mm/migrate.c: fix potential indeterminate pte entry in migrate_vma_insert_page()
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
f920e413 60#include <linux/mmu_notifier.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
e4443149 72#include <linux/padata.h>
4aab2be0 73#include <linux/khugepaged.h>
ba8f3587 74#include <linux/buffer_head.h>
7ee3d4e8 75#include <asm/sections.h>
1da177e4 76#include <asm/tlbflush.h>
ac924c60 77#include <asm/div64.h>
1da177e4 78#include "internal.h"
e900a918 79#include "shuffle.h"
36e66c55 80#include "page_reporting.h"
1da177e4 81
f04a5d5d
DH
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
47b6a24a
DH
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
2c335680
AK
110/*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
c8e251fa
CS
121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 123#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 124
72812019
LS
125#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
126DEFINE_PER_CPU(int, numa_node);
127EXPORT_PER_CPU_SYMBOL(numa_node);
128#endif
129
4518085e
KW
130DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
131
7aac7898
LS
132#ifdef CONFIG_HAVE_MEMORYLESS_NODES
133/*
134 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
135 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
136 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
137 * defined in <linux/topology.h>.
138 */
139DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
140EXPORT_PER_CPU_SYMBOL(_numa_mem_);
141#endif
142
bd233f53 143/* work_structs for global per-cpu drains */
d9367bd0
WY
144struct pcpu_drain {
145 struct zone *zone;
146 struct work_struct work;
147};
8b885f53
JY
148static DEFINE_MUTEX(pcpu_drain_mutex);
149static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 150
38addce8 151#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 152volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
153EXPORT_SYMBOL(latent_entropy);
154#endif
155
1da177e4 156/*
13808910 157 * Array of node states.
1da177e4 158 */
13808910
CL
159nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
160 [N_POSSIBLE] = NODE_MASK_ALL,
161 [N_ONLINE] = { { [0] = 1UL } },
162#ifndef CONFIG_NUMA
163 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
164#ifdef CONFIG_HIGHMEM
165 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 166#endif
20b2f52b 167 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
168 [N_CPU] = { { [0] = 1UL } },
169#endif /* NUMA */
170};
171EXPORT_SYMBOL(node_states);
172
ca79b0c2
AK
173atomic_long_t _totalram_pages __read_mostly;
174EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 175unsigned long totalreserve_pages __read_mostly;
e48322ab 176unsigned long totalcma_pages __read_mostly;
ab8fabd4 177
1b76b02f 178int percpu_pagelist_fraction;
dcce284a 179gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 180DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
181EXPORT_SYMBOL(init_on_alloc);
182
51cba1eb 183DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
184EXPORT_SYMBOL(init_on_free);
185
04013513
VB
186static bool _init_on_alloc_enabled_early __read_mostly
187 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
188static int __init early_init_on_alloc(char *buf)
189{
6471384a 190
04013513 191 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
192}
193early_param("init_on_alloc", early_init_on_alloc);
194
04013513
VB
195static bool _init_on_free_enabled_early __read_mostly
196 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
197static int __init early_init_on_free(char *buf)
198{
04013513 199 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
200}
201early_param("init_on_free", early_init_on_free);
1da177e4 202
bb14c2c7
VB
203/*
204 * A cached value of the page's pageblock's migratetype, used when the page is
205 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
206 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
207 * Also the migratetype set in the page does not necessarily match the pcplist
208 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
209 * other index - this ensures that it will be put on the correct CMA freelist.
210 */
211static inline int get_pcppage_migratetype(struct page *page)
212{
213 return page->index;
214}
215
216static inline void set_pcppage_migratetype(struct page *page, int migratetype)
217{
218 page->index = migratetype;
219}
220
452aa699
RW
221#ifdef CONFIG_PM_SLEEP
222/*
223 * The following functions are used by the suspend/hibernate code to temporarily
224 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
225 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
226 * they should always be called with system_transition_mutex held
227 * (gfp_allowed_mask also should only be modified with system_transition_mutex
228 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
229 * with that modification).
452aa699 230 */
c9e664f1
RW
231
232static gfp_t saved_gfp_mask;
233
234void pm_restore_gfp_mask(void)
452aa699 235{
55f2503c 236 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
237 if (saved_gfp_mask) {
238 gfp_allowed_mask = saved_gfp_mask;
239 saved_gfp_mask = 0;
240 }
452aa699
RW
241}
242
c9e664f1 243void pm_restrict_gfp_mask(void)
452aa699 244{
55f2503c 245 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
246 WARN_ON(saved_gfp_mask);
247 saved_gfp_mask = gfp_allowed_mask;
d0164adc 248 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 249}
f90ac398
MG
250
251bool pm_suspended_storage(void)
252{
d0164adc 253 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
254 return false;
255 return true;
256}
452aa699
RW
257#endif /* CONFIG_PM_SLEEP */
258
d9c23400 259#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 260unsigned int pageblock_order __read_mostly;
d9c23400
MG
261#endif
262
7fef431b
DH
263static void __free_pages_ok(struct page *page, unsigned int order,
264 fpi_t fpi_flags);
a226f6c8 265
1da177e4
LT
266/*
267 * results with 256, 32 in the lowmem_reserve sysctl:
268 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
269 * 1G machine -> (16M dma, 784M normal, 224M high)
270 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
271 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 272 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
273 *
274 * TBD: should special case ZONE_DMA32 machines here - in those we normally
275 * don't need any ZONE_NORMAL reservation
1da177e4 276 */
d3cda233 277int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 278#ifdef CONFIG_ZONE_DMA
d3cda233 279 [ZONE_DMA] = 256,
4b51d669 280#endif
fb0e7942 281#ifdef CONFIG_ZONE_DMA32
d3cda233 282 [ZONE_DMA32] = 256,
fb0e7942 283#endif
d3cda233 284 [ZONE_NORMAL] = 32,
e53ef38d 285#ifdef CONFIG_HIGHMEM
d3cda233 286 [ZONE_HIGHMEM] = 0,
e53ef38d 287#endif
d3cda233 288 [ZONE_MOVABLE] = 0,
2f1b6248 289};
1da177e4 290
15ad7cdc 291static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 292#ifdef CONFIG_ZONE_DMA
2f1b6248 293 "DMA",
4b51d669 294#endif
fb0e7942 295#ifdef CONFIG_ZONE_DMA32
2f1b6248 296 "DMA32",
fb0e7942 297#endif
2f1b6248 298 "Normal",
e53ef38d 299#ifdef CONFIG_HIGHMEM
2a1e274a 300 "HighMem",
e53ef38d 301#endif
2a1e274a 302 "Movable",
033fbae9
DW
303#ifdef CONFIG_ZONE_DEVICE
304 "Device",
305#endif
2f1b6248
CL
306};
307
c999fbd3 308const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
309 "Unmovable",
310 "Movable",
311 "Reclaimable",
312 "HighAtomic",
313#ifdef CONFIG_CMA
314 "CMA",
315#endif
316#ifdef CONFIG_MEMORY_ISOLATION
317 "Isolate",
318#endif
319};
320
ae70eddd
AK
321compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
322 [NULL_COMPOUND_DTOR] = NULL,
323 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 324#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 325 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 326#endif
9a982250 327#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 328 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 329#endif
f1e61557
KS
330};
331
1da177e4 332int min_free_kbytes = 1024;
42aa83cb 333int user_min_free_kbytes = -1;
24512228
MG
334#ifdef CONFIG_DISCONTIGMEM
335/*
336 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
337 * are not on separate NUMA nodes. Functionally this works but with
338 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
339 * quite small. By default, do not boost watermarks on discontigmem as in
340 * many cases very high-order allocations like THP are likely to be
341 * unsupported and the premature reclaim offsets the advantage of long-term
342 * fragmentation avoidance.
343 */
344int watermark_boost_factor __read_mostly;
345#else
1c30844d 346int watermark_boost_factor __read_mostly = 15000;
24512228 347#endif
795ae7a0 348int watermark_scale_factor = 10;
1da177e4 349
bbe5d993
OS
350static unsigned long nr_kernel_pages __initdata;
351static unsigned long nr_all_pages __initdata;
352static unsigned long dma_reserve __initdata;
1da177e4 353
bbe5d993
OS
354static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
355static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 356static unsigned long required_kernelcore __initdata;
a5c6d650 357static unsigned long required_kernelcore_percent __initdata;
7f16f91f 358static unsigned long required_movablecore __initdata;
a5c6d650 359static unsigned long required_movablecore_percent __initdata;
bbe5d993 360static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 361static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
362
363/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
364int movable_zone;
365EXPORT_SYMBOL(movable_zone);
c713216d 366
418508c1 367#if MAX_NUMNODES > 1
b9726c26 368unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 369unsigned int nr_online_nodes __read_mostly = 1;
418508c1 370EXPORT_SYMBOL(nr_node_ids);
62bc62a8 371EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
372#endif
373
9ef9acb0
MG
374int page_group_by_mobility_disabled __read_mostly;
375
3a80a7fa 376#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
377/*
378 * During boot we initialize deferred pages on-demand, as needed, but once
379 * page_alloc_init_late() has finished, the deferred pages are all initialized,
380 * and we can permanently disable that path.
381 */
382static DEFINE_STATIC_KEY_TRUE(deferred_pages);
383
384/*
385 * Calling kasan_free_pages() only after deferred memory initialization
386 * has completed. Poisoning pages during deferred memory init will greatly
387 * lengthen the process and cause problem in large memory systems as the
388 * deferred pages initialization is done with interrupt disabled.
389 *
390 * Assuming that there will be no reference to those newly initialized
391 * pages before they are ever allocated, this should have no effect on
392 * KASAN memory tracking as the poison will be properly inserted at page
393 * allocation time. The only corner case is when pages are allocated by
394 * on-demand allocation and then freed again before the deferred pages
395 * initialization is done, but this is not likely to happen.
396 */
2c335680 397static inline void kasan_free_nondeferred_pages(struct page *page, int order,
1bb5eab3 398 bool init, fpi_t fpi_flags)
3c0c12cc 399{
2c335680
AK
400 if (static_branch_unlikely(&deferred_pages))
401 return;
402 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
403 (fpi_flags & FPI_SKIP_KASAN_POISON))
404 return;
1bb5eab3 405 kasan_free_pages(page, order, init);
3c0c12cc
WL
406}
407
3a80a7fa 408/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 409static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 410{
ef70b6f4
MG
411 int nid = early_pfn_to_nid(pfn);
412
413 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
414 return true;
415
416 return false;
417}
418
419/*
d3035be4 420 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
421 * later in the boot cycle when it can be parallelised.
422 */
d3035be4
PT
423static bool __meminit
424defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 425{
d3035be4
PT
426 static unsigned long prev_end_pfn, nr_initialised;
427
428 /*
429 * prev_end_pfn static that contains the end of previous zone
430 * No need to protect because called very early in boot before smp_init.
431 */
432 if (prev_end_pfn != end_pfn) {
433 prev_end_pfn = end_pfn;
434 nr_initialised = 0;
435 }
436
3c2c6488 437 /* Always populate low zones for address-constrained allocations */
d3035be4 438 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 439 return false;
23b68cfa 440
dc2da7b4
BH
441 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
442 return true;
23b68cfa
WY
443 /*
444 * We start only with one section of pages, more pages are added as
445 * needed until the rest of deferred pages are initialized.
446 */
d3035be4 447 nr_initialised++;
23b68cfa 448 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
449 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
450 NODE_DATA(nid)->first_deferred_pfn = pfn;
451 return true;
3a80a7fa 452 }
d3035be4 453 return false;
3a80a7fa
MG
454}
455#else
2c335680 456static inline void kasan_free_nondeferred_pages(struct page *page, int order,
1bb5eab3 457 bool init, fpi_t fpi_flags)
2c335680
AK
458{
459 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
460 (fpi_flags & FPI_SKIP_KASAN_POISON))
461 return;
1bb5eab3 462 kasan_free_pages(page, order, init);
2c335680 463}
3c0c12cc 464
3a80a7fa
MG
465static inline bool early_page_uninitialised(unsigned long pfn)
466{
467 return false;
468}
469
d3035be4 470static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 471{
d3035be4 472 return false;
3a80a7fa
MG
473}
474#endif
475
0b423ca2
MG
476/* Return a pointer to the bitmap storing bits affecting a block of pages */
477static inline unsigned long *get_pageblock_bitmap(struct page *page,
478 unsigned long pfn)
479{
480#ifdef CONFIG_SPARSEMEM
f1eca35a 481 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
482#else
483 return page_zone(page)->pageblock_flags;
484#endif /* CONFIG_SPARSEMEM */
485}
486
487static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
488{
489#ifdef CONFIG_SPARSEMEM
490 pfn &= (PAGES_PER_SECTION-1);
0b423ca2
MG
491#else
492 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
0b423ca2 493#endif /* CONFIG_SPARSEMEM */
399b795b 494 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
495}
496
535b81e2
WY
497static __always_inline
498unsigned long __get_pfnblock_flags_mask(struct page *page,
0b423ca2 499 unsigned long pfn,
0b423ca2
MG
500 unsigned long mask)
501{
502 unsigned long *bitmap;
503 unsigned long bitidx, word_bitidx;
504 unsigned long word;
505
506 bitmap = get_pageblock_bitmap(page, pfn);
507 bitidx = pfn_to_bitidx(page, pfn);
508 word_bitidx = bitidx / BITS_PER_LONG;
509 bitidx &= (BITS_PER_LONG-1);
510
511 word = bitmap[word_bitidx];
d93d5ab9 512 return (word >> bitidx) & mask;
0b423ca2
MG
513}
514
a00cda3f
MCC
515/**
516 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
517 * @page: The page within the block of interest
518 * @pfn: The target page frame number
519 * @mask: mask of bits that the caller is interested in
520 *
521 * Return: pageblock_bits flags
522 */
0b423ca2 523unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
0b423ca2
MG
524 unsigned long mask)
525{
535b81e2 526 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
527}
528
529static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
530{
535b81e2 531 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
532}
533
534/**
535 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
536 * @page: The page within the block of interest
537 * @flags: The flags to set
538 * @pfn: The target page frame number
0b423ca2
MG
539 * @mask: mask of bits that the caller is interested in
540 */
541void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
542 unsigned long pfn,
0b423ca2
MG
543 unsigned long mask)
544{
545 unsigned long *bitmap;
546 unsigned long bitidx, word_bitidx;
547 unsigned long old_word, word;
548
549 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 550 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
551
552 bitmap = get_pageblock_bitmap(page, pfn);
553 bitidx = pfn_to_bitidx(page, pfn);
554 word_bitidx = bitidx / BITS_PER_LONG;
555 bitidx &= (BITS_PER_LONG-1);
556
557 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
558
d93d5ab9
WY
559 mask <<= bitidx;
560 flags <<= bitidx;
0b423ca2
MG
561
562 word = READ_ONCE(bitmap[word_bitidx]);
563 for (;;) {
564 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
565 if (word == old_word)
566 break;
567 word = old_word;
568 }
569}
3a80a7fa 570
ee6f509c 571void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 572{
5d0f3f72
KM
573 if (unlikely(page_group_by_mobility_disabled &&
574 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
575 migratetype = MIGRATE_UNMOVABLE;
576
d93d5ab9 577 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 578 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
579}
580
13e7444b 581#ifdef CONFIG_DEBUG_VM
c6a57e19 582static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 583{
bdc8cb98
DH
584 int ret = 0;
585 unsigned seq;
586 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 587 unsigned long sp, start_pfn;
c6a57e19 588
bdc8cb98
DH
589 do {
590 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
591 start_pfn = zone->zone_start_pfn;
592 sp = zone->spanned_pages;
108bcc96 593 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
594 ret = 1;
595 } while (zone_span_seqretry(zone, seq));
596
b5e6a5a2 597 if (ret)
613813e8
DH
598 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
599 pfn, zone_to_nid(zone), zone->name,
600 start_pfn, start_pfn + sp);
b5e6a5a2 601
bdc8cb98 602 return ret;
c6a57e19
DH
603}
604
605static int page_is_consistent(struct zone *zone, struct page *page)
606{
14e07298 607 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 608 return 0;
1da177e4 609 if (zone != page_zone(page))
c6a57e19
DH
610 return 0;
611
612 return 1;
613}
614/*
615 * Temporary debugging check for pages not lying within a given zone.
616 */
d73d3c9f 617static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
618{
619 if (page_outside_zone_boundaries(zone, page))
1da177e4 620 return 1;
c6a57e19
DH
621 if (!page_is_consistent(zone, page))
622 return 1;
623
1da177e4
LT
624 return 0;
625}
13e7444b 626#else
d73d3c9f 627static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
628{
629 return 0;
630}
631#endif
632
82a3241a 633static void bad_page(struct page *page, const char *reason)
1da177e4 634{
d936cf9b
HD
635 static unsigned long resume;
636 static unsigned long nr_shown;
637 static unsigned long nr_unshown;
638
639 /*
640 * Allow a burst of 60 reports, then keep quiet for that minute;
641 * or allow a steady drip of one report per second.
642 */
643 if (nr_shown == 60) {
644 if (time_before(jiffies, resume)) {
645 nr_unshown++;
646 goto out;
647 }
648 if (nr_unshown) {
ff8e8116 649 pr_alert(
1e9e6365 650 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
651 nr_unshown);
652 nr_unshown = 0;
653 }
654 nr_shown = 0;
655 }
656 if (nr_shown++ == 0)
657 resume = jiffies + 60 * HZ;
658
ff8e8116 659 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 660 current->comm, page_to_pfn(page));
ff8e8116 661 __dump_page(page, reason);
4e462112 662 dump_page_owner(page);
3dc14741 663
4f31888c 664 print_modules();
1da177e4 665 dump_stack();
d936cf9b 666out:
8cc3b392 667 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 668 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
670}
671
1da177e4
LT
672/*
673 * Higher-order pages are called "compound pages". They are structured thusly:
674 *
1d798ca3 675 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 676 *
1d798ca3
KS
677 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
678 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 679 *
1d798ca3
KS
680 * The first tail page's ->compound_dtor holds the offset in array of compound
681 * page destructors. See compound_page_dtors.
1da177e4 682 *
1d798ca3 683 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 684 * This usage means that zero-order pages may not be compound.
1da177e4 685 */
d98c7a09 686
9a982250 687void free_compound_page(struct page *page)
d98c7a09 688{
7ae88534 689 mem_cgroup_uncharge(page);
7fef431b 690 __free_pages_ok(page, compound_order(page), FPI_NONE);
d98c7a09
HD
691}
692
d00181b9 693void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
694{
695 int i;
696 int nr_pages = 1 << order;
697
18229df5
AW
698 __SetPageHead(page);
699 for (i = 1; i < nr_pages; i++) {
700 struct page *p = page + i;
58a84aa9 701 set_page_count(p, 0);
1c290f64 702 p->mapping = TAIL_MAPPING;
1d798ca3 703 set_compound_head(p, page);
18229df5 704 }
1378a5ee
MWO
705
706 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
707 set_compound_order(page, order);
53f9263b 708 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
709 if (hpage_pincount_available(page))
710 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
711}
712
c0a32fc5
SG
713#ifdef CONFIG_DEBUG_PAGEALLOC
714unsigned int _debug_guardpage_minorder;
96a2b03f 715
8e57f8ac
VB
716bool _debug_pagealloc_enabled_early __read_mostly
717 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
718EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 719DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 720EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
721
722DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 723
031bc574
JK
724static int __init early_debug_pagealloc(char *buf)
725{
8e57f8ac 726 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
727}
728early_param("debug_pagealloc", early_debug_pagealloc);
729
c0a32fc5
SG
730static int __init debug_guardpage_minorder_setup(char *buf)
731{
732 unsigned long res;
733
734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 735 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
736 return 0;
737 }
738 _debug_guardpage_minorder = res;
1170532b 739 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
740 return 0;
741}
f1c1e9f7 742early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 743
acbc15a4 744static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 745 unsigned int order, int migratetype)
c0a32fc5 746{
e30825f1 747 if (!debug_guardpage_enabled())
acbc15a4
JK
748 return false;
749
750 if (order >= debug_guardpage_minorder())
751 return false;
e30825f1 752
3972f6bb 753 __SetPageGuard(page);
2847cf95
JK
754 INIT_LIST_HEAD(&page->lru);
755 set_page_private(page, order);
756 /* Guard pages are not available for any usage */
757 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
758
759 return true;
c0a32fc5
SG
760}
761
2847cf95
JK
762static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype)
c0a32fc5 764{
e30825f1
JK
765 if (!debug_guardpage_enabled())
766 return;
767
3972f6bb 768 __ClearPageGuard(page);
e30825f1 769
2847cf95
JK
770 set_page_private(page, 0);
771 if (!is_migrate_isolate(migratetype))
772 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
773}
774#else
acbc15a4
JK
775static inline bool set_page_guard(struct zone *zone, struct page *page,
776 unsigned int order, int migratetype) { return false; }
2847cf95
JK
777static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype) {}
c0a32fc5
SG
779#endif
780
04013513
VB
781/*
782 * Enable static keys related to various memory debugging and hardening options.
783 * Some override others, and depend on early params that are evaluated in the
784 * order of appearance. So we need to first gather the full picture of what was
785 * enabled, and then make decisions.
786 */
787void init_mem_debugging_and_hardening(void)
788{
9df65f52
ST
789 bool page_poisoning_requested = false;
790
791#ifdef CONFIG_PAGE_POISONING
792 /*
793 * Page poisoning is debug page alloc for some arches. If
794 * either of those options are enabled, enable poisoning.
795 */
796 if (page_poisoning_enabled() ||
797 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
798 debug_pagealloc_enabled())) {
799 static_branch_enable(&_page_poisoning_enabled);
800 page_poisoning_requested = true;
801 }
802#endif
803
04013513 804 if (_init_on_alloc_enabled_early) {
9df65f52 805 if (page_poisoning_requested)
04013513
VB
806 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
807 "will take precedence over init_on_alloc\n");
808 else
809 static_branch_enable(&init_on_alloc);
810 }
811 if (_init_on_free_enabled_early) {
9df65f52 812 if (page_poisoning_requested)
04013513
VB
813 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
814 "will take precedence over init_on_free\n");
815 else
816 static_branch_enable(&init_on_free);
817 }
818
819#ifdef CONFIG_DEBUG_PAGEALLOC
820 if (!debug_pagealloc_enabled())
821 return;
822
823 static_branch_enable(&_debug_pagealloc_enabled);
824
825 if (!debug_guardpage_minorder())
826 return;
827
828 static_branch_enable(&_debug_guardpage_enabled);
829#endif
830}
831
ab130f91 832static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 833{
4c21e2f2 834 set_page_private(page, order);
676165a8 835 __SetPageBuddy(page);
1da177e4
LT
836}
837
1da177e4
LT
838/*
839 * This function checks whether a page is free && is the buddy
6e292b9b 840 * we can coalesce a page and its buddy if
13ad59df 841 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 842 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
843 * (c) a page and its buddy have the same order &&
844 * (d) a page and its buddy are in the same zone.
676165a8 845 *
6e292b9b
MW
846 * For recording whether a page is in the buddy system, we set PageBuddy.
847 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 848 *
676165a8 849 * For recording page's order, we use page_private(page).
1da177e4 850 */
fe925c0c 851static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 852 unsigned int order)
1da177e4 853{
fe925c0c 854 if (!page_is_guard(buddy) && !PageBuddy(buddy))
855 return false;
4c5018ce 856
ab130f91 857 if (buddy_order(buddy) != order)
fe925c0c 858 return false;
c0a32fc5 859
fe925c0c 860 /*
861 * zone check is done late to avoid uselessly calculating
862 * zone/node ids for pages that could never merge.
863 */
864 if (page_zone_id(page) != page_zone_id(buddy))
865 return false;
d34c5fa0 866
fe925c0c 867 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 868
fe925c0c 869 return true;
1da177e4
LT
870}
871
5e1f0f09
MG
872#ifdef CONFIG_COMPACTION
873static inline struct capture_control *task_capc(struct zone *zone)
874{
875 struct capture_control *capc = current->capture_control;
876
deba0487 877 return unlikely(capc) &&
5e1f0f09
MG
878 !(current->flags & PF_KTHREAD) &&
879 !capc->page &&
deba0487 880 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
881}
882
883static inline bool
884compaction_capture(struct capture_control *capc, struct page *page,
885 int order, int migratetype)
886{
887 if (!capc || order != capc->cc->order)
888 return false;
889
890 /* Do not accidentally pollute CMA or isolated regions*/
891 if (is_migrate_cma(migratetype) ||
892 is_migrate_isolate(migratetype))
893 return false;
894
895 /*
896 * Do not let lower order allocations polluate a movable pageblock.
897 * This might let an unmovable request use a reclaimable pageblock
898 * and vice-versa but no more than normal fallback logic which can
899 * have trouble finding a high-order free page.
900 */
901 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
902 return false;
903
904 capc->page = page;
905 return true;
906}
907
908#else
909static inline struct capture_control *task_capc(struct zone *zone)
910{
911 return NULL;
912}
913
914static inline bool
915compaction_capture(struct capture_control *capc, struct page *page,
916 int order, int migratetype)
917{
918 return false;
919}
920#endif /* CONFIG_COMPACTION */
921
6ab01363
AD
922/* Used for pages not on another list */
923static inline void add_to_free_list(struct page *page, struct zone *zone,
924 unsigned int order, int migratetype)
925{
926 struct free_area *area = &zone->free_area[order];
927
928 list_add(&page->lru, &area->free_list[migratetype]);
929 area->nr_free++;
930}
931
932/* Used for pages not on another list */
933static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
934 unsigned int order, int migratetype)
935{
936 struct free_area *area = &zone->free_area[order];
937
938 list_add_tail(&page->lru, &area->free_list[migratetype]);
939 area->nr_free++;
940}
941
293ffa5e
DH
942/*
943 * Used for pages which are on another list. Move the pages to the tail
944 * of the list - so the moved pages won't immediately be considered for
945 * allocation again (e.g., optimization for memory onlining).
946 */
6ab01363
AD
947static inline void move_to_free_list(struct page *page, struct zone *zone,
948 unsigned int order, int migratetype)
949{
950 struct free_area *area = &zone->free_area[order];
951
293ffa5e 952 list_move_tail(&page->lru, &area->free_list[migratetype]);
6ab01363
AD
953}
954
955static inline void del_page_from_free_list(struct page *page, struct zone *zone,
956 unsigned int order)
957{
36e66c55
AD
958 /* clear reported state and update reported page count */
959 if (page_reported(page))
960 __ClearPageReported(page);
961
6ab01363
AD
962 list_del(&page->lru);
963 __ClearPageBuddy(page);
964 set_page_private(page, 0);
965 zone->free_area[order].nr_free--;
966}
967
a2129f24
AD
968/*
969 * If this is not the largest possible page, check if the buddy
970 * of the next-highest order is free. If it is, it's possible
971 * that pages are being freed that will coalesce soon. In case,
972 * that is happening, add the free page to the tail of the list
973 * so it's less likely to be used soon and more likely to be merged
974 * as a higher order page
975 */
976static inline bool
977buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
978 struct page *page, unsigned int order)
979{
980 struct page *higher_page, *higher_buddy;
981 unsigned long combined_pfn;
982
983 if (order >= MAX_ORDER - 2)
984 return false;
985
986 if (!pfn_valid_within(buddy_pfn))
987 return false;
988
989 combined_pfn = buddy_pfn & pfn;
990 higher_page = page + (combined_pfn - pfn);
991 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
992 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
993
994 return pfn_valid_within(buddy_pfn) &&
995 page_is_buddy(higher_page, higher_buddy, order + 1);
996}
997
1da177e4
LT
998/*
999 * Freeing function for a buddy system allocator.
1000 *
1001 * The concept of a buddy system is to maintain direct-mapped table
1002 * (containing bit values) for memory blocks of various "orders".
1003 * The bottom level table contains the map for the smallest allocatable
1004 * units of memory (here, pages), and each level above it describes
1005 * pairs of units from the levels below, hence, "buddies".
1006 * At a high level, all that happens here is marking the table entry
1007 * at the bottom level available, and propagating the changes upward
1008 * as necessary, plus some accounting needed to play nicely with other
1009 * parts of the VM system.
1010 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1011 * free pages of length of (1 << order) and marked with PageBuddy.
1012 * Page's order is recorded in page_private(page) field.
1da177e4 1013 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1014 * other. That is, if we allocate a small block, and both were
1015 * free, the remainder of the region must be split into blocks.
1da177e4 1016 * If a block is freed, and its buddy is also free, then this
5f63b720 1017 * triggers coalescing into a block of larger size.
1da177e4 1018 *
6d49e352 1019 * -- nyc
1da177e4
LT
1020 */
1021
48db57f8 1022static inline void __free_one_page(struct page *page,
dc4b0caf 1023 unsigned long pfn,
ed0ae21d 1024 struct zone *zone, unsigned int order,
f04a5d5d 1025 int migratetype, fpi_t fpi_flags)
1da177e4 1026{
a2129f24 1027 struct capture_control *capc = task_capc(zone);
3f649ab7 1028 unsigned long buddy_pfn;
a2129f24 1029 unsigned long combined_pfn;
d9dddbf5 1030 unsigned int max_order;
a2129f24
AD
1031 struct page *buddy;
1032 bool to_tail;
d9dddbf5 1033
7ad69832 1034 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1da177e4 1035
d29bb978 1036 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1037 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1038
ed0ae21d 1039 VM_BUG_ON(migratetype == -1);
d9dddbf5 1040 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1041 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1042
76741e77 1043 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1044 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1045
d9dddbf5 1046continue_merging:
7ad69832 1047 while (order < max_order) {
5e1f0f09
MG
1048 if (compaction_capture(capc, page, order, migratetype)) {
1049 __mod_zone_freepage_state(zone, -(1 << order),
1050 migratetype);
1051 return;
1052 }
76741e77
VB
1053 buddy_pfn = __find_buddy_pfn(pfn, order);
1054 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
1055
1056 if (!pfn_valid_within(buddy_pfn))
1057 goto done_merging;
cb2b95e1 1058 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1059 goto done_merging;
c0a32fc5
SG
1060 /*
1061 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1062 * merge with it and move up one order.
1063 */
b03641af 1064 if (page_is_guard(buddy))
2847cf95 1065 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1066 else
6ab01363 1067 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1068 combined_pfn = buddy_pfn & pfn;
1069 page = page + (combined_pfn - pfn);
1070 pfn = combined_pfn;
1da177e4
LT
1071 order++;
1072 }
7ad69832 1073 if (order < MAX_ORDER - 1) {
d9dddbf5
VB
1074 /* If we are here, it means order is >= pageblock_order.
1075 * We want to prevent merge between freepages on isolate
1076 * pageblock and normal pageblock. Without this, pageblock
1077 * isolation could cause incorrect freepage or CMA accounting.
1078 *
1079 * We don't want to hit this code for the more frequent
1080 * low-order merging.
1081 */
1082 if (unlikely(has_isolate_pageblock(zone))) {
1083 int buddy_mt;
1084
76741e77
VB
1085 buddy_pfn = __find_buddy_pfn(pfn, order);
1086 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1087 buddy_mt = get_pageblock_migratetype(buddy);
1088
1089 if (migratetype != buddy_mt
1090 && (is_migrate_isolate(migratetype) ||
1091 is_migrate_isolate(buddy_mt)))
1092 goto done_merging;
1093 }
7ad69832 1094 max_order = order + 1;
d9dddbf5
VB
1095 goto continue_merging;
1096 }
1097
1098done_merging:
ab130f91 1099 set_buddy_order(page, order);
6dda9d55 1100
47b6a24a
DH
1101 if (fpi_flags & FPI_TO_TAIL)
1102 to_tail = true;
1103 else if (is_shuffle_order(order))
a2129f24 1104 to_tail = shuffle_pick_tail();
97500a4a 1105 else
a2129f24 1106 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1107
a2129f24 1108 if (to_tail)
6ab01363 1109 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1110 else
6ab01363 1111 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1112
1113 /* Notify page reporting subsystem of freed page */
f04a5d5d 1114 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1115 page_reporting_notify_free(order);
1da177e4
LT
1116}
1117
7bfec6f4
MG
1118/*
1119 * A bad page could be due to a number of fields. Instead of multiple branches,
1120 * try and check multiple fields with one check. The caller must do a detailed
1121 * check if necessary.
1122 */
1123static inline bool page_expected_state(struct page *page,
1124 unsigned long check_flags)
1125{
1126 if (unlikely(atomic_read(&page->_mapcount) != -1))
1127 return false;
1128
1129 if (unlikely((unsigned long)page->mapping |
1130 page_ref_count(page) |
1131#ifdef CONFIG_MEMCG
48060834 1132 page->memcg_data |
7bfec6f4
MG
1133#endif
1134 (page->flags & check_flags)))
1135 return false;
1136
1137 return true;
1138}
1139
58b7f119 1140static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1141{
82a3241a 1142 const char *bad_reason = NULL;
f0b791a3 1143
53f9263b 1144 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1145 bad_reason = "nonzero mapcount";
1146 if (unlikely(page->mapping != NULL))
1147 bad_reason = "non-NULL mapping";
fe896d18 1148 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1149 bad_reason = "nonzero _refcount";
58b7f119
WY
1150 if (unlikely(page->flags & flags)) {
1151 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1152 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1153 else
1154 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1155 }
9edad6ea 1156#ifdef CONFIG_MEMCG
48060834 1157 if (unlikely(page->memcg_data))
9edad6ea
JW
1158 bad_reason = "page still charged to cgroup";
1159#endif
58b7f119
WY
1160 return bad_reason;
1161}
1162
1163static void check_free_page_bad(struct page *page)
1164{
1165 bad_page(page,
1166 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1167}
1168
534fe5e3 1169static inline int check_free_page(struct page *page)
bb552ac6 1170{
da838d4f 1171 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1172 return 0;
bb552ac6
MG
1173
1174 /* Something has gone sideways, find it */
0d0c48a2 1175 check_free_page_bad(page);
7bfec6f4 1176 return 1;
1da177e4
LT
1177}
1178
4db7548c
MG
1179static int free_tail_pages_check(struct page *head_page, struct page *page)
1180{
1181 int ret = 1;
1182
1183 /*
1184 * We rely page->lru.next never has bit 0 set, unless the page
1185 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1186 */
1187 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1188
1189 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1190 ret = 0;
1191 goto out;
1192 }
1193 switch (page - head_page) {
1194 case 1:
4da1984e 1195 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1196 if (unlikely(compound_mapcount(page))) {
82a3241a 1197 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1198 goto out;
1199 }
1200 break;
1201 case 2:
1202 /*
1203 * the second tail page: ->mapping is
fa3015b7 1204 * deferred_list.next -- ignore value.
4db7548c
MG
1205 */
1206 break;
1207 default:
1208 if (page->mapping != TAIL_MAPPING) {
82a3241a 1209 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1210 goto out;
1211 }
1212 break;
1213 }
1214 if (unlikely(!PageTail(page))) {
82a3241a 1215 bad_page(page, "PageTail not set");
4db7548c
MG
1216 goto out;
1217 }
1218 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1219 bad_page(page, "compound_head not consistent");
4db7548c
MG
1220 goto out;
1221 }
1222 ret = 0;
1223out:
1224 page->mapping = NULL;
1225 clear_compound_head(page);
1226 return ret;
1227}
1228
6471384a
AP
1229static void kernel_init_free_pages(struct page *page, int numpages)
1230{
1231 int i;
1232
9e15afa5
QC
1233 /* s390's use of memset() could override KASAN redzones. */
1234 kasan_disable_current();
aa1ef4d7 1235 for (i = 0; i < numpages; i++) {
acb35b17 1236 u8 tag = page_kasan_tag(page + i);
aa1ef4d7 1237 page_kasan_tag_reset(page + i);
6471384a 1238 clear_highpage(page + i);
acb35b17 1239 page_kasan_tag_set(page + i, tag);
aa1ef4d7 1240 }
9e15afa5 1241 kasan_enable_current();
6471384a
AP
1242}
1243
e2769dbd 1244static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1245 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1246{
e2769dbd 1247 int bad = 0;
1bb5eab3 1248 bool init;
4db7548c 1249
4db7548c
MG
1250 VM_BUG_ON_PAGE(PageTail(page), page);
1251
e2769dbd 1252 trace_mm_page_free(page, order);
e2769dbd 1253
79f5f8fa
OS
1254 if (unlikely(PageHWPoison(page)) && !order) {
1255 /*
1256 * Do not let hwpoison pages hit pcplists/buddy
1257 * Untie memcg state and reset page's owner
1258 */
18b2db3b 1259 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1260 __memcg_kmem_uncharge_page(page, order);
1261 reset_page_owner(page, order);
1262 return false;
1263 }
1264
e2769dbd
MG
1265 /*
1266 * Check tail pages before head page information is cleared to
1267 * avoid checking PageCompound for order-0 pages.
1268 */
1269 if (unlikely(order)) {
1270 bool compound = PageCompound(page);
1271 int i;
1272
1273 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1274
9a73f61b
KS
1275 if (compound)
1276 ClearPageDoubleMap(page);
e2769dbd
MG
1277 for (i = 1; i < (1 << order); i++) {
1278 if (compound)
1279 bad += free_tail_pages_check(page, page + i);
534fe5e3 1280 if (unlikely(check_free_page(page + i))) {
e2769dbd
MG
1281 bad++;
1282 continue;
1283 }
1284 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1285 }
1286 }
bda807d4 1287 if (PageMappingFlags(page))
4db7548c 1288 page->mapping = NULL;
18b2db3b 1289 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1290 __memcg_kmem_uncharge_page(page, order);
e2769dbd 1291 if (check_free)
534fe5e3 1292 bad += check_free_page(page);
e2769dbd
MG
1293 if (bad)
1294 return false;
4db7548c 1295
e2769dbd
MG
1296 page_cpupid_reset_last(page);
1297 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1298 reset_page_owner(page, order);
4db7548c
MG
1299
1300 if (!PageHighMem(page)) {
1301 debug_check_no_locks_freed(page_address(page),
e2769dbd 1302 PAGE_SIZE << order);
4db7548c 1303 debug_check_no_obj_freed(page_address(page),
e2769dbd 1304 PAGE_SIZE << order);
4db7548c 1305 }
6471384a 1306
8db26a3d
VB
1307 kernel_poison_pages(page, 1 << order);
1308
f9d79e8d 1309 /*
1bb5eab3
AK
1310 * As memory initialization might be integrated into KASAN,
1311 * kasan_free_pages and kernel_init_free_pages must be
1312 * kept together to avoid discrepancies in behavior.
1313 *
f9d79e8d
AK
1314 * With hardware tag-based KASAN, memory tags must be set before the
1315 * page becomes unavailable via debug_pagealloc or arch_free_page.
1316 */
1bb5eab3
AK
1317 init = want_init_on_free();
1318 if (init && !kasan_has_integrated_init())
1319 kernel_init_free_pages(page, 1 << order);
1320 kasan_free_nondeferred_pages(page, order, init, fpi_flags);
f9d79e8d 1321
234fdce8
QC
1322 /*
1323 * arch_free_page() can make the page's contents inaccessible. s390
1324 * does this. So nothing which can access the page's contents should
1325 * happen after this.
1326 */
1327 arch_free_page(page, order);
1328
77bc7fd6 1329 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1330
4db7548c
MG
1331 return true;
1332}
1333
e2769dbd 1334#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1335/*
1336 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1337 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1338 * moved from pcp lists to free lists.
1339 */
1340static bool free_pcp_prepare(struct page *page)
e2769dbd 1341{
2c335680 1342 return free_pages_prepare(page, 0, true, FPI_NONE);
e2769dbd
MG
1343}
1344
4462b32c 1345static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1346{
8e57f8ac 1347 if (debug_pagealloc_enabled_static())
534fe5e3 1348 return check_free_page(page);
4462b32c
VB
1349 else
1350 return false;
e2769dbd
MG
1351}
1352#else
4462b32c
VB
1353/*
1354 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1355 * moving from pcp lists to free list in order to reduce overhead. With
1356 * debug_pagealloc enabled, they are checked also immediately when being freed
1357 * to the pcp lists.
1358 */
e2769dbd
MG
1359static bool free_pcp_prepare(struct page *page)
1360{
8e57f8ac 1361 if (debug_pagealloc_enabled_static())
2c335680 1362 return free_pages_prepare(page, 0, true, FPI_NONE);
4462b32c 1363 else
2c335680 1364 return free_pages_prepare(page, 0, false, FPI_NONE);
e2769dbd
MG
1365}
1366
4db7548c
MG
1367static bool bulkfree_pcp_prepare(struct page *page)
1368{
534fe5e3 1369 return check_free_page(page);
4db7548c
MG
1370}
1371#endif /* CONFIG_DEBUG_VM */
1372
97334162
AL
1373static inline void prefetch_buddy(struct page *page)
1374{
1375 unsigned long pfn = page_to_pfn(page);
1376 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1377 struct page *buddy = page + (buddy_pfn - pfn);
1378
1379 prefetch(buddy);
1380}
1381
1da177e4 1382/*
5f8dcc21 1383 * Frees a number of pages from the PCP lists
1da177e4 1384 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1385 * count is the number of pages to free.
1da177e4
LT
1386 *
1387 * If the zone was previously in an "all pages pinned" state then look to
1388 * see if this freeing clears that state.
1389 *
1390 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1391 * pinned" detection logic.
1392 */
5f8dcc21
MG
1393static void free_pcppages_bulk(struct zone *zone, int count,
1394 struct per_cpu_pages *pcp)
1da177e4 1395{
5f8dcc21 1396 int migratetype = 0;
a6f9edd6 1397 int batch_free = 0;
5c3ad2eb 1398 int prefetch_nr = READ_ONCE(pcp->batch);
3777999d 1399 bool isolated_pageblocks;
0a5f4e5b
AL
1400 struct page *page, *tmp;
1401 LIST_HEAD(head);
f2260e6b 1402
88e8ac11
CTR
1403 /*
1404 * Ensure proper count is passed which otherwise would stuck in the
1405 * below while (list_empty(list)) loop.
1406 */
1407 count = min(pcp->count, count);
e5b31ac2 1408 while (count) {
5f8dcc21
MG
1409 struct list_head *list;
1410
1411 /*
a6f9edd6
MG
1412 * Remove pages from lists in a round-robin fashion. A
1413 * batch_free count is maintained that is incremented when an
1414 * empty list is encountered. This is so more pages are freed
1415 * off fuller lists instead of spinning excessively around empty
1416 * lists
5f8dcc21
MG
1417 */
1418 do {
a6f9edd6 1419 batch_free++;
5f8dcc21
MG
1420 if (++migratetype == MIGRATE_PCPTYPES)
1421 migratetype = 0;
1422 list = &pcp->lists[migratetype];
1423 } while (list_empty(list));
48db57f8 1424
1d16871d
NK
1425 /* This is the only non-empty list. Free them all. */
1426 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1427 batch_free = count;
1d16871d 1428
a6f9edd6 1429 do {
a16601c5 1430 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1431 /* must delete to avoid corrupting pcp list */
a6f9edd6 1432 list_del(&page->lru);
77ba9062 1433 pcp->count--;
aa016d14 1434
4db7548c
MG
1435 if (bulkfree_pcp_prepare(page))
1436 continue;
1437
0a5f4e5b 1438 list_add_tail(&page->lru, &head);
97334162
AL
1439
1440 /*
1441 * We are going to put the page back to the global
1442 * pool, prefetch its buddy to speed up later access
1443 * under zone->lock. It is believed the overhead of
1444 * an additional test and calculating buddy_pfn here
1445 * can be offset by reduced memory latency later. To
1446 * avoid excessive prefetching due to large count, only
1447 * prefetch buddy for the first pcp->batch nr of pages.
1448 */
5c3ad2eb 1449 if (prefetch_nr) {
97334162 1450 prefetch_buddy(page);
5c3ad2eb
VB
1451 prefetch_nr--;
1452 }
e5b31ac2 1453 } while (--count && --batch_free && !list_empty(list));
1da177e4 1454 }
0a5f4e5b
AL
1455
1456 spin_lock(&zone->lock);
1457 isolated_pageblocks = has_isolate_pageblock(zone);
1458
1459 /*
1460 * Use safe version since after __free_one_page(),
1461 * page->lru.next will not point to original list.
1462 */
1463 list_for_each_entry_safe(page, tmp, &head, lru) {
1464 int mt = get_pcppage_migratetype(page);
1465 /* MIGRATE_ISOLATE page should not go to pcplists */
1466 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1467 /* Pageblock could have been isolated meanwhile */
1468 if (unlikely(isolated_pageblocks))
1469 mt = get_pageblock_migratetype(page);
1470
f04a5d5d 1471 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
0a5f4e5b
AL
1472 trace_mm_page_pcpu_drain(page, 0, mt);
1473 }
d34b0733 1474 spin_unlock(&zone->lock);
1da177e4
LT
1475}
1476
dc4b0caf
MG
1477static void free_one_page(struct zone *zone,
1478 struct page *page, unsigned long pfn,
7aeb09f9 1479 unsigned int order,
7fef431b 1480 int migratetype, fpi_t fpi_flags)
1da177e4 1481{
d34b0733 1482 spin_lock(&zone->lock);
ad53f92e
JK
1483 if (unlikely(has_isolate_pageblock(zone) ||
1484 is_migrate_isolate(migratetype))) {
1485 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1486 }
7fef431b 1487 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
d34b0733 1488 spin_unlock(&zone->lock);
48db57f8
NP
1489}
1490
1e8ce83c 1491static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1492 unsigned long zone, int nid)
1e8ce83c 1493{
d0dc12e8 1494 mm_zero_struct_page(page);
1e8ce83c 1495 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1496 init_page_count(page);
1497 page_mapcount_reset(page);
1498 page_cpupid_reset_last(page);
2813b9c0 1499 page_kasan_tag_reset(page);
1e8ce83c 1500
1e8ce83c
RH
1501 INIT_LIST_HEAD(&page->lru);
1502#ifdef WANT_PAGE_VIRTUAL
1503 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1504 if (!is_highmem_idx(zone))
1505 set_page_address(page, __va(pfn << PAGE_SHIFT));
1506#endif
1507}
1508
7e18adb4 1509#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1510static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1511{
1512 pg_data_t *pgdat;
1513 int nid, zid;
1514
1515 if (!early_page_uninitialised(pfn))
1516 return;
1517
1518 nid = early_pfn_to_nid(pfn);
1519 pgdat = NODE_DATA(nid);
1520
1521 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1522 struct zone *zone = &pgdat->node_zones[zid];
1523
1524 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1525 break;
1526 }
d0dc12e8 1527 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1528}
1529#else
1530static inline void init_reserved_page(unsigned long pfn)
1531{
1532}
1533#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1534
92923ca3
NZ
1535/*
1536 * Initialised pages do not have PageReserved set. This function is
1537 * called for each range allocated by the bootmem allocator and
1538 * marks the pages PageReserved. The remaining valid pages are later
1539 * sent to the buddy page allocator.
1540 */
4b50bcc7 1541void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1542{
1543 unsigned long start_pfn = PFN_DOWN(start);
1544 unsigned long end_pfn = PFN_UP(end);
1545
7e18adb4
MG
1546 for (; start_pfn < end_pfn; start_pfn++) {
1547 if (pfn_valid(start_pfn)) {
1548 struct page *page = pfn_to_page(start_pfn);
1549
1550 init_reserved_page(start_pfn);
1d798ca3
KS
1551
1552 /* Avoid false-positive PageTail() */
1553 INIT_LIST_HEAD(&page->lru);
1554
d483da5b
AD
1555 /*
1556 * no need for atomic set_bit because the struct
1557 * page is not visible yet so nobody should
1558 * access it yet.
1559 */
1560 __SetPageReserved(page);
7e18adb4
MG
1561 }
1562 }
92923ca3
NZ
1563}
1564
7fef431b
DH
1565static void __free_pages_ok(struct page *page, unsigned int order,
1566 fpi_t fpi_flags)
ec95f53a 1567{
d34b0733 1568 unsigned long flags;
95e34412 1569 int migratetype;
dc4b0caf 1570 unsigned long pfn = page_to_pfn(page);
ec95f53a 1571
2c335680 1572 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1573 return;
1574
cfc47a28 1575 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1576 local_irq_save(flags);
1577 __count_vm_events(PGFREE, 1 << order);
7fef431b
DH
1578 free_one_page(page_zone(page), page, pfn, order, migratetype,
1579 fpi_flags);
d34b0733 1580 local_irq_restore(flags);
1da177e4
LT
1581}
1582
a9cd410a 1583void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1584{
c3993076 1585 unsigned int nr_pages = 1 << order;
e2d0bd2b 1586 struct page *p = page;
c3993076 1587 unsigned int loop;
a226f6c8 1588
7fef431b
DH
1589 /*
1590 * When initializing the memmap, __init_single_page() sets the refcount
1591 * of all pages to 1 ("allocated"/"not free"). We have to set the
1592 * refcount of all involved pages to 0.
1593 */
e2d0bd2b
YL
1594 prefetchw(p);
1595 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1596 prefetchw(p + 1);
c3993076
JW
1597 __ClearPageReserved(p);
1598 set_page_count(p, 0);
a226f6c8 1599 }
e2d0bd2b
YL
1600 __ClearPageReserved(p);
1601 set_page_count(p, 0);
c3993076 1602
9705bea5 1603 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1604
1605 /*
1606 * Bypass PCP and place fresh pages right to the tail, primarily
1607 * relevant for memory onlining.
1608 */
2c335680 1609 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1610}
1611
3f08a302 1612#ifdef CONFIG_NEED_MULTIPLE_NODES
7ace9917 1613
03e92a5e
MR
1614/*
1615 * During memory init memblocks map pfns to nids. The search is expensive and
1616 * this caches recent lookups. The implementation of __early_pfn_to_nid
1617 * treats start/end as pfns.
1618 */
1619struct mminit_pfnnid_cache {
1620 unsigned long last_start;
1621 unsigned long last_end;
1622 int last_nid;
1623};
75a592a4 1624
03e92a5e 1625static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1626
1627/*
1628 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1629 */
03e92a5e 1630static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1631 struct mminit_pfnnid_cache *state)
75a592a4 1632{
6f24fbd3 1633 unsigned long start_pfn, end_pfn;
75a592a4
MG
1634 int nid;
1635
6f24fbd3
MR
1636 if (state->last_start <= pfn && pfn < state->last_end)
1637 return state->last_nid;
1638
1639 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1640 if (nid != NUMA_NO_NODE) {
1641 state->last_start = start_pfn;
1642 state->last_end = end_pfn;
1643 state->last_nid = nid;
1644 }
7ace9917
MG
1645
1646 return nid;
75a592a4 1647}
75a592a4 1648
75a592a4 1649int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1650{
7ace9917 1651 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1652 int nid;
1653
7ace9917 1654 spin_lock(&early_pfn_lock);
56ec43d8 1655 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1656 if (nid < 0)
e4568d38 1657 nid = first_online_node;
7ace9917 1658 spin_unlock(&early_pfn_lock);
75a592a4 1659
7ace9917 1660 return nid;
75a592a4 1661}
3f08a302 1662#endif /* CONFIG_NEED_MULTIPLE_NODES */
75a592a4 1663
7c2ee349 1664void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1665 unsigned int order)
1666{
1667 if (early_page_uninitialised(pfn))
1668 return;
a9cd410a 1669 __free_pages_core(page, order);
3a80a7fa
MG
1670}
1671
7cf91a98
JK
1672/*
1673 * Check that the whole (or subset of) a pageblock given by the interval of
1674 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1675 * with the migration of free compaction scanner. The scanners then need to
1676 * use only pfn_valid_within() check for arches that allow holes within
1677 * pageblocks.
1678 *
1679 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1680 *
1681 * It's possible on some configurations to have a setup like node0 node1 node0
1682 * i.e. it's possible that all pages within a zones range of pages do not
1683 * belong to a single zone. We assume that a border between node0 and node1
1684 * can occur within a single pageblock, but not a node0 node1 node0
1685 * interleaving within a single pageblock. It is therefore sufficient to check
1686 * the first and last page of a pageblock and avoid checking each individual
1687 * page in a pageblock.
1688 */
1689struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1690 unsigned long end_pfn, struct zone *zone)
1691{
1692 struct page *start_page;
1693 struct page *end_page;
1694
1695 /* end_pfn is one past the range we are checking */
1696 end_pfn--;
1697
1698 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1699 return NULL;
1700
2d070eab
MH
1701 start_page = pfn_to_online_page(start_pfn);
1702 if (!start_page)
1703 return NULL;
7cf91a98
JK
1704
1705 if (page_zone(start_page) != zone)
1706 return NULL;
1707
1708 end_page = pfn_to_page(end_pfn);
1709
1710 /* This gives a shorter code than deriving page_zone(end_page) */
1711 if (page_zone_id(start_page) != page_zone_id(end_page))
1712 return NULL;
1713
1714 return start_page;
1715}
1716
1717void set_zone_contiguous(struct zone *zone)
1718{
1719 unsigned long block_start_pfn = zone->zone_start_pfn;
1720 unsigned long block_end_pfn;
1721
1722 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1723 for (; block_start_pfn < zone_end_pfn(zone);
1724 block_start_pfn = block_end_pfn,
1725 block_end_pfn += pageblock_nr_pages) {
1726
1727 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1728
1729 if (!__pageblock_pfn_to_page(block_start_pfn,
1730 block_end_pfn, zone))
1731 return;
e84fe99b 1732 cond_resched();
7cf91a98
JK
1733 }
1734
1735 /* We confirm that there is no hole */
1736 zone->contiguous = true;
1737}
1738
1739void clear_zone_contiguous(struct zone *zone)
1740{
1741 zone->contiguous = false;
1742}
1743
7e18adb4 1744#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1745static void __init deferred_free_range(unsigned long pfn,
1746 unsigned long nr_pages)
a4de83dd 1747{
2f47a91f
PT
1748 struct page *page;
1749 unsigned long i;
a4de83dd 1750
2f47a91f 1751 if (!nr_pages)
a4de83dd
MG
1752 return;
1753
2f47a91f
PT
1754 page = pfn_to_page(pfn);
1755
a4de83dd 1756 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1757 if (nr_pages == pageblock_nr_pages &&
1758 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1759 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1760 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1761 return;
1762 }
1763
e780149b
XQ
1764 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1765 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1766 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1767 __free_pages_core(page, 0);
e780149b 1768 }
a4de83dd
MG
1769}
1770
d3cd131d
NS
1771/* Completion tracking for deferred_init_memmap() threads */
1772static atomic_t pgdat_init_n_undone __initdata;
1773static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1774
1775static inline void __init pgdat_init_report_one_done(void)
1776{
1777 if (atomic_dec_and_test(&pgdat_init_n_undone))
1778 complete(&pgdat_init_all_done_comp);
1779}
0e1cc95b 1780
2f47a91f 1781/*
80b1f41c
PT
1782 * Returns true if page needs to be initialized or freed to buddy allocator.
1783 *
1784 * First we check if pfn is valid on architectures where it is possible to have
1785 * holes within pageblock_nr_pages. On systems where it is not possible, this
1786 * function is optimized out.
1787 *
1788 * Then, we check if a current large page is valid by only checking the validity
1789 * of the head pfn.
2f47a91f 1790 */
56ec43d8 1791static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1792{
80b1f41c
PT
1793 if (!pfn_valid_within(pfn))
1794 return false;
1795 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1796 return false;
80b1f41c
PT
1797 return true;
1798}
2f47a91f 1799
80b1f41c
PT
1800/*
1801 * Free pages to buddy allocator. Try to free aligned pages in
1802 * pageblock_nr_pages sizes.
1803 */
56ec43d8 1804static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1805 unsigned long end_pfn)
1806{
80b1f41c
PT
1807 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1808 unsigned long nr_free = 0;
2f47a91f 1809
80b1f41c 1810 for (; pfn < end_pfn; pfn++) {
56ec43d8 1811 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1812 deferred_free_range(pfn - nr_free, nr_free);
1813 nr_free = 0;
1814 } else if (!(pfn & nr_pgmask)) {
1815 deferred_free_range(pfn - nr_free, nr_free);
1816 nr_free = 1;
80b1f41c
PT
1817 } else {
1818 nr_free++;
1819 }
1820 }
1821 /* Free the last block of pages to allocator */
1822 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1823}
1824
80b1f41c
PT
1825/*
1826 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1827 * by performing it only once every pageblock_nr_pages.
1828 * Return number of pages initialized.
1829 */
56ec43d8 1830static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1831 unsigned long pfn,
1832 unsigned long end_pfn)
2f47a91f 1833{
2f47a91f 1834 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1835 int nid = zone_to_nid(zone);
2f47a91f 1836 unsigned long nr_pages = 0;
56ec43d8 1837 int zid = zone_idx(zone);
2f47a91f 1838 struct page *page = NULL;
2f47a91f 1839
80b1f41c 1840 for (; pfn < end_pfn; pfn++) {
56ec43d8 1841 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1842 page = NULL;
2f47a91f 1843 continue;
80b1f41c 1844 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1845 page = pfn_to_page(pfn);
80b1f41c
PT
1846 } else {
1847 page++;
2f47a91f 1848 }
d0dc12e8 1849 __init_single_page(page, pfn, zid, nid);
80b1f41c 1850 nr_pages++;
2f47a91f 1851 }
80b1f41c 1852 return (nr_pages);
2f47a91f
PT
1853}
1854
0e56acae
AD
1855/*
1856 * This function is meant to pre-load the iterator for the zone init.
1857 * Specifically it walks through the ranges until we are caught up to the
1858 * first_init_pfn value and exits there. If we never encounter the value we
1859 * return false indicating there are no valid ranges left.
1860 */
1861static bool __init
1862deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1863 unsigned long *spfn, unsigned long *epfn,
1864 unsigned long first_init_pfn)
1865{
1866 u64 j;
1867
1868 /*
1869 * Start out by walking through the ranges in this zone that have
1870 * already been initialized. We don't need to do anything with them
1871 * so we just need to flush them out of the system.
1872 */
1873 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1874 if (*epfn <= first_init_pfn)
1875 continue;
1876 if (*spfn < first_init_pfn)
1877 *spfn = first_init_pfn;
1878 *i = j;
1879 return true;
1880 }
1881
1882 return false;
1883}
1884
1885/*
1886 * Initialize and free pages. We do it in two loops: first we initialize
1887 * struct page, then free to buddy allocator, because while we are
1888 * freeing pages we can access pages that are ahead (computing buddy
1889 * page in __free_one_page()).
1890 *
1891 * In order to try and keep some memory in the cache we have the loop
1892 * broken along max page order boundaries. This way we will not cause
1893 * any issues with the buddy page computation.
1894 */
1895static unsigned long __init
1896deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1897 unsigned long *end_pfn)
1898{
1899 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1900 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1901 unsigned long nr_pages = 0;
1902 u64 j = *i;
1903
1904 /* First we loop through and initialize the page values */
1905 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1906 unsigned long t;
1907
1908 if (mo_pfn <= *start_pfn)
1909 break;
1910
1911 t = min(mo_pfn, *end_pfn);
1912 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1913
1914 if (mo_pfn < *end_pfn) {
1915 *start_pfn = mo_pfn;
1916 break;
1917 }
1918 }
1919
1920 /* Reset values and now loop through freeing pages as needed */
1921 swap(j, *i);
1922
1923 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1924 unsigned long t;
1925
1926 if (mo_pfn <= spfn)
1927 break;
1928
1929 t = min(mo_pfn, epfn);
1930 deferred_free_pages(spfn, t);
1931
1932 if (mo_pfn <= epfn)
1933 break;
1934 }
1935
1936 return nr_pages;
1937}
1938
e4443149
DJ
1939static void __init
1940deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1941 void *arg)
1942{
1943 unsigned long spfn, epfn;
1944 struct zone *zone = arg;
1945 u64 i;
1946
1947 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1948
1949 /*
1950 * Initialize and free pages in MAX_ORDER sized increments so that we
1951 * can avoid introducing any issues with the buddy allocator.
1952 */
1953 while (spfn < end_pfn) {
1954 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1955 cond_resched();
1956 }
1957}
1958
ecd09650
DJ
1959/* An arch may override for more concurrency. */
1960__weak int __init
1961deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1962{
1963 return 1;
1964}
1965
7e18adb4 1966/* Initialise remaining memory on a node */
0e1cc95b 1967static int __init deferred_init_memmap(void *data)
7e18adb4 1968{
0e1cc95b 1969 pg_data_t *pgdat = data;
0e56acae 1970 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 1971 unsigned long spfn = 0, epfn = 0;
0e56acae 1972 unsigned long first_init_pfn, flags;
7e18adb4 1973 unsigned long start = jiffies;
7e18adb4 1974 struct zone *zone;
e4443149 1975 int zid, max_threads;
2f47a91f 1976 u64 i;
7e18adb4 1977
3a2d7fa8
PT
1978 /* Bind memory initialisation thread to a local node if possible */
1979 if (!cpumask_empty(cpumask))
1980 set_cpus_allowed_ptr(current, cpumask);
1981
1982 pgdat_resize_lock(pgdat, &flags);
1983 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1984 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1985 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1986 pgdat_init_report_one_done();
0e1cc95b
MG
1987 return 0;
1988 }
1989
7e18adb4
MG
1990 /* Sanity check boundaries */
1991 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1992 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1993 pgdat->first_deferred_pfn = ULONG_MAX;
1994
3d060856
PT
1995 /*
1996 * Once we unlock here, the zone cannot be grown anymore, thus if an
1997 * interrupt thread must allocate this early in boot, zone must be
1998 * pre-grown prior to start of deferred page initialization.
1999 */
2000 pgdat_resize_unlock(pgdat, &flags);
2001
7e18adb4
MG
2002 /* Only the highest zone is deferred so find it */
2003 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2004 zone = pgdat->node_zones + zid;
2005 if (first_init_pfn < zone_end_pfn(zone))
2006 break;
2007 }
0e56acae
AD
2008
2009 /* If the zone is empty somebody else may have cleared out the zone */
2010 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2011 first_init_pfn))
2012 goto zone_empty;
7e18adb4 2013
ecd09650 2014 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2015
117003c3 2016 while (spfn < epfn) {
e4443149
DJ
2017 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2018 struct padata_mt_job job = {
2019 .thread_fn = deferred_init_memmap_chunk,
2020 .fn_arg = zone,
2021 .start = spfn,
2022 .size = epfn_align - spfn,
2023 .align = PAGES_PER_SECTION,
2024 .min_chunk = PAGES_PER_SECTION,
2025 .max_threads = max_threads,
2026 };
2027
2028 padata_do_multithreaded(&job);
2029 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2030 epfn_align);
117003c3 2031 }
0e56acae 2032zone_empty:
7e18adb4
MG
2033 /* Sanity check that the next zone really is unpopulated */
2034 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2035
89c7c402
DJ
2036 pr_info("node %d deferred pages initialised in %ums\n",
2037 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2038
2039 pgdat_init_report_one_done();
0e1cc95b
MG
2040 return 0;
2041}
c9e97a19 2042
c9e97a19
PT
2043/*
2044 * If this zone has deferred pages, try to grow it by initializing enough
2045 * deferred pages to satisfy the allocation specified by order, rounded up to
2046 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2047 * of SECTION_SIZE bytes by initializing struct pages in increments of
2048 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2049 *
2050 * Return true when zone was grown, otherwise return false. We return true even
2051 * when we grow less than requested, to let the caller decide if there are
2052 * enough pages to satisfy the allocation.
2053 *
2054 * Note: We use noinline because this function is needed only during boot, and
2055 * it is called from a __ref function _deferred_grow_zone. This way we are
2056 * making sure that it is not inlined into permanent text section.
2057 */
2058static noinline bool __init
2059deferred_grow_zone(struct zone *zone, unsigned int order)
2060{
c9e97a19 2061 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2062 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2063 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2064 unsigned long spfn, epfn, flags;
2065 unsigned long nr_pages = 0;
c9e97a19
PT
2066 u64 i;
2067
2068 /* Only the last zone may have deferred pages */
2069 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2070 return false;
2071
2072 pgdat_resize_lock(pgdat, &flags);
2073
c9e97a19
PT
2074 /*
2075 * If someone grew this zone while we were waiting for spinlock, return
2076 * true, as there might be enough pages already.
2077 */
2078 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2079 pgdat_resize_unlock(pgdat, &flags);
2080 return true;
2081 }
2082
0e56acae
AD
2083 /* If the zone is empty somebody else may have cleared out the zone */
2084 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2085 first_deferred_pfn)) {
2086 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2087 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2088 /* Retry only once. */
2089 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2090 }
2091
0e56acae
AD
2092 /*
2093 * Initialize and free pages in MAX_ORDER sized increments so
2094 * that we can avoid introducing any issues with the buddy
2095 * allocator.
2096 */
2097 while (spfn < epfn) {
2098 /* update our first deferred PFN for this section */
2099 first_deferred_pfn = spfn;
2100
2101 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2102 touch_nmi_watchdog();
c9e97a19 2103
0e56acae
AD
2104 /* We should only stop along section boundaries */
2105 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2106 continue;
c9e97a19 2107
0e56acae 2108 /* If our quota has been met we can stop here */
c9e97a19
PT
2109 if (nr_pages >= nr_pages_needed)
2110 break;
2111 }
2112
0e56acae 2113 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2114 pgdat_resize_unlock(pgdat, &flags);
2115
2116 return nr_pages > 0;
2117}
2118
2119/*
2120 * deferred_grow_zone() is __init, but it is called from
2121 * get_page_from_freelist() during early boot until deferred_pages permanently
2122 * disables this call. This is why we have refdata wrapper to avoid warning,
2123 * and to ensure that the function body gets unloaded.
2124 */
2125static bool __ref
2126_deferred_grow_zone(struct zone *zone, unsigned int order)
2127{
2128 return deferred_grow_zone(zone, order);
2129}
2130
7cf91a98 2131#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2132
2133void __init page_alloc_init_late(void)
2134{
7cf91a98 2135 struct zone *zone;
e900a918 2136 int nid;
7cf91a98
JK
2137
2138#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2139
d3cd131d
NS
2140 /* There will be num_node_state(N_MEMORY) threads */
2141 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2142 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2143 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2144 }
2145
2146 /* Block until all are initialised */
d3cd131d 2147 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2148
3e8fc007
MG
2149 /*
2150 * The number of managed pages has changed due to the initialisation
2151 * so the pcpu batch and high limits needs to be updated or the limits
2152 * will be artificially small.
2153 */
2154 for_each_populated_zone(zone)
2155 zone_pcp_update(zone);
2156
c9e97a19
PT
2157 /*
2158 * We initialized the rest of the deferred pages. Permanently disable
2159 * on-demand struct page initialization.
2160 */
2161 static_branch_disable(&deferred_pages);
2162
4248b0da
MG
2163 /* Reinit limits that are based on free pages after the kernel is up */
2164 files_maxfiles_init();
7cf91a98 2165#endif
350e88ba 2166
ba8f3587
LF
2167 buffer_init();
2168
3010f876
PT
2169 /* Discard memblock private memory */
2170 memblock_discard();
7cf91a98 2171
e900a918
DW
2172 for_each_node_state(nid, N_MEMORY)
2173 shuffle_free_memory(NODE_DATA(nid));
2174
7cf91a98
JK
2175 for_each_populated_zone(zone)
2176 set_zone_contiguous(zone);
7e18adb4 2177}
7e18adb4 2178
47118af0 2179#ifdef CONFIG_CMA
9cf510a5 2180/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2181void __init init_cma_reserved_pageblock(struct page *page)
2182{
2183 unsigned i = pageblock_nr_pages;
2184 struct page *p = page;
2185
2186 do {
2187 __ClearPageReserved(p);
2188 set_page_count(p, 0);
d883c6cf 2189 } while (++p, --i);
47118af0 2190
47118af0 2191 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2192
2193 if (pageblock_order >= MAX_ORDER) {
2194 i = pageblock_nr_pages;
2195 p = page;
2196 do {
2197 set_page_refcounted(p);
2198 __free_pages(p, MAX_ORDER - 1);
2199 p += MAX_ORDER_NR_PAGES;
2200 } while (i -= MAX_ORDER_NR_PAGES);
2201 } else {
2202 set_page_refcounted(page);
2203 __free_pages(page, pageblock_order);
2204 }
2205
3dcc0571 2206 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2207 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2208}
2209#endif
1da177e4
LT
2210
2211/*
2212 * The order of subdivision here is critical for the IO subsystem.
2213 * Please do not alter this order without good reasons and regression
2214 * testing. Specifically, as large blocks of memory are subdivided,
2215 * the order in which smaller blocks are delivered depends on the order
2216 * they're subdivided in this function. This is the primary factor
2217 * influencing the order in which pages are delivered to the IO
2218 * subsystem according to empirical testing, and this is also justified
2219 * by considering the behavior of a buddy system containing a single
2220 * large block of memory acted on by a series of small allocations.
2221 * This behavior is a critical factor in sglist merging's success.
2222 *
6d49e352 2223 * -- nyc
1da177e4 2224 */
085cc7d5 2225static inline void expand(struct zone *zone, struct page *page,
6ab01363 2226 int low, int high, int migratetype)
1da177e4
LT
2227{
2228 unsigned long size = 1 << high;
2229
2230 while (high > low) {
1da177e4
LT
2231 high--;
2232 size >>= 1;
309381fe 2233 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2234
acbc15a4
JK
2235 /*
2236 * Mark as guard pages (or page), that will allow to
2237 * merge back to allocator when buddy will be freed.
2238 * Corresponding page table entries will not be touched,
2239 * pages will stay not present in virtual address space
2240 */
2241 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2242 continue;
acbc15a4 2243
6ab01363 2244 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2245 set_buddy_order(&page[size], high);
1da177e4 2246 }
1da177e4
LT
2247}
2248
4e611801 2249static void check_new_page_bad(struct page *page)
1da177e4 2250{
f4c18e6f 2251 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2252 /* Don't complain about hwpoisoned pages */
2253 page_mapcount_reset(page); /* remove PageBuddy */
2254 return;
f4c18e6f 2255 }
58b7f119
WY
2256
2257 bad_page(page,
2258 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2259}
2260
2261/*
2262 * This page is about to be returned from the page allocator
2263 */
2264static inline int check_new_page(struct page *page)
2265{
2266 if (likely(page_expected_state(page,
2267 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2268 return 0;
2269
2270 check_new_page_bad(page);
2271 return 1;
2a7684a2
WF
2272}
2273
479f854a 2274#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2275/*
2276 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2277 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2278 * also checked when pcp lists are refilled from the free lists.
2279 */
2280static inline bool check_pcp_refill(struct page *page)
479f854a 2281{
8e57f8ac 2282 if (debug_pagealloc_enabled_static())
4462b32c
VB
2283 return check_new_page(page);
2284 else
2285 return false;
479f854a
MG
2286}
2287
4462b32c 2288static inline bool check_new_pcp(struct page *page)
479f854a
MG
2289{
2290 return check_new_page(page);
2291}
2292#else
4462b32c
VB
2293/*
2294 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2295 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2296 * enabled, they are also checked when being allocated from the pcp lists.
2297 */
2298static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2299{
2300 return check_new_page(page);
2301}
4462b32c 2302static inline bool check_new_pcp(struct page *page)
479f854a 2303{
8e57f8ac 2304 if (debug_pagealloc_enabled_static())
4462b32c
VB
2305 return check_new_page(page);
2306 else
2307 return false;
479f854a
MG
2308}
2309#endif /* CONFIG_DEBUG_VM */
2310
2311static bool check_new_pages(struct page *page, unsigned int order)
2312{
2313 int i;
2314 for (i = 0; i < (1 << order); i++) {
2315 struct page *p = page + i;
2316
2317 if (unlikely(check_new_page(p)))
2318 return true;
2319 }
2320
2321 return false;
2322}
2323
46f24fd8
JK
2324inline void post_alloc_hook(struct page *page, unsigned int order,
2325 gfp_t gfp_flags)
2326{
1bb5eab3
AK
2327 bool init;
2328
46f24fd8
JK
2329 set_page_private(page, 0);
2330 set_page_refcounted(page);
2331
2332 arch_alloc_page(page, order);
77bc7fd6 2333 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2334
2335 /*
2336 * Page unpoisoning must happen before memory initialization.
2337 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2338 * allocations and the page unpoisoning code will complain.
2339 */
8db26a3d 2340 kernel_unpoison_pages(page, 1 << order);
862b6dee 2341
1bb5eab3
AK
2342 /*
2343 * As memory initialization might be integrated into KASAN,
2344 * kasan_alloc_pages and kernel_init_free_pages must be
2345 * kept together to avoid discrepancies in behavior.
2346 */
2347 init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2348 kasan_alloc_pages(page, order, init);
2349 if (init && !kasan_has_integrated_init())
862b6dee 2350 kernel_init_free_pages(page, 1 << order);
1bb5eab3
AK
2351
2352 set_page_owner(page, order, gfp_flags);
46f24fd8
JK
2353}
2354
479f854a 2355static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2356 unsigned int alloc_flags)
2a7684a2 2357{
46f24fd8 2358 post_alloc_hook(page, order, gfp_flags);
17cf4406 2359
17cf4406
NP
2360 if (order && (gfp_flags & __GFP_COMP))
2361 prep_compound_page(page, order);
2362
75379191 2363 /*
2f064f34 2364 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2365 * allocate the page. The expectation is that the caller is taking
2366 * steps that will free more memory. The caller should avoid the page
2367 * being used for !PFMEMALLOC purposes.
2368 */
2f064f34
MH
2369 if (alloc_flags & ALLOC_NO_WATERMARKS)
2370 set_page_pfmemalloc(page);
2371 else
2372 clear_page_pfmemalloc(page);
1da177e4
LT
2373}
2374
56fd56b8
MG
2375/*
2376 * Go through the free lists for the given migratetype and remove
2377 * the smallest available page from the freelists
2378 */
85ccc8fa 2379static __always_inline
728ec980 2380struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2381 int migratetype)
2382{
2383 unsigned int current_order;
b8af2941 2384 struct free_area *area;
56fd56b8
MG
2385 struct page *page;
2386
2387 /* Find a page of the appropriate size in the preferred list */
2388 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2389 area = &(zone->free_area[current_order]);
b03641af 2390 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2391 if (!page)
2392 continue;
6ab01363
AD
2393 del_page_from_free_list(page, zone, current_order);
2394 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2395 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2396 return page;
2397 }
2398
2399 return NULL;
2400}
2401
2402
b2a0ac88
MG
2403/*
2404 * This array describes the order lists are fallen back to when
2405 * the free lists for the desirable migrate type are depleted
2406 */
da415663 2407static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2408 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2409 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2410 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2411#ifdef CONFIG_CMA
974a786e 2412 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2413#endif
194159fb 2414#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2415 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2416#endif
b2a0ac88
MG
2417};
2418
dc67647b 2419#ifdef CONFIG_CMA
85ccc8fa 2420static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2421 unsigned int order)
2422{
2423 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2424}
2425#else
2426static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2427 unsigned int order) { return NULL; }
2428#endif
2429
c361be55 2430/*
293ffa5e 2431 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2432 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2433 * boundary. If alignment is required, use move_freepages_block()
2434 */
02aa0cdd 2435static int move_freepages(struct zone *zone,
39ddb991 2436 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2437 int migratetype, int *num_movable)
c361be55
MG
2438{
2439 struct page *page;
39ddb991 2440 unsigned long pfn;
d00181b9 2441 unsigned int order;
d100313f 2442 int pages_moved = 0;
c361be55 2443
39ddb991
KW
2444 for (pfn = start_pfn; pfn <= end_pfn;) {
2445 if (!pfn_valid_within(pfn)) {
2446 pfn++;
c361be55
MG
2447 continue;
2448 }
2449
39ddb991 2450 page = pfn_to_page(pfn);
c361be55 2451 if (!PageBuddy(page)) {
02aa0cdd
VB
2452 /*
2453 * We assume that pages that could be isolated for
2454 * migration are movable. But we don't actually try
2455 * isolating, as that would be expensive.
2456 */
2457 if (num_movable &&
2458 (PageLRU(page) || __PageMovable(page)))
2459 (*num_movable)++;
39ddb991 2460 pfn++;
c361be55
MG
2461 continue;
2462 }
2463
cd961038
DR
2464 /* Make sure we are not inadvertently changing nodes */
2465 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2466 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2467
ab130f91 2468 order = buddy_order(page);
6ab01363 2469 move_to_free_list(page, zone, order, migratetype);
39ddb991 2470 pfn += 1 << order;
d100313f 2471 pages_moved += 1 << order;
c361be55
MG
2472 }
2473
d100313f 2474 return pages_moved;
c361be55
MG
2475}
2476
ee6f509c 2477int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2478 int migratetype, int *num_movable)
c361be55 2479{
39ddb991 2480 unsigned long start_pfn, end_pfn, pfn;
c361be55 2481
4a222127
DR
2482 if (num_movable)
2483 *num_movable = 0;
2484
39ddb991
KW
2485 pfn = page_to_pfn(page);
2486 start_pfn = pfn & ~(pageblock_nr_pages - 1);
d9c23400 2487 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2488
2489 /* Do not cross zone boundaries */
108bcc96 2490 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2491 start_pfn = pfn;
108bcc96 2492 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2493 return 0;
2494
39ddb991 2495 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2496 num_movable);
c361be55
MG
2497}
2498
2f66a68f
MG
2499static void change_pageblock_range(struct page *pageblock_page,
2500 int start_order, int migratetype)
2501{
2502 int nr_pageblocks = 1 << (start_order - pageblock_order);
2503
2504 while (nr_pageblocks--) {
2505 set_pageblock_migratetype(pageblock_page, migratetype);
2506 pageblock_page += pageblock_nr_pages;
2507 }
2508}
2509
fef903ef 2510/*
9c0415eb
VB
2511 * When we are falling back to another migratetype during allocation, try to
2512 * steal extra free pages from the same pageblocks to satisfy further
2513 * allocations, instead of polluting multiple pageblocks.
2514 *
2515 * If we are stealing a relatively large buddy page, it is likely there will
2516 * be more free pages in the pageblock, so try to steal them all. For
2517 * reclaimable and unmovable allocations, we steal regardless of page size,
2518 * as fragmentation caused by those allocations polluting movable pageblocks
2519 * is worse than movable allocations stealing from unmovable and reclaimable
2520 * pageblocks.
fef903ef 2521 */
4eb7dce6
JK
2522static bool can_steal_fallback(unsigned int order, int start_mt)
2523{
2524 /*
2525 * Leaving this order check is intended, although there is
2526 * relaxed order check in next check. The reason is that
2527 * we can actually steal whole pageblock if this condition met,
2528 * but, below check doesn't guarantee it and that is just heuristic
2529 * so could be changed anytime.
2530 */
2531 if (order >= pageblock_order)
2532 return true;
2533
2534 if (order >= pageblock_order / 2 ||
2535 start_mt == MIGRATE_RECLAIMABLE ||
2536 start_mt == MIGRATE_UNMOVABLE ||
2537 page_group_by_mobility_disabled)
2538 return true;
2539
2540 return false;
2541}
2542
597c8920 2543static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2544{
2545 unsigned long max_boost;
2546
2547 if (!watermark_boost_factor)
597c8920 2548 return false;
14f69140
HW
2549 /*
2550 * Don't bother in zones that are unlikely to produce results.
2551 * On small machines, including kdump capture kernels running
2552 * in a small area, boosting the watermark can cause an out of
2553 * memory situation immediately.
2554 */
2555 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2556 return false;
1c30844d
MG
2557
2558 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2559 watermark_boost_factor, 10000);
94b3334c
MG
2560
2561 /*
2562 * high watermark may be uninitialised if fragmentation occurs
2563 * very early in boot so do not boost. We do not fall
2564 * through and boost by pageblock_nr_pages as failing
2565 * allocations that early means that reclaim is not going
2566 * to help and it may even be impossible to reclaim the
2567 * boosted watermark resulting in a hang.
2568 */
2569 if (!max_boost)
597c8920 2570 return false;
94b3334c 2571
1c30844d
MG
2572 max_boost = max(pageblock_nr_pages, max_boost);
2573
2574 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2575 max_boost);
597c8920
JW
2576
2577 return true;
1c30844d
MG
2578}
2579
4eb7dce6
JK
2580/*
2581 * This function implements actual steal behaviour. If order is large enough,
2582 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2583 * pageblock to our migratetype and determine how many already-allocated pages
2584 * are there in the pageblock with a compatible migratetype. If at least half
2585 * of pages are free or compatible, we can change migratetype of the pageblock
2586 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2587 */
2588static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2589 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2590{
ab130f91 2591 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2592 int free_pages, movable_pages, alike_pages;
2593 int old_block_type;
2594
2595 old_block_type = get_pageblock_migratetype(page);
fef903ef 2596
3bc48f96
VB
2597 /*
2598 * This can happen due to races and we want to prevent broken
2599 * highatomic accounting.
2600 */
02aa0cdd 2601 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2602 goto single_page;
2603
fef903ef
SB
2604 /* Take ownership for orders >= pageblock_order */
2605 if (current_order >= pageblock_order) {
2606 change_pageblock_range(page, current_order, start_type);
3bc48f96 2607 goto single_page;
fef903ef
SB
2608 }
2609
1c30844d
MG
2610 /*
2611 * Boost watermarks to increase reclaim pressure to reduce the
2612 * likelihood of future fallbacks. Wake kswapd now as the node
2613 * may be balanced overall and kswapd will not wake naturally.
2614 */
597c8920 2615 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2616 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2617
3bc48f96
VB
2618 /* We are not allowed to try stealing from the whole block */
2619 if (!whole_block)
2620 goto single_page;
2621
02aa0cdd
VB
2622 free_pages = move_freepages_block(zone, page, start_type,
2623 &movable_pages);
2624 /*
2625 * Determine how many pages are compatible with our allocation.
2626 * For movable allocation, it's the number of movable pages which
2627 * we just obtained. For other types it's a bit more tricky.
2628 */
2629 if (start_type == MIGRATE_MOVABLE) {
2630 alike_pages = movable_pages;
2631 } else {
2632 /*
2633 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2634 * to MOVABLE pageblock, consider all non-movable pages as
2635 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2636 * vice versa, be conservative since we can't distinguish the
2637 * exact migratetype of non-movable pages.
2638 */
2639 if (old_block_type == MIGRATE_MOVABLE)
2640 alike_pages = pageblock_nr_pages
2641 - (free_pages + movable_pages);
2642 else
2643 alike_pages = 0;
2644 }
2645
3bc48f96 2646 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2647 if (!free_pages)
3bc48f96 2648 goto single_page;
fef903ef 2649
02aa0cdd
VB
2650 /*
2651 * If a sufficient number of pages in the block are either free or of
2652 * comparable migratability as our allocation, claim the whole block.
2653 */
2654 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2655 page_group_by_mobility_disabled)
2656 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2657
2658 return;
2659
2660single_page:
6ab01363 2661 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2662}
2663
2149cdae
JK
2664/*
2665 * Check whether there is a suitable fallback freepage with requested order.
2666 * If only_stealable is true, this function returns fallback_mt only if
2667 * we can steal other freepages all together. This would help to reduce
2668 * fragmentation due to mixed migratetype pages in one pageblock.
2669 */
2670int find_suitable_fallback(struct free_area *area, unsigned int order,
2671 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2672{
2673 int i;
2674 int fallback_mt;
2675
2676 if (area->nr_free == 0)
2677 return -1;
2678
2679 *can_steal = false;
2680 for (i = 0;; i++) {
2681 fallback_mt = fallbacks[migratetype][i];
974a786e 2682 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2683 break;
2684
b03641af 2685 if (free_area_empty(area, fallback_mt))
4eb7dce6 2686 continue;
fef903ef 2687
4eb7dce6
JK
2688 if (can_steal_fallback(order, migratetype))
2689 *can_steal = true;
2690
2149cdae
JK
2691 if (!only_stealable)
2692 return fallback_mt;
2693
2694 if (*can_steal)
2695 return fallback_mt;
fef903ef 2696 }
4eb7dce6
JK
2697
2698 return -1;
fef903ef
SB
2699}
2700
0aaa29a5
MG
2701/*
2702 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2703 * there are no empty page blocks that contain a page with a suitable order
2704 */
2705static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2706 unsigned int alloc_order)
2707{
2708 int mt;
2709 unsigned long max_managed, flags;
2710
2711 /*
2712 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2713 * Check is race-prone but harmless.
2714 */
9705bea5 2715 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2716 if (zone->nr_reserved_highatomic >= max_managed)
2717 return;
2718
2719 spin_lock_irqsave(&zone->lock, flags);
2720
2721 /* Recheck the nr_reserved_highatomic limit under the lock */
2722 if (zone->nr_reserved_highatomic >= max_managed)
2723 goto out_unlock;
2724
2725 /* Yoink! */
2726 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2727 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2728 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2729 zone->nr_reserved_highatomic += pageblock_nr_pages;
2730 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2731 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2732 }
2733
2734out_unlock:
2735 spin_unlock_irqrestore(&zone->lock, flags);
2736}
2737
2738/*
2739 * Used when an allocation is about to fail under memory pressure. This
2740 * potentially hurts the reliability of high-order allocations when under
2741 * intense memory pressure but failed atomic allocations should be easier
2742 * to recover from than an OOM.
29fac03b
MK
2743 *
2744 * If @force is true, try to unreserve a pageblock even though highatomic
2745 * pageblock is exhausted.
0aaa29a5 2746 */
29fac03b
MK
2747static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2748 bool force)
0aaa29a5
MG
2749{
2750 struct zonelist *zonelist = ac->zonelist;
2751 unsigned long flags;
2752 struct zoneref *z;
2753 struct zone *zone;
2754 struct page *page;
2755 int order;
04c8716f 2756 bool ret;
0aaa29a5 2757
97a225e6 2758 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2759 ac->nodemask) {
29fac03b
MK
2760 /*
2761 * Preserve at least one pageblock unless memory pressure
2762 * is really high.
2763 */
2764 if (!force && zone->nr_reserved_highatomic <=
2765 pageblock_nr_pages)
0aaa29a5
MG
2766 continue;
2767
2768 spin_lock_irqsave(&zone->lock, flags);
2769 for (order = 0; order < MAX_ORDER; order++) {
2770 struct free_area *area = &(zone->free_area[order]);
2771
b03641af 2772 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2773 if (!page)
0aaa29a5
MG
2774 continue;
2775
0aaa29a5 2776 /*
4855e4a7
MK
2777 * In page freeing path, migratetype change is racy so
2778 * we can counter several free pages in a pageblock
2779 * in this loop althoug we changed the pageblock type
2780 * from highatomic to ac->migratetype. So we should
2781 * adjust the count once.
0aaa29a5 2782 */
a6ffdc07 2783 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2784 /*
2785 * It should never happen but changes to
2786 * locking could inadvertently allow a per-cpu
2787 * drain to add pages to MIGRATE_HIGHATOMIC
2788 * while unreserving so be safe and watch for
2789 * underflows.
2790 */
2791 zone->nr_reserved_highatomic -= min(
2792 pageblock_nr_pages,
2793 zone->nr_reserved_highatomic);
2794 }
0aaa29a5
MG
2795
2796 /*
2797 * Convert to ac->migratetype and avoid the normal
2798 * pageblock stealing heuristics. Minimally, the caller
2799 * is doing the work and needs the pages. More
2800 * importantly, if the block was always converted to
2801 * MIGRATE_UNMOVABLE or another type then the number
2802 * of pageblocks that cannot be completely freed
2803 * may increase.
2804 */
2805 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2806 ret = move_freepages_block(zone, page, ac->migratetype,
2807 NULL);
29fac03b
MK
2808 if (ret) {
2809 spin_unlock_irqrestore(&zone->lock, flags);
2810 return ret;
2811 }
0aaa29a5
MG
2812 }
2813 spin_unlock_irqrestore(&zone->lock, flags);
2814 }
04c8716f
MK
2815
2816 return false;
0aaa29a5
MG
2817}
2818
3bc48f96
VB
2819/*
2820 * Try finding a free buddy page on the fallback list and put it on the free
2821 * list of requested migratetype, possibly along with other pages from the same
2822 * block, depending on fragmentation avoidance heuristics. Returns true if
2823 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2824 *
2825 * The use of signed ints for order and current_order is a deliberate
2826 * deviation from the rest of this file, to make the for loop
2827 * condition simpler.
3bc48f96 2828 */
85ccc8fa 2829static __always_inline bool
6bb15450
MG
2830__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2831 unsigned int alloc_flags)
b2a0ac88 2832{
b8af2941 2833 struct free_area *area;
b002529d 2834 int current_order;
6bb15450 2835 int min_order = order;
b2a0ac88 2836 struct page *page;
4eb7dce6
JK
2837 int fallback_mt;
2838 bool can_steal;
b2a0ac88 2839
6bb15450
MG
2840 /*
2841 * Do not steal pages from freelists belonging to other pageblocks
2842 * i.e. orders < pageblock_order. If there are no local zones free,
2843 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2844 */
2845 if (alloc_flags & ALLOC_NOFRAGMENT)
2846 min_order = pageblock_order;
2847
7a8f58f3
VB
2848 /*
2849 * Find the largest available free page in the other list. This roughly
2850 * approximates finding the pageblock with the most free pages, which
2851 * would be too costly to do exactly.
2852 */
6bb15450 2853 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2854 --current_order) {
4eb7dce6
JK
2855 area = &(zone->free_area[current_order]);
2856 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2857 start_migratetype, false, &can_steal);
4eb7dce6
JK
2858 if (fallback_mt == -1)
2859 continue;
b2a0ac88 2860
7a8f58f3
VB
2861 /*
2862 * We cannot steal all free pages from the pageblock and the
2863 * requested migratetype is movable. In that case it's better to
2864 * steal and split the smallest available page instead of the
2865 * largest available page, because even if the next movable
2866 * allocation falls back into a different pageblock than this
2867 * one, it won't cause permanent fragmentation.
2868 */
2869 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2870 && current_order > order)
2871 goto find_smallest;
b2a0ac88 2872
7a8f58f3
VB
2873 goto do_steal;
2874 }
e0fff1bd 2875
7a8f58f3 2876 return false;
e0fff1bd 2877
7a8f58f3
VB
2878find_smallest:
2879 for (current_order = order; current_order < MAX_ORDER;
2880 current_order++) {
2881 area = &(zone->free_area[current_order]);
2882 fallback_mt = find_suitable_fallback(area, current_order,
2883 start_migratetype, false, &can_steal);
2884 if (fallback_mt != -1)
2885 break;
b2a0ac88
MG
2886 }
2887
7a8f58f3
VB
2888 /*
2889 * This should not happen - we already found a suitable fallback
2890 * when looking for the largest page.
2891 */
2892 VM_BUG_ON(current_order == MAX_ORDER);
2893
2894do_steal:
b03641af 2895 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2896
1c30844d
MG
2897 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2898 can_steal);
7a8f58f3
VB
2899
2900 trace_mm_page_alloc_extfrag(page, order, current_order,
2901 start_migratetype, fallback_mt);
2902
2903 return true;
2904
b2a0ac88
MG
2905}
2906
56fd56b8 2907/*
1da177e4
LT
2908 * Do the hard work of removing an element from the buddy allocator.
2909 * Call me with the zone->lock already held.
2910 */
85ccc8fa 2911static __always_inline struct page *
6bb15450
MG
2912__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2913 unsigned int alloc_flags)
1da177e4 2914{
1da177e4
LT
2915 struct page *page;
2916
ce8f86ee
H
2917 if (IS_ENABLED(CONFIG_CMA)) {
2918 /*
2919 * Balance movable allocations between regular and CMA areas by
2920 * allocating from CMA when over half of the zone's free memory
2921 * is in the CMA area.
2922 */
2923 if (alloc_flags & ALLOC_CMA &&
2924 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2925 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2926 page = __rmqueue_cma_fallback(zone, order);
2927 if (page)
2928 goto out;
2929 }
16867664 2930 }
3bc48f96 2931retry:
56fd56b8 2932 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2933 if (unlikely(!page)) {
8510e69c 2934 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2935 page = __rmqueue_cma_fallback(zone, order);
2936
6bb15450
MG
2937 if (!page && __rmqueue_fallback(zone, order, migratetype,
2938 alloc_flags))
3bc48f96 2939 goto retry;
728ec980 2940 }
ce8f86ee
H
2941out:
2942 if (page)
2943 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2944 return page;
1da177e4
LT
2945}
2946
5f63b720 2947/*
1da177e4
LT
2948 * Obtain a specified number of elements from the buddy allocator, all under
2949 * a single hold of the lock, for efficiency. Add them to the supplied list.
2950 * Returns the number of new pages which were placed at *list.
2951 */
5f63b720 2952static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2953 unsigned long count, struct list_head *list,
6bb15450 2954 int migratetype, unsigned int alloc_flags)
1da177e4 2955{
cb66bede 2956 int i, allocated = 0;
5f63b720 2957
d34b0733 2958 spin_lock(&zone->lock);
1da177e4 2959 for (i = 0; i < count; ++i) {
6bb15450
MG
2960 struct page *page = __rmqueue(zone, order, migratetype,
2961 alloc_flags);
085cc7d5 2962 if (unlikely(page == NULL))
1da177e4 2963 break;
81eabcbe 2964
479f854a
MG
2965 if (unlikely(check_pcp_refill(page)))
2966 continue;
2967
81eabcbe 2968 /*
0fac3ba5
VB
2969 * Split buddy pages returned by expand() are received here in
2970 * physical page order. The page is added to the tail of
2971 * caller's list. From the callers perspective, the linked list
2972 * is ordered by page number under some conditions. This is
2973 * useful for IO devices that can forward direction from the
2974 * head, thus also in the physical page order. This is useful
2975 * for IO devices that can merge IO requests if the physical
2976 * pages are ordered properly.
81eabcbe 2977 */
0fac3ba5 2978 list_add_tail(&page->lru, list);
cb66bede 2979 allocated++;
bb14c2c7 2980 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2981 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2982 -(1 << order));
1da177e4 2983 }
a6de734b
MG
2984
2985 /*
2986 * i pages were removed from the buddy list even if some leak due
2987 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 2988 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
2989 * pages added to the pcp list.
2990 */
f2260e6b 2991 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2992 spin_unlock(&zone->lock);
cb66bede 2993 return allocated;
1da177e4
LT
2994}
2995
4ae7c039 2996#ifdef CONFIG_NUMA
8fce4d8e 2997/*
4037d452
CL
2998 * Called from the vmstat counter updater to drain pagesets of this
2999 * currently executing processor on remote nodes after they have
3000 * expired.
3001 *
879336c3
CL
3002 * Note that this function must be called with the thread pinned to
3003 * a single processor.
8fce4d8e 3004 */
4037d452 3005void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3006{
4ae7c039 3007 unsigned long flags;
7be12fc9 3008 int to_drain, batch;
4ae7c039 3009
4037d452 3010 local_irq_save(flags);
4db0c3c2 3011 batch = READ_ONCE(pcp->batch);
7be12fc9 3012 to_drain = min(pcp->count, batch);
77ba9062 3013 if (to_drain > 0)
2a13515c 3014 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 3015 local_irq_restore(flags);
4ae7c039
CL
3016}
3017#endif
3018
9f8f2172 3019/*
93481ff0 3020 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
3021 *
3022 * The processor must either be the current processor and the
3023 * thread pinned to the current processor or a processor that
3024 * is not online.
3025 */
93481ff0 3026static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3027{
c54ad30c 3028 unsigned long flags;
93481ff0
VB
3029 struct per_cpu_pageset *pset;
3030 struct per_cpu_pages *pcp;
1da177e4 3031
93481ff0
VB
3032 local_irq_save(flags);
3033 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3034
93481ff0 3035 pcp = &pset->pcp;
77ba9062 3036 if (pcp->count)
93481ff0 3037 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
3038 local_irq_restore(flags);
3039}
3dfa5721 3040
93481ff0
VB
3041/*
3042 * Drain pcplists of all zones on the indicated processor.
3043 *
3044 * The processor must either be the current processor and the
3045 * thread pinned to the current processor or a processor that
3046 * is not online.
3047 */
3048static void drain_pages(unsigned int cpu)
3049{
3050 struct zone *zone;
3051
3052 for_each_populated_zone(zone) {
3053 drain_pages_zone(cpu, zone);
1da177e4
LT
3054 }
3055}
1da177e4 3056
9f8f2172
CL
3057/*
3058 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
3059 *
3060 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3061 * the single zone's pages.
9f8f2172 3062 */
93481ff0 3063void drain_local_pages(struct zone *zone)
9f8f2172 3064{
93481ff0
VB
3065 int cpu = smp_processor_id();
3066
3067 if (zone)
3068 drain_pages_zone(cpu, zone);
3069 else
3070 drain_pages(cpu);
9f8f2172
CL
3071}
3072
0ccce3b9
MG
3073static void drain_local_pages_wq(struct work_struct *work)
3074{
d9367bd0
WY
3075 struct pcpu_drain *drain;
3076
3077 drain = container_of(work, struct pcpu_drain, work);
3078
a459eeb7
MH
3079 /*
3080 * drain_all_pages doesn't use proper cpu hotplug protection so
3081 * we can race with cpu offline when the WQ can move this from
3082 * a cpu pinned worker to an unbound one. We can operate on a different
3083 * cpu which is allright but we also have to make sure to not move to
3084 * a different one.
3085 */
3086 preempt_disable();
d9367bd0 3087 drain_local_pages(drain->zone);
a459eeb7 3088 preempt_enable();
0ccce3b9
MG
3089}
3090
9f8f2172 3091/*
ec6e8c7e
VB
3092 * The implementation of drain_all_pages(), exposing an extra parameter to
3093 * drain on all cpus.
93481ff0 3094 *
ec6e8c7e
VB
3095 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3096 * not empty. The check for non-emptiness can however race with a free to
3097 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3098 * that need the guarantee that every CPU has drained can disable the
3099 * optimizing racy check.
9f8f2172 3100 */
3b1f3658 3101static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3102{
74046494 3103 int cpu;
74046494
GBY
3104
3105 /*
3106 * Allocate in the BSS so we wont require allocation in
3107 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3108 */
3109 static cpumask_t cpus_with_pcps;
3110
ce612879
MH
3111 /*
3112 * Make sure nobody triggers this path before mm_percpu_wq is fully
3113 * initialized.
3114 */
3115 if (WARN_ON_ONCE(!mm_percpu_wq))
3116 return;
3117
bd233f53
MG
3118 /*
3119 * Do not drain if one is already in progress unless it's specific to
3120 * a zone. Such callers are primarily CMA and memory hotplug and need
3121 * the drain to be complete when the call returns.
3122 */
3123 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3124 if (!zone)
3125 return;
3126 mutex_lock(&pcpu_drain_mutex);
3127 }
0ccce3b9 3128
74046494
GBY
3129 /*
3130 * We don't care about racing with CPU hotplug event
3131 * as offline notification will cause the notified
3132 * cpu to drain that CPU pcps and on_each_cpu_mask
3133 * disables preemption as part of its processing
3134 */
3135 for_each_online_cpu(cpu) {
93481ff0
VB
3136 struct per_cpu_pageset *pcp;
3137 struct zone *z;
74046494 3138 bool has_pcps = false;
93481ff0 3139
ec6e8c7e
VB
3140 if (force_all_cpus) {
3141 /*
3142 * The pcp.count check is racy, some callers need a
3143 * guarantee that no cpu is missed.
3144 */
3145 has_pcps = true;
3146 } else if (zone) {
74046494 3147 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 3148 if (pcp->pcp.count)
74046494 3149 has_pcps = true;
93481ff0
VB
3150 } else {
3151 for_each_populated_zone(z) {
3152 pcp = per_cpu_ptr(z->pageset, cpu);
3153 if (pcp->pcp.count) {
3154 has_pcps = true;
3155 break;
3156 }
74046494
GBY
3157 }
3158 }
93481ff0 3159
74046494
GBY
3160 if (has_pcps)
3161 cpumask_set_cpu(cpu, &cpus_with_pcps);
3162 else
3163 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3164 }
0ccce3b9 3165
bd233f53 3166 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
3167 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3168
3169 drain->zone = zone;
3170 INIT_WORK(&drain->work, drain_local_pages_wq);
3171 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 3172 }
bd233f53 3173 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 3174 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
3175
3176 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3177}
3178
ec6e8c7e
VB
3179/*
3180 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3181 *
3182 * When zone parameter is non-NULL, spill just the single zone's pages.
3183 *
3184 * Note that this can be extremely slow as the draining happens in a workqueue.
3185 */
3186void drain_all_pages(struct zone *zone)
3187{
3188 __drain_all_pages(zone, false);
3189}
3190
296699de 3191#ifdef CONFIG_HIBERNATION
1da177e4 3192
556b969a
CY
3193/*
3194 * Touch the watchdog for every WD_PAGE_COUNT pages.
3195 */
3196#define WD_PAGE_COUNT (128*1024)
3197
1da177e4
LT
3198void mark_free_pages(struct zone *zone)
3199{
556b969a 3200 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3201 unsigned long flags;
7aeb09f9 3202 unsigned int order, t;
86760a2c 3203 struct page *page;
1da177e4 3204
8080fc03 3205 if (zone_is_empty(zone))
1da177e4
LT
3206 return;
3207
3208 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3209
108bcc96 3210 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3211 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3212 if (pfn_valid(pfn)) {
86760a2c 3213 page = pfn_to_page(pfn);
ba6b0979 3214
556b969a
CY
3215 if (!--page_count) {
3216 touch_nmi_watchdog();
3217 page_count = WD_PAGE_COUNT;
3218 }
3219
ba6b0979
JK
3220 if (page_zone(page) != zone)
3221 continue;
3222
7be98234
RW
3223 if (!swsusp_page_is_forbidden(page))
3224 swsusp_unset_page_free(page);
f623f0db 3225 }
1da177e4 3226
b2a0ac88 3227 for_each_migratetype_order(order, t) {
86760a2c
GT
3228 list_for_each_entry(page,
3229 &zone->free_area[order].free_list[t], lru) {
f623f0db 3230 unsigned long i;
1da177e4 3231
86760a2c 3232 pfn = page_to_pfn(page);
556b969a
CY
3233 for (i = 0; i < (1UL << order); i++) {
3234 if (!--page_count) {
3235 touch_nmi_watchdog();
3236 page_count = WD_PAGE_COUNT;
3237 }
7be98234 3238 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3239 }
f623f0db 3240 }
b2a0ac88 3241 }
1da177e4
LT
3242 spin_unlock_irqrestore(&zone->lock, flags);
3243}
e2c55dc8 3244#endif /* CONFIG_PM */
1da177e4 3245
2d4894b5 3246static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3247{
5f8dcc21 3248 int migratetype;
1da177e4 3249
4db7548c 3250 if (!free_pcp_prepare(page))
9cca35d4 3251 return false;
689bcebf 3252
dc4b0caf 3253 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3254 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3255 return true;
3256}
3257
2d4894b5 3258static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3259{
3260 struct zone *zone = page_zone(page);
3261 struct per_cpu_pages *pcp;
3262 int migratetype;
3263
3264 migratetype = get_pcppage_migratetype(page);
d34b0733 3265 __count_vm_event(PGFREE);
da456f14 3266
5f8dcc21
MG
3267 /*
3268 * We only track unmovable, reclaimable and movable on pcp lists.
3269 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3270 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3271 * areas back if necessary. Otherwise, we may have to free
3272 * excessively into the page allocator
3273 */
3274 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3275 if (unlikely(is_migrate_isolate(migratetype))) {
7fef431b
DH
3276 free_one_page(zone, page, pfn, 0, migratetype,
3277 FPI_NONE);
9cca35d4 3278 return;
5f8dcc21
MG
3279 }
3280 migratetype = MIGRATE_MOVABLE;
3281 }
3282
99dcc3e5 3283 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3284 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3285 pcp->count++;
5c3ad2eb
VB
3286 if (pcp->count >= READ_ONCE(pcp->high))
3287 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
9cca35d4 3288}
5f8dcc21 3289
9cca35d4
MG
3290/*
3291 * Free a 0-order page
9cca35d4 3292 */
2d4894b5 3293void free_unref_page(struct page *page)
9cca35d4
MG
3294{
3295 unsigned long flags;
3296 unsigned long pfn = page_to_pfn(page);
3297
2d4894b5 3298 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3299 return;
3300
3301 local_irq_save(flags);
2d4894b5 3302 free_unref_page_commit(page, pfn);
d34b0733 3303 local_irq_restore(flags);
1da177e4
LT
3304}
3305
cc59850e
KK
3306/*
3307 * Free a list of 0-order pages
3308 */
2d4894b5 3309void free_unref_page_list(struct list_head *list)
cc59850e
KK
3310{
3311 struct page *page, *next;
9cca35d4 3312 unsigned long flags, pfn;
c24ad77d 3313 int batch_count = 0;
9cca35d4
MG
3314
3315 /* Prepare pages for freeing */
3316 list_for_each_entry_safe(page, next, list, lru) {
3317 pfn = page_to_pfn(page);
2d4894b5 3318 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3319 list_del(&page->lru);
3320 set_page_private(page, pfn);
3321 }
cc59850e 3322
9cca35d4 3323 local_irq_save(flags);
cc59850e 3324 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3325 unsigned long pfn = page_private(page);
3326
3327 set_page_private(page, 0);
2d4894b5
MG
3328 trace_mm_page_free_batched(page);
3329 free_unref_page_commit(page, pfn);
c24ad77d
LS
3330
3331 /*
3332 * Guard against excessive IRQ disabled times when we get
3333 * a large list of pages to free.
3334 */
3335 if (++batch_count == SWAP_CLUSTER_MAX) {
3336 local_irq_restore(flags);
3337 batch_count = 0;
3338 local_irq_save(flags);
3339 }
cc59850e 3340 }
9cca35d4 3341 local_irq_restore(flags);
cc59850e
KK
3342}
3343
8dfcc9ba
NP
3344/*
3345 * split_page takes a non-compound higher-order page, and splits it into
3346 * n (1<<order) sub-pages: page[0..n]
3347 * Each sub-page must be freed individually.
3348 *
3349 * Note: this is probably too low level an operation for use in drivers.
3350 * Please consult with lkml before using this in your driver.
3351 */
3352void split_page(struct page *page, unsigned int order)
3353{
3354 int i;
3355
309381fe
SL
3356 VM_BUG_ON_PAGE(PageCompound(page), page);
3357 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3358
a9627bc5 3359 for (i = 1; i < (1 << order); i++)
7835e98b 3360 set_page_refcounted(page + i);
8fb156c9 3361 split_page_owner(page, 1 << order);
e1baddf8 3362 split_page_memcg(page, 1 << order);
8dfcc9ba 3363}
5853ff23 3364EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3365
3c605096 3366int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3367{
748446bb
MG
3368 unsigned long watermark;
3369 struct zone *zone;
2139cbe6 3370 int mt;
748446bb
MG
3371
3372 BUG_ON(!PageBuddy(page));
3373
3374 zone = page_zone(page);
2e30abd1 3375 mt = get_pageblock_migratetype(page);
748446bb 3376
194159fb 3377 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3378 /*
3379 * Obey watermarks as if the page was being allocated. We can
3380 * emulate a high-order watermark check with a raised order-0
3381 * watermark, because we already know our high-order page
3382 * exists.
3383 */
fd1444b2 3384 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3385 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3386 return 0;
3387
8fb74b9f 3388 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3389 }
748446bb
MG
3390
3391 /* Remove page from free list */
b03641af 3392
6ab01363 3393 del_page_from_free_list(page, zone, order);
2139cbe6 3394
400bc7fd 3395 /*
3396 * Set the pageblock if the isolated page is at least half of a
3397 * pageblock
3398 */
748446bb
MG
3399 if (order >= pageblock_order - 1) {
3400 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3401 for (; page < endpage; page += pageblock_nr_pages) {
3402 int mt = get_pageblock_migratetype(page);
88ed365e 3403 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3404 && !is_migrate_highatomic(mt))
47118af0
MN
3405 set_pageblock_migratetype(page,
3406 MIGRATE_MOVABLE);
3407 }
748446bb
MG
3408 }
3409
f3a14ced 3410
8fb74b9f 3411 return 1UL << order;
1fb3f8ca
MG
3412}
3413
624f58d8
AD
3414/**
3415 * __putback_isolated_page - Return a now-isolated page back where we got it
3416 * @page: Page that was isolated
3417 * @order: Order of the isolated page
e6a0a7ad 3418 * @mt: The page's pageblock's migratetype
624f58d8
AD
3419 *
3420 * This function is meant to return a page pulled from the free lists via
3421 * __isolate_free_page back to the free lists they were pulled from.
3422 */
3423void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3424{
3425 struct zone *zone = page_zone(page);
3426
3427 /* zone lock should be held when this function is called */
3428 lockdep_assert_held(&zone->lock);
3429
3430 /* Return isolated page to tail of freelist. */
f04a5d5d 3431 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3432 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3433}
3434
060e7417
MG
3435/*
3436 * Update NUMA hit/miss statistics
3437 *
3438 * Must be called with interrupts disabled.
060e7417 3439 */
41b6167e 3440static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3441{
3442#ifdef CONFIG_NUMA
3a321d2a 3443 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3444
4518085e
KW
3445 /* skip numa counters update if numa stats is disabled */
3446 if (!static_branch_likely(&vm_numa_stat_key))
3447 return;
3448
c1093b74 3449 if (zone_to_nid(z) != numa_node_id())
060e7417 3450 local_stat = NUMA_OTHER;
060e7417 3451
c1093b74 3452 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3453 __inc_numa_state(z, NUMA_HIT);
2df26639 3454 else {
3a321d2a
KW
3455 __inc_numa_state(z, NUMA_MISS);
3456 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3457 }
3a321d2a 3458 __inc_numa_state(z, local_stat);
060e7417
MG
3459#endif
3460}
3461
066b2393 3462/* Remove page from the per-cpu list, caller must protect the list */
3b822017
JDB
3463static inline
3464struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3465 unsigned int alloc_flags,
453f85d4 3466 struct per_cpu_pages *pcp,
066b2393
MG
3467 struct list_head *list)
3468{
3469 struct page *page;
3470
3471 do {
3472 if (list_empty(list)) {
3473 pcp->count += rmqueue_bulk(zone, 0,
5c3ad2eb 3474 READ_ONCE(pcp->batch), list,
6bb15450 3475 migratetype, alloc_flags);
066b2393
MG
3476 if (unlikely(list_empty(list)))
3477 return NULL;
3478 }
3479
453f85d4 3480 page = list_first_entry(list, struct page, lru);
066b2393
MG
3481 list_del(&page->lru);
3482 pcp->count--;
3483 } while (check_new_pcp(page));
3484
3485 return page;
3486}
3487
3488/* Lock and remove page from the per-cpu list */
3489static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3490 struct zone *zone, gfp_t gfp_flags,
3491 int migratetype, unsigned int alloc_flags)
066b2393
MG
3492{
3493 struct per_cpu_pages *pcp;
3494 struct list_head *list;
066b2393 3495 struct page *page;
d34b0733 3496 unsigned long flags;
066b2393 3497
d34b0733 3498 local_irq_save(flags);
066b2393
MG
3499 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3500 list = &pcp->lists[migratetype];
6bb15450 3501 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3502 if (page) {
1c52e6d0 3503 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3504 zone_statistics(preferred_zone, zone);
3505 }
d34b0733 3506 local_irq_restore(flags);
066b2393
MG
3507 return page;
3508}
3509
1da177e4 3510/*
75379191 3511 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3512 */
0a15c3e9 3513static inline
066b2393 3514struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3515 struct zone *zone, unsigned int order,
c603844b
MG
3516 gfp_t gfp_flags, unsigned int alloc_flags,
3517 int migratetype)
1da177e4
LT
3518{
3519 unsigned long flags;
689bcebf 3520 struct page *page;
1da177e4 3521
d34b0733 3522 if (likely(order == 0)) {
1d91df85
JK
3523 /*
3524 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3525 * we need to skip it when CMA area isn't allowed.
3526 */
3527 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3528 migratetype != MIGRATE_MOVABLE) {
3529 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
1c52e6d0 3530 migratetype, alloc_flags);
1d91df85
JK
3531 goto out;
3532 }
066b2393 3533 }
83b9355b 3534
066b2393
MG
3535 /*
3536 * We most definitely don't want callers attempting to
3537 * allocate greater than order-1 page units with __GFP_NOFAIL.
3538 */
3539 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3540 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3541
066b2393
MG
3542 do {
3543 page = NULL;
1d91df85
JK
3544 /*
3545 * order-0 request can reach here when the pcplist is skipped
3546 * due to non-CMA allocation context. HIGHATOMIC area is
3547 * reserved for high-order atomic allocation, so order-0
3548 * request should skip it.
3549 */
3550 if (order > 0 && alloc_flags & ALLOC_HARDER) {
066b2393
MG
3551 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3552 if (page)
3553 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3554 }
a74609fa 3555 if (!page)
6bb15450 3556 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3557 } while (page && check_new_pages(page, order));
3558 spin_unlock(&zone->lock);
3559 if (!page)
3560 goto failed;
3561 __mod_zone_freepage_state(zone, -(1 << order),
3562 get_pcppage_migratetype(page));
1da177e4 3563
16709d1d 3564 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3565 zone_statistics(preferred_zone, zone);
a74609fa 3566 local_irq_restore(flags);
1da177e4 3567
066b2393 3568out:
73444bc4
MG
3569 /* Separate test+clear to avoid unnecessary atomics */
3570 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3571 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3572 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3573 }
3574
066b2393 3575 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3576 return page;
a74609fa
NP
3577
3578failed:
3579 local_irq_restore(flags);
a74609fa 3580 return NULL;
1da177e4
LT
3581}
3582
933e312e
AM
3583#ifdef CONFIG_FAIL_PAGE_ALLOC
3584
b2588c4b 3585static struct {
933e312e
AM
3586 struct fault_attr attr;
3587
621a5f7a 3588 bool ignore_gfp_highmem;
71baba4b 3589 bool ignore_gfp_reclaim;
54114994 3590 u32 min_order;
933e312e
AM
3591} fail_page_alloc = {
3592 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3593 .ignore_gfp_reclaim = true,
621a5f7a 3594 .ignore_gfp_highmem = true,
54114994 3595 .min_order = 1,
933e312e
AM
3596};
3597
3598static int __init setup_fail_page_alloc(char *str)
3599{
3600 return setup_fault_attr(&fail_page_alloc.attr, str);
3601}
3602__setup("fail_page_alloc=", setup_fail_page_alloc);
3603
af3b8544 3604static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3605{
54114994 3606 if (order < fail_page_alloc.min_order)
deaf386e 3607 return false;
933e312e 3608 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3609 return false;
933e312e 3610 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3611 return false;
71baba4b
MG
3612 if (fail_page_alloc.ignore_gfp_reclaim &&
3613 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3614 return false;
933e312e
AM
3615
3616 return should_fail(&fail_page_alloc.attr, 1 << order);
3617}
3618
3619#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3620
3621static int __init fail_page_alloc_debugfs(void)
3622{
0825a6f9 3623 umode_t mode = S_IFREG | 0600;
933e312e 3624 struct dentry *dir;
933e312e 3625
dd48c085
AM
3626 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3627 &fail_page_alloc.attr);
b2588c4b 3628
d9f7979c
GKH
3629 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3630 &fail_page_alloc.ignore_gfp_reclaim);
3631 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3632 &fail_page_alloc.ignore_gfp_highmem);
3633 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3634
d9f7979c 3635 return 0;
933e312e
AM
3636}
3637
3638late_initcall(fail_page_alloc_debugfs);
3639
3640#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3641
3642#else /* CONFIG_FAIL_PAGE_ALLOC */
3643
af3b8544 3644static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3645{
deaf386e 3646 return false;
933e312e
AM
3647}
3648
3649#endif /* CONFIG_FAIL_PAGE_ALLOC */
3650
76cd6173 3651noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3652{
3653 return __should_fail_alloc_page(gfp_mask, order);
3654}
3655ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3656
f27ce0e1
JK
3657static inline long __zone_watermark_unusable_free(struct zone *z,
3658 unsigned int order, unsigned int alloc_flags)
3659{
3660 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3661 long unusable_free = (1 << order) - 1;
3662
3663 /*
3664 * If the caller does not have rights to ALLOC_HARDER then subtract
3665 * the high-atomic reserves. This will over-estimate the size of the
3666 * atomic reserve but it avoids a search.
3667 */
3668 if (likely(!alloc_harder))
3669 unusable_free += z->nr_reserved_highatomic;
3670
3671#ifdef CONFIG_CMA
3672 /* If allocation can't use CMA areas don't use free CMA pages */
3673 if (!(alloc_flags & ALLOC_CMA))
3674 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3675#endif
3676
3677 return unusable_free;
3678}
3679
1da177e4 3680/*
97a16fc8
MG
3681 * Return true if free base pages are above 'mark'. For high-order checks it
3682 * will return true of the order-0 watermark is reached and there is at least
3683 * one free page of a suitable size. Checking now avoids taking the zone lock
3684 * to check in the allocation paths if no pages are free.
1da177e4 3685 */
86a294a8 3686bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3687 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3688 long free_pages)
1da177e4 3689{
d23ad423 3690 long min = mark;
1da177e4 3691 int o;
cd04ae1e 3692 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3693
0aaa29a5 3694 /* free_pages may go negative - that's OK */
f27ce0e1 3695 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3696
7fb1d9fc 3697 if (alloc_flags & ALLOC_HIGH)
1da177e4 3698 min -= min / 2;
0aaa29a5 3699
f27ce0e1 3700 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3701 /*
3702 * OOM victims can try even harder than normal ALLOC_HARDER
3703 * users on the grounds that it's definitely going to be in
3704 * the exit path shortly and free memory. Any allocation it
3705 * makes during the free path will be small and short-lived.
3706 */
3707 if (alloc_flags & ALLOC_OOM)
3708 min -= min / 2;
3709 else
3710 min -= min / 4;
3711 }
3712
97a16fc8
MG
3713 /*
3714 * Check watermarks for an order-0 allocation request. If these
3715 * are not met, then a high-order request also cannot go ahead
3716 * even if a suitable page happened to be free.
3717 */
97a225e6 3718 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3719 return false;
1da177e4 3720
97a16fc8
MG
3721 /* If this is an order-0 request then the watermark is fine */
3722 if (!order)
3723 return true;
3724
3725 /* For a high-order request, check at least one suitable page is free */
3726 for (o = order; o < MAX_ORDER; o++) {
3727 struct free_area *area = &z->free_area[o];
3728 int mt;
3729
3730 if (!area->nr_free)
3731 continue;
3732
97a16fc8 3733 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3734 if (!free_area_empty(area, mt))
97a16fc8
MG
3735 return true;
3736 }
3737
3738#ifdef CONFIG_CMA
d883c6cf 3739 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3740 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3741 return true;
d883c6cf 3742 }
97a16fc8 3743#endif
76089d00 3744 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3745 return true;
1da177e4 3746 }
97a16fc8 3747 return false;
88f5acf8
MG
3748}
3749
7aeb09f9 3750bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3751 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3752{
97a225e6 3753 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3754 zone_page_state(z, NR_FREE_PAGES));
3755}
3756
48ee5f36 3757static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3758 unsigned long mark, int highest_zoneidx,
f80b08fc 3759 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3760{
f27ce0e1 3761 long free_pages;
d883c6cf 3762
f27ce0e1 3763 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3764
3765 /*
3766 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3767 * need to be calculated.
48ee5f36 3768 */
f27ce0e1
JK
3769 if (!order) {
3770 long fast_free;
3771
3772 fast_free = free_pages;
3773 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3774 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3775 return true;
3776 }
48ee5f36 3777
f80b08fc
CTR
3778 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3779 free_pages))
3780 return true;
3781 /*
3782 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3783 * when checking the min watermark. The min watermark is the
3784 * point where boosting is ignored so that kswapd is woken up
3785 * when below the low watermark.
3786 */
3787 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3788 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3789 mark = z->_watermark[WMARK_MIN];
3790 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3791 alloc_flags, free_pages);
3792 }
3793
3794 return false;
48ee5f36
MG
3795}
3796
7aeb09f9 3797bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3798 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3799{
3800 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3801
3802 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3803 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3804
97a225e6 3805 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3806 free_pages);
1da177e4
LT
3807}
3808
9276b1bc 3809#ifdef CONFIG_NUMA
957f822a
DR
3810static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3811{
e02dc017 3812 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3813 node_reclaim_distance;
957f822a 3814}
9276b1bc 3815#else /* CONFIG_NUMA */
957f822a
DR
3816static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3817{
3818 return true;
3819}
9276b1bc
PJ
3820#endif /* CONFIG_NUMA */
3821
6bb15450
MG
3822/*
3823 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3824 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3825 * premature use of a lower zone may cause lowmem pressure problems that
3826 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3827 * probably too small. It only makes sense to spread allocations to avoid
3828 * fragmentation between the Normal and DMA32 zones.
3829 */
3830static inline unsigned int
0a79cdad 3831alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3832{
736838e9 3833 unsigned int alloc_flags;
0a79cdad 3834
736838e9
MN
3835 /*
3836 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3837 * to save a branch.
3838 */
3839 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3840
3841#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3842 if (!zone)
3843 return alloc_flags;
3844
6bb15450 3845 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3846 return alloc_flags;
6bb15450
MG
3847
3848 /*
3849 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3850 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3851 * on UMA that if Normal is populated then so is DMA32.
3852 */
3853 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3854 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3855 return alloc_flags;
6bb15450 3856
8118b82e 3857 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3858#endif /* CONFIG_ZONE_DMA32 */
3859 return alloc_flags;
6bb15450 3860}
6bb15450 3861
8510e69c
JK
3862static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3863 unsigned int alloc_flags)
3864{
3865#ifdef CONFIG_CMA
3866 unsigned int pflags = current->flags;
3867
3868 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3869 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3870 alloc_flags |= ALLOC_CMA;
3871
3872#endif
3873 return alloc_flags;
3874}
3875
7fb1d9fc 3876/*
0798e519 3877 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3878 * a page.
3879 */
3880static struct page *
a9263751
VB
3881get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3882 const struct alloc_context *ac)
753ee728 3883{
6bb15450 3884 struct zoneref *z;
5117f45d 3885 struct zone *zone;
3b8c0be4 3886 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3887 bool no_fallback;
3b8c0be4 3888
6bb15450 3889retry:
7fb1d9fc 3890 /*
9276b1bc 3891 * Scan zonelist, looking for a zone with enough free.
344736f2 3892 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3893 */
6bb15450
MG
3894 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3895 z = ac->preferred_zoneref;
30d8ec73
MN
3896 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3897 ac->nodemask) {
be06af00 3898 struct page *page;
e085dbc5
JW
3899 unsigned long mark;
3900
664eedde
MG
3901 if (cpusets_enabled() &&
3902 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3903 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3904 continue;
a756cf59
JW
3905 /*
3906 * When allocating a page cache page for writing, we
281e3726
MG
3907 * want to get it from a node that is within its dirty
3908 * limit, such that no single node holds more than its
a756cf59 3909 * proportional share of globally allowed dirty pages.
281e3726 3910 * The dirty limits take into account the node's
a756cf59
JW
3911 * lowmem reserves and high watermark so that kswapd
3912 * should be able to balance it without having to
3913 * write pages from its LRU list.
3914 *
a756cf59 3915 * XXX: For now, allow allocations to potentially
281e3726 3916 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3917 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3918 * which is important when on a NUMA setup the allowed
281e3726 3919 * nodes are together not big enough to reach the
a756cf59 3920 * global limit. The proper fix for these situations
281e3726 3921 * will require awareness of nodes in the
a756cf59
JW
3922 * dirty-throttling and the flusher threads.
3923 */
3b8c0be4
MG
3924 if (ac->spread_dirty_pages) {
3925 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3926 continue;
3927
3928 if (!node_dirty_ok(zone->zone_pgdat)) {
3929 last_pgdat_dirty_limit = zone->zone_pgdat;
3930 continue;
3931 }
3932 }
7fb1d9fc 3933
6bb15450
MG
3934 if (no_fallback && nr_online_nodes > 1 &&
3935 zone != ac->preferred_zoneref->zone) {
3936 int local_nid;
3937
3938 /*
3939 * If moving to a remote node, retry but allow
3940 * fragmenting fallbacks. Locality is more important
3941 * than fragmentation avoidance.
3942 */
3943 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3944 if (zone_to_nid(zone) != local_nid) {
3945 alloc_flags &= ~ALLOC_NOFRAGMENT;
3946 goto retry;
3947 }
3948 }
3949
a9214443 3950 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3951 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3952 ac->highest_zoneidx, alloc_flags,
3953 gfp_mask)) {
fa5e084e
MG
3954 int ret;
3955
c9e97a19
PT
3956#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3957 /*
3958 * Watermark failed for this zone, but see if we can
3959 * grow this zone if it contains deferred pages.
3960 */
3961 if (static_branch_unlikely(&deferred_pages)) {
3962 if (_deferred_grow_zone(zone, order))
3963 goto try_this_zone;
3964 }
3965#endif
5dab2911
MG
3966 /* Checked here to keep the fast path fast */
3967 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3968 if (alloc_flags & ALLOC_NO_WATERMARKS)
3969 goto try_this_zone;
3970
202e35db 3971 if (!node_reclaim_enabled() ||
c33d6c06 3972 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3973 continue;
3974
a5f5f91d 3975 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3976 switch (ret) {
a5f5f91d 3977 case NODE_RECLAIM_NOSCAN:
fa5e084e 3978 /* did not scan */
cd38b115 3979 continue;
a5f5f91d 3980 case NODE_RECLAIM_FULL:
fa5e084e 3981 /* scanned but unreclaimable */
cd38b115 3982 continue;
fa5e084e
MG
3983 default:
3984 /* did we reclaim enough */
fed2719e 3985 if (zone_watermark_ok(zone, order, mark,
97a225e6 3986 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3987 goto try_this_zone;
3988
fed2719e 3989 continue;
0798e519 3990 }
7fb1d9fc
RS
3991 }
3992
fa5e084e 3993try_this_zone:
066b2393 3994 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3995 gfp_mask, alloc_flags, ac->migratetype);
75379191 3996 if (page) {
479f854a 3997 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3998
3999 /*
4000 * If this is a high-order atomic allocation then check
4001 * if the pageblock should be reserved for the future
4002 */
4003 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4004 reserve_highatomic_pageblock(page, zone, order);
4005
75379191 4006 return page;
c9e97a19
PT
4007 } else {
4008#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4009 /* Try again if zone has deferred pages */
4010 if (static_branch_unlikely(&deferred_pages)) {
4011 if (_deferred_grow_zone(zone, order))
4012 goto try_this_zone;
4013 }
4014#endif
75379191 4015 }
54a6eb5c 4016 }
9276b1bc 4017
6bb15450
MG
4018 /*
4019 * It's possible on a UMA machine to get through all zones that are
4020 * fragmented. If avoiding fragmentation, reset and try again.
4021 */
4022 if (no_fallback) {
4023 alloc_flags &= ~ALLOC_NOFRAGMENT;
4024 goto retry;
4025 }
4026
4ffeaf35 4027 return NULL;
753ee728
MH
4028}
4029
9af744d7 4030static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4031{
a238ab5b 4032 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4033
4034 /*
4035 * This documents exceptions given to allocations in certain
4036 * contexts that are allowed to allocate outside current's set
4037 * of allowed nodes.
4038 */
4039 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4040 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4041 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4042 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 4043 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4044 filter &= ~SHOW_MEM_FILTER_NODES;
4045
9af744d7 4046 show_mem(filter, nodemask);
aa187507
MH
4047}
4048
a8e99259 4049void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4050{
4051 struct va_format vaf;
4052 va_list args;
1be334e5 4053 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4054
0f7896f1 4055 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
4056 return;
4057
7877cdcc
MH
4058 va_start(args, fmt);
4059 vaf.fmt = fmt;
4060 vaf.va = &args;
ef8444ea 4061 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4062 current->comm, &vaf, gfp_mask, &gfp_mask,
4063 nodemask_pr_args(nodemask));
7877cdcc 4064 va_end(args);
3ee9a4f0 4065
a8e99259 4066 cpuset_print_current_mems_allowed();
ef8444ea 4067 pr_cont("\n");
a238ab5b 4068 dump_stack();
685dbf6f 4069 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4070}
4071
6c18ba7a
MH
4072static inline struct page *
4073__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4074 unsigned int alloc_flags,
4075 const struct alloc_context *ac)
4076{
4077 struct page *page;
4078
4079 page = get_page_from_freelist(gfp_mask, order,
4080 alloc_flags|ALLOC_CPUSET, ac);
4081 /*
4082 * fallback to ignore cpuset restriction if our nodes
4083 * are depleted
4084 */
4085 if (!page)
4086 page = get_page_from_freelist(gfp_mask, order,
4087 alloc_flags, ac);
4088
4089 return page;
4090}
4091
11e33f6a
MG
4092static inline struct page *
4093__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4094 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4095{
6e0fc46d
DR
4096 struct oom_control oc = {
4097 .zonelist = ac->zonelist,
4098 .nodemask = ac->nodemask,
2a966b77 4099 .memcg = NULL,
6e0fc46d
DR
4100 .gfp_mask = gfp_mask,
4101 .order = order,
6e0fc46d 4102 };
11e33f6a
MG
4103 struct page *page;
4104
9879de73
JW
4105 *did_some_progress = 0;
4106
9879de73 4107 /*
dc56401f
JW
4108 * Acquire the oom lock. If that fails, somebody else is
4109 * making progress for us.
9879de73 4110 */
dc56401f 4111 if (!mutex_trylock(&oom_lock)) {
9879de73 4112 *did_some_progress = 1;
11e33f6a 4113 schedule_timeout_uninterruptible(1);
1da177e4
LT
4114 return NULL;
4115 }
6b1de916 4116
11e33f6a
MG
4117 /*
4118 * Go through the zonelist yet one more time, keep very high watermark
4119 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4120 * we're still under heavy pressure. But make sure that this reclaim
4121 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4122 * allocation which will never fail due to oom_lock already held.
11e33f6a 4123 */
e746bf73
TH
4124 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4125 ~__GFP_DIRECT_RECLAIM, order,
4126 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4127 if (page)
11e33f6a
MG
4128 goto out;
4129
06ad276a
MH
4130 /* Coredumps can quickly deplete all memory reserves */
4131 if (current->flags & PF_DUMPCORE)
4132 goto out;
4133 /* The OOM killer will not help higher order allocs */
4134 if (order > PAGE_ALLOC_COSTLY_ORDER)
4135 goto out;
dcda9b04
MH
4136 /*
4137 * We have already exhausted all our reclaim opportunities without any
4138 * success so it is time to admit defeat. We will skip the OOM killer
4139 * because it is very likely that the caller has a more reasonable
4140 * fallback than shooting a random task.
cfb4a541
MN
4141 *
4142 * The OOM killer may not free memory on a specific node.
dcda9b04 4143 */
cfb4a541 4144 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4145 goto out;
06ad276a 4146 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4147 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4148 goto out;
4149 if (pm_suspended_storage())
4150 goto out;
4151 /*
4152 * XXX: GFP_NOFS allocations should rather fail than rely on
4153 * other request to make a forward progress.
4154 * We are in an unfortunate situation where out_of_memory cannot
4155 * do much for this context but let's try it to at least get
4156 * access to memory reserved if the current task is killed (see
4157 * out_of_memory). Once filesystems are ready to handle allocation
4158 * failures more gracefully we should just bail out here.
4159 */
4160
3c2c6488 4161 /* Exhausted what can be done so it's blame time */
5020e285 4162 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 4163 *did_some_progress = 1;
5020e285 4164
6c18ba7a
MH
4165 /*
4166 * Help non-failing allocations by giving them access to memory
4167 * reserves
4168 */
4169 if (gfp_mask & __GFP_NOFAIL)
4170 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4171 ALLOC_NO_WATERMARKS, ac);
5020e285 4172 }
11e33f6a 4173out:
dc56401f 4174 mutex_unlock(&oom_lock);
11e33f6a
MG
4175 return page;
4176}
4177
33c2d214
MH
4178/*
4179 * Maximum number of compaction retries wit a progress before OOM
4180 * killer is consider as the only way to move forward.
4181 */
4182#define MAX_COMPACT_RETRIES 16
4183
56de7263
MG
4184#ifdef CONFIG_COMPACTION
4185/* Try memory compaction for high-order allocations before reclaim */
4186static struct page *
4187__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4188 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4189 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4190{
5e1f0f09 4191 struct page *page = NULL;
eb414681 4192 unsigned long pflags;
499118e9 4193 unsigned int noreclaim_flag;
53853e2d
VB
4194
4195 if (!order)
66199712 4196 return NULL;
66199712 4197
eb414681 4198 psi_memstall_enter(&pflags);
499118e9 4199 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4200
c5d01d0d 4201 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4202 prio, &page);
eb414681 4203
499118e9 4204 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4205 psi_memstall_leave(&pflags);
56de7263 4206
06dac2f4
CTR
4207 if (*compact_result == COMPACT_SKIPPED)
4208 return NULL;
98dd3b48
VB
4209 /*
4210 * At least in one zone compaction wasn't deferred or skipped, so let's
4211 * count a compaction stall
4212 */
4213 count_vm_event(COMPACTSTALL);
8fb74b9f 4214
5e1f0f09
MG
4215 /* Prep a captured page if available */
4216 if (page)
4217 prep_new_page(page, order, gfp_mask, alloc_flags);
4218
4219 /* Try get a page from the freelist if available */
4220 if (!page)
4221 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4222
98dd3b48
VB
4223 if (page) {
4224 struct zone *zone = page_zone(page);
53853e2d 4225
98dd3b48
VB
4226 zone->compact_blockskip_flush = false;
4227 compaction_defer_reset(zone, order, true);
4228 count_vm_event(COMPACTSUCCESS);
4229 return page;
4230 }
56de7263 4231
98dd3b48
VB
4232 /*
4233 * It's bad if compaction run occurs and fails. The most likely reason
4234 * is that pages exist, but not enough to satisfy watermarks.
4235 */
4236 count_vm_event(COMPACTFAIL);
66199712 4237
98dd3b48 4238 cond_resched();
56de7263
MG
4239
4240 return NULL;
4241}
33c2d214 4242
3250845d
VB
4243static inline bool
4244should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4245 enum compact_result compact_result,
4246 enum compact_priority *compact_priority,
d9436498 4247 int *compaction_retries)
3250845d
VB
4248{
4249 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4250 int min_priority;
65190cff
MH
4251 bool ret = false;
4252 int retries = *compaction_retries;
4253 enum compact_priority priority = *compact_priority;
3250845d
VB
4254
4255 if (!order)
4256 return false;
4257
d9436498
VB
4258 if (compaction_made_progress(compact_result))
4259 (*compaction_retries)++;
4260
3250845d
VB
4261 /*
4262 * compaction considers all the zone as desperately out of memory
4263 * so it doesn't really make much sense to retry except when the
4264 * failure could be caused by insufficient priority
4265 */
d9436498
VB
4266 if (compaction_failed(compact_result))
4267 goto check_priority;
3250845d 4268
49433085
VB
4269 /*
4270 * compaction was skipped because there are not enough order-0 pages
4271 * to work with, so we retry only if it looks like reclaim can help.
4272 */
4273 if (compaction_needs_reclaim(compact_result)) {
4274 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4275 goto out;
4276 }
4277
3250845d
VB
4278 /*
4279 * make sure the compaction wasn't deferred or didn't bail out early
4280 * due to locks contention before we declare that we should give up.
49433085
VB
4281 * But the next retry should use a higher priority if allowed, so
4282 * we don't just keep bailing out endlessly.
3250845d 4283 */
65190cff 4284 if (compaction_withdrawn(compact_result)) {
49433085 4285 goto check_priority;
65190cff 4286 }
3250845d
VB
4287
4288 /*
dcda9b04 4289 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4290 * costly ones because they are de facto nofail and invoke OOM
4291 * killer to move on while costly can fail and users are ready
4292 * to cope with that. 1/4 retries is rather arbitrary but we
4293 * would need much more detailed feedback from compaction to
4294 * make a better decision.
4295 */
4296 if (order > PAGE_ALLOC_COSTLY_ORDER)
4297 max_retries /= 4;
65190cff
MH
4298 if (*compaction_retries <= max_retries) {
4299 ret = true;
4300 goto out;
4301 }
3250845d 4302
d9436498
VB
4303 /*
4304 * Make sure there are attempts at the highest priority if we exhausted
4305 * all retries or failed at the lower priorities.
4306 */
4307check_priority:
c2033b00
VB
4308 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4309 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4310
c2033b00 4311 if (*compact_priority > min_priority) {
d9436498
VB
4312 (*compact_priority)--;
4313 *compaction_retries = 0;
65190cff 4314 ret = true;
d9436498 4315 }
65190cff
MH
4316out:
4317 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4318 return ret;
3250845d 4319}
56de7263
MG
4320#else
4321static inline struct page *
4322__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4323 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4324 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4325{
33c2d214 4326 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4327 return NULL;
4328}
33c2d214
MH
4329
4330static inline bool
86a294a8
MH
4331should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4332 enum compact_result compact_result,
a5508cd8 4333 enum compact_priority *compact_priority,
d9436498 4334 int *compaction_retries)
33c2d214 4335{
31e49bfd
MH
4336 struct zone *zone;
4337 struct zoneref *z;
4338
4339 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4340 return false;
4341
4342 /*
4343 * There are setups with compaction disabled which would prefer to loop
4344 * inside the allocator rather than hit the oom killer prematurely.
4345 * Let's give them a good hope and keep retrying while the order-0
4346 * watermarks are OK.
4347 */
97a225e6
JK
4348 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4349 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4350 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4351 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4352 return true;
4353 }
33c2d214
MH
4354 return false;
4355}
3250845d 4356#endif /* CONFIG_COMPACTION */
56de7263 4357
d92a8cfc 4358#ifdef CONFIG_LOCKDEP
93781325 4359static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4360 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4361
f920e413 4362static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4363{
d92a8cfc
PZ
4364 /* no reclaim without waiting on it */
4365 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4366 return false;
4367
4368 /* this guy won't enter reclaim */
2e517d68 4369 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4370 return false;
4371
d92a8cfc
PZ
4372 if (gfp_mask & __GFP_NOLOCKDEP)
4373 return false;
4374
4375 return true;
4376}
4377
93781325
OS
4378void __fs_reclaim_acquire(void)
4379{
4380 lock_map_acquire(&__fs_reclaim_map);
4381}
4382
4383void __fs_reclaim_release(void)
4384{
4385 lock_map_release(&__fs_reclaim_map);
4386}
4387
d92a8cfc
PZ
4388void fs_reclaim_acquire(gfp_t gfp_mask)
4389{
f920e413
DV
4390 gfp_mask = current_gfp_context(gfp_mask);
4391
4392 if (__need_reclaim(gfp_mask)) {
4393 if (gfp_mask & __GFP_FS)
4394 __fs_reclaim_acquire();
4395
4396#ifdef CONFIG_MMU_NOTIFIER
4397 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4398 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4399#endif
4400
4401 }
d92a8cfc
PZ
4402}
4403EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4404
4405void fs_reclaim_release(gfp_t gfp_mask)
4406{
f920e413
DV
4407 gfp_mask = current_gfp_context(gfp_mask);
4408
4409 if (__need_reclaim(gfp_mask)) {
4410 if (gfp_mask & __GFP_FS)
4411 __fs_reclaim_release();
4412 }
d92a8cfc
PZ
4413}
4414EXPORT_SYMBOL_GPL(fs_reclaim_release);
4415#endif
4416
bba90710 4417/* Perform direct synchronous page reclaim */
2187e17b 4418static unsigned long
a9263751
VB
4419__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4420 const struct alloc_context *ac)
11e33f6a 4421{
499118e9 4422 unsigned int noreclaim_flag;
2187e17b 4423 unsigned long pflags, progress;
11e33f6a
MG
4424
4425 cond_resched();
4426
4427 /* We now go into synchronous reclaim */
4428 cpuset_memory_pressure_bump();
eb414681 4429 psi_memstall_enter(&pflags);
d92a8cfc 4430 fs_reclaim_acquire(gfp_mask);
93781325 4431 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4432
a9263751
VB
4433 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4434 ac->nodemask);
11e33f6a 4435
499118e9 4436 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4437 fs_reclaim_release(gfp_mask);
eb414681 4438 psi_memstall_leave(&pflags);
11e33f6a
MG
4439
4440 cond_resched();
4441
bba90710
MS
4442 return progress;
4443}
4444
4445/* The really slow allocator path where we enter direct reclaim */
4446static inline struct page *
4447__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4448 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4449 unsigned long *did_some_progress)
bba90710
MS
4450{
4451 struct page *page = NULL;
4452 bool drained = false;
4453
a9263751 4454 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4455 if (unlikely(!(*did_some_progress)))
4456 return NULL;
11e33f6a 4457
9ee493ce 4458retry:
31a6c190 4459 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4460
4461 /*
4462 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4463 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4464 * Shrink them and try again
9ee493ce
MG
4465 */
4466 if (!page && !drained) {
29fac03b 4467 unreserve_highatomic_pageblock(ac, false);
93481ff0 4468 drain_all_pages(NULL);
9ee493ce
MG
4469 drained = true;
4470 goto retry;
4471 }
4472
11e33f6a
MG
4473 return page;
4474}
4475
5ecd9d40
DR
4476static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4477 const struct alloc_context *ac)
3a025760
JW
4478{
4479 struct zoneref *z;
4480 struct zone *zone;
e1a55637 4481 pg_data_t *last_pgdat = NULL;
97a225e6 4482 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4483
97a225e6 4484 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4485 ac->nodemask) {
e1a55637 4486 if (last_pgdat != zone->zone_pgdat)
97a225e6 4487 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
e1a55637
MG
4488 last_pgdat = zone->zone_pgdat;
4489 }
3a025760
JW
4490}
4491
c603844b 4492static inline unsigned int
341ce06f
PZ
4493gfp_to_alloc_flags(gfp_t gfp_mask)
4494{
c603844b 4495 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4496
736838e9
MN
4497 /*
4498 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4499 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4500 * to save two branches.
4501 */
e6223a3b 4502 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4503 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4504
341ce06f
PZ
4505 /*
4506 * The caller may dip into page reserves a bit more if the caller
4507 * cannot run direct reclaim, or if the caller has realtime scheduling
4508 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4509 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4510 */
736838e9
MN
4511 alloc_flags |= (__force int)
4512 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4513
d0164adc 4514 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4515 /*
b104a35d
DR
4516 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4517 * if it can't schedule.
5c3240d9 4518 */
b104a35d 4519 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4520 alloc_flags |= ALLOC_HARDER;
523b9458 4521 /*
b104a35d 4522 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4523 * comment for __cpuset_node_allowed().
523b9458 4524 */
341ce06f 4525 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4526 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4527 alloc_flags |= ALLOC_HARDER;
4528
8510e69c
JK
4529 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4530
341ce06f
PZ
4531 return alloc_flags;
4532}
4533
cd04ae1e 4534static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4535{
cd04ae1e
MH
4536 if (!tsk_is_oom_victim(tsk))
4537 return false;
4538
4539 /*
4540 * !MMU doesn't have oom reaper so give access to memory reserves
4541 * only to the thread with TIF_MEMDIE set
4542 */
4543 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4544 return false;
4545
cd04ae1e
MH
4546 return true;
4547}
4548
4549/*
4550 * Distinguish requests which really need access to full memory
4551 * reserves from oom victims which can live with a portion of it
4552 */
4553static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4554{
4555 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4556 return 0;
31a6c190 4557 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4558 return ALLOC_NO_WATERMARKS;
31a6c190 4559 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4560 return ALLOC_NO_WATERMARKS;
4561 if (!in_interrupt()) {
4562 if (current->flags & PF_MEMALLOC)
4563 return ALLOC_NO_WATERMARKS;
4564 else if (oom_reserves_allowed(current))
4565 return ALLOC_OOM;
4566 }
31a6c190 4567
cd04ae1e
MH
4568 return 0;
4569}
4570
4571bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4572{
4573 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4574}
4575
0a0337e0
MH
4576/*
4577 * Checks whether it makes sense to retry the reclaim to make a forward progress
4578 * for the given allocation request.
491d79ae
JW
4579 *
4580 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4581 * without success, or when we couldn't even meet the watermark if we
4582 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4583 *
4584 * Returns true if a retry is viable or false to enter the oom path.
4585 */
4586static inline bool
4587should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4588 struct alloc_context *ac, int alloc_flags,
423b452e 4589 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4590{
4591 struct zone *zone;
4592 struct zoneref *z;
15f570bf 4593 bool ret = false;
0a0337e0 4594
423b452e
VB
4595 /*
4596 * Costly allocations might have made a progress but this doesn't mean
4597 * their order will become available due to high fragmentation so
4598 * always increment the no progress counter for them
4599 */
4600 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4601 *no_progress_loops = 0;
4602 else
4603 (*no_progress_loops)++;
4604
0a0337e0
MH
4605 /*
4606 * Make sure we converge to OOM if we cannot make any progress
4607 * several times in the row.
4608 */
04c8716f
MK
4609 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4610 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4611 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4612 }
0a0337e0 4613
bca67592
MG
4614 /*
4615 * Keep reclaiming pages while there is a chance this will lead
4616 * somewhere. If none of the target zones can satisfy our allocation
4617 * request even if all reclaimable pages are considered then we are
4618 * screwed and have to go OOM.
0a0337e0 4619 */
97a225e6
JK
4620 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4621 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4622 unsigned long available;
ede37713 4623 unsigned long reclaimable;
d379f01d
MH
4624 unsigned long min_wmark = min_wmark_pages(zone);
4625 bool wmark;
0a0337e0 4626
5a1c84b4 4627 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4628 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4629
4630 /*
491d79ae
JW
4631 * Would the allocation succeed if we reclaimed all
4632 * reclaimable pages?
0a0337e0 4633 */
d379f01d 4634 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4635 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4636 trace_reclaim_retry_zone(z, order, reclaimable,
4637 available, min_wmark, *no_progress_loops, wmark);
4638 if (wmark) {
ede37713
MH
4639 /*
4640 * If we didn't make any progress and have a lot of
4641 * dirty + writeback pages then we should wait for
4642 * an IO to complete to slow down the reclaim and
4643 * prevent from pre mature OOM
4644 */
4645 if (!did_some_progress) {
11fb9989 4646 unsigned long write_pending;
ede37713 4647
5a1c84b4
MG
4648 write_pending = zone_page_state_snapshot(zone,
4649 NR_ZONE_WRITE_PENDING);
ede37713 4650
11fb9989 4651 if (2 * write_pending > reclaimable) {
ede37713
MH
4652 congestion_wait(BLK_RW_ASYNC, HZ/10);
4653 return true;
4654 }
4655 }
5a1c84b4 4656
15f570bf
MH
4657 ret = true;
4658 goto out;
0a0337e0
MH
4659 }
4660 }
4661
15f570bf
MH
4662out:
4663 /*
4664 * Memory allocation/reclaim might be called from a WQ context and the
4665 * current implementation of the WQ concurrency control doesn't
4666 * recognize that a particular WQ is congested if the worker thread is
4667 * looping without ever sleeping. Therefore we have to do a short sleep
4668 * here rather than calling cond_resched().
4669 */
4670 if (current->flags & PF_WQ_WORKER)
4671 schedule_timeout_uninterruptible(1);
4672 else
4673 cond_resched();
4674 return ret;
0a0337e0
MH
4675}
4676
902b6281
VB
4677static inline bool
4678check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4679{
4680 /*
4681 * It's possible that cpuset's mems_allowed and the nodemask from
4682 * mempolicy don't intersect. This should be normally dealt with by
4683 * policy_nodemask(), but it's possible to race with cpuset update in
4684 * such a way the check therein was true, and then it became false
4685 * before we got our cpuset_mems_cookie here.
4686 * This assumes that for all allocations, ac->nodemask can come only
4687 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4688 * when it does not intersect with the cpuset restrictions) or the
4689 * caller can deal with a violated nodemask.
4690 */
4691 if (cpusets_enabled() && ac->nodemask &&
4692 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4693 ac->nodemask = NULL;
4694 return true;
4695 }
4696
4697 /*
4698 * When updating a task's mems_allowed or mempolicy nodemask, it is
4699 * possible to race with parallel threads in such a way that our
4700 * allocation can fail while the mask is being updated. If we are about
4701 * to fail, check if the cpuset changed during allocation and if so,
4702 * retry.
4703 */
4704 if (read_mems_allowed_retry(cpuset_mems_cookie))
4705 return true;
4706
4707 return false;
4708}
4709
11e33f6a
MG
4710static inline struct page *
4711__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4712 struct alloc_context *ac)
11e33f6a 4713{
d0164adc 4714 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4715 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4716 struct page *page = NULL;
c603844b 4717 unsigned int alloc_flags;
11e33f6a 4718 unsigned long did_some_progress;
5ce9bfef 4719 enum compact_priority compact_priority;
c5d01d0d 4720 enum compact_result compact_result;
5ce9bfef
VB
4721 int compaction_retries;
4722 int no_progress_loops;
5ce9bfef 4723 unsigned int cpuset_mems_cookie;
cd04ae1e 4724 int reserve_flags;
1da177e4 4725
d0164adc
MG
4726 /*
4727 * We also sanity check to catch abuse of atomic reserves being used by
4728 * callers that are not in atomic context.
4729 */
4730 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4731 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4732 gfp_mask &= ~__GFP_ATOMIC;
4733
5ce9bfef
VB
4734retry_cpuset:
4735 compaction_retries = 0;
4736 no_progress_loops = 0;
4737 compact_priority = DEF_COMPACT_PRIORITY;
4738 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4739
4740 /*
4741 * The fast path uses conservative alloc_flags to succeed only until
4742 * kswapd needs to be woken up, and to avoid the cost of setting up
4743 * alloc_flags precisely. So we do that now.
4744 */
4745 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4746
e47483bc
VB
4747 /*
4748 * We need to recalculate the starting point for the zonelist iterator
4749 * because we might have used different nodemask in the fast path, or
4750 * there was a cpuset modification and we are retrying - otherwise we
4751 * could end up iterating over non-eligible zones endlessly.
4752 */
4753 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4754 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4755 if (!ac->preferred_zoneref->zone)
4756 goto nopage;
4757
0a79cdad 4758 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4759 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4760
4761 /*
4762 * The adjusted alloc_flags might result in immediate success, so try
4763 * that first
4764 */
4765 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4766 if (page)
4767 goto got_pg;
4768
a8161d1e
VB
4769 /*
4770 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4771 * that we have enough base pages and don't need to reclaim. For non-
4772 * movable high-order allocations, do that as well, as compaction will
4773 * try prevent permanent fragmentation by migrating from blocks of the
4774 * same migratetype.
4775 * Don't try this for allocations that are allowed to ignore
4776 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4777 */
282722b0
VB
4778 if (can_direct_reclaim &&
4779 (costly_order ||
4780 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4781 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4782 page = __alloc_pages_direct_compact(gfp_mask, order,
4783 alloc_flags, ac,
a5508cd8 4784 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4785 &compact_result);
4786 if (page)
4787 goto got_pg;
4788
cc638f32
VB
4789 /*
4790 * Checks for costly allocations with __GFP_NORETRY, which
4791 * includes some THP page fault allocations
4792 */
4793 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4794 /*
4795 * If allocating entire pageblock(s) and compaction
4796 * failed because all zones are below low watermarks
4797 * or is prohibited because it recently failed at this
3f36d866
DR
4798 * order, fail immediately unless the allocator has
4799 * requested compaction and reclaim retry.
b39d0ee2
DR
4800 *
4801 * Reclaim is
4802 * - potentially very expensive because zones are far
4803 * below their low watermarks or this is part of very
4804 * bursty high order allocations,
4805 * - not guaranteed to help because isolate_freepages()
4806 * may not iterate over freed pages as part of its
4807 * linear scan, and
4808 * - unlikely to make entire pageblocks free on its
4809 * own.
4810 */
4811 if (compact_result == COMPACT_SKIPPED ||
4812 compact_result == COMPACT_DEFERRED)
4813 goto nopage;
a8161d1e 4814
a8161d1e 4815 /*
3eb2771b
VB
4816 * Looks like reclaim/compaction is worth trying, but
4817 * sync compaction could be very expensive, so keep
25160354 4818 * using async compaction.
a8161d1e 4819 */
a5508cd8 4820 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4821 }
4822 }
23771235 4823
31a6c190 4824retry:
23771235 4825 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4826 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4827 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4828
cd04ae1e
MH
4829 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4830 if (reserve_flags)
8510e69c 4831 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
23771235 4832
e46e7b77 4833 /*
d6a24df0
VB
4834 * Reset the nodemask and zonelist iterators if memory policies can be
4835 * ignored. These allocations are high priority and system rather than
4836 * user oriented.
e46e7b77 4837 */
cd04ae1e 4838 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4839 ac->nodemask = NULL;
e46e7b77 4840 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4841 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4842 }
4843
23771235 4844 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4845 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4846 if (page)
4847 goto got_pg;
1da177e4 4848
d0164adc 4849 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4850 if (!can_direct_reclaim)
1da177e4
LT
4851 goto nopage;
4852
9a67f648
MH
4853 /* Avoid recursion of direct reclaim */
4854 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4855 goto nopage;
4856
a8161d1e
VB
4857 /* Try direct reclaim and then allocating */
4858 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4859 &did_some_progress);
4860 if (page)
4861 goto got_pg;
4862
4863 /* Try direct compaction and then allocating */
a9263751 4864 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4865 compact_priority, &compact_result);
56de7263
MG
4866 if (page)
4867 goto got_pg;
75f30861 4868
9083905a
JW
4869 /* Do not loop if specifically requested */
4870 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4871 goto nopage;
9083905a 4872
0a0337e0
MH
4873 /*
4874 * Do not retry costly high order allocations unless they are
dcda9b04 4875 * __GFP_RETRY_MAYFAIL
0a0337e0 4876 */
dcda9b04 4877 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4878 goto nopage;
0a0337e0 4879
0a0337e0 4880 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4881 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4882 goto retry;
4883
33c2d214
MH
4884 /*
4885 * It doesn't make any sense to retry for the compaction if the order-0
4886 * reclaim is not able to make any progress because the current
4887 * implementation of the compaction depends on the sufficient amount
4888 * of free memory (see __compaction_suitable)
4889 */
4890 if (did_some_progress > 0 &&
86a294a8 4891 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4892 compact_result, &compact_priority,
d9436498 4893 &compaction_retries))
33c2d214
MH
4894 goto retry;
4895
902b6281
VB
4896
4897 /* Deal with possible cpuset update races before we start OOM killing */
4898 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4899 goto retry_cpuset;
4900
9083905a
JW
4901 /* Reclaim has failed us, start killing things */
4902 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4903 if (page)
4904 goto got_pg;
4905
9a67f648 4906 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4907 if (tsk_is_oom_victim(current) &&
8510e69c 4908 (alloc_flags & ALLOC_OOM ||
c288983d 4909 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4910 goto nopage;
4911
9083905a 4912 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4913 if (did_some_progress) {
4914 no_progress_loops = 0;
9083905a 4915 goto retry;
0a0337e0 4916 }
9083905a 4917
1da177e4 4918nopage:
902b6281
VB
4919 /* Deal with possible cpuset update races before we fail */
4920 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4921 goto retry_cpuset;
4922
9a67f648
MH
4923 /*
4924 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4925 * we always retry
4926 */
4927 if (gfp_mask & __GFP_NOFAIL) {
4928 /*
4929 * All existing users of the __GFP_NOFAIL are blockable, so warn
4930 * of any new users that actually require GFP_NOWAIT
4931 */
4932 if (WARN_ON_ONCE(!can_direct_reclaim))
4933 goto fail;
4934
4935 /*
4936 * PF_MEMALLOC request from this context is rather bizarre
4937 * because we cannot reclaim anything and only can loop waiting
4938 * for somebody to do a work for us
4939 */
4940 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4941
4942 /*
4943 * non failing costly orders are a hard requirement which we
4944 * are not prepared for much so let's warn about these users
4945 * so that we can identify them and convert them to something
4946 * else.
4947 */
4948 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4949
6c18ba7a
MH
4950 /*
4951 * Help non-failing allocations by giving them access to memory
4952 * reserves but do not use ALLOC_NO_WATERMARKS because this
4953 * could deplete whole memory reserves which would just make
4954 * the situation worse
4955 */
4956 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4957 if (page)
4958 goto got_pg;
4959
9a67f648
MH
4960 cond_resched();
4961 goto retry;
4962 }
4963fail:
a8e99259 4964 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4965 "page allocation failure: order:%u", order);
1da177e4 4966got_pg:
072bb0aa 4967 return page;
1da177e4 4968}
11e33f6a 4969
9cd75558 4970static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4971 int preferred_nid, nodemask_t *nodemask,
8e6a930b 4972 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 4973 unsigned int *alloc_flags)
11e33f6a 4974{
97a225e6 4975 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4976 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4977 ac->nodemask = nodemask;
01c0bfe0 4978 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4979
682a3385 4980 if (cpusets_enabled()) {
8e6a930b 4981 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
4982 /*
4983 * When we are in the interrupt context, it is irrelevant
4984 * to the current task context. It means that any node ok.
4985 */
4986 if (!in_interrupt() && !ac->nodemask)
9cd75558 4987 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4988 else
4989 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4990 }
4991
d92a8cfc
PZ
4992 fs_reclaim_acquire(gfp_mask);
4993 fs_reclaim_release(gfp_mask);
11e33f6a 4994
d0164adc 4995 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4996
4997 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4998 return false;
11e33f6a 4999
8510e69c 5000 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
d883c6cf 5001
c9ab0c4f 5002 /* Dirty zone balancing only done in the fast path */
9cd75558 5003 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5004
e46e7b77
MG
5005 /*
5006 * The preferred zone is used for statistics but crucially it is
5007 * also used as the starting point for the zonelist iterator. It
5008 * may get reset for allocations that ignore memory policies.
5009 */
9cd75558 5010 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5011 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5012
5013 return true;
9cd75558
MG
5014}
5015
387ba26f 5016/*
0f87d9d3 5017 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5018 * @gfp: GFP flags for the allocation
5019 * @preferred_nid: The preferred NUMA node ID to allocate from
5020 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5021 * @nr_pages: The number of pages desired on the list or array
5022 * @page_list: Optional list to store the allocated pages
5023 * @page_array: Optional array to store the pages
387ba26f
MG
5024 *
5025 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5026 * allocate nr_pages quickly. Pages are added to page_list if page_list
5027 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5028 *
0f87d9d3
MG
5029 * For lists, nr_pages is the number of pages that should be allocated.
5030 *
5031 * For arrays, only NULL elements are populated with pages and nr_pages
5032 * is the maximum number of pages that will be stored in the array.
5033 *
5034 * Returns the number of pages on the list or array.
387ba26f
MG
5035 */
5036unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5037 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5038 struct list_head *page_list,
5039 struct page **page_array)
387ba26f
MG
5040{
5041 struct page *page;
5042 unsigned long flags;
5043 struct zone *zone;
5044 struct zoneref *z;
5045 struct per_cpu_pages *pcp;
5046 struct list_head *pcp_list;
5047 struct alloc_context ac;
5048 gfp_t alloc_gfp;
5049 unsigned int alloc_flags = ALLOC_WMARK_LOW;
0f87d9d3 5050 int nr_populated = 0;
387ba26f 5051
ce76f9a1 5052 if (unlikely(nr_pages <= 0))
387ba26f
MG
5053 return 0;
5054
0f87d9d3
MG
5055 /*
5056 * Skip populated array elements to determine if any pages need
5057 * to be allocated before disabling IRQs.
5058 */
5059 while (page_array && page_array[nr_populated] && nr_populated < nr_pages)
5060 nr_populated++;
5061
387ba26f 5062 /* Use the single page allocator for one page. */
0f87d9d3 5063 if (nr_pages - nr_populated == 1)
387ba26f
MG
5064 goto failed;
5065
5066 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5067 gfp &= gfp_allowed_mask;
5068 alloc_gfp = gfp;
5069 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5070 return 0;
5071 gfp = alloc_gfp;
5072
5073 /* Find an allowed local zone that meets the low watermark. */
5074 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5075 unsigned long mark;
5076
5077 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5078 !__cpuset_zone_allowed(zone, gfp)) {
5079 continue;
5080 }
5081
5082 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5083 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5084 goto failed;
5085 }
5086
5087 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5088 if (zone_watermark_fast(zone, 0, mark,
5089 zonelist_zone_idx(ac.preferred_zoneref),
5090 alloc_flags, gfp)) {
5091 break;
5092 }
5093 }
5094
5095 /*
5096 * If there are no allowed local zones that meets the watermarks then
5097 * try to allocate a single page and reclaim if necessary.
5098 */
ce76f9a1 5099 if (unlikely(!zone))
387ba26f
MG
5100 goto failed;
5101
5102 /* Attempt the batch allocation */
5103 local_irq_save(flags);
5104 pcp = &this_cpu_ptr(zone->pageset)->pcp;
5105 pcp_list = &pcp->lists[ac.migratetype];
5106
0f87d9d3
MG
5107 while (nr_populated < nr_pages) {
5108
5109 /* Skip existing pages */
5110 if (page_array && page_array[nr_populated]) {
5111 nr_populated++;
5112 continue;
5113 }
5114
387ba26f
MG
5115 page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
5116 pcp, pcp_list);
ce76f9a1 5117 if (unlikely(!page)) {
387ba26f 5118 /* Try and get at least one page */
0f87d9d3 5119 if (!nr_populated)
387ba26f
MG
5120 goto failed_irq;
5121 break;
5122 }
5123
5124 /*
5125 * Ideally this would be batched but the best way to do
5126 * that cheaply is to first convert zone_statistics to
5127 * be inaccurate per-cpu counter like vm_events to avoid
5128 * a RMW cycle then do the accounting with IRQs enabled.
5129 */
5130 __count_zid_vm_events(PGALLOC, zone_idx(zone), 1);
5131 zone_statistics(ac.preferred_zoneref->zone, zone);
5132
5133 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5134 if (page_list)
5135 list_add(&page->lru, page_list);
5136 else
5137 page_array[nr_populated] = page;
5138 nr_populated++;
387ba26f
MG
5139 }
5140
5141 local_irq_restore(flags);
5142
0f87d9d3 5143 return nr_populated;
387ba26f
MG
5144
5145failed_irq:
5146 local_irq_restore(flags);
5147
5148failed:
5149 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5150 if (page) {
0f87d9d3
MG
5151 if (page_list)
5152 list_add(&page->lru, page_list);
5153 else
5154 page_array[nr_populated] = page;
5155 nr_populated++;
387ba26f
MG
5156 }
5157
0f87d9d3 5158 return nr_populated;
387ba26f
MG
5159}
5160EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5161
9cd75558
MG
5162/*
5163 * This is the 'heart' of the zoned buddy allocator.
5164 */
84172f4b 5165struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5166 nodemask_t *nodemask)
9cd75558
MG
5167{
5168 struct page *page;
5169 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5170 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5171 struct alloc_context ac = { };
5172
c63ae43b
MH
5173 /*
5174 * There are several places where we assume that the order value is sane
5175 * so bail out early if the request is out of bound.
5176 */
5177 if (unlikely(order >= MAX_ORDER)) {
6e5e0f28 5178 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
c63ae43b
MH
5179 return NULL;
5180 }
5181
6e5e0f28
MWO
5182 gfp &= gfp_allowed_mask;
5183 alloc_gfp = gfp;
5184 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5185 &alloc_gfp, &alloc_flags))
9cd75558
MG
5186 return NULL;
5187
6bb15450
MG
5188 /*
5189 * Forbid the first pass from falling back to types that fragment
5190 * memory until all local zones are considered.
5191 */
6e5e0f28 5192 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5193
5117f45d 5194 /* First allocation attempt */
8e6a930b 5195 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5196 if (likely(page))
5197 goto out;
11e33f6a 5198
4fcb0971 5199 /*
7dea19f9
MH
5200 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5201 * resp. GFP_NOIO which has to be inherited for all allocation requests
5202 * from a particular context which has been marked by
5203 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 5204 */
6e5e0f28 5205 alloc_gfp = current_gfp_context(gfp);
4fcb0971 5206 ac.spread_dirty_pages = false;
23f086f9 5207
4741526b
MG
5208 /*
5209 * Restore the original nodemask if it was potentially replaced with
5210 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5211 */
97ce86f9 5212 ac.nodemask = nodemask;
16096c25 5213
8e6a930b 5214 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5215
4fcb0971 5216out:
6e5e0f28
MWO
5217 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5218 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5219 __free_pages(page, order);
5220 page = NULL;
4949148a
VD
5221 }
5222
8e6a930b 5223 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4fcb0971 5224
11e33f6a 5225 return page;
1da177e4 5226}
84172f4b 5227EXPORT_SYMBOL(__alloc_pages);
1da177e4
LT
5228
5229/*
9ea9a680
MH
5230 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5231 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5232 * you need to access high mem.
1da177e4 5233 */
920c7a5d 5234unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5235{
945a1113
AM
5236 struct page *page;
5237
9ea9a680 5238 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5239 if (!page)
5240 return 0;
5241 return (unsigned long) page_address(page);
5242}
1da177e4
LT
5243EXPORT_SYMBOL(__get_free_pages);
5244
920c7a5d 5245unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5246{
945a1113 5247 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5248}
1da177e4
LT
5249EXPORT_SYMBOL(get_zeroed_page);
5250
742aa7fb 5251static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 5252{
742aa7fb
AL
5253 if (order == 0) /* Via pcp? */
5254 free_unref_page(page);
5255 else
7fef431b 5256 __free_pages_ok(page, order, FPI_NONE);
1da177e4
LT
5257}
5258
7f194fbb
MWO
5259/**
5260 * __free_pages - Free pages allocated with alloc_pages().
5261 * @page: The page pointer returned from alloc_pages().
5262 * @order: The order of the allocation.
5263 *
5264 * This function can free multi-page allocations that are not compound
5265 * pages. It does not check that the @order passed in matches that of
5266 * the allocation, so it is easy to leak memory. Freeing more memory
5267 * than was allocated will probably emit a warning.
5268 *
5269 * If the last reference to this page is speculative, it will be released
5270 * by put_page() which only frees the first page of a non-compound
5271 * allocation. To prevent the remaining pages from being leaked, we free
5272 * the subsequent pages here. If you want to use the page's reference
5273 * count to decide when to free the allocation, you should allocate a
5274 * compound page, and use put_page() instead of __free_pages().
5275 *
5276 * Context: May be called in interrupt context or while holding a normal
5277 * spinlock, but not in NMI context or while holding a raw spinlock.
5278 */
742aa7fb
AL
5279void __free_pages(struct page *page, unsigned int order)
5280{
5281 if (put_page_testzero(page))
5282 free_the_page(page, order);
e320d301
MWO
5283 else if (!PageHead(page))
5284 while (order-- > 0)
5285 free_the_page(page + (1 << order), order);
742aa7fb 5286}
1da177e4
LT
5287EXPORT_SYMBOL(__free_pages);
5288
920c7a5d 5289void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5290{
5291 if (addr != 0) {
725d704e 5292 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5293 __free_pages(virt_to_page((void *)addr), order);
5294 }
5295}
5296
5297EXPORT_SYMBOL(free_pages);
5298
b63ae8ca
AD
5299/*
5300 * Page Fragment:
5301 * An arbitrary-length arbitrary-offset area of memory which resides
5302 * within a 0 or higher order page. Multiple fragments within that page
5303 * are individually refcounted, in the page's reference counter.
5304 *
5305 * The page_frag functions below provide a simple allocation framework for
5306 * page fragments. This is used by the network stack and network device
5307 * drivers to provide a backing region of memory for use as either an
5308 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5309 */
2976db80
AD
5310static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5311 gfp_t gfp_mask)
b63ae8ca
AD
5312{
5313 struct page *page = NULL;
5314 gfp_t gfp = gfp_mask;
5315
5316#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5317 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5318 __GFP_NOMEMALLOC;
5319 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5320 PAGE_FRAG_CACHE_MAX_ORDER);
5321 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5322#endif
5323 if (unlikely(!page))
5324 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5325
5326 nc->va = page ? page_address(page) : NULL;
5327
5328 return page;
5329}
5330
2976db80 5331void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5332{
5333 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5334
742aa7fb
AL
5335 if (page_ref_sub_and_test(page, count))
5336 free_the_page(page, compound_order(page));
44fdffd7 5337}
2976db80 5338EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5339
b358e212
KH
5340void *page_frag_alloc_align(struct page_frag_cache *nc,
5341 unsigned int fragsz, gfp_t gfp_mask,
5342 unsigned int align_mask)
b63ae8ca
AD
5343{
5344 unsigned int size = PAGE_SIZE;
5345 struct page *page;
5346 int offset;
5347
5348 if (unlikely(!nc->va)) {
5349refill:
2976db80 5350 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5351 if (!page)
5352 return NULL;
5353
5354#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5355 /* if size can vary use size else just use PAGE_SIZE */
5356 size = nc->size;
5357#endif
5358 /* Even if we own the page, we do not use atomic_set().
5359 * This would break get_page_unless_zero() users.
5360 */
86447726 5361 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5362
5363 /* reset page count bias and offset to start of new frag */
2f064f34 5364 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5365 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5366 nc->offset = size;
5367 }
5368
5369 offset = nc->offset - fragsz;
5370 if (unlikely(offset < 0)) {
5371 page = virt_to_page(nc->va);
5372
fe896d18 5373 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5374 goto refill;
5375
d8c19014
DZ
5376 if (unlikely(nc->pfmemalloc)) {
5377 free_the_page(page, compound_order(page));
5378 goto refill;
5379 }
5380
b63ae8ca
AD
5381#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5382 /* if size can vary use size else just use PAGE_SIZE */
5383 size = nc->size;
5384#endif
5385 /* OK, page count is 0, we can safely set it */
86447726 5386 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5387
5388 /* reset page count bias and offset to start of new frag */
86447726 5389 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5390 offset = size - fragsz;
5391 }
5392
5393 nc->pagecnt_bias--;
b358e212 5394 offset &= align_mask;
b63ae8ca
AD
5395 nc->offset = offset;
5396
5397 return nc->va + offset;
5398}
b358e212 5399EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5400
5401/*
5402 * Frees a page fragment allocated out of either a compound or order 0 page.
5403 */
8c2dd3e4 5404void page_frag_free(void *addr)
b63ae8ca
AD
5405{
5406 struct page *page = virt_to_head_page(addr);
5407
742aa7fb
AL
5408 if (unlikely(put_page_testzero(page)))
5409 free_the_page(page, compound_order(page));
b63ae8ca 5410}
8c2dd3e4 5411EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5412
d00181b9
KS
5413static void *make_alloc_exact(unsigned long addr, unsigned int order,
5414 size_t size)
ee85c2e1
AK
5415{
5416 if (addr) {
5417 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5418 unsigned long used = addr + PAGE_ALIGN(size);
5419
5420 split_page(virt_to_page((void *)addr), order);
5421 while (used < alloc_end) {
5422 free_page(used);
5423 used += PAGE_SIZE;
5424 }
5425 }
5426 return (void *)addr;
5427}
5428
2be0ffe2
TT
5429/**
5430 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5431 * @size: the number of bytes to allocate
63931eb9 5432 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5433 *
5434 * This function is similar to alloc_pages(), except that it allocates the
5435 * minimum number of pages to satisfy the request. alloc_pages() can only
5436 * allocate memory in power-of-two pages.
5437 *
5438 * This function is also limited by MAX_ORDER.
5439 *
5440 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5441 *
5442 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5443 */
5444void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5445{
5446 unsigned int order = get_order(size);
5447 unsigned long addr;
5448
63931eb9
VB
5449 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5450 gfp_mask &= ~__GFP_COMP;
5451
2be0ffe2 5452 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5453 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5454}
5455EXPORT_SYMBOL(alloc_pages_exact);
5456
ee85c2e1
AK
5457/**
5458 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5459 * pages on a node.
b5e6ab58 5460 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5461 * @size: the number of bytes to allocate
63931eb9 5462 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5463 *
5464 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5465 * back.
a862f68a
MR
5466 *
5467 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5468 */
e1931811 5469void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5470{
d00181b9 5471 unsigned int order = get_order(size);
63931eb9
VB
5472 struct page *p;
5473
5474 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5475 gfp_mask &= ~__GFP_COMP;
5476
5477 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5478 if (!p)
5479 return NULL;
5480 return make_alloc_exact((unsigned long)page_address(p), order, size);
5481}
ee85c2e1 5482
2be0ffe2
TT
5483/**
5484 * free_pages_exact - release memory allocated via alloc_pages_exact()
5485 * @virt: the value returned by alloc_pages_exact.
5486 * @size: size of allocation, same value as passed to alloc_pages_exact().
5487 *
5488 * Release the memory allocated by a previous call to alloc_pages_exact.
5489 */
5490void free_pages_exact(void *virt, size_t size)
5491{
5492 unsigned long addr = (unsigned long)virt;
5493 unsigned long end = addr + PAGE_ALIGN(size);
5494
5495 while (addr < end) {
5496 free_page(addr);
5497 addr += PAGE_SIZE;
5498 }
5499}
5500EXPORT_SYMBOL(free_pages_exact);
5501
e0fb5815
ZY
5502/**
5503 * nr_free_zone_pages - count number of pages beyond high watermark
5504 * @offset: The zone index of the highest zone
5505 *
a862f68a 5506 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5507 * high watermark within all zones at or below a given zone index. For each
5508 * zone, the number of pages is calculated as:
0e056eb5 5509 *
5510 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5511 *
5512 * Return: number of pages beyond high watermark.
e0fb5815 5513 */
ebec3862 5514static unsigned long nr_free_zone_pages(int offset)
1da177e4 5515{
dd1a239f 5516 struct zoneref *z;
54a6eb5c
MG
5517 struct zone *zone;
5518
e310fd43 5519 /* Just pick one node, since fallback list is circular */
ebec3862 5520 unsigned long sum = 0;
1da177e4 5521
0e88460d 5522 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5523
54a6eb5c 5524 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5525 unsigned long size = zone_managed_pages(zone);
41858966 5526 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5527 if (size > high)
5528 sum += size - high;
1da177e4
LT
5529 }
5530
5531 return sum;
5532}
5533
e0fb5815
ZY
5534/**
5535 * nr_free_buffer_pages - count number of pages beyond high watermark
5536 *
5537 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5538 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5539 *
5540 * Return: number of pages beyond high watermark within ZONE_DMA and
5541 * ZONE_NORMAL.
1da177e4 5542 */
ebec3862 5543unsigned long nr_free_buffer_pages(void)
1da177e4 5544{
af4ca457 5545 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5546}
c2f1a551 5547EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5548
08e0f6a9 5549static inline void show_node(struct zone *zone)
1da177e4 5550{
e5adfffc 5551 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5552 printk("Node %d ", zone_to_nid(zone));
1da177e4 5553}
1da177e4 5554
d02bd27b
IR
5555long si_mem_available(void)
5556{
5557 long available;
5558 unsigned long pagecache;
5559 unsigned long wmark_low = 0;
5560 unsigned long pages[NR_LRU_LISTS];
b29940c1 5561 unsigned long reclaimable;
d02bd27b
IR
5562 struct zone *zone;
5563 int lru;
5564
5565 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5566 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5567
5568 for_each_zone(zone)
a9214443 5569 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5570
5571 /*
5572 * Estimate the amount of memory available for userspace allocations,
5573 * without causing swapping.
5574 */
c41f012a 5575 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5576
5577 /*
5578 * Not all the page cache can be freed, otherwise the system will
5579 * start swapping. Assume at least half of the page cache, or the
5580 * low watermark worth of cache, needs to stay.
5581 */
5582 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5583 pagecache -= min(pagecache / 2, wmark_low);
5584 available += pagecache;
5585
5586 /*
b29940c1
VB
5587 * Part of the reclaimable slab and other kernel memory consists of
5588 * items that are in use, and cannot be freed. Cap this estimate at the
5589 * low watermark.
d02bd27b 5590 */
d42f3245
RG
5591 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5592 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5593 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5594
d02bd27b
IR
5595 if (available < 0)
5596 available = 0;
5597 return available;
5598}
5599EXPORT_SYMBOL_GPL(si_mem_available);
5600
1da177e4
LT
5601void si_meminfo(struct sysinfo *val)
5602{
ca79b0c2 5603 val->totalram = totalram_pages();
11fb9989 5604 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5605 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5606 val->bufferram = nr_blockdev_pages();
ca79b0c2 5607 val->totalhigh = totalhigh_pages();
1da177e4 5608 val->freehigh = nr_free_highpages();
1da177e4
LT
5609 val->mem_unit = PAGE_SIZE;
5610}
5611
5612EXPORT_SYMBOL(si_meminfo);
5613
5614#ifdef CONFIG_NUMA
5615void si_meminfo_node(struct sysinfo *val, int nid)
5616{
cdd91a77
JL
5617 int zone_type; /* needs to be signed */
5618 unsigned long managed_pages = 0;
fc2bd799
JK
5619 unsigned long managed_highpages = 0;
5620 unsigned long free_highpages = 0;
1da177e4
LT
5621 pg_data_t *pgdat = NODE_DATA(nid);
5622
cdd91a77 5623 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5624 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5625 val->totalram = managed_pages;
11fb9989 5626 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5627 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5628#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5629 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5630 struct zone *zone = &pgdat->node_zones[zone_type];
5631
5632 if (is_highmem(zone)) {
9705bea5 5633 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5634 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5635 }
5636 }
5637 val->totalhigh = managed_highpages;
5638 val->freehigh = free_highpages;
98d2b0eb 5639#else
fc2bd799
JK
5640 val->totalhigh = managed_highpages;
5641 val->freehigh = free_highpages;
98d2b0eb 5642#endif
1da177e4
LT
5643 val->mem_unit = PAGE_SIZE;
5644}
5645#endif
5646
ddd588b5 5647/*
7bf02ea2
DR
5648 * Determine whether the node should be displayed or not, depending on whether
5649 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5650 */
9af744d7 5651static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5652{
ddd588b5 5653 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5654 return false;
ddd588b5 5655
9af744d7
MH
5656 /*
5657 * no node mask - aka implicit memory numa policy. Do not bother with
5658 * the synchronization - read_mems_allowed_begin - because we do not
5659 * have to be precise here.
5660 */
5661 if (!nodemask)
5662 nodemask = &cpuset_current_mems_allowed;
5663
5664 return !node_isset(nid, *nodemask);
ddd588b5
DR
5665}
5666
1da177e4
LT
5667#define K(x) ((x) << (PAGE_SHIFT-10))
5668
377e4f16
RV
5669static void show_migration_types(unsigned char type)
5670{
5671 static const char types[MIGRATE_TYPES] = {
5672 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5673 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5674 [MIGRATE_RECLAIMABLE] = 'E',
5675 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5676#ifdef CONFIG_CMA
5677 [MIGRATE_CMA] = 'C',
5678#endif
194159fb 5679#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5680 [MIGRATE_ISOLATE] = 'I',
194159fb 5681#endif
377e4f16
RV
5682 };
5683 char tmp[MIGRATE_TYPES + 1];
5684 char *p = tmp;
5685 int i;
5686
5687 for (i = 0; i < MIGRATE_TYPES; i++) {
5688 if (type & (1 << i))
5689 *p++ = types[i];
5690 }
5691
5692 *p = '\0';
1f84a18f 5693 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5694}
5695
1da177e4
LT
5696/*
5697 * Show free area list (used inside shift_scroll-lock stuff)
5698 * We also calculate the percentage fragmentation. We do this by counting the
5699 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5700 *
5701 * Bits in @filter:
5702 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5703 * cpuset.
1da177e4 5704 */
9af744d7 5705void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5706{
d1bfcdb8 5707 unsigned long free_pcp = 0;
c7241913 5708 int cpu;
1da177e4 5709 struct zone *zone;
599d0c95 5710 pg_data_t *pgdat;
1da177e4 5711
ee99c71c 5712 for_each_populated_zone(zone) {
9af744d7 5713 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5714 continue;
d1bfcdb8 5715
761b0677
KK
5716 for_each_online_cpu(cpu)
5717 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5718 }
5719
a731286d
KM
5720 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5721 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 5722 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 5723 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5724 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5725 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5726 global_node_page_state(NR_ACTIVE_ANON),
5727 global_node_page_state(NR_INACTIVE_ANON),
5728 global_node_page_state(NR_ISOLATED_ANON),
5729 global_node_page_state(NR_ACTIVE_FILE),
5730 global_node_page_state(NR_INACTIVE_FILE),
5731 global_node_page_state(NR_ISOLATED_FILE),
5732 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5733 global_node_page_state(NR_FILE_DIRTY),
5734 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
5735 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5736 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 5737 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5738 global_node_page_state(NR_SHMEM),
f0c0c115 5739 global_node_page_state(NR_PAGETABLE),
c41f012a
MH
5740 global_zone_page_state(NR_BOUNCE),
5741 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5742 free_pcp,
c41f012a 5743 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5744
599d0c95 5745 for_each_online_pgdat(pgdat) {
9af744d7 5746 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5747 continue;
5748
599d0c95
MG
5749 printk("Node %d"
5750 " active_anon:%lukB"
5751 " inactive_anon:%lukB"
5752 " active_file:%lukB"
5753 " inactive_file:%lukB"
5754 " unevictable:%lukB"
5755 " isolated(anon):%lukB"
5756 " isolated(file):%lukB"
50658e2e 5757 " mapped:%lukB"
11fb9989
MG
5758 " dirty:%lukB"
5759 " writeback:%lukB"
5760 " shmem:%lukB"
5761#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5762 " shmem_thp: %lukB"
5763 " shmem_pmdmapped: %lukB"
5764 " anon_thp: %lukB"
5765#endif
5766 " writeback_tmp:%lukB"
991e7673
SB
5767 " kernel_stack:%lukB"
5768#ifdef CONFIG_SHADOW_CALL_STACK
5769 " shadow_call_stack:%lukB"
5770#endif
f0c0c115 5771 " pagetables:%lukB"
599d0c95
MG
5772 " all_unreclaimable? %s"
5773 "\n",
5774 pgdat->node_id,
5775 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5776 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5777 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5778 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5779 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5780 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5781 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5782 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5783 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5784 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5785 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 5786#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 5787 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 5788 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 5789 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 5790#endif
11fb9989 5791 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
5792 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5793#ifdef CONFIG_SHADOW_CALL_STACK
5794 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5795#endif
f0c0c115 5796 K(node_page_state(pgdat, NR_PAGETABLE)),
c73322d0
JW
5797 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5798 "yes" : "no");
599d0c95
MG
5799 }
5800
ee99c71c 5801 for_each_populated_zone(zone) {
1da177e4
LT
5802 int i;
5803
9af744d7 5804 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5805 continue;
d1bfcdb8
KK
5806
5807 free_pcp = 0;
5808 for_each_online_cpu(cpu)
5809 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5810
1da177e4 5811 show_node(zone);
1f84a18f
JP
5812 printk(KERN_CONT
5813 "%s"
1da177e4
LT
5814 " free:%lukB"
5815 " min:%lukB"
5816 " low:%lukB"
5817 " high:%lukB"
e47b346a 5818 " reserved_highatomic:%luKB"
71c799f4
MK
5819 " active_anon:%lukB"
5820 " inactive_anon:%lukB"
5821 " active_file:%lukB"
5822 " inactive_file:%lukB"
5823 " unevictable:%lukB"
5a1c84b4 5824 " writepending:%lukB"
1da177e4 5825 " present:%lukB"
9feedc9d 5826 " managed:%lukB"
4a0aa73f 5827 " mlocked:%lukB"
4a0aa73f 5828 " bounce:%lukB"
d1bfcdb8
KK
5829 " free_pcp:%lukB"
5830 " local_pcp:%ukB"
d1ce749a 5831 " free_cma:%lukB"
1da177e4
LT
5832 "\n",
5833 zone->name,
88f5acf8 5834 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5835 K(min_wmark_pages(zone)),
5836 K(low_wmark_pages(zone)),
5837 K(high_wmark_pages(zone)),
e47b346a 5838 K(zone->nr_reserved_highatomic),
71c799f4
MK
5839 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5840 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5841 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5842 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5843 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5844 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5845 K(zone->present_pages),
9705bea5 5846 K(zone_managed_pages(zone)),
4a0aa73f 5847 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 5848 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5849 K(free_pcp),
5850 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5851 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5852 printk("lowmem_reserve[]:");
5853 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5854 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5855 printk(KERN_CONT "\n");
1da177e4
LT
5856 }
5857
ee99c71c 5858 for_each_populated_zone(zone) {
d00181b9
KS
5859 unsigned int order;
5860 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5861 unsigned char types[MAX_ORDER];
1da177e4 5862
9af744d7 5863 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5864 continue;
1da177e4 5865 show_node(zone);
1f84a18f 5866 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5867
5868 spin_lock_irqsave(&zone->lock, flags);
5869 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5870 struct free_area *area = &zone->free_area[order];
5871 int type;
5872
5873 nr[order] = area->nr_free;
8f9de51a 5874 total += nr[order] << order;
377e4f16
RV
5875
5876 types[order] = 0;
5877 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5878 if (!free_area_empty(area, type))
377e4f16
RV
5879 types[order] |= 1 << type;
5880 }
1da177e4
LT
5881 }
5882 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5883 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5884 printk(KERN_CONT "%lu*%lukB ",
5885 nr[order], K(1UL) << order);
377e4f16
RV
5886 if (nr[order])
5887 show_migration_types(types[order]);
5888 }
1f84a18f 5889 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5890 }
5891
949f7ec5
DR
5892 hugetlb_show_meminfo();
5893
11fb9989 5894 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5895
1da177e4
LT
5896 show_swap_cache_info();
5897}
5898
19770b32
MG
5899static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5900{
5901 zoneref->zone = zone;
5902 zoneref->zone_idx = zone_idx(zone);
5903}
5904
1da177e4
LT
5905/*
5906 * Builds allocation fallback zone lists.
1a93205b
CL
5907 *
5908 * Add all populated zones of a node to the zonelist.
1da177e4 5909 */
9d3be21b 5910static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5911{
1a93205b 5912 struct zone *zone;
bc732f1d 5913 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5914 int nr_zones = 0;
02a68a5e
CL
5915
5916 do {
2f6726e5 5917 zone_type--;
070f8032 5918 zone = pgdat->node_zones + zone_type;
6aa303de 5919 if (managed_zone(zone)) {
9d3be21b 5920 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5921 check_highest_zone(zone_type);
1da177e4 5922 }
2f6726e5 5923 } while (zone_type);
bc732f1d 5924
070f8032 5925 return nr_zones;
1da177e4
LT
5926}
5927
5928#ifdef CONFIG_NUMA
f0c0b2b8
KH
5929
5930static int __parse_numa_zonelist_order(char *s)
5931{
c9bff3ee
MH
5932 /*
5933 * We used to support different zonlists modes but they turned
5934 * out to be just not useful. Let's keep the warning in place
5935 * if somebody still use the cmd line parameter so that we do
5936 * not fail it silently
5937 */
5938 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5939 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5940 return -EINVAL;
5941 }
5942 return 0;
5943}
5944
c9bff3ee
MH
5945char numa_zonelist_order[] = "Node";
5946
f0c0b2b8
KH
5947/*
5948 * sysctl handler for numa_zonelist_order
5949 */
cccad5b9 5950int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5951 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5952{
32927393
CH
5953 if (write)
5954 return __parse_numa_zonelist_order(buffer);
5955 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5956}
5957
5958
62bc62a8 5959#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5960static int node_load[MAX_NUMNODES];
5961
1da177e4 5962/**
4dc3b16b 5963 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5964 * @node: node whose fallback list we're appending
5965 * @used_node_mask: nodemask_t of already used nodes
5966 *
5967 * We use a number of factors to determine which is the next node that should
5968 * appear on a given node's fallback list. The node should not have appeared
5969 * already in @node's fallback list, and it should be the next closest node
5970 * according to the distance array (which contains arbitrary distance values
5971 * from each node to each node in the system), and should also prefer nodes
5972 * with no CPUs, since presumably they'll have very little allocation pressure
5973 * on them otherwise.
a862f68a
MR
5974 *
5975 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5976 */
f0c0b2b8 5977static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5978{
4cf808eb 5979 int n, val;
1da177e4 5980 int min_val = INT_MAX;
00ef2d2f 5981 int best_node = NUMA_NO_NODE;
1da177e4 5982
4cf808eb
LT
5983 /* Use the local node if we haven't already */
5984 if (!node_isset(node, *used_node_mask)) {
5985 node_set(node, *used_node_mask);
5986 return node;
5987 }
1da177e4 5988
4b0ef1fe 5989 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5990
5991 /* Don't want a node to appear more than once */
5992 if (node_isset(n, *used_node_mask))
5993 continue;
5994
1da177e4
LT
5995 /* Use the distance array to find the distance */
5996 val = node_distance(node, n);
5997
4cf808eb
LT
5998 /* Penalize nodes under us ("prefer the next node") */
5999 val += (n < node);
6000
1da177e4 6001 /* Give preference to headless and unused nodes */
b630749f 6002 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6003 val += PENALTY_FOR_NODE_WITH_CPUS;
6004
6005 /* Slight preference for less loaded node */
6006 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6007 val += node_load[n];
6008
6009 if (val < min_val) {
6010 min_val = val;
6011 best_node = n;
6012 }
6013 }
6014
6015 if (best_node >= 0)
6016 node_set(best_node, *used_node_mask);
6017
6018 return best_node;
6019}
6020
f0c0b2b8
KH
6021
6022/*
6023 * Build zonelists ordered by node and zones within node.
6024 * This results in maximum locality--normal zone overflows into local
6025 * DMA zone, if any--but risks exhausting DMA zone.
6026 */
9d3be21b
MH
6027static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6028 unsigned nr_nodes)
1da177e4 6029{
9d3be21b
MH
6030 struct zoneref *zonerefs;
6031 int i;
6032
6033 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6034
6035 for (i = 0; i < nr_nodes; i++) {
6036 int nr_zones;
6037
6038 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6039
9d3be21b
MH
6040 nr_zones = build_zonerefs_node(node, zonerefs);
6041 zonerefs += nr_zones;
6042 }
6043 zonerefs->zone = NULL;
6044 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6045}
6046
523b9458
CL
6047/*
6048 * Build gfp_thisnode zonelists
6049 */
6050static void build_thisnode_zonelists(pg_data_t *pgdat)
6051{
9d3be21b
MH
6052 struct zoneref *zonerefs;
6053 int nr_zones;
523b9458 6054
9d3be21b
MH
6055 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6056 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6057 zonerefs += nr_zones;
6058 zonerefs->zone = NULL;
6059 zonerefs->zone_idx = 0;
523b9458
CL
6060}
6061
f0c0b2b8
KH
6062/*
6063 * Build zonelists ordered by zone and nodes within zones.
6064 * This results in conserving DMA zone[s] until all Normal memory is
6065 * exhausted, but results in overflowing to remote node while memory
6066 * may still exist in local DMA zone.
6067 */
f0c0b2b8 6068
f0c0b2b8
KH
6069static void build_zonelists(pg_data_t *pgdat)
6070{
9d3be21b
MH
6071 static int node_order[MAX_NUMNODES];
6072 int node, load, nr_nodes = 0;
d0ddf49b 6073 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6074 int local_node, prev_node;
1da177e4
LT
6075
6076 /* NUMA-aware ordering of nodes */
6077 local_node = pgdat->node_id;
62bc62a8 6078 load = nr_online_nodes;
1da177e4 6079 prev_node = local_node;
f0c0b2b8 6080
f0c0b2b8 6081 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6082 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6083 /*
6084 * We don't want to pressure a particular node.
6085 * So adding penalty to the first node in same
6086 * distance group to make it round-robin.
6087 */
957f822a
DR
6088 if (node_distance(local_node, node) !=
6089 node_distance(local_node, prev_node))
f0c0b2b8
KH
6090 node_load[node] = load;
6091
9d3be21b 6092 node_order[nr_nodes++] = node;
1da177e4
LT
6093 prev_node = node;
6094 load--;
1da177e4 6095 }
523b9458 6096
9d3be21b 6097 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6098 build_thisnode_zonelists(pgdat);
1da177e4
LT
6099}
6100
7aac7898
LS
6101#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6102/*
6103 * Return node id of node used for "local" allocations.
6104 * I.e., first node id of first zone in arg node's generic zonelist.
6105 * Used for initializing percpu 'numa_mem', which is used primarily
6106 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6107 */
6108int local_memory_node(int node)
6109{
c33d6c06 6110 struct zoneref *z;
7aac7898 6111
c33d6c06 6112 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6113 gfp_zone(GFP_KERNEL),
c33d6c06 6114 NULL);
c1093b74 6115 return zone_to_nid(z->zone);
7aac7898
LS
6116}
6117#endif
f0c0b2b8 6118
6423aa81
JK
6119static void setup_min_unmapped_ratio(void);
6120static void setup_min_slab_ratio(void);
1da177e4
LT
6121#else /* CONFIG_NUMA */
6122
f0c0b2b8 6123static void build_zonelists(pg_data_t *pgdat)
1da177e4 6124{
19655d34 6125 int node, local_node;
9d3be21b
MH
6126 struct zoneref *zonerefs;
6127 int nr_zones;
1da177e4
LT
6128
6129 local_node = pgdat->node_id;
1da177e4 6130
9d3be21b
MH
6131 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6132 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6133 zonerefs += nr_zones;
1da177e4 6134
54a6eb5c
MG
6135 /*
6136 * Now we build the zonelist so that it contains the zones
6137 * of all the other nodes.
6138 * We don't want to pressure a particular node, so when
6139 * building the zones for node N, we make sure that the
6140 * zones coming right after the local ones are those from
6141 * node N+1 (modulo N)
6142 */
6143 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6144 if (!node_online(node))
6145 continue;
9d3be21b
MH
6146 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6147 zonerefs += nr_zones;
1da177e4 6148 }
54a6eb5c
MG
6149 for (node = 0; node < local_node; node++) {
6150 if (!node_online(node))
6151 continue;
9d3be21b
MH
6152 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6153 zonerefs += nr_zones;
54a6eb5c
MG
6154 }
6155
9d3be21b
MH
6156 zonerefs->zone = NULL;
6157 zonerefs->zone_idx = 0;
1da177e4
LT
6158}
6159
6160#endif /* CONFIG_NUMA */
6161
99dcc3e5
CL
6162/*
6163 * Boot pageset table. One per cpu which is going to be used for all
6164 * zones and all nodes. The parameters will be set in such a way
6165 * that an item put on a list will immediately be handed over to
6166 * the buddy list. This is safe since pageset manipulation is done
6167 * with interrupts disabled.
6168 *
6169 * The boot_pagesets must be kept even after bootup is complete for
6170 * unused processors and/or zones. They do play a role for bootstrapping
6171 * hotplugged processors.
6172 *
6173 * zoneinfo_show() and maybe other functions do
6174 * not check if the processor is online before following the pageset pointer.
6175 * Other parts of the kernel may not check if the zone is available.
6176 */
69a8396a 6177static void pageset_init(struct per_cpu_pageset *p);
952eaf81
VB
6178/* These effectively disable the pcplists in the boot pageset completely */
6179#define BOOT_PAGESET_HIGH 0
6180#define BOOT_PAGESET_BATCH 1
99dcc3e5 6181static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 6182static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6183
11cd8638 6184static void __build_all_zonelists(void *data)
1da177e4 6185{
6811378e 6186 int nid;
afb6ebb3 6187 int __maybe_unused cpu;
9adb62a5 6188 pg_data_t *self = data;
b93e0f32
MH
6189 static DEFINE_SPINLOCK(lock);
6190
6191 spin_lock(&lock);
9276b1bc 6192
7f9cfb31
BL
6193#ifdef CONFIG_NUMA
6194 memset(node_load, 0, sizeof(node_load));
6195#endif
9adb62a5 6196
c1152583
WY
6197 /*
6198 * This node is hotadded and no memory is yet present. So just
6199 * building zonelists is fine - no need to touch other nodes.
6200 */
9adb62a5
JL
6201 if (self && !node_online(self->node_id)) {
6202 build_zonelists(self);
c1152583
WY
6203 } else {
6204 for_each_online_node(nid) {
6205 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6206
c1152583
WY
6207 build_zonelists(pgdat);
6208 }
99dcc3e5 6209
7aac7898
LS
6210#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6211 /*
6212 * We now know the "local memory node" for each node--
6213 * i.e., the node of the first zone in the generic zonelist.
6214 * Set up numa_mem percpu variable for on-line cpus. During
6215 * boot, only the boot cpu should be on-line; we'll init the
6216 * secondary cpus' numa_mem as they come on-line. During
6217 * node/memory hotplug, we'll fixup all on-line cpus.
6218 */
d9c9a0b9 6219 for_each_online_cpu(cpu)
7aac7898 6220 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6221#endif
d9c9a0b9 6222 }
b93e0f32
MH
6223
6224 spin_unlock(&lock);
6811378e
YG
6225}
6226
061f67bc
RV
6227static noinline void __init
6228build_all_zonelists_init(void)
6229{
afb6ebb3
MH
6230 int cpu;
6231
061f67bc 6232 __build_all_zonelists(NULL);
afb6ebb3
MH
6233
6234 /*
6235 * Initialize the boot_pagesets that are going to be used
6236 * for bootstrapping processors. The real pagesets for
6237 * each zone will be allocated later when the per cpu
6238 * allocator is available.
6239 *
6240 * boot_pagesets are used also for bootstrapping offline
6241 * cpus if the system is already booted because the pagesets
6242 * are needed to initialize allocators on a specific cpu too.
6243 * F.e. the percpu allocator needs the page allocator which
6244 * needs the percpu allocator in order to allocate its pagesets
6245 * (a chicken-egg dilemma).
6246 */
6247 for_each_possible_cpu(cpu)
69a8396a 6248 pageset_init(&per_cpu(boot_pageset, cpu));
afb6ebb3 6249
061f67bc
RV
6250 mminit_verify_zonelist();
6251 cpuset_init_current_mems_allowed();
6252}
6253
4eaf3f64 6254/*
4eaf3f64 6255 * unless system_state == SYSTEM_BOOTING.
061f67bc 6256 *
72675e13 6257 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6258 * [protected by SYSTEM_BOOTING].
4eaf3f64 6259 */
72675e13 6260void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6261{
0a18e607
DH
6262 unsigned long vm_total_pages;
6263
6811378e 6264 if (system_state == SYSTEM_BOOTING) {
061f67bc 6265 build_all_zonelists_init();
6811378e 6266 } else {
11cd8638 6267 __build_all_zonelists(pgdat);
6811378e
YG
6268 /* cpuset refresh routine should be here */
6269 }
56b9413b
DH
6270 /* Get the number of free pages beyond high watermark in all zones. */
6271 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6272 /*
6273 * Disable grouping by mobility if the number of pages in the
6274 * system is too low to allow the mechanism to work. It would be
6275 * more accurate, but expensive to check per-zone. This check is
6276 * made on memory-hotadd so a system can start with mobility
6277 * disabled and enable it later
6278 */
d9c23400 6279 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6280 page_group_by_mobility_disabled = 1;
6281 else
6282 page_group_by_mobility_disabled = 0;
6283
ce0725f7 6284 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6285 nr_online_nodes,
756a025f
JP
6286 page_group_by_mobility_disabled ? "off" : "on",
6287 vm_total_pages);
f0c0b2b8 6288#ifdef CONFIG_NUMA
f88dfff5 6289 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6290#endif
1da177e4
LT
6291}
6292
a9a9e77f
PT
6293/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6294static bool __meminit
6295overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6296{
a9a9e77f
PT
6297 static struct memblock_region *r;
6298
6299 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6300 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6301 for_each_mem_region(r) {
a9a9e77f
PT
6302 if (*pfn < memblock_region_memory_end_pfn(r))
6303 break;
6304 }
6305 }
6306 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6307 memblock_is_mirror(r)) {
6308 *pfn = memblock_region_memory_end_pfn(r);
6309 return true;
6310 }
6311 }
a9a9e77f
PT
6312 return false;
6313}
6314
1da177e4
LT
6315/*
6316 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6317 * up by memblock_free_all() once the early boot process is
1da177e4 6318 * done. Non-atomic initialization, single-pass.
d882c006
DH
6319 *
6320 * All aligned pageblocks are initialized to the specified migratetype
6321 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6322 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6323 */
ab28cb6e 6324void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6325 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6326 enum meminit_context context,
6327 struct vmem_altmap *altmap, int migratetype)
1da177e4 6328{
a9a9e77f 6329 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6330 struct page *page;
1da177e4 6331
22b31eec
HD
6332 if (highest_memmap_pfn < end_pfn - 1)
6333 highest_memmap_pfn = end_pfn - 1;
6334
966cf44f 6335#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6336 /*
6337 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6338 * memory. We limit the total number of pages to initialize to just
6339 * those that might contain the memory mapping. We will defer the
6340 * ZONE_DEVICE page initialization until after we have released
6341 * the hotplug lock.
4b94ffdc 6342 */
966cf44f
AD
6343 if (zone == ZONE_DEVICE) {
6344 if (!altmap)
6345 return;
6346
6347 if (start_pfn == altmap->base_pfn)
6348 start_pfn += altmap->reserve;
6349 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6350 }
6351#endif
4b94ffdc 6352
948c436e 6353 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6354 /*
b72d0ffb
AM
6355 * There can be holes in boot-time mem_map[]s handed to this
6356 * function. They do not exist on hotplugged memory.
a2f3aa02 6357 */
c1d0da83 6358 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6359 if (overlap_memmap_init(zone, &pfn))
6360 continue;
dc2da7b4 6361 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6362 break;
a2f3aa02 6363 }
ac5d2539 6364
d0dc12e8
PT
6365 page = pfn_to_page(pfn);
6366 __init_single_page(page, pfn, zone, nid);
c1d0da83 6367 if (context == MEMINIT_HOTPLUG)
d483da5b 6368 __SetPageReserved(page);
d0dc12e8 6369
ac5d2539 6370 /*
d882c006
DH
6371 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6372 * such that unmovable allocations won't be scattered all
6373 * over the place during system boot.
ac5d2539 6374 */
4eb29bd9 6375 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
d882c006 6376 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6377 cond_resched();
ac5d2539 6378 }
948c436e 6379 pfn++;
1da177e4
LT
6380 }
6381}
6382
966cf44f
AD
6383#ifdef CONFIG_ZONE_DEVICE
6384void __ref memmap_init_zone_device(struct zone *zone,
6385 unsigned long start_pfn,
1f8d75c1 6386 unsigned long nr_pages,
966cf44f
AD
6387 struct dev_pagemap *pgmap)
6388{
1f8d75c1 6389 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6390 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6391 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6392 unsigned long zone_idx = zone_idx(zone);
6393 unsigned long start = jiffies;
6394 int nid = pgdat->node_id;
6395
46d945ae 6396 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6397 return;
6398
6399 /*
6400 * The call to memmap_init_zone should have already taken care
6401 * of the pages reserved for the memmap, so we can just jump to
6402 * the end of that region and start processing the device pages.
6403 */
514caf23 6404 if (altmap) {
966cf44f 6405 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6406 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6407 }
6408
6409 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6410 struct page *page = pfn_to_page(pfn);
6411
6412 __init_single_page(page, pfn, zone_idx, nid);
6413
6414 /*
6415 * Mark page reserved as it will need to wait for onlining
6416 * phase for it to be fully associated with a zone.
6417 *
6418 * We can use the non-atomic __set_bit operation for setting
6419 * the flag as we are still initializing the pages.
6420 */
6421 __SetPageReserved(page);
6422
6423 /*
8a164fef
CH
6424 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6425 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6426 * ever freed or placed on a driver-private list.
966cf44f
AD
6427 */
6428 page->pgmap = pgmap;
8a164fef 6429 page->zone_device_data = NULL;
966cf44f
AD
6430
6431 /*
6432 * Mark the block movable so that blocks are reserved for
6433 * movable at startup. This will force kernel allocations
6434 * to reserve their blocks rather than leaking throughout
6435 * the address space during boot when many long-lived
6436 * kernel allocations are made.
6437 *
c1d0da83 6438 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
ba72b4c8 6439 * because this is done early in section_activate()
966cf44f 6440 */
4eb29bd9 6441 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
966cf44f
AD
6442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6443 cond_resched();
6444 }
6445 }
6446
fdc029b1 6447 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6448 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6449}
6450
6451#endif
1e548deb 6452static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6453{
7aeb09f9 6454 unsigned int order, t;
b2a0ac88
MG
6455 for_each_migratetype_order(order, t) {
6456 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6457 zone->free_area[order].nr_free = 0;
6458 }
6459}
6460
0740a50b
MR
6461#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6462/*
6463 * Only struct pages that correspond to ranges defined by memblock.memory
6464 * are zeroed and initialized by going through __init_single_page() during
6465 * memmap_init_zone().
6466 *
6467 * But, there could be struct pages that correspond to holes in
6468 * memblock.memory. This can happen because of the following reasons:
6469 * - physical memory bank size is not necessarily the exact multiple of the
6470 * arbitrary section size
6471 * - early reserved memory may not be listed in memblock.memory
6472 * - memory layouts defined with memmap= kernel parameter may not align
6473 * nicely with memmap sections
6474 *
6475 * Explicitly initialize those struct pages so that:
6476 * - PG_Reserved is set
6477 * - zone and node links point to zone and node that span the page if the
6478 * hole is in the middle of a zone
6479 * - zone and node links point to adjacent zone/node if the hole falls on
6480 * the zone boundary; the pages in such holes will be prepended to the
6481 * zone/node above the hole except for the trailing pages in the last
6482 * section that will be appended to the zone/node below.
6483 */
6484static u64 __meminit init_unavailable_range(unsigned long spfn,
6485 unsigned long epfn,
6486 int zone, int node)
6487{
6488 unsigned long pfn;
6489 u64 pgcnt = 0;
6490
6491 for (pfn = spfn; pfn < epfn; pfn++) {
6492 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6493 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6494 + pageblock_nr_pages - 1;
6495 continue;
6496 }
6497 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6498 __SetPageReserved(pfn_to_page(pfn));
6499 pgcnt++;
6500 }
6501
6502 return pgcnt;
6503}
6504#else
6505static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6506 int zone, int node)
6507{
6508 return 0;
6509}
6510#endif
6511
3256ff83 6512void __meminit __weak memmap_init_zone(struct zone *zone)
dfb3ccd0 6513{
3256ff83
BH
6514 unsigned long zone_start_pfn = zone->zone_start_pfn;
6515 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6516 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
0740a50b 6517 static unsigned long hole_pfn;
73a6e474 6518 unsigned long start_pfn, end_pfn;
0740a50b 6519 u64 pgcnt = 0;
73a6e474
BH
6520
6521 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
3256ff83
BH
6522 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6523 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
73a6e474 6524
3256ff83
BH
6525 if (end_pfn > start_pfn)
6526 memmap_init_range(end_pfn - start_pfn, nid,
6527 zone_id, start_pfn, zone_end_pfn,
6528 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
0740a50b
MR
6529
6530 if (hole_pfn < start_pfn)
6531 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6532 zone_id, nid);
6533 hole_pfn = end_pfn;
73a6e474 6534 }
0740a50b
MR
6535
6536#ifdef CONFIG_SPARSEMEM
6537 /*
6538 * Initialize the hole in the range [zone_end_pfn, section_end].
6539 * If zone boundary falls in the middle of a section, this hole
6540 * will be re-initialized during the call to this function for the
6541 * higher zone.
6542 */
6543 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6544 if (hole_pfn < end_pfn)
6545 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6546 zone_id, nid);
6547#endif
6548
6549 if (pgcnt)
6550 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6551 zone->name, pgcnt);
dfb3ccd0 6552}
1da177e4 6553
7cd2b0a3 6554static int zone_batchsize(struct zone *zone)
e7c8d5c9 6555{
3a6be87f 6556#ifdef CONFIG_MMU
e7c8d5c9
CL
6557 int batch;
6558
6559 /*
6560 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6561 * size of the zone.
e7c8d5c9 6562 */
9705bea5 6563 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6564 /* But no more than a meg. */
6565 if (batch * PAGE_SIZE > 1024 * 1024)
6566 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6567 batch /= 4; /* We effectively *= 4 below */
6568 if (batch < 1)
6569 batch = 1;
6570
6571 /*
0ceaacc9
NP
6572 * Clamp the batch to a 2^n - 1 value. Having a power
6573 * of 2 value was found to be more likely to have
6574 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6575 *
0ceaacc9
NP
6576 * For example if 2 tasks are alternately allocating
6577 * batches of pages, one task can end up with a lot
6578 * of pages of one half of the possible page colors
6579 * and the other with pages of the other colors.
e7c8d5c9 6580 */
9155203a 6581 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6582
e7c8d5c9 6583 return batch;
3a6be87f
DH
6584
6585#else
6586 /* The deferral and batching of frees should be suppressed under NOMMU
6587 * conditions.
6588 *
6589 * The problem is that NOMMU needs to be able to allocate large chunks
6590 * of contiguous memory as there's no hardware page translation to
6591 * assemble apparent contiguous memory from discontiguous pages.
6592 *
6593 * Queueing large contiguous runs of pages for batching, however,
6594 * causes the pages to actually be freed in smaller chunks. As there
6595 * can be a significant delay between the individual batches being
6596 * recycled, this leads to the once large chunks of space being
6597 * fragmented and becoming unavailable for high-order allocations.
6598 */
6599 return 0;
6600#endif
e7c8d5c9
CL
6601}
6602
8d7a8fa9 6603/*
5c3ad2eb
VB
6604 * pcp->high and pcp->batch values are related and generally batch is lower
6605 * than high. They are also related to pcp->count such that count is lower
6606 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 6607 *
5c3ad2eb
VB
6608 * However, guaranteeing these relations at all times would require e.g. write
6609 * barriers here but also careful usage of read barriers at the read side, and
6610 * thus be prone to error and bad for performance. Thus the update only prevents
6611 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6612 * can cope with those fields changing asynchronously, and fully trust only the
6613 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
6614 *
6615 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6616 * outside of boot time (or some other assurance that no concurrent updaters
6617 * exist).
6618 */
6619static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6620 unsigned long batch)
6621{
5c3ad2eb
VB
6622 WRITE_ONCE(pcp->batch, batch);
6623 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
6624}
6625
88c90dbc 6626static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6627{
6628 struct per_cpu_pages *pcp;
5f8dcc21 6629 int migratetype;
2caaad41 6630
1c6fe946
MD
6631 memset(p, 0, sizeof(*p));
6632
3dfa5721 6633 pcp = &p->pcp;
5f8dcc21
MG
6634 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6635 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41 6636
69a8396a
VB
6637 /*
6638 * Set batch and high values safe for a boot pageset. A true percpu
6639 * pageset's initialization will update them subsequently. Here we don't
6640 * need to be as careful as pageset_update() as nobody can access the
6641 * pageset yet.
6642 */
952eaf81
VB
6643 pcp->high = BOOT_PAGESET_HIGH;
6644 pcp->batch = BOOT_PAGESET_BATCH;
88c90dbc
CS
6645}
6646
3b1f3658 6647static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
6648 unsigned long batch)
6649{
6650 struct per_cpu_pageset *p;
6651 int cpu;
6652
6653 for_each_possible_cpu(cpu) {
6654 p = per_cpu_ptr(zone->pageset, cpu);
6655 pageset_update(&p->pcp, high, batch);
6656 }
6657}
6658
8ad4b1fb 6659/*
0a8b4f1d 6660 * Calculate and set new high and batch values for all per-cpu pagesets of a
7115ac6e 6661 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
8ad4b1fb 6662 */
0a8b4f1d 6663static void zone_set_pageset_high_and_batch(struct zone *zone)
56cef2b8 6664{
7115ac6e
VB
6665 unsigned long new_high, new_batch;
6666
6667 if (percpu_pagelist_fraction) {
6668 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6669 new_batch = max(1UL, new_high / 4);
6670 if ((new_high / 4) > (PAGE_SHIFT * 8))
6671 new_batch = PAGE_SHIFT * 8;
6672 } else {
6673 new_batch = zone_batchsize(zone);
6674 new_high = 6 * new_batch;
6675 new_batch = max(1UL, 1 * new_batch);
6676 }
169f6c19 6677
952eaf81
VB
6678 if (zone->pageset_high == new_high &&
6679 zone->pageset_batch == new_batch)
6680 return;
6681
6682 zone->pageset_high = new_high;
6683 zone->pageset_batch = new_batch;
6684
ec6e8c7e 6685 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
6686}
6687
72675e13 6688void __meminit setup_zone_pageset(struct zone *zone)
319774e2 6689{
0a8b4f1d 6690 struct per_cpu_pageset *p;
319774e2 6691 int cpu;
0a8b4f1d 6692
319774e2 6693 zone->pageset = alloc_percpu(struct per_cpu_pageset);
0a8b4f1d
VB
6694 for_each_possible_cpu(cpu) {
6695 p = per_cpu_ptr(zone->pageset, cpu);
6696 pageset_init(p);
6697 }
6698
6699 zone_set_pageset_high_and_batch(zone);
319774e2
WF
6700}
6701
2caaad41 6702/*
99dcc3e5
CL
6703 * Allocate per cpu pagesets and initialize them.
6704 * Before this call only boot pagesets were available.
e7c8d5c9 6705 */
99dcc3e5 6706void __init setup_per_cpu_pageset(void)
e7c8d5c9 6707{
b4911ea2 6708 struct pglist_data *pgdat;
99dcc3e5 6709 struct zone *zone;
b418a0f9 6710 int __maybe_unused cpu;
e7c8d5c9 6711
319774e2
WF
6712 for_each_populated_zone(zone)
6713 setup_zone_pageset(zone);
b4911ea2 6714
b418a0f9
SD
6715#ifdef CONFIG_NUMA
6716 /*
6717 * Unpopulated zones continue using the boot pagesets.
6718 * The numa stats for these pagesets need to be reset.
6719 * Otherwise, they will end up skewing the stats of
6720 * the nodes these zones are associated with.
6721 */
6722 for_each_possible_cpu(cpu) {
6723 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6724 memset(pcp->vm_numa_stat_diff, 0,
6725 sizeof(pcp->vm_numa_stat_diff));
6726 }
6727#endif
6728
b4911ea2
MG
6729 for_each_online_pgdat(pgdat)
6730 pgdat->per_cpu_nodestats =
6731 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6732}
6733
c09b4240 6734static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6735{
99dcc3e5
CL
6736 /*
6737 * per cpu subsystem is not up at this point. The following code
6738 * relies on the ability of the linker to provide the
6739 * offset of a (static) per cpu variable into the per cpu area.
6740 */
6741 zone->pageset = &boot_pageset;
952eaf81
VB
6742 zone->pageset_high = BOOT_PAGESET_HIGH;
6743 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 6744
b38a8725 6745 if (populated_zone(zone))
99dcc3e5
CL
6746 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6747 zone->name, zone->present_pages,
6748 zone_batchsize(zone));
ed8ece2e
DH
6749}
6750
dc0bbf3b 6751void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6752 unsigned long zone_start_pfn,
b171e409 6753 unsigned long size)
ed8ece2e
DH
6754{
6755 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6756 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6757
8f416836
WY
6758 if (zone_idx > pgdat->nr_zones)
6759 pgdat->nr_zones = zone_idx;
ed8ece2e 6760
ed8ece2e
DH
6761 zone->zone_start_pfn = zone_start_pfn;
6762
708614e6
MG
6763 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6764 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6765 pgdat->node_id,
6766 (unsigned long)zone_idx(zone),
6767 zone_start_pfn, (zone_start_pfn + size));
6768
1e548deb 6769 zone_init_free_lists(zone);
9dcb8b68 6770 zone->initialized = 1;
ed8ece2e
DH
6771}
6772
c713216d
MG
6773/**
6774 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6775 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6776 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6777 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6778 *
6779 * It returns the start and end page frame of a node based on information
7d018176 6780 * provided by memblock_set_node(). If called for a node
c713216d 6781 * with no available memory, a warning is printed and the start and end
88ca3b94 6782 * PFNs will be 0.
c713216d 6783 */
bbe5d993 6784void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6785 unsigned long *start_pfn, unsigned long *end_pfn)
6786{
c13291a5 6787 unsigned long this_start_pfn, this_end_pfn;
c713216d 6788 int i;
c13291a5 6789
c713216d
MG
6790 *start_pfn = -1UL;
6791 *end_pfn = 0;
6792
c13291a5
TH
6793 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6794 *start_pfn = min(*start_pfn, this_start_pfn);
6795 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6796 }
6797
633c0666 6798 if (*start_pfn == -1UL)
c713216d 6799 *start_pfn = 0;
c713216d
MG
6800}
6801
2a1e274a
MG
6802/*
6803 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6804 * assumption is made that zones within a node are ordered in monotonic
6805 * increasing memory addresses so that the "highest" populated zone is used
6806 */
b69a7288 6807static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6808{
6809 int zone_index;
6810 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6811 if (zone_index == ZONE_MOVABLE)
6812 continue;
6813
6814 if (arch_zone_highest_possible_pfn[zone_index] >
6815 arch_zone_lowest_possible_pfn[zone_index])
6816 break;
6817 }
6818
6819 VM_BUG_ON(zone_index == -1);
6820 movable_zone = zone_index;
6821}
6822
6823/*
6824 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6825 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6826 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6827 * in each node depending on the size of each node and how evenly kernelcore
6828 * is distributed. This helper function adjusts the zone ranges
6829 * provided by the architecture for a given node by using the end of the
6830 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6831 * zones within a node are in order of monotonic increases memory addresses
6832 */
bbe5d993 6833static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6834 unsigned long zone_type,
6835 unsigned long node_start_pfn,
6836 unsigned long node_end_pfn,
6837 unsigned long *zone_start_pfn,
6838 unsigned long *zone_end_pfn)
6839{
6840 /* Only adjust if ZONE_MOVABLE is on this node */
6841 if (zone_movable_pfn[nid]) {
6842 /* Size ZONE_MOVABLE */
6843 if (zone_type == ZONE_MOVABLE) {
6844 *zone_start_pfn = zone_movable_pfn[nid];
6845 *zone_end_pfn = min(node_end_pfn,
6846 arch_zone_highest_possible_pfn[movable_zone]);
6847
e506b996
XQ
6848 /* Adjust for ZONE_MOVABLE starting within this range */
6849 } else if (!mirrored_kernelcore &&
6850 *zone_start_pfn < zone_movable_pfn[nid] &&
6851 *zone_end_pfn > zone_movable_pfn[nid]) {
6852 *zone_end_pfn = zone_movable_pfn[nid];
6853
2a1e274a
MG
6854 /* Check if this whole range is within ZONE_MOVABLE */
6855 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6856 *zone_start_pfn = *zone_end_pfn;
6857 }
6858}
6859
c713216d
MG
6860/*
6861 * Return the number of pages a zone spans in a node, including holes
6862 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6863 */
bbe5d993 6864static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6865 unsigned long zone_type,
7960aedd
ZY
6866 unsigned long node_start_pfn,
6867 unsigned long node_end_pfn,
d91749c1 6868 unsigned long *zone_start_pfn,
854e8848 6869 unsigned long *zone_end_pfn)
c713216d 6870{
299c83dc
LF
6871 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6872 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6873 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6874 if (!node_start_pfn && !node_end_pfn)
6875 return 0;
6876
7960aedd 6877 /* Get the start and end of the zone */
299c83dc
LF
6878 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6879 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6880 adjust_zone_range_for_zone_movable(nid, zone_type,
6881 node_start_pfn, node_end_pfn,
d91749c1 6882 zone_start_pfn, zone_end_pfn);
c713216d
MG
6883
6884 /* Check that this node has pages within the zone's required range */
d91749c1 6885 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6886 return 0;
6887
6888 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6889 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6890 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6891
6892 /* Return the spanned pages */
d91749c1 6893 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6894}
6895
6896/*
6897 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6898 * then all holes in the requested range will be accounted for.
c713216d 6899 */
bbe5d993 6900unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6901 unsigned long range_start_pfn,
6902 unsigned long range_end_pfn)
6903{
96e907d1
TH
6904 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6905 unsigned long start_pfn, end_pfn;
6906 int i;
c713216d 6907
96e907d1
TH
6908 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6909 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6910 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6911 nr_absent -= end_pfn - start_pfn;
c713216d 6912 }
96e907d1 6913 return nr_absent;
c713216d
MG
6914}
6915
6916/**
6917 * absent_pages_in_range - Return number of page frames in holes within a range
6918 * @start_pfn: The start PFN to start searching for holes
6919 * @end_pfn: The end PFN to stop searching for holes
6920 *
a862f68a 6921 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6922 */
6923unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6924 unsigned long end_pfn)
6925{
6926 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6927}
6928
6929/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6930static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6931 unsigned long zone_type,
7960aedd 6932 unsigned long node_start_pfn,
854e8848 6933 unsigned long node_end_pfn)
c713216d 6934{
96e907d1
TH
6935 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6936 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6937 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6938 unsigned long nr_absent;
9c7cd687 6939
b5685e92 6940 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6941 if (!node_start_pfn && !node_end_pfn)
6942 return 0;
6943
96e907d1
TH
6944 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6945 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6946
2a1e274a
MG
6947 adjust_zone_range_for_zone_movable(nid, zone_type,
6948 node_start_pfn, node_end_pfn,
6949 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6950 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6951
6952 /*
6953 * ZONE_MOVABLE handling.
6954 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6955 * and vice versa.
6956 */
e506b996
XQ
6957 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6958 unsigned long start_pfn, end_pfn;
6959 struct memblock_region *r;
6960
cc6de168 6961 for_each_mem_region(r) {
e506b996
XQ
6962 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6963 zone_start_pfn, zone_end_pfn);
6964 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6965 zone_start_pfn, zone_end_pfn);
6966
6967 if (zone_type == ZONE_MOVABLE &&
6968 memblock_is_mirror(r))
6969 nr_absent += end_pfn - start_pfn;
6970
6971 if (zone_type == ZONE_NORMAL &&
6972 !memblock_is_mirror(r))
6973 nr_absent += end_pfn - start_pfn;
342332e6
TI
6974 }
6975 }
6976
6977 return nr_absent;
c713216d 6978}
0e0b864e 6979
bbe5d993 6980static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 6981 unsigned long node_start_pfn,
854e8848 6982 unsigned long node_end_pfn)
c713216d 6983{
febd5949 6984 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6985 enum zone_type i;
6986
febd5949
GZ
6987 for (i = 0; i < MAX_NR_ZONES; i++) {
6988 struct zone *zone = pgdat->node_zones + i;
d91749c1 6989 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 6990 unsigned long spanned, absent;
febd5949 6991 unsigned long size, real_size;
c713216d 6992
854e8848
MR
6993 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6994 node_start_pfn,
6995 node_end_pfn,
6996 &zone_start_pfn,
6997 &zone_end_pfn);
6998 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6999 node_start_pfn,
7000 node_end_pfn);
3f08a302
MR
7001
7002 size = spanned;
7003 real_size = size - absent;
7004
d91749c1
TI
7005 if (size)
7006 zone->zone_start_pfn = zone_start_pfn;
7007 else
7008 zone->zone_start_pfn = 0;
febd5949
GZ
7009 zone->spanned_pages = size;
7010 zone->present_pages = real_size;
7011
7012 totalpages += size;
7013 realtotalpages += real_size;
7014 }
7015
7016 pgdat->node_spanned_pages = totalpages;
c713216d
MG
7017 pgdat->node_present_pages = realtotalpages;
7018 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7019 realtotalpages);
7020}
7021
835c134e
MG
7022#ifndef CONFIG_SPARSEMEM
7023/*
7024 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7025 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7026 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7027 * round what is now in bits to nearest long in bits, then return it in
7028 * bytes.
7029 */
7c45512d 7030static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7031{
7032 unsigned long usemapsize;
7033
7c45512d 7034 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7035 usemapsize = roundup(zonesize, pageblock_nr_pages);
7036 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7037 usemapsize *= NR_PAGEBLOCK_BITS;
7038 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7039
7040 return usemapsize / 8;
7041}
7042
7010a6ec 7043static void __ref setup_usemap(struct zone *zone)
835c134e 7044{
7010a6ec
BH
7045 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7046 zone->spanned_pages);
835c134e 7047 zone->pageblock_flags = NULL;
23a7052a 7048 if (usemapsize) {
6782832e 7049 zone->pageblock_flags =
26fb3dae 7050 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7051 zone_to_nid(zone));
23a7052a
MR
7052 if (!zone->pageblock_flags)
7053 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7054 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7055 }
835c134e
MG
7056}
7057#else
7010a6ec 7058static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7059#endif /* CONFIG_SPARSEMEM */
7060
d9c23400 7061#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7062
d9c23400 7063/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7064void __init set_pageblock_order(void)
d9c23400 7065{
955c1cd7
AM
7066 unsigned int order;
7067
d9c23400
MG
7068 /* Check that pageblock_nr_pages has not already been setup */
7069 if (pageblock_order)
7070 return;
7071
955c1cd7
AM
7072 if (HPAGE_SHIFT > PAGE_SHIFT)
7073 order = HUGETLB_PAGE_ORDER;
7074 else
7075 order = MAX_ORDER - 1;
7076
d9c23400
MG
7077 /*
7078 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7079 * This value may be variable depending on boot parameters on IA64 and
7080 * powerpc.
d9c23400
MG
7081 */
7082 pageblock_order = order;
7083}
7084#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7085
ba72cb8c
MG
7086/*
7087 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7088 * is unused as pageblock_order is set at compile-time. See
7089 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7090 * the kernel config
ba72cb8c 7091 */
03e85f9d 7092void __init set_pageblock_order(void)
ba72cb8c 7093{
ba72cb8c 7094}
d9c23400
MG
7095
7096#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7097
03e85f9d 7098static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7099 unsigned long present_pages)
01cefaef
JL
7100{
7101 unsigned long pages = spanned_pages;
7102
7103 /*
7104 * Provide a more accurate estimation if there are holes within
7105 * the zone and SPARSEMEM is in use. If there are holes within the
7106 * zone, each populated memory region may cost us one or two extra
7107 * memmap pages due to alignment because memmap pages for each
89d790ab 7108 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7109 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7110 */
7111 if (spanned_pages > present_pages + (present_pages >> 4) &&
7112 IS_ENABLED(CONFIG_SPARSEMEM))
7113 pages = present_pages;
7114
7115 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7116}
7117
ace1db39
OS
7118#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7119static void pgdat_init_split_queue(struct pglist_data *pgdat)
7120{
364c1eeb
YS
7121 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7122
7123 spin_lock_init(&ds_queue->split_queue_lock);
7124 INIT_LIST_HEAD(&ds_queue->split_queue);
7125 ds_queue->split_queue_len = 0;
ace1db39
OS
7126}
7127#else
7128static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7129#endif
7130
7131#ifdef CONFIG_COMPACTION
7132static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7133{
7134 init_waitqueue_head(&pgdat->kcompactd_wait);
7135}
7136#else
7137static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7138#endif
7139
03e85f9d 7140static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7141{
208d54e5 7142 pgdat_resize_init(pgdat);
ace1db39 7143
ace1db39
OS
7144 pgdat_init_split_queue(pgdat);
7145 pgdat_init_kcompactd(pgdat);
7146
1da177e4 7147 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7148 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7149
eefa864b 7150 pgdat_page_ext_init(pgdat);
867e5e1d 7151 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7152}
7153
7154static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7155 unsigned long remaining_pages)
7156{
9705bea5 7157 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7158 zone_set_nid(zone, nid);
7159 zone->name = zone_names[idx];
7160 zone->zone_pgdat = NODE_DATA(nid);
7161 spin_lock_init(&zone->lock);
7162 zone_seqlock_init(zone);
7163 zone_pcp_init(zone);
7164}
7165
7166/*
7167 * Set up the zone data structures
7168 * - init pgdat internals
7169 * - init all zones belonging to this node
7170 *
7171 * NOTE: this function is only called during memory hotplug
7172 */
7173#ifdef CONFIG_MEMORY_HOTPLUG
7174void __ref free_area_init_core_hotplug(int nid)
7175{
7176 enum zone_type z;
7177 pg_data_t *pgdat = NODE_DATA(nid);
7178
7179 pgdat_init_internals(pgdat);
7180 for (z = 0; z < MAX_NR_ZONES; z++)
7181 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7182}
7183#endif
7184
7185/*
7186 * Set up the zone data structures:
7187 * - mark all pages reserved
7188 * - mark all memory queues empty
7189 * - clear the memory bitmaps
7190 *
7191 * NOTE: pgdat should get zeroed by caller.
7192 * NOTE: this function is only called during early init.
7193 */
7194static void __init free_area_init_core(struct pglist_data *pgdat)
7195{
7196 enum zone_type j;
7197 int nid = pgdat->node_id;
5f63b720 7198
03e85f9d 7199 pgdat_init_internals(pgdat);
385386cf
JW
7200 pgdat->per_cpu_nodestats = &boot_nodestats;
7201
1da177e4
LT
7202 for (j = 0; j < MAX_NR_ZONES; j++) {
7203 struct zone *zone = pgdat->node_zones + j;
e6943859 7204 unsigned long size, freesize, memmap_pages;
1da177e4 7205
febd5949 7206 size = zone->spanned_pages;
e6943859 7207 freesize = zone->present_pages;
1da177e4 7208
0e0b864e 7209 /*
9feedc9d 7210 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7211 * is used by this zone for memmap. This affects the watermark
7212 * and per-cpu initialisations
7213 */
e6943859 7214 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7215 if (!is_highmem_idx(j)) {
7216 if (freesize >= memmap_pages) {
7217 freesize -= memmap_pages;
7218 if (memmap_pages)
7219 printk(KERN_DEBUG
7220 " %s zone: %lu pages used for memmap\n",
7221 zone_names[j], memmap_pages);
7222 } else
1170532b 7223 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
7224 zone_names[j], memmap_pages, freesize);
7225 }
0e0b864e 7226
6267276f 7227 /* Account for reserved pages */
9feedc9d
JL
7228 if (j == 0 && freesize > dma_reserve) {
7229 freesize -= dma_reserve;
d903ef9f 7230 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 7231 zone_names[0], dma_reserve);
0e0b864e
MG
7232 }
7233
98d2b0eb 7234 if (!is_highmem_idx(j))
9feedc9d 7235 nr_kernel_pages += freesize;
01cefaef
JL
7236 /* Charge for highmem memmap if there are enough kernel pages */
7237 else if (nr_kernel_pages > memmap_pages * 2)
7238 nr_kernel_pages -= memmap_pages;
9feedc9d 7239 nr_all_pages += freesize;
1da177e4 7240
9feedc9d
JL
7241 /*
7242 * Set an approximate value for lowmem here, it will be adjusted
7243 * when the bootmem allocator frees pages into the buddy system.
7244 * And all highmem pages will be managed by the buddy system.
7245 */
03e85f9d 7246 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7247
d883c6cf 7248 if (!size)
1da177e4
LT
7249 continue;
7250
955c1cd7 7251 set_pageblock_order();
7010a6ec 7252 setup_usemap(zone);
9699ee7b 7253 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
3256ff83 7254 memmap_init_zone(zone);
1da177e4
LT
7255 }
7256}
7257
0cd842f9 7258#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 7259static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7260{
b0aeba74 7261 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7262 unsigned long __maybe_unused offset = 0;
7263
1da177e4
LT
7264 /* Skip empty nodes */
7265 if (!pgdat->node_spanned_pages)
7266 return;
7267
b0aeba74
TL
7268 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7269 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7270 /* ia64 gets its own node_mem_map, before this, without bootmem */
7271 if (!pgdat->node_mem_map) {
b0aeba74 7272 unsigned long size, end;
d41dee36
AW
7273 struct page *map;
7274
e984bb43
BP
7275 /*
7276 * The zone's endpoints aren't required to be MAX_ORDER
7277 * aligned but the node_mem_map endpoints must be in order
7278 * for the buddy allocator to function correctly.
7279 */
108bcc96 7280 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7281 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7282 size = (end - start) * sizeof(struct page);
26fb3dae
MR
7283 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7284 pgdat->node_id);
23a7052a
MR
7285 if (!map)
7286 panic("Failed to allocate %ld bytes for node %d memory map\n",
7287 size, pgdat->node_id);
a1c34a3b 7288 pgdat->node_mem_map = map + offset;
1da177e4 7289 }
0cd842f9
OS
7290 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7291 __func__, pgdat->node_id, (unsigned long)pgdat,
7292 (unsigned long)pgdat->node_mem_map);
12d810c1 7293#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
7294 /*
7295 * With no DISCONTIG, the global mem_map is just set as node 0's
7296 */
c713216d 7297 if (pgdat == NODE_DATA(0)) {
1da177e4 7298 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7299 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7300 mem_map -= offset;
c713216d 7301 }
1da177e4
LT
7302#endif
7303}
0cd842f9
OS
7304#else
7305static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7306#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 7307
0188dc98
OS
7308#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7309static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7310{
0188dc98
OS
7311 pgdat->first_deferred_pfn = ULONG_MAX;
7312}
7313#else
7314static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7315#endif
7316
854e8848 7317static void __init free_area_init_node(int nid)
1da177e4 7318{
9109fb7b 7319 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7320 unsigned long start_pfn = 0;
7321 unsigned long end_pfn = 0;
9109fb7b 7322
88fdf75d 7323 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7324 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7325
854e8848 7326 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7327
1da177e4 7328 pgdat->node_id = nid;
854e8848 7329 pgdat->node_start_pfn = start_pfn;
75ef7184 7330 pgdat->per_cpu_nodestats = NULL;
854e8848 7331
8d29e18a 7332 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
7333 (u64)start_pfn << PAGE_SHIFT,
7334 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
854e8848 7335 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7336
7337 alloc_node_mem_map(pgdat);
0188dc98 7338 pgdat_set_deferred_range(pgdat);
1da177e4 7339
7f3eb55b 7340 free_area_init_core(pgdat);
1da177e4
LT
7341}
7342
bc9331a1 7343void __init free_area_init_memoryless_node(int nid)
3f08a302 7344{
854e8848 7345 free_area_init_node(nid);
3f08a302
MR
7346}
7347
418508c1
MS
7348#if MAX_NUMNODES > 1
7349/*
7350 * Figure out the number of possible node ids.
7351 */
f9872caf 7352void __init setup_nr_node_ids(void)
418508c1 7353{
904a9553 7354 unsigned int highest;
418508c1 7355
904a9553 7356 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7357 nr_node_ids = highest + 1;
7358}
418508c1
MS
7359#endif
7360
1e01979c
TH
7361/**
7362 * node_map_pfn_alignment - determine the maximum internode alignment
7363 *
7364 * This function should be called after node map is populated and sorted.
7365 * It calculates the maximum power of two alignment which can distinguish
7366 * all the nodes.
7367 *
7368 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7369 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7370 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7371 * shifted, 1GiB is enough and this function will indicate so.
7372 *
7373 * This is used to test whether pfn -> nid mapping of the chosen memory
7374 * model has fine enough granularity to avoid incorrect mapping for the
7375 * populated node map.
7376 *
a862f68a 7377 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7378 * requirement (single node).
7379 */
7380unsigned long __init node_map_pfn_alignment(void)
7381{
7382 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7383 unsigned long start, end, mask;
98fa15f3 7384 int last_nid = NUMA_NO_NODE;
c13291a5 7385 int i, nid;
1e01979c 7386
c13291a5 7387 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7388 if (!start || last_nid < 0 || last_nid == nid) {
7389 last_nid = nid;
7390 last_end = end;
7391 continue;
7392 }
7393
7394 /*
7395 * Start with a mask granular enough to pin-point to the
7396 * start pfn and tick off bits one-by-one until it becomes
7397 * too coarse to separate the current node from the last.
7398 */
7399 mask = ~((1 << __ffs(start)) - 1);
7400 while (mask && last_end <= (start & (mask << 1)))
7401 mask <<= 1;
7402
7403 /* accumulate all internode masks */
7404 accl_mask |= mask;
7405 }
7406
7407 /* convert mask to number of pages */
7408 return ~accl_mask + 1;
7409}
7410
c713216d
MG
7411/**
7412 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7413 *
a862f68a 7414 * Return: the minimum PFN based on information provided via
7d018176 7415 * memblock_set_node().
c713216d
MG
7416 */
7417unsigned long __init find_min_pfn_with_active_regions(void)
7418{
8a1b25fe 7419 return PHYS_PFN(memblock_start_of_DRAM());
c713216d
MG
7420}
7421
37b07e41
LS
7422/*
7423 * early_calculate_totalpages()
7424 * Sum pages in active regions for movable zone.
4b0ef1fe 7425 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7426 */
484f51f8 7427static unsigned long __init early_calculate_totalpages(void)
7e63efef 7428{
7e63efef 7429 unsigned long totalpages = 0;
c13291a5
TH
7430 unsigned long start_pfn, end_pfn;
7431 int i, nid;
7432
7433 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7434 unsigned long pages = end_pfn - start_pfn;
7e63efef 7435
37b07e41
LS
7436 totalpages += pages;
7437 if (pages)
4b0ef1fe 7438 node_set_state(nid, N_MEMORY);
37b07e41 7439 }
b8af2941 7440 return totalpages;
7e63efef
MG
7441}
7442
2a1e274a
MG
7443/*
7444 * Find the PFN the Movable zone begins in each node. Kernel memory
7445 * is spread evenly between nodes as long as the nodes have enough
7446 * memory. When they don't, some nodes will have more kernelcore than
7447 * others
7448 */
b224ef85 7449static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7450{
7451 int i, nid;
7452 unsigned long usable_startpfn;
7453 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7454 /* save the state before borrow the nodemask */
4b0ef1fe 7455 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7456 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7457 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7458 struct memblock_region *r;
b2f3eebe
TC
7459
7460 /* Need to find movable_zone earlier when movable_node is specified. */
7461 find_usable_zone_for_movable();
7462
7463 /*
7464 * If movable_node is specified, ignore kernelcore and movablecore
7465 * options.
7466 */
7467 if (movable_node_is_enabled()) {
cc6de168 7468 for_each_mem_region(r) {
136199f0 7469 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7470 continue;
7471
d622abf7 7472 nid = memblock_get_region_node(r);
b2f3eebe 7473
136199f0 7474 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7475 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7476 min(usable_startpfn, zone_movable_pfn[nid]) :
7477 usable_startpfn;
7478 }
7479
7480 goto out2;
7481 }
2a1e274a 7482
342332e6
TI
7483 /*
7484 * If kernelcore=mirror is specified, ignore movablecore option
7485 */
7486 if (mirrored_kernelcore) {
7487 bool mem_below_4gb_not_mirrored = false;
7488
cc6de168 7489 for_each_mem_region(r) {
342332e6
TI
7490 if (memblock_is_mirror(r))
7491 continue;
7492
d622abf7 7493 nid = memblock_get_region_node(r);
342332e6
TI
7494
7495 usable_startpfn = memblock_region_memory_base_pfn(r);
7496
7497 if (usable_startpfn < 0x100000) {
7498 mem_below_4gb_not_mirrored = true;
7499 continue;
7500 }
7501
7502 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7503 min(usable_startpfn, zone_movable_pfn[nid]) :
7504 usable_startpfn;
7505 }
7506
7507 if (mem_below_4gb_not_mirrored)
633bf2fe 7508 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
7509
7510 goto out2;
7511 }
7512
7e63efef 7513 /*
a5c6d650
DR
7514 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7515 * amount of necessary memory.
7516 */
7517 if (required_kernelcore_percent)
7518 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7519 10000UL;
7520 if (required_movablecore_percent)
7521 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7522 10000UL;
7523
7524 /*
7525 * If movablecore= was specified, calculate what size of
7e63efef
MG
7526 * kernelcore that corresponds so that memory usable for
7527 * any allocation type is evenly spread. If both kernelcore
7528 * and movablecore are specified, then the value of kernelcore
7529 * will be used for required_kernelcore if it's greater than
7530 * what movablecore would have allowed.
7531 */
7532 if (required_movablecore) {
7e63efef
MG
7533 unsigned long corepages;
7534
7535 /*
7536 * Round-up so that ZONE_MOVABLE is at least as large as what
7537 * was requested by the user
7538 */
7539 required_movablecore =
7540 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7541 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7542 corepages = totalpages - required_movablecore;
7543
7544 required_kernelcore = max(required_kernelcore, corepages);
7545 }
7546
bde304bd
XQ
7547 /*
7548 * If kernelcore was not specified or kernelcore size is larger
7549 * than totalpages, there is no ZONE_MOVABLE.
7550 */
7551 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7552 goto out;
2a1e274a
MG
7553
7554 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7555 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7556
7557restart:
7558 /* Spread kernelcore memory as evenly as possible throughout nodes */
7559 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7560 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7561 unsigned long start_pfn, end_pfn;
7562
2a1e274a
MG
7563 /*
7564 * Recalculate kernelcore_node if the division per node
7565 * now exceeds what is necessary to satisfy the requested
7566 * amount of memory for the kernel
7567 */
7568 if (required_kernelcore < kernelcore_node)
7569 kernelcore_node = required_kernelcore / usable_nodes;
7570
7571 /*
7572 * As the map is walked, we track how much memory is usable
7573 * by the kernel using kernelcore_remaining. When it is
7574 * 0, the rest of the node is usable by ZONE_MOVABLE
7575 */
7576 kernelcore_remaining = kernelcore_node;
7577
7578 /* Go through each range of PFNs within this node */
c13291a5 7579 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7580 unsigned long size_pages;
7581
c13291a5 7582 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7583 if (start_pfn >= end_pfn)
7584 continue;
7585
7586 /* Account for what is only usable for kernelcore */
7587 if (start_pfn < usable_startpfn) {
7588 unsigned long kernel_pages;
7589 kernel_pages = min(end_pfn, usable_startpfn)
7590 - start_pfn;
7591
7592 kernelcore_remaining -= min(kernel_pages,
7593 kernelcore_remaining);
7594 required_kernelcore -= min(kernel_pages,
7595 required_kernelcore);
7596
7597 /* Continue if range is now fully accounted */
7598 if (end_pfn <= usable_startpfn) {
7599
7600 /*
7601 * Push zone_movable_pfn to the end so
7602 * that if we have to rebalance
7603 * kernelcore across nodes, we will
7604 * not double account here
7605 */
7606 zone_movable_pfn[nid] = end_pfn;
7607 continue;
7608 }
7609 start_pfn = usable_startpfn;
7610 }
7611
7612 /*
7613 * The usable PFN range for ZONE_MOVABLE is from
7614 * start_pfn->end_pfn. Calculate size_pages as the
7615 * number of pages used as kernelcore
7616 */
7617 size_pages = end_pfn - start_pfn;
7618 if (size_pages > kernelcore_remaining)
7619 size_pages = kernelcore_remaining;
7620 zone_movable_pfn[nid] = start_pfn + size_pages;
7621
7622 /*
7623 * Some kernelcore has been met, update counts and
7624 * break if the kernelcore for this node has been
b8af2941 7625 * satisfied
2a1e274a
MG
7626 */
7627 required_kernelcore -= min(required_kernelcore,
7628 size_pages);
7629 kernelcore_remaining -= size_pages;
7630 if (!kernelcore_remaining)
7631 break;
7632 }
7633 }
7634
7635 /*
7636 * If there is still required_kernelcore, we do another pass with one
7637 * less node in the count. This will push zone_movable_pfn[nid] further
7638 * along on the nodes that still have memory until kernelcore is
b8af2941 7639 * satisfied
2a1e274a
MG
7640 */
7641 usable_nodes--;
7642 if (usable_nodes && required_kernelcore > usable_nodes)
7643 goto restart;
7644
b2f3eebe 7645out2:
2a1e274a
MG
7646 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7647 for (nid = 0; nid < MAX_NUMNODES; nid++)
7648 zone_movable_pfn[nid] =
7649 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7650
20e6926d 7651out:
66918dcd 7652 /* restore the node_state */
4b0ef1fe 7653 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7654}
7655
4b0ef1fe
LJ
7656/* Any regular or high memory on that node ? */
7657static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7658{
37b07e41
LS
7659 enum zone_type zone_type;
7660
4b0ef1fe 7661 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7662 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7663 if (populated_zone(zone)) {
7b0e0c0e
OS
7664 if (IS_ENABLED(CONFIG_HIGHMEM))
7665 node_set_state(nid, N_HIGH_MEMORY);
7666 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7667 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7668 break;
7669 }
37b07e41 7670 }
37b07e41
LS
7671}
7672
51930df5
MR
7673/*
7674 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7675 * such cases we allow max_zone_pfn sorted in the descending order
7676 */
7677bool __weak arch_has_descending_max_zone_pfns(void)
7678{
7679 return false;
7680}
7681
c713216d 7682/**
9691a071 7683 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 7684 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7685 *
7686 * This will call free_area_init_node() for each active node in the system.
7d018176 7687 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7688 * zone in each node and their holes is calculated. If the maximum PFN
7689 * between two adjacent zones match, it is assumed that the zone is empty.
7690 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7691 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7692 * starts where the previous one ended. For example, ZONE_DMA32 starts
7693 * at arch_max_dma_pfn.
7694 */
9691a071 7695void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 7696{
c13291a5 7697 unsigned long start_pfn, end_pfn;
51930df5
MR
7698 int i, nid, zone;
7699 bool descending;
a6af2bc3 7700
c713216d
MG
7701 /* Record where the zone boundaries are */
7702 memset(arch_zone_lowest_possible_pfn, 0,
7703 sizeof(arch_zone_lowest_possible_pfn));
7704 memset(arch_zone_highest_possible_pfn, 0,
7705 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7706
7707 start_pfn = find_min_pfn_with_active_regions();
51930df5 7708 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
7709
7710 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
7711 if (descending)
7712 zone = MAX_NR_ZONES - i - 1;
7713 else
7714 zone = i;
7715
7716 if (zone == ZONE_MOVABLE)
2a1e274a 7717 continue;
90cae1fe 7718
51930df5
MR
7719 end_pfn = max(max_zone_pfn[zone], start_pfn);
7720 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7721 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
7722
7723 start_pfn = end_pfn;
c713216d 7724 }
2a1e274a
MG
7725
7726 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7727 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7728 find_zone_movable_pfns_for_nodes();
c713216d 7729
c713216d 7730 /* Print out the zone ranges */
f88dfff5 7731 pr_info("Zone ranges:\n");
2a1e274a
MG
7732 for (i = 0; i < MAX_NR_ZONES; i++) {
7733 if (i == ZONE_MOVABLE)
7734 continue;
f88dfff5 7735 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7736 if (arch_zone_lowest_possible_pfn[i] ==
7737 arch_zone_highest_possible_pfn[i])
f88dfff5 7738 pr_cont("empty\n");
72f0ba02 7739 else
8d29e18a
JG
7740 pr_cont("[mem %#018Lx-%#018Lx]\n",
7741 (u64)arch_zone_lowest_possible_pfn[i]
7742 << PAGE_SHIFT,
7743 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7744 << PAGE_SHIFT) - 1);
2a1e274a
MG
7745 }
7746
7747 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7748 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7749 for (i = 0; i < MAX_NUMNODES; i++) {
7750 if (zone_movable_pfn[i])
8d29e18a
JG
7751 pr_info(" Node %d: %#018Lx\n", i,
7752 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7753 }
c713216d 7754
f46edbd1
DW
7755 /*
7756 * Print out the early node map, and initialize the
7757 * subsection-map relative to active online memory ranges to
7758 * enable future "sub-section" extensions of the memory map.
7759 */
f88dfff5 7760 pr_info("Early memory node ranges\n");
f46edbd1 7761 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7762 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7763 (u64)start_pfn << PAGE_SHIFT,
7764 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7765 subsection_map_init(start_pfn, end_pfn - start_pfn);
7766 }
c713216d
MG
7767
7768 /* Initialise every node */
708614e6 7769 mminit_verify_pageflags_layout();
8ef82866 7770 setup_nr_node_ids();
c713216d
MG
7771 for_each_online_node(nid) {
7772 pg_data_t *pgdat = NODE_DATA(nid);
854e8848 7773 free_area_init_node(nid);
37b07e41
LS
7774
7775 /* Any memory on that node */
7776 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7777 node_set_state(nid, N_MEMORY);
7778 check_for_memory(pgdat, nid);
c713216d
MG
7779 }
7780}
2a1e274a 7781
a5c6d650
DR
7782static int __init cmdline_parse_core(char *p, unsigned long *core,
7783 unsigned long *percent)
2a1e274a
MG
7784{
7785 unsigned long long coremem;
a5c6d650
DR
7786 char *endptr;
7787
2a1e274a
MG
7788 if (!p)
7789 return -EINVAL;
7790
a5c6d650
DR
7791 /* Value may be a percentage of total memory, otherwise bytes */
7792 coremem = simple_strtoull(p, &endptr, 0);
7793 if (*endptr == '%') {
7794 /* Paranoid check for percent values greater than 100 */
7795 WARN_ON(coremem > 100);
2a1e274a 7796
a5c6d650
DR
7797 *percent = coremem;
7798 } else {
7799 coremem = memparse(p, &p);
7800 /* Paranoid check that UL is enough for the coremem value */
7801 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7802
a5c6d650
DR
7803 *core = coremem >> PAGE_SHIFT;
7804 *percent = 0UL;
7805 }
2a1e274a
MG
7806 return 0;
7807}
ed7ed365 7808
7e63efef
MG
7809/*
7810 * kernelcore=size sets the amount of memory for use for allocations that
7811 * cannot be reclaimed or migrated.
7812 */
7813static int __init cmdline_parse_kernelcore(char *p)
7814{
342332e6
TI
7815 /* parse kernelcore=mirror */
7816 if (parse_option_str(p, "mirror")) {
7817 mirrored_kernelcore = true;
7818 return 0;
7819 }
7820
a5c6d650
DR
7821 return cmdline_parse_core(p, &required_kernelcore,
7822 &required_kernelcore_percent);
7e63efef
MG
7823}
7824
7825/*
7826 * movablecore=size sets the amount of memory for use for allocations that
7827 * can be reclaimed or migrated.
7828 */
7829static int __init cmdline_parse_movablecore(char *p)
7830{
a5c6d650
DR
7831 return cmdline_parse_core(p, &required_movablecore,
7832 &required_movablecore_percent);
7e63efef
MG
7833}
7834
ed7ed365 7835early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7836early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7837
c3d5f5f0
JL
7838void adjust_managed_page_count(struct page *page, long count)
7839{
9705bea5 7840 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7841 totalram_pages_add(count);
3dcc0571
JL
7842#ifdef CONFIG_HIGHMEM
7843 if (PageHighMem(page))
ca79b0c2 7844 totalhigh_pages_add(count);
3dcc0571 7845#endif
c3d5f5f0 7846}
3dcc0571 7847EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7848
e5cb113f 7849unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7850{
11199692
JL
7851 void *pos;
7852 unsigned long pages = 0;
69afade7 7853
11199692
JL
7854 start = (void *)PAGE_ALIGN((unsigned long)start);
7855 end = (void *)((unsigned long)end & PAGE_MASK);
7856 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7857 struct page *page = virt_to_page(pos);
7858 void *direct_map_addr;
7859
7860 /*
7861 * 'direct_map_addr' might be different from 'pos'
7862 * because some architectures' virt_to_page()
7863 * work with aliases. Getting the direct map
7864 * address ensures that we get a _writeable_
7865 * alias for the memset().
7866 */
7867 direct_map_addr = page_address(page);
c746170d
VF
7868 /*
7869 * Perform a kasan-unchecked memset() since this memory
7870 * has not been initialized.
7871 */
7872 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 7873 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7874 memset(direct_map_addr, poison, PAGE_SIZE);
7875
7876 free_reserved_page(page);
69afade7
JL
7877 }
7878
7879 if (pages && s)
adb1fe9a
JP
7880 pr_info("Freeing %s memory: %ldK\n",
7881 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7882
7883 return pages;
7884}
7885
1f9d03c5 7886void __init mem_init_print_info(void)
7ee3d4e8
JL
7887{
7888 unsigned long physpages, codesize, datasize, rosize, bss_size;
7889 unsigned long init_code_size, init_data_size;
7890
7891 physpages = get_num_physpages();
7892 codesize = _etext - _stext;
7893 datasize = _edata - _sdata;
7894 rosize = __end_rodata - __start_rodata;
7895 bss_size = __bss_stop - __bss_start;
7896 init_data_size = __init_end - __init_begin;
7897 init_code_size = _einittext - _sinittext;
7898
7899 /*
7900 * Detect special cases and adjust section sizes accordingly:
7901 * 1) .init.* may be embedded into .data sections
7902 * 2) .init.text.* may be out of [__init_begin, __init_end],
7903 * please refer to arch/tile/kernel/vmlinux.lds.S.
7904 * 3) .rodata.* may be embedded into .text or .data sections.
7905 */
7906#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7907 do { \
7908 if (start <= pos && pos < end && size > adj) \
7909 size -= adj; \
7910 } while (0)
7ee3d4e8
JL
7911
7912 adj_init_size(__init_begin, __init_end, init_data_size,
7913 _sinittext, init_code_size);
7914 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7915 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7916 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7917 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7918
7919#undef adj_init_size
7920
756a025f 7921 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7922#ifdef CONFIG_HIGHMEM
756a025f 7923 ", %luK highmem"
7ee3d4e8 7924#endif
1f9d03c5 7925 ")\n",
756a025f
JP
7926 nr_free_pages() << (PAGE_SHIFT - 10),
7927 physpages << (PAGE_SHIFT - 10),
7928 codesize >> 10, datasize >> 10, rosize >> 10,
7929 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7930 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
1f9d03c5 7931 totalcma_pages << (PAGE_SHIFT - 10)
7ee3d4e8 7932#ifdef CONFIG_HIGHMEM
1f9d03c5 7933 , totalhigh_pages() << (PAGE_SHIFT - 10)
7ee3d4e8 7934#endif
1f9d03c5 7935 );
7ee3d4e8
JL
7936}
7937
0e0b864e 7938/**
88ca3b94
RD
7939 * set_dma_reserve - set the specified number of pages reserved in the first zone
7940 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7941 *
013110a7 7942 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7943 * In the DMA zone, a significant percentage may be consumed by kernel image
7944 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7945 * function may optionally be used to account for unfreeable pages in the
7946 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7947 * smaller per-cpu batchsize.
0e0b864e
MG
7948 */
7949void __init set_dma_reserve(unsigned long new_dma_reserve)
7950{
7951 dma_reserve = new_dma_reserve;
7952}
7953
005fd4bb 7954static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7955{
1da177e4 7956
005fd4bb
SAS
7957 lru_add_drain_cpu(cpu);
7958 drain_pages(cpu);
9f8f2172 7959
005fd4bb
SAS
7960 /*
7961 * Spill the event counters of the dead processor
7962 * into the current processors event counters.
7963 * This artificially elevates the count of the current
7964 * processor.
7965 */
7966 vm_events_fold_cpu(cpu);
9f8f2172 7967
005fd4bb
SAS
7968 /*
7969 * Zero the differential counters of the dead processor
7970 * so that the vm statistics are consistent.
7971 *
7972 * This is only okay since the processor is dead and cannot
7973 * race with what we are doing.
7974 */
7975 cpu_vm_stats_fold(cpu);
7976 return 0;
1da177e4 7977}
1da177e4 7978
e03a5125
NP
7979#ifdef CONFIG_NUMA
7980int hashdist = HASHDIST_DEFAULT;
7981
7982static int __init set_hashdist(char *str)
7983{
7984 if (!str)
7985 return 0;
7986 hashdist = simple_strtoul(str, &str, 0);
7987 return 1;
7988}
7989__setup("hashdist=", set_hashdist);
7990#endif
7991
1da177e4
LT
7992void __init page_alloc_init(void)
7993{
005fd4bb
SAS
7994 int ret;
7995
e03a5125
NP
7996#ifdef CONFIG_NUMA
7997 if (num_node_state(N_MEMORY) == 1)
7998 hashdist = 0;
7999#endif
8000
005fd4bb
SAS
8001 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
8002 "mm/page_alloc:dead", NULL,
8003 page_alloc_cpu_dead);
8004 WARN_ON(ret < 0);
1da177e4
LT
8005}
8006
cb45b0e9 8007/*
34b10060 8008 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8009 * or min_free_kbytes changes.
8010 */
8011static void calculate_totalreserve_pages(void)
8012{
8013 struct pglist_data *pgdat;
8014 unsigned long reserve_pages = 0;
2f6726e5 8015 enum zone_type i, j;
cb45b0e9
HA
8016
8017 for_each_online_pgdat(pgdat) {
281e3726
MG
8018
8019 pgdat->totalreserve_pages = 0;
8020
cb45b0e9
HA
8021 for (i = 0; i < MAX_NR_ZONES; i++) {
8022 struct zone *zone = pgdat->node_zones + i;
3484b2de 8023 long max = 0;
9705bea5 8024 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8025
8026 /* Find valid and maximum lowmem_reserve in the zone */
8027 for (j = i; j < MAX_NR_ZONES; j++) {
8028 if (zone->lowmem_reserve[j] > max)
8029 max = zone->lowmem_reserve[j];
8030 }
8031
41858966
MG
8032 /* we treat the high watermark as reserved pages. */
8033 max += high_wmark_pages(zone);
cb45b0e9 8034
3d6357de
AK
8035 if (max > managed_pages)
8036 max = managed_pages;
a8d01437 8037
281e3726 8038 pgdat->totalreserve_pages += max;
a8d01437 8039
cb45b0e9
HA
8040 reserve_pages += max;
8041 }
8042 }
8043 totalreserve_pages = reserve_pages;
8044}
8045
1da177e4
LT
8046/*
8047 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8048 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8049 * has a correct pages reserved value, so an adequate number of
8050 * pages are left in the zone after a successful __alloc_pages().
8051 */
8052static void setup_per_zone_lowmem_reserve(void)
8053{
8054 struct pglist_data *pgdat;
470c61d7 8055 enum zone_type i, j;
1da177e4 8056
ec936fc5 8057 for_each_online_pgdat(pgdat) {
470c61d7
LS
8058 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8059 struct zone *zone = &pgdat->node_zones[i];
8060 int ratio = sysctl_lowmem_reserve_ratio[i];
8061 bool clear = !ratio || !zone_managed_pages(zone);
8062 unsigned long managed_pages = 0;
8063
8064 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8065 if (clear) {
8066 zone->lowmem_reserve[j] = 0;
d3cda233 8067 } else {
470c61d7
LS
8068 struct zone *upper_zone = &pgdat->node_zones[j];
8069
8070 managed_pages += zone_managed_pages(upper_zone);
8071 zone->lowmem_reserve[j] = managed_pages / ratio;
d3cda233 8072 }
1da177e4
LT
8073 }
8074 }
8075 }
cb45b0e9
HA
8076
8077 /* update totalreserve_pages */
8078 calculate_totalreserve_pages();
1da177e4
LT
8079}
8080
cfd3da1e 8081static void __setup_per_zone_wmarks(void)
1da177e4
LT
8082{
8083 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8084 unsigned long lowmem_pages = 0;
8085 struct zone *zone;
8086 unsigned long flags;
8087
8088 /* Calculate total number of !ZONE_HIGHMEM pages */
8089 for_each_zone(zone) {
8090 if (!is_highmem(zone))
9705bea5 8091 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8092 }
8093
8094 for_each_zone(zone) {
ac924c60
AM
8095 u64 tmp;
8096
1125b4e3 8097 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8098 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8099 do_div(tmp, lowmem_pages);
1da177e4
LT
8100 if (is_highmem(zone)) {
8101 /*
669ed175
NP
8102 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8103 * need highmem pages, so cap pages_min to a small
8104 * value here.
8105 *
41858966 8106 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8107 * deltas control async page reclaim, and so should
669ed175 8108 * not be capped for highmem.
1da177e4 8109 */
90ae8d67 8110 unsigned long min_pages;
1da177e4 8111
9705bea5 8112 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8113 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8114 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8115 } else {
669ed175
NP
8116 /*
8117 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8118 * proportionate to the zone's size.
8119 */
a9214443 8120 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8121 }
8122
795ae7a0
JW
8123 /*
8124 * Set the kswapd watermarks distance according to the
8125 * scale factor in proportion to available memory, but
8126 * ensure a minimum size on small systems.
8127 */
8128 tmp = max_t(u64, tmp >> 2,
9705bea5 8129 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8130 watermark_scale_factor, 10000));
8131
aa092591 8132 zone->watermark_boost = 0;
a9214443
MG
8133 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8134 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 8135
1125b4e3 8136 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8137 }
cb45b0e9
HA
8138
8139 /* update totalreserve_pages */
8140 calculate_totalreserve_pages();
1da177e4
LT
8141}
8142
cfd3da1e
MG
8143/**
8144 * setup_per_zone_wmarks - called when min_free_kbytes changes
8145 * or when memory is hot-{added|removed}
8146 *
8147 * Ensures that the watermark[min,low,high] values for each zone are set
8148 * correctly with respect to min_free_kbytes.
8149 */
8150void setup_per_zone_wmarks(void)
8151{
b93e0f32
MH
8152 static DEFINE_SPINLOCK(lock);
8153
8154 spin_lock(&lock);
cfd3da1e 8155 __setup_per_zone_wmarks();
b93e0f32 8156 spin_unlock(&lock);
cfd3da1e
MG
8157}
8158
1da177e4
LT
8159/*
8160 * Initialise min_free_kbytes.
8161 *
8162 * For small machines we want it small (128k min). For large machines
8beeae86 8163 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8164 * bandwidth does not increase linearly with machine size. We use
8165 *
b8af2941 8166 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8167 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8168 *
8169 * which yields
8170 *
8171 * 16MB: 512k
8172 * 32MB: 724k
8173 * 64MB: 1024k
8174 * 128MB: 1448k
8175 * 256MB: 2048k
8176 * 512MB: 2896k
8177 * 1024MB: 4096k
8178 * 2048MB: 5792k
8179 * 4096MB: 8192k
8180 * 8192MB: 11584k
8181 * 16384MB: 16384k
8182 */
1b79acc9 8183int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
8184{
8185 unsigned long lowmem_kbytes;
5f12733e 8186 int new_min_free_kbytes;
1da177e4
LT
8187
8188 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8189 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8190
8191 if (new_min_free_kbytes > user_min_free_kbytes) {
8192 min_free_kbytes = new_min_free_kbytes;
8193 if (min_free_kbytes < 128)
8194 min_free_kbytes = 128;
ee8eb9a5
JS
8195 if (min_free_kbytes > 262144)
8196 min_free_kbytes = 262144;
5f12733e
MH
8197 } else {
8198 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8199 new_min_free_kbytes, user_min_free_kbytes);
8200 }
bc75d33f 8201 setup_per_zone_wmarks();
a6cccdc3 8202 refresh_zone_stat_thresholds();
1da177e4 8203 setup_per_zone_lowmem_reserve();
6423aa81
JK
8204
8205#ifdef CONFIG_NUMA
8206 setup_min_unmapped_ratio();
8207 setup_min_slab_ratio();
8208#endif
8209
4aab2be0
VB
8210 khugepaged_min_free_kbytes_update();
8211
1da177e4
LT
8212 return 0;
8213}
e08d3fdf 8214postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8215
8216/*
b8af2941 8217 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8218 * that we can call two helper functions whenever min_free_kbytes
8219 * changes.
8220 */
cccad5b9 8221int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8222 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8223{
da8c757b
HP
8224 int rc;
8225
8226 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8227 if (rc)
8228 return rc;
8229
5f12733e
MH
8230 if (write) {
8231 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8232 setup_per_zone_wmarks();
5f12733e 8233 }
1da177e4
LT
8234 return 0;
8235}
8236
795ae7a0 8237int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8238 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8239{
8240 int rc;
8241
8242 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8243 if (rc)
8244 return rc;
8245
8246 if (write)
8247 setup_per_zone_wmarks();
8248
8249 return 0;
8250}
8251
9614634f 8252#ifdef CONFIG_NUMA
6423aa81 8253static void setup_min_unmapped_ratio(void)
9614634f 8254{
6423aa81 8255 pg_data_t *pgdat;
9614634f 8256 struct zone *zone;
9614634f 8257
a5f5f91d 8258 for_each_online_pgdat(pgdat)
81cbcbc2 8259 pgdat->min_unmapped_pages = 0;
a5f5f91d 8260
9614634f 8261 for_each_zone(zone)
9705bea5
AK
8262 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8263 sysctl_min_unmapped_ratio) / 100;
9614634f 8264}
0ff38490 8265
6423aa81
JK
8266
8267int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8268 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8269{
0ff38490
CL
8270 int rc;
8271
8d65af78 8272 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8273 if (rc)
8274 return rc;
8275
6423aa81
JK
8276 setup_min_unmapped_ratio();
8277
8278 return 0;
8279}
8280
8281static void setup_min_slab_ratio(void)
8282{
8283 pg_data_t *pgdat;
8284 struct zone *zone;
8285
a5f5f91d
MG
8286 for_each_online_pgdat(pgdat)
8287 pgdat->min_slab_pages = 0;
8288
0ff38490 8289 for_each_zone(zone)
9705bea5
AK
8290 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8291 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8292}
8293
8294int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8295 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8296{
8297 int rc;
8298
8299 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8300 if (rc)
8301 return rc;
8302
8303 setup_min_slab_ratio();
8304
0ff38490
CL
8305 return 0;
8306}
9614634f
CL
8307#endif
8308
1da177e4
LT
8309/*
8310 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8311 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8312 * whenever sysctl_lowmem_reserve_ratio changes.
8313 *
8314 * The reserve ratio obviously has absolutely no relation with the
41858966 8315 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8316 * if in function of the boot time zone sizes.
8317 */
cccad5b9 8318int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8319 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8320{
86aaf255
BH
8321 int i;
8322
8d65af78 8323 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8324
8325 for (i = 0; i < MAX_NR_ZONES; i++) {
8326 if (sysctl_lowmem_reserve_ratio[i] < 1)
8327 sysctl_lowmem_reserve_ratio[i] = 0;
8328 }
8329
1da177e4
LT
8330 setup_per_zone_lowmem_reserve();
8331 return 0;
8332}
8333
8ad4b1fb
RS
8334/*
8335 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8336 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8337 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8338 */
cccad5b9 8339int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
32927393 8340 void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8341{
8342 struct zone *zone;
7cd2b0a3 8343 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8344 int ret;
8345
7cd2b0a3
DR
8346 mutex_lock(&pcp_batch_high_lock);
8347 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8348
8d65af78 8349 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8350 if (!write || ret < 0)
8351 goto out;
8352
8353 /* Sanity checking to avoid pcp imbalance */
8354 if (percpu_pagelist_fraction &&
8355 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8356 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8357 ret = -EINVAL;
8358 goto out;
8359 }
8360
8361 /* No change? */
8362 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8363 goto out;
c8e251fa 8364
cb1ef534 8365 for_each_populated_zone(zone)
0a8b4f1d 8366 zone_set_pageset_high_and_batch(zone);
7cd2b0a3 8367out:
c8e251fa 8368 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8369 return ret;
8ad4b1fb
RS
8370}
8371
f6f34b43
SD
8372#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8373/*
8374 * Returns the number of pages that arch has reserved but
8375 * is not known to alloc_large_system_hash().
8376 */
8377static unsigned long __init arch_reserved_kernel_pages(void)
8378{
8379 return 0;
8380}
8381#endif
8382
9017217b
PT
8383/*
8384 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8385 * machines. As memory size is increased the scale is also increased but at
8386 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8387 * quadruples the scale is increased by one, which means the size of hash table
8388 * only doubles, instead of quadrupling as well.
8389 * Because 32-bit systems cannot have large physical memory, where this scaling
8390 * makes sense, it is disabled on such platforms.
8391 */
8392#if __BITS_PER_LONG > 32
8393#define ADAPT_SCALE_BASE (64ul << 30)
8394#define ADAPT_SCALE_SHIFT 2
8395#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8396#endif
8397
1da177e4
LT
8398/*
8399 * allocate a large system hash table from bootmem
8400 * - it is assumed that the hash table must contain an exact power-of-2
8401 * quantity of entries
8402 * - limit is the number of hash buckets, not the total allocation size
8403 */
8404void *__init alloc_large_system_hash(const char *tablename,
8405 unsigned long bucketsize,
8406 unsigned long numentries,
8407 int scale,
8408 int flags,
8409 unsigned int *_hash_shift,
8410 unsigned int *_hash_mask,
31fe62b9
TB
8411 unsigned long low_limit,
8412 unsigned long high_limit)
1da177e4 8413{
31fe62b9 8414 unsigned long long max = high_limit;
1da177e4
LT
8415 unsigned long log2qty, size;
8416 void *table = NULL;
3749a8f0 8417 gfp_t gfp_flags;
ec11408a 8418 bool virt;
121e6f32 8419 bool huge;
1da177e4
LT
8420
8421 /* allow the kernel cmdline to have a say */
8422 if (!numentries) {
8423 /* round applicable memory size up to nearest megabyte */
04903664 8424 numentries = nr_kernel_pages;
f6f34b43 8425 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8426
8427 /* It isn't necessary when PAGE_SIZE >= 1MB */
8428 if (PAGE_SHIFT < 20)
8429 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8430
9017217b
PT
8431#if __BITS_PER_LONG > 32
8432 if (!high_limit) {
8433 unsigned long adapt;
8434
8435 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8436 adapt <<= ADAPT_SCALE_SHIFT)
8437 scale++;
8438 }
8439#endif
8440
1da177e4
LT
8441 /* limit to 1 bucket per 2^scale bytes of low memory */
8442 if (scale > PAGE_SHIFT)
8443 numentries >>= (scale - PAGE_SHIFT);
8444 else
8445 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8446
8447 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8448 if (unlikely(flags & HASH_SMALL)) {
8449 /* Makes no sense without HASH_EARLY */
8450 WARN_ON(!(flags & HASH_EARLY));
8451 if (!(numentries >> *_hash_shift)) {
8452 numentries = 1UL << *_hash_shift;
8453 BUG_ON(!numentries);
8454 }
8455 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8456 numentries = PAGE_SIZE / bucketsize;
1da177e4 8457 }
6e692ed3 8458 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8459
8460 /* limit allocation size to 1/16 total memory by default */
8461 if (max == 0) {
8462 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8463 do_div(max, bucketsize);
8464 }
074b8517 8465 max = min(max, 0x80000000ULL);
1da177e4 8466
31fe62b9
TB
8467 if (numentries < low_limit)
8468 numentries = low_limit;
1da177e4
LT
8469 if (numentries > max)
8470 numentries = max;
8471
f0d1b0b3 8472 log2qty = ilog2(numentries);
1da177e4 8473
3749a8f0 8474 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8475 do {
ec11408a 8476 virt = false;
1da177e4 8477 size = bucketsize << log2qty;
ea1f5f37
PT
8478 if (flags & HASH_EARLY) {
8479 if (flags & HASH_ZERO)
26fb3dae 8480 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8481 else
7e1c4e27
MR
8482 table = memblock_alloc_raw(size,
8483 SMP_CACHE_BYTES);
ec11408a 8484 } else if (get_order(size) >= MAX_ORDER || hashdist) {
88dca4ca 8485 table = __vmalloc(size, gfp_flags);
ec11408a 8486 virt = true;
121e6f32 8487 huge = is_vm_area_hugepages(table);
ea1f5f37 8488 } else {
1037b83b
ED
8489 /*
8490 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8491 * some pages at the end of hash table which
8492 * alloc_pages_exact() automatically does
1037b83b 8493 */
ec11408a
NP
8494 table = alloc_pages_exact(size, gfp_flags);
8495 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8496 }
8497 } while (!table && size > PAGE_SIZE && --log2qty);
8498
8499 if (!table)
8500 panic("Failed to allocate %s hash table\n", tablename);
8501
ec11408a
NP
8502 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8503 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 8504 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
8505
8506 if (_hash_shift)
8507 *_hash_shift = log2qty;
8508 if (_hash_mask)
8509 *_hash_mask = (1 << log2qty) - 1;
8510
8511 return table;
8512}
a117e66e 8513
a5d76b54 8514/*
80934513 8515 * This function checks whether pageblock includes unmovable pages or not.
80934513 8516 *
b8af2941 8517 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8518 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8519 * check without lock_page also may miss some movable non-lru pages at
8520 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8521 *
8522 * Returns a page without holding a reference. If the caller wants to
047b9967 8523 * dereference that page (e.g., dumping), it has to make sure that it
4a55c047
QC
8524 * cannot get removed (e.g., via memory unplug) concurrently.
8525 *
a5d76b54 8526 */
4a55c047
QC
8527struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8528 int migratetype, int flags)
49ac8255 8529{
1a9f2191
QC
8530 unsigned long iter = 0;
8531 unsigned long pfn = page_to_pfn(page);
6a654e36 8532 unsigned long offset = pfn % pageblock_nr_pages;
47118af0 8533
1a9f2191
QC
8534 if (is_migrate_cma_page(page)) {
8535 /*
8536 * CMA allocations (alloc_contig_range) really need to mark
8537 * isolate CMA pageblocks even when they are not movable in fact
8538 * so consider them movable here.
8539 */
8540 if (is_migrate_cma(migratetype))
4a55c047 8541 return NULL;
1a9f2191 8542
3d680bdf 8543 return page;
1a9f2191 8544 }
4da2ce25 8545
6a654e36 8546 for (; iter < pageblock_nr_pages - offset; iter++) {
fe4c86c9 8547 if (!pfn_valid_within(pfn + iter))
49ac8255 8548 continue;
29723fcc 8549
fe4c86c9 8550 page = pfn_to_page(pfn + iter);
c8721bbb 8551
c9c510dc
DH
8552 /*
8553 * Both, bootmem allocations and memory holes are marked
8554 * PG_reserved and are unmovable. We can even have unmovable
8555 * allocations inside ZONE_MOVABLE, for example when
8556 * specifying "movablecore".
8557 */
d7ab3672 8558 if (PageReserved(page))
3d680bdf 8559 return page;
d7ab3672 8560
9d789999
MH
8561 /*
8562 * If the zone is movable and we have ruled out all reserved
8563 * pages then it should be reasonably safe to assume the rest
8564 * is movable.
8565 */
8566 if (zone_idx(zone) == ZONE_MOVABLE)
8567 continue;
8568
c8721bbb
NH
8569 /*
8570 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8571 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8572 * We need not scan over tail pages because we don't
c8721bbb
NH
8573 * handle each tail page individually in migration.
8574 */
1da2f328 8575 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8576 struct page *head = compound_head(page);
8577 unsigned int skip_pages;
464c7ffb 8578
1da2f328
RR
8579 if (PageHuge(page)) {
8580 if (!hugepage_migration_supported(page_hstate(head)))
8581 return page;
8582 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8583 return page;
1da2f328 8584 }
464c7ffb 8585
d8c6546b 8586 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8587 iter += skip_pages - 1;
c8721bbb
NH
8588 continue;
8589 }
8590
97d255c8
MK
8591 /*
8592 * We can't use page_count without pin a page
8593 * because another CPU can free compound page.
8594 * This check already skips compound tails of THP
0139aa7b 8595 * because their page->_refcount is zero at all time.
97d255c8 8596 */
fe896d18 8597 if (!page_ref_count(page)) {
49ac8255 8598 if (PageBuddy(page))
ab130f91 8599 iter += (1 << buddy_order(page)) - 1;
49ac8255
KH
8600 continue;
8601 }
97d255c8 8602
b023f468
WC
8603 /*
8604 * The HWPoisoned page may be not in buddy system, and
8605 * page_count() is not 0.
8606 */
756d25be 8607 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8608 continue;
8609
aa218795
DH
8610 /*
8611 * We treat all PageOffline() pages as movable when offlining
8612 * to give drivers a chance to decrement their reference count
8613 * in MEM_GOING_OFFLINE in order to indicate that these pages
8614 * can be offlined as there are no direct references anymore.
8615 * For actually unmovable PageOffline() where the driver does
8616 * not support this, we will fail later when trying to actually
8617 * move these pages that still have a reference count > 0.
8618 * (false negatives in this function only)
8619 */
8620 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8621 continue;
8622
fe4c86c9 8623 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8624 continue;
8625
49ac8255 8626 /*
6b4f7799
JW
8627 * If there are RECLAIMABLE pages, we need to check
8628 * it. But now, memory offline itself doesn't call
8629 * shrink_node_slabs() and it still to be fixed.
49ac8255 8630 */
3d680bdf 8631 return page;
49ac8255 8632 }
4a55c047 8633 return NULL;
49ac8255
KH
8634}
8635
8df995f6 8636#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8637static unsigned long pfn_max_align_down(unsigned long pfn)
8638{
8639 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8640 pageblock_nr_pages) - 1);
8641}
8642
8643static unsigned long pfn_max_align_up(unsigned long pfn)
8644{
8645 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8646 pageblock_nr_pages));
8647}
8648
a1394bdd
MK
8649#if defined(CONFIG_DYNAMIC_DEBUG) || \
8650 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8651/* Usage: See admin-guide/dynamic-debug-howto.rst */
8652static void alloc_contig_dump_pages(struct list_head *page_list)
8653{
8654 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8655
8656 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8657 struct page *page;
8658
8659 dump_stack();
8660 list_for_each_entry(page, page_list, lru)
8661 dump_page(page, "migration failure");
8662 }
8663}
8664#else
8665static inline void alloc_contig_dump_pages(struct list_head *page_list)
8666{
8667}
8668#endif
8669
041d3a8c 8670/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8671static int __alloc_contig_migrate_range(struct compact_control *cc,
8672 unsigned long start, unsigned long end)
041d3a8c
MN
8673{
8674 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 8675 unsigned int nr_reclaimed;
041d3a8c
MN
8676 unsigned long pfn = start;
8677 unsigned int tries = 0;
8678 int ret = 0;
8b94e0b8
JK
8679 struct migration_target_control mtc = {
8680 .nid = zone_to_nid(cc->zone),
8681 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8682 };
041d3a8c 8683
361a2a22 8684 lru_cache_disable();
041d3a8c 8685
bb13ffeb 8686 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8687 if (fatal_signal_pending(current)) {
8688 ret = -EINTR;
8689 break;
8690 }
8691
bb13ffeb
MG
8692 if (list_empty(&cc->migratepages)) {
8693 cc->nr_migratepages = 0;
c2ad7a1f
OS
8694 ret = isolate_migratepages_range(cc, pfn, end);
8695 if (ret && ret != -EAGAIN)
041d3a8c 8696 break;
c2ad7a1f 8697 pfn = cc->migrate_pfn;
041d3a8c
MN
8698 tries = 0;
8699 } else if (++tries == 5) {
c8e28b47 8700 ret = -EBUSY;
041d3a8c
MN
8701 break;
8702 }
8703
beb51eaa
MK
8704 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8705 &cc->migratepages);
8706 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8707
8b94e0b8
JK
8708 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8709 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
c8e28b47
OS
8710
8711 /*
8712 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8713 * to retry again over this error, so do the same here.
8714 */
8715 if (ret == -ENOMEM)
8716 break;
041d3a8c 8717 }
d479960e 8718
361a2a22 8719 lru_cache_enable();
2a6f5124 8720 if (ret < 0) {
a1394bdd 8721 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
8722 putback_movable_pages(&cc->migratepages);
8723 return ret;
8724 }
8725 return 0;
041d3a8c
MN
8726}
8727
8728/**
8729 * alloc_contig_range() -- tries to allocate given range of pages
8730 * @start: start PFN to allocate
8731 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8732 * @migratetype: migratetype of the underlaying pageblocks (either
8733 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8734 * in range must have the same migratetype and it must
8735 * be either of the two.
ca96b625 8736 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8737 *
8738 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8739 * aligned. The PFN range must belong to a single zone.
041d3a8c 8740 *
2c7452a0
MK
8741 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8742 * pageblocks in the range. Once isolated, the pageblocks should not
8743 * be modified by others.
041d3a8c 8744 *
a862f68a 8745 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8746 * pages which PFN is in [start, end) are allocated for the caller and
8747 * need to be freed with free_contig_range().
8748 */
0815f3d8 8749int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8750 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8751{
041d3a8c 8752 unsigned long outer_start, outer_end;
d00181b9
KS
8753 unsigned int order;
8754 int ret = 0;
041d3a8c 8755
bb13ffeb
MG
8756 struct compact_control cc = {
8757 .nr_migratepages = 0,
8758 .order = -1,
8759 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8760 .mode = MIGRATE_SYNC,
bb13ffeb 8761 .ignore_skip_hint = true,
2583d671 8762 .no_set_skip_hint = true,
7dea19f9 8763 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8764 .alloc_contig = true,
bb13ffeb
MG
8765 };
8766 INIT_LIST_HEAD(&cc.migratepages);
8767
041d3a8c
MN
8768 /*
8769 * What we do here is we mark all pageblocks in range as
8770 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8771 * have different sizes, and due to the way page allocator
8772 * work, we align the range to biggest of the two pages so
8773 * that page allocator won't try to merge buddies from
8774 * different pageblocks and change MIGRATE_ISOLATE to some
8775 * other migration type.
8776 *
8777 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8778 * migrate the pages from an unaligned range (ie. pages that
8779 * we are interested in). This will put all the pages in
8780 * range back to page allocator as MIGRATE_ISOLATE.
8781 *
8782 * When this is done, we take the pages in range from page
8783 * allocator removing them from the buddy system. This way
8784 * page allocator will never consider using them.
8785 *
8786 * This lets us mark the pageblocks back as
8787 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8788 * aligned range but not in the unaligned, original range are
8789 * put back to page allocator so that buddy can use them.
8790 */
8791
8792 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8793 pfn_max_align_up(end), migratetype, 0);
3fa0c7c7 8794 if (ret)
86a595f9 8795 return ret;
041d3a8c 8796
7612921f
VB
8797 drain_all_pages(cc.zone);
8798
8ef5849f
JK
8799 /*
8800 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8801 * So, just fall through. test_pages_isolated() has a tracepoint
8802 * which will report the busy page.
8803 *
8804 * It is possible that busy pages could become available before
8805 * the call to test_pages_isolated, and the range will actually be
8806 * allocated. So, if we fall through be sure to clear ret so that
8807 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8808 */
bb13ffeb 8809 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8810 if (ret && ret != -EBUSY)
041d3a8c 8811 goto done;
63cd4489 8812 ret =0;
041d3a8c
MN
8813
8814 /*
8815 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8816 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8817 * more, all pages in [start, end) are free in page allocator.
8818 * What we are going to do is to allocate all pages from
8819 * [start, end) (that is remove them from page allocator).
8820 *
8821 * The only problem is that pages at the beginning and at the
8822 * end of interesting range may be not aligned with pages that
8823 * page allocator holds, ie. they can be part of higher order
8824 * pages. Because of this, we reserve the bigger range and
8825 * once this is done free the pages we are not interested in.
8826 *
8827 * We don't have to hold zone->lock here because the pages are
8828 * isolated thus they won't get removed from buddy.
8829 */
8830
041d3a8c
MN
8831 order = 0;
8832 outer_start = start;
8833 while (!PageBuddy(pfn_to_page(outer_start))) {
8834 if (++order >= MAX_ORDER) {
8ef5849f
JK
8835 outer_start = start;
8836 break;
041d3a8c
MN
8837 }
8838 outer_start &= ~0UL << order;
8839 }
8840
8ef5849f 8841 if (outer_start != start) {
ab130f91 8842 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
8843
8844 /*
8845 * outer_start page could be small order buddy page and
8846 * it doesn't include start page. Adjust outer_start
8847 * in this case to report failed page properly
8848 * on tracepoint in test_pages_isolated()
8849 */
8850 if (outer_start + (1UL << order) <= start)
8851 outer_start = start;
8852 }
8853
041d3a8c 8854 /* Make sure the range is really isolated. */
756d25be 8855 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
8856 ret = -EBUSY;
8857 goto done;
8858 }
8859
49f223a9 8860 /* Grab isolated pages from freelists. */
bb13ffeb 8861 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8862 if (!outer_end) {
8863 ret = -EBUSY;
8864 goto done;
8865 }
8866
8867 /* Free head and tail (if any) */
8868 if (start != outer_start)
8869 free_contig_range(outer_start, start - outer_start);
8870 if (end != outer_end)
8871 free_contig_range(end, outer_end - end);
8872
8873done:
8874 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8875 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8876 return ret;
8877}
255f5985 8878EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
8879
8880static int __alloc_contig_pages(unsigned long start_pfn,
8881 unsigned long nr_pages, gfp_t gfp_mask)
8882{
8883 unsigned long end_pfn = start_pfn + nr_pages;
8884
8885 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8886 gfp_mask);
8887}
8888
8889static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8890 unsigned long nr_pages)
8891{
8892 unsigned long i, end_pfn = start_pfn + nr_pages;
8893 struct page *page;
8894
8895 for (i = start_pfn; i < end_pfn; i++) {
8896 page = pfn_to_online_page(i);
8897 if (!page)
8898 return false;
8899
8900 if (page_zone(page) != z)
8901 return false;
8902
8903 if (PageReserved(page))
8904 return false;
5e27a2df
AK
8905 }
8906 return true;
8907}
8908
8909static bool zone_spans_last_pfn(const struct zone *zone,
8910 unsigned long start_pfn, unsigned long nr_pages)
8911{
8912 unsigned long last_pfn = start_pfn + nr_pages - 1;
8913
8914 return zone_spans_pfn(zone, last_pfn);
8915}
8916
8917/**
8918 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8919 * @nr_pages: Number of contiguous pages to allocate
8920 * @gfp_mask: GFP mask to limit search and used during compaction
8921 * @nid: Target node
8922 * @nodemask: Mask for other possible nodes
8923 *
8924 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8925 * on an applicable zonelist to find a contiguous pfn range which can then be
8926 * tried for allocation with alloc_contig_range(). This routine is intended
8927 * for allocation requests which can not be fulfilled with the buddy allocator.
8928 *
8929 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8930 * power of two then the alignment is guaranteed to be to the given nr_pages
8931 * (e.g. 1GB request would be aligned to 1GB).
8932 *
8933 * Allocated pages can be freed with free_contig_range() or by manually calling
8934 * __free_page() on each allocated page.
8935 *
8936 * Return: pointer to contiguous pages on success, or NULL if not successful.
8937 */
8938struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8939 int nid, nodemask_t *nodemask)
8940{
8941 unsigned long ret, pfn, flags;
8942 struct zonelist *zonelist;
8943 struct zone *zone;
8944 struct zoneref *z;
8945
8946 zonelist = node_zonelist(nid, gfp_mask);
8947 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8948 gfp_zone(gfp_mask), nodemask) {
8949 spin_lock_irqsave(&zone->lock, flags);
8950
8951 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8952 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8953 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8954 /*
8955 * We release the zone lock here because
8956 * alloc_contig_range() will also lock the zone
8957 * at some point. If there's an allocation
8958 * spinning on this lock, it may win the race
8959 * and cause alloc_contig_range() to fail...
8960 */
8961 spin_unlock_irqrestore(&zone->lock, flags);
8962 ret = __alloc_contig_pages(pfn, nr_pages,
8963 gfp_mask);
8964 if (!ret)
8965 return pfn_to_page(pfn);
8966 spin_lock_irqsave(&zone->lock, flags);
8967 }
8968 pfn += nr_pages;
8969 }
8970 spin_unlock_irqrestore(&zone->lock, flags);
8971 }
8972 return NULL;
8973}
4eb0716e 8974#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8975
4eb0716e 8976void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8977{
bcc2b02f
MS
8978 unsigned int count = 0;
8979
8980 for (; nr_pages--; pfn++) {
8981 struct page *page = pfn_to_page(pfn);
8982
8983 count += page_count(page) != 1;
8984 __free_page(page);
8985 }
8986 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8987}
255f5985 8988EXPORT_SYMBOL(free_contig_range);
041d3a8c 8989
0a647f38
CS
8990/*
8991 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8992 * page high values need to be recalulated.
8993 */
4ed7e022
JL
8994void __meminit zone_pcp_update(struct zone *zone)
8995{
c8e251fa 8996 mutex_lock(&pcp_batch_high_lock);
0a8b4f1d 8997 zone_set_pageset_high_and_batch(zone);
c8e251fa 8998 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8999}
4ed7e022 9000
ec6e8c7e
VB
9001/*
9002 * Effectively disable pcplists for the zone by setting the high limit to 0
9003 * and draining all cpus. A concurrent page freeing on another CPU that's about
9004 * to put the page on pcplist will either finish before the drain and the page
9005 * will be drained, or observe the new high limit and skip the pcplist.
9006 *
9007 * Must be paired with a call to zone_pcp_enable().
9008 */
9009void zone_pcp_disable(struct zone *zone)
9010{
9011 mutex_lock(&pcp_batch_high_lock);
9012 __zone_set_pageset_high_and_batch(zone, 0, 1);
9013 __drain_all_pages(zone, true);
9014}
9015
9016void zone_pcp_enable(struct zone *zone)
9017{
9018 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9019 mutex_unlock(&pcp_batch_high_lock);
9020}
9021
340175b7
JL
9022void zone_pcp_reset(struct zone *zone)
9023{
9024 unsigned long flags;
5a883813
MK
9025 int cpu;
9026 struct per_cpu_pageset *pset;
340175b7
JL
9027
9028 /* avoid races with drain_pages() */
9029 local_irq_save(flags);
9030 if (zone->pageset != &boot_pageset) {
5a883813
MK
9031 for_each_online_cpu(cpu) {
9032 pset = per_cpu_ptr(zone->pageset, cpu);
9033 drain_zonestat(zone, pset);
9034 }
340175b7
JL
9035 free_percpu(zone->pageset);
9036 zone->pageset = &boot_pageset;
9037 }
9038 local_irq_restore(flags);
9039}
9040
6dcd73d7 9041#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9042/*
257bea71
DH
9043 * All pages in the range must be in a single zone, must not contain holes,
9044 * must span full sections, and must be isolated before calling this function.
0c0e6195 9045 */
257bea71 9046void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9047{
257bea71 9048 unsigned long pfn = start_pfn;
0c0e6195
KH
9049 struct page *page;
9050 struct zone *zone;
0ee5f4f3 9051 unsigned int order;
0c0e6195 9052 unsigned long flags;
5557c766 9053
2d070eab 9054 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9055 zone = page_zone(pfn_to_page(pfn));
9056 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9057 while (pfn < end_pfn) {
0c0e6195 9058 page = pfn_to_page(pfn);
b023f468
WC
9059 /*
9060 * The HWPoisoned page may be not in buddy system, and
9061 * page_count() is not 0.
9062 */
9063 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9064 pfn++;
b023f468
WC
9065 continue;
9066 }
aa218795
DH
9067 /*
9068 * At this point all remaining PageOffline() pages have a
9069 * reference count of 0 and can simply be skipped.
9070 */
9071 if (PageOffline(page)) {
9072 BUG_ON(page_count(page));
9073 BUG_ON(PageBuddy(page));
9074 pfn++;
aa218795
DH
9075 continue;
9076 }
b023f468 9077
0c0e6195
KH
9078 BUG_ON(page_count(page));
9079 BUG_ON(!PageBuddy(page));
ab130f91 9080 order = buddy_order(page);
6ab01363 9081 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9082 pfn += (1 << order);
9083 }
9084 spin_unlock_irqrestore(&zone->lock, flags);
9085}
9086#endif
8d22ba1b 9087
8d22ba1b
WF
9088bool is_free_buddy_page(struct page *page)
9089{
9090 struct zone *zone = page_zone(page);
9091 unsigned long pfn = page_to_pfn(page);
9092 unsigned long flags;
7aeb09f9 9093 unsigned int order;
8d22ba1b
WF
9094
9095 spin_lock_irqsave(&zone->lock, flags);
9096 for (order = 0; order < MAX_ORDER; order++) {
9097 struct page *page_head = page - (pfn & ((1 << order) - 1));
9098
ab130f91 9099 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8d22ba1b
WF
9100 break;
9101 }
9102 spin_unlock_irqrestore(&zone->lock, flags);
9103
9104 return order < MAX_ORDER;
9105}
d4ae9916
NH
9106
9107#ifdef CONFIG_MEMORY_FAILURE
9108/*
06be6ff3
OS
9109 * Break down a higher-order page in sub-pages, and keep our target out of
9110 * buddy allocator.
d4ae9916 9111 */
06be6ff3
OS
9112static void break_down_buddy_pages(struct zone *zone, struct page *page,
9113 struct page *target, int low, int high,
9114 int migratetype)
9115{
9116 unsigned long size = 1 << high;
9117 struct page *current_buddy, *next_page;
9118
9119 while (high > low) {
9120 high--;
9121 size >>= 1;
9122
9123 if (target >= &page[size]) {
9124 next_page = page + size;
9125 current_buddy = page;
9126 } else {
9127 next_page = page;
9128 current_buddy = page + size;
9129 }
9130
9131 if (set_page_guard(zone, current_buddy, high, migratetype))
9132 continue;
9133
9134 if (current_buddy != target) {
9135 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9136 set_buddy_order(current_buddy, high);
06be6ff3
OS
9137 page = next_page;
9138 }
9139 }
9140}
9141
9142/*
9143 * Take a page that will be marked as poisoned off the buddy allocator.
9144 */
9145bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9146{
9147 struct zone *zone = page_zone(page);
9148 unsigned long pfn = page_to_pfn(page);
9149 unsigned long flags;
9150 unsigned int order;
06be6ff3 9151 bool ret = false;
d4ae9916
NH
9152
9153 spin_lock_irqsave(&zone->lock, flags);
9154 for (order = 0; order < MAX_ORDER; order++) {
9155 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9156 int page_order = buddy_order(page_head);
d4ae9916 9157
ab130f91 9158 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9159 unsigned long pfn_head = page_to_pfn(page_head);
9160 int migratetype = get_pfnblock_migratetype(page_head,
9161 pfn_head);
9162
ab130f91 9163 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9164 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9165 page_order, migratetype);
06be6ff3 9166 ret = true;
d4ae9916
NH
9167 break;
9168 }
06be6ff3
OS
9169 if (page_count(page_head) > 0)
9170 break;
d4ae9916
NH
9171 }
9172 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9173 return ret;
d4ae9916
NH
9174}
9175#endif