zswap: do not map same object twice
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
1da177e4 77
c8e251fa
CS
78/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 80#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 81
72812019
LS
82#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83DEFINE_PER_CPU(int, numa_node);
84EXPORT_PER_CPU_SYMBOL(numa_node);
85#endif
86
4518085e
KW
87DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
7aac7898
LS
89#ifdef CONFIG_HAVE_MEMORYLESS_NODES
90/*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 98int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
bd233f53 106DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 107DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
0ee332c1 338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
351#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
f1eca35a 453 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464#else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467#endif /* CONFIG_SPARSEMEM */
468}
469
470/**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483{
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496}
497
498unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501{
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548}
3a80a7fa 549
ee6f509c 550void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 551{
5d0f3f72
KM
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
554 migratetype = MIGRATE_UNMOVABLE;
555
b2a0ac88
MG
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558}
559
13e7444b 560#ifdef CONFIG_DEBUG_VM
c6a57e19 561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 562{
bdc8cb98
DH
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 566 unsigned long sp, start_pfn;
c6a57e19 567
bdc8cb98
DH
568 do {
569 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
108bcc96 572 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
b5e6a5a2 576 if (ret)
613813e8
DH
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
b5e6a5a2 580
bdc8cb98 581 return ret;
c6a57e19
DH
582}
583
584static int page_is_consistent(struct zone *zone, struct page *page)
585{
14e07298 586 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 587 return 0;
1da177e4 588 if (zone != page_zone(page))
c6a57e19
DH
589 return 0;
590
591 return 1;
592}
593/*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
d73d3c9f 596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
597{
598 if (page_outside_zone_boundaries(zone, page))
1da177e4 599 return 1;
c6a57e19
DH
600 if (!page_is_consistent(zone, page))
601 return 1;
602
1da177e4
LT
603 return 0;
604}
13e7444b 605#else
d73d3c9f 606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
607{
608 return 0;
609}
610#endif
611
d230dec1
KS
612static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
1da177e4 614{
d936cf9b
HD
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
ff8e8116 629 pr_alert(
1e9e6365 630 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
ff8e8116 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 640 current->comm, page_to_pfn(page));
ff8e8116
VB
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
4e462112 646 dump_page_owner(page);
3dc14741 647
4f31888c 648 print_modules();
1da177e4 649 dump_stack();
d936cf9b 650out:
8cc3b392 651 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 652 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
654}
655
1da177e4
LT
656/*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
1d798ca3 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 660 *
1d798ca3
KS
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 663 *
1d798ca3
KS
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
1da177e4 666 *
1d798ca3 667 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 668 * This usage means that zero-order pages may not be compound.
1da177e4 669 */
d98c7a09 670
9a982250 671void free_compound_page(struct page *page)
d98c7a09 672{
7ae88534 673 mem_cgroup_uncharge(page);
d85f3385 674 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
675}
676
d00181b9 677void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
678{
679 int i;
680 int nr_pages = 1 << order;
681
f1e61557 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
58a84aa9 687 set_page_count(p, 0);
1c290f64 688 p->mapping = TAIL_MAPPING;
1d798ca3 689 set_compound_head(p, page);
18229df5 690 }
53f9263b 691 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
692}
693
c0a32fc5
SG
694#ifdef CONFIG_DEBUG_PAGEALLOC
695unsigned int _debug_guardpage_minorder;
96a2b03f
VB
696
697#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
698DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
699#else
700DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701#endif
505f6d22 702EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
703
704DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 705
031bc574
JK
706static int __init early_debug_pagealloc(char *buf)
707{
96a2b03f
VB
708 bool enable = false;
709
710 if (kstrtobool(buf, &enable))
031bc574 711 return -EINVAL;
96a2b03f
VB
712
713 if (enable)
714 static_branch_enable(&_debug_pagealloc_enabled);
715
716 return 0;
031bc574
JK
717}
718early_param("debug_pagealloc", early_debug_pagealloc);
719
e30825f1
JK
720static void init_debug_guardpage(void)
721{
031bc574
JK
722 if (!debug_pagealloc_enabled())
723 return;
724
f1c1e9f7
JK
725 if (!debug_guardpage_minorder())
726 return;
727
96a2b03f 728 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
729}
730
c0a32fc5
SG
731static int __init debug_guardpage_minorder_setup(char *buf)
732{
733 unsigned long res;
734
735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 736 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
737 return 0;
738 }
739 _debug_guardpage_minorder = res;
1170532b 740 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
741 return 0;
742}
f1c1e9f7 743early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 744
acbc15a4 745static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 746 unsigned int order, int migratetype)
c0a32fc5 747{
e30825f1 748 if (!debug_guardpage_enabled())
acbc15a4
JK
749 return false;
750
751 if (order >= debug_guardpage_minorder())
752 return false;
e30825f1 753
3972f6bb 754 __SetPageGuard(page);
2847cf95
JK
755 INIT_LIST_HEAD(&page->lru);
756 set_page_private(page, order);
757 /* Guard pages are not available for any usage */
758 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
759
760 return true;
c0a32fc5
SG
761}
762
2847cf95
JK
763static inline void clear_page_guard(struct zone *zone, struct page *page,
764 unsigned int order, int migratetype)
c0a32fc5 765{
e30825f1
JK
766 if (!debug_guardpage_enabled())
767 return;
768
3972f6bb 769 __ClearPageGuard(page);
e30825f1 770
2847cf95
JK
771 set_page_private(page, 0);
772 if (!is_migrate_isolate(migratetype))
773 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
774}
775#else
acbc15a4
JK
776static inline bool set_page_guard(struct zone *zone, struct page *page,
777 unsigned int order, int migratetype) { return false; }
2847cf95
JK
778static inline void clear_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype) {}
c0a32fc5
SG
780#endif
781
7aeb09f9 782static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 783{
4c21e2f2 784 set_page_private(page, order);
676165a8 785 __SetPageBuddy(page);
1da177e4
LT
786}
787
1da177e4
LT
788/*
789 * This function checks whether a page is free && is the buddy
6e292b9b 790 * we can coalesce a page and its buddy if
13ad59df 791 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 792 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
793 * (c) a page and its buddy have the same order &&
794 * (d) a page and its buddy are in the same zone.
676165a8 795 *
6e292b9b
MW
796 * For recording whether a page is in the buddy system, we set PageBuddy.
797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 798 *
676165a8 799 * For recording page's order, we use page_private(page).
1da177e4 800 */
cb2b95e1 801static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 802 unsigned int order)
1da177e4 803{
c0a32fc5 804 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
805 if (page_zone_id(page) != page_zone_id(buddy))
806 return 0;
807
4c5018ce
WY
808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
809
c0a32fc5
SG
810 return 1;
811 }
812
cb2b95e1 813 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
814 /*
815 * zone check is done late to avoid uselessly
816 * calculating zone/node ids for pages that could
817 * never merge.
818 */
819 if (page_zone_id(page) != page_zone_id(buddy))
820 return 0;
821
4c5018ce
WY
822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
823
6aa3001b 824 return 1;
676165a8 825 }
6aa3001b 826 return 0;
1da177e4
LT
827}
828
5e1f0f09
MG
829#ifdef CONFIG_COMPACTION
830static inline struct capture_control *task_capc(struct zone *zone)
831{
832 struct capture_control *capc = current->capture_control;
833
834 return capc &&
835 !(current->flags & PF_KTHREAD) &&
836 !capc->page &&
837 capc->cc->zone == zone &&
838 capc->cc->direct_compaction ? capc : NULL;
839}
840
841static inline bool
842compaction_capture(struct capture_control *capc, struct page *page,
843 int order, int migratetype)
844{
845 if (!capc || order != capc->cc->order)
846 return false;
847
848 /* Do not accidentally pollute CMA or isolated regions*/
849 if (is_migrate_cma(migratetype) ||
850 is_migrate_isolate(migratetype))
851 return false;
852
853 /*
854 * Do not let lower order allocations polluate a movable pageblock.
855 * This might let an unmovable request use a reclaimable pageblock
856 * and vice-versa but no more than normal fallback logic which can
857 * have trouble finding a high-order free page.
858 */
859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
860 return false;
861
862 capc->page = page;
863 return true;
864}
865
866#else
867static inline struct capture_control *task_capc(struct zone *zone)
868{
869 return NULL;
870}
871
872static inline bool
873compaction_capture(struct capture_control *capc, struct page *page,
874 int order, int migratetype)
875{
876 return false;
877}
878#endif /* CONFIG_COMPACTION */
879
1da177e4
LT
880/*
881 * Freeing function for a buddy system allocator.
882 *
883 * The concept of a buddy system is to maintain direct-mapped table
884 * (containing bit values) for memory blocks of various "orders".
885 * The bottom level table contains the map for the smallest allocatable
886 * units of memory (here, pages), and each level above it describes
887 * pairs of units from the levels below, hence, "buddies".
888 * At a high level, all that happens here is marking the table entry
889 * at the bottom level available, and propagating the changes upward
890 * as necessary, plus some accounting needed to play nicely with other
891 * parts of the VM system.
892 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
893 * free pages of length of (1 << order) and marked with PageBuddy.
894 * Page's order is recorded in page_private(page) field.
1da177e4 895 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
896 * other. That is, if we allocate a small block, and both were
897 * free, the remainder of the region must be split into blocks.
1da177e4 898 * If a block is freed, and its buddy is also free, then this
5f63b720 899 * triggers coalescing into a block of larger size.
1da177e4 900 *
6d49e352 901 * -- nyc
1da177e4
LT
902 */
903
48db57f8 904static inline void __free_one_page(struct page *page,
dc4b0caf 905 unsigned long pfn,
ed0ae21d
MG
906 struct zone *zone, unsigned int order,
907 int migratetype)
1da177e4 908{
76741e77
VB
909 unsigned long combined_pfn;
910 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 911 struct page *buddy;
d9dddbf5 912 unsigned int max_order;
5e1f0f09 913 struct capture_control *capc = task_capc(zone);
d9dddbf5
VB
914
915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 916
d29bb978 917 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 919
ed0ae21d 920 VM_BUG_ON(migratetype == -1);
d9dddbf5 921 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 922 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 923
76741e77 924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 925 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 926
d9dddbf5 927continue_merging:
3c605096 928 while (order < max_order - 1) {
5e1f0f09
MG
929 if (compaction_capture(capc, page, order, migratetype)) {
930 __mod_zone_freepage_state(zone, -(1 << order),
931 migratetype);
932 return;
933 }
76741e77
VB
934 buddy_pfn = __find_buddy_pfn(pfn, order);
935 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
936
937 if (!pfn_valid_within(buddy_pfn))
938 goto done_merging;
cb2b95e1 939 if (!page_is_buddy(page, buddy, order))
d9dddbf5 940 goto done_merging;
c0a32fc5
SG
941 /*
942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
943 * merge with it and move up one order.
944 */
b03641af 945 if (page_is_guard(buddy))
2847cf95 946 clear_page_guard(zone, buddy, order, migratetype);
b03641af
DW
947 else
948 del_page_from_free_area(buddy, &zone->free_area[order]);
76741e77
VB
949 combined_pfn = buddy_pfn & pfn;
950 page = page + (combined_pfn - pfn);
951 pfn = combined_pfn;
1da177e4
LT
952 order++;
953 }
d9dddbf5
VB
954 if (max_order < MAX_ORDER) {
955 /* If we are here, it means order is >= pageblock_order.
956 * We want to prevent merge between freepages on isolate
957 * pageblock and normal pageblock. Without this, pageblock
958 * isolation could cause incorrect freepage or CMA accounting.
959 *
960 * We don't want to hit this code for the more frequent
961 * low-order merging.
962 */
963 if (unlikely(has_isolate_pageblock(zone))) {
964 int buddy_mt;
965
76741e77
VB
966 buddy_pfn = __find_buddy_pfn(pfn, order);
967 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
968 buddy_mt = get_pageblock_migratetype(buddy);
969
970 if (migratetype != buddy_mt
971 && (is_migrate_isolate(migratetype) ||
972 is_migrate_isolate(buddy_mt)))
973 goto done_merging;
974 }
975 max_order++;
976 goto continue_merging;
977 }
978
979done_merging:
1da177e4 980 set_page_order(page, order);
6dda9d55
CZ
981
982 /*
983 * If this is not the largest possible page, check if the buddy
984 * of the next-highest order is free. If it is, it's possible
985 * that pages are being freed that will coalesce soon. In case,
986 * that is happening, add the free page to the tail of the list
987 * so it's less likely to be used soon and more likely to be merged
988 * as a higher order page
989 */
97500a4a
DW
990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
991 && !is_shuffle_order(order)) {
6dda9d55 992 struct page *higher_page, *higher_buddy;
76741e77
VB
993 combined_pfn = buddy_pfn & pfn;
994 higher_page = page + (combined_pfn - pfn);
995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
996 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
997 if (pfn_valid_within(buddy_pfn) &&
998 page_is_buddy(higher_page, higher_buddy, order + 1)) {
b03641af
DW
999 add_to_free_area_tail(page, &zone->free_area[order],
1000 migratetype);
1001 return;
6dda9d55
CZ
1002 }
1003 }
1004
97500a4a
DW
1005 if (is_shuffle_order(order))
1006 add_to_free_area_random(page, &zone->free_area[order],
1007 migratetype);
1008 else
1009 add_to_free_area(page, &zone->free_area[order], migratetype);
1010
1da177e4
LT
1011}
1012
7bfec6f4
MG
1013/*
1014 * A bad page could be due to a number of fields. Instead of multiple branches,
1015 * try and check multiple fields with one check. The caller must do a detailed
1016 * check if necessary.
1017 */
1018static inline bool page_expected_state(struct page *page,
1019 unsigned long check_flags)
1020{
1021 if (unlikely(atomic_read(&page->_mapcount) != -1))
1022 return false;
1023
1024 if (unlikely((unsigned long)page->mapping |
1025 page_ref_count(page) |
1026#ifdef CONFIG_MEMCG
1027 (unsigned long)page->mem_cgroup |
1028#endif
1029 (page->flags & check_flags)))
1030 return false;
1031
1032 return true;
1033}
1034
bb552ac6 1035static void free_pages_check_bad(struct page *page)
1da177e4 1036{
7bfec6f4
MG
1037 const char *bad_reason;
1038 unsigned long bad_flags;
1039
7bfec6f4
MG
1040 bad_reason = NULL;
1041 bad_flags = 0;
f0b791a3 1042
53f9263b 1043 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1044 bad_reason = "nonzero mapcount";
1045 if (unlikely(page->mapping != NULL))
1046 bad_reason = "non-NULL mapping";
fe896d18 1047 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1048 bad_reason = "nonzero _refcount";
f0b791a3
DH
1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1052 }
9edad6ea
JW
1053#ifdef CONFIG_MEMCG
1054 if (unlikely(page->mem_cgroup))
1055 bad_reason = "page still charged to cgroup";
1056#endif
7bfec6f4 1057 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1058}
1059
1060static inline int free_pages_check(struct page *page)
1061{
da838d4f 1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1063 return 0;
bb552ac6
MG
1064
1065 /* Something has gone sideways, find it */
1066 free_pages_check_bad(page);
7bfec6f4 1067 return 1;
1da177e4
LT
1068}
1069
4db7548c
MG
1070static int free_tail_pages_check(struct page *head_page, struct page *page)
1071{
1072 int ret = 1;
1073
1074 /*
1075 * We rely page->lru.next never has bit 0 set, unless the page
1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1077 */
1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1079
1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1081 ret = 0;
1082 goto out;
1083 }
1084 switch (page - head_page) {
1085 case 1:
4da1984e 1086 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1087 if (unlikely(compound_mapcount(page))) {
1088 bad_page(page, "nonzero compound_mapcount", 0);
1089 goto out;
1090 }
1091 break;
1092 case 2:
1093 /*
1094 * the second tail page: ->mapping is
fa3015b7 1095 * deferred_list.next -- ignore value.
4db7548c
MG
1096 */
1097 break;
1098 default:
1099 if (page->mapping != TAIL_MAPPING) {
1100 bad_page(page, "corrupted mapping in tail page", 0);
1101 goto out;
1102 }
1103 break;
1104 }
1105 if (unlikely(!PageTail(page))) {
1106 bad_page(page, "PageTail not set", 0);
1107 goto out;
1108 }
1109 if (unlikely(compound_head(page) != head_page)) {
1110 bad_page(page, "compound_head not consistent", 0);
1111 goto out;
1112 }
1113 ret = 0;
1114out:
1115 page->mapping = NULL;
1116 clear_compound_head(page);
1117 return ret;
1118}
1119
6471384a
AP
1120static void kernel_init_free_pages(struct page *page, int numpages)
1121{
1122 int i;
1123
1124 for (i = 0; i < numpages; i++)
1125 clear_highpage(page + i);
1126}
1127
e2769dbd
MG
1128static __always_inline bool free_pages_prepare(struct page *page,
1129 unsigned int order, bool check_free)
4db7548c 1130{
e2769dbd 1131 int bad = 0;
4db7548c 1132
4db7548c
MG
1133 VM_BUG_ON_PAGE(PageTail(page), page);
1134
e2769dbd 1135 trace_mm_page_free(page, order);
e2769dbd
MG
1136
1137 /*
1138 * Check tail pages before head page information is cleared to
1139 * avoid checking PageCompound for order-0 pages.
1140 */
1141 if (unlikely(order)) {
1142 bool compound = PageCompound(page);
1143 int i;
1144
1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1146
9a73f61b
KS
1147 if (compound)
1148 ClearPageDoubleMap(page);
e2769dbd
MG
1149 for (i = 1; i < (1 << order); i++) {
1150 if (compound)
1151 bad += free_tail_pages_check(page, page + i);
1152 if (unlikely(free_pages_check(page + i))) {
1153 bad++;
1154 continue;
1155 }
1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157 }
1158 }
bda807d4 1159 if (PageMappingFlags(page))
4db7548c 1160 page->mapping = NULL;
c4159a75 1161 if (memcg_kmem_enabled() && PageKmemcg(page))
60cd4bcd 1162 __memcg_kmem_uncharge(page, order);
e2769dbd
MG
1163 if (check_free)
1164 bad += free_pages_check(page);
1165 if (bad)
1166 return false;
4db7548c 1167
e2769dbd
MG
1168 page_cpupid_reset_last(page);
1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1170 reset_page_owner(page, order);
4db7548c
MG
1171
1172 if (!PageHighMem(page)) {
1173 debug_check_no_locks_freed(page_address(page),
e2769dbd 1174 PAGE_SIZE << order);
4db7548c 1175 debug_check_no_obj_freed(page_address(page),
e2769dbd 1176 PAGE_SIZE << order);
4db7548c 1177 }
e2769dbd 1178 arch_free_page(page, order);
6471384a
AP
1179 if (want_init_on_free())
1180 kernel_init_free_pages(page, 1 << order);
1181
e2769dbd 1182 kernel_poison_pages(page, 1 << order, 0);
d6332692
RE
1183 if (debug_pagealloc_enabled())
1184 kernel_map_pages(page, 1 << order, 0);
1185
3c0c12cc 1186 kasan_free_nondeferred_pages(page, order);
4db7548c 1187
4db7548c
MG
1188 return true;
1189}
1190
e2769dbd 1191#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1192/*
1193 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1194 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1195 * moved from pcp lists to free lists.
1196 */
1197static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1198{
1199 return free_pages_prepare(page, 0, true);
1200}
1201
4462b32c 1202static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1203{
4462b32c
VB
1204 if (debug_pagealloc_enabled())
1205 return free_pages_check(page);
1206 else
1207 return false;
e2769dbd
MG
1208}
1209#else
4462b32c
VB
1210/*
1211 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1212 * moving from pcp lists to free list in order to reduce overhead. With
1213 * debug_pagealloc enabled, they are checked also immediately when being freed
1214 * to the pcp lists.
1215 */
e2769dbd
MG
1216static bool free_pcp_prepare(struct page *page)
1217{
4462b32c
VB
1218 if (debug_pagealloc_enabled())
1219 return free_pages_prepare(page, 0, true);
1220 else
1221 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1222}
1223
4db7548c
MG
1224static bool bulkfree_pcp_prepare(struct page *page)
1225{
1226 return free_pages_check(page);
1227}
1228#endif /* CONFIG_DEBUG_VM */
1229
97334162
AL
1230static inline void prefetch_buddy(struct page *page)
1231{
1232 unsigned long pfn = page_to_pfn(page);
1233 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1234 struct page *buddy = page + (buddy_pfn - pfn);
1235
1236 prefetch(buddy);
1237}
1238
1da177e4 1239/*
5f8dcc21 1240 * Frees a number of pages from the PCP lists
1da177e4 1241 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1242 * count is the number of pages to free.
1da177e4
LT
1243 *
1244 * If the zone was previously in an "all pages pinned" state then look to
1245 * see if this freeing clears that state.
1246 *
1247 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1248 * pinned" detection logic.
1249 */
5f8dcc21
MG
1250static void free_pcppages_bulk(struct zone *zone, int count,
1251 struct per_cpu_pages *pcp)
1da177e4 1252{
5f8dcc21 1253 int migratetype = 0;
a6f9edd6 1254 int batch_free = 0;
97334162 1255 int prefetch_nr = 0;
3777999d 1256 bool isolated_pageblocks;
0a5f4e5b
AL
1257 struct page *page, *tmp;
1258 LIST_HEAD(head);
f2260e6b 1259
e5b31ac2 1260 while (count) {
5f8dcc21
MG
1261 struct list_head *list;
1262
1263 /*
a6f9edd6
MG
1264 * Remove pages from lists in a round-robin fashion. A
1265 * batch_free count is maintained that is incremented when an
1266 * empty list is encountered. This is so more pages are freed
1267 * off fuller lists instead of spinning excessively around empty
1268 * lists
5f8dcc21
MG
1269 */
1270 do {
a6f9edd6 1271 batch_free++;
5f8dcc21
MG
1272 if (++migratetype == MIGRATE_PCPTYPES)
1273 migratetype = 0;
1274 list = &pcp->lists[migratetype];
1275 } while (list_empty(list));
48db57f8 1276
1d16871d
NK
1277 /* This is the only non-empty list. Free them all. */
1278 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1279 batch_free = count;
1d16871d 1280
a6f9edd6 1281 do {
a16601c5 1282 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1283 /* must delete to avoid corrupting pcp list */
a6f9edd6 1284 list_del(&page->lru);
77ba9062 1285 pcp->count--;
aa016d14 1286
4db7548c
MG
1287 if (bulkfree_pcp_prepare(page))
1288 continue;
1289
0a5f4e5b 1290 list_add_tail(&page->lru, &head);
97334162
AL
1291
1292 /*
1293 * We are going to put the page back to the global
1294 * pool, prefetch its buddy to speed up later access
1295 * under zone->lock. It is believed the overhead of
1296 * an additional test and calculating buddy_pfn here
1297 * can be offset by reduced memory latency later. To
1298 * avoid excessive prefetching due to large count, only
1299 * prefetch buddy for the first pcp->batch nr of pages.
1300 */
1301 if (prefetch_nr++ < pcp->batch)
1302 prefetch_buddy(page);
e5b31ac2 1303 } while (--count && --batch_free && !list_empty(list));
1da177e4 1304 }
0a5f4e5b
AL
1305
1306 spin_lock(&zone->lock);
1307 isolated_pageblocks = has_isolate_pageblock(zone);
1308
1309 /*
1310 * Use safe version since after __free_one_page(),
1311 * page->lru.next will not point to original list.
1312 */
1313 list_for_each_entry_safe(page, tmp, &head, lru) {
1314 int mt = get_pcppage_migratetype(page);
1315 /* MIGRATE_ISOLATE page should not go to pcplists */
1316 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1317 /* Pageblock could have been isolated meanwhile */
1318 if (unlikely(isolated_pageblocks))
1319 mt = get_pageblock_migratetype(page);
1320
1321 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1322 trace_mm_page_pcpu_drain(page, 0, mt);
1323 }
d34b0733 1324 spin_unlock(&zone->lock);
1da177e4
LT
1325}
1326
dc4b0caf
MG
1327static void free_one_page(struct zone *zone,
1328 struct page *page, unsigned long pfn,
7aeb09f9 1329 unsigned int order,
ed0ae21d 1330 int migratetype)
1da177e4 1331{
d34b0733 1332 spin_lock(&zone->lock);
ad53f92e
JK
1333 if (unlikely(has_isolate_pageblock(zone) ||
1334 is_migrate_isolate(migratetype))) {
1335 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1336 }
dc4b0caf 1337 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1338 spin_unlock(&zone->lock);
48db57f8
NP
1339}
1340
1e8ce83c 1341static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1342 unsigned long zone, int nid)
1e8ce83c 1343{
d0dc12e8 1344 mm_zero_struct_page(page);
1e8ce83c 1345 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1346 init_page_count(page);
1347 page_mapcount_reset(page);
1348 page_cpupid_reset_last(page);
2813b9c0 1349 page_kasan_tag_reset(page);
1e8ce83c 1350
1e8ce83c
RH
1351 INIT_LIST_HEAD(&page->lru);
1352#ifdef WANT_PAGE_VIRTUAL
1353 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1354 if (!is_highmem_idx(zone))
1355 set_page_address(page, __va(pfn << PAGE_SHIFT));
1356#endif
1357}
1358
7e18adb4 1359#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1360static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1361{
1362 pg_data_t *pgdat;
1363 int nid, zid;
1364
1365 if (!early_page_uninitialised(pfn))
1366 return;
1367
1368 nid = early_pfn_to_nid(pfn);
1369 pgdat = NODE_DATA(nid);
1370
1371 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1372 struct zone *zone = &pgdat->node_zones[zid];
1373
1374 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1375 break;
1376 }
d0dc12e8 1377 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1378}
1379#else
1380static inline void init_reserved_page(unsigned long pfn)
1381{
1382}
1383#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1384
92923ca3
NZ
1385/*
1386 * Initialised pages do not have PageReserved set. This function is
1387 * called for each range allocated by the bootmem allocator and
1388 * marks the pages PageReserved. The remaining valid pages are later
1389 * sent to the buddy page allocator.
1390 */
4b50bcc7 1391void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1392{
1393 unsigned long start_pfn = PFN_DOWN(start);
1394 unsigned long end_pfn = PFN_UP(end);
1395
7e18adb4
MG
1396 for (; start_pfn < end_pfn; start_pfn++) {
1397 if (pfn_valid(start_pfn)) {
1398 struct page *page = pfn_to_page(start_pfn);
1399
1400 init_reserved_page(start_pfn);
1d798ca3
KS
1401
1402 /* Avoid false-positive PageTail() */
1403 INIT_LIST_HEAD(&page->lru);
1404
d483da5b
AD
1405 /*
1406 * no need for atomic set_bit because the struct
1407 * page is not visible yet so nobody should
1408 * access it yet.
1409 */
1410 __SetPageReserved(page);
7e18adb4
MG
1411 }
1412 }
92923ca3
NZ
1413}
1414
ec95f53a
KM
1415static void __free_pages_ok(struct page *page, unsigned int order)
1416{
d34b0733 1417 unsigned long flags;
95e34412 1418 int migratetype;
dc4b0caf 1419 unsigned long pfn = page_to_pfn(page);
ec95f53a 1420
e2769dbd 1421 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1422 return;
1423
cfc47a28 1424 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1425 local_irq_save(flags);
1426 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1427 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1428 local_irq_restore(flags);
1da177e4
LT
1429}
1430
a9cd410a 1431void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1432{
c3993076 1433 unsigned int nr_pages = 1 << order;
e2d0bd2b 1434 struct page *p = page;
c3993076 1435 unsigned int loop;
a226f6c8 1436
e2d0bd2b
YL
1437 prefetchw(p);
1438 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1439 prefetchw(p + 1);
c3993076
JW
1440 __ClearPageReserved(p);
1441 set_page_count(p, 0);
a226f6c8 1442 }
e2d0bd2b
YL
1443 __ClearPageReserved(p);
1444 set_page_count(p, 0);
c3993076 1445
9705bea5 1446 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1447 set_page_refcounted(page);
1448 __free_pages(page, order);
a226f6c8
DH
1449}
1450
75a592a4
MG
1451#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1452 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1453
75a592a4
MG
1454static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1455
1456int __meminit early_pfn_to_nid(unsigned long pfn)
1457{
7ace9917 1458 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1459 int nid;
1460
7ace9917 1461 spin_lock(&early_pfn_lock);
75a592a4 1462 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1463 if (nid < 0)
e4568d38 1464 nid = first_online_node;
7ace9917
MG
1465 spin_unlock(&early_pfn_lock);
1466
1467 return nid;
75a592a4
MG
1468}
1469#endif
1470
1471#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1472/* Only safe to use early in boot when initialisation is single-threaded */
1473static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1474{
1475 int nid;
1476
56ec43d8 1477 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1478 if (nid >= 0 && nid != node)
1479 return false;
1480 return true;
1481}
1482
75a592a4 1483#else
75a592a4
MG
1484static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1485{
1486 return true;
1487}
75a592a4
MG
1488#endif
1489
1490
7c2ee349 1491void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1492 unsigned int order)
1493{
1494 if (early_page_uninitialised(pfn))
1495 return;
a9cd410a 1496 __free_pages_core(page, order);
3a80a7fa
MG
1497}
1498
7cf91a98
JK
1499/*
1500 * Check that the whole (or subset of) a pageblock given by the interval of
1501 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1502 * with the migration of free compaction scanner. The scanners then need to
1503 * use only pfn_valid_within() check for arches that allow holes within
1504 * pageblocks.
1505 *
1506 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1507 *
1508 * It's possible on some configurations to have a setup like node0 node1 node0
1509 * i.e. it's possible that all pages within a zones range of pages do not
1510 * belong to a single zone. We assume that a border between node0 and node1
1511 * can occur within a single pageblock, but not a node0 node1 node0
1512 * interleaving within a single pageblock. It is therefore sufficient to check
1513 * the first and last page of a pageblock and avoid checking each individual
1514 * page in a pageblock.
1515 */
1516struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1517 unsigned long end_pfn, struct zone *zone)
1518{
1519 struct page *start_page;
1520 struct page *end_page;
1521
1522 /* end_pfn is one past the range we are checking */
1523 end_pfn--;
1524
1525 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1526 return NULL;
1527
2d070eab
MH
1528 start_page = pfn_to_online_page(start_pfn);
1529 if (!start_page)
1530 return NULL;
7cf91a98
JK
1531
1532 if (page_zone(start_page) != zone)
1533 return NULL;
1534
1535 end_page = pfn_to_page(end_pfn);
1536
1537 /* This gives a shorter code than deriving page_zone(end_page) */
1538 if (page_zone_id(start_page) != page_zone_id(end_page))
1539 return NULL;
1540
1541 return start_page;
1542}
1543
1544void set_zone_contiguous(struct zone *zone)
1545{
1546 unsigned long block_start_pfn = zone->zone_start_pfn;
1547 unsigned long block_end_pfn;
1548
1549 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1550 for (; block_start_pfn < zone_end_pfn(zone);
1551 block_start_pfn = block_end_pfn,
1552 block_end_pfn += pageblock_nr_pages) {
1553
1554 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1555
1556 if (!__pageblock_pfn_to_page(block_start_pfn,
1557 block_end_pfn, zone))
1558 return;
1559 }
1560
1561 /* We confirm that there is no hole */
1562 zone->contiguous = true;
1563}
1564
1565void clear_zone_contiguous(struct zone *zone)
1566{
1567 zone->contiguous = false;
1568}
1569
7e18adb4 1570#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1571static void __init deferred_free_range(unsigned long pfn,
1572 unsigned long nr_pages)
a4de83dd 1573{
2f47a91f
PT
1574 struct page *page;
1575 unsigned long i;
a4de83dd 1576
2f47a91f 1577 if (!nr_pages)
a4de83dd
MG
1578 return;
1579
2f47a91f
PT
1580 page = pfn_to_page(pfn);
1581
a4de83dd 1582 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1583 if (nr_pages == pageblock_nr_pages &&
1584 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1585 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1586 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1587 return;
1588 }
1589
e780149b
XQ
1590 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1591 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1592 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1593 __free_pages_core(page, 0);
e780149b 1594 }
a4de83dd
MG
1595}
1596
d3cd131d
NS
1597/* Completion tracking for deferred_init_memmap() threads */
1598static atomic_t pgdat_init_n_undone __initdata;
1599static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1600
1601static inline void __init pgdat_init_report_one_done(void)
1602{
1603 if (atomic_dec_and_test(&pgdat_init_n_undone))
1604 complete(&pgdat_init_all_done_comp);
1605}
0e1cc95b 1606
2f47a91f 1607/*
80b1f41c
PT
1608 * Returns true if page needs to be initialized or freed to buddy allocator.
1609 *
1610 * First we check if pfn is valid on architectures where it is possible to have
1611 * holes within pageblock_nr_pages. On systems where it is not possible, this
1612 * function is optimized out.
1613 *
1614 * Then, we check if a current large page is valid by only checking the validity
1615 * of the head pfn.
2f47a91f 1616 */
56ec43d8 1617static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1618{
80b1f41c
PT
1619 if (!pfn_valid_within(pfn))
1620 return false;
1621 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1622 return false;
80b1f41c
PT
1623 return true;
1624}
2f47a91f 1625
80b1f41c
PT
1626/*
1627 * Free pages to buddy allocator. Try to free aligned pages in
1628 * pageblock_nr_pages sizes.
1629 */
56ec43d8 1630static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1631 unsigned long end_pfn)
1632{
80b1f41c
PT
1633 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1634 unsigned long nr_free = 0;
2f47a91f 1635
80b1f41c 1636 for (; pfn < end_pfn; pfn++) {
56ec43d8 1637 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1638 deferred_free_range(pfn - nr_free, nr_free);
1639 nr_free = 0;
1640 } else if (!(pfn & nr_pgmask)) {
1641 deferred_free_range(pfn - nr_free, nr_free);
1642 nr_free = 1;
3a2d7fa8 1643 touch_nmi_watchdog();
80b1f41c
PT
1644 } else {
1645 nr_free++;
1646 }
1647 }
1648 /* Free the last block of pages to allocator */
1649 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1650}
1651
80b1f41c
PT
1652/*
1653 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1654 * by performing it only once every pageblock_nr_pages.
1655 * Return number of pages initialized.
1656 */
56ec43d8 1657static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1658 unsigned long pfn,
1659 unsigned long end_pfn)
2f47a91f 1660{
2f47a91f 1661 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1662 int nid = zone_to_nid(zone);
2f47a91f 1663 unsigned long nr_pages = 0;
56ec43d8 1664 int zid = zone_idx(zone);
2f47a91f 1665 struct page *page = NULL;
2f47a91f 1666
80b1f41c 1667 for (; pfn < end_pfn; pfn++) {
56ec43d8 1668 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1669 page = NULL;
2f47a91f 1670 continue;
80b1f41c 1671 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1672 page = pfn_to_page(pfn);
3a2d7fa8 1673 touch_nmi_watchdog();
80b1f41c
PT
1674 } else {
1675 page++;
2f47a91f 1676 }
d0dc12e8 1677 __init_single_page(page, pfn, zid, nid);
80b1f41c 1678 nr_pages++;
2f47a91f 1679 }
80b1f41c 1680 return (nr_pages);
2f47a91f
PT
1681}
1682
0e56acae
AD
1683/*
1684 * This function is meant to pre-load the iterator for the zone init.
1685 * Specifically it walks through the ranges until we are caught up to the
1686 * first_init_pfn value and exits there. If we never encounter the value we
1687 * return false indicating there are no valid ranges left.
1688 */
1689static bool __init
1690deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1691 unsigned long *spfn, unsigned long *epfn,
1692 unsigned long first_init_pfn)
1693{
1694 u64 j;
1695
1696 /*
1697 * Start out by walking through the ranges in this zone that have
1698 * already been initialized. We don't need to do anything with them
1699 * so we just need to flush them out of the system.
1700 */
1701 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1702 if (*epfn <= first_init_pfn)
1703 continue;
1704 if (*spfn < first_init_pfn)
1705 *spfn = first_init_pfn;
1706 *i = j;
1707 return true;
1708 }
1709
1710 return false;
1711}
1712
1713/*
1714 * Initialize and free pages. We do it in two loops: first we initialize
1715 * struct page, then free to buddy allocator, because while we are
1716 * freeing pages we can access pages that are ahead (computing buddy
1717 * page in __free_one_page()).
1718 *
1719 * In order to try and keep some memory in the cache we have the loop
1720 * broken along max page order boundaries. This way we will not cause
1721 * any issues with the buddy page computation.
1722 */
1723static unsigned long __init
1724deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1725 unsigned long *end_pfn)
1726{
1727 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1728 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1729 unsigned long nr_pages = 0;
1730 u64 j = *i;
1731
1732 /* First we loop through and initialize the page values */
1733 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1734 unsigned long t;
1735
1736 if (mo_pfn <= *start_pfn)
1737 break;
1738
1739 t = min(mo_pfn, *end_pfn);
1740 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1741
1742 if (mo_pfn < *end_pfn) {
1743 *start_pfn = mo_pfn;
1744 break;
1745 }
1746 }
1747
1748 /* Reset values and now loop through freeing pages as needed */
1749 swap(j, *i);
1750
1751 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1752 unsigned long t;
1753
1754 if (mo_pfn <= spfn)
1755 break;
1756
1757 t = min(mo_pfn, epfn);
1758 deferred_free_pages(spfn, t);
1759
1760 if (mo_pfn <= epfn)
1761 break;
1762 }
1763
1764 return nr_pages;
1765}
1766
7e18adb4 1767/* Initialise remaining memory on a node */
0e1cc95b 1768static int __init deferred_init_memmap(void *data)
7e18adb4 1769{
0e1cc95b 1770 pg_data_t *pgdat = data;
0e56acae
AD
1771 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1772 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1773 unsigned long first_init_pfn, flags;
7e18adb4 1774 unsigned long start = jiffies;
7e18adb4 1775 struct zone *zone;
0e56acae 1776 int zid;
2f47a91f 1777 u64 i;
7e18adb4 1778
3a2d7fa8
PT
1779 /* Bind memory initialisation thread to a local node if possible */
1780 if (!cpumask_empty(cpumask))
1781 set_cpus_allowed_ptr(current, cpumask);
1782
1783 pgdat_resize_lock(pgdat, &flags);
1784 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1785 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1786 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1787 pgdat_init_report_one_done();
0e1cc95b
MG
1788 return 0;
1789 }
1790
7e18adb4
MG
1791 /* Sanity check boundaries */
1792 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1793 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1794 pgdat->first_deferred_pfn = ULONG_MAX;
1795
1796 /* Only the highest zone is deferred so find it */
1797 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1798 zone = pgdat->node_zones + zid;
1799 if (first_init_pfn < zone_end_pfn(zone))
1800 break;
1801 }
0e56acae
AD
1802
1803 /* If the zone is empty somebody else may have cleared out the zone */
1804 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1805 first_init_pfn))
1806 goto zone_empty;
7e18adb4 1807
80b1f41c 1808 /*
0e56acae
AD
1809 * Initialize and free pages in MAX_ORDER sized increments so
1810 * that we can avoid introducing any issues with the buddy
1811 * allocator.
80b1f41c 1812 */
0e56acae
AD
1813 while (spfn < epfn)
1814 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1815zone_empty:
3a2d7fa8 1816 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1817
1818 /* Sanity check that the next zone really is unpopulated */
1819 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1820
837566e7
AD
1821 pr_info("node %d initialised, %lu pages in %ums\n",
1822 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1823
1824 pgdat_init_report_one_done();
0e1cc95b
MG
1825 return 0;
1826}
c9e97a19 1827
c9e97a19
PT
1828/*
1829 * If this zone has deferred pages, try to grow it by initializing enough
1830 * deferred pages to satisfy the allocation specified by order, rounded up to
1831 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1832 * of SECTION_SIZE bytes by initializing struct pages in increments of
1833 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1834 *
1835 * Return true when zone was grown, otherwise return false. We return true even
1836 * when we grow less than requested, to let the caller decide if there are
1837 * enough pages to satisfy the allocation.
1838 *
1839 * Note: We use noinline because this function is needed only during boot, and
1840 * it is called from a __ref function _deferred_grow_zone. This way we are
1841 * making sure that it is not inlined into permanent text section.
1842 */
1843static noinline bool __init
1844deferred_grow_zone(struct zone *zone, unsigned int order)
1845{
c9e97a19 1846 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1847 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1848 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1849 unsigned long spfn, epfn, flags;
1850 unsigned long nr_pages = 0;
c9e97a19
PT
1851 u64 i;
1852
1853 /* Only the last zone may have deferred pages */
1854 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1855 return false;
1856
1857 pgdat_resize_lock(pgdat, &flags);
1858
1859 /*
1860 * If deferred pages have been initialized while we were waiting for
1861 * the lock, return true, as the zone was grown. The caller will retry
1862 * this zone. We won't return to this function since the caller also
1863 * has this static branch.
1864 */
1865 if (!static_branch_unlikely(&deferred_pages)) {
1866 pgdat_resize_unlock(pgdat, &flags);
1867 return true;
1868 }
1869
1870 /*
1871 * If someone grew this zone while we were waiting for spinlock, return
1872 * true, as there might be enough pages already.
1873 */
1874 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1875 pgdat_resize_unlock(pgdat, &flags);
1876 return true;
1877 }
1878
0e56acae
AD
1879 /* If the zone is empty somebody else may have cleared out the zone */
1880 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1881 first_deferred_pfn)) {
1882 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1883 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1884 /* Retry only once. */
1885 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1886 }
1887
0e56acae
AD
1888 /*
1889 * Initialize and free pages in MAX_ORDER sized increments so
1890 * that we can avoid introducing any issues with the buddy
1891 * allocator.
1892 */
1893 while (spfn < epfn) {
1894 /* update our first deferred PFN for this section */
1895 first_deferred_pfn = spfn;
1896
1897 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1898
0e56acae
AD
1899 /* We should only stop along section boundaries */
1900 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1901 continue;
c9e97a19 1902
0e56acae 1903 /* If our quota has been met we can stop here */
c9e97a19
PT
1904 if (nr_pages >= nr_pages_needed)
1905 break;
1906 }
1907
0e56acae 1908 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1909 pgdat_resize_unlock(pgdat, &flags);
1910
1911 return nr_pages > 0;
1912}
1913
1914/*
1915 * deferred_grow_zone() is __init, but it is called from
1916 * get_page_from_freelist() during early boot until deferred_pages permanently
1917 * disables this call. This is why we have refdata wrapper to avoid warning,
1918 * and to ensure that the function body gets unloaded.
1919 */
1920static bool __ref
1921_deferred_grow_zone(struct zone *zone, unsigned int order)
1922{
1923 return deferred_grow_zone(zone, order);
1924}
1925
7cf91a98 1926#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1927
1928void __init page_alloc_init_late(void)
1929{
7cf91a98 1930 struct zone *zone;
e900a918 1931 int nid;
7cf91a98
JK
1932
1933#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1934
d3cd131d
NS
1935 /* There will be num_node_state(N_MEMORY) threads */
1936 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1937 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1938 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1939 }
1940
1941 /* Block until all are initialised */
d3cd131d 1942 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1943
c9e97a19
PT
1944 /*
1945 * We initialized the rest of the deferred pages. Permanently disable
1946 * on-demand struct page initialization.
1947 */
1948 static_branch_disable(&deferred_pages);
1949
4248b0da
MG
1950 /* Reinit limits that are based on free pages after the kernel is up */
1951 files_maxfiles_init();
7cf91a98 1952#endif
350e88ba 1953
3010f876
PT
1954 /* Discard memblock private memory */
1955 memblock_discard();
7cf91a98 1956
e900a918
DW
1957 for_each_node_state(nid, N_MEMORY)
1958 shuffle_free_memory(NODE_DATA(nid));
1959
7cf91a98
JK
1960 for_each_populated_zone(zone)
1961 set_zone_contiguous(zone);
3972f6bb
VB
1962
1963#ifdef CONFIG_DEBUG_PAGEALLOC
1964 init_debug_guardpage();
1965#endif
7e18adb4 1966}
7e18adb4 1967
47118af0 1968#ifdef CONFIG_CMA
9cf510a5 1969/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1970void __init init_cma_reserved_pageblock(struct page *page)
1971{
1972 unsigned i = pageblock_nr_pages;
1973 struct page *p = page;
1974
1975 do {
1976 __ClearPageReserved(p);
1977 set_page_count(p, 0);
d883c6cf 1978 } while (++p, --i);
47118af0 1979
47118af0 1980 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1981
1982 if (pageblock_order >= MAX_ORDER) {
1983 i = pageblock_nr_pages;
1984 p = page;
1985 do {
1986 set_page_refcounted(p);
1987 __free_pages(p, MAX_ORDER - 1);
1988 p += MAX_ORDER_NR_PAGES;
1989 } while (i -= MAX_ORDER_NR_PAGES);
1990 } else {
1991 set_page_refcounted(page);
1992 __free_pages(page, pageblock_order);
1993 }
1994
3dcc0571 1995 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1996}
1997#endif
1da177e4
LT
1998
1999/*
2000 * The order of subdivision here is critical for the IO subsystem.
2001 * Please do not alter this order without good reasons and regression
2002 * testing. Specifically, as large blocks of memory are subdivided,
2003 * the order in which smaller blocks are delivered depends on the order
2004 * they're subdivided in this function. This is the primary factor
2005 * influencing the order in which pages are delivered to the IO
2006 * subsystem according to empirical testing, and this is also justified
2007 * by considering the behavior of a buddy system containing a single
2008 * large block of memory acted on by a series of small allocations.
2009 * This behavior is a critical factor in sglist merging's success.
2010 *
6d49e352 2011 * -- nyc
1da177e4 2012 */
085cc7d5 2013static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
2014 int low, int high, struct free_area *area,
2015 int migratetype)
1da177e4
LT
2016{
2017 unsigned long size = 1 << high;
2018
2019 while (high > low) {
2020 area--;
2021 high--;
2022 size >>= 1;
309381fe 2023 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2024
acbc15a4
JK
2025 /*
2026 * Mark as guard pages (or page), that will allow to
2027 * merge back to allocator when buddy will be freed.
2028 * Corresponding page table entries will not be touched,
2029 * pages will stay not present in virtual address space
2030 */
2031 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2032 continue;
acbc15a4 2033
b03641af 2034 add_to_free_area(&page[size], area, migratetype);
1da177e4
LT
2035 set_page_order(&page[size], high);
2036 }
1da177e4
LT
2037}
2038
4e611801 2039static void check_new_page_bad(struct page *page)
1da177e4 2040{
4e611801
VB
2041 const char *bad_reason = NULL;
2042 unsigned long bad_flags = 0;
7bfec6f4 2043
53f9263b 2044 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
2045 bad_reason = "nonzero mapcount";
2046 if (unlikely(page->mapping != NULL))
2047 bad_reason = "non-NULL mapping";
fe896d18 2048 if (unlikely(page_ref_count(page) != 0))
136ac591 2049 bad_reason = "nonzero _refcount";
f4c18e6f
NH
2050 if (unlikely(page->flags & __PG_HWPOISON)) {
2051 bad_reason = "HWPoisoned (hardware-corrupted)";
2052 bad_flags = __PG_HWPOISON;
e570f56c
NH
2053 /* Don't complain about hwpoisoned pages */
2054 page_mapcount_reset(page); /* remove PageBuddy */
2055 return;
f4c18e6f 2056 }
f0b791a3
DH
2057 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2058 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2059 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2060 }
9edad6ea
JW
2061#ifdef CONFIG_MEMCG
2062 if (unlikely(page->mem_cgroup))
2063 bad_reason = "page still charged to cgroup";
2064#endif
4e611801
VB
2065 bad_page(page, bad_reason, bad_flags);
2066}
2067
2068/*
2069 * This page is about to be returned from the page allocator
2070 */
2071static inline int check_new_page(struct page *page)
2072{
2073 if (likely(page_expected_state(page,
2074 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2075 return 0;
2076
2077 check_new_page_bad(page);
2078 return 1;
2a7684a2
WF
2079}
2080
bd33ef36 2081static inline bool free_pages_prezeroed(void)
1414c7f4 2082{
6471384a
AP
2083 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2084 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2085}
2086
479f854a 2087#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2088/*
2089 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2090 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2091 * also checked when pcp lists are refilled from the free lists.
2092 */
2093static inline bool check_pcp_refill(struct page *page)
479f854a 2094{
4462b32c
VB
2095 if (debug_pagealloc_enabled())
2096 return check_new_page(page);
2097 else
2098 return false;
479f854a
MG
2099}
2100
4462b32c 2101static inline bool check_new_pcp(struct page *page)
479f854a
MG
2102{
2103 return check_new_page(page);
2104}
2105#else
4462b32c
VB
2106/*
2107 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2108 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2109 * enabled, they are also checked when being allocated from the pcp lists.
2110 */
2111static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2112{
2113 return check_new_page(page);
2114}
4462b32c 2115static inline bool check_new_pcp(struct page *page)
479f854a 2116{
4462b32c
VB
2117 if (debug_pagealloc_enabled())
2118 return check_new_page(page);
2119 else
2120 return false;
479f854a
MG
2121}
2122#endif /* CONFIG_DEBUG_VM */
2123
2124static bool check_new_pages(struct page *page, unsigned int order)
2125{
2126 int i;
2127 for (i = 0; i < (1 << order); i++) {
2128 struct page *p = page + i;
2129
2130 if (unlikely(check_new_page(p)))
2131 return true;
2132 }
2133
2134 return false;
2135}
2136
46f24fd8
JK
2137inline void post_alloc_hook(struct page *page, unsigned int order,
2138 gfp_t gfp_flags)
2139{
2140 set_page_private(page, 0);
2141 set_page_refcounted(page);
2142
2143 arch_alloc_page(page, order);
d6332692
RE
2144 if (debug_pagealloc_enabled())
2145 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2146 kasan_alloc_pages(page, order);
4117992d 2147 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2148 set_page_owner(page, order, gfp_flags);
2149}
2150
479f854a 2151static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2152 unsigned int alloc_flags)
2a7684a2 2153{
46f24fd8 2154 post_alloc_hook(page, order, gfp_flags);
17cf4406 2155
6471384a
AP
2156 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2157 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2158
2159 if (order && (gfp_flags & __GFP_COMP))
2160 prep_compound_page(page, order);
2161
75379191 2162 /*
2f064f34 2163 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2164 * allocate the page. The expectation is that the caller is taking
2165 * steps that will free more memory. The caller should avoid the page
2166 * being used for !PFMEMALLOC purposes.
2167 */
2f064f34
MH
2168 if (alloc_flags & ALLOC_NO_WATERMARKS)
2169 set_page_pfmemalloc(page);
2170 else
2171 clear_page_pfmemalloc(page);
1da177e4
LT
2172}
2173
56fd56b8
MG
2174/*
2175 * Go through the free lists for the given migratetype and remove
2176 * the smallest available page from the freelists
2177 */
85ccc8fa 2178static __always_inline
728ec980 2179struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2180 int migratetype)
2181{
2182 unsigned int current_order;
b8af2941 2183 struct free_area *area;
56fd56b8
MG
2184 struct page *page;
2185
2186 /* Find a page of the appropriate size in the preferred list */
2187 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2188 area = &(zone->free_area[current_order]);
b03641af 2189 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2190 if (!page)
2191 continue;
b03641af 2192 del_page_from_free_area(page, area);
56fd56b8 2193 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2194 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2195 return page;
2196 }
2197
2198 return NULL;
2199}
2200
2201
b2a0ac88
MG
2202/*
2203 * This array describes the order lists are fallen back to when
2204 * the free lists for the desirable migrate type are depleted
2205 */
47118af0 2206static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2207 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2208 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2209 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2210#ifdef CONFIG_CMA
974a786e 2211 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2212#endif
194159fb 2213#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2214 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2215#endif
b2a0ac88
MG
2216};
2217
dc67647b 2218#ifdef CONFIG_CMA
85ccc8fa 2219static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2220 unsigned int order)
2221{
2222 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2223}
2224#else
2225static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2226 unsigned int order) { return NULL; }
2227#endif
2228
c361be55
MG
2229/*
2230 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2231 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2232 * boundary. If alignment is required, use move_freepages_block()
2233 */
02aa0cdd 2234static int move_freepages(struct zone *zone,
b69a7288 2235 struct page *start_page, struct page *end_page,
02aa0cdd 2236 int migratetype, int *num_movable)
c361be55
MG
2237{
2238 struct page *page;
d00181b9 2239 unsigned int order;
d100313f 2240 int pages_moved = 0;
c361be55 2241
c361be55
MG
2242 for (page = start_page; page <= end_page;) {
2243 if (!pfn_valid_within(page_to_pfn(page))) {
2244 page++;
2245 continue;
2246 }
2247
2248 if (!PageBuddy(page)) {
02aa0cdd
VB
2249 /*
2250 * We assume that pages that could be isolated for
2251 * migration are movable. But we don't actually try
2252 * isolating, as that would be expensive.
2253 */
2254 if (num_movable &&
2255 (PageLRU(page) || __PageMovable(page)))
2256 (*num_movable)++;
2257
c361be55
MG
2258 page++;
2259 continue;
2260 }
2261
cd961038
DR
2262 /* Make sure we are not inadvertently changing nodes */
2263 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2264 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2265
c361be55 2266 order = page_order(page);
b03641af 2267 move_to_free_area(page, &zone->free_area[order], migratetype);
c361be55 2268 page += 1 << order;
d100313f 2269 pages_moved += 1 << order;
c361be55
MG
2270 }
2271
d100313f 2272 return pages_moved;
c361be55
MG
2273}
2274
ee6f509c 2275int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2276 int migratetype, int *num_movable)
c361be55
MG
2277{
2278 unsigned long start_pfn, end_pfn;
2279 struct page *start_page, *end_page;
2280
4a222127
DR
2281 if (num_movable)
2282 *num_movable = 0;
2283
c361be55 2284 start_pfn = page_to_pfn(page);
d9c23400 2285 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2286 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2287 end_page = start_page + pageblock_nr_pages - 1;
2288 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2289
2290 /* Do not cross zone boundaries */
108bcc96 2291 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2292 start_page = page;
108bcc96 2293 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2294 return 0;
2295
02aa0cdd
VB
2296 return move_freepages(zone, start_page, end_page, migratetype,
2297 num_movable);
c361be55
MG
2298}
2299
2f66a68f
MG
2300static void change_pageblock_range(struct page *pageblock_page,
2301 int start_order, int migratetype)
2302{
2303 int nr_pageblocks = 1 << (start_order - pageblock_order);
2304
2305 while (nr_pageblocks--) {
2306 set_pageblock_migratetype(pageblock_page, migratetype);
2307 pageblock_page += pageblock_nr_pages;
2308 }
2309}
2310
fef903ef 2311/*
9c0415eb
VB
2312 * When we are falling back to another migratetype during allocation, try to
2313 * steal extra free pages from the same pageblocks to satisfy further
2314 * allocations, instead of polluting multiple pageblocks.
2315 *
2316 * If we are stealing a relatively large buddy page, it is likely there will
2317 * be more free pages in the pageblock, so try to steal them all. For
2318 * reclaimable and unmovable allocations, we steal regardless of page size,
2319 * as fragmentation caused by those allocations polluting movable pageblocks
2320 * is worse than movable allocations stealing from unmovable and reclaimable
2321 * pageblocks.
fef903ef 2322 */
4eb7dce6
JK
2323static bool can_steal_fallback(unsigned int order, int start_mt)
2324{
2325 /*
2326 * Leaving this order check is intended, although there is
2327 * relaxed order check in next check. The reason is that
2328 * we can actually steal whole pageblock if this condition met,
2329 * but, below check doesn't guarantee it and that is just heuristic
2330 * so could be changed anytime.
2331 */
2332 if (order >= pageblock_order)
2333 return true;
2334
2335 if (order >= pageblock_order / 2 ||
2336 start_mt == MIGRATE_RECLAIMABLE ||
2337 start_mt == MIGRATE_UNMOVABLE ||
2338 page_group_by_mobility_disabled)
2339 return true;
2340
2341 return false;
2342}
2343
1c30844d
MG
2344static inline void boost_watermark(struct zone *zone)
2345{
2346 unsigned long max_boost;
2347
2348 if (!watermark_boost_factor)
2349 return;
2350
2351 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2352 watermark_boost_factor, 10000);
94b3334c
MG
2353
2354 /*
2355 * high watermark may be uninitialised if fragmentation occurs
2356 * very early in boot so do not boost. We do not fall
2357 * through and boost by pageblock_nr_pages as failing
2358 * allocations that early means that reclaim is not going
2359 * to help and it may even be impossible to reclaim the
2360 * boosted watermark resulting in a hang.
2361 */
2362 if (!max_boost)
2363 return;
2364
1c30844d
MG
2365 max_boost = max(pageblock_nr_pages, max_boost);
2366
2367 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2368 max_boost);
2369}
2370
4eb7dce6
JK
2371/*
2372 * This function implements actual steal behaviour. If order is large enough,
2373 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2374 * pageblock to our migratetype and determine how many already-allocated pages
2375 * are there in the pageblock with a compatible migratetype. If at least half
2376 * of pages are free or compatible, we can change migratetype of the pageblock
2377 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2378 */
2379static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2380 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2381{
d00181b9 2382 unsigned int current_order = page_order(page);
3bc48f96 2383 struct free_area *area;
02aa0cdd
VB
2384 int free_pages, movable_pages, alike_pages;
2385 int old_block_type;
2386
2387 old_block_type = get_pageblock_migratetype(page);
fef903ef 2388
3bc48f96
VB
2389 /*
2390 * This can happen due to races and we want to prevent broken
2391 * highatomic accounting.
2392 */
02aa0cdd 2393 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2394 goto single_page;
2395
fef903ef
SB
2396 /* Take ownership for orders >= pageblock_order */
2397 if (current_order >= pageblock_order) {
2398 change_pageblock_range(page, current_order, start_type);
3bc48f96 2399 goto single_page;
fef903ef
SB
2400 }
2401
1c30844d
MG
2402 /*
2403 * Boost watermarks to increase reclaim pressure to reduce the
2404 * likelihood of future fallbacks. Wake kswapd now as the node
2405 * may be balanced overall and kswapd will not wake naturally.
2406 */
2407 boost_watermark(zone);
2408 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2409 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2410
3bc48f96
VB
2411 /* We are not allowed to try stealing from the whole block */
2412 if (!whole_block)
2413 goto single_page;
2414
02aa0cdd
VB
2415 free_pages = move_freepages_block(zone, page, start_type,
2416 &movable_pages);
2417 /*
2418 * Determine how many pages are compatible with our allocation.
2419 * For movable allocation, it's the number of movable pages which
2420 * we just obtained. For other types it's a bit more tricky.
2421 */
2422 if (start_type == MIGRATE_MOVABLE) {
2423 alike_pages = movable_pages;
2424 } else {
2425 /*
2426 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2427 * to MOVABLE pageblock, consider all non-movable pages as
2428 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2429 * vice versa, be conservative since we can't distinguish the
2430 * exact migratetype of non-movable pages.
2431 */
2432 if (old_block_type == MIGRATE_MOVABLE)
2433 alike_pages = pageblock_nr_pages
2434 - (free_pages + movable_pages);
2435 else
2436 alike_pages = 0;
2437 }
2438
3bc48f96 2439 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2440 if (!free_pages)
3bc48f96 2441 goto single_page;
fef903ef 2442
02aa0cdd
VB
2443 /*
2444 * If a sufficient number of pages in the block are either free or of
2445 * comparable migratability as our allocation, claim the whole block.
2446 */
2447 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2448 page_group_by_mobility_disabled)
2449 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2450
2451 return;
2452
2453single_page:
2454 area = &zone->free_area[current_order];
b03641af 2455 move_to_free_area(page, area, start_type);
4eb7dce6
JK
2456}
2457
2149cdae
JK
2458/*
2459 * Check whether there is a suitable fallback freepage with requested order.
2460 * If only_stealable is true, this function returns fallback_mt only if
2461 * we can steal other freepages all together. This would help to reduce
2462 * fragmentation due to mixed migratetype pages in one pageblock.
2463 */
2464int find_suitable_fallback(struct free_area *area, unsigned int order,
2465 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2466{
2467 int i;
2468 int fallback_mt;
2469
2470 if (area->nr_free == 0)
2471 return -1;
2472
2473 *can_steal = false;
2474 for (i = 0;; i++) {
2475 fallback_mt = fallbacks[migratetype][i];
974a786e 2476 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2477 break;
2478
b03641af 2479 if (free_area_empty(area, fallback_mt))
4eb7dce6 2480 continue;
fef903ef 2481
4eb7dce6
JK
2482 if (can_steal_fallback(order, migratetype))
2483 *can_steal = true;
2484
2149cdae
JK
2485 if (!only_stealable)
2486 return fallback_mt;
2487
2488 if (*can_steal)
2489 return fallback_mt;
fef903ef 2490 }
4eb7dce6
JK
2491
2492 return -1;
fef903ef
SB
2493}
2494
0aaa29a5
MG
2495/*
2496 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2497 * there are no empty page blocks that contain a page with a suitable order
2498 */
2499static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2500 unsigned int alloc_order)
2501{
2502 int mt;
2503 unsigned long max_managed, flags;
2504
2505 /*
2506 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2507 * Check is race-prone but harmless.
2508 */
9705bea5 2509 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2510 if (zone->nr_reserved_highatomic >= max_managed)
2511 return;
2512
2513 spin_lock_irqsave(&zone->lock, flags);
2514
2515 /* Recheck the nr_reserved_highatomic limit under the lock */
2516 if (zone->nr_reserved_highatomic >= max_managed)
2517 goto out_unlock;
2518
2519 /* Yoink! */
2520 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2521 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2522 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2523 zone->nr_reserved_highatomic += pageblock_nr_pages;
2524 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2525 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2526 }
2527
2528out_unlock:
2529 spin_unlock_irqrestore(&zone->lock, flags);
2530}
2531
2532/*
2533 * Used when an allocation is about to fail under memory pressure. This
2534 * potentially hurts the reliability of high-order allocations when under
2535 * intense memory pressure but failed atomic allocations should be easier
2536 * to recover from than an OOM.
29fac03b
MK
2537 *
2538 * If @force is true, try to unreserve a pageblock even though highatomic
2539 * pageblock is exhausted.
0aaa29a5 2540 */
29fac03b
MK
2541static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2542 bool force)
0aaa29a5
MG
2543{
2544 struct zonelist *zonelist = ac->zonelist;
2545 unsigned long flags;
2546 struct zoneref *z;
2547 struct zone *zone;
2548 struct page *page;
2549 int order;
04c8716f 2550 bool ret;
0aaa29a5
MG
2551
2552 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2553 ac->nodemask) {
29fac03b
MK
2554 /*
2555 * Preserve at least one pageblock unless memory pressure
2556 * is really high.
2557 */
2558 if (!force && zone->nr_reserved_highatomic <=
2559 pageblock_nr_pages)
0aaa29a5
MG
2560 continue;
2561
2562 spin_lock_irqsave(&zone->lock, flags);
2563 for (order = 0; order < MAX_ORDER; order++) {
2564 struct free_area *area = &(zone->free_area[order]);
2565
b03641af 2566 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2567 if (!page)
0aaa29a5
MG
2568 continue;
2569
0aaa29a5 2570 /*
4855e4a7
MK
2571 * In page freeing path, migratetype change is racy so
2572 * we can counter several free pages in a pageblock
2573 * in this loop althoug we changed the pageblock type
2574 * from highatomic to ac->migratetype. So we should
2575 * adjust the count once.
0aaa29a5 2576 */
a6ffdc07 2577 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2578 /*
2579 * It should never happen but changes to
2580 * locking could inadvertently allow a per-cpu
2581 * drain to add pages to MIGRATE_HIGHATOMIC
2582 * while unreserving so be safe and watch for
2583 * underflows.
2584 */
2585 zone->nr_reserved_highatomic -= min(
2586 pageblock_nr_pages,
2587 zone->nr_reserved_highatomic);
2588 }
0aaa29a5
MG
2589
2590 /*
2591 * Convert to ac->migratetype and avoid the normal
2592 * pageblock stealing heuristics. Minimally, the caller
2593 * is doing the work and needs the pages. More
2594 * importantly, if the block was always converted to
2595 * MIGRATE_UNMOVABLE or another type then the number
2596 * of pageblocks that cannot be completely freed
2597 * may increase.
2598 */
2599 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2600 ret = move_freepages_block(zone, page, ac->migratetype,
2601 NULL);
29fac03b
MK
2602 if (ret) {
2603 spin_unlock_irqrestore(&zone->lock, flags);
2604 return ret;
2605 }
0aaa29a5
MG
2606 }
2607 spin_unlock_irqrestore(&zone->lock, flags);
2608 }
04c8716f
MK
2609
2610 return false;
0aaa29a5
MG
2611}
2612
3bc48f96
VB
2613/*
2614 * Try finding a free buddy page on the fallback list and put it on the free
2615 * list of requested migratetype, possibly along with other pages from the same
2616 * block, depending on fragmentation avoidance heuristics. Returns true if
2617 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2618 *
2619 * The use of signed ints for order and current_order is a deliberate
2620 * deviation from the rest of this file, to make the for loop
2621 * condition simpler.
3bc48f96 2622 */
85ccc8fa 2623static __always_inline bool
6bb15450
MG
2624__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2625 unsigned int alloc_flags)
b2a0ac88 2626{
b8af2941 2627 struct free_area *area;
b002529d 2628 int current_order;
6bb15450 2629 int min_order = order;
b2a0ac88 2630 struct page *page;
4eb7dce6
JK
2631 int fallback_mt;
2632 bool can_steal;
b2a0ac88 2633
6bb15450
MG
2634 /*
2635 * Do not steal pages from freelists belonging to other pageblocks
2636 * i.e. orders < pageblock_order. If there are no local zones free,
2637 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2638 */
2639 if (alloc_flags & ALLOC_NOFRAGMENT)
2640 min_order = pageblock_order;
2641
7a8f58f3
VB
2642 /*
2643 * Find the largest available free page in the other list. This roughly
2644 * approximates finding the pageblock with the most free pages, which
2645 * would be too costly to do exactly.
2646 */
6bb15450 2647 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2648 --current_order) {
4eb7dce6
JK
2649 area = &(zone->free_area[current_order]);
2650 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2651 start_migratetype, false, &can_steal);
4eb7dce6
JK
2652 if (fallback_mt == -1)
2653 continue;
b2a0ac88 2654
7a8f58f3
VB
2655 /*
2656 * We cannot steal all free pages from the pageblock and the
2657 * requested migratetype is movable. In that case it's better to
2658 * steal and split the smallest available page instead of the
2659 * largest available page, because even if the next movable
2660 * allocation falls back into a different pageblock than this
2661 * one, it won't cause permanent fragmentation.
2662 */
2663 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2664 && current_order > order)
2665 goto find_smallest;
b2a0ac88 2666
7a8f58f3
VB
2667 goto do_steal;
2668 }
e0fff1bd 2669
7a8f58f3 2670 return false;
e0fff1bd 2671
7a8f58f3
VB
2672find_smallest:
2673 for (current_order = order; current_order < MAX_ORDER;
2674 current_order++) {
2675 area = &(zone->free_area[current_order]);
2676 fallback_mt = find_suitable_fallback(area, current_order,
2677 start_migratetype, false, &can_steal);
2678 if (fallback_mt != -1)
2679 break;
b2a0ac88
MG
2680 }
2681
7a8f58f3
VB
2682 /*
2683 * This should not happen - we already found a suitable fallback
2684 * when looking for the largest page.
2685 */
2686 VM_BUG_ON(current_order == MAX_ORDER);
2687
2688do_steal:
b03641af 2689 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2690
1c30844d
MG
2691 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2692 can_steal);
7a8f58f3
VB
2693
2694 trace_mm_page_alloc_extfrag(page, order, current_order,
2695 start_migratetype, fallback_mt);
2696
2697 return true;
2698
b2a0ac88
MG
2699}
2700
56fd56b8 2701/*
1da177e4
LT
2702 * Do the hard work of removing an element from the buddy allocator.
2703 * Call me with the zone->lock already held.
2704 */
85ccc8fa 2705static __always_inline struct page *
6bb15450
MG
2706__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2707 unsigned int alloc_flags)
1da177e4 2708{
1da177e4
LT
2709 struct page *page;
2710
3bc48f96 2711retry:
56fd56b8 2712 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2713 if (unlikely(!page)) {
dc67647b
JK
2714 if (migratetype == MIGRATE_MOVABLE)
2715 page = __rmqueue_cma_fallback(zone, order);
2716
6bb15450
MG
2717 if (!page && __rmqueue_fallback(zone, order, migratetype,
2718 alloc_flags))
3bc48f96 2719 goto retry;
728ec980
MG
2720 }
2721
0d3d062a 2722 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2723 return page;
1da177e4
LT
2724}
2725
5f63b720 2726/*
1da177e4
LT
2727 * Obtain a specified number of elements from the buddy allocator, all under
2728 * a single hold of the lock, for efficiency. Add them to the supplied list.
2729 * Returns the number of new pages which were placed at *list.
2730 */
5f63b720 2731static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2732 unsigned long count, struct list_head *list,
6bb15450 2733 int migratetype, unsigned int alloc_flags)
1da177e4 2734{
a6de734b 2735 int i, alloced = 0;
5f63b720 2736
d34b0733 2737 spin_lock(&zone->lock);
1da177e4 2738 for (i = 0; i < count; ++i) {
6bb15450
MG
2739 struct page *page = __rmqueue(zone, order, migratetype,
2740 alloc_flags);
085cc7d5 2741 if (unlikely(page == NULL))
1da177e4 2742 break;
81eabcbe 2743
479f854a
MG
2744 if (unlikely(check_pcp_refill(page)))
2745 continue;
2746
81eabcbe 2747 /*
0fac3ba5
VB
2748 * Split buddy pages returned by expand() are received here in
2749 * physical page order. The page is added to the tail of
2750 * caller's list. From the callers perspective, the linked list
2751 * is ordered by page number under some conditions. This is
2752 * useful for IO devices that can forward direction from the
2753 * head, thus also in the physical page order. This is useful
2754 * for IO devices that can merge IO requests if the physical
2755 * pages are ordered properly.
81eabcbe 2756 */
0fac3ba5 2757 list_add_tail(&page->lru, list);
a6de734b 2758 alloced++;
bb14c2c7 2759 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2760 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2761 -(1 << order));
1da177e4 2762 }
a6de734b
MG
2763
2764 /*
2765 * i pages were removed from the buddy list even if some leak due
2766 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2767 * on i. Do not confuse with 'alloced' which is the number of
2768 * pages added to the pcp list.
2769 */
f2260e6b 2770 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2771 spin_unlock(&zone->lock);
a6de734b 2772 return alloced;
1da177e4
LT
2773}
2774
4ae7c039 2775#ifdef CONFIG_NUMA
8fce4d8e 2776/*
4037d452
CL
2777 * Called from the vmstat counter updater to drain pagesets of this
2778 * currently executing processor on remote nodes after they have
2779 * expired.
2780 *
879336c3
CL
2781 * Note that this function must be called with the thread pinned to
2782 * a single processor.
8fce4d8e 2783 */
4037d452 2784void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2785{
4ae7c039 2786 unsigned long flags;
7be12fc9 2787 int to_drain, batch;
4ae7c039 2788
4037d452 2789 local_irq_save(flags);
4db0c3c2 2790 batch = READ_ONCE(pcp->batch);
7be12fc9 2791 to_drain = min(pcp->count, batch);
77ba9062 2792 if (to_drain > 0)
2a13515c 2793 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2794 local_irq_restore(flags);
4ae7c039
CL
2795}
2796#endif
2797
9f8f2172 2798/*
93481ff0 2799 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2800 *
2801 * The processor must either be the current processor and the
2802 * thread pinned to the current processor or a processor that
2803 * is not online.
2804 */
93481ff0 2805static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2806{
c54ad30c 2807 unsigned long flags;
93481ff0
VB
2808 struct per_cpu_pageset *pset;
2809 struct per_cpu_pages *pcp;
1da177e4 2810
93481ff0
VB
2811 local_irq_save(flags);
2812 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2813
93481ff0 2814 pcp = &pset->pcp;
77ba9062 2815 if (pcp->count)
93481ff0 2816 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2817 local_irq_restore(flags);
2818}
3dfa5721 2819
93481ff0
VB
2820/*
2821 * Drain pcplists of all zones on the indicated processor.
2822 *
2823 * The processor must either be the current processor and the
2824 * thread pinned to the current processor or a processor that
2825 * is not online.
2826 */
2827static void drain_pages(unsigned int cpu)
2828{
2829 struct zone *zone;
2830
2831 for_each_populated_zone(zone) {
2832 drain_pages_zone(cpu, zone);
1da177e4
LT
2833 }
2834}
1da177e4 2835
9f8f2172
CL
2836/*
2837 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2838 *
2839 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2840 * the single zone's pages.
9f8f2172 2841 */
93481ff0 2842void drain_local_pages(struct zone *zone)
9f8f2172 2843{
93481ff0
VB
2844 int cpu = smp_processor_id();
2845
2846 if (zone)
2847 drain_pages_zone(cpu, zone);
2848 else
2849 drain_pages(cpu);
9f8f2172
CL
2850}
2851
0ccce3b9
MG
2852static void drain_local_pages_wq(struct work_struct *work)
2853{
d9367bd0
WY
2854 struct pcpu_drain *drain;
2855
2856 drain = container_of(work, struct pcpu_drain, work);
2857
a459eeb7
MH
2858 /*
2859 * drain_all_pages doesn't use proper cpu hotplug protection so
2860 * we can race with cpu offline when the WQ can move this from
2861 * a cpu pinned worker to an unbound one. We can operate on a different
2862 * cpu which is allright but we also have to make sure to not move to
2863 * a different one.
2864 */
2865 preempt_disable();
d9367bd0 2866 drain_local_pages(drain->zone);
a459eeb7 2867 preempt_enable();
0ccce3b9
MG
2868}
2869
9f8f2172 2870/*
74046494
GBY
2871 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2872 *
93481ff0
VB
2873 * When zone parameter is non-NULL, spill just the single zone's pages.
2874 *
0ccce3b9 2875 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2876 */
93481ff0 2877void drain_all_pages(struct zone *zone)
9f8f2172 2878{
74046494 2879 int cpu;
74046494
GBY
2880
2881 /*
2882 * Allocate in the BSS so we wont require allocation in
2883 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2884 */
2885 static cpumask_t cpus_with_pcps;
2886
ce612879
MH
2887 /*
2888 * Make sure nobody triggers this path before mm_percpu_wq is fully
2889 * initialized.
2890 */
2891 if (WARN_ON_ONCE(!mm_percpu_wq))
2892 return;
2893
bd233f53
MG
2894 /*
2895 * Do not drain if one is already in progress unless it's specific to
2896 * a zone. Such callers are primarily CMA and memory hotplug and need
2897 * the drain to be complete when the call returns.
2898 */
2899 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2900 if (!zone)
2901 return;
2902 mutex_lock(&pcpu_drain_mutex);
2903 }
0ccce3b9 2904
74046494
GBY
2905 /*
2906 * We don't care about racing with CPU hotplug event
2907 * as offline notification will cause the notified
2908 * cpu to drain that CPU pcps and on_each_cpu_mask
2909 * disables preemption as part of its processing
2910 */
2911 for_each_online_cpu(cpu) {
93481ff0
VB
2912 struct per_cpu_pageset *pcp;
2913 struct zone *z;
74046494 2914 bool has_pcps = false;
93481ff0
VB
2915
2916 if (zone) {
74046494 2917 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2918 if (pcp->pcp.count)
74046494 2919 has_pcps = true;
93481ff0
VB
2920 } else {
2921 for_each_populated_zone(z) {
2922 pcp = per_cpu_ptr(z->pageset, cpu);
2923 if (pcp->pcp.count) {
2924 has_pcps = true;
2925 break;
2926 }
74046494
GBY
2927 }
2928 }
93481ff0 2929
74046494
GBY
2930 if (has_pcps)
2931 cpumask_set_cpu(cpu, &cpus_with_pcps);
2932 else
2933 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2934 }
0ccce3b9 2935
bd233f53 2936 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2937 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2938
2939 drain->zone = zone;
2940 INIT_WORK(&drain->work, drain_local_pages_wq);
2941 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2942 }
bd233f53 2943 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2944 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2945
2946 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2947}
2948
296699de 2949#ifdef CONFIG_HIBERNATION
1da177e4 2950
556b969a
CY
2951/*
2952 * Touch the watchdog for every WD_PAGE_COUNT pages.
2953 */
2954#define WD_PAGE_COUNT (128*1024)
2955
1da177e4
LT
2956void mark_free_pages(struct zone *zone)
2957{
556b969a 2958 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2959 unsigned long flags;
7aeb09f9 2960 unsigned int order, t;
86760a2c 2961 struct page *page;
1da177e4 2962
8080fc03 2963 if (zone_is_empty(zone))
1da177e4
LT
2964 return;
2965
2966 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2967
108bcc96 2968 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2969 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2970 if (pfn_valid(pfn)) {
86760a2c 2971 page = pfn_to_page(pfn);
ba6b0979 2972
556b969a
CY
2973 if (!--page_count) {
2974 touch_nmi_watchdog();
2975 page_count = WD_PAGE_COUNT;
2976 }
2977
ba6b0979
JK
2978 if (page_zone(page) != zone)
2979 continue;
2980
7be98234
RW
2981 if (!swsusp_page_is_forbidden(page))
2982 swsusp_unset_page_free(page);
f623f0db 2983 }
1da177e4 2984
b2a0ac88 2985 for_each_migratetype_order(order, t) {
86760a2c
GT
2986 list_for_each_entry(page,
2987 &zone->free_area[order].free_list[t], lru) {
f623f0db 2988 unsigned long i;
1da177e4 2989
86760a2c 2990 pfn = page_to_pfn(page);
556b969a
CY
2991 for (i = 0; i < (1UL << order); i++) {
2992 if (!--page_count) {
2993 touch_nmi_watchdog();
2994 page_count = WD_PAGE_COUNT;
2995 }
7be98234 2996 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2997 }
f623f0db 2998 }
b2a0ac88 2999 }
1da177e4
LT
3000 spin_unlock_irqrestore(&zone->lock, flags);
3001}
e2c55dc8 3002#endif /* CONFIG_PM */
1da177e4 3003
2d4894b5 3004static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3005{
5f8dcc21 3006 int migratetype;
1da177e4 3007
4db7548c 3008 if (!free_pcp_prepare(page))
9cca35d4 3009 return false;
689bcebf 3010
dc4b0caf 3011 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3012 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3013 return true;
3014}
3015
2d4894b5 3016static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3017{
3018 struct zone *zone = page_zone(page);
3019 struct per_cpu_pages *pcp;
3020 int migratetype;
3021
3022 migratetype = get_pcppage_migratetype(page);
d34b0733 3023 __count_vm_event(PGFREE);
da456f14 3024
5f8dcc21
MG
3025 /*
3026 * We only track unmovable, reclaimable and movable on pcp lists.
3027 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3028 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3029 * areas back if necessary. Otherwise, we may have to free
3030 * excessively into the page allocator
3031 */
3032 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3033 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3034 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3035 return;
5f8dcc21
MG
3036 }
3037 migratetype = MIGRATE_MOVABLE;
3038 }
3039
99dcc3e5 3040 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3041 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3042 pcp->count++;
48db57f8 3043 if (pcp->count >= pcp->high) {
4db0c3c2 3044 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3045 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3046 }
9cca35d4 3047}
5f8dcc21 3048
9cca35d4
MG
3049/*
3050 * Free a 0-order page
9cca35d4 3051 */
2d4894b5 3052void free_unref_page(struct page *page)
9cca35d4
MG
3053{
3054 unsigned long flags;
3055 unsigned long pfn = page_to_pfn(page);
3056
2d4894b5 3057 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3058 return;
3059
3060 local_irq_save(flags);
2d4894b5 3061 free_unref_page_commit(page, pfn);
d34b0733 3062 local_irq_restore(flags);
1da177e4
LT
3063}
3064
cc59850e
KK
3065/*
3066 * Free a list of 0-order pages
3067 */
2d4894b5 3068void free_unref_page_list(struct list_head *list)
cc59850e
KK
3069{
3070 struct page *page, *next;
9cca35d4 3071 unsigned long flags, pfn;
c24ad77d 3072 int batch_count = 0;
9cca35d4
MG
3073
3074 /* Prepare pages for freeing */
3075 list_for_each_entry_safe(page, next, list, lru) {
3076 pfn = page_to_pfn(page);
2d4894b5 3077 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3078 list_del(&page->lru);
3079 set_page_private(page, pfn);
3080 }
cc59850e 3081
9cca35d4 3082 local_irq_save(flags);
cc59850e 3083 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3084 unsigned long pfn = page_private(page);
3085
3086 set_page_private(page, 0);
2d4894b5
MG
3087 trace_mm_page_free_batched(page);
3088 free_unref_page_commit(page, pfn);
c24ad77d
LS
3089
3090 /*
3091 * Guard against excessive IRQ disabled times when we get
3092 * a large list of pages to free.
3093 */
3094 if (++batch_count == SWAP_CLUSTER_MAX) {
3095 local_irq_restore(flags);
3096 batch_count = 0;
3097 local_irq_save(flags);
3098 }
cc59850e 3099 }
9cca35d4 3100 local_irq_restore(flags);
cc59850e
KK
3101}
3102
8dfcc9ba
NP
3103/*
3104 * split_page takes a non-compound higher-order page, and splits it into
3105 * n (1<<order) sub-pages: page[0..n]
3106 * Each sub-page must be freed individually.
3107 *
3108 * Note: this is probably too low level an operation for use in drivers.
3109 * Please consult with lkml before using this in your driver.
3110 */
3111void split_page(struct page *page, unsigned int order)
3112{
3113 int i;
3114
309381fe
SL
3115 VM_BUG_ON_PAGE(PageCompound(page), page);
3116 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3117
a9627bc5 3118 for (i = 1; i < (1 << order); i++)
7835e98b 3119 set_page_refcounted(page + i);
a9627bc5 3120 split_page_owner(page, order);
8dfcc9ba 3121}
5853ff23 3122EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3123
3c605096 3124int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3125{
b03641af 3126 struct free_area *area = &page_zone(page)->free_area[order];
748446bb
MG
3127 unsigned long watermark;
3128 struct zone *zone;
2139cbe6 3129 int mt;
748446bb
MG
3130
3131 BUG_ON(!PageBuddy(page));
3132
3133 zone = page_zone(page);
2e30abd1 3134 mt = get_pageblock_migratetype(page);
748446bb 3135
194159fb 3136 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3137 /*
3138 * Obey watermarks as if the page was being allocated. We can
3139 * emulate a high-order watermark check with a raised order-0
3140 * watermark, because we already know our high-order page
3141 * exists.
3142 */
fd1444b2 3143 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3144 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3145 return 0;
3146
8fb74b9f 3147 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3148 }
748446bb
MG
3149
3150 /* Remove page from free list */
b03641af
DW
3151
3152 del_page_from_free_area(page, area);
2139cbe6 3153
400bc7fd 3154 /*
3155 * Set the pageblock if the isolated page is at least half of a
3156 * pageblock
3157 */
748446bb
MG
3158 if (order >= pageblock_order - 1) {
3159 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3160 for (; page < endpage; page += pageblock_nr_pages) {
3161 int mt = get_pageblock_migratetype(page);
88ed365e 3162 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3163 && !is_migrate_highatomic(mt))
47118af0
MN
3164 set_pageblock_migratetype(page,
3165 MIGRATE_MOVABLE);
3166 }
748446bb
MG
3167 }
3168
f3a14ced 3169
8fb74b9f 3170 return 1UL << order;
1fb3f8ca
MG
3171}
3172
060e7417
MG
3173/*
3174 * Update NUMA hit/miss statistics
3175 *
3176 * Must be called with interrupts disabled.
060e7417 3177 */
41b6167e 3178static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3179{
3180#ifdef CONFIG_NUMA
3a321d2a 3181 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3182
4518085e
KW
3183 /* skip numa counters update if numa stats is disabled */
3184 if (!static_branch_likely(&vm_numa_stat_key))
3185 return;
3186
c1093b74 3187 if (zone_to_nid(z) != numa_node_id())
060e7417 3188 local_stat = NUMA_OTHER;
060e7417 3189
c1093b74 3190 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3191 __inc_numa_state(z, NUMA_HIT);
2df26639 3192 else {
3a321d2a
KW
3193 __inc_numa_state(z, NUMA_MISS);
3194 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3195 }
3a321d2a 3196 __inc_numa_state(z, local_stat);
060e7417
MG
3197#endif
3198}
3199
066b2393
MG
3200/* Remove page from the per-cpu list, caller must protect the list */
3201static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3202 unsigned int alloc_flags,
453f85d4 3203 struct per_cpu_pages *pcp,
066b2393
MG
3204 struct list_head *list)
3205{
3206 struct page *page;
3207
3208 do {
3209 if (list_empty(list)) {
3210 pcp->count += rmqueue_bulk(zone, 0,
3211 pcp->batch, list,
6bb15450 3212 migratetype, alloc_flags);
066b2393
MG
3213 if (unlikely(list_empty(list)))
3214 return NULL;
3215 }
3216
453f85d4 3217 page = list_first_entry(list, struct page, lru);
066b2393
MG
3218 list_del(&page->lru);
3219 pcp->count--;
3220 } while (check_new_pcp(page));
3221
3222 return page;
3223}
3224
3225/* Lock and remove page from the per-cpu list */
3226static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3227 struct zone *zone, gfp_t gfp_flags,
3228 int migratetype, unsigned int alloc_flags)
066b2393
MG
3229{
3230 struct per_cpu_pages *pcp;
3231 struct list_head *list;
066b2393 3232 struct page *page;
d34b0733 3233 unsigned long flags;
066b2393 3234
d34b0733 3235 local_irq_save(flags);
066b2393
MG
3236 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3237 list = &pcp->lists[migratetype];
6bb15450 3238 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3239 if (page) {
1c52e6d0 3240 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3241 zone_statistics(preferred_zone, zone);
3242 }
d34b0733 3243 local_irq_restore(flags);
066b2393
MG
3244 return page;
3245}
3246
1da177e4 3247/*
75379191 3248 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3249 */
0a15c3e9 3250static inline
066b2393 3251struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3252 struct zone *zone, unsigned int order,
c603844b
MG
3253 gfp_t gfp_flags, unsigned int alloc_flags,
3254 int migratetype)
1da177e4
LT
3255{
3256 unsigned long flags;
689bcebf 3257 struct page *page;
1da177e4 3258
d34b0733 3259 if (likely(order == 0)) {
1c52e6d0
YS
3260 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3261 migratetype, alloc_flags);
066b2393
MG
3262 goto out;
3263 }
83b9355b 3264
066b2393
MG
3265 /*
3266 * We most definitely don't want callers attempting to
3267 * allocate greater than order-1 page units with __GFP_NOFAIL.
3268 */
3269 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3270 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3271
066b2393
MG
3272 do {
3273 page = NULL;
3274 if (alloc_flags & ALLOC_HARDER) {
3275 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3276 if (page)
3277 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3278 }
a74609fa 3279 if (!page)
6bb15450 3280 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3281 } while (page && check_new_pages(page, order));
3282 spin_unlock(&zone->lock);
3283 if (!page)
3284 goto failed;
3285 __mod_zone_freepage_state(zone, -(1 << order),
3286 get_pcppage_migratetype(page));
1da177e4 3287
16709d1d 3288 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3289 zone_statistics(preferred_zone, zone);
a74609fa 3290 local_irq_restore(flags);
1da177e4 3291
066b2393 3292out:
73444bc4
MG
3293 /* Separate test+clear to avoid unnecessary atomics */
3294 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3295 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3296 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3297 }
3298
066b2393 3299 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3300 return page;
a74609fa
NP
3301
3302failed:
3303 local_irq_restore(flags);
a74609fa 3304 return NULL;
1da177e4
LT
3305}
3306
933e312e
AM
3307#ifdef CONFIG_FAIL_PAGE_ALLOC
3308
b2588c4b 3309static struct {
933e312e
AM
3310 struct fault_attr attr;
3311
621a5f7a 3312 bool ignore_gfp_highmem;
71baba4b 3313 bool ignore_gfp_reclaim;
54114994 3314 u32 min_order;
933e312e
AM
3315} fail_page_alloc = {
3316 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3317 .ignore_gfp_reclaim = true,
621a5f7a 3318 .ignore_gfp_highmem = true,
54114994 3319 .min_order = 1,
933e312e
AM
3320};
3321
3322static int __init setup_fail_page_alloc(char *str)
3323{
3324 return setup_fault_attr(&fail_page_alloc.attr, str);
3325}
3326__setup("fail_page_alloc=", setup_fail_page_alloc);
3327
af3b8544 3328static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3329{
54114994 3330 if (order < fail_page_alloc.min_order)
deaf386e 3331 return false;
933e312e 3332 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3333 return false;
933e312e 3334 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3335 return false;
71baba4b
MG
3336 if (fail_page_alloc.ignore_gfp_reclaim &&
3337 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3338 return false;
933e312e
AM
3339
3340 return should_fail(&fail_page_alloc.attr, 1 << order);
3341}
3342
3343#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3344
3345static int __init fail_page_alloc_debugfs(void)
3346{
0825a6f9 3347 umode_t mode = S_IFREG | 0600;
933e312e 3348 struct dentry *dir;
933e312e 3349
dd48c085
AM
3350 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3351 &fail_page_alloc.attr);
b2588c4b 3352
d9f7979c
GKH
3353 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3354 &fail_page_alloc.ignore_gfp_reclaim);
3355 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3356 &fail_page_alloc.ignore_gfp_highmem);
3357 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3358
d9f7979c 3359 return 0;
933e312e
AM
3360}
3361
3362late_initcall(fail_page_alloc_debugfs);
3363
3364#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3365
3366#else /* CONFIG_FAIL_PAGE_ALLOC */
3367
af3b8544 3368static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3369{
deaf386e 3370 return false;
933e312e
AM
3371}
3372
3373#endif /* CONFIG_FAIL_PAGE_ALLOC */
3374
af3b8544
BP
3375static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3376{
3377 return __should_fail_alloc_page(gfp_mask, order);
3378}
3379ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3380
1da177e4 3381/*
97a16fc8
MG
3382 * Return true if free base pages are above 'mark'. For high-order checks it
3383 * will return true of the order-0 watermark is reached and there is at least
3384 * one free page of a suitable size. Checking now avoids taking the zone lock
3385 * to check in the allocation paths if no pages are free.
1da177e4 3386 */
86a294a8
MH
3387bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3388 int classzone_idx, unsigned int alloc_flags,
3389 long free_pages)
1da177e4 3390{
d23ad423 3391 long min = mark;
1da177e4 3392 int o;
cd04ae1e 3393 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3394
0aaa29a5 3395 /* free_pages may go negative - that's OK */
df0a6daa 3396 free_pages -= (1 << order) - 1;
0aaa29a5 3397
7fb1d9fc 3398 if (alloc_flags & ALLOC_HIGH)
1da177e4 3399 min -= min / 2;
0aaa29a5
MG
3400
3401 /*
3402 * If the caller does not have rights to ALLOC_HARDER then subtract
3403 * the high-atomic reserves. This will over-estimate the size of the
3404 * atomic reserve but it avoids a search.
3405 */
cd04ae1e 3406 if (likely(!alloc_harder)) {
0aaa29a5 3407 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3408 } else {
3409 /*
3410 * OOM victims can try even harder than normal ALLOC_HARDER
3411 * users on the grounds that it's definitely going to be in
3412 * the exit path shortly and free memory. Any allocation it
3413 * makes during the free path will be small and short-lived.
3414 */
3415 if (alloc_flags & ALLOC_OOM)
3416 min -= min / 2;
3417 else
3418 min -= min / 4;
3419 }
3420
e2b19197 3421
d883c6cf
JK
3422#ifdef CONFIG_CMA
3423 /* If allocation can't use CMA areas don't use free CMA pages */
3424 if (!(alloc_flags & ALLOC_CMA))
3425 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3426#endif
3427
97a16fc8
MG
3428 /*
3429 * Check watermarks for an order-0 allocation request. If these
3430 * are not met, then a high-order request also cannot go ahead
3431 * even if a suitable page happened to be free.
3432 */
3433 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3434 return false;
1da177e4 3435
97a16fc8
MG
3436 /* If this is an order-0 request then the watermark is fine */
3437 if (!order)
3438 return true;
3439
3440 /* For a high-order request, check at least one suitable page is free */
3441 for (o = order; o < MAX_ORDER; o++) {
3442 struct free_area *area = &z->free_area[o];
3443 int mt;
3444
3445 if (!area->nr_free)
3446 continue;
3447
97a16fc8 3448 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3449 if (!free_area_empty(area, mt))
97a16fc8
MG
3450 return true;
3451 }
3452
3453#ifdef CONFIG_CMA
d883c6cf 3454 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3455 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3456 return true;
d883c6cf 3457 }
97a16fc8 3458#endif
b050e376
VB
3459 if (alloc_harder &&
3460 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3461 return true;
1da177e4 3462 }
97a16fc8 3463 return false;
88f5acf8
MG
3464}
3465
7aeb09f9 3466bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3467 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3468{
3469 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3470 zone_page_state(z, NR_FREE_PAGES));
3471}
3472
48ee5f36
MG
3473static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3474 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3475{
3476 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3477 long cma_pages = 0;
3478
3479#ifdef CONFIG_CMA
3480 /* If allocation can't use CMA areas don't use free CMA pages */
3481 if (!(alloc_flags & ALLOC_CMA))
3482 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3483#endif
48ee5f36
MG
3484
3485 /*
3486 * Fast check for order-0 only. If this fails then the reserves
3487 * need to be calculated. There is a corner case where the check
3488 * passes but only the high-order atomic reserve are free. If
3489 * the caller is !atomic then it'll uselessly search the free
3490 * list. That corner case is then slower but it is harmless.
3491 */
d883c6cf 3492 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3493 return true;
3494
3495 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3496 free_pages);
3497}
3498
7aeb09f9 3499bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3500 unsigned long mark, int classzone_idx)
88f5acf8
MG
3501{
3502 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3503
3504 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3505 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3506
e2b19197 3507 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3508 free_pages);
1da177e4
LT
3509}
3510
9276b1bc 3511#ifdef CONFIG_NUMA
957f822a
DR
3512static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3513{
e02dc017 3514 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3515 node_reclaim_distance;
957f822a 3516}
9276b1bc 3517#else /* CONFIG_NUMA */
957f822a
DR
3518static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3519{
3520 return true;
3521}
9276b1bc
PJ
3522#endif /* CONFIG_NUMA */
3523
6bb15450
MG
3524/*
3525 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3526 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3527 * premature use of a lower zone may cause lowmem pressure problems that
3528 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3529 * probably too small. It only makes sense to spread allocations to avoid
3530 * fragmentation between the Normal and DMA32 zones.
3531 */
3532static inline unsigned int
0a79cdad 3533alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3534{
0a79cdad
MG
3535 unsigned int alloc_flags = 0;
3536
3537 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3538 alloc_flags |= ALLOC_KSWAPD;
3539
3540#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3541 if (!zone)
3542 return alloc_flags;
3543
6bb15450 3544 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3545 return alloc_flags;
6bb15450
MG
3546
3547 /*
3548 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3549 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3550 * on UMA that if Normal is populated then so is DMA32.
3551 */
3552 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3553 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3554 return alloc_flags;
6bb15450 3555
8118b82e 3556 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3557#endif /* CONFIG_ZONE_DMA32 */
3558 return alloc_flags;
6bb15450 3559}
6bb15450 3560
7fb1d9fc 3561/*
0798e519 3562 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3563 * a page.
3564 */
3565static struct page *
a9263751
VB
3566get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3567 const struct alloc_context *ac)
753ee728 3568{
6bb15450 3569 struct zoneref *z;
5117f45d 3570 struct zone *zone;
3b8c0be4 3571 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3572 bool no_fallback;
3b8c0be4 3573
6bb15450 3574retry:
7fb1d9fc 3575 /*
9276b1bc 3576 * Scan zonelist, looking for a zone with enough free.
344736f2 3577 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3578 */
6bb15450
MG
3579 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3580 z = ac->preferred_zoneref;
c33d6c06 3581 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3582 ac->nodemask) {
be06af00 3583 struct page *page;
e085dbc5
JW
3584 unsigned long mark;
3585
664eedde
MG
3586 if (cpusets_enabled() &&
3587 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3588 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3589 continue;
a756cf59
JW
3590 /*
3591 * When allocating a page cache page for writing, we
281e3726
MG
3592 * want to get it from a node that is within its dirty
3593 * limit, such that no single node holds more than its
a756cf59 3594 * proportional share of globally allowed dirty pages.
281e3726 3595 * The dirty limits take into account the node's
a756cf59
JW
3596 * lowmem reserves and high watermark so that kswapd
3597 * should be able to balance it without having to
3598 * write pages from its LRU list.
3599 *
a756cf59 3600 * XXX: For now, allow allocations to potentially
281e3726 3601 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3602 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3603 * which is important when on a NUMA setup the allowed
281e3726 3604 * nodes are together not big enough to reach the
a756cf59 3605 * global limit. The proper fix for these situations
281e3726 3606 * will require awareness of nodes in the
a756cf59
JW
3607 * dirty-throttling and the flusher threads.
3608 */
3b8c0be4
MG
3609 if (ac->spread_dirty_pages) {
3610 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3611 continue;
3612
3613 if (!node_dirty_ok(zone->zone_pgdat)) {
3614 last_pgdat_dirty_limit = zone->zone_pgdat;
3615 continue;
3616 }
3617 }
7fb1d9fc 3618
6bb15450
MG
3619 if (no_fallback && nr_online_nodes > 1 &&
3620 zone != ac->preferred_zoneref->zone) {
3621 int local_nid;
3622
3623 /*
3624 * If moving to a remote node, retry but allow
3625 * fragmenting fallbacks. Locality is more important
3626 * than fragmentation avoidance.
3627 */
3628 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3629 if (zone_to_nid(zone) != local_nid) {
3630 alloc_flags &= ~ALLOC_NOFRAGMENT;
3631 goto retry;
3632 }
3633 }
3634
a9214443 3635 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3636 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3637 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3638 int ret;
3639
c9e97a19
PT
3640#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3641 /*
3642 * Watermark failed for this zone, but see if we can
3643 * grow this zone if it contains deferred pages.
3644 */
3645 if (static_branch_unlikely(&deferred_pages)) {
3646 if (_deferred_grow_zone(zone, order))
3647 goto try_this_zone;
3648 }
3649#endif
5dab2911
MG
3650 /* Checked here to keep the fast path fast */
3651 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3652 if (alloc_flags & ALLOC_NO_WATERMARKS)
3653 goto try_this_zone;
3654
a5f5f91d 3655 if (node_reclaim_mode == 0 ||
c33d6c06 3656 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3657 continue;
3658
a5f5f91d 3659 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3660 switch (ret) {
a5f5f91d 3661 case NODE_RECLAIM_NOSCAN:
fa5e084e 3662 /* did not scan */
cd38b115 3663 continue;
a5f5f91d 3664 case NODE_RECLAIM_FULL:
fa5e084e 3665 /* scanned but unreclaimable */
cd38b115 3666 continue;
fa5e084e
MG
3667 default:
3668 /* did we reclaim enough */
fed2719e 3669 if (zone_watermark_ok(zone, order, mark,
93ea9964 3670 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3671 goto try_this_zone;
3672
fed2719e 3673 continue;
0798e519 3674 }
7fb1d9fc
RS
3675 }
3676
fa5e084e 3677try_this_zone:
066b2393 3678 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3679 gfp_mask, alloc_flags, ac->migratetype);
75379191 3680 if (page) {
479f854a 3681 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3682
3683 /*
3684 * If this is a high-order atomic allocation then check
3685 * if the pageblock should be reserved for the future
3686 */
3687 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3688 reserve_highatomic_pageblock(page, zone, order);
3689
75379191 3690 return page;
c9e97a19
PT
3691 } else {
3692#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3693 /* Try again if zone has deferred pages */
3694 if (static_branch_unlikely(&deferred_pages)) {
3695 if (_deferred_grow_zone(zone, order))
3696 goto try_this_zone;
3697 }
3698#endif
75379191 3699 }
54a6eb5c 3700 }
9276b1bc 3701
6bb15450
MG
3702 /*
3703 * It's possible on a UMA machine to get through all zones that are
3704 * fragmented. If avoiding fragmentation, reset and try again.
3705 */
3706 if (no_fallback) {
3707 alloc_flags &= ~ALLOC_NOFRAGMENT;
3708 goto retry;
3709 }
3710
4ffeaf35 3711 return NULL;
753ee728
MH
3712}
3713
9af744d7 3714static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3715{
a238ab5b 3716 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3717 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3718
2c029a1e 3719 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3720 return;
3721
3722 /*
3723 * This documents exceptions given to allocations in certain
3724 * contexts that are allowed to allocate outside current's set
3725 * of allowed nodes.
3726 */
3727 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3728 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3729 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3730 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3731 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3732 filter &= ~SHOW_MEM_FILTER_NODES;
3733
9af744d7 3734 show_mem(filter, nodemask);
aa187507
MH
3735}
3736
a8e99259 3737void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3738{
3739 struct va_format vaf;
3740 va_list args;
3741 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3742 DEFAULT_RATELIMIT_BURST);
3743
0f7896f1 3744 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3745 return;
3746
7877cdcc
MH
3747 va_start(args, fmt);
3748 vaf.fmt = fmt;
3749 vaf.va = &args;
ef8444ea 3750 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3751 current->comm, &vaf, gfp_mask, &gfp_mask,
3752 nodemask_pr_args(nodemask));
7877cdcc 3753 va_end(args);
3ee9a4f0 3754
a8e99259 3755 cpuset_print_current_mems_allowed();
ef8444ea 3756 pr_cont("\n");
a238ab5b 3757 dump_stack();
685dbf6f 3758 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3759}
3760
6c18ba7a
MH
3761static inline struct page *
3762__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3763 unsigned int alloc_flags,
3764 const struct alloc_context *ac)
3765{
3766 struct page *page;
3767
3768 page = get_page_from_freelist(gfp_mask, order,
3769 alloc_flags|ALLOC_CPUSET, ac);
3770 /*
3771 * fallback to ignore cpuset restriction if our nodes
3772 * are depleted
3773 */
3774 if (!page)
3775 page = get_page_from_freelist(gfp_mask, order,
3776 alloc_flags, ac);
3777
3778 return page;
3779}
3780
11e33f6a
MG
3781static inline struct page *
3782__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3783 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3784{
6e0fc46d
DR
3785 struct oom_control oc = {
3786 .zonelist = ac->zonelist,
3787 .nodemask = ac->nodemask,
2a966b77 3788 .memcg = NULL,
6e0fc46d
DR
3789 .gfp_mask = gfp_mask,
3790 .order = order,
6e0fc46d 3791 };
11e33f6a
MG
3792 struct page *page;
3793
9879de73
JW
3794 *did_some_progress = 0;
3795
9879de73 3796 /*
dc56401f
JW
3797 * Acquire the oom lock. If that fails, somebody else is
3798 * making progress for us.
9879de73 3799 */
dc56401f 3800 if (!mutex_trylock(&oom_lock)) {
9879de73 3801 *did_some_progress = 1;
11e33f6a 3802 schedule_timeout_uninterruptible(1);
1da177e4
LT
3803 return NULL;
3804 }
6b1de916 3805
11e33f6a
MG
3806 /*
3807 * Go through the zonelist yet one more time, keep very high watermark
3808 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3809 * we're still under heavy pressure. But make sure that this reclaim
3810 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3811 * allocation which will never fail due to oom_lock already held.
11e33f6a 3812 */
e746bf73
TH
3813 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3814 ~__GFP_DIRECT_RECLAIM, order,
3815 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3816 if (page)
11e33f6a
MG
3817 goto out;
3818
06ad276a
MH
3819 /* Coredumps can quickly deplete all memory reserves */
3820 if (current->flags & PF_DUMPCORE)
3821 goto out;
3822 /* The OOM killer will not help higher order allocs */
3823 if (order > PAGE_ALLOC_COSTLY_ORDER)
3824 goto out;
dcda9b04
MH
3825 /*
3826 * We have already exhausted all our reclaim opportunities without any
3827 * success so it is time to admit defeat. We will skip the OOM killer
3828 * because it is very likely that the caller has a more reasonable
3829 * fallback than shooting a random task.
3830 */
3831 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3832 goto out;
06ad276a
MH
3833 /* The OOM killer does not needlessly kill tasks for lowmem */
3834 if (ac->high_zoneidx < ZONE_NORMAL)
3835 goto out;
3836 if (pm_suspended_storage())
3837 goto out;
3838 /*
3839 * XXX: GFP_NOFS allocations should rather fail than rely on
3840 * other request to make a forward progress.
3841 * We are in an unfortunate situation where out_of_memory cannot
3842 * do much for this context but let's try it to at least get
3843 * access to memory reserved if the current task is killed (see
3844 * out_of_memory). Once filesystems are ready to handle allocation
3845 * failures more gracefully we should just bail out here.
3846 */
3847
3848 /* The OOM killer may not free memory on a specific node */
3849 if (gfp_mask & __GFP_THISNODE)
3850 goto out;
3da88fb3 3851
3c2c6488 3852 /* Exhausted what can be done so it's blame time */
5020e285 3853 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3854 *did_some_progress = 1;
5020e285 3855
6c18ba7a
MH
3856 /*
3857 * Help non-failing allocations by giving them access to memory
3858 * reserves
3859 */
3860 if (gfp_mask & __GFP_NOFAIL)
3861 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3862 ALLOC_NO_WATERMARKS, ac);
5020e285 3863 }
11e33f6a 3864out:
dc56401f 3865 mutex_unlock(&oom_lock);
11e33f6a
MG
3866 return page;
3867}
3868
33c2d214
MH
3869/*
3870 * Maximum number of compaction retries wit a progress before OOM
3871 * killer is consider as the only way to move forward.
3872 */
3873#define MAX_COMPACT_RETRIES 16
3874
56de7263
MG
3875#ifdef CONFIG_COMPACTION
3876/* Try memory compaction for high-order allocations before reclaim */
3877static struct page *
3878__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3879 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3880 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3881{
5e1f0f09 3882 struct page *page = NULL;
eb414681 3883 unsigned long pflags;
499118e9 3884 unsigned int noreclaim_flag;
53853e2d
VB
3885
3886 if (!order)
66199712 3887 return NULL;
66199712 3888
eb414681 3889 psi_memstall_enter(&pflags);
499118e9 3890 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3891
c5d01d0d 3892 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3893 prio, &page);
eb414681 3894
499118e9 3895 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3896 psi_memstall_leave(&pflags);
56de7263 3897
98dd3b48
VB
3898 /*
3899 * At least in one zone compaction wasn't deferred or skipped, so let's
3900 * count a compaction stall
3901 */
3902 count_vm_event(COMPACTSTALL);
8fb74b9f 3903
5e1f0f09
MG
3904 /* Prep a captured page if available */
3905 if (page)
3906 prep_new_page(page, order, gfp_mask, alloc_flags);
3907
3908 /* Try get a page from the freelist if available */
3909 if (!page)
3910 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3911
98dd3b48
VB
3912 if (page) {
3913 struct zone *zone = page_zone(page);
53853e2d 3914
98dd3b48
VB
3915 zone->compact_blockskip_flush = false;
3916 compaction_defer_reset(zone, order, true);
3917 count_vm_event(COMPACTSUCCESS);
3918 return page;
3919 }
56de7263 3920
98dd3b48
VB
3921 /*
3922 * It's bad if compaction run occurs and fails. The most likely reason
3923 * is that pages exist, but not enough to satisfy watermarks.
3924 */
3925 count_vm_event(COMPACTFAIL);
66199712 3926
98dd3b48 3927 cond_resched();
56de7263
MG
3928
3929 return NULL;
3930}
33c2d214 3931
3250845d
VB
3932static inline bool
3933should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3934 enum compact_result compact_result,
3935 enum compact_priority *compact_priority,
d9436498 3936 int *compaction_retries)
3250845d
VB
3937{
3938 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3939 int min_priority;
65190cff
MH
3940 bool ret = false;
3941 int retries = *compaction_retries;
3942 enum compact_priority priority = *compact_priority;
3250845d
VB
3943
3944 if (!order)
3945 return false;
3946
d9436498
VB
3947 if (compaction_made_progress(compact_result))
3948 (*compaction_retries)++;
3949
3250845d
VB
3950 /*
3951 * compaction considers all the zone as desperately out of memory
3952 * so it doesn't really make much sense to retry except when the
3953 * failure could be caused by insufficient priority
3954 */
d9436498
VB
3955 if (compaction_failed(compact_result))
3956 goto check_priority;
3250845d 3957
49433085
VB
3958 /*
3959 * compaction was skipped because there are not enough order-0 pages
3960 * to work with, so we retry only if it looks like reclaim can help.
3961 */
3962 if (compaction_needs_reclaim(compact_result)) {
3963 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3964 goto out;
3965 }
3966
3250845d
VB
3967 /*
3968 * make sure the compaction wasn't deferred or didn't bail out early
3969 * due to locks contention before we declare that we should give up.
49433085
VB
3970 * But the next retry should use a higher priority if allowed, so
3971 * we don't just keep bailing out endlessly.
3250845d 3972 */
65190cff 3973 if (compaction_withdrawn(compact_result)) {
49433085 3974 goto check_priority;
65190cff 3975 }
3250845d
VB
3976
3977 /*
dcda9b04 3978 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3979 * costly ones because they are de facto nofail and invoke OOM
3980 * killer to move on while costly can fail and users are ready
3981 * to cope with that. 1/4 retries is rather arbitrary but we
3982 * would need much more detailed feedback from compaction to
3983 * make a better decision.
3984 */
3985 if (order > PAGE_ALLOC_COSTLY_ORDER)
3986 max_retries /= 4;
65190cff
MH
3987 if (*compaction_retries <= max_retries) {
3988 ret = true;
3989 goto out;
3990 }
3250845d 3991
d9436498
VB
3992 /*
3993 * Make sure there are attempts at the highest priority if we exhausted
3994 * all retries or failed at the lower priorities.
3995 */
3996check_priority:
c2033b00
VB
3997 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3998 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3999
c2033b00 4000 if (*compact_priority > min_priority) {
d9436498
VB
4001 (*compact_priority)--;
4002 *compaction_retries = 0;
65190cff 4003 ret = true;
d9436498 4004 }
65190cff
MH
4005out:
4006 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4007 return ret;
3250845d 4008}
56de7263
MG
4009#else
4010static inline struct page *
4011__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4012 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4013 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4014{
33c2d214 4015 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4016 return NULL;
4017}
33c2d214
MH
4018
4019static inline bool
86a294a8
MH
4020should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4021 enum compact_result compact_result,
a5508cd8 4022 enum compact_priority *compact_priority,
d9436498 4023 int *compaction_retries)
33c2d214 4024{
31e49bfd
MH
4025 struct zone *zone;
4026 struct zoneref *z;
4027
4028 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4029 return false;
4030
4031 /*
4032 * There are setups with compaction disabled which would prefer to loop
4033 * inside the allocator rather than hit the oom killer prematurely.
4034 * Let's give them a good hope and keep retrying while the order-0
4035 * watermarks are OK.
4036 */
4037 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4038 ac->nodemask) {
4039 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4040 ac_classzone_idx(ac), alloc_flags))
4041 return true;
4042 }
33c2d214
MH
4043 return false;
4044}
3250845d 4045#endif /* CONFIG_COMPACTION */
56de7263 4046
d92a8cfc 4047#ifdef CONFIG_LOCKDEP
93781325 4048static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4049 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4050
4051static bool __need_fs_reclaim(gfp_t gfp_mask)
4052{
4053 gfp_mask = current_gfp_context(gfp_mask);
4054
4055 /* no reclaim without waiting on it */
4056 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4057 return false;
4058
4059 /* this guy won't enter reclaim */
2e517d68 4060 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4061 return false;
4062
4063 /* We're only interested __GFP_FS allocations for now */
4064 if (!(gfp_mask & __GFP_FS))
4065 return false;
4066
4067 if (gfp_mask & __GFP_NOLOCKDEP)
4068 return false;
4069
4070 return true;
4071}
4072
93781325
OS
4073void __fs_reclaim_acquire(void)
4074{
4075 lock_map_acquire(&__fs_reclaim_map);
4076}
4077
4078void __fs_reclaim_release(void)
4079{
4080 lock_map_release(&__fs_reclaim_map);
4081}
4082
d92a8cfc
PZ
4083void fs_reclaim_acquire(gfp_t gfp_mask)
4084{
4085 if (__need_fs_reclaim(gfp_mask))
93781325 4086 __fs_reclaim_acquire();
d92a8cfc
PZ
4087}
4088EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4089
4090void fs_reclaim_release(gfp_t gfp_mask)
4091{
4092 if (__need_fs_reclaim(gfp_mask))
93781325 4093 __fs_reclaim_release();
d92a8cfc
PZ
4094}
4095EXPORT_SYMBOL_GPL(fs_reclaim_release);
4096#endif
4097
bba90710
MS
4098/* Perform direct synchronous page reclaim */
4099static int
a9263751
VB
4100__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4101 const struct alloc_context *ac)
11e33f6a 4102{
bba90710 4103 int progress;
499118e9 4104 unsigned int noreclaim_flag;
eb414681 4105 unsigned long pflags;
11e33f6a
MG
4106
4107 cond_resched();
4108
4109 /* We now go into synchronous reclaim */
4110 cpuset_memory_pressure_bump();
eb414681 4111 psi_memstall_enter(&pflags);
d92a8cfc 4112 fs_reclaim_acquire(gfp_mask);
93781325 4113 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4114
a9263751
VB
4115 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4116 ac->nodemask);
11e33f6a 4117
499118e9 4118 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4119 fs_reclaim_release(gfp_mask);
eb414681 4120 psi_memstall_leave(&pflags);
11e33f6a
MG
4121
4122 cond_resched();
4123
bba90710
MS
4124 return progress;
4125}
4126
4127/* The really slow allocator path where we enter direct reclaim */
4128static inline struct page *
4129__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4130 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4131 unsigned long *did_some_progress)
bba90710
MS
4132{
4133 struct page *page = NULL;
4134 bool drained = false;
4135
a9263751 4136 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4137 if (unlikely(!(*did_some_progress)))
4138 return NULL;
11e33f6a 4139
9ee493ce 4140retry:
31a6c190 4141 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4142
4143 /*
4144 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4145 * pages are pinned on the per-cpu lists or in high alloc reserves.
4146 * Shrink them them and try again
9ee493ce
MG
4147 */
4148 if (!page && !drained) {
29fac03b 4149 unreserve_highatomic_pageblock(ac, false);
93481ff0 4150 drain_all_pages(NULL);
9ee493ce
MG
4151 drained = true;
4152 goto retry;
4153 }
4154
11e33f6a
MG
4155 return page;
4156}
4157
5ecd9d40
DR
4158static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4159 const struct alloc_context *ac)
3a025760
JW
4160{
4161 struct zoneref *z;
4162 struct zone *zone;
e1a55637 4163 pg_data_t *last_pgdat = NULL;
5ecd9d40 4164 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4165
5ecd9d40
DR
4166 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4167 ac->nodemask) {
e1a55637 4168 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4169 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4170 last_pgdat = zone->zone_pgdat;
4171 }
3a025760
JW
4172}
4173
c603844b 4174static inline unsigned int
341ce06f
PZ
4175gfp_to_alloc_flags(gfp_t gfp_mask)
4176{
c603844b 4177 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4178
a56f57ff 4179 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 4180 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 4181
341ce06f
PZ
4182 /*
4183 * The caller may dip into page reserves a bit more if the caller
4184 * cannot run direct reclaim, or if the caller has realtime scheduling
4185 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4186 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4187 */
e6223a3b 4188 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4189
d0164adc 4190 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4191 /*
b104a35d
DR
4192 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4193 * if it can't schedule.
5c3240d9 4194 */
b104a35d 4195 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4196 alloc_flags |= ALLOC_HARDER;
523b9458 4197 /*
b104a35d 4198 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4199 * comment for __cpuset_node_allowed().
523b9458 4200 */
341ce06f 4201 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4202 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4203 alloc_flags |= ALLOC_HARDER;
4204
0a79cdad
MG
4205 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4206 alloc_flags |= ALLOC_KSWAPD;
4207
d883c6cf
JK
4208#ifdef CONFIG_CMA
4209 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4210 alloc_flags |= ALLOC_CMA;
4211#endif
341ce06f
PZ
4212 return alloc_flags;
4213}
4214
cd04ae1e 4215static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4216{
cd04ae1e
MH
4217 if (!tsk_is_oom_victim(tsk))
4218 return false;
4219
4220 /*
4221 * !MMU doesn't have oom reaper so give access to memory reserves
4222 * only to the thread with TIF_MEMDIE set
4223 */
4224 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4225 return false;
4226
cd04ae1e
MH
4227 return true;
4228}
4229
4230/*
4231 * Distinguish requests which really need access to full memory
4232 * reserves from oom victims which can live with a portion of it
4233 */
4234static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4235{
4236 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4237 return 0;
31a6c190 4238 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4239 return ALLOC_NO_WATERMARKS;
31a6c190 4240 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4241 return ALLOC_NO_WATERMARKS;
4242 if (!in_interrupt()) {
4243 if (current->flags & PF_MEMALLOC)
4244 return ALLOC_NO_WATERMARKS;
4245 else if (oom_reserves_allowed(current))
4246 return ALLOC_OOM;
4247 }
31a6c190 4248
cd04ae1e
MH
4249 return 0;
4250}
4251
4252bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4253{
4254 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4255}
4256
0a0337e0
MH
4257/*
4258 * Checks whether it makes sense to retry the reclaim to make a forward progress
4259 * for the given allocation request.
491d79ae
JW
4260 *
4261 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4262 * without success, or when we couldn't even meet the watermark if we
4263 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4264 *
4265 * Returns true if a retry is viable or false to enter the oom path.
4266 */
4267static inline bool
4268should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4269 struct alloc_context *ac, int alloc_flags,
423b452e 4270 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4271{
4272 struct zone *zone;
4273 struct zoneref *z;
15f570bf 4274 bool ret = false;
0a0337e0 4275
423b452e
VB
4276 /*
4277 * Costly allocations might have made a progress but this doesn't mean
4278 * their order will become available due to high fragmentation so
4279 * always increment the no progress counter for them
4280 */
4281 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4282 *no_progress_loops = 0;
4283 else
4284 (*no_progress_loops)++;
4285
0a0337e0
MH
4286 /*
4287 * Make sure we converge to OOM if we cannot make any progress
4288 * several times in the row.
4289 */
04c8716f
MK
4290 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4291 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4292 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4293 }
0a0337e0 4294
bca67592
MG
4295 /*
4296 * Keep reclaiming pages while there is a chance this will lead
4297 * somewhere. If none of the target zones can satisfy our allocation
4298 * request even if all reclaimable pages are considered then we are
4299 * screwed and have to go OOM.
0a0337e0
MH
4300 */
4301 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4302 ac->nodemask) {
4303 unsigned long available;
ede37713 4304 unsigned long reclaimable;
d379f01d
MH
4305 unsigned long min_wmark = min_wmark_pages(zone);
4306 bool wmark;
0a0337e0 4307
5a1c84b4 4308 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4309 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4310
4311 /*
491d79ae
JW
4312 * Would the allocation succeed if we reclaimed all
4313 * reclaimable pages?
0a0337e0 4314 */
d379f01d
MH
4315 wmark = __zone_watermark_ok(zone, order, min_wmark,
4316 ac_classzone_idx(ac), alloc_flags, available);
4317 trace_reclaim_retry_zone(z, order, reclaimable,
4318 available, min_wmark, *no_progress_loops, wmark);
4319 if (wmark) {
ede37713
MH
4320 /*
4321 * If we didn't make any progress and have a lot of
4322 * dirty + writeback pages then we should wait for
4323 * an IO to complete to slow down the reclaim and
4324 * prevent from pre mature OOM
4325 */
4326 if (!did_some_progress) {
11fb9989 4327 unsigned long write_pending;
ede37713 4328
5a1c84b4
MG
4329 write_pending = zone_page_state_snapshot(zone,
4330 NR_ZONE_WRITE_PENDING);
ede37713 4331
11fb9989 4332 if (2 * write_pending > reclaimable) {
ede37713
MH
4333 congestion_wait(BLK_RW_ASYNC, HZ/10);
4334 return true;
4335 }
4336 }
5a1c84b4 4337
15f570bf
MH
4338 ret = true;
4339 goto out;
0a0337e0
MH
4340 }
4341 }
4342
15f570bf
MH
4343out:
4344 /*
4345 * Memory allocation/reclaim might be called from a WQ context and the
4346 * current implementation of the WQ concurrency control doesn't
4347 * recognize that a particular WQ is congested if the worker thread is
4348 * looping without ever sleeping. Therefore we have to do a short sleep
4349 * here rather than calling cond_resched().
4350 */
4351 if (current->flags & PF_WQ_WORKER)
4352 schedule_timeout_uninterruptible(1);
4353 else
4354 cond_resched();
4355 return ret;
0a0337e0
MH
4356}
4357
902b6281
VB
4358static inline bool
4359check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4360{
4361 /*
4362 * It's possible that cpuset's mems_allowed and the nodemask from
4363 * mempolicy don't intersect. This should be normally dealt with by
4364 * policy_nodemask(), but it's possible to race with cpuset update in
4365 * such a way the check therein was true, and then it became false
4366 * before we got our cpuset_mems_cookie here.
4367 * This assumes that for all allocations, ac->nodemask can come only
4368 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4369 * when it does not intersect with the cpuset restrictions) or the
4370 * caller can deal with a violated nodemask.
4371 */
4372 if (cpusets_enabled() && ac->nodemask &&
4373 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4374 ac->nodemask = NULL;
4375 return true;
4376 }
4377
4378 /*
4379 * When updating a task's mems_allowed or mempolicy nodemask, it is
4380 * possible to race with parallel threads in such a way that our
4381 * allocation can fail while the mask is being updated. If we are about
4382 * to fail, check if the cpuset changed during allocation and if so,
4383 * retry.
4384 */
4385 if (read_mems_allowed_retry(cpuset_mems_cookie))
4386 return true;
4387
4388 return false;
4389}
4390
11e33f6a
MG
4391static inline struct page *
4392__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4393 struct alloc_context *ac)
11e33f6a 4394{
d0164adc 4395 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4396 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4397 struct page *page = NULL;
c603844b 4398 unsigned int alloc_flags;
11e33f6a 4399 unsigned long did_some_progress;
5ce9bfef 4400 enum compact_priority compact_priority;
c5d01d0d 4401 enum compact_result compact_result;
5ce9bfef
VB
4402 int compaction_retries;
4403 int no_progress_loops;
5ce9bfef 4404 unsigned int cpuset_mems_cookie;
cd04ae1e 4405 int reserve_flags;
1da177e4 4406
d0164adc
MG
4407 /*
4408 * We also sanity check to catch abuse of atomic reserves being used by
4409 * callers that are not in atomic context.
4410 */
4411 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4412 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4413 gfp_mask &= ~__GFP_ATOMIC;
4414
5ce9bfef
VB
4415retry_cpuset:
4416 compaction_retries = 0;
4417 no_progress_loops = 0;
4418 compact_priority = DEF_COMPACT_PRIORITY;
4419 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4420
4421 /*
4422 * The fast path uses conservative alloc_flags to succeed only until
4423 * kswapd needs to be woken up, and to avoid the cost of setting up
4424 * alloc_flags precisely. So we do that now.
4425 */
4426 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4427
e47483bc
VB
4428 /*
4429 * We need to recalculate the starting point for the zonelist iterator
4430 * because we might have used different nodemask in the fast path, or
4431 * there was a cpuset modification and we are retrying - otherwise we
4432 * could end up iterating over non-eligible zones endlessly.
4433 */
4434 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4435 ac->high_zoneidx, ac->nodemask);
4436 if (!ac->preferred_zoneref->zone)
4437 goto nopage;
4438
0a79cdad 4439 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4440 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4441
4442 /*
4443 * The adjusted alloc_flags might result in immediate success, so try
4444 * that first
4445 */
4446 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4447 if (page)
4448 goto got_pg;
4449
a8161d1e
VB
4450 /*
4451 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4452 * that we have enough base pages and don't need to reclaim. For non-
4453 * movable high-order allocations, do that as well, as compaction will
4454 * try prevent permanent fragmentation by migrating from blocks of the
4455 * same migratetype.
4456 * Don't try this for allocations that are allowed to ignore
4457 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4458 */
282722b0
VB
4459 if (can_direct_reclaim &&
4460 (costly_order ||
4461 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4462 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4463 page = __alloc_pages_direct_compact(gfp_mask, order,
4464 alloc_flags, ac,
a5508cd8 4465 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4466 &compact_result);
4467 if (page)
4468 goto got_pg;
4469
3eb2771b
VB
4470 /*
4471 * Checks for costly allocations with __GFP_NORETRY, which
4472 * includes THP page fault allocations
4473 */
282722b0 4474 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4475 /*
4476 * If compaction is deferred for high-order allocations,
4477 * it is because sync compaction recently failed. If
4478 * this is the case and the caller requested a THP
4479 * allocation, we do not want to heavily disrupt the
4480 * system, so we fail the allocation instead of entering
4481 * direct reclaim.
4482 */
4483 if (compact_result == COMPACT_DEFERRED)
4484 goto nopage;
4485
a8161d1e 4486 /*
3eb2771b
VB
4487 * Looks like reclaim/compaction is worth trying, but
4488 * sync compaction could be very expensive, so keep
25160354 4489 * using async compaction.
a8161d1e 4490 */
a5508cd8 4491 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4492 }
4493 }
23771235 4494
31a6c190 4495retry:
23771235 4496 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4497 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4498 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4499
cd04ae1e
MH
4500 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4501 if (reserve_flags)
4502 alloc_flags = reserve_flags;
23771235 4503
e46e7b77 4504 /*
d6a24df0
VB
4505 * Reset the nodemask and zonelist iterators if memory policies can be
4506 * ignored. These allocations are high priority and system rather than
4507 * user oriented.
e46e7b77 4508 */
cd04ae1e 4509 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4510 ac->nodemask = NULL;
e46e7b77
MG
4511 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4512 ac->high_zoneidx, ac->nodemask);
4513 }
4514
23771235 4515 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4516 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4517 if (page)
4518 goto got_pg;
1da177e4 4519
d0164adc 4520 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4521 if (!can_direct_reclaim)
1da177e4
LT
4522 goto nopage;
4523
9a67f648
MH
4524 /* Avoid recursion of direct reclaim */
4525 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4526 goto nopage;
4527
a8161d1e
VB
4528 /* Try direct reclaim and then allocating */
4529 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4530 &did_some_progress);
4531 if (page)
4532 goto got_pg;
4533
4534 /* Try direct compaction and then allocating */
a9263751 4535 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4536 compact_priority, &compact_result);
56de7263
MG
4537 if (page)
4538 goto got_pg;
75f30861 4539
9083905a
JW
4540 /* Do not loop if specifically requested */
4541 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4542 goto nopage;
9083905a 4543
0a0337e0
MH
4544 /*
4545 * Do not retry costly high order allocations unless they are
dcda9b04 4546 * __GFP_RETRY_MAYFAIL
0a0337e0 4547 */
dcda9b04 4548 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4549 goto nopage;
0a0337e0 4550
0a0337e0 4551 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4552 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4553 goto retry;
4554
33c2d214
MH
4555 /*
4556 * It doesn't make any sense to retry for the compaction if the order-0
4557 * reclaim is not able to make any progress because the current
4558 * implementation of the compaction depends on the sufficient amount
4559 * of free memory (see __compaction_suitable)
4560 */
4561 if (did_some_progress > 0 &&
86a294a8 4562 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4563 compact_result, &compact_priority,
d9436498 4564 &compaction_retries))
33c2d214
MH
4565 goto retry;
4566
902b6281
VB
4567
4568 /* Deal with possible cpuset update races before we start OOM killing */
4569 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4570 goto retry_cpuset;
4571
9083905a
JW
4572 /* Reclaim has failed us, start killing things */
4573 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4574 if (page)
4575 goto got_pg;
4576
9a67f648 4577 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4578 if (tsk_is_oom_victim(current) &&
4579 (alloc_flags == ALLOC_OOM ||
c288983d 4580 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4581 goto nopage;
4582
9083905a 4583 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4584 if (did_some_progress) {
4585 no_progress_loops = 0;
9083905a 4586 goto retry;
0a0337e0 4587 }
9083905a 4588
1da177e4 4589nopage:
902b6281
VB
4590 /* Deal with possible cpuset update races before we fail */
4591 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4592 goto retry_cpuset;
4593
9a67f648
MH
4594 /*
4595 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4596 * we always retry
4597 */
4598 if (gfp_mask & __GFP_NOFAIL) {
4599 /*
4600 * All existing users of the __GFP_NOFAIL are blockable, so warn
4601 * of any new users that actually require GFP_NOWAIT
4602 */
4603 if (WARN_ON_ONCE(!can_direct_reclaim))
4604 goto fail;
4605
4606 /*
4607 * PF_MEMALLOC request from this context is rather bizarre
4608 * because we cannot reclaim anything and only can loop waiting
4609 * for somebody to do a work for us
4610 */
4611 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4612
4613 /*
4614 * non failing costly orders are a hard requirement which we
4615 * are not prepared for much so let's warn about these users
4616 * so that we can identify them and convert them to something
4617 * else.
4618 */
4619 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4620
6c18ba7a
MH
4621 /*
4622 * Help non-failing allocations by giving them access to memory
4623 * reserves but do not use ALLOC_NO_WATERMARKS because this
4624 * could deplete whole memory reserves which would just make
4625 * the situation worse
4626 */
4627 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4628 if (page)
4629 goto got_pg;
4630
9a67f648
MH
4631 cond_resched();
4632 goto retry;
4633 }
4634fail:
a8e99259 4635 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4636 "page allocation failure: order:%u", order);
1da177e4 4637got_pg:
072bb0aa 4638 return page;
1da177e4 4639}
11e33f6a 4640
9cd75558 4641static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4642 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4643 struct alloc_context *ac, gfp_t *alloc_mask,
4644 unsigned int *alloc_flags)
11e33f6a 4645{
9cd75558 4646 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4647 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4648 ac->nodemask = nodemask;
4649 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4650
682a3385 4651 if (cpusets_enabled()) {
9cd75558 4652 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4653 if (!ac->nodemask)
4654 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4655 else
4656 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4657 }
4658
d92a8cfc
PZ
4659 fs_reclaim_acquire(gfp_mask);
4660 fs_reclaim_release(gfp_mask);
11e33f6a 4661
d0164adc 4662 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4663
4664 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4665 return false;
11e33f6a 4666
d883c6cf
JK
4667 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4668 *alloc_flags |= ALLOC_CMA;
4669
9cd75558
MG
4670 return true;
4671}
21bb9bd1 4672
9cd75558 4673/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4674static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4675{
c9ab0c4f 4676 /* Dirty zone balancing only done in the fast path */
9cd75558 4677 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4678
e46e7b77
MG
4679 /*
4680 * The preferred zone is used for statistics but crucially it is
4681 * also used as the starting point for the zonelist iterator. It
4682 * may get reset for allocations that ignore memory policies.
4683 */
9cd75558
MG
4684 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4685 ac->high_zoneidx, ac->nodemask);
4686}
4687
4688/*
4689 * This is the 'heart' of the zoned buddy allocator.
4690 */
4691struct page *
04ec6264
VB
4692__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4693 nodemask_t *nodemask)
9cd75558
MG
4694{
4695 struct page *page;
4696 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4697 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4698 struct alloc_context ac = { };
4699
c63ae43b
MH
4700 /*
4701 * There are several places where we assume that the order value is sane
4702 * so bail out early if the request is out of bound.
4703 */
4704 if (unlikely(order >= MAX_ORDER)) {
4705 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4706 return NULL;
4707 }
4708
9cd75558 4709 gfp_mask &= gfp_allowed_mask;
f19360f0 4710 alloc_mask = gfp_mask;
04ec6264 4711 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4712 return NULL;
4713
a380b40a 4714 finalise_ac(gfp_mask, &ac);
5bb1b169 4715
6bb15450
MG
4716 /*
4717 * Forbid the first pass from falling back to types that fragment
4718 * memory until all local zones are considered.
4719 */
0a79cdad 4720 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4721
5117f45d 4722 /* First allocation attempt */
a9263751 4723 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4724 if (likely(page))
4725 goto out;
11e33f6a 4726
4fcb0971 4727 /*
7dea19f9
MH
4728 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4729 * resp. GFP_NOIO which has to be inherited for all allocation requests
4730 * from a particular context which has been marked by
4731 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4732 */
7dea19f9 4733 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4734 ac.spread_dirty_pages = false;
23f086f9 4735
4741526b
MG
4736 /*
4737 * Restore the original nodemask if it was potentially replaced with
4738 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4739 */
e47483bc 4740 if (unlikely(ac.nodemask != nodemask))
4741526b 4741 ac.nodemask = nodemask;
16096c25 4742
4fcb0971 4743 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4744
4fcb0971 4745out:
c4159a75 4746 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
60cd4bcd 4747 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
c4159a75
VD
4748 __free_pages(page, order);
4749 page = NULL;
4949148a
VD
4750 }
4751
4fcb0971
MG
4752 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4753
11e33f6a 4754 return page;
1da177e4 4755}
d239171e 4756EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4757
4758/*
9ea9a680
MH
4759 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4760 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4761 * you need to access high mem.
1da177e4 4762 */
920c7a5d 4763unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4764{
945a1113
AM
4765 struct page *page;
4766
9ea9a680 4767 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4768 if (!page)
4769 return 0;
4770 return (unsigned long) page_address(page);
4771}
1da177e4
LT
4772EXPORT_SYMBOL(__get_free_pages);
4773
920c7a5d 4774unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4775{
945a1113 4776 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4777}
1da177e4
LT
4778EXPORT_SYMBOL(get_zeroed_page);
4779
742aa7fb 4780static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4781{
742aa7fb
AL
4782 if (order == 0) /* Via pcp? */
4783 free_unref_page(page);
4784 else
4785 __free_pages_ok(page, order);
1da177e4
LT
4786}
4787
742aa7fb
AL
4788void __free_pages(struct page *page, unsigned int order)
4789{
4790 if (put_page_testzero(page))
4791 free_the_page(page, order);
4792}
1da177e4
LT
4793EXPORT_SYMBOL(__free_pages);
4794
920c7a5d 4795void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4796{
4797 if (addr != 0) {
725d704e 4798 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4799 __free_pages(virt_to_page((void *)addr), order);
4800 }
4801}
4802
4803EXPORT_SYMBOL(free_pages);
4804
b63ae8ca
AD
4805/*
4806 * Page Fragment:
4807 * An arbitrary-length arbitrary-offset area of memory which resides
4808 * within a 0 or higher order page. Multiple fragments within that page
4809 * are individually refcounted, in the page's reference counter.
4810 *
4811 * The page_frag functions below provide a simple allocation framework for
4812 * page fragments. This is used by the network stack and network device
4813 * drivers to provide a backing region of memory for use as either an
4814 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4815 */
2976db80
AD
4816static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4817 gfp_t gfp_mask)
b63ae8ca
AD
4818{
4819 struct page *page = NULL;
4820 gfp_t gfp = gfp_mask;
4821
4822#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4823 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4824 __GFP_NOMEMALLOC;
4825 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4826 PAGE_FRAG_CACHE_MAX_ORDER);
4827 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4828#endif
4829 if (unlikely(!page))
4830 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4831
4832 nc->va = page ? page_address(page) : NULL;
4833
4834 return page;
4835}
4836
2976db80 4837void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4838{
4839 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4840
742aa7fb
AL
4841 if (page_ref_sub_and_test(page, count))
4842 free_the_page(page, compound_order(page));
44fdffd7 4843}
2976db80 4844EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4845
8c2dd3e4
AD
4846void *page_frag_alloc(struct page_frag_cache *nc,
4847 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4848{
4849 unsigned int size = PAGE_SIZE;
4850 struct page *page;
4851 int offset;
4852
4853 if (unlikely(!nc->va)) {
4854refill:
2976db80 4855 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4856 if (!page)
4857 return NULL;
4858
4859#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4860 /* if size can vary use size else just use PAGE_SIZE */
4861 size = nc->size;
4862#endif
4863 /* Even if we own the page, we do not use atomic_set().
4864 * This would break get_page_unless_zero() users.
4865 */
86447726 4866 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4867
4868 /* reset page count bias and offset to start of new frag */
2f064f34 4869 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4870 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4871 nc->offset = size;
4872 }
4873
4874 offset = nc->offset - fragsz;
4875 if (unlikely(offset < 0)) {
4876 page = virt_to_page(nc->va);
4877
fe896d18 4878 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4879 goto refill;
4880
4881#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4882 /* if size can vary use size else just use PAGE_SIZE */
4883 size = nc->size;
4884#endif
4885 /* OK, page count is 0, we can safely set it */
86447726 4886 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4887
4888 /* reset page count bias and offset to start of new frag */
86447726 4889 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4890 offset = size - fragsz;
4891 }
4892
4893 nc->pagecnt_bias--;
4894 nc->offset = offset;
4895
4896 return nc->va + offset;
4897}
8c2dd3e4 4898EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4899
4900/*
4901 * Frees a page fragment allocated out of either a compound or order 0 page.
4902 */
8c2dd3e4 4903void page_frag_free(void *addr)
b63ae8ca
AD
4904{
4905 struct page *page = virt_to_head_page(addr);
4906
742aa7fb
AL
4907 if (unlikely(put_page_testzero(page)))
4908 free_the_page(page, compound_order(page));
b63ae8ca 4909}
8c2dd3e4 4910EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4911
d00181b9
KS
4912static void *make_alloc_exact(unsigned long addr, unsigned int order,
4913 size_t size)
ee85c2e1
AK
4914{
4915 if (addr) {
4916 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4917 unsigned long used = addr + PAGE_ALIGN(size);
4918
4919 split_page(virt_to_page((void *)addr), order);
4920 while (used < alloc_end) {
4921 free_page(used);
4922 used += PAGE_SIZE;
4923 }
4924 }
4925 return (void *)addr;
4926}
4927
2be0ffe2
TT
4928/**
4929 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4930 * @size: the number of bytes to allocate
63931eb9 4931 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4932 *
4933 * This function is similar to alloc_pages(), except that it allocates the
4934 * minimum number of pages to satisfy the request. alloc_pages() can only
4935 * allocate memory in power-of-two pages.
4936 *
4937 * This function is also limited by MAX_ORDER.
4938 *
4939 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4940 *
4941 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4942 */
4943void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4944{
4945 unsigned int order = get_order(size);
4946 unsigned long addr;
4947
63931eb9
VB
4948 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4949 gfp_mask &= ~__GFP_COMP;
4950
2be0ffe2 4951 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4952 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4953}
4954EXPORT_SYMBOL(alloc_pages_exact);
4955
ee85c2e1
AK
4956/**
4957 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4958 * pages on a node.
b5e6ab58 4959 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4960 * @size: the number of bytes to allocate
63931eb9 4961 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4962 *
4963 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4964 * back.
a862f68a
MR
4965 *
4966 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4967 */
e1931811 4968void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4969{
d00181b9 4970 unsigned int order = get_order(size);
63931eb9
VB
4971 struct page *p;
4972
4973 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4974 gfp_mask &= ~__GFP_COMP;
4975
4976 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4977 if (!p)
4978 return NULL;
4979 return make_alloc_exact((unsigned long)page_address(p), order, size);
4980}
ee85c2e1 4981
2be0ffe2
TT
4982/**
4983 * free_pages_exact - release memory allocated via alloc_pages_exact()
4984 * @virt: the value returned by alloc_pages_exact.
4985 * @size: size of allocation, same value as passed to alloc_pages_exact().
4986 *
4987 * Release the memory allocated by a previous call to alloc_pages_exact.
4988 */
4989void free_pages_exact(void *virt, size_t size)
4990{
4991 unsigned long addr = (unsigned long)virt;
4992 unsigned long end = addr + PAGE_ALIGN(size);
4993
4994 while (addr < end) {
4995 free_page(addr);
4996 addr += PAGE_SIZE;
4997 }
4998}
4999EXPORT_SYMBOL(free_pages_exact);
5000
e0fb5815
ZY
5001/**
5002 * nr_free_zone_pages - count number of pages beyond high watermark
5003 * @offset: The zone index of the highest zone
5004 *
a862f68a 5005 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5006 * high watermark within all zones at or below a given zone index. For each
5007 * zone, the number of pages is calculated as:
0e056eb5 5008 *
5009 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5010 *
5011 * Return: number of pages beyond high watermark.
e0fb5815 5012 */
ebec3862 5013static unsigned long nr_free_zone_pages(int offset)
1da177e4 5014{
dd1a239f 5015 struct zoneref *z;
54a6eb5c
MG
5016 struct zone *zone;
5017
e310fd43 5018 /* Just pick one node, since fallback list is circular */
ebec3862 5019 unsigned long sum = 0;
1da177e4 5020
0e88460d 5021 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5022
54a6eb5c 5023 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5024 unsigned long size = zone_managed_pages(zone);
41858966 5025 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5026 if (size > high)
5027 sum += size - high;
1da177e4
LT
5028 }
5029
5030 return sum;
5031}
5032
e0fb5815
ZY
5033/**
5034 * nr_free_buffer_pages - count number of pages beyond high watermark
5035 *
5036 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5037 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5038 *
5039 * Return: number of pages beyond high watermark within ZONE_DMA and
5040 * ZONE_NORMAL.
1da177e4 5041 */
ebec3862 5042unsigned long nr_free_buffer_pages(void)
1da177e4 5043{
af4ca457 5044 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5045}
c2f1a551 5046EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5047
e0fb5815
ZY
5048/**
5049 * nr_free_pagecache_pages - count number of pages beyond high watermark
5050 *
5051 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5052 * high watermark within all zones.
a862f68a
MR
5053 *
5054 * Return: number of pages beyond high watermark within all zones.
1da177e4 5055 */
ebec3862 5056unsigned long nr_free_pagecache_pages(void)
1da177e4 5057{
2a1e274a 5058 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5059}
08e0f6a9
CL
5060
5061static inline void show_node(struct zone *zone)
1da177e4 5062{
e5adfffc 5063 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5064 printk("Node %d ", zone_to_nid(zone));
1da177e4 5065}
1da177e4 5066
d02bd27b
IR
5067long si_mem_available(void)
5068{
5069 long available;
5070 unsigned long pagecache;
5071 unsigned long wmark_low = 0;
5072 unsigned long pages[NR_LRU_LISTS];
b29940c1 5073 unsigned long reclaimable;
d02bd27b
IR
5074 struct zone *zone;
5075 int lru;
5076
5077 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5078 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5079
5080 for_each_zone(zone)
a9214443 5081 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5082
5083 /*
5084 * Estimate the amount of memory available for userspace allocations,
5085 * without causing swapping.
5086 */
c41f012a 5087 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5088
5089 /*
5090 * Not all the page cache can be freed, otherwise the system will
5091 * start swapping. Assume at least half of the page cache, or the
5092 * low watermark worth of cache, needs to stay.
5093 */
5094 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5095 pagecache -= min(pagecache / 2, wmark_low);
5096 available += pagecache;
5097
5098 /*
b29940c1
VB
5099 * Part of the reclaimable slab and other kernel memory consists of
5100 * items that are in use, and cannot be freed. Cap this estimate at the
5101 * low watermark.
d02bd27b 5102 */
b29940c1
VB
5103 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5104 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5105 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5106
d02bd27b
IR
5107 if (available < 0)
5108 available = 0;
5109 return available;
5110}
5111EXPORT_SYMBOL_GPL(si_mem_available);
5112
1da177e4
LT
5113void si_meminfo(struct sysinfo *val)
5114{
ca79b0c2 5115 val->totalram = totalram_pages();
11fb9989 5116 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5117 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5118 val->bufferram = nr_blockdev_pages();
ca79b0c2 5119 val->totalhigh = totalhigh_pages();
1da177e4 5120 val->freehigh = nr_free_highpages();
1da177e4
LT
5121 val->mem_unit = PAGE_SIZE;
5122}
5123
5124EXPORT_SYMBOL(si_meminfo);
5125
5126#ifdef CONFIG_NUMA
5127void si_meminfo_node(struct sysinfo *val, int nid)
5128{
cdd91a77
JL
5129 int zone_type; /* needs to be signed */
5130 unsigned long managed_pages = 0;
fc2bd799
JK
5131 unsigned long managed_highpages = 0;
5132 unsigned long free_highpages = 0;
1da177e4
LT
5133 pg_data_t *pgdat = NODE_DATA(nid);
5134
cdd91a77 5135 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5136 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5137 val->totalram = managed_pages;
11fb9989 5138 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5139 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5140#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5141 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5142 struct zone *zone = &pgdat->node_zones[zone_type];
5143
5144 if (is_highmem(zone)) {
9705bea5 5145 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5146 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5147 }
5148 }
5149 val->totalhigh = managed_highpages;
5150 val->freehigh = free_highpages;
98d2b0eb 5151#else
fc2bd799
JK
5152 val->totalhigh = managed_highpages;
5153 val->freehigh = free_highpages;
98d2b0eb 5154#endif
1da177e4
LT
5155 val->mem_unit = PAGE_SIZE;
5156}
5157#endif
5158
ddd588b5 5159/*
7bf02ea2
DR
5160 * Determine whether the node should be displayed or not, depending on whether
5161 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5162 */
9af744d7 5163static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5164{
ddd588b5 5165 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5166 return false;
ddd588b5 5167
9af744d7
MH
5168 /*
5169 * no node mask - aka implicit memory numa policy. Do not bother with
5170 * the synchronization - read_mems_allowed_begin - because we do not
5171 * have to be precise here.
5172 */
5173 if (!nodemask)
5174 nodemask = &cpuset_current_mems_allowed;
5175
5176 return !node_isset(nid, *nodemask);
ddd588b5
DR
5177}
5178
1da177e4
LT
5179#define K(x) ((x) << (PAGE_SHIFT-10))
5180
377e4f16
RV
5181static void show_migration_types(unsigned char type)
5182{
5183 static const char types[MIGRATE_TYPES] = {
5184 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5185 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5186 [MIGRATE_RECLAIMABLE] = 'E',
5187 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5188#ifdef CONFIG_CMA
5189 [MIGRATE_CMA] = 'C',
5190#endif
194159fb 5191#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5192 [MIGRATE_ISOLATE] = 'I',
194159fb 5193#endif
377e4f16
RV
5194 };
5195 char tmp[MIGRATE_TYPES + 1];
5196 char *p = tmp;
5197 int i;
5198
5199 for (i = 0; i < MIGRATE_TYPES; i++) {
5200 if (type & (1 << i))
5201 *p++ = types[i];
5202 }
5203
5204 *p = '\0';
1f84a18f 5205 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5206}
5207
1da177e4
LT
5208/*
5209 * Show free area list (used inside shift_scroll-lock stuff)
5210 * We also calculate the percentage fragmentation. We do this by counting the
5211 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5212 *
5213 * Bits in @filter:
5214 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5215 * cpuset.
1da177e4 5216 */
9af744d7 5217void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5218{
d1bfcdb8 5219 unsigned long free_pcp = 0;
c7241913 5220 int cpu;
1da177e4 5221 struct zone *zone;
599d0c95 5222 pg_data_t *pgdat;
1da177e4 5223
ee99c71c 5224 for_each_populated_zone(zone) {
9af744d7 5225 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5226 continue;
d1bfcdb8 5227
761b0677
KK
5228 for_each_online_cpu(cpu)
5229 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5230 }
5231
a731286d
KM
5232 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5233 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5234 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5235 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5236 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5237 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5238 global_node_page_state(NR_ACTIVE_ANON),
5239 global_node_page_state(NR_INACTIVE_ANON),
5240 global_node_page_state(NR_ISOLATED_ANON),
5241 global_node_page_state(NR_ACTIVE_FILE),
5242 global_node_page_state(NR_INACTIVE_FILE),
5243 global_node_page_state(NR_ISOLATED_FILE),
5244 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5245 global_node_page_state(NR_FILE_DIRTY),
5246 global_node_page_state(NR_WRITEBACK),
5247 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5248 global_node_page_state(NR_SLAB_RECLAIMABLE),
5249 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5250 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5251 global_node_page_state(NR_SHMEM),
c41f012a
MH
5252 global_zone_page_state(NR_PAGETABLE),
5253 global_zone_page_state(NR_BOUNCE),
5254 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5255 free_pcp,
c41f012a 5256 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5257
599d0c95 5258 for_each_online_pgdat(pgdat) {
9af744d7 5259 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5260 continue;
5261
599d0c95
MG
5262 printk("Node %d"
5263 " active_anon:%lukB"
5264 " inactive_anon:%lukB"
5265 " active_file:%lukB"
5266 " inactive_file:%lukB"
5267 " unevictable:%lukB"
5268 " isolated(anon):%lukB"
5269 " isolated(file):%lukB"
50658e2e 5270 " mapped:%lukB"
11fb9989
MG
5271 " dirty:%lukB"
5272 " writeback:%lukB"
5273 " shmem:%lukB"
5274#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5275 " shmem_thp: %lukB"
5276 " shmem_pmdmapped: %lukB"
5277 " anon_thp: %lukB"
5278#endif
5279 " writeback_tmp:%lukB"
5280 " unstable:%lukB"
599d0c95
MG
5281 " all_unreclaimable? %s"
5282 "\n",
5283 pgdat->node_id,
5284 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5285 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5286 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5287 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5288 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5289 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5290 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5291 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5292 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5293 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5294 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5295#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5296 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5297 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5298 * HPAGE_PMD_NR),
5299 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5300#endif
11fb9989
MG
5301 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5302 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5303 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5304 "yes" : "no");
599d0c95
MG
5305 }
5306
ee99c71c 5307 for_each_populated_zone(zone) {
1da177e4
LT
5308 int i;
5309
9af744d7 5310 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5311 continue;
d1bfcdb8
KK
5312
5313 free_pcp = 0;
5314 for_each_online_cpu(cpu)
5315 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5316
1da177e4 5317 show_node(zone);
1f84a18f
JP
5318 printk(KERN_CONT
5319 "%s"
1da177e4
LT
5320 " free:%lukB"
5321 " min:%lukB"
5322 " low:%lukB"
5323 " high:%lukB"
71c799f4
MK
5324 " active_anon:%lukB"
5325 " inactive_anon:%lukB"
5326 " active_file:%lukB"
5327 " inactive_file:%lukB"
5328 " unevictable:%lukB"
5a1c84b4 5329 " writepending:%lukB"
1da177e4 5330 " present:%lukB"
9feedc9d 5331 " managed:%lukB"
4a0aa73f 5332 " mlocked:%lukB"
c6a7f572 5333 " kernel_stack:%lukB"
4a0aa73f 5334 " pagetables:%lukB"
4a0aa73f 5335 " bounce:%lukB"
d1bfcdb8
KK
5336 " free_pcp:%lukB"
5337 " local_pcp:%ukB"
d1ce749a 5338 " free_cma:%lukB"
1da177e4
LT
5339 "\n",
5340 zone->name,
88f5acf8 5341 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5342 K(min_wmark_pages(zone)),
5343 K(low_wmark_pages(zone)),
5344 K(high_wmark_pages(zone)),
71c799f4
MK
5345 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5346 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5347 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5348 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5349 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5350 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5351 K(zone->present_pages),
9705bea5 5352 K(zone_managed_pages(zone)),
4a0aa73f 5353 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5354 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5355 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5356 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5357 K(free_pcp),
5358 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5359 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5360 printk("lowmem_reserve[]:");
5361 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5362 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5363 printk(KERN_CONT "\n");
1da177e4
LT
5364 }
5365
ee99c71c 5366 for_each_populated_zone(zone) {
d00181b9
KS
5367 unsigned int order;
5368 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5369 unsigned char types[MAX_ORDER];
1da177e4 5370
9af744d7 5371 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5372 continue;
1da177e4 5373 show_node(zone);
1f84a18f 5374 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5375
5376 spin_lock_irqsave(&zone->lock, flags);
5377 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5378 struct free_area *area = &zone->free_area[order];
5379 int type;
5380
5381 nr[order] = area->nr_free;
8f9de51a 5382 total += nr[order] << order;
377e4f16
RV
5383
5384 types[order] = 0;
5385 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5386 if (!free_area_empty(area, type))
377e4f16
RV
5387 types[order] |= 1 << type;
5388 }
1da177e4
LT
5389 }
5390 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5391 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5392 printk(KERN_CONT "%lu*%lukB ",
5393 nr[order], K(1UL) << order);
377e4f16
RV
5394 if (nr[order])
5395 show_migration_types(types[order]);
5396 }
1f84a18f 5397 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5398 }
5399
949f7ec5
DR
5400 hugetlb_show_meminfo();
5401
11fb9989 5402 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5403
1da177e4
LT
5404 show_swap_cache_info();
5405}
5406
19770b32
MG
5407static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5408{
5409 zoneref->zone = zone;
5410 zoneref->zone_idx = zone_idx(zone);
5411}
5412
1da177e4
LT
5413/*
5414 * Builds allocation fallback zone lists.
1a93205b
CL
5415 *
5416 * Add all populated zones of a node to the zonelist.
1da177e4 5417 */
9d3be21b 5418static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5419{
1a93205b 5420 struct zone *zone;
bc732f1d 5421 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5422 int nr_zones = 0;
02a68a5e
CL
5423
5424 do {
2f6726e5 5425 zone_type--;
070f8032 5426 zone = pgdat->node_zones + zone_type;
6aa303de 5427 if (managed_zone(zone)) {
9d3be21b 5428 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5429 check_highest_zone(zone_type);
1da177e4 5430 }
2f6726e5 5431 } while (zone_type);
bc732f1d 5432
070f8032 5433 return nr_zones;
1da177e4
LT
5434}
5435
5436#ifdef CONFIG_NUMA
f0c0b2b8
KH
5437
5438static int __parse_numa_zonelist_order(char *s)
5439{
c9bff3ee
MH
5440 /*
5441 * We used to support different zonlists modes but they turned
5442 * out to be just not useful. Let's keep the warning in place
5443 * if somebody still use the cmd line parameter so that we do
5444 * not fail it silently
5445 */
5446 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5447 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5448 return -EINVAL;
5449 }
5450 return 0;
5451}
5452
5453static __init int setup_numa_zonelist_order(char *s)
5454{
ecb256f8
VL
5455 if (!s)
5456 return 0;
5457
c9bff3ee 5458 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5459}
5460early_param("numa_zonelist_order", setup_numa_zonelist_order);
5461
c9bff3ee
MH
5462char numa_zonelist_order[] = "Node";
5463
f0c0b2b8
KH
5464/*
5465 * sysctl handler for numa_zonelist_order
5466 */
cccad5b9 5467int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5468 void __user *buffer, size_t *length,
f0c0b2b8
KH
5469 loff_t *ppos)
5470{
c9bff3ee 5471 char *str;
f0c0b2b8
KH
5472 int ret;
5473
c9bff3ee
MH
5474 if (!write)
5475 return proc_dostring(table, write, buffer, length, ppos);
5476 str = memdup_user_nul(buffer, 16);
5477 if (IS_ERR(str))
5478 return PTR_ERR(str);
dacbde09 5479
c9bff3ee
MH
5480 ret = __parse_numa_zonelist_order(str);
5481 kfree(str);
443c6f14 5482 return ret;
f0c0b2b8
KH
5483}
5484
5485
62bc62a8 5486#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5487static int node_load[MAX_NUMNODES];
5488
1da177e4 5489/**
4dc3b16b 5490 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5491 * @node: node whose fallback list we're appending
5492 * @used_node_mask: nodemask_t of already used nodes
5493 *
5494 * We use a number of factors to determine which is the next node that should
5495 * appear on a given node's fallback list. The node should not have appeared
5496 * already in @node's fallback list, and it should be the next closest node
5497 * according to the distance array (which contains arbitrary distance values
5498 * from each node to each node in the system), and should also prefer nodes
5499 * with no CPUs, since presumably they'll have very little allocation pressure
5500 * on them otherwise.
a862f68a
MR
5501 *
5502 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5503 */
f0c0b2b8 5504static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5505{
4cf808eb 5506 int n, val;
1da177e4 5507 int min_val = INT_MAX;
00ef2d2f 5508 int best_node = NUMA_NO_NODE;
a70f7302 5509 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5510
4cf808eb
LT
5511 /* Use the local node if we haven't already */
5512 if (!node_isset(node, *used_node_mask)) {
5513 node_set(node, *used_node_mask);
5514 return node;
5515 }
1da177e4 5516
4b0ef1fe 5517 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5518
5519 /* Don't want a node to appear more than once */
5520 if (node_isset(n, *used_node_mask))
5521 continue;
5522
1da177e4
LT
5523 /* Use the distance array to find the distance */
5524 val = node_distance(node, n);
5525
4cf808eb
LT
5526 /* Penalize nodes under us ("prefer the next node") */
5527 val += (n < node);
5528
1da177e4 5529 /* Give preference to headless and unused nodes */
a70f7302
RR
5530 tmp = cpumask_of_node(n);
5531 if (!cpumask_empty(tmp))
1da177e4
LT
5532 val += PENALTY_FOR_NODE_WITH_CPUS;
5533
5534 /* Slight preference for less loaded node */
5535 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5536 val += node_load[n];
5537
5538 if (val < min_val) {
5539 min_val = val;
5540 best_node = n;
5541 }
5542 }
5543
5544 if (best_node >= 0)
5545 node_set(best_node, *used_node_mask);
5546
5547 return best_node;
5548}
5549
f0c0b2b8
KH
5550
5551/*
5552 * Build zonelists ordered by node and zones within node.
5553 * This results in maximum locality--normal zone overflows into local
5554 * DMA zone, if any--but risks exhausting DMA zone.
5555 */
9d3be21b
MH
5556static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5557 unsigned nr_nodes)
1da177e4 5558{
9d3be21b
MH
5559 struct zoneref *zonerefs;
5560 int i;
5561
5562 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5563
5564 for (i = 0; i < nr_nodes; i++) {
5565 int nr_zones;
5566
5567 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5568
9d3be21b
MH
5569 nr_zones = build_zonerefs_node(node, zonerefs);
5570 zonerefs += nr_zones;
5571 }
5572 zonerefs->zone = NULL;
5573 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5574}
5575
523b9458
CL
5576/*
5577 * Build gfp_thisnode zonelists
5578 */
5579static void build_thisnode_zonelists(pg_data_t *pgdat)
5580{
9d3be21b
MH
5581 struct zoneref *zonerefs;
5582 int nr_zones;
523b9458 5583
9d3be21b
MH
5584 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5585 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5586 zonerefs += nr_zones;
5587 zonerefs->zone = NULL;
5588 zonerefs->zone_idx = 0;
523b9458
CL
5589}
5590
f0c0b2b8
KH
5591/*
5592 * Build zonelists ordered by zone and nodes within zones.
5593 * This results in conserving DMA zone[s] until all Normal memory is
5594 * exhausted, but results in overflowing to remote node while memory
5595 * may still exist in local DMA zone.
5596 */
f0c0b2b8 5597
f0c0b2b8
KH
5598static void build_zonelists(pg_data_t *pgdat)
5599{
9d3be21b
MH
5600 static int node_order[MAX_NUMNODES];
5601 int node, load, nr_nodes = 0;
1da177e4 5602 nodemask_t used_mask;
f0c0b2b8 5603 int local_node, prev_node;
1da177e4
LT
5604
5605 /* NUMA-aware ordering of nodes */
5606 local_node = pgdat->node_id;
62bc62a8 5607 load = nr_online_nodes;
1da177e4
LT
5608 prev_node = local_node;
5609 nodes_clear(used_mask);
f0c0b2b8 5610
f0c0b2b8 5611 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5612 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5613 /*
5614 * We don't want to pressure a particular node.
5615 * So adding penalty to the first node in same
5616 * distance group to make it round-robin.
5617 */
957f822a
DR
5618 if (node_distance(local_node, node) !=
5619 node_distance(local_node, prev_node))
f0c0b2b8
KH
5620 node_load[node] = load;
5621
9d3be21b 5622 node_order[nr_nodes++] = node;
1da177e4
LT
5623 prev_node = node;
5624 load--;
1da177e4 5625 }
523b9458 5626
9d3be21b 5627 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5628 build_thisnode_zonelists(pgdat);
1da177e4
LT
5629}
5630
7aac7898
LS
5631#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5632/*
5633 * Return node id of node used for "local" allocations.
5634 * I.e., first node id of first zone in arg node's generic zonelist.
5635 * Used for initializing percpu 'numa_mem', which is used primarily
5636 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5637 */
5638int local_memory_node(int node)
5639{
c33d6c06 5640 struct zoneref *z;
7aac7898 5641
c33d6c06 5642 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5643 gfp_zone(GFP_KERNEL),
c33d6c06 5644 NULL);
c1093b74 5645 return zone_to_nid(z->zone);
7aac7898
LS
5646}
5647#endif
f0c0b2b8 5648
6423aa81
JK
5649static void setup_min_unmapped_ratio(void);
5650static void setup_min_slab_ratio(void);
1da177e4
LT
5651#else /* CONFIG_NUMA */
5652
f0c0b2b8 5653static void build_zonelists(pg_data_t *pgdat)
1da177e4 5654{
19655d34 5655 int node, local_node;
9d3be21b
MH
5656 struct zoneref *zonerefs;
5657 int nr_zones;
1da177e4
LT
5658
5659 local_node = pgdat->node_id;
1da177e4 5660
9d3be21b
MH
5661 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5662 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5663 zonerefs += nr_zones;
1da177e4 5664
54a6eb5c
MG
5665 /*
5666 * Now we build the zonelist so that it contains the zones
5667 * of all the other nodes.
5668 * We don't want to pressure a particular node, so when
5669 * building the zones for node N, we make sure that the
5670 * zones coming right after the local ones are those from
5671 * node N+1 (modulo N)
5672 */
5673 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5674 if (!node_online(node))
5675 continue;
9d3be21b
MH
5676 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5677 zonerefs += nr_zones;
1da177e4 5678 }
54a6eb5c
MG
5679 for (node = 0; node < local_node; node++) {
5680 if (!node_online(node))
5681 continue;
9d3be21b
MH
5682 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5683 zonerefs += nr_zones;
54a6eb5c
MG
5684 }
5685
9d3be21b
MH
5686 zonerefs->zone = NULL;
5687 zonerefs->zone_idx = 0;
1da177e4
LT
5688}
5689
5690#endif /* CONFIG_NUMA */
5691
99dcc3e5
CL
5692/*
5693 * Boot pageset table. One per cpu which is going to be used for all
5694 * zones and all nodes. The parameters will be set in such a way
5695 * that an item put on a list will immediately be handed over to
5696 * the buddy list. This is safe since pageset manipulation is done
5697 * with interrupts disabled.
5698 *
5699 * The boot_pagesets must be kept even after bootup is complete for
5700 * unused processors and/or zones. They do play a role for bootstrapping
5701 * hotplugged processors.
5702 *
5703 * zoneinfo_show() and maybe other functions do
5704 * not check if the processor is online before following the pageset pointer.
5705 * Other parts of the kernel may not check if the zone is available.
5706 */
5707static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5708static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5709static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5710
11cd8638 5711static void __build_all_zonelists(void *data)
1da177e4 5712{
6811378e 5713 int nid;
afb6ebb3 5714 int __maybe_unused cpu;
9adb62a5 5715 pg_data_t *self = data;
b93e0f32
MH
5716 static DEFINE_SPINLOCK(lock);
5717
5718 spin_lock(&lock);
9276b1bc 5719
7f9cfb31
BL
5720#ifdef CONFIG_NUMA
5721 memset(node_load, 0, sizeof(node_load));
5722#endif
9adb62a5 5723
c1152583
WY
5724 /*
5725 * This node is hotadded and no memory is yet present. So just
5726 * building zonelists is fine - no need to touch other nodes.
5727 */
9adb62a5
JL
5728 if (self && !node_online(self->node_id)) {
5729 build_zonelists(self);
c1152583
WY
5730 } else {
5731 for_each_online_node(nid) {
5732 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5733
c1152583
WY
5734 build_zonelists(pgdat);
5735 }
99dcc3e5 5736
7aac7898
LS
5737#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5738 /*
5739 * We now know the "local memory node" for each node--
5740 * i.e., the node of the first zone in the generic zonelist.
5741 * Set up numa_mem percpu variable for on-line cpus. During
5742 * boot, only the boot cpu should be on-line; we'll init the
5743 * secondary cpus' numa_mem as they come on-line. During
5744 * node/memory hotplug, we'll fixup all on-line cpus.
5745 */
d9c9a0b9 5746 for_each_online_cpu(cpu)
7aac7898 5747 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5748#endif
d9c9a0b9 5749 }
b93e0f32
MH
5750
5751 spin_unlock(&lock);
6811378e
YG
5752}
5753
061f67bc
RV
5754static noinline void __init
5755build_all_zonelists_init(void)
5756{
afb6ebb3
MH
5757 int cpu;
5758
061f67bc 5759 __build_all_zonelists(NULL);
afb6ebb3
MH
5760
5761 /*
5762 * Initialize the boot_pagesets that are going to be used
5763 * for bootstrapping processors. The real pagesets for
5764 * each zone will be allocated later when the per cpu
5765 * allocator is available.
5766 *
5767 * boot_pagesets are used also for bootstrapping offline
5768 * cpus if the system is already booted because the pagesets
5769 * are needed to initialize allocators on a specific cpu too.
5770 * F.e. the percpu allocator needs the page allocator which
5771 * needs the percpu allocator in order to allocate its pagesets
5772 * (a chicken-egg dilemma).
5773 */
5774 for_each_possible_cpu(cpu)
5775 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5776
061f67bc
RV
5777 mminit_verify_zonelist();
5778 cpuset_init_current_mems_allowed();
5779}
5780
4eaf3f64 5781/*
4eaf3f64 5782 * unless system_state == SYSTEM_BOOTING.
061f67bc 5783 *
72675e13 5784 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5785 * [protected by SYSTEM_BOOTING].
4eaf3f64 5786 */
72675e13 5787void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5788{
5789 if (system_state == SYSTEM_BOOTING) {
061f67bc 5790 build_all_zonelists_init();
6811378e 5791 } else {
11cd8638 5792 __build_all_zonelists(pgdat);
6811378e
YG
5793 /* cpuset refresh routine should be here */
5794 }
bd1e22b8 5795 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5796 /*
5797 * Disable grouping by mobility if the number of pages in the
5798 * system is too low to allow the mechanism to work. It would be
5799 * more accurate, but expensive to check per-zone. This check is
5800 * made on memory-hotadd so a system can start with mobility
5801 * disabled and enable it later
5802 */
d9c23400 5803 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5804 page_group_by_mobility_disabled = 1;
5805 else
5806 page_group_by_mobility_disabled = 0;
5807
ce0725f7 5808 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5809 nr_online_nodes,
756a025f
JP
5810 page_group_by_mobility_disabled ? "off" : "on",
5811 vm_total_pages);
f0c0b2b8 5812#ifdef CONFIG_NUMA
f88dfff5 5813 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5814#endif
1da177e4
LT
5815}
5816
a9a9e77f
PT
5817/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5818static bool __meminit
5819overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5820{
5821#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5822 static struct memblock_region *r;
5823
5824 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5825 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5826 for_each_memblock(memory, r) {
5827 if (*pfn < memblock_region_memory_end_pfn(r))
5828 break;
5829 }
5830 }
5831 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5832 memblock_is_mirror(r)) {
5833 *pfn = memblock_region_memory_end_pfn(r);
5834 return true;
5835 }
5836 }
5837#endif
5838 return false;
5839}
5840
1da177e4
LT
5841/*
5842 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5843 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5844 * done. Non-atomic initialization, single-pass.
5845 */
c09b4240 5846void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5847 unsigned long start_pfn, enum memmap_context context,
5848 struct vmem_altmap *altmap)
1da177e4 5849{
a9a9e77f 5850 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5851 struct page *page;
1da177e4 5852
22b31eec
HD
5853 if (highest_memmap_pfn < end_pfn - 1)
5854 highest_memmap_pfn = end_pfn - 1;
5855
966cf44f 5856#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5857 /*
5858 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5859 * memory. We limit the total number of pages to initialize to just
5860 * those that might contain the memory mapping. We will defer the
5861 * ZONE_DEVICE page initialization until after we have released
5862 * the hotplug lock.
4b94ffdc 5863 */
966cf44f
AD
5864 if (zone == ZONE_DEVICE) {
5865 if (!altmap)
5866 return;
5867
5868 if (start_pfn == altmap->base_pfn)
5869 start_pfn += altmap->reserve;
5870 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5871 }
5872#endif
4b94ffdc 5873
cbe8dd4a 5874 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5875 /*
b72d0ffb
AM
5876 * There can be holes in boot-time mem_map[]s handed to this
5877 * function. They do not exist on hotplugged memory.
a2f3aa02 5878 */
a9a9e77f
PT
5879 if (context == MEMMAP_EARLY) {
5880 if (!early_pfn_valid(pfn))
b72d0ffb 5881 continue;
a9a9e77f
PT
5882 if (!early_pfn_in_nid(pfn, nid))
5883 continue;
5884 if (overlap_memmap_init(zone, &pfn))
5885 continue;
5886 if (defer_init(nid, pfn, end_pfn))
5887 break;
a2f3aa02 5888 }
ac5d2539 5889
d0dc12e8
PT
5890 page = pfn_to_page(pfn);
5891 __init_single_page(page, pfn, zone, nid);
5892 if (context == MEMMAP_HOTPLUG)
d483da5b 5893 __SetPageReserved(page);
d0dc12e8 5894
ac5d2539
MG
5895 /*
5896 * Mark the block movable so that blocks are reserved for
5897 * movable at startup. This will force kernel allocations
5898 * to reserve their blocks rather than leaking throughout
5899 * the address space during boot when many long-lived
974a786e 5900 * kernel allocations are made.
ac5d2539
MG
5901 *
5902 * bitmap is created for zone's valid pfn range. but memmap
5903 * can be created for invalid pages (for alignment)
5904 * check here not to call set_pageblock_migratetype() against
5905 * pfn out of zone.
5906 */
5907 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5908 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5909 cond_resched();
ac5d2539 5910 }
1da177e4
LT
5911 }
5912}
5913
966cf44f
AD
5914#ifdef CONFIG_ZONE_DEVICE
5915void __ref memmap_init_zone_device(struct zone *zone,
5916 unsigned long start_pfn,
5917 unsigned long size,
5918 struct dev_pagemap *pgmap)
5919{
5920 unsigned long pfn, end_pfn = start_pfn + size;
5921 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 5922 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
5923 unsigned long zone_idx = zone_idx(zone);
5924 unsigned long start = jiffies;
5925 int nid = pgdat->node_id;
5926
46d945ae 5927 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
5928 return;
5929
5930 /*
5931 * The call to memmap_init_zone should have already taken care
5932 * of the pages reserved for the memmap, so we can just jump to
5933 * the end of that region and start processing the device pages.
5934 */
514caf23 5935 if (altmap) {
966cf44f
AD
5936 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5937 size = end_pfn - start_pfn;
5938 }
5939
5940 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5941 struct page *page = pfn_to_page(pfn);
5942
5943 __init_single_page(page, pfn, zone_idx, nid);
5944
5945 /*
5946 * Mark page reserved as it will need to wait for onlining
5947 * phase for it to be fully associated with a zone.
5948 *
5949 * We can use the non-atomic __set_bit operation for setting
5950 * the flag as we are still initializing the pages.
5951 */
5952 __SetPageReserved(page);
5953
5954 /*
8a164fef
CH
5955 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5956 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5957 * ever freed or placed on a driver-private list.
966cf44f
AD
5958 */
5959 page->pgmap = pgmap;
8a164fef 5960 page->zone_device_data = NULL;
966cf44f
AD
5961
5962 /*
5963 * Mark the block movable so that blocks are reserved for
5964 * movable at startup. This will force kernel allocations
5965 * to reserve their blocks rather than leaking throughout
5966 * the address space during boot when many long-lived
5967 * kernel allocations are made.
5968 *
5969 * bitmap is created for zone's valid pfn range. but memmap
5970 * can be created for invalid pages (for alignment)
5971 * check here not to call set_pageblock_migratetype() against
5972 * pfn out of zone.
5973 *
5974 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 5975 * because this is done early in section_activate()
966cf44f
AD
5976 */
5977 if (!(pfn & (pageblock_nr_pages - 1))) {
5978 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5979 cond_resched();
5980 }
5981 }
5982
fdc029b1 5983 pr_info("%s initialised %lu pages in %ums\n", __func__,
966cf44f
AD
5984 size, jiffies_to_msecs(jiffies - start));
5985}
5986
5987#endif
1e548deb 5988static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5989{
7aeb09f9 5990 unsigned int order, t;
b2a0ac88
MG
5991 for_each_migratetype_order(order, t) {
5992 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5993 zone->free_area[order].nr_free = 0;
5994 }
5995}
5996
dfb3ccd0
PT
5997void __meminit __weak memmap_init(unsigned long size, int nid,
5998 unsigned long zone, unsigned long start_pfn)
5999{
6000 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6001}
1da177e4 6002
7cd2b0a3 6003static int zone_batchsize(struct zone *zone)
e7c8d5c9 6004{
3a6be87f 6005#ifdef CONFIG_MMU
e7c8d5c9
CL
6006 int batch;
6007
6008 /*
6009 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6010 * size of the zone.
e7c8d5c9 6011 */
9705bea5 6012 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6013 /* But no more than a meg. */
6014 if (batch * PAGE_SIZE > 1024 * 1024)
6015 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6016 batch /= 4; /* We effectively *= 4 below */
6017 if (batch < 1)
6018 batch = 1;
6019
6020 /*
0ceaacc9
NP
6021 * Clamp the batch to a 2^n - 1 value. Having a power
6022 * of 2 value was found to be more likely to have
6023 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6024 *
0ceaacc9
NP
6025 * For example if 2 tasks are alternately allocating
6026 * batches of pages, one task can end up with a lot
6027 * of pages of one half of the possible page colors
6028 * and the other with pages of the other colors.
e7c8d5c9 6029 */
9155203a 6030 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6031
e7c8d5c9 6032 return batch;
3a6be87f
DH
6033
6034#else
6035 /* The deferral and batching of frees should be suppressed under NOMMU
6036 * conditions.
6037 *
6038 * The problem is that NOMMU needs to be able to allocate large chunks
6039 * of contiguous memory as there's no hardware page translation to
6040 * assemble apparent contiguous memory from discontiguous pages.
6041 *
6042 * Queueing large contiguous runs of pages for batching, however,
6043 * causes the pages to actually be freed in smaller chunks. As there
6044 * can be a significant delay between the individual batches being
6045 * recycled, this leads to the once large chunks of space being
6046 * fragmented and becoming unavailable for high-order allocations.
6047 */
6048 return 0;
6049#endif
e7c8d5c9
CL
6050}
6051
8d7a8fa9
CS
6052/*
6053 * pcp->high and pcp->batch values are related and dependent on one another:
6054 * ->batch must never be higher then ->high.
6055 * The following function updates them in a safe manner without read side
6056 * locking.
6057 *
6058 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6059 * those fields changing asynchronously (acording the the above rule).
6060 *
6061 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6062 * outside of boot time (or some other assurance that no concurrent updaters
6063 * exist).
6064 */
6065static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6066 unsigned long batch)
6067{
6068 /* start with a fail safe value for batch */
6069 pcp->batch = 1;
6070 smp_wmb();
6071
6072 /* Update high, then batch, in order */
6073 pcp->high = high;
6074 smp_wmb();
6075
6076 pcp->batch = batch;
6077}
6078
3664033c 6079/* a companion to pageset_set_high() */
4008bab7
CS
6080static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6081{
8d7a8fa9 6082 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6083}
6084
88c90dbc 6085static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6086{
6087 struct per_cpu_pages *pcp;
5f8dcc21 6088 int migratetype;
2caaad41 6089
1c6fe946
MD
6090 memset(p, 0, sizeof(*p));
6091
3dfa5721 6092 pcp = &p->pcp;
5f8dcc21
MG
6093 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6094 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6095}
6096
88c90dbc
CS
6097static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6098{
6099 pageset_init(p);
6100 pageset_set_batch(p, batch);
6101}
6102
8ad4b1fb 6103/*
3664033c 6104 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6105 * to the value high for the pageset p.
6106 */
3664033c 6107static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6108 unsigned long high)
6109{
8d7a8fa9
CS
6110 unsigned long batch = max(1UL, high / 4);
6111 if ((high / 4) > (PAGE_SHIFT * 8))
6112 batch = PAGE_SHIFT * 8;
8ad4b1fb 6113
8d7a8fa9 6114 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6115}
6116
7cd2b0a3
DR
6117static void pageset_set_high_and_batch(struct zone *zone,
6118 struct per_cpu_pageset *pcp)
56cef2b8 6119{
56cef2b8 6120 if (percpu_pagelist_fraction)
3664033c 6121 pageset_set_high(pcp,
9705bea5 6122 (zone_managed_pages(zone) /
56cef2b8
CS
6123 percpu_pagelist_fraction));
6124 else
6125 pageset_set_batch(pcp, zone_batchsize(zone));
6126}
6127
169f6c19
CS
6128static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6129{
6130 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6131
6132 pageset_init(pcp);
6133 pageset_set_high_and_batch(zone, pcp);
6134}
6135
72675e13 6136void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6137{
6138 int cpu;
319774e2 6139 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6140 for_each_possible_cpu(cpu)
6141 zone_pageset_init(zone, cpu);
319774e2
WF
6142}
6143
2caaad41 6144/*
99dcc3e5
CL
6145 * Allocate per cpu pagesets and initialize them.
6146 * Before this call only boot pagesets were available.
e7c8d5c9 6147 */
99dcc3e5 6148void __init setup_per_cpu_pageset(void)
e7c8d5c9 6149{
b4911ea2 6150 struct pglist_data *pgdat;
99dcc3e5 6151 struct zone *zone;
e7c8d5c9 6152
319774e2
WF
6153 for_each_populated_zone(zone)
6154 setup_zone_pageset(zone);
b4911ea2
MG
6155
6156 for_each_online_pgdat(pgdat)
6157 pgdat->per_cpu_nodestats =
6158 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6159}
6160
c09b4240 6161static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6162{
99dcc3e5
CL
6163 /*
6164 * per cpu subsystem is not up at this point. The following code
6165 * relies on the ability of the linker to provide the
6166 * offset of a (static) per cpu variable into the per cpu area.
6167 */
6168 zone->pageset = &boot_pageset;
ed8ece2e 6169
b38a8725 6170 if (populated_zone(zone))
99dcc3e5
CL
6171 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6172 zone->name, zone->present_pages,
6173 zone_batchsize(zone));
ed8ece2e
DH
6174}
6175
dc0bbf3b 6176void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6177 unsigned long zone_start_pfn,
b171e409 6178 unsigned long size)
ed8ece2e
DH
6179{
6180 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6181 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6182
8f416836
WY
6183 if (zone_idx > pgdat->nr_zones)
6184 pgdat->nr_zones = zone_idx;
ed8ece2e 6185
ed8ece2e
DH
6186 zone->zone_start_pfn = zone_start_pfn;
6187
708614e6
MG
6188 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6189 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6190 pgdat->node_id,
6191 (unsigned long)zone_idx(zone),
6192 zone_start_pfn, (zone_start_pfn + size));
6193
1e548deb 6194 zone_init_free_lists(zone);
9dcb8b68 6195 zone->initialized = 1;
ed8ece2e
DH
6196}
6197
0ee332c1 6198#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6199#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6200
c713216d
MG
6201/*
6202 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6203 */
8a942fde
MG
6204int __meminit __early_pfn_to_nid(unsigned long pfn,
6205 struct mminit_pfnnid_cache *state)
c713216d 6206{
c13291a5 6207 unsigned long start_pfn, end_pfn;
e76b63f8 6208 int nid;
7c243c71 6209
8a942fde
MG
6210 if (state->last_start <= pfn && pfn < state->last_end)
6211 return state->last_nid;
c713216d 6212
e76b63f8 6213 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6214 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6215 state->last_start = start_pfn;
6216 state->last_end = end_pfn;
6217 state->last_nid = nid;
e76b63f8
YL
6218 }
6219
6220 return nid;
c713216d
MG
6221}
6222#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6223
c713216d 6224/**
6782832e 6225 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6226 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6227 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6228 *
7d018176
ZZ
6229 * If an architecture guarantees that all ranges registered contain no holes
6230 * and may be freed, this this function may be used instead of calling
6231 * memblock_free_early_nid() manually.
c713216d 6232 */
c13291a5 6233void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6234{
c13291a5
TH
6235 unsigned long start_pfn, end_pfn;
6236 int i, this_nid;
edbe7d23 6237
c13291a5
TH
6238 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6239 start_pfn = min(start_pfn, max_low_pfn);
6240 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6241
c13291a5 6242 if (start_pfn < end_pfn)
6782832e
SS
6243 memblock_free_early_nid(PFN_PHYS(start_pfn),
6244 (end_pfn - start_pfn) << PAGE_SHIFT,
6245 this_nid);
edbe7d23 6246 }
edbe7d23 6247}
edbe7d23 6248
c713216d
MG
6249/**
6250 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6251 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6252 *
7d018176
ZZ
6253 * If an architecture guarantees that all ranges registered contain no holes and may
6254 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6255 */
6256void __init sparse_memory_present_with_active_regions(int nid)
6257{
c13291a5
TH
6258 unsigned long start_pfn, end_pfn;
6259 int i, this_nid;
c713216d 6260
c13291a5
TH
6261 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6262 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6263}
6264
6265/**
6266 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6267 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6268 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6269 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6270 *
6271 * It returns the start and end page frame of a node based on information
7d018176 6272 * provided by memblock_set_node(). If called for a node
c713216d 6273 * with no available memory, a warning is printed and the start and end
88ca3b94 6274 * PFNs will be 0.
c713216d 6275 */
bbe5d993 6276void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6277 unsigned long *start_pfn, unsigned long *end_pfn)
6278{
c13291a5 6279 unsigned long this_start_pfn, this_end_pfn;
c713216d 6280 int i;
c13291a5 6281
c713216d
MG
6282 *start_pfn = -1UL;
6283 *end_pfn = 0;
6284
c13291a5
TH
6285 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6286 *start_pfn = min(*start_pfn, this_start_pfn);
6287 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6288 }
6289
633c0666 6290 if (*start_pfn == -1UL)
c713216d 6291 *start_pfn = 0;
c713216d
MG
6292}
6293
2a1e274a
MG
6294/*
6295 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6296 * assumption is made that zones within a node are ordered in monotonic
6297 * increasing memory addresses so that the "highest" populated zone is used
6298 */
b69a7288 6299static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6300{
6301 int zone_index;
6302 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6303 if (zone_index == ZONE_MOVABLE)
6304 continue;
6305
6306 if (arch_zone_highest_possible_pfn[zone_index] >
6307 arch_zone_lowest_possible_pfn[zone_index])
6308 break;
6309 }
6310
6311 VM_BUG_ON(zone_index == -1);
6312 movable_zone = zone_index;
6313}
6314
6315/*
6316 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6317 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6318 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6319 * in each node depending on the size of each node and how evenly kernelcore
6320 * is distributed. This helper function adjusts the zone ranges
6321 * provided by the architecture for a given node by using the end of the
6322 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6323 * zones within a node are in order of monotonic increases memory addresses
6324 */
bbe5d993 6325static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6326 unsigned long zone_type,
6327 unsigned long node_start_pfn,
6328 unsigned long node_end_pfn,
6329 unsigned long *zone_start_pfn,
6330 unsigned long *zone_end_pfn)
6331{
6332 /* Only adjust if ZONE_MOVABLE is on this node */
6333 if (zone_movable_pfn[nid]) {
6334 /* Size ZONE_MOVABLE */
6335 if (zone_type == ZONE_MOVABLE) {
6336 *zone_start_pfn = zone_movable_pfn[nid];
6337 *zone_end_pfn = min(node_end_pfn,
6338 arch_zone_highest_possible_pfn[movable_zone]);
6339
e506b996
XQ
6340 /* Adjust for ZONE_MOVABLE starting within this range */
6341 } else if (!mirrored_kernelcore &&
6342 *zone_start_pfn < zone_movable_pfn[nid] &&
6343 *zone_end_pfn > zone_movable_pfn[nid]) {
6344 *zone_end_pfn = zone_movable_pfn[nid];
6345
2a1e274a
MG
6346 /* Check if this whole range is within ZONE_MOVABLE */
6347 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6348 *zone_start_pfn = *zone_end_pfn;
6349 }
6350}
6351
c713216d
MG
6352/*
6353 * Return the number of pages a zone spans in a node, including holes
6354 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6355 */
bbe5d993 6356static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6357 unsigned long zone_type,
7960aedd
ZY
6358 unsigned long node_start_pfn,
6359 unsigned long node_end_pfn,
d91749c1
TI
6360 unsigned long *zone_start_pfn,
6361 unsigned long *zone_end_pfn,
c713216d
MG
6362 unsigned long *ignored)
6363{
299c83dc
LF
6364 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6365 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6366 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6367 if (!node_start_pfn && !node_end_pfn)
6368 return 0;
6369
7960aedd 6370 /* Get the start and end of the zone */
299c83dc
LF
6371 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6372 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6373 adjust_zone_range_for_zone_movable(nid, zone_type,
6374 node_start_pfn, node_end_pfn,
d91749c1 6375 zone_start_pfn, zone_end_pfn);
c713216d
MG
6376
6377 /* Check that this node has pages within the zone's required range */
d91749c1 6378 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6379 return 0;
6380
6381 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6382 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6383 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6384
6385 /* Return the spanned pages */
d91749c1 6386 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6387}
6388
6389/*
6390 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6391 * then all holes in the requested range will be accounted for.
c713216d 6392 */
bbe5d993 6393unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6394 unsigned long range_start_pfn,
6395 unsigned long range_end_pfn)
6396{
96e907d1
TH
6397 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6398 unsigned long start_pfn, end_pfn;
6399 int i;
c713216d 6400
96e907d1
TH
6401 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6402 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6403 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6404 nr_absent -= end_pfn - start_pfn;
c713216d 6405 }
96e907d1 6406 return nr_absent;
c713216d
MG
6407}
6408
6409/**
6410 * absent_pages_in_range - Return number of page frames in holes within a range
6411 * @start_pfn: The start PFN to start searching for holes
6412 * @end_pfn: The end PFN to stop searching for holes
6413 *
a862f68a 6414 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6415 */
6416unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6417 unsigned long end_pfn)
6418{
6419 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6420}
6421
6422/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6423static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6424 unsigned long zone_type,
7960aedd
ZY
6425 unsigned long node_start_pfn,
6426 unsigned long node_end_pfn,
c713216d
MG
6427 unsigned long *ignored)
6428{
96e907d1
TH
6429 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6430 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6431 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6432 unsigned long nr_absent;
9c7cd687 6433
b5685e92 6434 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6435 if (!node_start_pfn && !node_end_pfn)
6436 return 0;
6437
96e907d1
TH
6438 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6439 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6440
2a1e274a
MG
6441 adjust_zone_range_for_zone_movable(nid, zone_type,
6442 node_start_pfn, node_end_pfn,
6443 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6444 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6445
6446 /*
6447 * ZONE_MOVABLE handling.
6448 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6449 * and vice versa.
6450 */
e506b996
XQ
6451 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6452 unsigned long start_pfn, end_pfn;
6453 struct memblock_region *r;
6454
6455 for_each_memblock(memory, r) {
6456 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6457 zone_start_pfn, zone_end_pfn);
6458 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6459 zone_start_pfn, zone_end_pfn);
6460
6461 if (zone_type == ZONE_MOVABLE &&
6462 memblock_is_mirror(r))
6463 nr_absent += end_pfn - start_pfn;
6464
6465 if (zone_type == ZONE_NORMAL &&
6466 !memblock_is_mirror(r))
6467 nr_absent += end_pfn - start_pfn;
342332e6
TI
6468 }
6469 }
6470
6471 return nr_absent;
c713216d 6472}
0e0b864e 6473
0ee332c1 6474#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6475static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6476 unsigned long zone_type,
7960aedd
ZY
6477 unsigned long node_start_pfn,
6478 unsigned long node_end_pfn,
d91749c1
TI
6479 unsigned long *zone_start_pfn,
6480 unsigned long *zone_end_pfn,
c713216d
MG
6481 unsigned long *zones_size)
6482{
d91749c1
TI
6483 unsigned int zone;
6484
6485 *zone_start_pfn = node_start_pfn;
6486 for (zone = 0; zone < zone_type; zone++)
6487 *zone_start_pfn += zones_size[zone];
6488
6489 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6490
c713216d
MG
6491 return zones_size[zone_type];
6492}
6493
bbe5d993 6494static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6495 unsigned long zone_type,
7960aedd
ZY
6496 unsigned long node_start_pfn,
6497 unsigned long node_end_pfn,
c713216d
MG
6498 unsigned long *zholes_size)
6499{
6500 if (!zholes_size)
6501 return 0;
6502
6503 return zholes_size[zone_type];
6504}
20e6926d 6505
0ee332c1 6506#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6507
bbe5d993 6508static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6509 unsigned long node_start_pfn,
6510 unsigned long node_end_pfn,
6511 unsigned long *zones_size,
6512 unsigned long *zholes_size)
c713216d 6513{
febd5949 6514 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6515 enum zone_type i;
6516
febd5949
GZ
6517 for (i = 0; i < MAX_NR_ZONES; i++) {
6518 struct zone *zone = pgdat->node_zones + i;
d91749c1 6519 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6520 unsigned long size, real_size;
c713216d 6521
febd5949
GZ
6522 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6523 node_start_pfn,
6524 node_end_pfn,
d91749c1
TI
6525 &zone_start_pfn,
6526 &zone_end_pfn,
febd5949
GZ
6527 zones_size);
6528 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6529 node_start_pfn, node_end_pfn,
6530 zholes_size);
d91749c1
TI
6531 if (size)
6532 zone->zone_start_pfn = zone_start_pfn;
6533 else
6534 zone->zone_start_pfn = 0;
febd5949
GZ
6535 zone->spanned_pages = size;
6536 zone->present_pages = real_size;
6537
6538 totalpages += size;
6539 realtotalpages += real_size;
6540 }
6541
6542 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6543 pgdat->node_present_pages = realtotalpages;
6544 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6545 realtotalpages);
6546}
6547
835c134e
MG
6548#ifndef CONFIG_SPARSEMEM
6549/*
6550 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6551 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6552 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6553 * round what is now in bits to nearest long in bits, then return it in
6554 * bytes.
6555 */
7c45512d 6556static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6557{
6558 unsigned long usemapsize;
6559
7c45512d 6560 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6561 usemapsize = roundup(zonesize, pageblock_nr_pages);
6562 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6563 usemapsize *= NR_PAGEBLOCK_BITS;
6564 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6565
6566 return usemapsize / 8;
6567}
6568
7cc2a959 6569static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6570 struct zone *zone,
6571 unsigned long zone_start_pfn,
6572 unsigned long zonesize)
835c134e 6573{
7c45512d 6574 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6575 zone->pageblock_flags = NULL;
23a7052a 6576 if (usemapsize) {
6782832e 6577 zone->pageblock_flags =
26fb3dae
MR
6578 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6579 pgdat->node_id);
23a7052a
MR
6580 if (!zone->pageblock_flags)
6581 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6582 usemapsize, zone->name, pgdat->node_id);
6583 }
835c134e
MG
6584}
6585#else
7c45512d
LT
6586static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6587 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6588#endif /* CONFIG_SPARSEMEM */
6589
d9c23400 6590#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6591
d9c23400 6592/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6593void __init set_pageblock_order(void)
d9c23400 6594{
955c1cd7
AM
6595 unsigned int order;
6596
d9c23400
MG
6597 /* Check that pageblock_nr_pages has not already been setup */
6598 if (pageblock_order)
6599 return;
6600
955c1cd7
AM
6601 if (HPAGE_SHIFT > PAGE_SHIFT)
6602 order = HUGETLB_PAGE_ORDER;
6603 else
6604 order = MAX_ORDER - 1;
6605
d9c23400
MG
6606 /*
6607 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6608 * This value may be variable depending on boot parameters on IA64 and
6609 * powerpc.
d9c23400
MG
6610 */
6611 pageblock_order = order;
6612}
6613#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6614
ba72cb8c
MG
6615/*
6616 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6617 * is unused as pageblock_order is set at compile-time. See
6618 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6619 * the kernel config
ba72cb8c 6620 */
03e85f9d 6621void __init set_pageblock_order(void)
ba72cb8c 6622{
ba72cb8c 6623}
d9c23400
MG
6624
6625#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6626
03e85f9d 6627static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6628 unsigned long present_pages)
01cefaef
JL
6629{
6630 unsigned long pages = spanned_pages;
6631
6632 /*
6633 * Provide a more accurate estimation if there are holes within
6634 * the zone and SPARSEMEM is in use. If there are holes within the
6635 * zone, each populated memory region may cost us one or two extra
6636 * memmap pages due to alignment because memmap pages for each
89d790ab 6637 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6638 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6639 */
6640 if (spanned_pages > present_pages + (present_pages >> 4) &&
6641 IS_ENABLED(CONFIG_SPARSEMEM))
6642 pages = present_pages;
6643
6644 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6645}
6646
ace1db39
OS
6647#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6648static void pgdat_init_split_queue(struct pglist_data *pgdat)
6649{
364c1eeb
YS
6650 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6651
6652 spin_lock_init(&ds_queue->split_queue_lock);
6653 INIT_LIST_HEAD(&ds_queue->split_queue);
6654 ds_queue->split_queue_len = 0;
ace1db39
OS
6655}
6656#else
6657static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6658#endif
6659
6660#ifdef CONFIG_COMPACTION
6661static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6662{
6663 init_waitqueue_head(&pgdat->kcompactd_wait);
6664}
6665#else
6666static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6667#endif
6668
03e85f9d 6669static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6670{
208d54e5 6671 pgdat_resize_init(pgdat);
ace1db39 6672
ace1db39
OS
6673 pgdat_init_split_queue(pgdat);
6674 pgdat_init_kcompactd(pgdat);
6675
1da177e4 6676 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6677 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6678
eefa864b 6679 pgdat_page_ext_init(pgdat);
a52633d8 6680 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6681 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6682}
6683
6684static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6685 unsigned long remaining_pages)
6686{
9705bea5 6687 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6688 zone_set_nid(zone, nid);
6689 zone->name = zone_names[idx];
6690 zone->zone_pgdat = NODE_DATA(nid);
6691 spin_lock_init(&zone->lock);
6692 zone_seqlock_init(zone);
6693 zone_pcp_init(zone);
6694}
6695
6696/*
6697 * Set up the zone data structures
6698 * - init pgdat internals
6699 * - init all zones belonging to this node
6700 *
6701 * NOTE: this function is only called during memory hotplug
6702 */
6703#ifdef CONFIG_MEMORY_HOTPLUG
6704void __ref free_area_init_core_hotplug(int nid)
6705{
6706 enum zone_type z;
6707 pg_data_t *pgdat = NODE_DATA(nid);
6708
6709 pgdat_init_internals(pgdat);
6710 for (z = 0; z < MAX_NR_ZONES; z++)
6711 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6712}
6713#endif
6714
6715/*
6716 * Set up the zone data structures:
6717 * - mark all pages reserved
6718 * - mark all memory queues empty
6719 * - clear the memory bitmaps
6720 *
6721 * NOTE: pgdat should get zeroed by caller.
6722 * NOTE: this function is only called during early init.
6723 */
6724static void __init free_area_init_core(struct pglist_data *pgdat)
6725{
6726 enum zone_type j;
6727 int nid = pgdat->node_id;
5f63b720 6728
03e85f9d 6729 pgdat_init_internals(pgdat);
385386cf
JW
6730 pgdat->per_cpu_nodestats = &boot_nodestats;
6731
1da177e4
LT
6732 for (j = 0; j < MAX_NR_ZONES; j++) {
6733 struct zone *zone = pgdat->node_zones + j;
e6943859 6734 unsigned long size, freesize, memmap_pages;
d91749c1 6735 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6736
febd5949 6737 size = zone->spanned_pages;
e6943859 6738 freesize = zone->present_pages;
1da177e4 6739
0e0b864e 6740 /*
9feedc9d 6741 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6742 * is used by this zone for memmap. This affects the watermark
6743 * and per-cpu initialisations
6744 */
e6943859 6745 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6746 if (!is_highmem_idx(j)) {
6747 if (freesize >= memmap_pages) {
6748 freesize -= memmap_pages;
6749 if (memmap_pages)
6750 printk(KERN_DEBUG
6751 " %s zone: %lu pages used for memmap\n",
6752 zone_names[j], memmap_pages);
6753 } else
1170532b 6754 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6755 zone_names[j], memmap_pages, freesize);
6756 }
0e0b864e 6757
6267276f 6758 /* Account for reserved pages */
9feedc9d
JL
6759 if (j == 0 && freesize > dma_reserve) {
6760 freesize -= dma_reserve;
d903ef9f 6761 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6762 zone_names[0], dma_reserve);
0e0b864e
MG
6763 }
6764
98d2b0eb 6765 if (!is_highmem_idx(j))
9feedc9d 6766 nr_kernel_pages += freesize;
01cefaef
JL
6767 /* Charge for highmem memmap if there are enough kernel pages */
6768 else if (nr_kernel_pages > memmap_pages * 2)
6769 nr_kernel_pages -= memmap_pages;
9feedc9d 6770 nr_all_pages += freesize;
1da177e4 6771
9feedc9d
JL
6772 /*
6773 * Set an approximate value for lowmem here, it will be adjusted
6774 * when the bootmem allocator frees pages into the buddy system.
6775 * And all highmem pages will be managed by the buddy system.
6776 */
03e85f9d 6777 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6778
d883c6cf 6779 if (!size)
1da177e4
LT
6780 continue;
6781
955c1cd7 6782 set_pageblock_order();
d883c6cf
JK
6783 setup_usemap(pgdat, zone, zone_start_pfn, size);
6784 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6785 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6786 }
6787}
6788
0cd842f9 6789#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6790static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6791{
b0aeba74 6792 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6793 unsigned long __maybe_unused offset = 0;
6794
1da177e4
LT
6795 /* Skip empty nodes */
6796 if (!pgdat->node_spanned_pages)
6797 return;
6798
b0aeba74
TL
6799 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6800 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6801 /* ia64 gets its own node_mem_map, before this, without bootmem */
6802 if (!pgdat->node_mem_map) {
b0aeba74 6803 unsigned long size, end;
d41dee36
AW
6804 struct page *map;
6805
e984bb43
BP
6806 /*
6807 * The zone's endpoints aren't required to be MAX_ORDER
6808 * aligned but the node_mem_map endpoints must be in order
6809 * for the buddy allocator to function correctly.
6810 */
108bcc96 6811 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6812 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6813 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6814 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6815 pgdat->node_id);
23a7052a
MR
6816 if (!map)
6817 panic("Failed to allocate %ld bytes for node %d memory map\n",
6818 size, pgdat->node_id);
a1c34a3b 6819 pgdat->node_mem_map = map + offset;
1da177e4 6820 }
0cd842f9
OS
6821 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6822 __func__, pgdat->node_id, (unsigned long)pgdat,
6823 (unsigned long)pgdat->node_mem_map);
12d810c1 6824#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6825 /*
6826 * With no DISCONTIG, the global mem_map is just set as node 0's
6827 */
c713216d 6828 if (pgdat == NODE_DATA(0)) {
1da177e4 6829 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6830#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6831 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6832 mem_map -= offset;
0ee332c1 6833#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6834 }
1da177e4
LT
6835#endif
6836}
0cd842f9
OS
6837#else
6838static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6839#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6840
0188dc98
OS
6841#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6842static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6843{
0188dc98
OS
6844 pgdat->first_deferred_pfn = ULONG_MAX;
6845}
6846#else
6847static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6848#endif
6849
03e85f9d 6850void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6851 unsigned long node_start_pfn,
6852 unsigned long *zholes_size)
1da177e4 6853{
9109fb7b 6854 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6855 unsigned long start_pfn = 0;
6856 unsigned long end_pfn = 0;
9109fb7b 6857
88fdf75d 6858 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6859 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6860
1da177e4
LT
6861 pgdat->node_id = nid;
6862 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6863 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6864#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6865 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6866 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6867 (u64)start_pfn << PAGE_SHIFT,
6868 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6869#else
6870 start_pfn = node_start_pfn;
7960aedd
ZY
6871#endif
6872 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6873 zones_size, zholes_size);
1da177e4
LT
6874
6875 alloc_node_mem_map(pgdat);
0188dc98 6876 pgdat_set_deferred_range(pgdat);
1da177e4 6877
7f3eb55b 6878 free_area_init_core(pgdat);
1da177e4
LT
6879}
6880
aca52c39 6881#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6882/*
6883 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6884 * pages zeroed
6885 */
6886static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6887{
6888 unsigned long pfn;
6889 u64 pgcnt = 0;
6890
6891 for (pfn = spfn; pfn < epfn; pfn++) {
6892 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6893 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6894 + pageblock_nr_pages - 1;
6895 continue;
6896 }
6897 mm_zero_struct_page(pfn_to_page(pfn));
6898 pgcnt++;
6899 }
6900
6901 return pgcnt;
6902}
6903
a4a3ede2
PT
6904/*
6905 * Only struct pages that are backed by physical memory are zeroed and
6906 * initialized by going through __init_single_page(). But, there are some
6907 * struct pages which are reserved in memblock allocator and their fields
6908 * may be accessed (for example page_to_pfn() on some configuration accesses
6909 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6910 *
6911 * This function also addresses a similar issue where struct pages are left
6912 * uninitialized because the physical address range is not covered by
6913 * memblock.memory or memblock.reserved. That could happen when memblock
6914 * layout is manually configured via memmap=.
a4a3ede2 6915 */
03e85f9d 6916void __init zero_resv_unavail(void)
a4a3ede2
PT
6917{
6918 phys_addr_t start, end;
a4a3ede2 6919 u64 i, pgcnt;
907ec5fc 6920 phys_addr_t next = 0;
a4a3ede2
PT
6921
6922 /*
907ec5fc 6923 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6924 */
6925 pgcnt = 0;
907ec5fc
NH
6926 for_each_mem_range(i, &memblock.memory, NULL,
6927 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6928 if (next < start)
6929 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6930 next = end;
6931 }
ec393a0f 6932 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6933
a4a3ede2
PT
6934 /*
6935 * Struct pages that do not have backing memory. This could be because
6936 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6937 */
6938 if (pgcnt)
907ec5fc 6939 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6940}
aca52c39 6941#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6942
0ee332c1 6943#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6944
6945#if MAX_NUMNODES > 1
6946/*
6947 * Figure out the number of possible node ids.
6948 */
f9872caf 6949void __init setup_nr_node_ids(void)
418508c1 6950{
904a9553 6951 unsigned int highest;
418508c1 6952
904a9553 6953 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6954 nr_node_ids = highest + 1;
6955}
418508c1
MS
6956#endif
6957
1e01979c
TH
6958/**
6959 * node_map_pfn_alignment - determine the maximum internode alignment
6960 *
6961 * This function should be called after node map is populated and sorted.
6962 * It calculates the maximum power of two alignment which can distinguish
6963 * all the nodes.
6964 *
6965 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6966 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6967 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6968 * shifted, 1GiB is enough and this function will indicate so.
6969 *
6970 * This is used to test whether pfn -> nid mapping of the chosen memory
6971 * model has fine enough granularity to avoid incorrect mapping for the
6972 * populated node map.
6973 *
a862f68a 6974 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
6975 * requirement (single node).
6976 */
6977unsigned long __init node_map_pfn_alignment(void)
6978{
6979 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6980 unsigned long start, end, mask;
98fa15f3 6981 int last_nid = NUMA_NO_NODE;
c13291a5 6982 int i, nid;
1e01979c 6983
c13291a5 6984 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6985 if (!start || last_nid < 0 || last_nid == nid) {
6986 last_nid = nid;
6987 last_end = end;
6988 continue;
6989 }
6990
6991 /*
6992 * Start with a mask granular enough to pin-point to the
6993 * start pfn and tick off bits one-by-one until it becomes
6994 * too coarse to separate the current node from the last.
6995 */
6996 mask = ~((1 << __ffs(start)) - 1);
6997 while (mask && last_end <= (start & (mask << 1)))
6998 mask <<= 1;
6999
7000 /* accumulate all internode masks */
7001 accl_mask |= mask;
7002 }
7003
7004 /* convert mask to number of pages */
7005 return ~accl_mask + 1;
7006}
7007
a6af2bc3 7008/* Find the lowest pfn for a node */
b69a7288 7009static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 7010{
a6af2bc3 7011 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
7012 unsigned long start_pfn;
7013 int i;
1abbfb41 7014
c13291a5
TH
7015 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7016 min_pfn = min(min_pfn, start_pfn);
c713216d 7017
a6af2bc3 7018 if (min_pfn == ULONG_MAX) {
1170532b 7019 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
7020 return 0;
7021 }
7022
7023 return min_pfn;
c713216d
MG
7024}
7025
7026/**
7027 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7028 *
a862f68a 7029 * Return: the minimum PFN based on information provided via
7d018176 7030 * memblock_set_node().
c713216d
MG
7031 */
7032unsigned long __init find_min_pfn_with_active_regions(void)
7033{
7034 return find_min_pfn_for_node(MAX_NUMNODES);
7035}
7036
37b07e41
LS
7037/*
7038 * early_calculate_totalpages()
7039 * Sum pages in active regions for movable zone.
4b0ef1fe 7040 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7041 */
484f51f8 7042static unsigned long __init early_calculate_totalpages(void)
7e63efef 7043{
7e63efef 7044 unsigned long totalpages = 0;
c13291a5
TH
7045 unsigned long start_pfn, end_pfn;
7046 int i, nid;
7047
7048 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7049 unsigned long pages = end_pfn - start_pfn;
7e63efef 7050
37b07e41
LS
7051 totalpages += pages;
7052 if (pages)
4b0ef1fe 7053 node_set_state(nid, N_MEMORY);
37b07e41 7054 }
b8af2941 7055 return totalpages;
7e63efef
MG
7056}
7057
2a1e274a
MG
7058/*
7059 * Find the PFN the Movable zone begins in each node. Kernel memory
7060 * is spread evenly between nodes as long as the nodes have enough
7061 * memory. When they don't, some nodes will have more kernelcore than
7062 * others
7063 */
b224ef85 7064static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7065{
7066 int i, nid;
7067 unsigned long usable_startpfn;
7068 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7069 /* save the state before borrow the nodemask */
4b0ef1fe 7070 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7071 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7072 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7073 struct memblock_region *r;
b2f3eebe
TC
7074
7075 /* Need to find movable_zone earlier when movable_node is specified. */
7076 find_usable_zone_for_movable();
7077
7078 /*
7079 * If movable_node is specified, ignore kernelcore and movablecore
7080 * options.
7081 */
7082 if (movable_node_is_enabled()) {
136199f0
EM
7083 for_each_memblock(memory, r) {
7084 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7085 continue;
7086
136199f0 7087 nid = r->nid;
b2f3eebe 7088
136199f0 7089 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7090 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7091 min(usable_startpfn, zone_movable_pfn[nid]) :
7092 usable_startpfn;
7093 }
7094
7095 goto out2;
7096 }
2a1e274a 7097
342332e6
TI
7098 /*
7099 * If kernelcore=mirror is specified, ignore movablecore option
7100 */
7101 if (mirrored_kernelcore) {
7102 bool mem_below_4gb_not_mirrored = false;
7103
7104 for_each_memblock(memory, r) {
7105 if (memblock_is_mirror(r))
7106 continue;
7107
7108 nid = r->nid;
7109
7110 usable_startpfn = memblock_region_memory_base_pfn(r);
7111
7112 if (usable_startpfn < 0x100000) {
7113 mem_below_4gb_not_mirrored = true;
7114 continue;
7115 }
7116
7117 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7118 min(usable_startpfn, zone_movable_pfn[nid]) :
7119 usable_startpfn;
7120 }
7121
7122 if (mem_below_4gb_not_mirrored)
7123 pr_warn("This configuration results in unmirrored kernel memory.");
7124
7125 goto out2;
7126 }
7127
7e63efef 7128 /*
a5c6d650
DR
7129 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7130 * amount of necessary memory.
7131 */
7132 if (required_kernelcore_percent)
7133 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7134 10000UL;
7135 if (required_movablecore_percent)
7136 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7137 10000UL;
7138
7139 /*
7140 * If movablecore= was specified, calculate what size of
7e63efef
MG
7141 * kernelcore that corresponds so that memory usable for
7142 * any allocation type is evenly spread. If both kernelcore
7143 * and movablecore are specified, then the value of kernelcore
7144 * will be used for required_kernelcore if it's greater than
7145 * what movablecore would have allowed.
7146 */
7147 if (required_movablecore) {
7e63efef
MG
7148 unsigned long corepages;
7149
7150 /*
7151 * Round-up so that ZONE_MOVABLE is at least as large as what
7152 * was requested by the user
7153 */
7154 required_movablecore =
7155 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7156 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7157 corepages = totalpages - required_movablecore;
7158
7159 required_kernelcore = max(required_kernelcore, corepages);
7160 }
7161
bde304bd
XQ
7162 /*
7163 * If kernelcore was not specified or kernelcore size is larger
7164 * than totalpages, there is no ZONE_MOVABLE.
7165 */
7166 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7167 goto out;
2a1e274a
MG
7168
7169 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7170 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7171
7172restart:
7173 /* Spread kernelcore memory as evenly as possible throughout nodes */
7174 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7175 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7176 unsigned long start_pfn, end_pfn;
7177
2a1e274a
MG
7178 /*
7179 * Recalculate kernelcore_node if the division per node
7180 * now exceeds what is necessary to satisfy the requested
7181 * amount of memory for the kernel
7182 */
7183 if (required_kernelcore < kernelcore_node)
7184 kernelcore_node = required_kernelcore / usable_nodes;
7185
7186 /*
7187 * As the map is walked, we track how much memory is usable
7188 * by the kernel using kernelcore_remaining. When it is
7189 * 0, the rest of the node is usable by ZONE_MOVABLE
7190 */
7191 kernelcore_remaining = kernelcore_node;
7192
7193 /* Go through each range of PFNs within this node */
c13291a5 7194 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7195 unsigned long size_pages;
7196
c13291a5 7197 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7198 if (start_pfn >= end_pfn)
7199 continue;
7200
7201 /* Account for what is only usable for kernelcore */
7202 if (start_pfn < usable_startpfn) {
7203 unsigned long kernel_pages;
7204 kernel_pages = min(end_pfn, usable_startpfn)
7205 - start_pfn;
7206
7207 kernelcore_remaining -= min(kernel_pages,
7208 kernelcore_remaining);
7209 required_kernelcore -= min(kernel_pages,
7210 required_kernelcore);
7211
7212 /* Continue if range is now fully accounted */
7213 if (end_pfn <= usable_startpfn) {
7214
7215 /*
7216 * Push zone_movable_pfn to the end so
7217 * that if we have to rebalance
7218 * kernelcore across nodes, we will
7219 * not double account here
7220 */
7221 zone_movable_pfn[nid] = end_pfn;
7222 continue;
7223 }
7224 start_pfn = usable_startpfn;
7225 }
7226
7227 /*
7228 * The usable PFN range for ZONE_MOVABLE is from
7229 * start_pfn->end_pfn. Calculate size_pages as the
7230 * number of pages used as kernelcore
7231 */
7232 size_pages = end_pfn - start_pfn;
7233 if (size_pages > kernelcore_remaining)
7234 size_pages = kernelcore_remaining;
7235 zone_movable_pfn[nid] = start_pfn + size_pages;
7236
7237 /*
7238 * Some kernelcore has been met, update counts and
7239 * break if the kernelcore for this node has been
b8af2941 7240 * satisfied
2a1e274a
MG
7241 */
7242 required_kernelcore -= min(required_kernelcore,
7243 size_pages);
7244 kernelcore_remaining -= size_pages;
7245 if (!kernelcore_remaining)
7246 break;
7247 }
7248 }
7249
7250 /*
7251 * If there is still required_kernelcore, we do another pass with one
7252 * less node in the count. This will push zone_movable_pfn[nid] further
7253 * along on the nodes that still have memory until kernelcore is
b8af2941 7254 * satisfied
2a1e274a
MG
7255 */
7256 usable_nodes--;
7257 if (usable_nodes && required_kernelcore > usable_nodes)
7258 goto restart;
7259
b2f3eebe 7260out2:
2a1e274a
MG
7261 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7262 for (nid = 0; nid < MAX_NUMNODES; nid++)
7263 zone_movable_pfn[nid] =
7264 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7265
20e6926d 7266out:
66918dcd 7267 /* restore the node_state */
4b0ef1fe 7268 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7269}
7270
4b0ef1fe
LJ
7271/* Any regular or high memory on that node ? */
7272static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7273{
37b07e41
LS
7274 enum zone_type zone_type;
7275
4b0ef1fe 7276 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7277 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7278 if (populated_zone(zone)) {
7b0e0c0e
OS
7279 if (IS_ENABLED(CONFIG_HIGHMEM))
7280 node_set_state(nid, N_HIGH_MEMORY);
7281 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7282 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7283 break;
7284 }
37b07e41 7285 }
37b07e41
LS
7286}
7287
c713216d
MG
7288/**
7289 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7290 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7291 *
7292 * This will call free_area_init_node() for each active node in the system.
7d018176 7293 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7294 * zone in each node and their holes is calculated. If the maximum PFN
7295 * between two adjacent zones match, it is assumed that the zone is empty.
7296 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7297 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7298 * starts where the previous one ended. For example, ZONE_DMA32 starts
7299 * at arch_max_dma_pfn.
7300 */
7301void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7302{
c13291a5
TH
7303 unsigned long start_pfn, end_pfn;
7304 int i, nid;
a6af2bc3 7305
c713216d
MG
7306 /* Record where the zone boundaries are */
7307 memset(arch_zone_lowest_possible_pfn, 0,
7308 sizeof(arch_zone_lowest_possible_pfn));
7309 memset(arch_zone_highest_possible_pfn, 0,
7310 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7311
7312 start_pfn = find_min_pfn_with_active_regions();
7313
7314 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7315 if (i == ZONE_MOVABLE)
7316 continue;
90cae1fe
OH
7317
7318 end_pfn = max(max_zone_pfn[i], start_pfn);
7319 arch_zone_lowest_possible_pfn[i] = start_pfn;
7320 arch_zone_highest_possible_pfn[i] = end_pfn;
7321
7322 start_pfn = end_pfn;
c713216d 7323 }
2a1e274a
MG
7324
7325 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7326 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7327 find_zone_movable_pfns_for_nodes();
c713216d 7328
c713216d 7329 /* Print out the zone ranges */
f88dfff5 7330 pr_info("Zone ranges:\n");
2a1e274a
MG
7331 for (i = 0; i < MAX_NR_ZONES; i++) {
7332 if (i == ZONE_MOVABLE)
7333 continue;
f88dfff5 7334 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7335 if (arch_zone_lowest_possible_pfn[i] ==
7336 arch_zone_highest_possible_pfn[i])
f88dfff5 7337 pr_cont("empty\n");
72f0ba02 7338 else
8d29e18a
JG
7339 pr_cont("[mem %#018Lx-%#018Lx]\n",
7340 (u64)arch_zone_lowest_possible_pfn[i]
7341 << PAGE_SHIFT,
7342 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7343 << PAGE_SHIFT) - 1);
2a1e274a
MG
7344 }
7345
7346 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7347 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7348 for (i = 0; i < MAX_NUMNODES; i++) {
7349 if (zone_movable_pfn[i])
8d29e18a
JG
7350 pr_info(" Node %d: %#018Lx\n", i,
7351 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7352 }
c713216d 7353
f46edbd1
DW
7354 /*
7355 * Print out the early node map, and initialize the
7356 * subsection-map relative to active online memory ranges to
7357 * enable future "sub-section" extensions of the memory map.
7358 */
f88dfff5 7359 pr_info("Early memory node ranges\n");
f46edbd1 7360 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7361 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7362 (u64)start_pfn << PAGE_SHIFT,
7363 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7364 subsection_map_init(start_pfn, end_pfn - start_pfn);
7365 }
c713216d
MG
7366
7367 /* Initialise every node */
708614e6 7368 mminit_verify_pageflags_layout();
8ef82866 7369 setup_nr_node_ids();
e181ae0c 7370 zero_resv_unavail();
c713216d
MG
7371 for_each_online_node(nid) {
7372 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7373 free_area_init_node(nid, NULL,
c713216d 7374 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7375
7376 /* Any memory on that node */
7377 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7378 node_set_state(nid, N_MEMORY);
7379 check_for_memory(pgdat, nid);
c713216d
MG
7380 }
7381}
2a1e274a 7382
a5c6d650
DR
7383static int __init cmdline_parse_core(char *p, unsigned long *core,
7384 unsigned long *percent)
2a1e274a
MG
7385{
7386 unsigned long long coremem;
a5c6d650
DR
7387 char *endptr;
7388
2a1e274a
MG
7389 if (!p)
7390 return -EINVAL;
7391
a5c6d650
DR
7392 /* Value may be a percentage of total memory, otherwise bytes */
7393 coremem = simple_strtoull(p, &endptr, 0);
7394 if (*endptr == '%') {
7395 /* Paranoid check for percent values greater than 100 */
7396 WARN_ON(coremem > 100);
2a1e274a 7397
a5c6d650
DR
7398 *percent = coremem;
7399 } else {
7400 coremem = memparse(p, &p);
7401 /* Paranoid check that UL is enough for the coremem value */
7402 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7403
a5c6d650
DR
7404 *core = coremem >> PAGE_SHIFT;
7405 *percent = 0UL;
7406 }
2a1e274a
MG
7407 return 0;
7408}
ed7ed365 7409
7e63efef
MG
7410/*
7411 * kernelcore=size sets the amount of memory for use for allocations that
7412 * cannot be reclaimed or migrated.
7413 */
7414static int __init cmdline_parse_kernelcore(char *p)
7415{
342332e6
TI
7416 /* parse kernelcore=mirror */
7417 if (parse_option_str(p, "mirror")) {
7418 mirrored_kernelcore = true;
7419 return 0;
7420 }
7421
a5c6d650
DR
7422 return cmdline_parse_core(p, &required_kernelcore,
7423 &required_kernelcore_percent);
7e63efef
MG
7424}
7425
7426/*
7427 * movablecore=size sets the amount of memory for use for allocations that
7428 * can be reclaimed or migrated.
7429 */
7430static int __init cmdline_parse_movablecore(char *p)
7431{
a5c6d650
DR
7432 return cmdline_parse_core(p, &required_movablecore,
7433 &required_movablecore_percent);
7e63efef
MG
7434}
7435
ed7ed365 7436early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7437early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7438
0ee332c1 7439#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7440
c3d5f5f0
JL
7441void adjust_managed_page_count(struct page *page, long count)
7442{
9705bea5 7443 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7444 totalram_pages_add(count);
3dcc0571
JL
7445#ifdef CONFIG_HIGHMEM
7446 if (PageHighMem(page))
ca79b0c2 7447 totalhigh_pages_add(count);
3dcc0571 7448#endif
c3d5f5f0 7449}
3dcc0571 7450EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7451
e5cb113f 7452unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7453{
11199692
JL
7454 void *pos;
7455 unsigned long pages = 0;
69afade7 7456
11199692
JL
7457 start = (void *)PAGE_ALIGN((unsigned long)start);
7458 end = (void *)((unsigned long)end & PAGE_MASK);
7459 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7460 struct page *page = virt_to_page(pos);
7461 void *direct_map_addr;
7462
7463 /*
7464 * 'direct_map_addr' might be different from 'pos'
7465 * because some architectures' virt_to_page()
7466 * work with aliases. Getting the direct map
7467 * address ensures that we get a _writeable_
7468 * alias for the memset().
7469 */
7470 direct_map_addr = page_address(page);
dbe67df4 7471 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7472 memset(direct_map_addr, poison, PAGE_SIZE);
7473
7474 free_reserved_page(page);
69afade7
JL
7475 }
7476
7477 if (pages && s)
adb1fe9a
JP
7478 pr_info("Freeing %s memory: %ldK\n",
7479 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7480
7481 return pages;
7482}
7483
cfa11e08
JL
7484#ifdef CONFIG_HIGHMEM
7485void free_highmem_page(struct page *page)
7486{
7487 __free_reserved_page(page);
ca79b0c2 7488 totalram_pages_inc();
9705bea5 7489 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7490 totalhigh_pages_inc();
cfa11e08
JL
7491}
7492#endif
7493
7ee3d4e8
JL
7494
7495void __init mem_init_print_info(const char *str)
7496{
7497 unsigned long physpages, codesize, datasize, rosize, bss_size;
7498 unsigned long init_code_size, init_data_size;
7499
7500 physpages = get_num_physpages();
7501 codesize = _etext - _stext;
7502 datasize = _edata - _sdata;
7503 rosize = __end_rodata - __start_rodata;
7504 bss_size = __bss_stop - __bss_start;
7505 init_data_size = __init_end - __init_begin;
7506 init_code_size = _einittext - _sinittext;
7507
7508 /*
7509 * Detect special cases and adjust section sizes accordingly:
7510 * 1) .init.* may be embedded into .data sections
7511 * 2) .init.text.* may be out of [__init_begin, __init_end],
7512 * please refer to arch/tile/kernel/vmlinux.lds.S.
7513 * 3) .rodata.* may be embedded into .text or .data sections.
7514 */
7515#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7516 do { \
7517 if (start <= pos && pos < end && size > adj) \
7518 size -= adj; \
7519 } while (0)
7ee3d4e8
JL
7520
7521 adj_init_size(__init_begin, __init_end, init_data_size,
7522 _sinittext, init_code_size);
7523 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7524 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7525 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7526 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7527
7528#undef adj_init_size
7529
756a025f 7530 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7531#ifdef CONFIG_HIGHMEM
756a025f 7532 ", %luK highmem"
7ee3d4e8 7533#endif
756a025f
JP
7534 "%s%s)\n",
7535 nr_free_pages() << (PAGE_SHIFT - 10),
7536 physpages << (PAGE_SHIFT - 10),
7537 codesize >> 10, datasize >> 10, rosize >> 10,
7538 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7539 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7540 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7541#ifdef CONFIG_HIGHMEM
ca79b0c2 7542 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7543#endif
756a025f 7544 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7545}
7546
0e0b864e 7547/**
88ca3b94
RD
7548 * set_dma_reserve - set the specified number of pages reserved in the first zone
7549 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7550 *
013110a7 7551 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7552 * In the DMA zone, a significant percentage may be consumed by kernel image
7553 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7554 * function may optionally be used to account for unfreeable pages in the
7555 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7556 * smaller per-cpu batchsize.
0e0b864e
MG
7557 */
7558void __init set_dma_reserve(unsigned long new_dma_reserve)
7559{
7560 dma_reserve = new_dma_reserve;
7561}
7562
1da177e4
LT
7563void __init free_area_init(unsigned long *zones_size)
7564{
e181ae0c 7565 zero_resv_unavail();
9109fb7b 7566 free_area_init_node(0, zones_size,
1da177e4
LT
7567 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7568}
1da177e4 7569
005fd4bb 7570static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7571{
1da177e4 7572
005fd4bb
SAS
7573 lru_add_drain_cpu(cpu);
7574 drain_pages(cpu);
9f8f2172 7575
005fd4bb
SAS
7576 /*
7577 * Spill the event counters of the dead processor
7578 * into the current processors event counters.
7579 * This artificially elevates the count of the current
7580 * processor.
7581 */
7582 vm_events_fold_cpu(cpu);
9f8f2172 7583
005fd4bb
SAS
7584 /*
7585 * Zero the differential counters of the dead processor
7586 * so that the vm statistics are consistent.
7587 *
7588 * This is only okay since the processor is dead and cannot
7589 * race with what we are doing.
7590 */
7591 cpu_vm_stats_fold(cpu);
7592 return 0;
1da177e4 7593}
1da177e4 7594
e03a5125
NP
7595#ifdef CONFIG_NUMA
7596int hashdist = HASHDIST_DEFAULT;
7597
7598static int __init set_hashdist(char *str)
7599{
7600 if (!str)
7601 return 0;
7602 hashdist = simple_strtoul(str, &str, 0);
7603 return 1;
7604}
7605__setup("hashdist=", set_hashdist);
7606#endif
7607
1da177e4
LT
7608void __init page_alloc_init(void)
7609{
005fd4bb
SAS
7610 int ret;
7611
e03a5125
NP
7612#ifdef CONFIG_NUMA
7613 if (num_node_state(N_MEMORY) == 1)
7614 hashdist = 0;
7615#endif
7616
005fd4bb
SAS
7617 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7618 "mm/page_alloc:dead", NULL,
7619 page_alloc_cpu_dead);
7620 WARN_ON(ret < 0);
1da177e4
LT
7621}
7622
cb45b0e9 7623/*
34b10060 7624 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7625 * or min_free_kbytes changes.
7626 */
7627static void calculate_totalreserve_pages(void)
7628{
7629 struct pglist_data *pgdat;
7630 unsigned long reserve_pages = 0;
2f6726e5 7631 enum zone_type i, j;
cb45b0e9
HA
7632
7633 for_each_online_pgdat(pgdat) {
281e3726
MG
7634
7635 pgdat->totalreserve_pages = 0;
7636
cb45b0e9
HA
7637 for (i = 0; i < MAX_NR_ZONES; i++) {
7638 struct zone *zone = pgdat->node_zones + i;
3484b2de 7639 long max = 0;
9705bea5 7640 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7641
7642 /* Find valid and maximum lowmem_reserve in the zone */
7643 for (j = i; j < MAX_NR_ZONES; j++) {
7644 if (zone->lowmem_reserve[j] > max)
7645 max = zone->lowmem_reserve[j];
7646 }
7647
41858966
MG
7648 /* we treat the high watermark as reserved pages. */
7649 max += high_wmark_pages(zone);
cb45b0e9 7650
3d6357de
AK
7651 if (max > managed_pages)
7652 max = managed_pages;
a8d01437 7653
281e3726 7654 pgdat->totalreserve_pages += max;
a8d01437 7655
cb45b0e9
HA
7656 reserve_pages += max;
7657 }
7658 }
7659 totalreserve_pages = reserve_pages;
7660}
7661
1da177e4
LT
7662/*
7663 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7664 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7665 * has a correct pages reserved value, so an adequate number of
7666 * pages are left in the zone after a successful __alloc_pages().
7667 */
7668static void setup_per_zone_lowmem_reserve(void)
7669{
7670 struct pglist_data *pgdat;
2f6726e5 7671 enum zone_type j, idx;
1da177e4 7672
ec936fc5 7673 for_each_online_pgdat(pgdat) {
1da177e4
LT
7674 for (j = 0; j < MAX_NR_ZONES; j++) {
7675 struct zone *zone = pgdat->node_zones + j;
9705bea5 7676 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7677
7678 zone->lowmem_reserve[j] = 0;
7679
2f6726e5
CL
7680 idx = j;
7681 while (idx) {
1da177e4
LT
7682 struct zone *lower_zone;
7683
2f6726e5 7684 idx--;
1da177e4 7685 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7686
7687 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7688 sysctl_lowmem_reserve_ratio[idx] = 0;
7689 lower_zone->lowmem_reserve[j] = 0;
7690 } else {
7691 lower_zone->lowmem_reserve[j] =
7692 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7693 }
9705bea5 7694 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7695 }
7696 }
7697 }
cb45b0e9
HA
7698
7699 /* update totalreserve_pages */
7700 calculate_totalreserve_pages();
1da177e4
LT
7701}
7702
cfd3da1e 7703static void __setup_per_zone_wmarks(void)
1da177e4
LT
7704{
7705 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7706 unsigned long lowmem_pages = 0;
7707 struct zone *zone;
7708 unsigned long flags;
7709
7710 /* Calculate total number of !ZONE_HIGHMEM pages */
7711 for_each_zone(zone) {
7712 if (!is_highmem(zone))
9705bea5 7713 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7714 }
7715
7716 for_each_zone(zone) {
ac924c60
AM
7717 u64 tmp;
7718
1125b4e3 7719 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7720 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7721 do_div(tmp, lowmem_pages);
1da177e4
LT
7722 if (is_highmem(zone)) {
7723 /*
669ed175
NP
7724 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7725 * need highmem pages, so cap pages_min to a small
7726 * value here.
7727 *
41858966 7728 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7729 * deltas control async page reclaim, and so should
669ed175 7730 * not be capped for highmem.
1da177e4 7731 */
90ae8d67 7732 unsigned long min_pages;
1da177e4 7733
9705bea5 7734 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7735 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7736 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7737 } else {
669ed175
NP
7738 /*
7739 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7740 * proportionate to the zone's size.
7741 */
a9214443 7742 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7743 }
7744
795ae7a0
JW
7745 /*
7746 * Set the kswapd watermarks distance according to the
7747 * scale factor in proportion to available memory, but
7748 * ensure a minimum size on small systems.
7749 */
7750 tmp = max_t(u64, tmp >> 2,
9705bea5 7751 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7752 watermark_scale_factor, 10000));
7753
a9214443
MG
7754 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7755 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7756 zone->watermark_boost = 0;
49f223a9 7757
1125b4e3 7758 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7759 }
cb45b0e9
HA
7760
7761 /* update totalreserve_pages */
7762 calculate_totalreserve_pages();
1da177e4
LT
7763}
7764
cfd3da1e
MG
7765/**
7766 * setup_per_zone_wmarks - called when min_free_kbytes changes
7767 * or when memory is hot-{added|removed}
7768 *
7769 * Ensures that the watermark[min,low,high] values for each zone are set
7770 * correctly with respect to min_free_kbytes.
7771 */
7772void setup_per_zone_wmarks(void)
7773{
b93e0f32
MH
7774 static DEFINE_SPINLOCK(lock);
7775
7776 spin_lock(&lock);
cfd3da1e 7777 __setup_per_zone_wmarks();
b93e0f32 7778 spin_unlock(&lock);
cfd3da1e
MG
7779}
7780
1da177e4
LT
7781/*
7782 * Initialise min_free_kbytes.
7783 *
7784 * For small machines we want it small (128k min). For large machines
7785 * we want it large (64MB max). But it is not linear, because network
7786 * bandwidth does not increase linearly with machine size. We use
7787 *
b8af2941 7788 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7789 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7790 *
7791 * which yields
7792 *
7793 * 16MB: 512k
7794 * 32MB: 724k
7795 * 64MB: 1024k
7796 * 128MB: 1448k
7797 * 256MB: 2048k
7798 * 512MB: 2896k
7799 * 1024MB: 4096k
7800 * 2048MB: 5792k
7801 * 4096MB: 8192k
7802 * 8192MB: 11584k
7803 * 16384MB: 16384k
7804 */
1b79acc9 7805int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7806{
7807 unsigned long lowmem_kbytes;
5f12733e 7808 int new_min_free_kbytes;
1da177e4
LT
7809
7810 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7811 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7812
7813 if (new_min_free_kbytes > user_min_free_kbytes) {
7814 min_free_kbytes = new_min_free_kbytes;
7815 if (min_free_kbytes < 128)
7816 min_free_kbytes = 128;
7817 if (min_free_kbytes > 65536)
7818 min_free_kbytes = 65536;
7819 } else {
7820 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7821 new_min_free_kbytes, user_min_free_kbytes);
7822 }
bc75d33f 7823 setup_per_zone_wmarks();
a6cccdc3 7824 refresh_zone_stat_thresholds();
1da177e4 7825 setup_per_zone_lowmem_reserve();
6423aa81
JK
7826
7827#ifdef CONFIG_NUMA
7828 setup_min_unmapped_ratio();
7829 setup_min_slab_ratio();
7830#endif
7831
1da177e4
LT
7832 return 0;
7833}
bc22af74 7834core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7835
7836/*
b8af2941 7837 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7838 * that we can call two helper functions whenever min_free_kbytes
7839 * changes.
7840 */
cccad5b9 7841int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7842 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7843{
da8c757b
HP
7844 int rc;
7845
7846 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7847 if (rc)
7848 return rc;
7849
5f12733e
MH
7850 if (write) {
7851 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7852 setup_per_zone_wmarks();
5f12733e 7853 }
1da177e4
LT
7854 return 0;
7855}
7856
1c30844d
MG
7857int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7858 void __user *buffer, size_t *length, loff_t *ppos)
7859{
7860 int rc;
7861
7862 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7863 if (rc)
7864 return rc;
7865
7866 return 0;
7867}
7868
795ae7a0
JW
7869int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7870 void __user *buffer, size_t *length, loff_t *ppos)
7871{
7872 int rc;
7873
7874 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7875 if (rc)
7876 return rc;
7877
7878 if (write)
7879 setup_per_zone_wmarks();
7880
7881 return 0;
7882}
7883
9614634f 7884#ifdef CONFIG_NUMA
6423aa81 7885static void setup_min_unmapped_ratio(void)
9614634f 7886{
6423aa81 7887 pg_data_t *pgdat;
9614634f 7888 struct zone *zone;
9614634f 7889
a5f5f91d 7890 for_each_online_pgdat(pgdat)
81cbcbc2 7891 pgdat->min_unmapped_pages = 0;
a5f5f91d 7892
9614634f 7893 for_each_zone(zone)
9705bea5
AK
7894 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7895 sysctl_min_unmapped_ratio) / 100;
9614634f 7896}
0ff38490 7897
6423aa81
JK
7898
7899int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7900 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7901{
0ff38490
CL
7902 int rc;
7903
8d65af78 7904 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7905 if (rc)
7906 return rc;
7907
6423aa81
JK
7908 setup_min_unmapped_ratio();
7909
7910 return 0;
7911}
7912
7913static void setup_min_slab_ratio(void)
7914{
7915 pg_data_t *pgdat;
7916 struct zone *zone;
7917
a5f5f91d
MG
7918 for_each_online_pgdat(pgdat)
7919 pgdat->min_slab_pages = 0;
7920
0ff38490 7921 for_each_zone(zone)
9705bea5
AK
7922 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7923 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7924}
7925
7926int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7927 void __user *buffer, size_t *length, loff_t *ppos)
7928{
7929 int rc;
7930
7931 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7932 if (rc)
7933 return rc;
7934
7935 setup_min_slab_ratio();
7936
0ff38490
CL
7937 return 0;
7938}
9614634f
CL
7939#endif
7940
1da177e4
LT
7941/*
7942 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7943 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7944 * whenever sysctl_lowmem_reserve_ratio changes.
7945 *
7946 * The reserve ratio obviously has absolutely no relation with the
41858966 7947 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7948 * if in function of the boot time zone sizes.
7949 */
cccad5b9 7950int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7951 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7952{
8d65af78 7953 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7954 setup_per_zone_lowmem_reserve();
7955 return 0;
7956}
7957
8ad4b1fb
RS
7958/*
7959 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7960 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7961 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7962 */
cccad5b9 7963int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7964 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7965{
7966 struct zone *zone;
7cd2b0a3 7967 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7968 int ret;
7969
7cd2b0a3
DR
7970 mutex_lock(&pcp_batch_high_lock);
7971 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7972
8d65af78 7973 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7974 if (!write || ret < 0)
7975 goto out;
7976
7977 /* Sanity checking to avoid pcp imbalance */
7978 if (percpu_pagelist_fraction &&
7979 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7980 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7981 ret = -EINVAL;
7982 goto out;
7983 }
7984
7985 /* No change? */
7986 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7987 goto out;
c8e251fa 7988
364df0eb 7989 for_each_populated_zone(zone) {
7cd2b0a3
DR
7990 unsigned int cpu;
7991
22a7f12b 7992 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7993 pageset_set_high_and_batch(zone,
7994 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7995 }
7cd2b0a3 7996out:
c8e251fa 7997 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7998 return ret;
8ad4b1fb
RS
7999}
8000
f6f34b43
SD
8001#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8002/*
8003 * Returns the number of pages that arch has reserved but
8004 * is not known to alloc_large_system_hash().
8005 */
8006static unsigned long __init arch_reserved_kernel_pages(void)
8007{
8008 return 0;
8009}
8010#endif
8011
9017217b
PT
8012/*
8013 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8014 * machines. As memory size is increased the scale is also increased but at
8015 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8016 * quadruples the scale is increased by one, which means the size of hash table
8017 * only doubles, instead of quadrupling as well.
8018 * Because 32-bit systems cannot have large physical memory, where this scaling
8019 * makes sense, it is disabled on such platforms.
8020 */
8021#if __BITS_PER_LONG > 32
8022#define ADAPT_SCALE_BASE (64ul << 30)
8023#define ADAPT_SCALE_SHIFT 2
8024#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8025#endif
8026
1da177e4
LT
8027/*
8028 * allocate a large system hash table from bootmem
8029 * - it is assumed that the hash table must contain an exact power-of-2
8030 * quantity of entries
8031 * - limit is the number of hash buckets, not the total allocation size
8032 */
8033void *__init alloc_large_system_hash(const char *tablename,
8034 unsigned long bucketsize,
8035 unsigned long numentries,
8036 int scale,
8037 int flags,
8038 unsigned int *_hash_shift,
8039 unsigned int *_hash_mask,
31fe62b9
TB
8040 unsigned long low_limit,
8041 unsigned long high_limit)
1da177e4 8042{
31fe62b9 8043 unsigned long long max = high_limit;
1da177e4
LT
8044 unsigned long log2qty, size;
8045 void *table = NULL;
3749a8f0 8046 gfp_t gfp_flags;
ec11408a 8047 bool virt;
1da177e4
LT
8048
8049 /* allow the kernel cmdline to have a say */
8050 if (!numentries) {
8051 /* round applicable memory size up to nearest megabyte */
04903664 8052 numentries = nr_kernel_pages;
f6f34b43 8053 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8054
8055 /* It isn't necessary when PAGE_SIZE >= 1MB */
8056 if (PAGE_SHIFT < 20)
8057 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8058
9017217b
PT
8059#if __BITS_PER_LONG > 32
8060 if (!high_limit) {
8061 unsigned long adapt;
8062
8063 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8064 adapt <<= ADAPT_SCALE_SHIFT)
8065 scale++;
8066 }
8067#endif
8068
1da177e4
LT
8069 /* limit to 1 bucket per 2^scale bytes of low memory */
8070 if (scale > PAGE_SHIFT)
8071 numentries >>= (scale - PAGE_SHIFT);
8072 else
8073 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8074
8075 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8076 if (unlikely(flags & HASH_SMALL)) {
8077 /* Makes no sense without HASH_EARLY */
8078 WARN_ON(!(flags & HASH_EARLY));
8079 if (!(numentries >> *_hash_shift)) {
8080 numentries = 1UL << *_hash_shift;
8081 BUG_ON(!numentries);
8082 }
8083 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8084 numentries = PAGE_SIZE / bucketsize;
1da177e4 8085 }
6e692ed3 8086 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8087
8088 /* limit allocation size to 1/16 total memory by default */
8089 if (max == 0) {
8090 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8091 do_div(max, bucketsize);
8092 }
074b8517 8093 max = min(max, 0x80000000ULL);
1da177e4 8094
31fe62b9
TB
8095 if (numentries < low_limit)
8096 numentries = low_limit;
1da177e4
LT
8097 if (numentries > max)
8098 numentries = max;
8099
f0d1b0b3 8100 log2qty = ilog2(numentries);
1da177e4 8101
3749a8f0 8102 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8103 do {
ec11408a 8104 virt = false;
1da177e4 8105 size = bucketsize << log2qty;
ea1f5f37
PT
8106 if (flags & HASH_EARLY) {
8107 if (flags & HASH_ZERO)
26fb3dae 8108 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8109 else
7e1c4e27
MR
8110 table = memblock_alloc_raw(size,
8111 SMP_CACHE_BYTES);
ec11408a 8112 } else if (get_order(size) >= MAX_ORDER || hashdist) {
3749a8f0 8113 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ec11408a 8114 virt = true;
ea1f5f37 8115 } else {
1037b83b
ED
8116 /*
8117 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8118 * some pages at the end of hash table which
8119 * alloc_pages_exact() automatically does
1037b83b 8120 */
ec11408a
NP
8121 table = alloc_pages_exact(size, gfp_flags);
8122 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8123 }
8124 } while (!table && size > PAGE_SIZE && --log2qty);
8125
8126 if (!table)
8127 panic("Failed to allocate %s hash table\n", tablename);
8128
ec11408a
NP
8129 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8130 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8131 virt ? "vmalloc" : "linear");
1da177e4
LT
8132
8133 if (_hash_shift)
8134 *_hash_shift = log2qty;
8135 if (_hash_mask)
8136 *_hash_mask = (1 << log2qty) - 1;
8137
8138 return table;
8139}
a117e66e 8140
a5d76b54 8141/*
80934513
MK
8142 * This function checks whether pageblock includes unmovable pages or not.
8143 * If @count is not zero, it is okay to include less @count unmovable pages
8144 *
b8af2941 8145 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8146 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8147 * check without lock_page also may miss some movable non-lru pages at
8148 * race condition. So you can't expect this function should be exact.
a5d76b54 8149 */
b023f468 8150bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 8151 int migratetype, int flags)
49ac8255 8152{
1a9f2191
QC
8153 unsigned long found;
8154 unsigned long iter = 0;
8155 unsigned long pfn = page_to_pfn(page);
8156 const char *reason = "unmovable page";
47118af0 8157
49ac8255 8158 /*
15c30bc0
MH
8159 * TODO we could make this much more efficient by not checking every
8160 * page in the range if we know all of them are in MOVABLE_ZONE and
8161 * that the movable zone guarantees that pages are migratable but
8162 * the later is not the case right now unfortunatelly. E.g. movablecore
8163 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8164 */
49ac8255 8165
1a9f2191
QC
8166 if (is_migrate_cma_page(page)) {
8167 /*
8168 * CMA allocations (alloc_contig_range) really need to mark
8169 * isolate CMA pageblocks even when they are not movable in fact
8170 * so consider them movable here.
8171 */
8172 if (is_migrate_cma(migratetype))
8173 return false;
8174
8175 reason = "CMA page";
8176 goto unmovable;
8177 }
4da2ce25 8178
1a9f2191 8179 for (found = 0; iter < pageblock_nr_pages; iter++) {
49ac8255
KH
8180 unsigned long check = pfn + iter;
8181
29723fcc 8182 if (!pfn_valid_within(check))
49ac8255 8183 continue;
29723fcc 8184
49ac8255 8185 page = pfn_to_page(check);
c8721bbb 8186
d7ab3672 8187 if (PageReserved(page))
15c30bc0 8188 goto unmovable;
d7ab3672 8189
9d789999
MH
8190 /*
8191 * If the zone is movable and we have ruled out all reserved
8192 * pages then it should be reasonably safe to assume the rest
8193 * is movable.
8194 */
8195 if (zone_idx(zone) == ZONE_MOVABLE)
8196 continue;
8197
c8721bbb
NH
8198 /*
8199 * Hugepages are not in LRU lists, but they're movable.
8bb4e7a2 8200 * We need not scan over tail pages because we don't
c8721bbb
NH
8201 * handle each tail page individually in migration.
8202 */
8203 if (PageHuge(page)) {
17e2e7d7
OS
8204 struct page *head = compound_head(page);
8205 unsigned int skip_pages;
464c7ffb 8206
17e2e7d7 8207 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
8208 goto unmovable;
8209
d8c6546b 8210 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8211 iter += skip_pages - 1;
c8721bbb
NH
8212 continue;
8213 }
8214
97d255c8
MK
8215 /*
8216 * We can't use page_count without pin a page
8217 * because another CPU can free compound page.
8218 * This check already skips compound tails of THP
0139aa7b 8219 * because their page->_refcount is zero at all time.
97d255c8 8220 */
fe896d18 8221 if (!page_ref_count(page)) {
49ac8255
KH
8222 if (PageBuddy(page))
8223 iter += (1 << page_order(page)) - 1;
8224 continue;
8225 }
97d255c8 8226
b023f468
WC
8227 /*
8228 * The HWPoisoned page may be not in buddy system, and
8229 * page_count() is not 0.
8230 */
d381c547 8231 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
8232 continue;
8233
0efadf48
YX
8234 if (__PageMovable(page))
8235 continue;
8236
49ac8255
KH
8237 if (!PageLRU(page))
8238 found++;
8239 /*
6b4f7799
JW
8240 * If there are RECLAIMABLE pages, we need to check
8241 * it. But now, memory offline itself doesn't call
8242 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8243 */
8244 /*
8245 * If the page is not RAM, page_count()should be 0.
8246 * we don't need more check. This is an _used_ not-movable page.
8247 *
8248 * The problematic thing here is PG_reserved pages. PG_reserved
8249 * is set to both of a memory hole page and a _used_ kernel
8250 * page at boot.
8251 */
8252 if (found > count)
15c30bc0 8253 goto unmovable;
49ac8255 8254 }
80934513 8255 return false;
15c30bc0
MH
8256unmovable:
8257 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547 8258 if (flags & REPORT_FAILURE)
1a9f2191 8259 dump_page(pfn_to_page(pfn + iter), reason);
15c30bc0 8260 return true;
49ac8255
KH
8261}
8262
8df995f6 8263#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8264static unsigned long pfn_max_align_down(unsigned long pfn)
8265{
8266 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8267 pageblock_nr_pages) - 1);
8268}
8269
8270static unsigned long pfn_max_align_up(unsigned long pfn)
8271{
8272 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8273 pageblock_nr_pages));
8274}
8275
041d3a8c 8276/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8277static int __alloc_contig_migrate_range(struct compact_control *cc,
8278 unsigned long start, unsigned long end)
041d3a8c
MN
8279{
8280 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8281 unsigned long nr_reclaimed;
041d3a8c
MN
8282 unsigned long pfn = start;
8283 unsigned int tries = 0;
8284 int ret = 0;
8285
be49a6e1 8286 migrate_prep();
041d3a8c 8287
bb13ffeb 8288 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8289 if (fatal_signal_pending(current)) {
8290 ret = -EINTR;
8291 break;
8292 }
8293
bb13ffeb
MG
8294 if (list_empty(&cc->migratepages)) {
8295 cc->nr_migratepages = 0;
edc2ca61 8296 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8297 if (!pfn) {
8298 ret = -EINTR;
8299 break;
8300 }
8301 tries = 0;
8302 } else if (++tries == 5) {
8303 ret = ret < 0 ? ret : -EBUSY;
8304 break;
8305 }
8306
beb51eaa
MK
8307 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8308 &cc->migratepages);
8309 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8310
9c620e2b 8311 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8312 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8313 }
2a6f5124
SP
8314 if (ret < 0) {
8315 putback_movable_pages(&cc->migratepages);
8316 return ret;
8317 }
8318 return 0;
041d3a8c
MN
8319}
8320
8321/**
8322 * alloc_contig_range() -- tries to allocate given range of pages
8323 * @start: start PFN to allocate
8324 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8325 * @migratetype: migratetype of the underlaying pageblocks (either
8326 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8327 * in range must have the same migratetype and it must
8328 * be either of the two.
ca96b625 8329 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8330 *
8331 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8332 * aligned. The PFN range must belong to a single zone.
041d3a8c 8333 *
2c7452a0
MK
8334 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8335 * pageblocks in the range. Once isolated, the pageblocks should not
8336 * be modified by others.
041d3a8c 8337 *
a862f68a 8338 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8339 * pages which PFN is in [start, end) are allocated for the caller and
8340 * need to be freed with free_contig_range().
8341 */
0815f3d8 8342int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8343 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8344{
041d3a8c 8345 unsigned long outer_start, outer_end;
d00181b9
KS
8346 unsigned int order;
8347 int ret = 0;
041d3a8c 8348
bb13ffeb
MG
8349 struct compact_control cc = {
8350 .nr_migratepages = 0,
8351 .order = -1,
8352 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8353 .mode = MIGRATE_SYNC,
bb13ffeb 8354 .ignore_skip_hint = true,
2583d671 8355 .no_set_skip_hint = true,
7dea19f9 8356 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8357 };
8358 INIT_LIST_HEAD(&cc.migratepages);
8359
041d3a8c
MN
8360 /*
8361 * What we do here is we mark all pageblocks in range as
8362 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8363 * have different sizes, and due to the way page allocator
8364 * work, we align the range to biggest of the two pages so
8365 * that page allocator won't try to merge buddies from
8366 * different pageblocks and change MIGRATE_ISOLATE to some
8367 * other migration type.
8368 *
8369 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8370 * migrate the pages from an unaligned range (ie. pages that
8371 * we are interested in). This will put all the pages in
8372 * range back to page allocator as MIGRATE_ISOLATE.
8373 *
8374 * When this is done, we take the pages in range from page
8375 * allocator removing them from the buddy system. This way
8376 * page allocator will never consider using them.
8377 *
8378 * This lets us mark the pageblocks back as
8379 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8380 * aligned range but not in the unaligned, original range are
8381 * put back to page allocator so that buddy can use them.
8382 */
8383
8384 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8385 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8386 if (ret < 0)
86a595f9 8387 return ret;
041d3a8c 8388
8ef5849f
JK
8389 /*
8390 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8391 * So, just fall through. test_pages_isolated() has a tracepoint
8392 * which will report the busy page.
8393 *
8394 * It is possible that busy pages could become available before
8395 * the call to test_pages_isolated, and the range will actually be
8396 * allocated. So, if we fall through be sure to clear ret so that
8397 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8398 */
bb13ffeb 8399 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8400 if (ret && ret != -EBUSY)
041d3a8c 8401 goto done;
63cd4489 8402 ret =0;
041d3a8c
MN
8403
8404 /*
8405 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8406 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8407 * more, all pages in [start, end) are free in page allocator.
8408 * What we are going to do is to allocate all pages from
8409 * [start, end) (that is remove them from page allocator).
8410 *
8411 * The only problem is that pages at the beginning and at the
8412 * end of interesting range may be not aligned with pages that
8413 * page allocator holds, ie. they can be part of higher order
8414 * pages. Because of this, we reserve the bigger range and
8415 * once this is done free the pages we are not interested in.
8416 *
8417 * We don't have to hold zone->lock here because the pages are
8418 * isolated thus they won't get removed from buddy.
8419 */
8420
8421 lru_add_drain_all();
041d3a8c
MN
8422
8423 order = 0;
8424 outer_start = start;
8425 while (!PageBuddy(pfn_to_page(outer_start))) {
8426 if (++order >= MAX_ORDER) {
8ef5849f
JK
8427 outer_start = start;
8428 break;
041d3a8c
MN
8429 }
8430 outer_start &= ~0UL << order;
8431 }
8432
8ef5849f
JK
8433 if (outer_start != start) {
8434 order = page_order(pfn_to_page(outer_start));
8435
8436 /*
8437 * outer_start page could be small order buddy page and
8438 * it doesn't include start page. Adjust outer_start
8439 * in this case to report failed page properly
8440 * on tracepoint in test_pages_isolated()
8441 */
8442 if (outer_start + (1UL << order) <= start)
8443 outer_start = start;
8444 }
8445
041d3a8c 8446 /* Make sure the range is really isolated. */
b023f468 8447 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8448 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8449 __func__, outer_start, end);
041d3a8c
MN
8450 ret = -EBUSY;
8451 goto done;
8452 }
8453
49f223a9 8454 /* Grab isolated pages from freelists. */
bb13ffeb 8455 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8456 if (!outer_end) {
8457 ret = -EBUSY;
8458 goto done;
8459 }
8460
8461 /* Free head and tail (if any) */
8462 if (start != outer_start)
8463 free_contig_range(outer_start, start - outer_start);
8464 if (end != outer_end)
8465 free_contig_range(end, outer_end - end);
8466
8467done:
8468 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8469 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8470 return ret;
8471}
4eb0716e 8472#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8473
4eb0716e 8474void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8475{
bcc2b02f
MS
8476 unsigned int count = 0;
8477
8478 for (; nr_pages--; pfn++) {
8479 struct page *page = pfn_to_page(pfn);
8480
8481 count += page_count(page) != 1;
8482 __free_page(page);
8483 }
8484 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8485}
041d3a8c 8486
d883c6cf 8487#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8488/*
8489 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8490 * page high values need to be recalulated.
8491 */
4ed7e022
JL
8492void __meminit zone_pcp_update(struct zone *zone)
8493{
0a647f38 8494 unsigned cpu;
c8e251fa 8495 mutex_lock(&pcp_batch_high_lock);
0a647f38 8496 for_each_possible_cpu(cpu)
169f6c19
CS
8497 pageset_set_high_and_batch(zone,
8498 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8499 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8500}
8501#endif
8502
340175b7
JL
8503void zone_pcp_reset(struct zone *zone)
8504{
8505 unsigned long flags;
5a883813
MK
8506 int cpu;
8507 struct per_cpu_pageset *pset;
340175b7
JL
8508
8509 /* avoid races with drain_pages() */
8510 local_irq_save(flags);
8511 if (zone->pageset != &boot_pageset) {
5a883813
MK
8512 for_each_online_cpu(cpu) {
8513 pset = per_cpu_ptr(zone->pageset, cpu);
8514 drain_zonestat(zone, pset);
8515 }
340175b7
JL
8516 free_percpu(zone->pageset);
8517 zone->pageset = &boot_pageset;
8518 }
8519 local_irq_restore(flags);
8520}
8521
6dcd73d7 8522#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8523/*
b9eb6319
JK
8524 * All pages in the range must be in a single zone and isolated
8525 * before calling this.
0c0e6195 8526 */
5557c766 8527unsigned long
0c0e6195
KH
8528__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8529{
8530 struct page *page;
8531 struct zone *zone;
7aeb09f9 8532 unsigned int order, i;
0c0e6195
KH
8533 unsigned long pfn;
8534 unsigned long flags;
5557c766
MH
8535 unsigned long offlined_pages = 0;
8536
0c0e6195
KH
8537 /* find the first valid pfn */
8538 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8539 if (pfn_valid(pfn))
8540 break;
8541 if (pfn == end_pfn)
5557c766
MH
8542 return offlined_pages;
8543
2d070eab 8544 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8545 zone = page_zone(pfn_to_page(pfn));
8546 spin_lock_irqsave(&zone->lock, flags);
8547 pfn = start_pfn;
8548 while (pfn < end_pfn) {
8549 if (!pfn_valid(pfn)) {
8550 pfn++;
8551 continue;
8552 }
8553 page = pfn_to_page(pfn);
b023f468
WC
8554 /*
8555 * The HWPoisoned page may be not in buddy system, and
8556 * page_count() is not 0.
8557 */
8558 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8559 pfn++;
8560 SetPageReserved(page);
5557c766 8561 offlined_pages++;
b023f468
WC
8562 continue;
8563 }
8564
0c0e6195
KH
8565 BUG_ON(page_count(page));
8566 BUG_ON(!PageBuddy(page));
8567 order = page_order(page);
5557c766 8568 offlined_pages += 1 << order;
0c0e6195 8569#ifdef CONFIG_DEBUG_VM
1170532b
JP
8570 pr_info("remove from free list %lx %d %lx\n",
8571 pfn, 1 << order, end_pfn);
0c0e6195 8572#endif
b03641af 8573 del_page_from_free_area(page, &zone->free_area[order]);
0c0e6195
KH
8574 for (i = 0; i < (1 << order); i++)
8575 SetPageReserved((page+i));
8576 pfn += (1 << order);
8577 }
8578 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8579
8580 return offlined_pages;
0c0e6195
KH
8581}
8582#endif
8d22ba1b 8583
8d22ba1b
WF
8584bool is_free_buddy_page(struct page *page)
8585{
8586 struct zone *zone = page_zone(page);
8587 unsigned long pfn = page_to_pfn(page);
8588 unsigned long flags;
7aeb09f9 8589 unsigned int order;
8d22ba1b
WF
8590
8591 spin_lock_irqsave(&zone->lock, flags);
8592 for (order = 0; order < MAX_ORDER; order++) {
8593 struct page *page_head = page - (pfn & ((1 << order) - 1));
8594
8595 if (PageBuddy(page_head) && page_order(page_head) >= order)
8596 break;
8597 }
8598 spin_unlock_irqrestore(&zone->lock, flags);
8599
8600 return order < MAX_ORDER;
8601}
d4ae9916
NH
8602
8603#ifdef CONFIG_MEMORY_FAILURE
8604/*
8605 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8606 * test is performed under the zone lock to prevent a race against page
8607 * allocation.
8608 */
8609bool set_hwpoison_free_buddy_page(struct page *page)
8610{
8611 struct zone *zone = page_zone(page);
8612 unsigned long pfn = page_to_pfn(page);
8613 unsigned long flags;
8614 unsigned int order;
8615 bool hwpoisoned = false;
8616
8617 spin_lock_irqsave(&zone->lock, flags);
8618 for (order = 0; order < MAX_ORDER; order++) {
8619 struct page *page_head = page - (pfn & ((1 << order) - 1));
8620
8621 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8622 if (!TestSetPageHWPoison(page))
8623 hwpoisoned = true;
8624 break;
8625 }
8626 }
8627 spin_unlock_irqrestore(&zone->lock, flags);
8628
8629 return hwpoisoned;
8630}
8631#endif