a system can start with mobility
5807 * disabled and enable it later
5808 */
d9c23400 5809 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5810 page_group_by_mobility_disabled = 1;
5811 else
5812 page_group_by_mobility_disabled = 0;
5813
ce0725f7 5814 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5815 nr_online_nodes,
756a025f
JP
5816 page_group_by_mobility_disabled ? "off" : "on",
5817 vm_total_pages);
f0c0b2b8 5818#ifdef CONFIG_NUMA
f88dfff5 5819 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5820#endif
1da177e4
LT
5821}
5822
a9a9e77f
PT
5823/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5824static bool __meminit
5825overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5826{
5827#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5828 static struct memblock_region *r;
5829
5830 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5831 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5832 for_each_memblock(memory, r) {
5833 if (*pfn < memblock_region_memory_end_pfn(r))
5834 break;
5835 }
5836 }
5837 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5838 memblock_is_mirror(r)) {
5839 *pfn = memblock_region_memory_end_pfn(r);
5840 return true;
5841 }
5842 }
5843#endif
5844 return false;
5845}
5846
1da177e4
LT
5847/*
5848 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5849 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5850 * done. Non-atomic initialization, single-pass.
5851 */
c09b4240 5852void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5853 unsigned long start_pfn, enum memmap_context context,
5854 struct vmem_altmap *altmap)
1da177e4 5855{
a9a9e77f 5856 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5857 struct page *page;
1da177e4 5858
22b31eec
HD
5859 if (highest_memmap_pfn < end_pfn - 1)
5860 highest_memmap_pfn = end_pfn - 1;
5861
966cf44f 5862#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5863 /*
5864 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5865 * memory. We limit the total number of pages to initialize to just
5866 * those that might contain the memory mapping. We will defer the
5867 * ZONE_DEVICE page initialization until after we have released
5868 * the hotplug lock.
4b94ffdc 5869 */
966cf44f
AD
5870 if (zone == ZONE_DEVICE) {
5871 if (!altmap)
5872 return;
5873
5874 if (start_pfn == altmap->base_pfn)
5875 start_pfn += altmap->reserve;
5876 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5877 }
5878#endif
4b94ffdc 5879
cbe8dd4a 5880 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5881 /*
b72d0ffb
AM
5882 * There can be holes in boot-time mem_map[]s handed to this
5883 * function. They do not exist on hotplugged memory.
a2f3aa02 5884 */
a9a9e77f
PT
5885 if (context == MEMMAP_EARLY) {
5886 if (!early_pfn_valid(pfn))
b72d0ffb 5887 continue;
a9a9e77f
PT
5888 if (!early_pfn_in_nid(pfn, nid))
5889 continue;
5890 if (overlap_memmap_init(zone, &pfn))
5891 continue;
5892 if (defer_init(nid, pfn, end_pfn))
5893 break;
a2f3aa02 5894 }
ac5d2539 5895
d0dc12e8
PT
5896 page = pfn_to_page(pfn);
5897 __init_single_page(page, pfn, zone, nid);
5898 if (context == MEMMAP_HOTPLUG)
d483da5b 5899 __SetPageReserved(page);
d0dc12e8 5900
ac5d2539
MG
5901 /*
5902 * Mark the block movable so that blocks are reserved for
5903 * movable at startup. This will force kernel allocations
5904 * to reserve their blocks rather than leaking throughout
5905 * the address space during boot when many long-lived
974a786e 5906 * kernel allocations are made.
ac5d2539
MG
5907 *
5908 * bitmap is created for zone's valid pfn range. but memmap
5909 * can be created for invalid pages (for alignment)
5910 * check here not to call set_pageblock_migratetype() against
5911 * pfn out of zone.
5912 */
5913 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5914 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5915 cond_resched();
ac5d2539 5916 }
1da177e4
LT
5917 }
5918}
5919
966cf44f
AD
5920#ifdef CONFIG_ZONE_DEVICE
5921void __ref memmap_init_zone_device(struct zone *zone,
5922 unsigned long start_pfn,
5923 unsigned long size,
5924 struct dev_pagemap *pgmap)
5925{
5926 unsigned long pfn, end_pfn = start_pfn + size;
5927 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 5928 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
5929 unsigned long zone_idx = zone_idx(zone);
5930 unsigned long start = jiffies;
5931 int nid = pgdat->node_id;
5932
5933 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5934 return;
5935
5936 /*
5937 * The call to memmap_init_zone should have already taken care
5938 * of the pages reserved for the memmap, so we can just jump to
5939 * the end of that region and start processing the device pages.
5940 */
514caf23 5941 if (altmap) {
966cf44f
AD
5942 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5943 size = end_pfn - start_pfn;
5944 }
5945
5946 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5947 struct page *page = pfn_to_page(pfn);
5948
5949 __init_single_page(page, pfn, zone_idx, nid);
5950
5951 /*
5952 * Mark page reserved as it will need to wait for onlining
5953 * phase for it to be fully associated with a zone.
5954 *
5955 * We can use the non-atomic __set_bit operation for setting
5956 * the flag as we are still initializing the pages.
5957 */
5958 __SetPageReserved(page);
5959
5960 /*
8a164fef
CH
5961 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5962 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5963 * ever freed or placed on a driver-private list.
966cf44f
AD
5964 */
5965 page->pgmap = pgmap;
8a164fef 5966 page->zone_device_data = NULL;
966cf44f
AD
5967
5968 /*
5969 * Mark the block movable so that blocks are reserved for
5970 * movable at startup. This will force kernel allocations
5971 * to reserve their blocks rather than leaking throughout
5972 * the address space during boot when many long-lived
5973 * kernel allocations are made.
5974 *
5975 * bitmap is created for zone's valid pfn range. but memmap
5976 * can be created for invalid pages (for alignment)
5977 * check here not to call set_pageblock_migratetype() against
5978 * pfn out of zone.
5979 *
5980 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5981 * because this is done early in sparse_add_one_section
5982 */
5983 if (!(pfn & (pageblock_nr_pages - 1))) {
5984 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5985 cond_resched();
5986 }
5987 }
5988
5989 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5990 size, jiffies_to_msecs(jiffies - start));
5991}
5992
5993#endif
1e548deb 5994static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5995{
7aeb09f9 5996 unsigned int order, t;
b2a0ac88
MG
5997 for_each_migratetype_order(order, t) {
5998 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5999 zone->free_area[order].nr_free = 0;
6000 }
6001}
6002
dfb3ccd0
PT
6003void __meminit __weak memmap_init(unsigned long size, int nid,
6004 unsigned long zone, unsigned long start_pfn)
6005{
6006 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6007}
1da177e4 6008
7cd2b0a3 6009static int zone_batchsize(struct zone *zone)
e7c8d5c9 6010{
3a6be87f 6011#ifdef CONFIG_MMU
e7c8d5c9
CL
6012 int batch;
6013
6014 /*
6015 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6016 * size of the zone.
e7c8d5c9 6017 */
9705bea5 6018 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6019 /* But no more than a meg. */
6020 if (batch * PAGE_SIZE > 1024 * 1024)
6021 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6022 batch /= 4; /* We effectively *= 4 below */
6023 if (batch < 1)
6024 batch = 1;
6025
6026 /*
0ceaacc9
NP
6027 * Clamp the batch to a 2^n - 1 value. Having a power
6028 * of 2 value was found to be more likely to have
6029 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6030 *
0ceaacc9
NP
6031 * For example if 2 tasks are alternately allocating
6032 * batches of pages, one task can end up with a lot
6033 * of pages of one half of the possible page colors
6034 * and the other with pages of the other colors.
e7c8d5c9 6035 */
9155203a 6036 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6037
e7c8d5c9 6038 return batch;
3a6be87f
DH
6039
6040#else
6041 /* The deferral and batching of frees should be suppressed under NOMMU
6042 * conditions.
6043 *
6044 * The problem is that NOMMU needs to be able to allocate large chunks
6045 * of contiguous memory as there's no hardware page translation to
6046 * assemble apparent contiguous memory from discontiguous pages.
6047 *
6048 * Queueing large contiguous runs of pages for batching, however,
6049 * causes the pages to actually be freed in smaller chunks. As there
6050 * can be a significant delay between the individual batches being
6051 * recycled, this leads to the once large chunks of space being
6052 * fragmented and becoming unavailable for high-order allocations.
6053 */
6054 return 0;
6055#endif
e7c8d5c9
CL
6056}
6057
8d7a8fa9
CS
6058/*
6059 * pcp->high and pcp->batch values are related and dependent on one another:
6060 * ->batch must never be higher then ->high.
6061 * The following function updates them in a safe manner without read side
6062 * locking.
6063 *
6064 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6065 * those fields changing asynchronously (acording the the above rule).
6066 *
6067 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6068 * outside of boot time (or some other assurance that no concurrent updaters
6069 * exist).
6070 */
6071static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6072 unsigned long batch)
6073{
6074 /* start with a fail safe value for batch */
6075 pcp->batch = 1;
6076 smp_wmb();
6077
6078 /* Update high, then batch, in order */
6079 pcp->high = high;
6080 smp_wmb();
6081
6082 pcp->batch = batch;
6083}
6084
3664033c 6085/* a companion to pageset_set_high() */
4008bab7
CS
6086static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6087{
8d7a8fa9 6088 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6089}
6090
88c90dbc 6091static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6092{
6093 struct per_cpu_pages *pcp;
5f8dcc21 6094 int migratetype;
2caaad41 6095
1c6fe946
MD
6096 memset(p, 0, sizeof(*p));
6097
3dfa5721 6098 pcp = &p->pcp;
5f8dcc21
MG
6099 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6100 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6101}
6102
88c90dbc
CS
6103static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6104{
6105 pageset_init(p);
6106 pageset_set_batch(p, batch);
6107}
6108
8ad4b1fb 6109/*
3664033c 6110 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6111 * to the value high for the pageset p.
6112 */
3664033c 6113static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6114 unsigned long high)
6115{
8d7a8fa9
CS
6116 unsigned long batch = max(1UL, high / 4);
6117 if ((high / 4) > (PAGE_SHIFT * 8))
6118 batch = PAGE_SHIFT * 8;
8ad4b1fb 6119
8d7a8fa9 6120 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6121}
6122
7cd2b0a3
DR
6123static void pageset_set_high_and_batch(struct zone *zone,
6124 struct per_cpu_pageset *pcp)
56cef2b8 6125{
56cef2b8 6126 if (percpu_pagelist_fraction)
3664033c 6127 pageset_set_high(pcp,
9705bea5 6128 (zone_managed_pages(zone) /
56cef2b8
CS
6129 percpu_pagelist_fraction));
6130 else
6131 pageset_set_batch(pcp, zone_batchsize(zone));
6132}
6133
169f6c19
CS
6134static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6135{
6136 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6137
6138 pageset_init(pcp);
6139 pageset_set_high_and_batch(zone, pcp);
6140}
6141
72675e13 6142void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6143{
6144 int cpu;
319774e2 6145 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6146 for_each_possible_cpu(cpu)
6147 zone_pageset_init(zone, cpu);
319774e2
WF
6148}
6149
2caaad41 6150/*
99dcc3e5
CL
6151 * Allocate per cpu pagesets and initialize them.
6152 * Before this call only boot pagesets were available.
e7c8d5c9 6153 */
99dcc3e5 6154void __init setup_per_cpu_pageset(void)
e7c8d5c9 6155{
b4911ea2 6156 struct pglist_data *pgdat;
99dcc3e5 6157 struct zone *zone;
e7c8d5c9 6158
319774e2
WF
6159 for_each_populated_zone(zone)
6160 setup_zone_pageset(zone);
b4911ea2
MG
6161
6162 for_each_online_pgdat(pgdat)
6163 pgdat->per_cpu_nodestats =
6164 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6165}
6166
c09b4240 6167static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6168{
99dcc3e5
CL
6169 /*
6170 * per cpu subsystem is not up at this point. The following code
6171 * relies on the ability of the linker to provide the
6172 * offset of a (static) per cpu variable into the per cpu area.
6173 */
6174 zone->pageset = &boot_pageset;
ed8ece2e 6175
b38a8725 6176 if (populated_zone(zone))
99dcc3e5
CL
6177 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6178 zone->name, zone->present_pages,
6179 zone_batchsize(zone));
ed8ece2e
DH
6180}
6181
dc0bbf3b 6182void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6183 unsigned long zone_start_pfn,
b171e409 6184 unsigned long size)
ed8ece2e
DH
6185{
6186 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6187 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6188
8f416836
WY
6189 if (zone_idx > pgdat->nr_zones)
6190 pgdat->nr_zones = zone_idx;
ed8ece2e 6191
ed8ece2e
DH
6192 zone->zone_start_pfn = zone_start_pfn;
6193
708614e6
MG
6194 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6195 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6196 pgdat->node_id,
6197 (unsigned long)zone_idx(zone),
6198 zone_start_pfn, (zone_start_pfn + size));
6199
1e548deb 6200 zone_init_free_lists(zone);
9dcb8b68 6201 zone->initialized = 1;
ed8ece2e
DH
6202}
6203
0ee332c1 6204#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6205#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6206
c713216d
MG
6207/*
6208 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6209 */
8a942fde
MG
6210int __meminit __early_pfn_to_nid(unsigned long pfn,
6211 struct mminit_pfnnid_cache *state)
c713216d 6212{
c13291a5 6213 unsigned long start_pfn, end_pfn;
e76b63f8 6214 int nid;
7c243c71 6215
8a942fde
MG
6216 if (state->last_start <= pfn && pfn < state->last_end)
6217 return state->last_nid;
c713216d 6218
e76b63f8 6219 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6220 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6221 state->last_start = start_pfn;
6222 state->last_end = end_pfn;
6223 state->last_nid = nid;
e76b63f8
YL
6224 }
6225
6226 return nid;
c713216d
MG
6227}
6228#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6229
c713216d 6230/**
6782832e 6231 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6232 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6233 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6234 *
7d018176
ZZ
6235 * If an architecture guarantees that all ranges registered contain no holes
6236 * and may be freed, this this function may be used instead of calling
6237 * memblock_free_early_nid() manually.
c713216d 6238 */
c13291a5 6239void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6240{
c13291a5
TH
6241 unsigned long start_pfn, end_pfn;
6242 int i, this_nid;
edbe7d23 6243
c13291a5
TH
6244 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6245 start_pfn = min(start_pfn, max_low_pfn);
6246 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6247
c13291a5 6248 if (start_pfn < end_pfn)
6782832e
SS
6249 memblock_free_early_nid(PFN_PHYS(start_pfn),
6250 (end_pfn - start_pfn) << PAGE_SHIFT,
6251 this_nid);
edbe7d23 6252 }
edbe7d23 6253}
edbe7d23 6254
c713216d
MG
6255/**
6256 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6257 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6258 *
7d018176
ZZ
6259 * If an architecture guarantees that all ranges registered contain no holes and may
6260 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6261 */
6262void __init sparse_memory_present_with_active_regions(int nid)
6263{
c13291a5
TH
6264 unsigned long start_pfn, end_pfn;
6265 int i, this_nid;
c713216d 6266
c13291a5
TH
6267 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6268 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6269}
6270
6271/**
6272 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6273 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6274 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6275 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6276 *
6277 * It returns the start and end page frame of a node based on information
7d018176 6278 * provided by memblock_set_node(). If called for a node
c713216d 6279 * with no available memory, a warning is printed and the start and end
88ca3b94 6280 * PFNs will be 0.
c713216d 6281 */
bbe5d993 6282void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6283 unsigned long *start_pfn, unsigned long *end_pfn)
6284{
c13291a5 6285 unsigned long this_start_pfn, this_end_pfn;
c713216d 6286 int i;
c13291a5 6287
c713216d
MG
6288 *start_pfn = -1UL;
6289 *end_pfn = 0;
6290
c13291a5
TH
6291 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6292 *start_pfn = min(*start_pfn, this_start_pfn);
6293 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6294 }
6295
633c0666 6296 if (*start_pfn == -1UL)
c713216d 6297 *start_pfn = 0;
c713216d
MG
6298}
6299
2a1e274a
MG
6300/*
6301 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6302 * assumption is made that zones within a node are ordered in monotonic
6303 * increasing memory addresses so that the "highest" populated zone is used
6304 */
b69a7288 6305static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6306{
6307 int zone_index;
6308 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6309 if (zone_index == ZONE_MOVABLE)
6310 continue;
6311
6312 if (arch_zone_highest_possible_pfn[zone_index] >
6313 arch_zone_lowest_possible_pfn[zone_index])
6314 break;
6315 }
6316
6317 VM_BUG_ON(zone_index == -1);
6318 movable_zone = zone_index;
6319}
6320
6321/*
6322 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6323 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6324 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6325 * in each node depending on the size of each node and how evenly kernelcore
6326 * is distributed. This helper function adjusts the zone ranges
6327 * provided by the architecture for a given node by using the end of the
6328 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6329 * zones within a node are in order of monotonic increases memory addresses
6330 */
bbe5d993 6331static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6332 unsigned long zone_type,
6333 unsigned long node_start_pfn,
6334 unsigned long node_end_pfn,
6335 unsigned long *zone_start_pfn,
6336 unsigned long *zone_end_pfn)
6337{
6338 /* Only adjust if ZONE_MOVABLE is on this node */
6339 if (zone_movable_pfn[nid]) {
6340 /* Size ZONE_MOVABLE */
6341 if (zone_type == ZONE_MOVABLE) {
6342 *zone_start_pfn = zone_movable_pfn[nid];
6343 *zone_end_pfn = min(node_end_pfn,
6344 arch_zone_highest_possible_pfn[movable_zone]);
6345
e506b996
XQ
6346 /* Adjust for ZONE_MOVABLE starting within this range */
6347 } else if (!mirrored_kernelcore &&
6348 *zone_start_pfn < zone_movable_pfn[nid] &&
6349 *zone_end_pfn > zone_movable_pfn[nid]) {
6350 *zone_end_pfn = zone_movable_pfn[nid];
6351
2a1e274a
MG
6352 /* Check if this whole range is within ZONE_MOVABLE */
6353 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6354 *zone_start_pfn = *zone_end_pfn;
6355 }
6356}
6357
c713216d
MG
6358/*
6359 * Return the number of pages a zone spans in a node, including holes
6360 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6361 */
bbe5d993 6362static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6363 unsigned long zone_type,
7960aedd
ZY
6364 unsigned long node_start_pfn,
6365 unsigned long node_end_pfn,
d91749c1
TI
6366 unsigned long *zone_start_pfn,
6367 unsigned long *zone_end_pfn,
c713216d
MG
6368 unsigned long *ignored)
6369{
299c83dc
LF
6370 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6371 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6372 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6373 if (!node_start_pfn && !node_end_pfn)
6374 return 0;
6375
7960aedd 6376 /* Get the start and end of the zone */
299c83dc
LF
6377 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6378 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6379 adjust_zone_range_for_zone_movable(nid, zone_type,
6380 node_start_pfn, node_end_pfn,
d91749c1 6381 zone_start_pfn, zone_end_pfn);
c713216d
MG
6382
6383 /* Check that this node has pages within the zone's required range */
d91749c1 6384 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6385 return 0;
6386
6387 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6388 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6389 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6390
6391 /* Return the spanned pages */
d91749c1 6392 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6393}
6394
6395/*
6396 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6397 * then all holes in the requested range will be accounted for.
c713216d 6398 */
bbe5d993 6399unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6400 unsigned long range_start_pfn,
6401 unsigned long range_end_pfn)
6402{
96e907d1
TH
6403 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6404 unsigned long start_pfn, end_pfn;
6405 int i;
c713216d 6406
96e907d1
TH
6407 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6408 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6409 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6410 nr_absent -= end_pfn - start_pfn;
c713216d 6411 }
96e907d1 6412 return nr_absent;
c713216d
MG
6413}
6414
6415/**
6416 * absent_pages_in_range - Return number of page frames in holes within a range
6417 * @start_pfn: The start PFN to start searching for holes
6418 * @end_pfn: The end PFN to stop searching for holes
6419 *
a862f68a 6420 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6421 */
6422unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6423 unsigned long end_pfn)
6424{
6425 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6426}
6427
6428/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6429static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6430 unsigned long zone_type,
7960aedd
ZY
6431 unsigned long node_start_pfn,
6432 unsigned long node_end_pfn,
c713216d
MG
6433 unsigned long *ignored)
6434{
96e907d1
TH
6435 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6436 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6437 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6438 unsigned long nr_absent;
9c7cd687 6439
b5685e92 6440 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6441 if (!node_start_pfn && !node_end_pfn)
6442 return 0;
6443
96e907d1
TH
6444 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6445 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6446
2a1e274a
MG
6447 adjust_zone_range_for_zone_movable(nid, zone_type,
6448 node_start_pfn, node_end_pfn,
6449 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6450 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6451
6452 /*
6453 * ZONE_MOVABLE handling.
6454 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6455 * and vice versa.
6456 */
e506b996
XQ
6457 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6458 unsigned long start_pfn, end_pfn;
6459 struct memblock_region *r;
6460
6461 for_each_memblock(memory, r) {
6462 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6463 zone_start_pfn, zone_end_pfn);
6464 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6465 zone_start_pfn, zone_end_pfn);
6466
6467 if (zone_type == ZONE_MOVABLE &&
6468 memblock_is_mirror(r))
6469 nr_absent += end_pfn - start_pfn;
6470
6471 if (zone_type == ZONE_NORMAL &&
6472 !memblock_is_mirror(r))
6473 nr_absent += end_pfn - start_pfn;
342332e6
TI
6474 }
6475 }
6476
6477 return nr_absent;
c713216d 6478}
0e0b864e 6479
0ee332c1 6480#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6481static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6482 unsigned long zone_type,
7960aedd
ZY
6483 unsigned long node_start_pfn,
6484 unsigned long node_end_pfn,
d91749c1
TI
6485 unsigned long *zone_start_pfn,
6486 unsigned long *zone_end_pfn,
c713216d
MG
6487 unsigned long *zones_size)
6488{
d91749c1
TI
6489 unsigned int zone;
6490
6491 *zone_start_pfn = node_start_pfn;
6492 for (zone = 0; zone < zone_type; zone++)
6493 *zone_start_pfn += zones_size[zone];
6494
6495 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6496
c713216d
MG
6497 return zones_size[zone_type];
6498}
6499
bbe5d993 6500static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6501 unsigned long zone_type,
7960aedd
ZY
6502 unsigned long node_start_pfn,
6503 unsigned long node_end_pfn,
c713216d
MG
6504 unsigned long *zholes_size)
6505{
6506 if (!zholes_size)
6507 return 0;
6508
6509 return zholes_size[zone_type];
6510}
20e6926d 6511
0ee332c1 6512#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6513
bbe5d993 6514static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6515 unsigned long node_start_pfn,
6516 unsigned long node_end_pfn,
6517 unsigned long *zones_size,
6518 unsigned long *zholes_size)
c713216d 6519{
febd5949 6520 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6521 enum zone_type i;
6522
febd5949
GZ
6523 for (i = 0; i < MAX_NR_ZONES; i++) {
6524 struct zone *zone = pgdat->node_zones + i;
d91749c1 6525 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6526 unsigned long size, real_size;
c713216d 6527
febd5949
GZ
6528 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6529 node_start_pfn,
6530 node_end_pfn,
d91749c1
TI
6531 &zone_start_pfn,
6532 &zone_end_pfn,
febd5949
GZ
6533 zones_size);
6534 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6535 node_start_pfn, node_end_pfn,
6536 zholes_size);
d91749c1
TI
6537 if (size)
6538 zone->zone_start_pfn = zone_start_pfn;
6539 else
6540 zone->zone_start_pfn = 0;
febd5949
GZ
6541 zone->spanned_pages = size;
6542 zone->present_pages = real_size;
6543
6544 totalpages += size;
6545 realtotalpages += real_size;
6546 }
6547
6548 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6549 pgdat->node_present_pages = realtotalpages;
6550 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6551 realtotalpages);
6552}
6553
835c134e
MG
6554#ifndef CONFIG_SPARSEMEM
6555/*
6556 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6557 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6558 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6559 * round what is now in bits to nearest long in bits, then return it in
6560 * bytes.
6561 */
7c45512d 6562static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6563{
6564 unsigned long usemapsize;
6565
7c45512d 6566 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6567 usemapsize = roundup(zonesize, pageblock_nr_pages);
6568 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6569 usemapsize *= NR_PAGEBLOCK_BITS;
6570 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6571
6572 return usemapsize / 8;
6573}
6574
7cc2a959 6575static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6576 struct zone *zone,
6577 unsigned long zone_start_pfn,
6578 unsigned long zonesize)
835c134e 6579{
7c45512d 6580 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6581 zone->pageblock_flags = NULL;
23a7052a 6582 if (usemapsize) {
6782832e 6583 zone->pageblock_flags =
26fb3dae
MR
6584 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6585 pgdat->node_id);
23a7052a
MR
6586 if (!zone->pageblock_flags)
6587 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6588 usemapsize, zone->name, pgdat->node_id);
6589 }
835c134e
MG
6590}
6591#else
7c45512d
LT
6592static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6593 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6594#endif /* CONFIG_SPARSEMEM */
6595
d9c23400 6596#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6597
d9c23400 6598/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6599void __init set_pageblock_order(void)
d9c23400 6600{
955c1cd7
AM
6601 unsigned int order;
6602
d9c23400
MG
6603 /* Check that pageblock_nr_pages has not already been setup */
6604 if (pageblock_order)
6605 return;
6606
955c1cd7
AM
6607 if (HPAGE_SHIFT > PAGE_SHIFT)
6608 order = HUGETLB_PAGE_ORDER;
6609 else
6610 order = MAX_ORDER - 1;
6611
d9c23400
MG
6612 /*
6613 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6614 * This value may be variable depending on boot parameters on IA64 and
6615 * powerpc.
d9c23400
MG
6616 */
6617 pageblock_order = order;
6618}
6619#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6620
ba72cb8c
MG
6621/*
6622 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6623 * is unused as pageblock_order is set at compile-time. See
6624 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6625 * the kernel config
ba72cb8c 6626 */
03e85f9d 6627void __init set_pageblock_order(void)
ba72cb8c 6628{
ba72cb8c 6629}
d9c23400
MG
6630
6631#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6632
03e85f9d 6633static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6634 unsigned long present_pages)
01cefaef
JL
6635{
6636 unsigned long pages = spanned_pages;
6637
6638 /*
6639 * Provide a more accurate estimation if there are holes within
6640 * the zone and SPARSEMEM is in use. If there are holes within the
6641 * zone, each populated memory region may cost us one or two extra
6642 * memmap pages due to alignment because memmap pages for each
89d790ab 6643 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6644 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6645 */
6646 if (spanned_pages > present_pages + (present_pages >> 4) &&
6647 IS_ENABLED(CONFIG_SPARSEMEM))
6648 pages = present_pages;
6649
6650 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6651}
6652
ace1db39
OS
6653#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6654static void pgdat_init_split_queue(struct pglist_data *pgdat)
6655{
6656 spin_lock_init(&pgdat->split_queue_lock);
6657 INIT_LIST_HEAD(&pgdat->split_queue);
6658 pgdat->split_queue_len = 0;
6659}
6660#else
6661static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6662#endif
6663
6664#ifdef CONFIG_COMPACTION
6665static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6666{
6667 init_waitqueue_head(&pgdat->kcompactd_wait);
6668}
6669#else
6670static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6671#endif
6672
03e85f9d 6673static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6674{
208d54e5 6675 pgdat_resize_init(pgdat);
ace1db39 6676
ace1db39
OS
6677 pgdat_init_split_queue(pgdat);
6678 pgdat_init_kcompactd(pgdat);
6679
1da177e4 6680 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6681 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6682
eefa864b 6683 pgdat_page_ext_init(pgdat);
a52633d8 6684 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6685 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6686}
6687
6688static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6689 unsigned long remaining_pages)
6690{
9705bea5 6691 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6692 zone_set_nid(zone, nid);
6693 zone->name = zone_names[idx];
6694 zone->zone_pgdat = NODE_DATA(nid);
6695 spin_lock_init(&zone->lock);
6696 zone_seqlock_init(zone);
6697 zone_pcp_init(zone);
6698}
6699
6700/*
6701 * Set up the zone data structures
6702 * - init pgdat internals
6703 * - init all zones belonging to this node
6704 *
6705 * NOTE: this function is only called during memory hotplug
6706 */
6707#ifdef CONFIG_MEMORY_HOTPLUG
6708void __ref free_area_init_core_hotplug(int nid)
6709{
6710 enum zone_type z;
6711 pg_data_t *pgdat = NODE_DATA(nid);
6712
6713 pgdat_init_internals(pgdat);
6714 for (z = 0; z < MAX_NR_ZONES; z++)
6715 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6716}
6717#endif
6718
6719/*
6720 * Set up the zone data structures:
6721 * - mark all pages reserved
6722 * - mark all memory queues empty
6723 * - clear the memory bitmaps
6724 *
6725 * NOTE: pgdat should get zeroed by caller.
6726 * NOTE: this function is only called during early init.
6727 */
6728static void __init free_area_init_core(struct pglist_data *pgdat)
6729{
6730 enum zone_type j;
6731 int nid = pgdat->node_id;
5f63b720 6732
03e85f9d 6733 pgdat_init_internals(pgdat);
385386cf
JW
6734 pgdat->per_cpu_nodestats = &boot_nodestats;
6735
1da177e4
LT
6736 for (j = 0; j < MAX_NR_ZONES; j++) {
6737 struct zone *zone = pgdat->node_zones + j;
e6943859 6738 unsigned long size, freesize, memmap_pages;
d91749c1 6739 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6740
febd5949 6741 size = zone->spanned_pages;
e6943859 6742 freesize = zone->present_pages;
1da177e4 6743
0e0b864e 6744 /*
9feedc9d 6745 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6746 * is used by this zone for memmap. This affects the watermark
6747 * and per-cpu initialisations
6748 */
e6943859 6749 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6750 if (!is_highmem_idx(j)) {
6751 if (freesize >= memmap_pages) {
6752 freesize -= memmap_pages;
6753 if (memmap_pages)
6754 printk(KERN_DEBUG
6755 " %s zone: %lu pages used for memmap\n",
6756 zone_names[j], memmap_pages);
6757 } else
1170532b 6758 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6759 zone_names[j], memmap_pages, freesize);
6760 }
0e0b864e 6761
6267276f 6762 /* Account for reserved pages */
9feedc9d
JL
6763 if (j == 0 && freesize > dma_reserve) {
6764 freesize -= dma_reserve;
d903ef9f 6765 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6766 zone_names[0], dma_reserve);
0e0b864e
MG
6767 }
6768
98d2b0eb 6769 if (!is_highmem_idx(j))
9feedc9d 6770 nr_kernel_pages += freesize;
01cefaef
JL
6771 /* Charge for highmem memmap if there are enough kernel pages */
6772 else if (nr_kernel_pages > memmap_pages * 2)
6773 nr_kernel_pages -= memmap_pages;
9feedc9d 6774 nr_all_pages += freesize;
1da177e4 6775
9feedc9d
JL
6776 /*
6777 * Set an approximate value for lowmem here, it will be adjusted
6778 * when the bootmem allocator frees pages into the buddy system.
6779 * And all highmem pages will be managed by the buddy system.
6780 */
03e85f9d 6781 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6782
d883c6cf 6783 if (!size)
1da177e4
LT
6784 continue;
6785
955c1cd7 6786 set_pageblock_order();
d883c6cf
JK
6787 setup_usemap(pgdat, zone, zone_start_pfn, size);
6788 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6789 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6790 }
6791}
6792
0cd842f9 6793#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6794static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6795{
b0aeba74 6796 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6797 unsigned long __maybe_unused offset = 0;
6798
1da177e4
LT
6799 /* Skip empty nodes */
6800 if (!pgdat->node_spanned_pages)
6801 return;
6802
b0aeba74
TL
6803 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6804 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6805 /* ia64 gets its own node_mem_map, before this, without bootmem */
6806 if (!pgdat->node_mem_map) {
b0aeba74 6807 unsigned long size, end;
d41dee36
AW
6808 struct page *map;
6809
e984bb43
BP
6810 /*
6811 * The zone's endpoints aren't required to be MAX_ORDER
6812 * aligned but the node_mem_map endpoints must be in order
6813 * for the buddy allocator to function correctly.
6814 */
108bcc96 6815 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6816 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6817 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6818 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6819 pgdat->node_id);
23a7052a
MR
6820 if (!map)
6821 panic("Failed to allocate %ld bytes for node %d memory map\n",
6822 size, pgdat->node_id);
a1c34a3b 6823 pgdat->node_mem_map = map + offset;
1da177e4 6824 }
0cd842f9
OS
6825 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6826 __func__, pgdat->node_id, (unsigned long)pgdat,
6827 (unsigned long)pgdat->node_mem_map);
12d810c1 6828#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6829 /*
6830 * With no DISCONTIG, the global mem_map is just set as node 0's
6831 */
c713216d 6832 if (pgdat == NODE_DATA(0)) {
1da177e4 6833 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6834#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6835 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6836 mem_map -= offset;
0ee332c1 6837#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6838 }
1da177e4
LT
6839#endif
6840}
0cd842f9
OS
6841#else
6842static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6843#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6844
0188dc98
OS
6845#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6846static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6847{
0188dc98
OS
6848 pgdat->first_deferred_pfn = ULONG_MAX;
6849}
6850#else
6851static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6852#endif
6853
03e85f9d 6854void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6855 unsigned long node_start_pfn,
6856 unsigned long *zholes_size)
1da177e4 6857{
9109fb7b 6858 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6859 unsigned long start_pfn = 0;
6860 unsigned long end_pfn = 0;
9109fb7b 6861
88fdf75d 6862 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6863 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6864
1da177e4
LT
6865 pgdat->node_id = nid;
6866 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6867 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6868#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6869 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6870 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6871 (u64)start_pfn << PAGE_SHIFT,
6872 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6873#else
6874 start_pfn = node_start_pfn;
7960aedd
ZY
6875#endif
6876 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6877 zones_size, zholes_size);
1da177e4
LT
6878
6879 alloc_node_mem_map(pgdat);
0188dc98 6880 pgdat_set_deferred_range(pgdat);
1da177e4 6881
7f3eb55b 6882 free_area_init_core(pgdat);
1da177e4
LT
6883}
6884
aca52c39 6885#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6886/*
6887 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6888 * pages zeroed
6889 */
6890static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6891{
6892 unsigned long pfn;
6893 u64 pgcnt = 0;
6894
6895 for (pfn = spfn; pfn < epfn; pfn++) {
6896 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6897 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6898 + pageblock_nr_pages - 1;
6899 continue;
6900 }
6901 mm_zero_struct_page(pfn_to_page(pfn));
6902 pgcnt++;
6903 }
6904
6905 return pgcnt;
6906}
6907
a4a3ede2
PT
6908/*
6909 * Only struct pages that are backed by physical memory are zeroed and
6910 * initialized by going through __init_single_page(). But, there are some
6911 * struct pages which are reserved in memblock allocator and their fields
6912 * may be accessed (for example page_to_pfn() on some configuration accesses
6913 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6914 *
6915 * This function also addresses a similar issue where struct pages are left
6916 * uninitialized because the physical address range is not covered by
6917 * memblock.memory or memblock.reserved. That could happen when memblock
6918 * layout is manually configured via memmap=.
a4a3ede2 6919 */
03e85f9d 6920void __init zero_resv_unavail(void)
a4a3ede2
PT
6921{
6922 phys_addr_t start, end;
a4a3ede2 6923 u64 i, pgcnt;
907ec5fc 6924 phys_addr_t next = 0;
a4a3ede2
PT
6925
6926 /*
907ec5fc 6927 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6928 */
6929 pgcnt = 0;
907ec5fc
NH
6930 for_each_mem_range(i, &memblock.memory, NULL,
6931 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6932 if (next < start)
6933 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6934 next = end;
6935 }
ec393a0f 6936 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6937
a4a3ede2
PT
6938 /*
6939 * Struct pages that do not have backing memory. This could be because
6940 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6941 */
6942 if (pgcnt)
907ec5fc 6943 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6944}
aca52c39 6945#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6946
0ee332c1 6947#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6948
6949#if MAX_NUMNODES > 1
6950/*
6951 * Figure out the number of possible node ids.
6952 */
f9872caf 6953void __init setup_nr_node_ids(void)
418508c1 6954{
904a9553 6955 unsigned int highest;
418508c1 6956
904a9553 6957 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6958 nr_node_ids = highest + 1;
6959}
418508c1
MS
6960#endif
6961
1e01979c
TH
6962/**
6963 * node_map_pfn_alignment - determine the maximum internode alignment
6964 *
6965 * This function should be called after node map is populated and sorted.
6966 * It calculates the maximum power of two alignment which can distinguish
6967 * all the nodes.
6968 *
6969 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6970 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6971 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6972 * shifted, 1GiB is enough and this function will indicate so.
6973 *
6974 * This is used to test whether pfn -> nid mapping of the chosen memory
6975 * model has fine enough granularity to avoid incorrect mapping for the
6976 * populated node map.
6977 *
a862f68a 6978 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
6979 * requirement (single node).
6980 */
6981unsigned long __init node_map_pfn_alignment(void)
6982{
6983 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6984 unsigned long start, end, mask;
98fa15f3 6985 int last_nid = NUMA_NO_NODE;
c13291a5 6986 int i, nid;
1e01979c 6987
c13291a5 6988 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6989 if (!start || last_nid < 0 || last_nid == nid) {
6990 last_nid = nid;
6991 last_end = end;
6992 continue;
6993 }
6994
6995 /*
6996 * Start with a mask granular enough to pin-point to the
6997 * start pfn and tick off bits one-by-one until it becomes
6998 * too coarse to separate the current node from the last.
6999 */
7000 mask = ~((1 << __ffs(start)) - 1);
7001 while (mask && last_end <= (start & (mask << 1)))
7002 mask <<= 1;
7003
7004 /* accumulate all internode masks */
7005 accl_mask |= mask;
7006 }
7007
7008 /* convert mask to number of pages */
7009 return ~accl_mask + 1;
7010}
7011
a6af2bc3 7012/* Find the lowest pfn for a node */
b69a7288 7013static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 7014{
a6af2bc3 7015 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
7016 unsigned long start_pfn;
7017 int i;
1abbfb41 7018
c13291a5
TH
7019 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7020 min_pfn = min(min_pfn, start_pfn);
c713216d 7021
a6af2bc3 7022 if (min_pfn == ULONG_MAX) {
1170532b 7023 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
7024 return 0;
7025 }
7026
7027 return min_pfn;
c713216d
MG
7028}
7029
7030/**
7031 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7032 *
a862f68a 7033 * Return: the minimum PFN based on information provided via
7d018176 7034 * memblock_set_node().
c713216d
MG
7035 */
7036unsigned long __init find_min_pfn_with_active_regions(void)
7037{
7038 return find_min_pfn_for_node(MAX_NUMNODES);
7039}
7040
37b07e41
LS
7041/*
7042 * early_calculate_totalpages()
7043 * Sum pages in active regions for movable zone.
4b0ef1fe 7044 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7045 */
484f51f8 7046static unsigned long __init early_calculate_totalpages(void)
7e63efef 7047{
7e63efef 7048 unsigned long totalpages = 0;
c13291a5
TH
7049 unsigned long start_pfn, end_pfn;
7050 int i, nid;
7051
7052 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7053 unsigned long pages = end_pfn - start_pfn;
7e63efef 7054
37b07e41
LS
7055 totalpages += pages;
7056 if (pages)
4b0ef1fe 7057 node_set_state(nid, N_MEMORY);
37b07e41 7058 }
b8af2941 7059 return totalpages;
7e63efef
MG
7060}
7061
2a1e274a
MG
7062/*
7063 * Find the PFN the Movable zone begins in each node. Kernel memory
7064 * is spread evenly between nodes as long as the nodes have enough
7065 * memory. When they don't, some nodes will have more kernelcore than
7066 * others
7067 */
b224ef85 7068static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7069{
7070 int i, nid;
7071 unsigned long usable_startpfn;
7072 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7073 /* save the state before borrow the nodemask */
4b0ef1fe 7074 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7075 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7076 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7077 struct memblock_region *r;
b2f3eebe
TC
7078
7079 /* Need to find movable_zone earlier when movable_node is specified. */
7080 find_usable_zone_for_movable();
7081
7082 /*
7083 * If movable_node is specified, ignore kernelcore and movablecore
7084 * options.
7085 */
7086 if (movable_node_is_enabled()) {
136199f0
EM
7087 for_each_memblock(memory, r) {
7088 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7089 continue;
7090
136199f0 7091 nid = r->nid;
b2f3eebe 7092
136199f0 7093 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7094 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7095 min(usable_startpfn, zone_movable_pfn[nid]) :
7096 usable_startpfn;
7097 }
7098
7099 goto out2;
7100 }
2a1e274a 7101
342332e6
TI
7102 /*
7103 * If kernelcore=mirror is specified, ignore movablecore option
7104 */
7105 if (mirrored_kernelcore) {
7106 bool mem_below_4gb_not_mirrored = false;
7107
7108 for_each_memblock(memory, r) {
7109 if (memblock_is_mirror(r))
7110 continue;
7111
7112 nid = r->nid;
7113
7114 usable_startpfn = memblock_region_memory_base_pfn(r);
7115
7116 if (usable_startpfn < 0x100000) {
7117 mem_below_4gb_not_mirrored = true;
7118 continue;
7119 }
7120
7121 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7122 min(usable_startpfn, zone_movable_pfn[nid]) :
7123 usable_startpfn;
7124 }
7125
7126 if (mem_below_4gb_not_mirrored)
7127 pr_warn("This configuration results in unmirrored kernel memory.");
7128
7129 goto out2;
7130 }
7131
7e63efef 7132 /*
a5c6d650
DR
7133 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7134 * amount of necessary memory.
7135 */
7136 if (required_kernelcore_percent)
7137 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7138 10000UL;
7139 if (required_movablecore_percent)
7140 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7141 10000UL;
7142
7143 /*
7144 * If movablecore= was specified, calculate what size of
7e63efef
MG
7145 * kernelcore that corresponds so that memory usable for
7146 * any allocation type is evenly spread. If both kernelcore
7147 * and movablecore are specified, then the value of kernelcore
7148 * will be used for required_kernelcore if it's greater than
7149 * what movablecore would have allowed.
7150 */
7151 if (required_movablecore) {
7e63efef
MG
7152 unsigned long corepages;
7153
7154 /*
7155 * Round-up so that ZONE_MOVABLE is at least as large as what
7156 * was requested by the user
7157 */
7158 required_movablecore =
7159 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7160 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7161 corepages = totalpages - required_movablecore;
7162
7163 required_kernelcore = max(required_kernelcore, corepages);
7164 }
7165
bde304bd
XQ
7166 /*
7167 * If kernelcore was not specified or kernelcore size is larger
7168 * than totalpages, there is no ZONE_MOVABLE.
7169 */
7170 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7171 goto out;
2a1e274a
MG
7172
7173 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7174 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7175
7176restart:
7177 /* Spread kernelcore memory as evenly as possible throughout nodes */
7178 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7179 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7180 unsigned long start_pfn, end_pfn;
7181
2a1e274a
MG
7182 /*
7183 * Recalculate kernelcore_node if the division per node
7184 * now exceeds what is necessary to satisfy the requested
7185 * amount of memory for the kernel
7186 */
7187 if (required_kernelcore < kernelcore_node)
7188 kernelcore_node = required_kernelcore / usable_nodes;
7189
7190 /*
7191 * As the map is walked, we track how much memory is usable
7192 * by the kernel using kernelcore_remaining. When it is
7193 * 0, the rest of the node is usable by ZONE_MOVABLE
7194 */
7195 kernelcore_remaining = kernelcore_node;
7196
7197 /* Go through each range of PFNs within this node */
c13291a5 7198 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7199 unsigned long size_pages;
7200
c13291a5 7201 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7202 if (start_pfn >= end_pfn)
7203 continue;
7204
7205 /* Account for what is only usable for kernelcore */
7206 if (start_pfn < usable_startpfn) {
7207 unsigned long kernel_pages;
7208 kernel_pages = min(end_pfn, usable_startpfn)
7209 - start_pfn;
7210
7211 kernelcore_remaining -= min(kernel_pages,
7212 kernelcore_remaining);
7213 required_kernelcore -= min(kernel_pages,
7214 required_kernelcore);
7215
7216 /* Continue if range is now fully accounted */
7217 if (end_pfn <= usable_startpfn) {
7218
7219 /*
7220 * Push zone_movable_pfn to the end so
7221 * that if we have to rebalance
7222 * kernelcore across nodes, we will
7223 * not double account here
7224 */
7225 zone_movable_pfn[nid] = end_pfn;
7226 continue;
7227 }
7228 start_pfn = usable_startpfn;
7229 }
7230
7231 /*
7232 * The usable PFN range for ZONE_MOVABLE is from
7233 * start_pfn->end_pfn. Calculate size_pages as the
7234 * number of pages used as kernelcore
7235 */
7236 size_pages = end_pfn - start_pfn;
7237 if (size_pages > kernelcore_remaining)
7238 size_pages = kernelcore_remaining;
7239 zone_movable_pfn[nid] = start_pfn + size_pages;
7240
7241 /*
7242 * Some kernelcore has been met, update counts and
7243 * break if the kernelcore for this node has been
b8af2941 7244 * satisfied
2a1e274a
MG
7245 */
7246 required_kernelcore -= min(required_kernelcore,
7247 size_pages);
7248 kernelcore_remaining -= size_pages;
7249 if (!kernelcore_remaining)
7250 break;
7251 }
7252 }
7253
7254 /*
7255 * If there is still required_kernelcore, we do another pass with one
7256 * less node in the count. This will push zone_movable_pfn[nid] further
7257 * along on the nodes that still have memory until kernelcore is
b8af2941 7258 * satisfied
2a1e274a
MG
7259 */
7260 usable_nodes--;
7261 if (usable_nodes && required_kernelcore > usable_nodes)
7262 goto restart;
7263
b2f3eebe 7264out2:
2a1e274a
MG
7265 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7266 for (nid = 0; nid < MAX_NUMNODES; nid++)
7267 zone_movable_pfn[nid] =
7268 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7269
20e6926d 7270out:
66918dcd 7271 /* restore the node_state */
4b0ef1fe 7272 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7273}
7274
4b0ef1fe
LJ
7275/* Any regular or high memory on that node ? */
7276static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7277{
37b07e41
LS
7278 enum zone_type zone_type;
7279
4b0ef1fe 7280 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7281 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7282 if (populated_zone(zone)) {
7b0e0c0e
OS
7283 if (IS_ENABLED(CONFIG_HIGHMEM))
7284 node_set_state(nid, N_HIGH_MEMORY);
7285 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7286 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7287 break;
7288 }
37b07e41 7289 }
37b07e41
LS
7290}
7291
c713216d
MG
7292/**
7293 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7294 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7295 *
7296 * This will call free_area_init_node() for each active node in the system.
7d018176 7297 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7298 * zone in each node and their holes is calculated. If the maximum PFN
7299 * between two adjacent zones match, it is assumed that the zone is empty.
7300 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7301 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7302 * starts where the previous one ended. For example, ZONE_DMA32 starts
7303 * at arch_max_dma_pfn.
7304 */
7305void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7306{
c13291a5
TH
7307 unsigned long start_pfn, end_pfn;
7308 int i, nid;
a6af2bc3 7309
c713216d
MG
7310 /* Record where the zone boundaries are */
7311 memset(arch_zone_lowest_possible_pfn, 0,
7312 sizeof(arch_zone_lowest_possible_pfn));
7313 memset(arch_zone_highest_possible_pfn, 0,
7314 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7315
7316 start_pfn = find_min_pfn_with_active_regions();
7317
7318 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7319 if (i == ZONE_MOVABLE)
7320 continue;
90cae1fe
OH
7321
7322 end_pfn = max(max_zone_pfn[i], start_pfn);
7323 arch_zone_lowest_possible_pfn[i] = start_pfn;
7324 arch_zone_highest_possible_pfn[i] = end_pfn;
7325
7326 start_pfn = end_pfn;
c713216d 7327 }
2a1e274a
MG
7328
7329 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7330 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7331 find_zone_movable_pfns_for_nodes();
c713216d 7332
c713216d 7333 /* Print out the zone ranges */
f88dfff5 7334 pr_info("Zone ranges:\n");
2a1e274a
MG
7335 for (i = 0; i < MAX_NR_ZONES; i++) {
7336 if (i == ZONE_MOVABLE)
7337 continue;
f88dfff5 7338 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7339 if (arch_zone_lowest_possible_pfn[i] ==
7340 arch_zone_highest_possible_pfn[i])
f88dfff5 7341 pr_cont("empty\n");
72f0ba02 7342 else
8d29e18a
JG
7343 pr_cont("[mem %#018Lx-%#018Lx]\n",
7344 (u64)arch_zone_lowest_possible_pfn[i]
7345 << PAGE_SHIFT,
7346 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7347 << PAGE_SHIFT) - 1);
2a1e274a
MG
7348 }
7349
7350 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7351 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7352 for (i = 0; i < MAX_NUMNODES; i++) {
7353 if (zone_movable_pfn[i])
8d29e18a
JG
7354 pr_info(" Node %d: %#018Lx\n", i,
7355 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7356 }
c713216d 7357
f2d52fe5 7358 /* Print out the early node map */
f88dfff5 7359 pr_info("Early memory node ranges\n");
c13291a5 7360 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
7361 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7362 (u64)start_pfn << PAGE_SHIFT,
7363 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7364
7365 /* Initialise every node */
708614e6 7366 mminit_verify_pageflags_layout();
8ef82866 7367 setup_nr_node_ids();
e181ae0c 7368 zero_resv_unavail();
c713216d
MG
7369 for_each_online_node(nid) {
7370 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7371 free_area_init_node(nid, NULL,
c713216d 7372 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7373
7374 /* Any memory on that node */
7375 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7376 node_set_state(nid, N_MEMORY);
7377 check_for_memory(pgdat, nid);
c713216d
MG
7378 }
7379}
2a1e274a 7380
a5c6d650
DR
7381static int __init cmdline_parse_core(char *p, unsigned long *core,
7382 unsigned long *percent)
2a1e274a
MG
7383{
7384 unsigned long long coremem;
a5c6d650
DR
7385 char *endptr;
7386
2a1e274a
MG
7387 if (!p)
7388 return -EINVAL;
7389
a5c6d650
DR
7390 /* Value may be a percentage of total memory, otherwise bytes */
7391 coremem = simple_strtoull(p, &endptr, 0);
7392 if (*endptr == '%') {
7393 /* Paranoid check for percent values greater than 100 */
7394 WARN_ON(coremem > 100);
2a1e274a 7395
a5c6d650
DR
7396 *percent = coremem;
7397 } else {
7398 coremem = memparse(p, &p);
7399 /* Paranoid check that UL is enough for the coremem value */
7400 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7401
a5c6d650
DR
7402 *core = coremem >> PAGE_SHIFT;
7403 *percent = 0UL;
7404 }
2a1e274a
MG
7405 return 0;
7406}
ed7ed365 7407
7e63efef
MG
7408/*
7409 * kernelcore=size sets the amount of memory for use for allocations that
7410 * cannot be reclaimed or migrated.
7411 */
7412static int __init cmdline_parse_kernelcore(char *p)
7413{
342332e6
TI
7414 /* parse kernelcore=mirror */
7415 if (parse_option_str(p, "mirror")) {
7416 mirrored_kernelcore = true;
7417 return 0;
7418 }
7419
a5c6d650
DR
7420 return cmdline_parse_core(p, &required_kernelcore,
7421 &required_kernelcore_percent);
7e63efef
MG
7422}
7423
7424/*
7425 * movablecore=size sets the amount of memory for use for allocations that
7426 * can be reclaimed or migrated.
7427 */
7428static int __init cmdline_parse_movablecore(char *p)
7429{
a5c6d650
DR
7430 return cmdline_parse_core(p, &required_movablecore,
7431 &required_movablecore_percent);
7e63efef
MG
7432}
7433
ed7ed365 7434early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7435early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7436
0ee332c1 7437#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7438
c3d5f5f0
JL
7439void adjust_managed_page_count(struct page *page, long count)
7440{
9705bea5 7441 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7442 totalram_pages_add(count);
3dcc0571
JL
7443#ifdef CONFIG_HIGHMEM
7444 if (PageHighMem(page))
ca79b0c2 7445 totalhigh_pages_add(count);
3dcc0571 7446#endif
c3d5f5f0 7447}
3dcc0571 7448EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7449
e5cb113f 7450unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7451{
11199692
JL
7452 void *pos;
7453 unsigned long pages = 0;
69afade7 7454
11199692
JL
7455 start = (void *)PAGE_ALIGN((unsigned long)start);
7456 end = (void *)((unsigned long)end & PAGE_MASK);
7457 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7458 struct page *page = virt_to_page(pos);
7459 void *direct_map_addr;
7460
7461 /*
7462 * 'direct_map_addr' might be different from 'pos'
7463 * because some architectures' virt_to_page()
7464 * work with aliases. Getting the direct map
7465 * address ensures that we get a _writeable_
7466 * alias for the memset().
7467 */
7468 direct_map_addr = page_address(page);
dbe67df4 7469 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7470 memset(direct_map_addr, poison, PAGE_SIZE);
7471
7472 free_reserved_page(page);
69afade7
JL
7473 }
7474
7475 if (pages && s)
adb1fe9a
JP
7476 pr_info("Freeing %s memory: %ldK\n",
7477 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7478
7479 return pages;
7480}
7481
cfa11e08
JL
7482#ifdef CONFIG_HIGHMEM
7483void free_highmem_page(struct page *page)
7484{
7485 __free_reserved_page(page);
ca79b0c2 7486 totalram_pages_inc();
9705bea5 7487 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7488 totalhigh_pages_inc();
cfa11e08
JL
7489}
7490#endif
7491
7ee3d4e8
JL
7492
7493void __init mem_init_print_info(const char *str)
7494{
7495 unsigned long physpages, codesize, datasize, rosize, bss_size;
7496 unsigned long init_code_size, init_data_size;
7497
7498 physpages = get_num_physpages();
7499 codesize = _etext - _stext;
7500 datasize = _edata - _sdata;
7501 rosize = __end_rodata - __start_rodata;
7502 bss_size = __bss_stop - __bss_start;
7503 init_data_size = __init_end - __init_begin;
7504 init_code_size = _einittext - _sinittext;
7505
7506 /*
7507 * Detect special cases and adjust section sizes accordingly:
7508 * 1) .init.* may be embedded into .data sections
7509 * 2) .init.text.* may be out of [__init_begin, __init_end],
7510 * please refer to arch/tile/kernel/vmlinux.lds.S.
7511 * 3) .rodata.* may be embedded into .text or .data sections.
7512 */
7513#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7514 do { \
7515 if (start <= pos && pos < end && size > adj) \
7516 size -= adj; \
7517 } while (0)
7ee3d4e8
JL
7518
7519 adj_init_size(__init_begin, __init_end, init_data_size,
7520 _sinittext, init_code_size);
7521 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7522 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7523 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7524 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7525
7526#undef adj_init_size
7527
756a025f 7528 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7529#ifdef CONFIG_HIGHMEM
756a025f 7530 ", %luK highmem"
7ee3d4e8 7531#endif
756a025f
JP
7532 "%s%s)\n",
7533 nr_free_pages() << (PAGE_SHIFT - 10),
7534 physpages << (PAGE_SHIFT - 10),
7535 codesize >> 10, datasize >> 10, rosize >> 10,
7536 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7537 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7538 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7539#ifdef CONFIG_HIGHMEM
ca79b0c2 7540 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7541#endif
756a025f 7542 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7543}
7544
0e0b864e 7545/**
88ca3b94
RD
7546 * set_dma_reserve - set the specified number of pages reserved in the first zone
7547 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7548 *
013110a7 7549 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7550 * In the DMA zone, a significant percentage may be consumed by kernel image
7551 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7552 * function may optionally be used to account for unfreeable pages in the
7553 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7554 * smaller per-cpu batchsize.
0e0b864e
MG
7555 */
7556void __init set_dma_reserve(unsigned long new_dma_reserve)
7557{
7558 dma_reserve = new_dma_reserve;
7559}
7560
1da177e4
LT
7561void __init free_area_init(unsigned long *zones_size)
7562{
e181ae0c 7563 zero_resv_unavail();
9109fb7b 7564 free_area_init_node(0, zones_size,
1da177e4
LT
7565 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7566}
1da177e4 7567
005fd4bb 7568static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7569{
1da177e4 7570
005fd4bb
SAS
7571 lru_add_drain_cpu(cpu);
7572 drain_pages(cpu);
9f8f2172 7573
005fd4bb
SAS
7574 /*
7575 * Spill the event counters of the dead processor
7576 * into the current processors event counters.
7577 * This artificially elevates the count of the current
7578 * processor.
7579 */
7580 vm_events_fold_cpu(cpu);
9f8f2172 7581
005fd4bb
SAS
7582 /*
7583 * Zero the differential counters of the dead processor
7584 * so that the vm statistics are consistent.
7585 *
7586 * This is only okay since the processor is dead and cannot
7587 * race with what we are doing.
7588 */
7589 cpu_vm_stats_fold(cpu);
7590 return 0;
1da177e4 7591}
1da177e4 7592
e03a5125
NP
7593#ifdef CONFIG_NUMA
7594int hashdist = HASHDIST_DEFAULT;
7595
7596static int __init set_hashdist(char *str)
7597{
7598 if (!str)
7599 return 0;
7600 hashdist = simple_strtoul(str, &str, 0);
7601 return 1;
7602}
7603__setup("hashdist=", set_hashdist);
7604#endif
7605
1da177e4
LT
7606void __init page_alloc_init(void)
7607{
005fd4bb
SAS
7608 int ret;
7609
e03a5125
NP
7610#ifdef CONFIG_NUMA
7611 if (num_node_state(N_MEMORY) == 1)
7612 hashdist = 0;
7613#endif
7614
005fd4bb
SAS
7615 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7616 "mm/page_alloc:dead", NULL,
7617 page_alloc_cpu_dead);
7618 WARN_ON(ret < 0);
1da177e4
LT
7619}
7620
cb45b0e9 7621/*
34b10060 7622 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7623 * or min_free_kbytes changes.
7624 */
7625static void calculate_totalreserve_pages(void)
7626{
7627 struct pglist_data *pgdat;
7628 unsigned long reserve_pages = 0;
2f6726e5 7629 enum zone_type i, j;
cb45b0e9
HA
7630
7631 for_each_online_pgdat(pgdat) {
281e3726
MG
7632
7633 pgdat->totalreserve_pages = 0;
7634
cb45b0e9
HA
7635 for (i = 0; i < MAX_NR_ZONES; i++) {
7636 struct zone *zone = pgdat->node_zones + i;
3484b2de 7637 long max = 0;
9705bea5 7638 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7639
7640 /* Find valid and maximum lowmem_reserve in the zone */
7641 for (j = i; j < MAX_NR_ZONES; j++) {
7642 if (zone->lowmem_reserve[j] > max)
7643 max = zone->lowmem_reserve[j];
7644 }
7645
41858966
MG
7646 /* we treat the high watermark as reserved pages. */
7647 max += high_wmark_pages(zone);
cb45b0e9 7648
3d6357de
AK
7649 if (max > managed_pages)
7650 max = managed_pages;
a8d01437 7651
281e3726 7652 pgdat->totalreserve_pages += max;
a8d01437 7653
cb45b0e9
HA
7654 reserve_pages += max;
7655 }
7656 }
7657 totalreserve_pages = reserve_pages;
7658}
7659
1da177e4
LT
7660/*
7661 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7662 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7663 * has a correct pages reserved value, so an adequate number of
7664 * pages are left in the zone after a successful __alloc_pages().
7665 */
7666static void setup_per_zone_lowmem_reserve(void)
7667{
7668 struct pglist_data *pgdat;
2f6726e5 7669 enum zone_type j, idx;
1da177e4 7670
ec936fc5 7671 for_each_online_pgdat(pgdat) {
1da177e4
LT
7672 for (j = 0; j < MAX_NR_ZONES; j++) {
7673 struct zone *zone = pgdat->node_zones + j;
9705bea5 7674 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7675
7676 zone->lowmem_reserve[j] = 0;
7677
2f6726e5
CL
7678 idx = j;
7679 while (idx) {
1da177e4
LT
7680 struct zone *lower_zone;
7681
2f6726e5 7682 idx--;
1da177e4 7683 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7684
7685 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7686 sysctl_lowmem_reserve_ratio[idx] = 0;
7687 lower_zone->lowmem_reserve[j] = 0;
7688 } else {
7689 lower_zone->lowmem_reserve[j] =
7690 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7691 }
9705bea5 7692 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7693 }
7694 }
7695 }
cb45b0e9
HA
7696
7697 /* update totalreserve_pages */
7698 calculate_totalreserve_pages();
1da177e4
LT
7699}
7700
cfd3da1e 7701static void __setup_per_zone_wmarks(void)
1da177e4
LT
7702{
7703 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7704 unsigned long lowmem_pages = 0;
7705 struct zone *zone;
7706 unsigned long flags;
7707
7708 /* Calculate total number of !ZONE_HIGHMEM pages */
7709 for_each_zone(zone) {
7710 if (!is_highmem(zone))
9705bea5 7711 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7712 }
7713
7714 for_each_zone(zone) {
ac924c60
AM
7715 u64 tmp;
7716
1125b4e3 7717 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7718 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7719 do_div(tmp, lowmem_pages);
1da177e4
LT
7720 if (is_highmem(zone)) {
7721 /*
669ed175
NP
7722 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7723 * need highmem pages, so cap pages_min to a small
7724 * value here.
7725 *
41858966 7726 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7727 * deltas control async page reclaim, and so should
669ed175 7728 * not be capped for highmem.
1da177e4 7729 */
90ae8d67 7730 unsigned long min_pages;
1da177e4 7731
9705bea5 7732 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7733 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7734 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7735 } else {
669ed175
NP
7736 /*
7737 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7738 * proportionate to the zone's size.
7739 */
a9214443 7740 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7741 }
7742
795ae7a0
JW
7743 /*
7744 * Set the kswapd watermarks distance according to the
7745 * scale factor in proportion to available memory, but
7746 * ensure a minimum size on small systems.
7747 */
7748 tmp = max_t(u64, tmp >> 2,
9705bea5 7749 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7750 watermark_scale_factor, 10000));
7751
a9214443
MG
7752 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7753 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7754 zone->watermark_boost = 0;
49f223a9 7755
1125b4e3 7756 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7757 }
cb45b0e9
HA
7758
7759 /* update totalreserve_pages */
7760 calculate_totalreserve_pages();
1da177e4
LT
7761}
7762
cfd3da1e
MG
7763/**
7764 * setup_per_zone_wmarks - called when min_free_kbytes changes
7765 * or when memory is hot-{added|removed}
7766 *
7767 * Ensures that the watermark[min,low,high] values for each zone are set
7768 * correctly with respect to min_free_kbytes.
7769 */
7770void setup_per_zone_wmarks(void)
7771{
b93e0f32
MH
7772 static DEFINE_SPINLOCK(lock);
7773
7774 spin_lock(&lock);
cfd3da1e 7775 __setup_per_zone_wmarks();
b93e0f32 7776 spin_unlock(&lock);
cfd3da1e
MG
7777}
7778
1da177e4
LT
7779/*
7780 * Initialise min_free_kbytes.
7781 *
7782 * For small machines we want it small (128k min). For large machines
7783 * we want it large (64MB max). But it is not linear, because network
7784 * bandwidth does not increase linearly with machine size. We use
7785 *
b8af2941 7786 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7787 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7788 *
7789 * which yields
7790 *
7791 * 16MB: 512k
7792 * 32MB: 724k
7793 * 64MB: 1024k
7794 * 128MB: 1448k
7795 * 256MB: 2048k
7796 * 512MB: 2896k
7797 * 1024MB: 4096k
7798 * 2048MB: 5792k
7799 * 4096MB: 8192k
7800 * 8192MB: 11584k
7801 * 16384MB: 16384k
7802 */
1b79acc9 7803int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7804{
7805 unsigned long lowmem_kbytes;
5f12733e 7806 int new_min_free_kbytes;
1da177e4
LT
7807
7808 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7809 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7810
7811 if (new_min_free_kbytes > user_min_free_kbytes) {
7812 min_free_kbytes = new_min_free_kbytes;
7813 if (min_free_kbytes < 128)
7814 min_free_kbytes = 128;
7815 if (min_free_kbytes > 65536)
7816 min_free_kbytes = 65536;
7817 } else {
7818 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7819 new_min_free_kbytes, user_min_free_kbytes);
7820 }
bc75d33f 7821 setup_per_zone_wmarks();
a6cccdc3 7822 refresh_zone_stat_thresholds();
1da177e4 7823 setup_per_zone_lowmem_reserve();
6423aa81
JK
7824
7825#ifdef CONFIG_NUMA
7826 setup_min_unmapped_ratio();
7827 setup_min_slab_ratio();
7828#endif
7829
1da177e4
LT
7830 return 0;
7831}
bc22af74 7832core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7833
7834/*
b8af2941 7835 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7836 * that we can call two helper functions whenever min_free_kbytes
7837 * changes.
7838 */
cccad5b9 7839int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7840 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7841{
da8c757b
HP
7842 int rc;
7843
7844 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7845 if (rc)
7846 return rc;
7847
5f12733e
MH
7848 if (write) {
7849 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7850 setup_per_zone_wmarks();
5f12733e 7851 }
1da177e4
LT
7852 return 0;
7853}
7854
1c30844d
MG
7855int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7856 void __user *buffer, size_t *length, loff_t *ppos)
7857{
7858 int rc;
7859
7860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7861 if (rc)
7862 return rc;
7863
7864 return 0;
7865}
7866
795ae7a0
JW
7867int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7868 void __user *buffer, size_t *length, loff_t *ppos)
7869{
7870 int rc;
7871
7872 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7873 if (rc)
7874 return rc;
7875
7876 if (write)
7877 setup_per_zone_wmarks();
7878
7879 return 0;
7880}
7881
9614634f 7882#ifdef CONFIG_NUMA
6423aa81 7883static void setup_min_unmapped_ratio(void)
9614634f 7884{
6423aa81 7885 pg_data_t *pgdat;
9614634f 7886 struct zone *zone;
9614634f 7887
a5f5f91d 7888 for_each_online_pgdat(pgdat)
81cbcbc2 7889 pgdat->min_unmapped_pages = 0;
a5f5f91d 7890
9614634f 7891 for_each_zone(zone)
9705bea5
AK
7892 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7893 sysctl_min_unmapped_ratio) / 100;
9614634f 7894}
0ff38490 7895
6423aa81
JK
7896
7897int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7898 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7899{
0ff38490
CL
7900 int rc;
7901
8d65af78 7902 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7903 if (rc)
7904 return rc;
7905
6423aa81
JK
7906 setup_min_unmapped_ratio();
7907
7908 return 0;
7909}
7910
7911static void setup_min_slab_ratio(void)
7912{
7913 pg_data_t *pgdat;
7914 struct zone *zone;
7915
a5f5f91d
MG
7916 for_each_online_pgdat(pgdat)
7917 pgdat->min_slab_pages = 0;
7918
0ff38490 7919 for_each_zone(zone)
9705bea5
AK
7920 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7921 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7922}
7923
7924int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7925 void __user *buffer, size_t *length, loff_t *ppos)
7926{
7927 int rc;
7928
7929 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7930 if (rc)
7931 return rc;
7932
7933 setup_min_slab_ratio();
7934
0ff38490
CL
7935 return 0;
7936}
9614634f
CL
7937#endif
7938
1da177e4
LT
7939/*
7940 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7941 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7942 * whenever sysctl_lowmem_reserve_ratio changes.
7943 *
7944 * The reserve ratio obviously has absolutely no relation with the
41858966 7945 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7946 * if in function of the boot time zone sizes.
7947 */
cccad5b9 7948int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7949 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7950{
8d65af78 7951 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7952 setup_per_zone_lowmem_reserve();
7953 return 0;
7954}
7955
8ad4b1fb
RS
7956/*
7957 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7958 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7959 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7960 */
cccad5b9 7961int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7962 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7963{
7964 struct zone *zone;
7cd2b0a3 7965 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7966 int ret;
7967
7cd2b0a3
DR
7968 mutex_lock(&pcp_batch_high_lock);
7969 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7970
8d65af78 7971 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7972 if (!write || ret < 0)
7973 goto out;
7974
7975 /* Sanity checking to avoid pcp imbalance */
7976 if (percpu_pagelist_fraction &&
7977 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7978 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7979 ret = -EINVAL;
7980 goto out;
7981 }
7982
7983 /* No change? */
7984 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7985 goto out;
c8e251fa 7986
364df0eb 7987 for_each_populated_zone(zone) {
7cd2b0a3
DR
7988 unsigned int cpu;
7989
22a7f12b 7990 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7991 pageset_set_high_and_batch(zone,
7992 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7993 }
7cd2b0a3 7994out:
c8e251fa 7995 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7996 return ret;
8ad4b1fb
RS
7997}
7998
f6f34b43
SD
7999#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8000/*
8001 * Returns the number of pages that arch has reserved but
8002 * is not known to alloc_large_system_hash().
8003 */
8004static unsigned long __init arch_reserved_kernel_pages(void)
8005{
8006 return 0;
8007}
8008#endif
8009
9017217b
PT
8010/*
8011 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8012 * machines. As memory size is increased the scale is also increased but at
8013 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8014 * quadruples the scale is increased by one, which means the size of hash table
8015 * only doubles, instead of quadrupling as well.
8016 * Because 32-bit systems cannot have large physical memory, where this scaling
8017 * makes sense, it is disabled on such platforms.
8018 */
8019#if __BITS_PER_LONG > 32
8020#define ADAPT_SCALE_BASE (64ul << 30)
8021#define ADAPT_SCALE_SHIFT 2
8022#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8023#endif
8024
1da177e4
LT
8025/*
8026 * allocate a large system hash table from bootmem
8027 * - it is assumed that the hash table must contain an exact power-of-2
8028 * quantity of entries
8029 * - limit is the number of hash buckets, not the total allocation size
8030 */
8031void *__init alloc_large_system_hash(const char *tablename,
8032 unsigned long bucketsize,
8033 unsigned long numentries,
8034 int scale,
8035 int flags,
8036 unsigned int *_hash_shift,
8037 unsigned int *_hash_mask,
31fe62b9
TB
8038 unsigned long low_limit,
8039 unsigned long high_limit)
1da177e4 8040{
31fe62b9 8041 unsigned long long max = high_limit;
1da177e4
LT
8042 unsigned long log2qty, size;
8043 void *table = NULL;
3749a8f0 8044 gfp_t gfp_flags;
ec11408a 8045 bool virt;
1da177e4
LT
8046
8047 /* allow the kernel cmdline to have a say */
8048 if (!numentries) {
8049 /* round applicable memory size up to nearest megabyte */
04903664 8050 numentries = nr_kernel_pages;
f6f34b43 8051 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8052
8053 /* It isn't necessary when PAGE_SIZE >= 1MB */
8054 if (PAGE_SHIFT < 20)
8055 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8056
9017217b
PT
8057#if __BITS_PER_LONG > 32
8058 if (!high_limit) {
8059 unsigned long adapt;
8060
8061 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8062 adapt <<= ADAPT_SCALE_SHIFT)
8063 scale++;
8064 }
8065#endif
8066
1da177e4
LT
8067 /* limit to 1 bucket per 2^scale bytes of low memory */
8068 if (scale > PAGE_SHIFT)
8069 numentries >>= (scale - PAGE_SHIFT);
8070 else
8071 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8072
8073 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8074 if (unlikely(flags & HASH_SMALL)) {
8075 /* Makes no sense without HASH_EARLY */
8076 WARN_ON(!(flags & HASH_EARLY));
8077 if (!(numentries >> *_hash_shift)) {
8078 numentries = 1UL << *_hash_shift;
8079 BUG_ON(!numentries);
8080 }
8081 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8082 numentries = PAGE_SIZE / bucketsize;
1da177e4 8083 }
6e692ed3 8084 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8085
8086 /* limit allocation size to 1/16 total memory by default */
8087 if (max == 0) {
8088 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8089 do_div(max, bucketsize);
8090 }
074b8517 8091 max = min(max, 0x80000000ULL);
1da177e4 8092
31fe62b9
TB
8093 if (numentries < low_limit)
8094 numentries = low_limit;
1da177e4
LT
8095 if (numentries > max)
8096 numentries = max;
8097
f0d1b0b3 8098 log2qty = ilog2(numentries);
1da177e4 8099
3749a8f0 8100 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8101 do {
ec11408a 8102 virt = false;
1da177e4 8103 size = bucketsize << log2qty;
ea1f5f37
PT
8104 if (flags & HASH_EARLY) {
8105 if (flags & HASH_ZERO)
26fb3dae 8106 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8107 else
7e1c4e27
MR
8108 table = memblock_alloc_raw(size,
8109 SMP_CACHE_BYTES);
ec11408a 8110 } else if (get_order(size) >= MAX_ORDER || hashdist) {
3749a8f0 8111 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ec11408a 8112 virt = true;
ea1f5f37 8113 } else {
1037b83b
ED
8114 /*
8115 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8116 * some pages at the end of hash table which
8117 * alloc_pages_exact() automatically does
1037b83b 8118 */
ec11408a
NP
8119 table = alloc_pages_exact(size, gfp_flags);
8120 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8121 }
8122 } while (!table && size > PAGE_SIZE && --log2qty);
8123
8124 if (!table)
8125 panic("Failed to allocate %s hash table\n", tablename);
8126
ec11408a
NP
8127 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8128 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8129 virt ? "vmalloc" : "linear");
1da177e4
LT
8130
8131 if (_hash_shift)
8132 *_hash_shift = log2qty;
8133 if (_hash_mask)
8134 *_hash_mask = (1 << log2qty) - 1;
8135
8136 return table;
8137}
a117e66e 8138
a5d76b54 8139/*
80934513
MK
8140 * This function checks whether pageblock includes unmovable pages or not.
8141 * If @count is not zero, it is okay to include less @count unmovable pages
8142 *
b8af2941 8143 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8144 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8145 * check without lock_page also may miss some movable non-lru pages at
8146 * race condition. So you can't expect this function should be exact.
a5d76b54 8147 */
b023f468 8148bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 8149 int migratetype, int flags)
49ac8255 8150{
1a9f2191
QC
8151 unsigned long found;
8152 unsigned long iter = 0;
8153 unsigned long pfn = page_to_pfn(page);
8154 const char *reason = "unmovable page";
47118af0 8155
49ac8255 8156 /*
15c30bc0
MH
8157 * TODO we could make this much more efficient by not checking every
8158 * page in the range if we know all of them are in MOVABLE_ZONE and
8159 * that the movable zone guarantees that pages are migratable but
8160 * the later is not the case right now unfortunatelly. E.g. movablecore
8161 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8162 */
49ac8255 8163
1a9f2191
QC
8164 if (is_migrate_cma_page(page)) {
8165 /*
8166 * CMA allocations (alloc_contig_range) really need to mark
8167 * isolate CMA pageblocks even when they are not movable in fact
8168 * so consider them movable here.
8169 */
8170 if (is_migrate_cma(migratetype))
8171 return false;
8172
8173 reason = "CMA page";
8174 goto unmovable;
8175 }
4da2ce25 8176
1a9f2191 8177 for (found = 0; iter < pageblock_nr_pages; iter++) {
49ac8255
KH
8178 unsigned long check = pfn + iter;
8179
29723fcc 8180 if (!pfn_valid_within(check))
49ac8255 8181 continue;
29723fcc 8182
49ac8255 8183 page = pfn_to_page(check);
c8721bbb 8184
d7ab3672 8185 if (PageReserved(page))
15c30bc0 8186 goto unmovable;
d7ab3672 8187
9d789999
MH
8188 /*
8189 * If the zone is movable and we have ruled out all reserved
8190 * pages then it should be reasonably safe to assume the rest
8191 * is movable.
8192 */
8193 if (zone_idx(zone) == ZONE_MOVABLE)
8194 continue;
8195
c8721bbb
NH
8196 /*
8197 * Hugepages are not in LRU lists, but they're movable.
8bb4e7a2 8198 * We need not scan over tail pages because we don't
c8721bbb
NH
8199 * handle each tail page individually in migration.
8200 */
8201 if (PageHuge(page)) {
17e2e7d7
OS
8202 struct page *head = compound_head(page);
8203 unsigned int skip_pages;
464c7ffb 8204
17e2e7d7 8205 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
8206 goto unmovable;
8207
17e2e7d7
OS
8208 skip_pages = (1 << compound_order(head)) - (page - head);
8209 iter += skip_pages - 1;
c8721bbb
NH
8210 continue;
8211 }
8212
97d255c8
MK
8213 /*
8214 * We can't use page_count without pin a page
8215 * because another CPU can free compound page.
8216 * This check already skips compound tails of THP
0139aa7b 8217 * because their page->_refcount is zero at all time.
97d255c8 8218 */
fe896d18 8219 if (!page_ref_count(page)) {
49ac8255
KH
8220 if (PageBuddy(page))
8221 iter += (1 << page_order(page)) - 1;
8222 continue;
8223 }
97d255c8 8224
b023f468
WC
8225 /*
8226 * The HWPoisoned page may be not in buddy system, and
8227 * page_count() is not 0.
8228 */
d381c547 8229 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
8230 continue;
8231
0efadf48
YX
8232 if (__PageMovable(page))
8233 continue;
8234
49ac8255
KH
8235 if (!PageLRU(page))
8236 found++;
8237 /*
6b4f7799
JW
8238 * If there are RECLAIMABLE pages, we need to check
8239 * it. But now, memory offline itself doesn't call
8240 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8241 */
8242 /*
8243 * If the page is not RAM, page_count()should be 0.
8244 * we don't need more check. This is an _used_ not-movable page.
8245 *
8246 * The problematic thing here is PG_reserved pages. PG_reserved
8247 * is set to both of a memory hole page and a _used_ kernel
8248 * page at boot.
8249 */
8250 if (found > count)
15c30bc0 8251 goto unmovable;
49ac8255 8252 }
80934513 8253 return false;
15c30bc0
MH
8254unmovable:
8255 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547 8256 if (flags & REPORT_FAILURE)
1a9f2191 8257 dump_page(pfn_to_page(pfn + iter), reason);
15c30bc0 8258 return true;
49ac8255
KH
8259}
8260
8df995f6 8261#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8262static unsigned long pfn_max_align_down(unsigned long pfn)
8263{
8264 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8265 pageblock_nr_pages) - 1);
8266}
8267
8268static unsigned long pfn_max_align_up(unsigned long pfn)
8269{
8270 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8271 pageblock_nr_pages));
8272}
8273
041d3a8c 8274/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8275static int __alloc_contig_migrate_range(struct compact_control *cc,
8276 unsigned long start, unsigned long end)
041d3a8c
MN
8277{
8278 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8279 unsigned long nr_reclaimed;
041d3a8c
MN
8280 unsigned long pfn = start;
8281 unsigned int tries = 0;
8282 int ret = 0;
8283
be49a6e1 8284 migrate_prep();
041d3a8c 8285
bb13ffeb 8286 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8287 if (fatal_signal_pending(current)) {
8288 ret = -EINTR;
8289 break;
8290 }
8291
bb13ffeb
MG
8292 if (list_empty(&cc->migratepages)) {
8293 cc->nr_migratepages = 0;
edc2ca61 8294 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8295 if (!pfn) {
8296 ret = -EINTR;
8297 break;
8298 }
8299 tries = 0;
8300 } else if (++tries == 5) {
8301 ret = ret < 0 ? ret : -EBUSY;
8302 break;
8303 }
8304
beb51eaa
MK
8305 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8306 &cc->migratepages);
8307 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8308
9c620e2b 8309 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8310 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8311 }
2a6f5124
SP
8312 if (ret < 0) {
8313 putback_movable_pages(&cc->migratepages);
8314 return ret;
8315 }
8316 return 0;
041d3a8c
MN
8317}
8318
8319/**
8320 * alloc_contig_range() -- tries to allocate given range of pages
8321 * @start: start PFN to allocate
8322 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8323 * @migratetype: migratetype of the underlaying pageblocks (either
8324 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8325 * in range must have the same migratetype and it must
8326 * be either of the two.
ca96b625 8327 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8328 *
8329 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8330 * aligned. The PFN range must belong to a single zone.
041d3a8c 8331 *
2c7452a0
MK
8332 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8333 * pageblocks in the range. Once isolated, the pageblocks should not
8334 * be modified by others.
041d3a8c 8335 *
a862f68a 8336 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8337 * pages which PFN is in [start, end) are allocated for the caller and
8338 * need to be freed with free_contig_range().
8339 */
0815f3d8 8340int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8341 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8342{
041d3a8c 8343 unsigned long outer_start, outer_end;
d00181b9
KS
8344 unsigned int order;
8345 int ret = 0;
041d3a8c 8346
bb13ffeb
MG
8347 struct compact_control cc = {
8348 .nr_migratepages = 0,
8349 .order = -1,
8350 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8351 .mode = MIGRATE_SYNC,
bb13ffeb 8352 .ignore_skip_hint = true,
2583d671 8353 .no_set_skip_hint = true,
7dea19f9 8354 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8355 };
8356 INIT_LIST_HEAD(&cc.migratepages);
8357
041d3a8c
MN
8358 /*
8359 * What we do here is we mark all pageblocks in range as
8360 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8361 * have different sizes, and due to the way page allocator
8362 * work, we align the range to biggest of the two pages so
8363 * that page allocator won't try to merge buddies from
8364 * different pageblocks and change MIGRATE_ISOLATE to some
8365 * other migration type.
8366 *
8367 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8368 * migrate the pages from an unaligned range (ie. pages that
8369 * we are interested in). This will put all the pages in
8370 * range back to page allocator as MIGRATE_ISOLATE.
8371 *
8372 * When this is done, we take the pages in range from page
8373 * allocator removing them from the buddy system. This way
8374 * page allocator will never consider using them.
8375 *
8376 * This lets us mark the pageblocks back as
8377 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8378 * aligned range but not in the unaligned, original range are
8379 * put back to page allocator so that buddy can use them.
8380 */
8381
8382 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8383 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8384 if (ret < 0)
86a595f9 8385 return ret;
041d3a8c 8386
8ef5849f
JK
8387 /*
8388 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8389 * So, just fall through. test_pages_isolated() has a tracepoint
8390 * which will report the busy page.
8391 *
8392 * It is possible that busy pages could become available before
8393 * the call to test_pages_isolated, and the range will actually be
8394 * allocated. So, if we fall through be sure to clear ret so that
8395 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8396 */
bb13ffeb 8397 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8398 if (ret && ret != -EBUSY)
041d3a8c 8399 goto done;
63cd4489 8400 ret =0;
041d3a8c
MN
8401
8402 /*
8403 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8404 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8405 * more, all pages in [start, end) are free in page allocator.
8406 * What we are going to do is to allocate all pages from
8407 * [start, end) (that is remove them from page allocator).
8408 *
8409 * The only problem is that pages at the beginning and at the
8410 * end of interesting range may be not aligned with pages that
8411 * page allocator holds, ie. they can be part of higher order
8412 * pages. Because of this, we reserve the bigger range and
8413 * once this is done free the pages we are not interested in.
8414 *
8415 * We don't have to hold zone->lock here because the pages are
8416 * isolated thus they won't get removed from buddy.
8417 */
8418
8419 lru_add_drain_all();
041d3a8c
MN
8420
8421 order = 0;
8422 outer_start = start;
8423 while (!PageBuddy(pfn_to_page(outer_start))) {
8424 if (++order >= MAX_ORDER) {
8ef5849f
JK
8425 outer_start = start;
8426 break;
041d3a8c
MN
8427 }
8428 outer_start &= ~0UL << order;
8429 }
8430
8ef5849f
JK
8431 if (outer_start != start) {
8432 order = page_order(pfn_to_page(outer_start));
8433
8434 /*
8435 * outer_start page could be small order buddy page and
8436 * it doesn't include start page. Adjust outer_start
8437 * in this case to report failed page properly
8438 * on tracepoint in test_pages_isolated()
8439 */
8440 if (outer_start + (1UL << order) <= start)
8441 outer_start = start;
8442 }
8443
041d3a8c 8444 /* Make sure the range is really isolated. */
b023f468 8445 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8446 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8447 __func__, outer_start, end);
041d3a8c
MN
8448 ret = -EBUSY;
8449 goto done;
8450 }
8451
49f223a9 8452 /* Grab isolated pages from freelists. */
bb13ffeb 8453 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8454 if (!outer_end) {
8455 ret = -EBUSY;
8456 goto done;
8457 }
8458
8459 /* Free head and tail (if any) */
8460 if (start != outer_start)
8461 free_contig_range(outer_start, start - outer_start);
8462 if (end != outer_end)
8463 free_contig_range(end, outer_end - end);
8464
8465done:
8466 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8467 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8468 return ret;
8469}
4eb0716e 8470#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8471
4eb0716e 8472void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8473{
bcc2b02f
MS
8474 unsigned int count = 0;
8475
8476 for (; nr_pages--; pfn++) {
8477 struct page *page = pfn_to_page(pfn);
8478
8479 count += page_count(page) != 1;
8480 __free_page(page);
8481 }
8482 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8483}
041d3a8c 8484
d883c6cf 8485#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8486/*
8487 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8488 * page high values need to be recalulated.
8489 */
4ed7e022
JL
8490void __meminit zone_pcp_update(struct zone *zone)
8491{
0a647f38 8492 unsigned cpu;
c8e251fa 8493 mutex_lock(&pcp_batch_high_lock);
0a647f38 8494 for_each_possible_cpu(cpu)
169f6c19
CS
8495 pageset_set_high_and_batch(zone,
8496 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8497 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8498}
8499#endif
8500
340175b7
JL
8501void zone_pcp_reset(struct zone *zone)
8502{
8503 unsigned long flags;
5a883813
MK
8504 int cpu;
8505 struct per_cpu_pageset *pset;
340175b7
JL
8506
8507 /* avoid races with drain_pages() */
8508 local_irq_save(flags);
8509 if (zone->pageset != &boot_pageset) {
5a883813
MK
8510 for_each_online_cpu(cpu) {
8511 pset = per_cpu_ptr(zone->pageset, cpu);
8512 drain_zonestat(zone, pset);
8513 }
340175b7
JL
8514 free_percpu(zone->pageset);
8515 zone->pageset = &boot_pageset;
8516 }
8517 local_irq_restore(flags);
8518}
8519
6dcd73d7 8520#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8521/*
b9eb6319
JK
8522 * All pages in the range must be in a single zone and isolated
8523 * before calling this.
0c0e6195 8524 */
5557c766 8525unsigned long
0c0e6195
KH
8526__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8527{
8528 struct page *page;
8529 struct zone *zone;
7aeb09f9 8530 unsigned int order, i;
0c0e6195
KH
8531 unsigned long pfn;
8532 unsigned long flags;
5557c766
MH
8533 unsigned long offlined_pages = 0;
8534
0c0e6195
KH
8535 /* find the first valid pfn */
8536 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8537 if (pfn_valid(pfn))
8538 break;
8539 if (pfn == end_pfn)
5557c766
MH
8540 return offlined_pages;
8541
2d070eab 8542 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8543 zone = page_zone(pfn_to_page(pfn));
8544 spin_lock_irqsave(&zone->lock, flags);
8545 pfn = start_pfn;
8546 while (pfn < end_pfn) {
8547 if (!pfn_valid(pfn)) {
8548 pfn++;
8549 continue;
8550 }
8551 page = pfn_to_page(pfn);
b023f468
WC
8552 /*
8553 * The HWPoisoned page may be not in buddy system, and
8554 * page_count() is not 0.
8555 */
8556 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8557 pfn++;
8558 SetPageReserved(page);
5557c766 8559 offlined_pages++;
b023f468
WC
8560 continue;
8561 }
8562
0c0e6195
KH
8563 BUG_ON(page_count(page));
8564 BUG_ON(!PageBuddy(page));
8565 order = page_order(page);
5557c766 8566 offlined_pages += 1 << order;
0c0e6195 8567#ifdef CONFIG_DEBUG_VM
1170532b
JP
8568 pr_info("remove from free list %lx %d %lx\n",
8569 pfn, 1 << order, end_pfn);
0c0e6195 8570#endif
b03641af 8571 del_page_from_free_area(page, &zone->free_area[order]);
0c0e6195
KH
8572 for (i = 0; i < (1 << order); i++)
8573 SetPageReserved((page+i));
8574 pfn += (1 << order);
8575 }
8576 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8577
8578 return offlined_pages;
0c0e6195
KH
8579}
8580#endif
8d22ba1b 8581
8d22ba1b
WF
8582bool is_free_buddy_page(struct page *page)
8583{
8584 struct zone *zone = page_zone(page);
8585 unsigned long pfn = page_to_pfn(page);
8586 unsigned long flags;
7aeb09f9 8587 unsigned int order;
8d22ba1b
WF
8588
8589 spin_lock_irqsave(&zone->lock, flags);
8590 for (order = 0; order < MAX_ORDER; order++) {
8591 struct page *page_head = page - (pfn & ((1 << order) - 1));
8592
8593 if (PageBuddy(page_head) && page_order(page_head) >= order)
8594 break;
8595 }
8596 spin_unlock_irqrestore(&zone->lock, flags);
8597
8598 return order < MAX_ORDER;
8599}
d4ae9916
NH
8600
8601#ifdef CONFIG_MEMORY_FAILURE
8602/*
8603 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8604 * test is performed under the zone lock to prevent a race against page
8605 * allocation.
8606 */
8607bool set_hwpoison_free_buddy_page(struct page *page)
8608{
8609 struct zone *zone = page_zone(page);
8610 unsigned long pfn = page_to_pfn(page);
8611 unsigned long flags;
8612 unsigned int order;
8613 bool hwpoisoned = false;
8614
8615 spin_lock_irqsave(&zone->lock, flags);
8616 for (order = 0; order < MAX_ORDER; order++) {
8617 struct page *page_head = page - (pfn & ((1 << order) - 1));
8618
8619 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8620 if (!TestSetPageHWPoison(page))
8621 hwpoisoned = true;
8622 break;
8623 }
8624 }
8625 spin_unlock_irqrestore(&zone->lock, flags);
8626
8627 return hwpoisoned;
8628}
8629#endif