writeback: don't busy retry writeback on new/freeing inodes
[linux-2.6-block.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
ffd1f609
WF
39/*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42#define MAX_PAUSE max(HZ/5, 1)
43
e98be2d5
WF
44/*
45 * Estimate write bandwidth at 200ms intervals.
46 */
47#define BANDWIDTH_INTERVAL max(HZ/5, 1)
48
1da177e4
LT
49/*
50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
51 * will look to see if it needs to force writeback or throttling.
52 */
53static long ratelimit_pages = 32;
54
1da177e4
LT
55/*
56 * When balance_dirty_pages decides that the caller needs to perform some
57 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 58 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
59 * large amounts of I/O are submitted.
60 */
3a2e9a5a 61static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 62{
3a2e9a5a
WF
63 if (dirtied < ratelimit_pages)
64 dirtied = ratelimit_pages;
65
66 return dirtied + dirtied / 2;
1da177e4
LT
67}
68
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
5b0830cb 72 * Start background writeback (via writeback threads) at this percentage
1da177e4 73 */
1b5e62b4 74int dirty_background_ratio = 10;
1da177e4 75
2da02997
DR
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80unsigned long dirty_background_bytes;
81
195cf453
BG
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86int vm_highmem_is_dirtyable;
87
1da177e4
LT
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
1b5e62b4 91int vm_dirty_ratio = 20;
1da177e4 92
2da02997
DR
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97unsigned long vm_dirty_bytes;
98
1da177e4 99/*
704503d8 100 * The interval between `kupdate'-style writebacks
1da177e4 101 */
22ef37ee 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
103
104/*
704503d8 105 * The longest time for which data is allowed to remain dirty
1da177e4 106 */
22ef37ee 107unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
108
109/*
110 * Flag that makes the machine dump writes/reads and block dirtyings.
111 */
112int block_dump;
113
114/*
ed5b43f1
BS
115 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
116 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
117 */
118int laptop_mode;
119
120EXPORT_SYMBOL(laptop_mode);
121
122/* End of sysctl-exported parameters */
123
c42843f2 124unsigned long global_dirty_limit;
1da177e4 125
04fbfdc1
PZ
126/*
127 * Scale the writeback cache size proportional to the relative writeout speeds.
128 *
129 * We do this by keeping a floating proportion between BDIs, based on page
130 * writeback completions [end_page_writeback()]. Those devices that write out
131 * pages fastest will get the larger share, while the slower will get a smaller
132 * share.
133 *
134 * We use page writeout completions because we are interested in getting rid of
135 * dirty pages. Having them written out is the primary goal.
136 *
137 * We introduce a concept of time, a period over which we measure these events,
138 * because demand can/will vary over time. The length of this period itself is
139 * measured in page writeback completions.
140 *
141 */
142static struct prop_descriptor vm_completions;
3e26c149 143static struct prop_descriptor vm_dirties;
04fbfdc1 144
04fbfdc1
PZ
145/*
146 * couple the period to the dirty_ratio:
147 *
148 * period/2 ~ roundup_pow_of_two(dirty limit)
149 */
150static int calc_period_shift(void)
151{
152 unsigned long dirty_total;
153
2da02997
DR
154 if (vm_dirty_bytes)
155 dirty_total = vm_dirty_bytes / PAGE_SIZE;
156 else
157 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
158 100;
04fbfdc1
PZ
159 return 2 + ilog2(dirty_total - 1);
160}
161
162/*
2da02997 163 * update the period when the dirty threshold changes.
04fbfdc1 164 */
2da02997
DR
165static void update_completion_period(void)
166{
167 int shift = calc_period_shift();
168 prop_change_shift(&vm_completions, shift);
169 prop_change_shift(&vm_dirties, shift);
170}
171
172int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 173 void __user *buffer, size_t *lenp,
2da02997
DR
174 loff_t *ppos)
175{
176 int ret;
177
8d65af78 178 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
179 if (ret == 0 && write)
180 dirty_background_bytes = 0;
181 return ret;
182}
183
184int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 185 void __user *buffer, size_t *lenp,
2da02997
DR
186 loff_t *ppos)
187{
188 int ret;
189
8d65af78 190 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
191 if (ret == 0 && write)
192 dirty_background_ratio = 0;
193 return ret;
194}
195
04fbfdc1 196int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 197 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
198 loff_t *ppos)
199{
200 int old_ratio = vm_dirty_ratio;
2da02997
DR
201 int ret;
202
8d65af78 203 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 204 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
205 update_completion_period();
206 vm_dirty_bytes = 0;
207 }
208 return ret;
209}
210
211
212int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 213 void __user *buffer, size_t *lenp,
2da02997
DR
214 loff_t *ppos)
215{
fc3501d4 216 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
217 int ret;
218
8d65af78 219 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
220 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
221 update_completion_period();
222 vm_dirty_ratio = 0;
04fbfdc1
PZ
223 }
224 return ret;
225}
226
227/*
228 * Increment the BDI's writeout completion count and the global writeout
229 * completion count. Called from test_clear_page_writeback().
230 */
231static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
232{
f7d2b1ec 233 __inc_bdi_stat(bdi, BDI_WRITTEN);
a42dde04
PZ
234 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
235 bdi->max_prop_frac);
04fbfdc1
PZ
236}
237
dd5656e5
MS
238void bdi_writeout_inc(struct backing_dev_info *bdi)
239{
240 unsigned long flags;
241
242 local_irq_save(flags);
243 __bdi_writeout_inc(bdi);
244 local_irq_restore(flags);
245}
246EXPORT_SYMBOL_GPL(bdi_writeout_inc);
247
1cf6e7d8 248void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
249{
250 prop_inc_single(&vm_dirties, &tsk->dirties);
251}
252
04fbfdc1
PZ
253/*
254 * Obtain an accurate fraction of the BDI's portion.
255 */
256static void bdi_writeout_fraction(struct backing_dev_info *bdi,
257 long *numerator, long *denominator)
258{
3efaf0fa 259 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 260 numerator, denominator);
04fbfdc1
PZ
261}
262
3e26c149
PZ
263static inline void task_dirties_fraction(struct task_struct *tsk,
264 long *numerator, long *denominator)
265{
266 prop_fraction_single(&vm_dirties, &tsk->dirties,
267 numerator, denominator);
268}
269
270/*
1babe183 271 * task_dirty_limit - scale down dirty throttling threshold for one task
3e26c149
PZ
272 *
273 * task specific dirty limit:
274 *
275 * dirty -= (dirty/8) * p_{t}
1babe183
WF
276 *
277 * To protect light/slow dirtying tasks from heavier/fast ones, we start
278 * throttling individual tasks before reaching the bdi dirty limit.
279 * Relatively low thresholds will be allocated to heavy dirtiers. So when
280 * dirty pages grow large, heavy dirtiers will be throttled first, which will
281 * effectively curb the growth of dirty pages. Light dirtiers with high enough
282 * dirty threshold may never get throttled.
3e26c149 283 */
16c4042f
WF
284static unsigned long task_dirty_limit(struct task_struct *tsk,
285 unsigned long bdi_dirty)
3e26c149
PZ
286{
287 long numerator, denominator;
16c4042f 288 unsigned long dirty = bdi_dirty;
3e26c149
PZ
289 u64 inv = dirty >> 3;
290
291 task_dirties_fraction(tsk, &numerator, &denominator);
292 inv *= numerator;
293 do_div(inv, denominator);
294
295 dirty -= inv;
3e26c149 296
16c4042f 297 return max(dirty, bdi_dirty/2);
3e26c149
PZ
298}
299
189d3c4a
PZ
300/*
301 *
302 */
189d3c4a
PZ
303static unsigned int bdi_min_ratio;
304
305int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
306{
307 int ret = 0;
189d3c4a 308
cfc4ba53 309 spin_lock_bh(&bdi_lock);
a42dde04 310 if (min_ratio > bdi->max_ratio) {
189d3c4a 311 ret = -EINVAL;
a42dde04
PZ
312 } else {
313 min_ratio -= bdi->min_ratio;
314 if (bdi_min_ratio + min_ratio < 100) {
315 bdi_min_ratio += min_ratio;
316 bdi->min_ratio += min_ratio;
317 } else {
318 ret = -EINVAL;
319 }
320 }
cfc4ba53 321 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
322
323 return ret;
324}
325
326int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
327{
a42dde04
PZ
328 int ret = 0;
329
330 if (max_ratio > 100)
331 return -EINVAL;
332
cfc4ba53 333 spin_lock_bh(&bdi_lock);
a42dde04
PZ
334 if (bdi->min_ratio > max_ratio) {
335 ret = -EINVAL;
336 } else {
337 bdi->max_ratio = max_ratio;
338 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
339 }
cfc4ba53 340 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
341
342 return ret;
343}
a42dde04 344EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 345
1da177e4
LT
346/*
347 * Work out the current dirty-memory clamping and background writeout
348 * thresholds.
349 *
350 * The main aim here is to lower them aggressively if there is a lot of mapped
351 * memory around. To avoid stressing page reclaim with lots of unreclaimable
352 * pages. It is better to clamp down on writers than to start swapping, and
353 * performing lots of scanning.
354 *
355 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
356 *
357 * We don't permit the clamping level to fall below 5% - that is getting rather
358 * excessive.
359 *
360 * We make sure that the background writeout level is below the adjusted
361 * clamping level.
362 */
1b424464
CL
363
364static unsigned long highmem_dirtyable_memory(unsigned long total)
365{
366#ifdef CONFIG_HIGHMEM
367 int node;
368 unsigned long x = 0;
369
37b07e41 370 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
371 struct zone *z =
372 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
373
adea02a1
WF
374 x += zone_page_state(z, NR_FREE_PAGES) +
375 zone_reclaimable_pages(z);
1b424464
CL
376 }
377 /*
378 * Make sure that the number of highmem pages is never larger
379 * than the number of the total dirtyable memory. This can only
380 * occur in very strange VM situations but we want to make sure
381 * that this does not occur.
382 */
383 return min(x, total);
384#else
385 return 0;
386#endif
387}
388
3eefae99
SR
389/**
390 * determine_dirtyable_memory - amount of memory that may be used
391 *
392 * Returns the numebr of pages that can currently be freed and used
393 * by the kernel for direct mappings.
394 */
395unsigned long determine_dirtyable_memory(void)
1b424464
CL
396{
397 unsigned long x;
398
adea02a1 399 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
400
401 if (!vm_highmem_is_dirtyable)
402 x -= highmem_dirtyable_memory(x);
403
1b424464
CL
404 return x + 1; /* Ensure that we never return 0 */
405}
406
ffd1f609
WF
407static unsigned long hard_dirty_limit(unsigned long thresh)
408{
409 return max(thresh, global_dirty_limit);
410}
411
03ab450f 412/*
1babe183
WF
413 * global_dirty_limits - background-writeback and dirty-throttling thresholds
414 *
415 * Calculate the dirty thresholds based on sysctl parameters
416 * - vm.dirty_background_ratio or vm.dirty_background_bytes
417 * - vm.dirty_ratio or vm.dirty_bytes
418 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 419 * real-time tasks.
1babe183 420 */
16c4042f 421void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 422{
364aeb28
DR
423 unsigned long background;
424 unsigned long dirty;
240c879f 425 unsigned long uninitialized_var(available_memory);
1da177e4
LT
426 struct task_struct *tsk;
427
240c879f
MK
428 if (!vm_dirty_bytes || !dirty_background_bytes)
429 available_memory = determine_dirtyable_memory();
430
2da02997
DR
431 if (vm_dirty_bytes)
432 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
433 else
434 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 435
2da02997
DR
436 if (dirty_background_bytes)
437 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
438 else
439 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 440
2da02997
DR
441 if (background >= dirty)
442 background = dirty / 2;
1da177e4
LT
443 tsk = current;
444 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
445 background += background / 4;
446 dirty += dirty / 4;
447 }
448 *pbackground = background;
449 *pdirty = dirty;
e1cbe236 450 trace_global_dirty_state(background, dirty);
16c4042f 451}
04fbfdc1 452
6f718656 453/**
1babe183 454 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
455 * @bdi: the backing_dev_info to query
456 * @dirty: global dirty limit in pages
457 *
458 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
459 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
460 * And the "limit" in the name is not seriously taken as hard limit in
461 * balance_dirty_pages().
1babe183 462 *
6f718656 463 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
464 * - starving fast devices
465 * - piling up dirty pages (that will take long time to sync) on slow devices
466 *
467 * The bdi's share of dirty limit will be adapting to its throughput and
468 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
469 */
470unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
471{
472 u64 bdi_dirty;
473 long numerator, denominator;
04fbfdc1 474
16c4042f
WF
475 /*
476 * Calculate this BDI's share of the dirty ratio.
477 */
478 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 479
16c4042f
WF
480 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
481 bdi_dirty *= numerator;
482 do_div(bdi_dirty, denominator);
04fbfdc1 483
16c4042f
WF
484 bdi_dirty += (dirty * bdi->min_ratio) / 100;
485 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
486 bdi_dirty = dirty * bdi->max_ratio / 100;
487
488 return bdi_dirty;
1da177e4
LT
489}
490
e98be2d5
WF
491static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
492 unsigned long elapsed,
493 unsigned long written)
494{
495 const unsigned long period = roundup_pow_of_two(3 * HZ);
496 unsigned long avg = bdi->avg_write_bandwidth;
497 unsigned long old = bdi->write_bandwidth;
498 u64 bw;
499
500 /*
501 * bw = written * HZ / elapsed
502 *
503 * bw * elapsed + write_bandwidth * (period - elapsed)
504 * write_bandwidth = ---------------------------------------------------
505 * period
506 */
507 bw = written - bdi->written_stamp;
508 bw *= HZ;
509 if (unlikely(elapsed > period)) {
510 do_div(bw, elapsed);
511 avg = bw;
512 goto out;
513 }
514 bw += (u64)bdi->write_bandwidth * (period - elapsed);
515 bw >>= ilog2(period);
516
517 /*
518 * one more level of smoothing, for filtering out sudden spikes
519 */
520 if (avg > old && old >= (unsigned long)bw)
521 avg -= (avg - old) >> 3;
522
523 if (avg < old && old <= (unsigned long)bw)
524 avg += (old - avg) >> 3;
525
526out:
527 bdi->write_bandwidth = bw;
528 bdi->avg_write_bandwidth = avg;
529}
530
c42843f2
WF
531/*
532 * The global dirtyable memory and dirty threshold could be suddenly knocked
533 * down by a large amount (eg. on the startup of KVM in a swapless system).
534 * This may throw the system into deep dirty exceeded state and throttle
535 * heavy/light dirtiers alike. To retain good responsiveness, maintain
536 * global_dirty_limit for tracking slowly down to the knocked down dirty
537 * threshold.
538 */
539static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
540{
541 unsigned long limit = global_dirty_limit;
542
543 /*
544 * Follow up in one step.
545 */
546 if (limit < thresh) {
547 limit = thresh;
548 goto update;
549 }
550
551 /*
552 * Follow down slowly. Use the higher one as the target, because thresh
553 * may drop below dirty. This is exactly the reason to introduce
554 * global_dirty_limit which is guaranteed to lie above the dirty pages.
555 */
556 thresh = max(thresh, dirty);
557 if (limit > thresh) {
558 limit -= (limit - thresh) >> 5;
559 goto update;
560 }
561 return;
562update:
563 global_dirty_limit = limit;
564}
565
566static void global_update_bandwidth(unsigned long thresh,
567 unsigned long dirty,
568 unsigned long now)
569{
570 static DEFINE_SPINLOCK(dirty_lock);
571 static unsigned long update_time;
572
573 /*
574 * check locklessly first to optimize away locking for the most time
575 */
576 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
577 return;
578
579 spin_lock(&dirty_lock);
580 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
581 update_dirty_limit(thresh, dirty);
582 update_time = now;
583 }
584 spin_unlock(&dirty_lock);
585}
586
e98be2d5 587void __bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2
WF
588 unsigned long thresh,
589 unsigned long dirty,
590 unsigned long bdi_thresh,
591 unsigned long bdi_dirty,
e98be2d5
WF
592 unsigned long start_time)
593{
594 unsigned long now = jiffies;
595 unsigned long elapsed = now - bdi->bw_time_stamp;
596 unsigned long written;
597
598 /*
599 * rate-limit, only update once every 200ms.
600 */
601 if (elapsed < BANDWIDTH_INTERVAL)
602 return;
603
604 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
605
606 /*
607 * Skip quiet periods when disk bandwidth is under-utilized.
608 * (at least 1s idle time between two flusher runs)
609 */
610 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
611 goto snapshot;
612
c42843f2
WF
613 if (thresh)
614 global_update_bandwidth(thresh, dirty, now);
615
e98be2d5
WF
616 bdi_update_write_bandwidth(bdi, elapsed, written);
617
618snapshot:
619 bdi->written_stamp = written;
620 bdi->bw_time_stamp = now;
621}
622
623static void bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2
WF
624 unsigned long thresh,
625 unsigned long dirty,
626 unsigned long bdi_thresh,
627 unsigned long bdi_dirty,
e98be2d5
WF
628 unsigned long start_time)
629{
630 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
631 return;
632 spin_lock(&bdi->wb.list_lock);
c42843f2
WF
633 __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
634 start_time);
e98be2d5
WF
635 spin_unlock(&bdi->wb.list_lock);
636}
637
1da177e4
LT
638/*
639 * balance_dirty_pages() must be called by processes which are generating dirty
640 * data. It looks at the number of dirty pages in the machine and will force
641 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
642 * If we're over `background_thresh' then the writeback threads are woken to
643 * perform some writeout.
1da177e4 644 */
3a2e9a5a
WF
645static void balance_dirty_pages(struct address_space *mapping,
646 unsigned long write_chunk)
1da177e4 647{
7762741e
WF
648 unsigned long nr_reclaimable, bdi_nr_reclaimable;
649 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
650 unsigned long bdi_dirty;
364aeb28
DR
651 unsigned long background_thresh;
652 unsigned long dirty_thresh;
653 unsigned long bdi_thresh;
1da177e4 654 unsigned long pages_written = 0;
87c6a9b2 655 unsigned long pause = 1;
e50e3720 656 bool dirty_exceeded = false;
1da177e4 657 struct backing_dev_info *bdi = mapping->backing_dev_info;
e98be2d5 658 unsigned long start_time = jiffies;
1da177e4
LT
659
660 for (;;) {
5fce25a9
PZ
661 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
662 global_page_state(NR_UNSTABLE_NFS);
7762741e 663 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 664
16c4042f
WF
665 global_dirty_limits(&background_thresh, &dirty_thresh);
666
667 /*
668 * Throttle it only when the background writeback cannot
669 * catch-up. This avoids (excessively) small writeouts
670 * when the bdi limits are ramping up.
671 */
7762741e 672 if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
16c4042f
WF
673 break;
674
675 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
676 bdi_thresh = task_dirty_limit(current, bdi_thresh);
677
e50e3720
WF
678 /*
679 * In order to avoid the stacked BDI deadlock we need
680 * to ensure we accurately count the 'dirty' pages when
681 * the threshold is low.
682 *
683 * Otherwise it would be possible to get thresh+n pages
684 * reported dirty, even though there are thresh-m pages
685 * actually dirty; with m+n sitting in the percpu
686 * deltas.
687 */
688 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
689 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
7762741e
WF
690 bdi_dirty = bdi_nr_reclaimable +
691 bdi_stat_sum(bdi, BDI_WRITEBACK);
e50e3720
WF
692 } else {
693 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
7762741e
WF
694 bdi_dirty = bdi_nr_reclaimable +
695 bdi_stat(bdi, BDI_WRITEBACK);
e50e3720 696 }
5fce25a9 697
e50e3720
WF
698 /*
699 * The bdi thresh is somehow "soft" limit derived from the
700 * global "hard" limit. The former helps to prevent heavy IO
701 * bdi or process from holding back light ones; The latter is
702 * the last resort safeguard.
703 */
7762741e
WF
704 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
705 (nr_dirty > dirty_thresh);
e50e3720
WF
706
707 if (!dirty_exceeded)
04fbfdc1 708 break;
1da177e4 709
04fbfdc1
PZ
710 if (!bdi->dirty_exceeded)
711 bdi->dirty_exceeded = 1;
1da177e4 712
c42843f2
WF
713 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
714 bdi_thresh, bdi_dirty, start_time);
e98be2d5 715
1da177e4
LT
716 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
717 * Unstable writes are a feature of certain networked
718 * filesystems (i.e. NFS) in which data may have been
719 * written to the server's write cache, but has not yet
720 * been flushed to permanent storage.
d7831a0b
RK
721 * Only move pages to writeback if this bdi is over its
722 * threshold otherwise wait until the disk writes catch
723 * up.
1da177e4 724 */
d46db3d5 725 trace_balance_dirty_start(bdi);
d7831a0b 726 if (bdi_nr_reclaimable > bdi_thresh) {
d46db3d5
WF
727 pages_written += writeback_inodes_wb(&bdi->wb,
728 write_chunk);
729 trace_balance_dirty_written(bdi, pages_written);
e50e3720
WF
730 if (pages_written >= write_chunk)
731 break; /* We've done our duty */
04fbfdc1 732 }
d153ba64 733 __set_current_state(TASK_UNINTERRUPTIBLE);
d25105e8 734 io_schedule_timeout(pause);
d46db3d5 735 trace_balance_dirty_wait(bdi);
87c6a9b2 736
ffd1f609
WF
737 dirty_thresh = hard_dirty_limit(dirty_thresh);
738 /*
739 * max-pause area. If dirty exceeded but still within this
740 * area, no need to sleep for more than 200ms: (a) 8 pages per
741 * 200ms is typically more than enough to curb heavy dirtiers;
742 * (b) the pause time limit makes the dirtiers more responsive.
743 */
744 if (nr_dirty < dirty_thresh +
745 dirty_thresh / DIRTY_MAXPAUSE_AREA &&
746 time_after(jiffies, start_time + MAX_PAUSE))
747 break;
748 /*
749 * pass-good area. When some bdi gets blocked (eg. NFS server
750 * not responding), or write bandwidth dropped dramatically due
751 * to concurrent reads, or dirty threshold suddenly dropped and
752 * the dirty pages cannot be brought down anytime soon (eg. on
753 * slow USB stick), at least let go of the good bdi's.
754 */
755 if (nr_dirty < dirty_thresh +
756 dirty_thresh / DIRTY_PASSGOOD_AREA &&
757 bdi_dirty < bdi_thresh)
758 break;
759
87c6a9b2
JA
760 /*
761 * Increase the delay for each loop, up to our previous
762 * default of taking a 100ms nap.
763 */
764 pause <<= 1;
765 if (pause > HZ / 10)
766 pause = HZ / 10;
1da177e4
LT
767 }
768
e50e3720 769 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 770 bdi->dirty_exceeded = 0;
1da177e4
LT
771
772 if (writeback_in_progress(bdi))
5b0830cb 773 return;
1da177e4
LT
774
775 /*
776 * In laptop mode, we wait until hitting the higher threshold before
777 * starting background writeout, and then write out all the way down
778 * to the lower threshold. So slow writers cause minimal disk activity.
779 *
780 * In normal mode, we start background writeout at the lower
781 * background_thresh, to keep the amount of dirty memory low.
782 */
783 if ((laptop_mode && pages_written) ||
e50e3720 784 (!laptop_mode && (nr_reclaimable > background_thresh)))
c5444198 785 bdi_start_background_writeback(bdi);
1da177e4
LT
786}
787
a200ee18 788void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 789{
a200ee18 790 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
791 struct address_space *mapping = page_mapping(page);
792
793 if (mapping)
794 balance_dirty_pages_ratelimited(mapping);
795 }
796}
797
245b2e70
TH
798static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
799
1da177e4 800/**
fa5a734e 801 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 802 * @mapping: address_space which was dirtied
a580290c 803 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
804 *
805 * Processes which are dirtying memory should call in here once for each page
806 * which was newly dirtied. The function will periodically check the system's
807 * dirty state and will initiate writeback if needed.
808 *
809 * On really big machines, get_writeback_state is expensive, so try to avoid
810 * calling it too often (ratelimiting). But once we're over the dirty memory
811 * limit we decrease the ratelimiting by a lot, to prevent individual processes
812 * from overshooting the limit by (ratelimit_pages) each.
813 */
fa5a734e
AM
814void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
815 unsigned long nr_pages_dirtied)
1da177e4 816{
36715cef 817 struct backing_dev_info *bdi = mapping->backing_dev_info;
fa5a734e
AM
818 unsigned long ratelimit;
819 unsigned long *p;
1da177e4 820
36715cef
WF
821 if (!bdi_cap_account_dirty(bdi))
822 return;
823
1da177e4 824 ratelimit = ratelimit_pages;
04fbfdc1 825 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
826 ratelimit = 8;
827
828 /*
829 * Check the rate limiting. Also, we do not want to throttle real-time
830 * tasks in balance_dirty_pages(). Period.
831 */
fa5a734e 832 preempt_disable();
245b2e70 833 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
834 *p += nr_pages_dirtied;
835 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 836 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
837 *p = 0;
838 preempt_enable();
3a2e9a5a 839 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
840 return;
841 }
fa5a734e 842 preempt_enable();
1da177e4 843}
fa5a734e 844EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 845
232ea4d6 846void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 847{
364aeb28
DR
848 unsigned long background_thresh;
849 unsigned long dirty_thresh;
1da177e4
LT
850
851 for ( ; ; ) {
16c4042f 852 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
853
854 /*
855 * Boost the allowable dirty threshold a bit for page
856 * allocators so they don't get DoS'ed by heavy writers
857 */
858 dirty_thresh += dirty_thresh / 10; /* wheeee... */
859
c24f21bd
CL
860 if (global_page_state(NR_UNSTABLE_NFS) +
861 global_page_state(NR_WRITEBACK) <= dirty_thresh)
862 break;
8aa7e847 863 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
864
865 /*
866 * The caller might hold locks which can prevent IO completion
867 * or progress in the filesystem. So we cannot just sit here
868 * waiting for IO to complete.
869 */
870 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
871 break;
1da177e4
LT
872 }
873}
874
1da177e4
LT
875/*
876 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
877 */
878int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 879 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 880{
8d65af78 881 proc_dointvec(table, write, buffer, length, ppos);
6423104b 882 bdi_arm_supers_timer();
1da177e4
LT
883 return 0;
884}
885
c2c4986e 886#ifdef CONFIG_BLOCK
31373d09 887void laptop_mode_timer_fn(unsigned long data)
1da177e4 888{
31373d09
MG
889 struct request_queue *q = (struct request_queue *)data;
890 int nr_pages = global_page_state(NR_FILE_DIRTY) +
891 global_page_state(NR_UNSTABLE_NFS);
1da177e4 892
31373d09
MG
893 /*
894 * We want to write everything out, not just down to the dirty
895 * threshold
896 */
31373d09 897 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 898 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
899}
900
901/*
902 * We've spun up the disk and we're in laptop mode: schedule writeback
903 * of all dirty data a few seconds from now. If the flush is already scheduled
904 * then push it back - the user is still using the disk.
905 */
31373d09 906void laptop_io_completion(struct backing_dev_info *info)
1da177e4 907{
31373d09 908 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
909}
910
911/*
912 * We're in laptop mode and we've just synced. The sync's writes will have
913 * caused another writeback to be scheduled by laptop_io_completion.
914 * Nothing needs to be written back anymore, so we unschedule the writeback.
915 */
916void laptop_sync_completion(void)
917{
31373d09
MG
918 struct backing_dev_info *bdi;
919
920 rcu_read_lock();
921
922 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
923 del_timer(&bdi->laptop_mode_wb_timer);
924
925 rcu_read_unlock();
1da177e4 926}
c2c4986e 927#endif
1da177e4
LT
928
929/*
930 * If ratelimit_pages is too high then we can get into dirty-data overload
931 * if a large number of processes all perform writes at the same time.
932 * If it is too low then SMP machines will call the (expensive)
933 * get_writeback_state too often.
934 *
935 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
936 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
937 * thresholds before writeback cuts in.
938 *
939 * But the limit should not be set too high. Because it also controls the
940 * amount of memory which the balance_dirty_pages() caller has to write back.
941 * If this is too large then the caller will block on the IO queue all the
942 * time. So limit it to four megabytes - the balance_dirty_pages() caller
943 * will write six megabyte chunks, max.
944 */
945
2d1d43f6 946void writeback_set_ratelimit(void)
1da177e4 947{
40c99aae 948 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
949 if (ratelimit_pages < 16)
950 ratelimit_pages = 16;
951 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
952 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
953}
954
26c2143b 955static int __cpuinit
1da177e4
LT
956ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
957{
2d1d43f6 958 writeback_set_ratelimit();
aa0f0303 959 return NOTIFY_DONE;
1da177e4
LT
960}
961
74b85f37 962static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
963 .notifier_call = ratelimit_handler,
964 .next = NULL,
965};
966
967/*
dc6e29da
LT
968 * Called early on to tune the page writeback dirty limits.
969 *
970 * We used to scale dirty pages according to how total memory
971 * related to pages that could be allocated for buffers (by
972 * comparing nr_free_buffer_pages() to vm_total_pages.
973 *
974 * However, that was when we used "dirty_ratio" to scale with
975 * all memory, and we don't do that any more. "dirty_ratio"
976 * is now applied to total non-HIGHPAGE memory (by subtracting
977 * totalhigh_pages from vm_total_pages), and as such we can't
978 * get into the old insane situation any more where we had
979 * large amounts of dirty pages compared to a small amount of
980 * non-HIGHMEM memory.
981 *
982 * But we might still want to scale the dirty_ratio by how
983 * much memory the box has..
1da177e4
LT
984 */
985void __init page_writeback_init(void)
986{
04fbfdc1
PZ
987 int shift;
988
2d1d43f6 989 writeback_set_ratelimit();
1da177e4 990 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
991
992 shift = calc_period_shift();
993 prop_descriptor_init(&vm_completions, shift);
3e26c149 994 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
995}
996
f446daae
JK
997/**
998 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
999 * @mapping: address space structure to write
1000 * @start: starting page index
1001 * @end: ending page index (inclusive)
1002 *
1003 * This function scans the page range from @start to @end (inclusive) and tags
1004 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1005 * that write_cache_pages (or whoever calls this function) will then use
1006 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1007 * used to avoid livelocking of writeback by a process steadily creating new
1008 * dirty pages in the file (thus it is important for this function to be quick
1009 * so that it can tag pages faster than a dirtying process can create them).
1010 */
1011/*
1012 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1013 */
f446daae
JK
1014void tag_pages_for_writeback(struct address_space *mapping,
1015 pgoff_t start, pgoff_t end)
1016{
3c111a07 1017#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1018 unsigned long tagged;
1019
1020 do {
1021 spin_lock_irq(&mapping->tree_lock);
1022 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1023 &start, end, WRITEBACK_TAG_BATCH,
1024 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1025 spin_unlock_irq(&mapping->tree_lock);
1026 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1027 cond_resched();
d5ed3a4a
JK
1028 /* We check 'start' to handle wrapping when end == ~0UL */
1029 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1030}
1031EXPORT_SYMBOL(tag_pages_for_writeback);
1032
811d736f 1033/**
0ea97180 1034 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1035 * @mapping: address space structure to write
1036 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1037 * @writepage: function called for each page
1038 * @data: data passed to writepage function
811d736f 1039 *
0ea97180 1040 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1041 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1042 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1043 * and msync() need to guarantee that all the data which was dirty at the time
1044 * the call was made get new I/O started against them. If wbc->sync_mode is
1045 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1046 * existing IO to complete.
f446daae
JK
1047 *
1048 * To avoid livelocks (when other process dirties new pages), we first tag
1049 * pages which should be written back with TOWRITE tag and only then start
1050 * writing them. For data-integrity sync we have to be careful so that we do
1051 * not miss some pages (e.g., because some other process has cleared TOWRITE
1052 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1053 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1054 */
0ea97180
MS
1055int write_cache_pages(struct address_space *mapping,
1056 struct writeback_control *wbc, writepage_t writepage,
1057 void *data)
811d736f 1058{
811d736f
DH
1059 int ret = 0;
1060 int done = 0;
811d736f
DH
1061 struct pagevec pvec;
1062 int nr_pages;
31a12666 1063 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1064 pgoff_t index;
1065 pgoff_t end; /* Inclusive */
bd19e012 1066 pgoff_t done_index;
31a12666 1067 int cycled;
811d736f 1068 int range_whole = 0;
f446daae 1069 int tag;
811d736f 1070
811d736f
DH
1071 pagevec_init(&pvec, 0);
1072 if (wbc->range_cyclic) {
31a12666
NP
1073 writeback_index = mapping->writeback_index; /* prev offset */
1074 index = writeback_index;
1075 if (index == 0)
1076 cycled = 1;
1077 else
1078 cycled = 0;
811d736f
DH
1079 end = -1;
1080 } else {
1081 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1082 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1083 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1084 range_whole = 1;
31a12666 1085 cycled = 1; /* ignore range_cyclic tests */
811d736f 1086 }
6e6938b6 1087 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1088 tag = PAGECACHE_TAG_TOWRITE;
1089 else
1090 tag = PAGECACHE_TAG_DIRTY;
811d736f 1091retry:
6e6938b6 1092 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1093 tag_pages_for_writeback(mapping, index, end);
bd19e012 1094 done_index = index;
5a3d5c98
NP
1095 while (!done && (index <= end)) {
1096 int i;
1097
f446daae 1098 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1099 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1100 if (nr_pages == 0)
1101 break;
811d736f 1102
811d736f
DH
1103 for (i = 0; i < nr_pages; i++) {
1104 struct page *page = pvec.pages[i];
1105
1106 /*
d5482cdf
NP
1107 * At this point, the page may be truncated or
1108 * invalidated (changing page->mapping to NULL), or
1109 * even swizzled back from swapper_space to tmpfs file
1110 * mapping. However, page->index will not change
1111 * because we have a reference on the page.
811d736f 1112 */
d5482cdf
NP
1113 if (page->index > end) {
1114 /*
1115 * can't be range_cyclic (1st pass) because
1116 * end == -1 in that case.
1117 */
1118 done = 1;
1119 break;
1120 }
1121
cf15b07c 1122 done_index = page->index;
d5482cdf 1123
811d736f
DH
1124 lock_page(page);
1125
5a3d5c98
NP
1126 /*
1127 * Page truncated or invalidated. We can freely skip it
1128 * then, even for data integrity operations: the page
1129 * has disappeared concurrently, so there could be no
1130 * real expectation of this data interity operation
1131 * even if there is now a new, dirty page at the same
1132 * pagecache address.
1133 */
811d736f 1134 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1135continue_unlock:
811d736f
DH
1136 unlock_page(page);
1137 continue;
1138 }
1139
515f4a03
NP
1140 if (!PageDirty(page)) {
1141 /* someone wrote it for us */
1142 goto continue_unlock;
1143 }
1144
1145 if (PageWriteback(page)) {
1146 if (wbc->sync_mode != WB_SYNC_NONE)
1147 wait_on_page_writeback(page);
1148 else
1149 goto continue_unlock;
1150 }
811d736f 1151
515f4a03
NP
1152 BUG_ON(PageWriteback(page));
1153 if (!clear_page_dirty_for_io(page))
5a3d5c98 1154 goto continue_unlock;
811d736f 1155
9e094383 1156 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 1157 ret = (*writepage)(page, wbc, data);
00266770
NP
1158 if (unlikely(ret)) {
1159 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1160 unlock_page(page);
1161 ret = 0;
1162 } else {
1163 /*
1164 * done_index is set past this page,
1165 * so media errors will not choke
1166 * background writeout for the entire
1167 * file. This has consequences for
1168 * range_cyclic semantics (ie. it may
1169 * not be suitable for data integrity
1170 * writeout).
1171 */
cf15b07c 1172 done_index = page->index + 1;
00266770
NP
1173 done = 1;
1174 break;
1175 }
0b564927 1176 }
00266770 1177
546a1924
DC
1178 /*
1179 * We stop writing back only if we are not doing
1180 * integrity sync. In case of integrity sync we have to
1181 * keep going until we have written all the pages
1182 * we tagged for writeback prior to entering this loop.
1183 */
1184 if (--wbc->nr_to_write <= 0 &&
1185 wbc->sync_mode == WB_SYNC_NONE) {
1186 done = 1;
1187 break;
05fe478d 1188 }
811d736f
DH
1189 }
1190 pagevec_release(&pvec);
1191 cond_resched();
1192 }
3a4c6800 1193 if (!cycled && !done) {
811d736f 1194 /*
31a12666 1195 * range_cyclic:
811d736f
DH
1196 * We hit the last page and there is more work to be done: wrap
1197 * back to the start of the file
1198 */
31a12666 1199 cycled = 1;
811d736f 1200 index = 0;
31a12666 1201 end = writeback_index - 1;
811d736f
DH
1202 goto retry;
1203 }
0b564927
DC
1204 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1205 mapping->writeback_index = done_index;
06d6cf69 1206
811d736f
DH
1207 return ret;
1208}
0ea97180
MS
1209EXPORT_SYMBOL(write_cache_pages);
1210
1211/*
1212 * Function used by generic_writepages to call the real writepage
1213 * function and set the mapping flags on error
1214 */
1215static int __writepage(struct page *page, struct writeback_control *wbc,
1216 void *data)
1217{
1218 struct address_space *mapping = data;
1219 int ret = mapping->a_ops->writepage(page, wbc);
1220 mapping_set_error(mapping, ret);
1221 return ret;
1222}
1223
1224/**
1225 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1226 * @mapping: address space structure to write
1227 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1228 *
1229 * This is a library function, which implements the writepages()
1230 * address_space_operation.
1231 */
1232int generic_writepages(struct address_space *mapping,
1233 struct writeback_control *wbc)
1234{
9b6096a6
SL
1235 struct blk_plug plug;
1236 int ret;
1237
0ea97180
MS
1238 /* deal with chardevs and other special file */
1239 if (!mapping->a_ops->writepage)
1240 return 0;
1241
9b6096a6
SL
1242 blk_start_plug(&plug);
1243 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1244 blk_finish_plug(&plug);
1245 return ret;
0ea97180 1246}
811d736f
DH
1247
1248EXPORT_SYMBOL(generic_writepages);
1249
1da177e4
LT
1250int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1251{
22905f77
AM
1252 int ret;
1253
1da177e4
LT
1254 if (wbc->nr_to_write <= 0)
1255 return 0;
1256 if (mapping->a_ops->writepages)
d08b3851 1257 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1258 else
1259 ret = generic_writepages(mapping, wbc);
22905f77 1260 return ret;
1da177e4
LT
1261}
1262
1263/**
1264 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1265 * @page: the page to write
1266 * @wait: if true, wait on writeout
1da177e4
LT
1267 *
1268 * The page must be locked by the caller and will be unlocked upon return.
1269 *
1270 * write_one_page() returns a negative error code if I/O failed.
1271 */
1272int write_one_page(struct page *page, int wait)
1273{
1274 struct address_space *mapping = page->mapping;
1275 int ret = 0;
1276 struct writeback_control wbc = {
1277 .sync_mode = WB_SYNC_ALL,
1278 .nr_to_write = 1,
1279 };
1280
1281 BUG_ON(!PageLocked(page));
1282
1283 if (wait)
1284 wait_on_page_writeback(page);
1285
1286 if (clear_page_dirty_for_io(page)) {
1287 page_cache_get(page);
1288 ret = mapping->a_ops->writepage(page, &wbc);
1289 if (ret == 0 && wait) {
1290 wait_on_page_writeback(page);
1291 if (PageError(page))
1292 ret = -EIO;
1293 }
1294 page_cache_release(page);
1295 } else {
1296 unlock_page(page);
1297 }
1298 return ret;
1299}
1300EXPORT_SYMBOL(write_one_page);
1301
76719325
KC
1302/*
1303 * For address_spaces which do not use buffers nor write back.
1304 */
1305int __set_page_dirty_no_writeback(struct page *page)
1306{
1307 if (!PageDirty(page))
c3f0da63 1308 return !TestSetPageDirty(page);
76719325
KC
1309 return 0;
1310}
1311
e3a7cca1
ES
1312/*
1313 * Helper function for set_page_dirty family.
1314 * NOTE: This relies on being atomic wrt interrupts.
1315 */
1316void account_page_dirtied(struct page *page, struct address_space *mapping)
1317{
1318 if (mapping_cap_account_dirty(mapping)) {
1319 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1320 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1
ES
1321 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1322 task_dirty_inc(current);
1323 task_io_account_write(PAGE_CACHE_SIZE);
1324 }
1325}
679ceace 1326EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1327
f629d1c9
MR
1328/*
1329 * Helper function for set_page_writeback family.
1330 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1331 * wrt interrupts.
1332 */
1333void account_page_writeback(struct page *page)
1334{
1335 inc_zone_page_state(page, NR_WRITEBACK);
ea941f0e 1336 inc_zone_page_state(page, NR_WRITTEN);
f629d1c9
MR
1337}
1338EXPORT_SYMBOL(account_page_writeback);
1339
1da177e4
LT
1340/*
1341 * For address_spaces which do not use buffers. Just tag the page as dirty in
1342 * its radix tree.
1343 *
1344 * This is also used when a single buffer is being dirtied: we want to set the
1345 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1346 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1347 *
1348 * Most callers have locked the page, which pins the address_space in memory.
1349 * But zap_pte_range() does not lock the page, however in that case the
1350 * mapping is pinned by the vma's ->vm_file reference.
1351 *
1352 * We take care to handle the case where the page was truncated from the
183ff22b 1353 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1354 */
1355int __set_page_dirty_nobuffers(struct page *page)
1356{
1da177e4
LT
1357 if (!TestSetPageDirty(page)) {
1358 struct address_space *mapping = page_mapping(page);
1359 struct address_space *mapping2;
1360
8c08540f
AM
1361 if (!mapping)
1362 return 1;
1363
19fd6231 1364 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1365 mapping2 = page_mapping(page);
1366 if (mapping2) { /* Race with truncate? */
1367 BUG_ON(mapping2 != mapping);
787d2214 1368 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1369 account_page_dirtied(page, mapping);
8c08540f
AM
1370 radix_tree_tag_set(&mapping->page_tree,
1371 page_index(page), PAGECACHE_TAG_DIRTY);
1372 }
19fd6231 1373 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1374 if (mapping->host) {
1375 /* !PageAnon && !swapper_space */
1376 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1377 }
4741c9fd 1378 return 1;
1da177e4 1379 }
4741c9fd 1380 return 0;
1da177e4
LT
1381}
1382EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1383
1384/*
1385 * When a writepage implementation decides that it doesn't want to write this
1386 * page for some reason, it should redirty the locked page via
1387 * redirty_page_for_writepage() and it should then unlock the page and return 0
1388 */
1389int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1390{
1391 wbc->pages_skipped++;
1392 return __set_page_dirty_nobuffers(page);
1393}
1394EXPORT_SYMBOL(redirty_page_for_writepage);
1395
1396/*
6746aff7
WF
1397 * Dirty a page.
1398 *
1399 * For pages with a mapping this should be done under the page lock
1400 * for the benefit of asynchronous memory errors who prefer a consistent
1401 * dirty state. This rule can be broken in some special cases,
1402 * but should be better not to.
1403 *
1da177e4
LT
1404 * If the mapping doesn't provide a set_page_dirty a_op, then
1405 * just fall through and assume that it wants buffer_heads.
1406 */
1cf6e7d8 1407int set_page_dirty(struct page *page)
1da177e4
LT
1408{
1409 struct address_space *mapping = page_mapping(page);
1410
1411 if (likely(mapping)) {
1412 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1413 /*
1414 * readahead/lru_deactivate_page could remain
1415 * PG_readahead/PG_reclaim due to race with end_page_writeback
1416 * About readahead, if the page is written, the flags would be
1417 * reset. So no problem.
1418 * About lru_deactivate_page, if the page is redirty, the flag
1419 * will be reset. So no problem. but if the page is used by readahead
1420 * it will confuse readahead and make it restart the size rampup
1421 * process. But it's a trivial problem.
1422 */
1423 ClearPageReclaim(page);
9361401e
DH
1424#ifdef CONFIG_BLOCK
1425 if (!spd)
1426 spd = __set_page_dirty_buffers;
1427#endif
1428 return (*spd)(page);
1da177e4 1429 }
4741c9fd
AM
1430 if (!PageDirty(page)) {
1431 if (!TestSetPageDirty(page))
1432 return 1;
1433 }
1da177e4
LT
1434 return 0;
1435}
1436EXPORT_SYMBOL(set_page_dirty);
1437
1438/*
1439 * set_page_dirty() is racy if the caller has no reference against
1440 * page->mapping->host, and if the page is unlocked. This is because another
1441 * CPU could truncate the page off the mapping and then free the mapping.
1442 *
1443 * Usually, the page _is_ locked, or the caller is a user-space process which
1444 * holds a reference on the inode by having an open file.
1445 *
1446 * In other cases, the page should be locked before running set_page_dirty().
1447 */
1448int set_page_dirty_lock(struct page *page)
1449{
1450 int ret;
1451
7eaceacc 1452 lock_page(page);
1da177e4
LT
1453 ret = set_page_dirty(page);
1454 unlock_page(page);
1455 return ret;
1456}
1457EXPORT_SYMBOL(set_page_dirty_lock);
1458
1da177e4
LT
1459/*
1460 * Clear a page's dirty flag, while caring for dirty memory accounting.
1461 * Returns true if the page was previously dirty.
1462 *
1463 * This is for preparing to put the page under writeout. We leave the page
1464 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1465 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1466 * implementation will run either set_page_writeback() or set_page_dirty(),
1467 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1468 * back into sync.
1469 *
1470 * This incoherency between the page's dirty flag and radix-tree tag is
1471 * unfortunate, but it only exists while the page is locked.
1472 */
1473int clear_page_dirty_for_io(struct page *page)
1474{
1475 struct address_space *mapping = page_mapping(page);
1476
79352894
NP
1477 BUG_ON(!PageLocked(page));
1478
7658cc28
LT
1479 if (mapping && mapping_cap_account_dirty(mapping)) {
1480 /*
1481 * Yes, Virginia, this is indeed insane.
1482 *
1483 * We use this sequence to make sure that
1484 * (a) we account for dirty stats properly
1485 * (b) we tell the low-level filesystem to
1486 * mark the whole page dirty if it was
1487 * dirty in a pagetable. Only to then
1488 * (c) clean the page again and return 1 to
1489 * cause the writeback.
1490 *
1491 * This way we avoid all nasty races with the
1492 * dirty bit in multiple places and clearing
1493 * them concurrently from different threads.
1494 *
1495 * Note! Normally the "set_page_dirty(page)"
1496 * has no effect on the actual dirty bit - since
1497 * that will already usually be set. But we
1498 * need the side effects, and it can help us
1499 * avoid races.
1500 *
1501 * We basically use the page "master dirty bit"
1502 * as a serialization point for all the different
1503 * threads doing their things.
7658cc28
LT
1504 */
1505 if (page_mkclean(page))
1506 set_page_dirty(page);
79352894
NP
1507 /*
1508 * We carefully synchronise fault handlers against
1509 * installing a dirty pte and marking the page dirty
1510 * at this point. We do this by having them hold the
1511 * page lock at some point after installing their
1512 * pte, but before marking the page dirty.
1513 * Pages are always locked coming in here, so we get
1514 * the desired exclusion. See mm/memory.c:do_wp_page()
1515 * for more comments.
1516 */
7658cc28 1517 if (TestClearPageDirty(page)) {
8c08540f 1518 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1519 dec_bdi_stat(mapping->backing_dev_info,
1520 BDI_RECLAIMABLE);
7658cc28 1521 return 1;
1da177e4 1522 }
7658cc28 1523 return 0;
1da177e4 1524 }
7658cc28 1525 return TestClearPageDirty(page);
1da177e4 1526}
58bb01a9 1527EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1528
1529int test_clear_page_writeback(struct page *page)
1530{
1531 struct address_space *mapping = page_mapping(page);
1532 int ret;
1533
1534 if (mapping) {
69cb51d1 1535 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1536 unsigned long flags;
1537
19fd6231 1538 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1539 ret = TestClearPageWriteback(page);
69cb51d1 1540 if (ret) {
1da177e4
LT
1541 radix_tree_tag_clear(&mapping->page_tree,
1542 page_index(page),
1543 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1544 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1545 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1546 __bdi_writeout_inc(bdi);
1547 }
69cb51d1 1548 }
19fd6231 1549 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1550 } else {
1551 ret = TestClearPageWriteback(page);
1552 }
d688abf5
AM
1553 if (ret)
1554 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1555 return ret;
1556}
1557
1558int test_set_page_writeback(struct page *page)
1559{
1560 struct address_space *mapping = page_mapping(page);
1561 int ret;
1562
1563 if (mapping) {
69cb51d1 1564 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1565 unsigned long flags;
1566
19fd6231 1567 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1568 ret = TestSetPageWriteback(page);
69cb51d1 1569 if (!ret) {
1da177e4
LT
1570 radix_tree_tag_set(&mapping->page_tree,
1571 page_index(page),
1572 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1573 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1574 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1575 }
1da177e4
LT
1576 if (!PageDirty(page))
1577 radix_tree_tag_clear(&mapping->page_tree,
1578 page_index(page),
1579 PAGECACHE_TAG_DIRTY);
f446daae
JK
1580 radix_tree_tag_clear(&mapping->page_tree,
1581 page_index(page),
1582 PAGECACHE_TAG_TOWRITE);
19fd6231 1583 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1584 } else {
1585 ret = TestSetPageWriteback(page);
1586 }
d688abf5 1587 if (!ret)
f629d1c9 1588 account_page_writeback(page);
1da177e4
LT
1589 return ret;
1590
1591}
1592EXPORT_SYMBOL(test_set_page_writeback);
1593
1594/*
00128188 1595 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1596 * passed tag.
1597 */
1598int mapping_tagged(struct address_space *mapping, int tag)
1599{
1da177e4 1600 int ret;
00128188 1601 rcu_read_lock();
1da177e4 1602 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1603 rcu_read_unlock();
1da177e4
LT
1604 return ret;
1605}
1606EXPORT_SYMBOL(mapping_tagged);