Merge tag 'audit-pr-20221107' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/swap.h>
bf181c58 22#include <linux/swapops.h>
1da177e4
LT
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
10ed273f 25#include <linux/jiffies.h>
edbe7d23 26#include <linux/memblock.h>
1da177e4 27#include <linux/compiler.h>
9f158333 28#include <linux/kernel.h>
b8c73fc2 29#include <linux/kasan.h>
b073d7f8 30#include <linux/kmsan.h>
1da177e4
LT
31#include <linux/module.h>
32#include <linux/suspend.h>
33#include <linux/pagevec.h>
34#include <linux/blkdev.h>
35#include <linux/slab.h>
a238ab5b 36#include <linux/ratelimit.h>
5a3135c2 37#include <linux/oom.h>
1da177e4
LT
38#include <linux/topology.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/cpuset.h>
bdc8cb98 42#include <linux/memory_hotplug.h>
1da177e4
LT
43#include <linux/nodemask.h>
44#include <linux/vmalloc.h>
a6cccdc3 45#include <linux/vmstat.h>
4be38e35 46#include <linux/mempolicy.h>
4b94ffdc 47#include <linux/memremap.h>
6811378e 48#include <linux/stop_machine.h>
97500a4a 49#include <linux/random.h>
c713216d
MG
50#include <linux/sort.h>
51#include <linux/pfn.h>
3fcfab16 52#include <linux/backing-dev.h>
933e312e 53#include <linux/fault-inject.h>
a5d76b54 54#include <linux/page-isolation.h>
3ac7fe5a 55#include <linux/debugobjects.h>
dbb1f81c 56#include <linux/kmemleak.h>
56de7263 57#include <linux/compaction.h>
0d3d062a 58#include <trace/events/kmem.h>
d379f01d 59#include <trace/events/oom.h>
268bb0ce 60#include <linux/prefetch.h>
6e543d57 61#include <linux/mm_inline.h>
f920e413 62#include <linux/mmu_notifier.h>
041d3a8c 63#include <linux/migrate.h>
949f7ec5 64#include <linux/hugetlb.h>
8bd75c77 65#include <linux/sched/rt.h>
5b3cc15a 66#include <linux/sched/mm.h>
48c96a36 67#include <linux/page_owner.h>
df4e817b 68#include <linux/page_table_check.h>
0e1cc95b 69#include <linux/kthread.h>
4949148a 70#include <linux/memcontrol.h>
42c269c8 71#include <linux/ftrace.h>
d92a8cfc 72#include <linux/lockdep.h>
556b969a 73#include <linux/nmi.h>
eb414681 74#include <linux/psi.h>
e4443149 75#include <linux/padata.h>
4aab2be0 76#include <linux/khugepaged.h>
ba8f3587 77#include <linux/buffer_head.h>
5bf18281 78#include <linux/delayacct.h>
7ee3d4e8 79#include <asm/sections.h>
1da177e4 80#include <asm/tlbflush.h>
ac924c60 81#include <asm/div64.h>
1da177e4 82#include "internal.h"
e900a918 83#include "shuffle.h"
36e66c55 84#include "page_reporting.h"
014bb1de 85#include "swap.h"
1da177e4 86
f04a5d5d
DH
87/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88typedef int __bitwise fpi_t;
89
90/* No special request */
91#define FPI_NONE ((__force fpi_t)0)
92
93/*
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
100 */
101#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
102
47b6a24a
DH
103/*
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
107 *
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
111 * reporting).
112 */
113#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
114
2c335680
AK
115/*
116 * Don't poison memory with KASAN (only for the tag-based modes).
117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
118 * Poisoning all that memory lengthens boot time, especially on systems with
119 * large amount of RAM. This flag is used to skip that poisoning.
120 * This is only done for the tag-based KASAN modes, as those are able to
121 * detect memory corruptions with the memory tags assigned by default.
122 * All memory allocated normally after boot gets poisoned as usual.
123 */
124#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
125
c8e251fa
CS
126/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 128#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 129
4b23a68f
MG
130#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131/*
132 * On SMP, spin_trylock is sufficient protection.
133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134 */
135#define pcp_trylock_prepare(flags) do { } while (0)
136#define pcp_trylock_finish(flag) do { } while (0)
137#else
138
139/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140#define pcp_trylock_prepare(flags) local_irq_save(flags)
141#define pcp_trylock_finish(flags) local_irq_restore(flags)
142#endif
143
01b44456
MG
144/*
145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146 * a migration causing the wrong PCP to be locked and remote memory being
147 * potentially allocated, pin the task to the CPU for the lookup+lock.
148 * preempt_disable is used on !RT because it is faster than migrate_disable.
149 * migrate_disable is used on RT because otherwise RT spinlock usage is
150 * interfered with and a high priority task cannot preempt the allocator.
151 */
152#ifndef CONFIG_PREEMPT_RT
153#define pcpu_task_pin() preempt_disable()
154#define pcpu_task_unpin() preempt_enable()
155#else
156#define pcpu_task_pin() migrate_disable()
157#define pcpu_task_unpin() migrate_enable()
158#endif
c8e251fa 159
01b44456
MG
160/*
161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162 * Return value should be used with equivalent unlock helper.
163 */
164#define pcpu_spin_lock(type, member, ptr) \
165({ \
166 type *_ret; \
167 pcpu_task_pin(); \
168 _ret = this_cpu_ptr(ptr); \
169 spin_lock(&_ret->member); \
170 _ret; \
171})
172
173#define pcpu_spin_lock_irqsave(type, member, ptr, flags) \
174({ \
175 type *_ret; \
176 pcpu_task_pin(); \
177 _ret = this_cpu_ptr(ptr); \
178 spin_lock_irqsave(&_ret->member, flags); \
179 _ret; \
180})
181
182#define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \
183({ \
184 type *_ret; \
185 pcpu_task_pin(); \
186 _ret = this_cpu_ptr(ptr); \
187 if (!spin_trylock_irqsave(&_ret->member, flags)) { \
188 pcpu_task_unpin(); \
189 _ret = NULL; \
190 } \
191 _ret; \
192})
193
194#define pcpu_spin_unlock(member, ptr) \
195({ \
196 spin_unlock(&ptr->member); \
197 pcpu_task_unpin(); \
198})
199
200#define pcpu_spin_unlock_irqrestore(member, ptr, flags) \
201({ \
202 spin_unlock_irqrestore(&ptr->member, flags); \
203 pcpu_task_unpin(); \
204})
205
206/* struct per_cpu_pages specific helpers. */
207#define pcp_spin_lock(ptr) \
208 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
209
210#define pcp_spin_lock_irqsave(ptr, flags) \
211 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
212
213#define pcp_spin_trylock_irqsave(ptr, flags) \
214 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
215
216#define pcp_spin_unlock(ptr) \
217 pcpu_spin_unlock(lock, ptr)
218
219#define pcp_spin_unlock_irqrestore(ptr, flags) \
220 pcpu_spin_unlock_irqrestore(lock, ptr, flags)
72812019
LS
221#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
222DEFINE_PER_CPU(int, numa_node);
223EXPORT_PER_CPU_SYMBOL(numa_node);
224#endif
225
4518085e
KW
226DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
227
7aac7898
LS
228#ifdef CONFIG_HAVE_MEMORYLESS_NODES
229/*
230 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
231 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
232 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
233 * defined in <linux/topology.h>.
234 */
235DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
236EXPORT_PER_CPU_SYMBOL(_numa_mem_);
237#endif
238
8b885f53 239static DEFINE_MUTEX(pcpu_drain_mutex);
bd233f53 240
38addce8 241#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 242volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
243EXPORT_SYMBOL(latent_entropy);
244#endif
245
1da177e4 246/*
13808910 247 * Array of node states.
1da177e4 248 */
13808910
CL
249nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
250 [N_POSSIBLE] = NODE_MASK_ALL,
251 [N_ONLINE] = { { [0] = 1UL } },
252#ifndef CONFIG_NUMA
253 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
254#ifdef CONFIG_HIGHMEM
255 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 256#endif
20b2f52b 257 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
258 [N_CPU] = { { [0] = 1UL } },
259#endif /* NUMA */
260};
261EXPORT_SYMBOL(node_states);
262
ca79b0c2
AK
263atomic_long_t _totalram_pages __read_mostly;
264EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 265unsigned long totalreserve_pages __read_mostly;
e48322ab 266unsigned long totalcma_pages __read_mostly;
ab8fabd4 267
74f44822 268int percpu_pagelist_high_fraction;
dcce284a 269gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
51cba1eb 270DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
271EXPORT_SYMBOL(init_on_alloc);
272
51cba1eb 273DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
274EXPORT_SYMBOL(init_on_free);
275
04013513
VB
276static bool _init_on_alloc_enabled_early __read_mostly
277 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
6471384a
AP
278static int __init early_init_on_alloc(char *buf)
279{
6471384a 280
04013513 281 return kstrtobool(buf, &_init_on_alloc_enabled_early);
6471384a
AP
282}
283early_param("init_on_alloc", early_init_on_alloc);
284
04013513
VB
285static bool _init_on_free_enabled_early __read_mostly
286 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
6471384a
AP
287static int __init early_init_on_free(char *buf)
288{
04013513 289 return kstrtobool(buf, &_init_on_free_enabled_early);
6471384a
AP
290}
291early_param("init_on_free", early_init_on_free);
1da177e4 292
bb14c2c7
VB
293/*
294 * A cached value of the page's pageblock's migratetype, used when the page is
295 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
296 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
297 * Also the migratetype set in the page does not necessarily match the pcplist
298 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
299 * other index - this ensures that it will be put on the correct CMA freelist.
300 */
301static inline int get_pcppage_migratetype(struct page *page)
302{
303 return page->index;
304}
305
306static inline void set_pcppage_migratetype(struct page *page, int migratetype)
307{
308 page->index = migratetype;
309}
310
452aa699
RW
311#ifdef CONFIG_PM_SLEEP
312/*
313 * The following functions are used by the suspend/hibernate code to temporarily
314 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
315 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
316 * they should always be called with system_transition_mutex held
317 * (gfp_allowed_mask also should only be modified with system_transition_mutex
318 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
319 * with that modification).
452aa699 320 */
c9e664f1
RW
321
322static gfp_t saved_gfp_mask;
323
324void pm_restore_gfp_mask(void)
452aa699 325{
55f2503c 326 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
327 if (saved_gfp_mask) {
328 gfp_allowed_mask = saved_gfp_mask;
329 saved_gfp_mask = 0;
330 }
452aa699
RW
331}
332
c9e664f1 333void pm_restrict_gfp_mask(void)
452aa699 334{
55f2503c 335 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
336 WARN_ON(saved_gfp_mask);
337 saved_gfp_mask = gfp_allowed_mask;
d0164adc 338 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 339}
f90ac398
MG
340
341bool pm_suspended_storage(void)
342{
d0164adc 343 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
344 return false;
345 return true;
346}
452aa699
RW
347#endif /* CONFIG_PM_SLEEP */
348
d9c23400 349#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 350unsigned int pageblock_order __read_mostly;
d9c23400
MG
351#endif
352
7fef431b
DH
353static void __free_pages_ok(struct page *page, unsigned int order,
354 fpi_t fpi_flags);
a226f6c8 355
1da177e4
LT
356/*
357 * results with 256, 32 in the lowmem_reserve sysctl:
358 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
359 * 1G machine -> (16M dma, 784M normal, 224M high)
360 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
361 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 362 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
363 *
364 * TBD: should special case ZONE_DMA32 machines here - in those we normally
365 * don't need any ZONE_NORMAL reservation
1da177e4 366 */
d3cda233 367int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 368#ifdef CONFIG_ZONE_DMA
d3cda233 369 [ZONE_DMA] = 256,
4b51d669 370#endif
fb0e7942 371#ifdef CONFIG_ZONE_DMA32
d3cda233 372 [ZONE_DMA32] = 256,
fb0e7942 373#endif
d3cda233 374 [ZONE_NORMAL] = 32,
e53ef38d 375#ifdef CONFIG_HIGHMEM
d3cda233 376 [ZONE_HIGHMEM] = 0,
e53ef38d 377#endif
d3cda233 378 [ZONE_MOVABLE] = 0,
2f1b6248 379};
1da177e4 380
15ad7cdc 381static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 382#ifdef CONFIG_ZONE_DMA
2f1b6248 383 "DMA",
4b51d669 384#endif
fb0e7942 385#ifdef CONFIG_ZONE_DMA32
2f1b6248 386 "DMA32",
fb0e7942 387#endif
2f1b6248 388 "Normal",
e53ef38d 389#ifdef CONFIG_HIGHMEM
2a1e274a 390 "HighMem",
e53ef38d 391#endif
2a1e274a 392 "Movable",
033fbae9
DW
393#ifdef CONFIG_ZONE_DEVICE
394 "Device",
395#endif
2f1b6248
CL
396};
397
c999fbd3 398const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
399 "Unmovable",
400 "Movable",
401 "Reclaimable",
402 "HighAtomic",
403#ifdef CONFIG_CMA
404 "CMA",
405#endif
406#ifdef CONFIG_MEMORY_ISOLATION
407 "Isolate",
408#endif
409};
410
ae70eddd
AK
411compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
412 [NULL_COMPOUND_DTOR] = NULL,
413 [COMPOUND_PAGE_DTOR] = free_compound_page,
f1e61557 414#ifdef CONFIG_HUGETLB_PAGE
ae70eddd 415 [HUGETLB_PAGE_DTOR] = free_huge_page,
f1e61557 416#endif
9a982250 417#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ae70eddd 418 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
9a982250 419#endif
f1e61557
KS
420};
421
1da177e4 422int min_free_kbytes = 1024;
42aa83cb 423int user_min_free_kbytes = -1;
1c30844d 424int watermark_boost_factor __read_mostly = 15000;
795ae7a0 425int watermark_scale_factor = 10;
1da177e4 426
bbe5d993
OS
427static unsigned long nr_kernel_pages __initdata;
428static unsigned long nr_all_pages __initdata;
429static unsigned long dma_reserve __initdata;
1da177e4 430
bbe5d993
OS
431static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
432static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 433static unsigned long required_kernelcore __initdata;
a5c6d650 434static unsigned long required_kernelcore_percent __initdata;
7f16f91f 435static unsigned long required_movablecore __initdata;
a5c6d650 436static unsigned long required_movablecore_percent __initdata;
bbe5d993 437static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
902c2d91 438bool mirrored_kernelcore __initdata_memblock;
0ee332c1
TH
439
440/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
441int movable_zone;
442EXPORT_SYMBOL(movable_zone);
c713216d 443
418508c1 444#if MAX_NUMNODES > 1
b9726c26 445unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 446unsigned int nr_online_nodes __read_mostly = 1;
418508c1 447EXPORT_SYMBOL(nr_node_ids);
62bc62a8 448EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
449#endif
450
9ef9acb0
MG
451int page_group_by_mobility_disabled __read_mostly;
452
3a80a7fa 453#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
454/*
455 * During boot we initialize deferred pages on-demand, as needed, but once
456 * page_alloc_init_late() has finished, the deferred pages are all initialized,
457 * and we can permanently disable that path.
458 */
459static DEFINE_STATIC_KEY_TRUE(deferred_pages);
460
94ae8b83 461static inline bool deferred_pages_enabled(void)
3c0c12cc 462{
94ae8b83 463 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
464}
465
3a80a7fa 466/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 467static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 468{
ef70b6f4
MG
469 int nid = early_pfn_to_nid(pfn);
470
471 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
472 return true;
473
474 return false;
475}
476
477/*
d3035be4 478 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
479 * later in the boot cycle when it can be parallelised.
480 */
d3035be4
PT
481static bool __meminit
482defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 483{
d3035be4
PT
484 static unsigned long prev_end_pfn, nr_initialised;
485
c4f20f14
LZ
486 if (early_page_ext_enabled())
487 return false;
d3035be4
PT
488 /*
489 * prev_end_pfn static that contains the end of previous zone
490 * No need to protect because called very early in boot before smp_init.
491 */
492 if (prev_end_pfn != end_pfn) {
493 prev_end_pfn = end_pfn;
494 nr_initialised = 0;
495 }
496
3c2c6488 497 /* Always populate low zones for address-constrained allocations */
d3035be4 498 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 499 return false;
23b68cfa 500
dc2da7b4
BH
501 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
502 return true;
23b68cfa
WY
503 /*
504 * We start only with one section of pages, more pages are added as
505 * needed until the rest of deferred pages are initialized.
506 */
d3035be4 507 nr_initialised++;
23b68cfa 508 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
509 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
510 NODE_DATA(nid)->first_deferred_pfn = pfn;
511 return true;
3a80a7fa 512 }
d3035be4 513 return false;
3a80a7fa
MG
514}
515#else
94ae8b83 516static inline bool deferred_pages_enabled(void)
2c335680 517{
94ae8b83 518 return false;
2c335680 519}
3c0c12cc 520
3a80a7fa
MG
521static inline bool early_page_uninitialised(unsigned long pfn)
522{
523 return false;
524}
525
d3035be4 526static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 527{
d3035be4 528 return false;
3a80a7fa
MG
529}
530#endif
531
0b423ca2 532/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 533static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
534 unsigned long pfn)
535{
536#ifdef CONFIG_SPARSEMEM
f1eca35a 537 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
538#else
539 return page_zone(page)->pageblock_flags;
540#endif /* CONFIG_SPARSEMEM */
541}
542
ca891f41 543static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
544{
545#ifdef CONFIG_SPARSEMEM
546 pfn &= (PAGES_PER_SECTION-1);
0b423ca2 547#else
4f9bc69a 548 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
0b423ca2 549#endif /* CONFIG_SPARSEMEM */
399b795b 550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
551}
552
535b81e2 553static __always_inline
ca891f41 554unsigned long __get_pfnblock_flags_mask(const struct page *page,
0b423ca2 555 unsigned long pfn,
0b423ca2
MG
556 unsigned long mask)
557{
558 unsigned long *bitmap;
559 unsigned long bitidx, word_bitidx;
560 unsigned long word;
561
562 bitmap = get_pageblock_bitmap(page, pfn);
563 bitidx = pfn_to_bitidx(page, pfn);
564 word_bitidx = bitidx / BITS_PER_LONG;
565 bitidx &= (BITS_PER_LONG-1);
1c563432
MK
566 /*
567 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
568 * a consistent read of the memory array, so that results, even though
569 * racy, are not corrupted.
570 */
571 word = READ_ONCE(bitmap[word_bitidx]);
d93d5ab9 572 return (word >> bitidx) & mask;
0b423ca2
MG
573}
574
a00cda3f
MCC
575/**
576 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
577 * @page: The page within the block of interest
578 * @pfn: The target page frame number
579 * @mask: mask of bits that the caller is interested in
580 *
581 * Return: pageblock_bits flags
582 */
ca891f41
MWO
583unsigned long get_pfnblock_flags_mask(const struct page *page,
584 unsigned long pfn, unsigned long mask)
0b423ca2 585{
535b81e2 586 return __get_pfnblock_flags_mask(page, pfn, mask);
0b423ca2
MG
587}
588
ca891f41
MWO
589static __always_inline int get_pfnblock_migratetype(const struct page *page,
590 unsigned long pfn)
0b423ca2 591{
535b81e2 592 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
593}
594
595/**
596 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
597 * @page: The page within the block of interest
598 * @flags: The flags to set
599 * @pfn: The target page frame number
0b423ca2
MG
600 * @mask: mask of bits that the caller is interested in
601 */
602void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
603 unsigned long pfn,
0b423ca2
MG
604 unsigned long mask)
605{
606 unsigned long *bitmap;
607 unsigned long bitidx, word_bitidx;
04ec0061 608 unsigned long word;
0b423ca2
MG
609
610 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 611 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
612
613 bitmap = get_pageblock_bitmap(page, pfn);
614 bitidx = pfn_to_bitidx(page, pfn);
615 word_bitidx = bitidx / BITS_PER_LONG;
616 bitidx &= (BITS_PER_LONG-1);
617
618 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
619
d93d5ab9
WY
620 mask <<= bitidx;
621 flags <<= bitidx;
0b423ca2
MG
622
623 word = READ_ONCE(bitmap[word_bitidx]);
04ec0061
UB
624 do {
625 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
0b423ca2 626}
3a80a7fa 627
ee6f509c 628void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 629{
5d0f3f72
KM
630 if (unlikely(page_group_by_mobility_disabled &&
631 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
632 migratetype = MIGRATE_UNMOVABLE;
633
d93d5ab9 634 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 635 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
636}
637
13e7444b 638#ifdef CONFIG_DEBUG_VM
c6a57e19 639static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 640{
bdc8cb98
DH
641 int ret = 0;
642 unsigned seq;
643 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 644 unsigned long sp, start_pfn;
c6a57e19 645
bdc8cb98
DH
646 do {
647 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
648 start_pfn = zone->zone_start_pfn;
649 sp = zone->spanned_pages;
108bcc96 650 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
651 ret = 1;
652 } while (zone_span_seqretry(zone, seq));
653
b5e6a5a2 654 if (ret)
613813e8
DH
655 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
656 pfn, zone_to_nid(zone), zone->name,
657 start_pfn, start_pfn + sp);
b5e6a5a2 658
bdc8cb98 659 return ret;
c6a57e19
DH
660}
661
662static int page_is_consistent(struct zone *zone, struct page *page)
663{
1da177e4 664 if (zone != page_zone(page))
c6a57e19
DH
665 return 0;
666
667 return 1;
668}
669/*
670 * Temporary debugging check for pages not lying within a given zone.
671 */
d73d3c9f 672static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
673{
674 if (page_outside_zone_boundaries(zone, page))
1da177e4 675 return 1;
c6a57e19
DH
676 if (!page_is_consistent(zone, page))
677 return 1;
678
1da177e4
LT
679 return 0;
680}
13e7444b 681#else
d73d3c9f 682static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
683{
684 return 0;
685}
686#endif
687
82a3241a 688static void bad_page(struct page *page, const char *reason)
1da177e4 689{
d936cf9b
HD
690 static unsigned long resume;
691 static unsigned long nr_shown;
692 static unsigned long nr_unshown;
693
694 /*
695 * Allow a burst of 60 reports, then keep quiet for that minute;
696 * or allow a steady drip of one report per second.
697 */
698 if (nr_shown == 60) {
699 if (time_before(jiffies, resume)) {
700 nr_unshown++;
701 goto out;
702 }
703 if (nr_unshown) {
ff8e8116 704 pr_alert(
1e9e6365 705 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
706 nr_unshown);
707 nr_unshown = 0;
708 }
709 nr_shown = 0;
710 }
711 if (nr_shown++ == 0)
712 resume = jiffies + 60 * HZ;
713
ff8e8116 714 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 715 current->comm, page_to_pfn(page));
d2f07ec0 716 dump_page(page, reason);
3dc14741 717
4f31888c 718 print_modules();
1da177e4 719 dump_stack();
d936cf9b 720out:
8cc3b392 721 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 722 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 723 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
724}
725
44042b44
MG
726static inline unsigned int order_to_pindex(int migratetype, int order)
727{
728 int base = order;
729
730#ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 if (order > PAGE_ALLOC_COSTLY_ORDER) {
732 VM_BUG_ON(order != pageblock_order);
5d0a661d 733 return NR_LOWORDER_PCP_LISTS;
44042b44
MG
734 }
735#else
736 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
737#endif
738
739 return (MIGRATE_PCPTYPES * base) + migratetype;
740}
741
742static inline int pindex_to_order(unsigned int pindex)
743{
744 int order = pindex / MIGRATE_PCPTYPES;
745
746#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5d0a661d 747 if (pindex == NR_LOWORDER_PCP_LISTS)
44042b44 748 order = pageblock_order;
44042b44
MG
749#else
750 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
751#endif
752
753 return order;
754}
755
756static inline bool pcp_allowed_order(unsigned int order)
757{
758 if (order <= PAGE_ALLOC_COSTLY_ORDER)
759 return true;
760#ifdef CONFIG_TRANSPARENT_HUGEPAGE
761 if (order == pageblock_order)
762 return true;
763#endif
764 return false;
765}
766
21d02f8f
MG
767static inline void free_the_page(struct page *page, unsigned int order)
768{
44042b44
MG
769 if (pcp_allowed_order(order)) /* Via pcp? */
770 free_unref_page(page, order);
21d02f8f
MG
771 else
772 __free_pages_ok(page, order, FPI_NONE);
773}
774
1da177e4
LT
775/*
776 * Higher-order pages are called "compound pages". They are structured thusly:
777 *
1d798ca3 778 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 779 *
1d798ca3
KS
780 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
781 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 782 *
1d798ca3
KS
783 * The first tail page's ->compound_dtor holds the offset in array of compound
784 * page destructors. See compound_page_dtors.
1da177e4 785 *
1d798ca3 786 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 787 * This usage means that zero-order pages may not be compound.
1da177e4 788 */
d98c7a09 789
9a982250 790void free_compound_page(struct page *page)
d98c7a09 791{
bbc6b703 792 mem_cgroup_uncharge(page_folio(page));
44042b44 793 free_the_page(page, compound_order(page));
d98c7a09
HD
794}
795
5b24eeef
JM
796static void prep_compound_head(struct page *page, unsigned int order)
797{
798 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
799 set_compound_order(page, order);
800 atomic_set(compound_mapcount_ptr(page), -1);
5232c63f 801 atomic_set(compound_pincount_ptr(page), 0);
5b24eeef
JM
802}
803
804static void prep_compound_tail(struct page *head, int tail_idx)
805{
806 struct page *p = head + tail_idx;
807
808 p->mapping = TAIL_MAPPING;
809 set_compound_head(p, head);
5aae9265 810 set_page_private(p, 0);
5b24eeef
JM
811}
812
d00181b9 813void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
814{
815 int i;
816 int nr_pages = 1 << order;
817
18229df5 818 __SetPageHead(page);
5b24eeef
JM
819 for (i = 1; i < nr_pages; i++)
820 prep_compound_tail(page, i);
1378a5ee 821
5b24eeef 822 prep_compound_head(page, order);
18229df5
AW
823}
824
5375336c
MWO
825void destroy_large_folio(struct folio *folio)
826{
827 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
828
829 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
830 compound_page_dtors[dtor](&folio->page);
831}
832
c0a32fc5
SG
833#ifdef CONFIG_DEBUG_PAGEALLOC
834unsigned int _debug_guardpage_minorder;
96a2b03f 835
8e57f8ac
VB
836bool _debug_pagealloc_enabled_early __read_mostly
837 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
838EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
96a2b03f 839DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
505f6d22 840EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
841
842DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 843
031bc574
JK
844static int __init early_debug_pagealloc(char *buf)
845{
8e57f8ac 846 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
031bc574
JK
847}
848early_param("debug_pagealloc", early_debug_pagealloc);
849
c0a32fc5
SG
850static int __init debug_guardpage_minorder_setup(char *buf)
851{
852 unsigned long res;
853
854 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 855 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
856 return 0;
857 }
858 _debug_guardpage_minorder = res;
1170532b 859 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
860 return 0;
861}
f1c1e9f7 862early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 863
acbc15a4 864static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 865 unsigned int order, int migratetype)
c0a32fc5 866{
e30825f1 867 if (!debug_guardpage_enabled())
acbc15a4
JK
868 return false;
869
870 if (order >= debug_guardpage_minorder())
871 return false;
e30825f1 872
3972f6bb 873 __SetPageGuard(page);
bf75f200 874 INIT_LIST_HEAD(&page->buddy_list);
2847cf95
JK
875 set_page_private(page, order);
876 /* Guard pages are not available for any usage */
b3618455
ML
877 if (!is_migrate_isolate(migratetype))
878 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
879
880 return true;
c0a32fc5
SG
881}
882
2847cf95
JK
883static inline void clear_page_guard(struct zone *zone, struct page *page,
884 unsigned int order, int migratetype)
c0a32fc5 885{
e30825f1
JK
886 if (!debug_guardpage_enabled())
887 return;
888
3972f6bb 889 __ClearPageGuard(page);
e30825f1 890
2847cf95
JK
891 set_page_private(page, 0);
892 if (!is_migrate_isolate(migratetype))
893 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
894}
895#else
acbc15a4
JK
896static inline bool set_page_guard(struct zone *zone, struct page *page,
897 unsigned int order, int migratetype) { return false; }
2847cf95
JK
898static inline void clear_page_guard(struct zone *zone, struct page *page,
899 unsigned int order, int migratetype) {}
c0a32fc5
SG
900#endif
901
04013513
VB
902/*
903 * Enable static keys related to various memory debugging and hardening options.
904 * Some override others, and depend on early params that are evaluated in the
905 * order of appearance. So we need to first gather the full picture of what was
906 * enabled, and then make decisions.
907 */
5749fcc5 908void __init init_mem_debugging_and_hardening(void)
04013513 909{
9df65f52
ST
910 bool page_poisoning_requested = false;
911
912#ifdef CONFIG_PAGE_POISONING
913 /*
914 * Page poisoning is debug page alloc for some arches. If
915 * either of those options are enabled, enable poisoning.
916 */
917 if (page_poisoning_enabled() ||
918 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
919 debug_pagealloc_enabled())) {
920 static_branch_enable(&_page_poisoning_enabled);
921 page_poisoning_requested = true;
922 }
923#endif
924
69e5d322
ST
925 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
926 page_poisoning_requested) {
927 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
928 "will take precedence over init_on_alloc and init_on_free\n");
929 _init_on_alloc_enabled_early = false;
930 _init_on_free_enabled_early = false;
04013513
VB
931 }
932
69e5d322
ST
933 if (_init_on_alloc_enabled_early)
934 static_branch_enable(&init_on_alloc);
935 else
936 static_branch_disable(&init_on_alloc);
937
938 if (_init_on_free_enabled_early)
939 static_branch_enable(&init_on_free);
940 else
941 static_branch_disable(&init_on_free);
942
42eaa27d
AP
943 if (IS_ENABLED(CONFIG_KMSAN) &&
944 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
945 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
946
04013513
VB
947#ifdef CONFIG_DEBUG_PAGEALLOC
948 if (!debug_pagealloc_enabled())
949 return;
950
951 static_branch_enable(&_debug_pagealloc_enabled);
952
953 if (!debug_guardpage_minorder())
954 return;
955
956 static_branch_enable(&_debug_guardpage_enabled);
957#endif
958}
959
ab130f91 960static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 961{
4c21e2f2 962 set_page_private(page, order);
676165a8 963 __SetPageBuddy(page);
1da177e4
LT
964}
965
5e1f0f09
MG
966#ifdef CONFIG_COMPACTION
967static inline struct capture_control *task_capc(struct zone *zone)
968{
969 struct capture_control *capc = current->capture_control;
970
deba0487 971 return unlikely(capc) &&
5e1f0f09
MG
972 !(current->flags & PF_KTHREAD) &&
973 !capc->page &&
deba0487 974 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
975}
976
977static inline bool
978compaction_capture(struct capture_control *capc, struct page *page,
979 int order, int migratetype)
980{
981 if (!capc || order != capc->cc->order)
982 return false;
983
984 /* Do not accidentally pollute CMA or isolated regions*/
985 if (is_migrate_cma(migratetype) ||
986 is_migrate_isolate(migratetype))
987 return false;
988
989 /*
f0953a1b 990 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
991 * This might let an unmovable request use a reclaimable pageblock
992 * and vice-versa but no more than normal fallback logic which can
993 * have trouble finding a high-order free page.
994 */
995 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
996 return false;
997
998 capc->page = page;
999 return true;
1000}
1001
1002#else
1003static inline struct capture_control *task_capc(struct zone *zone)
1004{
1005 return NULL;
1006}
1007
1008static inline bool
1009compaction_capture(struct capture_control *capc, struct page *page,
1010 int order, int migratetype)
1011{
1012 return false;
1013}
1014#endif /* CONFIG_COMPACTION */
1015
6ab01363
AD
1016/* Used for pages not on another list */
1017static inline void add_to_free_list(struct page *page, struct zone *zone,
1018 unsigned int order, int migratetype)
1019{
1020 struct free_area *area = &zone->free_area[order];
1021
bf75f200 1022 list_add(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1023 area->nr_free++;
1024}
1025
1026/* Used for pages not on another list */
1027static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1028 unsigned int order, int migratetype)
1029{
1030 struct free_area *area = &zone->free_area[order];
1031
bf75f200 1032 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1033 area->nr_free++;
1034}
1035
293ffa5e
DH
1036/*
1037 * Used for pages which are on another list. Move the pages to the tail
1038 * of the list - so the moved pages won't immediately be considered for
1039 * allocation again (e.g., optimization for memory onlining).
1040 */
6ab01363
AD
1041static inline void move_to_free_list(struct page *page, struct zone *zone,
1042 unsigned int order, int migratetype)
1043{
1044 struct free_area *area = &zone->free_area[order];
1045
bf75f200 1046 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
1047}
1048
1049static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1050 unsigned int order)
1051{
36e66c55
AD
1052 /* clear reported state and update reported page count */
1053 if (page_reported(page))
1054 __ClearPageReported(page);
1055
bf75f200 1056 list_del(&page->buddy_list);
6ab01363
AD
1057 __ClearPageBuddy(page);
1058 set_page_private(page, 0);
1059 zone->free_area[order].nr_free--;
1060}
1061
a2129f24
AD
1062/*
1063 * If this is not the largest possible page, check if the buddy
1064 * of the next-highest order is free. If it is, it's possible
1065 * that pages are being freed that will coalesce soon. In case,
1066 * that is happening, add the free page to the tail of the list
1067 * so it's less likely to be used soon and more likely to be merged
1068 * as a higher order page
1069 */
1070static inline bool
1071buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1072 struct page *page, unsigned int order)
1073{
8170ac47
ZY
1074 unsigned long higher_page_pfn;
1075 struct page *higher_page;
a2129f24
AD
1076
1077 if (order >= MAX_ORDER - 2)
1078 return false;
1079
8170ac47
ZY
1080 higher_page_pfn = buddy_pfn & pfn;
1081 higher_page = page + (higher_page_pfn - pfn);
a2129f24 1082
8170ac47
ZY
1083 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1084 NULL) != NULL;
a2129f24
AD
1085}
1086
1da177e4
LT
1087/*
1088 * Freeing function for a buddy system allocator.
1089 *
1090 * The concept of a buddy system is to maintain direct-mapped table
1091 * (containing bit values) for memory blocks of various "orders".
1092 * The bottom level table contains the map for the smallest allocatable
1093 * units of memory (here, pages), and each level above it describes
1094 * pairs of units from the levels below, hence, "buddies".
1095 * At a high level, all that happens here is marking the table entry
1096 * at the bottom level available, and propagating the changes upward
1097 * as necessary, plus some accounting needed to play nicely with other
1098 * parts of the VM system.
1099 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
1100 * free pages of length of (1 << order) and marked with PageBuddy.
1101 * Page's order is recorded in page_private(page) field.
1da177e4 1102 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
1103 * other. That is, if we allocate a small block, and both were
1104 * free, the remainder of the region must be split into blocks.
1da177e4 1105 * If a block is freed, and its buddy is also free, then this
5f63b720 1106 * triggers coalescing into a block of larger size.
1da177e4 1107 *
6d49e352 1108 * -- nyc
1da177e4
LT
1109 */
1110
48db57f8 1111static inline void __free_one_page(struct page *page,
dc4b0caf 1112 unsigned long pfn,
ed0ae21d 1113 struct zone *zone, unsigned int order,
f04a5d5d 1114 int migratetype, fpi_t fpi_flags)
1da177e4 1115{
a2129f24 1116 struct capture_control *capc = task_capc(zone);
dae37a5d 1117 unsigned long buddy_pfn = 0;
a2129f24 1118 unsigned long combined_pfn;
a2129f24
AD
1119 struct page *buddy;
1120 bool to_tail;
d9dddbf5 1121
d29bb978 1122 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 1123 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 1124
ed0ae21d 1125 VM_BUG_ON(migratetype == -1);
d9dddbf5 1126 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 1127 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 1128
76741e77 1129 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 1130 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1131
bb0e28eb 1132 while (order < MAX_ORDER - 1) {
5e1f0f09
MG
1133 if (compaction_capture(capc, page, order, migratetype)) {
1134 __mod_zone_freepage_state(zone, -(1 << order),
1135 migratetype);
1136 return;
1137 }
13ad59df 1138
8170ac47
ZY
1139 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1140 if (!buddy)
d9dddbf5 1141 goto done_merging;
bb0e28eb
ZY
1142
1143 if (unlikely(order >= pageblock_order)) {
1144 /*
1145 * We want to prevent merge between freepages on pageblock
1146 * without fallbacks and normal pageblock. Without this,
1147 * pageblock isolation could cause incorrect freepage or CMA
1148 * accounting or HIGHATOMIC accounting.
1149 */
1150 int buddy_mt = get_pageblock_migratetype(buddy);
1151
1152 if (migratetype != buddy_mt
1153 && (!migratetype_is_mergeable(migratetype) ||
1154 !migratetype_is_mergeable(buddy_mt)))
1155 goto done_merging;
1156 }
1157
c0a32fc5
SG
1158 /*
1159 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1160 * merge with it and move up one order.
1161 */
b03641af 1162 if (page_is_guard(buddy))
2847cf95 1163 clear_page_guard(zone, buddy, order, migratetype);
b03641af 1164 else
6ab01363 1165 del_page_from_free_list(buddy, zone, order);
76741e77
VB
1166 combined_pfn = buddy_pfn & pfn;
1167 page = page + (combined_pfn - pfn);
1168 pfn = combined_pfn;
1da177e4
LT
1169 order++;
1170 }
d9dddbf5
VB
1171
1172done_merging:
ab130f91 1173 set_buddy_order(page, order);
6dda9d55 1174
47b6a24a
DH
1175 if (fpi_flags & FPI_TO_TAIL)
1176 to_tail = true;
1177 else if (is_shuffle_order(order))
a2129f24 1178 to_tail = shuffle_pick_tail();
97500a4a 1179 else
a2129f24 1180 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 1181
a2129f24 1182 if (to_tail)
6ab01363 1183 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 1184 else
6ab01363 1185 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
1186
1187 /* Notify page reporting subsystem of freed page */
f04a5d5d 1188 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 1189 page_reporting_notify_free(order);
1da177e4
LT
1190}
1191
b2c9e2fb
ZY
1192/**
1193 * split_free_page() -- split a free page at split_pfn_offset
1194 * @free_page: the original free page
1195 * @order: the order of the page
1196 * @split_pfn_offset: split offset within the page
1197 *
86d28b07
ZY
1198 * Return -ENOENT if the free page is changed, otherwise 0
1199 *
b2c9e2fb
ZY
1200 * It is used when the free page crosses two pageblocks with different migratetypes
1201 * at split_pfn_offset within the page. The split free page will be put into
1202 * separate migratetype lists afterwards. Otherwise, the function achieves
1203 * nothing.
1204 */
86d28b07
ZY
1205int split_free_page(struct page *free_page,
1206 unsigned int order, unsigned long split_pfn_offset)
b2c9e2fb
ZY
1207{
1208 struct zone *zone = page_zone(free_page);
1209 unsigned long free_page_pfn = page_to_pfn(free_page);
1210 unsigned long pfn;
1211 unsigned long flags;
1212 int free_page_order;
86d28b07
ZY
1213 int mt;
1214 int ret = 0;
b2c9e2fb 1215
88ee1343 1216 if (split_pfn_offset == 0)
86d28b07 1217 return ret;
88ee1343 1218
b2c9e2fb 1219 spin_lock_irqsave(&zone->lock, flags);
86d28b07
ZY
1220
1221 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1222 ret = -ENOENT;
1223 goto out;
1224 }
1225
1226 mt = get_pageblock_migratetype(free_page);
1227 if (likely(!is_migrate_isolate(mt)))
1228 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1229
b2c9e2fb
ZY
1230 del_page_from_free_list(free_page, zone, order);
1231 for (pfn = free_page_pfn;
1232 pfn < free_page_pfn + (1UL << order);) {
1233 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1234
86d28b07 1235 free_page_order = min_t(unsigned int,
88ee1343
ZY
1236 pfn ? __ffs(pfn) : order,
1237 __fls(split_pfn_offset));
b2c9e2fb
ZY
1238 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1239 mt, FPI_NONE);
1240 pfn += 1UL << free_page_order;
1241 split_pfn_offset -= (1UL << free_page_order);
1242 /* we have done the first part, now switch to second part */
1243 if (split_pfn_offset == 0)
1244 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1245 }
86d28b07 1246out:
b2c9e2fb 1247 spin_unlock_irqrestore(&zone->lock, flags);
86d28b07 1248 return ret;
b2c9e2fb 1249}
7bfec6f4
MG
1250/*
1251 * A bad page could be due to a number of fields. Instead of multiple branches,
1252 * try and check multiple fields with one check. The caller must do a detailed
1253 * check if necessary.
1254 */
1255static inline bool page_expected_state(struct page *page,
1256 unsigned long check_flags)
1257{
1258 if (unlikely(atomic_read(&page->_mapcount) != -1))
1259 return false;
1260
1261 if (unlikely((unsigned long)page->mapping |
1262 page_ref_count(page) |
1263#ifdef CONFIG_MEMCG
48060834 1264 page->memcg_data |
7bfec6f4
MG
1265#endif
1266 (page->flags & check_flags)))
1267 return false;
1268
1269 return true;
1270}
1271
58b7f119 1272static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 1273{
82a3241a 1274 const char *bad_reason = NULL;
f0b791a3 1275
53f9263b 1276 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1277 bad_reason = "nonzero mapcount";
1278 if (unlikely(page->mapping != NULL))
1279 bad_reason = "non-NULL mapping";
fe896d18 1280 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1281 bad_reason = "nonzero _refcount";
58b7f119
WY
1282 if (unlikely(page->flags & flags)) {
1283 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1284 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1285 else
1286 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 1287 }
9edad6ea 1288#ifdef CONFIG_MEMCG
48060834 1289 if (unlikely(page->memcg_data))
9edad6ea
JW
1290 bad_reason = "page still charged to cgroup";
1291#endif
58b7f119
WY
1292 return bad_reason;
1293}
1294
a8368cd8 1295static void free_page_is_bad_report(struct page *page)
58b7f119
WY
1296{
1297 bad_page(page,
1298 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
1299}
1300
a8368cd8 1301static inline bool free_page_is_bad(struct page *page)
bb552ac6 1302{
da838d4f 1303 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
a8368cd8 1304 return false;
bb552ac6
MG
1305
1306 /* Something has gone sideways, find it */
a8368cd8
AM
1307 free_page_is_bad_report(page);
1308 return true;
1da177e4
LT
1309}
1310
4db7548c
MG
1311static int free_tail_pages_check(struct page *head_page, struct page *page)
1312{
1313 int ret = 1;
1314
1315 /*
1316 * We rely page->lru.next never has bit 0 set, unless the page
1317 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1318 */
1319 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1320
1321 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1322 ret = 0;
1323 goto out;
1324 }
1325 switch (page - head_page) {
1326 case 1:
4da1984e 1327 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c 1328 if (unlikely(compound_mapcount(page))) {
82a3241a 1329 bad_page(page, "nonzero compound_mapcount");
4db7548c
MG
1330 goto out;
1331 }
1332 break;
1333 case 2:
1334 /*
1335 * the second tail page: ->mapping is
fa3015b7 1336 * deferred_list.next -- ignore value.
4db7548c
MG
1337 */
1338 break;
1339 default:
1340 if (page->mapping != TAIL_MAPPING) {
82a3241a 1341 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1342 goto out;
1343 }
1344 break;
1345 }
1346 if (unlikely(!PageTail(page))) {
82a3241a 1347 bad_page(page, "PageTail not set");
4db7548c
MG
1348 goto out;
1349 }
1350 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1351 bad_page(page, "compound_head not consistent");
4db7548c
MG
1352 goto out;
1353 }
1354 ret = 0;
1355out:
1356 page->mapping = NULL;
1357 clear_compound_head(page);
1358 return ret;
1359}
1360
94ae8b83
AK
1361/*
1362 * Skip KASAN memory poisoning when either:
1363 *
1364 * 1. Deferred memory initialization has not yet completed,
1365 * see the explanation below.
1366 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1367 * see the comment next to it.
1368 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1369 * see the comment next to it.
1370 *
1371 * Poisoning pages during deferred memory init will greatly lengthen the
1372 * process and cause problem in large memory systems as the deferred pages
1373 * initialization is done with interrupt disabled.
1374 *
1375 * Assuming that there will be no reference to those newly initialized
1376 * pages before they are ever allocated, this should have no effect on
1377 * KASAN memory tracking as the poison will be properly inserted at page
1378 * allocation time. The only corner case is when pages are allocated by
1379 * on-demand allocation and then freed again before the deferred pages
1380 * initialization is done, but this is not likely to happen.
1381 */
1382static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1383{
1384 return deferred_pages_enabled() ||
1385 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1386 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1387 PageSkipKASanPoison(page);
1388}
1389
aeaec8e2 1390static void kernel_init_pages(struct page *page, int numpages)
6471384a
AP
1391{
1392 int i;
1393
9e15afa5
QC
1394 /* s390's use of memset() could override KASAN redzones. */
1395 kasan_disable_current();
d9da8f6c
AK
1396 for (i = 0; i < numpages; i++)
1397 clear_highpage_kasan_tagged(page + i);
9e15afa5 1398 kasan_enable_current();
6471384a
AP
1399}
1400
e2769dbd 1401static __always_inline bool free_pages_prepare(struct page *page,
2c335680 1402 unsigned int order, bool check_free, fpi_t fpi_flags)
4db7548c 1403{
e2769dbd 1404 int bad = 0;
c3525330 1405 bool init = want_init_on_free();
4db7548c 1406
4db7548c
MG
1407 VM_BUG_ON_PAGE(PageTail(page), page);
1408
e2769dbd 1409 trace_mm_page_free(page, order);
b073d7f8 1410 kmsan_free_page(page, order);
e2769dbd 1411
79f5f8fa
OS
1412 if (unlikely(PageHWPoison(page)) && !order) {
1413 /*
1414 * Do not let hwpoison pages hit pcplists/buddy
1415 * Untie memcg state and reset page's owner
1416 */
18b2db3b 1417 if (memcg_kmem_enabled() && PageMemcgKmem(page))
79f5f8fa
OS
1418 __memcg_kmem_uncharge_page(page, order);
1419 reset_page_owner(page, order);
df4e817b 1420 page_table_check_free(page, order);
79f5f8fa
OS
1421 return false;
1422 }
1423
e2769dbd
MG
1424 /*
1425 * Check tail pages before head page information is cleared to
1426 * avoid checking PageCompound for order-0 pages.
1427 */
1428 if (unlikely(order)) {
1429 bool compound = PageCompound(page);
1430 int i;
1431
1432 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1433
eac96c3e 1434 if (compound) {
9a73f61b 1435 ClearPageDoubleMap(page);
eac96c3e
YS
1436 ClearPageHasHWPoisoned(page);
1437 }
e2769dbd
MG
1438 for (i = 1; i < (1 << order); i++) {
1439 if (compound)
1440 bad += free_tail_pages_check(page, page + i);
a8368cd8 1441 if (unlikely(free_page_is_bad(page + i))) {
e2769dbd
MG
1442 bad++;
1443 continue;
1444 }
1445 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1446 }
1447 }
bda807d4 1448 if (PageMappingFlags(page))
4db7548c 1449 page->mapping = NULL;
18b2db3b 1450 if (memcg_kmem_enabled() && PageMemcgKmem(page))
f4b00eab 1451 __memcg_kmem_uncharge_page(page, order);
a8368cd8
AM
1452 if (check_free && free_page_is_bad(page))
1453 bad++;
e2769dbd
MG
1454 if (bad)
1455 return false;
4db7548c 1456
e2769dbd
MG
1457 page_cpupid_reset_last(page);
1458 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1459 reset_page_owner(page, order);
df4e817b 1460 page_table_check_free(page, order);
4db7548c
MG
1461
1462 if (!PageHighMem(page)) {
1463 debug_check_no_locks_freed(page_address(page),
e2769dbd 1464 PAGE_SIZE << order);
4db7548c 1465 debug_check_no_obj_freed(page_address(page),
e2769dbd 1466 PAGE_SIZE << order);
4db7548c 1467 }
6471384a 1468
8db26a3d
VB
1469 kernel_poison_pages(page, 1 << order);
1470
f9d79e8d 1471 /*
1bb5eab3 1472 * As memory initialization might be integrated into KASAN,
7c13c163 1473 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1474 * kept together to avoid discrepancies in behavior.
1475 *
f9d79e8d
AK
1476 * With hardware tag-based KASAN, memory tags must be set before the
1477 * page becomes unavailable via debug_pagealloc or arch_free_page.
1478 */
487a32ec 1479 if (!should_skip_kasan_poison(page, fpi_flags)) {
c3525330 1480 kasan_poison_pages(page, order, init);
f9d79e8d 1481
db8a0477
AK
1482 /* Memory is already initialized if KASAN did it internally. */
1483 if (kasan_has_integrated_init())
1484 init = false;
1485 }
1486 if (init)
aeaec8e2 1487 kernel_init_pages(page, 1 << order);
db8a0477 1488
234fdce8
QC
1489 /*
1490 * arch_free_page() can make the page's contents inaccessible. s390
1491 * does this. So nothing which can access the page's contents should
1492 * happen after this.
1493 */
1494 arch_free_page(page, order);
1495
77bc7fd6 1496 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1497
4db7548c
MG
1498 return true;
1499}
1500
e2769dbd 1501#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1502/*
1503 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1504 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1505 * moved from pcp lists to free lists.
1506 */
44042b44 1507static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1508{
44042b44 1509 return free_pages_prepare(page, order, true, FPI_NONE);
e2769dbd
MG
1510}
1511
d452289f 1512/* return true if this page has an inappropriate state */
4462b32c 1513static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1514{
8e57f8ac 1515 if (debug_pagealloc_enabled_static())
a8368cd8 1516 return free_page_is_bad(page);
4462b32c
VB
1517 else
1518 return false;
e2769dbd
MG
1519}
1520#else
4462b32c
VB
1521/*
1522 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1523 * moving from pcp lists to free list in order to reduce overhead. With
1524 * debug_pagealloc enabled, they are checked also immediately when being freed
1525 * to the pcp lists.
1526 */
44042b44 1527static bool free_pcp_prepare(struct page *page, unsigned int order)
e2769dbd 1528{
8e57f8ac 1529 if (debug_pagealloc_enabled_static())
44042b44 1530 return free_pages_prepare(page, order, true, FPI_NONE);
4462b32c 1531 else
44042b44 1532 return free_pages_prepare(page, order, false, FPI_NONE);
e2769dbd
MG
1533}
1534
4db7548c
MG
1535static bool bulkfree_pcp_prepare(struct page *page)
1536{
a8368cd8 1537 return free_page_is_bad(page);
4db7548c
MG
1538}
1539#endif /* CONFIG_DEBUG_VM */
1540
1da177e4 1541/*
5f8dcc21 1542 * Frees a number of pages from the PCP lists
7cba630b 1543 * Assumes all pages on list are in same zone.
207f36ee 1544 * count is the number of pages to free.
1da177e4 1545 */
5f8dcc21 1546static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1547 struct per_cpu_pages *pcp,
1548 int pindex)
1da177e4 1549{
35b6d770
MG
1550 int min_pindex = 0;
1551 int max_pindex = NR_PCP_LISTS - 1;
44042b44 1552 unsigned int order;
3777999d 1553 bool isolated_pageblocks;
8b10b465 1554 struct page *page;
f2260e6b 1555
88e8ac11
CTR
1556 /*
1557 * Ensure proper count is passed which otherwise would stuck in the
1558 * below while (list_empty(list)) loop.
1559 */
1560 count = min(pcp->count, count);
d61372bc
MG
1561
1562 /* Ensure requested pindex is drained first. */
1563 pindex = pindex - 1;
1564
01b44456 1565 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
8b10b465
MG
1566 spin_lock(&zone->lock);
1567 isolated_pageblocks = has_isolate_pageblock(zone);
1568
44042b44 1569 while (count > 0) {
5f8dcc21 1570 struct list_head *list;
fd56eef2 1571 int nr_pages;
5f8dcc21 1572
fd56eef2 1573 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1574 do {
35b6d770
MG
1575 if (++pindex > max_pindex)
1576 pindex = min_pindex;
44042b44 1577 list = &pcp->lists[pindex];
35b6d770
MG
1578 if (!list_empty(list))
1579 break;
1580
1581 if (pindex == max_pindex)
1582 max_pindex--;
1583 if (pindex == min_pindex)
1584 min_pindex++;
1585 } while (1);
48db57f8 1586
44042b44 1587 order = pindex_to_order(pindex);
fd56eef2 1588 nr_pages = 1 << order;
a6f9edd6 1589 do {
8b10b465
MG
1590 int mt;
1591
bf75f200 1592 page = list_last_entry(list, struct page, pcp_list);
8b10b465
MG
1593 mt = get_pcppage_migratetype(page);
1594
0a5f4e5b 1595 /* must delete to avoid corrupting pcp list */
bf75f200 1596 list_del(&page->pcp_list);
fd56eef2
MG
1597 count -= nr_pages;
1598 pcp->count -= nr_pages;
aa016d14 1599
4db7548c
MG
1600 if (bulkfree_pcp_prepare(page))
1601 continue;
1602
8b10b465
MG
1603 /* MIGRATE_ISOLATE page should not go to pcplists */
1604 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1605 /* Pageblock could have been isolated meanwhile */
1606 if (unlikely(isolated_pageblocks))
1607 mt = get_pageblock_migratetype(page);
0a5f4e5b 1608
8b10b465
MG
1609 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1610 trace_mm_page_pcpu_drain(page, order, mt);
1611 } while (count > 0 && !list_empty(list));
0a5f4e5b 1612 }
8b10b465 1613
d34b0733 1614 spin_unlock(&zone->lock);
1da177e4
LT
1615}
1616
dc4b0caf
MG
1617static void free_one_page(struct zone *zone,
1618 struct page *page, unsigned long pfn,
7aeb09f9 1619 unsigned int order,
7fef431b 1620 int migratetype, fpi_t fpi_flags)
1da177e4 1621{
df1acc85
MG
1622 unsigned long flags;
1623
1624 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1625 if (unlikely(has_isolate_pageblock(zone) ||
1626 is_migrate_isolate(migratetype))) {
1627 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1628 }
7fef431b 1629 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1630 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1631}
1632
1e8ce83c 1633static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1634 unsigned long zone, int nid)
1e8ce83c 1635{
d0dc12e8 1636 mm_zero_struct_page(page);
1e8ce83c 1637 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1638 init_page_count(page);
1639 page_mapcount_reset(page);
1640 page_cpupid_reset_last(page);
2813b9c0 1641 page_kasan_tag_reset(page);
1e8ce83c 1642
1e8ce83c
RH
1643 INIT_LIST_HEAD(&page->lru);
1644#ifdef WANT_PAGE_VIRTUAL
1645 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1646 if (!is_highmem_idx(zone))
1647 set_page_address(page, __va(pfn << PAGE_SHIFT));
1648#endif
1649}
1650
7e18adb4 1651#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1652static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1653{
1654 pg_data_t *pgdat;
1655 int nid, zid;
1656
1657 if (!early_page_uninitialised(pfn))
1658 return;
1659
1660 nid = early_pfn_to_nid(pfn);
1661 pgdat = NODE_DATA(nid);
1662
1663 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1664 struct zone *zone = &pgdat->node_zones[zid];
1665
86fb05b9 1666 if (zone_spans_pfn(zone, pfn))
7e18adb4
MG
1667 break;
1668 }
d0dc12e8 1669 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1670}
1671#else
1672static inline void init_reserved_page(unsigned long pfn)
1673{
1674}
1675#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1676
92923ca3
NZ
1677/*
1678 * Initialised pages do not have PageReserved set. This function is
1679 * called for each range allocated by the bootmem allocator and
1680 * marks the pages PageReserved. The remaining valid pages are later
1681 * sent to the buddy page allocator.
1682 */
4b50bcc7 1683void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1684{
1685 unsigned long start_pfn = PFN_DOWN(start);
1686 unsigned long end_pfn = PFN_UP(end);
1687
7e18adb4
MG
1688 for (; start_pfn < end_pfn; start_pfn++) {
1689 if (pfn_valid(start_pfn)) {
1690 struct page *page = pfn_to_page(start_pfn);
1691
1692 init_reserved_page(start_pfn);
1d798ca3
KS
1693
1694 /* Avoid false-positive PageTail() */
1695 INIT_LIST_HEAD(&page->lru);
1696
d483da5b
AD
1697 /*
1698 * no need for atomic set_bit because the struct
1699 * page is not visible yet so nobody should
1700 * access it yet.
1701 */
1702 __SetPageReserved(page);
7e18adb4
MG
1703 }
1704 }
92923ca3
NZ
1705}
1706
7fef431b
DH
1707static void __free_pages_ok(struct page *page, unsigned int order,
1708 fpi_t fpi_flags)
ec95f53a 1709{
d34b0733 1710 unsigned long flags;
95e34412 1711 int migratetype;
dc4b0caf 1712 unsigned long pfn = page_to_pfn(page);
56f0e661 1713 struct zone *zone = page_zone(page);
ec95f53a 1714
2c335680 1715 if (!free_pages_prepare(page, order, true, fpi_flags))
ec95f53a
KM
1716 return;
1717
cfc47a28 1718 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1719
56f0e661 1720 spin_lock_irqsave(&zone->lock, flags);
56f0e661
MG
1721 if (unlikely(has_isolate_pageblock(zone) ||
1722 is_migrate_isolate(migratetype))) {
1723 migratetype = get_pfnblock_migratetype(page, pfn);
1724 }
1725 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1726 spin_unlock_irqrestore(&zone->lock, flags);
90249993 1727
d34b0733 1728 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1729}
1730
a9cd410a 1731void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1732{
c3993076 1733 unsigned int nr_pages = 1 << order;
e2d0bd2b 1734 struct page *p = page;
c3993076 1735 unsigned int loop;
a226f6c8 1736
7fef431b
DH
1737 /*
1738 * When initializing the memmap, __init_single_page() sets the refcount
1739 * of all pages to 1 ("allocated"/"not free"). We have to set the
1740 * refcount of all involved pages to 0.
1741 */
e2d0bd2b
YL
1742 prefetchw(p);
1743 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1744 prefetchw(p + 1);
c3993076
JW
1745 __ClearPageReserved(p);
1746 set_page_count(p, 0);
a226f6c8 1747 }
e2d0bd2b
YL
1748 __ClearPageReserved(p);
1749 set_page_count(p, 0);
c3993076 1750
9705bea5 1751 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b
DH
1752
1753 /*
1754 * Bypass PCP and place fresh pages right to the tail, primarily
1755 * relevant for memory onlining.
1756 */
2c335680 1757 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
a226f6c8
DH
1758}
1759
a9ee6cf5 1760#ifdef CONFIG_NUMA
7ace9917 1761
03e92a5e
MR
1762/*
1763 * During memory init memblocks map pfns to nids. The search is expensive and
1764 * this caches recent lookups. The implementation of __early_pfn_to_nid
1765 * treats start/end as pfns.
1766 */
1767struct mminit_pfnnid_cache {
1768 unsigned long last_start;
1769 unsigned long last_end;
1770 int last_nid;
1771};
75a592a4 1772
03e92a5e 1773static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
6f24fbd3
MR
1774
1775/*
1776 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1777 */
03e92a5e 1778static int __meminit __early_pfn_to_nid(unsigned long pfn,
6f24fbd3 1779 struct mminit_pfnnid_cache *state)
75a592a4 1780{
6f24fbd3 1781 unsigned long start_pfn, end_pfn;
75a592a4
MG
1782 int nid;
1783
6f24fbd3
MR
1784 if (state->last_start <= pfn && pfn < state->last_end)
1785 return state->last_nid;
1786
1787 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1788 if (nid != NUMA_NO_NODE) {
1789 state->last_start = start_pfn;
1790 state->last_end = end_pfn;
1791 state->last_nid = nid;
1792 }
7ace9917
MG
1793
1794 return nid;
75a592a4 1795}
75a592a4 1796
75a592a4 1797int __meminit early_pfn_to_nid(unsigned long pfn)
75a592a4 1798{
7ace9917 1799 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1800 int nid;
1801
7ace9917 1802 spin_lock(&early_pfn_lock);
56ec43d8 1803 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1804 if (nid < 0)
e4568d38 1805 nid = first_online_node;
7ace9917 1806 spin_unlock(&early_pfn_lock);
75a592a4 1807
7ace9917 1808 return nid;
75a592a4 1809}
a9ee6cf5 1810#endif /* CONFIG_NUMA */
75a592a4 1811
7c2ee349 1812void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1813 unsigned int order)
1814{
1815 if (early_page_uninitialised(pfn))
1816 return;
3c206509
AP
1817 if (!kmsan_memblock_free_pages(page, order)) {
1818 /* KMSAN will take care of these pages. */
1819 return;
1820 }
a9cd410a 1821 __free_pages_core(page, order);
3a80a7fa
MG
1822}
1823
7cf91a98
JK
1824/*
1825 * Check that the whole (or subset of) a pageblock given by the interval of
1826 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1827 * with the migration of free compaction scanner.
7cf91a98
JK
1828 *
1829 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1830 *
1831 * It's possible on some configurations to have a setup like node0 node1 node0
1832 * i.e. it's possible that all pages within a zones range of pages do not
1833 * belong to a single zone. We assume that a border between node0 and node1
1834 * can occur within a single pageblock, but not a node0 node1 node0
1835 * interleaving within a single pageblock. It is therefore sufficient to check
1836 * the first and last page of a pageblock and avoid checking each individual
1837 * page in a pageblock.
1838 */
1839struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1840 unsigned long end_pfn, struct zone *zone)
1841{
1842 struct page *start_page;
1843 struct page *end_page;
1844
1845 /* end_pfn is one past the range we are checking */
1846 end_pfn--;
1847
1848 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1849 return NULL;
1850
2d070eab
MH
1851 start_page = pfn_to_online_page(start_pfn);
1852 if (!start_page)
1853 return NULL;
7cf91a98
JK
1854
1855 if (page_zone(start_page) != zone)
1856 return NULL;
1857
1858 end_page = pfn_to_page(end_pfn);
1859
1860 /* This gives a shorter code than deriving page_zone(end_page) */
1861 if (page_zone_id(start_page) != page_zone_id(end_page))
1862 return NULL;
1863
1864 return start_page;
1865}
1866
1867void set_zone_contiguous(struct zone *zone)
1868{
1869 unsigned long block_start_pfn = zone->zone_start_pfn;
1870 unsigned long block_end_pfn;
1871
4f9bc69a 1872 block_end_pfn = pageblock_end_pfn(block_start_pfn);
7cf91a98
JK
1873 for (; block_start_pfn < zone_end_pfn(zone);
1874 block_start_pfn = block_end_pfn,
1875 block_end_pfn += pageblock_nr_pages) {
1876
1877 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1878
1879 if (!__pageblock_pfn_to_page(block_start_pfn,
1880 block_end_pfn, zone))
1881 return;
e84fe99b 1882 cond_resched();
7cf91a98
JK
1883 }
1884
1885 /* We confirm that there is no hole */
1886 zone->contiguous = true;
1887}
1888
1889void clear_zone_contiguous(struct zone *zone)
1890{
1891 zone->contiguous = false;
1892}
1893
7e18adb4 1894#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1895static void __init deferred_free_range(unsigned long pfn,
1896 unsigned long nr_pages)
a4de83dd 1897{
2f47a91f
PT
1898 struct page *page;
1899 unsigned long i;
a4de83dd 1900
2f47a91f 1901 if (!nr_pages)
a4de83dd
MG
1902 return;
1903
2f47a91f
PT
1904 page = pfn_to_page(pfn);
1905
a4de83dd 1906 /* Free a large naturally-aligned chunk if possible */
ee0913c4 1907 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
ac5d2539 1908 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1909 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1910 return;
1911 }
1912
e780149b 1913 for (i = 0; i < nr_pages; i++, page++, pfn++) {
ee0913c4 1914 if (pageblock_aligned(pfn))
e780149b 1915 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1916 __free_pages_core(page, 0);
e780149b 1917 }
a4de83dd
MG
1918}
1919
d3cd131d
NS
1920/* Completion tracking for deferred_init_memmap() threads */
1921static atomic_t pgdat_init_n_undone __initdata;
1922static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1923
1924static inline void __init pgdat_init_report_one_done(void)
1925{
1926 if (atomic_dec_and_test(&pgdat_init_n_undone))
1927 complete(&pgdat_init_all_done_comp);
1928}
0e1cc95b 1929
2f47a91f 1930/*
80b1f41c
PT
1931 * Returns true if page needs to be initialized or freed to buddy allocator.
1932 *
c9b3637f 1933 * We check if a current large page is valid by only checking the validity
80b1f41c 1934 * of the head pfn.
2f47a91f 1935 */
56ec43d8 1936static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1937{
ee0913c4 1938 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
80b1f41c 1939 return false;
80b1f41c
PT
1940 return true;
1941}
2f47a91f 1942
80b1f41c
PT
1943/*
1944 * Free pages to buddy allocator. Try to free aligned pages in
1945 * pageblock_nr_pages sizes.
1946 */
56ec43d8 1947static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1948 unsigned long end_pfn)
1949{
80b1f41c 1950 unsigned long nr_free = 0;
2f47a91f 1951
80b1f41c 1952 for (; pfn < end_pfn; pfn++) {
56ec43d8 1953 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1954 deferred_free_range(pfn - nr_free, nr_free);
1955 nr_free = 0;
ee0913c4 1956 } else if (pageblock_aligned(pfn)) {
80b1f41c
PT
1957 deferred_free_range(pfn - nr_free, nr_free);
1958 nr_free = 1;
80b1f41c
PT
1959 } else {
1960 nr_free++;
1961 }
1962 }
1963 /* Free the last block of pages to allocator */
1964 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1965}
1966
80b1f41c
PT
1967/*
1968 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1969 * by performing it only once every pageblock_nr_pages.
1970 * Return number of pages initialized.
1971 */
56ec43d8 1972static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1973 unsigned long pfn,
1974 unsigned long end_pfn)
2f47a91f 1975{
56ec43d8 1976 int nid = zone_to_nid(zone);
2f47a91f 1977 unsigned long nr_pages = 0;
56ec43d8 1978 int zid = zone_idx(zone);
2f47a91f 1979 struct page *page = NULL;
2f47a91f 1980
80b1f41c 1981 for (; pfn < end_pfn; pfn++) {
56ec43d8 1982 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1983 page = NULL;
2f47a91f 1984 continue;
ee0913c4 1985 } else if (!page || pageblock_aligned(pfn)) {
2f47a91f 1986 page = pfn_to_page(pfn);
80b1f41c
PT
1987 } else {
1988 page++;
2f47a91f 1989 }
d0dc12e8 1990 __init_single_page(page, pfn, zid, nid);
80b1f41c 1991 nr_pages++;
2f47a91f 1992 }
80b1f41c 1993 return (nr_pages);
2f47a91f
PT
1994}
1995
0e56acae
AD
1996/*
1997 * This function is meant to pre-load the iterator for the zone init.
1998 * Specifically it walks through the ranges until we are caught up to the
1999 * first_init_pfn value and exits there. If we never encounter the value we
2000 * return false indicating there are no valid ranges left.
2001 */
2002static bool __init
2003deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2004 unsigned long *spfn, unsigned long *epfn,
2005 unsigned long first_init_pfn)
2006{
2007 u64 j;
2008
2009 /*
2010 * Start out by walking through the ranges in this zone that have
2011 * already been initialized. We don't need to do anything with them
2012 * so we just need to flush them out of the system.
2013 */
2014 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2015 if (*epfn <= first_init_pfn)
2016 continue;
2017 if (*spfn < first_init_pfn)
2018 *spfn = first_init_pfn;
2019 *i = j;
2020 return true;
2021 }
2022
2023 return false;
2024}
2025
2026/*
2027 * Initialize and free pages. We do it in two loops: first we initialize
2028 * struct page, then free to buddy allocator, because while we are
2029 * freeing pages we can access pages that are ahead (computing buddy
2030 * page in __free_one_page()).
2031 *
2032 * In order to try and keep some memory in the cache we have the loop
2033 * broken along max page order boundaries. This way we will not cause
2034 * any issues with the buddy page computation.
2035 */
2036static unsigned long __init
2037deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2038 unsigned long *end_pfn)
2039{
2040 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2041 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2042 unsigned long nr_pages = 0;
2043 u64 j = *i;
2044
2045 /* First we loop through and initialize the page values */
2046 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2047 unsigned long t;
2048
2049 if (mo_pfn <= *start_pfn)
2050 break;
2051
2052 t = min(mo_pfn, *end_pfn);
2053 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2054
2055 if (mo_pfn < *end_pfn) {
2056 *start_pfn = mo_pfn;
2057 break;
2058 }
2059 }
2060
2061 /* Reset values and now loop through freeing pages as needed */
2062 swap(j, *i);
2063
2064 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2065 unsigned long t;
2066
2067 if (mo_pfn <= spfn)
2068 break;
2069
2070 t = min(mo_pfn, epfn);
2071 deferred_free_pages(spfn, t);
2072
2073 if (mo_pfn <= epfn)
2074 break;
2075 }
2076
2077 return nr_pages;
2078}
2079
e4443149
DJ
2080static void __init
2081deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2082 void *arg)
2083{
2084 unsigned long spfn, epfn;
2085 struct zone *zone = arg;
2086 u64 i;
2087
2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2089
2090 /*
2091 * Initialize and free pages in MAX_ORDER sized increments so that we
2092 * can avoid introducing any issues with the buddy allocator.
2093 */
2094 while (spfn < end_pfn) {
2095 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2096 cond_resched();
2097 }
2098}
2099
ecd09650
DJ
2100/* An arch may override for more concurrency. */
2101__weak int __init
2102deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2103{
2104 return 1;
2105}
2106
7e18adb4 2107/* Initialise remaining memory on a node */
0e1cc95b 2108static int __init deferred_init_memmap(void *data)
7e18adb4 2109{
0e1cc95b 2110 pg_data_t *pgdat = data;
0e56acae 2111 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
89c7c402 2112 unsigned long spfn = 0, epfn = 0;
0e56acae 2113 unsigned long first_init_pfn, flags;
7e18adb4 2114 unsigned long start = jiffies;
7e18adb4 2115 struct zone *zone;
e4443149 2116 int zid, max_threads;
2f47a91f 2117 u64 i;
7e18adb4 2118
3a2d7fa8
PT
2119 /* Bind memory initialisation thread to a local node if possible */
2120 if (!cpumask_empty(cpumask))
2121 set_cpus_allowed_ptr(current, cpumask);
2122
2123 pgdat_resize_lock(pgdat, &flags);
2124 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 2125 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 2126 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 2127 pgdat_init_report_one_done();
0e1cc95b
MG
2128 return 0;
2129 }
2130
7e18adb4
MG
2131 /* Sanity check boundaries */
2132 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2133 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2134 pgdat->first_deferred_pfn = ULONG_MAX;
2135
3d060856
PT
2136 /*
2137 * Once we unlock here, the zone cannot be grown anymore, thus if an
2138 * interrupt thread must allocate this early in boot, zone must be
2139 * pre-grown prior to start of deferred page initialization.
2140 */
2141 pgdat_resize_unlock(pgdat, &flags);
2142
7e18adb4
MG
2143 /* Only the highest zone is deferred so find it */
2144 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2145 zone = pgdat->node_zones + zid;
2146 if (first_init_pfn < zone_end_pfn(zone))
2147 break;
2148 }
0e56acae
AD
2149
2150 /* If the zone is empty somebody else may have cleared out the zone */
2151 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2152 first_init_pfn))
2153 goto zone_empty;
7e18adb4 2154
ecd09650 2155 max_threads = deferred_page_init_max_threads(cpumask);
7e18adb4 2156
117003c3 2157 while (spfn < epfn) {
e4443149
DJ
2158 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2159 struct padata_mt_job job = {
2160 .thread_fn = deferred_init_memmap_chunk,
2161 .fn_arg = zone,
2162 .start = spfn,
2163 .size = epfn_align - spfn,
2164 .align = PAGES_PER_SECTION,
2165 .min_chunk = PAGES_PER_SECTION,
2166 .max_threads = max_threads,
2167 };
2168
2169 padata_do_multithreaded(&job);
2170 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2171 epfn_align);
117003c3 2172 }
0e56acae 2173zone_empty:
7e18adb4
MG
2174 /* Sanity check that the next zone really is unpopulated */
2175 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2176
89c7c402
DJ
2177 pr_info("node %d deferred pages initialised in %ums\n",
2178 pgdat->node_id, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
2179
2180 pgdat_init_report_one_done();
0e1cc95b
MG
2181 return 0;
2182}
c9e97a19 2183
c9e97a19
PT
2184/*
2185 * If this zone has deferred pages, try to grow it by initializing enough
2186 * deferred pages to satisfy the allocation specified by order, rounded up to
2187 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2188 * of SECTION_SIZE bytes by initializing struct pages in increments of
2189 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2190 *
2191 * Return true when zone was grown, otherwise return false. We return true even
2192 * when we grow less than requested, to let the caller decide if there are
2193 * enough pages to satisfy the allocation.
2194 *
2195 * Note: We use noinline because this function is needed only during boot, and
2196 * it is called from a __ref function _deferred_grow_zone. This way we are
2197 * making sure that it is not inlined into permanent text section.
2198 */
2199static noinline bool __init
2200deferred_grow_zone(struct zone *zone, unsigned int order)
2201{
c9e97a19 2202 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 2203 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 2204 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
2205 unsigned long spfn, epfn, flags;
2206 unsigned long nr_pages = 0;
c9e97a19
PT
2207 u64 i;
2208
2209 /* Only the last zone may have deferred pages */
2210 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2211 return false;
2212
2213 pgdat_resize_lock(pgdat, &flags);
2214
c9e97a19
PT
2215 /*
2216 * If someone grew this zone while we were waiting for spinlock, return
2217 * true, as there might be enough pages already.
2218 */
2219 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2220 pgdat_resize_unlock(pgdat, &flags);
2221 return true;
2222 }
2223
0e56acae
AD
2224 /* If the zone is empty somebody else may have cleared out the zone */
2225 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2226 first_deferred_pfn)) {
2227 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 2228 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
2229 /* Retry only once. */
2230 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
2231 }
2232
0e56acae
AD
2233 /*
2234 * Initialize and free pages in MAX_ORDER sized increments so
2235 * that we can avoid introducing any issues with the buddy
2236 * allocator.
2237 */
2238 while (spfn < epfn) {
2239 /* update our first deferred PFN for this section */
2240 first_deferred_pfn = spfn;
2241
2242 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
117003c3 2243 touch_nmi_watchdog();
c9e97a19 2244
0e56acae
AD
2245 /* We should only stop along section boundaries */
2246 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2247 continue;
c9e97a19 2248
0e56acae 2249 /* If our quota has been met we can stop here */
c9e97a19
PT
2250 if (nr_pages >= nr_pages_needed)
2251 break;
2252 }
2253
0e56acae 2254 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
2255 pgdat_resize_unlock(pgdat, &flags);
2256
2257 return nr_pages > 0;
2258}
2259
2260/*
2261 * deferred_grow_zone() is __init, but it is called from
2262 * get_page_from_freelist() during early boot until deferred_pages permanently
2263 * disables this call. This is why we have refdata wrapper to avoid warning,
2264 * and to ensure that the function body gets unloaded.
2265 */
2266static bool __ref
2267_deferred_grow_zone(struct zone *zone, unsigned int order)
2268{
2269 return deferred_grow_zone(zone, order);
2270}
2271
7cf91a98 2272#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
2273
2274void __init page_alloc_init_late(void)
2275{
7cf91a98 2276 struct zone *zone;
e900a918 2277 int nid;
7cf91a98
JK
2278
2279#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 2280
d3cd131d
NS
2281 /* There will be num_node_state(N_MEMORY) threads */
2282 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 2283 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
2284 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2285 }
2286
2287 /* Block until all are initialised */
d3cd131d 2288 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 2289
c9e97a19
PT
2290 /*
2291 * We initialized the rest of the deferred pages. Permanently disable
2292 * on-demand struct page initialization.
2293 */
2294 static_branch_disable(&deferred_pages);
2295
4248b0da
MG
2296 /* Reinit limits that are based on free pages after the kernel is up */
2297 files_maxfiles_init();
7cf91a98 2298#endif
350e88ba 2299
ba8f3587
LF
2300 buffer_init();
2301
3010f876
PT
2302 /* Discard memblock private memory */
2303 memblock_discard();
7cf91a98 2304
e900a918
DW
2305 for_each_node_state(nid, N_MEMORY)
2306 shuffle_free_memory(NODE_DATA(nid));
2307
7cf91a98
JK
2308 for_each_populated_zone(zone)
2309 set_zone_contiguous(zone);
7e18adb4 2310}
7e18adb4 2311
47118af0 2312#ifdef CONFIG_CMA
9cf510a5 2313/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
2314void __init init_cma_reserved_pageblock(struct page *page)
2315{
2316 unsigned i = pageblock_nr_pages;
2317 struct page *p = page;
2318
2319 do {
2320 __ClearPageReserved(p);
2321 set_page_count(p, 0);
d883c6cf 2322 } while (++p, --i);
47118af0 2323
47118af0 2324 set_pageblock_migratetype(page, MIGRATE_CMA);
b3d40a2b
DH
2325 set_page_refcounted(page);
2326 __free_pages(page, pageblock_order);
dc78327c 2327
3dcc0571 2328 adjust_managed_page_count(page, pageblock_nr_pages);
3c381db1 2329 page_zone(page)->cma_pages += pageblock_nr_pages;
47118af0
MN
2330}
2331#endif
1da177e4
LT
2332
2333/*
2334 * The order of subdivision here is critical for the IO subsystem.
2335 * Please do not alter this order without good reasons and regression
2336 * testing. Specifically, as large blocks of memory are subdivided,
2337 * the order in which smaller blocks are delivered depends on the order
2338 * they're subdivided in this function. This is the primary factor
2339 * influencing the order in which pages are delivered to the IO
2340 * subsystem according to empirical testing, and this is also justified
2341 * by considering the behavior of a buddy system containing a single
2342 * large block of memory acted on by a series of small allocations.
2343 * This behavior is a critical factor in sglist merging's success.
2344 *
6d49e352 2345 * -- nyc
1da177e4 2346 */
085cc7d5 2347static inline void expand(struct zone *zone, struct page *page,
6ab01363 2348 int low, int high, int migratetype)
1da177e4
LT
2349{
2350 unsigned long size = 1 << high;
2351
2352 while (high > low) {
1da177e4
LT
2353 high--;
2354 size >>= 1;
309381fe 2355 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2356
acbc15a4
JK
2357 /*
2358 * Mark as guard pages (or page), that will allow to
2359 * merge back to allocator when buddy will be freed.
2360 * Corresponding page table entries will not be touched,
2361 * pages will stay not present in virtual address space
2362 */
2363 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2364 continue;
acbc15a4 2365
6ab01363 2366 add_to_free_list(&page[size], zone, high, migratetype);
ab130f91 2367 set_buddy_order(&page[size], high);
1da177e4 2368 }
1da177e4
LT
2369}
2370
4e611801 2371static void check_new_page_bad(struct page *page)
1da177e4 2372{
f4c18e6f 2373 if (unlikely(page->flags & __PG_HWPOISON)) {
e570f56c
NH
2374 /* Don't complain about hwpoisoned pages */
2375 page_mapcount_reset(page); /* remove PageBuddy */
2376 return;
f4c18e6f 2377 }
58b7f119
WY
2378
2379 bad_page(page,
2380 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
4e611801
VB
2381}
2382
2383/*
2384 * This page is about to be returned from the page allocator
2385 */
2386static inline int check_new_page(struct page *page)
2387{
2388 if (likely(page_expected_state(page,
2389 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2390 return 0;
2391
2392 check_new_page_bad(page);
2393 return 1;
2a7684a2
WF
2394}
2395
77fe7f13
MG
2396static bool check_new_pages(struct page *page, unsigned int order)
2397{
2398 int i;
2399 for (i = 0; i < (1 << order); i++) {
2400 struct page *p = page + i;
2401
2402 if (unlikely(check_new_page(p)))
2403 return true;
2404 }
2405
2406 return false;
2407}
2408
479f854a 2409#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2410/*
2411 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2412 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2413 * also checked when pcp lists are refilled from the free lists.
2414 */
77fe7f13 2415static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2416{
8e57f8ac 2417 if (debug_pagealloc_enabled_static())
77fe7f13 2418 return check_new_pages(page, order);
4462b32c
VB
2419 else
2420 return false;
479f854a
MG
2421}
2422
77fe7f13 2423static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2424{
77fe7f13 2425 return check_new_pages(page, order);
479f854a
MG
2426}
2427#else
4462b32c
VB
2428/*
2429 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2430 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2431 * enabled, they are also checked when being allocated from the pcp lists.
2432 */
77fe7f13 2433static inline bool check_pcp_refill(struct page *page, unsigned int order)
479f854a 2434{
77fe7f13 2435 return check_new_pages(page, order);
479f854a 2436}
77fe7f13 2437static inline bool check_new_pcp(struct page *page, unsigned int order)
479f854a 2438{
8e57f8ac 2439 if (debug_pagealloc_enabled_static())
77fe7f13 2440 return check_new_pages(page, order);
4462b32c
VB
2441 else
2442 return false;
479f854a
MG
2443}
2444#endif /* CONFIG_DEBUG_VM */
2445
6d05141a 2446static inline bool should_skip_kasan_unpoison(gfp_t flags)
53ae233c
AK
2447{
2448 /* Don't skip if a software KASAN mode is enabled. */
2449 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2450 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2451 return false;
2452
2453 /* Skip, if hardware tag-based KASAN is not enabled. */
2454 if (!kasan_hw_tags_enabled())
2455 return true;
2456
2457 /*
6d05141a
CM
2458 * With hardware tag-based KASAN enabled, skip if this has been
2459 * requested via __GFP_SKIP_KASAN_UNPOISON.
53ae233c 2460 */
6d05141a 2461 return flags & __GFP_SKIP_KASAN_UNPOISON;
53ae233c
AK
2462}
2463
9353ffa6
AK
2464static inline bool should_skip_init(gfp_t flags)
2465{
2466 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2467 if (!kasan_hw_tags_enabled())
2468 return false;
2469
2470 /* For hardware tag-based KASAN, skip if requested. */
2471 return (flags & __GFP_SKIP_ZERO);
2472}
2473
46f24fd8
JK
2474inline void post_alloc_hook(struct page *page, unsigned int order,
2475 gfp_t gfp_flags)
2476{
9353ffa6
AK
2477 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2478 !should_skip_init(gfp_flags);
b42090ae 2479 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
70c248ac 2480 int i;
b42090ae 2481
46f24fd8
JK
2482 set_page_private(page, 0);
2483 set_page_refcounted(page);
2484
2485 arch_alloc_page(page, order);
77bc7fd6 2486 debug_pagealloc_map_pages(page, 1 << order);
1bb5eab3
AK
2487
2488 /*
2489 * Page unpoisoning must happen before memory initialization.
2490 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2491 * allocations and the page unpoisoning code will complain.
2492 */
8db26a3d 2493 kernel_unpoison_pages(page, 1 << order);
862b6dee 2494
1bb5eab3
AK
2495 /*
2496 * As memory initialization might be integrated into KASAN,
b42090ae 2497 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
2498 * kept together to avoid discrepancies in behavior.
2499 */
9294b128
AK
2500
2501 /*
2502 * If memory tags should be zeroed (which happens only when memory
2503 * should be initialized as well).
2504 */
2505 if (init_tags) {
9294b128
AK
2506 /* Initialize both memory and tags. */
2507 for (i = 0; i != 1 << order; ++i)
2508 tag_clear_highpage(page + i);
2509
2510 /* Note that memory is already initialized by the loop above. */
2511 init = false;
2512 }
6d05141a 2513 if (!should_skip_kasan_unpoison(gfp_flags)) {
53ae233c 2514 /* Unpoison shadow memory or set memory tags. */
e9d0ca92 2515 kasan_unpoison_pages(page, order, init);
7e3cbba6 2516
e9d0ca92
AK
2517 /* Note that memory is already initialized by KASAN. */
2518 if (kasan_has_integrated_init())
7e3cbba6 2519 init = false;
70c248ac
CM
2520 } else {
2521 /* Ensure page_address() dereferencing does not fault. */
2522 for (i = 0; i != 1 << order; ++i)
2523 page_kasan_tag_reset(page + i);
7a3b8353 2524 }
7e3cbba6
AK
2525 /* If memory is still not initialized, do it now. */
2526 if (init)
aeaec8e2 2527 kernel_init_pages(page, 1 << order);
89b27116
AK
2528 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2529 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2530 SetPageSkipKASanPoison(page);
1bb5eab3
AK
2531
2532 set_page_owner(page, order, gfp_flags);
df4e817b 2533 page_table_check_alloc(page, order);
46f24fd8
JK
2534}
2535
479f854a 2536static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2537 unsigned int alloc_flags)
2a7684a2 2538{
46f24fd8 2539 post_alloc_hook(page, order, gfp_flags);
17cf4406 2540
17cf4406
NP
2541 if (order && (gfp_flags & __GFP_COMP))
2542 prep_compound_page(page, order);
2543
75379191 2544 /*
2f064f34 2545 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2546 * allocate the page. The expectation is that the caller is taking
2547 * steps that will free more memory. The caller should avoid the page
2548 * being used for !PFMEMALLOC purposes.
2549 */
2f064f34
MH
2550 if (alloc_flags & ALLOC_NO_WATERMARKS)
2551 set_page_pfmemalloc(page);
2552 else
2553 clear_page_pfmemalloc(page);
1da177e4
LT
2554}
2555
56fd56b8
MG
2556/*
2557 * Go through the free lists for the given migratetype and remove
2558 * the smallest available page from the freelists
2559 */
85ccc8fa 2560static __always_inline
728ec980 2561struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2562 int migratetype)
2563{
2564 unsigned int current_order;
b8af2941 2565 struct free_area *area;
56fd56b8
MG
2566 struct page *page;
2567
2568 /* Find a page of the appropriate size in the preferred list */
2569 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2570 area = &(zone->free_area[current_order]);
b03641af 2571 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2572 if (!page)
2573 continue;
6ab01363
AD
2574 del_page_from_free_list(page, zone, current_order);
2575 expand(zone, page, order, current_order, migratetype);
bb14c2c7 2576 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
2577 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2578 pcp_allowed_order(order) &&
2579 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
2580 return page;
2581 }
2582
2583 return NULL;
2584}
2585
2586
b2a0ac88
MG
2587/*
2588 * This array describes the order lists are fallen back to when
2589 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
2590 *
2591 * The other migratetypes do not have fallbacks.
b2a0ac88 2592 */
da415663 2593static int fallbacks[MIGRATE_TYPES][3] = {
974a786e 2594 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2595 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2596 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
b2a0ac88
MG
2597};
2598
dc67647b 2599#ifdef CONFIG_CMA
85ccc8fa 2600static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2601 unsigned int order)
2602{
2603 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2604}
2605#else
2606static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2607 unsigned int order) { return NULL; }
2608#endif
2609
c361be55 2610/*
293ffa5e 2611 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 2612 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2613 * boundary. If alignment is required, use move_freepages_block()
2614 */
02aa0cdd 2615static int move_freepages(struct zone *zone,
39ddb991 2616 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 2617 int migratetype, int *num_movable)
c361be55
MG
2618{
2619 struct page *page;
39ddb991 2620 unsigned long pfn;
d00181b9 2621 unsigned int order;
d100313f 2622 int pages_moved = 0;
c361be55 2623
39ddb991 2624 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 2625 page = pfn_to_page(pfn);
c361be55 2626 if (!PageBuddy(page)) {
02aa0cdd
VB
2627 /*
2628 * We assume that pages that could be isolated for
2629 * migration are movable. But we don't actually try
2630 * isolating, as that would be expensive.
2631 */
2632 if (num_movable &&
2633 (PageLRU(page) || __PageMovable(page)))
2634 (*num_movable)++;
39ddb991 2635 pfn++;
c361be55
MG
2636 continue;
2637 }
2638
cd961038
DR
2639 /* Make sure we are not inadvertently changing nodes */
2640 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2641 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2642
ab130f91 2643 order = buddy_order(page);
6ab01363 2644 move_to_free_list(page, zone, order, migratetype);
39ddb991 2645 pfn += 1 << order;
d100313f 2646 pages_moved += 1 << order;
c361be55
MG
2647 }
2648
d100313f 2649 return pages_moved;
c361be55
MG
2650}
2651
ee6f509c 2652int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2653 int migratetype, int *num_movable)
c361be55 2654{
39ddb991 2655 unsigned long start_pfn, end_pfn, pfn;
c361be55 2656
4a222127
DR
2657 if (num_movable)
2658 *num_movable = 0;
2659
39ddb991 2660 pfn = page_to_pfn(page);
4f9bc69a
KW
2661 start_pfn = pageblock_start_pfn(pfn);
2662 end_pfn = pageblock_end_pfn(pfn) - 1;
c361be55
MG
2663
2664 /* Do not cross zone boundaries */
108bcc96 2665 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 2666 start_pfn = pfn;
108bcc96 2667 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2668 return 0;
2669
39ddb991 2670 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 2671 num_movable);
c361be55
MG
2672}
2673
2f66a68f
MG
2674static void change_pageblock_range(struct page *pageblock_page,
2675 int start_order, int migratetype)
2676{
2677 int nr_pageblocks = 1 << (start_order - pageblock_order);
2678
2679 while (nr_pageblocks--) {
2680 set_pageblock_migratetype(pageblock_page, migratetype);
2681 pageblock_page += pageblock_nr_pages;
2682 }
2683}
2684
fef903ef 2685/*
9c0415eb
VB
2686 * When we are falling back to another migratetype during allocation, try to
2687 * steal extra free pages from the same pageblocks to satisfy further
2688 * allocations, instead of polluting multiple pageblocks.
2689 *
2690 * If we are stealing a relatively large buddy page, it is likely there will
2691 * be more free pages in the pageblock, so try to steal them all. For
2692 * reclaimable and unmovable allocations, we steal regardless of page size,
2693 * as fragmentation caused by those allocations polluting movable pageblocks
2694 * is worse than movable allocations stealing from unmovable and reclaimable
2695 * pageblocks.
fef903ef 2696 */
4eb7dce6
JK
2697static bool can_steal_fallback(unsigned int order, int start_mt)
2698{
2699 /*
2700 * Leaving this order check is intended, although there is
2701 * relaxed order check in next check. The reason is that
2702 * we can actually steal whole pageblock if this condition met,
2703 * but, below check doesn't guarantee it and that is just heuristic
2704 * so could be changed anytime.
2705 */
2706 if (order >= pageblock_order)
2707 return true;
2708
2709 if (order >= pageblock_order / 2 ||
2710 start_mt == MIGRATE_RECLAIMABLE ||
2711 start_mt == MIGRATE_UNMOVABLE ||
2712 page_group_by_mobility_disabled)
2713 return true;
2714
2715 return false;
2716}
2717
597c8920 2718static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
2719{
2720 unsigned long max_boost;
2721
2722 if (!watermark_boost_factor)
597c8920 2723 return false;
14f69140
HW
2724 /*
2725 * Don't bother in zones that are unlikely to produce results.
2726 * On small machines, including kdump capture kernels running
2727 * in a small area, boosting the watermark can cause an out of
2728 * memory situation immediately.
2729 */
2730 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 2731 return false;
1c30844d
MG
2732
2733 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2734 watermark_boost_factor, 10000);
94b3334c
MG
2735
2736 /*
2737 * high watermark may be uninitialised if fragmentation occurs
2738 * very early in boot so do not boost. We do not fall
2739 * through and boost by pageblock_nr_pages as failing
2740 * allocations that early means that reclaim is not going
2741 * to help and it may even be impossible to reclaim the
2742 * boosted watermark resulting in a hang.
2743 */
2744 if (!max_boost)
597c8920 2745 return false;
94b3334c 2746
1c30844d
MG
2747 max_boost = max(pageblock_nr_pages, max_boost);
2748
2749 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2750 max_boost);
597c8920
JW
2751
2752 return true;
1c30844d
MG
2753}
2754
4eb7dce6
JK
2755/*
2756 * This function implements actual steal behaviour. If order is large enough,
2757 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2758 * pageblock to our migratetype and determine how many already-allocated pages
2759 * are there in the pageblock with a compatible migratetype. If at least half
2760 * of pages are free or compatible, we can change migratetype of the pageblock
2761 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2762 */
2763static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2764 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2765{
ab130f91 2766 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
2767 int free_pages, movable_pages, alike_pages;
2768 int old_block_type;
2769
2770 old_block_type = get_pageblock_migratetype(page);
fef903ef 2771
3bc48f96
VB
2772 /*
2773 * This can happen due to races and we want to prevent broken
2774 * highatomic accounting.
2775 */
02aa0cdd 2776 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2777 goto single_page;
2778
fef903ef
SB
2779 /* Take ownership for orders >= pageblock_order */
2780 if (current_order >= pageblock_order) {
2781 change_pageblock_range(page, current_order, start_type);
3bc48f96 2782 goto single_page;
fef903ef
SB
2783 }
2784
1c30844d
MG
2785 /*
2786 * Boost watermarks to increase reclaim pressure to reduce the
2787 * likelihood of future fallbacks. Wake kswapd now as the node
2788 * may be balanced overall and kswapd will not wake naturally.
2789 */
597c8920 2790 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 2791 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2792
3bc48f96
VB
2793 /* We are not allowed to try stealing from the whole block */
2794 if (!whole_block)
2795 goto single_page;
2796
02aa0cdd
VB
2797 free_pages = move_freepages_block(zone, page, start_type,
2798 &movable_pages);
2799 /*
2800 * Determine how many pages are compatible with our allocation.
2801 * For movable allocation, it's the number of movable pages which
2802 * we just obtained. For other types it's a bit more tricky.
2803 */
2804 if (start_type == MIGRATE_MOVABLE) {
2805 alike_pages = movable_pages;
2806 } else {
2807 /*
2808 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2809 * to MOVABLE pageblock, consider all non-movable pages as
2810 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2811 * vice versa, be conservative since we can't distinguish the
2812 * exact migratetype of non-movable pages.
2813 */
2814 if (old_block_type == MIGRATE_MOVABLE)
2815 alike_pages = pageblock_nr_pages
2816 - (free_pages + movable_pages);
2817 else
2818 alike_pages = 0;
2819 }
2820
3bc48f96 2821 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2822 if (!free_pages)
3bc48f96 2823 goto single_page;
fef903ef 2824
02aa0cdd
VB
2825 /*
2826 * If a sufficient number of pages in the block are either free or of
2827 * comparable migratability as our allocation, claim the whole block.
2828 */
2829 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2830 page_group_by_mobility_disabled)
2831 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2832
2833 return;
2834
2835single_page:
6ab01363 2836 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
2837}
2838
2149cdae
JK
2839/*
2840 * Check whether there is a suitable fallback freepage with requested order.
2841 * If only_stealable is true, this function returns fallback_mt only if
2842 * we can steal other freepages all together. This would help to reduce
2843 * fragmentation due to mixed migratetype pages in one pageblock.
2844 */
2845int find_suitable_fallback(struct free_area *area, unsigned int order,
2846 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2847{
2848 int i;
2849 int fallback_mt;
2850
2851 if (area->nr_free == 0)
2852 return -1;
2853
2854 *can_steal = false;
2855 for (i = 0;; i++) {
2856 fallback_mt = fallbacks[migratetype][i];
974a786e 2857 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2858 break;
2859
b03641af 2860 if (free_area_empty(area, fallback_mt))
4eb7dce6 2861 continue;
fef903ef 2862
4eb7dce6
JK
2863 if (can_steal_fallback(order, migratetype))
2864 *can_steal = true;
2865
2149cdae
JK
2866 if (!only_stealable)
2867 return fallback_mt;
2868
2869 if (*can_steal)
2870 return fallback_mt;
fef903ef 2871 }
4eb7dce6
JK
2872
2873 return -1;
fef903ef
SB
2874}
2875
0aaa29a5
MG
2876/*
2877 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2878 * there are no empty page blocks that contain a page with a suitable order
2879 */
2880static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2881 unsigned int alloc_order)
2882{
2883 int mt;
2884 unsigned long max_managed, flags;
2885
2886 /*
2887 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2888 * Check is race-prone but harmless.
2889 */
9705bea5 2890 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2891 if (zone->nr_reserved_highatomic >= max_managed)
2892 return;
2893
2894 spin_lock_irqsave(&zone->lock, flags);
2895
2896 /* Recheck the nr_reserved_highatomic limit under the lock */
2897 if (zone->nr_reserved_highatomic >= max_managed)
2898 goto out_unlock;
2899
2900 /* Yoink! */
2901 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2902 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2903 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
2904 zone->nr_reserved_highatomic += pageblock_nr_pages;
2905 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2906 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2907 }
2908
2909out_unlock:
2910 spin_unlock_irqrestore(&zone->lock, flags);
2911}
2912
2913/*
2914 * Used when an allocation is about to fail under memory pressure. This
2915 * potentially hurts the reliability of high-order allocations when under
2916 * intense memory pressure but failed atomic allocations should be easier
2917 * to recover from than an OOM.
29fac03b
MK
2918 *
2919 * If @force is true, try to unreserve a pageblock even though highatomic
2920 * pageblock is exhausted.
0aaa29a5 2921 */
29fac03b
MK
2922static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2923 bool force)
0aaa29a5
MG
2924{
2925 struct zonelist *zonelist = ac->zonelist;
2926 unsigned long flags;
2927 struct zoneref *z;
2928 struct zone *zone;
2929 struct page *page;
2930 int order;
04c8716f 2931 bool ret;
0aaa29a5 2932
97a225e6 2933 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 2934 ac->nodemask) {
29fac03b
MK
2935 /*
2936 * Preserve at least one pageblock unless memory pressure
2937 * is really high.
2938 */
2939 if (!force && zone->nr_reserved_highatomic <=
2940 pageblock_nr_pages)
0aaa29a5
MG
2941 continue;
2942
2943 spin_lock_irqsave(&zone->lock, flags);
2944 for (order = 0; order < MAX_ORDER; order++) {
2945 struct free_area *area = &(zone->free_area[order]);
2946
b03641af 2947 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2948 if (!page)
0aaa29a5
MG
2949 continue;
2950
0aaa29a5 2951 /*
4855e4a7
MK
2952 * In page freeing path, migratetype change is racy so
2953 * we can counter several free pages in a pageblock
f0953a1b 2954 * in this loop although we changed the pageblock type
4855e4a7
MK
2955 * from highatomic to ac->migratetype. So we should
2956 * adjust the count once.
0aaa29a5 2957 */
a6ffdc07 2958 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2959 /*
2960 * It should never happen but changes to
2961 * locking could inadvertently allow a per-cpu
2962 * drain to add pages to MIGRATE_HIGHATOMIC
2963 * while unreserving so be safe and watch for
2964 * underflows.
2965 */
2966 zone->nr_reserved_highatomic -= min(
2967 pageblock_nr_pages,
2968 zone->nr_reserved_highatomic);
2969 }
0aaa29a5
MG
2970
2971 /*
2972 * Convert to ac->migratetype and avoid the normal
2973 * pageblock stealing heuristics. Minimally, the caller
2974 * is doing the work and needs the pages. More
2975 * importantly, if the block was always converted to
2976 * MIGRATE_UNMOVABLE or another type then the number
2977 * of pageblocks that cannot be completely freed
2978 * may increase.
2979 */
2980 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2981 ret = move_freepages_block(zone, page, ac->migratetype,
2982 NULL);
29fac03b
MK
2983 if (ret) {
2984 spin_unlock_irqrestore(&zone->lock, flags);
2985 return ret;
2986 }
0aaa29a5
MG
2987 }
2988 spin_unlock_irqrestore(&zone->lock, flags);
2989 }
04c8716f
MK
2990
2991 return false;
0aaa29a5
MG
2992}
2993
3bc48f96
VB
2994/*
2995 * Try finding a free buddy page on the fallback list and put it on the free
2996 * list of requested migratetype, possibly along with other pages from the same
2997 * block, depending on fragmentation avoidance heuristics. Returns true if
2998 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2999 *
3000 * The use of signed ints for order and current_order is a deliberate
3001 * deviation from the rest of this file, to make the for loop
3002 * condition simpler.
3bc48f96 3003 */
85ccc8fa 3004static __always_inline bool
6bb15450
MG
3005__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3006 unsigned int alloc_flags)
b2a0ac88 3007{
b8af2941 3008 struct free_area *area;
b002529d 3009 int current_order;
6bb15450 3010 int min_order = order;
b2a0ac88 3011 struct page *page;
4eb7dce6
JK
3012 int fallback_mt;
3013 bool can_steal;
b2a0ac88 3014
6bb15450
MG
3015 /*
3016 * Do not steal pages from freelists belonging to other pageblocks
3017 * i.e. orders < pageblock_order. If there are no local zones free,
3018 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3019 */
e933dc4a 3020 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
6bb15450
MG
3021 min_order = pageblock_order;
3022
7a8f58f3
VB
3023 /*
3024 * Find the largest available free page in the other list. This roughly
3025 * approximates finding the pageblock with the most free pages, which
3026 * would be too costly to do exactly.
3027 */
6bb15450 3028 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 3029 --current_order) {
4eb7dce6
JK
3030 area = &(zone->free_area[current_order]);
3031 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 3032 start_migratetype, false, &can_steal);
4eb7dce6
JK
3033 if (fallback_mt == -1)
3034 continue;
b2a0ac88 3035
7a8f58f3
VB
3036 /*
3037 * We cannot steal all free pages from the pageblock and the
3038 * requested migratetype is movable. In that case it's better to
3039 * steal and split the smallest available page instead of the
3040 * largest available page, because even if the next movable
3041 * allocation falls back into a different pageblock than this
3042 * one, it won't cause permanent fragmentation.
3043 */
3044 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3045 && current_order > order)
3046 goto find_smallest;
b2a0ac88 3047
7a8f58f3
VB
3048 goto do_steal;
3049 }
e0fff1bd 3050
7a8f58f3 3051 return false;
e0fff1bd 3052
7a8f58f3
VB
3053find_smallest:
3054 for (current_order = order; current_order < MAX_ORDER;
3055 current_order++) {
3056 area = &(zone->free_area[current_order]);
3057 fallback_mt = find_suitable_fallback(area, current_order,
3058 start_migratetype, false, &can_steal);
3059 if (fallback_mt != -1)
3060 break;
b2a0ac88
MG
3061 }
3062
7a8f58f3
VB
3063 /*
3064 * This should not happen - we already found a suitable fallback
3065 * when looking for the largest page.
3066 */
3067 VM_BUG_ON(current_order == MAX_ORDER);
3068
3069do_steal:
b03641af 3070 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 3071
1c30844d
MG
3072 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3073 can_steal);
7a8f58f3
VB
3074
3075 trace_mm_page_alloc_extfrag(page, order, current_order,
3076 start_migratetype, fallback_mt);
3077
3078 return true;
3079
b2a0ac88
MG
3080}
3081
56fd56b8 3082/*
1da177e4
LT
3083 * Do the hard work of removing an element from the buddy allocator.
3084 * Call me with the zone->lock already held.
3085 */
85ccc8fa 3086static __always_inline struct page *
6bb15450
MG
3087__rmqueue(struct zone *zone, unsigned int order, int migratetype,
3088 unsigned int alloc_flags)
1da177e4 3089{
1da177e4
LT
3090 struct page *page;
3091
ce8f86ee
H
3092 if (IS_ENABLED(CONFIG_CMA)) {
3093 /*
3094 * Balance movable allocations between regular and CMA areas by
3095 * allocating from CMA when over half of the zone's free memory
3096 * is in the CMA area.
3097 */
3098 if (alloc_flags & ALLOC_CMA &&
3099 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3100 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3101 page = __rmqueue_cma_fallback(zone, order);
3102 if (page)
10e0f753 3103 return page;
ce8f86ee 3104 }
16867664 3105 }
3bc48f96 3106retry:
56fd56b8 3107 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 3108 if (unlikely(!page)) {
8510e69c 3109 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
3110 page = __rmqueue_cma_fallback(zone, order);
3111
6bb15450
MG
3112 if (!page && __rmqueue_fallback(zone, order, migratetype,
3113 alloc_flags))
3bc48f96 3114 goto retry;
728ec980 3115 }
b2a0ac88 3116 return page;
1da177e4
LT
3117}
3118
5f63b720 3119/*
1da177e4
LT
3120 * Obtain a specified number of elements from the buddy allocator, all under
3121 * a single hold of the lock, for efficiency. Add them to the supplied list.
3122 * Returns the number of new pages which were placed at *list.
3123 */
5f63b720 3124static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 3125 unsigned long count, struct list_head *list,
6bb15450 3126 int migratetype, unsigned int alloc_flags)
1da177e4 3127{
cb66bede 3128 int i, allocated = 0;
5f63b720 3129
01b44456 3130 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
d34b0733 3131 spin_lock(&zone->lock);
1da177e4 3132 for (i = 0; i < count; ++i) {
6bb15450
MG
3133 struct page *page = __rmqueue(zone, order, migratetype,
3134 alloc_flags);
085cc7d5 3135 if (unlikely(page == NULL))
1da177e4 3136 break;
81eabcbe 3137
77fe7f13 3138 if (unlikely(check_pcp_refill(page, order)))
479f854a
MG
3139 continue;
3140
81eabcbe 3141 /*
0fac3ba5
VB
3142 * Split buddy pages returned by expand() are received here in
3143 * physical page order. The page is added to the tail of
3144 * caller's list. From the callers perspective, the linked list
3145 * is ordered by page number under some conditions. This is
3146 * useful for IO devices that can forward direction from the
3147 * head, thus also in the physical page order. This is useful
3148 * for IO devices that can merge IO requests if the physical
3149 * pages are ordered properly.
81eabcbe 3150 */
bf75f200 3151 list_add_tail(&page->pcp_list, list);
cb66bede 3152 allocated++;
bb14c2c7 3153 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
3154 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3155 -(1 << order));
1da177e4 3156 }
a6de734b
MG
3157
3158 /*
3159 * i pages were removed from the buddy list even if some leak due
3160 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
cb66bede 3161 * on i. Do not confuse with 'allocated' which is the number of
a6de734b
MG
3162 * pages added to the pcp list.
3163 */
f2260e6b 3164 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 3165 spin_unlock(&zone->lock);
cb66bede 3166 return allocated;
1da177e4
LT
3167}
3168
4ae7c039 3169#ifdef CONFIG_NUMA
8fce4d8e 3170/*
4037d452
CL
3171 * Called from the vmstat counter updater to drain pagesets of this
3172 * currently executing processor on remote nodes after they have
3173 * expired.
8fce4d8e 3174 */
4037d452 3175void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 3176{
7be12fc9 3177 int to_drain, batch;
4ae7c039 3178
4db0c3c2 3179 batch = READ_ONCE(pcp->batch);
7be12fc9 3180 to_drain = min(pcp->count, batch);
4b23a68f
MG
3181 if (to_drain > 0) {
3182 unsigned long flags;
3183
3184 /*
3185 * free_pcppages_bulk expects IRQs disabled for zone->lock
3186 * so even though pcp->lock is not intended to be IRQ-safe,
3187 * it's needed in this context.
3188 */
3189 spin_lock_irqsave(&pcp->lock, flags);
fd56eef2 3190 free_pcppages_bulk(zone, to_drain, pcp, 0);
4b23a68f
MG
3191 spin_unlock_irqrestore(&pcp->lock, flags);
3192 }
4ae7c039
CL
3193}
3194#endif
3195
9f8f2172 3196/*
93481ff0 3197 * Drain pcplists of the indicated processor and zone.
9f8f2172 3198 */
93481ff0 3199static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 3200{
93481ff0 3201 struct per_cpu_pages *pcp;
1da177e4 3202
28f836b6 3203 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
4b23a68f
MG
3204 if (pcp->count) {
3205 unsigned long flags;
28f836b6 3206
4b23a68f
MG
3207 /* See drain_zone_pages on why this is disabling IRQs */
3208 spin_lock_irqsave(&pcp->lock, flags);
3209 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3210 spin_unlock_irqrestore(&pcp->lock, flags);
3211 }
93481ff0 3212}
3dfa5721 3213
93481ff0
VB
3214/*
3215 * Drain pcplists of all zones on the indicated processor.
93481ff0
VB
3216 */
3217static void drain_pages(unsigned int cpu)
3218{
3219 struct zone *zone;
3220
3221 for_each_populated_zone(zone) {
3222 drain_pages_zone(cpu, zone);
1da177e4
LT
3223 }
3224}
1da177e4 3225
9f8f2172
CL
3226/*
3227 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3228 */
93481ff0 3229void drain_local_pages(struct zone *zone)
9f8f2172 3230{
93481ff0
VB
3231 int cpu = smp_processor_id();
3232
3233 if (zone)
3234 drain_pages_zone(cpu, zone);
3235 else
3236 drain_pages(cpu);
9f8f2172
CL
3237}
3238
3239/*
ec6e8c7e
VB
3240 * The implementation of drain_all_pages(), exposing an extra parameter to
3241 * drain on all cpus.
93481ff0 3242 *
ec6e8c7e
VB
3243 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3244 * not empty. The check for non-emptiness can however race with a free to
3245 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3246 * that need the guarantee that every CPU has drained can disable the
3247 * optimizing racy check.
9f8f2172 3248 */
3b1f3658 3249static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 3250{
74046494 3251 int cpu;
74046494
GBY
3252
3253 /*
041711ce 3254 * Allocate in the BSS so we won't require allocation in
74046494
GBY
3255 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3256 */
3257 static cpumask_t cpus_with_pcps;
3258
bd233f53
MG
3259 /*
3260 * Do not drain if one is already in progress unless it's specific to
3261 * a zone. Such callers are primarily CMA and memory hotplug and need
3262 * the drain to be complete when the call returns.
3263 */
3264 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3265 if (!zone)
3266 return;
3267 mutex_lock(&pcpu_drain_mutex);
3268 }
0ccce3b9 3269
74046494
GBY
3270 /*
3271 * We don't care about racing with CPU hotplug event
3272 * as offline notification will cause the notified
3273 * cpu to drain that CPU pcps and on_each_cpu_mask
3274 * disables preemption as part of its processing
3275 */
3276 for_each_online_cpu(cpu) {
28f836b6 3277 struct per_cpu_pages *pcp;
93481ff0 3278 struct zone *z;
74046494 3279 bool has_pcps = false;
93481ff0 3280
ec6e8c7e
VB
3281 if (force_all_cpus) {
3282 /*
3283 * The pcp.count check is racy, some callers need a
3284 * guarantee that no cpu is missed.
3285 */
3286 has_pcps = true;
3287 } else if (zone) {
28f836b6
MG
3288 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3289 if (pcp->count)
74046494 3290 has_pcps = true;
93481ff0
VB
3291 } else {
3292 for_each_populated_zone(z) {
28f836b6
MG
3293 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3294 if (pcp->count) {
93481ff0
VB
3295 has_pcps = true;
3296 break;
3297 }
74046494
GBY
3298 }
3299 }
93481ff0 3300
74046494
GBY
3301 if (has_pcps)
3302 cpumask_set_cpu(cpu, &cpus_with_pcps);
3303 else
3304 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3305 }
0ccce3b9 3306
bd233f53 3307 for_each_cpu(cpu, &cpus_with_pcps) {
443c2acc
NSJ
3308 if (zone)
3309 drain_pages_zone(cpu, zone);
3310 else
3311 drain_pages(cpu);
0ccce3b9 3312 }
bd233f53
MG
3313
3314 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
3315}
3316
ec6e8c7e
VB
3317/*
3318 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3319 *
3320 * When zone parameter is non-NULL, spill just the single zone's pages.
ec6e8c7e
VB
3321 */
3322void drain_all_pages(struct zone *zone)
3323{
3324 __drain_all_pages(zone, false);
3325}
3326
296699de 3327#ifdef CONFIG_HIBERNATION
1da177e4 3328
556b969a
CY
3329/*
3330 * Touch the watchdog for every WD_PAGE_COUNT pages.
3331 */
3332#define WD_PAGE_COUNT (128*1024)
3333
1da177e4
LT
3334void mark_free_pages(struct zone *zone)
3335{
556b969a 3336 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 3337 unsigned long flags;
7aeb09f9 3338 unsigned int order, t;
86760a2c 3339 struct page *page;
1da177e4 3340
8080fc03 3341 if (zone_is_empty(zone))
1da177e4
LT
3342 return;
3343
3344 spin_lock_irqsave(&zone->lock, flags);
f623f0db 3345
108bcc96 3346 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
3347 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3348 if (pfn_valid(pfn)) {
86760a2c 3349 page = pfn_to_page(pfn);
ba6b0979 3350
556b969a
CY
3351 if (!--page_count) {
3352 touch_nmi_watchdog();
3353 page_count = WD_PAGE_COUNT;
3354 }
3355
ba6b0979
JK
3356 if (page_zone(page) != zone)
3357 continue;
3358
7be98234
RW
3359 if (!swsusp_page_is_forbidden(page))
3360 swsusp_unset_page_free(page);
f623f0db 3361 }
1da177e4 3362
b2a0ac88 3363 for_each_migratetype_order(order, t) {
86760a2c 3364 list_for_each_entry(page,
bf75f200 3365 &zone->free_area[order].free_list[t], buddy_list) {
f623f0db 3366 unsigned long i;
1da177e4 3367
86760a2c 3368 pfn = page_to_pfn(page);
556b969a
CY
3369 for (i = 0; i < (1UL << order); i++) {
3370 if (!--page_count) {
3371 touch_nmi_watchdog();
3372 page_count = WD_PAGE_COUNT;
3373 }
7be98234 3374 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 3375 }
f623f0db 3376 }
b2a0ac88 3377 }
1da177e4
LT
3378 spin_unlock_irqrestore(&zone->lock, flags);
3379}
e2c55dc8 3380#endif /* CONFIG_PM */
1da177e4 3381
44042b44
MG
3382static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3383 unsigned int order)
1da177e4 3384{
5f8dcc21 3385 int migratetype;
1da177e4 3386
44042b44 3387 if (!free_pcp_prepare(page, order))
9cca35d4 3388 return false;
689bcebf 3389
dc4b0caf 3390 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3391 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3392 return true;
3393}
3394
f26b3fa0
MG
3395static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3396 bool free_high)
3b12e7e9
MG
3397{
3398 int min_nr_free, max_nr_free;
3399
f26b3fa0
MG
3400 /* Free everything if batch freeing high-order pages. */
3401 if (unlikely(free_high))
3402 return pcp->count;
3403
3b12e7e9
MG
3404 /* Check for PCP disabled or boot pageset */
3405 if (unlikely(high < batch))
3406 return 1;
3407
3408 /* Leave at least pcp->batch pages on the list */
3409 min_nr_free = batch;
3410 max_nr_free = high - batch;
3411
3412 /*
3413 * Double the number of pages freed each time there is subsequent
3414 * freeing of pages without any allocation.
3415 */
3416 batch <<= pcp->free_factor;
3417 if (batch < max_nr_free)
3418 pcp->free_factor++;
3419 batch = clamp(batch, min_nr_free, max_nr_free);
3420
3421 return batch;
3422}
3423
f26b3fa0
MG
3424static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3425 bool free_high)
c49c2c47
MG
3426{
3427 int high = READ_ONCE(pcp->high);
3428
f26b3fa0 3429 if (unlikely(!high || free_high))
c49c2c47
MG
3430 return 0;
3431
3432 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3433 return high;
3434
3435 /*
3436 * If reclaim is active, limit the number of pages that can be
3437 * stored on pcp lists
3438 */
3439 return min(READ_ONCE(pcp->batch) << 2, high);
3440}
3441
4b23a68f
MG
3442static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3443 struct page *page, int migratetype,
56651377 3444 unsigned int order)
9cca35d4 3445{
3b12e7e9 3446 int high;
44042b44 3447 int pindex;
f26b3fa0 3448 bool free_high;
9cca35d4 3449
15cd9004 3450 __count_vm_events(PGFREE, 1 << order);
44042b44 3451 pindex = order_to_pindex(migratetype, order);
bf75f200 3452 list_add(&page->pcp_list, &pcp->lists[pindex]);
44042b44 3453 pcp->count += 1 << order;
f26b3fa0
MG
3454
3455 /*
3456 * As high-order pages other than THP's stored on PCP can contribute
3457 * to fragmentation, limit the number stored when PCP is heavily
3458 * freeing without allocation. The remainder after bulk freeing
3459 * stops will be drained from vmstat refresh context.
3460 */
3461 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3462
3463 high = nr_pcp_high(pcp, zone, free_high);
3b12e7e9
MG
3464 if (pcp->count >= high) {
3465 int batch = READ_ONCE(pcp->batch);
3466
f26b3fa0 3467 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3b12e7e9 3468 }
9cca35d4 3469}
5f8dcc21 3470
9cca35d4 3471/*
44042b44 3472 * Free a pcp page
9cca35d4 3473 */
44042b44 3474void free_unref_page(struct page *page, unsigned int order)
9cca35d4
MG
3475{
3476 unsigned long flags;
4b23a68f
MG
3477 unsigned long __maybe_unused UP_flags;
3478 struct per_cpu_pages *pcp;
3479 struct zone *zone;
9cca35d4 3480 unsigned long pfn = page_to_pfn(page);
df1acc85 3481 int migratetype;
9cca35d4 3482
44042b44 3483 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 3484 return;
da456f14 3485
5f8dcc21
MG
3486 /*
3487 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 3488 * Place ISOLATE pages on the isolated list because they are being
a6ffdc07 3489 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3490 * areas back if necessary. Otherwise, we may have to free
3491 * excessively into the page allocator
3492 */
df1acc85
MG
3493 migratetype = get_pcppage_migratetype(page);
3494 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 3495 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 3496 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 3497 return;
5f8dcc21
MG
3498 }
3499 migratetype = MIGRATE_MOVABLE;
3500 }
3501
4b23a68f
MG
3502 zone = page_zone(page);
3503 pcp_trylock_prepare(UP_flags);
01b44456
MG
3504 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3505 if (pcp) {
4b23a68f 3506 free_unref_page_commit(zone, pcp, page, migratetype, order);
01b44456 3507 pcp_spin_unlock_irqrestore(pcp, flags);
4b23a68f
MG
3508 } else {
3509 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3510 }
3511 pcp_trylock_finish(UP_flags);
1da177e4
LT
3512}
3513
cc59850e
KK
3514/*
3515 * Free a list of 0-order pages
3516 */
2d4894b5 3517void free_unref_page_list(struct list_head *list)
cc59850e
KK
3518{
3519 struct page *page, *next;
4b23a68f
MG
3520 struct per_cpu_pages *pcp = NULL;
3521 struct zone *locked_zone = NULL;
56651377 3522 unsigned long flags;
c24ad77d 3523 int batch_count = 0;
df1acc85 3524 int migratetype;
9cca35d4
MG
3525
3526 /* Prepare pages for freeing */
3527 list_for_each_entry_safe(page, next, list, lru) {
56651377 3528 unsigned long pfn = page_to_pfn(page);
053cfda1 3529 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 3530 list_del(&page->lru);
053cfda1
ML
3531 continue;
3532 }
df1acc85
MG
3533
3534 /*
3535 * Free isolated pages directly to the allocator, see
3536 * comment in free_unref_page.
3537 */
3538 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3539 if (unlikely(is_migrate_isolate(migratetype))) {
3540 list_del(&page->lru);
3541 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3542 continue;
df1acc85 3543 }
9cca35d4 3544 }
cc59850e
KK
3545
3546 list_for_each_entry_safe(page, next, list, lru) {
4b23a68f
MG
3547 struct zone *zone = page_zone(page);
3548
3549 /* Different zone, different pcp lock. */
3550 if (zone != locked_zone) {
3551 if (pcp)
01b44456
MG
3552 pcp_spin_unlock_irqrestore(pcp, flags);
3553
4b23a68f 3554 locked_zone = zone;
01b44456 3555 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
4b23a68f
MG
3556 }
3557
47aef601
DB
3558 /*
3559 * Non-isolated types over MIGRATE_PCPTYPES get added
3560 * to the MIGRATE_MOVABLE pcp list.
3561 */
df1acc85 3562 migratetype = get_pcppage_migratetype(page);
47aef601
DB
3563 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3564 migratetype = MIGRATE_MOVABLE;
3565
2d4894b5 3566 trace_mm_page_free_batched(page);
4b23a68f 3567 free_unref_page_commit(zone, pcp, page, migratetype, 0);
c24ad77d
LS
3568
3569 /*
3570 * Guard against excessive IRQ disabled times when we get
3571 * a large list of pages to free.
3572 */
3573 if (++batch_count == SWAP_CLUSTER_MAX) {
01b44456 3574 pcp_spin_unlock_irqrestore(pcp, flags);
c24ad77d 3575 batch_count = 0;
01b44456 3576 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
c24ad77d 3577 }
cc59850e 3578 }
4b23a68f
MG
3579
3580 if (pcp)
01b44456 3581 pcp_spin_unlock_irqrestore(pcp, flags);
cc59850e
KK
3582}
3583
8dfcc9ba
NP
3584/*
3585 * split_page takes a non-compound higher-order page, and splits it into
3586 * n (1<<order) sub-pages: page[0..n]
3587 * Each sub-page must be freed individually.
3588 *
3589 * Note: this is probably too low level an operation for use in drivers.
3590 * Please consult with lkml before using this in your driver.
3591 */
3592void split_page(struct page *page, unsigned int order)
3593{
3594 int i;
3595
309381fe
SL
3596 VM_BUG_ON_PAGE(PageCompound(page), page);
3597 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3598
a9627bc5 3599 for (i = 1; i < (1 << order); i++)
7835e98b 3600 set_page_refcounted(page + i);
8fb156c9 3601 split_page_owner(page, 1 << order);
e1baddf8 3602 split_page_memcg(page, 1 << order);
8dfcc9ba 3603}
5853ff23 3604EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3605
3c605096 3606int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3607{
9a157dd8
KW
3608 struct zone *zone = page_zone(page);
3609 int mt = get_pageblock_migratetype(page);
748446bb 3610
194159fb 3611 if (!is_migrate_isolate(mt)) {
9a157dd8 3612 unsigned long watermark;
8348faf9
VB
3613 /*
3614 * Obey watermarks as if the page was being allocated. We can
3615 * emulate a high-order watermark check with a raised order-0
3616 * watermark, because we already know our high-order page
3617 * exists.
3618 */
fd1444b2 3619 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3620 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3621 return 0;
3622
8fb74b9f 3623 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3624 }
748446bb 3625
6ab01363 3626 del_page_from_free_list(page, zone, order);
2139cbe6 3627
400bc7fd 3628 /*
3629 * Set the pageblock if the isolated page is at least half of a
3630 * pageblock
3631 */
748446bb
MG
3632 if (order >= pageblock_order - 1) {
3633 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3634 for (; page < endpage; page += pageblock_nr_pages) {
3635 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
3636 /*
3637 * Only change normal pageblocks (i.e., they can merge
3638 * with others)
3639 */
3640 if (migratetype_is_mergeable(mt))
47118af0
MN
3641 set_pageblock_migratetype(page,
3642 MIGRATE_MOVABLE);
3643 }
748446bb
MG
3644 }
3645
8fb74b9f 3646 return 1UL << order;
1fb3f8ca
MG
3647}
3648
624f58d8
AD
3649/**
3650 * __putback_isolated_page - Return a now-isolated page back where we got it
3651 * @page: Page that was isolated
3652 * @order: Order of the isolated page
e6a0a7ad 3653 * @mt: The page's pageblock's migratetype
624f58d8
AD
3654 *
3655 * This function is meant to return a page pulled from the free lists via
3656 * __isolate_free_page back to the free lists they were pulled from.
3657 */
3658void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3659{
3660 struct zone *zone = page_zone(page);
3661
3662 /* zone lock should be held when this function is called */
3663 lockdep_assert_held(&zone->lock);
3664
3665 /* Return isolated page to tail of freelist. */
f04a5d5d 3666 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 3667 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
3668}
3669
060e7417
MG
3670/*
3671 * Update NUMA hit/miss statistics
060e7417 3672 */
3e23060b
MG
3673static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3674 long nr_account)
060e7417
MG
3675{
3676#ifdef CONFIG_NUMA
3a321d2a 3677 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3678
4518085e
KW
3679 /* skip numa counters update if numa stats is disabled */
3680 if (!static_branch_likely(&vm_numa_stat_key))
3681 return;
3682
c1093b74 3683 if (zone_to_nid(z) != numa_node_id())
060e7417 3684 local_stat = NUMA_OTHER;
060e7417 3685
c1093b74 3686 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 3687 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 3688 else {
3e23060b
MG
3689 __count_numa_events(z, NUMA_MISS, nr_account);
3690 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 3691 }
3e23060b 3692 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
3693#endif
3694}
3695
589d9973
MG
3696static __always_inline
3697struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3698 unsigned int order, unsigned int alloc_flags,
3699 int migratetype)
3700{
3701 struct page *page;
3702 unsigned long flags;
3703
3704 do {
3705 page = NULL;
3706 spin_lock_irqsave(&zone->lock, flags);
3707 /*
3708 * order-0 request can reach here when the pcplist is skipped
3709 * due to non-CMA allocation context. HIGHATOMIC area is
3710 * reserved for high-order atomic allocation, so order-0
3711 * request should skip it.
3712 */
3713 if (order > 0 && alloc_flags & ALLOC_HARDER)
3714 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3715 if (!page) {
3716 page = __rmqueue(zone, order, migratetype, alloc_flags);
3717 if (!page) {
3718 spin_unlock_irqrestore(&zone->lock, flags);
3719 return NULL;
3720 }
3721 }
3722 __mod_zone_freepage_state(zone, -(1 << order),
3723 get_pcppage_migratetype(page));
3724 spin_unlock_irqrestore(&zone->lock, flags);
3725 } while (check_new_pages(page, order));
3726
3727 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3728 zone_statistics(preferred_zone, zone, 1);
3729
3730 return page;
3731}
3732
066b2393 3733/* Remove page from the per-cpu list, caller must protect the list */
3b822017 3734static inline
44042b44
MG
3735struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3736 int migratetype,
6bb15450 3737 unsigned int alloc_flags,
453f85d4 3738 struct per_cpu_pages *pcp,
066b2393
MG
3739 struct list_head *list)
3740{
3741 struct page *page;
3742
3743 do {
3744 if (list_empty(list)) {
44042b44
MG
3745 int batch = READ_ONCE(pcp->batch);
3746 int alloced;
3747
3748 /*
3749 * Scale batch relative to order if batch implies
3750 * free pages can be stored on the PCP. Batch can
3751 * be 1 for small zones or for boot pagesets which
3752 * should never store free pages as the pages may
3753 * belong to arbitrary zones.
3754 */
3755 if (batch > 1)
3756 batch = max(batch >> order, 2);
3757 alloced = rmqueue_bulk(zone, order,
3758 batch, list,
6bb15450 3759 migratetype, alloc_flags);
44042b44
MG
3760
3761 pcp->count += alloced << order;
066b2393
MG
3762 if (unlikely(list_empty(list)))
3763 return NULL;
3764 }
3765
bf75f200
MG
3766 page = list_first_entry(list, struct page, pcp_list);
3767 list_del(&page->pcp_list);
44042b44 3768 pcp->count -= 1 << order;
77fe7f13 3769 } while (check_new_pcp(page, order));
066b2393
MG
3770
3771 return page;
3772}
3773
3774/* Lock and remove page from the per-cpu list */
3775static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44 3776 struct zone *zone, unsigned int order,
663d0cfd 3777 int migratetype, unsigned int alloc_flags)
066b2393
MG
3778{
3779 struct per_cpu_pages *pcp;
3780 struct list_head *list;
066b2393 3781 struct page *page;
d34b0733 3782 unsigned long flags;
4b23a68f 3783 unsigned long __maybe_unused UP_flags;
066b2393 3784
4b23a68f
MG
3785 /*
3786 * spin_trylock may fail due to a parallel drain. In the future, the
3787 * trylock will also protect against IRQ reentrancy.
3788 */
4b23a68f 3789 pcp_trylock_prepare(UP_flags);
01b44456
MG
3790 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3791 if (!pcp) {
4b23a68f 3792 pcp_trylock_finish(UP_flags);
4b23a68f
MG
3793 return NULL;
3794 }
3b12e7e9
MG
3795
3796 /*
3797 * On allocation, reduce the number of pages that are batch freed.
3798 * See nr_pcp_free() where free_factor is increased for subsequent
3799 * frees.
3800 */
3b12e7e9 3801 pcp->free_factor >>= 1;
44042b44
MG
3802 list = &pcp->lists[order_to_pindex(migratetype, order)];
3803 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
01b44456 3804 pcp_spin_unlock_irqrestore(pcp, flags);
4b23a68f 3805 pcp_trylock_finish(UP_flags);
066b2393 3806 if (page) {
15cd9004 3807 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 3808 zone_statistics(preferred_zone, zone, 1);
066b2393 3809 }
066b2393
MG
3810 return page;
3811}
3812
1da177e4 3813/*
a57ae9ef
RX
3814 * Allocate a page from the given zone.
3815 * Use pcplists for THP or "cheap" high-order allocations.
1da177e4 3816 */
b073d7f8
AP
3817
3818/*
3819 * Do not instrument rmqueue() with KMSAN. This function may call
3820 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3821 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3822 * may call rmqueue() again, which will result in a deadlock.
1da177e4 3823 */
b073d7f8 3824__no_sanitize_memory
0a15c3e9 3825static inline
066b2393 3826struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3827 struct zone *zone, unsigned int order,
c603844b
MG
3828 gfp_t gfp_flags, unsigned int alloc_flags,
3829 int migratetype)
1da177e4 3830{
689bcebf 3831 struct page *page;
1da177e4 3832
589d9973
MG
3833 /*
3834 * We most definitely don't want callers attempting to
3835 * allocate greater than order-1 page units with __GFP_NOFAIL.
3836 */
3837 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3838
44042b44 3839 if (likely(pcp_allowed_order(order))) {
1d91df85
JK
3840 /*
3841 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3842 * we need to skip it when CMA area isn't allowed.
3843 */
3844 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3845 migratetype != MIGRATE_MOVABLE) {
44042b44 3846 page = rmqueue_pcplist(preferred_zone, zone, order,
663d0cfd 3847 migratetype, alloc_flags);
4b23a68f
MG
3848 if (likely(page))
3849 goto out;
1d91df85 3850 }
066b2393 3851 }
83b9355b 3852
589d9973
MG
3853 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3854 migratetype);
1da177e4 3855
066b2393 3856out:
73444bc4 3857 /* Separate test+clear to avoid unnecessary atomics */
e2a66c21 3858 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
73444bc4
MG
3859 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3860 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3861 }
3862
066b2393 3863 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4
LT
3864 return page;
3865}
3866
933e312e
AM
3867#ifdef CONFIG_FAIL_PAGE_ALLOC
3868
b2588c4b 3869static struct {
933e312e
AM
3870 struct fault_attr attr;
3871
621a5f7a 3872 bool ignore_gfp_highmem;
71baba4b 3873 bool ignore_gfp_reclaim;
54114994 3874 u32 min_order;
933e312e
AM
3875} fail_page_alloc = {
3876 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3877 .ignore_gfp_reclaim = true,
621a5f7a 3878 .ignore_gfp_highmem = true,
54114994 3879 .min_order = 1,
933e312e
AM
3880};
3881
3882static int __init setup_fail_page_alloc(char *str)
3883{
3884 return setup_fault_attr(&fail_page_alloc.attr, str);
3885}
3886__setup("fail_page_alloc=", setup_fail_page_alloc);
3887
af3b8544 3888static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3889{
54114994 3890 if (order < fail_page_alloc.min_order)
deaf386e 3891 return false;
933e312e 3892 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3893 return false;
933e312e 3894 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3895 return false;
71baba4b
MG
3896 if (fail_page_alloc.ignore_gfp_reclaim &&
3897 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3898 return false;
933e312e 3899
3f913fc5
QZ
3900 if (gfp_mask & __GFP_NOWARN)
3901 fail_page_alloc.attr.no_warn = true;
3902
933e312e
AM
3903 return should_fail(&fail_page_alloc.attr, 1 << order);
3904}
3905
3906#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3907
3908static int __init fail_page_alloc_debugfs(void)
3909{
0825a6f9 3910 umode_t mode = S_IFREG | 0600;
933e312e 3911 struct dentry *dir;
933e312e 3912
dd48c085
AM
3913 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3914 &fail_page_alloc.attr);
b2588c4b 3915
d9f7979c
GKH
3916 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3917 &fail_page_alloc.ignore_gfp_reclaim);
3918 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3919 &fail_page_alloc.ignore_gfp_highmem);
3920 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3921
d9f7979c 3922 return 0;
933e312e
AM
3923}
3924
3925late_initcall(fail_page_alloc_debugfs);
3926
3927#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3928
3929#else /* CONFIG_FAIL_PAGE_ALLOC */
3930
af3b8544 3931static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3932{
deaf386e 3933 return false;
933e312e
AM
3934}
3935
3936#endif /* CONFIG_FAIL_PAGE_ALLOC */
3937
54aa3866 3938noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
3939{
3940 return __should_fail_alloc_page(gfp_mask, order);
3941}
3942ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3943
f27ce0e1
JK
3944static inline long __zone_watermark_unusable_free(struct zone *z,
3945 unsigned int order, unsigned int alloc_flags)
3946{
3947 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3948 long unusable_free = (1 << order) - 1;
3949
3950 /*
3951 * If the caller does not have rights to ALLOC_HARDER then subtract
3952 * the high-atomic reserves. This will over-estimate the size of the
3953 * atomic reserve but it avoids a search.
3954 */
3955 if (likely(!alloc_harder))
3956 unusable_free += z->nr_reserved_highatomic;
3957
3958#ifdef CONFIG_CMA
3959 /* If allocation can't use CMA areas don't use free CMA pages */
3960 if (!(alloc_flags & ALLOC_CMA))
3961 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3962#endif
3963
3964 return unusable_free;
3965}
3966
1da177e4 3967/*
97a16fc8
MG
3968 * Return true if free base pages are above 'mark'. For high-order checks it
3969 * will return true of the order-0 watermark is reached and there is at least
3970 * one free page of a suitable size. Checking now avoids taking the zone lock
3971 * to check in the allocation paths if no pages are free.
1da177e4 3972 */
86a294a8 3973bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3974 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 3975 long free_pages)
1da177e4 3976{
d23ad423 3977 long min = mark;
1da177e4 3978 int o;
cd04ae1e 3979 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3980
0aaa29a5 3981 /* free_pages may go negative - that's OK */
f27ce0e1 3982 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 3983
7fb1d9fc 3984 if (alloc_flags & ALLOC_HIGH)
1da177e4 3985 min -= min / 2;
0aaa29a5 3986
f27ce0e1 3987 if (unlikely(alloc_harder)) {
cd04ae1e
MH
3988 /*
3989 * OOM victims can try even harder than normal ALLOC_HARDER
3990 * users on the grounds that it's definitely going to be in
3991 * the exit path shortly and free memory. Any allocation it
3992 * makes during the free path will be small and short-lived.
3993 */
3994 if (alloc_flags & ALLOC_OOM)
3995 min -= min / 2;
3996 else
3997 min -= min / 4;
3998 }
3999
97a16fc8
MG
4000 /*
4001 * Check watermarks for an order-0 allocation request. If these
4002 * are not met, then a high-order request also cannot go ahead
4003 * even if a suitable page happened to be free.
4004 */
97a225e6 4005 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 4006 return false;
1da177e4 4007
97a16fc8
MG
4008 /* If this is an order-0 request then the watermark is fine */
4009 if (!order)
4010 return true;
4011
4012 /* For a high-order request, check at least one suitable page is free */
4013 for (o = order; o < MAX_ORDER; o++) {
4014 struct free_area *area = &z->free_area[o];
4015 int mt;
4016
4017 if (!area->nr_free)
4018 continue;
4019
97a16fc8 4020 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 4021 if (!free_area_empty(area, mt))
97a16fc8
MG
4022 return true;
4023 }
4024
4025#ifdef CONFIG_CMA
d883c6cf 4026 if ((alloc_flags & ALLOC_CMA) &&
b03641af 4027 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 4028 return true;
d883c6cf 4029 }
97a16fc8 4030#endif
76089d00 4031 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
b050e376 4032 return true;
1da177e4 4033 }
97a16fc8 4034 return false;
88f5acf8
MG
4035}
4036
7aeb09f9 4037bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 4038 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 4039{
97a225e6 4040 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
4041 zone_page_state(z, NR_FREE_PAGES));
4042}
4043
48ee5f36 4044static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 4045 unsigned long mark, int highest_zoneidx,
f80b08fc 4046 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 4047{
f27ce0e1 4048 long free_pages;
d883c6cf 4049
f27ce0e1 4050 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
4051
4052 /*
4053 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 4054 * need to be calculated.
48ee5f36 4055 */
f27ce0e1 4056 if (!order) {
9282012f
JK
4057 long usable_free;
4058 long reserved;
f27ce0e1 4059
9282012f
JK
4060 usable_free = free_pages;
4061 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4062
4063 /* reserved may over estimate high-atomic reserves. */
4064 usable_free -= min(usable_free, reserved);
4065 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
f27ce0e1
JK
4066 return true;
4067 }
48ee5f36 4068
f80b08fc
CTR
4069 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4070 free_pages))
4071 return true;
4072 /*
4073 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4074 * when checking the min watermark. The min watermark is the
4075 * point where boosting is ignored so that kswapd is woken up
4076 * when below the low watermark.
4077 */
4078 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4079 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4080 mark = z->_watermark[WMARK_MIN];
4081 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4082 alloc_flags, free_pages);
4083 }
4084
4085 return false;
48ee5f36
MG
4086}
4087
7aeb09f9 4088bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 4089 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
4090{
4091 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4092
4093 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4094 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4095
97a225e6 4096 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 4097 free_pages);
1da177e4
LT
4098}
4099
9276b1bc 4100#ifdef CONFIG_NUMA
61bb6cd2
GU
4101int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4102
957f822a
DR
4103static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4104{
e02dc017 4105 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 4106 node_reclaim_distance;
957f822a 4107}
9276b1bc 4108#else /* CONFIG_NUMA */
957f822a
DR
4109static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4110{
4111 return true;
4112}
9276b1bc
PJ
4113#endif /* CONFIG_NUMA */
4114
6bb15450
MG
4115/*
4116 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4117 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4118 * premature use of a lower zone may cause lowmem pressure problems that
4119 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4120 * probably too small. It only makes sense to spread allocations to avoid
4121 * fragmentation between the Normal and DMA32 zones.
4122 */
4123static inline unsigned int
0a79cdad 4124alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 4125{
736838e9 4126 unsigned int alloc_flags;
0a79cdad 4127
736838e9
MN
4128 /*
4129 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4130 * to save a branch.
4131 */
4132 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
4133
4134#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
4135 if (!zone)
4136 return alloc_flags;
4137
6bb15450 4138 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 4139 return alloc_flags;
6bb15450
MG
4140
4141 /*
4142 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4143 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4144 * on UMA that if Normal is populated then so is DMA32.
4145 */
4146 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4147 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 4148 return alloc_flags;
6bb15450 4149
8118b82e 4150 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
4151#endif /* CONFIG_ZONE_DMA32 */
4152 return alloc_flags;
6bb15450 4153}
6bb15450 4154
8e3560d9
PT
4155/* Must be called after current_gfp_context() which can change gfp_mask */
4156static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4157 unsigned int alloc_flags)
8510e69c
JK
4158{
4159#ifdef CONFIG_CMA
8e3560d9 4160 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 4161 alloc_flags |= ALLOC_CMA;
8510e69c
JK
4162#endif
4163 return alloc_flags;
4164}
4165
7fb1d9fc 4166/*
0798e519 4167 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
4168 * a page.
4169 */
4170static struct page *
a9263751
VB
4171get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4172 const struct alloc_context *ac)
753ee728 4173{
6bb15450 4174 struct zoneref *z;
5117f45d 4175 struct zone *zone;
8a87d695
WY
4176 struct pglist_data *last_pgdat = NULL;
4177 bool last_pgdat_dirty_ok = false;
6bb15450 4178 bool no_fallback;
3b8c0be4 4179
6bb15450 4180retry:
7fb1d9fc 4181 /*
9276b1bc 4182 * Scan zonelist, looking for a zone with enough free.
189cdcfe 4183 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
7fb1d9fc 4184 */
6bb15450
MG
4185 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4186 z = ac->preferred_zoneref;
30d8ec73
MN
4187 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4188 ac->nodemask) {
be06af00 4189 struct page *page;
e085dbc5
JW
4190 unsigned long mark;
4191
664eedde
MG
4192 if (cpusets_enabled() &&
4193 (alloc_flags & ALLOC_CPUSET) &&
002f2906 4194 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 4195 continue;
a756cf59
JW
4196 /*
4197 * When allocating a page cache page for writing, we
281e3726
MG
4198 * want to get it from a node that is within its dirty
4199 * limit, such that no single node holds more than its
a756cf59 4200 * proportional share of globally allowed dirty pages.
281e3726 4201 * The dirty limits take into account the node's
a756cf59
JW
4202 * lowmem reserves and high watermark so that kswapd
4203 * should be able to balance it without having to
4204 * write pages from its LRU list.
4205 *
a756cf59 4206 * XXX: For now, allow allocations to potentially
281e3726 4207 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 4208 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 4209 * which is important when on a NUMA setup the allowed
281e3726 4210 * nodes are together not big enough to reach the
a756cf59 4211 * global limit. The proper fix for these situations
281e3726 4212 * will require awareness of nodes in the
a756cf59
JW
4213 * dirty-throttling and the flusher threads.
4214 */
3b8c0be4 4215 if (ac->spread_dirty_pages) {
8a87d695
WY
4216 if (last_pgdat != zone->zone_pgdat) {
4217 last_pgdat = zone->zone_pgdat;
4218 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4219 }
3b8c0be4 4220
8a87d695 4221 if (!last_pgdat_dirty_ok)
3b8c0be4 4222 continue;
3b8c0be4 4223 }
7fb1d9fc 4224
6bb15450
MG
4225 if (no_fallback && nr_online_nodes > 1 &&
4226 zone != ac->preferred_zoneref->zone) {
4227 int local_nid;
4228
4229 /*
4230 * If moving to a remote node, retry but allow
4231 * fragmenting fallbacks. Locality is more important
4232 * than fragmentation avoidance.
4233 */
4234 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4235 if (zone_to_nid(zone) != local_nid) {
4236 alloc_flags &= ~ALLOC_NOFRAGMENT;
4237 goto retry;
4238 }
4239 }
4240
a9214443 4241 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 4242 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
4243 ac->highest_zoneidx, alloc_flags,
4244 gfp_mask)) {
fa5e084e
MG
4245 int ret;
4246
c9e97a19
PT
4247#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4248 /*
4249 * Watermark failed for this zone, but see if we can
4250 * grow this zone if it contains deferred pages.
4251 */
4252 if (static_branch_unlikely(&deferred_pages)) {
4253 if (_deferred_grow_zone(zone, order))
4254 goto try_this_zone;
4255 }
4256#endif
5dab2911
MG
4257 /* Checked here to keep the fast path fast */
4258 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4259 if (alloc_flags & ALLOC_NO_WATERMARKS)
4260 goto try_this_zone;
4261
202e35db 4262 if (!node_reclaim_enabled() ||
c33d6c06 4263 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
4264 continue;
4265
a5f5f91d 4266 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 4267 switch (ret) {
a5f5f91d 4268 case NODE_RECLAIM_NOSCAN:
fa5e084e 4269 /* did not scan */
cd38b115 4270 continue;
a5f5f91d 4271 case NODE_RECLAIM_FULL:
fa5e084e 4272 /* scanned but unreclaimable */
cd38b115 4273 continue;
fa5e084e
MG
4274 default:
4275 /* did we reclaim enough */
fed2719e 4276 if (zone_watermark_ok(zone, order, mark,
97a225e6 4277 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
4278 goto try_this_zone;
4279
fed2719e 4280 continue;
0798e519 4281 }
7fb1d9fc
RS
4282 }
4283
fa5e084e 4284try_this_zone:
066b2393 4285 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 4286 gfp_mask, alloc_flags, ac->migratetype);
75379191 4287 if (page) {
479f854a 4288 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
4289
4290 /*
4291 * If this is a high-order atomic allocation then check
4292 * if the pageblock should be reserved for the future
4293 */
4294 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4295 reserve_highatomic_pageblock(page, zone, order);
4296
75379191 4297 return page;
c9e97a19
PT
4298 } else {
4299#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4300 /* Try again if zone has deferred pages */
4301 if (static_branch_unlikely(&deferred_pages)) {
4302 if (_deferred_grow_zone(zone, order))
4303 goto try_this_zone;
4304 }
4305#endif
75379191 4306 }
54a6eb5c 4307 }
9276b1bc 4308
6bb15450
MG
4309 /*
4310 * It's possible on a UMA machine to get through all zones that are
4311 * fragmented. If avoiding fragmentation, reset and try again.
4312 */
4313 if (no_fallback) {
4314 alloc_flags &= ~ALLOC_NOFRAGMENT;
4315 goto retry;
4316 }
4317
4ffeaf35 4318 return NULL;
753ee728
MH
4319}
4320
9af744d7 4321static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 4322{
a238ab5b 4323 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
4324
4325 /*
4326 * This documents exceptions given to allocations in certain
4327 * contexts that are allowed to allocate outside current's set
4328 * of allowed nodes.
4329 */
4330 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 4331 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
4332 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4333 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 4334 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
4335 filter &= ~SHOW_MEM_FILTER_NODES;
4336
974f4367 4337 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
aa187507
MH
4338}
4339
a8e99259 4340void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
4341{
4342 struct va_format vaf;
4343 va_list args;
1be334e5 4344 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 4345
c4dc63f0
BH
4346 if ((gfp_mask & __GFP_NOWARN) ||
4347 !__ratelimit(&nopage_rs) ||
4348 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
4349 return;
4350
7877cdcc
MH
4351 va_start(args, fmt);
4352 vaf.fmt = fmt;
4353 vaf.va = &args;
ef8444ea 4354 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
4355 current->comm, &vaf, gfp_mask, &gfp_mask,
4356 nodemask_pr_args(nodemask));
7877cdcc 4357 va_end(args);
3ee9a4f0 4358
a8e99259 4359 cpuset_print_current_mems_allowed();
ef8444ea 4360 pr_cont("\n");
a238ab5b 4361 dump_stack();
685dbf6f 4362 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
4363}
4364
6c18ba7a
MH
4365static inline struct page *
4366__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4367 unsigned int alloc_flags,
4368 const struct alloc_context *ac)
4369{
4370 struct page *page;
4371
4372 page = get_page_from_freelist(gfp_mask, order,
4373 alloc_flags|ALLOC_CPUSET, ac);
4374 /*
4375 * fallback to ignore cpuset restriction if our nodes
4376 * are depleted
4377 */
4378 if (!page)
4379 page = get_page_from_freelist(gfp_mask, order,
4380 alloc_flags, ac);
4381
4382 return page;
4383}
4384
11e33f6a
MG
4385static inline struct page *
4386__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 4387 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 4388{
6e0fc46d
DR
4389 struct oom_control oc = {
4390 .zonelist = ac->zonelist,
4391 .nodemask = ac->nodemask,
2a966b77 4392 .memcg = NULL,
6e0fc46d
DR
4393 .gfp_mask = gfp_mask,
4394 .order = order,
6e0fc46d 4395 };
11e33f6a
MG
4396 struct page *page;
4397
9879de73
JW
4398 *did_some_progress = 0;
4399
9879de73 4400 /*
dc56401f
JW
4401 * Acquire the oom lock. If that fails, somebody else is
4402 * making progress for us.
9879de73 4403 */
dc56401f 4404 if (!mutex_trylock(&oom_lock)) {
9879de73 4405 *did_some_progress = 1;
11e33f6a 4406 schedule_timeout_uninterruptible(1);
1da177e4
LT
4407 return NULL;
4408 }
6b1de916 4409
11e33f6a
MG
4410 /*
4411 * Go through the zonelist yet one more time, keep very high watermark
4412 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
4413 * we're still under heavy pressure. But make sure that this reclaim
4414 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4415 * allocation which will never fail due to oom_lock already held.
11e33f6a 4416 */
e746bf73
TH
4417 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4418 ~__GFP_DIRECT_RECLAIM, order,
4419 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 4420 if (page)
11e33f6a
MG
4421 goto out;
4422
06ad276a
MH
4423 /* Coredumps can quickly deplete all memory reserves */
4424 if (current->flags & PF_DUMPCORE)
4425 goto out;
4426 /* The OOM killer will not help higher order allocs */
4427 if (order > PAGE_ALLOC_COSTLY_ORDER)
4428 goto out;
dcda9b04
MH
4429 /*
4430 * We have already exhausted all our reclaim opportunities without any
4431 * success so it is time to admit defeat. We will skip the OOM killer
4432 * because it is very likely that the caller has a more reasonable
4433 * fallback than shooting a random task.
cfb4a541
MN
4434 *
4435 * The OOM killer may not free memory on a specific node.
dcda9b04 4436 */
cfb4a541 4437 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 4438 goto out;
06ad276a 4439 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 4440 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
4441 goto out;
4442 if (pm_suspended_storage())
4443 goto out;
4444 /*
4445 * XXX: GFP_NOFS allocations should rather fail than rely on
4446 * other request to make a forward progress.
4447 * We are in an unfortunate situation where out_of_memory cannot
4448 * do much for this context but let's try it to at least get
4449 * access to memory reserved if the current task is killed (see
4450 * out_of_memory). Once filesystems are ready to handle allocation
4451 * failures more gracefully we should just bail out here.
4452 */
4453
3c2c6488 4454 /* Exhausted what can be done so it's blame time */
3f913fc5
QZ
4455 if (out_of_memory(&oc) ||
4456 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
c32b3cbe 4457 *did_some_progress = 1;
5020e285 4458
6c18ba7a
MH
4459 /*
4460 * Help non-failing allocations by giving them access to memory
4461 * reserves
4462 */
4463 if (gfp_mask & __GFP_NOFAIL)
4464 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 4465 ALLOC_NO_WATERMARKS, ac);
5020e285 4466 }
11e33f6a 4467out:
dc56401f 4468 mutex_unlock(&oom_lock);
11e33f6a
MG
4469 return page;
4470}
4471
33c2d214 4472/*
baf2f90b 4473 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
4474 * killer is consider as the only way to move forward.
4475 */
4476#define MAX_COMPACT_RETRIES 16
4477
56de7263
MG
4478#ifdef CONFIG_COMPACTION
4479/* Try memory compaction for high-order allocations before reclaim */
4480static struct page *
4481__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4482 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4483 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4484{
5e1f0f09 4485 struct page *page = NULL;
eb414681 4486 unsigned long pflags;
499118e9 4487 unsigned int noreclaim_flag;
53853e2d
VB
4488
4489 if (!order)
66199712 4490 return NULL;
66199712 4491
eb414681 4492 psi_memstall_enter(&pflags);
5bf18281 4493 delayacct_compact_start();
499118e9 4494 noreclaim_flag = memalloc_noreclaim_save();
eb414681 4495
c5d01d0d 4496 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 4497 prio, &page);
eb414681 4498
499118e9 4499 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 4500 psi_memstall_leave(&pflags);
5bf18281 4501 delayacct_compact_end();
56de7263 4502
06dac2f4
CTR
4503 if (*compact_result == COMPACT_SKIPPED)
4504 return NULL;
98dd3b48
VB
4505 /*
4506 * At least in one zone compaction wasn't deferred or skipped, so let's
4507 * count a compaction stall
4508 */
4509 count_vm_event(COMPACTSTALL);
8fb74b9f 4510
5e1f0f09
MG
4511 /* Prep a captured page if available */
4512 if (page)
4513 prep_new_page(page, order, gfp_mask, alloc_flags);
4514
4515 /* Try get a page from the freelist if available */
4516 if (!page)
4517 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 4518
98dd3b48
VB
4519 if (page) {
4520 struct zone *zone = page_zone(page);
53853e2d 4521
98dd3b48
VB
4522 zone->compact_blockskip_flush = false;
4523 compaction_defer_reset(zone, order, true);
4524 count_vm_event(COMPACTSUCCESS);
4525 return page;
4526 }
56de7263 4527
98dd3b48
VB
4528 /*
4529 * It's bad if compaction run occurs and fails. The most likely reason
4530 * is that pages exist, but not enough to satisfy watermarks.
4531 */
4532 count_vm_event(COMPACTFAIL);
66199712 4533
98dd3b48 4534 cond_resched();
56de7263
MG
4535
4536 return NULL;
4537}
33c2d214 4538
3250845d
VB
4539static inline bool
4540should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4541 enum compact_result compact_result,
4542 enum compact_priority *compact_priority,
d9436498 4543 int *compaction_retries)
3250845d
VB
4544{
4545 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 4546 int min_priority;
65190cff
MH
4547 bool ret = false;
4548 int retries = *compaction_retries;
4549 enum compact_priority priority = *compact_priority;
3250845d
VB
4550
4551 if (!order)
4552 return false;
4553
691d9497
AT
4554 if (fatal_signal_pending(current))
4555 return false;
4556
d9436498
VB
4557 if (compaction_made_progress(compact_result))
4558 (*compaction_retries)++;
4559
3250845d
VB
4560 /*
4561 * compaction considers all the zone as desperately out of memory
4562 * so it doesn't really make much sense to retry except when the
4563 * failure could be caused by insufficient priority
4564 */
d9436498
VB
4565 if (compaction_failed(compact_result))
4566 goto check_priority;
3250845d 4567
49433085
VB
4568 /*
4569 * compaction was skipped because there are not enough order-0 pages
4570 * to work with, so we retry only if it looks like reclaim can help.
4571 */
4572 if (compaction_needs_reclaim(compact_result)) {
4573 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4574 goto out;
4575 }
4576
3250845d
VB
4577 /*
4578 * make sure the compaction wasn't deferred or didn't bail out early
4579 * due to locks contention before we declare that we should give up.
49433085
VB
4580 * But the next retry should use a higher priority if allowed, so
4581 * we don't just keep bailing out endlessly.
3250845d 4582 */
65190cff 4583 if (compaction_withdrawn(compact_result)) {
49433085 4584 goto check_priority;
65190cff 4585 }
3250845d
VB
4586
4587 /*
dcda9b04 4588 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
4589 * costly ones because they are de facto nofail and invoke OOM
4590 * killer to move on while costly can fail and users are ready
4591 * to cope with that. 1/4 retries is rather arbitrary but we
4592 * would need much more detailed feedback from compaction to
4593 * make a better decision.
4594 */
4595 if (order > PAGE_ALLOC_COSTLY_ORDER)
4596 max_retries /= 4;
65190cff
MH
4597 if (*compaction_retries <= max_retries) {
4598 ret = true;
4599 goto out;
4600 }
3250845d 4601
d9436498
VB
4602 /*
4603 * Make sure there are attempts at the highest priority if we exhausted
4604 * all retries or failed at the lower priorities.
4605 */
4606check_priority:
c2033b00
VB
4607 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4608 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 4609
c2033b00 4610 if (*compact_priority > min_priority) {
d9436498
VB
4611 (*compact_priority)--;
4612 *compaction_retries = 0;
65190cff 4613 ret = true;
d9436498 4614 }
65190cff
MH
4615out:
4616 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4617 return ret;
3250845d 4618}
56de7263
MG
4619#else
4620static inline struct page *
4621__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4622 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4623 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4624{
33c2d214 4625 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4626 return NULL;
4627}
33c2d214
MH
4628
4629static inline bool
86a294a8
MH
4630should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4631 enum compact_result compact_result,
a5508cd8 4632 enum compact_priority *compact_priority,
d9436498 4633 int *compaction_retries)
33c2d214 4634{
31e49bfd
MH
4635 struct zone *zone;
4636 struct zoneref *z;
4637
4638 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4639 return false;
4640
4641 /*
4642 * There are setups with compaction disabled which would prefer to loop
4643 * inside the allocator rather than hit the oom killer prematurely.
4644 * Let's give them a good hope and keep retrying while the order-0
4645 * watermarks are OK.
4646 */
97a225e6
JK
4647 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4648 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 4649 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 4650 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
4651 return true;
4652 }
33c2d214
MH
4653 return false;
4654}
3250845d 4655#endif /* CONFIG_COMPACTION */
56de7263 4656
d92a8cfc 4657#ifdef CONFIG_LOCKDEP
93781325 4658static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4659 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4660
f920e413 4661static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 4662{
d92a8cfc
PZ
4663 /* no reclaim without waiting on it */
4664 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4665 return false;
4666
4667 /* this guy won't enter reclaim */
2e517d68 4668 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4669 return false;
4670
d92a8cfc
PZ
4671 if (gfp_mask & __GFP_NOLOCKDEP)
4672 return false;
4673
4674 return true;
4675}
4676
4f3eaf45 4677void __fs_reclaim_acquire(unsigned long ip)
93781325 4678{
4f3eaf45 4679 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
4680}
4681
4f3eaf45 4682void __fs_reclaim_release(unsigned long ip)
93781325 4683{
4f3eaf45 4684 lock_release(&__fs_reclaim_map, ip);
93781325
OS
4685}
4686
d92a8cfc
PZ
4687void fs_reclaim_acquire(gfp_t gfp_mask)
4688{
f920e413
DV
4689 gfp_mask = current_gfp_context(gfp_mask);
4690
4691 if (__need_reclaim(gfp_mask)) {
4692 if (gfp_mask & __GFP_FS)
4f3eaf45 4693 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
4694
4695#ifdef CONFIG_MMU_NOTIFIER
4696 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4697 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4698#endif
4699
4700 }
d92a8cfc
PZ
4701}
4702EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4703
4704void fs_reclaim_release(gfp_t gfp_mask)
4705{
f920e413
DV
4706 gfp_mask = current_gfp_context(gfp_mask);
4707
4708 if (__need_reclaim(gfp_mask)) {
4709 if (gfp_mask & __GFP_FS)
4f3eaf45 4710 __fs_reclaim_release(_RET_IP_);
f920e413 4711 }
d92a8cfc
PZ
4712}
4713EXPORT_SYMBOL_GPL(fs_reclaim_release);
4714#endif
4715
3d36424b
MG
4716/*
4717 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4718 * have been rebuilt so allocation retries. Reader side does not lock and
4719 * retries the allocation if zonelist changes. Writer side is protected by the
4720 * embedded spin_lock.
4721 */
4722static DEFINE_SEQLOCK(zonelist_update_seq);
4723
4724static unsigned int zonelist_iter_begin(void)
4725{
4726 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4727 return read_seqbegin(&zonelist_update_seq);
4728
4729 return 0;
4730}
4731
4732static unsigned int check_retry_zonelist(unsigned int seq)
4733{
4734 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4735 return read_seqretry(&zonelist_update_seq, seq);
4736
4737 return seq;
4738}
4739
bba90710 4740/* Perform direct synchronous page reclaim */
2187e17b 4741static unsigned long
a9263751
VB
4742__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4743 const struct alloc_context *ac)
11e33f6a 4744{
499118e9 4745 unsigned int noreclaim_flag;
fa7fc75f 4746 unsigned long progress;
11e33f6a
MG
4747
4748 cond_resched();
4749
4750 /* We now go into synchronous reclaim */
4751 cpuset_memory_pressure_bump();
d92a8cfc 4752 fs_reclaim_acquire(gfp_mask);
93781325 4753 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4754
a9263751
VB
4755 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4756 ac->nodemask);
11e33f6a 4757
499118e9 4758 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4759 fs_reclaim_release(gfp_mask);
11e33f6a
MG
4760
4761 cond_resched();
4762
bba90710
MS
4763 return progress;
4764}
4765
4766/* The really slow allocator path where we enter direct reclaim */
4767static inline struct page *
4768__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4769 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4770 unsigned long *did_some_progress)
bba90710
MS
4771{
4772 struct page *page = NULL;
fa7fc75f 4773 unsigned long pflags;
bba90710
MS
4774 bool drained = false;
4775
fa7fc75f 4776 psi_memstall_enter(&pflags);
a9263751 4777 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 4778 if (unlikely(!(*did_some_progress)))
fa7fc75f 4779 goto out;
11e33f6a 4780
9ee493ce 4781retry:
31a6c190 4782 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4783
4784 /*
4785 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 4786 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 4787 * Shrink them and try again
9ee493ce
MG
4788 */
4789 if (!page && !drained) {
29fac03b 4790 unreserve_highatomic_pageblock(ac, false);
93481ff0 4791 drain_all_pages(NULL);
9ee493ce
MG
4792 drained = true;
4793 goto retry;
4794 }
fa7fc75f
SB
4795out:
4796 psi_memstall_leave(&pflags);
9ee493ce 4797
11e33f6a
MG
4798 return page;
4799}
4800
5ecd9d40
DR
4801static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4802 const struct alloc_context *ac)
3a025760
JW
4803{
4804 struct zoneref *z;
4805 struct zone *zone;
e1a55637 4806 pg_data_t *last_pgdat = NULL;
97a225e6 4807 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 4808
97a225e6 4809 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 4810 ac->nodemask) {
bc53008e
WY
4811 if (!managed_zone(zone))
4812 continue;
d137a7cb 4813 if (last_pgdat != zone->zone_pgdat) {
97a225e6 4814 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
4815 last_pgdat = zone->zone_pgdat;
4816 }
e1a55637 4817 }
3a025760
JW
4818}
4819
c603844b 4820static inline unsigned int
341ce06f
PZ
4821gfp_to_alloc_flags(gfp_t gfp_mask)
4822{
c603844b 4823 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4824
736838e9
MN
4825 /*
4826 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4827 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4828 * to save two branches.
4829 */
e6223a3b 4830 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
736838e9 4831 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 4832
341ce06f
PZ
4833 /*
4834 * The caller may dip into page reserves a bit more if the caller
4835 * cannot run direct reclaim, or if the caller has realtime scheduling
4836 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4837 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4838 */
736838e9
MN
4839 alloc_flags |= (__force int)
4840 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 4841
d0164adc 4842 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4843 /*
b104a35d
DR
4844 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4845 * if it can't schedule.
5c3240d9 4846 */
b104a35d 4847 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4848 alloc_flags |= ALLOC_HARDER;
523b9458 4849 /*
b104a35d 4850 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4851 * comment for __cpuset_node_allowed().
523b9458 4852 */
341ce06f 4853 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 4854 } else if (unlikely(rt_task(current)) && in_task())
341ce06f
PZ
4855 alloc_flags |= ALLOC_HARDER;
4856
8e3560d9 4857 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 4858
341ce06f
PZ
4859 return alloc_flags;
4860}
4861
cd04ae1e 4862static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4863{
cd04ae1e
MH
4864 if (!tsk_is_oom_victim(tsk))
4865 return false;
4866
4867 /*
4868 * !MMU doesn't have oom reaper so give access to memory reserves
4869 * only to the thread with TIF_MEMDIE set
4870 */
4871 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4872 return false;
4873
cd04ae1e
MH
4874 return true;
4875}
4876
4877/*
4878 * Distinguish requests which really need access to full memory
4879 * reserves from oom victims which can live with a portion of it
4880 */
4881static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4882{
4883 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4884 return 0;
31a6c190 4885 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4886 return ALLOC_NO_WATERMARKS;
31a6c190 4887 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4888 return ALLOC_NO_WATERMARKS;
4889 if (!in_interrupt()) {
4890 if (current->flags & PF_MEMALLOC)
4891 return ALLOC_NO_WATERMARKS;
4892 else if (oom_reserves_allowed(current))
4893 return ALLOC_OOM;
4894 }
31a6c190 4895
cd04ae1e
MH
4896 return 0;
4897}
4898
4899bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4900{
4901 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4902}
4903
0a0337e0
MH
4904/*
4905 * Checks whether it makes sense to retry the reclaim to make a forward progress
4906 * for the given allocation request.
491d79ae
JW
4907 *
4908 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4909 * without success, or when we couldn't even meet the watermark if we
4910 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4911 *
4912 * Returns true if a retry is viable or false to enter the oom path.
4913 */
4914static inline bool
4915should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4916 struct alloc_context *ac, int alloc_flags,
423b452e 4917 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4918{
4919 struct zone *zone;
4920 struct zoneref *z;
15f570bf 4921 bool ret = false;
0a0337e0 4922
423b452e
VB
4923 /*
4924 * Costly allocations might have made a progress but this doesn't mean
4925 * their order will become available due to high fragmentation so
4926 * always increment the no progress counter for them
4927 */
4928 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4929 *no_progress_loops = 0;
4930 else
4931 (*no_progress_loops)++;
4932
0a0337e0
MH
4933 /*
4934 * Make sure we converge to OOM if we cannot make any progress
4935 * several times in the row.
4936 */
04c8716f
MK
4937 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4938 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4939 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4940 }
0a0337e0 4941
bca67592
MG
4942 /*
4943 * Keep reclaiming pages while there is a chance this will lead
4944 * somewhere. If none of the target zones can satisfy our allocation
4945 * request even if all reclaimable pages are considered then we are
4946 * screwed and have to go OOM.
0a0337e0 4947 */
97a225e6
JK
4948 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4949 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 4950 unsigned long available;
ede37713 4951 unsigned long reclaimable;
d379f01d
MH
4952 unsigned long min_wmark = min_wmark_pages(zone);
4953 bool wmark;
0a0337e0 4954
5a1c84b4 4955 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4956 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4957
4958 /*
491d79ae
JW
4959 * Would the allocation succeed if we reclaimed all
4960 * reclaimable pages?
0a0337e0 4961 */
d379f01d 4962 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 4963 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
4964 trace_reclaim_retry_zone(z, order, reclaimable,
4965 available, min_wmark, *no_progress_loops, wmark);
4966 if (wmark) {
15f570bf 4967 ret = true;
132b0d21 4968 break;
0a0337e0
MH
4969 }
4970 }
4971
15f570bf
MH
4972 /*
4973 * Memory allocation/reclaim might be called from a WQ context and the
4974 * current implementation of the WQ concurrency control doesn't
4975 * recognize that a particular WQ is congested if the worker thread is
4976 * looping without ever sleeping. Therefore we have to do a short sleep
4977 * here rather than calling cond_resched().
4978 */
4979 if (current->flags & PF_WQ_WORKER)
4980 schedule_timeout_uninterruptible(1);
4981 else
4982 cond_resched();
4983 return ret;
0a0337e0
MH
4984}
4985
902b6281
VB
4986static inline bool
4987check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4988{
4989 /*
4990 * It's possible that cpuset's mems_allowed and the nodemask from
4991 * mempolicy don't intersect. This should be normally dealt with by
4992 * policy_nodemask(), but it's possible to race with cpuset update in
4993 * such a way the check therein was true, and then it became false
4994 * before we got our cpuset_mems_cookie here.
4995 * This assumes that for all allocations, ac->nodemask can come only
4996 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4997 * when it does not intersect with the cpuset restrictions) or the
4998 * caller can deal with a violated nodemask.
4999 */
5000 if (cpusets_enabled() && ac->nodemask &&
5001 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5002 ac->nodemask = NULL;
5003 return true;
5004 }
5005
5006 /*
5007 * When updating a task's mems_allowed or mempolicy nodemask, it is
5008 * possible to race with parallel threads in such a way that our
5009 * allocation can fail while the mask is being updated. If we are about
5010 * to fail, check if the cpuset changed during allocation and if so,
5011 * retry.
5012 */
5013 if (read_mems_allowed_retry(cpuset_mems_cookie))
5014 return true;
5015
5016 return false;
5017}
5018
11e33f6a
MG
5019static inline struct page *
5020__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 5021 struct alloc_context *ac)
11e33f6a 5022{
d0164adc 5023 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 5024 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 5025 struct page *page = NULL;
c603844b 5026 unsigned int alloc_flags;
11e33f6a 5027 unsigned long did_some_progress;
5ce9bfef 5028 enum compact_priority compact_priority;
c5d01d0d 5029 enum compact_result compact_result;
5ce9bfef
VB
5030 int compaction_retries;
5031 int no_progress_loops;
5ce9bfef 5032 unsigned int cpuset_mems_cookie;
3d36424b 5033 unsigned int zonelist_iter_cookie;
cd04ae1e 5034 int reserve_flags;
1da177e4 5035
d0164adc
MG
5036 /*
5037 * We also sanity check to catch abuse of atomic reserves being used by
5038 * callers that are not in atomic context.
5039 */
5040 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5041 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5042 gfp_mask &= ~__GFP_ATOMIC;
5043
3d36424b 5044restart:
5ce9bfef
VB
5045 compaction_retries = 0;
5046 no_progress_loops = 0;
5047 compact_priority = DEF_COMPACT_PRIORITY;
5048 cpuset_mems_cookie = read_mems_allowed_begin();
3d36424b 5049 zonelist_iter_cookie = zonelist_iter_begin();
9a67f648
MH
5050
5051 /*
5052 * The fast path uses conservative alloc_flags to succeed only until
5053 * kswapd needs to be woken up, and to avoid the cost of setting up
5054 * alloc_flags precisely. So we do that now.
5055 */
5056 alloc_flags = gfp_to_alloc_flags(gfp_mask);
5057
e47483bc
VB
5058 /*
5059 * We need to recalculate the starting point for the zonelist iterator
5060 * because we might have used different nodemask in the fast path, or
5061 * there was a cpuset modification and we are retrying - otherwise we
5062 * could end up iterating over non-eligible zones endlessly.
5063 */
5064 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5065 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
5066 if (!ac->preferred_zoneref->zone)
5067 goto nopage;
5068
8ca1b5a4
FT
5069 /*
5070 * Check for insane configurations where the cpuset doesn't contain
5071 * any suitable zone to satisfy the request - e.g. non-movable
5072 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5073 */
5074 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5075 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5076 ac->highest_zoneidx,
5077 &cpuset_current_mems_allowed);
5078 if (!z->zone)
5079 goto nopage;
5080 }
5081
0a79cdad 5082 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5083 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
5084
5085 /*
5086 * The adjusted alloc_flags might result in immediate success, so try
5087 * that first
5088 */
5089 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5090 if (page)
5091 goto got_pg;
5092
a8161d1e
VB
5093 /*
5094 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
5095 * that we have enough base pages and don't need to reclaim. For non-
5096 * movable high-order allocations, do that as well, as compaction will
5097 * try prevent permanent fragmentation by migrating from blocks of the
5098 * same migratetype.
5099 * Don't try this for allocations that are allowed to ignore
5100 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 5101 */
282722b0
VB
5102 if (can_direct_reclaim &&
5103 (costly_order ||
5104 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5105 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
5106 page = __alloc_pages_direct_compact(gfp_mask, order,
5107 alloc_flags, ac,
a5508cd8 5108 INIT_COMPACT_PRIORITY,
a8161d1e
VB
5109 &compact_result);
5110 if (page)
5111 goto got_pg;
5112
cc638f32
VB
5113 /*
5114 * Checks for costly allocations with __GFP_NORETRY, which
5115 * includes some THP page fault allocations
5116 */
5117 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
5118 /*
5119 * If allocating entire pageblock(s) and compaction
5120 * failed because all zones are below low watermarks
5121 * or is prohibited because it recently failed at this
3f36d866
DR
5122 * order, fail immediately unless the allocator has
5123 * requested compaction and reclaim retry.
b39d0ee2
DR
5124 *
5125 * Reclaim is
5126 * - potentially very expensive because zones are far
5127 * below their low watermarks or this is part of very
5128 * bursty high order allocations,
5129 * - not guaranteed to help because isolate_freepages()
5130 * may not iterate over freed pages as part of its
5131 * linear scan, and
5132 * - unlikely to make entire pageblocks free on its
5133 * own.
5134 */
5135 if (compact_result == COMPACT_SKIPPED ||
5136 compact_result == COMPACT_DEFERRED)
5137 goto nopage;
a8161d1e 5138
a8161d1e 5139 /*
3eb2771b
VB
5140 * Looks like reclaim/compaction is worth trying, but
5141 * sync compaction could be very expensive, so keep
25160354 5142 * using async compaction.
a8161d1e 5143 */
a5508cd8 5144 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
5145 }
5146 }
23771235 5147
31a6c190 5148retry:
23771235 5149 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 5150 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 5151 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 5152
cd04ae1e
MH
5153 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5154 if (reserve_flags)
ce96fa62
ML
5155 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5156 (alloc_flags & ALLOC_KSWAPD);
23771235 5157
e46e7b77 5158 /*
d6a24df0
VB
5159 * Reset the nodemask and zonelist iterators if memory policies can be
5160 * ignored. These allocations are high priority and system rather than
5161 * user oriented.
e46e7b77 5162 */
cd04ae1e 5163 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 5164 ac->nodemask = NULL;
e46e7b77 5165 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5166 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
5167 }
5168
23771235 5169 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 5170 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
5171 if (page)
5172 goto got_pg;
1da177e4 5173
d0164adc 5174 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 5175 if (!can_direct_reclaim)
1da177e4
LT
5176 goto nopage;
5177
9a67f648
MH
5178 /* Avoid recursion of direct reclaim */
5179 if (current->flags & PF_MEMALLOC)
6583bb64
DR
5180 goto nopage;
5181
a8161d1e
VB
5182 /* Try direct reclaim and then allocating */
5183 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5184 &did_some_progress);
5185 if (page)
5186 goto got_pg;
5187
5188 /* Try direct compaction and then allocating */
a9263751 5189 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 5190 compact_priority, &compact_result);
56de7263
MG
5191 if (page)
5192 goto got_pg;
75f30861 5193
9083905a
JW
5194 /* Do not loop if specifically requested */
5195 if (gfp_mask & __GFP_NORETRY)
a8161d1e 5196 goto nopage;
9083905a 5197
0a0337e0
MH
5198 /*
5199 * Do not retry costly high order allocations unless they are
dcda9b04 5200 * __GFP_RETRY_MAYFAIL
0a0337e0 5201 */
dcda9b04 5202 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 5203 goto nopage;
0a0337e0 5204
0a0337e0 5205 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 5206 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
5207 goto retry;
5208
33c2d214
MH
5209 /*
5210 * It doesn't make any sense to retry for the compaction if the order-0
5211 * reclaim is not able to make any progress because the current
5212 * implementation of the compaction depends on the sufficient amount
5213 * of free memory (see __compaction_suitable)
5214 */
5215 if (did_some_progress > 0 &&
86a294a8 5216 should_compact_retry(ac, order, alloc_flags,
a5508cd8 5217 compact_result, &compact_priority,
d9436498 5218 &compaction_retries))
33c2d214
MH
5219 goto retry;
5220
902b6281 5221
3d36424b
MG
5222 /*
5223 * Deal with possible cpuset update races or zonelist updates to avoid
5224 * a unnecessary OOM kill.
5225 */
5226 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5227 check_retry_zonelist(zonelist_iter_cookie))
5228 goto restart;
e47483bc 5229
9083905a
JW
5230 /* Reclaim has failed us, start killing things */
5231 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5232 if (page)
5233 goto got_pg;
5234
9a67f648 5235 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 5236 if (tsk_is_oom_victim(current) &&
8510e69c 5237 (alloc_flags & ALLOC_OOM ||
c288983d 5238 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
5239 goto nopage;
5240
9083905a 5241 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
5242 if (did_some_progress) {
5243 no_progress_loops = 0;
9083905a 5244 goto retry;
0a0337e0 5245 }
9083905a 5246
1da177e4 5247nopage:
3d36424b
MG
5248 /*
5249 * Deal with possible cpuset update races or zonelist updates to avoid
5250 * a unnecessary OOM kill.
5251 */
5252 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5253 check_retry_zonelist(zonelist_iter_cookie))
5254 goto restart;
5ce9bfef 5255
9a67f648
MH
5256 /*
5257 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5258 * we always retry
5259 */
5260 if (gfp_mask & __GFP_NOFAIL) {
5261 /*
5262 * All existing users of the __GFP_NOFAIL are blockable, so warn
5263 * of any new users that actually require GFP_NOWAIT
5264 */
3f913fc5 5265 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
9a67f648
MH
5266 goto fail;
5267
5268 /*
5269 * PF_MEMALLOC request from this context is rather bizarre
5270 * because we cannot reclaim anything and only can loop waiting
5271 * for somebody to do a work for us
5272 */
3f913fc5 5273 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
9a67f648
MH
5274
5275 /*
5276 * non failing costly orders are a hard requirement which we
5277 * are not prepared for much so let's warn about these users
5278 * so that we can identify them and convert them to something
5279 * else.
5280 */
896c4d52 5281 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
9a67f648 5282
6c18ba7a
MH
5283 /*
5284 * Help non-failing allocations by giving them access to memory
5285 * reserves but do not use ALLOC_NO_WATERMARKS because this
5286 * could deplete whole memory reserves which would just make
5287 * the situation worse
5288 */
5289 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5290 if (page)
5291 goto got_pg;
5292
9a67f648
MH
5293 cond_resched();
5294 goto retry;
5295 }
5296fail:
a8e99259 5297 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 5298 "page allocation failure: order:%u", order);
1da177e4 5299got_pg:
072bb0aa 5300 return page;
1da177e4 5301}
11e33f6a 5302
9cd75558 5303static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 5304 int preferred_nid, nodemask_t *nodemask,
8e6a930b 5305 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 5306 unsigned int *alloc_flags)
11e33f6a 5307{
97a225e6 5308 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 5309 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 5310 ac->nodemask = nodemask;
01c0bfe0 5311 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 5312
682a3385 5313 if (cpusets_enabled()) {
8e6a930b 5314 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
5315 /*
5316 * When we are in the interrupt context, it is irrelevant
5317 * to the current task context. It means that any node ok.
5318 */
88dc6f20 5319 if (in_task() && !ac->nodemask)
9cd75558 5320 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
5321 else
5322 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
5323 }
5324
446ec838 5325 might_alloc(gfp_mask);
11e33f6a
MG
5326
5327 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 5328 return false;
11e33f6a 5329
8e3560d9 5330 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 5331
c9ab0c4f 5332 /* Dirty zone balancing only done in the fast path */
9cd75558 5333 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 5334
e46e7b77
MG
5335 /*
5336 * The preferred zone is used for statistics but crucially it is
5337 * also used as the starting point for the zonelist iterator. It
5338 * may get reset for allocations that ignore memory policies.
5339 */
9cd75558 5340 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 5341 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
5342
5343 return true;
9cd75558
MG
5344}
5345
387ba26f 5346/*
0f87d9d3 5347 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
5348 * @gfp: GFP flags for the allocation
5349 * @preferred_nid: The preferred NUMA node ID to allocate from
5350 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
5351 * @nr_pages: The number of pages desired on the list or array
5352 * @page_list: Optional list to store the allocated pages
5353 * @page_array: Optional array to store the pages
387ba26f
MG
5354 *
5355 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
5356 * allocate nr_pages quickly. Pages are added to page_list if page_list
5357 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 5358 *
0f87d9d3
MG
5359 * For lists, nr_pages is the number of pages that should be allocated.
5360 *
5361 * For arrays, only NULL elements are populated with pages and nr_pages
5362 * is the maximum number of pages that will be stored in the array.
5363 *
5364 * Returns the number of pages on the list or array.
387ba26f
MG
5365 */
5366unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5367 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
5368 struct list_head *page_list,
5369 struct page **page_array)
387ba26f
MG
5370{
5371 struct page *page;
5372 unsigned long flags;
4b23a68f 5373 unsigned long __maybe_unused UP_flags;
387ba26f
MG
5374 struct zone *zone;
5375 struct zoneref *z;
5376 struct per_cpu_pages *pcp;
5377 struct list_head *pcp_list;
5378 struct alloc_context ac;
5379 gfp_t alloc_gfp;
5380 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 5381 int nr_populated = 0, nr_account = 0;
387ba26f 5382
0f87d9d3
MG
5383 /*
5384 * Skip populated array elements to determine if any pages need
5385 * to be allocated before disabling IRQs.
5386 */
b08e50dd 5387 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
5388 nr_populated++;
5389
06147843
CL
5390 /* No pages requested? */
5391 if (unlikely(nr_pages <= 0))
5392 goto out;
5393
b3b64ebd
MG
5394 /* Already populated array? */
5395 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 5396 goto out;
b3b64ebd 5397
8dcb3060
SB
5398 /* Bulk allocator does not support memcg accounting. */
5399 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5400 goto failed;
5401
387ba26f 5402 /* Use the single page allocator for one page. */
0f87d9d3 5403 if (nr_pages - nr_populated == 1)
387ba26f
MG
5404 goto failed;
5405
187ad460
MG
5406#ifdef CONFIG_PAGE_OWNER
5407 /*
5408 * PAGE_OWNER may recurse into the allocator to allocate space to
5409 * save the stack with pagesets.lock held. Releasing/reacquiring
5410 * removes much of the performance benefit of bulk allocation so
5411 * force the caller to allocate one page at a time as it'll have
5412 * similar performance to added complexity to the bulk allocator.
5413 */
5414 if (static_branch_unlikely(&page_owner_inited))
5415 goto failed;
5416#endif
5417
387ba26f
MG
5418 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5419 gfp &= gfp_allowed_mask;
5420 alloc_gfp = gfp;
5421 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 5422 goto out;
387ba26f
MG
5423 gfp = alloc_gfp;
5424
5425 /* Find an allowed local zone that meets the low watermark. */
5426 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5427 unsigned long mark;
5428
5429 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5430 !__cpuset_zone_allowed(zone, gfp)) {
5431 continue;
5432 }
5433
5434 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5435 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5436 goto failed;
5437 }
5438
5439 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5440 if (zone_watermark_fast(zone, 0, mark,
5441 zonelist_zone_idx(ac.preferred_zoneref),
5442 alloc_flags, gfp)) {
5443 break;
5444 }
5445 }
5446
5447 /*
5448 * If there are no allowed local zones that meets the watermarks then
5449 * try to allocate a single page and reclaim if necessary.
5450 */
ce76f9a1 5451 if (unlikely(!zone))
387ba26f
MG
5452 goto failed;
5453
4b23a68f 5454 /* Is a parallel drain in progress? */
4b23a68f 5455 pcp_trylock_prepare(UP_flags);
01b44456
MG
5456 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5457 if (!pcp)
4b23a68f 5458 goto failed_irq;
387ba26f 5459
387ba26f 5460 /* Attempt the batch allocation */
44042b44 5461 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
0f87d9d3
MG
5462 while (nr_populated < nr_pages) {
5463
5464 /* Skip existing pages */
5465 if (page_array && page_array[nr_populated]) {
5466 nr_populated++;
5467 continue;
5468 }
5469
44042b44 5470 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 5471 pcp, pcp_list);
ce76f9a1 5472 if (unlikely(!page)) {
c572e488 5473 /* Try and allocate at least one page */
4b23a68f 5474 if (!nr_account) {
01b44456 5475 pcp_spin_unlock_irqrestore(pcp, flags);
387ba26f 5476 goto failed_irq;
4b23a68f 5477 }
387ba26f
MG
5478 break;
5479 }
3e23060b 5480 nr_account++;
387ba26f
MG
5481
5482 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
5483 if (page_list)
5484 list_add(&page->lru, page_list);
5485 else
5486 page_array[nr_populated] = page;
5487 nr_populated++;
387ba26f
MG
5488 }
5489
01b44456 5490 pcp_spin_unlock_irqrestore(pcp, flags);
4b23a68f 5491 pcp_trylock_finish(UP_flags);
43c95bcc 5492
3e23060b
MG
5493 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5494 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 5495
06147843 5496out:
0f87d9d3 5497 return nr_populated;
387ba26f
MG
5498
5499failed_irq:
4b23a68f 5500 pcp_trylock_finish(UP_flags);
387ba26f
MG
5501
5502failed:
5503 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5504 if (page) {
0f87d9d3
MG
5505 if (page_list)
5506 list_add(&page->lru, page_list);
5507 else
5508 page_array[nr_populated] = page;
5509 nr_populated++;
387ba26f
MG
5510 }
5511
06147843 5512 goto out;
387ba26f
MG
5513}
5514EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5515
9cd75558
MG
5516/*
5517 * This is the 'heart' of the zoned buddy allocator.
5518 */
84172f4b 5519struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 5520 nodemask_t *nodemask)
9cd75558
MG
5521{
5522 struct page *page;
5523 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 5524 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
5525 struct alloc_context ac = { };
5526
c63ae43b
MH
5527 /*
5528 * There are several places where we assume that the order value is sane
5529 * so bail out early if the request is out of bound.
5530 */
3f913fc5 5531 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
c63ae43b 5532 return NULL;
c63ae43b 5533
6e5e0f28 5534 gfp &= gfp_allowed_mask;
da6df1b0
PT
5535 /*
5536 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5537 * resp. GFP_NOIO which has to be inherited for all allocation requests
5538 * from a particular context which has been marked by
8e3560d9
PT
5539 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5540 * movable zones are not used during allocation.
da6df1b0
PT
5541 */
5542 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
5543 alloc_gfp = gfp;
5544 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 5545 &alloc_gfp, &alloc_flags))
9cd75558
MG
5546 return NULL;
5547
6bb15450
MG
5548 /*
5549 * Forbid the first pass from falling back to types that fragment
5550 * memory until all local zones are considered.
5551 */
6e5e0f28 5552 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 5553
5117f45d 5554 /* First allocation attempt */
8e6a930b 5555 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
5556 if (likely(page))
5557 goto out;
11e33f6a 5558
da6df1b0 5559 alloc_gfp = gfp;
4fcb0971 5560 ac.spread_dirty_pages = false;
23f086f9 5561
4741526b
MG
5562 /*
5563 * Restore the original nodemask if it was potentially replaced with
5564 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5565 */
97ce86f9 5566 ac.nodemask = nodemask;
16096c25 5567
8e6a930b 5568 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 5569
4fcb0971 5570out:
6e5e0f28
MWO
5571 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5572 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
5573 __free_pages(page, order);
5574 page = NULL;
4949148a
VD
5575 }
5576
8e6a930b 5577 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
b073d7f8 5578 kmsan_alloc_page(page, order, alloc_gfp);
4fcb0971 5579
11e33f6a 5580 return page;
1da177e4 5581}
84172f4b 5582EXPORT_SYMBOL(__alloc_pages);
1da177e4 5583
cc09cb13
MWO
5584struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5585 nodemask_t *nodemask)
5586{
5587 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5588 preferred_nid, nodemask);
5589
5590 if (page && order > 1)
5591 prep_transhuge_page(page);
5592 return (struct folio *)page;
5593}
5594EXPORT_SYMBOL(__folio_alloc);
5595
1da177e4 5596/*
9ea9a680
MH
5597 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5598 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5599 * you need to access high mem.
1da177e4 5600 */
920c7a5d 5601unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 5602{
945a1113
AM
5603 struct page *page;
5604
9ea9a680 5605 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
5606 if (!page)
5607 return 0;
5608 return (unsigned long) page_address(page);
5609}
1da177e4
LT
5610EXPORT_SYMBOL(__get_free_pages);
5611
920c7a5d 5612unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 5613{
945a1113 5614 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 5615}
1da177e4
LT
5616EXPORT_SYMBOL(get_zeroed_page);
5617
7f194fbb
MWO
5618/**
5619 * __free_pages - Free pages allocated with alloc_pages().
5620 * @page: The page pointer returned from alloc_pages().
5621 * @order: The order of the allocation.
5622 *
5623 * This function can free multi-page allocations that are not compound
5624 * pages. It does not check that the @order passed in matches that of
5625 * the allocation, so it is easy to leak memory. Freeing more memory
5626 * than was allocated will probably emit a warning.
5627 *
5628 * If the last reference to this page is speculative, it will be released
5629 * by put_page() which only frees the first page of a non-compound
5630 * allocation. To prevent the remaining pages from being leaked, we free
5631 * the subsequent pages here. If you want to use the page's reference
5632 * count to decide when to free the allocation, you should allocate a
5633 * compound page, and use put_page() instead of __free_pages().
5634 *
5635 * Context: May be called in interrupt context or while holding a normal
5636 * spinlock, but not in NMI context or while holding a raw spinlock.
5637 */
742aa7fb
AL
5638void __free_pages(struct page *page, unsigned int order)
5639{
5640 if (put_page_testzero(page))
5641 free_the_page(page, order);
e320d301
MWO
5642 else if (!PageHead(page))
5643 while (order-- > 0)
5644 free_the_page(page + (1 << order), order);
742aa7fb 5645}
1da177e4
LT
5646EXPORT_SYMBOL(__free_pages);
5647
920c7a5d 5648void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
5649{
5650 if (addr != 0) {
725d704e 5651 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
5652 __free_pages(virt_to_page((void *)addr), order);
5653 }
5654}
5655
5656EXPORT_SYMBOL(free_pages);
5657
b63ae8ca
AD
5658/*
5659 * Page Fragment:
5660 * An arbitrary-length arbitrary-offset area of memory which resides
5661 * within a 0 or higher order page. Multiple fragments within that page
5662 * are individually refcounted, in the page's reference counter.
5663 *
5664 * The page_frag functions below provide a simple allocation framework for
5665 * page fragments. This is used by the network stack and network device
5666 * drivers to provide a backing region of memory for use as either an
5667 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5668 */
2976db80
AD
5669static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5670 gfp_t gfp_mask)
b63ae8ca
AD
5671{
5672 struct page *page = NULL;
5673 gfp_t gfp = gfp_mask;
5674
5675#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5676 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5677 __GFP_NOMEMALLOC;
5678 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5679 PAGE_FRAG_CACHE_MAX_ORDER);
5680 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5681#endif
5682 if (unlikely(!page))
5683 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5684
5685 nc->va = page ? page_address(page) : NULL;
5686
5687 return page;
5688}
5689
2976db80 5690void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
5691{
5692 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5693
742aa7fb
AL
5694 if (page_ref_sub_and_test(page, count))
5695 free_the_page(page, compound_order(page));
44fdffd7 5696}
2976db80 5697EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 5698
b358e212
KH
5699void *page_frag_alloc_align(struct page_frag_cache *nc,
5700 unsigned int fragsz, gfp_t gfp_mask,
5701 unsigned int align_mask)
b63ae8ca
AD
5702{
5703 unsigned int size = PAGE_SIZE;
5704 struct page *page;
5705 int offset;
5706
5707 if (unlikely(!nc->va)) {
5708refill:
2976db80 5709 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
5710 if (!page)
5711 return NULL;
5712
5713#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5714 /* if size can vary use size else just use PAGE_SIZE */
5715 size = nc->size;
5716#endif
5717 /* Even if we own the page, we do not use atomic_set().
5718 * This would break get_page_unless_zero() users.
5719 */
86447726 5720 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
5721
5722 /* reset page count bias and offset to start of new frag */
2f064f34 5723 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 5724 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
5725 nc->offset = size;
5726 }
5727
5728 offset = nc->offset - fragsz;
5729 if (unlikely(offset < 0)) {
5730 page = virt_to_page(nc->va);
5731
fe896d18 5732 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
5733 goto refill;
5734
d8c19014
DZ
5735 if (unlikely(nc->pfmemalloc)) {
5736 free_the_page(page, compound_order(page));
5737 goto refill;
5738 }
5739
b63ae8ca
AD
5740#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5741 /* if size can vary use size else just use PAGE_SIZE */
5742 size = nc->size;
5743#endif
5744 /* OK, page count is 0, we can safely set it */
86447726 5745 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
5746
5747 /* reset page count bias and offset to start of new frag */
86447726 5748 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca 5749 offset = size - fragsz;
dac22531
ML
5750 if (unlikely(offset < 0)) {
5751 /*
5752 * The caller is trying to allocate a fragment
5753 * with fragsz > PAGE_SIZE but the cache isn't big
5754 * enough to satisfy the request, this may
5755 * happen in low memory conditions.
5756 * We don't release the cache page because
5757 * it could make memory pressure worse
5758 * so we simply return NULL here.
5759 */
5760 return NULL;
5761 }
b63ae8ca
AD
5762 }
5763
5764 nc->pagecnt_bias--;
b358e212 5765 offset &= align_mask;
b63ae8ca
AD
5766 nc->offset = offset;
5767
5768 return nc->va + offset;
5769}
b358e212 5770EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
5771
5772/*
5773 * Frees a page fragment allocated out of either a compound or order 0 page.
5774 */
8c2dd3e4 5775void page_frag_free(void *addr)
b63ae8ca
AD
5776{
5777 struct page *page = virt_to_head_page(addr);
5778
742aa7fb
AL
5779 if (unlikely(put_page_testzero(page)))
5780 free_the_page(page, compound_order(page));
b63ae8ca 5781}
8c2dd3e4 5782EXPORT_SYMBOL(page_frag_free);
b63ae8ca 5783
d00181b9
KS
5784static void *make_alloc_exact(unsigned long addr, unsigned int order,
5785 size_t size)
ee85c2e1
AK
5786{
5787 if (addr) {
df48a5f7
LH
5788 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5789 struct page *page = virt_to_page((void *)addr);
5790 struct page *last = page + nr;
5791
5792 split_page_owner(page, 1 << order);
5793 split_page_memcg(page, 1 << order);
5794 while (page < --last)
5795 set_page_refcounted(last);
5796
5797 last = page + (1UL << order);
5798 for (page += nr; page < last; page++)
5799 __free_pages_ok(page, 0, FPI_TO_TAIL);
ee85c2e1
AK
5800 }
5801 return (void *)addr;
5802}
5803
2be0ffe2
TT
5804/**
5805 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5806 * @size: the number of bytes to allocate
63931eb9 5807 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
5808 *
5809 * This function is similar to alloc_pages(), except that it allocates the
5810 * minimum number of pages to satisfy the request. alloc_pages() can only
5811 * allocate memory in power-of-two pages.
5812 *
5813 * This function is also limited by MAX_ORDER.
5814 *
5815 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
5816 *
5817 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
5818 */
5819void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5820{
5821 unsigned int order = get_order(size);
5822 unsigned long addr;
5823
ba7f1b9e
ML
5824 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5825 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 5826
2be0ffe2 5827 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 5828 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
5829}
5830EXPORT_SYMBOL(alloc_pages_exact);
5831
ee85c2e1
AK
5832/**
5833 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5834 * pages on a node.
b5e6ab58 5835 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 5836 * @size: the number of bytes to allocate
63931eb9 5837 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
5838 *
5839 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5840 * back.
a862f68a
MR
5841 *
5842 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 5843 */
e1931811 5844void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 5845{
d00181b9 5846 unsigned int order = get_order(size);
63931eb9
VB
5847 struct page *p;
5848
ba7f1b9e
ML
5849 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5850 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
5851
5852 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
5853 if (!p)
5854 return NULL;
5855 return make_alloc_exact((unsigned long)page_address(p), order, size);
5856}
ee85c2e1 5857
2be0ffe2
TT
5858/**
5859 * free_pages_exact - release memory allocated via alloc_pages_exact()
5860 * @virt: the value returned by alloc_pages_exact.
5861 * @size: size of allocation, same value as passed to alloc_pages_exact().
5862 *
5863 * Release the memory allocated by a previous call to alloc_pages_exact.
5864 */
5865void free_pages_exact(void *virt, size_t size)
5866{
5867 unsigned long addr = (unsigned long)virt;
5868 unsigned long end = addr + PAGE_ALIGN(size);
5869
5870 while (addr < end) {
5871 free_page(addr);
5872 addr += PAGE_SIZE;
5873 }
5874}
5875EXPORT_SYMBOL(free_pages_exact);
5876
e0fb5815
ZY
5877/**
5878 * nr_free_zone_pages - count number of pages beyond high watermark
5879 * @offset: The zone index of the highest zone
5880 *
a862f68a 5881 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5882 * high watermark within all zones at or below a given zone index. For each
5883 * zone, the number of pages is calculated as:
0e056eb5 5884 *
5885 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5886 *
5887 * Return: number of pages beyond high watermark.
e0fb5815 5888 */
ebec3862 5889static unsigned long nr_free_zone_pages(int offset)
1da177e4 5890{
dd1a239f 5891 struct zoneref *z;
54a6eb5c
MG
5892 struct zone *zone;
5893
e310fd43 5894 /* Just pick one node, since fallback list is circular */
ebec3862 5895 unsigned long sum = 0;
1da177e4 5896
0e88460d 5897 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5898
54a6eb5c 5899 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5900 unsigned long size = zone_managed_pages(zone);
41858966 5901 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5902 if (size > high)
5903 sum += size - high;
1da177e4
LT
5904 }
5905
5906 return sum;
5907}
5908
e0fb5815
ZY
5909/**
5910 * nr_free_buffer_pages - count number of pages beyond high watermark
5911 *
5912 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5913 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5914 *
5915 * Return: number of pages beyond high watermark within ZONE_DMA and
5916 * ZONE_NORMAL.
1da177e4 5917 */
ebec3862 5918unsigned long nr_free_buffer_pages(void)
1da177e4 5919{
af4ca457 5920 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5921}
c2f1a551 5922EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5923
08e0f6a9 5924static inline void show_node(struct zone *zone)
1da177e4 5925{
e5adfffc 5926 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5927 printk("Node %d ", zone_to_nid(zone));
1da177e4 5928}
1da177e4 5929
d02bd27b
IR
5930long si_mem_available(void)
5931{
5932 long available;
5933 unsigned long pagecache;
5934 unsigned long wmark_low = 0;
5935 unsigned long pages[NR_LRU_LISTS];
b29940c1 5936 unsigned long reclaimable;
d02bd27b
IR
5937 struct zone *zone;
5938 int lru;
5939
5940 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5941 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5942
5943 for_each_zone(zone)
a9214443 5944 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5945
5946 /*
5947 * Estimate the amount of memory available for userspace allocations,
ade63b41 5948 * without causing swapping or OOM.
d02bd27b 5949 */
c41f012a 5950 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5951
5952 /*
5953 * Not all the page cache can be freed, otherwise the system will
ade63b41
YY
5954 * start swapping or thrashing. Assume at least half of the page
5955 * cache, or the low watermark worth of cache, needs to stay.
d02bd27b
IR
5956 */
5957 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5958 pagecache -= min(pagecache / 2, wmark_low);
5959 available += pagecache;
5960
5961 /*
b29940c1
VB
5962 * Part of the reclaimable slab and other kernel memory consists of
5963 * items that are in use, and cannot be freed. Cap this estimate at the
5964 * low watermark.
d02bd27b 5965 */
d42f3245
RG
5966 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5967 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
b29940c1 5968 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5969
d02bd27b
IR
5970 if (available < 0)
5971 available = 0;
5972 return available;
5973}
5974EXPORT_SYMBOL_GPL(si_mem_available);
5975
1da177e4
LT
5976void si_meminfo(struct sysinfo *val)
5977{
ca79b0c2 5978 val->totalram = totalram_pages();
11fb9989 5979 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5980 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5981 val->bufferram = nr_blockdev_pages();
ca79b0c2 5982 val->totalhigh = totalhigh_pages();
1da177e4 5983 val->freehigh = nr_free_highpages();
1da177e4
LT
5984 val->mem_unit = PAGE_SIZE;
5985}
5986
5987EXPORT_SYMBOL(si_meminfo);
5988
5989#ifdef CONFIG_NUMA
5990void si_meminfo_node(struct sysinfo *val, int nid)
5991{
cdd91a77
JL
5992 int zone_type; /* needs to be signed */
5993 unsigned long managed_pages = 0;
fc2bd799
JK
5994 unsigned long managed_highpages = 0;
5995 unsigned long free_highpages = 0;
1da177e4
LT
5996 pg_data_t *pgdat = NODE_DATA(nid);
5997
cdd91a77 5998 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5999 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 6000 val->totalram = managed_pages;
11fb9989 6001 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 6002 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 6003#ifdef CONFIG_HIGHMEM
fc2bd799
JK
6004 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6005 struct zone *zone = &pgdat->node_zones[zone_type];
6006
6007 if (is_highmem(zone)) {
9705bea5 6008 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
6009 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6010 }
6011 }
6012 val->totalhigh = managed_highpages;
6013 val->freehigh = free_highpages;
98d2b0eb 6014#else
fc2bd799
JK
6015 val->totalhigh = managed_highpages;
6016 val->freehigh = free_highpages;
98d2b0eb 6017#endif
1da177e4
LT
6018 val->mem_unit = PAGE_SIZE;
6019}
6020#endif
6021
ddd588b5 6022/*
7bf02ea2
DR
6023 * Determine whether the node should be displayed or not, depending on whether
6024 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 6025 */
9af744d7 6026static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 6027{
ddd588b5 6028 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 6029 return false;
ddd588b5 6030
9af744d7
MH
6031 /*
6032 * no node mask - aka implicit memory numa policy. Do not bother with
6033 * the synchronization - read_mems_allowed_begin - because we do not
6034 * have to be precise here.
6035 */
6036 if (!nodemask)
6037 nodemask = &cpuset_current_mems_allowed;
6038
6039 return !node_isset(nid, *nodemask);
ddd588b5
DR
6040}
6041
1da177e4
LT
6042#define K(x) ((x) << (PAGE_SHIFT-10))
6043
377e4f16
RV
6044static void show_migration_types(unsigned char type)
6045{
6046 static const char types[MIGRATE_TYPES] = {
6047 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 6048 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
6049 [MIGRATE_RECLAIMABLE] = 'E',
6050 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
6051#ifdef CONFIG_CMA
6052 [MIGRATE_CMA] = 'C',
6053#endif
194159fb 6054#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 6055 [MIGRATE_ISOLATE] = 'I',
194159fb 6056#endif
377e4f16
RV
6057 };
6058 char tmp[MIGRATE_TYPES + 1];
6059 char *p = tmp;
6060 int i;
6061
6062 for (i = 0; i < MIGRATE_TYPES; i++) {
6063 if (type & (1 << i))
6064 *p++ = types[i];
6065 }
6066
6067 *p = '\0';
1f84a18f 6068 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
6069}
6070
974f4367
MH
6071static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6072{
6073 int zone_idx;
6074 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6075 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6076 return true;
6077 return false;
6078}
6079
1da177e4
LT
6080/*
6081 * Show free area list (used inside shift_scroll-lock stuff)
6082 * We also calculate the percentage fragmentation. We do this by counting the
6083 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
6084 *
6085 * Bits in @filter:
6086 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6087 * cpuset.
1da177e4 6088 */
974f4367 6089void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
1da177e4 6090{
d1bfcdb8 6091 unsigned long free_pcp = 0;
dcadcf1c 6092 int cpu, nid;
1da177e4 6093 struct zone *zone;
599d0c95 6094 pg_data_t *pgdat;
1da177e4 6095
ee99c71c 6096 for_each_populated_zone(zone) {
974f4367
MH
6097 if (zone_idx(zone) > max_zone_idx)
6098 continue;
9af744d7 6099 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6100 continue;
d1bfcdb8 6101
761b0677 6102 for_each_online_cpu(cpu)
28f836b6 6103 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
1da177e4
LT
6104 }
6105
a731286d
KM
6106 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6107 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
8d92890b 6108 " unevictable:%lu dirty:%lu writeback:%lu\n"
d1bfcdb8 6109 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
ebc97a52
YA
6110 " mapped:%lu shmem:%lu pagetables:%lu\n"
6111 " sec_pagetables:%lu bounce:%lu\n"
eb2169ce 6112 " kernel_misc_reclaimable:%lu\n"
d1bfcdb8 6113 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
6114 global_node_page_state(NR_ACTIVE_ANON),
6115 global_node_page_state(NR_INACTIVE_ANON),
6116 global_node_page_state(NR_ISOLATED_ANON),
6117 global_node_page_state(NR_ACTIVE_FILE),
6118 global_node_page_state(NR_INACTIVE_FILE),
6119 global_node_page_state(NR_ISOLATED_FILE),
6120 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
6121 global_node_page_state(NR_FILE_DIRTY),
6122 global_node_page_state(NR_WRITEBACK),
d42f3245
RG
6123 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6124 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
50658e2e 6125 global_node_page_state(NR_FILE_MAPPED),
11fb9989 6126 global_node_page_state(NR_SHMEM),
f0c0c115 6127 global_node_page_state(NR_PAGETABLE),
ebc97a52 6128 global_node_page_state(NR_SECONDARY_PAGETABLE),
c41f012a 6129 global_zone_page_state(NR_BOUNCE),
eb2169ce 6130 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
c41f012a 6131 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 6132 free_pcp,
c41f012a 6133 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 6134
599d0c95 6135 for_each_online_pgdat(pgdat) {
9af744d7 6136 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb 6137 continue;
974f4367
MH
6138 if (!node_has_managed_zones(pgdat, max_zone_idx))
6139 continue;
c02e50bb 6140
599d0c95
MG
6141 printk("Node %d"
6142 " active_anon:%lukB"
6143 " inactive_anon:%lukB"
6144 " active_file:%lukB"
6145 " inactive_file:%lukB"
6146 " unevictable:%lukB"
6147 " isolated(anon):%lukB"
6148 " isolated(file):%lukB"
50658e2e 6149 " mapped:%lukB"
11fb9989
MG
6150 " dirty:%lukB"
6151 " writeback:%lukB"
6152 " shmem:%lukB"
6153#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6154 " shmem_thp: %lukB"
6155 " shmem_pmdmapped: %lukB"
6156 " anon_thp: %lukB"
6157#endif
6158 " writeback_tmp:%lukB"
991e7673
SB
6159 " kernel_stack:%lukB"
6160#ifdef CONFIG_SHADOW_CALL_STACK
6161 " shadow_call_stack:%lukB"
6162#endif
f0c0c115 6163 " pagetables:%lukB"
ebc97a52 6164 " sec_pagetables:%lukB"
599d0c95
MG
6165 " all_unreclaimable? %s"
6166 "\n",
6167 pgdat->node_id,
6168 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6169 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6170 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6171 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6172 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6173 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6174 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 6175 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
6176 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6177 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 6178 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989 6179#ifdef CONFIG_TRANSPARENT_HUGEPAGE
57b2847d 6180 K(node_page_state(pgdat, NR_SHMEM_THPS)),
a1528e21 6181 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
69473e5d 6182 K(node_page_state(pgdat, NR_ANON_THPS)),
11fb9989 6183#endif
11fb9989 6184 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
991e7673
SB
6185 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6186#ifdef CONFIG_SHADOW_CALL_STACK
6187 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6188#endif
f0c0c115 6189 K(node_page_state(pgdat, NR_PAGETABLE)),
ebc97a52 6190 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
c73322d0
JW
6191 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6192 "yes" : "no");
599d0c95
MG
6193 }
6194
ee99c71c 6195 for_each_populated_zone(zone) {
1da177e4
LT
6196 int i;
6197
974f4367
MH
6198 if (zone_idx(zone) > max_zone_idx)
6199 continue;
9af744d7 6200 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6201 continue;
d1bfcdb8
KK
6202
6203 free_pcp = 0;
6204 for_each_online_cpu(cpu)
28f836b6 6205 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
d1bfcdb8 6206
1da177e4 6207 show_node(zone);
1f84a18f
JP
6208 printk(KERN_CONT
6209 "%s"
1da177e4 6210 " free:%lukB"
a6ea8b5b 6211 " boost:%lukB"
1da177e4
LT
6212 " min:%lukB"
6213 " low:%lukB"
6214 " high:%lukB"
e47b346a 6215 " reserved_highatomic:%luKB"
71c799f4
MK
6216 " active_anon:%lukB"
6217 " inactive_anon:%lukB"
6218 " active_file:%lukB"
6219 " inactive_file:%lukB"
6220 " unevictable:%lukB"
5a1c84b4 6221 " writepending:%lukB"
1da177e4 6222 " present:%lukB"
9feedc9d 6223 " managed:%lukB"
4a0aa73f 6224 " mlocked:%lukB"
4a0aa73f 6225 " bounce:%lukB"
d1bfcdb8
KK
6226 " free_pcp:%lukB"
6227 " local_pcp:%ukB"
d1ce749a 6228 " free_cma:%lukB"
1da177e4
LT
6229 "\n",
6230 zone->name,
88f5acf8 6231 K(zone_page_state(zone, NR_FREE_PAGES)),
a6ea8b5b 6232 K(zone->watermark_boost),
41858966
MG
6233 K(min_wmark_pages(zone)),
6234 K(low_wmark_pages(zone)),
6235 K(high_wmark_pages(zone)),
e47b346a 6236 K(zone->nr_reserved_highatomic),
71c799f4
MK
6237 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6238 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6239 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6240 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6241 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 6242 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 6243 K(zone->present_pages),
9705bea5 6244 K(zone_managed_pages(zone)),
4a0aa73f 6245 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f 6246 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8 6247 K(free_pcp),
28f836b6 6248 K(this_cpu_read(zone->per_cpu_pageset->count)),
33e077bd 6249 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
6250 printk("lowmem_reserve[]:");
6251 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
6252 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6253 printk(KERN_CONT "\n");
1da177e4
LT
6254 }
6255
ee99c71c 6256 for_each_populated_zone(zone) {
d00181b9
KS
6257 unsigned int order;
6258 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 6259 unsigned char types[MAX_ORDER];
1da177e4 6260
974f4367
MH
6261 if (zone_idx(zone) > max_zone_idx)
6262 continue;
9af744d7 6263 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 6264 continue;
1da177e4 6265 show_node(zone);
1f84a18f 6266 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
6267
6268 spin_lock_irqsave(&zone->lock, flags);
6269 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
6270 struct free_area *area = &zone->free_area[order];
6271 int type;
6272
6273 nr[order] = area->nr_free;
8f9de51a 6274 total += nr[order] << order;
377e4f16
RV
6275
6276 types[order] = 0;
6277 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 6278 if (!free_area_empty(area, type))
377e4f16
RV
6279 types[order] |= 1 << type;
6280 }
1da177e4
LT
6281 }
6282 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 6283 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
6284 printk(KERN_CONT "%lu*%lukB ",
6285 nr[order], K(1UL) << order);
377e4f16
RV
6286 if (nr[order])
6287 show_migration_types(types[order]);
6288 }
1f84a18f 6289 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
6290 }
6291
dcadcf1c
GL
6292 for_each_online_node(nid) {
6293 if (show_mem_node_skip(filter, nid, nodemask))
6294 continue;
6295 hugetlb_show_meminfo_node(nid);
6296 }
949f7ec5 6297
11fb9989 6298 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 6299
1da177e4
LT
6300 show_swap_cache_info();
6301}
6302
19770b32
MG
6303static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6304{
6305 zoneref->zone = zone;
6306 zoneref->zone_idx = zone_idx(zone);
6307}
6308
1da177e4
LT
6309/*
6310 * Builds allocation fallback zone lists.
1a93205b
CL
6311 *
6312 * Add all populated zones of a node to the zonelist.
1da177e4 6313 */
9d3be21b 6314static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 6315{
1a93205b 6316 struct zone *zone;
bc732f1d 6317 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 6318 int nr_zones = 0;
02a68a5e
CL
6319
6320 do {
2f6726e5 6321 zone_type--;
070f8032 6322 zone = pgdat->node_zones + zone_type;
e553f62f 6323 if (populated_zone(zone)) {
9d3be21b 6324 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 6325 check_highest_zone(zone_type);
1da177e4 6326 }
2f6726e5 6327 } while (zone_type);
bc732f1d 6328
070f8032 6329 return nr_zones;
1da177e4
LT
6330}
6331
6332#ifdef CONFIG_NUMA
f0c0b2b8
KH
6333
6334static int __parse_numa_zonelist_order(char *s)
6335{
c9bff3ee 6336 /*
f0953a1b 6337 * We used to support different zonelists modes but they turned
c9bff3ee
MH
6338 * out to be just not useful. Let's keep the warning in place
6339 * if somebody still use the cmd line parameter so that we do
6340 * not fail it silently
6341 */
6342 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6343 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
6344 return -EINVAL;
6345 }
6346 return 0;
6347}
6348
c9bff3ee
MH
6349char numa_zonelist_order[] = "Node";
6350
f0c0b2b8
KH
6351/*
6352 * sysctl handler for numa_zonelist_order
6353 */
cccad5b9 6354int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 6355 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 6356{
32927393
CH
6357 if (write)
6358 return __parse_numa_zonelist_order(buffer);
6359 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
6360}
6361
6362
f0c0b2b8
KH
6363static int node_load[MAX_NUMNODES];
6364
1da177e4 6365/**
4dc3b16b 6366 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
6367 * @node: node whose fallback list we're appending
6368 * @used_node_mask: nodemask_t of already used nodes
6369 *
6370 * We use a number of factors to determine which is the next node that should
6371 * appear on a given node's fallback list. The node should not have appeared
6372 * already in @node's fallback list, and it should be the next closest node
6373 * according to the distance array (which contains arbitrary distance values
6374 * from each node to each node in the system), and should also prefer nodes
6375 * with no CPUs, since presumably they'll have very little allocation pressure
6376 * on them otherwise.
a862f68a
MR
6377 *
6378 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 6379 */
79c28a41 6380int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 6381{
4cf808eb 6382 int n, val;
1da177e4 6383 int min_val = INT_MAX;
00ef2d2f 6384 int best_node = NUMA_NO_NODE;
1da177e4 6385
4cf808eb
LT
6386 /* Use the local node if we haven't already */
6387 if (!node_isset(node, *used_node_mask)) {
6388 node_set(node, *used_node_mask);
6389 return node;
6390 }
1da177e4 6391
4b0ef1fe 6392 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
6393
6394 /* Don't want a node to appear more than once */
6395 if (node_isset(n, *used_node_mask))
6396 continue;
6397
1da177e4
LT
6398 /* Use the distance array to find the distance */
6399 val = node_distance(node, n);
6400
4cf808eb
LT
6401 /* Penalize nodes under us ("prefer the next node") */
6402 val += (n < node);
6403
1da177e4 6404 /* Give preference to headless and unused nodes */
b630749f 6405 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
6406 val += PENALTY_FOR_NODE_WITH_CPUS;
6407
6408 /* Slight preference for less loaded node */
37931324 6409 val *= MAX_NUMNODES;
1da177e4
LT
6410 val += node_load[n];
6411
6412 if (val < min_val) {
6413 min_val = val;
6414 best_node = n;
6415 }
6416 }
6417
6418 if (best_node >= 0)
6419 node_set(best_node, *used_node_mask);
6420
6421 return best_node;
6422}
6423
f0c0b2b8
KH
6424
6425/*
6426 * Build zonelists ordered by node and zones within node.
6427 * This results in maximum locality--normal zone overflows into local
6428 * DMA zone, if any--but risks exhausting DMA zone.
6429 */
9d3be21b
MH
6430static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6431 unsigned nr_nodes)
1da177e4 6432{
9d3be21b
MH
6433 struct zoneref *zonerefs;
6434 int i;
6435
6436 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6437
6438 for (i = 0; i < nr_nodes; i++) {
6439 int nr_zones;
6440
6441 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 6442
9d3be21b
MH
6443 nr_zones = build_zonerefs_node(node, zonerefs);
6444 zonerefs += nr_zones;
6445 }
6446 zonerefs->zone = NULL;
6447 zonerefs->zone_idx = 0;
f0c0b2b8
KH
6448}
6449
523b9458
CL
6450/*
6451 * Build gfp_thisnode zonelists
6452 */
6453static void build_thisnode_zonelists(pg_data_t *pgdat)
6454{
9d3be21b
MH
6455 struct zoneref *zonerefs;
6456 int nr_zones;
523b9458 6457
9d3be21b
MH
6458 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6459 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6460 zonerefs += nr_zones;
6461 zonerefs->zone = NULL;
6462 zonerefs->zone_idx = 0;
523b9458
CL
6463}
6464
f0c0b2b8
KH
6465/*
6466 * Build zonelists ordered by zone and nodes within zones.
6467 * This results in conserving DMA zone[s] until all Normal memory is
6468 * exhausted, but results in overflowing to remote node while memory
6469 * may still exist in local DMA zone.
6470 */
f0c0b2b8 6471
f0c0b2b8
KH
6472static void build_zonelists(pg_data_t *pgdat)
6473{
9d3be21b 6474 static int node_order[MAX_NUMNODES];
37931324 6475 int node, nr_nodes = 0;
d0ddf49b 6476 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 6477 int local_node, prev_node;
1da177e4
LT
6478
6479 /* NUMA-aware ordering of nodes */
6480 local_node = pgdat->node_id;
1da177e4 6481 prev_node = local_node;
f0c0b2b8 6482
f0c0b2b8 6483 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
6484 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6485 /*
6486 * We don't want to pressure a particular node.
6487 * So adding penalty to the first node in same
6488 * distance group to make it round-robin.
6489 */
957f822a
DR
6490 if (node_distance(local_node, node) !=
6491 node_distance(local_node, prev_node))
37931324 6492 node_load[node] += 1;
f0c0b2b8 6493
9d3be21b 6494 node_order[nr_nodes++] = node;
1da177e4 6495 prev_node = node;
1da177e4 6496 }
523b9458 6497
9d3be21b 6498 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 6499 build_thisnode_zonelists(pgdat);
6cf25392
BR
6500 pr_info("Fallback order for Node %d: ", local_node);
6501 for (node = 0; node < nr_nodes; node++)
6502 pr_cont("%d ", node_order[node]);
6503 pr_cont("\n");
1da177e4
LT
6504}
6505
7aac7898
LS
6506#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6507/*
6508 * Return node id of node used for "local" allocations.
6509 * I.e., first node id of first zone in arg node's generic zonelist.
6510 * Used for initializing percpu 'numa_mem', which is used primarily
6511 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6512 */
6513int local_memory_node(int node)
6514{
c33d6c06 6515 struct zoneref *z;
7aac7898 6516
c33d6c06 6517 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 6518 gfp_zone(GFP_KERNEL),
c33d6c06 6519 NULL);
c1093b74 6520 return zone_to_nid(z->zone);
7aac7898
LS
6521}
6522#endif
f0c0b2b8 6523
6423aa81
JK
6524static void setup_min_unmapped_ratio(void);
6525static void setup_min_slab_ratio(void);
1da177e4
LT
6526#else /* CONFIG_NUMA */
6527
f0c0b2b8 6528static void build_zonelists(pg_data_t *pgdat)
1da177e4 6529{
19655d34 6530 int node, local_node;
9d3be21b
MH
6531 struct zoneref *zonerefs;
6532 int nr_zones;
1da177e4
LT
6533
6534 local_node = pgdat->node_id;
1da177e4 6535
9d3be21b
MH
6536 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6537 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6538 zonerefs += nr_zones;
1da177e4 6539
54a6eb5c
MG
6540 /*
6541 * Now we build the zonelist so that it contains the zones
6542 * of all the other nodes.
6543 * We don't want to pressure a particular node, so when
6544 * building the zones for node N, we make sure that the
6545 * zones coming right after the local ones are those from
6546 * node N+1 (modulo N)
6547 */
6548 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6549 if (!node_online(node))
6550 continue;
9d3be21b
MH
6551 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6552 zonerefs += nr_zones;
1da177e4 6553 }
54a6eb5c
MG
6554 for (node = 0; node < local_node; node++) {
6555 if (!node_online(node))
6556 continue;
9d3be21b
MH
6557 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6558 zonerefs += nr_zones;
54a6eb5c
MG
6559 }
6560
9d3be21b
MH
6561 zonerefs->zone = NULL;
6562 zonerefs->zone_idx = 0;
1da177e4
LT
6563}
6564
6565#endif /* CONFIG_NUMA */
6566
99dcc3e5
CL
6567/*
6568 * Boot pageset table. One per cpu which is going to be used for all
6569 * zones and all nodes. The parameters will be set in such a way
6570 * that an item put on a list will immediately be handed over to
6571 * the buddy list. This is safe since pageset manipulation is done
6572 * with interrupts disabled.
6573 *
6574 * The boot_pagesets must be kept even after bootup is complete for
6575 * unused processors and/or zones. They do play a role for bootstrapping
6576 * hotplugged processors.
6577 *
6578 * zoneinfo_show() and maybe other functions do
6579 * not check if the processor is online before following the pageset pointer.
6580 * Other parts of the kernel may not check if the zone is available.
6581 */
28f836b6 6582static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
6583/* These effectively disable the pcplists in the boot pageset completely */
6584#define BOOT_PAGESET_HIGH 0
6585#define BOOT_PAGESET_BATCH 1
28f836b6
MG
6586static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6587static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6dc2c87a 6588static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 6589
11cd8638 6590static void __build_all_zonelists(void *data)
1da177e4 6591{
6811378e 6592 int nid;
afb6ebb3 6593 int __maybe_unused cpu;
9adb62a5 6594 pg_data_t *self = data;
b93e0f32 6595
3d36424b 6596 write_seqlock(&zonelist_update_seq);
9276b1bc 6597
7f9cfb31
BL
6598#ifdef CONFIG_NUMA
6599 memset(node_load, 0, sizeof(node_load));
6600#endif
9adb62a5 6601
c1152583
WY
6602 /*
6603 * This node is hotadded and no memory is yet present. So just
6604 * building zonelists is fine - no need to touch other nodes.
6605 */
9adb62a5
JL
6606 if (self && !node_online(self->node_id)) {
6607 build_zonelists(self);
c1152583 6608 } else {
09f49dca
MH
6609 /*
6610 * All possible nodes have pgdat preallocated
6611 * in free_area_init
6612 */
6613 for_each_node(nid) {
c1152583 6614 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 6615
c1152583
WY
6616 build_zonelists(pgdat);
6617 }
99dcc3e5 6618
7aac7898
LS
6619#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6620 /*
6621 * We now know the "local memory node" for each node--
6622 * i.e., the node of the first zone in the generic zonelist.
6623 * Set up numa_mem percpu variable for on-line cpus. During
6624 * boot, only the boot cpu should be on-line; we'll init the
6625 * secondary cpus' numa_mem as they come on-line. During
6626 * node/memory hotplug, we'll fixup all on-line cpus.
6627 */
d9c9a0b9 6628 for_each_online_cpu(cpu)
7aac7898 6629 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 6630#endif
d9c9a0b9 6631 }
b93e0f32 6632
3d36424b 6633 write_sequnlock(&zonelist_update_seq);
6811378e
YG
6634}
6635
061f67bc
RV
6636static noinline void __init
6637build_all_zonelists_init(void)
6638{
afb6ebb3
MH
6639 int cpu;
6640
061f67bc 6641 __build_all_zonelists(NULL);
afb6ebb3
MH
6642
6643 /*
6644 * Initialize the boot_pagesets that are going to be used
6645 * for bootstrapping processors. The real pagesets for
6646 * each zone will be allocated later when the per cpu
6647 * allocator is available.
6648 *
6649 * boot_pagesets are used also for bootstrapping offline
6650 * cpus if the system is already booted because the pagesets
6651 * are needed to initialize allocators on a specific cpu too.
6652 * F.e. the percpu allocator needs the page allocator which
6653 * needs the percpu allocator in order to allocate its pagesets
6654 * (a chicken-egg dilemma).
6655 */
6656 for_each_possible_cpu(cpu)
28f836b6 6657 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 6658
061f67bc
RV
6659 mminit_verify_zonelist();
6660 cpuset_init_current_mems_allowed();
6661}
6662
4eaf3f64 6663/*
4eaf3f64 6664 * unless system_state == SYSTEM_BOOTING.
061f67bc 6665 *
72675e13 6666 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 6667 * [protected by SYSTEM_BOOTING].
4eaf3f64 6668 */
72675e13 6669void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 6670{
0a18e607
DH
6671 unsigned long vm_total_pages;
6672
6811378e 6673 if (system_state == SYSTEM_BOOTING) {
061f67bc 6674 build_all_zonelists_init();
6811378e 6675 } else {
11cd8638 6676 __build_all_zonelists(pgdat);
6811378e
YG
6677 /* cpuset refresh routine should be here */
6678 }
56b9413b
DH
6679 /* Get the number of free pages beyond high watermark in all zones. */
6680 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
6681 /*
6682 * Disable grouping by mobility if the number of pages in the
6683 * system is too low to allow the mechanism to work. It would be
6684 * more accurate, but expensive to check per-zone. This check is
6685 * made on memory-hotadd so a system can start with mobility
6686 * disabled and enable it later
6687 */
d9c23400 6688 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
6689 page_group_by_mobility_disabled = 1;
6690 else
6691 page_group_by_mobility_disabled = 0;
6692
ce0725f7 6693 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 6694 nr_online_nodes,
756a025f
JP
6695 page_group_by_mobility_disabled ? "off" : "on",
6696 vm_total_pages);
f0c0b2b8 6697#ifdef CONFIG_NUMA
f88dfff5 6698 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 6699#endif
1da177e4
LT
6700}
6701
a9a9e77f
PT
6702/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6703static bool __meminit
6704overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6705{
a9a9e77f
PT
6706 static struct memblock_region *r;
6707
6708 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6709 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
cc6de168 6710 for_each_mem_region(r) {
a9a9e77f
PT
6711 if (*pfn < memblock_region_memory_end_pfn(r))
6712 break;
6713 }
6714 }
6715 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6716 memblock_is_mirror(r)) {
6717 *pfn = memblock_region_memory_end_pfn(r);
6718 return true;
6719 }
6720 }
a9a9e77f
PT
6721 return false;
6722}
6723
1da177e4
LT
6724/*
6725 * Initially all pages are reserved - free ones are freed
c6ffc5ca 6726 * up by memblock_free_all() once the early boot process is
1da177e4 6727 * done. Non-atomic initialization, single-pass.
d882c006
DH
6728 *
6729 * All aligned pageblocks are initialized to the specified migratetype
6730 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6731 * zone stats (e.g., nr_isolate_pageblock) are touched.
1da177e4 6732 */
ab28cb6e 6733void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
dc2da7b4 6734 unsigned long start_pfn, unsigned long zone_end_pfn,
d882c006
DH
6735 enum meminit_context context,
6736 struct vmem_altmap *altmap, int migratetype)
1da177e4 6737{
a9a9e77f 6738 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 6739 struct page *page;
1da177e4 6740
22b31eec
HD
6741 if (highest_memmap_pfn < end_pfn - 1)
6742 highest_memmap_pfn = end_pfn - 1;
6743
966cf44f 6744#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
6745 /*
6746 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
6747 * memory. We limit the total number of pages to initialize to just
6748 * those that might contain the memory mapping. We will defer the
6749 * ZONE_DEVICE page initialization until after we have released
6750 * the hotplug lock.
4b94ffdc 6751 */
966cf44f
AD
6752 if (zone == ZONE_DEVICE) {
6753 if (!altmap)
6754 return;
6755
6756 if (start_pfn == altmap->base_pfn)
6757 start_pfn += altmap->reserve;
6758 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6759 }
6760#endif
4b94ffdc 6761
948c436e 6762 for (pfn = start_pfn; pfn < end_pfn; ) {
a2f3aa02 6763 /*
b72d0ffb
AM
6764 * There can be holes in boot-time mem_map[]s handed to this
6765 * function. They do not exist on hotplugged memory.
a2f3aa02 6766 */
c1d0da83 6767 if (context == MEMINIT_EARLY) {
a9a9e77f
PT
6768 if (overlap_memmap_init(zone, &pfn))
6769 continue;
dc2da7b4 6770 if (defer_init(nid, pfn, zone_end_pfn))
a9a9e77f 6771 break;
a2f3aa02 6772 }
ac5d2539 6773
d0dc12e8
PT
6774 page = pfn_to_page(pfn);
6775 __init_single_page(page, pfn, zone, nid);
c1d0da83 6776 if (context == MEMINIT_HOTPLUG)
d483da5b 6777 __SetPageReserved(page);
d0dc12e8 6778
ac5d2539 6779 /*
d882c006
DH
6780 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6781 * such that unmovable allocations won't be scattered all
6782 * over the place during system boot.
ac5d2539 6783 */
ee0913c4 6784 if (pageblock_aligned(pfn)) {
d882c006 6785 set_pageblock_migratetype(page, migratetype);
9b6e63cb 6786 cond_resched();
ac5d2539 6787 }
948c436e 6788 pfn++;
1da177e4
LT
6789 }
6790}
6791
966cf44f 6792#ifdef CONFIG_ZONE_DEVICE
46487e00
JM
6793static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6794 unsigned long zone_idx, int nid,
6795 struct dev_pagemap *pgmap)
6796{
6797
6798 __init_single_page(page, pfn, zone_idx, nid);
6799
6800 /*
6801 * Mark page reserved as it will need to wait for onlining
6802 * phase for it to be fully associated with a zone.
6803 *
6804 * We can use the non-atomic __set_bit operation for setting
6805 * the flag as we are still initializing the pages.
6806 */
6807 __SetPageReserved(page);
6808
6809 /*
6810 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6811 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6812 * ever freed or placed on a driver-private list.
6813 */
6814 page->pgmap = pgmap;
6815 page->zone_device_data = NULL;
6816
6817 /*
6818 * Mark the block movable so that blocks are reserved for
6819 * movable at startup. This will force kernel allocations
6820 * to reserve their blocks rather than leaking throughout
6821 * the address space during boot when many long-lived
6822 * kernel allocations are made.
6823 *
6824 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6825 * because this is done early in section_activate()
6826 */
ee0913c4 6827 if (pageblock_aligned(pfn)) {
46487e00
JM
6828 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6829 cond_resched();
6830 }
ef233450
AP
6831
6832 /*
6833 * ZONE_DEVICE pages are released directly to the driver page allocator
6834 * which will set the page count to 1 when allocating the page.
6835 */
6836 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6837 pgmap->type == MEMORY_DEVICE_COHERENT)
6838 set_page_count(page, 0);
46487e00
JM
6839}
6840
6fd3620b
JM
6841/*
6842 * With compound page geometry and when struct pages are stored in ram most
6843 * tail pages are reused. Consequently, the amount of unique struct pages to
6844 * initialize is a lot smaller that the total amount of struct pages being
6845 * mapped. This is a paired / mild layering violation with explicit knowledge
6846 * of how the sparse_vmemmap internals handle compound pages in the lack
6847 * of an altmap. See vmemmap_populate_compound_pages().
6848 */
6849static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6850 unsigned long nr_pages)
6851{
6852 return is_power_of_2(sizeof(struct page)) &&
6853 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6854}
6855
c4386bd8
JM
6856static void __ref memmap_init_compound(struct page *head,
6857 unsigned long head_pfn,
6858 unsigned long zone_idx, int nid,
6859 struct dev_pagemap *pgmap,
6860 unsigned long nr_pages)
6861{
6862 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6863 unsigned int order = pgmap->vmemmap_shift;
6864
6865 __SetPageHead(head);
6866 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6867 struct page *page = pfn_to_page(pfn);
6868
6869 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6870 prep_compound_tail(head, pfn - head_pfn);
6871 set_page_count(page, 0);
6872
6873 /*
6874 * The first tail page stores compound_mapcount_ptr() and
6875 * compound_order() and the second tail page stores
6876 * compound_pincount_ptr(). Call prep_compound_head() after
6877 * the first and second tail pages have been initialized to
6878 * not have the data overwritten.
6879 */
6880 if (pfn == head_pfn + 2)
6881 prep_compound_head(head, order);
6882 }
6883}
6884
966cf44f
AD
6885void __ref memmap_init_zone_device(struct zone *zone,
6886 unsigned long start_pfn,
1f8d75c1 6887 unsigned long nr_pages,
966cf44f
AD
6888 struct dev_pagemap *pgmap)
6889{
1f8d75c1 6890 unsigned long pfn, end_pfn = start_pfn + nr_pages;
966cf44f 6891 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 6892 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
c4386bd8 6893 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
966cf44f
AD
6894 unsigned long zone_idx = zone_idx(zone);
6895 unsigned long start = jiffies;
6896 int nid = pgdat->node_id;
6897
c0352904 6898 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
966cf44f
AD
6899 return;
6900
6901 /*
122e093c 6902 * The call to memmap_init should have already taken care
966cf44f
AD
6903 * of the pages reserved for the memmap, so we can just jump to
6904 * the end of that region and start processing the device pages.
6905 */
514caf23 6906 if (altmap) {
966cf44f 6907 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1f8d75c1 6908 nr_pages = end_pfn - start_pfn;
966cf44f
AD
6909 }
6910
c4386bd8 6911 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
966cf44f
AD
6912 struct page *page = pfn_to_page(pfn);
6913
46487e00 6914 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
c4386bd8
JM
6915
6916 if (pfns_per_compound == 1)
6917 continue;
6918
6919 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6fd3620b 6920 compound_nr_pages(altmap, pfns_per_compound));
966cf44f
AD
6921 }
6922
fdc029b1 6923 pr_info("%s initialised %lu pages in %ums\n", __func__,
1f8d75c1 6924 nr_pages, jiffies_to_msecs(jiffies - start));
966cf44f
AD
6925}
6926
6927#endif
1e548deb 6928static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6929{
7aeb09f9 6930 unsigned int order, t;
b2a0ac88
MG
6931 for_each_migratetype_order(order, t) {
6932 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6933 zone->free_area[order].nr_free = 0;
6934 }
6935}
6936
0740a50b
MR
6937/*
6938 * Only struct pages that correspond to ranges defined by memblock.memory
6939 * are zeroed and initialized by going through __init_single_page() during
122e093c 6940 * memmap_init_zone_range().
0740a50b
MR
6941 *
6942 * But, there could be struct pages that correspond to holes in
6943 * memblock.memory. This can happen because of the following reasons:
6944 * - physical memory bank size is not necessarily the exact multiple of the
6945 * arbitrary section size
6946 * - early reserved memory may not be listed in memblock.memory
6947 * - memory layouts defined with memmap= kernel parameter may not align
6948 * nicely with memmap sections
6949 *
6950 * Explicitly initialize those struct pages so that:
6951 * - PG_Reserved is set
6952 * - zone and node links point to zone and node that span the page if the
6953 * hole is in the middle of a zone
6954 * - zone and node links point to adjacent zone/node if the hole falls on
6955 * the zone boundary; the pages in such holes will be prepended to the
6956 * zone/node above the hole except for the trailing pages in the last
6957 * section that will be appended to the zone/node below.
6958 */
122e093c
MR
6959static void __init init_unavailable_range(unsigned long spfn,
6960 unsigned long epfn,
6961 int zone, int node)
0740a50b
MR
6962{
6963 unsigned long pfn;
6964 u64 pgcnt = 0;
6965
6966 for (pfn = spfn; pfn < epfn; pfn++) {
4f9bc69a
KW
6967 if (!pfn_valid(pageblock_start_pfn(pfn))) {
6968 pfn = pageblock_end_pfn(pfn) - 1;
0740a50b
MR
6969 continue;
6970 }
6971 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6972 __SetPageReserved(pfn_to_page(pfn));
6973 pgcnt++;
6974 }
6975
122e093c
MR
6976 if (pgcnt)
6977 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6978 node, zone_names[zone], pgcnt);
0740a50b 6979}
0740a50b 6980
122e093c
MR
6981static void __init memmap_init_zone_range(struct zone *zone,
6982 unsigned long start_pfn,
6983 unsigned long end_pfn,
6984 unsigned long *hole_pfn)
dfb3ccd0 6985{
3256ff83
BH
6986 unsigned long zone_start_pfn = zone->zone_start_pfn;
6987 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
122e093c
MR
6988 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6989
6990 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6991 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6992
6993 if (start_pfn >= end_pfn)
6994 return;
6995
6996 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6997 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6998
6999 if (*hole_pfn < start_pfn)
7000 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7001
7002 *hole_pfn = end_pfn;
7003}
7004
7005static void __init memmap_init(void)
7006{
73a6e474 7007 unsigned long start_pfn, end_pfn;
122e093c 7008 unsigned long hole_pfn = 0;
b346075f 7009 int i, j, zone_id = 0, nid;
73a6e474 7010
122e093c
MR
7011 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7012 struct pglist_data *node = NODE_DATA(nid);
73a6e474 7013
122e093c
MR
7014 for (j = 0; j < MAX_NR_ZONES; j++) {
7015 struct zone *zone = node->node_zones + j;
0740a50b 7016
122e093c
MR
7017 if (!populated_zone(zone))
7018 continue;
0740a50b 7019
122e093c
MR
7020 memmap_init_zone_range(zone, start_pfn, end_pfn,
7021 &hole_pfn);
7022 zone_id = j;
7023 }
73a6e474 7024 }
0740a50b
MR
7025
7026#ifdef CONFIG_SPARSEMEM
7027 /*
122e093c
MR
7028 * Initialize the memory map for hole in the range [memory_end,
7029 * section_end].
7030 * Append the pages in this hole to the highest zone in the last
7031 * node.
7032 * The call to init_unavailable_range() is outside the ifdef to
7033 * silence the compiler warining about zone_id set but not used;
7034 * for FLATMEM it is a nop anyway
0740a50b 7035 */
122e093c 7036 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
0740a50b 7037 if (hole_pfn < end_pfn)
0740a50b 7038#endif
122e093c 7039 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
dfb3ccd0 7040}
1da177e4 7041
c803b3c8
MR
7042void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7043 phys_addr_t min_addr, int nid, bool exact_nid)
7044{
7045 void *ptr;
7046
7047 if (exact_nid)
7048 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7049 MEMBLOCK_ALLOC_ACCESSIBLE,
7050 nid);
7051 else
7052 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7053 MEMBLOCK_ALLOC_ACCESSIBLE,
7054 nid);
7055
7056 if (ptr && size > 0)
7057 page_init_poison(ptr, size);
7058
7059 return ptr;
7060}
7061
7cd2b0a3 7062static int zone_batchsize(struct zone *zone)
e7c8d5c9 7063{
3a6be87f 7064#ifdef CONFIG_MMU
e7c8d5c9
CL
7065 int batch;
7066
7067 /*
b92ca18e
MG
7068 * The number of pages to batch allocate is either ~0.1%
7069 * of the zone or 1MB, whichever is smaller. The batch
7070 * size is striking a balance between allocation latency
7071 * and zone lock contention.
e7c8d5c9 7072 */
c940e020 7073 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
e7c8d5c9
CL
7074 batch /= 4; /* We effectively *= 4 below */
7075 if (batch < 1)
7076 batch = 1;
7077
7078 /*
0ceaacc9
NP
7079 * Clamp the batch to a 2^n - 1 value. Having a power
7080 * of 2 value was found to be more likely to have
7081 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 7082 *
0ceaacc9
NP
7083 * For example if 2 tasks are alternately allocating
7084 * batches of pages, one task can end up with a lot
7085 * of pages of one half of the possible page colors
7086 * and the other with pages of the other colors.
e7c8d5c9 7087 */
9155203a 7088 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 7089
e7c8d5c9 7090 return batch;
3a6be87f
DH
7091
7092#else
7093 /* The deferral and batching of frees should be suppressed under NOMMU
7094 * conditions.
7095 *
7096 * The problem is that NOMMU needs to be able to allocate large chunks
7097 * of contiguous memory as there's no hardware page translation to
7098 * assemble apparent contiguous memory from discontiguous pages.
7099 *
7100 * Queueing large contiguous runs of pages for batching, however,
7101 * causes the pages to actually be freed in smaller chunks. As there
7102 * can be a significant delay between the individual batches being
7103 * recycled, this leads to the once large chunks of space being
7104 * fragmented and becoming unavailable for high-order allocations.
7105 */
7106 return 0;
7107#endif
e7c8d5c9
CL
7108}
7109
04f8cfea 7110static int zone_highsize(struct zone *zone, int batch, int cpu_online)
b92ca18e
MG
7111{
7112#ifdef CONFIG_MMU
7113 int high;
203c06ee 7114 int nr_split_cpus;
74f44822
MG
7115 unsigned long total_pages;
7116
7117 if (!percpu_pagelist_high_fraction) {
7118 /*
7119 * By default, the high value of the pcp is based on the zone
7120 * low watermark so that if they are full then background
7121 * reclaim will not be started prematurely.
7122 */
7123 total_pages = low_wmark_pages(zone);
7124 } else {
7125 /*
7126 * If percpu_pagelist_high_fraction is configured, the high
7127 * value is based on a fraction of the managed pages in the
7128 * zone.
7129 */
7130 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7131 }
b92ca18e
MG
7132
7133 /*
74f44822
MG
7134 * Split the high value across all online CPUs local to the zone. Note
7135 * that early in boot that CPUs may not be online yet and that during
7136 * CPU hotplug that the cpumask is not yet updated when a CPU is being
203c06ee
MG
7137 * onlined. For memory nodes that have no CPUs, split pcp->high across
7138 * all online CPUs to mitigate the risk that reclaim is triggered
7139 * prematurely due to pages stored on pcp lists.
b92ca18e 7140 */
203c06ee
MG
7141 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7142 if (!nr_split_cpus)
7143 nr_split_cpus = num_online_cpus();
7144 high = total_pages / nr_split_cpus;
b92ca18e
MG
7145
7146 /*
7147 * Ensure high is at least batch*4. The multiple is based on the
7148 * historical relationship between high and batch.
7149 */
7150 high = max(high, batch << 2);
7151
7152 return high;
7153#else
7154 return 0;
7155#endif
7156}
7157
8d7a8fa9 7158/*
5c3ad2eb
VB
7159 * pcp->high and pcp->batch values are related and generally batch is lower
7160 * than high. They are also related to pcp->count such that count is lower
7161 * than high, and as soon as it reaches high, the pcplist is flushed.
8d7a8fa9 7162 *
5c3ad2eb
VB
7163 * However, guaranteeing these relations at all times would require e.g. write
7164 * barriers here but also careful usage of read barriers at the read side, and
7165 * thus be prone to error and bad for performance. Thus the update only prevents
7166 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7167 * can cope with those fields changing asynchronously, and fully trust only the
7168 * pcp->count field on the local CPU with interrupts disabled.
8d7a8fa9
CS
7169 *
7170 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7171 * outside of boot time (or some other assurance that no concurrent updaters
7172 * exist).
7173 */
7174static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7175 unsigned long batch)
7176{
5c3ad2eb
VB
7177 WRITE_ONCE(pcp->batch, batch);
7178 WRITE_ONCE(pcp->high, high);
8d7a8fa9
CS
7179}
7180
28f836b6 7181static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
2caaad41 7182{
44042b44 7183 int pindex;
2caaad41 7184
28f836b6
MG
7185 memset(pcp, 0, sizeof(*pcp));
7186 memset(pzstats, 0, sizeof(*pzstats));
1c6fe946 7187
4b23a68f 7188 spin_lock_init(&pcp->lock);
44042b44
MG
7189 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7190 INIT_LIST_HEAD(&pcp->lists[pindex]);
2caaad41 7191
69a8396a
VB
7192 /*
7193 * Set batch and high values safe for a boot pageset. A true percpu
7194 * pageset's initialization will update them subsequently. Here we don't
7195 * need to be as careful as pageset_update() as nobody can access the
7196 * pageset yet.
7197 */
952eaf81
VB
7198 pcp->high = BOOT_PAGESET_HIGH;
7199 pcp->batch = BOOT_PAGESET_BATCH;
3b12e7e9 7200 pcp->free_factor = 0;
88c90dbc
CS
7201}
7202
3b1f3658 7203static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
ec6e8c7e
VB
7204 unsigned long batch)
7205{
28f836b6 7206 struct per_cpu_pages *pcp;
ec6e8c7e
VB
7207 int cpu;
7208
7209 for_each_possible_cpu(cpu) {
28f836b6
MG
7210 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7211 pageset_update(pcp, high, batch);
ec6e8c7e
VB
7212 }
7213}
7214
8ad4b1fb 7215/*
0a8b4f1d 7216 * Calculate and set new high and batch values for all per-cpu pagesets of a
bbbecb35 7217 * zone based on the zone's size.
8ad4b1fb 7218 */
04f8cfea 7219static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
56cef2b8 7220{
b92ca18e 7221 int new_high, new_batch;
7115ac6e 7222
b92ca18e 7223 new_batch = max(1, zone_batchsize(zone));
04f8cfea 7224 new_high = zone_highsize(zone, new_batch, cpu_online);
169f6c19 7225
952eaf81
VB
7226 if (zone->pageset_high == new_high &&
7227 zone->pageset_batch == new_batch)
7228 return;
7229
7230 zone->pageset_high = new_high;
7231 zone->pageset_batch = new_batch;
7232
ec6e8c7e 7233 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
169f6c19
CS
7234}
7235
72675e13 7236void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
7237{
7238 int cpu;
0a8b4f1d 7239
28f836b6
MG
7240 /* Size may be 0 on !SMP && !NUMA */
7241 if (sizeof(struct per_cpu_zonestat) > 0)
7242 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7243
7244 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
0a8b4f1d 7245 for_each_possible_cpu(cpu) {
28f836b6
MG
7246 struct per_cpu_pages *pcp;
7247 struct per_cpu_zonestat *pzstats;
7248
7249 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7250 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7251 per_cpu_pages_init(pcp, pzstats);
0a8b4f1d
VB
7252 }
7253
04f8cfea 7254 zone_set_pageset_high_and_batch(zone, 0);
319774e2
WF
7255}
7256
b89f1735
ML
7257/*
7258 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7259 * page high values need to be recalculated.
7260 */
7261static void zone_pcp_update(struct zone *zone, int cpu_online)
7262{
7263 mutex_lock(&pcp_batch_high_lock);
7264 zone_set_pageset_high_and_batch(zone, cpu_online);
7265 mutex_unlock(&pcp_batch_high_lock);
7266}
7267
2caaad41 7268/*
99dcc3e5
CL
7269 * Allocate per cpu pagesets and initialize them.
7270 * Before this call only boot pagesets were available.
e7c8d5c9 7271 */
99dcc3e5 7272void __init setup_per_cpu_pageset(void)
e7c8d5c9 7273{
b4911ea2 7274 struct pglist_data *pgdat;
99dcc3e5 7275 struct zone *zone;
b418a0f9 7276 int __maybe_unused cpu;
e7c8d5c9 7277
319774e2
WF
7278 for_each_populated_zone(zone)
7279 setup_zone_pageset(zone);
b4911ea2 7280
b418a0f9
SD
7281#ifdef CONFIG_NUMA
7282 /*
7283 * Unpopulated zones continue using the boot pagesets.
7284 * The numa stats for these pagesets need to be reset.
7285 * Otherwise, they will end up skewing the stats of
7286 * the nodes these zones are associated with.
7287 */
7288 for_each_possible_cpu(cpu) {
28f836b6 7289 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
f19298b9
MG
7290 memset(pzstats->vm_numa_event, 0,
7291 sizeof(pzstats->vm_numa_event));
b418a0f9
SD
7292 }
7293#endif
7294
b4911ea2
MG
7295 for_each_online_pgdat(pgdat)
7296 pgdat->per_cpu_nodestats =
7297 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
7298}
7299
c09b4240 7300static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 7301{
99dcc3e5
CL
7302 /*
7303 * per cpu subsystem is not up at this point. The following code
7304 * relies on the ability of the linker to provide the
7305 * offset of a (static) per cpu variable into the per cpu area.
7306 */
28f836b6
MG
7307 zone->per_cpu_pageset = &boot_pageset;
7308 zone->per_cpu_zonestats = &boot_zonestats;
952eaf81
VB
7309 zone->pageset_high = BOOT_PAGESET_HIGH;
7310 zone->pageset_batch = BOOT_PAGESET_BATCH;
ed8ece2e 7311
b38a8725 7312 if (populated_zone(zone))
9660ecaa
HK
7313 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7314 zone->present_pages, zone_batchsize(zone));
ed8ece2e
DH
7315}
7316
dc0bbf3b 7317void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 7318 unsigned long zone_start_pfn,
b171e409 7319 unsigned long size)
ed8ece2e
DH
7320{
7321 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 7322 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 7323
8f416836
WY
7324 if (zone_idx > pgdat->nr_zones)
7325 pgdat->nr_zones = zone_idx;
ed8ece2e 7326
ed8ece2e
DH
7327 zone->zone_start_pfn = zone_start_pfn;
7328
708614e6
MG
7329 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7330 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7331 pgdat->node_id,
7332 (unsigned long)zone_idx(zone),
7333 zone_start_pfn, (zone_start_pfn + size));
7334
1e548deb 7335 zone_init_free_lists(zone);
9dcb8b68 7336 zone->initialized = 1;
ed8ece2e
DH
7337}
7338
c713216d
MG
7339/**
7340 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
7341 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7342 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7343 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
7344 *
7345 * It returns the start and end page frame of a node based on information
7d018176 7346 * provided by memblock_set_node(). If called for a node
c713216d 7347 * with no available memory, a warning is printed and the start and end
88ca3b94 7348 * PFNs will be 0.
c713216d 7349 */
bbe5d993 7350void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
7351 unsigned long *start_pfn, unsigned long *end_pfn)
7352{
c13291a5 7353 unsigned long this_start_pfn, this_end_pfn;
c713216d 7354 int i;
c13291a5 7355
c713216d
MG
7356 *start_pfn = -1UL;
7357 *end_pfn = 0;
7358
c13291a5
TH
7359 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7360 *start_pfn = min(*start_pfn, this_start_pfn);
7361 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
7362 }
7363
633c0666 7364 if (*start_pfn == -1UL)
c713216d 7365 *start_pfn = 0;
c713216d
MG
7366}
7367
2a1e274a
MG
7368/*
7369 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7370 * assumption is made that zones within a node are ordered in monotonic
7371 * increasing memory addresses so that the "highest" populated zone is used
7372 */
b69a7288 7373static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
7374{
7375 int zone_index;
7376 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7377 if (zone_index == ZONE_MOVABLE)
7378 continue;
7379
7380 if (arch_zone_highest_possible_pfn[zone_index] >
7381 arch_zone_lowest_possible_pfn[zone_index])
7382 break;
7383 }
7384
7385 VM_BUG_ON(zone_index == -1);
7386 movable_zone = zone_index;
7387}
7388
7389/*
7390 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 7391 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
7392 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7393 * in each node depending on the size of each node and how evenly kernelcore
7394 * is distributed. This helper function adjusts the zone ranges
7395 * provided by the architecture for a given node by using the end of the
7396 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7397 * zones within a node are in order of monotonic increases memory addresses
7398 */
bbe5d993 7399static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
7400 unsigned long zone_type,
7401 unsigned long node_start_pfn,
7402 unsigned long node_end_pfn,
7403 unsigned long *zone_start_pfn,
7404 unsigned long *zone_end_pfn)
7405{
7406 /* Only adjust if ZONE_MOVABLE is on this node */
7407 if (zone_movable_pfn[nid]) {
7408 /* Size ZONE_MOVABLE */
7409 if (zone_type == ZONE_MOVABLE) {
7410 *zone_start_pfn = zone_movable_pfn[nid];
7411 *zone_end_pfn = min(node_end_pfn,
7412 arch_zone_highest_possible_pfn[movable_zone]);
7413
e506b996
XQ
7414 /* Adjust for ZONE_MOVABLE starting within this range */
7415 } else if (!mirrored_kernelcore &&
7416 *zone_start_pfn < zone_movable_pfn[nid] &&
7417 *zone_end_pfn > zone_movable_pfn[nid]) {
7418 *zone_end_pfn = zone_movable_pfn[nid];
7419
2a1e274a
MG
7420 /* Check if this whole range is within ZONE_MOVABLE */
7421 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7422 *zone_start_pfn = *zone_end_pfn;
7423 }
7424}
7425
c713216d
MG
7426/*
7427 * Return the number of pages a zone spans in a node, including holes
7428 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7429 */
bbe5d993 7430static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 7431 unsigned long zone_type,
7960aedd
ZY
7432 unsigned long node_start_pfn,
7433 unsigned long node_end_pfn,
d91749c1 7434 unsigned long *zone_start_pfn,
854e8848 7435 unsigned long *zone_end_pfn)
c713216d 7436{
299c83dc
LF
7437 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7438 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 7439 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7440 if (!node_start_pfn && !node_end_pfn)
7441 return 0;
7442
7960aedd 7443 /* Get the start and end of the zone */
299c83dc
LF
7444 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7445 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
7446 adjust_zone_range_for_zone_movable(nid, zone_type,
7447 node_start_pfn, node_end_pfn,
d91749c1 7448 zone_start_pfn, zone_end_pfn);
c713216d
MG
7449
7450 /* Check that this node has pages within the zone's required range */
d91749c1 7451 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
7452 return 0;
7453
7454 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
7455 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7456 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
7457
7458 /* Return the spanned pages */
d91749c1 7459 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
7460}
7461
7462/*
7463 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 7464 * then all holes in the requested range will be accounted for.
c713216d 7465 */
bbe5d993 7466unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
7467 unsigned long range_start_pfn,
7468 unsigned long range_end_pfn)
7469{
96e907d1
TH
7470 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7471 unsigned long start_pfn, end_pfn;
7472 int i;
c713216d 7473
96e907d1
TH
7474 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7475 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7476 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7477 nr_absent -= end_pfn - start_pfn;
c713216d 7478 }
96e907d1 7479 return nr_absent;
c713216d
MG
7480}
7481
7482/**
7483 * absent_pages_in_range - Return number of page frames in holes within a range
7484 * @start_pfn: The start PFN to start searching for holes
7485 * @end_pfn: The end PFN to stop searching for holes
7486 *
a862f68a 7487 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
7488 */
7489unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7490 unsigned long end_pfn)
7491{
7492 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7493}
7494
7495/* Return the number of page frames in holes in a zone on a node */
bbe5d993 7496static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 7497 unsigned long zone_type,
7960aedd 7498 unsigned long node_start_pfn,
854e8848 7499 unsigned long node_end_pfn)
c713216d 7500{
96e907d1
TH
7501 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7502 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 7503 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 7504 unsigned long nr_absent;
9c7cd687 7505
b5685e92 7506 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
7507 if (!node_start_pfn && !node_end_pfn)
7508 return 0;
7509
96e907d1
TH
7510 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7511 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 7512
2a1e274a
MG
7513 adjust_zone_range_for_zone_movable(nid, zone_type,
7514 node_start_pfn, node_end_pfn,
7515 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
7516 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7517
7518 /*
7519 * ZONE_MOVABLE handling.
7520 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7521 * and vice versa.
7522 */
e506b996
XQ
7523 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7524 unsigned long start_pfn, end_pfn;
7525 struct memblock_region *r;
7526
cc6de168 7527 for_each_mem_region(r) {
e506b996
XQ
7528 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7529 zone_start_pfn, zone_end_pfn);
7530 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7531 zone_start_pfn, zone_end_pfn);
7532
7533 if (zone_type == ZONE_MOVABLE &&
7534 memblock_is_mirror(r))
7535 nr_absent += end_pfn - start_pfn;
7536
7537 if (zone_type == ZONE_NORMAL &&
7538 !memblock_is_mirror(r))
7539 nr_absent += end_pfn - start_pfn;
342332e6
TI
7540 }
7541 }
7542
7543 return nr_absent;
c713216d 7544}
0e0b864e 7545
bbe5d993 7546static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd 7547 unsigned long node_start_pfn,
854e8848 7548 unsigned long node_end_pfn)
c713216d 7549{
febd5949 7550 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
7551 enum zone_type i;
7552
febd5949
GZ
7553 for (i = 0; i < MAX_NR_ZONES; i++) {
7554 struct zone *zone = pgdat->node_zones + i;
d91749c1 7555 unsigned long zone_start_pfn, zone_end_pfn;
3f08a302 7556 unsigned long spanned, absent;
febd5949 7557 unsigned long size, real_size;
c713216d 7558
854e8848
MR
7559 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7560 node_start_pfn,
7561 node_end_pfn,
7562 &zone_start_pfn,
7563 &zone_end_pfn);
7564 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7565 node_start_pfn,
7566 node_end_pfn);
3f08a302
MR
7567
7568 size = spanned;
7569 real_size = size - absent;
7570
d91749c1
TI
7571 if (size)
7572 zone->zone_start_pfn = zone_start_pfn;
7573 else
7574 zone->zone_start_pfn = 0;
febd5949
GZ
7575 zone->spanned_pages = size;
7576 zone->present_pages = real_size;
4b097002
DH
7577#if defined(CONFIG_MEMORY_HOTPLUG)
7578 zone->present_early_pages = real_size;
7579#endif
febd5949
GZ
7580
7581 totalpages += size;
7582 realtotalpages += real_size;
7583 }
7584
7585 pgdat->node_spanned_pages = totalpages;
c713216d 7586 pgdat->node_present_pages = realtotalpages;
9660ecaa 7587 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
c713216d
MG
7588}
7589
835c134e
MG
7590#ifndef CONFIG_SPARSEMEM
7591/*
7592 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
7593 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7594 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
7595 * round what is now in bits to nearest long in bits, then return it in
7596 * bytes.
7597 */
7c45512d 7598static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
7599{
7600 unsigned long usemapsize;
7601
7c45512d 7602 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
7603 usemapsize = roundup(zonesize, pageblock_nr_pages);
7604 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
7605 usemapsize *= NR_PAGEBLOCK_BITS;
7606 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7607
7608 return usemapsize / 8;
7609}
7610
7010a6ec 7611static void __ref setup_usemap(struct zone *zone)
835c134e 7612{
7010a6ec
BH
7613 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7614 zone->spanned_pages);
835c134e 7615 zone->pageblock_flags = NULL;
23a7052a 7616 if (usemapsize) {
6782832e 7617 zone->pageblock_flags =
26fb3dae 7618 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7010a6ec 7619 zone_to_nid(zone));
23a7052a
MR
7620 if (!zone->pageblock_flags)
7621 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7010a6ec 7622 usemapsize, zone->name, zone_to_nid(zone));
23a7052a 7623 }
835c134e
MG
7624}
7625#else
7010a6ec 7626static inline void setup_usemap(struct zone *zone) {}
835c134e
MG
7627#endif /* CONFIG_SPARSEMEM */
7628
d9c23400 7629#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 7630
d9c23400 7631/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 7632void __init set_pageblock_order(void)
d9c23400 7633{
b3d40a2b 7634 unsigned int order = MAX_ORDER - 1;
955c1cd7 7635
d9c23400
MG
7636 /* Check that pageblock_nr_pages has not already been setup */
7637 if (pageblock_order)
7638 return;
7639
b3d40a2b
DH
7640 /* Don't let pageblocks exceed the maximum allocation granularity. */
7641 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
955c1cd7 7642 order = HUGETLB_PAGE_ORDER;
955c1cd7 7643
d9c23400
MG
7644 /*
7645 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
7646 * This value may be variable depending on boot parameters on IA64 and
7647 * powerpc.
d9c23400
MG
7648 */
7649 pageblock_order = order;
7650}
7651#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7652
ba72cb8c
MG
7653/*
7654 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
7655 * is unused as pageblock_order is set at compile-time. See
7656 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7657 * the kernel config
ba72cb8c 7658 */
03e85f9d 7659void __init set_pageblock_order(void)
ba72cb8c 7660{
ba72cb8c 7661}
d9c23400
MG
7662
7663#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7664
03e85f9d 7665static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 7666 unsigned long present_pages)
01cefaef
JL
7667{
7668 unsigned long pages = spanned_pages;
7669
7670 /*
7671 * Provide a more accurate estimation if there are holes within
7672 * the zone and SPARSEMEM is in use. If there are holes within the
7673 * zone, each populated memory region may cost us one or two extra
7674 * memmap pages due to alignment because memmap pages for each
89d790ab 7675 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
7676 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7677 */
7678 if (spanned_pages > present_pages + (present_pages >> 4) &&
7679 IS_ENABLED(CONFIG_SPARSEMEM))
7680 pages = present_pages;
7681
7682 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7683}
7684
ace1db39
OS
7685#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7686static void pgdat_init_split_queue(struct pglist_data *pgdat)
7687{
364c1eeb
YS
7688 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7689
7690 spin_lock_init(&ds_queue->split_queue_lock);
7691 INIT_LIST_HEAD(&ds_queue->split_queue);
7692 ds_queue->split_queue_len = 0;
ace1db39
OS
7693}
7694#else
7695static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7696#endif
7697
7698#ifdef CONFIG_COMPACTION
7699static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7700{
7701 init_waitqueue_head(&pgdat->kcompactd_wait);
7702}
7703#else
7704static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7705#endif
7706
03e85f9d 7707static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 7708{
8cd7c588
MG
7709 int i;
7710
208d54e5 7711 pgdat_resize_init(pgdat);
b4a0215e 7712 pgdat_kswapd_lock_init(pgdat);
ace1db39 7713
ace1db39
OS
7714 pgdat_init_split_queue(pgdat);
7715 pgdat_init_kcompactd(pgdat);
7716
1da177e4 7717 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 7718 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 7719
8cd7c588
MG
7720 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7721 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7722
eefa864b 7723 pgdat_page_ext_init(pgdat);
867e5e1d 7724 lruvec_init(&pgdat->__lruvec);
03e85f9d
OS
7725}
7726
7727static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7728 unsigned long remaining_pages)
7729{
9705bea5 7730 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
7731 zone_set_nid(zone, nid);
7732 zone->name = zone_names[idx];
7733 zone->zone_pgdat = NODE_DATA(nid);
7734 spin_lock_init(&zone->lock);
7735 zone_seqlock_init(zone);
7736 zone_pcp_init(zone);
7737}
7738
7739/*
7740 * Set up the zone data structures
7741 * - init pgdat internals
7742 * - init all zones belonging to this node
7743 *
7744 * NOTE: this function is only called during memory hotplug
7745 */
7746#ifdef CONFIG_MEMORY_HOTPLUG
70b5b46a 7747void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
03e85f9d 7748{
70b5b46a 7749 int nid = pgdat->node_id;
03e85f9d 7750 enum zone_type z;
70b5b46a 7751 int cpu;
03e85f9d
OS
7752
7753 pgdat_init_internals(pgdat);
70b5b46a
MH
7754
7755 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7756 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7757
7758 /*
7759 * Reset the nr_zones, order and highest_zoneidx before reuse.
7760 * Note that kswapd will init kswapd_highest_zoneidx properly
7761 * when it starts in the near future.
7762 */
7763 pgdat->nr_zones = 0;
7764 pgdat->kswapd_order = 0;
7765 pgdat->kswapd_highest_zoneidx = 0;
7766 pgdat->node_start_pfn = 0;
7767 for_each_online_cpu(cpu) {
7768 struct per_cpu_nodestat *p;
7769
7770 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7771 memset(p, 0, sizeof(*p));
7772 }
7773
03e85f9d
OS
7774 for (z = 0; z < MAX_NR_ZONES; z++)
7775 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7776}
7777#endif
7778
7779/*
7780 * Set up the zone data structures:
7781 * - mark all pages reserved
7782 * - mark all memory queues empty
7783 * - clear the memory bitmaps
7784 *
7785 * NOTE: pgdat should get zeroed by caller.
7786 * NOTE: this function is only called during early init.
7787 */
7788static void __init free_area_init_core(struct pglist_data *pgdat)
7789{
7790 enum zone_type j;
7791 int nid = pgdat->node_id;
5f63b720 7792
03e85f9d 7793 pgdat_init_internals(pgdat);
385386cf
JW
7794 pgdat->per_cpu_nodestats = &boot_nodestats;
7795
1da177e4
LT
7796 for (j = 0; j < MAX_NR_ZONES; j++) {
7797 struct zone *zone = pgdat->node_zones + j;
e6943859 7798 unsigned long size, freesize, memmap_pages;
1da177e4 7799
febd5949 7800 size = zone->spanned_pages;
e6943859 7801 freesize = zone->present_pages;
1da177e4 7802
0e0b864e 7803 /*
9feedc9d 7804 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
7805 * is used by this zone for memmap. This affects the watermark
7806 * and per-cpu initialisations
7807 */
e6943859 7808 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
7809 if (!is_highmem_idx(j)) {
7810 if (freesize >= memmap_pages) {
7811 freesize -= memmap_pages;
7812 if (memmap_pages)
9660ecaa
HK
7813 pr_debug(" %s zone: %lu pages used for memmap\n",
7814 zone_names[j], memmap_pages);
ba914f48 7815 } else
e47aa905 7816 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
ba914f48
ZH
7817 zone_names[j], memmap_pages, freesize);
7818 }
0e0b864e 7819
6267276f 7820 /* Account for reserved pages */
9feedc9d
JL
7821 if (j == 0 && freesize > dma_reserve) {
7822 freesize -= dma_reserve;
9660ecaa 7823 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
0e0b864e
MG
7824 }
7825
98d2b0eb 7826 if (!is_highmem_idx(j))
9feedc9d 7827 nr_kernel_pages += freesize;
01cefaef
JL
7828 /* Charge for highmem memmap if there are enough kernel pages */
7829 else if (nr_kernel_pages > memmap_pages * 2)
7830 nr_kernel_pages -= memmap_pages;
9feedc9d 7831 nr_all_pages += freesize;
1da177e4 7832
9feedc9d
JL
7833 /*
7834 * Set an approximate value for lowmem here, it will be adjusted
7835 * when the bootmem allocator frees pages into the buddy system.
7836 * And all highmem pages will be managed by the buddy system.
7837 */
03e85f9d 7838 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 7839
d883c6cf 7840 if (!size)
1da177e4
LT
7841 continue;
7842
955c1cd7 7843 set_pageblock_order();
7010a6ec 7844 setup_usemap(zone);
9699ee7b 7845 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1da177e4
LT
7846 }
7847}
7848
43b02ba9 7849#ifdef CONFIG_FLATMEM
3b446da6 7850static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 7851{
b0aeba74 7852 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
7853 unsigned long __maybe_unused offset = 0;
7854
1da177e4
LT
7855 /* Skip empty nodes */
7856 if (!pgdat->node_spanned_pages)
7857 return;
7858
b0aeba74
TL
7859 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7860 offset = pgdat->node_start_pfn - start;
1da177e4
LT
7861 /* ia64 gets its own node_mem_map, before this, without bootmem */
7862 if (!pgdat->node_mem_map) {
b0aeba74 7863 unsigned long size, end;
d41dee36
AW
7864 struct page *map;
7865
e984bb43
BP
7866 /*
7867 * The zone's endpoints aren't required to be MAX_ORDER
7868 * aligned but the node_mem_map endpoints must be in order
7869 * for the buddy allocator to function correctly.
7870 */
108bcc96 7871 end = pgdat_end_pfn(pgdat);
e984bb43
BP
7872 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7873 size = (end - start) * sizeof(struct page);
c803b3c8
MR
7874 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7875 pgdat->node_id, false);
23a7052a
MR
7876 if (!map)
7877 panic("Failed to allocate %ld bytes for node %d memory map\n",
7878 size, pgdat->node_id);
a1c34a3b 7879 pgdat->node_mem_map = map + offset;
1da177e4 7880 }
0cd842f9
OS
7881 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7882 __func__, pgdat->node_id, (unsigned long)pgdat,
7883 (unsigned long)pgdat->node_mem_map);
a9ee6cf5 7884#ifndef CONFIG_NUMA
1da177e4
LT
7885 /*
7886 * With no DISCONTIG, the global mem_map is just set as node 0's
7887 */
c713216d 7888 if (pgdat == NODE_DATA(0)) {
1da177e4 7889 mem_map = NODE_DATA(0)->node_mem_map;
c713216d 7890 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 7891 mem_map -= offset;
c713216d 7892 }
1da177e4
LT
7893#endif
7894}
0cd842f9 7895#else
3b446da6 7896static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
43b02ba9 7897#endif /* CONFIG_FLATMEM */
1da177e4 7898
0188dc98
OS
7899#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7900static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7901{
0188dc98
OS
7902 pgdat->first_deferred_pfn = ULONG_MAX;
7903}
7904#else
7905static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7906#endif
7907
854e8848 7908static void __init free_area_init_node(int nid)
1da177e4 7909{
9109fb7b 7910 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
7911 unsigned long start_pfn = 0;
7912 unsigned long end_pfn = 0;
9109fb7b 7913
88fdf75d 7914 /* pg_data_t should be reset to zero when it's allocated */
97a225e6 7915 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
88fdf75d 7916
854e8848 7917 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
88fdf75d 7918
1da177e4 7919 pgdat->node_id = nid;
854e8848 7920 pgdat->node_start_pfn = start_pfn;
75ef7184 7921 pgdat->per_cpu_nodestats = NULL;
854e8848 7922
7c30daac
MH
7923 if (start_pfn != end_pfn) {
7924 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7925 (u64)start_pfn << PAGE_SHIFT,
7926 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7927 } else {
7928 pr_info("Initmem setup node %d as memoryless\n", nid);
7929 }
7930
854e8848 7931 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1da177e4
LT
7932
7933 alloc_node_mem_map(pgdat);
0188dc98 7934 pgdat_set_deferred_range(pgdat);
1da177e4 7935
7f3eb55b 7936 free_area_init_core(pgdat);
1da177e4
LT
7937}
7938
1ca75fa7 7939static void __init free_area_init_memoryless_node(int nid)
3f08a302 7940{
854e8848 7941 free_area_init_node(nid);
3f08a302
MR
7942}
7943
418508c1
MS
7944#if MAX_NUMNODES > 1
7945/*
7946 * Figure out the number of possible node ids.
7947 */
f9872caf 7948void __init setup_nr_node_ids(void)
418508c1 7949{
904a9553 7950 unsigned int highest;
418508c1 7951
904a9553 7952 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
7953 nr_node_ids = highest + 1;
7954}
418508c1
MS
7955#endif
7956
1e01979c
TH
7957/**
7958 * node_map_pfn_alignment - determine the maximum internode alignment
7959 *
7960 * This function should be called after node map is populated and sorted.
7961 * It calculates the maximum power of two alignment which can distinguish
7962 * all the nodes.
7963 *
7964 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7965 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7966 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7967 * shifted, 1GiB is enough and this function will indicate so.
7968 *
7969 * This is used to test whether pfn -> nid mapping of the chosen memory
7970 * model has fine enough granularity to avoid incorrect mapping for the
7971 * populated node map.
7972 *
a862f68a 7973 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
7974 * requirement (single node).
7975 */
7976unsigned long __init node_map_pfn_alignment(void)
7977{
7978 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7979 unsigned long start, end, mask;
98fa15f3 7980 int last_nid = NUMA_NO_NODE;
c13291a5 7981 int i, nid;
1e01979c 7982
c13291a5 7983 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7984 if (!start || last_nid < 0 || last_nid == nid) {
7985 last_nid = nid;
7986 last_end = end;
7987 continue;
7988 }
7989
7990 /*
7991 * Start with a mask granular enough to pin-point to the
7992 * start pfn and tick off bits one-by-one until it becomes
7993 * too coarse to separate the current node from the last.
7994 */
7995 mask = ~((1 << __ffs(start)) - 1);
7996 while (mask && last_end <= (start & (mask << 1)))
7997 mask <<= 1;
7998
7999 /* accumulate all internode masks */
8000 accl_mask |= mask;
8001 }
8002
8003 /* convert mask to number of pages */
8004 return ~accl_mask + 1;
8005}
8006
37b07e41
LS
8007/*
8008 * early_calculate_totalpages()
8009 * Sum pages in active regions for movable zone.
4b0ef1fe 8010 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 8011 */
484f51f8 8012static unsigned long __init early_calculate_totalpages(void)
7e63efef 8013{
7e63efef 8014 unsigned long totalpages = 0;
c13291a5
TH
8015 unsigned long start_pfn, end_pfn;
8016 int i, nid;
8017
8018 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8019 unsigned long pages = end_pfn - start_pfn;
7e63efef 8020
37b07e41
LS
8021 totalpages += pages;
8022 if (pages)
4b0ef1fe 8023 node_set_state(nid, N_MEMORY);
37b07e41 8024 }
b8af2941 8025 return totalpages;
7e63efef
MG
8026}
8027
2a1e274a
MG
8028/*
8029 * Find the PFN the Movable zone begins in each node. Kernel memory
8030 * is spread evenly between nodes as long as the nodes have enough
8031 * memory. When they don't, some nodes will have more kernelcore than
8032 * others
8033 */
b224ef85 8034static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
8035{
8036 int i, nid;
8037 unsigned long usable_startpfn;
8038 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 8039 /* save the state before borrow the nodemask */
4b0ef1fe 8040 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 8041 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 8042 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 8043 struct memblock_region *r;
b2f3eebe
TC
8044
8045 /* Need to find movable_zone earlier when movable_node is specified. */
8046 find_usable_zone_for_movable();
8047
8048 /*
8049 * If movable_node is specified, ignore kernelcore and movablecore
8050 * options.
8051 */
8052 if (movable_node_is_enabled()) {
cc6de168 8053 for_each_mem_region(r) {
136199f0 8054 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
8055 continue;
8056
d622abf7 8057 nid = memblock_get_region_node(r);
b2f3eebe 8058
136199f0 8059 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
8060 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8061 min(usable_startpfn, zone_movable_pfn[nid]) :
8062 usable_startpfn;
8063 }
8064
8065 goto out2;
8066 }
2a1e274a 8067
342332e6
TI
8068 /*
8069 * If kernelcore=mirror is specified, ignore movablecore option
8070 */
8071 if (mirrored_kernelcore) {
8072 bool mem_below_4gb_not_mirrored = false;
8073
cc6de168 8074 for_each_mem_region(r) {
342332e6
TI
8075 if (memblock_is_mirror(r))
8076 continue;
8077
d622abf7 8078 nid = memblock_get_region_node(r);
342332e6
TI
8079
8080 usable_startpfn = memblock_region_memory_base_pfn(r);
8081
aa282a15 8082 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
342332e6
TI
8083 mem_below_4gb_not_mirrored = true;
8084 continue;
8085 }
8086
8087 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8088 min(usable_startpfn, zone_movable_pfn[nid]) :
8089 usable_startpfn;
8090 }
8091
8092 if (mem_below_4gb_not_mirrored)
633bf2fe 8093 pr_warn("This configuration results in unmirrored kernel memory.\n");
342332e6
TI
8094
8095 goto out2;
8096 }
8097
7e63efef 8098 /*
a5c6d650
DR
8099 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8100 * amount of necessary memory.
8101 */
8102 if (required_kernelcore_percent)
8103 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8104 10000UL;
8105 if (required_movablecore_percent)
8106 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8107 10000UL;
8108
8109 /*
8110 * If movablecore= was specified, calculate what size of
7e63efef
MG
8111 * kernelcore that corresponds so that memory usable for
8112 * any allocation type is evenly spread. If both kernelcore
8113 * and movablecore are specified, then the value of kernelcore
8114 * will be used for required_kernelcore if it's greater than
8115 * what movablecore would have allowed.
8116 */
8117 if (required_movablecore) {
7e63efef
MG
8118 unsigned long corepages;
8119
8120 /*
8121 * Round-up so that ZONE_MOVABLE is at least as large as what
8122 * was requested by the user
8123 */
8124 required_movablecore =
8125 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 8126 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
8127 corepages = totalpages - required_movablecore;
8128
8129 required_kernelcore = max(required_kernelcore, corepages);
8130 }
8131
bde304bd
XQ
8132 /*
8133 * If kernelcore was not specified or kernelcore size is larger
8134 * than totalpages, there is no ZONE_MOVABLE.
8135 */
8136 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 8137 goto out;
2a1e274a
MG
8138
8139 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
8140 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8141
8142restart:
8143 /* Spread kernelcore memory as evenly as possible throughout nodes */
8144 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 8145 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
8146 unsigned long start_pfn, end_pfn;
8147
2a1e274a
MG
8148 /*
8149 * Recalculate kernelcore_node if the division per node
8150 * now exceeds what is necessary to satisfy the requested
8151 * amount of memory for the kernel
8152 */
8153 if (required_kernelcore < kernelcore_node)
8154 kernelcore_node = required_kernelcore / usable_nodes;
8155
8156 /*
8157 * As the map is walked, we track how much memory is usable
8158 * by the kernel using kernelcore_remaining. When it is
8159 * 0, the rest of the node is usable by ZONE_MOVABLE
8160 */
8161 kernelcore_remaining = kernelcore_node;
8162
8163 /* Go through each range of PFNs within this node */
c13291a5 8164 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
8165 unsigned long size_pages;
8166
c13291a5 8167 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
8168 if (start_pfn >= end_pfn)
8169 continue;
8170
8171 /* Account for what is only usable for kernelcore */
8172 if (start_pfn < usable_startpfn) {
8173 unsigned long kernel_pages;
8174 kernel_pages = min(end_pfn, usable_startpfn)
8175 - start_pfn;
8176
8177 kernelcore_remaining -= min(kernel_pages,
8178 kernelcore_remaining);
8179 required_kernelcore -= min(kernel_pages,
8180 required_kernelcore);
8181
8182 /* Continue if range is now fully accounted */
8183 if (end_pfn <= usable_startpfn) {
8184
8185 /*
8186 * Push zone_movable_pfn to the end so
8187 * that if we have to rebalance
8188 * kernelcore across nodes, we will
8189 * not double account here
8190 */
8191 zone_movable_pfn[nid] = end_pfn;
8192 continue;
8193 }
8194 start_pfn = usable_startpfn;
8195 }
8196
8197 /*
8198 * The usable PFN range for ZONE_MOVABLE is from
8199 * start_pfn->end_pfn. Calculate size_pages as the
8200 * number of pages used as kernelcore
8201 */
8202 size_pages = end_pfn - start_pfn;
8203 if (size_pages > kernelcore_remaining)
8204 size_pages = kernelcore_remaining;
8205 zone_movable_pfn[nid] = start_pfn + size_pages;
8206
8207 /*
8208 * Some kernelcore has been met, update counts and
8209 * break if the kernelcore for this node has been
b8af2941 8210 * satisfied
2a1e274a
MG
8211 */
8212 required_kernelcore -= min(required_kernelcore,
8213 size_pages);
8214 kernelcore_remaining -= size_pages;
8215 if (!kernelcore_remaining)
8216 break;
8217 }
8218 }
8219
8220 /*
8221 * If there is still required_kernelcore, we do another pass with one
8222 * less node in the count. This will push zone_movable_pfn[nid] further
8223 * along on the nodes that still have memory until kernelcore is
b8af2941 8224 * satisfied
2a1e274a
MG
8225 */
8226 usable_nodes--;
8227 if (usable_nodes && required_kernelcore > usable_nodes)
8228 goto restart;
8229
b2f3eebe 8230out2:
2a1e274a 8231 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
ddbc84f3
AP
8232 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8233 unsigned long start_pfn, end_pfn;
8234
2a1e274a
MG
8235 zone_movable_pfn[nid] =
8236 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 8237
ddbc84f3
AP
8238 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8239 if (zone_movable_pfn[nid] >= end_pfn)
8240 zone_movable_pfn[nid] = 0;
8241 }
8242
20e6926d 8243out:
66918dcd 8244 /* restore the node_state */
4b0ef1fe 8245 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
8246}
8247
4b0ef1fe
LJ
8248/* Any regular or high memory on that node ? */
8249static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 8250{
37b07e41
LS
8251 enum zone_type zone_type;
8252
4b0ef1fe 8253 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 8254 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 8255 if (populated_zone(zone)) {
7b0e0c0e
OS
8256 if (IS_ENABLED(CONFIG_HIGHMEM))
8257 node_set_state(nid, N_HIGH_MEMORY);
8258 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 8259 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
8260 break;
8261 }
37b07e41 8262 }
37b07e41
LS
8263}
8264
51930df5 8265/*
f0953a1b 8266 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
51930df5
MR
8267 * such cases we allow max_zone_pfn sorted in the descending order
8268 */
8269bool __weak arch_has_descending_max_zone_pfns(void)
8270{
8271 return false;
8272}
8273
c713216d 8274/**
9691a071 8275 * free_area_init - Initialise all pg_data_t and zone data
88ca3b94 8276 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
8277 *
8278 * This will call free_area_init_node() for each active node in the system.
7d018176 8279 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
8280 * zone in each node and their holes is calculated. If the maximum PFN
8281 * between two adjacent zones match, it is assumed that the zone is empty.
8282 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8283 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8284 * starts where the previous one ended. For example, ZONE_DMA32 starts
8285 * at arch_max_dma_pfn.
8286 */
9691a071 8287void __init free_area_init(unsigned long *max_zone_pfn)
c713216d 8288{
c13291a5 8289 unsigned long start_pfn, end_pfn;
51930df5
MR
8290 int i, nid, zone;
8291 bool descending;
a6af2bc3 8292
c713216d
MG
8293 /* Record where the zone boundaries are */
8294 memset(arch_zone_lowest_possible_pfn, 0,
8295 sizeof(arch_zone_lowest_possible_pfn));
8296 memset(arch_zone_highest_possible_pfn, 0,
8297 sizeof(arch_zone_highest_possible_pfn));
90cae1fe 8298
fb70c487 8299 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
51930df5 8300 descending = arch_has_descending_max_zone_pfns();
90cae1fe
OH
8301
8302 for (i = 0; i < MAX_NR_ZONES; i++) {
51930df5
MR
8303 if (descending)
8304 zone = MAX_NR_ZONES - i - 1;
8305 else
8306 zone = i;
8307
8308 if (zone == ZONE_MOVABLE)
2a1e274a 8309 continue;
90cae1fe 8310
51930df5
MR
8311 end_pfn = max(max_zone_pfn[zone], start_pfn);
8312 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8313 arch_zone_highest_possible_pfn[zone] = end_pfn;
90cae1fe
OH
8314
8315 start_pfn = end_pfn;
c713216d 8316 }
2a1e274a
MG
8317
8318 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8319 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 8320 find_zone_movable_pfns_for_nodes();
c713216d 8321
c713216d 8322 /* Print out the zone ranges */
f88dfff5 8323 pr_info("Zone ranges:\n");
2a1e274a
MG
8324 for (i = 0; i < MAX_NR_ZONES; i++) {
8325 if (i == ZONE_MOVABLE)
8326 continue;
f88dfff5 8327 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
8328 if (arch_zone_lowest_possible_pfn[i] ==
8329 arch_zone_highest_possible_pfn[i])
f88dfff5 8330 pr_cont("empty\n");
72f0ba02 8331 else
8d29e18a
JG
8332 pr_cont("[mem %#018Lx-%#018Lx]\n",
8333 (u64)arch_zone_lowest_possible_pfn[i]
8334 << PAGE_SHIFT,
8335 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 8336 << PAGE_SHIFT) - 1);
2a1e274a
MG
8337 }
8338
8339 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 8340 pr_info("Movable zone start for each node\n");
2a1e274a
MG
8341 for (i = 0; i < MAX_NUMNODES; i++) {
8342 if (zone_movable_pfn[i])
8d29e18a
JG
8343 pr_info(" Node %d: %#018Lx\n", i,
8344 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 8345 }
c713216d 8346
f46edbd1
DW
8347 /*
8348 * Print out the early node map, and initialize the
8349 * subsection-map relative to active online memory ranges to
8350 * enable future "sub-section" extensions of the memory map.
8351 */
f88dfff5 8352 pr_info("Early memory node ranges\n");
f46edbd1 8353 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
8354 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8355 (u64)start_pfn << PAGE_SHIFT,
8356 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
8357 subsection_map_init(start_pfn, end_pfn - start_pfn);
8358 }
c713216d
MG
8359
8360 /* Initialise every node */
708614e6 8361 mminit_verify_pageflags_layout();
8ef82866 8362 setup_nr_node_ids();
09f49dca
MH
8363 for_each_node(nid) {
8364 pg_data_t *pgdat;
8365
8366 if (!node_online(nid)) {
8367 pr_info("Initializing node %d as memoryless\n", nid);
8368
8369 /* Allocator not initialized yet */
8370 pgdat = arch_alloc_nodedata(nid);
8371 if (!pgdat) {
8372 pr_err("Cannot allocate %zuB for node %d.\n",
8373 sizeof(*pgdat), nid);
8374 continue;
8375 }
8376 arch_refresh_nodedata(nid, pgdat);
8377 free_area_init_memoryless_node(nid);
8378
8379 /*
8380 * We do not want to confuse userspace by sysfs
8381 * files/directories for node without any memory
8382 * attached to it, so this node is not marked as
8383 * N_MEMORY and not marked online so that no sysfs
8384 * hierarchy will be created via register_one_node for
8385 * it. The pgdat will get fully initialized by
8386 * hotadd_init_pgdat() when memory is hotplugged into
8387 * this node.
8388 */
8389 continue;
8390 }
8391
8392 pgdat = NODE_DATA(nid);
854e8848 8393 free_area_init_node(nid);
37b07e41
LS
8394
8395 /* Any memory on that node */
8396 if (pgdat->node_present_pages)
4b0ef1fe
LJ
8397 node_set_state(nid, N_MEMORY);
8398 check_for_memory(pgdat, nid);
c713216d 8399 }
122e093c
MR
8400
8401 memmap_init();
c713216d 8402}
2a1e274a 8403
a5c6d650
DR
8404static int __init cmdline_parse_core(char *p, unsigned long *core,
8405 unsigned long *percent)
2a1e274a
MG
8406{
8407 unsigned long long coremem;
a5c6d650
DR
8408 char *endptr;
8409
2a1e274a
MG
8410 if (!p)
8411 return -EINVAL;
8412
a5c6d650
DR
8413 /* Value may be a percentage of total memory, otherwise bytes */
8414 coremem = simple_strtoull(p, &endptr, 0);
8415 if (*endptr == '%') {
8416 /* Paranoid check for percent values greater than 100 */
8417 WARN_ON(coremem > 100);
2a1e274a 8418
a5c6d650
DR
8419 *percent = coremem;
8420 } else {
8421 coremem = memparse(p, &p);
8422 /* Paranoid check that UL is enough for the coremem value */
8423 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 8424
a5c6d650
DR
8425 *core = coremem >> PAGE_SHIFT;
8426 *percent = 0UL;
8427 }
2a1e274a
MG
8428 return 0;
8429}
ed7ed365 8430
7e63efef
MG
8431/*
8432 * kernelcore=size sets the amount of memory for use for allocations that
8433 * cannot be reclaimed or migrated.
8434 */
8435static int __init cmdline_parse_kernelcore(char *p)
8436{
342332e6
TI
8437 /* parse kernelcore=mirror */
8438 if (parse_option_str(p, "mirror")) {
8439 mirrored_kernelcore = true;
8440 return 0;
8441 }
8442
a5c6d650
DR
8443 return cmdline_parse_core(p, &required_kernelcore,
8444 &required_kernelcore_percent);
7e63efef
MG
8445}
8446
8447/*
8448 * movablecore=size sets the amount of memory for use for allocations that
8449 * can be reclaimed or migrated.
8450 */
8451static int __init cmdline_parse_movablecore(char *p)
8452{
a5c6d650
DR
8453 return cmdline_parse_core(p, &required_movablecore,
8454 &required_movablecore_percent);
7e63efef
MG
8455}
8456
ed7ed365 8457early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 8458early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 8459
c3d5f5f0
JL
8460void adjust_managed_page_count(struct page *page, long count)
8461{
9705bea5 8462 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 8463 totalram_pages_add(count);
3dcc0571
JL
8464#ifdef CONFIG_HIGHMEM
8465 if (PageHighMem(page))
ca79b0c2 8466 totalhigh_pages_add(count);
3dcc0571 8467#endif
c3d5f5f0 8468}
3dcc0571 8469EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 8470
e5cb113f 8471unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 8472{
11199692
JL
8473 void *pos;
8474 unsigned long pages = 0;
69afade7 8475
11199692
JL
8476 start = (void *)PAGE_ALIGN((unsigned long)start);
8477 end = (void *)((unsigned long)end & PAGE_MASK);
8478 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
8479 struct page *page = virt_to_page(pos);
8480 void *direct_map_addr;
8481
8482 /*
8483 * 'direct_map_addr' might be different from 'pos'
8484 * because some architectures' virt_to_page()
8485 * work with aliases. Getting the direct map
8486 * address ensures that we get a _writeable_
8487 * alias for the memset().
8488 */
8489 direct_map_addr = page_address(page);
c746170d
VF
8490 /*
8491 * Perform a kasan-unchecked memset() since this memory
8492 * has not been initialized.
8493 */
8494 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 8495 if ((unsigned int)poison <= 0xFF)
0d834328
DH
8496 memset(direct_map_addr, poison, PAGE_SIZE);
8497
8498 free_reserved_page(page);
69afade7
JL
8499 }
8500
8501 if (pages && s)
ff7ed9e4 8502 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
8503
8504 return pages;
8505}
8506
1f9d03c5 8507void __init mem_init_print_info(void)
7ee3d4e8
JL
8508{
8509 unsigned long physpages, codesize, datasize, rosize, bss_size;
8510 unsigned long init_code_size, init_data_size;
8511
8512 physpages = get_num_physpages();
8513 codesize = _etext - _stext;
8514 datasize = _edata - _sdata;
8515 rosize = __end_rodata - __start_rodata;
8516 bss_size = __bss_stop - __bss_start;
8517 init_data_size = __init_end - __init_begin;
8518 init_code_size = _einittext - _sinittext;
8519
8520 /*
8521 * Detect special cases and adjust section sizes accordingly:
8522 * 1) .init.* may be embedded into .data sections
8523 * 2) .init.text.* may be out of [__init_begin, __init_end],
8524 * please refer to arch/tile/kernel/vmlinux.lds.S.
8525 * 3) .rodata.* may be embedded into .text or .data sections.
8526 */
8527#define adj_init_size(start, end, size, pos, adj) \
b8af2941 8528 do { \
ca831f29 8529 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
b8af2941
PK
8530 size -= adj; \
8531 } while (0)
7ee3d4e8
JL
8532
8533 adj_init_size(__init_begin, __init_end, init_data_size,
8534 _sinittext, init_code_size);
8535 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8536 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8537 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8538 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8539
8540#undef adj_init_size
8541
756a025f 8542 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 8543#ifdef CONFIG_HIGHMEM
756a025f 8544 ", %luK highmem"
7ee3d4e8 8545#endif
1f9d03c5 8546 ")\n",
ff7ed9e4 8547 K(nr_free_pages()), K(physpages),
c940e020
ML
8548 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8549 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
ff7ed9e4
ML
8550 K(physpages - totalram_pages() - totalcma_pages),
8551 K(totalcma_pages)
7ee3d4e8 8552#ifdef CONFIG_HIGHMEM
ff7ed9e4 8553 , K(totalhigh_pages())
7ee3d4e8 8554#endif
1f9d03c5 8555 );
7ee3d4e8
JL
8556}
8557
0e0b864e 8558/**
88ca3b94
RD
8559 * set_dma_reserve - set the specified number of pages reserved in the first zone
8560 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 8561 *
013110a7 8562 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
8563 * In the DMA zone, a significant percentage may be consumed by kernel image
8564 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
8565 * function may optionally be used to account for unfreeable pages in the
8566 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8567 * smaller per-cpu batchsize.
0e0b864e
MG
8568 */
8569void __init set_dma_reserve(unsigned long new_dma_reserve)
8570{
8571 dma_reserve = new_dma_reserve;
8572}
8573
005fd4bb 8574static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 8575{
04f8cfea 8576 struct zone *zone;
1da177e4 8577
005fd4bb 8578 lru_add_drain_cpu(cpu);
adb11e78 8579 mlock_page_drain_remote(cpu);
005fd4bb 8580 drain_pages(cpu);
9f8f2172 8581
005fd4bb
SAS
8582 /*
8583 * Spill the event counters of the dead processor
8584 * into the current processors event counters.
8585 * This artificially elevates the count of the current
8586 * processor.
8587 */
8588 vm_events_fold_cpu(cpu);
9f8f2172 8589
005fd4bb
SAS
8590 /*
8591 * Zero the differential counters of the dead processor
8592 * so that the vm statistics are consistent.
8593 *
8594 * This is only okay since the processor is dead and cannot
8595 * race with what we are doing.
8596 */
8597 cpu_vm_stats_fold(cpu);
04f8cfea
MG
8598
8599 for_each_populated_zone(zone)
8600 zone_pcp_update(zone, 0);
8601
8602 return 0;
8603}
8604
8605static int page_alloc_cpu_online(unsigned int cpu)
8606{
8607 struct zone *zone;
8608
8609 for_each_populated_zone(zone)
8610 zone_pcp_update(zone, 1);
005fd4bb 8611 return 0;
1da177e4 8612}
1da177e4 8613
e03a5125
NP
8614#ifdef CONFIG_NUMA
8615int hashdist = HASHDIST_DEFAULT;
8616
8617static int __init set_hashdist(char *str)
8618{
8619 if (!str)
8620 return 0;
8621 hashdist = simple_strtoul(str, &str, 0);
8622 return 1;
8623}
8624__setup("hashdist=", set_hashdist);
8625#endif
8626
1da177e4
LT
8627void __init page_alloc_init(void)
8628{
005fd4bb
SAS
8629 int ret;
8630
e03a5125
NP
8631#ifdef CONFIG_NUMA
8632 if (num_node_state(N_MEMORY) == 1)
8633 hashdist = 0;
8634#endif
8635
04f8cfea
MG
8636 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8637 "mm/page_alloc:pcp",
8638 page_alloc_cpu_online,
005fd4bb
SAS
8639 page_alloc_cpu_dead);
8640 WARN_ON(ret < 0);
1da177e4
LT
8641}
8642
cb45b0e9 8643/*
34b10060 8644 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
8645 * or min_free_kbytes changes.
8646 */
8647static void calculate_totalreserve_pages(void)
8648{
8649 struct pglist_data *pgdat;
8650 unsigned long reserve_pages = 0;
2f6726e5 8651 enum zone_type i, j;
cb45b0e9
HA
8652
8653 for_each_online_pgdat(pgdat) {
281e3726
MG
8654
8655 pgdat->totalreserve_pages = 0;
8656
cb45b0e9
HA
8657 for (i = 0; i < MAX_NR_ZONES; i++) {
8658 struct zone *zone = pgdat->node_zones + i;
3484b2de 8659 long max = 0;
9705bea5 8660 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
8661
8662 /* Find valid and maximum lowmem_reserve in the zone */
8663 for (j = i; j < MAX_NR_ZONES; j++) {
8664 if (zone->lowmem_reserve[j] > max)
8665 max = zone->lowmem_reserve[j];
8666 }
8667
41858966
MG
8668 /* we treat the high watermark as reserved pages. */
8669 max += high_wmark_pages(zone);
cb45b0e9 8670
3d6357de
AK
8671 if (max > managed_pages)
8672 max = managed_pages;
a8d01437 8673
281e3726 8674 pgdat->totalreserve_pages += max;
a8d01437 8675
cb45b0e9
HA
8676 reserve_pages += max;
8677 }
8678 }
8679 totalreserve_pages = reserve_pages;
8680}
8681
1da177e4
LT
8682/*
8683 * setup_per_zone_lowmem_reserve - called whenever
34b10060 8684 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
8685 * has a correct pages reserved value, so an adequate number of
8686 * pages are left in the zone after a successful __alloc_pages().
8687 */
8688static void setup_per_zone_lowmem_reserve(void)
8689{
8690 struct pglist_data *pgdat;
470c61d7 8691 enum zone_type i, j;
1da177e4 8692
ec936fc5 8693 for_each_online_pgdat(pgdat) {
470c61d7
LS
8694 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8695 struct zone *zone = &pgdat->node_zones[i];
8696 int ratio = sysctl_lowmem_reserve_ratio[i];
8697 bool clear = !ratio || !zone_managed_pages(zone);
8698 unsigned long managed_pages = 0;
8699
8700 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
8701 struct zone *upper_zone = &pgdat->node_zones[j];
8702
8703 managed_pages += zone_managed_pages(upper_zone);
470c61d7 8704
f7ec1044
LS
8705 if (clear)
8706 zone->lowmem_reserve[j] = 0;
8707 else
470c61d7 8708 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
8709 }
8710 }
8711 }
cb45b0e9
HA
8712
8713 /* update totalreserve_pages */
8714 calculate_totalreserve_pages();
1da177e4
LT
8715}
8716
cfd3da1e 8717static void __setup_per_zone_wmarks(void)
1da177e4
LT
8718{
8719 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8720 unsigned long lowmem_pages = 0;
8721 struct zone *zone;
8722 unsigned long flags;
8723
8724 /* Calculate total number of !ZONE_HIGHMEM pages */
8725 for_each_zone(zone) {
8726 if (!is_highmem(zone))
9705bea5 8727 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
8728 }
8729
8730 for_each_zone(zone) {
ac924c60
AM
8731 u64 tmp;
8732
1125b4e3 8733 spin_lock_irqsave(&zone->lock, flags);
9705bea5 8734 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 8735 do_div(tmp, lowmem_pages);
1da177e4
LT
8736 if (is_highmem(zone)) {
8737 /*
669ed175
NP
8738 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8739 * need highmem pages, so cap pages_min to a small
8740 * value here.
8741 *
41858966 8742 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 8743 * deltas control async page reclaim, and so should
669ed175 8744 * not be capped for highmem.
1da177e4 8745 */
90ae8d67 8746 unsigned long min_pages;
1da177e4 8747
9705bea5 8748 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 8749 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 8750 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 8751 } else {
669ed175
NP
8752 /*
8753 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
8754 * proportionate to the zone's size.
8755 */
a9214443 8756 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
8757 }
8758
795ae7a0
JW
8759 /*
8760 * Set the kswapd watermarks distance according to the
8761 * scale factor in proportion to available memory, but
8762 * ensure a minimum size on small systems.
8763 */
8764 tmp = max_t(u64, tmp >> 2,
9705bea5 8765 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
8766 watermark_scale_factor, 10000));
8767
aa092591 8768 zone->watermark_boost = 0;
a9214443 8769 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
8770 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8771 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 8772
1125b4e3 8773 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 8774 }
cb45b0e9
HA
8775
8776 /* update totalreserve_pages */
8777 calculate_totalreserve_pages();
1da177e4
LT
8778}
8779
cfd3da1e
MG
8780/**
8781 * setup_per_zone_wmarks - called when min_free_kbytes changes
8782 * or when memory is hot-{added|removed}
8783 *
8784 * Ensures that the watermark[min,low,high] values for each zone are set
8785 * correctly with respect to min_free_kbytes.
8786 */
8787void setup_per_zone_wmarks(void)
8788{
b92ca18e 8789 struct zone *zone;
b93e0f32
MH
8790 static DEFINE_SPINLOCK(lock);
8791
8792 spin_lock(&lock);
cfd3da1e 8793 __setup_per_zone_wmarks();
b93e0f32 8794 spin_unlock(&lock);
b92ca18e
MG
8795
8796 /*
8797 * The watermark size have changed so update the pcpu batch
8798 * and high limits or the limits may be inappropriate.
8799 */
8800 for_each_zone(zone)
04f8cfea 8801 zone_pcp_update(zone, 0);
cfd3da1e
MG
8802}
8803
1da177e4
LT
8804/*
8805 * Initialise min_free_kbytes.
8806 *
8807 * For small machines we want it small (128k min). For large machines
8beeae86 8808 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
8809 * bandwidth does not increase linearly with machine size. We use
8810 *
b8af2941 8811 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
8812 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8813 *
8814 * which yields
8815 *
8816 * 16MB: 512k
8817 * 32MB: 724k
8818 * 64MB: 1024k
8819 * 128MB: 1448k
8820 * 256MB: 2048k
8821 * 512MB: 2896k
8822 * 1024MB: 4096k
8823 * 2048MB: 5792k
8824 * 4096MB: 8192k
8825 * 8192MB: 11584k
8826 * 16384MB: 16384k
8827 */
bd3400ea 8828void calculate_min_free_kbytes(void)
1da177e4
LT
8829{
8830 unsigned long lowmem_kbytes;
5f12733e 8831 int new_min_free_kbytes;
1da177e4
LT
8832
8833 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
8834 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8835
59d336bd
WS
8836 if (new_min_free_kbytes > user_min_free_kbytes)
8837 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8838 else
5f12733e
MH
8839 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8840 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 8841
bd3400ea
LF
8842}
8843
8844int __meminit init_per_zone_wmark_min(void)
8845{
8846 calculate_min_free_kbytes();
bc75d33f 8847 setup_per_zone_wmarks();
a6cccdc3 8848 refresh_zone_stat_thresholds();
1da177e4 8849 setup_per_zone_lowmem_reserve();
6423aa81
JK
8850
8851#ifdef CONFIG_NUMA
8852 setup_min_unmapped_ratio();
8853 setup_min_slab_ratio();
8854#endif
8855
4aab2be0
VB
8856 khugepaged_min_free_kbytes_update();
8857
1da177e4
LT
8858 return 0;
8859}
e08d3fdf 8860postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
8861
8862/*
b8af2941 8863 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
8864 * that we can call two helper functions whenever min_free_kbytes
8865 * changes.
8866 */
cccad5b9 8867int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 8868 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8869{
da8c757b
HP
8870 int rc;
8871
8872 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8873 if (rc)
8874 return rc;
8875
5f12733e
MH
8876 if (write) {
8877 user_min_free_kbytes = min_free_kbytes;
bc75d33f 8878 setup_per_zone_wmarks();
5f12733e 8879 }
1da177e4
LT
8880 return 0;
8881}
8882
795ae7a0 8883int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 8884 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
8885{
8886 int rc;
8887
8888 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8889 if (rc)
8890 return rc;
8891
8892 if (write)
8893 setup_per_zone_wmarks();
8894
8895 return 0;
8896}
8897
9614634f 8898#ifdef CONFIG_NUMA
6423aa81 8899static void setup_min_unmapped_ratio(void)
9614634f 8900{
6423aa81 8901 pg_data_t *pgdat;
9614634f 8902 struct zone *zone;
9614634f 8903
a5f5f91d 8904 for_each_online_pgdat(pgdat)
81cbcbc2 8905 pgdat->min_unmapped_pages = 0;
a5f5f91d 8906
9614634f 8907 for_each_zone(zone)
9705bea5
AK
8908 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8909 sysctl_min_unmapped_ratio) / 100;
9614634f 8910}
0ff38490 8911
6423aa81
JK
8912
8913int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8914 void *buffer, size_t *length, loff_t *ppos)
0ff38490 8915{
0ff38490
CL
8916 int rc;
8917
8d65af78 8918 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
8919 if (rc)
8920 return rc;
8921
6423aa81
JK
8922 setup_min_unmapped_ratio();
8923
8924 return 0;
8925}
8926
8927static void setup_min_slab_ratio(void)
8928{
8929 pg_data_t *pgdat;
8930 struct zone *zone;
8931
a5f5f91d
MG
8932 for_each_online_pgdat(pgdat)
8933 pgdat->min_slab_pages = 0;
8934
0ff38490 8935 for_each_zone(zone)
9705bea5
AK
8936 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8937 sysctl_min_slab_ratio) / 100;
6423aa81
JK
8938}
8939
8940int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8941 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
8942{
8943 int rc;
8944
8945 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8946 if (rc)
8947 return rc;
8948
8949 setup_min_slab_ratio();
8950
0ff38490
CL
8951 return 0;
8952}
9614634f
CL
8953#endif
8954
1da177e4
LT
8955/*
8956 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8957 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8958 * whenever sysctl_lowmem_reserve_ratio changes.
8959 *
8960 * The reserve ratio obviously has absolutely no relation with the
41858966 8961 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
8962 * if in function of the boot time zone sizes.
8963 */
cccad5b9 8964int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 8965 void *buffer, size_t *length, loff_t *ppos)
1da177e4 8966{
86aaf255
BH
8967 int i;
8968
8d65af78 8969 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
8970
8971 for (i = 0; i < MAX_NR_ZONES; i++) {
8972 if (sysctl_lowmem_reserve_ratio[i] < 1)
8973 sysctl_lowmem_reserve_ratio[i] = 0;
8974 }
8975
1da177e4
LT
8976 setup_per_zone_lowmem_reserve();
8977 return 0;
8978}
8979
8ad4b1fb 8980/*
74f44822
MG
8981 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8982 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 8983 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 8984 */
74f44822
MG
8985int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8986 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
8987{
8988 struct zone *zone;
74f44822 8989 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
8990 int ret;
8991
7cd2b0a3 8992 mutex_lock(&pcp_batch_high_lock);
74f44822 8993 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 8994
8d65af78 8995 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
8996 if (!write || ret < 0)
8997 goto out;
8998
8999 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
9000 if (percpu_pagelist_high_fraction &&
9001 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9002 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
9003 ret = -EINVAL;
9004 goto out;
9005 }
9006
9007 /* No change? */
74f44822 9008 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 9009 goto out;
c8e251fa 9010
cb1ef534 9011 for_each_populated_zone(zone)
74f44822 9012 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 9013out:
c8e251fa 9014 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 9015 return ret;
8ad4b1fb
RS
9016}
9017
f6f34b43
SD
9018#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9019/*
9020 * Returns the number of pages that arch has reserved but
9021 * is not known to alloc_large_system_hash().
9022 */
9023static unsigned long __init arch_reserved_kernel_pages(void)
9024{
9025 return 0;
9026}
9027#endif
9028
9017217b
PT
9029/*
9030 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9031 * machines. As memory size is increased the scale is also increased but at
9032 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9033 * quadruples the scale is increased by one, which means the size of hash table
9034 * only doubles, instead of quadrupling as well.
9035 * Because 32-bit systems cannot have large physical memory, where this scaling
9036 * makes sense, it is disabled on such platforms.
9037 */
9038#if __BITS_PER_LONG > 32
9039#define ADAPT_SCALE_BASE (64ul << 30)
9040#define ADAPT_SCALE_SHIFT 2
9041#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9042#endif
9043
1da177e4
LT
9044/*
9045 * allocate a large system hash table from bootmem
9046 * - it is assumed that the hash table must contain an exact power-of-2
9047 * quantity of entries
9048 * - limit is the number of hash buckets, not the total allocation size
9049 */
9050void *__init alloc_large_system_hash(const char *tablename,
9051 unsigned long bucketsize,
9052 unsigned long numentries,
9053 int scale,
9054 int flags,
9055 unsigned int *_hash_shift,
9056 unsigned int *_hash_mask,
31fe62b9
TB
9057 unsigned long low_limit,
9058 unsigned long high_limit)
1da177e4 9059{
31fe62b9 9060 unsigned long long max = high_limit;
1da177e4 9061 unsigned long log2qty, size;
97bab178 9062 void *table;
3749a8f0 9063 gfp_t gfp_flags;
ec11408a 9064 bool virt;
121e6f32 9065 bool huge;
1da177e4
LT
9066
9067 /* allow the kernel cmdline to have a say */
9068 if (!numentries) {
9069 /* round applicable memory size up to nearest megabyte */
04903664 9070 numentries = nr_kernel_pages;
f6f34b43 9071 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
9072
9073 /* It isn't necessary when PAGE_SIZE >= 1MB */
c940e020
ML
9074 if (PAGE_SIZE < SZ_1M)
9075 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
1da177e4 9076
9017217b
PT
9077#if __BITS_PER_LONG > 32
9078 if (!high_limit) {
9079 unsigned long adapt;
9080
9081 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9082 adapt <<= ADAPT_SCALE_SHIFT)
9083 scale++;
9084 }
9085#endif
9086
1da177e4
LT
9087 /* limit to 1 bucket per 2^scale bytes of low memory */
9088 if (scale > PAGE_SHIFT)
9089 numentries >>= (scale - PAGE_SHIFT);
9090 else
9091 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
9092
9093 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
9094 if (unlikely(flags & HASH_SMALL)) {
9095 /* Makes no sense without HASH_EARLY */
9096 WARN_ON(!(flags & HASH_EARLY));
9097 if (!(numentries >> *_hash_shift)) {
9098 numentries = 1UL << *_hash_shift;
9099 BUG_ON(!numentries);
9100 }
9101 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 9102 numentries = PAGE_SIZE / bucketsize;
1da177e4 9103 }
6e692ed3 9104 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
9105
9106 /* limit allocation size to 1/16 total memory by default */
9107 if (max == 0) {
9108 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9109 do_div(max, bucketsize);
9110 }
074b8517 9111 max = min(max, 0x80000000ULL);
1da177e4 9112
31fe62b9
TB
9113 if (numentries < low_limit)
9114 numentries = low_limit;
1da177e4
LT
9115 if (numentries > max)
9116 numentries = max;
9117
f0d1b0b3 9118 log2qty = ilog2(numentries);
1da177e4 9119
3749a8f0 9120 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 9121 do {
ec11408a 9122 virt = false;
1da177e4 9123 size = bucketsize << log2qty;
ea1f5f37
PT
9124 if (flags & HASH_EARLY) {
9125 if (flags & HASH_ZERO)
26fb3dae 9126 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 9127 else
7e1c4e27
MR
9128 table = memblock_alloc_raw(size,
9129 SMP_CACHE_BYTES);
ec11408a 9130 } else if (get_order(size) >= MAX_ORDER || hashdist) {
f2edd118 9131 table = vmalloc_huge(size, gfp_flags);
ec11408a 9132 virt = true;
084f7e23
ED
9133 if (table)
9134 huge = is_vm_area_hugepages(table);
ea1f5f37 9135 } else {
1037b83b
ED
9136 /*
9137 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
9138 * some pages at the end of hash table which
9139 * alloc_pages_exact() automatically does
1037b83b 9140 */
ec11408a
NP
9141 table = alloc_pages_exact(size, gfp_flags);
9142 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
9143 }
9144 } while (!table && size > PAGE_SIZE && --log2qty);
9145
9146 if (!table)
9147 panic("Failed to allocate %s hash table\n", tablename);
9148
ec11408a
NP
9149 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9150 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
121e6f32 9151 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
1da177e4
LT
9152
9153 if (_hash_shift)
9154 *_hash_shift = log2qty;
9155 if (_hash_mask)
9156 *_hash_mask = (1 << log2qty) - 1;
9157
9158 return table;
9159}
a117e66e 9160
8df995f6 9161#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
9162#if defined(CONFIG_DYNAMIC_DEBUG) || \
9163 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9164/* Usage: See admin-guide/dynamic-debug-howto.rst */
9165static void alloc_contig_dump_pages(struct list_head *page_list)
9166{
9167 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9168
9169 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9170 struct page *page;
9171
9172 dump_stack();
9173 list_for_each_entry(page, page_list, lru)
9174 dump_page(page, "migration failure");
9175 }
9176}
9177#else
9178static inline void alloc_contig_dump_pages(struct list_head *page_list)
9179{
9180}
9181#endif
9182
041d3a8c 9183/* [start, end) must belong to a single zone. */
b2c9e2fb 9184int __alloc_contig_migrate_range(struct compact_control *cc,
bb13ffeb 9185 unsigned long start, unsigned long end)
041d3a8c
MN
9186{
9187 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 9188 unsigned int nr_reclaimed;
041d3a8c
MN
9189 unsigned long pfn = start;
9190 unsigned int tries = 0;
9191 int ret = 0;
8b94e0b8
JK
9192 struct migration_target_control mtc = {
9193 .nid = zone_to_nid(cc->zone),
9194 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9195 };
041d3a8c 9196
361a2a22 9197 lru_cache_disable();
041d3a8c 9198
bb13ffeb 9199 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
9200 if (fatal_signal_pending(current)) {
9201 ret = -EINTR;
9202 break;
9203 }
9204
bb13ffeb
MG
9205 if (list_empty(&cc->migratepages)) {
9206 cc->nr_migratepages = 0;
c2ad7a1f
OS
9207 ret = isolate_migratepages_range(cc, pfn, end);
9208 if (ret && ret != -EAGAIN)
041d3a8c 9209 break;
c2ad7a1f 9210 pfn = cc->migrate_pfn;
041d3a8c
MN
9211 tries = 0;
9212 } else if (++tries == 5) {
c8e28b47 9213 ret = -EBUSY;
041d3a8c
MN
9214 break;
9215 }
9216
beb51eaa
MK
9217 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9218 &cc->migratepages);
9219 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 9220
8b94e0b8 9221 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 9222 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
9223
9224 /*
9225 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9226 * to retry again over this error, so do the same here.
9227 */
9228 if (ret == -ENOMEM)
9229 break;
041d3a8c 9230 }
d479960e 9231
361a2a22 9232 lru_cache_enable();
2a6f5124 9233 if (ret < 0) {
3f913fc5 9234 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
151e084a 9235 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
9236 putback_movable_pages(&cc->migratepages);
9237 return ret;
9238 }
9239 return 0;
041d3a8c
MN
9240}
9241
9242/**
9243 * alloc_contig_range() -- tries to allocate given range of pages
9244 * @start: start PFN to allocate
9245 * @end: one-past-the-last PFN to allocate
f0953a1b 9246 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
9247 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9248 * in range must have the same migratetype and it must
9249 * be either of the two.
ca96b625 9250 * @gfp_mask: GFP mask to use during compaction
041d3a8c 9251 *
11ac3e87
ZY
9252 * The PFN range does not have to be pageblock aligned. The PFN range must
9253 * belong to a single zone.
041d3a8c 9254 *
2c7452a0
MK
9255 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9256 * pageblocks in the range. Once isolated, the pageblocks should not
9257 * be modified by others.
041d3a8c 9258 *
a862f68a 9259 * Return: zero on success or negative error code. On success all
041d3a8c
MN
9260 * pages which PFN is in [start, end) are allocated for the caller and
9261 * need to be freed with free_contig_range().
9262 */
0815f3d8 9263int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 9264 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 9265{
041d3a8c 9266 unsigned long outer_start, outer_end;
b2c9e2fb 9267 int order;
d00181b9 9268 int ret = 0;
041d3a8c 9269
bb13ffeb
MG
9270 struct compact_control cc = {
9271 .nr_migratepages = 0,
9272 .order = -1,
9273 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 9274 .mode = MIGRATE_SYNC,
bb13ffeb 9275 .ignore_skip_hint = true,
2583d671 9276 .no_set_skip_hint = true,
7dea19f9 9277 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 9278 .alloc_contig = true,
bb13ffeb
MG
9279 };
9280 INIT_LIST_HEAD(&cc.migratepages);
9281
041d3a8c
MN
9282 /*
9283 * What we do here is we mark all pageblocks in range as
9284 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9285 * have different sizes, and due to the way page allocator
b2c9e2fb 9286 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
9287 *
9288 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9289 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 9290 * we are interested in). This will put all the pages in
041d3a8c
MN
9291 * range back to page allocator as MIGRATE_ISOLATE.
9292 *
9293 * When this is done, we take the pages in range from page
9294 * allocator removing them from the buddy system. This way
9295 * page allocator will never consider using them.
9296 *
9297 * This lets us mark the pageblocks back as
9298 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9299 * aligned range but not in the unaligned, original range are
9300 * put back to page allocator so that buddy can use them.
9301 */
9302
6e263fff 9303 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 9304 if (ret)
b2c9e2fb 9305 goto done;
041d3a8c 9306
7612921f
VB
9307 drain_all_pages(cc.zone);
9308
8ef5849f
JK
9309 /*
9310 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
9311 * So, just fall through. test_pages_isolated() has a tracepoint
9312 * which will report the busy page.
9313 *
9314 * It is possible that busy pages could become available before
9315 * the call to test_pages_isolated, and the range will actually be
9316 * allocated. So, if we fall through be sure to clear ret so that
9317 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 9318 */
bb13ffeb 9319 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 9320 if (ret && ret != -EBUSY)
041d3a8c 9321 goto done;
68d68ff6 9322 ret = 0;
041d3a8c
MN
9323
9324 /*
b2c9e2fb 9325 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
9326 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9327 * more, all pages in [start, end) are free in page allocator.
9328 * What we are going to do is to allocate all pages from
9329 * [start, end) (that is remove them from page allocator).
9330 *
9331 * The only problem is that pages at the beginning and at the
9332 * end of interesting range may be not aligned with pages that
9333 * page allocator holds, ie. they can be part of higher order
9334 * pages. Because of this, we reserve the bigger range and
9335 * once this is done free the pages we are not interested in.
9336 *
9337 * We don't have to hold zone->lock here because the pages are
9338 * isolated thus they won't get removed from buddy.
9339 */
9340
041d3a8c
MN
9341 order = 0;
9342 outer_start = start;
9343 while (!PageBuddy(pfn_to_page(outer_start))) {
9344 if (++order >= MAX_ORDER) {
8ef5849f
JK
9345 outer_start = start;
9346 break;
041d3a8c
MN
9347 }
9348 outer_start &= ~0UL << order;
9349 }
9350
8ef5849f 9351 if (outer_start != start) {
ab130f91 9352 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
9353
9354 /*
9355 * outer_start page could be small order buddy page and
9356 * it doesn't include start page. Adjust outer_start
9357 * in this case to report failed page properly
9358 * on tracepoint in test_pages_isolated()
9359 */
9360 if (outer_start + (1UL << order) <= start)
9361 outer_start = start;
9362 }
9363
041d3a8c 9364 /* Make sure the range is really isolated. */
756d25be 9365 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
9366 ret = -EBUSY;
9367 goto done;
9368 }
9369
49f223a9 9370 /* Grab isolated pages from freelists. */
bb13ffeb 9371 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
9372 if (!outer_end) {
9373 ret = -EBUSY;
9374 goto done;
9375 }
9376
9377 /* Free head and tail (if any) */
9378 if (start != outer_start)
9379 free_contig_range(outer_start, start - outer_start);
9380 if (end != outer_end)
9381 free_contig_range(end, outer_end - end);
9382
9383done:
6e263fff 9384 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
9385 return ret;
9386}
255f5985 9387EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
9388
9389static int __alloc_contig_pages(unsigned long start_pfn,
9390 unsigned long nr_pages, gfp_t gfp_mask)
9391{
9392 unsigned long end_pfn = start_pfn + nr_pages;
9393
9394 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9395 gfp_mask);
9396}
9397
9398static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9399 unsigned long nr_pages)
9400{
9401 unsigned long i, end_pfn = start_pfn + nr_pages;
9402 struct page *page;
9403
9404 for (i = start_pfn; i < end_pfn; i++) {
9405 page = pfn_to_online_page(i);
9406 if (!page)
9407 return false;
9408
9409 if (page_zone(page) != z)
9410 return false;
9411
9412 if (PageReserved(page))
9413 return false;
5e27a2df
AK
9414 }
9415 return true;
9416}
9417
9418static bool zone_spans_last_pfn(const struct zone *zone,
9419 unsigned long start_pfn, unsigned long nr_pages)
9420{
9421 unsigned long last_pfn = start_pfn + nr_pages - 1;
9422
9423 return zone_spans_pfn(zone, last_pfn);
9424}
9425
9426/**
9427 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9428 * @nr_pages: Number of contiguous pages to allocate
9429 * @gfp_mask: GFP mask to limit search and used during compaction
9430 * @nid: Target node
9431 * @nodemask: Mask for other possible nodes
9432 *
9433 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9434 * on an applicable zonelist to find a contiguous pfn range which can then be
9435 * tried for allocation with alloc_contig_range(). This routine is intended
9436 * for allocation requests which can not be fulfilled with the buddy allocator.
9437 *
9438 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
9439 * power of two, then allocated range is also guaranteed to be aligned to same
9440 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
9441 *
9442 * Allocated pages can be freed with free_contig_range() or by manually calling
9443 * __free_page() on each allocated page.
9444 *
9445 * Return: pointer to contiguous pages on success, or NULL if not successful.
9446 */
9447struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9448 int nid, nodemask_t *nodemask)
9449{
9450 unsigned long ret, pfn, flags;
9451 struct zonelist *zonelist;
9452 struct zone *zone;
9453 struct zoneref *z;
9454
9455 zonelist = node_zonelist(nid, gfp_mask);
9456 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9457 gfp_zone(gfp_mask), nodemask) {
9458 spin_lock_irqsave(&zone->lock, flags);
9459
9460 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9461 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9462 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9463 /*
9464 * We release the zone lock here because
9465 * alloc_contig_range() will also lock the zone
9466 * at some point. If there's an allocation
9467 * spinning on this lock, it may win the race
9468 * and cause alloc_contig_range() to fail...
9469 */
9470 spin_unlock_irqrestore(&zone->lock, flags);
9471 ret = __alloc_contig_pages(pfn, nr_pages,
9472 gfp_mask);
9473 if (!ret)
9474 return pfn_to_page(pfn);
9475 spin_lock_irqsave(&zone->lock, flags);
9476 }
9477 pfn += nr_pages;
9478 }
9479 spin_unlock_irqrestore(&zone->lock, flags);
9480 }
9481 return NULL;
9482}
4eb0716e 9483#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 9484
78fa5150 9485void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 9486{
78fa5150 9487 unsigned long count = 0;
bcc2b02f
MS
9488
9489 for (; nr_pages--; pfn++) {
9490 struct page *page = pfn_to_page(pfn);
9491
9492 count += page_count(page) != 1;
9493 __free_page(page);
9494 }
78fa5150 9495 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 9496}
255f5985 9497EXPORT_SYMBOL(free_contig_range);
041d3a8c 9498
ec6e8c7e
VB
9499/*
9500 * Effectively disable pcplists for the zone by setting the high limit to 0
9501 * and draining all cpus. A concurrent page freeing on another CPU that's about
9502 * to put the page on pcplist will either finish before the drain and the page
9503 * will be drained, or observe the new high limit and skip the pcplist.
9504 *
9505 * Must be paired with a call to zone_pcp_enable().
9506 */
9507void zone_pcp_disable(struct zone *zone)
9508{
9509 mutex_lock(&pcp_batch_high_lock);
9510 __zone_set_pageset_high_and_batch(zone, 0, 1);
9511 __drain_all_pages(zone, true);
9512}
9513
9514void zone_pcp_enable(struct zone *zone)
9515{
9516 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9517 mutex_unlock(&pcp_batch_high_lock);
9518}
9519
340175b7
JL
9520void zone_pcp_reset(struct zone *zone)
9521{
5a883813 9522 int cpu;
28f836b6 9523 struct per_cpu_zonestat *pzstats;
340175b7 9524
28f836b6 9525 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 9526 for_each_online_cpu(cpu) {
28f836b6
MG
9527 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9528 drain_zonestat(zone, pzstats);
5a883813 9529 }
28f836b6 9530 free_percpu(zone->per_cpu_pageset);
28f836b6 9531 zone->per_cpu_pageset = &boot_pageset;
022e7fa0
ML
9532 if (zone->per_cpu_zonestats != &boot_zonestats) {
9533 free_percpu(zone->per_cpu_zonestats);
9534 zone->per_cpu_zonestats = &boot_zonestats;
9535 }
340175b7 9536 }
340175b7
JL
9537}
9538
6dcd73d7 9539#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 9540/*
257bea71
DH
9541 * All pages in the range must be in a single zone, must not contain holes,
9542 * must span full sections, and must be isolated before calling this function.
0c0e6195 9543 */
257bea71 9544void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 9545{
257bea71 9546 unsigned long pfn = start_pfn;
0c0e6195
KH
9547 struct page *page;
9548 struct zone *zone;
0ee5f4f3 9549 unsigned int order;
0c0e6195 9550 unsigned long flags;
5557c766 9551
2d070eab 9552 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
9553 zone = page_zone(pfn_to_page(pfn));
9554 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 9555 while (pfn < end_pfn) {
0c0e6195 9556 page = pfn_to_page(pfn);
b023f468
WC
9557 /*
9558 * The HWPoisoned page may be not in buddy system, and
9559 * page_count() is not 0.
9560 */
9561 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9562 pfn++;
b023f468
WC
9563 continue;
9564 }
aa218795
DH
9565 /*
9566 * At this point all remaining PageOffline() pages have a
9567 * reference count of 0 and can simply be skipped.
9568 */
9569 if (PageOffline(page)) {
9570 BUG_ON(page_count(page));
9571 BUG_ON(PageBuddy(page));
9572 pfn++;
aa218795
DH
9573 continue;
9574 }
b023f468 9575
0c0e6195
KH
9576 BUG_ON(page_count(page));
9577 BUG_ON(!PageBuddy(page));
ab130f91 9578 order = buddy_order(page);
6ab01363 9579 del_page_from_free_list(page, zone, order);
0c0e6195
KH
9580 pfn += (1 << order);
9581 }
9582 spin_unlock_irqrestore(&zone->lock, flags);
9583}
9584#endif
8d22ba1b 9585
8446b59b
ED
9586/*
9587 * This function returns a stable result only if called under zone lock.
9588 */
8d22ba1b
WF
9589bool is_free_buddy_page(struct page *page)
9590{
8d22ba1b 9591 unsigned long pfn = page_to_pfn(page);
7aeb09f9 9592 unsigned int order;
8d22ba1b 9593
8d22ba1b
WF
9594 for (order = 0; order < MAX_ORDER; order++) {
9595 struct page *page_head = page - (pfn & ((1 << order) - 1));
9596
8446b59b
ED
9597 if (PageBuddy(page_head) &&
9598 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
9599 break;
9600 }
8d22ba1b
WF
9601
9602 return order < MAX_ORDER;
9603}
a581865e 9604EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
9605
9606#ifdef CONFIG_MEMORY_FAILURE
9607/*
06be6ff3
OS
9608 * Break down a higher-order page in sub-pages, and keep our target out of
9609 * buddy allocator.
d4ae9916 9610 */
06be6ff3
OS
9611static void break_down_buddy_pages(struct zone *zone, struct page *page,
9612 struct page *target, int low, int high,
9613 int migratetype)
9614{
9615 unsigned long size = 1 << high;
9616 struct page *current_buddy, *next_page;
9617
9618 while (high > low) {
9619 high--;
9620 size >>= 1;
9621
9622 if (target >= &page[size]) {
9623 next_page = page + size;
9624 current_buddy = page;
9625 } else {
9626 next_page = page;
9627 current_buddy = page + size;
9628 }
9629
9630 if (set_page_guard(zone, current_buddy, high, migratetype))
9631 continue;
9632
9633 if (current_buddy != target) {
9634 add_to_free_list(current_buddy, zone, high, migratetype);
ab130f91 9635 set_buddy_order(current_buddy, high);
06be6ff3
OS
9636 page = next_page;
9637 }
9638 }
9639}
9640
9641/*
9642 * Take a page that will be marked as poisoned off the buddy allocator.
9643 */
9644bool take_page_off_buddy(struct page *page)
d4ae9916
NH
9645{
9646 struct zone *zone = page_zone(page);
9647 unsigned long pfn = page_to_pfn(page);
9648 unsigned long flags;
9649 unsigned int order;
06be6ff3 9650 bool ret = false;
d4ae9916
NH
9651
9652 spin_lock_irqsave(&zone->lock, flags);
9653 for (order = 0; order < MAX_ORDER; order++) {
9654 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 9655 int page_order = buddy_order(page_head);
d4ae9916 9656
ab130f91 9657 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
9658 unsigned long pfn_head = page_to_pfn(page_head);
9659 int migratetype = get_pfnblock_migratetype(page_head,
9660 pfn_head);
9661
ab130f91 9662 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 9663 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 9664 page_order, migratetype);
bf181c58 9665 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
9666 if (!is_migrate_isolate(migratetype))
9667 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 9668 ret = true;
d4ae9916
NH
9669 break;
9670 }
06be6ff3
OS
9671 if (page_count(page_head) > 0)
9672 break;
d4ae9916
NH
9673 }
9674 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 9675 return ret;
d4ae9916 9676}
bf181c58
NH
9677
9678/*
9679 * Cancel takeoff done by take_page_off_buddy().
9680 */
9681bool put_page_back_buddy(struct page *page)
9682{
9683 struct zone *zone = page_zone(page);
9684 unsigned long pfn = page_to_pfn(page);
9685 unsigned long flags;
9686 int migratetype = get_pfnblock_migratetype(page, pfn);
9687 bool ret = false;
9688
9689 spin_lock_irqsave(&zone->lock, flags);
9690 if (put_page_testzero(page)) {
9691 ClearPageHWPoisonTakenOff(page);
9692 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9693 if (TestClearPageHWPoison(page)) {
bf181c58
NH
9694 ret = true;
9695 }
9696 }
9697 spin_unlock_irqrestore(&zone->lock, flags);
9698
9699 return ret;
9700}
d4ae9916 9701#endif
62b31070
BH
9702
9703#ifdef CONFIG_ZONE_DMA
9704bool has_managed_dma(void)
9705{
9706 struct pglist_data *pgdat;
9707
9708 for_each_online_pgdat(pgdat) {
9709 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9710
9711 if (managed_zone(zone))
9712 return true;
9713 }
9714 return false;
9715}
9716#endif /* CONFIG_ZONE_DMA */