Merge tag 'erofs-for-6.8-rc3-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/interrupt.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
b8c73fc2 25#include <linux/kasan.h>
b073d7f8 26#include <linux/kmsan.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
a238ab5b 29#include <linux/ratelimit.h>
5a3135c2 30#include <linux/oom.h>
1da177e4
LT
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4 36#include <linux/nodemask.h>
a6cccdc3 37#include <linux/vmstat.h>
933e312e 38#include <linux/fault-inject.h>
56de7263 39#include <linux/compaction.h>
0d3d062a 40#include <trace/events/kmem.h>
d379f01d 41#include <trace/events/oom.h>
268bb0ce 42#include <linux/prefetch.h>
6e543d57 43#include <linux/mm_inline.h>
f920e413 44#include <linux/mmu_notifier.h>
041d3a8c 45#include <linux/migrate.h>
5b3cc15a 46#include <linux/sched/mm.h>
48c96a36 47#include <linux/page_owner.h>
df4e817b 48#include <linux/page_table_check.h>
4949148a 49#include <linux/memcontrol.h>
42c269c8 50#include <linux/ftrace.h>
d92a8cfc 51#include <linux/lockdep.h>
eb414681 52#include <linux/psi.h>
4aab2be0 53#include <linux/khugepaged.h>
5bf18281 54#include <linux/delayacct.h>
362d37a1 55#include <linux/cacheinfo.h>
ac924c60 56#include <asm/div64.h>
1da177e4 57#include "internal.h"
e900a918 58#include "shuffle.h"
36e66c55 59#include "page_reporting.h"
1da177e4 60
f04a5d5d
DH
61/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
62typedef int __bitwise fpi_t;
63
64/* No special request */
65#define FPI_NONE ((__force fpi_t)0)
66
67/*
68 * Skip free page reporting notification for the (possibly merged) page.
69 * This does not hinder free page reporting from grabbing the page,
70 * reporting it and marking it "reported" - it only skips notifying
71 * the free page reporting infrastructure about a newly freed page. For
72 * example, used when temporarily pulling a page from a freelist and
73 * putting it back unmodified.
74 */
75#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
76
47b6a24a
DH
77/*
78 * Place the (possibly merged) page to the tail of the freelist. Will ignore
79 * page shuffling (relevant code - e.g., memory onlining - is expected to
80 * shuffle the whole zone).
81 *
82 * Note: No code should rely on this flag for correctness - it's purely
83 * to allow for optimizations when handing back either fresh pages
84 * (memory onlining) or untouched pages (page isolation, free page
85 * reporting).
86 */
87#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
88
c8e251fa
CS
89/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
90static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 91#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 92
4b23a68f
MG
93#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
94/*
95 * On SMP, spin_trylock is sufficient protection.
96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
97 */
98#define pcp_trylock_prepare(flags) do { } while (0)
99#define pcp_trylock_finish(flag) do { } while (0)
100#else
101
102/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
103#define pcp_trylock_prepare(flags) local_irq_save(flags)
104#define pcp_trylock_finish(flags) local_irq_restore(flags)
105#endif
106
01b44456
MG
107/*
108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
109 * a migration causing the wrong PCP to be locked and remote memory being
110 * potentially allocated, pin the task to the CPU for the lookup+lock.
111 * preempt_disable is used on !RT because it is faster than migrate_disable.
112 * migrate_disable is used on RT because otherwise RT spinlock usage is
113 * interfered with and a high priority task cannot preempt the allocator.
114 */
115#ifndef CONFIG_PREEMPT_RT
116#define pcpu_task_pin() preempt_disable()
117#define pcpu_task_unpin() preempt_enable()
118#else
119#define pcpu_task_pin() migrate_disable()
120#define pcpu_task_unpin() migrate_enable()
121#endif
c8e251fa 122
01b44456
MG
123/*
124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
125 * Return value should be used with equivalent unlock helper.
126 */
127#define pcpu_spin_lock(type, member, ptr) \
128({ \
129 type *_ret; \
130 pcpu_task_pin(); \
131 _ret = this_cpu_ptr(ptr); \
132 spin_lock(&_ret->member); \
133 _ret; \
134})
135
57490774 136#define pcpu_spin_trylock(type, member, ptr) \
01b44456
MG
137({ \
138 type *_ret; \
139 pcpu_task_pin(); \
140 _ret = this_cpu_ptr(ptr); \
57490774 141 if (!spin_trylock(&_ret->member)) { \
01b44456
MG
142 pcpu_task_unpin(); \
143 _ret = NULL; \
144 } \
145 _ret; \
146})
147
148#define pcpu_spin_unlock(member, ptr) \
149({ \
150 spin_unlock(&ptr->member); \
151 pcpu_task_unpin(); \
152})
153
01b44456
MG
154/* struct per_cpu_pages specific helpers. */
155#define pcp_spin_lock(ptr) \
156 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
157
57490774
MG
158#define pcp_spin_trylock(ptr) \
159 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
01b44456
MG
160
161#define pcp_spin_unlock(ptr) \
162 pcpu_spin_unlock(lock, ptr)
163
72812019
LS
164#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
165DEFINE_PER_CPU(int, numa_node);
166EXPORT_PER_CPU_SYMBOL(numa_node);
167#endif
168
4518085e
KW
169DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
170
7aac7898
LS
171#ifdef CONFIG_HAVE_MEMORYLESS_NODES
172/*
173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
176 * defined in <linux/topology.h>.
177 */
178DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
179EXPORT_PER_CPU_SYMBOL(_numa_mem_);
180#endif
181
8b885f53 182static DEFINE_MUTEX(pcpu_drain_mutex);
bd233f53 183
38addce8 184#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 185volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
186EXPORT_SYMBOL(latent_entropy);
187#endif
188
1da177e4 189/*
13808910 190 * Array of node states.
1da177e4 191 */
13808910
CL
192nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
193 [N_POSSIBLE] = NODE_MASK_ALL,
194 [N_ONLINE] = { { [0] = 1UL } },
195#ifndef CONFIG_NUMA
196 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
197#ifdef CONFIG_HIGHMEM
198 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 199#endif
20b2f52b 200 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
201 [N_CPU] = { { [0] = 1UL } },
202#endif /* NUMA */
203};
204EXPORT_SYMBOL(node_states);
205
dcce284a 206gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a 207
bb14c2c7
VB
208/*
209 * A cached value of the page's pageblock's migratetype, used when the page is
210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
211 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
212 * Also the migratetype set in the page does not necessarily match the pcplist
213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
214 * other index - this ensures that it will be put on the correct CMA freelist.
215 */
216static inline int get_pcppage_migratetype(struct page *page)
217{
218 return page->index;
219}
220
221static inline void set_pcppage_migratetype(struct page *page, int migratetype)
222{
223 page->index = migratetype;
224}
225
d9c23400 226#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 227unsigned int pageblock_order __read_mostly;
d9c23400
MG
228#endif
229
7fef431b
DH
230static void __free_pages_ok(struct page *page, unsigned int order,
231 fpi_t fpi_flags);
a226f6c8 232
1da177e4
LT
233/*
234 * results with 256, 32 in the lowmem_reserve sysctl:
235 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
236 * 1G machine -> (16M dma, 784M normal, 224M high)
237 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
238 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 239 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
240 *
241 * TBD: should special case ZONE_DMA32 machines here - in those we normally
242 * don't need any ZONE_NORMAL reservation
1da177e4 243 */
62069aac 244static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 245#ifdef CONFIG_ZONE_DMA
d3cda233 246 [ZONE_DMA] = 256,
4b51d669 247#endif
fb0e7942 248#ifdef CONFIG_ZONE_DMA32
d3cda233 249 [ZONE_DMA32] = 256,
fb0e7942 250#endif
d3cda233 251 [ZONE_NORMAL] = 32,
e53ef38d 252#ifdef CONFIG_HIGHMEM
d3cda233 253 [ZONE_HIGHMEM] = 0,
e53ef38d 254#endif
d3cda233 255 [ZONE_MOVABLE] = 0,
2f1b6248 256};
1da177e4 257
9420f89d 258char * const zone_names[MAX_NR_ZONES] = {
4b51d669 259#ifdef CONFIG_ZONE_DMA
2f1b6248 260 "DMA",
4b51d669 261#endif
fb0e7942 262#ifdef CONFIG_ZONE_DMA32
2f1b6248 263 "DMA32",
fb0e7942 264#endif
2f1b6248 265 "Normal",
e53ef38d 266#ifdef CONFIG_HIGHMEM
2a1e274a 267 "HighMem",
e53ef38d 268#endif
2a1e274a 269 "Movable",
033fbae9
DW
270#ifdef CONFIG_ZONE_DEVICE
271 "Device",
272#endif
2f1b6248
CL
273};
274
c999fbd3 275const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
276 "Unmovable",
277 "Movable",
278 "Reclaimable",
279 "HighAtomic",
280#ifdef CONFIG_CMA
281 "CMA",
282#endif
283#ifdef CONFIG_MEMORY_ISOLATION
284 "Isolate",
285#endif
286};
287
1da177e4 288int min_free_kbytes = 1024;
42aa83cb 289int user_min_free_kbytes = -1;
e95d372c
KW
290static int watermark_boost_factor __read_mostly = 15000;
291static int watermark_scale_factor = 10;
0ee332c1
TH
292
293/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
294int movable_zone;
295EXPORT_SYMBOL(movable_zone);
c713216d 296
418508c1 297#if MAX_NUMNODES > 1
b9726c26 298unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 299unsigned int nr_online_nodes __read_mostly = 1;
418508c1 300EXPORT_SYMBOL(nr_node_ids);
62bc62a8 301EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
302#endif
303
dcdfdd40
KS
304static bool page_contains_unaccepted(struct page *page, unsigned int order);
305static void accept_page(struct page *page, unsigned int order);
306static bool try_to_accept_memory(struct zone *zone, unsigned int order);
307static inline bool has_unaccepted_memory(void);
308static bool __free_unaccepted(struct page *page);
309
9ef9acb0
MG
310int page_group_by_mobility_disabled __read_mostly;
311
3a80a7fa 312#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
313/*
314 * During boot we initialize deferred pages on-demand, as needed, but once
315 * page_alloc_init_late() has finished, the deferred pages are all initialized,
316 * and we can permanently disable that path.
317 */
9420f89d 318DEFINE_STATIC_KEY_TRUE(deferred_pages);
3c0c12cc 319
94ae8b83 320static inline bool deferred_pages_enabled(void)
3c0c12cc 321{
94ae8b83 322 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
323}
324
3a80a7fa 325/*
9420f89d
MRI
326 * deferred_grow_zone() is __init, but it is called from
327 * get_page_from_freelist() during early boot until deferred_pages permanently
328 * disables this call. This is why we have refdata wrapper to avoid warning,
329 * and to ensure that the function body gets unloaded.
3a80a7fa 330 */
9420f89d
MRI
331static bool __ref
332_deferred_grow_zone(struct zone *zone, unsigned int order)
3a80a7fa 333{
9420f89d 334 return deferred_grow_zone(zone, order);
3a80a7fa
MG
335}
336#else
94ae8b83 337static inline bool deferred_pages_enabled(void)
2c335680 338{
94ae8b83 339 return false;
2c335680 340}
9420f89d 341#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
3a80a7fa 342
0b423ca2 343/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 344static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
345 unsigned long pfn)
346{
347#ifdef CONFIG_SPARSEMEM
f1eca35a 348 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
349#else
350 return page_zone(page)->pageblock_flags;
351#endif /* CONFIG_SPARSEMEM */
352}
353
ca891f41 354static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
355{
356#ifdef CONFIG_SPARSEMEM
357 pfn &= (PAGES_PER_SECTION-1);
0b423ca2 358#else
4f9bc69a 359 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
0b423ca2 360#endif /* CONFIG_SPARSEMEM */
399b795b 361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
362}
363
a04d12c2
KS
364/**
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @mask: mask of bits that the caller is interested in
369 *
370 * Return: pageblock_bits flags
371 */
372unsigned long get_pfnblock_flags_mask(const struct page *page,
373 unsigned long pfn, unsigned long mask)
0b423ca2
MG
374{
375 unsigned long *bitmap;
376 unsigned long bitidx, word_bitidx;
377 unsigned long word;
378
379 bitmap = get_pageblock_bitmap(page, pfn);
380 bitidx = pfn_to_bitidx(page, pfn);
381 word_bitidx = bitidx / BITS_PER_LONG;
382 bitidx &= (BITS_PER_LONG-1);
1c563432
MK
383 /*
384 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
385 * a consistent read of the memory array, so that results, even though
386 * racy, are not corrupted.
387 */
388 word = READ_ONCE(bitmap[word_bitidx]);
d93d5ab9 389 return (word >> bitidx) & mask;
0b423ca2
MG
390}
391
ca891f41
MWO
392static __always_inline int get_pfnblock_migratetype(const struct page *page,
393 unsigned long pfn)
0b423ca2 394{
a04d12c2 395 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
396}
397
398/**
399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
400 * @page: The page within the block of interest
401 * @flags: The flags to set
402 * @pfn: The target page frame number
0b423ca2
MG
403 * @mask: mask of bits that the caller is interested in
404 */
405void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
406 unsigned long pfn,
0b423ca2
MG
407 unsigned long mask)
408{
409 unsigned long *bitmap;
410 unsigned long bitidx, word_bitidx;
04ec0061 411 unsigned long word;
0b423ca2
MG
412
413 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 414 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
415
416 bitmap = get_pageblock_bitmap(page, pfn);
417 bitidx = pfn_to_bitidx(page, pfn);
418 word_bitidx = bitidx / BITS_PER_LONG;
419 bitidx &= (BITS_PER_LONG-1);
420
421 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
422
d93d5ab9
WY
423 mask <<= bitidx;
424 flags <<= bitidx;
0b423ca2
MG
425
426 word = READ_ONCE(bitmap[word_bitidx]);
04ec0061
UB
427 do {
428 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
0b423ca2 429}
3a80a7fa 430
ee6f509c 431void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 432{
5d0f3f72
KM
433 if (unlikely(page_group_by_mobility_disabled &&
434 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
435 migratetype = MIGRATE_UNMOVABLE;
436
d93d5ab9 437 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 438 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
439}
440
13e7444b 441#ifdef CONFIG_DEBUG_VM
c6a57e19 442static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 443{
82d9b8c8 444 int ret;
bdc8cb98
DH
445 unsigned seq;
446 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 447 unsigned long sp, start_pfn;
c6a57e19 448
bdc8cb98
DH
449 do {
450 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
451 start_pfn = zone->zone_start_pfn;
452 sp = zone->spanned_pages;
82d9b8c8 453 ret = !zone_spans_pfn(zone, pfn);
bdc8cb98
DH
454 } while (zone_span_seqretry(zone, seq));
455
b5e6a5a2 456 if (ret)
613813e8
DH
457 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
458 pfn, zone_to_nid(zone), zone->name,
459 start_pfn, start_pfn + sp);
b5e6a5a2 460
bdc8cb98 461 return ret;
c6a57e19
DH
462}
463
c6a57e19
DH
464/*
465 * Temporary debugging check for pages not lying within a given zone.
466 */
d73d3c9f 467static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
468{
469 if (page_outside_zone_boundaries(zone, page))
1da177e4 470 return 1;
5b855aa3 471 if (zone != page_zone(page))
c6a57e19
DH
472 return 1;
473
1da177e4
LT
474 return 0;
475}
13e7444b 476#else
d73d3c9f 477static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
478{
479 return 0;
480}
481#endif
482
82a3241a 483static void bad_page(struct page *page, const char *reason)
1da177e4 484{
d936cf9b
HD
485 static unsigned long resume;
486 static unsigned long nr_shown;
487 static unsigned long nr_unshown;
488
489 /*
490 * Allow a burst of 60 reports, then keep quiet for that minute;
491 * or allow a steady drip of one report per second.
492 */
493 if (nr_shown == 60) {
494 if (time_before(jiffies, resume)) {
495 nr_unshown++;
496 goto out;
497 }
498 if (nr_unshown) {
ff8e8116 499 pr_alert(
1e9e6365 500 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
501 nr_unshown);
502 nr_unshown = 0;
503 }
504 nr_shown = 0;
505 }
506 if (nr_shown++ == 0)
507 resume = jiffies + 60 * HZ;
508
ff8e8116 509 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 510 current->comm, page_to_pfn(page));
d2f07ec0 511 dump_page(page, reason);
3dc14741 512
4f31888c 513 print_modules();
1da177e4 514 dump_stack();
d936cf9b 515out:
8cc3b392 516 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 517 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 518 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
519}
520
44042b44
MG
521static inline unsigned int order_to_pindex(int migratetype, int order)
522{
44042b44
MG
523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 VM_BUG_ON(order != pageblock_order);
5d0a661d 526 return NR_LOWORDER_PCP_LISTS;
44042b44
MG
527 }
528#else
529 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
530#endif
531
c1dc69e6 532 return (MIGRATE_PCPTYPES * order) + migratetype;
44042b44
MG
533}
534
535static inline int pindex_to_order(unsigned int pindex)
536{
537 int order = pindex / MIGRATE_PCPTYPES;
538
539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5d0a661d 540 if (pindex == NR_LOWORDER_PCP_LISTS)
44042b44 541 order = pageblock_order;
44042b44
MG
542#else
543 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
544#endif
545
546 return order;
547}
548
549static inline bool pcp_allowed_order(unsigned int order)
550{
551 if (order <= PAGE_ALLOC_COSTLY_ORDER)
552 return true;
553#ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 if (order == pageblock_order)
555 return true;
556#endif
557 return false;
558}
559
21d02f8f
MG
560static inline void free_the_page(struct page *page, unsigned int order)
561{
44042b44
MG
562 if (pcp_allowed_order(order)) /* Via pcp? */
563 free_unref_page(page, order);
21d02f8f
MG
564 else
565 __free_pages_ok(page, order, FPI_NONE);
566}
567
1da177e4
LT
568/*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
1d798ca3 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 572 *
1d798ca3
KS
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 575 *
1d798ca3 576 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 577 * This usage means that zero-order pages may not be compound.
1da177e4 578 */
d98c7a09 579
d00181b9 580void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
581{
582 int i;
583 int nr_pages = 1 << order;
584
18229df5 585 __SetPageHead(page);
5b24eeef
JM
586 for (i = 1; i < nr_pages; i++)
587 prep_compound_tail(page, i);
1378a5ee 588
5b24eeef 589 prep_compound_head(page, order);
18229df5
AW
590}
591
5375336c
MWO
592void destroy_large_folio(struct folio *folio)
593{
dd6fa0b6 594 if (folio_test_hugetlb(folio)) {
454a00c4 595 free_huge_folio(folio);
dd6fa0b6
MWO
596 return;
597 }
8dc4a8f1 598
de53c05f 599 if (folio_test_large_rmappable(folio))
8dc4a8f1 600 folio_undo_large_rmappable(folio);
5375336c 601
0f2f43fa
MWO
602 mem_cgroup_uncharge(folio);
603 free_the_page(&folio->page, folio_order(folio));
5375336c
MWO
604}
605
ab130f91 606static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 607{
4c21e2f2 608 set_page_private(page, order);
676165a8 609 __SetPageBuddy(page);
1da177e4
LT
610}
611
5e1f0f09
MG
612#ifdef CONFIG_COMPACTION
613static inline struct capture_control *task_capc(struct zone *zone)
614{
615 struct capture_control *capc = current->capture_control;
616
deba0487 617 return unlikely(capc) &&
5e1f0f09
MG
618 !(current->flags & PF_KTHREAD) &&
619 !capc->page &&
deba0487 620 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
621}
622
623static inline bool
624compaction_capture(struct capture_control *capc, struct page *page,
625 int order, int migratetype)
626{
627 if (!capc || order != capc->cc->order)
628 return false;
629
630 /* Do not accidentally pollute CMA or isolated regions*/
631 if (is_migrate_cma(migratetype) ||
632 is_migrate_isolate(migratetype))
633 return false;
634
635 /*
f0953a1b 636 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
637 * This might let an unmovable request use a reclaimable pageblock
638 * and vice-versa but no more than normal fallback logic which can
639 * have trouble finding a high-order free page.
640 */
641 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
642 return false;
643
644 capc->page = page;
645 return true;
646}
647
648#else
649static inline struct capture_control *task_capc(struct zone *zone)
650{
651 return NULL;
652}
653
654static inline bool
655compaction_capture(struct capture_control *capc, struct page *page,
656 int order, int migratetype)
657{
658 return false;
659}
660#endif /* CONFIG_COMPACTION */
661
6ab01363
AD
662/* Used for pages not on another list */
663static inline void add_to_free_list(struct page *page, struct zone *zone,
664 unsigned int order, int migratetype)
665{
666 struct free_area *area = &zone->free_area[order];
667
bf75f200 668 list_add(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
669 area->nr_free++;
670}
671
672/* Used for pages not on another list */
673static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
674 unsigned int order, int migratetype)
675{
676 struct free_area *area = &zone->free_area[order];
677
bf75f200 678 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
679 area->nr_free++;
680}
681
293ffa5e
DH
682/*
683 * Used for pages which are on another list. Move the pages to the tail
684 * of the list - so the moved pages won't immediately be considered for
685 * allocation again (e.g., optimization for memory onlining).
686 */
6ab01363
AD
687static inline void move_to_free_list(struct page *page, struct zone *zone,
688 unsigned int order, int migratetype)
689{
690 struct free_area *area = &zone->free_area[order];
691
bf75f200 692 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
693}
694
695static inline void del_page_from_free_list(struct page *page, struct zone *zone,
696 unsigned int order)
697{
36e66c55
AD
698 /* clear reported state and update reported page count */
699 if (page_reported(page))
700 __ClearPageReported(page);
701
bf75f200 702 list_del(&page->buddy_list);
6ab01363
AD
703 __ClearPageBuddy(page);
704 set_page_private(page, 0);
705 zone->free_area[order].nr_free--;
706}
707
5d671eb4
MRI
708static inline struct page *get_page_from_free_area(struct free_area *area,
709 int migratetype)
710{
711 return list_first_entry_or_null(&area->free_list[migratetype],
1bf61092 712 struct page, buddy_list);
5d671eb4
MRI
713}
714
a2129f24
AD
715/*
716 * If this is not the largest possible page, check if the buddy
717 * of the next-highest order is free. If it is, it's possible
718 * that pages are being freed that will coalesce soon. In case,
719 * that is happening, add the free page to the tail of the list
720 * so it's less likely to be used soon and more likely to be merged
721 * as a higher order page
722 */
723static inline bool
724buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
725 struct page *page, unsigned int order)
726{
8170ac47
ZY
727 unsigned long higher_page_pfn;
728 struct page *higher_page;
a2129f24 729
5e0a760b 730 if (order >= MAX_PAGE_ORDER - 1)
a2129f24
AD
731 return false;
732
8170ac47
ZY
733 higher_page_pfn = buddy_pfn & pfn;
734 higher_page = page + (higher_page_pfn - pfn);
a2129f24 735
8170ac47
ZY
736 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
737 NULL) != NULL;
a2129f24
AD
738}
739
1da177e4
LT
740/*
741 * Freeing function for a buddy system allocator.
742 *
743 * The concept of a buddy system is to maintain direct-mapped table
744 * (containing bit values) for memory blocks of various "orders".
745 * The bottom level table contains the map for the smallest allocatable
746 * units of memory (here, pages), and each level above it describes
747 * pairs of units from the levels below, hence, "buddies".
748 * At a high level, all that happens here is marking the table entry
749 * at the bottom level available, and propagating the changes upward
750 * as necessary, plus some accounting needed to play nicely with other
751 * parts of the VM system.
752 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
753 * free pages of length of (1 << order) and marked with PageBuddy.
754 * Page's order is recorded in page_private(page) field.
1da177e4 755 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
756 * other. That is, if we allocate a small block, and both were
757 * free, the remainder of the region must be split into blocks.
1da177e4 758 * If a block is freed, and its buddy is also free, then this
5f63b720 759 * triggers coalescing into a block of larger size.
1da177e4 760 *
6d49e352 761 * -- nyc
1da177e4
LT
762 */
763
48db57f8 764static inline void __free_one_page(struct page *page,
dc4b0caf 765 unsigned long pfn,
ed0ae21d 766 struct zone *zone, unsigned int order,
f04a5d5d 767 int migratetype, fpi_t fpi_flags)
1da177e4 768{
a2129f24 769 struct capture_control *capc = task_capc(zone);
dae37a5d 770 unsigned long buddy_pfn = 0;
a2129f24 771 unsigned long combined_pfn;
a2129f24
AD
772 struct page *buddy;
773 bool to_tail;
d9dddbf5 774
d29bb978 775 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 776 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 777
ed0ae21d 778 VM_BUG_ON(migratetype == -1);
d9dddbf5 779 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 780 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 781
76741e77 782 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 783 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 784
5e0a760b 785 while (order < MAX_PAGE_ORDER) {
5e1f0f09
MG
786 if (compaction_capture(capc, page, order, migratetype)) {
787 __mod_zone_freepage_state(zone, -(1 << order),
788 migratetype);
789 return;
790 }
13ad59df 791
8170ac47
ZY
792 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
793 if (!buddy)
d9dddbf5 794 goto done_merging;
bb0e28eb
ZY
795
796 if (unlikely(order >= pageblock_order)) {
797 /*
798 * We want to prevent merge between freepages on pageblock
799 * without fallbacks and normal pageblock. Without this,
800 * pageblock isolation could cause incorrect freepage or CMA
801 * accounting or HIGHATOMIC accounting.
802 */
b5ffd297 803 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
bb0e28eb
ZY
804
805 if (migratetype != buddy_mt
806 && (!migratetype_is_mergeable(migratetype) ||
807 !migratetype_is_mergeable(buddy_mt)))
808 goto done_merging;
809 }
810
c0a32fc5
SG
811 /*
812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 * merge with it and move up one order.
814 */
b03641af 815 if (page_is_guard(buddy))
2847cf95 816 clear_page_guard(zone, buddy, order, migratetype);
b03641af 817 else
6ab01363 818 del_page_from_free_list(buddy, zone, order);
76741e77
VB
819 combined_pfn = buddy_pfn & pfn;
820 page = page + (combined_pfn - pfn);
821 pfn = combined_pfn;
1da177e4
LT
822 order++;
823 }
d9dddbf5
VB
824
825done_merging:
ab130f91 826 set_buddy_order(page, order);
6dda9d55 827
47b6a24a
DH
828 if (fpi_flags & FPI_TO_TAIL)
829 to_tail = true;
830 else if (is_shuffle_order(order))
a2129f24 831 to_tail = shuffle_pick_tail();
97500a4a 832 else
a2129f24 833 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 834
a2129f24 835 if (to_tail)
6ab01363 836 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 837 else
6ab01363 838 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
839
840 /* Notify page reporting subsystem of freed page */
f04a5d5d 841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 842 page_reporting_notify_free(order);
1da177e4
LT
843}
844
b2c9e2fb
ZY
845/**
846 * split_free_page() -- split a free page at split_pfn_offset
847 * @free_page: the original free page
848 * @order: the order of the page
849 * @split_pfn_offset: split offset within the page
850 *
86d28b07
ZY
851 * Return -ENOENT if the free page is changed, otherwise 0
852 *
b2c9e2fb
ZY
853 * It is used when the free page crosses two pageblocks with different migratetypes
854 * at split_pfn_offset within the page. The split free page will be put into
855 * separate migratetype lists afterwards. Otherwise, the function achieves
856 * nothing.
857 */
86d28b07
ZY
858int split_free_page(struct page *free_page,
859 unsigned int order, unsigned long split_pfn_offset)
b2c9e2fb
ZY
860{
861 struct zone *zone = page_zone(free_page);
862 unsigned long free_page_pfn = page_to_pfn(free_page);
863 unsigned long pfn;
864 unsigned long flags;
865 int free_page_order;
86d28b07
ZY
866 int mt;
867 int ret = 0;
b2c9e2fb 868
88ee1343 869 if (split_pfn_offset == 0)
86d28b07 870 return ret;
88ee1343 871
b2c9e2fb 872 spin_lock_irqsave(&zone->lock, flags);
86d28b07
ZY
873
874 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
875 ret = -ENOENT;
876 goto out;
877 }
878
b5ffd297 879 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
86d28b07
ZY
880 if (likely(!is_migrate_isolate(mt)))
881 __mod_zone_freepage_state(zone, -(1UL << order), mt);
882
b2c9e2fb
ZY
883 del_page_from_free_list(free_page, zone, order);
884 for (pfn = free_page_pfn;
885 pfn < free_page_pfn + (1UL << order);) {
886 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
887
86d28b07 888 free_page_order = min_t(unsigned int,
88ee1343
ZY
889 pfn ? __ffs(pfn) : order,
890 __fls(split_pfn_offset));
b2c9e2fb
ZY
891 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
892 mt, FPI_NONE);
893 pfn += 1UL << free_page_order;
894 split_pfn_offset -= (1UL << free_page_order);
895 /* we have done the first part, now switch to second part */
896 if (split_pfn_offset == 0)
897 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
898 }
86d28b07 899out:
b2c9e2fb 900 spin_unlock_irqrestore(&zone->lock, flags);
86d28b07 901 return ret;
b2c9e2fb 902}
7bfec6f4
MG
903/*
904 * A bad page could be due to a number of fields. Instead of multiple branches,
905 * try and check multiple fields with one check. The caller must do a detailed
906 * check if necessary.
907 */
908static inline bool page_expected_state(struct page *page,
909 unsigned long check_flags)
910{
911 if (unlikely(atomic_read(&page->_mapcount) != -1))
912 return false;
913
914 if (unlikely((unsigned long)page->mapping |
915 page_ref_count(page) |
916#ifdef CONFIG_MEMCG
48060834 917 page->memcg_data |
dba1b8a7
JDB
918#endif
919#ifdef CONFIG_PAGE_POOL
920 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
7bfec6f4
MG
921#endif
922 (page->flags & check_flags)))
923 return false;
924
925 return true;
926}
927
58b7f119 928static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 929{
82a3241a 930 const char *bad_reason = NULL;
f0b791a3 931
53f9263b 932 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
933 bad_reason = "nonzero mapcount";
934 if (unlikely(page->mapping != NULL))
935 bad_reason = "non-NULL mapping";
fe896d18 936 if (unlikely(page_ref_count(page) != 0))
0139aa7b 937 bad_reason = "nonzero _refcount";
58b7f119
WY
938 if (unlikely(page->flags & flags)) {
939 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
940 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
941 else
942 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 943 }
9edad6ea 944#ifdef CONFIG_MEMCG
48060834 945 if (unlikely(page->memcg_data))
9edad6ea 946 bad_reason = "page still charged to cgroup";
dba1b8a7
JDB
947#endif
948#ifdef CONFIG_PAGE_POOL
949 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
950 bad_reason = "page_pool leak";
9edad6ea 951#endif
58b7f119
WY
952 return bad_reason;
953}
954
a8368cd8 955static void free_page_is_bad_report(struct page *page)
58b7f119
WY
956{
957 bad_page(page,
958 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
959}
960
a8368cd8 961static inline bool free_page_is_bad(struct page *page)
bb552ac6 962{
da838d4f 963 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
a8368cd8 964 return false;
bb552ac6
MG
965
966 /* Something has gone sideways, find it */
a8368cd8
AM
967 free_page_is_bad_report(page);
968 return true;
1da177e4
LT
969}
970
ecbb490d
KW
971static inline bool is_check_pages_enabled(void)
972{
973 return static_branch_unlikely(&check_pages_enabled);
974}
975
8666925c 976static int free_tail_page_prepare(struct page *head_page, struct page *page)
4db7548c 977{
94688e8e 978 struct folio *folio = (struct folio *)head_page;
4db7548c
MG
979 int ret = 1;
980
981 /*
982 * We rely page->lru.next never has bit 0 set, unless the page
983 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
984 */
985 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
986
ecbb490d 987 if (!is_check_pages_enabled()) {
4db7548c
MG
988 ret = 0;
989 goto out;
990 }
991 switch (page - head_page) {
992 case 1:
cb67f428 993 /* the first tail page: these may be in place of ->mapping */
65a689f3
MWO
994 if (unlikely(folio_entire_mapcount(folio))) {
995 bad_page(page, "nonzero entire_mapcount");
4db7548c
MG
996 goto out;
997 }
65a689f3
MWO
998 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
999 bad_page(page, "nonzero nr_pages_mapped");
cb67f428
HD
1000 goto out;
1001 }
94688e8e
MWO
1002 if (unlikely(atomic_read(&folio->_pincount))) {
1003 bad_page(page, "nonzero pincount");
cb67f428
HD
1004 goto out;
1005 }
4db7548c
MG
1006 break;
1007 case 2:
1008 /*
1009 * the second tail page: ->mapping is
fa3015b7 1010 * deferred_list.next -- ignore value.
4db7548c
MG
1011 */
1012 break;
1013 default:
1014 if (page->mapping != TAIL_MAPPING) {
82a3241a 1015 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1016 goto out;
1017 }
1018 break;
1019 }
1020 if (unlikely(!PageTail(page))) {
82a3241a 1021 bad_page(page, "PageTail not set");
4db7548c
MG
1022 goto out;
1023 }
1024 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1025 bad_page(page, "compound_head not consistent");
4db7548c
MG
1026 goto out;
1027 }
1028 ret = 0;
1029out:
1030 page->mapping = NULL;
1031 clear_compound_head(page);
1032 return ret;
1033}
1034
94ae8b83
AK
1035/*
1036 * Skip KASAN memory poisoning when either:
1037 *
0a54864f
PC
1038 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1039 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1040 * using page tags instead (see below).
1041 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1042 * that error detection is disabled for accesses via the page address.
1043 *
1044 * Pages will have match-all tags in the following circumstances:
1045 *
1046 * 1. Pages are being initialized for the first time, including during deferred
1047 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1048 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1049 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1050 * 3. The allocation was excluded from being checked due to sampling,
44383cef 1051 * see the call to kasan_unpoison_pages.
94ae8b83
AK
1052 *
1053 * Poisoning pages during deferred memory init will greatly lengthen the
1054 * process and cause problem in large memory systems as the deferred pages
1055 * initialization is done with interrupt disabled.
1056 *
1057 * Assuming that there will be no reference to those newly initialized
1058 * pages before they are ever allocated, this should have no effect on
1059 * KASAN memory tracking as the poison will be properly inserted at page
1060 * allocation time. The only corner case is when pages are allocated by
1061 * on-demand allocation and then freed again before the deferred pages
1062 * initialization is done, but this is not likely to happen.
1063 */
1064static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1065{
0a54864f
PC
1066 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1067 return deferred_pages_enabled();
1068
5cb6674b 1069 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
94ae8b83
AK
1070}
1071
aeaec8e2 1072static void kernel_init_pages(struct page *page, int numpages)
6471384a
AP
1073{
1074 int i;
1075
9e15afa5
QC
1076 /* s390's use of memset() could override KASAN redzones. */
1077 kasan_disable_current();
d9da8f6c
AK
1078 for (i = 0; i < numpages; i++)
1079 clear_highpage_kasan_tagged(page + i);
9e15afa5 1080 kasan_enable_current();
6471384a
AP
1081}
1082
e2769dbd 1083static __always_inline bool free_pages_prepare(struct page *page,
700d2e9a 1084 unsigned int order, fpi_t fpi_flags)
4db7548c 1085{
e2769dbd 1086 int bad = 0;
f446883d 1087 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
c3525330 1088 bool init = want_init_on_free();
76f26535 1089 bool compound = PageCompound(page);
4db7548c 1090
4db7548c
MG
1091 VM_BUG_ON_PAGE(PageTail(page), page);
1092
e2769dbd 1093 trace_mm_page_free(page, order);
b073d7f8 1094 kmsan_free_page(page, order);
e2769dbd 1095
17b46e7b
BJ
1096 if (memcg_kmem_online() && PageMemcgKmem(page))
1097 __memcg_kmem_uncharge_page(page, order);
1098
79f5f8fa 1099 if (unlikely(PageHWPoison(page)) && !order) {
17b46e7b 1100 /* Do not let hwpoison pages hit pcplists/buddy */
79f5f8fa 1101 reset_page_owner(page, order);
df4e817b 1102 page_table_check_free(page, order);
79f5f8fa
OS
1103 return false;
1104 }
1105
76f26535
HY
1106 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1107
e2769dbd
MG
1108 /*
1109 * Check tail pages before head page information is cleared to
1110 * avoid checking PageCompound for order-0 pages.
1111 */
1112 if (unlikely(order)) {
e2769dbd
MG
1113 int i;
1114
cb67f428 1115 if (compound)
9c5ccf2d 1116 page[1].flags &= ~PAGE_FLAGS_SECOND;
e2769dbd
MG
1117 for (i = 1; i < (1 << order); i++) {
1118 if (compound)
8666925c 1119 bad += free_tail_page_prepare(page, page + i);
fce0b421 1120 if (is_check_pages_enabled()) {
8666925c 1121 if (free_page_is_bad(page + i)) {
700d2e9a
VB
1122 bad++;
1123 continue;
1124 }
e2769dbd
MG
1125 }
1126 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127 }
1128 }
bda807d4 1129 if (PageMappingFlags(page))
4db7548c 1130 page->mapping = NULL;
fce0b421 1131 if (is_check_pages_enabled()) {
700d2e9a
VB
1132 if (free_page_is_bad(page))
1133 bad++;
1134 if (bad)
1135 return false;
1136 }
4db7548c 1137
e2769dbd
MG
1138 page_cpupid_reset_last(page);
1139 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1140 reset_page_owner(page, order);
df4e817b 1141 page_table_check_free(page, order);
4db7548c
MG
1142
1143 if (!PageHighMem(page)) {
1144 debug_check_no_locks_freed(page_address(page),
e2769dbd 1145 PAGE_SIZE << order);
4db7548c 1146 debug_check_no_obj_freed(page_address(page),
e2769dbd 1147 PAGE_SIZE << order);
4db7548c 1148 }
6471384a 1149
8db26a3d
VB
1150 kernel_poison_pages(page, 1 << order);
1151
f9d79e8d 1152 /*
1bb5eab3 1153 * As memory initialization might be integrated into KASAN,
7c13c163 1154 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1155 * kept together to avoid discrepancies in behavior.
1156 *
f9d79e8d
AK
1157 * With hardware tag-based KASAN, memory tags must be set before the
1158 * page becomes unavailable via debug_pagealloc or arch_free_page.
1159 */
f446883d 1160 if (!skip_kasan_poison) {
c3525330 1161 kasan_poison_pages(page, order, init);
f9d79e8d 1162
db8a0477
AK
1163 /* Memory is already initialized if KASAN did it internally. */
1164 if (kasan_has_integrated_init())
1165 init = false;
1166 }
1167 if (init)
aeaec8e2 1168 kernel_init_pages(page, 1 << order);
db8a0477 1169
234fdce8
QC
1170 /*
1171 * arch_free_page() can make the page's contents inaccessible. s390
1172 * does this. So nothing which can access the page's contents should
1173 * happen after this.
1174 */
1175 arch_free_page(page, order);
1176
77bc7fd6 1177 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1178
4db7548c
MG
1179 return true;
1180}
1181
1da177e4 1182/*
5f8dcc21 1183 * Frees a number of pages from the PCP lists
7cba630b 1184 * Assumes all pages on list are in same zone.
207f36ee 1185 * count is the number of pages to free.
1da177e4 1186 */
5f8dcc21 1187static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1188 struct per_cpu_pages *pcp,
1189 int pindex)
1da177e4 1190{
57490774 1191 unsigned long flags;
44042b44 1192 unsigned int order;
3777999d 1193 bool isolated_pageblocks;
8b10b465 1194 struct page *page;
f2260e6b 1195
88e8ac11
CTR
1196 /*
1197 * Ensure proper count is passed which otherwise would stuck in the
1198 * below while (list_empty(list)) loop.
1199 */
1200 count = min(pcp->count, count);
d61372bc
MG
1201
1202 /* Ensure requested pindex is drained first. */
1203 pindex = pindex - 1;
1204
57490774 1205 spin_lock_irqsave(&zone->lock, flags);
8b10b465
MG
1206 isolated_pageblocks = has_isolate_pageblock(zone);
1207
44042b44 1208 while (count > 0) {
5f8dcc21 1209 struct list_head *list;
fd56eef2 1210 int nr_pages;
5f8dcc21 1211
fd56eef2 1212 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1213 do {
f142b2c2
KS
1214 if (++pindex > NR_PCP_LISTS - 1)
1215 pindex = 0;
44042b44 1216 list = &pcp->lists[pindex];
f142b2c2 1217 } while (list_empty(list));
48db57f8 1218
44042b44 1219 order = pindex_to_order(pindex);
fd56eef2 1220 nr_pages = 1 << order;
a6f9edd6 1221 do {
8b10b465
MG
1222 int mt;
1223
bf75f200 1224 page = list_last_entry(list, struct page, pcp_list);
8b10b465
MG
1225 mt = get_pcppage_migratetype(page);
1226
0a5f4e5b 1227 /* must delete to avoid corrupting pcp list */
bf75f200 1228 list_del(&page->pcp_list);
fd56eef2
MG
1229 count -= nr_pages;
1230 pcp->count -= nr_pages;
aa016d14 1231
8b10b465
MG
1232 /* MIGRATE_ISOLATE page should not go to pcplists */
1233 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1234 /* Pageblock could have been isolated meanwhile */
1235 if (unlikely(isolated_pageblocks))
1236 mt = get_pageblock_migratetype(page);
0a5f4e5b 1237
8b10b465
MG
1238 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1239 trace_mm_page_pcpu_drain(page, order, mt);
1240 } while (count > 0 && !list_empty(list));
0a5f4e5b 1241 }
8b10b465 1242
57490774 1243 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1244}
1245
dc4b0caf
MG
1246static void free_one_page(struct zone *zone,
1247 struct page *page, unsigned long pfn,
7aeb09f9 1248 unsigned int order,
7fef431b 1249 int migratetype, fpi_t fpi_flags)
1da177e4 1250{
df1acc85
MG
1251 unsigned long flags;
1252
1253 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1254 if (unlikely(has_isolate_pageblock(zone) ||
1255 is_migrate_isolate(migratetype))) {
1256 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1257 }
7fef431b 1258 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1259 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1260}
1261
7fef431b
DH
1262static void __free_pages_ok(struct page *page, unsigned int order,
1263 fpi_t fpi_flags)
ec95f53a 1264{
95e34412 1265 int migratetype;
dc4b0caf 1266 unsigned long pfn = page_to_pfn(page);
56f0e661 1267 struct zone *zone = page_zone(page);
ec95f53a 1268
700d2e9a 1269 if (!free_pages_prepare(page, order, fpi_flags))
ec95f53a
KM
1270 return;
1271
ac4b2901
DW
1272 /*
1273 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1274 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1275 * This will reduce the lock holding time.
1276 */
cfc47a28 1277 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1278
250ae189 1279 free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
90249993 1280
d34b0733 1281 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1282}
1283
a9cd410a 1284void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1285{
c3993076 1286 unsigned int nr_pages = 1 << order;
e2d0bd2b 1287 struct page *p = page;
c3993076 1288 unsigned int loop;
a226f6c8 1289
7fef431b
DH
1290 /*
1291 * When initializing the memmap, __init_single_page() sets the refcount
1292 * of all pages to 1 ("allocated"/"not free"). We have to set the
1293 * refcount of all involved pages to 0.
1294 */
e2d0bd2b
YL
1295 prefetchw(p);
1296 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1297 prefetchw(p + 1);
c3993076
JW
1298 __ClearPageReserved(p);
1299 set_page_count(p, 0);
a226f6c8 1300 }
e2d0bd2b
YL
1301 __ClearPageReserved(p);
1302 set_page_count(p, 0);
c3993076 1303
9705bea5 1304 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b 1305
dcdfdd40 1306 if (page_contains_unaccepted(page, order)) {
5e0a760b 1307 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
dcdfdd40
KS
1308 return;
1309
1310 accept_page(page, order);
1311 }
1312
7fef431b
DH
1313 /*
1314 * Bypass PCP and place fresh pages right to the tail, primarily
1315 * relevant for memory onlining.
1316 */
0a54864f 1317 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1318}
1319
7cf91a98
JK
1320/*
1321 * Check that the whole (or subset of) a pageblock given by the interval of
1322 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1323 * with the migration of free compaction scanner.
7cf91a98
JK
1324 *
1325 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1326 *
1327 * It's possible on some configurations to have a setup like node0 node1 node0
1328 * i.e. it's possible that all pages within a zones range of pages do not
1329 * belong to a single zone. We assume that a border between node0 and node1
1330 * can occur within a single pageblock, but not a node0 node1 node0
1331 * interleaving within a single pageblock. It is therefore sufficient to check
1332 * the first and last page of a pageblock and avoid checking each individual
1333 * page in a pageblock.
65f67a3e
BW
1334 *
1335 * Note: the function may return non-NULL struct page even for a page block
1336 * which contains a memory hole (i.e. there is no physical memory for a subset
5e0a760b 1337 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
65f67a3e
BW
1338 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1339 * even though the start pfn is online and valid. This should be safe most of
1340 * the time because struct pages are still initialized via init_unavailable_range()
1341 * and pfn walkers shouldn't touch any physical memory range for which they do
1342 * not recognize any specific metadata in struct pages.
7cf91a98
JK
1343 */
1344struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1345 unsigned long end_pfn, struct zone *zone)
1346{
1347 struct page *start_page;
1348 struct page *end_page;
1349
1350 /* end_pfn is one past the range we are checking */
1351 end_pfn--;
1352
3c4322c9 1353 if (!pfn_valid(end_pfn))
7cf91a98
JK
1354 return NULL;
1355
2d070eab
MH
1356 start_page = pfn_to_online_page(start_pfn);
1357 if (!start_page)
1358 return NULL;
7cf91a98
JK
1359
1360 if (page_zone(start_page) != zone)
1361 return NULL;
1362
1363 end_page = pfn_to_page(end_pfn);
1364
1365 /* This gives a shorter code than deriving page_zone(end_page) */
1366 if (page_zone_id(start_page) != page_zone_id(end_page))
1367 return NULL;
1368
1369 return start_page;
1370}
1371
2f47a91f 1372/*
9420f89d
MRI
1373 * The order of subdivision here is critical for the IO subsystem.
1374 * Please do not alter this order without good reasons and regression
1375 * testing. Specifically, as large blocks of memory are subdivided,
1376 * the order in which smaller blocks are delivered depends on the order
1377 * they're subdivided in this function. This is the primary factor
1378 * influencing the order in which pages are delivered to the IO
1379 * subsystem according to empirical testing, and this is also justified
1380 * by considering the behavior of a buddy system containing a single
1381 * large block of memory acted on by a series of small allocations.
1382 * This behavior is a critical factor in sglist merging's success.
80b1f41c 1383 *
9420f89d 1384 * -- nyc
2f47a91f 1385 */
9420f89d
MRI
1386static inline void expand(struct zone *zone, struct page *page,
1387 int low, int high, int migratetype)
2f47a91f 1388{
9420f89d 1389 unsigned long size = 1 << high;
2f47a91f 1390
9420f89d
MRI
1391 while (high > low) {
1392 high--;
1393 size >>= 1;
1394 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2f47a91f 1395
9420f89d
MRI
1396 /*
1397 * Mark as guard pages (or page), that will allow to
1398 * merge back to allocator when buddy will be freed.
1399 * Corresponding page table entries will not be touched,
1400 * pages will stay not present in virtual address space
1401 */
1402 if (set_page_guard(zone, &page[size], high, migratetype))
2f47a91f 1403 continue;
9420f89d
MRI
1404
1405 add_to_free_list(&page[size], zone, high, migratetype);
1406 set_buddy_order(&page[size], high);
2f47a91f 1407 }
2f47a91f
PT
1408}
1409
9420f89d 1410static void check_new_page_bad(struct page *page)
0e56acae 1411{
9420f89d
MRI
1412 if (unlikely(page->flags & __PG_HWPOISON)) {
1413 /* Don't complain about hwpoisoned pages */
1414 page_mapcount_reset(page); /* remove PageBuddy */
1415 return;
0e56acae
AD
1416 }
1417
9420f89d
MRI
1418 bad_page(page,
1419 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
0e56acae
AD
1420}
1421
1422/*
9420f89d 1423 * This page is about to be returned from the page allocator
0e56acae 1424 */
9420f89d 1425static int check_new_page(struct page *page)
0e56acae 1426{
9420f89d
MRI
1427 if (likely(page_expected_state(page,
1428 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1429 return 0;
0e56acae 1430
9420f89d
MRI
1431 check_new_page_bad(page);
1432 return 1;
1433}
0e56acae 1434
9420f89d
MRI
1435static inline bool check_new_pages(struct page *page, unsigned int order)
1436{
1437 if (is_check_pages_enabled()) {
1438 for (int i = 0; i < (1 << order); i++) {
1439 struct page *p = page + i;
0e56acae 1440
8666925c 1441 if (check_new_page(p))
9420f89d 1442 return true;
0e56acae
AD
1443 }
1444 }
1445
9420f89d 1446 return false;
0e56acae
AD
1447}
1448
9420f89d 1449static inline bool should_skip_kasan_unpoison(gfp_t flags)
e4443149 1450{
9420f89d
MRI
1451 /* Don't skip if a software KASAN mode is enabled. */
1452 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1453 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1454 return false;
e4443149 1455
9420f89d
MRI
1456 /* Skip, if hardware tag-based KASAN is not enabled. */
1457 if (!kasan_hw_tags_enabled())
1458 return true;
e4443149
DJ
1459
1460 /*
9420f89d
MRI
1461 * With hardware tag-based KASAN enabled, skip if this has been
1462 * requested via __GFP_SKIP_KASAN.
e4443149 1463 */
9420f89d 1464 return flags & __GFP_SKIP_KASAN;
e4443149
DJ
1465}
1466
9420f89d 1467static inline bool should_skip_init(gfp_t flags)
ecd09650 1468{
9420f89d
MRI
1469 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1470 if (!kasan_hw_tags_enabled())
1471 return false;
1472
1473 /* For hardware tag-based KASAN, skip if requested. */
1474 return (flags & __GFP_SKIP_ZERO);
ecd09650
DJ
1475}
1476
9420f89d
MRI
1477inline void post_alloc_hook(struct page *page, unsigned int order,
1478 gfp_t gfp_flags)
7e18adb4 1479{
9420f89d
MRI
1480 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1481 !should_skip_init(gfp_flags);
1482 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1483 int i;
1484
1485 set_page_private(page, 0);
1486 set_page_refcounted(page);
0e1cc95b 1487
9420f89d
MRI
1488 arch_alloc_page(page, order);
1489 debug_pagealloc_map_pages(page, 1 << order);
7e18adb4 1490
3d060856 1491 /*
9420f89d
MRI
1492 * Page unpoisoning must happen before memory initialization.
1493 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1494 * allocations and the page unpoisoning code will complain.
3d060856 1495 */
9420f89d 1496 kernel_unpoison_pages(page, 1 << order);
862b6dee 1497
1bb5eab3
AK
1498 /*
1499 * As memory initialization might be integrated into KASAN,
b42090ae 1500 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
1501 * kept together to avoid discrepancies in behavior.
1502 */
9294b128
AK
1503
1504 /*
44383cef
AK
1505 * If memory tags should be zeroed
1506 * (which happens only when memory should be initialized as well).
9294b128 1507 */
44383cef 1508 if (zero_tags) {
420ef683 1509 /* Initialize both memory and memory tags. */
9294b128
AK
1510 for (i = 0; i != 1 << order; ++i)
1511 tag_clear_highpage(page + i);
1512
44383cef 1513 /* Take note that memory was initialized by the loop above. */
9294b128
AK
1514 init = false;
1515 }
0a54864f
PC
1516 if (!should_skip_kasan_unpoison(gfp_flags) &&
1517 kasan_unpoison_pages(page, order, init)) {
1518 /* Take note that memory was initialized by KASAN. */
1519 if (kasan_has_integrated_init())
1520 init = false;
1521 } else {
1522 /*
1523 * If memory tags have not been set by KASAN, reset the page
1524 * tags to ensure page_address() dereferencing does not fault.
1525 */
70c248ac
CM
1526 for (i = 0; i != 1 << order; ++i)
1527 page_kasan_tag_reset(page + i);
7a3b8353 1528 }
44383cef 1529 /* If memory is still not initialized, initialize it now. */
7e3cbba6 1530 if (init)
aeaec8e2 1531 kernel_init_pages(page, 1 << order);
1bb5eab3
AK
1532
1533 set_page_owner(page, order, gfp_flags);
df4e817b 1534 page_table_check_alloc(page, order);
46f24fd8
JK
1535}
1536
479f854a 1537static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1538 unsigned int alloc_flags)
2a7684a2 1539{
46f24fd8 1540 post_alloc_hook(page, order, gfp_flags);
17cf4406 1541
17cf4406
NP
1542 if (order && (gfp_flags & __GFP_COMP))
1543 prep_compound_page(page, order);
1544
75379191 1545 /*
2f064f34 1546 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1547 * allocate the page. The expectation is that the caller is taking
1548 * steps that will free more memory. The caller should avoid the page
1549 * being used for !PFMEMALLOC purposes.
1550 */
2f064f34
MH
1551 if (alloc_flags & ALLOC_NO_WATERMARKS)
1552 set_page_pfmemalloc(page);
1553 else
1554 clear_page_pfmemalloc(page);
1da177e4
LT
1555}
1556
56fd56b8
MG
1557/*
1558 * Go through the free lists for the given migratetype and remove
1559 * the smallest available page from the freelists
1560 */
85ccc8fa 1561static __always_inline
728ec980 1562struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1563 int migratetype)
1564{
1565 unsigned int current_order;
b8af2941 1566 struct free_area *area;
56fd56b8
MG
1567 struct page *page;
1568
1569 /* Find a page of the appropriate size in the preferred list */
fd377218 1570 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
56fd56b8 1571 area = &(zone->free_area[current_order]);
b03641af 1572 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
1573 if (!page)
1574 continue;
6ab01363
AD
1575 del_page_from_free_list(page, zone, current_order);
1576 expand(zone, page, order, current_order, migratetype);
bb14c2c7 1577 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
1578 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1579 pcp_allowed_order(order) &&
1580 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
1581 return page;
1582 }
1583
1584 return NULL;
1585}
1586
1587
b2a0ac88
MG
1588/*
1589 * This array describes the order lists are fallen back to when
1590 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
1591 *
1592 * The other migratetypes do not have fallbacks.
b2a0ac88 1593 */
aa02d3c1
YD
1594static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1595 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1596 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1597 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
b2a0ac88
MG
1598};
1599
dc67647b 1600#ifdef CONFIG_CMA
85ccc8fa 1601static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1602 unsigned int order)
1603{
1604 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1605}
1606#else
1607static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1608 unsigned int order) { return NULL; }
1609#endif
1610
c361be55 1611/*
293ffa5e 1612 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 1613 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1614 * boundary. If alignment is required, use move_freepages_block()
1615 */
02aa0cdd 1616static int move_freepages(struct zone *zone,
39ddb991 1617 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 1618 int migratetype, int *num_movable)
c361be55
MG
1619{
1620 struct page *page;
39ddb991 1621 unsigned long pfn;
d00181b9 1622 unsigned int order;
d100313f 1623 int pages_moved = 0;
c361be55 1624
39ddb991 1625 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 1626 page = pfn_to_page(pfn);
c361be55 1627 if (!PageBuddy(page)) {
02aa0cdd
VB
1628 /*
1629 * We assume that pages that could be isolated for
1630 * migration are movable. But we don't actually try
1631 * isolating, as that would be expensive.
1632 */
1633 if (num_movable &&
1634 (PageLRU(page) || __PageMovable(page)))
1635 (*num_movable)++;
39ddb991 1636 pfn++;
c361be55
MG
1637 continue;
1638 }
1639
cd961038
DR
1640 /* Make sure we are not inadvertently changing nodes */
1641 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1642 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1643
ab130f91 1644 order = buddy_order(page);
6ab01363 1645 move_to_free_list(page, zone, order, migratetype);
39ddb991 1646 pfn += 1 << order;
d100313f 1647 pages_moved += 1 << order;
c361be55
MG
1648 }
1649
d100313f 1650 return pages_moved;
c361be55
MG
1651}
1652
ee6f509c 1653int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1654 int migratetype, int *num_movable)
c361be55 1655{
39ddb991 1656 unsigned long start_pfn, end_pfn, pfn;
c361be55 1657
4a222127
DR
1658 if (num_movable)
1659 *num_movable = 0;
1660
39ddb991 1661 pfn = page_to_pfn(page);
4f9bc69a
KW
1662 start_pfn = pageblock_start_pfn(pfn);
1663 end_pfn = pageblock_end_pfn(pfn) - 1;
c361be55
MG
1664
1665 /* Do not cross zone boundaries */
108bcc96 1666 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 1667 start_pfn = pfn;
108bcc96 1668 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1669 return 0;
1670
39ddb991 1671 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 1672 num_movable);
c361be55
MG
1673}
1674
2f66a68f
MG
1675static void change_pageblock_range(struct page *pageblock_page,
1676 int start_order, int migratetype)
1677{
1678 int nr_pageblocks = 1 << (start_order - pageblock_order);
1679
1680 while (nr_pageblocks--) {
1681 set_pageblock_migratetype(pageblock_page, migratetype);
1682 pageblock_page += pageblock_nr_pages;
1683 }
1684}
1685
fef903ef 1686/*
9c0415eb
VB
1687 * When we are falling back to another migratetype during allocation, try to
1688 * steal extra free pages from the same pageblocks to satisfy further
1689 * allocations, instead of polluting multiple pageblocks.
1690 *
1691 * If we are stealing a relatively large buddy page, it is likely there will
1692 * be more free pages in the pageblock, so try to steal them all. For
1693 * reclaimable and unmovable allocations, we steal regardless of page size,
1694 * as fragmentation caused by those allocations polluting movable pageblocks
1695 * is worse than movable allocations stealing from unmovable and reclaimable
1696 * pageblocks.
fef903ef 1697 */
4eb7dce6
JK
1698static bool can_steal_fallback(unsigned int order, int start_mt)
1699{
1700 /*
1701 * Leaving this order check is intended, although there is
1702 * relaxed order check in next check. The reason is that
1703 * we can actually steal whole pageblock if this condition met,
1704 * but, below check doesn't guarantee it and that is just heuristic
1705 * so could be changed anytime.
1706 */
1707 if (order >= pageblock_order)
1708 return true;
1709
1710 if (order >= pageblock_order / 2 ||
1711 start_mt == MIGRATE_RECLAIMABLE ||
1712 start_mt == MIGRATE_UNMOVABLE ||
1713 page_group_by_mobility_disabled)
1714 return true;
1715
1716 return false;
1717}
1718
597c8920 1719static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
1720{
1721 unsigned long max_boost;
1722
1723 if (!watermark_boost_factor)
597c8920 1724 return false;
14f69140
HW
1725 /*
1726 * Don't bother in zones that are unlikely to produce results.
1727 * On small machines, including kdump capture kernels running
1728 * in a small area, boosting the watermark can cause an out of
1729 * memory situation immediately.
1730 */
1731 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 1732 return false;
1c30844d
MG
1733
1734 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1735 watermark_boost_factor, 10000);
94b3334c
MG
1736
1737 /*
1738 * high watermark may be uninitialised if fragmentation occurs
1739 * very early in boot so do not boost. We do not fall
1740 * through and boost by pageblock_nr_pages as failing
1741 * allocations that early means that reclaim is not going
1742 * to help and it may even be impossible to reclaim the
1743 * boosted watermark resulting in a hang.
1744 */
1745 if (!max_boost)
597c8920 1746 return false;
94b3334c 1747
1c30844d
MG
1748 max_boost = max(pageblock_nr_pages, max_boost);
1749
1750 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1751 max_boost);
597c8920
JW
1752
1753 return true;
1c30844d
MG
1754}
1755
4eb7dce6
JK
1756/*
1757 * This function implements actual steal behaviour. If order is large enough,
1758 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1759 * pageblock to our migratetype and determine how many already-allocated pages
1760 * are there in the pageblock with a compatible migratetype. If at least half
1761 * of pages are free or compatible, we can change migratetype of the pageblock
1762 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1763 */
1764static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 1765 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 1766{
ab130f91 1767 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
1768 int free_pages, movable_pages, alike_pages;
1769 int old_block_type;
1770
1771 old_block_type = get_pageblock_migratetype(page);
fef903ef 1772
3bc48f96
VB
1773 /*
1774 * This can happen due to races and we want to prevent broken
1775 * highatomic accounting.
1776 */
02aa0cdd 1777 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
1778 goto single_page;
1779
fef903ef
SB
1780 /* Take ownership for orders >= pageblock_order */
1781 if (current_order >= pageblock_order) {
1782 change_pageblock_range(page, current_order, start_type);
3bc48f96 1783 goto single_page;
fef903ef
SB
1784 }
1785
1c30844d
MG
1786 /*
1787 * Boost watermarks to increase reclaim pressure to reduce the
1788 * likelihood of future fallbacks. Wake kswapd now as the node
1789 * may be balanced overall and kswapd will not wake naturally.
1790 */
597c8920 1791 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 1792 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 1793
3bc48f96
VB
1794 /* We are not allowed to try stealing from the whole block */
1795 if (!whole_block)
1796 goto single_page;
1797
02aa0cdd
VB
1798 free_pages = move_freepages_block(zone, page, start_type,
1799 &movable_pages);
ebddd111
ML
1800 /* moving whole block can fail due to zone boundary conditions */
1801 if (!free_pages)
1802 goto single_page;
1803
02aa0cdd
VB
1804 /*
1805 * Determine how many pages are compatible with our allocation.
1806 * For movable allocation, it's the number of movable pages which
1807 * we just obtained. For other types it's a bit more tricky.
1808 */
1809 if (start_type == MIGRATE_MOVABLE) {
1810 alike_pages = movable_pages;
1811 } else {
1812 /*
1813 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1814 * to MOVABLE pageblock, consider all non-movable pages as
1815 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1816 * vice versa, be conservative since we can't distinguish the
1817 * exact migratetype of non-movable pages.
1818 */
1819 if (old_block_type == MIGRATE_MOVABLE)
1820 alike_pages = pageblock_nr_pages
1821 - (free_pages + movable_pages);
1822 else
1823 alike_pages = 0;
1824 }
02aa0cdd
VB
1825 /*
1826 * If a sufficient number of pages in the block are either free or of
ebddd111 1827 * compatible migratability as our allocation, claim the whole block.
02aa0cdd
VB
1828 */
1829 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
1830 page_group_by_mobility_disabled)
1831 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
1832
1833 return;
1834
1835single_page:
6ab01363 1836 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
1837}
1838
2149cdae
JK
1839/*
1840 * Check whether there is a suitable fallback freepage with requested order.
1841 * If only_stealable is true, this function returns fallback_mt only if
1842 * we can steal other freepages all together. This would help to reduce
1843 * fragmentation due to mixed migratetype pages in one pageblock.
1844 */
1845int find_suitable_fallback(struct free_area *area, unsigned int order,
1846 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1847{
1848 int i;
1849 int fallback_mt;
1850
1851 if (area->nr_free == 0)
1852 return -1;
1853
1854 *can_steal = false;
aa02d3c1 1855 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
4eb7dce6 1856 fallback_mt = fallbacks[migratetype][i];
b03641af 1857 if (free_area_empty(area, fallback_mt))
4eb7dce6 1858 continue;
fef903ef 1859
4eb7dce6
JK
1860 if (can_steal_fallback(order, migratetype))
1861 *can_steal = true;
1862
2149cdae
JK
1863 if (!only_stealable)
1864 return fallback_mt;
1865
1866 if (*can_steal)
1867 return fallback_mt;
fef903ef 1868 }
4eb7dce6
JK
1869
1870 return -1;
fef903ef
SB
1871}
1872
0aaa29a5
MG
1873/*
1874 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1875 * there are no empty page blocks that contain a page with a suitable order
1876 */
368d983b 1877static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
0aaa29a5
MG
1878{
1879 int mt;
1880 unsigned long max_managed, flags;
1881
1882 /*
d68e39fc 1883 * The number reserved as: minimum is 1 pageblock, maximum is
9cd20f3f
CTK
1884 * roughly 1% of a zone. But if 1% of a zone falls below a
1885 * pageblock size, then don't reserve any pageblocks.
0aaa29a5
MG
1886 * Check is race-prone but harmless.
1887 */
9cd20f3f
CTK
1888 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1889 return;
d68e39fc 1890 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
0aaa29a5
MG
1891 if (zone->nr_reserved_highatomic >= max_managed)
1892 return;
1893
1894 spin_lock_irqsave(&zone->lock, flags);
1895
1896 /* Recheck the nr_reserved_highatomic limit under the lock */
1897 if (zone->nr_reserved_highatomic >= max_managed)
1898 goto out_unlock;
1899
1900 /* Yoink! */
1901 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
1902 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1903 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
1904 zone->nr_reserved_highatomic += pageblock_nr_pages;
1905 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 1906 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
1907 }
1908
1909out_unlock:
1910 spin_unlock_irqrestore(&zone->lock, flags);
1911}
1912
1913/*
1914 * Used when an allocation is about to fail under memory pressure. This
1915 * potentially hurts the reliability of high-order allocations when under
1916 * intense memory pressure but failed atomic allocations should be easier
1917 * to recover from than an OOM.
29fac03b
MK
1918 *
1919 * If @force is true, try to unreserve a pageblock even though highatomic
1920 * pageblock is exhausted.
0aaa29a5 1921 */
29fac03b
MK
1922static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1923 bool force)
0aaa29a5
MG
1924{
1925 struct zonelist *zonelist = ac->zonelist;
1926 unsigned long flags;
1927 struct zoneref *z;
1928 struct zone *zone;
1929 struct page *page;
1930 int order;
04c8716f 1931 bool ret;
0aaa29a5 1932
97a225e6 1933 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 1934 ac->nodemask) {
29fac03b
MK
1935 /*
1936 * Preserve at least one pageblock unless memory pressure
1937 * is really high.
1938 */
1939 if (!force && zone->nr_reserved_highatomic <=
1940 pageblock_nr_pages)
0aaa29a5
MG
1941 continue;
1942
1943 spin_lock_irqsave(&zone->lock, flags);
fd377218 1944 for (order = 0; order < NR_PAGE_ORDERS; order++) {
0aaa29a5
MG
1945 struct free_area *area = &(zone->free_area[order]);
1946
b03641af 1947 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 1948 if (!page)
0aaa29a5
MG
1949 continue;
1950
0aaa29a5 1951 /*
4855e4a7
MK
1952 * In page freeing path, migratetype change is racy so
1953 * we can counter several free pages in a pageblock
f0953a1b 1954 * in this loop although we changed the pageblock type
4855e4a7
MK
1955 * from highatomic to ac->migratetype. So we should
1956 * adjust the count once.
0aaa29a5 1957 */
a6ffdc07 1958 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
1959 /*
1960 * It should never happen but changes to
1961 * locking could inadvertently allow a per-cpu
1962 * drain to add pages to MIGRATE_HIGHATOMIC
1963 * while unreserving so be safe and watch for
1964 * underflows.
1965 */
1966 zone->nr_reserved_highatomic -= min(
1967 pageblock_nr_pages,
1968 zone->nr_reserved_highatomic);
1969 }
0aaa29a5
MG
1970
1971 /*
1972 * Convert to ac->migratetype and avoid the normal
1973 * pageblock stealing heuristics. Minimally, the caller
1974 * is doing the work and needs the pages. More
1975 * importantly, if the block was always converted to
1976 * MIGRATE_UNMOVABLE or another type then the number
1977 * of pageblocks that cannot be completely freed
1978 * may increase.
1979 */
1980 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
1981 ret = move_freepages_block(zone, page, ac->migratetype,
1982 NULL);
29fac03b
MK
1983 if (ret) {
1984 spin_unlock_irqrestore(&zone->lock, flags);
1985 return ret;
1986 }
0aaa29a5
MG
1987 }
1988 spin_unlock_irqrestore(&zone->lock, flags);
1989 }
04c8716f
MK
1990
1991 return false;
0aaa29a5
MG
1992}
1993
3bc48f96
VB
1994/*
1995 * Try finding a free buddy page on the fallback list and put it on the free
1996 * list of requested migratetype, possibly along with other pages from the same
1997 * block, depending on fragmentation avoidance heuristics. Returns true if
1998 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
1999 *
2000 * The use of signed ints for order and current_order is a deliberate
2001 * deviation from the rest of this file, to make the for loop
2002 * condition simpler.
3bc48f96 2003 */
85ccc8fa 2004static __always_inline bool
6bb15450
MG
2005__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2006 unsigned int alloc_flags)
b2a0ac88 2007{
b8af2941 2008 struct free_area *area;
b002529d 2009 int current_order;
6bb15450 2010 int min_order = order;
b2a0ac88 2011 struct page *page;
4eb7dce6
JK
2012 int fallback_mt;
2013 bool can_steal;
b2a0ac88 2014
6bb15450
MG
2015 /*
2016 * Do not steal pages from freelists belonging to other pageblocks
2017 * i.e. orders < pageblock_order. If there are no local zones free,
2018 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2019 */
e933dc4a 2020 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
6bb15450
MG
2021 min_order = pageblock_order;
2022
7a8f58f3
VB
2023 /*
2024 * Find the largest available free page in the other list. This roughly
2025 * approximates finding the pageblock with the most free pages, which
2026 * would be too costly to do exactly.
2027 */
5e0a760b 2028 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
7aeb09f9 2029 --current_order) {
4eb7dce6
JK
2030 area = &(zone->free_area[current_order]);
2031 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2032 start_migratetype, false, &can_steal);
4eb7dce6
JK
2033 if (fallback_mt == -1)
2034 continue;
b2a0ac88 2035
7a8f58f3
VB
2036 /*
2037 * We cannot steal all free pages from the pageblock and the
2038 * requested migratetype is movable. In that case it's better to
2039 * steal and split the smallest available page instead of the
2040 * largest available page, because even if the next movable
2041 * allocation falls back into a different pageblock than this
2042 * one, it won't cause permanent fragmentation.
2043 */
2044 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2045 && current_order > order)
2046 goto find_smallest;
b2a0ac88 2047
7a8f58f3
VB
2048 goto do_steal;
2049 }
e0fff1bd 2050
7a8f58f3 2051 return false;
e0fff1bd 2052
7a8f58f3 2053find_smallest:
fd377218 2054 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
7a8f58f3
VB
2055 area = &(zone->free_area[current_order]);
2056 fallback_mt = find_suitable_fallback(area, current_order,
2057 start_migratetype, false, &can_steal);
2058 if (fallback_mt != -1)
2059 break;
b2a0ac88
MG
2060 }
2061
7a8f58f3
VB
2062 /*
2063 * This should not happen - we already found a suitable fallback
2064 * when looking for the largest page.
2065 */
5e0a760b 2066 VM_BUG_ON(current_order > MAX_PAGE_ORDER);
7a8f58f3
VB
2067
2068do_steal:
b03641af 2069 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2070
1c30844d
MG
2071 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2072 can_steal);
7a8f58f3
VB
2073
2074 trace_mm_page_alloc_extfrag(page, order, current_order,
2075 start_migratetype, fallback_mt);
2076
2077 return true;
2078
b2a0ac88
MG
2079}
2080
56fd56b8 2081/*
1da177e4
LT
2082 * Do the hard work of removing an element from the buddy allocator.
2083 * Call me with the zone->lock already held.
2084 */
85ccc8fa 2085static __always_inline struct page *
6bb15450
MG
2086__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2087 unsigned int alloc_flags)
1da177e4 2088{
1da177e4
LT
2089 struct page *page;
2090
ce8f86ee
H
2091 if (IS_ENABLED(CONFIG_CMA)) {
2092 /*
2093 * Balance movable allocations between regular and CMA areas by
2094 * allocating from CMA when over half of the zone's free memory
2095 * is in the CMA area.
2096 */
2097 if (alloc_flags & ALLOC_CMA &&
2098 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2099 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2100 page = __rmqueue_cma_fallback(zone, order);
2101 if (page)
10e0f753 2102 return page;
ce8f86ee 2103 }
16867664 2104 }
3bc48f96 2105retry:
56fd56b8 2106 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2107 if (unlikely(!page)) {
8510e69c 2108 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2109 page = __rmqueue_cma_fallback(zone, order);
2110
6bb15450
MG
2111 if (!page && __rmqueue_fallback(zone, order, migratetype,
2112 alloc_flags))
3bc48f96 2113 goto retry;
728ec980 2114 }
b2a0ac88 2115 return page;
1da177e4
LT
2116}
2117
5f63b720 2118/*
1da177e4
LT
2119 * Obtain a specified number of elements from the buddy allocator, all under
2120 * a single hold of the lock, for efficiency. Add them to the supplied list.
2121 * Returns the number of new pages which were placed at *list.
2122 */
5f63b720 2123static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2124 unsigned long count, struct list_head *list,
6bb15450 2125 int migratetype, unsigned int alloc_flags)
1da177e4 2126{
57490774 2127 unsigned long flags;
700d2e9a 2128 int i;
5f63b720 2129
57490774 2130 spin_lock_irqsave(&zone->lock, flags);
1da177e4 2131 for (i = 0; i < count; ++i) {
6bb15450
MG
2132 struct page *page = __rmqueue(zone, order, migratetype,
2133 alloc_flags);
085cc7d5 2134 if (unlikely(page == NULL))
1da177e4 2135 break;
81eabcbe
MG
2136
2137 /*
0fac3ba5
VB
2138 * Split buddy pages returned by expand() are received here in
2139 * physical page order. The page is added to the tail of
2140 * caller's list. From the callers perspective, the linked list
2141 * is ordered by page number under some conditions. This is
2142 * useful for IO devices that can forward direction from the
2143 * head, thus also in the physical page order. This is useful
2144 * for IO devices that can merge IO requests if the physical
2145 * pages are ordered properly.
81eabcbe 2146 */
bf75f200 2147 list_add_tail(&page->pcp_list, list);
bb14c2c7 2148 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2150 -(1 << order));
1da177e4 2151 }
a6de734b 2152
f2260e6b 2153 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
57490774 2154 spin_unlock_irqrestore(&zone->lock, flags);
2ede3c13 2155
700d2e9a 2156 return i;
1da177e4
LT
2157}
2158
51a755c5
HY
2159/*
2160 * Called from the vmstat counter updater to decay the PCP high.
2161 * Return whether there are addition works to do.
2162 */
2163int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2164{
2165 int high_min, to_drain, batch;
2166 int todo = 0;
2167
2168 high_min = READ_ONCE(pcp->high_min);
2169 batch = READ_ONCE(pcp->batch);
2170 /*
2171 * Decrease pcp->high periodically to try to free possible
2172 * idle PCP pages. And, avoid to free too many pages to
2173 * control latency. This caps pcp->high decrement too.
2174 */
2175 if (pcp->high > high_min) {
2176 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2177 pcp->high - (pcp->high >> 3), high_min);
2178 if (pcp->high > high_min)
2179 todo++;
2180 }
2181
2182 to_drain = pcp->count - pcp->high;
2183 if (to_drain > 0) {
2184 spin_lock(&pcp->lock);
2185 free_pcppages_bulk(zone, to_drain, pcp, 0);
2186 spin_unlock(&pcp->lock);
2187 todo++;
2188 }
2189
2190 return todo;
2191}
2192
4ae7c039 2193#ifdef CONFIG_NUMA
8fce4d8e 2194/*
4037d452
CL
2195 * Called from the vmstat counter updater to drain pagesets of this
2196 * currently executing processor on remote nodes after they have
2197 * expired.
8fce4d8e 2198 */
4037d452 2199void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2200{
7be12fc9 2201 int to_drain, batch;
4ae7c039 2202
4db0c3c2 2203 batch = READ_ONCE(pcp->batch);
7be12fc9 2204 to_drain = min(pcp->count, batch);
4b23a68f 2205 if (to_drain > 0) {
57490774 2206 spin_lock(&pcp->lock);
fd56eef2 2207 free_pcppages_bulk(zone, to_drain, pcp, 0);
57490774 2208 spin_unlock(&pcp->lock);
4b23a68f 2209 }
4ae7c039
CL
2210}
2211#endif
2212
9f8f2172 2213/*
93481ff0 2214 * Drain pcplists of the indicated processor and zone.
9f8f2172 2215 */
93481ff0 2216static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2217{
93481ff0 2218 struct per_cpu_pages *pcp;
1da177e4 2219
28f836b6 2220 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
4b23a68f 2221 if (pcp->count) {
57490774 2222 spin_lock(&pcp->lock);
4b23a68f 2223 free_pcppages_bulk(zone, pcp->count, pcp, 0);
57490774 2224 spin_unlock(&pcp->lock);
4b23a68f 2225 }
93481ff0 2226}
3dfa5721 2227
93481ff0
VB
2228/*
2229 * Drain pcplists of all zones on the indicated processor.
93481ff0
VB
2230 */
2231static void drain_pages(unsigned int cpu)
2232{
2233 struct zone *zone;
2234
2235 for_each_populated_zone(zone) {
2236 drain_pages_zone(cpu, zone);
1da177e4
LT
2237 }
2238}
1da177e4 2239
9f8f2172
CL
2240/*
2241 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2242 */
93481ff0 2243void drain_local_pages(struct zone *zone)
9f8f2172 2244{
93481ff0
VB
2245 int cpu = smp_processor_id();
2246
2247 if (zone)
2248 drain_pages_zone(cpu, zone);
2249 else
2250 drain_pages(cpu);
9f8f2172
CL
2251}
2252
2253/*
ec6e8c7e
VB
2254 * The implementation of drain_all_pages(), exposing an extra parameter to
2255 * drain on all cpus.
93481ff0 2256 *
ec6e8c7e
VB
2257 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2258 * not empty. The check for non-emptiness can however race with a free to
2259 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2260 * that need the guarantee that every CPU has drained can disable the
2261 * optimizing racy check.
9f8f2172 2262 */
3b1f3658 2263static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 2264{
74046494 2265 int cpu;
74046494
GBY
2266
2267 /*
041711ce 2268 * Allocate in the BSS so we won't require allocation in
74046494
GBY
2269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2270 */
2271 static cpumask_t cpus_with_pcps;
2272
bd233f53
MG
2273 /*
2274 * Do not drain if one is already in progress unless it's specific to
2275 * a zone. Such callers are primarily CMA and memory hotplug and need
2276 * the drain to be complete when the call returns.
2277 */
2278 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2279 if (!zone)
2280 return;
2281 mutex_lock(&pcpu_drain_mutex);
2282 }
0ccce3b9 2283
74046494
GBY
2284 /*
2285 * We don't care about racing with CPU hotplug event
2286 * as offline notification will cause the notified
2287 * cpu to drain that CPU pcps and on_each_cpu_mask
2288 * disables preemption as part of its processing
2289 */
2290 for_each_online_cpu(cpu) {
28f836b6 2291 struct per_cpu_pages *pcp;
93481ff0 2292 struct zone *z;
74046494 2293 bool has_pcps = false;
93481ff0 2294
ec6e8c7e
VB
2295 if (force_all_cpus) {
2296 /*
2297 * The pcp.count check is racy, some callers need a
2298 * guarantee that no cpu is missed.
2299 */
2300 has_pcps = true;
2301 } else if (zone) {
28f836b6
MG
2302 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2303 if (pcp->count)
74046494 2304 has_pcps = true;
93481ff0
VB
2305 } else {
2306 for_each_populated_zone(z) {
28f836b6
MG
2307 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2308 if (pcp->count) {
93481ff0
VB
2309 has_pcps = true;
2310 break;
2311 }
74046494
GBY
2312 }
2313 }
93481ff0 2314
74046494
GBY
2315 if (has_pcps)
2316 cpumask_set_cpu(cpu, &cpus_with_pcps);
2317 else
2318 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2319 }
0ccce3b9 2320
bd233f53 2321 for_each_cpu(cpu, &cpus_with_pcps) {
443c2acc
NSJ
2322 if (zone)
2323 drain_pages_zone(cpu, zone);
2324 else
2325 drain_pages(cpu);
0ccce3b9 2326 }
bd233f53
MG
2327
2328 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2329}
2330
ec6e8c7e
VB
2331/*
2332 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2333 *
2334 * When zone parameter is non-NULL, spill just the single zone's pages.
ec6e8c7e
VB
2335 */
2336void drain_all_pages(struct zone *zone)
2337{
2338 __drain_all_pages(zone, false);
2339}
2340
44042b44
MG
2341static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2342 unsigned int order)
1da177e4 2343{
5f8dcc21 2344 int migratetype;
1da177e4 2345
700d2e9a 2346 if (!free_pages_prepare(page, order, FPI_NONE))
9cca35d4 2347 return false;
689bcebf 2348
dc4b0caf 2349 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2350 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2351 return true;
2352}
2353
51a755c5 2354static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
3b12e7e9
MG
2355{
2356 int min_nr_free, max_nr_free;
2357
51a755c5 2358 /* Free as much as possible if batch freeing high-order pages. */
f26b3fa0 2359 if (unlikely(free_high))
51a755c5 2360 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
f26b3fa0 2361
3b12e7e9
MG
2362 /* Check for PCP disabled or boot pageset */
2363 if (unlikely(high < batch))
2364 return 1;
2365
2366 /* Leave at least pcp->batch pages on the list */
2367 min_nr_free = batch;
2368 max_nr_free = high - batch;
2369
2370 /*
6ccdcb6d
HY
2371 * Increase the batch number to the number of the consecutive
2372 * freed pages to reduce zone lock contention.
3b12e7e9 2373 */
6ccdcb6d 2374 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
3b12e7e9
MG
2375
2376 return batch;
2377}
2378
f26b3fa0 2379static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
51a755c5 2380 int batch, bool free_high)
c49c2c47 2381{
51a755c5 2382 int high, high_min, high_max;
c49c2c47 2383
51a755c5
HY
2384 high_min = READ_ONCE(pcp->high_min);
2385 high_max = READ_ONCE(pcp->high_max);
2386 high = pcp->high = clamp(pcp->high, high_min, high_max);
2387
2388 if (unlikely(!high))
c49c2c47
MG
2389 return 0;
2390
51a755c5
HY
2391 if (unlikely(free_high)) {
2392 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2393 high_min);
2394 return 0;
2395 }
c49c2c47
MG
2396
2397 /*
2398 * If reclaim is active, limit the number of pages that can be
2399 * stored on pcp lists
2400 */
51a755c5 2401 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
6ccdcb6d
HY
2402 int free_count = max_t(int, pcp->free_count, batch);
2403
2404 pcp->high = max(high - free_count, high_min);
51a755c5
HY
2405 return min(batch << 2, pcp->high);
2406 }
2407
57c0419c
HY
2408 if (high_min == high_max)
2409 return high;
2410
2411 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
6ccdcb6d
HY
2412 int free_count = max_t(int, pcp->free_count, batch);
2413
2414 pcp->high = max(high - free_count, high_min);
57c0419c
HY
2415 high = max(pcp->count, high_min);
2416 } else if (pcp->count >= high) {
6ccdcb6d 2417 int need_high = pcp->free_count + batch;
51a755c5
HY
2418
2419 /* pcp->high should be large enough to hold batch freed pages */
2420 if (pcp->high < need_high)
2421 pcp->high = clamp(need_high, high_min, high_max);
2422 }
2423
2424 return high;
c49c2c47
MG
2425}
2426
4b23a68f
MG
2427static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2428 struct page *page, int migratetype,
56651377 2429 unsigned int order)
9cca35d4 2430{
51a755c5 2431 int high, batch;
44042b44 2432 int pindex;
ca71fe1a 2433 bool free_high = false;
9cca35d4 2434
c0a24239
HY
2435 /*
2436 * On freeing, reduce the number of pages that are batch allocated.
2437 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2438 * allocations.
2439 */
2440 pcp->alloc_factor >>= 1;
15cd9004 2441 __count_vm_events(PGFREE, 1 << order);
44042b44 2442 pindex = order_to_pindex(migratetype, order);
bf75f200 2443 list_add(&page->pcp_list, &pcp->lists[pindex]);
44042b44 2444 pcp->count += 1 << order;
f26b3fa0 2445
51a755c5 2446 batch = READ_ONCE(pcp->batch);
f26b3fa0
MG
2447 /*
2448 * As high-order pages other than THP's stored on PCP can contribute
2449 * to fragmentation, limit the number stored when PCP is heavily
2450 * freeing without allocation. The remainder after bulk freeing
2451 * stops will be drained from vmstat refresh context.
2452 */
ca71fe1a 2453 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
6ccdcb6d 2454 free_high = (pcp->free_count >= batch &&
362d37a1
HY
2455 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2456 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
51a755c5 2457 pcp->count >= READ_ONCE(batch)));
ca71fe1a
HY
2458 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2459 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2460 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2461 }
6ccdcb6d
HY
2462 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2463 pcp->free_count += (1 << order);
51a755c5 2464 high = nr_pcp_high(pcp, zone, batch, free_high);
3b12e7e9 2465 if (pcp->count >= high) {
51a755c5
HY
2466 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2467 pcp, pindex);
57c0419c
HY
2468 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2469 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2470 ZONE_MOVABLE, 0))
2471 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
3b12e7e9 2472 }
9cca35d4 2473}
5f8dcc21 2474
9cca35d4 2475/*
44042b44 2476 * Free a pcp page
9cca35d4 2477 */
44042b44 2478void free_unref_page(struct page *page, unsigned int order)
9cca35d4 2479{
4b23a68f
MG
2480 unsigned long __maybe_unused UP_flags;
2481 struct per_cpu_pages *pcp;
2482 struct zone *zone;
9cca35d4 2483 unsigned long pfn = page_to_pfn(page);
7b086755 2484 int migratetype, pcpmigratetype;
9cca35d4 2485
44042b44 2486 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 2487 return;
da456f14 2488
5f8dcc21
MG
2489 /*
2490 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 2491 * Place ISOLATE pages on the isolated list because they are being
7b086755
JW
2492 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2493 * get those areas back if necessary. Otherwise, we may have to free
5f8dcc21
MG
2494 * excessively into the page allocator
2495 */
7b086755 2496 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
df1acc85 2497 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 2498 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 2499 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 2500 return;
5f8dcc21 2501 }
7b086755 2502 pcpmigratetype = MIGRATE_MOVABLE;
5f8dcc21
MG
2503 }
2504
4b23a68f
MG
2505 zone = page_zone(page);
2506 pcp_trylock_prepare(UP_flags);
57490774 2507 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 2508 if (pcp) {
7b086755 2509 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
57490774 2510 pcp_spin_unlock(pcp);
4b23a68f
MG
2511 } else {
2512 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2513 }
2514 pcp_trylock_finish(UP_flags);
1da177e4
LT
2515}
2516
cc59850e
KK
2517/*
2518 * Free a list of 0-order pages
2519 */
2d4894b5 2520void free_unref_page_list(struct list_head *list)
cc59850e 2521{
57490774 2522 unsigned long __maybe_unused UP_flags;
cc59850e 2523 struct page *page, *next;
4b23a68f
MG
2524 struct per_cpu_pages *pcp = NULL;
2525 struct zone *locked_zone = NULL;
c24ad77d 2526 int batch_count = 0;
df1acc85 2527 int migratetype;
9cca35d4
MG
2528
2529 /* Prepare pages for freeing */
2530 list_for_each_entry_safe(page, next, list, lru) {
56651377 2531 unsigned long pfn = page_to_pfn(page);
053cfda1 2532 if (!free_unref_page_prepare(page, pfn, 0)) {
9cca35d4 2533 list_del(&page->lru);
053cfda1
ML
2534 continue;
2535 }
df1acc85
MG
2536
2537 /*
2538 * Free isolated pages directly to the allocator, see
2539 * comment in free_unref_page.
2540 */
2541 migratetype = get_pcppage_migratetype(page);
47aef601
DB
2542 if (unlikely(is_migrate_isolate(migratetype))) {
2543 list_del(&page->lru);
2544 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2545 continue;
df1acc85 2546 }
9cca35d4 2547 }
cc59850e
KK
2548
2549 list_for_each_entry_safe(page, next, list, lru) {
4b23a68f
MG
2550 struct zone *zone = page_zone(page);
2551
c3e58a70 2552 list_del(&page->lru);
57490774 2553 migratetype = get_pcppage_migratetype(page);
c3e58a70 2554
a4bafffb
MG
2555 /*
2556 * Either different zone requiring a different pcp lock or
2557 * excessive lock hold times when freeing a large list of
2558 * pages.
2559 */
2560 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
57490774
MG
2561 if (pcp) {
2562 pcp_spin_unlock(pcp);
2563 pcp_trylock_finish(UP_flags);
2564 }
01b44456 2565
a4bafffb
MG
2566 batch_count = 0;
2567
57490774
MG
2568 /*
2569 * trylock is necessary as pages may be getting freed
2570 * from IRQ or SoftIRQ context after an IO completion.
2571 */
2572 pcp_trylock_prepare(UP_flags);
2573 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2574 if (unlikely(!pcp)) {
2575 pcp_trylock_finish(UP_flags);
2576 free_one_page(zone, page, page_to_pfn(page),
2577 0, migratetype, FPI_NONE);
2578 locked_zone = NULL;
2579 continue;
2580 }
4b23a68f 2581 locked_zone = zone;
4b23a68f
MG
2582 }
2583
47aef601
DB
2584 /*
2585 * Non-isolated types over MIGRATE_PCPTYPES get added
2586 * to the MIGRATE_MOVABLE pcp list.
2587 */
47aef601
DB
2588 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2589 migratetype = MIGRATE_MOVABLE;
2590
2d4894b5 2591 trace_mm_page_free_batched(page);
4b23a68f 2592 free_unref_page_commit(zone, pcp, page, migratetype, 0);
a4bafffb 2593 batch_count++;
cc59850e 2594 }
4b23a68f 2595
57490774
MG
2596 if (pcp) {
2597 pcp_spin_unlock(pcp);
2598 pcp_trylock_finish(UP_flags);
2599 }
cc59850e
KK
2600}
2601
8dfcc9ba
NP
2602/*
2603 * split_page takes a non-compound higher-order page, and splits it into
2604 * n (1<<order) sub-pages: page[0..n]
2605 * Each sub-page must be freed individually.
2606 *
2607 * Note: this is probably too low level an operation for use in drivers.
2608 * Please consult with lkml before using this in your driver.
2609 */
2610void split_page(struct page *page, unsigned int order)
2611{
2612 int i;
2613
309381fe
SL
2614 VM_BUG_ON_PAGE(PageCompound(page), page);
2615 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2616
a9627bc5 2617 for (i = 1; i < (1 << order); i++)
7835e98b 2618 set_page_refcounted(page + i);
8fb156c9 2619 split_page_owner(page, 1 << order);
e1baddf8 2620 split_page_memcg(page, 1 << order);
8dfcc9ba 2621}
5853ff23 2622EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2623
3c605096 2624int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2625{
9a157dd8
KW
2626 struct zone *zone = page_zone(page);
2627 int mt = get_pageblock_migratetype(page);
748446bb 2628
194159fb 2629 if (!is_migrate_isolate(mt)) {
9a157dd8 2630 unsigned long watermark;
8348faf9
VB
2631 /*
2632 * Obey watermarks as if the page was being allocated. We can
2633 * emulate a high-order watermark check with a raised order-0
2634 * watermark, because we already know our high-order page
2635 * exists.
2636 */
fd1444b2 2637 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 2638 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2639 return 0;
2640
8fb74b9f 2641 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2642 }
748446bb 2643
6ab01363 2644 del_page_from_free_list(page, zone, order);
2139cbe6 2645
400bc7fd 2646 /*
2647 * Set the pageblock if the isolated page is at least half of a
2648 * pageblock
2649 */
748446bb
MG
2650 if (order >= pageblock_order - 1) {
2651 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2652 for (; page < endpage; page += pageblock_nr_pages) {
2653 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2654 /*
2655 * Only change normal pageblocks (i.e., they can merge
2656 * with others)
2657 */
2658 if (migratetype_is_mergeable(mt))
47118af0
MN
2659 set_pageblock_migratetype(page,
2660 MIGRATE_MOVABLE);
2661 }
748446bb
MG
2662 }
2663
8fb74b9f 2664 return 1UL << order;
1fb3f8ca
MG
2665}
2666
624f58d8
AD
2667/**
2668 * __putback_isolated_page - Return a now-isolated page back where we got it
2669 * @page: Page that was isolated
2670 * @order: Order of the isolated page
e6a0a7ad 2671 * @mt: The page's pageblock's migratetype
624f58d8
AD
2672 *
2673 * This function is meant to return a page pulled from the free lists via
2674 * __isolate_free_page back to the free lists they were pulled from.
2675 */
2676void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2677{
2678 struct zone *zone = page_zone(page);
2679
2680 /* zone lock should be held when this function is called */
2681 lockdep_assert_held(&zone->lock);
2682
2683 /* Return isolated page to tail of freelist. */
f04a5d5d 2684 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 2685 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
2686}
2687
060e7417
MG
2688/*
2689 * Update NUMA hit/miss statistics
060e7417 2690 */
3e23060b
MG
2691static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2692 long nr_account)
060e7417
MG
2693{
2694#ifdef CONFIG_NUMA
3a321d2a 2695 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2696
4518085e
KW
2697 /* skip numa counters update if numa stats is disabled */
2698 if (!static_branch_likely(&vm_numa_stat_key))
2699 return;
2700
c1093b74 2701 if (zone_to_nid(z) != numa_node_id())
060e7417 2702 local_stat = NUMA_OTHER;
060e7417 2703
c1093b74 2704 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 2705 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 2706 else {
3e23060b
MG
2707 __count_numa_events(z, NUMA_MISS, nr_account);
2708 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 2709 }
3e23060b 2710 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
2711#endif
2712}
2713
589d9973
MG
2714static __always_inline
2715struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2716 unsigned int order, unsigned int alloc_flags,
2717 int migratetype)
2718{
2719 struct page *page;
2720 unsigned long flags;
2721
2722 do {
2723 page = NULL;
2724 spin_lock_irqsave(&zone->lock, flags);
eb2e2b42 2725 if (alloc_flags & ALLOC_HIGHATOMIC)
589d9973
MG
2726 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2727 if (!page) {
2728 page = __rmqueue(zone, order, migratetype, alloc_flags);
eb2e2b42
MG
2729
2730 /*
2731 * If the allocation fails, allow OOM handling access
2732 * to HIGHATOMIC reserves as failing now is worse than
2733 * failing a high-order atomic allocation in the
2734 * future.
2735 */
2736 if (!page && (alloc_flags & ALLOC_OOM))
2737 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2738
589d9973
MG
2739 if (!page) {
2740 spin_unlock_irqrestore(&zone->lock, flags);
2741 return NULL;
2742 }
2743 }
2744 __mod_zone_freepage_state(zone, -(1 << order),
2745 get_pcppage_migratetype(page));
2746 spin_unlock_irqrestore(&zone->lock, flags);
2747 } while (check_new_pages(page, order));
2748
2749 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2750 zone_statistics(preferred_zone, zone, 1);
2751
2752 return page;
2753}
2754
51a755c5 2755static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
c0a24239 2756{
51a755c5
HY
2757 int high, base_batch, batch, max_nr_alloc;
2758 int high_max, high_min;
c0a24239 2759
51a755c5
HY
2760 base_batch = READ_ONCE(pcp->batch);
2761 high_min = READ_ONCE(pcp->high_min);
2762 high_max = READ_ONCE(pcp->high_max);
2763 high = pcp->high = clamp(pcp->high, high_min, high_max);
c0a24239
HY
2764
2765 /* Check for PCP disabled or boot pageset */
51a755c5 2766 if (unlikely(high < base_batch))
c0a24239
HY
2767 return 1;
2768
51a755c5
HY
2769 if (order)
2770 batch = base_batch;
2771 else
2772 batch = (base_batch << pcp->alloc_factor);
2773
c0a24239 2774 /*
51a755c5
HY
2775 * If we had larger pcp->high, we could avoid to allocate from
2776 * zone.
c0a24239 2777 */
57c0419c 2778 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
51a755c5
HY
2779 high = pcp->high = min(high + batch, high_max);
2780
c0a24239 2781 if (!order) {
51a755c5
HY
2782 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2783 /*
2784 * Double the number of pages allocated each time there is
2785 * subsequent allocation of order-0 pages without any freeing.
2786 */
c0a24239
HY
2787 if (batch <= max_nr_alloc &&
2788 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2789 pcp->alloc_factor++;
2790 batch = min(batch, max_nr_alloc);
2791 }
2792
2793 /*
2794 * Scale batch relative to order if batch implies free pages
2795 * can be stored on the PCP. Batch can be 1 for small zones or
2796 * for boot pagesets which should never store free pages as
2797 * the pages may belong to arbitrary zones.
2798 */
2799 if (batch > 1)
2800 batch = max(batch >> order, 2);
2801
2802 return batch;
2803}
2804
066b2393 2805/* Remove page from the per-cpu list, caller must protect the list */
3b822017 2806static inline
44042b44
MG
2807struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2808 int migratetype,
6bb15450 2809 unsigned int alloc_flags,
453f85d4 2810 struct per_cpu_pages *pcp,
066b2393
MG
2811 struct list_head *list)
2812{
2813 struct page *page;
2814
2815 do {
2816 if (list_empty(list)) {
51a755c5 2817 int batch = nr_pcp_alloc(pcp, zone, order);
44042b44
MG
2818 int alloced;
2819
44042b44
MG
2820 alloced = rmqueue_bulk(zone, order,
2821 batch, list,
6bb15450 2822 migratetype, alloc_flags);
44042b44
MG
2823
2824 pcp->count += alloced << order;
066b2393
MG
2825 if (unlikely(list_empty(list)))
2826 return NULL;
2827 }
2828
bf75f200
MG
2829 page = list_first_entry(list, struct page, pcp_list);
2830 list_del(&page->pcp_list);
44042b44 2831 pcp->count -= 1 << order;
700d2e9a 2832 } while (check_new_pages(page, order));
066b2393
MG
2833
2834 return page;
2835}
2836
2837/* Lock and remove page from the per-cpu list */
2838static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44 2839 struct zone *zone, unsigned int order,
663d0cfd 2840 int migratetype, unsigned int alloc_flags)
066b2393
MG
2841{
2842 struct per_cpu_pages *pcp;
2843 struct list_head *list;
066b2393 2844 struct page *page;
4b23a68f 2845 unsigned long __maybe_unused UP_flags;
066b2393 2846
57490774 2847 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 2848 pcp_trylock_prepare(UP_flags);
57490774 2849 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 2850 if (!pcp) {
4b23a68f 2851 pcp_trylock_finish(UP_flags);
4b23a68f
MG
2852 return NULL;
2853 }
3b12e7e9
MG
2854
2855 /*
2856 * On allocation, reduce the number of pages that are batch freed.
2857 * See nr_pcp_free() where free_factor is increased for subsequent
2858 * frees.
2859 */
6ccdcb6d 2860 pcp->free_count >>= 1;
44042b44
MG
2861 list = &pcp->lists[order_to_pindex(migratetype, order)];
2862 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
57490774 2863 pcp_spin_unlock(pcp);
4b23a68f 2864 pcp_trylock_finish(UP_flags);
066b2393 2865 if (page) {
15cd9004 2866 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 2867 zone_statistics(preferred_zone, zone, 1);
066b2393 2868 }
066b2393
MG
2869 return page;
2870}
2871
1da177e4 2872/*
a57ae9ef
RX
2873 * Allocate a page from the given zone.
2874 * Use pcplists for THP or "cheap" high-order allocations.
1da177e4 2875 */
b073d7f8
AP
2876
2877/*
2878 * Do not instrument rmqueue() with KMSAN. This function may call
2879 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2880 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2881 * may call rmqueue() again, which will result in a deadlock.
1da177e4 2882 */
b073d7f8 2883__no_sanitize_memory
0a15c3e9 2884static inline
066b2393 2885struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2886 struct zone *zone, unsigned int order,
c603844b
MG
2887 gfp_t gfp_flags, unsigned int alloc_flags,
2888 int migratetype)
1da177e4 2889{
689bcebf 2890 struct page *page;
1da177e4 2891
589d9973
MG
2892 /*
2893 * We most definitely don't want callers attempting to
2894 * allocate greater than order-1 page units with __GFP_NOFAIL.
2895 */
2896 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2897
44042b44 2898 if (likely(pcp_allowed_order(order))) {
f945116e
JW
2899 page = rmqueue_pcplist(preferred_zone, zone, order,
2900 migratetype, alloc_flags);
2901 if (likely(page))
2902 goto out;
066b2393 2903 }
83b9355b 2904
589d9973
MG
2905 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2906 migratetype);
1da177e4 2907
066b2393 2908out:
73444bc4 2909 /* Separate test+clear to avoid unnecessary atomics */
3b11edf1
TH
2910 if ((alloc_flags & ALLOC_KSWAPD) &&
2911 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
73444bc4
MG
2912 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2913 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2914 }
2915
066b2393 2916 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4
LT
2917 return page;
2918}
2919
54aa3866 2920noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
2921{
2922 return __should_fail_alloc_page(gfp_mask, order);
2923}
2924ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2925
f27ce0e1
JK
2926static inline long __zone_watermark_unusable_free(struct zone *z,
2927 unsigned int order, unsigned int alloc_flags)
2928{
f27ce0e1
JK
2929 long unusable_free = (1 << order) - 1;
2930
2931 /*
ab350885
MG
2932 * If the caller does not have rights to reserves below the min
2933 * watermark then subtract the high-atomic reserves. This will
2934 * over-estimate the size of the atomic reserve but it avoids a search.
f27ce0e1 2935 */
ab350885 2936 if (likely(!(alloc_flags & ALLOC_RESERVES)))
f27ce0e1
JK
2937 unusable_free += z->nr_reserved_highatomic;
2938
2939#ifdef CONFIG_CMA
2940 /* If allocation can't use CMA areas don't use free CMA pages */
2941 if (!(alloc_flags & ALLOC_CMA))
2942 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2943#endif
dcdfdd40
KS
2944#ifdef CONFIG_UNACCEPTED_MEMORY
2945 unusable_free += zone_page_state(z, NR_UNACCEPTED);
2946#endif
f27ce0e1
JK
2947
2948 return unusable_free;
2949}
2950
1da177e4 2951/*
97a16fc8
MG
2952 * Return true if free base pages are above 'mark'. For high-order checks it
2953 * will return true of the order-0 watermark is reached and there is at least
2954 * one free page of a suitable size. Checking now avoids taking the zone lock
2955 * to check in the allocation paths if no pages are free.
1da177e4 2956 */
86a294a8 2957bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 2958 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 2959 long free_pages)
1da177e4 2960{
d23ad423 2961 long min = mark;
1da177e4
LT
2962 int o;
2963
0aaa29a5 2964 /* free_pages may go negative - that's OK */
f27ce0e1 2965 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 2966
ab350885
MG
2967 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2968 /*
2969 * __GFP_HIGH allows access to 50% of the min reserve as well
2970 * as OOM.
2971 */
1ebbb218 2972 if (alloc_flags & ALLOC_MIN_RESERVE) {
ab350885 2973 min -= min / 2;
0aaa29a5 2974
1ebbb218
MG
2975 /*
2976 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2977 * access more reserves than just __GFP_HIGH. Other
2978 * non-blocking allocations requests such as GFP_NOWAIT
2979 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2980 * access to the min reserve.
2981 */
2982 if (alloc_flags & ALLOC_NON_BLOCK)
2983 min -= min / 4;
2984 }
0aaa29a5 2985
cd04ae1e 2986 /*
ab350885 2987 * OOM victims can try even harder than the normal reserve
cd04ae1e
MH
2988 * users on the grounds that it's definitely going to be in
2989 * the exit path shortly and free memory. Any allocation it
2990 * makes during the free path will be small and short-lived.
2991 */
2992 if (alloc_flags & ALLOC_OOM)
2993 min -= min / 2;
cd04ae1e
MH
2994 }
2995
97a16fc8
MG
2996 /*
2997 * Check watermarks for an order-0 allocation request. If these
2998 * are not met, then a high-order request also cannot go ahead
2999 * even if a suitable page happened to be free.
3000 */
97a225e6 3001 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3002 return false;
1da177e4 3003
97a16fc8
MG
3004 /* If this is an order-0 request then the watermark is fine */
3005 if (!order)
3006 return true;
3007
3008 /* For a high-order request, check at least one suitable page is free */
fd377218 3009 for (o = order; o < NR_PAGE_ORDERS; o++) {
97a16fc8
MG
3010 struct free_area *area = &z->free_area[o];
3011 int mt;
3012
3013 if (!area->nr_free)
3014 continue;
3015
97a16fc8 3016 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3017 if (!free_area_empty(area, mt))
97a16fc8
MG
3018 return true;
3019 }
3020
3021#ifdef CONFIG_CMA
d883c6cf 3022 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3023 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3024 return true;
d883c6cf 3025 }
97a16fc8 3026#endif
eb2e2b42
MG
3027 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3028 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
b050e376 3029 return true;
eb2e2b42 3030 }
1da177e4 3031 }
97a16fc8 3032 return false;
88f5acf8
MG
3033}
3034
7aeb09f9 3035bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3036 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3037{
97a225e6 3038 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3039 zone_page_state(z, NR_FREE_PAGES));
3040}
3041
48ee5f36 3042static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3043 unsigned long mark, int highest_zoneidx,
f80b08fc 3044 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3045{
f27ce0e1 3046 long free_pages;
d883c6cf 3047
f27ce0e1 3048 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3049
3050 /*
3051 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3052 * need to be calculated.
48ee5f36 3053 */
f27ce0e1 3054 if (!order) {
9282012f
JK
3055 long usable_free;
3056 long reserved;
f27ce0e1 3057
9282012f
JK
3058 usable_free = free_pages;
3059 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3060
3061 /* reserved may over estimate high-atomic reserves. */
3062 usable_free -= min(usable_free, reserved);
3063 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
f27ce0e1
JK
3064 return true;
3065 }
48ee5f36 3066
f80b08fc
CTR
3067 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3068 free_pages))
3069 return true;
2973d822 3070
f80b08fc 3071 /*
2973d822 3072 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
f80b08fc
CTR
3073 * when checking the min watermark. The min watermark is the
3074 * point where boosting is ignored so that kswapd is woken up
3075 * when below the low watermark.
3076 */
2973d822 3077 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
f80b08fc
CTR
3078 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3079 mark = z->_watermark[WMARK_MIN];
3080 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3081 alloc_flags, free_pages);
3082 }
3083
3084 return false;
48ee5f36
MG
3085}
3086
7aeb09f9 3087bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3088 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3089{
3090 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3091
3092 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3093 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3094
97a225e6 3095 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3096 free_pages);
1da177e4
LT
3097}
3098
9276b1bc 3099#ifdef CONFIG_NUMA
61bb6cd2
GU
3100int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3101
957f822a
DR
3102static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3103{
e02dc017 3104 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3105 node_reclaim_distance;
957f822a 3106}
9276b1bc 3107#else /* CONFIG_NUMA */
957f822a
DR
3108static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109{
3110 return true;
3111}
9276b1bc
PJ
3112#endif /* CONFIG_NUMA */
3113
6bb15450
MG
3114/*
3115 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3116 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3117 * premature use of a lower zone may cause lowmem pressure problems that
3118 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3119 * probably too small. It only makes sense to spread allocations to avoid
3120 * fragmentation between the Normal and DMA32 zones.
3121 */
3122static inline unsigned int
0a79cdad 3123alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3124{
736838e9 3125 unsigned int alloc_flags;
0a79cdad 3126
736838e9
MN
3127 /*
3128 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3129 * to save a branch.
3130 */
3131 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3132
3133#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3134 if (!zone)
3135 return alloc_flags;
3136
6bb15450 3137 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3138 return alloc_flags;
6bb15450
MG
3139
3140 /*
3141 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3142 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3143 * on UMA that if Normal is populated then so is DMA32.
3144 */
3145 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3146 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3147 return alloc_flags;
6bb15450 3148
8118b82e 3149 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3150#endif /* CONFIG_ZONE_DMA32 */
3151 return alloc_flags;
6bb15450 3152}
6bb15450 3153
8e3560d9
PT
3154/* Must be called after current_gfp_context() which can change gfp_mask */
3155static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3156 unsigned int alloc_flags)
8510e69c
JK
3157{
3158#ifdef CONFIG_CMA
8e3560d9 3159 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 3160 alloc_flags |= ALLOC_CMA;
8510e69c
JK
3161#endif
3162 return alloc_flags;
3163}
3164
7fb1d9fc 3165/*
0798e519 3166 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3167 * a page.
3168 */
3169static struct page *
a9263751
VB
3170get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3171 const struct alloc_context *ac)
753ee728 3172{
6bb15450 3173 struct zoneref *z;
5117f45d 3174 struct zone *zone;
8a87d695
WY
3175 struct pglist_data *last_pgdat = NULL;
3176 bool last_pgdat_dirty_ok = false;
6bb15450 3177 bool no_fallback;
3b8c0be4 3178
6bb15450 3179retry:
7fb1d9fc 3180 /*
9276b1bc 3181 * Scan zonelist, looking for a zone with enough free.
8e464522 3182 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
7fb1d9fc 3183 */
6bb15450
MG
3184 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3185 z = ac->preferred_zoneref;
30d8ec73
MN
3186 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3187 ac->nodemask) {
be06af00 3188 struct page *page;
e085dbc5
JW
3189 unsigned long mark;
3190
664eedde
MG
3191 if (cpusets_enabled() &&
3192 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3193 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3194 continue;
a756cf59
JW
3195 /*
3196 * When allocating a page cache page for writing, we
281e3726
MG
3197 * want to get it from a node that is within its dirty
3198 * limit, such that no single node holds more than its
a756cf59 3199 * proportional share of globally allowed dirty pages.
281e3726 3200 * The dirty limits take into account the node's
a756cf59
JW
3201 * lowmem reserves and high watermark so that kswapd
3202 * should be able to balance it without having to
3203 * write pages from its LRU list.
3204 *
a756cf59 3205 * XXX: For now, allow allocations to potentially
281e3726 3206 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3207 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3208 * which is important when on a NUMA setup the allowed
281e3726 3209 * nodes are together not big enough to reach the
a756cf59 3210 * global limit. The proper fix for these situations
281e3726 3211 * will require awareness of nodes in the
a756cf59
JW
3212 * dirty-throttling and the flusher threads.
3213 */
3b8c0be4 3214 if (ac->spread_dirty_pages) {
8a87d695
WY
3215 if (last_pgdat != zone->zone_pgdat) {
3216 last_pgdat = zone->zone_pgdat;
3217 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3218 }
3b8c0be4 3219
8a87d695 3220 if (!last_pgdat_dirty_ok)
3b8c0be4 3221 continue;
3b8c0be4 3222 }
7fb1d9fc 3223
6bb15450
MG
3224 if (no_fallback && nr_online_nodes > 1 &&
3225 zone != ac->preferred_zoneref->zone) {
3226 int local_nid;
3227
3228 /*
3229 * If moving to a remote node, retry but allow
3230 * fragmenting fallbacks. Locality is more important
3231 * than fragmentation avoidance.
3232 */
3233 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3234 if (zone_to_nid(zone) != local_nid) {
3235 alloc_flags &= ~ALLOC_NOFRAGMENT;
3236 goto retry;
3237 }
3238 }
3239
57c0419c
HY
3240 /*
3241 * Detect whether the number of free pages is below high
3242 * watermark. If so, we will decrease pcp->high and free
3243 * PCP pages in free path to reduce the possibility of
3244 * premature page reclaiming. Detection is done here to
3245 * avoid to do that in hotter free path.
3246 */
3247 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3248 goto check_alloc_wmark;
3249
3250 mark = high_wmark_pages(zone);
3251 if (zone_watermark_fast(zone, order, mark,
3252 ac->highest_zoneidx, alloc_flags,
3253 gfp_mask))
3254 goto try_this_zone;
3255 else
3256 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3257
3258check_alloc_wmark:
a9214443 3259 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3260 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3261 ac->highest_zoneidx, alloc_flags,
3262 gfp_mask)) {
fa5e084e
MG
3263 int ret;
3264
dcdfdd40
KS
3265 if (has_unaccepted_memory()) {
3266 if (try_to_accept_memory(zone, order))
3267 goto try_this_zone;
3268 }
3269
c9e97a19
PT
3270#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3271 /*
3272 * Watermark failed for this zone, but see if we can
3273 * grow this zone if it contains deferred pages.
3274 */
076cf7ea 3275 if (deferred_pages_enabled()) {
c9e97a19
PT
3276 if (_deferred_grow_zone(zone, order))
3277 goto try_this_zone;
3278 }
3279#endif
5dab2911
MG
3280 /* Checked here to keep the fast path fast */
3281 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3282 if (alloc_flags & ALLOC_NO_WATERMARKS)
3283 goto try_this_zone;
3284
202e35db 3285 if (!node_reclaim_enabled() ||
c33d6c06 3286 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3287 continue;
3288
a5f5f91d 3289 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3290 switch (ret) {
a5f5f91d 3291 case NODE_RECLAIM_NOSCAN:
fa5e084e 3292 /* did not scan */
cd38b115 3293 continue;
a5f5f91d 3294 case NODE_RECLAIM_FULL:
fa5e084e 3295 /* scanned but unreclaimable */
cd38b115 3296 continue;
fa5e084e
MG
3297 default:
3298 /* did we reclaim enough */
fed2719e 3299 if (zone_watermark_ok(zone, order, mark,
97a225e6 3300 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3301 goto try_this_zone;
3302
fed2719e 3303 continue;
0798e519 3304 }
7fb1d9fc
RS
3305 }
3306
fa5e084e 3307try_this_zone:
066b2393 3308 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3309 gfp_mask, alloc_flags, ac->migratetype);
75379191 3310 if (page) {
479f854a 3311 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3312
3313 /*
3314 * If this is a high-order atomic allocation then check
3315 * if the pageblock should be reserved for the future
3316 */
eb2e2b42 3317 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
368d983b 3318 reserve_highatomic_pageblock(page, zone);
0aaa29a5 3319
75379191 3320 return page;
c9e97a19 3321 } else {
dcdfdd40
KS
3322 if (has_unaccepted_memory()) {
3323 if (try_to_accept_memory(zone, order))
3324 goto try_this_zone;
3325 }
3326
c9e97a19
PT
3327#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3328 /* Try again if zone has deferred pages */
076cf7ea 3329 if (deferred_pages_enabled()) {
c9e97a19
PT
3330 if (_deferred_grow_zone(zone, order))
3331 goto try_this_zone;
3332 }
3333#endif
75379191 3334 }
54a6eb5c 3335 }
9276b1bc 3336
6bb15450
MG
3337 /*
3338 * It's possible on a UMA machine to get through all zones that are
3339 * fragmented. If avoiding fragmentation, reset and try again.
3340 */
3341 if (no_fallback) {
3342 alloc_flags &= ~ALLOC_NOFRAGMENT;
3343 goto retry;
3344 }
3345
4ffeaf35 3346 return NULL;
753ee728
MH
3347}
3348
9af744d7 3349static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3350{
a238ab5b 3351 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3352
3353 /*
3354 * This documents exceptions given to allocations in certain
3355 * contexts that are allowed to allocate outside current's set
3356 * of allowed nodes.
3357 */
3358 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3359 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3360 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3361 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 3362 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3363 filter &= ~SHOW_MEM_FILTER_NODES;
3364
974f4367 3365 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
aa187507
MH
3366}
3367
a8e99259 3368void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3369{
3370 struct va_format vaf;
3371 va_list args;
1be334e5 3372 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3373
c4dc63f0
BH
3374 if ((gfp_mask & __GFP_NOWARN) ||
3375 !__ratelimit(&nopage_rs) ||
3376 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
3377 return;
3378
7877cdcc
MH
3379 va_start(args, fmt);
3380 vaf.fmt = fmt;
3381 vaf.va = &args;
ef8444ea 3382 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3383 current->comm, &vaf, gfp_mask, &gfp_mask,
3384 nodemask_pr_args(nodemask));
7877cdcc 3385 va_end(args);
3ee9a4f0 3386
a8e99259 3387 cpuset_print_current_mems_allowed();
ef8444ea 3388 pr_cont("\n");
a238ab5b 3389 dump_stack();
685dbf6f 3390 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3391}
3392
6c18ba7a
MH
3393static inline struct page *
3394__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3395 unsigned int alloc_flags,
3396 const struct alloc_context *ac)
3397{
3398 struct page *page;
3399
3400 page = get_page_from_freelist(gfp_mask, order,
3401 alloc_flags|ALLOC_CPUSET, ac);
3402 /*
3403 * fallback to ignore cpuset restriction if our nodes
3404 * are depleted
3405 */
3406 if (!page)
3407 page = get_page_from_freelist(gfp_mask, order,
3408 alloc_flags, ac);
3409
3410 return page;
3411}
3412
11e33f6a
MG
3413static inline struct page *
3414__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3415 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3416{
6e0fc46d
DR
3417 struct oom_control oc = {
3418 .zonelist = ac->zonelist,
3419 .nodemask = ac->nodemask,
2a966b77 3420 .memcg = NULL,
6e0fc46d
DR
3421 .gfp_mask = gfp_mask,
3422 .order = order,
6e0fc46d 3423 };
11e33f6a
MG
3424 struct page *page;
3425
9879de73
JW
3426 *did_some_progress = 0;
3427
9879de73 3428 /*
dc56401f
JW
3429 * Acquire the oom lock. If that fails, somebody else is
3430 * making progress for us.
9879de73 3431 */
dc56401f 3432 if (!mutex_trylock(&oom_lock)) {
9879de73 3433 *did_some_progress = 1;
11e33f6a 3434 schedule_timeout_uninterruptible(1);
1da177e4
LT
3435 return NULL;
3436 }
6b1de916 3437
11e33f6a
MG
3438 /*
3439 * Go through the zonelist yet one more time, keep very high watermark
3440 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3441 * we're still under heavy pressure. But make sure that this reclaim
3442 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3443 * allocation which will never fail due to oom_lock already held.
11e33f6a 3444 */
e746bf73
TH
3445 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3446 ~__GFP_DIRECT_RECLAIM, order,
3447 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3448 if (page)
11e33f6a
MG
3449 goto out;
3450
06ad276a
MH
3451 /* Coredumps can quickly deplete all memory reserves */
3452 if (current->flags & PF_DUMPCORE)
3453 goto out;
3454 /* The OOM killer will not help higher order allocs */
3455 if (order > PAGE_ALLOC_COSTLY_ORDER)
3456 goto out;
dcda9b04
MH
3457 /*
3458 * We have already exhausted all our reclaim opportunities without any
3459 * success so it is time to admit defeat. We will skip the OOM killer
3460 * because it is very likely that the caller has a more reasonable
3461 * fallback than shooting a random task.
cfb4a541
MN
3462 *
3463 * The OOM killer may not free memory on a specific node.
dcda9b04 3464 */
cfb4a541 3465 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 3466 goto out;
06ad276a 3467 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3468 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3469 goto out;
3470 if (pm_suspended_storage())
3471 goto out;
3472 /*
3473 * XXX: GFP_NOFS allocations should rather fail than rely on
3474 * other request to make a forward progress.
3475 * We are in an unfortunate situation where out_of_memory cannot
3476 * do much for this context but let's try it to at least get
3477 * access to memory reserved if the current task is killed (see
3478 * out_of_memory). Once filesystems are ready to handle allocation
3479 * failures more gracefully we should just bail out here.
3480 */
3481
3c2c6488 3482 /* Exhausted what can be done so it's blame time */
3f913fc5
QZ
3483 if (out_of_memory(&oc) ||
3484 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
c32b3cbe 3485 *did_some_progress = 1;
5020e285 3486
6c18ba7a
MH
3487 /*
3488 * Help non-failing allocations by giving them access to memory
3489 * reserves
3490 */
3491 if (gfp_mask & __GFP_NOFAIL)
3492 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3493 ALLOC_NO_WATERMARKS, ac);
5020e285 3494 }
11e33f6a 3495out:
dc56401f 3496 mutex_unlock(&oom_lock);
11e33f6a
MG
3497 return page;
3498}
3499
33c2d214 3500/*
baf2f90b 3501 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
3502 * killer is consider as the only way to move forward.
3503 */
3504#define MAX_COMPACT_RETRIES 16
3505
56de7263
MG
3506#ifdef CONFIG_COMPACTION
3507/* Try memory compaction for high-order allocations before reclaim */
3508static struct page *
3509__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3510 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3511 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3512{
5e1f0f09 3513 struct page *page = NULL;
eb414681 3514 unsigned long pflags;
499118e9 3515 unsigned int noreclaim_flag;
53853e2d
VB
3516
3517 if (!order)
66199712 3518 return NULL;
66199712 3519
eb414681 3520 psi_memstall_enter(&pflags);
5bf18281 3521 delayacct_compact_start();
499118e9 3522 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3523
c5d01d0d 3524 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3525 prio, &page);
eb414681 3526
499118e9 3527 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3528 psi_memstall_leave(&pflags);
5bf18281 3529 delayacct_compact_end();
56de7263 3530
06dac2f4
CTR
3531 if (*compact_result == COMPACT_SKIPPED)
3532 return NULL;
98dd3b48
VB
3533 /*
3534 * At least in one zone compaction wasn't deferred or skipped, so let's
3535 * count a compaction stall
3536 */
3537 count_vm_event(COMPACTSTALL);
8fb74b9f 3538
5e1f0f09
MG
3539 /* Prep a captured page if available */
3540 if (page)
3541 prep_new_page(page, order, gfp_mask, alloc_flags);
3542
3543 /* Try get a page from the freelist if available */
3544 if (!page)
3545 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3546
98dd3b48
VB
3547 if (page) {
3548 struct zone *zone = page_zone(page);
53853e2d 3549
98dd3b48
VB
3550 zone->compact_blockskip_flush = false;
3551 compaction_defer_reset(zone, order, true);
3552 count_vm_event(COMPACTSUCCESS);
3553 return page;
3554 }
56de7263 3555
98dd3b48
VB
3556 /*
3557 * It's bad if compaction run occurs and fails. The most likely reason
3558 * is that pages exist, but not enough to satisfy watermarks.
3559 */
3560 count_vm_event(COMPACTFAIL);
66199712 3561
98dd3b48 3562 cond_resched();
56de7263
MG
3563
3564 return NULL;
3565}
33c2d214 3566
3250845d
VB
3567static inline bool
3568should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3569 enum compact_result compact_result,
3570 enum compact_priority *compact_priority,
d9436498 3571 int *compaction_retries)
3250845d
VB
3572{
3573 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3574 int min_priority;
65190cff
MH
3575 bool ret = false;
3576 int retries = *compaction_retries;
3577 enum compact_priority priority = *compact_priority;
3250845d
VB
3578
3579 if (!order)
3580 return false;
3581
691d9497
AT
3582 if (fatal_signal_pending(current))
3583 return false;
3584
49433085 3585 /*
ecd8b292
JW
3586 * Compaction was skipped due to a lack of free order-0
3587 * migration targets. Continue if reclaim can help.
49433085 3588 */
ecd8b292 3589 if (compact_result == COMPACT_SKIPPED) {
49433085
VB
3590 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3591 goto out;
3592 }
3593
3250845d 3594 /*
511a69b2
JW
3595 * Compaction managed to coalesce some page blocks, but the
3596 * allocation failed presumably due to a race. Retry some.
3250845d 3597 */
511a69b2
JW
3598 if (compact_result == COMPACT_SUCCESS) {
3599 /*
3600 * !costly requests are much more important than
3601 * __GFP_RETRY_MAYFAIL costly ones because they are de
3602 * facto nofail and invoke OOM killer to move on while
3603 * costly can fail and users are ready to cope with
3604 * that. 1/4 retries is rather arbitrary but we would
3605 * need much more detailed feedback from compaction to
3606 * make a better decision.
3607 */
3608 if (order > PAGE_ALLOC_COSTLY_ORDER)
3609 max_retries /= 4;
3250845d 3610
511a69b2
JW
3611 if (++(*compaction_retries) <= max_retries) {
3612 ret = true;
3613 goto out;
3614 }
65190cff 3615 }
3250845d 3616
d9436498 3617 /*
511a69b2 3618 * Compaction failed. Retry with increasing priority.
d9436498 3619 */
c2033b00
VB
3620 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3621 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3622
c2033b00 3623 if (*compact_priority > min_priority) {
d9436498
VB
3624 (*compact_priority)--;
3625 *compaction_retries = 0;
65190cff 3626 ret = true;
d9436498 3627 }
65190cff
MH
3628out:
3629 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3630 return ret;
3250845d 3631}
56de7263
MG
3632#else
3633static inline struct page *
3634__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3635 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3636 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3637{
33c2d214 3638 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3639 return NULL;
3640}
33c2d214
MH
3641
3642static inline bool
86a294a8
MH
3643should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3644 enum compact_result compact_result,
a5508cd8 3645 enum compact_priority *compact_priority,
d9436498 3646 int *compaction_retries)
33c2d214 3647{
31e49bfd
MH
3648 struct zone *zone;
3649 struct zoneref *z;
3650
3651 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3652 return false;
3653
3654 /*
3655 * There are setups with compaction disabled which would prefer to loop
3656 * inside the allocator rather than hit the oom killer prematurely.
3657 * Let's give them a good hope and keep retrying while the order-0
3658 * watermarks are OK.
3659 */
97a225e6
JK
3660 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3661 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 3662 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 3663 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
3664 return true;
3665 }
33c2d214
MH
3666 return false;
3667}
3250845d 3668#endif /* CONFIG_COMPACTION */
56de7263 3669
d92a8cfc 3670#ifdef CONFIG_LOCKDEP
93781325 3671static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3672 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3673
f920e413 3674static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 3675{
d92a8cfc
PZ
3676 /* no reclaim without waiting on it */
3677 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3678 return false;
3679
3680 /* this guy won't enter reclaim */
2e517d68 3681 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3682 return false;
3683
d92a8cfc
PZ
3684 if (gfp_mask & __GFP_NOLOCKDEP)
3685 return false;
3686
3687 return true;
3688}
3689
4f3eaf45 3690void __fs_reclaim_acquire(unsigned long ip)
93781325 3691{
4f3eaf45 3692 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
3693}
3694
4f3eaf45 3695void __fs_reclaim_release(unsigned long ip)
93781325 3696{
4f3eaf45 3697 lock_release(&__fs_reclaim_map, ip);
93781325
OS
3698}
3699
d92a8cfc
PZ
3700void fs_reclaim_acquire(gfp_t gfp_mask)
3701{
f920e413
DV
3702 gfp_mask = current_gfp_context(gfp_mask);
3703
3704 if (__need_reclaim(gfp_mask)) {
3705 if (gfp_mask & __GFP_FS)
4f3eaf45 3706 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
3707
3708#ifdef CONFIG_MMU_NOTIFIER
3709 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3710 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3711#endif
3712
3713 }
d92a8cfc
PZ
3714}
3715EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3716
3717void fs_reclaim_release(gfp_t gfp_mask)
3718{
f920e413
DV
3719 gfp_mask = current_gfp_context(gfp_mask);
3720
3721 if (__need_reclaim(gfp_mask)) {
3722 if (gfp_mask & __GFP_FS)
4f3eaf45 3723 __fs_reclaim_release(_RET_IP_);
f920e413 3724 }
d92a8cfc
PZ
3725}
3726EXPORT_SYMBOL_GPL(fs_reclaim_release);
3727#endif
3728
3d36424b
MG
3729/*
3730 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3731 * have been rebuilt so allocation retries. Reader side does not lock and
3732 * retries the allocation if zonelist changes. Writer side is protected by the
3733 * embedded spin_lock.
3734 */
3735static DEFINE_SEQLOCK(zonelist_update_seq);
3736
3737static unsigned int zonelist_iter_begin(void)
3738{
3739 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3740 return read_seqbegin(&zonelist_update_seq);
3741
3742 return 0;
3743}
3744
3745static unsigned int check_retry_zonelist(unsigned int seq)
3746{
3747 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3748 return read_seqretry(&zonelist_update_seq, seq);
3749
3750 return seq;
3751}
3752
bba90710 3753/* Perform direct synchronous page reclaim */
2187e17b 3754static unsigned long
a9263751
VB
3755__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3756 const struct alloc_context *ac)
11e33f6a 3757{
499118e9 3758 unsigned int noreclaim_flag;
fa7fc75f 3759 unsigned long progress;
11e33f6a
MG
3760
3761 cond_resched();
3762
3763 /* We now go into synchronous reclaim */
3764 cpuset_memory_pressure_bump();
d92a8cfc 3765 fs_reclaim_acquire(gfp_mask);
93781325 3766 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3767
a9263751
VB
3768 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3769 ac->nodemask);
11e33f6a 3770
499118e9 3771 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3772 fs_reclaim_release(gfp_mask);
11e33f6a
MG
3773
3774 cond_resched();
3775
bba90710
MS
3776 return progress;
3777}
3778
3779/* The really slow allocator path where we enter direct reclaim */
3780static inline struct page *
3781__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3782 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3783 unsigned long *did_some_progress)
bba90710
MS
3784{
3785 struct page *page = NULL;
fa7fc75f 3786 unsigned long pflags;
bba90710
MS
3787 bool drained = false;
3788
fa7fc75f 3789 psi_memstall_enter(&pflags);
a9263751 3790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 3791 if (unlikely(!(*did_some_progress)))
fa7fc75f 3792 goto out;
11e33f6a 3793
9ee493ce 3794retry:
31a6c190 3795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3796
3797 /*
3798 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 3799 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 3800 * Shrink them and try again
9ee493ce
MG
3801 */
3802 if (!page && !drained) {
29fac03b 3803 unreserve_highatomic_pageblock(ac, false);
93481ff0 3804 drain_all_pages(NULL);
9ee493ce
MG
3805 drained = true;
3806 goto retry;
3807 }
fa7fc75f
SB
3808out:
3809 psi_memstall_leave(&pflags);
9ee493ce 3810
11e33f6a
MG
3811 return page;
3812}
3813
5ecd9d40
DR
3814static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3815 const struct alloc_context *ac)
3a025760
JW
3816{
3817 struct zoneref *z;
3818 struct zone *zone;
e1a55637 3819 pg_data_t *last_pgdat = NULL;
97a225e6 3820 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 3821
97a225e6 3822 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 3823 ac->nodemask) {
bc53008e
WY
3824 if (!managed_zone(zone))
3825 continue;
d137a7cb 3826 if (last_pgdat != zone->zone_pgdat) {
97a225e6 3827 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
3828 last_pgdat = zone->zone_pgdat;
3829 }
e1a55637 3830 }
3a025760
JW
3831}
3832
c603844b 3833static inline unsigned int
eb2e2b42 3834gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
341ce06f 3835{
c603844b 3836 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3837
736838e9 3838 /*
524c4807 3839 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
736838e9
MN
3840 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3841 * to save two branches.
3842 */
524c4807 3843 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
736838e9 3844 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 3845
341ce06f
PZ
3846 /*
3847 * The caller may dip into page reserves a bit more if the caller
3848 * cannot run direct reclaim, or if the caller has realtime scheduling
3849 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1ebbb218 3850 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
341ce06f 3851 */
736838e9
MN
3852 alloc_flags |= (__force int)
3853 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 3854
1ebbb218 3855 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
5c3240d9 3856 /*
b104a35d
DR
3857 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3858 * if it can't schedule.
5c3240d9 3859 */
eb2e2b42 3860 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1ebbb218 3861 alloc_flags |= ALLOC_NON_BLOCK;
eb2e2b42
MG
3862
3863 if (order > 0)
3864 alloc_flags |= ALLOC_HIGHATOMIC;
3865 }
3866
523b9458 3867 /*
1ebbb218
MG
3868 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3869 * GFP_ATOMIC) rather than fail, see the comment for
8e464522 3870 * cpuset_node_allowed().
523b9458 3871 */
1ebbb218
MG
3872 if (alloc_flags & ALLOC_MIN_RESERVE)
3873 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 3874 } else if (unlikely(rt_task(current)) && in_task())
c988dcbe 3875 alloc_flags |= ALLOC_MIN_RESERVE;
341ce06f 3876
8e3560d9 3877 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 3878
341ce06f
PZ
3879 return alloc_flags;
3880}
3881
cd04ae1e 3882static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3883{
cd04ae1e
MH
3884 if (!tsk_is_oom_victim(tsk))
3885 return false;
3886
3887 /*
3888 * !MMU doesn't have oom reaper so give access to memory reserves
3889 * only to the thread with TIF_MEMDIE set
3890 */
3891 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3892 return false;
3893
cd04ae1e
MH
3894 return true;
3895}
3896
3897/*
3898 * Distinguish requests which really need access to full memory
3899 * reserves from oom victims which can live with a portion of it
3900 */
3901static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3902{
3903 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3904 return 0;
31a6c190 3905 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3906 return ALLOC_NO_WATERMARKS;
31a6c190 3907 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3908 return ALLOC_NO_WATERMARKS;
3909 if (!in_interrupt()) {
3910 if (current->flags & PF_MEMALLOC)
3911 return ALLOC_NO_WATERMARKS;
3912 else if (oom_reserves_allowed(current))
3913 return ALLOC_OOM;
3914 }
31a6c190 3915
cd04ae1e
MH
3916 return 0;
3917}
3918
3919bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3920{
3921 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3922}
3923
0a0337e0
MH
3924/*
3925 * Checks whether it makes sense to retry the reclaim to make a forward progress
3926 * for the given allocation request.
491d79ae
JW
3927 *
3928 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3929 * without success, or when we couldn't even meet the watermark if we
3930 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3931 *
3932 * Returns true if a retry is viable or false to enter the oom path.
3933 */
3934static inline bool
3935should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3936 struct alloc_context *ac, int alloc_flags,
423b452e 3937 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3938{
3939 struct zone *zone;
3940 struct zoneref *z;
15f570bf 3941 bool ret = false;
0a0337e0 3942
423b452e
VB
3943 /*
3944 * Costly allocations might have made a progress but this doesn't mean
3945 * their order will become available due to high fragmentation so
3946 * always increment the no progress counter for them
3947 */
3948 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3949 *no_progress_loops = 0;
3950 else
3951 (*no_progress_loops)++;
3952
ac3f3b0a
CTK
3953 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3954 goto out;
3955
0a0337e0 3956
bca67592
MG
3957 /*
3958 * Keep reclaiming pages while there is a chance this will lead
3959 * somewhere. If none of the target zones can satisfy our allocation
3960 * request even if all reclaimable pages are considered then we are
3961 * screwed and have to go OOM.
0a0337e0 3962 */
97a225e6
JK
3963 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3964 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 3965 unsigned long available;
ede37713 3966 unsigned long reclaimable;
d379f01d
MH
3967 unsigned long min_wmark = min_wmark_pages(zone);
3968 bool wmark;
0a0337e0 3969
5a1c84b4 3970 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3971 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3972
3973 /*
491d79ae
JW
3974 * Would the allocation succeed if we reclaimed all
3975 * reclaimable pages?
0a0337e0 3976 */
d379f01d 3977 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 3978 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
3979 trace_reclaim_retry_zone(z, order, reclaimable,
3980 available, min_wmark, *no_progress_loops, wmark);
3981 if (wmark) {
15f570bf 3982 ret = true;
132b0d21 3983 break;
0a0337e0
MH
3984 }
3985 }
3986
15f570bf
MH
3987 /*
3988 * Memory allocation/reclaim might be called from a WQ context and the
3989 * current implementation of the WQ concurrency control doesn't
3990 * recognize that a particular WQ is congested if the worker thread is
3991 * looping without ever sleeping. Therefore we have to do a short sleep
3992 * here rather than calling cond_resched().
3993 */
3994 if (current->flags & PF_WQ_WORKER)
3995 schedule_timeout_uninterruptible(1);
3996 else
3997 cond_resched();
ac3f3b0a
CTK
3998out:
3999 /* Before OOM, exhaust highatomic_reserve */
4000 if (!ret)
4001 return unreserve_highatomic_pageblock(ac, true);
4002
15f570bf 4003 return ret;
0a0337e0
MH
4004}
4005
902b6281
VB
4006static inline bool
4007check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4008{
4009 /*
4010 * It's possible that cpuset's mems_allowed and the nodemask from
4011 * mempolicy don't intersect. This should be normally dealt with by
4012 * policy_nodemask(), but it's possible to race with cpuset update in
4013 * such a way the check therein was true, and then it became false
4014 * before we got our cpuset_mems_cookie here.
4015 * This assumes that for all allocations, ac->nodemask can come only
4016 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4017 * when it does not intersect with the cpuset restrictions) or the
4018 * caller can deal with a violated nodemask.
4019 */
4020 if (cpusets_enabled() && ac->nodemask &&
4021 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4022 ac->nodemask = NULL;
4023 return true;
4024 }
4025
4026 /*
4027 * When updating a task's mems_allowed or mempolicy nodemask, it is
4028 * possible to race with parallel threads in such a way that our
4029 * allocation can fail while the mask is being updated. If we are about
4030 * to fail, check if the cpuset changed during allocation and if so,
4031 * retry.
4032 */
4033 if (read_mems_allowed_retry(cpuset_mems_cookie))
4034 return true;
4035
4036 return false;
4037}
4038
11e33f6a
MG
4039static inline struct page *
4040__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4041 struct alloc_context *ac)
11e33f6a 4042{
d0164adc 4043 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4044 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4045 struct page *page = NULL;
c603844b 4046 unsigned int alloc_flags;
11e33f6a 4047 unsigned long did_some_progress;
5ce9bfef 4048 enum compact_priority compact_priority;
c5d01d0d 4049 enum compact_result compact_result;
5ce9bfef
VB
4050 int compaction_retries;
4051 int no_progress_loops;
5ce9bfef 4052 unsigned int cpuset_mems_cookie;
3d36424b 4053 unsigned int zonelist_iter_cookie;
cd04ae1e 4054 int reserve_flags;
1da177e4 4055
3d36424b 4056restart:
5ce9bfef
VB
4057 compaction_retries = 0;
4058 no_progress_loops = 0;
4059 compact_priority = DEF_COMPACT_PRIORITY;
4060 cpuset_mems_cookie = read_mems_allowed_begin();
3d36424b 4061 zonelist_iter_cookie = zonelist_iter_begin();
9a67f648
MH
4062
4063 /*
4064 * The fast path uses conservative alloc_flags to succeed only until
4065 * kswapd needs to be woken up, and to avoid the cost of setting up
4066 * alloc_flags precisely. So we do that now.
4067 */
eb2e2b42 4068 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
9a67f648 4069
e47483bc
VB
4070 /*
4071 * We need to recalculate the starting point for the zonelist iterator
4072 * because we might have used different nodemask in the fast path, or
4073 * there was a cpuset modification and we are retrying - otherwise we
4074 * could end up iterating over non-eligible zones endlessly.
4075 */
4076 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4077 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4078 if (!ac->preferred_zoneref->zone)
4079 goto nopage;
4080
8ca1b5a4
FT
4081 /*
4082 * Check for insane configurations where the cpuset doesn't contain
4083 * any suitable zone to satisfy the request - e.g. non-movable
4084 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4085 */
4086 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4087 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4088 ac->highest_zoneidx,
4089 &cpuset_current_mems_allowed);
4090 if (!z->zone)
4091 goto nopage;
4092 }
4093
0a79cdad 4094 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4095 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4096
4097 /*
4098 * The adjusted alloc_flags might result in immediate success, so try
4099 * that first
4100 */
4101 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4102 if (page)
4103 goto got_pg;
4104
a8161d1e
VB
4105 /*
4106 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4107 * that we have enough base pages and don't need to reclaim. For non-
4108 * movable high-order allocations, do that as well, as compaction will
4109 * try prevent permanent fragmentation by migrating from blocks of the
4110 * same migratetype.
4111 * Don't try this for allocations that are allowed to ignore
4112 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4113 */
282722b0
VB
4114 if (can_direct_reclaim &&
4115 (costly_order ||
4116 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4117 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4118 page = __alloc_pages_direct_compact(gfp_mask, order,
4119 alloc_flags, ac,
a5508cd8 4120 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4121 &compact_result);
4122 if (page)
4123 goto got_pg;
4124
cc638f32
VB
4125 /*
4126 * Checks for costly allocations with __GFP_NORETRY, which
4127 * includes some THP page fault allocations
4128 */
4129 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4130 /*
4131 * If allocating entire pageblock(s) and compaction
4132 * failed because all zones are below low watermarks
4133 * or is prohibited because it recently failed at this
3f36d866
DR
4134 * order, fail immediately unless the allocator has
4135 * requested compaction and reclaim retry.
b39d0ee2
DR
4136 *
4137 * Reclaim is
4138 * - potentially very expensive because zones are far
4139 * below their low watermarks or this is part of very
4140 * bursty high order allocations,
4141 * - not guaranteed to help because isolate_freepages()
4142 * may not iterate over freed pages as part of its
4143 * linear scan, and
4144 * - unlikely to make entire pageblocks free on its
4145 * own.
4146 */
4147 if (compact_result == COMPACT_SKIPPED ||
4148 compact_result == COMPACT_DEFERRED)
4149 goto nopage;
a8161d1e 4150
a8161d1e 4151 /*
3eb2771b
VB
4152 * Looks like reclaim/compaction is worth trying, but
4153 * sync compaction could be very expensive, so keep
25160354 4154 * using async compaction.
a8161d1e 4155 */
a5508cd8 4156 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4157 }
4158 }
23771235 4159
31a6c190 4160retry:
23771235 4161 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4162 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4163 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4164
cd04ae1e
MH
4165 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4166 if (reserve_flags)
ce96fa62
ML
4167 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4168 (alloc_flags & ALLOC_KSWAPD);
23771235 4169
e46e7b77 4170 /*
d6a24df0
VB
4171 * Reset the nodemask and zonelist iterators if memory policies can be
4172 * ignored. These allocations are high priority and system rather than
4173 * user oriented.
e46e7b77 4174 */
cd04ae1e 4175 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4176 ac->nodemask = NULL;
e46e7b77 4177 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4178 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4179 }
4180
23771235 4181 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4182 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4183 if (page)
4184 goto got_pg;
1da177e4 4185
d0164adc 4186 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4187 if (!can_direct_reclaim)
1da177e4
LT
4188 goto nopage;
4189
9a67f648
MH
4190 /* Avoid recursion of direct reclaim */
4191 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4192 goto nopage;
4193
a8161d1e
VB
4194 /* Try direct reclaim and then allocating */
4195 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4196 &did_some_progress);
4197 if (page)
4198 goto got_pg;
4199
4200 /* Try direct compaction and then allocating */
a9263751 4201 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4202 compact_priority, &compact_result);
56de7263
MG
4203 if (page)
4204 goto got_pg;
75f30861 4205
9083905a
JW
4206 /* Do not loop if specifically requested */
4207 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4208 goto nopage;
9083905a 4209
0a0337e0
MH
4210 /*
4211 * Do not retry costly high order allocations unless they are
dcda9b04 4212 * __GFP_RETRY_MAYFAIL
0a0337e0 4213 */
dcda9b04 4214 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4215 goto nopage;
0a0337e0 4216
0a0337e0 4217 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4218 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4219 goto retry;
4220
33c2d214
MH
4221 /*
4222 * It doesn't make any sense to retry for the compaction if the order-0
4223 * reclaim is not able to make any progress because the current
4224 * implementation of the compaction depends on the sufficient amount
4225 * of free memory (see __compaction_suitable)
4226 */
4227 if (did_some_progress > 0 &&
86a294a8 4228 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4229 compact_result, &compact_priority,
d9436498 4230 &compaction_retries))
33c2d214
MH
4231 goto retry;
4232
902b6281 4233
3d36424b
MG
4234 /*
4235 * Deal with possible cpuset update races or zonelist updates to avoid
4236 * a unnecessary OOM kill.
4237 */
4238 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4239 check_retry_zonelist(zonelist_iter_cookie))
4240 goto restart;
e47483bc 4241
9083905a
JW
4242 /* Reclaim has failed us, start killing things */
4243 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4244 if (page)
4245 goto got_pg;
4246
9a67f648 4247 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4248 if (tsk_is_oom_victim(current) &&
8510e69c 4249 (alloc_flags & ALLOC_OOM ||
c288983d 4250 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4251 goto nopage;
4252
9083905a 4253 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4254 if (did_some_progress) {
4255 no_progress_loops = 0;
9083905a 4256 goto retry;
0a0337e0 4257 }
9083905a 4258
1da177e4 4259nopage:
3d36424b
MG
4260 /*
4261 * Deal with possible cpuset update races or zonelist updates to avoid
4262 * a unnecessary OOM kill.
4263 */
4264 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4265 check_retry_zonelist(zonelist_iter_cookie))
4266 goto restart;
5ce9bfef 4267
9a67f648
MH
4268 /*
4269 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4270 * we always retry
4271 */
4272 if (gfp_mask & __GFP_NOFAIL) {
4273 /*
4274 * All existing users of the __GFP_NOFAIL are blockable, so warn
4275 * of any new users that actually require GFP_NOWAIT
4276 */
3f913fc5 4277 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
9a67f648
MH
4278 goto fail;
4279
4280 /*
4281 * PF_MEMALLOC request from this context is rather bizarre
4282 * because we cannot reclaim anything and only can loop waiting
4283 * for somebody to do a work for us
4284 */
3f913fc5 4285 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
9a67f648
MH
4286
4287 /*
4288 * non failing costly orders are a hard requirement which we
4289 * are not prepared for much so let's warn about these users
4290 * so that we can identify them and convert them to something
4291 * else.
4292 */
896c4d52 4293 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
9a67f648 4294
6c18ba7a 4295 /*
1ebbb218
MG
4296 * Help non-failing allocations by giving some access to memory
4297 * reserves normally used for high priority non-blocking
4298 * allocations but do not use ALLOC_NO_WATERMARKS because this
6c18ba7a 4299 * could deplete whole memory reserves which would just make
1ebbb218 4300 * the situation worse.
6c18ba7a 4301 */
1ebbb218 4302 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
6c18ba7a
MH
4303 if (page)
4304 goto got_pg;
4305
9a67f648
MH
4306 cond_resched();
4307 goto retry;
4308 }
4309fail:
a8e99259 4310 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4311 "page allocation failure: order:%u", order);
1da177e4 4312got_pg:
072bb0aa 4313 return page;
1da177e4 4314}
11e33f6a 4315
9cd75558 4316static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4317 int preferred_nid, nodemask_t *nodemask,
8e6a930b 4318 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 4319 unsigned int *alloc_flags)
11e33f6a 4320{
97a225e6 4321 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4322 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4323 ac->nodemask = nodemask;
01c0bfe0 4324 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4325
682a3385 4326 if (cpusets_enabled()) {
8e6a930b 4327 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
4328 /*
4329 * When we are in the interrupt context, it is irrelevant
4330 * to the current task context. It means that any node ok.
4331 */
88dc6f20 4332 if (in_task() && !ac->nodemask)
9cd75558 4333 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4334 else
4335 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4336 }
4337
446ec838 4338 might_alloc(gfp_mask);
11e33f6a
MG
4339
4340 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4341 return false;
11e33f6a 4342
8e3560d9 4343 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 4344
c9ab0c4f 4345 /* Dirty zone balancing only done in the fast path */
9cd75558 4346 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4347
e46e7b77
MG
4348 /*
4349 * The preferred zone is used for statistics but crucially it is
4350 * also used as the starting point for the zonelist iterator. It
4351 * may get reset for allocations that ignore memory policies.
4352 */
9cd75558 4353 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4354 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4355
4356 return true;
9cd75558
MG
4357}
4358
387ba26f 4359/*
0f87d9d3 4360 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
4361 * @gfp: GFP flags for the allocation
4362 * @preferred_nid: The preferred NUMA node ID to allocate from
4363 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
4364 * @nr_pages: The number of pages desired on the list or array
4365 * @page_list: Optional list to store the allocated pages
4366 * @page_array: Optional array to store the pages
387ba26f
MG
4367 *
4368 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
4369 * allocate nr_pages quickly. Pages are added to page_list if page_list
4370 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 4371 *
0f87d9d3
MG
4372 * For lists, nr_pages is the number of pages that should be allocated.
4373 *
4374 * For arrays, only NULL elements are populated with pages and nr_pages
4375 * is the maximum number of pages that will be stored in the array.
4376 *
4377 * Returns the number of pages on the list or array.
387ba26f
MG
4378 */
4379unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4380 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
4381 struct list_head *page_list,
4382 struct page **page_array)
387ba26f
MG
4383{
4384 struct page *page;
4b23a68f 4385 unsigned long __maybe_unused UP_flags;
387ba26f
MG
4386 struct zone *zone;
4387 struct zoneref *z;
4388 struct per_cpu_pages *pcp;
4389 struct list_head *pcp_list;
4390 struct alloc_context ac;
4391 gfp_t alloc_gfp;
4392 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 4393 int nr_populated = 0, nr_account = 0;
387ba26f 4394
0f87d9d3
MG
4395 /*
4396 * Skip populated array elements to determine if any pages need
4397 * to be allocated before disabling IRQs.
4398 */
b08e50dd 4399 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
4400 nr_populated++;
4401
06147843
CL
4402 /* No pages requested? */
4403 if (unlikely(nr_pages <= 0))
4404 goto out;
4405
b3b64ebd
MG
4406 /* Already populated array? */
4407 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 4408 goto out;
b3b64ebd 4409
8dcb3060 4410 /* Bulk allocator does not support memcg accounting. */
f7a449f7 4411 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
8dcb3060
SB
4412 goto failed;
4413
387ba26f 4414 /* Use the single page allocator for one page. */
0f87d9d3 4415 if (nr_pages - nr_populated == 1)
387ba26f
MG
4416 goto failed;
4417
187ad460
MG
4418#ifdef CONFIG_PAGE_OWNER
4419 /*
4420 * PAGE_OWNER may recurse into the allocator to allocate space to
4421 * save the stack with pagesets.lock held. Releasing/reacquiring
4422 * removes much of the performance benefit of bulk allocation so
4423 * force the caller to allocate one page at a time as it'll have
4424 * similar performance to added complexity to the bulk allocator.
4425 */
4426 if (static_branch_unlikely(&page_owner_inited))
4427 goto failed;
4428#endif
4429
387ba26f
MG
4430 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4431 gfp &= gfp_allowed_mask;
4432 alloc_gfp = gfp;
4433 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 4434 goto out;
387ba26f
MG
4435 gfp = alloc_gfp;
4436
4437 /* Find an allowed local zone that meets the low watermark. */
4438 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4439 unsigned long mark;
4440
4441 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4442 !__cpuset_zone_allowed(zone, gfp)) {
4443 continue;
4444 }
4445
4446 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4447 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4448 goto failed;
4449 }
4450
4451 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4452 if (zone_watermark_fast(zone, 0, mark,
4453 zonelist_zone_idx(ac.preferred_zoneref),
4454 alloc_flags, gfp)) {
4455 break;
4456 }
4457 }
4458
4459 /*
4460 * If there are no allowed local zones that meets the watermarks then
4461 * try to allocate a single page and reclaim if necessary.
4462 */
ce76f9a1 4463 if (unlikely(!zone))
387ba26f
MG
4464 goto failed;
4465
57490774 4466 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 4467 pcp_trylock_prepare(UP_flags);
57490774 4468 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 4469 if (!pcp)
4b23a68f 4470 goto failed_irq;
387ba26f 4471
387ba26f 4472 /* Attempt the batch allocation */
44042b44 4473 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
0f87d9d3
MG
4474 while (nr_populated < nr_pages) {
4475
4476 /* Skip existing pages */
4477 if (page_array && page_array[nr_populated]) {
4478 nr_populated++;
4479 continue;
4480 }
4481
44042b44 4482 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 4483 pcp, pcp_list);
ce76f9a1 4484 if (unlikely(!page)) {
c572e488 4485 /* Try and allocate at least one page */
4b23a68f 4486 if (!nr_account) {
57490774 4487 pcp_spin_unlock(pcp);
387ba26f 4488 goto failed_irq;
4b23a68f 4489 }
387ba26f
MG
4490 break;
4491 }
3e23060b 4492 nr_account++;
387ba26f
MG
4493
4494 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
4495 if (page_list)
4496 list_add(&page->lru, page_list);
4497 else
4498 page_array[nr_populated] = page;
4499 nr_populated++;
387ba26f
MG
4500 }
4501
57490774 4502 pcp_spin_unlock(pcp);
4b23a68f 4503 pcp_trylock_finish(UP_flags);
43c95bcc 4504
3e23060b
MG
4505 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4506 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 4507
06147843 4508out:
0f87d9d3 4509 return nr_populated;
387ba26f
MG
4510
4511failed_irq:
4b23a68f 4512 pcp_trylock_finish(UP_flags);
387ba26f
MG
4513
4514failed:
4515 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4516 if (page) {
0f87d9d3
MG
4517 if (page_list)
4518 list_add(&page->lru, page_list);
4519 else
4520 page_array[nr_populated] = page;
4521 nr_populated++;
387ba26f
MG
4522 }
4523
06147843 4524 goto out;
387ba26f
MG
4525}
4526EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4527
9cd75558
MG
4528/*
4529 * This is the 'heart' of the zoned buddy allocator.
4530 */
84172f4b 4531struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 4532 nodemask_t *nodemask)
9cd75558
MG
4533{
4534 struct page *page;
4535 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 4536 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4537 struct alloc_context ac = { };
4538
c63ae43b
MH
4539 /*
4540 * There are several places where we assume that the order value is sane
4541 * so bail out early if the request is out of bound.
4542 */
5e0a760b 4543 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
c63ae43b 4544 return NULL;
c63ae43b 4545
6e5e0f28 4546 gfp &= gfp_allowed_mask;
da6df1b0
PT
4547 /*
4548 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4549 * resp. GFP_NOIO which has to be inherited for all allocation requests
4550 * from a particular context which has been marked by
8e3560d9
PT
4551 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4552 * movable zones are not used during allocation.
da6df1b0
PT
4553 */
4554 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
4555 alloc_gfp = gfp;
4556 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 4557 &alloc_gfp, &alloc_flags))
9cd75558
MG
4558 return NULL;
4559
6bb15450
MG
4560 /*
4561 * Forbid the first pass from falling back to types that fragment
4562 * memory until all local zones are considered.
4563 */
6e5e0f28 4564 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 4565
5117f45d 4566 /* First allocation attempt */
8e6a930b 4567 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
4568 if (likely(page))
4569 goto out;
11e33f6a 4570
da6df1b0 4571 alloc_gfp = gfp;
4fcb0971 4572 ac.spread_dirty_pages = false;
23f086f9 4573
4741526b
MG
4574 /*
4575 * Restore the original nodemask if it was potentially replaced with
4576 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4577 */
97ce86f9 4578 ac.nodemask = nodemask;
16096c25 4579
8e6a930b 4580 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 4581
4fcb0971 4582out:
f7a449f7 4583 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
6e5e0f28 4584 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
4585 __free_pages(page, order);
4586 page = NULL;
4949148a
VD
4587 }
4588
8e6a930b 4589 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
b073d7f8 4590 kmsan_alloc_page(page, order, alloc_gfp);
4fcb0971 4591
11e33f6a 4592 return page;
1da177e4 4593}
84172f4b 4594EXPORT_SYMBOL(__alloc_pages);
1da177e4 4595
cc09cb13
MWO
4596struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4597 nodemask_t *nodemask)
4598{
4599 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
23e48832
HD
4600 preferred_nid, nodemask);
4601 return page_rmappable_folio(page);
cc09cb13
MWO
4602}
4603EXPORT_SYMBOL(__folio_alloc);
4604
1da177e4 4605/*
9ea9a680
MH
4606 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4607 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4608 * you need to access high mem.
1da177e4 4609 */
920c7a5d 4610unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4611{
945a1113
AM
4612 struct page *page;
4613
9ea9a680 4614 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4615 if (!page)
4616 return 0;
4617 return (unsigned long) page_address(page);
4618}
1da177e4
LT
4619EXPORT_SYMBOL(__get_free_pages);
4620
920c7a5d 4621unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4622{
dcc1be11 4623 return __get_free_page(gfp_mask | __GFP_ZERO);
1da177e4 4624}
1da177e4
LT
4625EXPORT_SYMBOL(get_zeroed_page);
4626
7f194fbb
MWO
4627/**
4628 * __free_pages - Free pages allocated with alloc_pages().
4629 * @page: The page pointer returned from alloc_pages().
4630 * @order: The order of the allocation.
4631 *
4632 * This function can free multi-page allocations that are not compound
4633 * pages. It does not check that the @order passed in matches that of
4634 * the allocation, so it is easy to leak memory. Freeing more memory
4635 * than was allocated will probably emit a warning.
4636 *
4637 * If the last reference to this page is speculative, it will be released
4638 * by put_page() which only frees the first page of a non-compound
4639 * allocation. To prevent the remaining pages from being leaked, we free
4640 * the subsequent pages here. If you want to use the page's reference
4641 * count to decide when to free the allocation, you should allocate a
4642 * compound page, and use put_page() instead of __free_pages().
4643 *
4644 * Context: May be called in interrupt context or while holding a normal
4645 * spinlock, but not in NMI context or while holding a raw spinlock.
4646 */
742aa7fb
AL
4647void __free_pages(struct page *page, unsigned int order)
4648{
462a8e08
DC
4649 /* get PageHead before we drop reference */
4650 int head = PageHead(page);
4651
742aa7fb
AL
4652 if (put_page_testzero(page))
4653 free_the_page(page, order);
462a8e08 4654 else if (!head)
e320d301
MWO
4655 while (order-- > 0)
4656 free_the_page(page + (1 << order), order);
742aa7fb 4657}
1da177e4
LT
4658EXPORT_SYMBOL(__free_pages);
4659
920c7a5d 4660void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4661{
4662 if (addr != 0) {
725d704e 4663 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4664 __free_pages(virt_to_page((void *)addr), order);
4665 }
4666}
4667
4668EXPORT_SYMBOL(free_pages);
4669
b63ae8ca
AD
4670/*
4671 * Page Fragment:
4672 * An arbitrary-length arbitrary-offset area of memory which resides
4673 * within a 0 or higher order page. Multiple fragments within that page
4674 * are individually refcounted, in the page's reference counter.
4675 *
4676 * The page_frag functions below provide a simple allocation framework for
4677 * page fragments. This is used by the network stack and network device
4678 * drivers to provide a backing region of memory for use as either an
4679 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4680 */
2976db80
AD
4681static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4682 gfp_t gfp_mask)
b63ae8ca
AD
4683{
4684 struct page *page = NULL;
4685 gfp_t gfp = gfp_mask;
4686
4687#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4688 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4689 __GFP_NOMEMALLOC;
4690 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4691 PAGE_FRAG_CACHE_MAX_ORDER);
4692 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4693#endif
4694 if (unlikely(!page))
4695 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4696
4697 nc->va = page ? page_address(page) : NULL;
4698
4699 return page;
4700}
4701
2976db80 4702void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4703{
4704 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4705
742aa7fb
AL
4706 if (page_ref_sub_and_test(page, count))
4707 free_the_page(page, compound_order(page));
44fdffd7 4708}
2976db80 4709EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4710
b358e212
KH
4711void *page_frag_alloc_align(struct page_frag_cache *nc,
4712 unsigned int fragsz, gfp_t gfp_mask,
4713 unsigned int align_mask)
b63ae8ca
AD
4714{
4715 unsigned int size = PAGE_SIZE;
4716 struct page *page;
4717 int offset;
4718
4719 if (unlikely(!nc->va)) {
4720refill:
2976db80 4721 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4722 if (!page)
4723 return NULL;
4724
4725#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4726 /* if size can vary use size else just use PAGE_SIZE */
4727 size = nc->size;
4728#endif
4729 /* Even if we own the page, we do not use atomic_set().
4730 * This would break get_page_unless_zero() users.
4731 */
86447726 4732 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4733
4734 /* reset page count bias and offset to start of new frag */
2f064f34 4735 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4736 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4737 nc->offset = size;
4738 }
4739
4740 offset = nc->offset - fragsz;
4741 if (unlikely(offset < 0)) {
4742 page = virt_to_page(nc->va);
4743
fe896d18 4744 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4745 goto refill;
4746
d8c19014
DZ
4747 if (unlikely(nc->pfmemalloc)) {
4748 free_the_page(page, compound_order(page));
4749 goto refill;
4750 }
4751
b63ae8ca
AD
4752#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4753 /* if size can vary use size else just use PAGE_SIZE */
4754 size = nc->size;
4755#endif
4756 /* OK, page count is 0, we can safely set it */
86447726 4757 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4758
4759 /* reset page count bias and offset to start of new frag */
86447726 4760 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca 4761 offset = size - fragsz;
dac22531
ML
4762 if (unlikely(offset < 0)) {
4763 /*
4764 * The caller is trying to allocate a fragment
4765 * with fragsz > PAGE_SIZE but the cache isn't big
4766 * enough to satisfy the request, this may
4767 * happen in low memory conditions.
4768 * We don't release the cache page because
4769 * it could make memory pressure worse
4770 * so we simply return NULL here.
4771 */
4772 return NULL;
4773 }
b63ae8ca
AD
4774 }
4775
4776 nc->pagecnt_bias--;
b358e212 4777 offset &= align_mask;
b63ae8ca
AD
4778 nc->offset = offset;
4779
4780 return nc->va + offset;
4781}
b358e212 4782EXPORT_SYMBOL(page_frag_alloc_align);
b63ae8ca
AD
4783
4784/*
4785 * Frees a page fragment allocated out of either a compound or order 0 page.
4786 */
8c2dd3e4 4787void page_frag_free(void *addr)
b63ae8ca
AD
4788{
4789 struct page *page = virt_to_head_page(addr);
4790
742aa7fb
AL
4791 if (unlikely(put_page_testzero(page)))
4792 free_the_page(page, compound_order(page));
b63ae8ca 4793}
8c2dd3e4 4794EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4795
d00181b9
KS
4796static void *make_alloc_exact(unsigned long addr, unsigned int order,
4797 size_t size)
ee85c2e1
AK
4798{
4799 if (addr) {
df48a5f7
LH
4800 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4801 struct page *page = virt_to_page((void *)addr);
4802 struct page *last = page + nr;
4803
4804 split_page_owner(page, 1 << order);
4805 split_page_memcg(page, 1 << order);
4806 while (page < --last)
4807 set_page_refcounted(last);
4808
4809 last = page + (1UL << order);
4810 for (page += nr; page < last; page++)
4811 __free_pages_ok(page, 0, FPI_TO_TAIL);
ee85c2e1
AK
4812 }
4813 return (void *)addr;
4814}
4815
2be0ffe2
TT
4816/**
4817 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4818 * @size: the number of bytes to allocate
63931eb9 4819 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4820 *
4821 * This function is similar to alloc_pages(), except that it allocates the
4822 * minimum number of pages to satisfy the request. alloc_pages() can only
4823 * allocate memory in power-of-two pages.
4824 *
5e0a760b 4825 * This function is also limited by MAX_PAGE_ORDER.
2be0ffe2
TT
4826 *
4827 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4828 *
4829 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4830 */
4831void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4832{
4833 unsigned int order = get_order(size);
4834 unsigned long addr;
4835
ba7f1b9e
ML
4836 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4837 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 4838
2be0ffe2 4839 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4840 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4841}
4842EXPORT_SYMBOL(alloc_pages_exact);
4843
ee85c2e1
AK
4844/**
4845 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4846 * pages on a node.
b5e6ab58 4847 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4848 * @size: the number of bytes to allocate
63931eb9 4849 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4850 *
4851 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4852 * back.
a862f68a
MR
4853 *
4854 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4855 */
e1931811 4856void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4857{
d00181b9 4858 unsigned int order = get_order(size);
63931eb9
VB
4859 struct page *p;
4860
ba7f1b9e
ML
4861 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4862 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
4863
4864 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4865 if (!p)
4866 return NULL;
4867 return make_alloc_exact((unsigned long)page_address(p), order, size);
4868}
ee85c2e1 4869
2be0ffe2
TT
4870/**
4871 * free_pages_exact - release memory allocated via alloc_pages_exact()
4872 * @virt: the value returned by alloc_pages_exact.
4873 * @size: size of allocation, same value as passed to alloc_pages_exact().
4874 *
4875 * Release the memory allocated by a previous call to alloc_pages_exact.
4876 */
4877void free_pages_exact(void *virt, size_t size)
4878{
4879 unsigned long addr = (unsigned long)virt;
4880 unsigned long end = addr + PAGE_ALIGN(size);
4881
4882 while (addr < end) {
4883 free_page(addr);
4884 addr += PAGE_SIZE;
4885 }
4886}
4887EXPORT_SYMBOL(free_pages_exact);
4888
e0fb5815
ZY
4889/**
4890 * nr_free_zone_pages - count number of pages beyond high watermark
4891 * @offset: The zone index of the highest zone
4892 *
a862f68a 4893 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
4894 * high watermark within all zones at or below a given zone index. For each
4895 * zone, the number of pages is calculated as:
0e056eb5 4896 *
4897 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
4898 *
4899 * Return: number of pages beyond high watermark.
e0fb5815 4900 */
ebec3862 4901static unsigned long nr_free_zone_pages(int offset)
1da177e4 4902{
dd1a239f 4903 struct zoneref *z;
54a6eb5c
MG
4904 struct zone *zone;
4905
e310fd43 4906 /* Just pick one node, since fallback list is circular */
ebec3862 4907 unsigned long sum = 0;
1da177e4 4908
0e88460d 4909 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4910
54a6eb5c 4911 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4912 unsigned long size = zone_managed_pages(zone);
41858966 4913 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4914 if (size > high)
4915 sum += size - high;
1da177e4
LT
4916 }
4917
4918 return sum;
4919}
4920
e0fb5815
ZY
4921/**
4922 * nr_free_buffer_pages - count number of pages beyond high watermark
4923 *
4924 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4925 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
4926 *
4927 * Return: number of pages beyond high watermark within ZONE_DMA and
4928 * ZONE_NORMAL.
1da177e4 4929 */
ebec3862 4930unsigned long nr_free_buffer_pages(void)
1da177e4 4931{
af4ca457 4932 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4933}
c2f1a551 4934EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4935
19770b32
MG
4936static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4937{
4938 zoneref->zone = zone;
4939 zoneref->zone_idx = zone_idx(zone);
4940}
4941
1da177e4
LT
4942/*
4943 * Builds allocation fallback zone lists.
1a93205b
CL
4944 *
4945 * Add all populated zones of a node to the zonelist.
1da177e4 4946 */
9d3be21b 4947static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4948{
1a93205b 4949 struct zone *zone;
bc732f1d 4950 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4951 int nr_zones = 0;
02a68a5e
CL
4952
4953 do {
2f6726e5 4954 zone_type--;
070f8032 4955 zone = pgdat->node_zones + zone_type;
e553f62f 4956 if (populated_zone(zone)) {
9d3be21b 4957 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4958 check_highest_zone(zone_type);
1da177e4 4959 }
2f6726e5 4960 } while (zone_type);
bc732f1d 4961
070f8032 4962 return nr_zones;
1da177e4
LT
4963}
4964
4965#ifdef CONFIG_NUMA
f0c0b2b8
KH
4966
4967static int __parse_numa_zonelist_order(char *s)
4968{
c9bff3ee 4969 /*
f0953a1b 4970 * We used to support different zonelists modes but they turned
c9bff3ee
MH
4971 * out to be just not useful. Let's keep the warning in place
4972 * if somebody still use the cmd line parameter so that we do
4973 * not fail it silently
4974 */
4975 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4976 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4977 return -EINVAL;
4978 }
4979 return 0;
4980}
4981
e95d372c
KW
4982static char numa_zonelist_order[] = "Node";
4983#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8
KH
4984/*
4985 * sysctl handler for numa_zonelist_order
4986 */
e95d372c 4987static int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 4988 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 4989{
32927393
CH
4990 if (write)
4991 return __parse_numa_zonelist_order(buffer);
4992 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
4993}
4994
f0c0b2b8
KH
4995static int node_load[MAX_NUMNODES];
4996
1da177e4 4997/**
4dc3b16b 4998 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4999 * @node: node whose fallback list we're appending
5000 * @used_node_mask: nodemask_t of already used nodes
5001 *
5002 * We use a number of factors to determine which is the next node that should
5003 * appear on a given node's fallback list. The node should not have appeared
5004 * already in @node's fallback list, and it should be the next closest node
5005 * according to the distance array (which contains arbitrary distance values
5006 * from each node to each node in the system), and should also prefer nodes
5007 * with no CPUs, since presumably they'll have very little allocation pressure
5008 * on them otherwise.
a862f68a
MR
5009 *
5010 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5011 */
79c28a41 5012int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5013{
4cf808eb 5014 int n, val;
1da177e4 5015 int min_val = INT_MAX;
00ef2d2f 5016 int best_node = NUMA_NO_NODE;
1da177e4 5017
c2baef39
QZ
5018 /*
5019 * Use the local node if we haven't already, but for memoryless local
5020 * node, we should skip it and fall back to other nodes.
5021 */
5022 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
4cf808eb
LT
5023 node_set(node, *used_node_mask);
5024 return node;
5025 }
1da177e4 5026
4b0ef1fe 5027 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5028
5029 /* Don't want a node to appear more than once */
5030 if (node_isset(n, *used_node_mask))
5031 continue;
5032
1da177e4
LT
5033 /* Use the distance array to find the distance */
5034 val = node_distance(node, n);
5035
4cf808eb
LT
5036 /* Penalize nodes under us ("prefer the next node") */
5037 val += (n < node);
5038
1da177e4 5039 /* Give preference to headless and unused nodes */
b630749f 5040 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5041 val += PENALTY_FOR_NODE_WITH_CPUS;
5042
5043 /* Slight preference for less loaded node */
37931324 5044 val *= MAX_NUMNODES;
1da177e4
LT
5045 val += node_load[n];
5046
5047 if (val < min_val) {
5048 min_val = val;
5049 best_node = n;
5050 }
5051 }
5052
5053 if (best_node >= 0)
5054 node_set(best_node, *used_node_mask);
5055
5056 return best_node;
5057}
5058
f0c0b2b8
KH
5059
5060/*
5061 * Build zonelists ordered by node and zones within node.
5062 * This results in maximum locality--normal zone overflows into local
5063 * DMA zone, if any--but risks exhausting DMA zone.
5064 */
9d3be21b
MH
5065static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5066 unsigned nr_nodes)
1da177e4 5067{
9d3be21b
MH
5068 struct zoneref *zonerefs;
5069 int i;
5070
5071 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5072
5073 for (i = 0; i < nr_nodes; i++) {
5074 int nr_zones;
5075
5076 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5077
9d3be21b
MH
5078 nr_zones = build_zonerefs_node(node, zonerefs);
5079 zonerefs += nr_zones;
5080 }
5081 zonerefs->zone = NULL;
5082 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5083}
5084
523b9458
CL
5085/*
5086 * Build gfp_thisnode zonelists
5087 */
5088static void build_thisnode_zonelists(pg_data_t *pgdat)
5089{
9d3be21b
MH
5090 struct zoneref *zonerefs;
5091 int nr_zones;
523b9458 5092
9d3be21b
MH
5093 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5094 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5095 zonerefs += nr_zones;
5096 zonerefs->zone = NULL;
5097 zonerefs->zone_idx = 0;
523b9458
CL
5098}
5099
f0c0b2b8
KH
5100/*
5101 * Build zonelists ordered by zone and nodes within zones.
5102 * This results in conserving DMA zone[s] until all Normal memory is
5103 * exhausted, but results in overflowing to remote node while memory
5104 * may still exist in local DMA zone.
5105 */
f0c0b2b8 5106
f0c0b2b8
KH
5107static void build_zonelists(pg_data_t *pgdat)
5108{
9d3be21b 5109 static int node_order[MAX_NUMNODES];
37931324 5110 int node, nr_nodes = 0;
d0ddf49b 5111 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5112 int local_node, prev_node;
1da177e4
LT
5113
5114 /* NUMA-aware ordering of nodes */
5115 local_node = pgdat->node_id;
1da177e4 5116 prev_node = local_node;
f0c0b2b8 5117
f0c0b2b8 5118 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5119 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5120 /*
5121 * We don't want to pressure a particular node.
5122 * So adding penalty to the first node in same
5123 * distance group to make it round-robin.
5124 */
957f822a
DR
5125 if (node_distance(local_node, node) !=
5126 node_distance(local_node, prev_node))
37931324 5127 node_load[node] += 1;
f0c0b2b8 5128
9d3be21b 5129 node_order[nr_nodes++] = node;
1da177e4 5130 prev_node = node;
1da177e4 5131 }
523b9458 5132
9d3be21b 5133 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5134 build_thisnode_zonelists(pgdat);
6cf25392
BR
5135 pr_info("Fallback order for Node %d: ", local_node);
5136 for (node = 0; node < nr_nodes; node++)
5137 pr_cont("%d ", node_order[node]);
5138 pr_cont("\n");
1da177e4
LT
5139}
5140
7aac7898
LS
5141#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5142/*
5143 * Return node id of node used for "local" allocations.
5144 * I.e., first node id of first zone in arg node's generic zonelist.
5145 * Used for initializing percpu 'numa_mem', which is used primarily
5146 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5147 */
5148int local_memory_node(int node)
5149{
c33d6c06 5150 struct zoneref *z;
7aac7898 5151
c33d6c06 5152 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5153 gfp_zone(GFP_KERNEL),
c33d6c06 5154 NULL);
c1093b74 5155 return zone_to_nid(z->zone);
7aac7898
LS
5156}
5157#endif
f0c0b2b8 5158
6423aa81
JK
5159static void setup_min_unmapped_ratio(void);
5160static void setup_min_slab_ratio(void);
1da177e4
LT
5161#else /* CONFIG_NUMA */
5162
f0c0b2b8 5163static void build_zonelists(pg_data_t *pgdat)
1da177e4 5164{
19655d34 5165 int node, local_node;
9d3be21b
MH
5166 struct zoneref *zonerefs;
5167 int nr_zones;
1da177e4
LT
5168
5169 local_node = pgdat->node_id;
1da177e4 5170
9d3be21b
MH
5171 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5172 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5173 zonerefs += nr_zones;
1da177e4 5174
54a6eb5c
MG
5175 /*
5176 * Now we build the zonelist so that it contains the zones
5177 * of all the other nodes.
5178 * We don't want to pressure a particular node, so when
5179 * building the zones for node N, we make sure that the
5180 * zones coming right after the local ones are those from
5181 * node N+1 (modulo N)
5182 */
5183 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5184 if (!node_online(node))
5185 continue;
9d3be21b
MH
5186 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5187 zonerefs += nr_zones;
1da177e4 5188 }
54a6eb5c
MG
5189 for (node = 0; node < local_node; node++) {
5190 if (!node_online(node))
5191 continue;
9d3be21b
MH
5192 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5193 zonerefs += nr_zones;
54a6eb5c
MG
5194 }
5195
9d3be21b
MH
5196 zonerefs->zone = NULL;
5197 zonerefs->zone_idx = 0;
1da177e4
LT
5198}
5199
5200#endif /* CONFIG_NUMA */
5201
99dcc3e5
CL
5202/*
5203 * Boot pageset table. One per cpu which is going to be used for all
5204 * zones and all nodes. The parameters will be set in such a way
5205 * that an item put on a list will immediately be handed over to
5206 * the buddy list. This is safe since pageset manipulation is done
5207 * with interrupts disabled.
5208 *
5209 * The boot_pagesets must be kept even after bootup is complete for
5210 * unused processors and/or zones. They do play a role for bootstrapping
5211 * hotplugged processors.
5212 *
5213 * zoneinfo_show() and maybe other functions do
5214 * not check if the processor is online before following the pageset pointer.
5215 * Other parts of the kernel may not check if the zone is available.
5216 */
28f836b6 5217static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
5218/* These effectively disable the pcplists in the boot pageset completely */
5219#define BOOT_PAGESET_HIGH 0
5220#define BOOT_PAGESET_BATCH 1
28f836b6
MG
5221static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5222static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
99dcc3e5 5223
11cd8638 5224static void __build_all_zonelists(void *data)
1da177e4 5225{
6811378e 5226 int nid;
afb6ebb3 5227 int __maybe_unused cpu;
9adb62a5 5228 pg_data_t *self = data;
1007843a 5229 unsigned long flags;
b93e0f32 5230
1007843a 5231 /*
a2ebb515
SAS
5232 * The zonelist_update_seq must be acquired with irqsave because the
5233 * reader can be invoked from IRQ with GFP_ATOMIC.
1007843a 5234 */
a2ebb515 5235 write_seqlock_irqsave(&zonelist_update_seq, flags);
1007843a 5236 /*
a2ebb515
SAS
5237 * Also disable synchronous printk() to prevent any printk() from
5238 * trying to hold port->lock, for
1007843a
TH
5239 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5240 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5241 */
5242 printk_deferred_enter();
9276b1bc 5243
7f9cfb31
BL
5244#ifdef CONFIG_NUMA
5245 memset(node_load, 0, sizeof(node_load));
5246#endif
9adb62a5 5247
c1152583
WY
5248 /*
5249 * This node is hotadded and no memory is yet present. So just
5250 * building zonelists is fine - no need to touch other nodes.
5251 */
9adb62a5
JL
5252 if (self && !node_online(self->node_id)) {
5253 build_zonelists(self);
c1152583 5254 } else {
09f49dca
MH
5255 /*
5256 * All possible nodes have pgdat preallocated
5257 * in free_area_init
5258 */
5259 for_each_node(nid) {
c1152583 5260 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5261
c1152583
WY
5262 build_zonelists(pgdat);
5263 }
99dcc3e5 5264
7aac7898
LS
5265#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5266 /*
5267 * We now know the "local memory node" for each node--
5268 * i.e., the node of the first zone in the generic zonelist.
5269 * Set up numa_mem percpu variable for on-line cpus. During
5270 * boot, only the boot cpu should be on-line; we'll init the
5271 * secondary cpus' numa_mem as they come on-line. During
5272 * node/memory hotplug, we'll fixup all on-line cpus.
5273 */
d9c9a0b9 5274 for_each_online_cpu(cpu)
7aac7898 5275 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5276#endif
d9c9a0b9 5277 }
b93e0f32 5278
1007843a 5279 printk_deferred_exit();
a2ebb515 5280 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
6811378e
YG
5281}
5282
061f67bc
RV
5283static noinline void __init
5284build_all_zonelists_init(void)
5285{
afb6ebb3
MH
5286 int cpu;
5287
061f67bc 5288 __build_all_zonelists(NULL);
afb6ebb3
MH
5289
5290 /*
5291 * Initialize the boot_pagesets that are going to be used
5292 * for bootstrapping processors. The real pagesets for
5293 * each zone will be allocated later when the per cpu
5294 * allocator is available.
5295 *
5296 * boot_pagesets are used also for bootstrapping offline
5297 * cpus if the system is already booted because the pagesets
5298 * are needed to initialize allocators on a specific cpu too.
5299 * F.e. the percpu allocator needs the page allocator which
5300 * needs the percpu allocator in order to allocate its pagesets
5301 * (a chicken-egg dilemma).
5302 */
5303 for_each_possible_cpu(cpu)
28f836b6 5304 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 5305
061f67bc
RV
5306 mminit_verify_zonelist();
5307 cpuset_init_current_mems_allowed();
5308}
5309
4eaf3f64 5310/*
4eaf3f64 5311 * unless system_state == SYSTEM_BOOTING.
061f67bc 5312 *
72675e13 5313 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5314 * [protected by SYSTEM_BOOTING].
4eaf3f64 5315 */
72675e13 5316void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5317{
0a18e607
DH
5318 unsigned long vm_total_pages;
5319
6811378e 5320 if (system_state == SYSTEM_BOOTING) {
061f67bc 5321 build_all_zonelists_init();
6811378e 5322 } else {
11cd8638 5323 __build_all_zonelists(pgdat);
6811378e
YG
5324 /* cpuset refresh routine should be here */
5325 }
56b9413b
DH
5326 /* Get the number of free pages beyond high watermark in all zones. */
5327 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5328 /*
5329 * Disable grouping by mobility if the number of pages in the
5330 * system is too low to allow the mechanism to work. It would be
5331 * more accurate, but expensive to check per-zone. This check is
5332 * made on memory-hotadd so a system can start with mobility
5333 * disabled and enable it later
5334 */
d9c23400 5335 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5336 page_group_by_mobility_disabled = 1;
5337 else
5338 page_group_by_mobility_disabled = 0;
5339
ce0725f7 5340 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5341 nr_online_nodes,
756a025f
JP
5342 page_group_by_mobility_disabled ? "off" : "on",
5343 vm_total_pages);
f0c0b2b8 5344#ifdef CONFIG_NUMA
f88dfff5 5345 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5346#endif
1da177e4
LT
5347}
5348
9420f89d 5349static int zone_batchsize(struct zone *zone)
1da177e4 5350{
9420f89d
MRI
5351#ifdef CONFIG_MMU
5352 int batch;
1da177e4 5353
9420f89d
MRI
5354 /*
5355 * The number of pages to batch allocate is either ~0.1%
5356 * of the zone or 1MB, whichever is smaller. The batch
5357 * size is striking a balance between allocation latency
5358 * and zone lock contention.
5359 */
5360 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5361 batch /= 4; /* We effectively *= 4 below */
5362 if (batch < 1)
5363 batch = 1;
22b31eec 5364
4b94ffdc 5365 /*
9420f89d
MRI
5366 * Clamp the batch to a 2^n - 1 value. Having a power
5367 * of 2 value was found to be more likely to have
5368 * suboptimal cache aliasing properties in some cases.
5369 *
5370 * For example if 2 tasks are alternately allocating
5371 * batches of pages, one task can end up with a lot
5372 * of pages of one half of the possible page colors
5373 * and the other with pages of the other colors.
4b94ffdc 5374 */
9420f89d 5375 batch = rounddown_pow_of_two(batch + batch/2) - 1;
966cf44f 5376
9420f89d 5377 return batch;
3a6be87f
DH
5378
5379#else
5380 /* The deferral and batching of frees should be suppressed under NOMMU
5381 * conditions.
5382 *
5383 * The problem is that NOMMU needs to be able to allocate large chunks
5384 * of contiguous memory as there's no hardware page translation to
5385 * assemble apparent contiguous memory from discontiguous pages.
5386 *
5387 * Queueing large contiguous runs of pages for batching, however,
5388 * causes the pages to actually be freed in smaller chunks. As there
5389 * can be a significant delay between the individual batches being
5390 * recycled, this leads to the once large chunks of space being
5391 * fragmented and becoming unavailable for high-order allocations.
5392 */
5393 return 0;
5394#endif
e7c8d5c9
CL
5395}
5396
e95d372c 5397static int percpu_pagelist_high_fraction;
90b41691
HY
5398static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5399 int high_fraction)
b92ca18e 5400{
9420f89d
MRI
5401#ifdef CONFIG_MMU
5402 int high;
5403 int nr_split_cpus;
5404 unsigned long total_pages;
c13291a5 5405
90b41691 5406 if (!high_fraction) {
2a1e274a 5407 /*
9420f89d
MRI
5408 * By default, the high value of the pcp is based on the zone
5409 * low watermark so that if they are full then background
5410 * reclaim will not be started prematurely.
2a1e274a 5411 */
9420f89d
MRI
5412 total_pages = low_wmark_pages(zone);
5413 } else {
2a1e274a 5414 /*
9420f89d
MRI
5415 * If percpu_pagelist_high_fraction is configured, the high
5416 * value is based on a fraction of the managed pages in the
5417 * zone.
2a1e274a 5418 */
90b41691 5419 total_pages = zone_managed_pages(zone) / high_fraction;
2a1e274a
MG
5420 }
5421
5422 /*
9420f89d
MRI
5423 * Split the high value across all online CPUs local to the zone. Note
5424 * that early in boot that CPUs may not be online yet and that during
5425 * CPU hotplug that the cpumask is not yet updated when a CPU is being
90b41691
HY
5426 * onlined. For memory nodes that have no CPUs, split the high value
5427 * across all online CPUs to mitigate the risk that reclaim is triggered
9420f89d 5428 * prematurely due to pages stored on pcp lists.
2a1e274a 5429 */
9420f89d
MRI
5430 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5431 if (!nr_split_cpus)
5432 nr_split_cpus = num_online_cpus();
5433 high = total_pages / nr_split_cpus;
2a1e274a 5434
9420f89d
MRI
5435 /*
5436 * Ensure high is at least batch*4. The multiple is based on the
5437 * historical relationship between high and batch.
5438 */
5439 high = max(high, batch << 2);
37b07e41 5440
9420f89d
MRI
5441 return high;
5442#else
5443 return 0;
5444#endif
37b07e41
LS
5445}
5446
51930df5 5447/*
9420f89d
MRI
5448 * pcp->high and pcp->batch values are related and generally batch is lower
5449 * than high. They are also related to pcp->count such that count is lower
5450 * than high, and as soon as it reaches high, the pcplist is flushed.
5451 *
5452 * However, guaranteeing these relations at all times would require e.g. write
5453 * barriers here but also careful usage of read barriers at the read side, and
5454 * thus be prone to error and bad for performance. Thus the update only prevents
90b41691
HY
5455 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5456 * should ensure they can cope with those fields changing asynchronously, and
5457 * fully trust only the pcp->count field on the local CPU with interrupts
5458 * disabled.
9420f89d
MRI
5459 *
5460 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5461 * outside of boot time (or some other assurance that no concurrent updaters
5462 * exist).
51930df5 5463 */
90b41691
HY
5464static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5465 unsigned long high_max, unsigned long batch)
51930df5 5466{
9420f89d 5467 WRITE_ONCE(pcp->batch, batch);
90b41691
HY
5468 WRITE_ONCE(pcp->high_min, high_min);
5469 WRITE_ONCE(pcp->high_max, high_max);
51930df5
MR
5470}
5471
9420f89d 5472static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
c713216d 5473{
9420f89d 5474 int pindex;
90cae1fe 5475
9420f89d
MRI
5476 memset(pcp, 0, sizeof(*pcp));
5477 memset(pzstats, 0, sizeof(*pzstats));
90cae1fe 5478
9420f89d
MRI
5479 spin_lock_init(&pcp->lock);
5480 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5481 INIT_LIST_HEAD(&pcp->lists[pindex]);
2a1e274a 5482
9420f89d
MRI
5483 /*
5484 * Set batch and high values safe for a boot pageset. A true percpu
5485 * pageset's initialization will update them subsequently. Here we don't
5486 * need to be as careful as pageset_update() as nobody can access the
5487 * pageset yet.
5488 */
90b41691
HY
5489 pcp->high_min = BOOT_PAGESET_HIGH;
5490 pcp->high_max = BOOT_PAGESET_HIGH;
9420f89d 5491 pcp->batch = BOOT_PAGESET_BATCH;
6ccdcb6d 5492 pcp->free_count = 0;
9420f89d 5493}
c713216d 5494
90b41691
HY
5495static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5496 unsigned long high_max, unsigned long batch)
9420f89d
MRI
5497{
5498 struct per_cpu_pages *pcp;
5499 int cpu;
2a1e274a 5500
9420f89d
MRI
5501 for_each_possible_cpu(cpu) {
5502 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
90b41691 5503 pageset_update(pcp, high_min, high_max, batch);
2a1e274a 5504 }
9420f89d 5505}
c713216d 5506
9420f89d
MRI
5507/*
5508 * Calculate and set new high and batch values for all per-cpu pagesets of a
5509 * zone based on the zone's size.
5510 */
5511static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5512{
90b41691 5513 int new_high_min, new_high_max, new_batch;
09f49dca 5514
9420f89d 5515 new_batch = max(1, zone_batchsize(zone));
90b41691
HY
5516 if (percpu_pagelist_high_fraction) {
5517 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5518 percpu_pagelist_high_fraction);
5519 /*
5520 * PCP high is tuned manually, disable auto-tuning via
5521 * setting high_min and high_max to the manual value.
5522 */
5523 new_high_max = new_high_min;
5524 } else {
5525 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5526 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5527 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5528 }
09f49dca 5529
90b41691
HY
5530 if (zone->pageset_high_min == new_high_min &&
5531 zone->pageset_high_max == new_high_max &&
9420f89d
MRI
5532 zone->pageset_batch == new_batch)
5533 return;
37b07e41 5534
90b41691
HY
5535 zone->pageset_high_min = new_high_min;
5536 zone->pageset_high_max = new_high_max;
9420f89d 5537 zone->pageset_batch = new_batch;
122e093c 5538
90b41691
HY
5539 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5540 new_batch);
c713216d 5541}
2a1e274a 5542
9420f89d 5543void __meminit setup_zone_pageset(struct zone *zone)
2a1e274a 5544{
9420f89d 5545 int cpu;
2a1e274a 5546
9420f89d
MRI
5547 /* Size may be 0 on !SMP && !NUMA */
5548 if (sizeof(struct per_cpu_zonestat) > 0)
5549 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
2a1e274a 5550
9420f89d
MRI
5551 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5552 for_each_possible_cpu(cpu) {
5553 struct per_cpu_pages *pcp;
5554 struct per_cpu_zonestat *pzstats;
2a1e274a 5555
9420f89d
MRI
5556 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5557 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5558 per_cpu_pages_init(pcp, pzstats);
a5c6d650 5559 }
9420f89d
MRI
5560
5561 zone_set_pageset_high_and_batch(zone, 0);
2a1e274a 5562}
ed7ed365 5563
7e63efef 5564/*
9420f89d
MRI
5565 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5566 * page high values need to be recalculated.
7e63efef 5567 */
9420f89d 5568static void zone_pcp_update(struct zone *zone, int cpu_online)
7e63efef 5569{
9420f89d
MRI
5570 mutex_lock(&pcp_batch_high_lock);
5571 zone_set_pageset_high_and_batch(zone, cpu_online);
5572 mutex_unlock(&pcp_batch_high_lock);
7e63efef
MG
5573}
5574
362d37a1
HY
5575static void zone_pcp_update_cacheinfo(struct zone *zone)
5576{
5577 int cpu;
5578 struct per_cpu_pages *pcp;
5579 struct cpu_cacheinfo *cci;
5580
5581 for_each_online_cpu(cpu) {
5582 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5583 cci = get_cpu_cacheinfo(cpu);
5584 /*
5585 * If data cache slice of CPU is large enough, "pcp->batch"
5586 * pages can be preserved in PCP before draining PCP for
5587 * consecutive high-order pages freeing without allocation.
5588 * This can reduce zone lock contention without hurting
5589 * cache-hot pages sharing.
5590 */
5591 spin_lock(&pcp->lock);
5592 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5593 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5594 else
5595 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5596 spin_unlock(&pcp->lock);
5597 }
5598}
5599
5600void setup_pcp_cacheinfo(void)
5601{
5602 struct zone *zone;
5603
5604 for_each_populated_zone(zone)
5605 zone_pcp_update_cacheinfo(zone);
5606}
5607
7e63efef 5608/*
9420f89d
MRI
5609 * Allocate per cpu pagesets and initialize them.
5610 * Before this call only boot pagesets were available.
7e63efef 5611 */
9420f89d 5612void __init setup_per_cpu_pageset(void)
7e63efef 5613{
9420f89d
MRI
5614 struct pglist_data *pgdat;
5615 struct zone *zone;
5616 int __maybe_unused cpu;
5617
5618 for_each_populated_zone(zone)
5619 setup_zone_pageset(zone);
5620
5621#ifdef CONFIG_NUMA
5622 /*
5623 * Unpopulated zones continue using the boot pagesets.
5624 * The numa stats for these pagesets need to be reset.
5625 * Otherwise, they will end up skewing the stats of
5626 * the nodes these zones are associated with.
5627 */
5628 for_each_possible_cpu(cpu) {
5629 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5630 memset(pzstats->vm_numa_event, 0,
5631 sizeof(pzstats->vm_numa_event));
5632 }
5633#endif
5634
5635 for_each_online_pgdat(pgdat)
5636 pgdat->per_cpu_nodestats =
5637 alloc_percpu(struct per_cpu_nodestat);
7e63efef
MG
5638}
5639
9420f89d
MRI
5640__meminit void zone_pcp_init(struct zone *zone)
5641{
5642 /*
5643 * per cpu subsystem is not up at this point. The following code
5644 * relies on the ability of the linker to provide the
5645 * offset of a (static) per cpu variable into the per cpu area.
5646 */
5647 zone->per_cpu_pageset = &boot_pageset;
5648 zone->per_cpu_zonestats = &boot_zonestats;
90b41691
HY
5649 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5650 zone->pageset_high_max = BOOT_PAGESET_HIGH;
9420f89d
MRI
5651 zone->pageset_batch = BOOT_PAGESET_BATCH;
5652
5653 if (populated_zone(zone))
5654 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5655 zone->present_pages, zone_batchsize(zone));
5656}
ed7ed365 5657
c3d5f5f0
JL
5658void adjust_managed_page_count(struct page *page, long count)
5659{
9705bea5 5660 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 5661 totalram_pages_add(count);
3dcc0571
JL
5662#ifdef CONFIG_HIGHMEM
5663 if (PageHighMem(page))
ca79b0c2 5664 totalhigh_pages_add(count);
3dcc0571 5665#endif
c3d5f5f0 5666}
3dcc0571 5667EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5668
e5cb113f 5669unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 5670{
11199692
JL
5671 void *pos;
5672 unsigned long pages = 0;
69afade7 5673
11199692
JL
5674 start = (void *)PAGE_ALIGN((unsigned long)start);
5675 end = (void *)((unsigned long)end & PAGE_MASK);
5676 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
5677 struct page *page = virt_to_page(pos);
5678 void *direct_map_addr;
5679
5680 /*
5681 * 'direct_map_addr' might be different from 'pos'
5682 * because some architectures' virt_to_page()
5683 * work with aliases. Getting the direct map
5684 * address ensures that we get a _writeable_
5685 * alias for the memset().
5686 */
5687 direct_map_addr = page_address(page);
c746170d
VF
5688 /*
5689 * Perform a kasan-unchecked memset() since this memory
5690 * has not been initialized.
5691 */
5692 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 5693 if ((unsigned int)poison <= 0xFF)
0d834328
DH
5694 memset(direct_map_addr, poison, PAGE_SIZE);
5695
5696 free_reserved_page(page);
69afade7
JL
5697 }
5698
5699 if (pages && s)
ff7ed9e4 5700 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
5701
5702 return pages;
5703}
5704
005fd4bb 5705static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 5706{
04f8cfea 5707 struct zone *zone;
1da177e4 5708
005fd4bb 5709 lru_add_drain_cpu(cpu);
96f97c43 5710 mlock_drain_remote(cpu);
005fd4bb 5711 drain_pages(cpu);
9f8f2172 5712
005fd4bb
SAS
5713 /*
5714 * Spill the event counters of the dead processor
5715 * into the current processors event counters.
5716 * This artificially elevates the count of the current
5717 * processor.
5718 */
5719 vm_events_fold_cpu(cpu);
9f8f2172 5720
005fd4bb
SAS
5721 /*
5722 * Zero the differential counters of the dead processor
5723 * so that the vm statistics are consistent.
5724 *
5725 * This is only okay since the processor is dead and cannot
5726 * race with what we are doing.
5727 */
5728 cpu_vm_stats_fold(cpu);
04f8cfea
MG
5729
5730 for_each_populated_zone(zone)
5731 zone_pcp_update(zone, 0);
5732
5733 return 0;
5734}
5735
5736static int page_alloc_cpu_online(unsigned int cpu)
5737{
5738 struct zone *zone;
5739
5740 for_each_populated_zone(zone)
5741 zone_pcp_update(zone, 1);
005fd4bb 5742 return 0;
1da177e4 5743}
1da177e4 5744
c4fbed4b 5745void __init page_alloc_init_cpuhp(void)
1da177e4 5746{
005fd4bb
SAS
5747 int ret;
5748
04f8cfea
MG
5749 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5750 "mm/page_alloc:pcp",
5751 page_alloc_cpu_online,
005fd4bb
SAS
5752 page_alloc_cpu_dead);
5753 WARN_ON(ret < 0);
1da177e4
LT
5754}
5755
cb45b0e9 5756/*
34b10060 5757 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
5758 * or min_free_kbytes changes.
5759 */
5760static void calculate_totalreserve_pages(void)
5761{
5762 struct pglist_data *pgdat;
5763 unsigned long reserve_pages = 0;
2f6726e5 5764 enum zone_type i, j;
cb45b0e9
HA
5765
5766 for_each_online_pgdat(pgdat) {
281e3726
MG
5767
5768 pgdat->totalreserve_pages = 0;
5769
cb45b0e9
HA
5770 for (i = 0; i < MAX_NR_ZONES; i++) {
5771 struct zone *zone = pgdat->node_zones + i;
3484b2de 5772 long max = 0;
9705bea5 5773 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
5774
5775 /* Find valid and maximum lowmem_reserve in the zone */
5776 for (j = i; j < MAX_NR_ZONES; j++) {
5777 if (zone->lowmem_reserve[j] > max)
5778 max = zone->lowmem_reserve[j];
5779 }
5780
41858966
MG
5781 /* we treat the high watermark as reserved pages. */
5782 max += high_wmark_pages(zone);
cb45b0e9 5783
3d6357de
AK
5784 if (max > managed_pages)
5785 max = managed_pages;
a8d01437 5786
281e3726 5787 pgdat->totalreserve_pages += max;
a8d01437 5788
cb45b0e9
HA
5789 reserve_pages += max;
5790 }
5791 }
5792 totalreserve_pages = reserve_pages;
5793}
5794
1da177e4
LT
5795/*
5796 * setup_per_zone_lowmem_reserve - called whenever
34b10060 5797 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
5798 * has a correct pages reserved value, so an adequate number of
5799 * pages are left in the zone after a successful __alloc_pages().
5800 */
5801static void setup_per_zone_lowmem_reserve(void)
5802{
5803 struct pglist_data *pgdat;
470c61d7 5804 enum zone_type i, j;
1da177e4 5805
ec936fc5 5806 for_each_online_pgdat(pgdat) {
470c61d7
LS
5807 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5808 struct zone *zone = &pgdat->node_zones[i];
5809 int ratio = sysctl_lowmem_reserve_ratio[i];
5810 bool clear = !ratio || !zone_managed_pages(zone);
5811 unsigned long managed_pages = 0;
5812
5813 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
5814 struct zone *upper_zone = &pgdat->node_zones[j];
5815
5816 managed_pages += zone_managed_pages(upper_zone);
470c61d7 5817
f7ec1044
LS
5818 if (clear)
5819 zone->lowmem_reserve[j] = 0;
5820 else
470c61d7 5821 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
5822 }
5823 }
5824 }
cb45b0e9
HA
5825
5826 /* update totalreserve_pages */
5827 calculate_totalreserve_pages();
1da177e4
LT
5828}
5829
cfd3da1e 5830static void __setup_per_zone_wmarks(void)
1da177e4
LT
5831{
5832 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5833 unsigned long lowmem_pages = 0;
5834 struct zone *zone;
5835 unsigned long flags;
5836
416ef04f 5837 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
1da177e4 5838 for_each_zone(zone) {
416ef04f 5839 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
9705bea5 5840 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
5841 }
5842
5843 for_each_zone(zone) {
ac924c60
AM
5844 u64 tmp;
5845
1125b4e3 5846 spin_lock_irqsave(&zone->lock, flags);
9705bea5 5847 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 5848 do_div(tmp, lowmem_pages);
416ef04f 5849 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
1da177e4 5850 /*
669ed175 5851 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
416ef04f 5852 * need highmem and movable zones pages, so cap pages_min
5853 * to a small value here.
669ed175 5854 *
41858966 5855 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 5856 * deltas control async page reclaim, and so should
416ef04f 5857 * not be capped for highmem and movable zones.
1da177e4 5858 */
90ae8d67 5859 unsigned long min_pages;
1da177e4 5860
9705bea5 5861 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 5862 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 5863 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 5864 } else {
669ed175
NP
5865 /*
5866 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5867 * proportionate to the zone's size.
5868 */
a9214443 5869 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
5870 }
5871
795ae7a0
JW
5872 /*
5873 * Set the kswapd watermarks distance according to the
5874 * scale factor in proportion to available memory, but
5875 * ensure a minimum size on small systems.
5876 */
5877 tmp = max_t(u64, tmp >> 2,
9705bea5 5878 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
5879 watermark_scale_factor, 10000));
5880
aa092591 5881 zone->watermark_boost = 0;
a9214443 5882 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
5883 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5884 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 5885
1125b4e3 5886 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5887 }
cb45b0e9
HA
5888
5889 /* update totalreserve_pages */
5890 calculate_totalreserve_pages();
1da177e4
LT
5891}
5892
cfd3da1e
MG
5893/**
5894 * setup_per_zone_wmarks - called when min_free_kbytes changes
5895 * or when memory is hot-{added|removed}
5896 *
5897 * Ensures that the watermark[min,low,high] values for each zone are set
5898 * correctly with respect to min_free_kbytes.
5899 */
5900void setup_per_zone_wmarks(void)
5901{
b92ca18e 5902 struct zone *zone;
b93e0f32
MH
5903 static DEFINE_SPINLOCK(lock);
5904
5905 spin_lock(&lock);
cfd3da1e 5906 __setup_per_zone_wmarks();
b93e0f32 5907 spin_unlock(&lock);
b92ca18e
MG
5908
5909 /*
5910 * The watermark size have changed so update the pcpu batch
5911 * and high limits or the limits may be inappropriate.
5912 */
5913 for_each_zone(zone)
04f8cfea 5914 zone_pcp_update(zone, 0);
cfd3da1e
MG
5915}
5916
1da177e4
LT
5917/*
5918 * Initialise min_free_kbytes.
5919 *
5920 * For small machines we want it small (128k min). For large machines
8beeae86 5921 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
5922 * bandwidth does not increase linearly with machine size. We use
5923 *
b8af2941 5924 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5925 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5926 *
5927 * which yields
5928 *
5929 * 16MB: 512k
5930 * 32MB: 724k
5931 * 64MB: 1024k
5932 * 128MB: 1448k
5933 * 256MB: 2048k
5934 * 512MB: 2896k
5935 * 1024MB: 4096k
5936 * 2048MB: 5792k
5937 * 4096MB: 8192k
5938 * 8192MB: 11584k
5939 * 16384MB: 16384k
5940 */
bd3400ea 5941void calculate_min_free_kbytes(void)
1da177e4
LT
5942{
5943 unsigned long lowmem_kbytes;
5f12733e 5944 int new_min_free_kbytes;
1da177e4
LT
5945
5946 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5947 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5948
59d336bd
WS
5949 if (new_min_free_kbytes > user_min_free_kbytes)
5950 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5951 else
5f12733e
MH
5952 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5953 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 5954
bd3400ea
LF
5955}
5956
5957int __meminit init_per_zone_wmark_min(void)
5958{
5959 calculate_min_free_kbytes();
bc75d33f 5960 setup_per_zone_wmarks();
a6cccdc3 5961 refresh_zone_stat_thresholds();
1da177e4 5962 setup_per_zone_lowmem_reserve();
6423aa81
JK
5963
5964#ifdef CONFIG_NUMA
5965 setup_min_unmapped_ratio();
5966 setup_min_slab_ratio();
5967#endif
5968
4aab2be0
VB
5969 khugepaged_min_free_kbytes_update();
5970
1da177e4
LT
5971 return 0;
5972}
e08d3fdf 5973postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
5974
5975/*
b8af2941 5976 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5977 * that we can call two helper functions whenever min_free_kbytes
5978 * changes.
5979 */
e95d372c 5980static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 5981 void *buffer, size_t *length, loff_t *ppos)
1da177e4 5982{
da8c757b
HP
5983 int rc;
5984
5985 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5986 if (rc)
5987 return rc;
5988
5f12733e
MH
5989 if (write) {
5990 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5991 setup_per_zone_wmarks();
5f12733e 5992 }
1da177e4
LT
5993 return 0;
5994}
5995
e95d372c 5996static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 5997 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
5998{
5999 int rc;
6000
6001 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6002 if (rc)
6003 return rc;
6004
6005 if (write)
6006 setup_per_zone_wmarks();
6007
6008 return 0;
6009}
6010
9614634f 6011#ifdef CONFIG_NUMA
6423aa81 6012static void setup_min_unmapped_ratio(void)
9614634f 6013{
6423aa81 6014 pg_data_t *pgdat;
9614634f 6015 struct zone *zone;
9614634f 6016
a5f5f91d 6017 for_each_online_pgdat(pgdat)
81cbcbc2 6018 pgdat->min_unmapped_pages = 0;
a5f5f91d 6019
9614634f 6020 for_each_zone(zone)
9705bea5
AK
6021 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6022 sysctl_min_unmapped_ratio) / 100;
9614634f 6023}
0ff38490 6024
6423aa81 6025
e95d372c 6026static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 6027 void *buffer, size_t *length, loff_t *ppos)
0ff38490 6028{
0ff38490
CL
6029 int rc;
6030
8d65af78 6031 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6032 if (rc)
6033 return rc;
6034
6423aa81
JK
6035 setup_min_unmapped_ratio();
6036
6037 return 0;
6038}
6039
6040static void setup_min_slab_ratio(void)
6041{
6042 pg_data_t *pgdat;
6043 struct zone *zone;
6044
a5f5f91d
MG
6045 for_each_online_pgdat(pgdat)
6046 pgdat->min_slab_pages = 0;
6047
0ff38490 6048 for_each_zone(zone)
9705bea5
AK
6049 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6050 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6051}
6052
e95d372c 6053static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 6054 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
6055{
6056 int rc;
6057
6058 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6059 if (rc)
6060 return rc;
6061
6062 setup_min_slab_ratio();
6063
0ff38490
CL
6064 return 0;
6065}
9614634f
CL
6066#endif
6067
1da177e4
LT
6068/*
6069 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6070 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6071 * whenever sysctl_lowmem_reserve_ratio changes.
6072 *
6073 * The reserve ratio obviously has absolutely no relation with the
41858966 6074 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6075 * if in function of the boot time zone sizes.
6076 */
e95d372c
KW
6077static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6078 int write, void *buffer, size_t *length, loff_t *ppos)
1da177e4 6079{
86aaf255
BH
6080 int i;
6081
8d65af78 6082 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
6083
6084 for (i = 0; i < MAX_NR_ZONES; i++) {
6085 if (sysctl_lowmem_reserve_ratio[i] < 1)
6086 sysctl_lowmem_reserve_ratio[i] = 0;
6087 }
6088
1da177e4
LT
6089 setup_per_zone_lowmem_reserve();
6090 return 0;
6091}
6092
8ad4b1fb 6093/*
74f44822
MG
6094 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6095 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 6096 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6097 */
e95d372c 6098static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
74f44822 6099 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6100{
6101 struct zone *zone;
74f44822 6102 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
6103 int ret;
6104
7cd2b0a3 6105 mutex_lock(&pcp_batch_high_lock);
74f44822 6106 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 6107
8d65af78 6108 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6109 if (!write || ret < 0)
6110 goto out;
6111
6112 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
6113 if (percpu_pagelist_high_fraction &&
6114 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6115 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
6116 ret = -EINVAL;
6117 goto out;
6118 }
6119
6120 /* No change? */
74f44822 6121 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 6122 goto out;
c8e251fa 6123
cb1ef534 6124 for_each_populated_zone(zone)
74f44822 6125 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 6126out:
c8e251fa 6127 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6128 return ret;
8ad4b1fb
RS
6129}
6130
e95d372c
KW
6131static struct ctl_table page_alloc_sysctl_table[] = {
6132 {
6133 .procname = "min_free_kbytes",
6134 .data = &min_free_kbytes,
6135 .maxlen = sizeof(min_free_kbytes),
6136 .mode = 0644,
6137 .proc_handler = min_free_kbytes_sysctl_handler,
6138 .extra1 = SYSCTL_ZERO,
6139 },
6140 {
6141 .procname = "watermark_boost_factor",
6142 .data = &watermark_boost_factor,
6143 .maxlen = sizeof(watermark_boost_factor),
6144 .mode = 0644,
6145 .proc_handler = proc_dointvec_minmax,
6146 .extra1 = SYSCTL_ZERO,
6147 },
6148 {
6149 .procname = "watermark_scale_factor",
6150 .data = &watermark_scale_factor,
6151 .maxlen = sizeof(watermark_scale_factor),
6152 .mode = 0644,
6153 .proc_handler = watermark_scale_factor_sysctl_handler,
6154 .extra1 = SYSCTL_ONE,
6155 .extra2 = SYSCTL_THREE_THOUSAND,
6156 },
6157 {
6158 .procname = "percpu_pagelist_high_fraction",
6159 .data = &percpu_pagelist_high_fraction,
6160 .maxlen = sizeof(percpu_pagelist_high_fraction),
6161 .mode = 0644,
6162 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6163 .extra1 = SYSCTL_ZERO,
6164 },
6165 {
6166 .procname = "lowmem_reserve_ratio",
6167 .data = &sysctl_lowmem_reserve_ratio,
6168 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6169 .mode = 0644,
6170 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6171 },
6172#ifdef CONFIG_NUMA
6173 {
6174 .procname = "numa_zonelist_order",
6175 .data = &numa_zonelist_order,
6176 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6177 .mode = 0644,
6178 .proc_handler = numa_zonelist_order_handler,
6179 },
6180 {
6181 .procname = "min_unmapped_ratio",
6182 .data = &sysctl_min_unmapped_ratio,
6183 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6184 .mode = 0644,
6185 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6186 .extra1 = SYSCTL_ZERO,
6187 .extra2 = SYSCTL_ONE_HUNDRED,
6188 },
6189 {
6190 .procname = "min_slab_ratio",
6191 .data = &sysctl_min_slab_ratio,
6192 .maxlen = sizeof(sysctl_min_slab_ratio),
6193 .mode = 0644,
6194 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6195 .extra1 = SYSCTL_ZERO,
6196 .extra2 = SYSCTL_ONE_HUNDRED,
6197 },
6198#endif
6199 {}
6200};
6201
6202void __init page_alloc_sysctl_init(void)
6203{
6204 register_sysctl_init("vm", page_alloc_sysctl_table);
6205}
6206
8df995f6 6207#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
6208/* Usage: See admin-guide/dynamic-debug-howto.rst */
6209static void alloc_contig_dump_pages(struct list_head *page_list)
6210{
6211 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6212
6213 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6214 struct page *page;
6215
6216 dump_stack();
6217 list_for_each_entry(page, page_list, lru)
6218 dump_page(page, "migration failure");
6219 }
6220}
a1394bdd 6221
041d3a8c 6222/* [start, end) must belong to a single zone. */
b2c9e2fb 6223int __alloc_contig_migrate_range(struct compact_control *cc,
bb13ffeb 6224 unsigned long start, unsigned long end)
041d3a8c
MN
6225{
6226 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 6227 unsigned int nr_reclaimed;
041d3a8c
MN
6228 unsigned long pfn = start;
6229 unsigned int tries = 0;
6230 int ret = 0;
8b94e0b8
JK
6231 struct migration_target_control mtc = {
6232 .nid = zone_to_nid(cc->zone),
6233 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6234 };
041d3a8c 6235
361a2a22 6236 lru_cache_disable();
041d3a8c 6237
bb13ffeb 6238 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6239 if (fatal_signal_pending(current)) {
6240 ret = -EINTR;
6241 break;
6242 }
6243
bb13ffeb
MG
6244 if (list_empty(&cc->migratepages)) {
6245 cc->nr_migratepages = 0;
c2ad7a1f
OS
6246 ret = isolate_migratepages_range(cc, pfn, end);
6247 if (ret && ret != -EAGAIN)
041d3a8c 6248 break;
c2ad7a1f 6249 pfn = cc->migrate_pfn;
041d3a8c
MN
6250 tries = 0;
6251 } else if (++tries == 5) {
c8e28b47 6252 ret = -EBUSY;
041d3a8c
MN
6253 break;
6254 }
6255
beb51eaa
MK
6256 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6257 &cc->migratepages);
6258 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6259
8b94e0b8 6260 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 6261 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47
OS
6262
6263 /*
6264 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6265 * to retry again over this error, so do the same here.
6266 */
6267 if (ret == -ENOMEM)
6268 break;
041d3a8c 6269 }
d479960e 6270
361a2a22 6271 lru_cache_enable();
2a6f5124 6272 if (ret < 0) {
3f913fc5 6273 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
151e084a 6274 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124
SP
6275 putback_movable_pages(&cc->migratepages);
6276 return ret;
6277 }
6278 return 0;
041d3a8c
MN
6279}
6280
6281/**
6282 * alloc_contig_range() -- tries to allocate given range of pages
6283 * @start: start PFN to allocate
6284 * @end: one-past-the-last PFN to allocate
f0953a1b 6285 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
6286 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6287 * in range must have the same migratetype and it must
6288 * be either of the two.
ca96b625 6289 * @gfp_mask: GFP mask to use during compaction
041d3a8c 6290 *
11ac3e87
ZY
6291 * The PFN range does not have to be pageblock aligned. The PFN range must
6292 * belong to a single zone.
041d3a8c 6293 *
2c7452a0
MK
6294 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6295 * pageblocks in the range. Once isolated, the pageblocks should not
6296 * be modified by others.
041d3a8c 6297 *
a862f68a 6298 * Return: zero on success or negative error code. On success all
041d3a8c
MN
6299 * pages which PFN is in [start, end) are allocated for the caller and
6300 * need to be freed with free_contig_range().
6301 */
0815f3d8 6302int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 6303 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 6304{
041d3a8c 6305 unsigned long outer_start, outer_end;
b2c9e2fb 6306 int order;
d00181b9 6307 int ret = 0;
041d3a8c 6308
bb13ffeb
MG
6309 struct compact_control cc = {
6310 .nr_migratepages = 0,
6311 .order = -1,
6312 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6313 .mode = MIGRATE_SYNC,
bb13ffeb 6314 .ignore_skip_hint = true,
2583d671 6315 .no_set_skip_hint = true,
7dea19f9 6316 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 6317 .alloc_contig = true,
bb13ffeb
MG
6318 };
6319 INIT_LIST_HEAD(&cc.migratepages);
6320
041d3a8c
MN
6321 /*
6322 * What we do here is we mark all pageblocks in range as
6323 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6324 * have different sizes, and due to the way page allocator
b2c9e2fb 6325 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
6326 *
6327 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6328 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 6329 * we are interested in). This will put all the pages in
041d3a8c
MN
6330 * range back to page allocator as MIGRATE_ISOLATE.
6331 *
6332 * When this is done, we take the pages in range from page
6333 * allocator removing them from the buddy system. This way
6334 * page allocator will never consider using them.
6335 *
6336 * This lets us mark the pageblocks back as
6337 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6338 * aligned range but not in the unaligned, original range are
6339 * put back to page allocator so that buddy can use them.
6340 */
6341
6e263fff 6342 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 6343 if (ret)
b2c9e2fb 6344 goto done;
041d3a8c 6345
7612921f
VB
6346 drain_all_pages(cc.zone);
6347
8ef5849f
JK
6348 /*
6349 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
6350 * So, just fall through. test_pages_isolated() has a tracepoint
6351 * which will report the busy page.
6352 *
6353 * It is possible that busy pages could become available before
6354 * the call to test_pages_isolated, and the range will actually be
6355 * allocated. So, if we fall through be sure to clear ret so that
6356 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 6357 */
bb13ffeb 6358 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6359 if (ret && ret != -EBUSY)
041d3a8c 6360 goto done;
68d68ff6 6361 ret = 0;
041d3a8c
MN
6362
6363 /*
b2c9e2fb 6364 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
6365 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6366 * more, all pages in [start, end) are free in page allocator.
6367 * What we are going to do is to allocate all pages from
6368 * [start, end) (that is remove them from page allocator).
6369 *
6370 * The only problem is that pages at the beginning and at the
6371 * end of interesting range may be not aligned with pages that
6372 * page allocator holds, ie. they can be part of higher order
6373 * pages. Because of this, we reserve the bigger range and
6374 * once this is done free the pages we are not interested in.
6375 *
6376 * We don't have to hold zone->lock here because the pages are
6377 * isolated thus they won't get removed from buddy.
6378 */
6379
041d3a8c
MN
6380 order = 0;
6381 outer_start = start;
6382 while (!PageBuddy(pfn_to_page(outer_start))) {
5e0a760b 6383 if (++order > MAX_PAGE_ORDER) {
8ef5849f
JK
6384 outer_start = start;
6385 break;
041d3a8c
MN
6386 }
6387 outer_start &= ~0UL << order;
6388 }
6389
8ef5849f 6390 if (outer_start != start) {
ab130f91 6391 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
6392
6393 /*
6394 * outer_start page could be small order buddy page and
6395 * it doesn't include start page. Adjust outer_start
6396 * in this case to report failed page properly
6397 * on tracepoint in test_pages_isolated()
6398 */
6399 if (outer_start + (1UL << order) <= start)
6400 outer_start = start;
6401 }
6402
041d3a8c 6403 /* Make sure the range is really isolated. */
756d25be 6404 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
6405 ret = -EBUSY;
6406 goto done;
6407 }
6408
49f223a9 6409 /* Grab isolated pages from freelists. */
bb13ffeb 6410 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6411 if (!outer_end) {
6412 ret = -EBUSY;
6413 goto done;
6414 }
6415
6416 /* Free head and tail (if any) */
6417 if (start != outer_start)
6418 free_contig_range(outer_start, start - outer_start);
6419 if (end != outer_end)
6420 free_contig_range(end, outer_end - end);
6421
6422done:
6e263fff 6423 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
6424 return ret;
6425}
255f5985 6426EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
6427
6428static int __alloc_contig_pages(unsigned long start_pfn,
6429 unsigned long nr_pages, gfp_t gfp_mask)
6430{
6431 unsigned long end_pfn = start_pfn + nr_pages;
6432
6433 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6434 gfp_mask);
6435}
6436
6437static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6438 unsigned long nr_pages)
6439{
6440 unsigned long i, end_pfn = start_pfn + nr_pages;
6441 struct page *page;
6442
6443 for (i = start_pfn; i < end_pfn; i++) {
6444 page = pfn_to_online_page(i);
6445 if (!page)
6446 return false;
6447
6448 if (page_zone(page) != z)
6449 return false;
6450
6451 if (PageReserved(page))
4d73ba5f
MG
6452 return false;
6453
6454 if (PageHuge(page))
5e27a2df 6455 return false;
5e27a2df
AK
6456 }
6457 return true;
6458}
6459
6460static bool zone_spans_last_pfn(const struct zone *zone,
6461 unsigned long start_pfn, unsigned long nr_pages)
6462{
6463 unsigned long last_pfn = start_pfn + nr_pages - 1;
6464
6465 return zone_spans_pfn(zone, last_pfn);
6466}
6467
6468/**
6469 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6470 * @nr_pages: Number of contiguous pages to allocate
6471 * @gfp_mask: GFP mask to limit search and used during compaction
6472 * @nid: Target node
6473 * @nodemask: Mask for other possible nodes
6474 *
6475 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6476 * on an applicable zonelist to find a contiguous pfn range which can then be
6477 * tried for allocation with alloc_contig_range(). This routine is intended
6478 * for allocation requests which can not be fulfilled with the buddy allocator.
6479 *
6480 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
6481 * power of two, then allocated range is also guaranteed to be aligned to same
6482 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
6483 *
6484 * Allocated pages can be freed with free_contig_range() or by manually calling
6485 * __free_page() on each allocated page.
6486 *
6487 * Return: pointer to contiguous pages on success, or NULL if not successful.
6488 */
6489struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6490 int nid, nodemask_t *nodemask)
6491{
6492 unsigned long ret, pfn, flags;
6493 struct zonelist *zonelist;
6494 struct zone *zone;
6495 struct zoneref *z;
6496
6497 zonelist = node_zonelist(nid, gfp_mask);
6498 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6499 gfp_zone(gfp_mask), nodemask) {
6500 spin_lock_irqsave(&zone->lock, flags);
6501
6502 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6503 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6504 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6505 /*
6506 * We release the zone lock here because
6507 * alloc_contig_range() will also lock the zone
6508 * at some point. If there's an allocation
6509 * spinning on this lock, it may win the race
6510 * and cause alloc_contig_range() to fail...
6511 */
6512 spin_unlock_irqrestore(&zone->lock, flags);
6513 ret = __alloc_contig_pages(pfn, nr_pages,
6514 gfp_mask);
6515 if (!ret)
6516 return pfn_to_page(pfn);
6517 spin_lock_irqsave(&zone->lock, flags);
6518 }
6519 pfn += nr_pages;
6520 }
6521 spin_unlock_irqrestore(&zone->lock, flags);
6522 }
6523 return NULL;
6524}
4eb0716e 6525#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 6526
78fa5150 6527void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 6528{
78fa5150 6529 unsigned long count = 0;
bcc2b02f
MS
6530
6531 for (; nr_pages--; pfn++) {
6532 struct page *page = pfn_to_page(pfn);
6533
6534 count += page_count(page) != 1;
6535 __free_page(page);
6536 }
78fa5150 6537 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 6538}
255f5985 6539EXPORT_SYMBOL(free_contig_range);
041d3a8c 6540
ec6e8c7e
VB
6541/*
6542 * Effectively disable pcplists for the zone by setting the high limit to 0
6543 * and draining all cpus. A concurrent page freeing on another CPU that's about
6544 * to put the page on pcplist will either finish before the drain and the page
6545 * will be drained, or observe the new high limit and skip the pcplist.
6546 *
6547 * Must be paired with a call to zone_pcp_enable().
6548 */
6549void zone_pcp_disable(struct zone *zone)
6550{
6551 mutex_lock(&pcp_batch_high_lock);
90b41691 6552 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
ec6e8c7e
VB
6553 __drain_all_pages(zone, true);
6554}
6555
6556void zone_pcp_enable(struct zone *zone)
6557{
90b41691
HY
6558 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6559 zone->pageset_high_max, zone->pageset_batch);
ec6e8c7e
VB
6560 mutex_unlock(&pcp_batch_high_lock);
6561}
6562
340175b7
JL
6563void zone_pcp_reset(struct zone *zone)
6564{
5a883813 6565 int cpu;
28f836b6 6566 struct per_cpu_zonestat *pzstats;
340175b7 6567
28f836b6 6568 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 6569 for_each_online_cpu(cpu) {
28f836b6
MG
6570 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6571 drain_zonestat(zone, pzstats);
5a883813 6572 }
28f836b6 6573 free_percpu(zone->per_cpu_pageset);
28f836b6 6574 zone->per_cpu_pageset = &boot_pageset;
022e7fa0
ML
6575 if (zone->per_cpu_zonestats != &boot_zonestats) {
6576 free_percpu(zone->per_cpu_zonestats);
6577 zone->per_cpu_zonestats = &boot_zonestats;
6578 }
340175b7 6579 }
340175b7
JL
6580}
6581
6dcd73d7 6582#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 6583/*
257bea71
DH
6584 * All pages in the range must be in a single zone, must not contain holes,
6585 * must span full sections, and must be isolated before calling this function.
0c0e6195 6586 */
257bea71 6587void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 6588{
257bea71 6589 unsigned long pfn = start_pfn;
0c0e6195
KH
6590 struct page *page;
6591 struct zone *zone;
0ee5f4f3 6592 unsigned int order;
0c0e6195 6593 unsigned long flags;
5557c766 6594
2d070eab 6595 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
6596 zone = page_zone(pfn_to_page(pfn));
6597 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 6598 while (pfn < end_pfn) {
0c0e6195 6599 page = pfn_to_page(pfn);
b023f468
WC
6600 /*
6601 * The HWPoisoned page may be not in buddy system, and
6602 * page_count() is not 0.
6603 */
6604 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6605 pfn++;
b023f468
WC
6606 continue;
6607 }
aa218795
DH
6608 /*
6609 * At this point all remaining PageOffline() pages have a
6610 * reference count of 0 and can simply be skipped.
6611 */
6612 if (PageOffline(page)) {
6613 BUG_ON(page_count(page));
6614 BUG_ON(PageBuddy(page));
6615 pfn++;
aa218795
DH
6616 continue;
6617 }
b023f468 6618
0c0e6195
KH
6619 BUG_ON(page_count(page));
6620 BUG_ON(!PageBuddy(page));
ab130f91 6621 order = buddy_order(page);
6ab01363 6622 del_page_from_free_list(page, zone, order);
0c0e6195
KH
6623 pfn += (1 << order);
6624 }
6625 spin_unlock_irqrestore(&zone->lock, flags);
6626}
6627#endif
8d22ba1b 6628
8446b59b
ED
6629/*
6630 * This function returns a stable result only if called under zone lock.
6631 */
8d22ba1b
WF
6632bool is_free_buddy_page(struct page *page)
6633{
8d22ba1b 6634 unsigned long pfn = page_to_pfn(page);
7aeb09f9 6635 unsigned int order;
8d22ba1b 6636
fd377218 6637 for (order = 0; order < NR_PAGE_ORDERS; order++) {
8d22ba1b
WF
6638 struct page *page_head = page - (pfn & ((1 << order) - 1));
6639
8446b59b
ED
6640 if (PageBuddy(page_head) &&
6641 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
6642 break;
6643 }
8d22ba1b 6644
5e0a760b 6645 return order <= MAX_PAGE_ORDER;
8d22ba1b 6646}
a581865e 6647EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
6648
6649#ifdef CONFIG_MEMORY_FAILURE
6650/*
06be6ff3
OS
6651 * Break down a higher-order page in sub-pages, and keep our target out of
6652 * buddy allocator.
d4ae9916 6653 */
06be6ff3
OS
6654static void break_down_buddy_pages(struct zone *zone, struct page *page,
6655 struct page *target, int low, int high,
6656 int migratetype)
6657{
6658 unsigned long size = 1 << high;
0dfca313 6659 struct page *current_buddy;
06be6ff3
OS
6660
6661 while (high > low) {
6662 high--;
6663 size >>= 1;
6664
6665 if (target >= &page[size]) {
06be6ff3 6666 current_buddy = page;
0dfca313 6667 page = page + size;
06be6ff3 6668 } else {
06be6ff3
OS
6669 current_buddy = page + size;
6670 }
6671
6672 if (set_page_guard(zone, current_buddy, high, migratetype))
6673 continue;
6674
27e0db3c
KS
6675 add_to_free_list(current_buddy, zone, high, migratetype);
6676 set_buddy_order(current_buddy, high);
06be6ff3
OS
6677 }
6678}
6679
6680/*
6681 * Take a page that will be marked as poisoned off the buddy allocator.
6682 */
6683bool take_page_off_buddy(struct page *page)
d4ae9916
NH
6684{
6685 struct zone *zone = page_zone(page);
6686 unsigned long pfn = page_to_pfn(page);
6687 unsigned long flags;
6688 unsigned int order;
06be6ff3 6689 bool ret = false;
d4ae9916
NH
6690
6691 spin_lock_irqsave(&zone->lock, flags);
fd377218 6692 for (order = 0; order < NR_PAGE_ORDERS; order++) {
d4ae9916 6693 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 6694 int page_order = buddy_order(page_head);
d4ae9916 6695
ab130f91 6696 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
6697 unsigned long pfn_head = page_to_pfn(page_head);
6698 int migratetype = get_pfnblock_migratetype(page_head,
6699 pfn_head);
6700
ab130f91 6701 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 6702 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 6703 page_order, migratetype);
bf181c58 6704 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
6705 if (!is_migrate_isolate(migratetype))
6706 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 6707 ret = true;
d4ae9916
NH
6708 break;
6709 }
06be6ff3
OS
6710 if (page_count(page_head) > 0)
6711 break;
d4ae9916
NH
6712 }
6713 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 6714 return ret;
d4ae9916 6715}
bf181c58
NH
6716
6717/*
6718 * Cancel takeoff done by take_page_off_buddy().
6719 */
6720bool put_page_back_buddy(struct page *page)
6721{
6722 struct zone *zone = page_zone(page);
6723 unsigned long pfn = page_to_pfn(page);
6724 unsigned long flags;
6725 int migratetype = get_pfnblock_migratetype(page, pfn);
6726 bool ret = false;
6727
6728 spin_lock_irqsave(&zone->lock, flags);
6729 if (put_page_testzero(page)) {
6730 ClearPageHWPoisonTakenOff(page);
6731 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6732 if (TestClearPageHWPoison(page)) {
bf181c58
NH
6733 ret = true;
6734 }
6735 }
6736 spin_unlock_irqrestore(&zone->lock, flags);
6737
6738 return ret;
6739}
d4ae9916 6740#endif
62b31070
BH
6741
6742#ifdef CONFIG_ZONE_DMA
6743bool has_managed_dma(void)
6744{
6745 struct pglist_data *pgdat;
6746
6747 for_each_online_pgdat(pgdat) {
6748 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6749
6750 if (managed_zone(zone))
6751 return true;
6752 }
6753 return false;
6754}
6755#endif /* CONFIG_ZONE_DMA */
dcdfdd40
KS
6756
6757#ifdef CONFIG_UNACCEPTED_MEMORY
6758
6759/* Counts number of zones with unaccepted pages. */
6760static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6761
6762static bool lazy_accept = true;
6763
6764static int __init accept_memory_parse(char *p)
6765{
6766 if (!strcmp(p, "lazy")) {
6767 lazy_accept = true;
6768 return 0;
6769 } else if (!strcmp(p, "eager")) {
6770 lazy_accept = false;
6771 return 0;
6772 } else {
6773 return -EINVAL;
6774 }
6775}
6776early_param("accept_memory", accept_memory_parse);
6777
6778static bool page_contains_unaccepted(struct page *page, unsigned int order)
6779{
6780 phys_addr_t start = page_to_phys(page);
6781 phys_addr_t end = start + (PAGE_SIZE << order);
6782
6783 return range_contains_unaccepted_memory(start, end);
6784}
6785
6786static void accept_page(struct page *page, unsigned int order)
6787{
6788 phys_addr_t start = page_to_phys(page);
6789
6790 accept_memory(start, start + (PAGE_SIZE << order));
6791}
6792
6793static bool try_to_accept_memory_one(struct zone *zone)
6794{
6795 unsigned long flags;
6796 struct page *page;
6797 bool last;
6798
6799 if (list_empty(&zone->unaccepted_pages))
6800 return false;
6801
6802 spin_lock_irqsave(&zone->lock, flags);
6803 page = list_first_entry_or_null(&zone->unaccepted_pages,
6804 struct page, lru);
6805 if (!page) {
6806 spin_unlock_irqrestore(&zone->lock, flags);
6807 return false;
6808 }
6809
6810 list_del(&page->lru);
6811 last = list_empty(&zone->unaccepted_pages);
6812
6813 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6814 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6815 spin_unlock_irqrestore(&zone->lock, flags);
6816
5e0a760b 6817 accept_page(page, MAX_PAGE_ORDER);
dcdfdd40 6818
5e0a760b 6819 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
dcdfdd40
KS
6820
6821 if (last)
6822 static_branch_dec(&zones_with_unaccepted_pages);
6823
6824 return true;
6825}
6826
6827static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6828{
6829 long to_accept;
6830 int ret = false;
6831
6832 /* How much to accept to get to high watermark? */
6833 to_accept = high_wmark_pages(zone) -
6834 (zone_page_state(zone, NR_FREE_PAGES) -
6835 __zone_watermark_unusable_free(zone, order, 0));
6836
6837 /* Accept at least one page */
6838 do {
6839 if (!try_to_accept_memory_one(zone))
6840 break;
6841 ret = true;
6842 to_accept -= MAX_ORDER_NR_PAGES;
6843 } while (to_accept > 0);
6844
6845 return ret;
6846}
6847
6848static inline bool has_unaccepted_memory(void)
6849{
6850 return static_branch_unlikely(&zones_with_unaccepted_pages);
6851}
6852
6853static bool __free_unaccepted(struct page *page)
6854{
6855 struct zone *zone = page_zone(page);
6856 unsigned long flags;
6857 bool first = false;
6858
6859 if (!lazy_accept)
6860 return false;
6861
6862 spin_lock_irqsave(&zone->lock, flags);
6863 first = list_empty(&zone->unaccepted_pages);
6864 list_add_tail(&page->lru, &zone->unaccepted_pages);
6865 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6866 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6867 spin_unlock_irqrestore(&zone->lock, flags);
6868
6869 if (first)
6870 static_branch_inc(&zones_with_unaccepted_pages);
6871
6872 return true;
6873}
6874
6875#else
6876
6877static bool page_contains_unaccepted(struct page *page, unsigned int order)
6878{
6879 return false;
6880}
6881
6882static void accept_page(struct page *page, unsigned int order)
6883{
6884}
6885
6886static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6887{
6888 return false;
6889}
6890
6891static inline bool has_unaccepted_memory(void)
6892{
6893 return false;
6894}
6895
6896static bool __free_unaccepted(struct page *page)
6897{
6898 BUILD_BUG();
6899 return false;
6900}
6901
6902#endif /* CONFIG_UNACCEPTED_MEMORY */