mm/ksm: fix NULL pointer dereference when KSM zero page is enabled
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
36e66c55 77#include "page_reporting.h"
1da177e4 78
c8e251fa
CS
79/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 81#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 82
72812019
LS
83#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84DEFINE_PER_CPU(int, numa_node);
85EXPORT_PER_CPU_SYMBOL(numa_node);
86#endif
87
4518085e
KW
88DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
7aac7898
LS
90#ifdef CONFIG_HAVE_MEMORYLESS_NODES
91/*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
8b885f53
JY
106static DEFINE_MUTEX(pcpu_drain_mutex);
107static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
0ee332c1 338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
351#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
f1eca35a 453 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464#else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467#endif /* CONFIG_SPARSEMEM */
468}
469
470/**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483{
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496}
497
498unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501{
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548}
3a80a7fa 549
ee6f509c 550void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 551{
5d0f3f72
KM
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
554 migratetype = MIGRATE_UNMOVABLE;
555
b2a0ac88
MG
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558}
559
13e7444b 560#ifdef CONFIG_DEBUG_VM
c6a57e19 561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 562{
bdc8cb98
DH
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 566 unsigned long sp, start_pfn;
c6a57e19 567
bdc8cb98
DH
568 do {
569 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
108bcc96 572 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
b5e6a5a2 576 if (ret)
613813e8
DH
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
b5e6a5a2 580
bdc8cb98 581 return ret;
c6a57e19
DH
582}
583
584static int page_is_consistent(struct zone *zone, struct page *page)
585{
14e07298 586 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 587 return 0;
1da177e4 588 if (zone != page_zone(page))
c6a57e19
DH
589 return 0;
590
591 return 1;
592}
593/*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
d73d3c9f 596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
597{
598 if (page_outside_zone_boundaries(zone, page))
1da177e4 599 return 1;
c6a57e19
DH
600 if (!page_is_consistent(zone, page))
601 return 1;
602
1da177e4
LT
603 return 0;
604}
13e7444b 605#else
d73d3c9f 606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
607{
608 return 0;
609}
610#endif
611
d230dec1
KS
612static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
1da177e4 614{
d936cf9b
HD
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
ff8e8116 629 pr_alert(
1e9e6365 630 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
ff8e8116 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 640 current->comm, page_to_pfn(page));
ff8e8116
VB
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
4e462112 646 dump_page_owner(page);
3dc14741 647
4f31888c 648 print_modules();
1da177e4 649 dump_stack();
d936cf9b 650out:
8cc3b392 651 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 652 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
654}
655
1da177e4
LT
656/*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
1d798ca3 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 660 *
1d798ca3
KS
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 663 *
1d798ca3
KS
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
1da177e4 666 *
1d798ca3 667 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 668 * This usage means that zero-order pages may not be compound.
1da177e4 669 */
d98c7a09 670
9a982250 671void free_compound_page(struct page *page)
d98c7a09 672{
7ae88534 673 mem_cgroup_uncharge(page);
d85f3385 674 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
675}
676
d00181b9 677void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
678{
679 int i;
680 int nr_pages = 1 << order;
681
f1e61557 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
58a84aa9 687 set_page_count(p, 0);
1c290f64 688 p->mapping = TAIL_MAPPING;
1d798ca3 689 set_compound_head(p, page);
18229df5 690 }
53f9263b 691 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
692 if (hpage_pincount_available(page))
693 atomic_set(compound_pincount_ptr(page), 0);
18229df5
AW
694}
695
c0a32fc5
SG
696#ifdef CONFIG_DEBUG_PAGEALLOC
697unsigned int _debug_guardpage_minorder;
96a2b03f 698
8e57f8ac
VB
699bool _debug_pagealloc_enabled_early __read_mostly
700 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
701EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 702DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 703EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
704
705DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 706
031bc574
JK
707static int __init early_debug_pagealloc(char *buf)
708{
8e57f8ac 709 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
710}
711early_param("debug_pagealloc", early_debug_pagealloc);
712
8e57f8ac 713void init_debug_pagealloc(void)
e30825f1 714{
031bc574
JK
715 if (!debug_pagealloc_enabled())
716 return;
717
8e57f8ac
VB
718 static_branch_enable(&_debug_pagealloc_enabled);
719
f1c1e9f7
JK
720 if (!debug_guardpage_minorder())
721 return;
722
96a2b03f 723 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
724}
725
c0a32fc5
SG
726static int __init debug_guardpage_minorder_setup(char *buf)
727{
728 unsigned long res;
729
730 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 731 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
732 return 0;
733 }
734 _debug_guardpage_minorder = res;
1170532b 735 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
736 return 0;
737}
f1c1e9f7 738early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 739
acbc15a4 740static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 741 unsigned int order, int migratetype)
c0a32fc5 742{
e30825f1 743 if (!debug_guardpage_enabled())
acbc15a4
JK
744 return false;
745
746 if (order >= debug_guardpage_minorder())
747 return false;
e30825f1 748
3972f6bb 749 __SetPageGuard(page);
2847cf95
JK
750 INIT_LIST_HEAD(&page->lru);
751 set_page_private(page, order);
752 /* Guard pages are not available for any usage */
753 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
754
755 return true;
c0a32fc5
SG
756}
757
2847cf95
JK
758static inline void clear_page_guard(struct zone *zone, struct page *page,
759 unsigned int order, int migratetype)
c0a32fc5 760{
e30825f1
JK
761 if (!debug_guardpage_enabled())
762 return;
763
3972f6bb 764 __ClearPageGuard(page);
e30825f1 765
2847cf95
JK
766 set_page_private(page, 0);
767 if (!is_migrate_isolate(migratetype))
768 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
769}
770#else
acbc15a4
JK
771static inline bool set_page_guard(struct zone *zone, struct page *page,
772 unsigned int order, int migratetype) { return false; }
2847cf95
JK
773static inline void clear_page_guard(struct zone *zone, struct page *page,
774 unsigned int order, int migratetype) {}
c0a32fc5
SG
775#endif
776
7aeb09f9 777static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 778{
4c21e2f2 779 set_page_private(page, order);
676165a8 780 __SetPageBuddy(page);
1da177e4
LT
781}
782
1da177e4
LT
783/*
784 * This function checks whether a page is free && is the buddy
6e292b9b 785 * we can coalesce a page and its buddy if
13ad59df 786 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 787 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
788 * (c) a page and its buddy have the same order &&
789 * (d) a page and its buddy are in the same zone.
676165a8 790 *
6e292b9b
MW
791 * For recording whether a page is in the buddy system, we set PageBuddy.
792 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 793 *
676165a8 794 * For recording page's order, we use page_private(page).
1da177e4 795 */
fe925c0c 796static inline bool page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 797 unsigned int order)
1da177e4 798{
fe925c0c 799 if (!page_is_guard(buddy) && !PageBuddy(buddy))
800 return false;
4c5018ce 801
fe925c0c 802 if (page_order(buddy) != order)
803 return false;
c0a32fc5 804
fe925c0c 805 /*
806 * zone check is done late to avoid uselessly calculating
807 * zone/node ids for pages that could never merge.
808 */
809 if (page_zone_id(page) != page_zone_id(buddy))
810 return false;
d34c5fa0 811
fe925c0c 812 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
4c5018ce 813
fe925c0c 814 return true;
1da177e4
LT
815}
816
5e1f0f09
MG
817#ifdef CONFIG_COMPACTION
818static inline struct capture_control *task_capc(struct zone *zone)
819{
820 struct capture_control *capc = current->capture_control;
821
822 return capc &&
823 !(current->flags & PF_KTHREAD) &&
824 !capc->page &&
825 capc->cc->zone == zone &&
826 capc->cc->direct_compaction ? capc : NULL;
827}
828
829static inline bool
830compaction_capture(struct capture_control *capc, struct page *page,
831 int order, int migratetype)
832{
833 if (!capc || order != capc->cc->order)
834 return false;
835
836 /* Do not accidentally pollute CMA or isolated regions*/
837 if (is_migrate_cma(migratetype) ||
838 is_migrate_isolate(migratetype))
839 return false;
840
841 /*
842 * Do not let lower order allocations polluate a movable pageblock.
843 * This might let an unmovable request use a reclaimable pageblock
844 * and vice-versa but no more than normal fallback logic which can
845 * have trouble finding a high-order free page.
846 */
847 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
848 return false;
849
850 capc->page = page;
851 return true;
852}
853
854#else
855static inline struct capture_control *task_capc(struct zone *zone)
856{
857 return NULL;
858}
859
860static inline bool
861compaction_capture(struct capture_control *capc, struct page *page,
862 int order, int migratetype)
863{
864 return false;
865}
866#endif /* CONFIG_COMPACTION */
867
6ab01363
AD
868/* Used for pages not on another list */
869static inline void add_to_free_list(struct page *page, struct zone *zone,
870 unsigned int order, int migratetype)
871{
872 struct free_area *area = &zone->free_area[order];
873
874 list_add(&page->lru, &area->free_list[migratetype]);
875 area->nr_free++;
876}
877
878/* Used for pages not on another list */
879static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
880 unsigned int order, int migratetype)
881{
882 struct free_area *area = &zone->free_area[order];
883
884 list_add_tail(&page->lru, &area->free_list[migratetype]);
885 area->nr_free++;
886}
887
888/* Used for pages which are on another list */
889static inline void move_to_free_list(struct page *page, struct zone *zone,
890 unsigned int order, int migratetype)
891{
892 struct free_area *area = &zone->free_area[order];
893
894 list_move(&page->lru, &area->free_list[migratetype]);
895}
896
897static inline void del_page_from_free_list(struct page *page, struct zone *zone,
898 unsigned int order)
899{
36e66c55
AD
900 /* clear reported state and update reported page count */
901 if (page_reported(page))
902 __ClearPageReported(page);
903
6ab01363
AD
904 list_del(&page->lru);
905 __ClearPageBuddy(page);
906 set_page_private(page, 0);
907 zone->free_area[order].nr_free--;
908}
909
a2129f24
AD
910/*
911 * If this is not the largest possible page, check if the buddy
912 * of the next-highest order is free. If it is, it's possible
913 * that pages are being freed that will coalesce soon. In case,
914 * that is happening, add the free page to the tail of the list
915 * so it's less likely to be used soon and more likely to be merged
916 * as a higher order page
917 */
918static inline bool
919buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
920 struct page *page, unsigned int order)
921{
922 struct page *higher_page, *higher_buddy;
923 unsigned long combined_pfn;
924
925 if (order >= MAX_ORDER - 2)
926 return false;
927
928 if (!pfn_valid_within(buddy_pfn))
929 return false;
930
931 combined_pfn = buddy_pfn & pfn;
932 higher_page = page + (combined_pfn - pfn);
933 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
934 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
935
936 return pfn_valid_within(buddy_pfn) &&
937 page_is_buddy(higher_page, higher_buddy, order + 1);
938}
939
1da177e4
LT
940/*
941 * Freeing function for a buddy system allocator.
942 *
943 * The concept of a buddy system is to maintain direct-mapped table
944 * (containing bit values) for memory blocks of various "orders".
945 * The bottom level table contains the map for the smallest allocatable
946 * units of memory (here, pages), and each level above it describes
947 * pairs of units from the levels below, hence, "buddies".
948 * At a high level, all that happens here is marking the table entry
949 * at the bottom level available, and propagating the changes upward
950 * as necessary, plus some accounting needed to play nicely with other
951 * parts of the VM system.
952 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
953 * free pages of length of (1 << order) and marked with PageBuddy.
954 * Page's order is recorded in page_private(page) field.
1da177e4 955 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
956 * other. That is, if we allocate a small block, and both were
957 * free, the remainder of the region must be split into blocks.
1da177e4 958 * If a block is freed, and its buddy is also free, then this
5f63b720 959 * triggers coalescing into a block of larger size.
1da177e4 960 *
6d49e352 961 * -- nyc
1da177e4
LT
962 */
963
48db57f8 964static inline void __free_one_page(struct page *page,
dc4b0caf 965 unsigned long pfn,
ed0ae21d 966 struct zone *zone, unsigned int order,
36e66c55 967 int migratetype, bool report)
1da177e4 968{
a2129f24 969 struct capture_control *capc = task_capc(zone);
76741e77 970 unsigned long uninitialized_var(buddy_pfn);
a2129f24 971 unsigned long combined_pfn;
d9dddbf5 972 unsigned int max_order;
a2129f24
AD
973 struct page *buddy;
974 bool to_tail;
d9dddbf5
VB
975
976 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 977
d29bb978 978 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 979 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 980
ed0ae21d 981 VM_BUG_ON(migratetype == -1);
d9dddbf5 982 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 983 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 984
76741e77 985 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 986 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 987
d9dddbf5 988continue_merging:
3c605096 989 while (order < max_order - 1) {
5e1f0f09
MG
990 if (compaction_capture(capc, page, order, migratetype)) {
991 __mod_zone_freepage_state(zone, -(1 << order),
992 migratetype);
993 return;
994 }
76741e77
VB
995 buddy_pfn = __find_buddy_pfn(pfn, order);
996 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
997
998 if (!pfn_valid_within(buddy_pfn))
999 goto done_merging;
cb2b95e1 1000 if (!page_is_buddy(page, buddy, order))
d9dddbf5 1001 goto done_merging;
c0a32fc5
SG
1002 /*
1003 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1004 * merge with it and move up one order.
1005 */
b03641af 1006 if (page_is_guard(buddy))
2847cf95 1007 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1008 else
6ab01363 1009 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1010 combined_pfn = buddy_pfn & pfn;
1011 page = page + (combined_pfn - pfn);
1012 pfn = combined_pfn;
1da177e4
LT
1013 order++;
1014 }
d9dddbf5
VB
1015 if (max_order < MAX_ORDER) {
1016 /* If we are here, it means order is >= pageblock_order.
1017 * We want to prevent merge between freepages on isolate
1018 * pageblock and normal pageblock. Without this, pageblock
1019 * isolation could cause incorrect freepage or CMA accounting.
1020 *
1021 * We don't want to hit this code for the more frequent
1022 * low-order merging.
1023 */
1024 if (unlikely(has_isolate_pageblock(zone))) {
1025 int buddy_mt;
1026
76741e77
VB
1027 buddy_pfn = __find_buddy_pfn(pfn, order);
1028 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
1029 buddy_mt = get_pageblock_migratetype(buddy);
1030
1031 if (migratetype != buddy_mt
1032 && (is_migrate_isolate(migratetype) ||
1033 is_migrate_isolate(buddy_mt)))
1034 goto done_merging;
1035 }
1036 max_order++;
1037 goto continue_merging;
1038 }
1039
1040done_merging:
1da177e4 1041 set_page_order(page, order);
6dda9d55 1042
97500a4a 1043 if (is_shuffle_order(order))
a2129f24 1044 to_tail = shuffle_pick_tail();
97500a4a 1045 else
a2129f24 1046 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1047
a2129f24 1048 if (to_tail)
6ab01363 1049 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1050 else
6ab01363 1051 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1052
1053 /* Notify page reporting subsystem of freed page */
1054 if (report)
1055 page_reporting_notify_free(order);
1da177e4
LT
1056}
1057
7bfec6f4
MG
1058/*
1059 * A bad page could be due to a number of fields. Instead of multiple branches,
1060 * try and check multiple fields with one check. The caller must do a detailed
1061 * check if necessary.
1062 */
1063static inline bool page_expected_state(struct page *page,
1064 unsigned long check_flags)
1065{
1066 if (unlikely(atomic_read(&page->_mapcount) != -1))
1067 return false;
1068
1069 if (unlikely((unsigned long)page->mapping |
1070 page_ref_count(page) |
1071#ifdef CONFIG_MEMCG
1072 (unsigned long)page->mem_cgroup |
1073#endif
1074 (page->flags & check_flags)))
1075 return false;
1076
1077 return true;
1078}
1079
bb552ac6 1080static void free_pages_check_bad(struct page *page)
1da177e4 1081{
7bfec6f4
MG
1082 const char *bad_reason;
1083 unsigned long bad_flags;
1084
7bfec6f4
MG
1085 bad_reason = NULL;
1086 bad_flags = 0;
f0b791a3 1087
53f9263b 1088 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1089 bad_reason = "nonzero mapcount";
1090 if (unlikely(page->mapping != NULL))
1091 bad_reason = "non-NULL mapping";
fe896d18 1092 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1093 bad_reason = "nonzero _refcount";
f0b791a3
DH
1094 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1095 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1096 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1097 }
9edad6ea
JW
1098#ifdef CONFIG_MEMCG
1099 if (unlikely(page->mem_cgroup))
1100 bad_reason = "page still charged to cgroup";
1101#endif
7bfec6f4 1102 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1103}
1104
1105static inline int free_pages_check(struct page *page)
1106{
da838d4f 1107 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1108 return 0;
bb552ac6
MG
1109
1110 /* Something has gone sideways, find it */
1111 free_pages_check_bad(page);
7bfec6f4 1112 return 1;
1da177e4
LT
1113}
1114
4db7548c
MG
1115static int free_tail_pages_check(struct page *head_page, struct page *page)
1116{
1117 int ret = 1;
1118
1119 /*
1120 * We rely page->lru.next never has bit 0 set, unless the page
1121 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1122 */
1123 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1124
1125 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1126 ret = 0;
1127 goto out;
1128 }
1129 switch (page - head_page) {
1130 case 1:
4da1984e 1131 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1132 if (unlikely(compound_mapcount(page))) {
1133 bad_page(page, "nonzero compound_mapcount", 0);
1134 goto out;
1135 }
1136 break;
1137 case 2:
1138 /*
1139 * the second tail page: ->mapping is
fa3015b7 1140 * deferred_list.next -- ignore value.
4db7548c
MG
1141 */
1142 break;
1143 default:
1144 if (page->mapping != TAIL_MAPPING) {
1145 bad_page(page, "corrupted mapping in tail page", 0);
1146 goto out;
1147 }
1148 break;
1149 }
1150 if (unlikely(!PageTail(page))) {
1151 bad_page(page, "PageTail not set", 0);
1152 goto out;
1153 }
1154 if (unlikely(compound_head(page) != head_page)) {
1155 bad_page(page, "compound_head not consistent", 0);
1156 goto out;
1157 }
1158 ret = 0;
1159out:
1160 page->mapping = NULL;
1161 clear_compound_head(page);
1162 return ret;
1163}
1164
6471384a
AP
1165static void kernel_init_free_pages(struct page *page, int numpages)
1166{
1167 int i;
1168
1169 for (i = 0; i < numpages; i++)
1170 clear_highpage(page + i);
1171}
1172
e2769dbd
MG
1173static __always_inline bool free_pages_prepare(struct page *page,
1174 unsigned int order, bool check_free)
4db7548c 1175{
e2769dbd 1176 int bad = 0;
4db7548c 1177
4db7548c
MG
1178 VM_BUG_ON_PAGE(PageTail(page), page);
1179
e2769dbd 1180 trace_mm_page_free(page, order);
e2769dbd
MG
1181
1182 /*
1183 * Check tail pages before head page information is cleared to
1184 * avoid checking PageCompound for order-0 pages.
1185 */
1186 if (unlikely(order)) {
1187 bool compound = PageCompound(page);
1188 int i;
1189
1190 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1191
9a73f61b
KS
1192 if (compound)
1193 ClearPageDoubleMap(page);
e2769dbd
MG
1194 for (i = 1; i < (1 << order); i++) {
1195 if (compound)
1196 bad += free_tail_pages_check(page, page + i);
1197 if (unlikely(free_pages_check(page + i))) {
1198 bad++;
1199 continue;
1200 }
1201 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1202 }
1203 }
bda807d4 1204 if (PageMappingFlags(page))
4db7548c 1205 page->mapping = NULL;
c4159a75 1206 if (memcg_kmem_enabled() && PageKmemcg(page))
f4b00eab 1207 __memcg_kmem_uncharge_page(page, order);
e2769dbd
MG
1208 if (check_free)
1209 bad += free_pages_check(page);
1210 if (bad)
1211 return false;
4db7548c 1212
e2769dbd
MG
1213 page_cpupid_reset_last(page);
1214 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1215 reset_page_owner(page, order);
4db7548c
MG
1216
1217 if (!PageHighMem(page)) {
1218 debug_check_no_locks_freed(page_address(page),
e2769dbd 1219 PAGE_SIZE << order);
4db7548c 1220 debug_check_no_obj_freed(page_address(page),
e2769dbd 1221 PAGE_SIZE << order);
4db7548c 1222 }
6471384a
AP
1223 if (want_init_on_free())
1224 kernel_init_free_pages(page, 1 << order);
1225
e2769dbd 1226 kernel_poison_pages(page, 1 << order, 0);
234fdce8
QC
1227 /*
1228 * arch_free_page() can make the page's contents inaccessible. s390
1229 * does this. So nothing which can access the page's contents should
1230 * happen after this.
1231 */
1232 arch_free_page(page, order);
1233
8e57f8ac 1234 if (debug_pagealloc_enabled_static())
d6332692
RE
1235 kernel_map_pages(page, 1 << order, 0);
1236
3c0c12cc 1237 kasan_free_nondeferred_pages(page, order);
4db7548c 1238
4db7548c
MG
1239 return true;
1240}
1241
e2769dbd 1242#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1243/*
1244 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1245 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1246 * moved from pcp lists to free lists.
1247 */
1248static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1249{
1250 return free_pages_prepare(page, 0, true);
1251}
1252
4462b32c 1253static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1254{
8e57f8ac 1255 if (debug_pagealloc_enabled_static())
4462b32c
VB
1256 return free_pages_check(page);
1257 else
1258 return false;
e2769dbd
MG
1259}
1260#else
4462b32c
VB
1261/*
1262 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1263 * moving from pcp lists to free list in order to reduce overhead. With
1264 * debug_pagealloc enabled, they are checked also immediately when being freed
1265 * to the pcp lists.
1266 */
e2769dbd
MG
1267static bool free_pcp_prepare(struct page *page)
1268{
8e57f8ac 1269 if (debug_pagealloc_enabled_static())
4462b32c
VB
1270 return free_pages_prepare(page, 0, true);
1271 else
1272 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1273}
1274
4db7548c
MG
1275static bool bulkfree_pcp_prepare(struct page *page)
1276{
1277 return free_pages_check(page);
1278}
1279#endif /* CONFIG_DEBUG_VM */
1280
97334162
AL
1281static inline void prefetch_buddy(struct page *page)
1282{
1283 unsigned long pfn = page_to_pfn(page);
1284 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1285 struct page *buddy = page + (buddy_pfn - pfn);
1286
1287 prefetch(buddy);
1288}
1289
1da177e4 1290/*
5f8dcc21 1291 * Frees a number of pages from the PCP lists
1da177e4 1292 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1293 * count is the number of pages to free.
1da177e4
LT
1294 *
1295 * If the zone was previously in an "all pages pinned" state then look to
1296 * see if this freeing clears that state.
1297 *
1298 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1299 * pinned" detection logic.
1300 */
5f8dcc21
MG
1301static void free_pcppages_bulk(struct zone *zone, int count,
1302 struct per_cpu_pages *pcp)
1da177e4 1303{
5f8dcc21 1304 int migratetype = 0;
a6f9edd6 1305 int batch_free = 0;
97334162 1306 int prefetch_nr = 0;
3777999d 1307 bool isolated_pageblocks;
0a5f4e5b
AL
1308 struct page *page, *tmp;
1309 LIST_HEAD(head);
f2260e6b 1310
e5b31ac2 1311 while (count) {
5f8dcc21
MG
1312 struct list_head *list;
1313
1314 /*
a6f9edd6
MG
1315 * Remove pages from lists in a round-robin fashion. A
1316 * batch_free count is maintained that is incremented when an
1317 * empty list is encountered. This is so more pages are freed
1318 * off fuller lists instead of spinning excessively around empty
1319 * lists
5f8dcc21
MG
1320 */
1321 do {
a6f9edd6 1322 batch_free++;
5f8dcc21
MG
1323 if (++migratetype == MIGRATE_PCPTYPES)
1324 migratetype = 0;
1325 list = &pcp->lists[migratetype];
1326 } while (list_empty(list));
48db57f8 1327
1d16871d
NK
1328 /* This is the only non-empty list. Free them all. */
1329 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1330 batch_free = count;
1d16871d 1331
a6f9edd6 1332 do {
a16601c5 1333 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1334 /* must delete to avoid corrupting pcp list */
a6f9edd6 1335 list_del(&page->lru);
77ba9062 1336 pcp->count--;
aa016d14 1337
4db7548c
MG
1338 if (bulkfree_pcp_prepare(page))
1339 continue;
1340
0a5f4e5b 1341 list_add_tail(&page->lru, &head);
97334162
AL
1342
1343 /*
1344 * We are going to put the page back to the global
1345 * pool, prefetch its buddy to speed up later access
1346 * under zone->lock. It is believed the overhead of
1347 * an additional test and calculating buddy_pfn here
1348 * can be offset by reduced memory latency later. To
1349 * avoid excessive prefetching due to large count, only
1350 * prefetch buddy for the first pcp->batch nr of pages.
1351 */
1352 if (prefetch_nr++ < pcp->batch)
1353 prefetch_buddy(page);
e5b31ac2 1354 } while (--count && --batch_free && !list_empty(list));
1da177e4 1355 }
0a5f4e5b
AL
1356
1357 spin_lock(&zone->lock);
1358 isolated_pageblocks = has_isolate_pageblock(zone);
1359
1360 /*
1361 * Use safe version since after __free_one_page(),
1362 * page->lru.next will not point to original list.
1363 */
1364 list_for_each_entry_safe(page, tmp, &head, lru) {
1365 int mt = get_pcppage_migratetype(page);
1366 /* MIGRATE_ISOLATE page should not go to pcplists */
1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368 /* Pageblock could have been isolated meanwhile */
1369 if (unlikely(isolated_pageblocks))
1370 mt = get_pageblock_migratetype(page);
1371
36e66c55 1372 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
0a5f4e5b
AL
1373 trace_mm_page_pcpu_drain(page, 0, mt);
1374 }
d34b0733 1375 spin_unlock(&zone->lock);
1da177e4
LT
1376}
1377
dc4b0caf
MG
1378static void free_one_page(struct zone *zone,
1379 struct page *page, unsigned long pfn,
7aeb09f9 1380 unsigned int order,
ed0ae21d 1381 int migratetype)
1da177e4 1382{
d34b0733 1383 spin_lock(&zone->lock);
ad53f92e
JK
1384 if (unlikely(has_isolate_pageblock(zone) ||
1385 is_migrate_isolate(migratetype))) {
1386 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1387 }
36e66c55 1388 __free_one_page(page, pfn, zone, order, migratetype, true);
d34b0733 1389 spin_unlock(&zone->lock);
48db57f8
NP
1390}
1391
1e8ce83c 1392static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1393 unsigned long zone, int nid)
1e8ce83c 1394{
d0dc12e8 1395 mm_zero_struct_page(page);
1e8ce83c 1396 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1397 init_page_count(page);
1398 page_mapcount_reset(page);
1399 page_cpupid_reset_last(page);
2813b9c0 1400 page_kasan_tag_reset(page);
1e8ce83c 1401
1e8ce83c
RH
1402 INIT_LIST_HEAD(&page->lru);
1403#ifdef WANT_PAGE_VIRTUAL
1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 if (!is_highmem_idx(zone))
1406 set_page_address(page, __va(pfn << PAGE_SHIFT));
1407#endif
1408}
1409
7e18adb4 1410#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1411static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1412{
1413 pg_data_t *pgdat;
1414 int nid, zid;
1415
1416 if (!early_page_uninitialised(pfn))
1417 return;
1418
1419 nid = early_pfn_to_nid(pfn);
1420 pgdat = NODE_DATA(nid);
1421
1422 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423 struct zone *zone = &pgdat->node_zones[zid];
1424
1425 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426 break;
1427 }
d0dc12e8 1428 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1429}
1430#else
1431static inline void init_reserved_page(unsigned long pfn)
1432{
1433}
1434#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435
92923ca3
NZ
1436/*
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1441 */
4b50bcc7 1442void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1443{
1444 unsigned long start_pfn = PFN_DOWN(start);
1445 unsigned long end_pfn = PFN_UP(end);
1446
7e18adb4
MG
1447 for (; start_pfn < end_pfn; start_pfn++) {
1448 if (pfn_valid(start_pfn)) {
1449 struct page *page = pfn_to_page(start_pfn);
1450
1451 init_reserved_page(start_pfn);
1d798ca3
KS
1452
1453 /* Avoid false-positive PageTail() */
1454 INIT_LIST_HEAD(&page->lru);
1455
d483da5b
AD
1456 /*
1457 * no need for atomic set_bit because the struct
1458 * page is not visible yet so nobody should
1459 * access it yet.
1460 */
1461 __SetPageReserved(page);
7e18adb4
MG
1462 }
1463 }
92923ca3
NZ
1464}
1465
ec95f53a
KM
1466static void __free_pages_ok(struct page *page, unsigned int order)
1467{
d34b0733 1468 unsigned long flags;
95e34412 1469 int migratetype;
dc4b0caf 1470 unsigned long pfn = page_to_pfn(page);
ec95f53a 1471
e2769dbd 1472 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1473 return;
1474
cfc47a28 1475 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1476 local_irq_save(flags);
1477 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1478 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1479 local_irq_restore(flags);
1da177e4
LT
1480}
1481
a9cd410a 1482void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1483{
c3993076 1484 unsigned int nr_pages = 1 << order;
e2d0bd2b 1485 struct page *p = page;
c3993076 1486 unsigned int loop;
a226f6c8 1487
e2d0bd2b
YL
1488 prefetchw(p);
1489 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 prefetchw(p + 1);
c3993076
JW
1491 __ClearPageReserved(p);
1492 set_page_count(p, 0);
a226f6c8 1493 }
e2d0bd2b
YL
1494 __ClearPageReserved(p);
1495 set_page_count(p, 0);
c3993076 1496
9705bea5 1497 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1498 set_page_refcounted(page);
1499 __free_pages(page, order);
a226f6c8
DH
1500}
1501
75a592a4
MG
1502#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1503 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1504
75a592a4
MG
1505static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1506
1507int __meminit early_pfn_to_nid(unsigned long pfn)
1508{
7ace9917 1509 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1510 int nid;
1511
7ace9917 1512 spin_lock(&early_pfn_lock);
75a592a4 1513 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1514 if (nid < 0)
e4568d38 1515 nid = first_online_node;
7ace9917
MG
1516 spin_unlock(&early_pfn_lock);
1517
1518 return nid;
75a592a4
MG
1519}
1520#endif
1521
1522#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1523/* Only safe to use early in boot when initialisation is single-threaded */
1524static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1525{
1526 int nid;
1527
56ec43d8 1528 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1529 if (nid >= 0 && nid != node)
1530 return false;
1531 return true;
1532}
1533
75a592a4 1534#else
75a592a4
MG
1535static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1536{
1537 return true;
1538}
75a592a4
MG
1539#endif
1540
1541
7c2ee349 1542void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1543 unsigned int order)
1544{
1545 if (early_page_uninitialised(pfn))
1546 return;
a9cd410a 1547 __free_pages_core(page, order);
3a80a7fa
MG
1548}
1549
7cf91a98
JK
1550/*
1551 * Check that the whole (or subset of) a pageblock given by the interval of
1552 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1553 * with the migration of free compaction scanner. The scanners then need to
1554 * use only pfn_valid_within() check for arches that allow holes within
1555 * pageblocks.
1556 *
1557 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1558 *
1559 * It's possible on some configurations to have a setup like node0 node1 node0
1560 * i.e. it's possible that all pages within a zones range of pages do not
1561 * belong to a single zone. We assume that a border between node0 and node1
1562 * can occur within a single pageblock, but not a node0 node1 node0
1563 * interleaving within a single pageblock. It is therefore sufficient to check
1564 * the first and last page of a pageblock and avoid checking each individual
1565 * page in a pageblock.
1566 */
1567struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1568 unsigned long end_pfn, struct zone *zone)
1569{
1570 struct page *start_page;
1571 struct page *end_page;
1572
1573 /* end_pfn is one past the range we are checking */
1574 end_pfn--;
1575
1576 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1577 return NULL;
1578
2d070eab
MH
1579 start_page = pfn_to_online_page(start_pfn);
1580 if (!start_page)
1581 return NULL;
7cf91a98
JK
1582
1583 if (page_zone(start_page) != zone)
1584 return NULL;
1585
1586 end_page = pfn_to_page(end_pfn);
1587
1588 /* This gives a shorter code than deriving page_zone(end_page) */
1589 if (page_zone_id(start_page) != page_zone_id(end_page))
1590 return NULL;
1591
1592 return start_page;
1593}
1594
1595void set_zone_contiguous(struct zone *zone)
1596{
1597 unsigned long block_start_pfn = zone->zone_start_pfn;
1598 unsigned long block_end_pfn;
1599
1600 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1601 for (; block_start_pfn < zone_end_pfn(zone);
1602 block_start_pfn = block_end_pfn,
1603 block_end_pfn += pageblock_nr_pages) {
1604
1605 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1606
1607 if (!__pageblock_pfn_to_page(block_start_pfn,
1608 block_end_pfn, zone))
1609 return;
1610 }
1611
1612 /* We confirm that there is no hole */
1613 zone->contiguous = true;
1614}
1615
1616void clear_zone_contiguous(struct zone *zone)
1617{
1618 zone->contiguous = false;
1619}
1620
7e18adb4 1621#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1622static void __init deferred_free_range(unsigned long pfn,
1623 unsigned long nr_pages)
a4de83dd 1624{
2f47a91f
PT
1625 struct page *page;
1626 unsigned long i;
a4de83dd 1627
2f47a91f 1628 if (!nr_pages)
a4de83dd
MG
1629 return;
1630
2f47a91f
PT
1631 page = pfn_to_page(pfn);
1632
a4de83dd 1633 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1634 if (nr_pages == pageblock_nr_pages &&
1635 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1636 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1637 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1638 return;
1639 }
1640
e780149b
XQ
1641 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1642 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1643 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1644 __free_pages_core(page, 0);
e780149b 1645 }
a4de83dd
MG
1646}
1647
d3cd131d
NS
1648/* Completion tracking for deferred_init_memmap() threads */
1649static atomic_t pgdat_init_n_undone __initdata;
1650static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1651
1652static inline void __init pgdat_init_report_one_done(void)
1653{
1654 if (atomic_dec_and_test(&pgdat_init_n_undone))
1655 complete(&pgdat_init_all_done_comp);
1656}
0e1cc95b 1657
2f47a91f 1658/*
80b1f41c
PT
1659 * Returns true if page needs to be initialized or freed to buddy allocator.
1660 *
1661 * First we check if pfn is valid on architectures where it is possible to have
1662 * holes within pageblock_nr_pages. On systems where it is not possible, this
1663 * function is optimized out.
1664 *
1665 * Then, we check if a current large page is valid by only checking the validity
1666 * of the head pfn.
2f47a91f 1667 */
56ec43d8 1668static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1669{
80b1f41c
PT
1670 if (!pfn_valid_within(pfn))
1671 return false;
1672 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1673 return false;
80b1f41c
PT
1674 return true;
1675}
2f47a91f 1676
80b1f41c
PT
1677/*
1678 * Free pages to buddy allocator. Try to free aligned pages in
1679 * pageblock_nr_pages sizes.
1680 */
56ec43d8 1681static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1682 unsigned long end_pfn)
1683{
80b1f41c
PT
1684 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1685 unsigned long nr_free = 0;
2f47a91f 1686
80b1f41c 1687 for (; pfn < end_pfn; pfn++) {
56ec43d8 1688 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1689 deferred_free_range(pfn - nr_free, nr_free);
1690 nr_free = 0;
1691 } else if (!(pfn & nr_pgmask)) {
1692 deferred_free_range(pfn - nr_free, nr_free);
1693 nr_free = 1;
3a2d7fa8 1694 touch_nmi_watchdog();
80b1f41c
PT
1695 } else {
1696 nr_free++;
1697 }
1698 }
1699 /* Free the last block of pages to allocator */
1700 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1701}
1702
80b1f41c
PT
1703/*
1704 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1705 * by performing it only once every pageblock_nr_pages.
1706 * Return number of pages initialized.
1707 */
56ec43d8 1708static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1709 unsigned long pfn,
1710 unsigned long end_pfn)
2f47a91f 1711{
2f47a91f 1712 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1713 int nid = zone_to_nid(zone);
2f47a91f 1714 unsigned long nr_pages = 0;
56ec43d8 1715 int zid = zone_idx(zone);
2f47a91f 1716 struct page *page = NULL;
2f47a91f 1717
80b1f41c 1718 for (; pfn < end_pfn; pfn++) {
56ec43d8 1719 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1720 page = NULL;
2f47a91f 1721 continue;
80b1f41c 1722 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1723 page = pfn_to_page(pfn);
3a2d7fa8 1724 touch_nmi_watchdog();
80b1f41c
PT
1725 } else {
1726 page++;
2f47a91f 1727 }
d0dc12e8 1728 __init_single_page(page, pfn, zid, nid);
80b1f41c 1729 nr_pages++;
2f47a91f 1730 }
80b1f41c 1731 return (nr_pages);
2f47a91f
PT
1732}
1733
0e56acae
AD
1734/*
1735 * This function is meant to pre-load the iterator for the zone init.
1736 * Specifically it walks through the ranges until we are caught up to the
1737 * first_init_pfn value and exits there. If we never encounter the value we
1738 * return false indicating there are no valid ranges left.
1739 */
1740static bool __init
1741deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1742 unsigned long *spfn, unsigned long *epfn,
1743 unsigned long first_init_pfn)
1744{
1745 u64 j;
1746
1747 /*
1748 * Start out by walking through the ranges in this zone that have
1749 * already been initialized. We don't need to do anything with them
1750 * so we just need to flush them out of the system.
1751 */
1752 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1753 if (*epfn <= first_init_pfn)
1754 continue;
1755 if (*spfn < first_init_pfn)
1756 *spfn = first_init_pfn;
1757 *i = j;
1758 return true;
1759 }
1760
1761 return false;
1762}
1763
1764/*
1765 * Initialize and free pages. We do it in two loops: first we initialize
1766 * struct page, then free to buddy allocator, because while we are
1767 * freeing pages we can access pages that are ahead (computing buddy
1768 * page in __free_one_page()).
1769 *
1770 * In order to try and keep some memory in the cache we have the loop
1771 * broken along max page order boundaries. This way we will not cause
1772 * any issues with the buddy page computation.
1773 */
1774static unsigned long __init
1775deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1776 unsigned long *end_pfn)
1777{
1778 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1779 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1780 unsigned long nr_pages = 0;
1781 u64 j = *i;
1782
1783 /* First we loop through and initialize the page values */
1784 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1785 unsigned long t;
1786
1787 if (mo_pfn <= *start_pfn)
1788 break;
1789
1790 t = min(mo_pfn, *end_pfn);
1791 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1792
1793 if (mo_pfn < *end_pfn) {
1794 *start_pfn = mo_pfn;
1795 break;
1796 }
1797 }
1798
1799 /* Reset values and now loop through freeing pages as needed */
1800 swap(j, *i);
1801
1802 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1803 unsigned long t;
1804
1805 if (mo_pfn <= spfn)
1806 break;
1807
1808 t = min(mo_pfn, epfn);
1809 deferred_free_pages(spfn, t);
1810
1811 if (mo_pfn <= epfn)
1812 break;
1813 }
1814
1815 return nr_pages;
1816}
1817
7e18adb4 1818/* Initialise remaining memory on a node */
0e1cc95b 1819static int __init deferred_init_memmap(void *data)
7e18adb4 1820{
0e1cc95b 1821 pg_data_t *pgdat = data;
0e56acae
AD
1822 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1823 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1824 unsigned long first_init_pfn, flags;
7e18adb4 1825 unsigned long start = jiffies;
7e18adb4 1826 struct zone *zone;
0e56acae 1827 int zid;
2f47a91f 1828 u64 i;
7e18adb4 1829
3a2d7fa8
PT
1830 /* Bind memory initialisation thread to a local node if possible */
1831 if (!cpumask_empty(cpumask))
1832 set_cpus_allowed_ptr(current, cpumask);
1833
1834 pgdat_resize_lock(pgdat, &flags);
1835 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1836 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1837 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1838 pgdat_init_report_one_done();
0e1cc95b
MG
1839 return 0;
1840 }
1841
7e18adb4
MG
1842 /* Sanity check boundaries */
1843 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1844 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1845 pgdat->first_deferred_pfn = ULONG_MAX;
1846
1847 /* Only the highest zone is deferred so find it */
1848 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1849 zone = pgdat->node_zones + zid;
1850 if (first_init_pfn < zone_end_pfn(zone))
1851 break;
1852 }
0e56acae
AD
1853
1854 /* If the zone is empty somebody else may have cleared out the zone */
1855 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1856 first_init_pfn))
1857 goto zone_empty;
7e18adb4 1858
80b1f41c 1859 /*
0e56acae
AD
1860 * Initialize and free pages in MAX_ORDER sized increments so
1861 * that we can avoid introducing any issues with the buddy
1862 * allocator.
80b1f41c 1863 */
0e56acae
AD
1864 while (spfn < epfn)
1865 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1866zone_empty:
3a2d7fa8 1867 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1868
1869 /* Sanity check that the next zone really is unpopulated */
1870 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1871
837566e7
AD
1872 pr_info("node %d initialised, %lu pages in %ums\n",
1873 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1874
1875 pgdat_init_report_one_done();
0e1cc95b
MG
1876 return 0;
1877}
c9e97a19 1878
c9e97a19
PT
1879/*
1880 * If this zone has deferred pages, try to grow it by initializing enough
1881 * deferred pages to satisfy the allocation specified by order, rounded up to
1882 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1883 * of SECTION_SIZE bytes by initializing struct pages in increments of
1884 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1885 *
1886 * Return true when zone was grown, otherwise return false. We return true even
1887 * when we grow less than requested, to let the caller decide if there are
1888 * enough pages to satisfy the allocation.
1889 *
1890 * Note: We use noinline because this function is needed only during boot, and
1891 * it is called from a __ref function _deferred_grow_zone. This way we are
1892 * making sure that it is not inlined into permanent text section.
1893 */
1894static noinline bool __init
1895deferred_grow_zone(struct zone *zone, unsigned int order)
1896{
c9e97a19 1897 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1898 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1899 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1900 unsigned long spfn, epfn, flags;
1901 unsigned long nr_pages = 0;
c9e97a19
PT
1902 u64 i;
1903
1904 /* Only the last zone may have deferred pages */
1905 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1906 return false;
1907
1908 pgdat_resize_lock(pgdat, &flags);
1909
1910 /*
1911 * If deferred pages have been initialized while we were waiting for
1912 * the lock, return true, as the zone was grown. The caller will retry
1913 * this zone. We won't return to this function since the caller also
1914 * has this static branch.
1915 */
1916 if (!static_branch_unlikely(&deferred_pages)) {
1917 pgdat_resize_unlock(pgdat, &flags);
1918 return true;
1919 }
1920
1921 /*
1922 * If someone grew this zone while we were waiting for spinlock, return
1923 * true, as there might be enough pages already.
1924 */
1925 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1926 pgdat_resize_unlock(pgdat, &flags);
1927 return true;
1928 }
1929
0e56acae
AD
1930 /* If the zone is empty somebody else may have cleared out the zone */
1931 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1932 first_deferred_pfn)) {
1933 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1934 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1935 /* Retry only once. */
1936 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1937 }
1938
0e56acae
AD
1939 /*
1940 * Initialize and free pages in MAX_ORDER sized increments so
1941 * that we can avoid introducing any issues with the buddy
1942 * allocator.
1943 */
1944 while (spfn < epfn) {
1945 /* update our first deferred PFN for this section */
1946 first_deferred_pfn = spfn;
1947
1948 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1949
0e56acae
AD
1950 /* We should only stop along section boundaries */
1951 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1952 continue;
c9e97a19 1953
0e56acae 1954 /* If our quota has been met we can stop here */
c9e97a19
PT
1955 if (nr_pages >= nr_pages_needed)
1956 break;
1957 }
1958
0e56acae 1959 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1960 pgdat_resize_unlock(pgdat, &flags);
1961
1962 return nr_pages > 0;
1963}
1964
1965/*
1966 * deferred_grow_zone() is __init, but it is called from
1967 * get_page_from_freelist() during early boot until deferred_pages permanently
1968 * disables this call. This is why we have refdata wrapper to avoid warning,
1969 * and to ensure that the function body gets unloaded.
1970 */
1971static bool __ref
1972_deferred_grow_zone(struct zone *zone, unsigned int order)
1973{
1974 return deferred_grow_zone(zone, order);
1975}
1976
7cf91a98 1977#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1978
1979void __init page_alloc_init_late(void)
1980{
7cf91a98 1981 struct zone *zone;
e900a918 1982 int nid;
7cf91a98
JK
1983
1984#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1985
d3cd131d
NS
1986 /* There will be num_node_state(N_MEMORY) threads */
1987 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1988 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1989 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1990 }
1991
1992 /* Block until all are initialised */
d3cd131d 1993 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1994
3e8fc007
MG
1995 /*
1996 * The number of managed pages has changed due to the initialisation
1997 * so the pcpu batch and high limits needs to be updated or the limits
1998 * will be artificially small.
1999 */
2000 for_each_populated_zone(zone)
2001 zone_pcp_update(zone);
2002
c9e97a19
PT
2003 /*
2004 * We initialized the rest of the deferred pages. Permanently disable
2005 * on-demand struct page initialization.
2006 */
2007 static_branch_disable(&deferred_pages);
2008
4248b0da
MG
2009 /* Reinit limits that are based on free pages after the kernel is up */
2010 files_maxfiles_init();
7cf91a98 2011#endif
350e88ba 2012
3010f876
PT
2013 /* Discard memblock private memory */
2014 memblock_discard();
7cf91a98 2015
e900a918
DW
2016 for_each_node_state(nid, N_MEMORY)
2017 shuffle_free_memory(NODE_DATA(nid));
2018
7cf91a98
JK
2019 for_each_populated_zone(zone)
2020 set_zone_contiguous(zone);
7e18adb4 2021}
7e18adb4 2022
47118af0 2023#ifdef CONFIG_CMA
9cf510a5 2024/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2025void __init init_cma_reserved_pageblock(struct page *page)
2026{
2027 unsigned i = pageblock_nr_pages;
2028 struct page *p = page;
2029
2030 do {
2031 __ClearPageReserved(p);
2032 set_page_count(p, 0);
d883c6cf 2033 } while (++p, --i);
47118af0 2034
47118af0 2035 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
2036
2037 if (pageblock_order >= MAX_ORDER) {
2038 i = pageblock_nr_pages;
2039 p = page;
2040 do {
2041 set_page_refcounted(p);
2042 __free_pages(p, MAX_ORDER - 1);
2043 p += MAX_ORDER_NR_PAGES;
2044 } while (i -= MAX_ORDER_NR_PAGES);
2045 } else {
2046 set_page_refcounted(page);
2047 __free_pages(page, pageblock_order);
2048 }
2049
3dcc0571 2050 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
2051}
2052#endif
1da177e4
LT
2053
2054/*
2055 * The order of subdivision here is critical for the IO subsystem.
2056 * Please do not alter this order without good reasons and regression
2057 * testing. Specifically, as large blocks of memory are subdivided,
2058 * the order in which smaller blocks are delivered depends on the order
2059 * they're subdivided in this function. This is the primary factor
2060 * influencing the order in which pages are delivered to the IO
2061 * subsystem according to empirical testing, and this is also justified
2062 * by considering the behavior of a buddy system containing a single
2063 * large block of memory acted on by a series of small allocations.
2064 * This behavior is a critical factor in sglist merging's success.
2065 *
6d49e352 2066 * -- nyc
1da177e4 2067 */
085cc7d5 2068static inline void expand(struct zone *zone, struct page *page,
6ab01363 2069 int low, int high, int migratetype)
1da177e4
LT
2070{
2071 unsigned long size = 1 << high;
2072
2073 while (high > low) {
1da177e4
LT
2074 high--;
2075 size >>= 1;
309381fe 2076 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2077
acbc15a4
JK
2078 /*
2079 * Mark as guard pages (or page), that will allow to
2080 * merge back to allocator when buddy will be freed.
2081 * Corresponding page table entries will not be touched,
2082 * pages will stay not present in virtual address space
2083 */
2084 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2085 continue;
acbc15a4 2086
6ab01363 2087 add_to_free_list(&page[size], zone, high, migratetype);
1da177e4
LT
2088 set_page_order(&page[size], high);
2089 }
1da177e4
LT
2090}
2091
4e611801 2092static void check_new_page_bad(struct page *page)
1da177e4 2093{
4e611801
VB
2094 const char *bad_reason = NULL;
2095 unsigned long bad_flags = 0;
7bfec6f4 2096
53f9263b 2097 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
2098 bad_reason = "nonzero mapcount";
2099 if (unlikely(page->mapping != NULL))
2100 bad_reason = "non-NULL mapping";
fe896d18 2101 if (unlikely(page_ref_count(page) != 0))
136ac591 2102 bad_reason = "nonzero _refcount";
f4c18e6f
NH
2103 if (unlikely(page->flags & __PG_HWPOISON)) {
2104 bad_reason = "HWPoisoned (hardware-corrupted)";
2105 bad_flags = __PG_HWPOISON;
e570f56c
NH
2106 /* Don't complain about hwpoisoned pages */
2107 page_mapcount_reset(page); /* remove PageBuddy */
2108 return;
f4c18e6f 2109 }
f0b791a3
DH
2110 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2111 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2112 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2113 }
9edad6ea
JW
2114#ifdef CONFIG_MEMCG
2115 if (unlikely(page->mem_cgroup))
2116 bad_reason = "page still charged to cgroup";
2117#endif
4e611801
VB
2118 bad_page(page, bad_reason, bad_flags);
2119}
2120
2121/*
2122 * This page is about to be returned from the page allocator
2123 */
2124static inline int check_new_page(struct page *page)
2125{
2126 if (likely(page_expected_state(page,
2127 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2128 return 0;
2129
2130 check_new_page_bad(page);
2131 return 1;
2a7684a2
WF
2132}
2133
bd33ef36 2134static inline bool free_pages_prezeroed(void)
1414c7f4 2135{
6471384a
AP
2136 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2137 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2138}
2139
479f854a 2140#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2141/*
2142 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2143 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2144 * also checked when pcp lists are refilled from the free lists.
2145 */
2146static inline bool check_pcp_refill(struct page *page)
479f854a 2147{
8e57f8ac 2148 if (debug_pagealloc_enabled_static())
4462b32c
VB
2149 return check_new_page(page);
2150 else
2151 return false;
479f854a
MG
2152}
2153
4462b32c 2154static inline bool check_new_pcp(struct page *page)
479f854a
MG
2155{
2156 return check_new_page(page);
2157}
2158#else
4462b32c
VB
2159/*
2160 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2161 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2162 * enabled, they are also checked when being allocated from the pcp lists.
2163 */
2164static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2165{
2166 return check_new_page(page);
2167}
4462b32c 2168static inline bool check_new_pcp(struct page *page)
479f854a 2169{
8e57f8ac 2170 if (debug_pagealloc_enabled_static())
4462b32c
VB
2171 return check_new_page(page);
2172 else
2173 return false;
479f854a
MG
2174}
2175#endif /* CONFIG_DEBUG_VM */
2176
2177static bool check_new_pages(struct page *page, unsigned int order)
2178{
2179 int i;
2180 for (i = 0; i < (1 << order); i++) {
2181 struct page *p = page + i;
2182
2183 if (unlikely(check_new_page(p)))
2184 return true;
2185 }
2186
2187 return false;
2188}
2189
46f24fd8
JK
2190inline void post_alloc_hook(struct page *page, unsigned int order,
2191 gfp_t gfp_flags)
2192{
2193 set_page_private(page, 0);
2194 set_page_refcounted(page);
2195
2196 arch_alloc_page(page, order);
8e57f8ac 2197 if (debug_pagealloc_enabled_static())
d6332692 2198 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2199 kasan_alloc_pages(page, order);
4117992d 2200 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2201 set_page_owner(page, order, gfp_flags);
2202}
2203
479f854a 2204static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2205 unsigned int alloc_flags)
2a7684a2 2206{
46f24fd8 2207 post_alloc_hook(page, order, gfp_flags);
17cf4406 2208
6471384a
AP
2209 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2210 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2211
2212 if (order && (gfp_flags & __GFP_COMP))
2213 prep_compound_page(page, order);
2214
75379191 2215 /*
2f064f34 2216 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2217 * allocate the page. The expectation is that the caller is taking
2218 * steps that will free more memory. The caller should avoid the page
2219 * being used for !PFMEMALLOC purposes.
2220 */
2f064f34
MH
2221 if (alloc_flags & ALLOC_NO_WATERMARKS)
2222 set_page_pfmemalloc(page);
2223 else
2224 clear_page_pfmemalloc(page);
1da177e4
LT
2225}
2226
56fd56b8
MG
2227/*
2228 * Go through the free lists for the given migratetype and remove
2229 * the smallest available page from the freelists
2230 */
85ccc8fa 2231static __always_inline
728ec980 2232struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2233 int migratetype)
2234{
2235 unsigned int current_order;
b8af2941 2236 struct free_area *area;
56fd56b8
MG
2237 struct page *page;
2238
2239 /* Find a page of the appropriate size in the preferred list */
2240 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2241 area = &(zone->free_area[current_order]);
b03641af 2242 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2243 if (!page)
2244 continue;
6ab01363
AD
2245 del_page_from_free_list(page, zone, current_order);
2246 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2247 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2248 return page;
2249 }
2250
2251 return NULL;
2252}
2253
2254
b2a0ac88
MG
2255/*
2256 * This array describes the order lists are fallen back to when
2257 * the free lists for the desirable migrate type are depleted
2258 */
47118af0 2259static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2260 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2261 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2262 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2263#ifdef CONFIG_CMA
974a786e 2264 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2265#endif
194159fb 2266#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2267 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2268#endif
b2a0ac88
MG
2269};
2270
dc67647b 2271#ifdef CONFIG_CMA
85ccc8fa 2272static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2273 unsigned int order)
2274{
2275 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2276}
2277#else
2278static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2279 unsigned int order) { return NULL; }
2280#endif
2281
c361be55
MG
2282/*
2283 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2284 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2285 * boundary. If alignment is required, use move_freepages_block()
2286 */
02aa0cdd 2287static int move_freepages(struct zone *zone,
b69a7288 2288 struct page *start_page, struct page *end_page,
02aa0cdd 2289 int migratetype, int *num_movable)
c361be55
MG
2290{
2291 struct page *page;
d00181b9 2292 unsigned int order;
d100313f 2293 int pages_moved = 0;
c361be55 2294
c361be55
MG
2295 for (page = start_page; page <= end_page;) {
2296 if (!pfn_valid_within(page_to_pfn(page))) {
2297 page++;
2298 continue;
2299 }
2300
2301 if (!PageBuddy(page)) {
02aa0cdd
VB
2302 /*
2303 * We assume that pages that could be isolated for
2304 * migration are movable. But we don't actually try
2305 * isolating, as that would be expensive.
2306 */
2307 if (num_movable &&
2308 (PageLRU(page) || __PageMovable(page)))
2309 (*num_movable)++;
2310
c361be55
MG
2311 page++;
2312 continue;
2313 }
2314
cd961038
DR
2315 /* Make sure we are not inadvertently changing nodes */
2316 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2317 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2318
c361be55 2319 order = page_order(page);
6ab01363 2320 move_to_free_list(page, zone, order, migratetype);
c361be55 2321 page += 1 << order;
d100313f 2322 pages_moved += 1 << order;
c361be55
MG
2323 }
2324
d100313f 2325 return pages_moved;
c361be55
MG
2326}
2327
ee6f509c 2328int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2329 int migratetype, int *num_movable)
c361be55
MG
2330{
2331 unsigned long start_pfn, end_pfn;
2332 struct page *start_page, *end_page;
2333
4a222127
DR
2334 if (num_movable)
2335 *num_movable = 0;
2336
c361be55 2337 start_pfn = page_to_pfn(page);
d9c23400 2338 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2339 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2340 end_page = start_page + pageblock_nr_pages - 1;
2341 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2342
2343 /* Do not cross zone boundaries */
108bcc96 2344 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2345 start_page = page;
108bcc96 2346 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2347 return 0;
2348
02aa0cdd
VB
2349 return move_freepages(zone, start_page, end_page, migratetype,
2350 num_movable);
c361be55
MG
2351}
2352
2f66a68f
MG
2353static void change_pageblock_range(struct page *pageblock_page,
2354 int start_order, int migratetype)
2355{
2356 int nr_pageblocks = 1 << (start_order - pageblock_order);
2357
2358 while (nr_pageblocks--) {
2359 set_pageblock_migratetype(pageblock_page, migratetype);
2360 pageblock_page += pageblock_nr_pages;
2361 }
2362}
2363
fef903ef 2364/*
9c0415eb
VB
2365 * When we are falling back to another migratetype during allocation, try to
2366 * steal extra free pages from the same pageblocks to satisfy further
2367 * allocations, instead of polluting multiple pageblocks.
2368 *
2369 * If we are stealing a relatively large buddy page, it is likely there will
2370 * be more free pages in the pageblock, so try to steal them all. For
2371 * reclaimable and unmovable allocations, we steal regardless of page size,
2372 * as fragmentation caused by those allocations polluting movable pageblocks
2373 * is worse than movable allocations stealing from unmovable and reclaimable
2374 * pageblocks.
fef903ef 2375 */
4eb7dce6
JK
2376static bool can_steal_fallback(unsigned int order, int start_mt)
2377{
2378 /*
2379 * Leaving this order check is intended, although there is
2380 * relaxed order check in next check. The reason is that
2381 * we can actually steal whole pageblock if this condition met,
2382 * but, below check doesn't guarantee it and that is just heuristic
2383 * so could be changed anytime.
2384 */
2385 if (order >= pageblock_order)
2386 return true;
2387
2388 if (order >= pageblock_order / 2 ||
2389 start_mt == MIGRATE_RECLAIMABLE ||
2390 start_mt == MIGRATE_UNMOVABLE ||
2391 page_group_by_mobility_disabled)
2392 return true;
2393
2394 return false;
2395}
2396
1c30844d
MG
2397static inline void boost_watermark(struct zone *zone)
2398{
2399 unsigned long max_boost;
2400
2401 if (!watermark_boost_factor)
2402 return;
2403
2404 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2405 watermark_boost_factor, 10000);
94b3334c
MG
2406
2407 /*
2408 * high watermark may be uninitialised if fragmentation occurs
2409 * very early in boot so do not boost. We do not fall
2410 * through and boost by pageblock_nr_pages as failing
2411 * allocations that early means that reclaim is not going
2412 * to help and it may even be impossible to reclaim the
2413 * boosted watermark resulting in a hang.
2414 */
2415 if (!max_boost)
2416 return;
2417
1c30844d
MG
2418 max_boost = max(pageblock_nr_pages, max_boost);
2419
2420 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2421 max_boost);
2422}
2423
4eb7dce6
JK
2424/*
2425 * This function implements actual steal behaviour. If order is large enough,
2426 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2427 * pageblock to our migratetype and determine how many already-allocated pages
2428 * are there in the pageblock with a compatible migratetype. If at least half
2429 * of pages are free or compatible, we can change migratetype of the pageblock
2430 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2431 */
2432static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2433 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2434{
d00181b9 2435 unsigned int current_order = page_order(page);
02aa0cdd
VB
2436 int free_pages, movable_pages, alike_pages;
2437 int old_block_type;
2438
2439 old_block_type = get_pageblock_migratetype(page);
fef903ef 2440
3bc48f96
VB
2441 /*
2442 * This can happen due to races and we want to prevent broken
2443 * highatomic accounting.
2444 */
02aa0cdd 2445 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2446 goto single_page;
2447
fef903ef
SB
2448 /* Take ownership for orders >= pageblock_order */
2449 if (current_order >= pageblock_order) {
2450 change_pageblock_range(page, current_order, start_type);
3bc48f96 2451 goto single_page;
fef903ef
SB
2452 }
2453
1c30844d
MG
2454 /*
2455 * Boost watermarks to increase reclaim pressure to reduce the
2456 * likelihood of future fallbacks. Wake kswapd now as the node
2457 * may be balanced overall and kswapd will not wake naturally.
2458 */
2459 boost_watermark(zone);
2460 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2461 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2462
3bc48f96
VB
2463 /* We are not allowed to try stealing from the whole block */
2464 if (!whole_block)
2465 goto single_page;
2466
02aa0cdd
VB
2467 free_pages = move_freepages_block(zone, page, start_type,
2468 &movable_pages);
2469 /*
2470 * Determine how many pages are compatible with our allocation.
2471 * For movable allocation, it's the number of movable pages which
2472 * we just obtained. For other types it's a bit more tricky.
2473 */
2474 if (start_type == MIGRATE_MOVABLE) {
2475 alike_pages = movable_pages;
2476 } else {
2477 /*
2478 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2479 * to MOVABLE pageblock, consider all non-movable pages as
2480 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2481 * vice versa, be conservative since we can't distinguish the
2482 * exact migratetype of non-movable pages.
2483 */
2484 if (old_block_type == MIGRATE_MOVABLE)
2485 alike_pages = pageblock_nr_pages
2486 - (free_pages + movable_pages);
2487 else
2488 alike_pages = 0;
2489 }
2490
3bc48f96 2491 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2492 if (!free_pages)
3bc48f96 2493 goto single_page;
fef903ef 2494
02aa0cdd
VB
2495 /*
2496 * If a sufficient number of pages in the block are either free or of
2497 * comparable migratability as our allocation, claim the whole block.
2498 */
2499 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2500 page_group_by_mobility_disabled)
2501 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2502
2503 return;
2504
2505single_page:
6ab01363 2506 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2507}
2508
2149cdae
JK
2509/*
2510 * Check whether there is a suitable fallback freepage with requested order.
2511 * If only_stealable is true, this function returns fallback_mt only if
2512 * we can steal other freepages all together. This would help to reduce
2513 * fragmentation due to mixed migratetype pages in one pageblock.
2514 */
2515int find_suitable_fallback(struct free_area *area, unsigned int order,
2516 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2517{
2518 int i;
2519 int fallback_mt;
2520
2521 if (area->nr_free == 0)
2522 return -1;
2523
2524 *can_steal = false;
2525 for (i = 0;; i++) {
2526 fallback_mt = fallbacks[migratetype][i];
974a786e 2527 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2528 break;
2529
b03641af 2530 if (free_area_empty(area, fallback_mt))
4eb7dce6 2531 continue;
fef903ef 2532
4eb7dce6
JK
2533 if (can_steal_fallback(order, migratetype))
2534 *can_steal = true;
2535
2149cdae
JK
2536 if (!only_stealable)
2537 return fallback_mt;
2538
2539 if (*can_steal)
2540 return fallback_mt;
fef903ef 2541 }
4eb7dce6
JK
2542
2543 return -1;
fef903ef
SB
2544}
2545
0aaa29a5
MG
2546/*
2547 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2548 * there are no empty page blocks that contain a page with a suitable order
2549 */
2550static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2551 unsigned int alloc_order)
2552{
2553 int mt;
2554 unsigned long max_managed, flags;
2555
2556 /*
2557 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2558 * Check is race-prone but harmless.
2559 */
9705bea5 2560 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2561 if (zone->nr_reserved_highatomic >= max_managed)
2562 return;
2563
2564 spin_lock_irqsave(&zone->lock, flags);
2565
2566 /* Recheck the nr_reserved_highatomic limit under the lock */
2567 if (zone->nr_reserved_highatomic >= max_managed)
2568 goto out_unlock;
2569
2570 /* Yoink! */
2571 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2572 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2573 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2574 zone->nr_reserved_highatomic += pageblock_nr_pages;
2575 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2576 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2577 }
2578
2579out_unlock:
2580 spin_unlock_irqrestore(&zone->lock, flags);
2581}
2582
2583/*
2584 * Used when an allocation is about to fail under memory pressure. This
2585 * potentially hurts the reliability of high-order allocations when under
2586 * intense memory pressure but failed atomic allocations should be easier
2587 * to recover from than an OOM.
29fac03b
MK
2588 *
2589 * If @force is true, try to unreserve a pageblock even though highatomic
2590 * pageblock is exhausted.
0aaa29a5 2591 */
29fac03b
MK
2592static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2593 bool force)
0aaa29a5
MG
2594{
2595 struct zonelist *zonelist = ac->zonelist;
2596 unsigned long flags;
2597 struct zoneref *z;
2598 struct zone *zone;
2599 struct page *page;
2600 int order;
04c8716f 2601 bool ret;
0aaa29a5
MG
2602
2603 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2604 ac->nodemask) {
29fac03b
MK
2605 /*
2606 * Preserve at least one pageblock unless memory pressure
2607 * is really high.
2608 */
2609 if (!force && zone->nr_reserved_highatomic <=
2610 pageblock_nr_pages)
0aaa29a5
MG
2611 continue;
2612
2613 spin_lock_irqsave(&zone->lock, flags);
2614 for (order = 0; order < MAX_ORDER; order++) {
2615 struct free_area *area = &(zone->free_area[order]);
2616
b03641af 2617 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2618 if (!page)
0aaa29a5
MG
2619 continue;
2620
0aaa29a5 2621 /*
4855e4a7
MK
2622 * In page freeing path, migratetype change is racy so
2623 * we can counter several free pages in a pageblock
2624 * in this loop althoug we changed the pageblock type
2625 * from highatomic to ac->migratetype. So we should
2626 * adjust the count once.
0aaa29a5 2627 */
a6ffdc07 2628 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2629 /*
2630 * It should never happen but changes to
2631 * locking could inadvertently allow a per-cpu
2632 * drain to add pages to MIGRATE_HIGHATOMIC
2633 * while unreserving so be safe and watch for
2634 * underflows.
2635 */
2636 zone->nr_reserved_highatomic -= min(
2637 pageblock_nr_pages,
2638 zone->nr_reserved_highatomic);
2639 }
0aaa29a5
MG
2640
2641 /*
2642 * Convert to ac->migratetype and avoid the normal
2643 * pageblock stealing heuristics. Minimally, the caller
2644 * is doing the work and needs the pages. More
2645 * importantly, if the block was always converted to
2646 * MIGRATE_UNMOVABLE or another type then the number
2647 * of pageblocks that cannot be completely freed
2648 * may increase.
2649 */
2650 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2651 ret = move_freepages_block(zone, page, ac->migratetype,
2652 NULL);
29fac03b
MK
2653 if (ret) {
2654 spin_unlock_irqrestore(&zone->lock, flags);
2655 return ret;
2656 }
0aaa29a5
MG
2657 }
2658 spin_unlock_irqrestore(&zone->lock, flags);
2659 }
04c8716f
MK
2660
2661 return false;
0aaa29a5
MG
2662}
2663
3bc48f96
VB
2664/*
2665 * Try finding a free buddy page on the fallback list and put it on the free
2666 * list of requested migratetype, possibly along with other pages from the same
2667 * block, depending on fragmentation avoidance heuristics. Returns true if
2668 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2669 *
2670 * The use of signed ints for order and current_order is a deliberate
2671 * deviation from the rest of this file, to make the for loop
2672 * condition simpler.
3bc48f96 2673 */
85ccc8fa 2674static __always_inline bool
6bb15450
MG
2675__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2676 unsigned int alloc_flags)
b2a0ac88 2677{
b8af2941 2678 struct free_area *area;
b002529d 2679 int current_order;
6bb15450 2680 int min_order = order;
b2a0ac88 2681 struct page *page;
4eb7dce6
JK
2682 int fallback_mt;
2683 bool can_steal;
b2a0ac88 2684
6bb15450
MG
2685 /*
2686 * Do not steal pages from freelists belonging to other pageblocks
2687 * i.e. orders < pageblock_order. If there are no local zones free,
2688 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2689 */
2690 if (alloc_flags & ALLOC_NOFRAGMENT)
2691 min_order = pageblock_order;
2692
7a8f58f3
VB
2693 /*
2694 * Find the largest available free page in the other list. This roughly
2695 * approximates finding the pageblock with the most free pages, which
2696 * would be too costly to do exactly.
2697 */
6bb15450 2698 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2699 --current_order) {
4eb7dce6
JK
2700 area = &(zone->free_area[current_order]);
2701 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2702 start_migratetype, false, &can_steal);
4eb7dce6
JK
2703 if (fallback_mt == -1)
2704 continue;
b2a0ac88 2705
7a8f58f3
VB
2706 /*
2707 * We cannot steal all free pages from the pageblock and the
2708 * requested migratetype is movable. In that case it's better to
2709 * steal and split the smallest available page instead of the
2710 * largest available page, because even if the next movable
2711 * allocation falls back into a different pageblock than this
2712 * one, it won't cause permanent fragmentation.
2713 */
2714 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2715 && current_order > order)
2716 goto find_smallest;
b2a0ac88 2717
7a8f58f3
VB
2718 goto do_steal;
2719 }
e0fff1bd 2720
7a8f58f3 2721 return false;
e0fff1bd 2722
7a8f58f3
VB
2723find_smallest:
2724 for (current_order = order; current_order < MAX_ORDER;
2725 current_order++) {
2726 area = &(zone->free_area[current_order]);
2727 fallback_mt = find_suitable_fallback(area, current_order,
2728 start_migratetype, false, &can_steal);
2729 if (fallback_mt != -1)
2730 break;
b2a0ac88
MG
2731 }
2732
7a8f58f3
VB
2733 /*
2734 * This should not happen - we already found a suitable fallback
2735 * when looking for the largest page.
2736 */
2737 VM_BUG_ON(current_order == MAX_ORDER);
2738
2739do_steal:
b03641af 2740 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2741
1c30844d
MG
2742 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2743 can_steal);
7a8f58f3
VB
2744
2745 trace_mm_page_alloc_extfrag(page, order, current_order,
2746 start_migratetype, fallback_mt);
2747
2748 return true;
2749
b2a0ac88
MG
2750}
2751
56fd56b8 2752/*
1da177e4
LT
2753 * Do the hard work of removing an element from the buddy allocator.
2754 * Call me with the zone->lock already held.
2755 */
85ccc8fa 2756static __always_inline struct page *
6bb15450
MG
2757__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2758 unsigned int alloc_flags)
1da177e4 2759{
1da177e4
LT
2760 struct page *page;
2761
3bc48f96 2762retry:
56fd56b8 2763 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2764 if (unlikely(!page)) {
dc67647b
JK
2765 if (migratetype == MIGRATE_MOVABLE)
2766 page = __rmqueue_cma_fallback(zone, order);
2767
6bb15450
MG
2768 if (!page && __rmqueue_fallback(zone, order, migratetype,
2769 alloc_flags))
3bc48f96 2770 goto retry;
728ec980
MG
2771 }
2772
0d3d062a 2773 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2774 return page;
1da177e4
LT
2775}
2776
5f63b720 2777/*
1da177e4
LT
2778 * Obtain a specified number of elements from the buddy allocator, all under
2779 * a single hold of the lock, for efficiency. Add them to the supplied list.
2780 * Returns the number of new pages which were placed at *list.
2781 */
5f63b720 2782static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2783 unsigned long count, struct list_head *list,
6bb15450 2784 int migratetype, unsigned int alloc_flags)
1da177e4 2785{
a6de734b 2786 int i, alloced = 0;
5f63b720 2787
d34b0733 2788 spin_lock(&zone->lock);
1da177e4 2789 for (i = 0; i < count; ++i) {
6bb15450
MG
2790 struct page *page = __rmqueue(zone, order, migratetype,
2791 alloc_flags);
085cc7d5 2792 if (unlikely(page == NULL))
1da177e4 2793 break;
81eabcbe 2794
479f854a
MG
2795 if (unlikely(check_pcp_refill(page)))
2796 continue;
2797
81eabcbe 2798 /*
0fac3ba5
VB
2799 * Split buddy pages returned by expand() are received here in
2800 * physical page order. The page is added to the tail of
2801 * caller's list. From the callers perspective, the linked list
2802 * is ordered by page number under some conditions. This is
2803 * useful for IO devices that can forward direction from the
2804 * head, thus also in the physical page order. This is useful
2805 * for IO devices that can merge IO requests if the physical
2806 * pages are ordered properly.
81eabcbe 2807 */
0fac3ba5 2808 list_add_tail(&page->lru, list);
a6de734b 2809 alloced++;
bb14c2c7 2810 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2811 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2812 -(1 << order));
1da177e4 2813 }
a6de734b
MG
2814
2815 /*
2816 * i pages were removed from the buddy list even if some leak due
2817 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2818 * on i. Do not confuse with 'alloced' which is the number of
2819 * pages added to the pcp list.
2820 */
f2260e6b 2821 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2822 spin_unlock(&zone->lock);
a6de734b 2823 return alloced;
1da177e4
LT
2824}
2825
4ae7c039 2826#ifdef CONFIG_NUMA
8fce4d8e 2827/*
4037d452
CL
2828 * Called from the vmstat counter updater to drain pagesets of this
2829 * currently executing processor on remote nodes after they have
2830 * expired.
2831 *
879336c3
CL
2832 * Note that this function must be called with the thread pinned to
2833 * a single processor.
8fce4d8e 2834 */
4037d452 2835void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2836{
4ae7c039 2837 unsigned long flags;
7be12fc9 2838 int to_drain, batch;
4ae7c039 2839
4037d452 2840 local_irq_save(flags);
4db0c3c2 2841 batch = READ_ONCE(pcp->batch);
7be12fc9 2842 to_drain = min(pcp->count, batch);
77ba9062 2843 if (to_drain > 0)
2a13515c 2844 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2845 local_irq_restore(flags);
4ae7c039
CL
2846}
2847#endif
2848
9f8f2172 2849/*
93481ff0 2850 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2851 *
2852 * The processor must either be the current processor and the
2853 * thread pinned to the current processor or a processor that
2854 * is not online.
2855 */
93481ff0 2856static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2857{
c54ad30c 2858 unsigned long flags;
93481ff0
VB
2859 struct per_cpu_pageset *pset;
2860 struct per_cpu_pages *pcp;
1da177e4 2861
93481ff0
VB
2862 local_irq_save(flags);
2863 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2864
93481ff0 2865 pcp = &pset->pcp;
77ba9062 2866 if (pcp->count)
93481ff0 2867 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2868 local_irq_restore(flags);
2869}
3dfa5721 2870
93481ff0
VB
2871/*
2872 * Drain pcplists of all zones on the indicated processor.
2873 *
2874 * The processor must either be the current processor and the
2875 * thread pinned to the current processor or a processor that
2876 * is not online.
2877 */
2878static void drain_pages(unsigned int cpu)
2879{
2880 struct zone *zone;
2881
2882 for_each_populated_zone(zone) {
2883 drain_pages_zone(cpu, zone);
1da177e4
LT
2884 }
2885}
1da177e4 2886
9f8f2172
CL
2887/*
2888 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2889 *
2890 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2891 * the single zone's pages.
9f8f2172 2892 */
93481ff0 2893void drain_local_pages(struct zone *zone)
9f8f2172 2894{
93481ff0
VB
2895 int cpu = smp_processor_id();
2896
2897 if (zone)
2898 drain_pages_zone(cpu, zone);
2899 else
2900 drain_pages(cpu);
9f8f2172
CL
2901}
2902
0ccce3b9
MG
2903static void drain_local_pages_wq(struct work_struct *work)
2904{
d9367bd0
WY
2905 struct pcpu_drain *drain;
2906
2907 drain = container_of(work, struct pcpu_drain, work);
2908
a459eeb7
MH
2909 /*
2910 * drain_all_pages doesn't use proper cpu hotplug protection so
2911 * we can race with cpu offline when the WQ can move this from
2912 * a cpu pinned worker to an unbound one. We can operate on a different
2913 * cpu which is allright but we also have to make sure to not move to
2914 * a different one.
2915 */
2916 preempt_disable();
d9367bd0 2917 drain_local_pages(drain->zone);
a459eeb7 2918 preempt_enable();
0ccce3b9
MG
2919}
2920
9f8f2172 2921/*
74046494
GBY
2922 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2923 *
93481ff0
VB
2924 * When zone parameter is non-NULL, spill just the single zone's pages.
2925 *
0ccce3b9 2926 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2927 */
93481ff0 2928void drain_all_pages(struct zone *zone)
9f8f2172 2929{
74046494 2930 int cpu;
74046494
GBY
2931
2932 /*
2933 * Allocate in the BSS so we wont require allocation in
2934 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2935 */
2936 static cpumask_t cpus_with_pcps;
2937
ce612879
MH
2938 /*
2939 * Make sure nobody triggers this path before mm_percpu_wq is fully
2940 * initialized.
2941 */
2942 if (WARN_ON_ONCE(!mm_percpu_wq))
2943 return;
2944
bd233f53
MG
2945 /*
2946 * Do not drain if one is already in progress unless it's specific to
2947 * a zone. Such callers are primarily CMA and memory hotplug and need
2948 * the drain to be complete when the call returns.
2949 */
2950 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2951 if (!zone)
2952 return;
2953 mutex_lock(&pcpu_drain_mutex);
2954 }
0ccce3b9 2955
74046494
GBY
2956 /*
2957 * We don't care about racing with CPU hotplug event
2958 * as offline notification will cause the notified
2959 * cpu to drain that CPU pcps and on_each_cpu_mask
2960 * disables preemption as part of its processing
2961 */
2962 for_each_online_cpu(cpu) {
93481ff0
VB
2963 struct per_cpu_pageset *pcp;
2964 struct zone *z;
74046494 2965 bool has_pcps = false;
93481ff0
VB
2966
2967 if (zone) {
74046494 2968 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2969 if (pcp->pcp.count)
74046494 2970 has_pcps = true;
93481ff0
VB
2971 } else {
2972 for_each_populated_zone(z) {
2973 pcp = per_cpu_ptr(z->pageset, cpu);
2974 if (pcp->pcp.count) {
2975 has_pcps = true;
2976 break;
2977 }
74046494
GBY
2978 }
2979 }
93481ff0 2980
74046494
GBY
2981 if (has_pcps)
2982 cpumask_set_cpu(cpu, &cpus_with_pcps);
2983 else
2984 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2985 }
0ccce3b9 2986
bd233f53 2987 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2988 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2989
2990 drain->zone = zone;
2991 INIT_WORK(&drain->work, drain_local_pages_wq);
2992 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2993 }
bd233f53 2994 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2995 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2996
2997 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2998}
2999
296699de 3000#ifdef CONFIG_HIBERNATION
1da177e4 3001
556b969a
CY
3002/*
3003 * Touch the watchdog for every WD_PAGE_COUNT pages.
3004 */
3005#define WD_PAGE_COUNT (128*1024)
3006
1da177e4
LT
3007void mark_free_pages(struct zone *zone)
3008{
556b969a 3009 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3010 unsigned long flags;
7aeb09f9 3011 unsigned int order, t;
86760a2c 3012 struct page *page;
1da177e4 3013
8080fc03 3014 if (zone_is_empty(zone))
1da177e4
LT
3015 return;
3016
3017 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3018
108bcc96 3019 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3020 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3021 if (pfn_valid(pfn)) {
86760a2c 3022 page = pfn_to_page(pfn);
ba6b0979 3023
556b969a
CY
3024 if (!--page_count) {
3025 touch_nmi_watchdog();
3026 page_count = WD_PAGE_COUNT;
3027 }
3028
ba6b0979
JK
3029 if (page_zone(page) != zone)
3030 continue;
3031
7be98234
RW
3032 if (!swsusp_page_is_forbidden(page))
3033 swsusp_unset_page_free(page);
f623f0db 3034 }
1da177e4 3035
b2a0ac88 3036 for_each_migratetype_order(order, t) {
86760a2c
GT
3037 list_for_each_entry(page,
3038 &zone->free_area[order].free_list[t], lru) {
f623f0db 3039 unsigned long i;
1da177e4 3040
86760a2c 3041 pfn = page_to_pfn(page);
556b969a
CY
3042 for (i = 0; i < (1UL << order); i++) {
3043 if (!--page_count) {
3044 touch_nmi_watchdog();
3045 page_count = WD_PAGE_COUNT;
3046 }
7be98234 3047 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3048 }
f623f0db 3049 }
b2a0ac88 3050 }
1da177e4
LT
3051 spin_unlock_irqrestore(&zone->lock, flags);
3052}
e2c55dc8 3053#endif /* CONFIG_PM */
1da177e4 3054
2d4894b5 3055static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3056{
5f8dcc21 3057 int migratetype;
1da177e4 3058
4db7548c 3059 if (!free_pcp_prepare(page))
9cca35d4 3060 return false;
689bcebf 3061
dc4b0caf 3062 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3063 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3064 return true;
3065}
3066
2d4894b5 3067static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3068{
3069 struct zone *zone = page_zone(page);
3070 struct per_cpu_pages *pcp;
3071 int migratetype;
3072
3073 migratetype = get_pcppage_migratetype(page);
d34b0733 3074 __count_vm_event(PGFREE);
da456f14 3075
5f8dcc21
MG
3076 /*
3077 * We only track unmovable, reclaimable and movable on pcp lists.
3078 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3079 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3080 * areas back if necessary. Otherwise, we may have to free
3081 * excessively into the page allocator
3082 */
3083 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3084 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3085 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3086 return;
5f8dcc21
MG
3087 }
3088 migratetype = MIGRATE_MOVABLE;
3089 }
3090
99dcc3e5 3091 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3092 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3093 pcp->count++;
48db57f8 3094 if (pcp->count >= pcp->high) {
4db0c3c2 3095 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3096 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3097 }
9cca35d4 3098}
5f8dcc21 3099
9cca35d4
MG
3100/*
3101 * Free a 0-order page
9cca35d4 3102 */
2d4894b5 3103void free_unref_page(struct page *page)
9cca35d4
MG
3104{
3105 unsigned long flags;
3106 unsigned long pfn = page_to_pfn(page);
3107
2d4894b5 3108 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3109 return;
3110
3111 local_irq_save(flags);
2d4894b5 3112 free_unref_page_commit(page, pfn);
d34b0733 3113 local_irq_restore(flags);
1da177e4
LT
3114}
3115
cc59850e
KK
3116/*
3117 * Free a list of 0-order pages
3118 */
2d4894b5 3119void free_unref_page_list(struct list_head *list)
cc59850e
KK
3120{
3121 struct page *page, *next;
9cca35d4 3122 unsigned long flags, pfn;
c24ad77d 3123 int batch_count = 0;
9cca35d4
MG
3124
3125 /* Prepare pages for freeing */
3126 list_for_each_entry_safe(page, next, list, lru) {
3127 pfn = page_to_pfn(page);
2d4894b5 3128 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3129 list_del(&page->lru);
3130 set_page_private(page, pfn);
3131 }
cc59850e 3132
9cca35d4 3133 local_irq_save(flags);
cc59850e 3134 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3135 unsigned long pfn = page_private(page);
3136
3137 set_page_private(page, 0);
2d4894b5
MG
3138 trace_mm_page_free_batched(page);
3139 free_unref_page_commit(page, pfn);
c24ad77d
LS
3140
3141 /*
3142 * Guard against excessive IRQ disabled times when we get
3143 * a large list of pages to free.
3144 */
3145 if (++batch_count == SWAP_CLUSTER_MAX) {
3146 local_irq_restore(flags);
3147 batch_count = 0;
3148 local_irq_save(flags);
3149 }
cc59850e 3150 }
9cca35d4 3151 local_irq_restore(flags);
cc59850e
KK
3152}
3153
8dfcc9ba
NP
3154/*
3155 * split_page takes a non-compound higher-order page, and splits it into
3156 * n (1<<order) sub-pages: page[0..n]
3157 * Each sub-page must be freed individually.
3158 *
3159 * Note: this is probably too low level an operation for use in drivers.
3160 * Please consult with lkml before using this in your driver.
3161 */
3162void split_page(struct page *page, unsigned int order)
3163{
3164 int i;
3165
309381fe
SL
3166 VM_BUG_ON_PAGE(PageCompound(page), page);
3167 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3168
a9627bc5 3169 for (i = 1; i < (1 << order); i++)
7835e98b 3170 set_page_refcounted(page + i);
a9627bc5 3171 split_page_owner(page, order);
8dfcc9ba 3172}
5853ff23 3173EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3174
3c605096 3175int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3176{
748446bb
MG
3177 unsigned long watermark;
3178 struct zone *zone;
2139cbe6 3179 int mt;
748446bb
MG
3180
3181 BUG_ON(!PageBuddy(page));
3182
3183 zone = page_zone(page);
2e30abd1 3184 mt = get_pageblock_migratetype(page);
748446bb 3185
194159fb 3186 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3187 /*
3188 * Obey watermarks as if the page was being allocated. We can
3189 * emulate a high-order watermark check with a raised order-0
3190 * watermark, because we already know our high-order page
3191 * exists.
3192 */
fd1444b2 3193 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3194 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3195 return 0;
3196
8fb74b9f 3197 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3198 }
748446bb
MG
3199
3200 /* Remove page from free list */
b03641af 3201
6ab01363 3202 del_page_from_free_list(page, zone, order);
2139cbe6 3203
400bc7fd 3204 /*
3205 * Set the pageblock if the isolated page is at least half of a
3206 * pageblock
3207 */
748446bb
MG
3208 if (order >= pageblock_order - 1) {
3209 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3210 for (; page < endpage; page += pageblock_nr_pages) {
3211 int mt = get_pageblock_migratetype(page);
88ed365e 3212 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3213 && !is_migrate_highatomic(mt))
47118af0
MN
3214 set_pageblock_migratetype(page,
3215 MIGRATE_MOVABLE);
3216 }
748446bb
MG
3217 }
3218
f3a14ced 3219
8fb74b9f 3220 return 1UL << order;
1fb3f8ca
MG
3221}
3222
624f58d8
AD
3223/**
3224 * __putback_isolated_page - Return a now-isolated page back where we got it
3225 * @page: Page that was isolated
3226 * @order: Order of the isolated page
e6a0a7ad 3227 * @mt: The page's pageblock's migratetype
624f58d8
AD
3228 *
3229 * This function is meant to return a page pulled from the free lists via
3230 * __isolate_free_page back to the free lists they were pulled from.
3231 */
3232void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3233{
3234 struct zone *zone = page_zone(page);
3235
3236 /* zone lock should be held when this function is called */
3237 lockdep_assert_held(&zone->lock);
3238
3239 /* Return isolated page to tail of freelist. */
36e66c55 3240 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
624f58d8
AD
3241}
3242
060e7417
MG
3243/*
3244 * Update NUMA hit/miss statistics
3245 *
3246 * Must be called with interrupts disabled.
060e7417 3247 */
41b6167e 3248static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3249{
3250#ifdef CONFIG_NUMA
3a321d2a 3251 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3252
4518085e
KW
3253 /* skip numa counters update if numa stats is disabled */
3254 if (!static_branch_likely(&vm_numa_stat_key))
3255 return;
3256
c1093b74 3257 if (zone_to_nid(z) != numa_node_id())
060e7417 3258 local_stat = NUMA_OTHER;
060e7417 3259
c1093b74 3260 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3261 __inc_numa_state(z, NUMA_HIT);
2df26639 3262 else {
3a321d2a
KW
3263 __inc_numa_state(z, NUMA_MISS);
3264 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3265 }
3a321d2a 3266 __inc_numa_state(z, local_stat);
060e7417
MG
3267#endif
3268}
3269
066b2393
MG
3270/* Remove page from the per-cpu list, caller must protect the list */
3271static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3272 unsigned int alloc_flags,
453f85d4 3273 struct per_cpu_pages *pcp,
066b2393
MG
3274 struct list_head *list)
3275{
3276 struct page *page;
3277
3278 do {
3279 if (list_empty(list)) {
3280 pcp->count += rmqueue_bulk(zone, 0,
3281 pcp->batch, list,
6bb15450 3282 migratetype, alloc_flags);
066b2393
MG
3283 if (unlikely(list_empty(list)))
3284 return NULL;
3285 }
3286
453f85d4 3287 page = list_first_entry(list, struct page, lru);
066b2393
MG
3288 list_del(&page->lru);
3289 pcp->count--;
3290 } while (check_new_pcp(page));
3291
3292 return page;
3293}
3294
3295/* Lock and remove page from the per-cpu list */
3296static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3297 struct zone *zone, gfp_t gfp_flags,
3298 int migratetype, unsigned int alloc_flags)
066b2393
MG
3299{
3300 struct per_cpu_pages *pcp;
3301 struct list_head *list;
066b2393 3302 struct page *page;
d34b0733 3303 unsigned long flags;
066b2393 3304
d34b0733 3305 local_irq_save(flags);
066b2393
MG
3306 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3307 list = &pcp->lists[migratetype];
6bb15450 3308 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3309 if (page) {
1c52e6d0 3310 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3311 zone_statistics(preferred_zone, zone);
3312 }
d34b0733 3313 local_irq_restore(flags);
066b2393
MG
3314 return page;
3315}
3316
1da177e4 3317/*
75379191 3318 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3319 */
0a15c3e9 3320static inline
066b2393 3321struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3322 struct zone *zone, unsigned int order,
c603844b
MG
3323 gfp_t gfp_flags, unsigned int alloc_flags,
3324 int migratetype)
1da177e4
LT
3325{
3326 unsigned long flags;
689bcebf 3327 struct page *page;
1da177e4 3328
d34b0733 3329 if (likely(order == 0)) {
1c52e6d0
YS
3330 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3331 migratetype, alloc_flags);
066b2393
MG
3332 goto out;
3333 }
83b9355b 3334
066b2393
MG
3335 /*
3336 * We most definitely don't want callers attempting to
3337 * allocate greater than order-1 page units with __GFP_NOFAIL.
3338 */
3339 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3340 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3341
066b2393
MG
3342 do {
3343 page = NULL;
3344 if (alloc_flags & ALLOC_HARDER) {
3345 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3346 if (page)
3347 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3348 }
a74609fa 3349 if (!page)
6bb15450 3350 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3351 } while (page && check_new_pages(page, order));
3352 spin_unlock(&zone->lock);
3353 if (!page)
3354 goto failed;
3355 __mod_zone_freepage_state(zone, -(1 << order),
3356 get_pcppage_migratetype(page));
1da177e4 3357
16709d1d 3358 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3359 zone_statistics(preferred_zone, zone);
a74609fa 3360 local_irq_restore(flags);
1da177e4 3361
066b2393 3362out:
73444bc4
MG
3363 /* Separate test+clear to avoid unnecessary atomics */
3364 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3365 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3366 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3367 }
3368
066b2393 3369 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3370 return page;
a74609fa
NP
3371
3372failed:
3373 local_irq_restore(flags);
a74609fa 3374 return NULL;
1da177e4
LT
3375}
3376
933e312e
AM
3377#ifdef CONFIG_FAIL_PAGE_ALLOC
3378
b2588c4b 3379static struct {
933e312e
AM
3380 struct fault_attr attr;
3381
621a5f7a 3382 bool ignore_gfp_highmem;
71baba4b 3383 bool ignore_gfp_reclaim;
54114994 3384 u32 min_order;
933e312e
AM
3385} fail_page_alloc = {
3386 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3387 .ignore_gfp_reclaim = true,
621a5f7a 3388 .ignore_gfp_highmem = true,
54114994 3389 .min_order = 1,
933e312e
AM
3390};
3391
3392static int __init setup_fail_page_alloc(char *str)
3393{
3394 return setup_fault_attr(&fail_page_alloc.attr, str);
3395}
3396__setup("fail_page_alloc=", setup_fail_page_alloc);
3397
af3b8544 3398static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3399{
54114994 3400 if (order < fail_page_alloc.min_order)
deaf386e 3401 return false;
933e312e 3402 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3403 return false;
933e312e 3404 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3405 return false;
71baba4b
MG
3406 if (fail_page_alloc.ignore_gfp_reclaim &&
3407 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3408 return false;
933e312e
AM
3409
3410 return should_fail(&fail_page_alloc.attr, 1 << order);
3411}
3412
3413#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3414
3415static int __init fail_page_alloc_debugfs(void)
3416{
0825a6f9 3417 umode_t mode = S_IFREG | 0600;
933e312e 3418 struct dentry *dir;
933e312e 3419
dd48c085
AM
3420 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3421 &fail_page_alloc.attr);
b2588c4b 3422
d9f7979c
GKH
3423 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3424 &fail_page_alloc.ignore_gfp_reclaim);
3425 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3426 &fail_page_alloc.ignore_gfp_highmem);
3427 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3428
d9f7979c 3429 return 0;
933e312e
AM
3430}
3431
3432late_initcall(fail_page_alloc_debugfs);
3433
3434#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3435
3436#else /* CONFIG_FAIL_PAGE_ALLOC */
3437
af3b8544 3438static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3439{
deaf386e 3440 return false;
933e312e
AM
3441}
3442
3443#endif /* CONFIG_FAIL_PAGE_ALLOC */
3444
af3b8544
BP
3445static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3446{
3447 return __should_fail_alloc_page(gfp_mask, order);
3448}
3449ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3450
1da177e4 3451/*
97a16fc8
MG
3452 * Return true if free base pages are above 'mark'. For high-order checks it
3453 * will return true of the order-0 watermark is reached and there is at least
3454 * one free page of a suitable size. Checking now avoids taking the zone lock
3455 * to check in the allocation paths if no pages are free.
1da177e4 3456 */
86a294a8
MH
3457bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3458 int classzone_idx, unsigned int alloc_flags,
3459 long free_pages)
1da177e4 3460{
d23ad423 3461 long min = mark;
1da177e4 3462 int o;
cd04ae1e 3463 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3464
0aaa29a5 3465 /* free_pages may go negative - that's OK */
df0a6daa 3466 free_pages -= (1 << order) - 1;
0aaa29a5 3467
7fb1d9fc 3468 if (alloc_flags & ALLOC_HIGH)
1da177e4 3469 min -= min / 2;
0aaa29a5
MG
3470
3471 /*
3472 * If the caller does not have rights to ALLOC_HARDER then subtract
3473 * the high-atomic reserves. This will over-estimate the size of the
3474 * atomic reserve but it avoids a search.
3475 */
cd04ae1e 3476 if (likely(!alloc_harder)) {
0aaa29a5 3477 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3478 } else {
3479 /*
3480 * OOM victims can try even harder than normal ALLOC_HARDER
3481 * users on the grounds that it's definitely going to be in
3482 * the exit path shortly and free memory. Any allocation it
3483 * makes during the free path will be small and short-lived.
3484 */
3485 if (alloc_flags & ALLOC_OOM)
3486 min -= min / 2;
3487 else
3488 min -= min / 4;
3489 }
3490
e2b19197 3491
d883c6cf
JK
3492#ifdef CONFIG_CMA
3493 /* If allocation can't use CMA areas don't use free CMA pages */
3494 if (!(alloc_flags & ALLOC_CMA))
3495 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3496#endif
3497
97a16fc8
MG
3498 /*
3499 * Check watermarks for an order-0 allocation request. If these
3500 * are not met, then a high-order request also cannot go ahead
3501 * even if a suitable page happened to be free.
3502 */
3503 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3504 return false;
1da177e4 3505
97a16fc8
MG
3506 /* If this is an order-0 request then the watermark is fine */
3507 if (!order)
3508 return true;
3509
3510 /* For a high-order request, check at least one suitable page is free */
3511 for (o = order; o < MAX_ORDER; o++) {
3512 struct free_area *area = &z->free_area[o];
3513 int mt;
3514
3515 if (!area->nr_free)
3516 continue;
3517
97a16fc8 3518 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3519 if (!free_area_empty(area, mt))
97a16fc8
MG
3520 return true;
3521 }
3522
3523#ifdef CONFIG_CMA
d883c6cf 3524 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3525 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3526 return true;
d883c6cf 3527 }
97a16fc8 3528#endif
76089d00 3529 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 3530 return true;
1da177e4 3531 }
97a16fc8 3532 return false;
88f5acf8
MG
3533}
3534
7aeb09f9 3535bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3536 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3537{
3538 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3539 zone_page_state(z, NR_FREE_PAGES));
3540}
3541
48ee5f36
MG
3542static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3543 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3544{
3545 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3546 long cma_pages = 0;
3547
3548#ifdef CONFIG_CMA
3549 /* If allocation can't use CMA areas don't use free CMA pages */
3550 if (!(alloc_flags & ALLOC_CMA))
3551 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3552#endif
48ee5f36
MG
3553
3554 /*
3555 * Fast check for order-0 only. If this fails then the reserves
3556 * need to be calculated. There is a corner case where the check
3557 * passes but only the high-order atomic reserve are free. If
3558 * the caller is !atomic then it'll uselessly search the free
3559 * list. That corner case is then slower but it is harmless.
3560 */
d883c6cf 3561 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3562 return true;
3563
3564 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3565 free_pages);
3566}
3567
7aeb09f9 3568bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3569 unsigned long mark, int classzone_idx)
88f5acf8
MG
3570{
3571 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3572
3573 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3574 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3575
e2b19197 3576 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3577 free_pages);
1da177e4
LT
3578}
3579
9276b1bc 3580#ifdef CONFIG_NUMA
957f822a
DR
3581static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3582{
e02dc017 3583 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3584 node_reclaim_distance;
957f822a 3585}
9276b1bc 3586#else /* CONFIG_NUMA */
957f822a
DR
3587static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3588{
3589 return true;
3590}
9276b1bc
PJ
3591#endif /* CONFIG_NUMA */
3592
6bb15450
MG
3593/*
3594 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3595 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3596 * premature use of a lower zone may cause lowmem pressure problems that
3597 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3598 * probably too small. It only makes sense to spread allocations to avoid
3599 * fragmentation between the Normal and DMA32 zones.
3600 */
3601static inline unsigned int
0a79cdad 3602alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3603{
736838e9 3604 unsigned int alloc_flags;
0a79cdad 3605
736838e9
MN
3606 /*
3607 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3608 * to save a branch.
3609 */
3610 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3611
3612#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3613 if (!zone)
3614 return alloc_flags;
3615
6bb15450 3616 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3617 return alloc_flags;
6bb15450
MG
3618
3619 /*
3620 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3621 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3622 * on UMA that if Normal is populated then so is DMA32.
3623 */
3624 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3625 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3626 return alloc_flags;
6bb15450 3627
8118b82e 3628 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3629#endif /* CONFIG_ZONE_DMA32 */
3630 return alloc_flags;
6bb15450 3631}
6bb15450 3632
7fb1d9fc 3633/*
0798e519 3634 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3635 * a page.
3636 */
3637static struct page *
a9263751
VB
3638get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3639 const struct alloc_context *ac)
753ee728 3640{
6bb15450 3641 struct zoneref *z;
5117f45d 3642 struct zone *zone;
3b8c0be4 3643 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3644 bool no_fallback;
3b8c0be4 3645
6bb15450 3646retry:
7fb1d9fc 3647 /*
9276b1bc 3648 * Scan zonelist, looking for a zone with enough free.
344736f2 3649 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3650 */
6bb15450
MG
3651 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3652 z = ac->preferred_zoneref;
c33d6c06 3653 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3654 ac->nodemask) {
be06af00 3655 struct page *page;
e085dbc5
JW
3656 unsigned long mark;
3657
664eedde
MG
3658 if (cpusets_enabled() &&
3659 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3660 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3661 continue;
a756cf59
JW
3662 /*
3663 * When allocating a page cache page for writing, we
281e3726
MG
3664 * want to get it from a node that is within its dirty
3665 * limit, such that no single node holds more than its
a756cf59 3666 * proportional share of globally allowed dirty pages.
281e3726 3667 * The dirty limits take into account the node's
a756cf59
JW
3668 * lowmem reserves and high watermark so that kswapd
3669 * should be able to balance it without having to
3670 * write pages from its LRU list.
3671 *
a756cf59 3672 * XXX: For now, allow allocations to potentially
281e3726 3673 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3674 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3675 * which is important when on a NUMA setup the allowed
281e3726 3676 * nodes are together not big enough to reach the
a756cf59 3677 * global limit. The proper fix for these situations
281e3726 3678 * will require awareness of nodes in the
a756cf59
JW
3679 * dirty-throttling and the flusher threads.
3680 */
3b8c0be4
MG
3681 if (ac->spread_dirty_pages) {
3682 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3683 continue;
3684
3685 if (!node_dirty_ok(zone->zone_pgdat)) {
3686 last_pgdat_dirty_limit = zone->zone_pgdat;
3687 continue;
3688 }
3689 }
7fb1d9fc 3690
6bb15450
MG
3691 if (no_fallback && nr_online_nodes > 1 &&
3692 zone != ac->preferred_zoneref->zone) {
3693 int local_nid;
3694
3695 /*
3696 * If moving to a remote node, retry but allow
3697 * fragmenting fallbacks. Locality is more important
3698 * than fragmentation avoidance.
3699 */
3700 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3701 if (zone_to_nid(zone) != local_nid) {
3702 alloc_flags &= ~ALLOC_NOFRAGMENT;
3703 goto retry;
3704 }
3705 }
3706
a9214443 3707 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3708 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3709 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3710 int ret;
3711
c9e97a19
PT
3712#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3713 /*
3714 * Watermark failed for this zone, but see if we can
3715 * grow this zone if it contains deferred pages.
3716 */
3717 if (static_branch_unlikely(&deferred_pages)) {
3718 if (_deferred_grow_zone(zone, order))
3719 goto try_this_zone;
3720 }
3721#endif
5dab2911
MG
3722 /* Checked here to keep the fast path fast */
3723 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3724 if (alloc_flags & ALLOC_NO_WATERMARKS)
3725 goto try_this_zone;
3726
a5f5f91d 3727 if (node_reclaim_mode == 0 ||
c33d6c06 3728 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3729 continue;
3730
a5f5f91d 3731 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3732 switch (ret) {
a5f5f91d 3733 case NODE_RECLAIM_NOSCAN:
fa5e084e 3734 /* did not scan */
cd38b115 3735 continue;
a5f5f91d 3736 case NODE_RECLAIM_FULL:
fa5e084e 3737 /* scanned but unreclaimable */
cd38b115 3738 continue;
fa5e084e
MG
3739 default:
3740 /* did we reclaim enough */
fed2719e 3741 if (zone_watermark_ok(zone, order, mark,
93ea9964 3742 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3743 goto try_this_zone;
3744
fed2719e 3745 continue;
0798e519 3746 }
7fb1d9fc
RS
3747 }
3748
fa5e084e 3749try_this_zone:
066b2393 3750 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3751 gfp_mask, alloc_flags, ac->migratetype);
75379191 3752 if (page) {
479f854a 3753 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3754
3755 /*
3756 * If this is a high-order atomic allocation then check
3757 * if the pageblock should be reserved for the future
3758 */
3759 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3760 reserve_highatomic_pageblock(page, zone, order);
3761
75379191 3762 return page;
c9e97a19
PT
3763 } else {
3764#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3765 /* Try again if zone has deferred pages */
3766 if (static_branch_unlikely(&deferred_pages)) {
3767 if (_deferred_grow_zone(zone, order))
3768 goto try_this_zone;
3769 }
3770#endif
75379191 3771 }
54a6eb5c 3772 }
9276b1bc 3773
6bb15450
MG
3774 /*
3775 * It's possible on a UMA machine to get through all zones that are
3776 * fragmented. If avoiding fragmentation, reset and try again.
3777 */
3778 if (no_fallback) {
3779 alloc_flags &= ~ALLOC_NOFRAGMENT;
3780 goto retry;
3781 }
3782
4ffeaf35 3783 return NULL;
753ee728
MH
3784}
3785
9af744d7 3786static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3787{
a238ab5b 3788 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3789
3790 /*
3791 * This documents exceptions given to allocations in certain
3792 * contexts that are allowed to allocate outside current's set
3793 * of allowed nodes.
3794 */
3795 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3796 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3797 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3798 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3799 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3800 filter &= ~SHOW_MEM_FILTER_NODES;
3801
9af744d7 3802 show_mem(filter, nodemask);
aa187507
MH
3803}
3804
a8e99259 3805void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3806{
3807 struct va_format vaf;
3808 va_list args;
1be334e5 3809 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3810
0f7896f1 3811 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3812 return;
3813
7877cdcc
MH
3814 va_start(args, fmt);
3815 vaf.fmt = fmt;
3816 vaf.va = &args;
ef8444ea 3817 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3818 current->comm, &vaf, gfp_mask, &gfp_mask,
3819 nodemask_pr_args(nodemask));
7877cdcc 3820 va_end(args);
3ee9a4f0 3821
a8e99259 3822 cpuset_print_current_mems_allowed();
ef8444ea 3823 pr_cont("\n");
a238ab5b 3824 dump_stack();
685dbf6f 3825 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3826}
3827
6c18ba7a
MH
3828static inline struct page *
3829__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3830 unsigned int alloc_flags,
3831 const struct alloc_context *ac)
3832{
3833 struct page *page;
3834
3835 page = get_page_from_freelist(gfp_mask, order,
3836 alloc_flags|ALLOC_CPUSET, ac);
3837 /*
3838 * fallback to ignore cpuset restriction if our nodes
3839 * are depleted
3840 */
3841 if (!page)
3842 page = get_page_from_freelist(gfp_mask, order,
3843 alloc_flags, ac);
3844
3845 return page;
3846}
3847
11e33f6a
MG
3848static inline struct page *
3849__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3850 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3851{
6e0fc46d
DR
3852 struct oom_control oc = {
3853 .zonelist = ac->zonelist,
3854 .nodemask = ac->nodemask,
2a966b77 3855 .memcg = NULL,
6e0fc46d
DR
3856 .gfp_mask = gfp_mask,
3857 .order = order,
6e0fc46d 3858 };
11e33f6a
MG
3859 struct page *page;
3860
9879de73
JW
3861 *did_some_progress = 0;
3862
9879de73 3863 /*
dc56401f
JW
3864 * Acquire the oom lock. If that fails, somebody else is
3865 * making progress for us.
9879de73 3866 */
dc56401f 3867 if (!mutex_trylock(&oom_lock)) {
9879de73 3868 *did_some_progress = 1;
11e33f6a 3869 schedule_timeout_uninterruptible(1);
1da177e4
LT
3870 return NULL;
3871 }
6b1de916 3872
11e33f6a
MG
3873 /*
3874 * Go through the zonelist yet one more time, keep very high watermark
3875 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3876 * we're still under heavy pressure. But make sure that this reclaim
3877 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3878 * allocation which will never fail due to oom_lock already held.
11e33f6a 3879 */
e746bf73
TH
3880 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3881 ~__GFP_DIRECT_RECLAIM, order,
3882 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3883 if (page)
11e33f6a
MG
3884 goto out;
3885
06ad276a
MH
3886 /* Coredumps can quickly deplete all memory reserves */
3887 if (current->flags & PF_DUMPCORE)
3888 goto out;
3889 /* The OOM killer will not help higher order allocs */
3890 if (order > PAGE_ALLOC_COSTLY_ORDER)
3891 goto out;
dcda9b04
MH
3892 /*
3893 * We have already exhausted all our reclaim opportunities without any
3894 * success so it is time to admit defeat. We will skip the OOM killer
3895 * because it is very likely that the caller has a more reasonable
3896 * fallback than shooting a random task.
3897 */
3898 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3899 goto out;
06ad276a
MH
3900 /* The OOM killer does not needlessly kill tasks for lowmem */
3901 if (ac->high_zoneidx < ZONE_NORMAL)
3902 goto out;
3903 if (pm_suspended_storage())
3904 goto out;
3905 /*
3906 * XXX: GFP_NOFS allocations should rather fail than rely on
3907 * other request to make a forward progress.
3908 * We are in an unfortunate situation where out_of_memory cannot
3909 * do much for this context but let's try it to at least get
3910 * access to memory reserved if the current task is killed (see
3911 * out_of_memory). Once filesystems are ready to handle allocation
3912 * failures more gracefully we should just bail out here.
3913 */
3914
3915 /* The OOM killer may not free memory on a specific node */
3916 if (gfp_mask & __GFP_THISNODE)
3917 goto out;
3da88fb3 3918
3c2c6488 3919 /* Exhausted what can be done so it's blame time */
5020e285 3920 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3921 *did_some_progress = 1;
5020e285 3922
6c18ba7a
MH
3923 /*
3924 * Help non-failing allocations by giving them access to memory
3925 * reserves
3926 */
3927 if (gfp_mask & __GFP_NOFAIL)
3928 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3929 ALLOC_NO_WATERMARKS, ac);
5020e285 3930 }
11e33f6a 3931out:
dc56401f 3932 mutex_unlock(&oom_lock);
11e33f6a
MG
3933 return page;
3934}
3935
33c2d214
MH
3936/*
3937 * Maximum number of compaction retries wit a progress before OOM
3938 * killer is consider as the only way to move forward.
3939 */
3940#define MAX_COMPACT_RETRIES 16
3941
56de7263
MG
3942#ifdef CONFIG_COMPACTION
3943/* Try memory compaction for high-order allocations before reclaim */
3944static struct page *
3945__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3946 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3947 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3948{
5e1f0f09 3949 struct page *page = NULL;
eb414681 3950 unsigned long pflags;
499118e9 3951 unsigned int noreclaim_flag;
53853e2d
VB
3952
3953 if (!order)
66199712 3954 return NULL;
66199712 3955
eb414681 3956 psi_memstall_enter(&pflags);
499118e9 3957 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3958
c5d01d0d 3959 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3960 prio, &page);
eb414681 3961
499118e9 3962 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3963 psi_memstall_leave(&pflags);
56de7263 3964
98dd3b48
VB
3965 /*
3966 * At least in one zone compaction wasn't deferred or skipped, so let's
3967 * count a compaction stall
3968 */
3969 count_vm_event(COMPACTSTALL);
8fb74b9f 3970
5e1f0f09
MG
3971 /* Prep a captured page if available */
3972 if (page)
3973 prep_new_page(page, order, gfp_mask, alloc_flags);
3974
3975 /* Try get a page from the freelist if available */
3976 if (!page)
3977 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3978
98dd3b48
VB
3979 if (page) {
3980 struct zone *zone = page_zone(page);
53853e2d 3981
98dd3b48
VB
3982 zone->compact_blockskip_flush = false;
3983 compaction_defer_reset(zone, order, true);
3984 count_vm_event(COMPACTSUCCESS);
3985 return page;
3986 }
56de7263 3987
98dd3b48
VB
3988 /*
3989 * It's bad if compaction run occurs and fails. The most likely reason
3990 * is that pages exist, but not enough to satisfy watermarks.
3991 */
3992 count_vm_event(COMPACTFAIL);
66199712 3993
98dd3b48 3994 cond_resched();
56de7263
MG
3995
3996 return NULL;
3997}
33c2d214 3998
3250845d
VB
3999static inline bool
4000should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4001 enum compact_result compact_result,
4002 enum compact_priority *compact_priority,
d9436498 4003 int *compaction_retries)
3250845d
VB
4004{
4005 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4006 int min_priority;
65190cff
MH
4007 bool ret = false;
4008 int retries = *compaction_retries;
4009 enum compact_priority priority = *compact_priority;
3250845d
VB
4010
4011 if (!order)
4012 return false;
4013
d9436498
VB
4014 if (compaction_made_progress(compact_result))
4015 (*compaction_retries)++;
4016
3250845d
VB
4017 /*
4018 * compaction considers all the zone as desperately out of memory
4019 * so it doesn't really make much sense to retry except when the
4020 * failure could be caused by insufficient priority
4021 */
d9436498
VB
4022 if (compaction_failed(compact_result))
4023 goto check_priority;
3250845d 4024
49433085
VB
4025 /*
4026 * compaction was skipped because there are not enough order-0 pages
4027 * to work with, so we retry only if it looks like reclaim can help.
4028 */
4029 if (compaction_needs_reclaim(compact_result)) {
4030 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4031 goto out;
4032 }
4033
3250845d
VB
4034 /*
4035 * make sure the compaction wasn't deferred or didn't bail out early
4036 * due to locks contention before we declare that we should give up.
49433085
VB
4037 * But the next retry should use a higher priority if allowed, so
4038 * we don't just keep bailing out endlessly.
3250845d 4039 */
65190cff 4040 if (compaction_withdrawn(compact_result)) {
49433085 4041 goto check_priority;
65190cff 4042 }
3250845d
VB
4043
4044 /*
dcda9b04 4045 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4046 * costly ones because they are de facto nofail and invoke OOM
4047 * killer to move on while costly can fail and users are ready
4048 * to cope with that. 1/4 retries is rather arbitrary but we
4049 * would need much more detailed feedback from compaction to
4050 * make a better decision.
4051 */
4052 if (order > PAGE_ALLOC_COSTLY_ORDER)
4053 max_retries /= 4;
65190cff
MH
4054 if (*compaction_retries <= max_retries) {
4055 ret = true;
4056 goto out;
4057 }
3250845d 4058
d9436498
VB
4059 /*
4060 * Make sure there are attempts at the highest priority if we exhausted
4061 * all retries or failed at the lower priorities.
4062 */
4063check_priority:
c2033b00
VB
4064 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4065 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4066
c2033b00 4067 if (*compact_priority > min_priority) {
d9436498
VB
4068 (*compact_priority)--;
4069 *compaction_retries = 0;
65190cff 4070 ret = true;
d9436498 4071 }
65190cff
MH
4072out:
4073 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4074 return ret;
3250845d 4075}
56de7263
MG
4076#else
4077static inline struct page *
4078__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4079 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4080 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4081{
33c2d214 4082 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4083 return NULL;
4084}
33c2d214
MH
4085
4086static inline bool
86a294a8
MH
4087should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4088 enum compact_result compact_result,
a5508cd8 4089 enum compact_priority *compact_priority,
d9436498 4090 int *compaction_retries)
33c2d214 4091{
31e49bfd
MH
4092 struct zone *zone;
4093 struct zoneref *z;
4094
4095 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4096 return false;
4097
4098 /*
4099 * There are setups with compaction disabled which would prefer to loop
4100 * inside the allocator rather than hit the oom killer prematurely.
4101 * Let's give them a good hope and keep retrying while the order-0
4102 * watermarks are OK.
4103 */
4104 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4105 ac->nodemask) {
4106 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4107 ac_classzone_idx(ac), alloc_flags))
4108 return true;
4109 }
33c2d214
MH
4110 return false;
4111}
3250845d 4112#endif /* CONFIG_COMPACTION */
56de7263 4113
d92a8cfc 4114#ifdef CONFIG_LOCKDEP
93781325 4115static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4116 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4117
4118static bool __need_fs_reclaim(gfp_t gfp_mask)
4119{
4120 gfp_mask = current_gfp_context(gfp_mask);
4121
4122 /* no reclaim without waiting on it */
4123 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4124 return false;
4125
4126 /* this guy won't enter reclaim */
2e517d68 4127 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4128 return false;
4129
4130 /* We're only interested __GFP_FS allocations for now */
4131 if (!(gfp_mask & __GFP_FS))
4132 return false;
4133
4134 if (gfp_mask & __GFP_NOLOCKDEP)
4135 return false;
4136
4137 return true;
4138}
4139
93781325
OS
4140void __fs_reclaim_acquire(void)
4141{
4142 lock_map_acquire(&__fs_reclaim_map);
4143}
4144
4145void __fs_reclaim_release(void)
4146{
4147 lock_map_release(&__fs_reclaim_map);
4148}
4149
d92a8cfc
PZ
4150void fs_reclaim_acquire(gfp_t gfp_mask)
4151{
4152 if (__need_fs_reclaim(gfp_mask))
93781325 4153 __fs_reclaim_acquire();
d92a8cfc
PZ
4154}
4155EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4156
4157void fs_reclaim_release(gfp_t gfp_mask)
4158{
4159 if (__need_fs_reclaim(gfp_mask))
93781325 4160 __fs_reclaim_release();
d92a8cfc
PZ
4161}
4162EXPORT_SYMBOL_GPL(fs_reclaim_release);
4163#endif
4164
bba90710
MS
4165/* Perform direct synchronous page reclaim */
4166static int
a9263751
VB
4167__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4168 const struct alloc_context *ac)
11e33f6a 4169{
bba90710 4170 int progress;
499118e9 4171 unsigned int noreclaim_flag;
eb414681 4172 unsigned long pflags;
11e33f6a
MG
4173
4174 cond_resched();
4175
4176 /* We now go into synchronous reclaim */
4177 cpuset_memory_pressure_bump();
eb414681 4178 psi_memstall_enter(&pflags);
d92a8cfc 4179 fs_reclaim_acquire(gfp_mask);
93781325 4180 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4181
a9263751
VB
4182 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4183 ac->nodemask);
11e33f6a 4184
499118e9 4185 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4186 fs_reclaim_release(gfp_mask);
eb414681 4187 psi_memstall_leave(&pflags);
11e33f6a
MG
4188
4189 cond_resched();
4190
bba90710
MS
4191 return progress;
4192}
4193
4194/* The really slow allocator path where we enter direct reclaim */
4195static inline struct page *
4196__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4197 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4198 unsigned long *did_some_progress)
bba90710
MS
4199{
4200 struct page *page = NULL;
4201 bool drained = false;
4202
a9263751 4203 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4204 if (unlikely(!(*did_some_progress)))
4205 return NULL;
11e33f6a 4206
9ee493ce 4207retry:
31a6c190 4208 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4209
4210 /*
4211 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4212 * pages are pinned on the per-cpu lists or in high alloc reserves.
4213 * Shrink them them and try again
9ee493ce
MG
4214 */
4215 if (!page && !drained) {
29fac03b 4216 unreserve_highatomic_pageblock(ac, false);
93481ff0 4217 drain_all_pages(NULL);
9ee493ce
MG
4218 drained = true;
4219 goto retry;
4220 }
4221
11e33f6a
MG
4222 return page;
4223}
4224
5ecd9d40
DR
4225static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4226 const struct alloc_context *ac)
3a025760
JW
4227{
4228 struct zoneref *z;
4229 struct zone *zone;
e1a55637 4230 pg_data_t *last_pgdat = NULL;
5ecd9d40 4231 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4232
5ecd9d40
DR
4233 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4234 ac->nodemask) {
e1a55637 4235 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4236 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4237 last_pgdat = zone->zone_pgdat;
4238 }
3a025760
JW
4239}
4240
c603844b 4241static inline unsigned int
341ce06f
PZ
4242gfp_to_alloc_flags(gfp_t gfp_mask)
4243{
c603844b 4244 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4245
736838e9
MN
4246 /*
4247 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4248 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4249 * to save two branches.
4250 */
e6223a3b 4251 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4252 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4253
341ce06f
PZ
4254 /*
4255 * The caller may dip into page reserves a bit more if the caller
4256 * cannot run direct reclaim, or if the caller has realtime scheduling
4257 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4258 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4259 */
736838e9
MN
4260 alloc_flags |= (__force int)
4261 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4262
d0164adc 4263 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4264 /*
b104a35d
DR
4265 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4266 * if it can't schedule.
5c3240d9 4267 */
b104a35d 4268 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4269 alloc_flags |= ALLOC_HARDER;
523b9458 4270 /*
b104a35d 4271 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4272 * comment for __cpuset_node_allowed().
523b9458 4273 */
341ce06f 4274 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4275 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4276 alloc_flags |= ALLOC_HARDER;
4277
d883c6cf
JK
4278#ifdef CONFIG_CMA
4279 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4280 alloc_flags |= ALLOC_CMA;
4281#endif
341ce06f
PZ
4282 return alloc_flags;
4283}
4284
cd04ae1e 4285static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4286{
cd04ae1e
MH
4287 if (!tsk_is_oom_victim(tsk))
4288 return false;
4289
4290 /*
4291 * !MMU doesn't have oom reaper so give access to memory reserves
4292 * only to the thread with TIF_MEMDIE set
4293 */
4294 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4295 return false;
4296
cd04ae1e
MH
4297 return true;
4298}
4299
4300/*
4301 * Distinguish requests which really need access to full memory
4302 * reserves from oom victims which can live with a portion of it
4303 */
4304static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4305{
4306 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4307 return 0;
31a6c190 4308 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4309 return ALLOC_NO_WATERMARKS;
31a6c190 4310 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4311 return ALLOC_NO_WATERMARKS;
4312 if (!in_interrupt()) {
4313 if (current->flags & PF_MEMALLOC)
4314 return ALLOC_NO_WATERMARKS;
4315 else if (oom_reserves_allowed(current))
4316 return ALLOC_OOM;
4317 }
31a6c190 4318
cd04ae1e
MH
4319 return 0;
4320}
4321
4322bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4323{
4324 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4325}
4326
0a0337e0
MH
4327/*
4328 * Checks whether it makes sense to retry the reclaim to make a forward progress
4329 * for the given allocation request.
491d79ae
JW
4330 *
4331 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4332 * without success, or when we couldn't even meet the watermark if we
4333 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4334 *
4335 * Returns true if a retry is viable or false to enter the oom path.
4336 */
4337static inline bool
4338should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4339 struct alloc_context *ac, int alloc_flags,
423b452e 4340 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4341{
4342 struct zone *zone;
4343 struct zoneref *z;
15f570bf 4344 bool ret = false;
0a0337e0 4345
423b452e
VB
4346 /*
4347 * Costly allocations might have made a progress but this doesn't mean
4348 * their order will become available due to high fragmentation so
4349 * always increment the no progress counter for them
4350 */
4351 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4352 *no_progress_loops = 0;
4353 else
4354 (*no_progress_loops)++;
4355
0a0337e0
MH
4356 /*
4357 * Make sure we converge to OOM if we cannot make any progress
4358 * several times in the row.
4359 */
04c8716f
MK
4360 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4361 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4362 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4363 }
0a0337e0 4364
bca67592
MG
4365 /*
4366 * Keep reclaiming pages while there is a chance this will lead
4367 * somewhere. If none of the target zones can satisfy our allocation
4368 * request even if all reclaimable pages are considered then we are
4369 * screwed and have to go OOM.
0a0337e0
MH
4370 */
4371 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4372 ac->nodemask) {
4373 unsigned long available;
ede37713 4374 unsigned long reclaimable;
d379f01d
MH
4375 unsigned long min_wmark = min_wmark_pages(zone);
4376 bool wmark;
0a0337e0 4377
5a1c84b4 4378 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4379 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4380
4381 /*
491d79ae
JW
4382 * Would the allocation succeed if we reclaimed all
4383 * reclaimable pages?
0a0337e0 4384 */
d379f01d
MH
4385 wmark = __zone_watermark_ok(zone, order, min_wmark,
4386 ac_classzone_idx(ac), alloc_flags, available);
4387 trace_reclaim_retry_zone(z, order, reclaimable,
4388 available, min_wmark, *no_progress_loops, wmark);
4389 if (wmark) {
ede37713
MH
4390 /*
4391 * If we didn't make any progress and have a lot of
4392 * dirty + writeback pages then we should wait for
4393 * an IO to complete to slow down the reclaim and
4394 * prevent from pre mature OOM
4395 */
4396 if (!did_some_progress) {
11fb9989 4397 unsigned long write_pending;
ede37713 4398
5a1c84b4
MG
4399 write_pending = zone_page_state_snapshot(zone,
4400 NR_ZONE_WRITE_PENDING);
ede37713 4401
11fb9989 4402 if (2 * write_pending > reclaimable) {
ede37713
MH
4403 congestion_wait(BLK_RW_ASYNC, HZ/10);
4404 return true;
4405 }
4406 }
5a1c84b4 4407
15f570bf
MH
4408 ret = true;
4409 goto out;
0a0337e0
MH
4410 }
4411 }
4412
15f570bf
MH
4413out:
4414 /*
4415 * Memory allocation/reclaim might be called from a WQ context and the
4416 * current implementation of the WQ concurrency control doesn't
4417 * recognize that a particular WQ is congested if the worker thread is
4418 * looping without ever sleeping. Therefore we have to do a short sleep
4419 * here rather than calling cond_resched().
4420 */
4421 if (current->flags & PF_WQ_WORKER)
4422 schedule_timeout_uninterruptible(1);
4423 else
4424 cond_resched();
4425 return ret;
0a0337e0
MH
4426}
4427
902b6281
VB
4428static inline bool
4429check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4430{
4431 /*
4432 * It's possible that cpuset's mems_allowed and the nodemask from
4433 * mempolicy don't intersect. This should be normally dealt with by
4434 * policy_nodemask(), but it's possible to race with cpuset update in
4435 * such a way the check therein was true, and then it became false
4436 * before we got our cpuset_mems_cookie here.
4437 * This assumes that for all allocations, ac->nodemask can come only
4438 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4439 * when it does not intersect with the cpuset restrictions) or the
4440 * caller can deal with a violated nodemask.
4441 */
4442 if (cpusets_enabled() && ac->nodemask &&
4443 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4444 ac->nodemask = NULL;
4445 return true;
4446 }
4447
4448 /*
4449 * When updating a task's mems_allowed or mempolicy nodemask, it is
4450 * possible to race with parallel threads in such a way that our
4451 * allocation can fail while the mask is being updated. If we are about
4452 * to fail, check if the cpuset changed during allocation and if so,
4453 * retry.
4454 */
4455 if (read_mems_allowed_retry(cpuset_mems_cookie))
4456 return true;
4457
4458 return false;
4459}
4460
11e33f6a
MG
4461static inline struct page *
4462__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4463 struct alloc_context *ac)
11e33f6a 4464{
d0164adc 4465 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4466 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4467 struct page *page = NULL;
c603844b 4468 unsigned int alloc_flags;
11e33f6a 4469 unsigned long did_some_progress;
5ce9bfef 4470 enum compact_priority compact_priority;
c5d01d0d 4471 enum compact_result compact_result;
5ce9bfef
VB
4472 int compaction_retries;
4473 int no_progress_loops;
5ce9bfef 4474 unsigned int cpuset_mems_cookie;
cd04ae1e 4475 int reserve_flags;
1da177e4 4476
d0164adc
MG
4477 /*
4478 * We also sanity check to catch abuse of atomic reserves being used by
4479 * callers that are not in atomic context.
4480 */
4481 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4482 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4483 gfp_mask &= ~__GFP_ATOMIC;
4484
5ce9bfef
VB
4485retry_cpuset:
4486 compaction_retries = 0;
4487 no_progress_loops = 0;
4488 compact_priority = DEF_COMPACT_PRIORITY;
4489 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4490
4491 /*
4492 * The fast path uses conservative alloc_flags to succeed only until
4493 * kswapd needs to be woken up, and to avoid the cost of setting up
4494 * alloc_flags precisely. So we do that now.
4495 */
4496 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4497
e47483bc
VB
4498 /*
4499 * We need to recalculate the starting point for the zonelist iterator
4500 * because we might have used different nodemask in the fast path, or
4501 * there was a cpuset modification and we are retrying - otherwise we
4502 * could end up iterating over non-eligible zones endlessly.
4503 */
4504 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4505 ac->high_zoneidx, ac->nodemask);
4506 if (!ac->preferred_zoneref->zone)
4507 goto nopage;
4508
0a79cdad 4509 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4510 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4511
4512 /*
4513 * The adjusted alloc_flags might result in immediate success, so try
4514 * that first
4515 */
4516 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4517 if (page)
4518 goto got_pg;
4519
a8161d1e
VB
4520 /*
4521 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4522 * that we have enough base pages and don't need to reclaim. For non-
4523 * movable high-order allocations, do that as well, as compaction will
4524 * try prevent permanent fragmentation by migrating from blocks of the
4525 * same migratetype.
4526 * Don't try this for allocations that are allowed to ignore
4527 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4528 */
282722b0
VB
4529 if (can_direct_reclaim &&
4530 (costly_order ||
4531 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4532 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4533 page = __alloc_pages_direct_compact(gfp_mask, order,
4534 alloc_flags, ac,
a5508cd8 4535 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4536 &compact_result);
4537 if (page)
4538 goto got_pg;
4539
cc638f32
VB
4540 /*
4541 * Checks for costly allocations with __GFP_NORETRY, which
4542 * includes some THP page fault allocations
4543 */
4544 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4545 /*
4546 * If allocating entire pageblock(s) and compaction
4547 * failed because all zones are below low watermarks
4548 * or is prohibited because it recently failed at this
3f36d866
DR
4549 * order, fail immediately unless the allocator has
4550 * requested compaction and reclaim retry.
b39d0ee2
DR
4551 *
4552 * Reclaim is
4553 * - potentially very expensive because zones are far
4554 * below their low watermarks or this is part of very
4555 * bursty high order allocations,
4556 * - not guaranteed to help because isolate_freepages()
4557 * may not iterate over freed pages as part of its
4558 * linear scan, and
4559 * - unlikely to make entire pageblocks free on its
4560 * own.
4561 */
4562 if (compact_result == COMPACT_SKIPPED ||
4563 compact_result == COMPACT_DEFERRED)
4564 goto nopage;
a8161d1e 4565
a8161d1e 4566 /*
3eb2771b
VB
4567 * Looks like reclaim/compaction is worth trying, but
4568 * sync compaction could be very expensive, so keep
25160354 4569 * using async compaction.
a8161d1e 4570 */
a5508cd8 4571 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4572 }
4573 }
23771235 4574
31a6c190 4575retry:
23771235 4576 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4577 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4578 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4579
cd04ae1e
MH
4580 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4581 if (reserve_flags)
4582 alloc_flags = reserve_flags;
23771235 4583
e46e7b77 4584 /*
d6a24df0
VB
4585 * Reset the nodemask and zonelist iterators if memory policies can be
4586 * ignored. These allocations are high priority and system rather than
4587 * user oriented.
e46e7b77 4588 */
cd04ae1e 4589 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4590 ac->nodemask = NULL;
e46e7b77
MG
4591 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4592 ac->high_zoneidx, ac->nodemask);
4593 }
4594
23771235 4595 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4596 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4597 if (page)
4598 goto got_pg;
1da177e4 4599
d0164adc 4600 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4601 if (!can_direct_reclaim)
1da177e4
LT
4602 goto nopage;
4603
9a67f648
MH
4604 /* Avoid recursion of direct reclaim */
4605 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4606 goto nopage;
4607
a8161d1e
VB
4608 /* Try direct reclaim and then allocating */
4609 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4610 &did_some_progress);
4611 if (page)
4612 goto got_pg;
4613
4614 /* Try direct compaction and then allocating */
a9263751 4615 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4616 compact_priority, &compact_result);
56de7263
MG
4617 if (page)
4618 goto got_pg;
75f30861 4619
9083905a
JW
4620 /* Do not loop if specifically requested */
4621 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4622 goto nopage;
9083905a 4623
0a0337e0
MH
4624 /*
4625 * Do not retry costly high order allocations unless they are
dcda9b04 4626 * __GFP_RETRY_MAYFAIL
0a0337e0 4627 */
dcda9b04 4628 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4629 goto nopage;
0a0337e0 4630
0a0337e0 4631 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4632 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4633 goto retry;
4634
33c2d214
MH
4635 /*
4636 * It doesn't make any sense to retry for the compaction if the order-0
4637 * reclaim is not able to make any progress because the current
4638 * implementation of the compaction depends on the sufficient amount
4639 * of free memory (see __compaction_suitable)
4640 */
4641 if (did_some_progress > 0 &&
86a294a8 4642 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4643 compact_result, &compact_priority,
d9436498 4644 &compaction_retries))
33c2d214
MH
4645 goto retry;
4646
902b6281
VB
4647
4648 /* Deal with possible cpuset update races before we start OOM killing */
4649 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4650 goto retry_cpuset;
4651
9083905a
JW
4652 /* Reclaim has failed us, start killing things */
4653 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4654 if (page)
4655 goto got_pg;
4656
9a67f648 4657 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4658 if (tsk_is_oom_victim(current) &&
4659 (alloc_flags == ALLOC_OOM ||
c288983d 4660 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4661 goto nopage;
4662
9083905a 4663 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4664 if (did_some_progress) {
4665 no_progress_loops = 0;
9083905a 4666 goto retry;
0a0337e0 4667 }
9083905a 4668
1da177e4 4669nopage:
902b6281
VB
4670 /* Deal with possible cpuset update races before we fail */
4671 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4672 goto retry_cpuset;
4673
9a67f648
MH
4674 /*
4675 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4676 * we always retry
4677 */
4678 if (gfp_mask & __GFP_NOFAIL) {
4679 /*
4680 * All existing users of the __GFP_NOFAIL are blockable, so warn
4681 * of any new users that actually require GFP_NOWAIT
4682 */
4683 if (WARN_ON_ONCE(!can_direct_reclaim))
4684 goto fail;
4685
4686 /*
4687 * PF_MEMALLOC request from this context is rather bizarre
4688 * because we cannot reclaim anything and only can loop waiting
4689 * for somebody to do a work for us
4690 */
4691 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4692
4693 /*
4694 * non failing costly orders are a hard requirement which we
4695 * are not prepared for much so let's warn about these users
4696 * so that we can identify them and convert them to something
4697 * else.
4698 */
4699 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4700
6c18ba7a
MH
4701 /*
4702 * Help non-failing allocations by giving them access to memory
4703 * reserves but do not use ALLOC_NO_WATERMARKS because this
4704 * could deplete whole memory reserves which would just make
4705 * the situation worse
4706 */
4707 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4708 if (page)
4709 goto got_pg;
4710
9a67f648
MH
4711 cond_resched();
4712 goto retry;
4713 }
4714fail:
a8e99259 4715 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4716 "page allocation failure: order:%u", order);
1da177e4 4717got_pg:
072bb0aa 4718 return page;
1da177e4 4719}
11e33f6a 4720
9cd75558 4721static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4722 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4723 struct alloc_context *ac, gfp_t *alloc_mask,
4724 unsigned int *alloc_flags)
11e33f6a 4725{
9cd75558 4726 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4727 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4728 ac->nodemask = nodemask;
4729 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4730
682a3385 4731 if (cpusets_enabled()) {
9cd75558 4732 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4733 if (!ac->nodemask)
4734 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4735 else
4736 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4737 }
4738
d92a8cfc
PZ
4739 fs_reclaim_acquire(gfp_mask);
4740 fs_reclaim_release(gfp_mask);
11e33f6a 4741
d0164adc 4742 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4743
4744 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4745 return false;
11e33f6a 4746
d883c6cf
JK
4747 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4748 *alloc_flags |= ALLOC_CMA;
4749
9cd75558
MG
4750 return true;
4751}
21bb9bd1 4752
9cd75558 4753/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4754static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4755{
c9ab0c4f 4756 /* Dirty zone balancing only done in the fast path */
9cd75558 4757 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4758
e46e7b77
MG
4759 /*
4760 * The preferred zone is used for statistics but crucially it is
4761 * also used as the starting point for the zonelist iterator. It
4762 * may get reset for allocations that ignore memory policies.
4763 */
9cd75558
MG
4764 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4765 ac->high_zoneidx, ac->nodemask);
4766}
4767
4768/*
4769 * This is the 'heart' of the zoned buddy allocator.
4770 */
4771struct page *
04ec6264
VB
4772__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4773 nodemask_t *nodemask)
9cd75558
MG
4774{
4775 struct page *page;
4776 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4777 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4778 struct alloc_context ac = { };
4779
c63ae43b
MH
4780 /*
4781 * There are several places where we assume that the order value is sane
4782 * so bail out early if the request is out of bound.
4783 */
4784 if (unlikely(order >= MAX_ORDER)) {
4785 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4786 return NULL;
4787 }
4788
9cd75558 4789 gfp_mask &= gfp_allowed_mask;
f19360f0 4790 alloc_mask = gfp_mask;
04ec6264 4791 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4792 return NULL;
4793
a380b40a 4794 finalise_ac(gfp_mask, &ac);
5bb1b169 4795
6bb15450
MG
4796 /*
4797 * Forbid the first pass from falling back to types that fragment
4798 * memory until all local zones are considered.
4799 */
0a79cdad 4800 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4801
5117f45d 4802 /* First allocation attempt */
a9263751 4803 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4804 if (likely(page))
4805 goto out;
11e33f6a 4806
4fcb0971 4807 /*
7dea19f9
MH
4808 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4809 * resp. GFP_NOIO which has to be inherited for all allocation requests
4810 * from a particular context which has been marked by
4811 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4812 */
7dea19f9 4813 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4814 ac.spread_dirty_pages = false;
23f086f9 4815
4741526b
MG
4816 /*
4817 * Restore the original nodemask if it was potentially replaced with
4818 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4819 */
97ce86f9 4820 ac.nodemask = nodemask;
16096c25 4821
4fcb0971 4822 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4823
4fcb0971 4824out:
c4159a75 4825 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
f4b00eab 4826 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
c4159a75
VD
4827 __free_pages(page, order);
4828 page = NULL;
4949148a
VD
4829 }
4830
4fcb0971
MG
4831 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4832
11e33f6a 4833 return page;
1da177e4 4834}
d239171e 4835EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4836
4837/*
9ea9a680
MH
4838 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4839 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4840 * you need to access high mem.
1da177e4 4841 */
920c7a5d 4842unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4843{
945a1113
AM
4844 struct page *page;
4845
9ea9a680 4846 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4847 if (!page)
4848 return 0;
4849 return (unsigned long) page_address(page);
4850}
1da177e4
LT
4851EXPORT_SYMBOL(__get_free_pages);
4852
920c7a5d 4853unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4854{
945a1113 4855 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4856}
1da177e4
LT
4857EXPORT_SYMBOL(get_zeroed_page);
4858
742aa7fb 4859static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4860{
742aa7fb
AL
4861 if (order == 0) /* Via pcp? */
4862 free_unref_page(page);
4863 else
4864 __free_pages_ok(page, order);
1da177e4
LT
4865}
4866
742aa7fb
AL
4867void __free_pages(struct page *page, unsigned int order)
4868{
4869 if (put_page_testzero(page))
4870 free_the_page(page, order);
4871}
1da177e4
LT
4872EXPORT_SYMBOL(__free_pages);
4873
920c7a5d 4874void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4875{
4876 if (addr != 0) {
725d704e 4877 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4878 __free_pages(virt_to_page((void *)addr), order);
4879 }
4880}
4881
4882EXPORT_SYMBOL(free_pages);
4883
b63ae8ca
AD
4884/*
4885 * Page Fragment:
4886 * An arbitrary-length arbitrary-offset area of memory which resides
4887 * within a 0 or higher order page. Multiple fragments within that page
4888 * are individually refcounted, in the page's reference counter.
4889 *
4890 * The page_frag functions below provide a simple allocation framework for
4891 * page fragments. This is used by the network stack and network device
4892 * drivers to provide a backing region of memory for use as either an
4893 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4894 */
2976db80
AD
4895static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4896 gfp_t gfp_mask)
b63ae8ca
AD
4897{
4898 struct page *page = NULL;
4899 gfp_t gfp = gfp_mask;
4900
4901#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4902 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4903 __GFP_NOMEMALLOC;
4904 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4905 PAGE_FRAG_CACHE_MAX_ORDER);
4906 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4907#endif
4908 if (unlikely(!page))
4909 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4910
4911 nc->va = page ? page_address(page) : NULL;
4912
4913 return page;
4914}
4915
2976db80 4916void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4917{
4918 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4919
742aa7fb
AL
4920 if (page_ref_sub_and_test(page, count))
4921 free_the_page(page, compound_order(page));
44fdffd7 4922}
2976db80 4923EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4924
8c2dd3e4
AD
4925void *page_frag_alloc(struct page_frag_cache *nc,
4926 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4927{
4928 unsigned int size = PAGE_SIZE;
4929 struct page *page;
4930 int offset;
4931
4932 if (unlikely(!nc->va)) {
4933refill:
2976db80 4934 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4935 if (!page)
4936 return NULL;
4937
4938#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4939 /* if size can vary use size else just use PAGE_SIZE */
4940 size = nc->size;
4941#endif
4942 /* Even if we own the page, we do not use atomic_set().
4943 * This would break get_page_unless_zero() users.
4944 */
86447726 4945 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4946
4947 /* reset page count bias and offset to start of new frag */
2f064f34 4948 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4949 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4950 nc->offset = size;
4951 }
4952
4953 offset = nc->offset - fragsz;
4954 if (unlikely(offset < 0)) {
4955 page = virt_to_page(nc->va);
4956
fe896d18 4957 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4958 goto refill;
4959
4960#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4961 /* if size can vary use size else just use PAGE_SIZE */
4962 size = nc->size;
4963#endif
4964 /* OK, page count is 0, we can safely set it */
86447726 4965 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4966
4967 /* reset page count bias and offset to start of new frag */
86447726 4968 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4969 offset = size - fragsz;
4970 }
4971
4972 nc->pagecnt_bias--;
4973 nc->offset = offset;
4974
4975 return nc->va + offset;
4976}
8c2dd3e4 4977EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4978
4979/*
4980 * Frees a page fragment allocated out of either a compound or order 0 page.
4981 */
8c2dd3e4 4982void page_frag_free(void *addr)
b63ae8ca
AD
4983{
4984 struct page *page = virt_to_head_page(addr);
4985
742aa7fb
AL
4986 if (unlikely(put_page_testzero(page)))
4987 free_the_page(page, compound_order(page));
b63ae8ca 4988}
8c2dd3e4 4989EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4990
d00181b9
KS
4991static void *make_alloc_exact(unsigned long addr, unsigned int order,
4992 size_t size)
ee85c2e1
AK
4993{
4994 if (addr) {
4995 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4996 unsigned long used = addr + PAGE_ALIGN(size);
4997
4998 split_page(virt_to_page((void *)addr), order);
4999 while (used < alloc_end) {
5000 free_page(used);
5001 used += PAGE_SIZE;
5002 }
5003 }
5004 return (void *)addr;
5005}
5006
2be0ffe2
TT
5007/**
5008 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5009 * @size: the number of bytes to allocate
63931eb9 5010 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5011 *
5012 * This function is similar to alloc_pages(), except that it allocates the
5013 * minimum number of pages to satisfy the request. alloc_pages() can only
5014 * allocate memory in power-of-two pages.
5015 *
5016 * This function is also limited by MAX_ORDER.
5017 *
5018 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5019 *
5020 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5021 */
5022void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5023{
5024 unsigned int order = get_order(size);
5025 unsigned long addr;
5026
63931eb9
VB
5027 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5028 gfp_mask &= ~__GFP_COMP;
5029
2be0ffe2 5030 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5031 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5032}
5033EXPORT_SYMBOL(alloc_pages_exact);
5034
ee85c2e1
AK
5035/**
5036 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5037 * pages on a node.
b5e6ab58 5038 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5039 * @size: the number of bytes to allocate
63931eb9 5040 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5041 *
5042 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5043 * back.
a862f68a
MR
5044 *
5045 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5046 */
e1931811 5047void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5048{
d00181b9 5049 unsigned int order = get_order(size);
63931eb9
VB
5050 struct page *p;
5051
5052 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5053 gfp_mask &= ~__GFP_COMP;
5054
5055 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5056 if (!p)
5057 return NULL;
5058 return make_alloc_exact((unsigned long)page_address(p), order, size);
5059}
ee85c2e1 5060
2be0ffe2
TT
5061/**
5062 * free_pages_exact - release memory allocated via alloc_pages_exact()
5063 * @virt: the value returned by alloc_pages_exact.
5064 * @size: size of allocation, same value as passed to alloc_pages_exact().
5065 *
5066 * Release the memory allocated by a previous call to alloc_pages_exact.
5067 */
5068void free_pages_exact(void *virt, size_t size)
5069{
5070 unsigned long addr = (unsigned long)virt;
5071 unsigned long end = addr + PAGE_ALIGN(size);
5072
5073 while (addr < end) {
5074 free_page(addr);
5075 addr += PAGE_SIZE;
5076 }
5077}
5078EXPORT_SYMBOL(free_pages_exact);
5079
e0fb5815
ZY
5080/**
5081 * nr_free_zone_pages - count number of pages beyond high watermark
5082 * @offset: The zone index of the highest zone
5083 *
a862f68a 5084 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5085 * high watermark within all zones at or below a given zone index. For each
5086 * zone, the number of pages is calculated as:
0e056eb5 5087 *
5088 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5089 *
5090 * Return: number of pages beyond high watermark.
e0fb5815 5091 */
ebec3862 5092static unsigned long nr_free_zone_pages(int offset)
1da177e4 5093{
dd1a239f 5094 struct zoneref *z;
54a6eb5c
MG
5095 struct zone *zone;
5096
e310fd43 5097 /* Just pick one node, since fallback list is circular */
ebec3862 5098 unsigned long sum = 0;
1da177e4 5099
0e88460d 5100 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5101
54a6eb5c 5102 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5103 unsigned long size = zone_managed_pages(zone);
41858966 5104 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5105 if (size > high)
5106 sum += size - high;
1da177e4
LT
5107 }
5108
5109 return sum;
5110}
5111
e0fb5815
ZY
5112/**
5113 * nr_free_buffer_pages - count number of pages beyond high watermark
5114 *
5115 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5116 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5117 *
5118 * Return: number of pages beyond high watermark within ZONE_DMA and
5119 * ZONE_NORMAL.
1da177e4 5120 */
ebec3862 5121unsigned long nr_free_buffer_pages(void)
1da177e4 5122{
af4ca457 5123 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5124}
c2f1a551 5125EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5126
e0fb5815
ZY
5127/**
5128 * nr_free_pagecache_pages - count number of pages beyond high watermark
5129 *
5130 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5131 * high watermark within all zones.
a862f68a
MR
5132 *
5133 * Return: number of pages beyond high watermark within all zones.
1da177e4 5134 */
ebec3862 5135unsigned long nr_free_pagecache_pages(void)
1da177e4 5136{
2a1e274a 5137 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5138}
08e0f6a9
CL
5139
5140static inline void show_node(struct zone *zone)
1da177e4 5141{
e5adfffc 5142 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5143 printk("Node %d ", zone_to_nid(zone));
1da177e4 5144}
1da177e4 5145
d02bd27b
IR
5146long si_mem_available(void)
5147{
5148 long available;
5149 unsigned long pagecache;
5150 unsigned long wmark_low = 0;
5151 unsigned long pages[NR_LRU_LISTS];
b29940c1 5152 unsigned long reclaimable;
d02bd27b
IR
5153 struct zone *zone;
5154 int lru;
5155
5156 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5157 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5158
5159 for_each_zone(zone)
a9214443 5160 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5161
5162 /*
5163 * Estimate the amount of memory available for userspace allocations,
5164 * without causing swapping.
5165 */
c41f012a 5166 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5167
5168 /*
5169 * Not all the page cache can be freed, otherwise the system will
5170 * start swapping. Assume at least half of the page cache, or the
5171 * low watermark worth of cache, needs to stay.
5172 */
5173 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5174 pagecache -= min(pagecache / 2, wmark_low);
5175 available += pagecache;
5176
5177 /*
b29940c1
VB
5178 * Part of the reclaimable slab and other kernel memory consists of
5179 * items that are in use, and cannot be freed. Cap this estimate at the
5180 * low watermark.
d02bd27b 5181 */
b29940c1
VB
5182 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5183 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5184 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5185
d02bd27b
IR
5186 if (available < 0)
5187 available = 0;
5188 return available;
5189}
5190EXPORT_SYMBOL_GPL(si_mem_available);
5191
1da177e4
LT
5192void si_meminfo(struct sysinfo *val)
5193{
ca79b0c2 5194 val->totalram = totalram_pages();
11fb9989 5195 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5196 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5197 val->bufferram = nr_blockdev_pages();
ca79b0c2 5198 val->totalhigh = totalhigh_pages();
1da177e4 5199 val->freehigh = nr_free_highpages();
1da177e4
LT
5200 val->mem_unit = PAGE_SIZE;
5201}
5202
5203EXPORT_SYMBOL(si_meminfo);
5204
5205#ifdef CONFIG_NUMA
5206void si_meminfo_node(struct sysinfo *val, int nid)
5207{
cdd91a77
JL
5208 int zone_type; /* needs to be signed */
5209 unsigned long managed_pages = 0;
fc2bd799
JK
5210 unsigned long managed_highpages = 0;
5211 unsigned long free_highpages = 0;
1da177e4
LT
5212 pg_data_t *pgdat = NODE_DATA(nid);
5213
cdd91a77 5214 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5215 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5216 val->totalram = managed_pages;
11fb9989 5217 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5218 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5219#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5220 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5221 struct zone *zone = &pgdat->node_zones[zone_type];
5222
5223 if (is_highmem(zone)) {
9705bea5 5224 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5225 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5226 }
5227 }
5228 val->totalhigh = managed_highpages;
5229 val->freehigh = free_highpages;
98d2b0eb 5230#else
fc2bd799
JK
5231 val->totalhigh = managed_highpages;
5232 val->freehigh = free_highpages;
98d2b0eb 5233#endif
1da177e4
LT
5234 val->mem_unit = PAGE_SIZE;
5235}
5236#endif
5237
ddd588b5 5238/*
7bf02ea2
DR
5239 * Determine whether the node should be displayed or not, depending on whether
5240 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5241 */
9af744d7 5242static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5243{
ddd588b5 5244 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5245 return false;
ddd588b5 5246
9af744d7
MH
5247 /*
5248 * no node mask - aka implicit memory numa policy. Do not bother with
5249 * the synchronization - read_mems_allowed_begin - because we do not
5250 * have to be precise here.
5251 */
5252 if (!nodemask)
5253 nodemask = &cpuset_current_mems_allowed;
5254
5255 return !node_isset(nid, *nodemask);
ddd588b5
DR
5256}
5257
1da177e4
LT
5258#define K(x) ((x) << (PAGE_SHIFT-10))
5259
377e4f16
RV
5260static void show_migration_types(unsigned char type)
5261{
5262 static const char types[MIGRATE_TYPES] = {
5263 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5264 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5265 [MIGRATE_RECLAIMABLE] = 'E',
5266 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5267#ifdef CONFIG_CMA
5268 [MIGRATE_CMA] = 'C',
5269#endif
194159fb 5270#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5271 [MIGRATE_ISOLATE] = 'I',
194159fb 5272#endif
377e4f16
RV
5273 };
5274 char tmp[MIGRATE_TYPES + 1];
5275 char *p = tmp;
5276 int i;
5277
5278 for (i = 0; i < MIGRATE_TYPES; i++) {
5279 if (type & (1 << i))
5280 *p++ = types[i];
5281 }
5282
5283 *p = '\0';
1f84a18f 5284 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5285}
5286
1da177e4
LT
5287/*
5288 * Show free area list (used inside shift_scroll-lock stuff)
5289 * We also calculate the percentage fragmentation. We do this by counting the
5290 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5291 *
5292 * Bits in @filter:
5293 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5294 * cpuset.
1da177e4 5295 */
9af744d7 5296void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5297{
d1bfcdb8 5298 unsigned long free_pcp = 0;
c7241913 5299 int cpu;
1da177e4 5300 struct zone *zone;
599d0c95 5301 pg_data_t *pgdat;
1da177e4 5302
ee99c71c 5303 for_each_populated_zone(zone) {
9af744d7 5304 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5305 continue;
d1bfcdb8 5306
761b0677
KK
5307 for_each_online_cpu(cpu)
5308 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5309 }
5310
a731286d
KM
5311 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5312 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5313 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5314 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5315 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5316 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5317 global_node_page_state(NR_ACTIVE_ANON),
5318 global_node_page_state(NR_INACTIVE_ANON),
5319 global_node_page_state(NR_ISOLATED_ANON),
5320 global_node_page_state(NR_ACTIVE_FILE),
5321 global_node_page_state(NR_INACTIVE_FILE),
5322 global_node_page_state(NR_ISOLATED_FILE),
5323 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5324 global_node_page_state(NR_FILE_DIRTY),
5325 global_node_page_state(NR_WRITEBACK),
5326 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5327 global_node_page_state(NR_SLAB_RECLAIMABLE),
5328 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5329 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5330 global_node_page_state(NR_SHMEM),
c41f012a
MH
5331 global_zone_page_state(NR_PAGETABLE),
5332 global_zone_page_state(NR_BOUNCE),
5333 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5334 free_pcp,
c41f012a 5335 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5336
599d0c95 5337 for_each_online_pgdat(pgdat) {
9af744d7 5338 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5339 continue;
5340
599d0c95
MG
5341 printk("Node %d"
5342 " active_anon:%lukB"
5343 " inactive_anon:%lukB"
5344 " active_file:%lukB"
5345 " inactive_file:%lukB"
5346 " unevictable:%lukB"
5347 " isolated(anon):%lukB"
5348 " isolated(file):%lukB"
50658e2e 5349 " mapped:%lukB"
11fb9989
MG
5350 " dirty:%lukB"
5351 " writeback:%lukB"
5352 " shmem:%lukB"
5353#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5354 " shmem_thp: %lukB"
5355 " shmem_pmdmapped: %lukB"
5356 " anon_thp: %lukB"
5357#endif
5358 " writeback_tmp:%lukB"
5359 " unstable:%lukB"
599d0c95
MG
5360 " all_unreclaimable? %s"
5361 "\n",
5362 pgdat->node_id,
5363 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5364 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5365 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5366 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5367 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5368 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5369 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5370 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5371 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5372 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5373 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5375 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5376 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5377 * HPAGE_PMD_NR),
5378 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5379#endif
11fb9989
MG
5380 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5381 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5382 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5383 "yes" : "no");
599d0c95
MG
5384 }
5385
ee99c71c 5386 for_each_populated_zone(zone) {
1da177e4
LT
5387 int i;
5388
9af744d7 5389 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5390 continue;
d1bfcdb8
KK
5391
5392 free_pcp = 0;
5393 for_each_online_cpu(cpu)
5394 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5395
1da177e4 5396 show_node(zone);
1f84a18f
JP
5397 printk(KERN_CONT
5398 "%s"
1da177e4
LT
5399 " free:%lukB"
5400 " min:%lukB"
5401 " low:%lukB"
5402 " high:%lukB"
e47b346a 5403 " reserved_highatomic:%luKB"
71c799f4
MK
5404 " active_anon:%lukB"
5405 " inactive_anon:%lukB"
5406 " active_file:%lukB"
5407 " inactive_file:%lukB"
5408 " unevictable:%lukB"
5a1c84b4 5409 " writepending:%lukB"
1da177e4 5410 " present:%lukB"
9feedc9d 5411 " managed:%lukB"
4a0aa73f 5412 " mlocked:%lukB"
c6a7f572 5413 " kernel_stack:%lukB"
4a0aa73f 5414 " pagetables:%lukB"
4a0aa73f 5415 " bounce:%lukB"
d1bfcdb8
KK
5416 " free_pcp:%lukB"
5417 " local_pcp:%ukB"
d1ce749a 5418 " free_cma:%lukB"
1da177e4
LT
5419 "\n",
5420 zone->name,
88f5acf8 5421 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5422 K(min_wmark_pages(zone)),
5423 K(low_wmark_pages(zone)),
5424 K(high_wmark_pages(zone)),
e47b346a 5425 K(zone->nr_reserved_highatomic),
71c799f4
MK
5426 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5427 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5428 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5429 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5430 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5431 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5432 K(zone->present_pages),
9705bea5 5433 K(zone_managed_pages(zone)),
4a0aa73f 5434 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5435 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5436 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5437 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5438 K(free_pcp),
5439 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5440 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5441 printk("lowmem_reserve[]:");
5442 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5443 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5444 printk(KERN_CONT "\n");
1da177e4
LT
5445 }
5446
ee99c71c 5447 for_each_populated_zone(zone) {
d00181b9
KS
5448 unsigned int order;
5449 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5450 unsigned char types[MAX_ORDER];
1da177e4 5451
9af744d7 5452 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5453 continue;
1da177e4 5454 show_node(zone);
1f84a18f 5455 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5456
5457 spin_lock_irqsave(&zone->lock, flags);
5458 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5459 struct free_area *area = &zone->free_area[order];
5460 int type;
5461
5462 nr[order] = area->nr_free;
8f9de51a 5463 total += nr[order] << order;
377e4f16
RV
5464
5465 types[order] = 0;
5466 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5467 if (!free_area_empty(area, type))
377e4f16
RV
5468 types[order] |= 1 << type;
5469 }
1da177e4
LT
5470 }
5471 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5472 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5473 printk(KERN_CONT "%lu*%lukB ",
5474 nr[order], K(1UL) << order);
377e4f16
RV
5475 if (nr[order])
5476 show_migration_types(types[order]);
5477 }
1f84a18f 5478 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5479 }
5480
949f7ec5
DR
5481 hugetlb_show_meminfo();
5482
11fb9989 5483 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5484
1da177e4
LT
5485 show_swap_cache_info();
5486}
5487
19770b32
MG
5488static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5489{
5490 zoneref->zone = zone;
5491 zoneref->zone_idx = zone_idx(zone);
5492}
5493
1da177e4
LT
5494/*
5495 * Builds allocation fallback zone lists.
1a93205b
CL
5496 *
5497 * Add all populated zones of a node to the zonelist.
1da177e4 5498 */
9d3be21b 5499static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5500{
1a93205b 5501 struct zone *zone;
bc732f1d 5502 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5503 int nr_zones = 0;
02a68a5e
CL
5504
5505 do {
2f6726e5 5506 zone_type--;
070f8032 5507 zone = pgdat->node_zones + zone_type;
6aa303de 5508 if (managed_zone(zone)) {
9d3be21b 5509 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5510 check_highest_zone(zone_type);
1da177e4 5511 }
2f6726e5 5512 } while (zone_type);
bc732f1d 5513
070f8032 5514 return nr_zones;
1da177e4
LT
5515}
5516
5517#ifdef CONFIG_NUMA
f0c0b2b8
KH
5518
5519static int __parse_numa_zonelist_order(char *s)
5520{
c9bff3ee
MH
5521 /*
5522 * We used to support different zonlists modes but they turned
5523 * out to be just not useful. Let's keep the warning in place
5524 * if somebody still use the cmd line parameter so that we do
5525 * not fail it silently
5526 */
5527 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5528 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5529 return -EINVAL;
5530 }
5531 return 0;
5532}
5533
5534static __init int setup_numa_zonelist_order(char *s)
5535{
ecb256f8
VL
5536 if (!s)
5537 return 0;
5538
c9bff3ee 5539 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5540}
5541early_param("numa_zonelist_order", setup_numa_zonelist_order);
5542
c9bff3ee
MH
5543char numa_zonelist_order[] = "Node";
5544
f0c0b2b8
KH
5545/*
5546 * sysctl handler for numa_zonelist_order
5547 */
cccad5b9 5548int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5549 void __user *buffer, size_t *length,
f0c0b2b8
KH
5550 loff_t *ppos)
5551{
c9bff3ee 5552 char *str;
f0c0b2b8
KH
5553 int ret;
5554
c9bff3ee
MH
5555 if (!write)
5556 return proc_dostring(table, write, buffer, length, ppos);
5557 str = memdup_user_nul(buffer, 16);
5558 if (IS_ERR(str))
5559 return PTR_ERR(str);
dacbde09 5560
c9bff3ee
MH
5561 ret = __parse_numa_zonelist_order(str);
5562 kfree(str);
443c6f14 5563 return ret;
f0c0b2b8
KH
5564}
5565
5566
62bc62a8 5567#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5568static int node_load[MAX_NUMNODES];
5569
1da177e4 5570/**
4dc3b16b 5571 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5572 * @node: node whose fallback list we're appending
5573 * @used_node_mask: nodemask_t of already used nodes
5574 *
5575 * We use a number of factors to determine which is the next node that should
5576 * appear on a given node's fallback list. The node should not have appeared
5577 * already in @node's fallback list, and it should be the next closest node
5578 * according to the distance array (which contains arbitrary distance values
5579 * from each node to each node in the system), and should also prefer nodes
5580 * with no CPUs, since presumably they'll have very little allocation pressure
5581 * on them otherwise.
a862f68a
MR
5582 *
5583 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5584 */
f0c0b2b8 5585static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5586{
4cf808eb 5587 int n, val;
1da177e4 5588 int min_val = INT_MAX;
00ef2d2f 5589 int best_node = NUMA_NO_NODE;
a70f7302 5590 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5591
4cf808eb
LT
5592 /* Use the local node if we haven't already */
5593 if (!node_isset(node, *used_node_mask)) {
5594 node_set(node, *used_node_mask);
5595 return node;
5596 }
1da177e4 5597
4b0ef1fe 5598 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5599
5600 /* Don't want a node to appear more than once */
5601 if (node_isset(n, *used_node_mask))
5602 continue;
5603
1da177e4
LT
5604 /* Use the distance array to find the distance */
5605 val = node_distance(node, n);
5606
4cf808eb
LT
5607 /* Penalize nodes under us ("prefer the next node") */
5608 val += (n < node);
5609
1da177e4 5610 /* Give preference to headless and unused nodes */
a70f7302
RR
5611 tmp = cpumask_of_node(n);
5612 if (!cpumask_empty(tmp))
1da177e4
LT
5613 val += PENALTY_FOR_NODE_WITH_CPUS;
5614
5615 /* Slight preference for less loaded node */
5616 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5617 val += node_load[n];
5618
5619 if (val < min_val) {
5620 min_val = val;
5621 best_node = n;
5622 }
5623 }
5624
5625 if (best_node >= 0)
5626 node_set(best_node, *used_node_mask);
5627
5628 return best_node;
5629}
5630
f0c0b2b8
KH
5631
5632/*
5633 * Build zonelists ordered by node and zones within node.
5634 * This results in maximum locality--normal zone overflows into local
5635 * DMA zone, if any--but risks exhausting DMA zone.
5636 */
9d3be21b
MH
5637static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5638 unsigned nr_nodes)
1da177e4 5639{
9d3be21b
MH
5640 struct zoneref *zonerefs;
5641 int i;
5642
5643 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5644
5645 for (i = 0; i < nr_nodes; i++) {
5646 int nr_zones;
5647
5648 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5649
9d3be21b
MH
5650 nr_zones = build_zonerefs_node(node, zonerefs);
5651 zonerefs += nr_zones;
5652 }
5653 zonerefs->zone = NULL;
5654 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5655}
5656
523b9458
CL
5657/*
5658 * Build gfp_thisnode zonelists
5659 */
5660static void build_thisnode_zonelists(pg_data_t *pgdat)
5661{
9d3be21b
MH
5662 struct zoneref *zonerefs;
5663 int nr_zones;
523b9458 5664
9d3be21b
MH
5665 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5666 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5667 zonerefs += nr_zones;
5668 zonerefs->zone = NULL;
5669 zonerefs->zone_idx = 0;
523b9458
CL
5670}
5671
f0c0b2b8
KH
5672/*
5673 * Build zonelists ordered by zone and nodes within zones.
5674 * This results in conserving DMA zone[s] until all Normal memory is
5675 * exhausted, but results in overflowing to remote node while memory
5676 * may still exist in local DMA zone.
5677 */
f0c0b2b8 5678
f0c0b2b8
KH
5679static void build_zonelists(pg_data_t *pgdat)
5680{
9d3be21b
MH
5681 static int node_order[MAX_NUMNODES];
5682 int node, load, nr_nodes = 0;
1da177e4 5683 nodemask_t used_mask;
f0c0b2b8 5684 int local_node, prev_node;
1da177e4
LT
5685
5686 /* NUMA-aware ordering of nodes */
5687 local_node = pgdat->node_id;
62bc62a8 5688 load = nr_online_nodes;
1da177e4
LT
5689 prev_node = local_node;
5690 nodes_clear(used_mask);
f0c0b2b8 5691
f0c0b2b8 5692 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5693 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5694 /*
5695 * We don't want to pressure a particular node.
5696 * So adding penalty to the first node in same
5697 * distance group to make it round-robin.
5698 */
957f822a
DR
5699 if (node_distance(local_node, node) !=
5700 node_distance(local_node, prev_node))
f0c0b2b8
KH
5701 node_load[node] = load;
5702
9d3be21b 5703 node_order[nr_nodes++] = node;
1da177e4
LT
5704 prev_node = node;
5705 load--;
1da177e4 5706 }
523b9458 5707
9d3be21b 5708 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5709 build_thisnode_zonelists(pgdat);
1da177e4
LT
5710}
5711
7aac7898
LS
5712#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5713/*
5714 * Return node id of node used for "local" allocations.
5715 * I.e., first node id of first zone in arg node's generic zonelist.
5716 * Used for initializing percpu 'numa_mem', which is used primarily
5717 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5718 */
5719int local_memory_node(int node)
5720{
c33d6c06 5721 struct zoneref *z;
7aac7898 5722
c33d6c06 5723 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5724 gfp_zone(GFP_KERNEL),
c33d6c06 5725 NULL);
c1093b74 5726 return zone_to_nid(z->zone);
7aac7898
LS
5727}
5728#endif
f0c0b2b8 5729
6423aa81
JK
5730static void setup_min_unmapped_ratio(void);
5731static void setup_min_slab_ratio(void);
1da177e4
LT
5732#else /* CONFIG_NUMA */
5733
f0c0b2b8 5734static void build_zonelists(pg_data_t *pgdat)
1da177e4 5735{
19655d34 5736 int node, local_node;
9d3be21b
MH
5737 struct zoneref *zonerefs;
5738 int nr_zones;
1da177e4
LT
5739
5740 local_node = pgdat->node_id;
1da177e4 5741
9d3be21b
MH
5742 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5743 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5744 zonerefs += nr_zones;
1da177e4 5745
54a6eb5c
MG
5746 /*
5747 * Now we build the zonelist so that it contains the zones
5748 * of all the other nodes.
5749 * We don't want to pressure a particular node, so when
5750 * building the zones for node N, we make sure that the
5751 * zones coming right after the local ones are those from
5752 * node N+1 (modulo N)
5753 */
5754 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5755 if (!node_online(node))
5756 continue;
9d3be21b
MH
5757 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5758 zonerefs += nr_zones;
1da177e4 5759 }
54a6eb5c
MG
5760 for (node = 0; node < local_node; node++) {
5761 if (!node_online(node))
5762 continue;
9d3be21b
MH
5763 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5764 zonerefs += nr_zones;
54a6eb5c
MG
5765 }
5766
9d3be21b
MH
5767 zonerefs->zone = NULL;
5768 zonerefs->zone_idx = 0;
1da177e4
LT
5769}
5770
5771#endif /* CONFIG_NUMA */
5772
99dcc3e5
CL
5773/*
5774 * Boot pageset table. One per cpu which is going to be used for all
5775 * zones and all nodes. The parameters will be set in such a way
5776 * that an item put on a list will immediately be handed over to
5777 * the buddy list. This is safe since pageset manipulation is done
5778 * with interrupts disabled.
5779 *
5780 * The boot_pagesets must be kept even after bootup is complete for
5781 * unused processors and/or zones. They do play a role for bootstrapping
5782 * hotplugged processors.
5783 *
5784 * zoneinfo_show() and maybe other functions do
5785 * not check if the processor is online before following the pageset pointer.
5786 * Other parts of the kernel may not check if the zone is available.
5787 */
5788static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5789static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5790static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5791
11cd8638 5792static void __build_all_zonelists(void *data)
1da177e4 5793{
6811378e 5794 int nid;
afb6ebb3 5795 int __maybe_unused cpu;
9adb62a5 5796 pg_data_t *self = data;
b93e0f32
MH
5797 static DEFINE_SPINLOCK(lock);
5798
5799 spin_lock(&lock);
9276b1bc 5800
7f9cfb31
BL
5801#ifdef CONFIG_NUMA
5802 memset(node_load, 0, sizeof(node_load));
5803#endif
9adb62a5 5804
c1152583
WY
5805 /*
5806 * This node is hotadded and no memory is yet present. So just
5807 * building zonelists is fine - no need to touch other nodes.
5808 */
9adb62a5
JL
5809 if (self && !node_online(self->node_id)) {
5810 build_zonelists(self);
c1152583
WY
5811 } else {
5812 for_each_online_node(nid) {
5813 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5814
c1152583
WY
5815 build_zonelists(pgdat);
5816 }
99dcc3e5 5817
7aac7898
LS
5818#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5819 /*
5820 * We now know the "local memory node" for each node--
5821 * i.e., the node of the first zone in the generic zonelist.
5822 * Set up numa_mem percpu variable for on-line cpus. During
5823 * boot, only the boot cpu should be on-line; we'll init the
5824 * secondary cpus' numa_mem as they come on-line. During
5825 * node/memory hotplug, we'll fixup all on-line cpus.
5826 */
d9c9a0b9 5827 for_each_online_cpu(cpu)
7aac7898 5828 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5829#endif
d9c9a0b9 5830 }
b93e0f32
MH
5831
5832 spin_unlock(&lock);
6811378e
YG
5833}
5834
061f67bc
RV
5835static noinline void __init
5836build_all_zonelists_init(void)
5837{
afb6ebb3
MH
5838 int cpu;
5839
061f67bc 5840 __build_all_zonelists(NULL);
afb6ebb3
MH
5841
5842 /*
5843 * Initialize the boot_pagesets that are going to be used
5844 * for bootstrapping processors. The real pagesets for
5845 * each zone will be allocated later when the per cpu
5846 * allocator is available.
5847 *
5848 * boot_pagesets are used also for bootstrapping offline
5849 * cpus if the system is already booted because the pagesets
5850 * are needed to initialize allocators on a specific cpu too.
5851 * F.e. the percpu allocator needs the page allocator which
5852 * needs the percpu allocator in order to allocate its pagesets
5853 * (a chicken-egg dilemma).
5854 */
5855 for_each_possible_cpu(cpu)
5856 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5857
061f67bc
RV
5858 mminit_verify_zonelist();
5859 cpuset_init_current_mems_allowed();
5860}
5861
4eaf3f64 5862/*
4eaf3f64 5863 * unless system_state == SYSTEM_BOOTING.
061f67bc 5864 *
72675e13 5865 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5866 * [protected by SYSTEM_BOOTING].
4eaf3f64 5867 */
72675e13 5868void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5869{
5870 if (system_state == SYSTEM_BOOTING) {
061f67bc 5871 build_all_zonelists_init();
6811378e 5872 } else {
11cd8638 5873 __build_all_zonelists(pgdat);
6811378e
YG
5874 /* cpuset refresh routine should be here */
5875 }
bd1e22b8 5876 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5877 /*
5878 * Disable grouping by mobility if the number of pages in the
5879 * system is too low to allow the mechanism to work. It would be
5880 * more accurate, but expensive to check per-zone. This check is
5881 * made on memory-hotadd so a system can start with mobility
5882 * disabled and enable it later
5883 */
d9c23400 5884 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5885 page_group_by_mobility_disabled = 1;
5886 else
5887 page_group_by_mobility_disabled = 0;
5888
ce0725f7 5889 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5890 nr_online_nodes,
756a025f
JP
5891 page_group_by_mobility_disabled ? "off" : "on",
5892 vm_total_pages);
f0c0b2b8 5893#ifdef CONFIG_NUMA
f88dfff5 5894 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5895#endif
1da177e4
LT
5896}
5897
a9a9e77f
PT
5898/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5899static bool __meminit
5900overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5901{
5902#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5903 static struct memblock_region *r;
5904
5905 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5906 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5907 for_each_memblock(memory, r) {
5908 if (*pfn < memblock_region_memory_end_pfn(r))
5909 break;
5910 }
5911 }
5912 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5913 memblock_is_mirror(r)) {
5914 *pfn = memblock_region_memory_end_pfn(r);
5915 return true;
5916 }
5917 }
5918#endif
5919 return false;
5920}
5921
3f135355
KS
5922#ifdef CONFIG_SPARSEMEM
5923/* Skip PFNs that belong to non-present sections */
5924static inline __meminit unsigned long next_pfn(unsigned long pfn)
5925{
4c605881 5926 const unsigned long section_nr = pfn_to_section_nr(++pfn);
3f135355 5927
3f135355
KS
5928 if (present_section_nr(section_nr))
5929 return pfn;
4c605881 5930 return section_nr_to_pfn(next_present_section_nr(section_nr));
3f135355
KS
5931}
5932#else
5933static inline __meminit unsigned long next_pfn(unsigned long pfn)
5934{
5935 return pfn++;
5936}
5937#endif
5938
1da177e4
LT
5939/*
5940 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5941 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5942 * done. Non-atomic initialization, single-pass.
5943 */
c09b4240 5944void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5945 unsigned long start_pfn, enum memmap_context context,
5946 struct vmem_altmap *altmap)
1da177e4 5947{
a9a9e77f 5948 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5949 struct page *page;
1da177e4 5950
22b31eec
HD
5951 if (highest_memmap_pfn < end_pfn - 1)
5952 highest_memmap_pfn = end_pfn - 1;
5953
966cf44f 5954#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5955 /*
5956 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5957 * memory. We limit the total number of pages to initialize to just
5958 * those that might contain the memory mapping. We will defer the
5959 * ZONE_DEVICE page initialization until after we have released
5960 * the hotplug lock.
4b94ffdc 5961 */
966cf44f
AD
5962 if (zone == ZONE_DEVICE) {
5963 if (!altmap)
5964 return;
5965
5966 if (start_pfn == altmap->base_pfn)
5967 start_pfn += altmap->reserve;
5968 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5969 }
5970#endif
4b94ffdc 5971
948c436e 5972 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 5973 /*
b72d0ffb
AM
5974 * There can be holes in boot-time mem_map[]s handed to this
5975 * function. They do not exist on hotplugged memory.
a2f3aa02 5976 */
a9a9e77f 5977 if (context == MEMMAP_EARLY) {
3f135355 5978 if (!early_pfn_valid(pfn)) {
948c436e 5979 pfn = next_pfn(pfn);
b72d0ffb 5980 continue;
3f135355 5981 }
948c436e
DH
5982 if (!early_pfn_in_nid(pfn, nid)) {
5983 pfn++;
a9a9e77f 5984 continue;
948c436e 5985 }
a9a9e77f
PT
5986 if (overlap_memmap_init(zone, &pfn))
5987 continue;
5988 if (defer_init(nid, pfn, end_pfn))
5989 break;
a2f3aa02 5990 }
ac5d2539 5991
d0dc12e8
PT
5992 page = pfn_to_page(pfn);
5993 __init_single_page(page, pfn, zone, nid);
5994 if (context == MEMMAP_HOTPLUG)
d483da5b 5995 __SetPageReserved(page);
d0dc12e8 5996
ac5d2539
MG
5997 /*
5998 * Mark the block movable so that blocks are reserved for
5999 * movable at startup. This will force kernel allocations
6000 * to reserve their blocks rather than leaking throughout
6001 * the address space during boot when many long-lived
974a786e 6002 * kernel allocations are made.
ac5d2539
MG
6003 *
6004 * bitmap is created for zone's valid pfn range. but memmap
6005 * can be created for invalid pages (for alignment)
6006 * check here not to call set_pageblock_migratetype() against
6007 * pfn out of zone.
6008 */
6009 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 6010 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 6011 cond_resched();
ac5d2539 6012 }
948c436e 6013 pfn++;
1da177e4
LT
6014 }
6015}
6016
966cf44f
AD
6017#ifdef CONFIG_ZONE_DEVICE
6018void __ref memmap_init_zone_device(struct zone *zone,
6019 unsigned long start_pfn,
1f8d75c1 6020 unsigned long nr_pages,
966cf44f
AD
6021 struct dev_pagemap *pgmap)
6022{
1f8d75c1 6023 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6024 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6025 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
6026 unsigned long zone_idx = zone_idx(zone);
6027 unsigned long start = jiffies;
6028 int nid = pgdat->node_id;
6029
46d945ae 6030 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
6031 return;
6032
6033 /*
6034 * The call to memmap_init_zone should have already taken care
6035 * of the pages reserved for the memmap, so we can just jump to
6036 * the end of that region and start processing the device pages.
6037 */
514caf23 6038 if (altmap) {
966cf44f 6039 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6040 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6041 }
6042
6043 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6044 struct page *page = pfn_to_page(pfn);
6045
6046 __init_single_page(page, pfn, zone_idx, nid);
6047
6048 /*
6049 * Mark page reserved as it will need to wait for onlining
6050 * phase for it to be fully associated with a zone.
6051 *
6052 * We can use the non-atomic __set_bit operation for setting
6053 * the flag as we are still initializing the pages.
6054 */
6055 __SetPageReserved(page);
6056
6057 /*
8a164fef
CH
6058 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6059 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6060 * ever freed or placed on a driver-private list.
966cf44f
AD
6061 */
6062 page->pgmap = pgmap;
8a164fef 6063 page->zone_device_data = NULL;
966cf44f
AD
6064
6065 /*
6066 * Mark the block movable so that blocks are reserved for
6067 * movable at startup. This will force kernel allocations
6068 * to reserve their blocks rather than leaking throughout
6069 * the address space during boot when many long-lived
6070 * kernel allocations are made.
6071 *
6072 * bitmap is created for zone's valid pfn range. but memmap
6073 * can be created for invalid pages (for alignment)
6074 * check here not to call set_pageblock_migratetype() against
6075 * pfn out of zone.
6076 *
6077 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 6078 * because this is done early in section_activate()
966cf44f
AD
6079 */
6080 if (!(pfn & (pageblock_nr_pages - 1))) {
6081 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6082 cond_resched();
6083 }
6084 }
6085
fdc029b1 6086 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6087 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6088}
6089
6090#endif
1e548deb 6091static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6092{
7aeb09f9 6093 unsigned int order, t;
b2a0ac88
MG
6094 for_each_migratetype_order(order, t) {
6095 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6096 zone->free_area[order].nr_free = 0;
6097 }
6098}
6099
dfb3ccd0
PT
6100void __meminit __weak memmap_init(unsigned long size, int nid,
6101 unsigned long zone, unsigned long start_pfn)
6102{
6103 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6104}
1da177e4 6105
7cd2b0a3 6106static int zone_batchsize(struct zone *zone)
e7c8d5c9 6107{
3a6be87f 6108#ifdef CONFIG_MMU
e7c8d5c9
CL
6109 int batch;
6110
6111 /*
6112 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6113 * size of the zone.
e7c8d5c9 6114 */
9705bea5 6115 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6116 /* But no more than a meg. */
6117 if (batch * PAGE_SIZE > 1024 * 1024)
6118 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6119 batch /= 4; /* We effectively *= 4 below */
6120 if (batch < 1)
6121 batch = 1;
6122
6123 /*
0ceaacc9
NP
6124 * Clamp the batch to a 2^n - 1 value. Having a power
6125 * of 2 value was found to be more likely to have
6126 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6127 *
0ceaacc9
NP
6128 * For example if 2 tasks are alternately allocating
6129 * batches of pages, one task can end up with a lot
6130 * of pages of one half of the possible page colors
6131 * and the other with pages of the other colors.
e7c8d5c9 6132 */
9155203a 6133 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6134
e7c8d5c9 6135 return batch;
3a6be87f
DH
6136
6137#else
6138 /* The deferral and batching of frees should be suppressed under NOMMU
6139 * conditions.
6140 *
6141 * The problem is that NOMMU needs to be able to allocate large chunks
6142 * of contiguous memory as there's no hardware page translation to
6143 * assemble apparent contiguous memory from discontiguous pages.
6144 *
6145 * Queueing large contiguous runs of pages for batching, however,
6146 * causes the pages to actually be freed in smaller chunks. As there
6147 * can be a significant delay between the individual batches being
6148 * recycled, this leads to the once large chunks of space being
6149 * fragmented and becoming unavailable for high-order allocations.
6150 */
6151 return 0;
6152#endif
e7c8d5c9
CL
6153}
6154
8d7a8fa9
CS
6155/*
6156 * pcp->high and pcp->batch values are related and dependent on one another:
6157 * ->batch must never be higher then ->high.
6158 * The following function updates them in a safe manner without read side
6159 * locking.
6160 *
6161 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6162 * those fields changing asynchronously (acording the the above rule).
6163 *
6164 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6165 * outside of boot time (or some other assurance that no concurrent updaters
6166 * exist).
6167 */
6168static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6169 unsigned long batch)
6170{
6171 /* start with a fail safe value for batch */
6172 pcp->batch = 1;
6173 smp_wmb();
6174
6175 /* Update high, then batch, in order */
6176 pcp->high = high;
6177 smp_wmb();
6178
6179 pcp->batch = batch;
6180}
6181
3664033c 6182/* a companion to pageset_set_high() */
4008bab7
CS
6183static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6184{
8d7a8fa9 6185 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6186}
6187
88c90dbc 6188static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6189{
6190 struct per_cpu_pages *pcp;
5f8dcc21 6191 int migratetype;
2caaad41 6192
1c6fe946
MD
6193 memset(p, 0, sizeof(*p));
6194
3dfa5721 6195 pcp = &p->pcp;
5f8dcc21
MG
6196 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6197 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6198}
6199
88c90dbc
CS
6200static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6201{
6202 pageset_init(p);
6203 pageset_set_batch(p, batch);
6204}
6205
8ad4b1fb 6206/*
3664033c 6207 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6208 * to the value high for the pageset p.
6209 */
3664033c 6210static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6211 unsigned long high)
6212{
8d7a8fa9
CS
6213 unsigned long batch = max(1UL, high / 4);
6214 if ((high / 4) > (PAGE_SHIFT * 8))
6215 batch = PAGE_SHIFT * 8;
8ad4b1fb 6216
8d7a8fa9 6217 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6218}
6219
7cd2b0a3
DR
6220static void pageset_set_high_and_batch(struct zone *zone,
6221 struct per_cpu_pageset *pcp)
56cef2b8 6222{
56cef2b8 6223 if (percpu_pagelist_fraction)
3664033c 6224 pageset_set_high(pcp,
9705bea5 6225 (zone_managed_pages(zone) /
56cef2b8
CS
6226 percpu_pagelist_fraction));
6227 else
6228 pageset_set_batch(pcp, zone_batchsize(zone));
6229}
6230
169f6c19
CS
6231static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6232{
6233 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6234
6235 pageset_init(pcp);
6236 pageset_set_high_and_batch(zone, pcp);
6237}
6238
72675e13 6239void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6240{
6241 int cpu;
319774e2 6242 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6243 for_each_possible_cpu(cpu)
6244 zone_pageset_init(zone, cpu);
319774e2
WF
6245}
6246
2caaad41 6247/*
99dcc3e5
CL
6248 * Allocate per cpu pagesets and initialize them.
6249 * Before this call only boot pagesets were available.
e7c8d5c9 6250 */
99dcc3e5 6251void __init setup_per_cpu_pageset(void)
e7c8d5c9 6252{
b4911ea2 6253 struct pglist_data *pgdat;
99dcc3e5 6254 struct zone *zone;
e7c8d5c9 6255
319774e2
WF
6256 for_each_populated_zone(zone)
6257 setup_zone_pageset(zone);
b4911ea2
MG
6258
6259 for_each_online_pgdat(pgdat)
6260 pgdat->per_cpu_nodestats =
6261 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6262}
6263
c09b4240 6264static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6265{
99dcc3e5
CL
6266 /*
6267 * per cpu subsystem is not up at this point. The following code
6268 * relies on the ability of the linker to provide the
6269 * offset of a (static) per cpu variable into the per cpu area.
6270 */
6271 zone->pageset = &boot_pageset;
ed8ece2e 6272
b38a8725 6273 if (populated_zone(zone))
99dcc3e5
CL
6274 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6275 zone->name, zone->present_pages,
6276 zone_batchsize(zone));
ed8ece2e
DH
6277}
6278
dc0bbf3b 6279void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6280 unsigned long zone_start_pfn,
b171e409 6281 unsigned long size)
ed8ece2e
DH
6282{
6283 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6284 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6285
8f416836
WY
6286 if (zone_idx > pgdat->nr_zones)
6287 pgdat->nr_zones = zone_idx;
ed8ece2e 6288
ed8ece2e
DH
6289 zone->zone_start_pfn = zone_start_pfn;
6290
708614e6
MG
6291 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6292 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6293 pgdat->node_id,
6294 (unsigned long)zone_idx(zone),
6295 zone_start_pfn, (zone_start_pfn + size));
6296
1e548deb 6297 zone_init_free_lists(zone);
9dcb8b68 6298 zone->initialized = 1;
ed8ece2e
DH
6299}
6300
0ee332c1 6301#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6302#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6303
c713216d
MG
6304/*
6305 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6306 */
8a942fde
MG
6307int __meminit __early_pfn_to_nid(unsigned long pfn,
6308 struct mminit_pfnnid_cache *state)
c713216d 6309{
c13291a5 6310 unsigned long start_pfn, end_pfn;
e76b63f8 6311 int nid;
7c243c71 6312
8a942fde
MG
6313 if (state->last_start <= pfn && pfn < state->last_end)
6314 return state->last_nid;
c713216d 6315
e76b63f8 6316 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6317 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6318 state->last_start = start_pfn;
6319 state->last_end = end_pfn;
6320 state->last_nid = nid;
e76b63f8
YL
6321 }
6322
6323 return nid;
c713216d
MG
6324}
6325#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6326
c713216d 6327/**
6782832e 6328 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6329 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6330 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6331 *
7d018176
ZZ
6332 * If an architecture guarantees that all ranges registered contain no holes
6333 * and may be freed, this this function may be used instead of calling
6334 * memblock_free_early_nid() manually.
c713216d 6335 */
c13291a5 6336void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6337{
c13291a5
TH
6338 unsigned long start_pfn, end_pfn;
6339 int i, this_nid;
edbe7d23 6340
c13291a5
TH
6341 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6342 start_pfn = min(start_pfn, max_low_pfn);
6343 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6344
c13291a5 6345 if (start_pfn < end_pfn)
6782832e
SS
6346 memblock_free_early_nid(PFN_PHYS(start_pfn),
6347 (end_pfn - start_pfn) << PAGE_SHIFT,
6348 this_nid);
edbe7d23 6349 }
edbe7d23 6350}
edbe7d23 6351
c713216d
MG
6352/**
6353 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6354 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6355 *
7d018176
ZZ
6356 * If an architecture guarantees that all ranges registered contain no holes and may
6357 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6358 */
6359void __init sparse_memory_present_with_active_regions(int nid)
6360{
c13291a5
TH
6361 unsigned long start_pfn, end_pfn;
6362 int i, this_nid;
c713216d 6363
c13291a5
TH
6364 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6365 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6366}
6367
6368/**
6369 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6370 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6371 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6372 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6373 *
6374 * It returns the start and end page frame of a node based on information
7d018176 6375 * provided by memblock_set_node(). If called for a node
c713216d 6376 * with no available memory, a warning is printed and the start and end
88ca3b94 6377 * PFNs will be 0.
c713216d 6378 */
bbe5d993 6379void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6380 unsigned long *start_pfn, unsigned long *end_pfn)
6381{
c13291a5 6382 unsigned long this_start_pfn, this_end_pfn;
c713216d 6383 int i;
c13291a5 6384
c713216d
MG
6385 *start_pfn = -1UL;
6386 *end_pfn = 0;
6387
c13291a5
TH
6388 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6389 *start_pfn = min(*start_pfn, this_start_pfn);
6390 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6391 }
6392
633c0666 6393 if (*start_pfn == -1UL)
c713216d 6394 *start_pfn = 0;
c713216d
MG
6395}
6396
2a1e274a
MG
6397/*
6398 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6399 * assumption is made that zones within a node are ordered in monotonic
6400 * increasing memory addresses so that the "highest" populated zone is used
6401 */
b69a7288 6402static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6403{
6404 int zone_index;
6405 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6406 if (zone_index == ZONE_MOVABLE)
6407 continue;
6408
6409 if (arch_zone_highest_possible_pfn[zone_index] >
6410 arch_zone_lowest_possible_pfn[zone_index])
6411 break;
6412 }
6413
6414 VM_BUG_ON(zone_index == -1);
6415 movable_zone = zone_index;
6416}
6417
6418/*
6419 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6420 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6421 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6422 * in each node depending on the size of each node and how evenly kernelcore
6423 * is distributed. This helper function adjusts the zone ranges
6424 * provided by the architecture for a given node by using the end of the
6425 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6426 * zones within a node are in order of monotonic increases memory addresses
6427 */
bbe5d993 6428static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6429 unsigned long zone_type,
6430 unsigned long node_start_pfn,
6431 unsigned long node_end_pfn,
6432 unsigned long *zone_start_pfn,
6433 unsigned long *zone_end_pfn)
6434{
6435 /* Only adjust if ZONE_MOVABLE is on this node */
6436 if (zone_movable_pfn[nid]) {
6437 /* Size ZONE_MOVABLE */
6438 if (zone_type == ZONE_MOVABLE) {
6439 *zone_start_pfn = zone_movable_pfn[nid];
6440 *zone_end_pfn = min(node_end_pfn,
6441 arch_zone_highest_possible_pfn[movable_zone]);
6442
e506b996
XQ
6443 /* Adjust for ZONE_MOVABLE starting within this range */
6444 } else if (!mirrored_kernelcore &&
6445 *zone_start_pfn < zone_movable_pfn[nid] &&
6446 *zone_end_pfn > zone_movable_pfn[nid]) {
6447 *zone_end_pfn = zone_movable_pfn[nid];
6448
2a1e274a
MG
6449 /* Check if this whole range is within ZONE_MOVABLE */
6450 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6451 *zone_start_pfn = *zone_end_pfn;
6452 }
6453}
6454
c713216d
MG
6455/*
6456 * Return the number of pages a zone spans in a node, including holes
6457 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6458 */
bbe5d993 6459static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6460 unsigned long zone_type,
7960aedd
ZY
6461 unsigned long node_start_pfn,
6462 unsigned long node_end_pfn,
d91749c1
TI
6463 unsigned long *zone_start_pfn,
6464 unsigned long *zone_end_pfn,
c713216d
MG
6465 unsigned long *ignored)
6466{
299c83dc
LF
6467 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6468 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6469 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6470 if (!node_start_pfn && !node_end_pfn)
6471 return 0;
6472
7960aedd 6473 /* Get the start and end of the zone */
299c83dc
LF
6474 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6475 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6476 adjust_zone_range_for_zone_movable(nid, zone_type,
6477 node_start_pfn, node_end_pfn,
d91749c1 6478 zone_start_pfn, zone_end_pfn);
c713216d
MG
6479
6480 /* Check that this node has pages within the zone's required range */
d91749c1 6481 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6482 return 0;
6483
6484 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6485 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6486 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6487
6488 /* Return the spanned pages */
d91749c1 6489 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6490}
6491
6492/*
6493 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6494 * then all holes in the requested range will be accounted for.
c713216d 6495 */
bbe5d993 6496unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6497 unsigned long range_start_pfn,
6498 unsigned long range_end_pfn)
6499{
96e907d1
TH
6500 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6501 unsigned long start_pfn, end_pfn;
6502 int i;
c713216d 6503
96e907d1
TH
6504 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6505 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6506 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6507 nr_absent -= end_pfn - start_pfn;
c713216d 6508 }
96e907d1 6509 return nr_absent;
c713216d
MG
6510}
6511
6512/**
6513 * absent_pages_in_range - Return number of page frames in holes within a range
6514 * @start_pfn: The start PFN to start searching for holes
6515 * @end_pfn: The end PFN to stop searching for holes
6516 *
a862f68a 6517 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6518 */
6519unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6520 unsigned long end_pfn)
6521{
6522 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6523}
6524
6525/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6526static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6527 unsigned long zone_type,
7960aedd
ZY
6528 unsigned long node_start_pfn,
6529 unsigned long node_end_pfn,
c713216d
MG
6530 unsigned long *ignored)
6531{
96e907d1
TH
6532 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6533 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6534 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6535 unsigned long nr_absent;
9c7cd687 6536
b5685e92 6537 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6538 if (!node_start_pfn && !node_end_pfn)
6539 return 0;
6540
96e907d1
TH
6541 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6542 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6543
2a1e274a
MG
6544 adjust_zone_range_for_zone_movable(nid, zone_type,
6545 node_start_pfn, node_end_pfn,
6546 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6547 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6548
6549 /*
6550 * ZONE_MOVABLE handling.
6551 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6552 * and vice versa.
6553 */
e506b996
XQ
6554 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6555 unsigned long start_pfn, end_pfn;
6556 struct memblock_region *r;
6557
6558 for_each_memblock(memory, r) {
6559 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6560 zone_start_pfn, zone_end_pfn);
6561 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6562 zone_start_pfn, zone_end_pfn);
6563
6564 if (zone_type == ZONE_MOVABLE &&
6565 memblock_is_mirror(r))
6566 nr_absent += end_pfn - start_pfn;
6567
6568 if (zone_type == ZONE_NORMAL &&
6569 !memblock_is_mirror(r))
6570 nr_absent += end_pfn - start_pfn;
342332e6
TI
6571 }
6572 }
6573
6574 return nr_absent;
c713216d 6575}
0e0b864e 6576
0ee332c1 6577#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6578static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6579 unsigned long zone_type,
7960aedd
ZY
6580 unsigned long node_start_pfn,
6581 unsigned long node_end_pfn,
d91749c1
TI
6582 unsigned long *zone_start_pfn,
6583 unsigned long *zone_end_pfn,
c713216d
MG
6584 unsigned long *zones_size)
6585{
d91749c1
TI
6586 unsigned int zone;
6587
6588 *zone_start_pfn = node_start_pfn;
6589 for (zone = 0; zone < zone_type; zone++)
6590 *zone_start_pfn += zones_size[zone];
6591
6592 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6593
c713216d
MG
6594 return zones_size[zone_type];
6595}
6596
bbe5d993 6597static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6598 unsigned long zone_type,
7960aedd
ZY
6599 unsigned long node_start_pfn,
6600 unsigned long node_end_pfn,
c713216d
MG
6601 unsigned long *zholes_size)
6602{
6603 if (!zholes_size)
6604 return 0;
6605
6606 return zholes_size[zone_type];
6607}
20e6926d 6608
0ee332c1 6609#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6610
bbe5d993 6611static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6612 unsigned long node_start_pfn,
6613 unsigned long node_end_pfn,
6614 unsigned long *zones_size,
6615 unsigned long *zholes_size)
c713216d 6616{
febd5949 6617 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6618 enum zone_type i;
6619
febd5949
GZ
6620 for (i = 0; i < MAX_NR_ZONES; i++) {
6621 struct zone *zone = pgdat->node_zones + i;
d91749c1 6622 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6623 unsigned long size, real_size;
c713216d 6624
febd5949
GZ
6625 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6626 node_start_pfn,
6627 node_end_pfn,
d91749c1
TI
6628 &zone_start_pfn,
6629 &zone_end_pfn,
febd5949
GZ
6630 zones_size);
6631 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6632 node_start_pfn, node_end_pfn,
6633 zholes_size);
d91749c1
TI
6634 if (size)
6635 zone->zone_start_pfn = zone_start_pfn;
6636 else
6637 zone->zone_start_pfn = 0;
febd5949
GZ
6638 zone->spanned_pages = size;
6639 zone->present_pages = real_size;
6640
6641 totalpages += size;
6642 realtotalpages += real_size;
6643 }
6644
6645 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6646 pgdat->node_present_pages = realtotalpages;
6647 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6648 realtotalpages);
6649}
6650
835c134e
MG
6651#ifndef CONFIG_SPARSEMEM
6652/*
6653 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6654 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6655 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6656 * round what is now in bits to nearest long in bits, then return it in
6657 * bytes.
6658 */
7c45512d 6659static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6660{
6661 unsigned long usemapsize;
6662
7c45512d 6663 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6664 usemapsize = roundup(zonesize, pageblock_nr_pages);
6665 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6666 usemapsize *= NR_PAGEBLOCK_BITS;
6667 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6668
6669 return usemapsize / 8;
6670}
6671
7cc2a959 6672static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6673 struct zone *zone,
6674 unsigned long zone_start_pfn,
6675 unsigned long zonesize)
835c134e 6676{
7c45512d 6677 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6678 zone->pageblock_flags = NULL;
23a7052a 6679 if (usemapsize) {
6782832e 6680 zone->pageblock_flags =
26fb3dae
MR
6681 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6682 pgdat->node_id);
23a7052a
MR
6683 if (!zone->pageblock_flags)
6684 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6685 usemapsize, zone->name, pgdat->node_id);
6686 }
835c134e
MG
6687}
6688#else
7c45512d
LT
6689static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6690 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6691#endif /* CONFIG_SPARSEMEM */
6692
d9c23400 6693#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6694
d9c23400 6695/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6696void __init set_pageblock_order(void)
d9c23400 6697{
955c1cd7
AM
6698 unsigned int order;
6699
d9c23400
MG
6700 /* Check that pageblock_nr_pages has not already been setup */
6701 if (pageblock_order)
6702 return;
6703
955c1cd7
AM
6704 if (HPAGE_SHIFT > PAGE_SHIFT)
6705 order = HUGETLB_PAGE_ORDER;
6706 else
6707 order = MAX_ORDER - 1;
6708
d9c23400
MG
6709 /*
6710 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6711 * This value may be variable depending on boot parameters on IA64 and
6712 * powerpc.
d9c23400
MG
6713 */
6714 pageblock_order = order;
6715}
6716#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6717
ba72cb8c
MG
6718/*
6719 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6720 * is unused as pageblock_order is set at compile-time. See
6721 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6722 * the kernel config
ba72cb8c 6723 */
03e85f9d 6724void __init set_pageblock_order(void)
ba72cb8c 6725{
ba72cb8c 6726}
d9c23400
MG
6727
6728#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6729
03e85f9d 6730static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6731 unsigned long present_pages)
01cefaef
JL
6732{
6733 unsigned long pages = spanned_pages;
6734
6735 /*
6736 * Provide a more accurate estimation if there are holes within
6737 * the zone and SPARSEMEM is in use. If there are holes within the
6738 * zone, each populated memory region may cost us one or two extra
6739 * memmap pages due to alignment because memmap pages for each
89d790ab 6740 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6741 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6742 */
6743 if (spanned_pages > present_pages + (present_pages >> 4) &&
6744 IS_ENABLED(CONFIG_SPARSEMEM))
6745 pages = present_pages;
6746
6747 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6748}
6749
ace1db39
OS
6750#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6751static void pgdat_init_split_queue(struct pglist_data *pgdat)
6752{
364c1eeb
YS
6753 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6754
6755 spin_lock_init(&ds_queue->split_queue_lock);
6756 INIT_LIST_HEAD(&ds_queue->split_queue);
6757 ds_queue->split_queue_len = 0;
ace1db39
OS
6758}
6759#else
6760static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6761#endif
6762
6763#ifdef CONFIG_COMPACTION
6764static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6765{
6766 init_waitqueue_head(&pgdat->kcompactd_wait);
6767}
6768#else
6769static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6770#endif
6771
03e85f9d 6772static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6773{
208d54e5 6774 pgdat_resize_init(pgdat);
ace1db39 6775
ace1db39
OS
6776 pgdat_init_split_queue(pgdat);
6777 pgdat_init_kcompactd(pgdat);
6778
1da177e4 6779 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6780 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6781
eefa864b 6782 pgdat_page_ext_init(pgdat);
a52633d8 6783 spin_lock_init(&pgdat->lru_lock);
867e5e1d 6784 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
6785}
6786
6787static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6788 unsigned long remaining_pages)
6789{
9705bea5 6790 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6791 zone_set_nid(zone, nid);
6792 zone->name = zone_names[idx];
6793 zone->zone_pgdat = NODE_DATA(nid);
6794 spin_lock_init(&zone->lock);
6795 zone_seqlock_init(zone);
6796 zone_pcp_init(zone);
6797}
6798
6799/*
6800 * Set up the zone data structures
6801 * - init pgdat internals
6802 * - init all zones belonging to this node
6803 *
6804 * NOTE: this function is only called during memory hotplug
6805 */
6806#ifdef CONFIG_MEMORY_HOTPLUG
6807void __ref free_area_init_core_hotplug(int nid)
6808{
6809 enum zone_type z;
6810 pg_data_t *pgdat = NODE_DATA(nid);
6811
6812 pgdat_init_internals(pgdat);
6813 for (z = 0; z < MAX_NR_ZONES; z++)
6814 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6815}
6816#endif
6817
6818/*
6819 * Set up the zone data structures:
6820 * - mark all pages reserved
6821 * - mark all memory queues empty
6822 * - clear the memory bitmaps
6823 *
6824 * NOTE: pgdat should get zeroed by caller.
6825 * NOTE: this function is only called during early init.
6826 */
6827static void __init free_area_init_core(struct pglist_data *pgdat)
6828{
6829 enum zone_type j;
6830 int nid = pgdat->node_id;
5f63b720 6831
03e85f9d 6832 pgdat_init_internals(pgdat);
385386cf
JW
6833 pgdat->per_cpu_nodestats = &boot_nodestats;
6834
1da177e4
LT
6835 for (j = 0; j < MAX_NR_ZONES; j++) {
6836 struct zone *zone = pgdat->node_zones + j;
e6943859 6837 unsigned long size, freesize, memmap_pages;
d91749c1 6838 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6839
febd5949 6840 size = zone->spanned_pages;
e6943859 6841 freesize = zone->present_pages;
1da177e4 6842
0e0b864e 6843 /*
9feedc9d 6844 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6845 * is used by this zone for memmap. This affects the watermark
6846 * and per-cpu initialisations
6847 */
e6943859 6848 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6849 if (!is_highmem_idx(j)) {
6850 if (freesize >= memmap_pages) {
6851 freesize -= memmap_pages;
6852 if (memmap_pages)
6853 printk(KERN_DEBUG
6854 " %s zone: %lu pages used for memmap\n",
6855 zone_names[j], memmap_pages);
6856 } else
1170532b 6857 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6858 zone_names[j], memmap_pages, freesize);
6859 }
0e0b864e 6860
6267276f 6861 /* Account for reserved pages */
9feedc9d
JL
6862 if (j == 0 && freesize > dma_reserve) {
6863 freesize -= dma_reserve;
d903ef9f 6864 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6865 zone_names[0], dma_reserve);
0e0b864e
MG
6866 }
6867
98d2b0eb 6868 if (!is_highmem_idx(j))
9feedc9d 6869 nr_kernel_pages += freesize;
01cefaef
JL
6870 /* Charge for highmem memmap if there are enough kernel pages */
6871 else if (nr_kernel_pages > memmap_pages * 2)
6872 nr_kernel_pages -= memmap_pages;
9feedc9d 6873 nr_all_pages += freesize;
1da177e4 6874
9feedc9d
JL
6875 /*
6876 * Set an approximate value for lowmem here, it will be adjusted
6877 * when the bootmem allocator frees pages into the buddy system.
6878 * And all highmem pages will be managed by the buddy system.
6879 */
03e85f9d 6880 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6881
d883c6cf 6882 if (!size)
1da177e4
LT
6883 continue;
6884
955c1cd7 6885 set_pageblock_order();
d883c6cf
JK
6886 setup_usemap(pgdat, zone, zone_start_pfn, size);
6887 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6888 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6889 }
6890}
6891
0cd842f9 6892#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6893static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6894{
b0aeba74 6895 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6896 unsigned long __maybe_unused offset = 0;
6897
1da177e4
LT
6898 /* Skip empty nodes */
6899 if (!pgdat->node_spanned_pages)
6900 return;
6901
b0aeba74
TL
6902 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6903 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6904 /* ia64 gets its own node_mem_map, before this, without bootmem */
6905 if (!pgdat->node_mem_map) {
b0aeba74 6906 unsigned long size, end;
d41dee36
AW
6907 struct page *map;
6908
e984bb43
BP
6909 /*
6910 * The zone's endpoints aren't required to be MAX_ORDER
6911 * aligned but the node_mem_map endpoints must be in order
6912 * for the buddy allocator to function correctly.
6913 */
108bcc96 6914 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6915 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6916 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6917 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6918 pgdat->node_id);
23a7052a
MR
6919 if (!map)
6920 panic("Failed to allocate %ld bytes for node %d memory map\n",
6921 size, pgdat->node_id);
a1c34a3b 6922 pgdat->node_mem_map = map + offset;
1da177e4 6923 }
0cd842f9
OS
6924 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6925 __func__, pgdat->node_id, (unsigned long)pgdat,
6926 (unsigned long)pgdat->node_mem_map);
12d810c1 6927#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6928 /*
6929 * With no DISCONTIG, the global mem_map is just set as node 0's
6930 */
c713216d 6931 if (pgdat == NODE_DATA(0)) {
1da177e4 6932 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6933#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6934 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6935 mem_map -= offset;
0ee332c1 6936#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6937 }
1da177e4
LT
6938#endif
6939}
0cd842f9
OS
6940#else
6941static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6942#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6943
0188dc98
OS
6944#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6945static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6946{
0188dc98
OS
6947 pgdat->first_deferred_pfn = ULONG_MAX;
6948}
6949#else
6950static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6951#endif
6952
03e85f9d 6953void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6954 unsigned long node_start_pfn,
6955 unsigned long *zholes_size)
1da177e4 6956{
9109fb7b 6957 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6958 unsigned long start_pfn = 0;
6959 unsigned long end_pfn = 0;
9109fb7b 6960
88fdf75d 6961 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6962 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6963
1da177e4
LT
6964 pgdat->node_id = nid;
6965 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6966 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6967#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6968 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6969 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6970 (u64)start_pfn << PAGE_SHIFT,
6971 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6972#else
6973 start_pfn = node_start_pfn;
7960aedd
ZY
6974#endif
6975 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6976 zones_size, zholes_size);
1da177e4
LT
6977
6978 alloc_node_mem_map(pgdat);
0188dc98 6979 pgdat_set_deferred_range(pgdat);
1da177e4 6980
7f3eb55b 6981 free_area_init_core(pgdat);
1da177e4
LT
6982}
6983
aca52c39 6984#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f 6985/*
4b094b78
DH
6986 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6987 * PageReserved(). Return the number of struct pages that were initialized.
ec393a0f 6988 */
4b094b78 6989static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
ec393a0f
PT
6990{
6991 unsigned long pfn;
6992 u64 pgcnt = 0;
6993
6994 for (pfn = spfn; pfn < epfn; pfn++) {
6995 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6996 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6997 + pageblock_nr_pages - 1;
6998 continue;
6999 }
4b094b78
DH
7000 /*
7001 * Use a fake node/zone (0) for now. Some of these pages
7002 * (in memblock.reserved but not in memblock.memory) will
7003 * get re-initialized via reserve_bootmem_region() later.
7004 */
7005 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7006 __SetPageReserved(pfn_to_page(pfn));
ec393a0f
PT
7007 pgcnt++;
7008 }
7009
7010 return pgcnt;
7011}
7012
a4a3ede2
PT
7013/*
7014 * Only struct pages that are backed by physical memory are zeroed and
7015 * initialized by going through __init_single_page(). But, there are some
7016 * struct pages which are reserved in memblock allocator and their fields
7017 * may be accessed (for example page_to_pfn() on some configuration accesses
4b094b78 7018 * flags). We must explicitly initialize those struct pages.
907ec5fc
NH
7019 *
7020 * This function also addresses a similar issue where struct pages are left
7021 * uninitialized because the physical address range is not covered by
7022 * memblock.memory or memblock.reserved. That could happen when memblock
e822969c
DH
7023 * layout is manually configured via memmap=, or when the highest physical
7024 * address (max_pfn) does not end on a section boundary.
a4a3ede2 7025 */
4b094b78 7026static void __init init_unavailable_mem(void)
a4a3ede2
PT
7027{
7028 phys_addr_t start, end;
a4a3ede2 7029 u64 i, pgcnt;
907ec5fc 7030 phys_addr_t next = 0;
a4a3ede2
PT
7031
7032 /*
907ec5fc 7033 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
7034 */
7035 pgcnt = 0;
907ec5fc
NH
7036 for_each_mem_range(i, &memblock.memory, NULL,
7037 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f 7038 if (next < start)
4b094b78
DH
7039 pgcnt += init_unavailable_range(PFN_DOWN(next),
7040 PFN_UP(start));
907ec5fc
NH
7041 next = end;
7042 }
e822969c
DH
7043
7044 /*
7045 * Early sections always have a fully populated memmap for the whole
7046 * section - see pfn_valid(). If the last section has holes at the
7047 * end and that section is marked "online", the memmap will be
7048 * considered initialized. Make sure that memmap has a well defined
7049 * state.
7050 */
4b094b78
DH
7051 pgcnt += init_unavailable_range(PFN_DOWN(next),
7052 round_up(max_pfn, PAGES_PER_SECTION));
907ec5fc 7053
a4a3ede2
PT
7054 /*
7055 * Struct pages that do not have backing memory. This could be because
7056 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
7057 */
7058 if (pgcnt)
907ec5fc 7059 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 7060}
4b094b78
DH
7061#else
7062static inline void __init init_unavailable_mem(void)
7063{
7064}
aca52c39 7065#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 7066
0ee332c1 7067#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
7068
7069#if MAX_NUMNODES > 1
7070/*
7071 * Figure out the number of possible node ids.
7072 */
f9872caf 7073void __init setup_nr_node_ids(void)
418508c1 7074{
904a9553 7075 unsigned int highest;
418508c1 7076
904a9553 7077 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7078 nr_node_ids = highest + 1;
7079}
418508c1
MS
7080#endif
7081
1e01979c
TH
7082/**
7083 * node_map_pfn_alignment - determine the maximum internode alignment
7084 *
7085 * This function should be called after node map is populated and sorted.
7086 * It calculates the maximum power of two alignment which can distinguish
7087 * all the nodes.
7088 *
7089 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7090 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7091 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7092 * shifted, 1GiB is enough and this function will indicate so.
7093 *
7094 * This is used to test whether pfn -> nid mapping of the chosen memory
7095 * model has fine enough granularity to avoid incorrect mapping for the
7096 * populated node map.
7097 *
a862f68a 7098 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7099 * requirement (single node).
7100 */
7101unsigned long __init node_map_pfn_alignment(void)
7102{
7103 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7104 unsigned long start, end, mask;
98fa15f3 7105 int last_nid = NUMA_NO_NODE;
c13291a5 7106 int i, nid;
1e01979c 7107
c13291a5 7108 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7109 if (!start || last_nid < 0 || last_nid == nid) {
7110 last_nid = nid;
7111 last_end = end;
7112 continue;
7113 }
7114
7115 /*
7116 * Start with a mask granular enough to pin-point to the
7117 * start pfn and tick off bits one-by-one until it becomes
7118 * too coarse to separate the current node from the last.
7119 */
7120 mask = ~((1 << __ffs(start)) - 1);
7121 while (mask && last_end <= (start & (mask << 1)))
7122 mask <<= 1;
7123
7124 /* accumulate all internode masks */
7125 accl_mask |= mask;
7126 }
7127
7128 /* convert mask to number of pages */
7129 return ~accl_mask + 1;
7130}
7131
a6af2bc3 7132/* Find the lowest pfn for a node */
b69a7288 7133static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 7134{
a6af2bc3 7135 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
7136 unsigned long start_pfn;
7137 int i;
1abbfb41 7138
c13291a5
TH
7139 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7140 min_pfn = min(min_pfn, start_pfn);
c713216d 7141
a6af2bc3 7142 if (min_pfn == ULONG_MAX) {
1170532b 7143 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
7144 return 0;
7145 }
7146
7147 return min_pfn;
c713216d
MG
7148}
7149
7150/**
7151 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7152 *
a862f68a 7153 * Return: the minimum PFN based on information provided via
7d018176 7154 * memblock_set_node().
c713216d
MG
7155 */
7156unsigned long __init find_min_pfn_with_active_regions(void)
7157{
7158 return find_min_pfn_for_node(MAX_NUMNODES);
7159}
7160
37b07e41
LS
7161/*
7162 * early_calculate_totalpages()
7163 * Sum pages in active regions for movable zone.
4b0ef1fe 7164 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7165 */
484f51f8 7166static unsigned long __init early_calculate_totalpages(void)
7e63efef 7167{
7e63efef 7168 unsigned long totalpages = 0;
c13291a5
TH
7169 unsigned long start_pfn, end_pfn;
7170 int i, nid;
7171
7172 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7173 unsigned long pages = end_pfn - start_pfn;
7e63efef 7174
37b07e41
LS
7175 totalpages += pages;
7176 if (pages)
4b0ef1fe 7177 node_set_state(nid, N_MEMORY);
37b07e41 7178 }
b8af2941 7179 return totalpages;
7e63efef
MG
7180}
7181
2a1e274a
MG
7182/*
7183 * Find the PFN the Movable zone begins in each node. Kernel memory
7184 * is spread evenly between nodes as long as the nodes have enough
7185 * memory. When they don't, some nodes will have more kernelcore than
7186 * others
7187 */
b224ef85 7188static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7189{
7190 int i, nid;
7191 unsigned long usable_startpfn;
7192 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7193 /* save the state before borrow the nodemask */
4b0ef1fe 7194 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7195 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7196 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7197 struct memblock_region *r;
b2f3eebe
TC
7198
7199 /* Need to find movable_zone earlier when movable_node is specified. */
7200 find_usable_zone_for_movable();
7201
7202 /*
7203 * If movable_node is specified, ignore kernelcore and movablecore
7204 * options.
7205 */
7206 if (movable_node_is_enabled()) {
136199f0
EM
7207 for_each_memblock(memory, r) {
7208 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7209 continue;
7210
136199f0 7211 nid = r->nid;
b2f3eebe 7212
136199f0 7213 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7214 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7215 min(usable_startpfn, zone_movable_pfn[nid]) :
7216 usable_startpfn;
7217 }
7218
7219 goto out2;
7220 }
2a1e274a 7221
342332e6
TI
7222 /*
7223 * If kernelcore=mirror is specified, ignore movablecore option
7224 */
7225 if (mirrored_kernelcore) {
7226 bool mem_below_4gb_not_mirrored = false;
7227
7228 for_each_memblock(memory, r) {
7229 if (memblock_is_mirror(r))
7230 continue;
7231
7232 nid = r->nid;
7233
7234 usable_startpfn = memblock_region_memory_base_pfn(r);
7235
7236 if (usable_startpfn < 0x100000) {
7237 mem_below_4gb_not_mirrored = true;
7238 continue;
7239 }
7240
7241 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7242 min(usable_startpfn, zone_movable_pfn[nid]) :
7243 usable_startpfn;
7244 }
7245
7246 if (mem_below_4gb_not_mirrored)
7247 pr_warn("This configuration results in unmirrored kernel memory.");
7248
7249 goto out2;
7250 }
7251
7e63efef 7252 /*
a5c6d650
DR
7253 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7254 * amount of necessary memory.
7255 */
7256 if (required_kernelcore_percent)
7257 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7258 10000UL;
7259 if (required_movablecore_percent)
7260 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7261 10000UL;
7262
7263 /*
7264 * If movablecore= was specified, calculate what size of
7e63efef
MG
7265 * kernelcore that corresponds so that memory usable for
7266 * any allocation type is evenly spread. If both kernelcore
7267 * and movablecore are specified, then the value of kernelcore
7268 * will be used for required_kernelcore if it's greater than
7269 * what movablecore would have allowed.
7270 */
7271 if (required_movablecore) {
7e63efef
MG
7272 unsigned long corepages;
7273
7274 /*
7275 * Round-up so that ZONE_MOVABLE is at least as large as what
7276 * was requested by the user
7277 */
7278 required_movablecore =
7279 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7280 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7281 corepages = totalpages - required_movablecore;
7282
7283 required_kernelcore = max(required_kernelcore, corepages);
7284 }
7285
bde304bd
XQ
7286 /*
7287 * If kernelcore was not specified or kernelcore size is larger
7288 * than totalpages, there is no ZONE_MOVABLE.
7289 */
7290 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7291 goto out;
2a1e274a
MG
7292
7293 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7294 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7295
7296restart:
7297 /* Spread kernelcore memory as evenly as possible throughout nodes */
7298 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7299 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7300 unsigned long start_pfn, end_pfn;
7301
2a1e274a
MG
7302 /*
7303 * Recalculate kernelcore_node if the division per node
7304 * now exceeds what is necessary to satisfy the requested
7305 * amount of memory for the kernel
7306 */
7307 if (required_kernelcore < kernelcore_node)
7308 kernelcore_node = required_kernelcore / usable_nodes;
7309
7310 /*
7311 * As the map is walked, we track how much memory is usable
7312 * by the kernel using kernelcore_remaining. When it is
7313 * 0, the rest of the node is usable by ZONE_MOVABLE
7314 */
7315 kernelcore_remaining = kernelcore_node;
7316
7317 /* Go through each range of PFNs within this node */
c13291a5 7318 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7319 unsigned long size_pages;
7320
c13291a5 7321 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7322 if (start_pfn >= end_pfn)
7323 continue;
7324
7325 /* Account for what is only usable for kernelcore */
7326 if (start_pfn < usable_startpfn) {
7327 unsigned long kernel_pages;
7328 kernel_pages = min(end_pfn, usable_startpfn)
7329 - start_pfn;
7330
7331 kernelcore_remaining -= min(kernel_pages,
7332 kernelcore_remaining);
7333 required_kernelcore -= min(kernel_pages,
7334 required_kernelcore);
7335
7336 /* Continue if range is now fully accounted */
7337 if (end_pfn <= usable_startpfn) {
7338
7339 /*
7340 * Push zone_movable_pfn to the end so
7341 * that if we have to rebalance
7342 * kernelcore across nodes, we will
7343 * not double account here
7344 */
7345 zone_movable_pfn[nid] = end_pfn;
7346 continue;
7347 }
7348 start_pfn = usable_startpfn;
7349 }
7350
7351 /*
7352 * The usable PFN range for ZONE_MOVABLE is from
7353 * start_pfn->end_pfn. Calculate size_pages as the
7354 * number of pages used as kernelcore
7355 */
7356 size_pages = end_pfn - start_pfn;
7357 if (size_pages > kernelcore_remaining)
7358 size_pages = kernelcore_remaining;
7359 zone_movable_pfn[nid] = start_pfn + size_pages;
7360
7361 /*
7362 * Some kernelcore has been met, update counts and
7363 * break if the kernelcore for this node has been
b8af2941 7364 * satisfied
2a1e274a
MG
7365 */
7366 required_kernelcore -= min(required_kernelcore,
7367 size_pages);
7368 kernelcore_remaining -= size_pages;
7369 if (!kernelcore_remaining)
7370 break;
7371 }
7372 }
7373
7374 /*
7375 * If there is still required_kernelcore, we do another pass with one
7376 * less node in the count. This will push zone_movable_pfn[nid] further
7377 * along on the nodes that still have memory until kernelcore is
b8af2941 7378 * satisfied
2a1e274a
MG
7379 */
7380 usable_nodes--;
7381 if (usable_nodes && required_kernelcore > usable_nodes)
7382 goto restart;
7383
b2f3eebe 7384out2:
2a1e274a
MG
7385 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7386 for (nid = 0; nid < MAX_NUMNODES; nid++)
7387 zone_movable_pfn[nid] =
7388 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7389
20e6926d 7390out:
66918dcd 7391 /* restore the node_state */
4b0ef1fe 7392 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7393}
7394
4b0ef1fe
LJ
7395/* Any regular or high memory on that node ? */
7396static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7397{
37b07e41
LS
7398 enum zone_type zone_type;
7399
4b0ef1fe 7400 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7401 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7402 if (populated_zone(zone)) {
7b0e0c0e
OS
7403 if (IS_ENABLED(CONFIG_HIGHMEM))
7404 node_set_state(nid, N_HIGH_MEMORY);
7405 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7406 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7407 break;
7408 }
37b07e41 7409 }
37b07e41
LS
7410}
7411
c713216d
MG
7412/**
7413 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7414 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7415 *
7416 * This will call free_area_init_node() for each active node in the system.
7d018176 7417 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7418 * zone in each node and their holes is calculated. If the maximum PFN
7419 * between two adjacent zones match, it is assumed that the zone is empty.
7420 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7421 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7422 * starts where the previous one ended. For example, ZONE_DMA32 starts
7423 * at arch_max_dma_pfn.
7424 */
7425void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7426{
c13291a5
TH
7427 unsigned long start_pfn, end_pfn;
7428 int i, nid;
a6af2bc3 7429
c713216d
MG
7430 /* Record where the zone boundaries are */
7431 memset(arch_zone_lowest_possible_pfn, 0,
7432 sizeof(arch_zone_lowest_possible_pfn));
7433 memset(arch_zone_highest_possible_pfn, 0,
7434 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7435
7436 start_pfn = find_min_pfn_with_active_regions();
7437
7438 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7439 if (i == ZONE_MOVABLE)
7440 continue;
90cae1fe
OH
7441
7442 end_pfn = max(max_zone_pfn[i], start_pfn);
7443 arch_zone_lowest_possible_pfn[i] = start_pfn;
7444 arch_zone_highest_possible_pfn[i] = end_pfn;
7445
7446 start_pfn = end_pfn;
c713216d 7447 }
2a1e274a
MG
7448
7449 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7450 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7451 find_zone_movable_pfns_for_nodes();
c713216d 7452
c713216d 7453 /* Print out the zone ranges */
f88dfff5 7454 pr_info("Zone ranges:\n");
2a1e274a
MG
7455 for (i = 0; i < MAX_NR_ZONES; i++) {
7456 if (i == ZONE_MOVABLE)
7457 continue;
f88dfff5 7458 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7459 if (arch_zone_lowest_possible_pfn[i] ==
7460 arch_zone_highest_possible_pfn[i])
f88dfff5 7461 pr_cont("empty\n");
72f0ba02 7462 else
8d29e18a
JG
7463 pr_cont("[mem %#018Lx-%#018Lx]\n",
7464 (u64)arch_zone_lowest_possible_pfn[i]
7465 << PAGE_SHIFT,
7466 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7467 << PAGE_SHIFT) - 1);
2a1e274a
MG
7468 }
7469
7470 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7471 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7472 for (i = 0; i < MAX_NUMNODES; i++) {
7473 if (zone_movable_pfn[i])
8d29e18a
JG
7474 pr_info(" Node %d: %#018Lx\n", i,
7475 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7476 }
c713216d 7477
f46edbd1
DW
7478 /*
7479 * Print out the early node map, and initialize the
7480 * subsection-map relative to active online memory ranges to
7481 * enable future "sub-section" extensions of the memory map.
7482 */
f88dfff5 7483 pr_info("Early memory node ranges\n");
f46edbd1 7484 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7485 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7486 (u64)start_pfn << PAGE_SHIFT,
7487 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7488 subsection_map_init(start_pfn, end_pfn - start_pfn);
7489 }
c713216d
MG
7490
7491 /* Initialise every node */
708614e6 7492 mminit_verify_pageflags_layout();
8ef82866 7493 setup_nr_node_ids();
4b094b78 7494 init_unavailable_mem();
c713216d
MG
7495 for_each_online_node(nid) {
7496 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7497 free_area_init_node(nid, NULL,
c713216d 7498 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7499
7500 /* Any memory on that node */
7501 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7502 node_set_state(nid, N_MEMORY);
7503 check_for_memory(pgdat, nid);
c713216d
MG
7504 }
7505}
2a1e274a 7506
a5c6d650
DR
7507static int __init cmdline_parse_core(char *p, unsigned long *core,
7508 unsigned long *percent)
2a1e274a
MG
7509{
7510 unsigned long long coremem;
a5c6d650
DR
7511 char *endptr;
7512
2a1e274a
MG
7513 if (!p)
7514 return -EINVAL;
7515
a5c6d650
DR
7516 /* Value may be a percentage of total memory, otherwise bytes */
7517 coremem = simple_strtoull(p, &endptr, 0);
7518 if (*endptr == '%') {
7519 /* Paranoid check for percent values greater than 100 */
7520 WARN_ON(coremem > 100);
2a1e274a 7521
a5c6d650
DR
7522 *percent = coremem;
7523 } else {
7524 coremem = memparse(p, &p);
7525 /* Paranoid check that UL is enough for the coremem value */
7526 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7527
a5c6d650
DR
7528 *core = coremem >> PAGE_SHIFT;
7529 *percent = 0UL;
7530 }
2a1e274a
MG
7531 return 0;
7532}
ed7ed365 7533
7e63efef
MG
7534/*
7535 * kernelcore=size sets the amount of memory for use for allocations that
7536 * cannot be reclaimed or migrated.
7537 */
7538static int __init cmdline_parse_kernelcore(char *p)
7539{
342332e6
TI
7540 /* parse kernelcore=mirror */
7541 if (parse_option_str(p, "mirror")) {
7542 mirrored_kernelcore = true;
7543 return 0;
7544 }
7545
a5c6d650
DR
7546 return cmdline_parse_core(p, &required_kernelcore,
7547 &required_kernelcore_percent);
7e63efef
MG
7548}
7549
7550/*
7551 * movablecore=size sets the amount of memory for use for allocations that
7552 * can be reclaimed or migrated.
7553 */
7554static int __init cmdline_parse_movablecore(char *p)
7555{
a5c6d650
DR
7556 return cmdline_parse_core(p, &required_movablecore,
7557 &required_movablecore_percent);
7e63efef
MG
7558}
7559
ed7ed365 7560early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7561early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7562
0ee332c1 7563#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7564
c3d5f5f0
JL
7565void adjust_managed_page_count(struct page *page, long count)
7566{
9705bea5 7567 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7568 totalram_pages_add(count);
3dcc0571
JL
7569#ifdef CONFIG_HIGHMEM
7570 if (PageHighMem(page))
ca79b0c2 7571 totalhigh_pages_add(count);
3dcc0571 7572#endif
c3d5f5f0 7573}
3dcc0571 7574EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7575
e5cb113f 7576unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7577{
11199692
JL
7578 void *pos;
7579 unsigned long pages = 0;
69afade7 7580
11199692
JL
7581 start = (void *)PAGE_ALIGN((unsigned long)start);
7582 end = (void *)((unsigned long)end & PAGE_MASK);
7583 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7584 struct page *page = virt_to_page(pos);
7585 void *direct_map_addr;
7586
7587 /*
7588 * 'direct_map_addr' might be different from 'pos'
7589 * because some architectures' virt_to_page()
7590 * work with aliases. Getting the direct map
7591 * address ensures that we get a _writeable_
7592 * alias for the memset().
7593 */
7594 direct_map_addr = page_address(page);
dbe67df4 7595 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7596 memset(direct_map_addr, poison, PAGE_SIZE);
7597
7598 free_reserved_page(page);
69afade7
JL
7599 }
7600
7601 if (pages && s)
adb1fe9a
JP
7602 pr_info("Freeing %s memory: %ldK\n",
7603 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7604
7605 return pages;
7606}
7607
cfa11e08
JL
7608#ifdef CONFIG_HIGHMEM
7609void free_highmem_page(struct page *page)
7610{
7611 __free_reserved_page(page);
ca79b0c2 7612 totalram_pages_inc();
9705bea5 7613 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7614 totalhigh_pages_inc();
cfa11e08
JL
7615}
7616#endif
7617
7ee3d4e8
JL
7618
7619void __init mem_init_print_info(const char *str)
7620{
7621 unsigned long physpages, codesize, datasize, rosize, bss_size;
7622 unsigned long init_code_size, init_data_size;
7623
7624 physpages = get_num_physpages();
7625 codesize = _etext - _stext;
7626 datasize = _edata - _sdata;
7627 rosize = __end_rodata - __start_rodata;
7628 bss_size = __bss_stop - __bss_start;
7629 init_data_size = __init_end - __init_begin;
7630 init_code_size = _einittext - _sinittext;
7631
7632 /*
7633 * Detect special cases and adjust section sizes accordingly:
7634 * 1) .init.* may be embedded into .data sections
7635 * 2) .init.text.* may be out of [__init_begin, __init_end],
7636 * please refer to arch/tile/kernel/vmlinux.lds.S.
7637 * 3) .rodata.* may be embedded into .text or .data sections.
7638 */
7639#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7640 do { \
7641 if (start <= pos && pos < end && size > adj) \
7642 size -= adj; \
7643 } while (0)
7ee3d4e8
JL
7644
7645 adj_init_size(__init_begin, __init_end, init_data_size,
7646 _sinittext, init_code_size);
7647 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7648 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7649 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7650 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7651
7652#undef adj_init_size
7653
756a025f 7654 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7655#ifdef CONFIG_HIGHMEM
756a025f 7656 ", %luK highmem"
7ee3d4e8 7657#endif
756a025f
JP
7658 "%s%s)\n",
7659 nr_free_pages() << (PAGE_SHIFT - 10),
7660 physpages << (PAGE_SHIFT - 10),
7661 codesize >> 10, datasize >> 10, rosize >> 10,
7662 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7663 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7664 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7665#ifdef CONFIG_HIGHMEM
ca79b0c2 7666 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7667#endif
756a025f 7668 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7669}
7670
0e0b864e 7671/**
88ca3b94
RD
7672 * set_dma_reserve - set the specified number of pages reserved in the first zone
7673 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7674 *
013110a7 7675 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7676 * In the DMA zone, a significant percentage may be consumed by kernel image
7677 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7678 * function may optionally be used to account for unfreeable pages in the
7679 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7680 * smaller per-cpu batchsize.
0e0b864e
MG
7681 */
7682void __init set_dma_reserve(unsigned long new_dma_reserve)
7683{
7684 dma_reserve = new_dma_reserve;
7685}
7686
1da177e4
LT
7687void __init free_area_init(unsigned long *zones_size)
7688{
4b094b78 7689 init_unavailable_mem();
9109fb7b 7690 free_area_init_node(0, zones_size,
1da177e4
LT
7691 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7692}
1da177e4 7693
005fd4bb 7694static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7695{
1da177e4 7696
005fd4bb
SAS
7697 lru_add_drain_cpu(cpu);
7698 drain_pages(cpu);
9f8f2172 7699
005fd4bb
SAS
7700 /*
7701 * Spill the event counters of the dead processor
7702 * into the current processors event counters.
7703 * This artificially elevates the count of the current
7704 * processor.
7705 */
7706 vm_events_fold_cpu(cpu);
9f8f2172 7707
005fd4bb
SAS
7708 /*
7709 * Zero the differential counters of the dead processor
7710 * so that the vm statistics are consistent.
7711 *
7712 * This is only okay since the processor is dead and cannot
7713 * race with what we are doing.
7714 */
7715 cpu_vm_stats_fold(cpu);
7716 return 0;
1da177e4 7717}
1da177e4 7718
e03a5125
NP
7719#ifdef CONFIG_NUMA
7720int hashdist = HASHDIST_DEFAULT;
7721
7722static int __init set_hashdist(char *str)
7723{
7724 if (!str)
7725 return 0;
7726 hashdist = simple_strtoul(str, &str, 0);
7727 return 1;
7728}
7729__setup("hashdist=", set_hashdist);
7730#endif
7731
1da177e4
LT
7732void __init page_alloc_init(void)
7733{
005fd4bb
SAS
7734 int ret;
7735
e03a5125
NP
7736#ifdef CONFIG_NUMA
7737 if (num_node_state(N_MEMORY) == 1)
7738 hashdist = 0;
7739#endif
7740
005fd4bb
SAS
7741 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7742 "mm/page_alloc:dead", NULL,
7743 page_alloc_cpu_dead);
7744 WARN_ON(ret < 0);
1da177e4
LT
7745}
7746
cb45b0e9 7747/*
34b10060 7748 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7749 * or min_free_kbytes changes.
7750 */
7751static void calculate_totalreserve_pages(void)
7752{
7753 struct pglist_data *pgdat;
7754 unsigned long reserve_pages = 0;
2f6726e5 7755 enum zone_type i, j;
cb45b0e9
HA
7756
7757 for_each_online_pgdat(pgdat) {
281e3726
MG
7758
7759 pgdat->totalreserve_pages = 0;
7760
cb45b0e9
HA
7761 for (i = 0; i < MAX_NR_ZONES; i++) {
7762 struct zone *zone = pgdat->node_zones + i;
3484b2de 7763 long max = 0;
9705bea5 7764 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7765
7766 /* Find valid and maximum lowmem_reserve in the zone */
7767 for (j = i; j < MAX_NR_ZONES; j++) {
7768 if (zone->lowmem_reserve[j] > max)
7769 max = zone->lowmem_reserve[j];
7770 }
7771
41858966
MG
7772 /* we treat the high watermark as reserved pages. */
7773 max += high_wmark_pages(zone);
cb45b0e9 7774
3d6357de
AK
7775 if (max > managed_pages)
7776 max = managed_pages;
a8d01437 7777
281e3726 7778 pgdat->totalreserve_pages += max;
a8d01437 7779
cb45b0e9
HA
7780 reserve_pages += max;
7781 }
7782 }
7783 totalreserve_pages = reserve_pages;
7784}
7785
1da177e4
LT
7786/*
7787 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7788 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7789 * has a correct pages reserved value, so an adequate number of
7790 * pages are left in the zone after a successful __alloc_pages().
7791 */
7792static void setup_per_zone_lowmem_reserve(void)
7793{
7794 struct pglist_data *pgdat;
2f6726e5 7795 enum zone_type j, idx;
1da177e4 7796
ec936fc5 7797 for_each_online_pgdat(pgdat) {
1da177e4
LT
7798 for (j = 0; j < MAX_NR_ZONES; j++) {
7799 struct zone *zone = pgdat->node_zones + j;
9705bea5 7800 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7801
7802 zone->lowmem_reserve[j] = 0;
7803
2f6726e5
CL
7804 idx = j;
7805 while (idx) {
1da177e4
LT
7806 struct zone *lower_zone;
7807
2f6726e5 7808 idx--;
1da177e4 7809 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7810
7811 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7812 sysctl_lowmem_reserve_ratio[idx] = 0;
7813 lower_zone->lowmem_reserve[j] = 0;
7814 } else {
7815 lower_zone->lowmem_reserve[j] =
7816 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7817 }
9705bea5 7818 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7819 }
7820 }
7821 }
cb45b0e9
HA
7822
7823 /* update totalreserve_pages */
7824 calculate_totalreserve_pages();
1da177e4
LT
7825}
7826
cfd3da1e 7827static void __setup_per_zone_wmarks(void)
1da177e4
LT
7828{
7829 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7830 unsigned long lowmem_pages = 0;
7831 struct zone *zone;
7832 unsigned long flags;
7833
7834 /* Calculate total number of !ZONE_HIGHMEM pages */
7835 for_each_zone(zone) {
7836 if (!is_highmem(zone))
9705bea5 7837 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7838 }
7839
7840 for_each_zone(zone) {
ac924c60
AM
7841 u64 tmp;
7842
1125b4e3 7843 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7844 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7845 do_div(tmp, lowmem_pages);
1da177e4
LT
7846 if (is_highmem(zone)) {
7847 /*
669ed175
NP
7848 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7849 * need highmem pages, so cap pages_min to a small
7850 * value here.
7851 *
41858966 7852 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7853 * deltas control async page reclaim, and so should
669ed175 7854 * not be capped for highmem.
1da177e4 7855 */
90ae8d67 7856 unsigned long min_pages;
1da177e4 7857
9705bea5 7858 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7859 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7860 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7861 } else {
669ed175
NP
7862 /*
7863 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7864 * proportionate to the zone's size.
7865 */
a9214443 7866 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7867 }
7868
795ae7a0
JW
7869 /*
7870 * Set the kswapd watermarks distance according to the
7871 * scale factor in proportion to available memory, but
7872 * ensure a minimum size on small systems.
7873 */
7874 tmp = max_t(u64, tmp >> 2,
9705bea5 7875 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7876 watermark_scale_factor, 10000));
7877
a9214443
MG
7878 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7879 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7880 zone->watermark_boost = 0;
49f223a9 7881
1125b4e3 7882 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7883 }
cb45b0e9
HA
7884
7885 /* update totalreserve_pages */
7886 calculate_totalreserve_pages();
1da177e4
LT
7887}
7888
cfd3da1e
MG
7889/**
7890 * setup_per_zone_wmarks - called when min_free_kbytes changes
7891 * or when memory is hot-{added|removed}
7892 *
7893 * Ensures that the watermark[min,low,high] values for each zone are set
7894 * correctly with respect to min_free_kbytes.
7895 */
7896void setup_per_zone_wmarks(void)
7897{
b93e0f32
MH
7898 static DEFINE_SPINLOCK(lock);
7899
7900 spin_lock(&lock);
cfd3da1e 7901 __setup_per_zone_wmarks();
b93e0f32 7902 spin_unlock(&lock);
cfd3da1e
MG
7903}
7904
1da177e4
LT
7905/*
7906 * Initialise min_free_kbytes.
7907 *
7908 * For small machines we want it small (128k min). For large machines
7909 * we want it large (64MB max). But it is not linear, because network
7910 * bandwidth does not increase linearly with machine size. We use
7911 *
b8af2941 7912 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7913 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7914 *
7915 * which yields
7916 *
7917 * 16MB: 512k
7918 * 32MB: 724k
7919 * 64MB: 1024k
7920 * 128MB: 1448k
7921 * 256MB: 2048k
7922 * 512MB: 2896k
7923 * 1024MB: 4096k
7924 * 2048MB: 5792k
7925 * 4096MB: 8192k
7926 * 8192MB: 11584k
7927 * 16384MB: 16384k
7928 */
1b79acc9 7929int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7930{
7931 unsigned long lowmem_kbytes;
5f12733e 7932 int new_min_free_kbytes;
1da177e4
LT
7933
7934 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7935 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7936
7937 if (new_min_free_kbytes > user_min_free_kbytes) {
7938 min_free_kbytes = new_min_free_kbytes;
7939 if (min_free_kbytes < 128)
7940 min_free_kbytes = 128;
ee8eb9a5
JS
7941 if (min_free_kbytes > 262144)
7942 min_free_kbytes = 262144;
5f12733e
MH
7943 } else {
7944 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7945 new_min_free_kbytes, user_min_free_kbytes);
7946 }
bc75d33f 7947 setup_per_zone_wmarks();
a6cccdc3 7948 refresh_zone_stat_thresholds();
1da177e4 7949 setup_per_zone_lowmem_reserve();
6423aa81
JK
7950
7951#ifdef CONFIG_NUMA
7952 setup_min_unmapped_ratio();
7953 setup_min_slab_ratio();
7954#endif
7955
1da177e4
LT
7956 return 0;
7957}
bc22af74 7958core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7959
7960/*
b8af2941 7961 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7962 * that we can call two helper functions whenever min_free_kbytes
7963 * changes.
7964 */
cccad5b9 7965int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7966 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7967{
da8c757b
HP
7968 int rc;
7969
7970 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7971 if (rc)
7972 return rc;
7973
5f12733e
MH
7974 if (write) {
7975 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7976 setup_per_zone_wmarks();
5f12733e 7977 }
1da177e4
LT
7978 return 0;
7979}
7980
1c30844d
MG
7981int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7982 void __user *buffer, size_t *length, loff_t *ppos)
7983{
7984 int rc;
7985
7986 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7987 if (rc)
7988 return rc;
7989
7990 return 0;
7991}
7992
795ae7a0
JW
7993int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7994 void __user *buffer, size_t *length, loff_t *ppos)
7995{
7996 int rc;
7997
7998 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7999 if (rc)
8000 return rc;
8001
8002 if (write)
8003 setup_per_zone_wmarks();
8004
8005 return 0;
8006}
8007
9614634f 8008#ifdef CONFIG_NUMA
6423aa81 8009static void setup_min_unmapped_ratio(void)
9614634f 8010{
6423aa81 8011 pg_data_t *pgdat;
9614634f 8012 struct zone *zone;
9614634f 8013
a5f5f91d 8014 for_each_online_pgdat(pgdat)
81cbcbc2 8015 pgdat->min_unmapped_pages = 0;
a5f5f91d 8016
9614634f 8017 for_each_zone(zone)
9705bea5
AK
8018 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8019 sysctl_min_unmapped_ratio) / 100;
9614634f 8020}
0ff38490 8021
6423aa81
JK
8022
8023int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8024 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 8025{
0ff38490
CL
8026 int rc;
8027
8d65af78 8028 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8029 if (rc)
8030 return rc;
8031
6423aa81
JK
8032 setup_min_unmapped_ratio();
8033
8034 return 0;
8035}
8036
8037static void setup_min_slab_ratio(void)
8038{
8039 pg_data_t *pgdat;
8040 struct zone *zone;
8041
a5f5f91d
MG
8042 for_each_online_pgdat(pgdat)
8043 pgdat->min_slab_pages = 0;
8044
0ff38490 8045 for_each_zone(zone)
9705bea5
AK
8046 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8047 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8048}
8049
8050int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8051 void __user *buffer, size_t *length, loff_t *ppos)
8052{
8053 int rc;
8054
8055 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8056 if (rc)
8057 return rc;
8058
8059 setup_min_slab_ratio();
8060
0ff38490
CL
8061 return 0;
8062}
9614634f
CL
8063#endif
8064
1da177e4
LT
8065/*
8066 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8067 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8068 * whenever sysctl_lowmem_reserve_ratio changes.
8069 *
8070 * The reserve ratio obviously has absolutely no relation with the
41858966 8071 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8072 * if in function of the boot time zone sizes.
8073 */
cccad5b9 8074int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8075 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 8076{
8d65af78 8077 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
8078 setup_per_zone_lowmem_reserve();
8079 return 0;
8080}
8081
cb1ef534
MG
8082static void __zone_pcp_update(struct zone *zone)
8083{
8084 unsigned int cpu;
8085
8086 for_each_possible_cpu(cpu)
8087 pageset_set_high_and_batch(zone,
8088 per_cpu_ptr(zone->pageset, cpu));
8089}
8090
8ad4b1fb
RS
8091/*
8092 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
8093 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8094 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8095 */
cccad5b9 8096int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 8097 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8098{
8099 struct zone *zone;
7cd2b0a3 8100 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
8101 int ret;
8102
7cd2b0a3
DR
8103 mutex_lock(&pcp_batch_high_lock);
8104 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8105
8d65af78 8106 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8107 if (!write || ret < 0)
8108 goto out;
8109
8110 /* Sanity checking to avoid pcp imbalance */
8111 if (percpu_pagelist_fraction &&
8112 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8113 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8114 ret = -EINVAL;
8115 goto out;
8116 }
8117
8118 /* No change? */
8119 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8120 goto out;
c8e251fa 8121
cb1ef534
MG
8122 for_each_populated_zone(zone)
8123 __zone_pcp_update(zone);
7cd2b0a3 8124out:
c8e251fa 8125 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8126 return ret;
8ad4b1fb
RS
8127}
8128
f6f34b43
SD
8129#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8130/*
8131 * Returns the number of pages that arch has reserved but
8132 * is not known to alloc_large_system_hash().
8133 */
8134static unsigned long __init arch_reserved_kernel_pages(void)
8135{
8136 return 0;
8137}
8138#endif
8139
9017217b
PT
8140/*
8141 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8142 * machines. As memory size is increased the scale is also increased but at
8143 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8144 * quadruples the scale is increased by one, which means the size of hash table
8145 * only doubles, instead of quadrupling as well.
8146 * Because 32-bit systems cannot have large physical memory, where this scaling
8147 * makes sense, it is disabled on such platforms.
8148 */
8149#if __BITS_PER_LONG > 32
8150#define ADAPT_SCALE_BASE (64ul << 30)
8151#define ADAPT_SCALE_SHIFT 2
8152#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8153#endif
8154
1da177e4
LT
8155/*
8156 * allocate a large system hash table from bootmem
8157 * - it is assumed that the hash table must contain an exact power-of-2
8158 * quantity of entries
8159 * - limit is the number of hash buckets, not the total allocation size
8160 */
8161void *__init alloc_large_system_hash(const char *tablename,
8162 unsigned long bucketsize,
8163 unsigned long numentries,
8164 int scale,
8165 int flags,
8166 unsigned int *_hash_shift,
8167 unsigned int *_hash_mask,
31fe62b9
TB
8168 unsigned long low_limit,
8169 unsigned long high_limit)
1da177e4 8170{
31fe62b9 8171 unsigned long long max = high_limit;
1da177e4
LT
8172 unsigned long log2qty, size;
8173 void *table = NULL;
3749a8f0 8174 gfp_t gfp_flags;
ec11408a 8175 bool virt;
1da177e4
LT
8176
8177 /* allow the kernel cmdline to have a say */
8178 if (!numentries) {
8179 /* round applicable memory size up to nearest megabyte */
04903664 8180 numentries = nr_kernel_pages;
f6f34b43 8181 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8182
8183 /* It isn't necessary when PAGE_SIZE >= 1MB */
8184 if (PAGE_SHIFT < 20)
8185 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8186
9017217b
PT
8187#if __BITS_PER_LONG > 32
8188 if (!high_limit) {
8189 unsigned long adapt;
8190
8191 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8192 adapt <<= ADAPT_SCALE_SHIFT)
8193 scale++;
8194 }
8195#endif
8196
1da177e4
LT
8197 /* limit to 1 bucket per 2^scale bytes of low memory */
8198 if (scale > PAGE_SHIFT)
8199 numentries >>= (scale - PAGE_SHIFT);
8200 else
8201 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8202
8203 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8204 if (unlikely(flags & HASH_SMALL)) {
8205 /* Makes no sense without HASH_EARLY */
8206 WARN_ON(!(flags & HASH_EARLY));
8207 if (!(numentries >> *_hash_shift)) {
8208 numentries = 1UL << *_hash_shift;
8209 BUG_ON(!numentries);
8210 }
8211 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8212 numentries = PAGE_SIZE / bucketsize;
1da177e4 8213 }
6e692ed3 8214 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8215
8216 /* limit allocation size to 1/16 total memory by default */
8217 if (max == 0) {
8218 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8219 do_div(max, bucketsize);
8220 }
074b8517 8221 max = min(max, 0x80000000ULL);
1da177e4 8222
31fe62b9
TB
8223 if (numentries < low_limit)
8224 numentries = low_limit;
1da177e4
LT
8225 if (numentries > max)
8226 numentries = max;
8227
f0d1b0b3 8228 log2qty = ilog2(numentries);
1da177e4 8229
3749a8f0 8230 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8231 do {
ec11408a 8232 virt = false;
1da177e4 8233 size = bucketsize << log2qty;
ea1f5f37
PT
8234 if (flags & HASH_EARLY) {
8235 if (flags & HASH_ZERO)
26fb3dae 8236 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8237 else
7e1c4e27
MR
8238 table = memblock_alloc_raw(size,
8239 SMP_CACHE_BYTES);
ec11408a 8240 } else if (get_order(size) >= MAX_ORDER || hashdist) {
3749a8f0 8241 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ec11408a 8242 virt = true;
ea1f5f37 8243 } else {
1037b83b
ED
8244 /*
8245 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8246 * some pages at the end of hash table which
8247 * alloc_pages_exact() automatically does
1037b83b 8248 */
ec11408a
NP
8249 table = alloc_pages_exact(size, gfp_flags);
8250 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8251 }
8252 } while (!table && size > PAGE_SIZE && --log2qty);
8253
8254 if (!table)
8255 panic("Failed to allocate %s hash table\n", tablename);
8256
ec11408a
NP
8257 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8258 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8259 virt ? "vmalloc" : "linear");
1da177e4
LT
8260
8261 if (_hash_shift)
8262 *_hash_shift = log2qty;
8263 if (_hash_mask)
8264 *_hash_mask = (1 << log2qty) - 1;
8265
8266 return table;
8267}
a117e66e 8268
a5d76b54 8269/*
80934513 8270 * This function checks whether pageblock includes unmovable pages or not.
80934513 8271 *
b8af2941 8272 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8273 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8274 * check without lock_page also may miss some movable non-lru pages at
8275 * race condition. So you can't expect this function should be exact.
4a55c047
QC
8276 *
8277 * Returns a page without holding a reference. If the caller wants to
8278 * dereference that page (e.g., dumping), it has to make sure that that it
8279 * cannot get removed (e.g., via memory unplug) concurrently.
8280 *
a5d76b54 8281 */
4a55c047
QC
8282struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8283 int migratetype, int flags)
49ac8255 8284{
1a9f2191
QC
8285 unsigned long iter = 0;
8286 unsigned long pfn = page_to_pfn(page);
47118af0 8287
49ac8255 8288 /*
15c30bc0
MH
8289 * TODO we could make this much more efficient by not checking every
8290 * page in the range if we know all of them are in MOVABLE_ZONE and
8291 * that the movable zone guarantees that pages are migratable but
8292 * the later is not the case right now unfortunatelly. E.g. movablecore
8293 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8294 */
49ac8255 8295
1a9f2191
QC
8296 if (is_migrate_cma_page(page)) {
8297 /*
8298 * CMA allocations (alloc_contig_range) really need to mark
8299 * isolate CMA pageblocks even when they are not movable in fact
8300 * so consider them movable here.
8301 */
8302 if (is_migrate_cma(migratetype))
4a55c047 8303 return NULL;
1a9f2191 8304
3d680bdf 8305 return page;
1a9f2191 8306 }
4da2ce25 8307
fe4c86c9
DH
8308 for (; iter < pageblock_nr_pages; iter++) {
8309 if (!pfn_valid_within(pfn + iter))
49ac8255 8310 continue;
29723fcc 8311
fe4c86c9 8312 page = pfn_to_page(pfn + iter);
c8721bbb 8313
d7ab3672 8314 if (PageReserved(page))
3d680bdf 8315 return page;
d7ab3672 8316
9d789999
MH
8317 /*
8318 * If the zone is movable and we have ruled out all reserved
8319 * pages then it should be reasonably safe to assume the rest
8320 * is movable.
8321 */
8322 if (zone_idx(zone) == ZONE_MOVABLE)
8323 continue;
8324
c8721bbb
NH
8325 /*
8326 * Hugepages are not in LRU lists, but they're movable.
1da2f328 8327 * THPs are on the LRU, but need to be counted as #small pages.
8bb4e7a2 8328 * We need not scan over tail pages because we don't
c8721bbb
NH
8329 * handle each tail page individually in migration.
8330 */
1da2f328 8331 if (PageHuge(page) || PageTransCompound(page)) {
17e2e7d7
OS
8332 struct page *head = compound_head(page);
8333 unsigned int skip_pages;
464c7ffb 8334
1da2f328
RR
8335 if (PageHuge(page)) {
8336 if (!hugepage_migration_supported(page_hstate(head)))
8337 return page;
8338 } else if (!PageLRU(head) && !__PageMovable(head)) {
3d680bdf 8339 return page;
1da2f328 8340 }
464c7ffb 8341
d8c6546b 8342 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8343 iter += skip_pages - 1;
c8721bbb
NH
8344 continue;
8345 }
8346
97d255c8
MK
8347 /*
8348 * We can't use page_count without pin a page
8349 * because another CPU can free compound page.
8350 * This check already skips compound tails of THP
0139aa7b 8351 * because their page->_refcount is zero at all time.
97d255c8 8352 */
fe896d18 8353 if (!page_ref_count(page)) {
49ac8255
KH
8354 if (PageBuddy(page))
8355 iter += (1 << page_order(page)) - 1;
8356 continue;
8357 }
97d255c8 8358
b023f468
WC
8359 /*
8360 * The HWPoisoned page may be not in buddy system, and
8361 * page_count() is not 0.
8362 */
756d25be 8363 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
b023f468
WC
8364 continue;
8365
fe4c86c9 8366 if (__PageMovable(page) || PageLRU(page))
0efadf48
YX
8367 continue;
8368
49ac8255 8369 /*
6b4f7799
JW
8370 * If there are RECLAIMABLE pages, we need to check
8371 * it. But now, memory offline itself doesn't call
8372 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8373 */
8374 /*
8375 * If the page is not RAM, page_count()should be 0.
8376 * we don't need more check. This is an _used_ not-movable page.
8377 *
8378 * The problematic thing here is PG_reserved pages. PG_reserved
8379 * is set to both of a memory hole page and a _used_ kernel
8380 * page at boot.
8381 */
3d680bdf 8382 return page;
49ac8255 8383 }
4a55c047 8384 return NULL;
49ac8255
KH
8385}
8386
8df995f6 8387#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8388static unsigned long pfn_max_align_down(unsigned long pfn)
8389{
8390 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8391 pageblock_nr_pages) - 1);
8392}
8393
8394static unsigned long pfn_max_align_up(unsigned long pfn)
8395{
8396 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8397 pageblock_nr_pages));
8398}
8399
041d3a8c 8400/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8401static int __alloc_contig_migrate_range(struct compact_control *cc,
8402 unsigned long start, unsigned long end)
041d3a8c
MN
8403{
8404 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8405 unsigned long nr_reclaimed;
041d3a8c
MN
8406 unsigned long pfn = start;
8407 unsigned int tries = 0;
8408 int ret = 0;
8409
be49a6e1 8410 migrate_prep();
041d3a8c 8411
bb13ffeb 8412 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8413 if (fatal_signal_pending(current)) {
8414 ret = -EINTR;
8415 break;
8416 }
8417
bb13ffeb
MG
8418 if (list_empty(&cc->migratepages)) {
8419 cc->nr_migratepages = 0;
edc2ca61 8420 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8421 if (!pfn) {
8422 ret = -EINTR;
8423 break;
8424 }
8425 tries = 0;
8426 } else if (++tries == 5) {
8427 ret = ret < 0 ? ret : -EBUSY;
8428 break;
8429 }
8430
beb51eaa
MK
8431 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8432 &cc->migratepages);
8433 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8434
9c620e2b 8435 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8436 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8437 }
2a6f5124
SP
8438 if (ret < 0) {
8439 putback_movable_pages(&cc->migratepages);
8440 return ret;
8441 }
8442 return 0;
041d3a8c
MN
8443}
8444
8445/**
8446 * alloc_contig_range() -- tries to allocate given range of pages
8447 * @start: start PFN to allocate
8448 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8449 * @migratetype: migratetype of the underlaying pageblocks (either
8450 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8451 * in range must have the same migratetype and it must
8452 * be either of the two.
ca96b625 8453 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8454 *
8455 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8456 * aligned. The PFN range must belong to a single zone.
041d3a8c 8457 *
2c7452a0
MK
8458 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8459 * pageblocks in the range. Once isolated, the pageblocks should not
8460 * be modified by others.
041d3a8c 8461 *
a862f68a 8462 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8463 * pages which PFN is in [start, end) are allocated for the caller and
8464 * need to be freed with free_contig_range().
8465 */
0815f3d8 8466int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8467 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8468{
041d3a8c 8469 unsigned long outer_start, outer_end;
d00181b9
KS
8470 unsigned int order;
8471 int ret = 0;
041d3a8c 8472
bb13ffeb
MG
8473 struct compact_control cc = {
8474 .nr_migratepages = 0,
8475 .order = -1,
8476 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8477 .mode = MIGRATE_SYNC,
bb13ffeb 8478 .ignore_skip_hint = true,
2583d671 8479 .no_set_skip_hint = true,
7dea19f9 8480 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 8481 .alloc_contig = true,
bb13ffeb
MG
8482 };
8483 INIT_LIST_HEAD(&cc.migratepages);
8484
041d3a8c
MN
8485 /*
8486 * What we do here is we mark all pageblocks in range as
8487 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8488 * have different sizes, and due to the way page allocator
8489 * work, we align the range to biggest of the two pages so
8490 * that page allocator won't try to merge buddies from
8491 * different pageblocks and change MIGRATE_ISOLATE to some
8492 * other migration type.
8493 *
8494 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8495 * migrate the pages from an unaligned range (ie. pages that
8496 * we are interested in). This will put all the pages in
8497 * range back to page allocator as MIGRATE_ISOLATE.
8498 *
8499 * When this is done, we take the pages in range from page
8500 * allocator removing them from the buddy system. This way
8501 * page allocator will never consider using them.
8502 *
8503 * This lets us mark the pageblocks back as
8504 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8505 * aligned range but not in the unaligned, original range are
8506 * put back to page allocator so that buddy can use them.
8507 */
8508
8509 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8510 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8511 if (ret < 0)
86a595f9 8512 return ret;
041d3a8c 8513
8ef5849f
JK
8514 /*
8515 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8516 * So, just fall through. test_pages_isolated() has a tracepoint
8517 * which will report the busy page.
8518 *
8519 * It is possible that busy pages could become available before
8520 * the call to test_pages_isolated, and the range will actually be
8521 * allocated. So, if we fall through be sure to clear ret so that
8522 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8523 */
bb13ffeb 8524 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8525 if (ret && ret != -EBUSY)
041d3a8c 8526 goto done;
63cd4489 8527 ret =0;
041d3a8c
MN
8528
8529 /*
8530 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8531 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8532 * more, all pages in [start, end) are free in page allocator.
8533 * What we are going to do is to allocate all pages from
8534 * [start, end) (that is remove them from page allocator).
8535 *
8536 * The only problem is that pages at the beginning and at the
8537 * end of interesting range may be not aligned with pages that
8538 * page allocator holds, ie. they can be part of higher order
8539 * pages. Because of this, we reserve the bigger range and
8540 * once this is done free the pages we are not interested in.
8541 *
8542 * We don't have to hold zone->lock here because the pages are
8543 * isolated thus they won't get removed from buddy.
8544 */
8545
8546 lru_add_drain_all();
041d3a8c
MN
8547
8548 order = 0;
8549 outer_start = start;
8550 while (!PageBuddy(pfn_to_page(outer_start))) {
8551 if (++order >= MAX_ORDER) {
8ef5849f
JK
8552 outer_start = start;
8553 break;
041d3a8c
MN
8554 }
8555 outer_start &= ~0UL << order;
8556 }
8557
8ef5849f
JK
8558 if (outer_start != start) {
8559 order = page_order(pfn_to_page(outer_start));
8560
8561 /*
8562 * outer_start page could be small order buddy page and
8563 * it doesn't include start page. Adjust outer_start
8564 * in this case to report failed page properly
8565 * on tracepoint in test_pages_isolated()
8566 */
8567 if (outer_start + (1UL << order) <= start)
8568 outer_start = start;
8569 }
8570
041d3a8c 8571 /* Make sure the range is really isolated. */
756d25be 8572 if (test_pages_isolated(outer_start, end, 0)) {
75dddef3 8573 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8574 __func__, outer_start, end);
041d3a8c
MN
8575 ret = -EBUSY;
8576 goto done;
8577 }
8578
49f223a9 8579 /* Grab isolated pages from freelists. */
bb13ffeb 8580 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8581 if (!outer_end) {
8582 ret = -EBUSY;
8583 goto done;
8584 }
8585
8586 /* Free head and tail (if any) */
8587 if (start != outer_start)
8588 free_contig_range(outer_start, start - outer_start);
8589 if (end != outer_end)
8590 free_contig_range(end, outer_end - end);
8591
8592done:
8593 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8594 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8595 return ret;
8596}
5e27a2df
AK
8597
8598static int __alloc_contig_pages(unsigned long start_pfn,
8599 unsigned long nr_pages, gfp_t gfp_mask)
8600{
8601 unsigned long end_pfn = start_pfn + nr_pages;
8602
8603 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8604 gfp_mask);
8605}
8606
8607static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8608 unsigned long nr_pages)
8609{
8610 unsigned long i, end_pfn = start_pfn + nr_pages;
8611 struct page *page;
8612
8613 for (i = start_pfn; i < end_pfn; i++) {
8614 page = pfn_to_online_page(i);
8615 if (!page)
8616 return false;
8617
8618 if (page_zone(page) != z)
8619 return false;
8620
8621 if (PageReserved(page))
8622 return false;
8623
8624 if (page_count(page) > 0)
8625 return false;
8626
8627 if (PageHuge(page))
8628 return false;
8629 }
8630 return true;
8631}
8632
8633static bool zone_spans_last_pfn(const struct zone *zone,
8634 unsigned long start_pfn, unsigned long nr_pages)
8635{
8636 unsigned long last_pfn = start_pfn + nr_pages - 1;
8637
8638 return zone_spans_pfn(zone, last_pfn);
8639}
8640
8641/**
8642 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8643 * @nr_pages: Number of contiguous pages to allocate
8644 * @gfp_mask: GFP mask to limit search and used during compaction
8645 * @nid: Target node
8646 * @nodemask: Mask for other possible nodes
8647 *
8648 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8649 * on an applicable zonelist to find a contiguous pfn range which can then be
8650 * tried for allocation with alloc_contig_range(). This routine is intended
8651 * for allocation requests which can not be fulfilled with the buddy allocator.
8652 *
8653 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8654 * power of two then the alignment is guaranteed to be to the given nr_pages
8655 * (e.g. 1GB request would be aligned to 1GB).
8656 *
8657 * Allocated pages can be freed with free_contig_range() or by manually calling
8658 * __free_page() on each allocated page.
8659 *
8660 * Return: pointer to contiguous pages on success, or NULL if not successful.
8661 */
8662struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8663 int nid, nodemask_t *nodemask)
8664{
8665 unsigned long ret, pfn, flags;
8666 struct zonelist *zonelist;
8667 struct zone *zone;
8668 struct zoneref *z;
8669
8670 zonelist = node_zonelist(nid, gfp_mask);
8671 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8672 gfp_zone(gfp_mask), nodemask) {
8673 spin_lock_irqsave(&zone->lock, flags);
8674
8675 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8676 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8677 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8678 /*
8679 * We release the zone lock here because
8680 * alloc_contig_range() will also lock the zone
8681 * at some point. If there's an allocation
8682 * spinning on this lock, it may win the race
8683 * and cause alloc_contig_range() to fail...
8684 */
8685 spin_unlock_irqrestore(&zone->lock, flags);
8686 ret = __alloc_contig_pages(pfn, nr_pages,
8687 gfp_mask);
8688 if (!ret)
8689 return pfn_to_page(pfn);
8690 spin_lock_irqsave(&zone->lock, flags);
8691 }
8692 pfn += nr_pages;
8693 }
8694 spin_unlock_irqrestore(&zone->lock, flags);
8695 }
8696 return NULL;
8697}
4eb0716e 8698#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8699
4eb0716e 8700void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8701{
bcc2b02f
MS
8702 unsigned int count = 0;
8703
8704 for (; nr_pages--; pfn++) {
8705 struct page *page = pfn_to_page(pfn);
8706
8707 count += page_count(page) != 1;
8708 __free_page(page);
8709 }
8710 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8711}
041d3a8c 8712
0a647f38
CS
8713/*
8714 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8715 * page high values need to be recalulated.
8716 */
4ed7e022
JL
8717void __meminit zone_pcp_update(struct zone *zone)
8718{
c8e251fa 8719 mutex_lock(&pcp_batch_high_lock);
cb1ef534 8720 __zone_pcp_update(zone);
c8e251fa 8721 mutex_unlock(&pcp_batch_high_lock);
4ed7e022 8722}
4ed7e022 8723
340175b7
JL
8724void zone_pcp_reset(struct zone *zone)
8725{
8726 unsigned long flags;
5a883813
MK
8727 int cpu;
8728 struct per_cpu_pageset *pset;
340175b7
JL
8729
8730 /* avoid races with drain_pages() */
8731 local_irq_save(flags);
8732 if (zone->pageset != &boot_pageset) {
5a883813
MK
8733 for_each_online_cpu(cpu) {
8734 pset = per_cpu_ptr(zone->pageset, cpu);
8735 drain_zonestat(zone, pset);
8736 }
340175b7
JL
8737 free_percpu(zone->pageset);
8738 zone->pageset = &boot_pageset;
8739 }
8740 local_irq_restore(flags);
8741}
8742
6dcd73d7 8743#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8744/*
b9eb6319
JK
8745 * All pages in the range must be in a single zone and isolated
8746 * before calling this.
0c0e6195 8747 */
5557c766 8748unsigned long
0c0e6195
KH
8749__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8750{
8751 struct page *page;
8752 struct zone *zone;
0ee5f4f3 8753 unsigned int order;
0c0e6195
KH
8754 unsigned long pfn;
8755 unsigned long flags;
5557c766
MH
8756 unsigned long offlined_pages = 0;
8757
0c0e6195
KH
8758 /* find the first valid pfn */
8759 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8760 if (pfn_valid(pfn))
8761 break;
8762 if (pfn == end_pfn)
5557c766
MH
8763 return offlined_pages;
8764
2d070eab 8765 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8766 zone = page_zone(pfn_to_page(pfn));
8767 spin_lock_irqsave(&zone->lock, flags);
8768 pfn = start_pfn;
8769 while (pfn < end_pfn) {
8770 if (!pfn_valid(pfn)) {
8771 pfn++;
8772 continue;
8773 }
8774 page = pfn_to_page(pfn);
b023f468
WC
8775 /*
8776 * The HWPoisoned page may be not in buddy system, and
8777 * page_count() is not 0.
8778 */
8779 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8780 pfn++;
5557c766 8781 offlined_pages++;
b023f468
WC
8782 continue;
8783 }
8784
0c0e6195
KH
8785 BUG_ON(page_count(page));
8786 BUG_ON(!PageBuddy(page));
8787 order = page_order(page);
5557c766 8788 offlined_pages += 1 << order;
6ab01363 8789 del_page_from_free_list(page, zone, order);
0c0e6195
KH
8790 pfn += (1 << order);
8791 }
8792 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8793
8794 return offlined_pages;
0c0e6195
KH
8795}
8796#endif
8d22ba1b 8797
8d22ba1b
WF
8798bool is_free_buddy_page(struct page *page)
8799{
8800 struct zone *zone = page_zone(page);
8801 unsigned long pfn = page_to_pfn(page);
8802 unsigned long flags;
7aeb09f9 8803 unsigned int order;
8d22ba1b
WF
8804
8805 spin_lock_irqsave(&zone->lock, flags);
8806 for (order = 0; order < MAX_ORDER; order++) {
8807 struct page *page_head = page - (pfn & ((1 << order) - 1));
8808
8809 if (PageBuddy(page_head) && page_order(page_head) >= order)
8810 break;
8811 }
8812 spin_unlock_irqrestore(&zone->lock, flags);
8813
8814 return order < MAX_ORDER;
8815}
d4ae9916
NH
8816
8817#ifdef CONFIG_MEMORY_FAILURE
8818/*
8819 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8820 * test is performed under the zone lock to prevent a race against page
8821 * allocation.
8822 */
8823bool set_hwpoison_free_buddy_page(struct page *page)
8824{
8825 struct zone *zone = page_zone(page);
8826 unsigned long pfn = page_to_pfn(page);
8827 unsigned long flags;
8828 unsigned int order;
8829 bool hwpoisoned = false;
8830
8831 spin_lock_irqsave(&zone->lock, flags);
8832 for (order = 0; order < MAX_ORDER; order++) {
8833 struct page *page_head = page - (pfn & ((1 << order) - 1));
8834
8835 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8836 if (!TestSetPageHWPoison(page))
8837 hwpoisoned = true;
8838 break;
8839 }
8840 }
8841 spin_unlock_irqrestore(&zone->lock, flags);
8842
8843 return hwpoisoned;
8844}
8845#endif