writeback: add dirty_throttle_control->dom
[linux-block.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
eb608e3a 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
e9f07dfd
TH
129#ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
131#endif
2bc00aef 132 struct bdi_writeback *wb;
e9770b34 133 struct fprop_local_percpu *wb_completions;
2bc00aef
TH
134
135 unsigned long dirty; /* file_dirty + write + nfs */
136 unsigned long thresh; /* dirty threshold */
137 unsigned long bg_thresh; /* dirty background threshold */
138
139 unsigned long wb_dirty; /* per-wb counterparts */
140 unsigned long wb_thresh;
970fb01a 141 unsigned long wb_bg_thresh;
daddfa3c
TH
142
143 unsigned long pos_ratio;
2bc00aef
TH
144};
145
e9f07dfd 146#define DTC_INIT_COMMON(__wb) .wb = (__wb), \
e9770b34 147 .wb_completions = &(__wb)->completions
2bc00aef 148
eb608e3a
JK
149/*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 155
693108a8
TH
156#ifdef CONFIG_CGROUP_WRITEBACK
157
e9f07dfd
TH
158#define GDTC_INIT(__wb) .dom = &global_wb_domain, \
159 DTC_INIT_COMMON(__wb)
160
161static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
162{
163 return dtc->dom;
164}
165
693108a8
TH
166static void wb_min_max_ratio(struct bdi_writeback *wb,
167 unsigned long *minp, unsigned long *maxp)
168{
169 unsigned long this_bw = wb->avg_write_bandwidth;
170 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
171 unsigned long long min = wb->bdi->min_ratio;
172 unsigned long long max = wb->bdi->max_ratio;
173
174 /*
175 * @wb may already be clean by the time control reaches here and
176 * the total may not include its bw.
177 */
178 if (this_bw < tot_bw) {
179 if (min) {
180 min *= this_bw;
181 do_div(min, tot_bw);
182 }
183 if (max < 100) {
184 max *= this_bw;
185 do_div(max, tot_bw);
186 }
187 }
188
189 *minp = min;
190 *maxp = max;
191}
192
193#else /* CONFIG_CGROUP_WRITEBACK */
194
e9f07dfd
TH
195#define GDTC_INIT(__wb) DTC_INIT_COMMON(__wb)
196
197static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
198{
199 return &global_wb_domain;
200}
201
693108a8
TH
202static void wb_min_max_ratio(struct bdi_writeback *wb,
203 unsigned long *minp, unsigned long *maxp)
204{
205 *minp = wb->bdi->min_ratio;
206 *maxp = wb->bdi->max_ratio;
207}
208
209#endif /* CONFIG_CGROUP_WRITEBACK */
210
a756cf59
JW
211/*
212 * In a memory zone, there is a certain amount of pages we consider
213 * available for the page cache, which is essentially the number of
214 * free and reclaimable pages, minus some zone reserves to protect
215 * lowmem and the ability to uphold the zone's watermarks without
216 * requiring writeback.
217 *
218 * This number of dirtyable pages is the base value of which the
219 * user-configurable dirty ratio is the effictive number of pages that
220 * are allowed to be actually dirtied. Per individual zone, or
221 * globally by using the sum of dirtyable pages over all zones.
222 *
223 * Because the user is allowed to specify the dirty limit globally as
224 * absolute number of bytes, calculating the per-zone dirty limit can
225 * require translating the configured limit into a percentage of
226 * global dirtyable memory first.
227 */
228
a804552b
JW
229/**
230 * zone_dirtyable_memory - number of dirtyable pages in a zone
231 * @zone: the zone
232 *
233 * Returns the zone's number of pages potentially available for dirty
234 * page cache. This is the base value for the per-zone dirty limits.
235 */
236static unsigned long zone_dirtyable_memory(struct zone *zone)
237{
238 unsigned long nr_pages;
239
240 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
241 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
242
a1c3bfb2
JW
243 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
244 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
245
246 return nr_pages;
247}
248
1edf2234
JW
249static unsigned long highmem_dirtyable_memory(unsigned long total)
250{
251#ifdef CONFIG_HIGHMEM
252 int node;
253 unsigned long x = 0;
254
255 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 256 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 257
a804552b 258 x += zone_dirtyable_memory(z);
1edf2234 259 }
c8b74c2f
SR
260 /*
261 * Unreclaimable memory (kernel memory or anonymous memory
262 * without swap) can bring down the dirtyable pages below
263 * the zone's dirty balance reserve and the above calculation
264 * will underflow. However we still want to add in nodes
265 * which are below threshold (negative values) to get a more
266 * accurate calculation but make sure that the total never
267 * underflows.
268 */
269 if ((long)x < 0)
270 x = 0;
271
1edf2234
JW
272 /*
273 * Make sure that the number of highmem pages is never larger
274 * than the number of the total dirtyable memory. This can only
275 * occur in very strange VM situations but we want to make sure
276 * that this does not occur.
277 */
278 return min(x, total);
279#else
280 return 0;
281#endif
282}
283
284/**
ccafa287 285 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 286 *
ccafa287
JW
287 * Returns the global number of pages potentially available for dirty
288 * page cache. This is the base value for the global dirty limits.
1edf2234 289 */
18cf8cf8 290static unsigned long global_dirtyable_memory(void)
1edf2234
JW
291{
292 unsigned long x;
293
a804552b 294 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 295 x -= min(x, dirty_balance_reserve);
1edf2234 296
a1c3bfb2
JW
297 x += global_page_state(NR_INACTIVE_FILE);
298 x += global_page_state(NR_ACTIVE_FILE);
a804552b 299
1edf2234
JW
300 if (!vm_highmem_is_dirtyable)
301 x -= highmem_dirtyable_memory(x);
302
303 return x + 1; /* Ensure that we never return 0 */
304}
305
ccafa287
JW
306/*
307 * global_dirty_limits - background-writeback and dirty-throttling thresholds
308 *
309 * Calculate the dirty thresholds based on sysctl parameters
310 * - vm.dirty_background_ratio or vm.dirty_background_bytes
311 * - vm.dirty_ratio or vm.dirty_bytes
312 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
313 * real-time tasks.
314 */
315void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
316{
9ef0a0ff 317 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
318 unsigned long background;
319 unsigned long dirty;
ccafa287
JW
320 struct task_struct *tsk;
321
ccafa287
JW
322 if (vm_dirty_bytes)
323 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
324 else
325 dirty = (vm_dirty_ratio * available_memory) / 100;
326
327 if (dirty_background_bytes)
328 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
329 else
330 background = (dirty_background_ratio * available_memory) / 100;
331
332 if (background >= dirty)
333 background = dirty / 2;
334 tsk = current;
335 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
336 background += background / 4;
337 dirty += dirty / 4;
338 }
339 *pbackground = background;
340 *pdirty = dirty;
341 trace_global_dirty_state(background, dirty);
342}
343
a756cf59
JW
344/**
345 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
346 * @zone: the zone
347 *
348 * Returns the maximum number of dirty pages allowed in a zone, based
349 * on the zone's dirtyable memory.
350 */
351static unsigned long zone_dirty_limit(struct zone *zone)
352{
353 unsigned long zone_memory = zone_dirtyable_memory(zone);
354 struct task_struct *tsk = current;
355 unsigned long dirty;
356
357 if (vm_dirty_bytes)
358 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
359 zone_memory / global_dirtyable_memory();
360 else
361 dirty = vm_dirty_ratio * zone_memory / 100;
362
363 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
364 dirty += dirty / 4;
365
366 return dirty;
367}
368
369/**
370 * zone_dirty_ok - tells whether a zone is within its dirty limits
371 * @zone: the zone to check
372 *
373 * Returns %true when the dirty pages in @zone are within the zone's
374 * dirty limit, %false if the limit is exceeded.
375 */
376bool zone_dirty_ok(struct zone *zone)
377{
378 unsigned long limit = zone_dirty_limit(zone);
379
380 return zone_page_state(zone, NR_FILE_DIRTY) +
381 zone_page_state(zone, NR_UNSTABLE_NFS) +
382 zone_page_state(zone, NR_WRITEBACK) <= limit;
383}
384
2da02997 385int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 386 void __user *buffer, size_t *lenp,
2da02997
DR
387 loff_t *ppos)
388{
389 int ret;
390
8d65af78 391 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
392 if (ret == 0 && write)
393 dirty_background_bytes = 0;
394 return ret;
395}
396
397int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 398 void __user *buffer, size_t *lenp,
2da02997
DR
399 loff_t *ppos)
400{
401 int ret;
402
8d65af78 403 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
404 if (ret == 0 && write)
405 dirty_background_ratio = 0;
406 return ret;
407}
408
04fbfdc1 409int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 410 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
411 loff_t *ppos)
412{
413 int old_ratio = vm_dirty_ratio;
2da02997
DR
414 int ret;
415
8d65af78 416 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 417 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 418 writeback_set_ratelimit();
2da02997
DR
419 vm_dirty_bytes = 0;
420 }
421 return ret;
422}
423
2da02997 424int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 425 void __user *buffer, size_t *lenp,
2da02997
DR
426 loff_t *ppos)
427{
fc3501d4 428 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
429 int ret;
430
8d65af78 431 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 432 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 433 writeback_set_ratelimit();
2da02997 434 vm_dirty_ratio = 0;
04fbfdc1
PZ
435 }
436 return ret;
437}
438
eb608e3a
JK
439static unsigned long wp_next_time(unsigned long cur_time)
440{
441 cur_time += VM_COMPLETIONS_PERIOD_LEN;
442 /* 0 has a special meaning... */
443 if (!cur_time)
444 return 1;
445 return cur_time;
446}
447
04fbfdc1 448/*
380c27ca 449 * Increment the wb's writeout completion count and the global writeout
04fbfdc1
PZ
450 * completion count. Called from test_clear_page_writeback().
451 */
93f78d88 452static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 453{
380c27ca
TH
454 struct wb_domain *dom = &global_wb_domain;
455
93f78d88 456 __inc_wb_stat(wb, WB_WRITTEN);
380c27ca 457 __fprop_inc_percpu_max(&dom->completions, &wb->completions,
93f78d88 458 wb->bdi->max_prop_frac);
eb608e3a 459 /* First event after period switching was turned off? */
380c27ca 460 if (!unlikely(dom->period_time)) {
eb608e3a
JK
461 /*
462 * We can race with other __bdi_writeout_inc calls here but
463 * it does not cause any harm since the resulting time when
464 * timer will fire and what is in writeout_period_time will be
465 * roughly the same.
466 */
380c27ca
TH
467 dom->period_time = wp_next_time(jiffies);
468 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 469 }
04fbfdc1
PZ
470}
471
93f78d88 472void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
473{
474 unsigned long flags;
475
476 local_irq_save(flags);
93f78d88 477 __wb_writeout_inc(wb);
dd5656e5
MS
478 local_irq_restore(flags);
479}
93f78d88 480EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 481
eb608e3a
JK
482/*
483 * On idle system, we can be called long after we scheduled because we use
484 * deferred timers so count with missed periods.
485 */
486static void writeout_period(unsigned long t)
487{
380c27ca
TH
488 struct wb_domain *dom = (void *)t;
489 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
490 VM_COMPLETIONS_PERIOD_LEN;
491
380c27ca
TH
492 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
493 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 494 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 495 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
496 } else {
497 /*
498 * Aging has zeroed all fractions. Stop wasting CPU on period
499 * updates.
500 */
380c27ca 501 dom->period_time = 0;
eb608e3a
JK
502 }
503}
504
380c27ca
TH
505int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
506{
507 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
508
509 spin_lock_init(&dom->lock);
510
380c27ca
TH
511 init_timer_deferrable(&dom->period_timer);
512 dom->period_timer.function = writeout_period;
513 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
514
515 dom->dirty_limit_tstamp = jiffies;
516
380c27ca
TH
517 return fprop_global_init(&dom->completions, gfp);
518}
519
189d3c4a 520/*
d08c429b
JW
521 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
522 * registered backing devices, which, for obvious reasons, can not
523 * exceed 100%.
189d3c4a 524 */
189d3c4a
PZ
525static unsigned int bdi_min_ratio;
526
527int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
528{
529 int ret = 0;
189d3c4a 530
cfc4ba53 531 spin_lock_bh(&bdi_lock);
a42dde04 532 if (min_ratio > bdi->max_ratio) {
189d3c4a 533 ret = -EINVAL;
a42dde04
PZ
534 } else {
535 min_ratio -= bdi->min_ratio;
536 if (bdi_min_ratio + min_ratio < 100) {
537 bdi_min_ratio += min_ratio;
538 bdi->min_ratio += min_ratio;
539 } else {
540 ret = -EINVAL;
541 }
542 }
cfc4ba53 543 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
544
545 return ret;
546}
547
548int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
549{
a42dde04
PZ
550 int ret = 0;
551
552 if (max_ratio > 100)
553 return -EINVAL;
554
cfc4ba53 555 spin_lock_bh(&bdi_lock);
a42dde04
PZ
556 if (bdi->min_ratio > max_ratio) {
557 ret = -EINVAL;
558 } else {
559 bdi->max_ratio = max_ratio;
eb608e3a 560 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 561 }
cfc4ba53 562 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
563
564 return ret;
565}
a42dde04 566EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 567
6c14ae1e
WF
568static unsigned long dirty_freerun_ceiling(unsigned long thresh,
569 unsigned long bg_thresh)
570{
571 return (thresh + bg_thresh) / 2;
572}
573
ffd1f609
WF
574static unsigned long hard_dirty_limit(unsigned long thresh)
575{
dcc25ae7
TH
576 struct wb_domain *dom = &global_wb_domain;
577
578 return max(thresh, dom->dirty_limit);
ffd1f609
WF
579}
580
6f718656 581/**
b1cbc6d4
TH
582 * __wb_calc_thresh - @wb's share of dirty throttling threshold
583 * @dtc: dirty_throttle_context of interest
1babe183 584 *
a88a341a 585 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 586 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
587 *
588 * Note that balance_dirty_pages() will only seriously take it as a hard limit
589 * when sleeping max_pause per page is not enough to keep the dirty pages under
590 * control. For example, when the device is completely stalled due to some error
591 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
592 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 593 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 594 *
6f718656 595 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
596 * - starving fast devices
597 * - piling up dirty pages (that will take long time to sync) on slow devices
598 *
a88a341a 599 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
600 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
601 */
b1cbc6d4 602static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 603{
e9f07dfd 604 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 605 unsigned long thresh = dtc->thresh;
0d960a38 606 u64 wb_thresh;
16c4042f 607 long numerator, denominator;
693108a8 608 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 609
16c4042f 610 /*
0d960a38 611 * Calculate this BDI's share of the thresh ratio.
16c4042f 612 */
e9770b34 613 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 614 &numerator, &denominator);
04fbfdc1 615
0d960a38
TH
616 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
617 wb_thresh *= numerator;
618 do_div(wb_thresh, denominator);
04fbfdc1 619
b1cbc6d4 620 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
693108a8 621
0d960a38
TH
622 wb_thresh += (thresh * wb_min_ratio) / 100;
623 if (wb_thresh > (thresh * wb_max_ratio) / 100)
624 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 625
0d960a38 626 return wb_thresh;
1da177e4
LT
627}
628
b1cbc6d4
TH
629unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
630{
631 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
632 .thresh = thresh };
633 return __wb_calc_thresh(&gdtc);
634}
635
5a537485
MP
636/*
637 * setpoint - dirty 3
638 * f(dirty) := 1.0 + (----------------)
639 * limit - setpoint
640 *
641 * it's a 3rd order polynomial that subjects to
642 *
643 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
644 * (2) f(setpoint) = 1.0 => the balance point
645 * (3) f(limit) = 0 => the hard limit
646 * (4) df/dx <= 0 => negative feedback control
647 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
648 * => fast response on large errors; small oscillation near setpoint
649 */
d5c9fde3 650static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
651 unsigned long dirty,
652 unsigned long limit)
653{
654 long long pos_ratio;
655 long x;
656
d5c9fde3 657 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
658 limit - setpoint + 1);
659 pos_ratio = x;
660 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
661 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
662 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
663
664 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
665}
666
6c14ae1e
WF
667/*
668 * Dirty position control.
669 *
670 * (o) global/bdi setpoints
671 *
de1fff37 672 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
673 * When the number of dirty pages is higher/lower than the setpoint, the
674 * dirty position control ratio (and hence task dirty ratelimit) will be
675 * decreased/increased to bring the dirty pages back to the setpoint.
676 *
677 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
678 *
679 * if (dirty < setpoint) scale up pos_ratio
680 * if (dirty > setpoint) scale down pos_ratio
681 *
de1fff37
TH
682 * if (wb_dirty < wb_setpoint) scale up pos_ratio
683 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
684 *
685 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
686 *
687 * (o) global control line
688 *
689 * ^ pos_ratio
690 * |
691 * | |<===== global dirty control scope ======>|
692 * 2.0 .............*
693 * | .*
694 * | . *
695 * | . *
696 * | . *
697 * | . *
698 * | . *
699 * 1.0 ................................*
700 * | . . *
701 * | . . *
702 * | . . *
703 * | . . *
704 * | . . *
705 * 0 +------------.------------------.----------------------*------------->
706 * freerun^ setpoint^ limit^ dirty pages
707 *
de1fff37 708 * (o) wb control line
6c14ae1e
WF
709 *
710 * ^ pos_ratio
711 * |
712 * | *
713 * | *
714 * | *
715 * | *
716 * | * |<=========== span ============>|
717 * 1.0 .......................*
718 * | . *
719 * | . *
720 * | . *
721 * | . *
722 * | . *
723 * | . *
724 * | . *
725 * | . *
726 * | . *
727 * | . *
728 * | . *
729 * 1/4 ...............................................* * * * * * * * * * * *
730 * | . .
731 * | . .
732 * | . .
733 * 0 +----------------------.-------------------------------.------------->
de1fff37 734 * wb_setpoint^ x_intercept^
6c14ae1e 735 *
de1fff37 736 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
737 * be smoothly throttled down to normal if it starts high in situations like
738 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
739 * card's wb_dirty may rush to many times higher than wb_setpoint.
740 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 741 */
daddfa3c 742static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 743{
2bc00aef 744 struct bdi_writeback *wb = dtc->wb;
a88a341a 745 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef
TH
746 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
747 unsigned long limit = hard_dirty_limit(dtc->thresh);
748 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
749 unsigned long x_intercept;
750 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 751 unsigned long wb_setpoint;
6c14ae1e
WF
752 unsigned long span;
753 long long pos_ratio; /* for scaling up/down the rate limit */
754 long x;
755
daddfa3c
TH
756 dtc->pos_ratio = 0;
757
2bc00aef 758 if (unlikely(dtc->dirty >= limit))
daddfa3c 759 return;
6c14ae1e
WF
760
761 /*
762 * global setpoint
763 *
5a537485
MP
764 * See comment for pos_ratio_polynom().
765 */
766 setpoint = (freerun + limit) / 2;
2bc00aef 767 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
768
769 /*
770 * The strictlimit feature is a tool preventing mistrusted filesystems
771 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
772 * such filesystems balance_dirty_pages always checks wb counters
773 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
774 * This is especially important for fuse which sets bdi->max_ratio to
775 * 1% by default. Without strictlimit feature, fuse writeback may
776 * consume arbitrary amount of RAM because it is accounted in
777 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 778 *
a88a341a 779 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 780 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
781 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
782 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 783 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 784 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 785 * about ~6K pages (as the average of background and throttle wb
5a537485 786 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 787 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 788 *
5a537485 789 * Note, that we cannot use global counters in these calculations
de1fff37 790 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
791 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
792 * in the example above).
6c14ae1e 793 */
a88a341a 794 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 795 long long wb_pos_ratio;
5a537485 796
daddfa3c
TH
797 if (dtc->wb_dirty < 8) {
798 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
799 2 << RATELIMIT_CALC_SHIFT);
800 return;
801 }
5a537485 802
2bc00aef 803 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 804 return;
5a537485 805
970fb01a
TH
806 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
807 dtc->wb_bg_thresh);
5a537485 808
de1fff37 809 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 810 return;
5a537485 811
2bc00aef 812 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 813 wb_thresh);
5a537485
MP
814
815 /*
de1fff37
TH
816 * Typically, for strictlimit case, wb_setpoint << setpoint
817 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 818 * state ("dirty") is not limiting factor and we have to
de1fff37 819 * make decision based on wb counters. But there is an
5a537485
MP
820 * important case when global pos_ratio should get precedence:
821 * global limits are exceeded (e.g. due to activities on other
de1fff37 822 * wb's) while given strictlimit wb is below limit.
5a537485 823 *
de1fff37 824 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 825 * but it would look too non-natural for the case of all
de1fff37 826 * activity in the system coming from a single strictlimit wb
5a537485
MP
827 * with bdi->max_ratio == 100%.
828 *
829 * Note that min() below somewhat changes the dynamics of the
830 * control system. Normally, pos_ratio value can be well over 3
de1fff37 831 * (when globally we are at freerun and wb is well below wb
5a537485
MP
832 * setpoint). Now the maximum pos_ratio in the same situation
833 * is 2. We might want to tweak this if we observe the control
834 * system is too slow to adapt.
835 */
daddfa3c
TH
836 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
837 return;
5a537485 838 }
6c14ae1e
WF
839
840 /*
841 * We have computed basic pos_ratio above based on global situation. If
de1fff37 842 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
843 * pos_ratio further down/up. That is done by the following mechanism.
844 */
845
846 /*
de1fff37 847 * wb setpoint
6c14ae1e 848 *
de1fff37 849 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 850 *
de1fff37 851 * x_intercept - wb_dirty
6c14ae1e 852 * := --------------------------
de1fff37 853 * x_intercept - wb_setpoint
6c14ae1e 854 *
de1fff37 855 * The main wb control line is a linear function that subjects to
6c14ae1e 856 *
de1fff37
TH
857 * (1) f(wb_setpoint) = 1.0
858 * (2) k = - 1 / (8 * write_bw) (in single wb case)
859 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 860 *
de1fff37 861 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 862 * regularly within range
de1fff37 863 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
864 * for various filesystems, where (2) can yield in a reasonable 12.5%
865 * fluctuation range for pos_ratio.
866 *
de1fff37 867 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 868 * own size, so move the slope over accordingly and choose a slope that
de1fff37 869 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 870 */
2bc00aef
TH
871 if (unlikely(wb_thresh > dtc->thresh))
872 wb_thresh = dtc->thresh;
aed21ad2 873 /*
de1fff37 874 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
875 * device is slow, but that it has remained inactive for long time.
876 * Honour such devices a reasonable good (hopefully IO efficient)
877 * threshold, so that the occasional writes won't be blocked and active
878 * writes can rampup the threshold quickly.
879 */
2bc00aef 880 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 881 /*
de1fff37
TH
882 * scale global setpoint to wb's:
883 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 884 */
2bc00aef 885 x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
de1fff37 886 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 887 /*
de1fff37
TH
888 * Use span=(8*write_bw) in single wb case as indicated by
889 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 890 *
de1fff37
TH
891 * wb_thresh thresh - wb_thresh
892 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
893 * thresh thresh
6c14ae1e 894 */
2bc00aef 895 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 896 x_intercept = wb_setpoint + span;
6c14ae1e 897
2bc00aef
TH
898 if (dtc->wb_dirty < x_intercept - span / 4) {
899 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
900 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
901 } else
902 pos_ratio /= 4;
903
8927f66c 904 /*
de1fff37 905 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
906 * It may push the desired control point of global dirty pages higher
907 * than setpoint.
908 */
de1fff37 909 x_intercept = wb_thresh / 2;
2bc00aef
TH
910 if (dtc->wb_dirty < x_intercept) {
911 if (dtc->wb_dirty > x_intercept / 8)
912 pos_ratio = div_u64(pos_ratio * x_intercept,
913 dtc->wb_dirty);
50657fc4 914 else
8927f66c
WF
915 pos_ratio *= 8;
916 }
917
daddfa3c 918 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
919}
920
a88a341a
TH
921static void wb_update_write_bandwidth(struct bdi_writeback *wb,
922 unsigned long elapsed,
923 unsigned long written)
e98be2d5
WF
924{
925 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
926 unsigned long avg = wb->avg_write_bandwidth;
927 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
928 u64 bw;
929
930 /*
931 * bw = written * HZ / elapsed
932 *
933 * bw * elapsed + write_bandwidth * (period - elapsed)
934 * write_bandwidth = ---------------------------------------------------
935 * period
c72efb65
TH
936 *
937 * @written may have decreased due to account_page_redirty().
938 * Avoid underflowing @bw calculation.
e98be2d5 939 */
a88a341a 940 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
941 bw *= HZ;
942 if (unlikely(elapsed > period)) {
943 do_div(bw, elapsed);
944 avg = bw;
945 goto out;
946 }
a88a341a 947 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
948 bw >>= ilog2(period);
949
950 /*
951 * one more level of smoothing, for filtering out sudden spikes
952 */
953 if (avg > old && old >= (unsigned long)bw)
954 avg -= (avg - old) >> 3;
955
956 if (avg < old && old <= (unsigned long)bw)
957 avg += (old - avg) >> 3;
958
959out:
95a46c65
TH
960 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
961 avg = max(avg, 1LU);
962 if (wb_has_dirty_io(wb)) {
963 long delta = avg - wb->avg_write_bandwidth;
964 WARN_ON_ONCE(atomic_long_add_return(delta,
965 &wb->bdi->tot_write_bandwidth) <= 0);
966 }
a88a341a
TH
967 wb->write_bandwidth = bw;
968 wb->avg_write_bandwidth = avg;
e98be2d5
WF
969}
970
2bc00aef 971static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 972{
e9f07dfd 973 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 974 unsigned long thresh = dtc->thresh;
dcc25ae7 975 unsigned long limit = dom->dirty_limit;
c42843f2
WF
976
977 /*
978 * Follow up in one step.
979 */
980 if (limit < thresh) {
981 limit = thresh;
982 goto update;
983 }
984
985 /*
986 * Follow down slowly. Use the higher one as the target, because thresh
987 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 988 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 989 */
2bc00aef 990 thresh = max(thresh, dtc->dirty);
c42843f2
WF
991 if (limit > thresh) {
992 limit -= (limit - thresh) >> 5;
993 goto update;
994 }
995 return;
996update:
dcc25ae7 997 dom->dirty_limit = limit;
c42843f2
WF
998}
999
e9f07dfd 1000static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1001 unsigned long now)
1002{
e9f07dfd 1003 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1004
1005 /*
1006 * check locklessly first to optimize away locking for the most time
1007 */
dcc25ae7 1008 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1009 return;
1010
dcc25ae7
TH
1011 spin_lock(&dom->lock);
1012 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1013 update_dirty_limit(dtc);
dcc25ae7 1014 dom->dirty_limit_tstamp = now;
c42843f2 1015 }
dcc25ae7 1016 spin_unlock(&dom->lock);
c42843f2
WF
1017}
1018
be3ffa27 1019/*
de1fff37 1020 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1021 *
de1fff37 1022 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1023 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1024 */
2bc00aef 1025static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1026 unsigned long dirtied,
1027 unsigned long elapsed)
be3ffa27 1028{
2bc00aef
TH
1029 struct bdi_writeback *wb = dtc->wb;
1030 unsigned long dirty = dtc->dirty;
1031 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1032 unsigned long limit = hard_dirty_limit(dtc->thresh);
7381131c 1033 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1034 unsigned long write_bw = wb->avg_write_bandwidth;
1035 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1036 unsigned long dirty_rate;
1037 unsigned long task_ratelimit;
1038 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1039 unsigned long step;
1040 unsigned long x;
be3ffa27
WF
1041
1042 /*
1043 * The dirty rate will match the writeout rate in long term, except
1044 * when dirty pages are truncated by userspace or re-dirtied by FS.
1045 */
a88a341a 1046 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1047
be3ffa27
WF
1048 /*
1049 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1050 */
1051 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1052 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1053 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1054
1055 /*
1056 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1057 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1058 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1059 * formula will yield the balanced rate limit (write_bw / N).
1060 *
1061 * Note that the expanded form is not a pure rate feedback:
1062 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1063 * but also takes pos_ratio into account:
1064 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1065 *
1066 * (1) is not realistic because pos_ratio also takes part in balancing
1067 * the dirty rate. Consider the state
1068 * pos_ratio = 0.5 (3)
1069 * rate = 2 * (write_bw / N) (4)
1070 * If (1) is used, it will stuck in that state! Because each dd will
1071 * be throttled at
1072 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1073 * yielding
1074 * dirty_rate = N * task_ratelimit = write_bw (6)
1075 * put (6) into (1) we get
1076 * rate_(i+1) = rate_(i) (7)
1077 *
1078 * So we end up using (2) to always keep
1079 * rate_(i+1) ~= (write_bw / N) (8)
1080 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1081 * pos_ratio is able to drive itself to 1.0, which is not only where
1082 * the dirty count meet the setpoint, but also where the slope of
1083 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1084 */
1085 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1086 dirty_rate | 1);
bdaac490
WF
1087 /*
1088 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1089 */
1090 if (unlikely(balanced_dirty_ratelimit > write_bw))
1091 balanced_dirty_ratelimit = write_bw;
be3ffa27 1092
7381131c
WF
1093 /*
1094 * We could safely do this and return immediately:
1095 *
de1fff37 1096 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1097 *
1098 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1099 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1100 * limit the step size.
1101 *
1102 * The below code essentially only uses the relative value of
1103 *
1104 * task_ratelimit - dirty_ratelimit
1105 * = (pos_ratio - 1) * dirty_ratelimit
1106 *
1107 * which reflects the direction and size of dirty position error.
1108 */
1109
1110 /*
1111 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1112 * task_ratelimit is on the same side of dirty_ratelimit, too.
1113 * For example, when
1114 * - dirty_ratelimit > balanced_dirty_ratelimit
1115 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1116 * lowering dirty_ratelimit will help meet both the position and rate
1117 * control targets. Otherwise, don't update dirty_ratelimit if it will
1118 * only help meet the rate target. After all, what the users ultimately
1119 * feel and care are stable dirty rate and small position error.
1120 *
1121 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1122 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1123 * keeps jumping around randomly and can even leap far away at times
1124 * due to the small 200ms estimation period of dirty_rate (we want to
1125 * keep that period small to reduce time lags).
1126 */
1127 step = 0;
5a537485
MP
1128
1129 /*
de1fff37 1130 * For strictlimit case, calculations above were based on wb counters
a88a341a 1131 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1132 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1133 * Hence, to calculate "step" properly, we have to use wb_dirty as
1134 * "dirty" and wb_setpoint as "setpoint".
5a537485 1135 *
de1fff37
TH
1136 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1137 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1138 * of backing device.
5a537485 1139 */
a88a341a 1140 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1141 dirty = dtc->wb_dirty;
1142 if (dtc->wb_dirty < 8)
1143 setpoint = dtc->wb_dirty + 1;
5a537485 1144 else
970fb01a 1145 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1146 }
1147
7381131c 1148 if (dirty < setpoint) {
a88a341a 1149 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1150 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1151 if (dirty_ratelimit < x)
1152 step = x - dirty_ratelimit;
1153 } else {
a88a341a 1154 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1155 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1156 if (dirty_ratelimit > x)
1157 step = dirty_ratelimit - x;
1158 }
1159
1160 /*
1161 * Don't pursue 100% rate matching. It's impossible since the balanced
1162 * rate itself is constantly fluctuating. So decrease the track speed
1163 * when it gets close to the target. Helps eliminate pointless tremors.
1164 */
1165 step >>= dirty_ratelimit / (2 * step + 1);
1166 /*
1167 * Limit the tracking speed to avoid overshooting.
1168 */
1169 step = (step + 7) / 8;
1170
1171 if (dirty_ratelimit < balanced_dirty_ratelimit)
1172 dirty_ratelimit += step;
1173 else
1174 dirty_ratelimit -= step;
1175
a88a341a
TH
1176 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1177 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1178
a88a341a 1179 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1180}
1181
2bc00aef 1182static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
8a731799
TH
1183 unsigned long start_time,
1184 bool update_ratelimit)
e98be2d5 1185{
2bc00aef 1186 struct bdi_writeback *wb = dtc->wb;
e98be2d5 1187 unsigned long now = jiffies;
a88a341a 1188 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1189 unsigned long dirtied;
e98be2d5
WF
1190 unsigned long written;
1191
8a731799
TH
1192 lockdep_assert_held(&wb->list_lock);
1193
e98be2d5
WF
1194 /*
1195 * rate-limit, only update once every 200ms.
1196 */
1197 if (elapsed < BANDWIDTH_INTERVAL)
1198 return;
1199
a88a341a
TH
1200 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1201 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1202
1203 /*
1204 * Skip quiet periods when disk bandwidth is under-utilized.
1205 * (at least 1s idle time between two flusher runs)
1206 */
a88a341a 1207 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1208 goto snapshot;
1209
8a731799 1210 if (update_ratelimit) {
e9f07dfd 1211 domain_update_bandwidth(dtc, now);
2bc00aef 1212 wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
be3ffa27 1213 }
a88a341a 1214 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1215
1216snapshot:
a88a341a
TH
1217 wb->dirtied_stamp = dirtied;
1218 wb->written_stamp = written;
1219 wb->bw_time_stamp = now;
e98be2d5
WF
1220}
1221
8a731799 1222void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1223{
2bc00aef
TH
1224 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1225
1226 __wb_update_bandwidth(&gdtc, start_time, false);
e98be2d5
WF
1227}
1228
9d823e8f 1229/*
d0e1d66b 1230 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1231 * will look to see if it needs to start dirty throttling.
1232 *
1233 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1234 * global_page_state() too often. So scale it near-sqrt to the safety margin
1235 * (the number of pages we may dirty without exceeding the dirty limits).
1236 */
1237static unsigned long dirty_poll_interval(unsigned long dirty,
1238 unsigned long thresh)
1239{
1240 if (thresh > dirty)
1241 return 1UL << (ilog2(thresh - dirty) >> 1);
1242
1243 return 1;
1244}
1245
a88a341a 1246static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1247 unsigned long wb_dirty)
c8462cc9 1248{
a88a341a 1249 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1250 unsigned long t;
c8462cc9 1251
7ccb9ad5
WF
1252 /*
1253 * Limit pause time for small memory systems. If sleeping for too long
1254 * time, a small pool of dirty/writeback pages may go empty and disk go
1255 * idle.
1256 *
1257 * 8 serves as the safety ratio.
1258 */
de1fff37 1259 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1260 t++;
1261
e3b6c655 1262 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1263}
1264
a88a341a
TH
1265static long wb_min_pause(struct bdi_writeback *wb,
1266 long max_pause,
1267 unsigned long task_ratelimit,
1268 unsigned long dirty_ratelimit,
1269 int *nr_dirtied_pause)
c8462cc9 1270{
a88a341a
TH
1271 long hi = ilog2(wb->avg_write_bandwidth);
1272 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1273 long t; /* target pause */
1274 long pause; /* estimated next pause */
1275 int pages; /* target nr_dirtied_pause */
c8462cc9 1276
7ccb9ad5
WF
1277 /* target for 10ms pause on 1-dd case */
1278 t = max(1, HZ / 100);
c8462cc9
WF
1279
1280 /*
1281 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1282 * overheads.
1283 *
7ccb9ad5 1284 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1285 */
1286 if (hi > lo)
7ccb9ad5 1287 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1288
1289 /*
7ccb9ad5
WF
1290 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1291 * on the much more stable dirty_ratelimit. However the next pause time
1292 * will be computed based on task_ratelimit and the two rate limits may
1293 * depart considerably at some time. Especially if task_ratelimit goes
1294 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1295 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1296 * result task_ratelimit won't be executed faithfully, which could
1297 * eventually bring down dirty_ratelimit.
c8462cc9 1298 *
7ccb9ad5
WF
1299 * We apply two rules to fix it up:
1300 * 1) try to estimate the next pause time and if necessary, use a lower
1301 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1302 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1303 * 2) limit the target pause time to max_pause/2, so that the normal
1304 * small fluctuations of task_ratelimit won't trigger rule (1) and
1305 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1306 */
7ccb9ad5
WF
1307 t = min(t, 1 + max_pause / 2);
1308 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1309
1310 /*
5b9b3574
WF
1311 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1312 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1313 * When the 16 consecutive reads are often interrupted by some dirty
1314 * throttling pause during the async writes, cfq will go into idles
1315 * (deadline is fine). So push nr_dirtied_pause as high as possible
1316 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1317 */
5b9b3574
WF
1318 if (pages < DIRTY_POLL_THRESH) {
1319 t = max_pause;
1320 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1321 if (pages > DIRTY_POLL_THRESH) {
1322 pages = DIRTY_POLL_THRESH;
1323 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1324 }
1325 }
1326
7ccb9ad5
WF
1327 pause = HZ * pages / (task_ratelimit + 1);
1328 if (pause > max_pause) {
1329 t = max_pause;
1330 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1331 }
c8462cc9 1332
7ccb9ad5 1333 *nr_dirtied_pause = pages;
c8462cc9 1334 /*
7ccb9ad5 1335 * The minimal pause time will normally be half the target pause time.
c8462cc9 1336 */
5b9b3574 1337 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1338}
1339
970fb01a 1340static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1341{
2bc00aef 1342 struct bdi_writeback *wb = dtc->wb;
93f78d88 1343 unsigned long wb_reclaimable;
5a537485
MP
1344
1345 /*
de1fff37 1346 * wb_thresh is not treated as some limiting factor as
5a537485 1347 * dirty_thresh, due to reasons
de1fff37 1348 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1349 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1350 * go into state (wb_dirty >> wb_thresh) either because
1351 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1352 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1353 * dirtiers for 100 seconds until wb_dirty drops under
1354 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1355 * wb_position_ratio() will let the dirtier task progress
de1fff37 1356 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1357 */
b1cbc6d4 1358 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1359 dtc->wb_bg_thresh = dtc->thresh ?
1360 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1361
1362 /*
1363 * In order to avoid the stacked BDI deadlock we need
1364 * to ensure we accurately count the 'dirty' pages when
1365 * the threshold is low.
1366 *
1367 * Otherwise it would be possible to get thresh+n pages
1368 * reported dirty, even though there are thresh-m pages
1369 * actually dirty; with m+n sitting in the percpu
1370 * deltas.
1371 */
2bc00aef 1372 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1373 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1374 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1375 } else {
93f78d88 1376 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1377 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1378 }
1379}
1380
1da177e4
LT
1381/*
1382 * balance_dirty_pages() must be called by processes which are generating dirty
1383 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1384 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1385 * If we're over `background_thresh' then the writeback threads are woken to
1386 * perform some writeout.
1da177e4 1387 */
3a2e9a5a 1388static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1389 struct bdi_writeback *wb,
143dfe86 1390 unsigned long pages_dirtied)
1da177e4 1391{
2bc00aef
TH
1392 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1393 struct dirty_throttle_control * const gdtc = &gdtc_stor;
143dfe86 1394 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1395 long period;
7ccb9ad5
WF
1396 long pause;
1397 long max_pause;
1398 long min_pause;
1399 int nr_dirtied_pause;
e50e3720 1400 bool dirty_exceeded = false;
143dfe86 1401 unsigned long task_ratelimit;
7ccb9ad5 1402 unsigned long dirty_ratelimit;
dfb8ae56 1403 struct backing_dev_info *bdi = wb->bdi;
5a537485 1404 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1405 unsigned long start_time = jiffies;
1da177e4
LT
1406
1407 for (;;) {
83712358 1408 unsigned long now = jiffies;
2bc00aef 1409 unsigned long dirty, thresh, bg_thresh;
83712358 1410
143dfe86
WF
1411 /*
1412 * Unstable writes are a feature of certain networked
1413 * filesystems (i.e. NFS) in which data may have been
1414 * written to the server's write cache, but has not yet
1415 * been flushed to permanent storage.
1416 */
5fce25a9
PZ
1417 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1418 global_page_state(NR_UNSTABLE_NFS);
2bc00aef 1419 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1420
2bc00aef 1421 global_dirty_limits(&gdtc->bg_thresh, &gdtc->thresh);
16c4042f 1422
5a537485 1423 if (unlikely(strictlimit)) {
970fb01a 1424 wb_dirty_limits(gdtc);
5a537485 1425
2bc00aef
TH
1426 dirty = gdtc->wb_dirty;
1427 thresh = gdtc->wb_thresh;
970fb01a 1428 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1429 } else {
2bc00aef
TH
1430 dirty = gdtc->dirty;
1431 thresh = gdtc->thresh;
1432 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1433 }
1434
16c4042f
WF
1435 /*
1436 * Throttle it only when the background writeback cannot
1437 * catch-up. This avoids (excessively) small writeouts
de1fff37 1438 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1439 *
de1fff37
TH
1440 * In strictlimit case make decision based on the wb counters
1441 * and limits. Small writeouts when the wb limits are ramping
5a537485 1442 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1443 */
5a537485 1444 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1445 current->dirty_paused_when = now;
1446 current->nr_dirtied = 0;
7ccb9ad5 1447 current->nr_dirtied_pause =
5a537485 1448 dirty_poll_interval(dirty, thresh);
16c4042f 1449 break;
83712358 1450 }
16c4042f 1451
bc05873d 1452 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1453 wb_start_background_writeback(wb);
143dfe86 1454
5a537485 1455 if (!strictlimit)
970fb01a 1456 wb_dirty_limits(gdtc);
5fce25a9 1457
2bc00aef
TH
1458 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1459 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1460
1461 wb_position_ratio(gdtc);
1462
a88a341a
TH
1463 if (dirty_exceeded && !wb->dirty_exceeded)
1464 wb->dirty_exceeded = 1;
1da177e4 1465
8a731799
TH
1466 if (time_is_before_jiffies(wb->bw_time_stamp +
1467 BANDWIDTH_INTERVAL)) {
1468 spin_lock(&wb->list_lock);
2bc00aef 1469 __wb_update_bandwidth(gdtc, start_time, true);
8a731799
TH
1470 spin_unlock(&wb->list_lock);
1471 }
e98be2d5 1472
a88a341a 1473 dirty_ratelimit = wb->dirty_ratelimit;
daddfa3c 1474 task_ratelimit = ((u64)dirty_ratelimit * gdtc->pos_ratio) >>
3a73dbbc 1475 RATELIMIT_CALC_SHIFT;
2bc00aef 1476 max_pause = wb_max_pause(wb, gdtc->wb_dirty);
a88a341a
TH
1477 min_pause = wb_min_pause(wb, max_pause,
1478 task_ratelimit, dirty_ratelimit,
1479 &nr_dirtied_pause);
7ccb9ad5 1480
3a73dbbc 1481 if (unlikely(task_ratelimit == 0)) {
83712358 1482 period = max_pause;
c8462cc9 1483 pause = max_pause;
143dfe86 1484 goto pause;
04fbfdc1 1485 }
83712358
WF
1486 period = HZ * pages_dirtied / task_ratelimit;
1487 pause = period;
1488 if (current->dirty_paused_when)
1489 pause -= now - current->dirty_paused_when;
1490 /*
1491 * For less than 1s think time (ext3/4 may block the dirtier
1492 * for up to 800ms from time to time on 1-HDD; so does xfs,
1493 * however at much less frequency), try to compensate it in
1494 * future periods by updating the virtual time; otherwise just
1495 * do a reset, as it may be a light dirtier.
1496 */
7ccb9ad5 1497 if (pause < min_pause) {
ece13ac3 1498 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1499 gdtc->thresh,
1500 gdtc->bg_thresh,
1501 gdtc->dirty,
1502 gdtc->wb_thresh,
1503 gdtc->wb_dirty,
ece13ac3
WF
1504 dirty_ratelimit,
1505 task_ratelimit,
1506 pages_dirtied,
83712358 1507 period,
7ccb9ad5 1508 min(pause, 0L),
ece13ac3 1509 start_time);
83712358
WF
1510 if (pause < -HZ) {
1511 current->dirty_paused_when = now;
1512 current->nr_dirtied = 0;
1513 } else if (period) {
1514 current->dirty_paused_when += period;
1515 current->nr_dirtied = 0;
7ccb9ad5
WF
1516 } else if (current->nr_dirtied_pause <= pages_dirtied)
1517 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1518 break;
04fbfdc1 1519 }
7ccb9ad5
WF
1520 if (unlikely(pause > max_pause)) {
1521 /* for occasional dropped task_ratelimit */
1522 now += min(pause - max_pause, max_pause);
1523 pause = max_pause;
1524 }
143dfe86
WF
1525
1526pause:
ece13ac3 1527 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1528 gdtc->thresh,
1529 gdtc->bg_thresh,
1530 gdtc->dirty,
1531 gdtc->wb_thresh,
1532 gdtc->wb_dirty,
ece13ac3
WF
1533 dirty_ratelimit,
1534 task_ratelimit,
1535 pages_dirtied,
83712358 1536 period,
ece13ac3
WF
1537 pause,
1538 start_time);
499d05ec 1539 __set_current_state(TASK_KILLABLE);
d25105e8 1540 io_schedule_timeout(pause);
87c6a9b2 1541
83712358
WF
1542 current->dirty_paused_when = now + pause;
1543 current->nr_dirtied = 0;
7ccb9ad5 1544 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1545
ffd1f609 1546 /*
2bc00aef
TH
1547 * This is typically equal to (dirty < thresh) and can also
1548 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1549 */
1df64719 1550 if (task_ratelimit)
ffd1f609 1551 break;
499d05ec 1552
c5c6343c
WF
1553 /*
1554 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1555 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1556 * to go through, so that tasks on them still remain responsive.
1557 *
1558 * In theory 1 page is enough to keep the comsumer-producer
1559 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1560 * more page. However wb_dirty has accounting errors. So use
93f78d88 1561 * the larger and more IO friendly wb_stat_error.
c5c6343c 1562 */
2bc00aef 1563 if (gdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1564 break;
1565
499d05ec
JK
1566 if (fatal_signal_pending(current))
1567 break;
1da177e4
LT
1568 }
1569
a88a341a
TH
1570 if (!dirty_exceeded && wb->dirty_exceeded)
1571 wb->dirty_exceeded = 0;
1da177e4 1572
bc05873d 1573 if (writeback_in_progress(wb))
5b0830cb 1574 return;
1da177e4
LT
1575
1576 /*
1577 * In laptop mode, we wait until hitting the higher threshold before
1578 * starting background writeout, and then write out all the way down
1579 * to the lower threshold. So slow writers cause minimal disk activity.
1580 *
1581 * In normal mode, we start background writeout at the lower
1582 * background_thresh, to keep the amount of dirty memory low.
1583 */
143dfe86
WF
1584 if (laptop_mode)
1585 return;
1586
2bc00aef 1587 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1588 wb_start_background_writeback(wb);
1da177e4
LT
1589}
1590
9d823e8f 1591static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1592
54848d73
WF
1593/*
1594 * Normal tasks are throttled by
1595 * loop {
1596 * dirty tsk->nr_dirtied_pause pages;
1597 * take a snap in balance_dirty_pages();
1598 * }
1599 * However there is a worst case. If every task exit immediately when dirtied
1600 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1601 * called to throttle the page dirties. The solution is to save the not yet
1602 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1603 * randomly into the running tasks. This works well for the above worst case,
1604 * as the new task will pick up and accumulate the old task's leaked dirty
1605 * count and eventually get throttled.
1606 */
1607DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1608
1da177e4 1609/**
d0e1d66b 1610 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1611 * @mapping: address_space which was dirtied
1da177e4
LT
1612 *
1613 * Processes which are dirtying memory should call in here once for each page
1614 * which was newly dirtied. The function will periodically check the system's
1615 * dirty state and will initiate writeback if needed.
1616 *
1617 * On really big machines, get_writeback_state is expensive, so try to avoid
1618 * calling it too often (ratelimiting). But once we're over the dirty memory
1619 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1620 * from overshooting the limit by (ratelimit_pages) each.
1621 */
d0e1d66b 1622void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1623{
dfb8ae56
TH
1624 struct inode *inode = mapping->host;
1625 struct backing_dev_info *bdi = inode_to_bdi(inode);
1626 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1627 int ratelimit;
1628 int *p;
1da177e4 1629
36715cef
WF
1630 if (!bdi_cap_account_dirty(bdi))
1631 return;
1632
dfb8ae56
TH
1633 if (inode_cgwb_enabled(inode))
1634 wb = wb_get_create_current(bdi, GFP_KERNEL);
1635 if (!wb)
1636 wb = &bdi->wb;
1637
9d823e8f 1638 ratelimit = current->nr_dirtied_pause;
a88a341a 1639 if (wb->dirty_exceeded)
9d823e8f
WF
1640 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1641
9d823e8f 1642 preempt_disable();
1da177e4 1643 /*
9d823e8f
WF
1644 * This prevents one CPU to accumulate too many dirtied pages without
1645 * calling into balance_dirty_pages(), which can happen when there are
1646 * 1000+ tasks, all of them start dirtying pages at exactly the same
1647 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1648 */
7c8e0181 1649 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1650 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1651 *p = 0;
d3bc1fef
WF
1652 else if (unlikely(*p >= ratelimit_pages)) {
1653 *p = 0;
1654 ratelimit = 0;
1da177e4 1655 }
54848d73
WF
1656 /*
1657 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1658 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1659 * the dirty throttling and livelock other long-run dirtiers.
1660 */
7c8e0181 1661 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1662 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1663 unsigned long nr_pages_dirtied;
54848d73
WF
1664 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1665 *p -= nr_pages_dirtied;
1666 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1667 }
fa5a734e 1668 preempt_enable();
9d823e8f
WF
1669
1670 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1671 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1672
1673 wb_put(wb);
1da177e4 1674}
d0e1d66b 1675EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1676
232ea4d6 1677void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1678{
364aeb28
DR
1679 unsigned long background_thresh;
1680 unsigned long dirty_thresh;
1da177e4
LT
1681
1682 for ( ; ; ) {
16c4042f 1683 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1684 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1685
1686 /*
1687 * Boost the allowable dirty threshold a bit for page
1688 * allocators so they don't get DoS'ed by heavy writers
1689 */
1690 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1691
c24f21bd
CL
1692 if (global_page_state(NR_UNSTABLE_NFS) +
1693 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1694 break;
8aa7e847 1695 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1696
1697 /*
1698 * The caller might hold locks which can prevent IO completion
1699 * or progress in the filesystem. So we cannot just sit here
1700 * waiting for IO to complete.
1701 */
1702 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1703 break;
1da177e4
LT
1704 }
1705}
1706
1da177e4
LT
1707/*
1708 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1709 */
cccad5b9 1710int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1711 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1712{
8d65af78 1713 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1714 return 0;
1715}
1716
c2c4986e 1717#ifdef CONFIG_BLOCK
31373d09 1718void laptop_mode_timer_fn(unsigned long data)
1da177e4 1719{
31373d09
MG
1720 struct request_queue *q = (struct request_queue *)data;
1721 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1722 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1
TH
1723 struct bdi_writeback *wb;
1724 struct wb_iter iter;
1da177e4 1725
31373d09
MG
1726 /*
1727 * We want to write everything out, not just down to the dirty
1728 * threshold
1729 */
a06fd6b1
TH
1730 if (!bdi_has_dirty_io(&q->backing_dev_info))
1731 return;
1732
1733 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1734 if (wb_has_dirty_io(wb))
1735 wb_start_writeback(wb, nr_pages, true,
1736 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1737}
1738
1739/*
1740 * We've spun up the disk and we're in laptop mode: schedule writeback
1741 * of all dirty data a few seconds from now. If the flush is already scheduled
1742 * then push it back - the user is still using the disk.
1743 */
31373d09 1744void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1745{
31373d09 1746 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1747}
1748
1749/*
1750 * We're in laptop mode and we've just synced. The sync's writes will have
1751 * caused another writeback to be scheduled by laptop_io_completion.
1752 * Nothing needs to be written back anymore, so we unschedule the writeback.
1753 */
1754void laptop_sync_completion(void)
1755{
31373d09
MG
1756 struct backing_dev_info *bdi;
1757
1758 rcu_read_lock();
1759
1760 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1761 del_timer(&bdi->laptop_mode_wb_timer);
1762
1763 rcu_read_unlock();
1da177e4 1764}
c2c4986e 1765#endif
1da177e4
LT
1766
1767/*
1768 * If ratelimit_pages is too high then we can get into dirty-data overload
1769 * if a large number of processes all perform writes at the same time.
1770 * If it is too low then SMP machines will call the (expensive)
1771 * get_writeback_state too often.
1772 *
1773 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1774 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1775 * thresholds.
1da177e4
LT
1776 */
1777
2d1d43f6 1778void writeback_set_ratelimit(void)
1da177e4 1779{
dcc25ae7 1780 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
1781 unsigned long background_thresh;
1782 unsigned long dirty_thresh;
dcc25ae7 1783
9d823e8f 1784 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 1785 dom->dirty_limit = dirty_thresh;
9d823e8f 1786 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1787 if (ratelimit_pages < 16)
1788 ratelimit_pages = 16;
1da177e4
LT
1789}
1790
0db0628d 1791static int
2f60d628
SB
1792ratelimit_handler(struct notifier_block *self, unsigned long action,
1793 void *hcpu)
1da177e4 1794{
2f60d628
SB
1795
1796 switch (action & ~CPU_TASKS_FROZEN) {
1797 case CPU_ONLINE:
1798 case CPU_DEAD:
1799 writeback_set_ratelimit();
1800 return NOTIFY_OK;
1801 default:
1802 return NOTIFY_DONE;
1803 }
1da177e4
LT
1804}
1805
0db0628d 1806static struct notifier_block ratelimit_nb = {
1da177e4
LT
1807 .notifier_call = ratelimit_handler,
1808 .next = NULL,
1809};
1810
1811/*
dc6e29da
LT
1812 * Called early on to tune the page writeback dirty limits.
1813 *
1814 * We used to scale dirty pages according to how total memory
1815 * related to pages that could be allocated for buffers (by
1816 * comparing nr_free_buffer_pages() to vm_total_pages.
1817 *
1818 * However, that was when we used "dirty_ratio" to scale with
1819 * all memory, and we don't do that any more. "dirty_ratio"
1820 * is now applied to total non-HIGHPAGE memory (by subtracting
1821 * totalhigh_pages from vm_total_pages), and as such we can't
1822 * get into the old insane situation any more where we had
1823 * large amounts of dirty pages compared to a small amount of
1824 * non-HIGHMEM memory.
1825 *
1826 * But we might still want to scale the dirty_ratio by how
1827 * much memory the box has..
1da177e4
LT
1828 */
1829void __init page_writeback_init(void)
1830{
2d1d43f6 1831 writeback_set_ratelimit();
1da177e4 1832 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1833
380c27ca 1834 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1da177e4
LT
1835}
1836
f446daae
JK
1837/**
1838 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1839 * @mapping: address space structure to write
1840 * @start: starting page index
1841 * @end: ending page index (inclusive)
1842 *
1843 * This function scans the page range from @start to @end (inclusive) and tags
1844 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1845 * that write_cache_pages (or whoever calls this function) will then use
1846 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1847 * used to avoid livelocking of writeback by a process steadily creating new
1848 * dirty pages in the file (thus it is important for this function to be quick
1849 * so that it can tag pages faster than a dirtying process can create them).
1850 */
1851/*
1852 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1853 */
f446daae
JK
1854void tag_pages_for_writeback(struct address_space *mapping,
1855 pgoff_t start, pgoff_t end)
1856{
3c111a07 1857#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1858 unsigned long tagged;
1859
1860 do {
1861 spin_lock_irq(&mapping->tree_lock);
1862 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1863 &start, end, WRITEBACK_TAG_BATCH,
1864 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1865 spin_unlock_irq(&mapping->tree_lock);
1866 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1867 cond_resched();
d5ed3a4a
JK
1868 /* We check 'start' to handle wrapping when end == ~0UL */
1869 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1870}
1871EXPORT_SYMBOL(tag_pages_for_writeback);
1872
811d736f 1873/**
0ea97180 1874 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1875 * @mapping: address space structure to write
1876 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1877 * @writepage: function called for each page
1878 * @data: data passed to writepage function
811d736f 1879 *
0ea97180 1880 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1881 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1882 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1883 * and msync() need to guarantee that all the data which was dirty at the time
1884 * the call was made get new I/O started against them. If wbc->sync_mode is
1885 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1886 * existing IO to complete.
f446daae
JK
1887 *
1888 * To avoid livelocks (when other process dirties new pages), we first tag
1889 * pages which should be written back with TOWRITE tag and only then start
1890 * writing them. For data-integrity sync we have to be careful so that we do
1891 * not miss some pages (e.g., because some other process has cleared TOWRITE
1892 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1893 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1894 */
0ea97180
MS
1895int write_cache_pages(struct address_space *mapping,
1896 struct writeback_control *wbc, writepage_t writepage,
1897 void *data)
811d736f 1898{
811d736f
DH
1899 int ret = 0;
1900 int done = 0;
811d736f
DH
1901 struct pagevec pvec;
1902 int nr_pages;
31a12666 1903 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1904 pgoff_t index;
1905 pgoff_t end; /* Inclusive */
bd19e012 1906 pgoff_t done_index;
31a12666 1907 int cycled;
811d736f 1908 int range_whole = 0;
f446daae 1909 int tag;
811d736f 1910
811d736f
DH
1911 pagevec_init(&pvec, 0);
1912 if (wbc->range_cyclic) {
31a12666
NP
1913 writeback_index = mapping->writeback_index; /* prev offset */
1914 index = writeback_index;
1915 if (index == 0)
1916 cycled = 1;
1917 else
1918 cycled = 0;
811d736f
DH
1919 end = -1;
1920 } else {
1921 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1922 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1923 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1924 range_whole = 1;
31a12666 1925 cycled = 1; /* ignore range_cyclic tests */
811d736f 1926 }
6e6938b6 1927 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1928 tag = PAGECACHE_TAG_TOWRITE;
1929 else
1930 tag = PAGECACHE_TAG_DIRTY;
811d736f 1931retry:
6e6938b6 1932 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1933 tag_pages_for_writeback(mapping, index, end);
bd19e012 1934 done_index = index;
5a3d5c98
NP
1935 while (!done && (index <= end)) {
1936 int i;
1937
f446daae 1938 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1939 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1940 if (nr_pages == 0)
1941 break;
811d736f 1942
811d736f
DH
1943 for (i = 0; i < nr_pages; i++) {
1944 struct page *page = pvec.pages[i];
1945
1946 /*
d5482cdf
NP
1947 * At this point, the page may be truncated or
1948 * invalidated (changing page->mapping to NULL), or
1949 * even swizzled back from swapper_space to tmpfs file
1950 * mapping. However, page->index will not change
1951 * because we have a reference on the page.
811d736f 1952 */
d5482cdf
NP
1953 if (page->index > end) {
1954 /*
1955 * can't be range_cyclic (1st pass) because
1956 * end == -1 in that case.
1957 */
1958 done = 1;
1959 break;
1960 }
1961
cf15b07c 1962 done_index = page->index;
d5482cdf 1963
811d736f
DH
1964 lock_page(page);
1965
5a3d5c98
NP
1966 /*
1967 * Page truncated or invalidated. We can freely skip it
1968 * then, even for data integrity operations: the page
1969 * has disappeared concurrently, so there could be no
1970 * real expectation of this data interity operation
1971 * even if there is now a new, dirty page at the same
1972 * pagecache address.
1973 */
811d736f 1974 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1975continue_unlock:
811d736f
DH
1976 unlock_page(page);
1977 continue;
1978 }
1979
515f4a03
NP
1980 if (!PageDirty(page)) {
1981 /* someone wrote it for us */
1982 goto continue_unlock;
1983 }
1984
1985 if (PageWriteback(page)) {
1986 if (wbc->sync_mode != WB_SYNC_NONE)
1987 wait_on_page_writeback(page);
1988 else
1989 goto continue_unlock;
1990 }
811d736f 1991
515f4a03
NP
1992 BUG_ON(PageWriteback(page));
1993 if (!clear_page_dirty_for_io(page))
5a3d5c98 1994 goto continue_unlock;
811d736f 1995
de1414a6 1996 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1997 ret = (*writepage)(page, wbc, data);
00266770
NP
1998 if (unlikely(ret)) {
1999 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2000 unlock_page(page);
2001 ret = 0;
2002 } else {
2003 /*
2004 * done_index is set past this page,
2005 * so media errors will not choke
2006 * background writeout for the entire
2007 * file. This has consequences for
2008 * range_cyclic semantics (ie. it may
2009 * not be suitable for data integrity
2010 * writeout).
2011 */
cf15b07c 2012 done_index = page->index + 1;
00266770
NP
2013 done = 1;
2014 break;
2015 }
0b564927 2016 }
00266770 2017
546a1924
DC
2018 /*
2019 * We stop writing back only if we are not doing
2020 * integrity sync. In case of integrity sync we have to
2021 * keep going until we have written all the pages
2022 * we tagged for writeback prior to entering this loop.
2023 */
2024 if (--wbc->nr_to_write <= 0 &&
2025 wbc->sync_mode == WB_SYNC_NONE) {
2026 done = 1;
2027 break;
05fe478d 2028 }
811d736f
DH
2029 }
2030 pagevec_release(&pvec);
2031 cond_resched();
2032 }
3a4c6800 2033 if (!cycled && !done) {
811d736f 2034 /*
31a12666 2035 * range_cyclic:
811d736f
DH
2036 * We hit the last page and there is more work to be done: wrap
2037 * back to the start of the file
2038 */
31a12666 2039 cycled = 1;
811d736f 2040 index = 0;
31a12666 2041 end = writeback_index - 1;
811d736f
DH
2042 goto retry;
2043 }
0b564927
DC
2044 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2045 mapping->writeback_index = done_index;
06d6cf69 2046
811d736f
DH
2047 return ret;
2048}
0ea97180
MS
2049EXPORT_SYMBOL(write_cache_pages);
2050
2051/*
2052 * Function used by generic_writepages to call the real writepage
2053 * function and set the mapping flags on error
2054 */
2055static int __writepage(struct page *page, struct writeback_control *wbc,
2056 void *data)
2057{
2058 struct address_space *mapping = data;
2059 int ret = mapping->a_ops->writepage(page, wbc);
2060 mapping_set_error(mapping, ret);
2061 return ret;
2062}
2063
2064/**
2065 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2066 * @mapping: address space structure to write
2067 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2068 *
2069 * This is a library function, which implements the writepages()
2070 * address_space_operation.
2071 */
2072int generic_writepages(struct address_space *mapping,
2073 struct writeback_control *wbc)
2074{
9b6096a6
SL
2075 struct blk_plug plug;
2076 int ret;
2077
0ea97180
MS
2078 /* deal with chardevs and other special file */
2079 if (!mapping->a_ops->writepage)
2080 return 0;
2081
9b6096a6
SL
2082 blk_start_plug(&plug);
2083 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2084 blk_finish_plug(&plug);
2085 return ret;
0ea97180 2086}
811d736f
DH
2087
2088EXPORT_SYMBOL(generic_writepages);
2089
1da177e4
LT
2090int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2091{
22905f77
AM
2092 int ret;
2093
1da177e4
LT
2094 if (wbc->nr_to_write <= 0)
2095 return 0;
2096 if (mapping->a_ops->writepages)
d08b3851 2097 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2098 else
2099 ret = generic_writepages(mapping, wbc);
22905f77 2100 return ret;
1da177e4
LT
2101}
2102
2103/**
2104 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2105 * @page: the page to write
2106 * @wait: if true, wait on writeout
1da177e4
LT
2107 *
2108 * The page must be locked by the caller and will be unlocked upon return.
2109 *
2110 * write_one_page() returns a negative error code if I/O failed.
2111 */
2112int write_one_page(struct page *page, int wait)
2113{
2114 struct address_space *mapping = page->mapping;
2115 int ret = 0;
2116 struct writeback_control wbc = {
2117 .sync_mode = WB_SYNC_ALL,
2118 .nr_to_write = 1,
2119 };
2120
2121 BUG_ON(!PageLocked(page));
2122
2123 if (wait)
2124 wait_on_page_writeback(page);
2125
2126 if (clear_page_dirty_for_io(page)) {
2127 page_cache_get(page);
2128 ret = mapping->a_ops->writepage(page, &wbc);
2129 if (ret == 0 && wait) {
2130 wait_on_page_writeback(page);
2131 if (PageError(page))
2132 ret = -EIO;
2133 }
2134 page_cache_release(page);
2135 } else {
2136 unlock_page(page);
2137 }
2138 return ret;
2139}
2140EXPORT_SYMBOL(write_one_page);
2141
76719325
KC
2142/*
2143 * For address_spaces which do not use buffers nor write back.
2144 */
2145int __set_page_dirty_no_writeback(struct page *page)
2146{
2147 if (!PageDirty(page))
c3f0da63 2148 return !TestSetPageDirty(page);
76719325
KC
2149 return 0;
2150}
2151
e3a7cca1
ES
2152/*
2153 * Helper function for set_page_dirty family.
c4843a75
GT
2154 *
2155 * Caller must hold mem_cgroup_begin_page_stat().
2156 *
e3a7cca1
ES
2157 * NOTE: This relies on being atomic wrt interrupts.
2158 */
c4843a75
GT
2159void account_page_dirtied(struct page *page, struct address_space *mapping,
2160 struct mem_cgroup *memcg)
e3a7cca1 2161{
52ebea74
TH
2162 struct inode *inode = mapping->host;
2163
9fb0a7da
TH
2164 trace_writeback_dirty_page(page, mapping);
2165
e3a7cca1 2166 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2167 struct bdi_writeback *wb;
2168
2169 inode_attach_wb(inode, page);
2170 wb = inode_to_wb(inode);
de1414a6 2171
c4843a75 2172 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2173 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2174 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2175 __inc_wb_stat(wb, WB_RECLAIMABLE);
2176 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2177 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2178 current->nr_dirtied++;
2179 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2180 }
2181}
679ceace 2182EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2183
b9ea2515
KK
2184/*
2185 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2186 *
2187 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2188 */
c4843a75
GT
2189void account_page_cleaned(struct page *page, struct address_space *mapping,
2190 struct mem_cgroup *memcg)
b9ea2515
KK
2191{
2192 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2193 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2194 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2195 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2196 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2197 }
2198}
b9ea2515 2199
1da177e4
LT
2200/*
2201 * For address_spaces which do not use buffers. Just tag the page as dirty in
2202 * its radix tree.
2203 *
2204 * This is also used when a single buffer is being dirtied: we want to set the
2205 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2206 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2207 *
2d6d7f98
JW
2208 * The caller must ensure this doesn't race with truncation. Most will simply
2209 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2210 * the pte lock held, which also locks out truncation.
1da177e4
LT
2211 */
2212int __set_page_dirty_nobuffers(struct page *page)
2213{
c4843a75
GT
2214 struct mem_cgroup *memcg;
2215
2216 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2217 if (!TestSetPageDirty(page)) {
2218 struct address_space *mapping = page_mapping(page);
a85d9df1 2219 unsigned long flags;
1da177e4 2220
c4843a75
GT
2221 if (!mapping) {
2222 mem_cgroup_end_page_stat(memcg);
8c08540f 2223 return 1;
c4843a75 2224 }
8c08540f 2225
a85d9df1 2226 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2227 BUG_ON(page_mapping(page) != mapping);
2228 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2229 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2230 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2231 PAGECACHE_TAG_DIRTY);
a85d9df1 2232 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2233 mem_cgroup_end_page_stat(memcg);
2234
8c08540f
AM
2235 if (mapping->host) {
2236 /* !PageAnon && !swapper_space */
2237 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2238 }
4741c9fd 2239 return 1;
1da177e4 2240 }
c4843a75 2241 mem_cgroup_end_page_stat(memcg);
4741c9fd 2242 return 0;
1da177e4
LT
2243}
2244EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2245
2f800fbd
WF
2246/*
2247 * Call this whenever redirtying a page, to de-account the dirty counters
2248 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2249 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2250 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2251 * control.
2252 */
2253void account_page_redirty(struct page *page)
2254{
2255 struct address_space *mapping = page->mapping;
91018134 2256
2f800fbd 2257 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2258 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2259
2f800fbd
WF
2260 current->nr_dirtied--;
2261 dec_zone_page_state(page, NR_DIRTIED);
91018134 2262 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2263 }
2264}
2265EXPORT_SYMBOL(account_page_redirty);
2266
1da177e4
LT
2267/*
2268 * When a writepage implementation decides that it doesn't want to write this
2269 * page for some reason, it should redirty the locked page via
2270 * redirty_page_for_writepage() and it should then unlock the page and return 0
2271 */
2272int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2273{
8d38633c
KK
2274 int ret;
2275
1da177e4 2276 wbc->pages_skipped++;
8d38633c 2277 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2278 account_page_redirty(page);
8d38633c 2279 return ret;
1da177e4
LT
2280}
2281EXPORT_SYMBOL(redirty_page_for_writepage);
2282
2283/*
6746aff7
WF
2284 * Dirty a page.
2285 *
2286 * For pages with a mapping this should be done under the page lock
2287 * for the benefit of asynchronous memory errors who prefer a consistent
2288 * dirty state. This rule can be broken in some special cases,
2289 * but should be better not to.
2290 *
1da177e4
LT
2291 * If the mapping doesn't provide a set_page_dirty a_op, then
2292 * just fall through and assume that it wants buffer_heads.
2293 */
1cf6e7d8 2294int set_page_dirty(struct page *page)
1da177e4
LT
2295{
2296 struct address_space *mapping = page_mapping(page);
2297
2298 if (likely(mapping)) {
2299 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2300 /*
2301 * readahead/lru_deactivate_page could remain
2302 * PG_readahead/PG_reclaim due to race with end_page_writeback
2303 * About readahead, if the page is written, the flags would be
2304 * reset. So no problem.
2305 * About lru_deactivate_page, if the page is redirty, the flag
2306 * will be reset. So no problem. but if the page is used by readahead
2307 * it will confuse readahead and make it restart the size rampup
2308 * process. But it's a trivial problem.
2309 */
a4bb3ecd
NH
2310 if (PageReclaim(page))
2311 ClearPageReclaim(page);
9361401e
DH
2312#ifdef CONFIG_BLOCK
2313 if (!spd)
2314 spd = __set_page_dirty_buffers;
2315#endif
2316 return (*spd)(page);
1da177e4 2317 }
4741c9fd
AM
2318 if (!PageDirty(page)) {
2319 if (!TestSetPageDirty(page))
2320 return 1;
2321 }
1da177e4
LT
2322 return 0;
2323}
2324EXPORT_SYMBOL(set_page_dirty);
2325
2326/*
2327 * set_page_dirty() is racy if the caller has no reference against
2328 * page->mapping->host, and if the page is unlocked. This is because another
2329 * CPU could truncate the page off the mapping and then free the mapping.
2330 *
2331 * Usually, the page _is_ locked, or the caller is a user-space process which
2332 * holds a reference on the inode by having an open file.
2333 *
2334 * In other cases, the page should be locked before running set_page_dirty().
2335 */
2336int set_page_dirty_lock(struct page *page)
2337{
2338 int ret;
2339
7eaceacc 2340 lock_page(page);
1da177e4
LT
2341 ret = set_page_dirty(page);
2342 unlock_page(page);
2343 return ret;
2344}
2345EXPORT_SYMBOL(set_page_dirty_lock);
2346
11f81bec
TH
2347/*
2348 * This cancels just the dirty bit on the kernel page itself, it does NOT
2349 * actually remove dirty bits on any mmap's that may be around. It also
2350 * leaves the page tagged dirty, so any sync activity will still find it on
2351 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2352 * look at the dirty bits in the VM.
2353 *
2354 * Doing this should *normally* only ever be done when a page is truncated,
2355 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2356 * this when it notices that somebody has cleaned out all the buffers on a
2357 * page without actually doing it through the VM. Can you say "ext3 is
2358 * horribly ugly"? Thought you could.
2359 */
2360void cancel_dirty_page(struct page *page)
2361{
c4843a75
GT
2362 struct address_space *mapping = page_mapping(page);
2363
2364 if (mapping_cap_account_dirty(mapping)) {
2365 struct mem_cgroup *memcg;
2366
2367 memcg = mem_cgroup_begin_page_stat(page);
2368
2369 if (TestClearPageDirty(page))
2370 account_page_cleaned(page, mapping, memcg);
2371
2372 mem_cgroup_end_page_stat(memcg);
2373 } else {
2374 ClearPageDirty(page);
2375 }
11f81bec
TH
2376}
2377EXPORT_SYMBOL(cancel_dirty_page);
2378
1da177e4
LT
2379/*
2380 * Clear a page's dirty flag, while caring for dirty memory accounting.
2381 * Returns true if the page was previously dirty.
2382 *
2383 * This is for preparing to put the page under writeout. We leave the page
2384 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2385 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2386 * implementation will run either set_page_writeback() or set_page_dirty(),
2387 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2388 * back into sync.
2389 *
2390 * This incoherency between the page's dirty flag and radix-tree tag is
2391 * unfortunate, but it only exists while the page is locked.
2392 */
2393int clear_page_dirty_for_io(struct page *page)
2394{
2395 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2396 struct mem_cgroup *memcg;
2397 int ret = 0;
1da177e4 2398
79352894
NP
2399 BUG_ON(!PageLocked(page));
2400
7658cc28
LT
2401 if (mapping && mapping_cap_account_dirty(mapping)) {
2402 /*
2403 * Yes, Virginia, this is indeed insane.
2404 *
2405 * We use this sequence to make sure that
2406 * (a) we account for dirty stats properly
2407 * (b) we tell the low-level filesystem to
2408 * mark the whole page dirty if it was
2409 * dirty in a pagetable. Only to then
2410 * (c) clean the page again and return 1 to
2411 * cause the writeback.
2412 *
2413 * This way we avoid all nasty races with the
2414 * dirty bit in multiple places and clearing
2415 * them concurrently from different threads.
2416 *
2417 * Note! Normally the "set_page_dirty(page)"
2418 * has no effect on the actual dirty bit - since
2419 * that will already usually be set. But we
2420 * need the side effects, and it can help us
2421 * avoid races.
2422 *
2423 * We basically use the page "master dirty bit"
2424 * as a serialization point for all the different
2425 * threads doing their things.
7658cc28
LT
2426 */
2427 if (page_mkclean(page))
2428 set_page_dirty(page);
79352894
NP
2429 /*
2430 * We carefully synchronise fault handlers against
2431 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2432 * at this point. We do this by having them hold the
2433 * page lock while dirtying the page, and pages are
2434 * always locked coming in here, so we get the desired
2435 * exclusion.
79352894 2436 */
c4843a75 2437 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2438 if (TestClearPageDirty(page)) {
c4843a75 2439 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2440 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2441 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2442 ret = 1;
1da177e4 2443 }
c4843a75
GT
2444 mem_cgroup_end_page_stat(memcg);
2445 return ret;
1da177e4 2446 }
7658cc28 2447 return TestClearPageDirty(page);
1da177e4 2448}
58bb01a9 2449EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2450
2451int test_clear_page_writeback(struct page *page)
2452{
2453 struct address_space *mapping = page_mapping(page);
d7365e78 2454 struct mem_cgroup *memcg;
d7365e78 2455 int ret;
1da177e4 2456
6de22619 2457 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2458 if (mapping) {
91018134
TH
2459 struct inode *inode = mapping->host;
2460 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2461 unsigned long flags;
2462
19fd6231 2463 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2464 ret = TestClearPageWriteback(page);
69cb51d1 2465 if (ret) {
1da177e4
LT
2466 radix_tree_tag_clear(&mapping->page_tree,
2467 page_index(page),
2468 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2469 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2470 struct bdi_writeback *wb = inode_to_wb(inode);
2471
2472 __dec_wb_stat(wb, WB_WRITEBACK);
2473 __wb_writeout_inc(wb);
04fbfdc1 2474 }
69cb51d1 2475 }
19fd6231 2476 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2477 } else {
2478 ret = TestClearPageWriteback(page);
2479 }
99b12e3d 2480 if (ret) {
d7365e78 2481 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2482 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2483 inc_zone_page_state(page, NR_WRITTEN);
2484 }
6de22619 2485 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2486 return ret;
2487}
2488
1c8349a1 2489int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2490{
2491 struct address_space *mapping = page_mapping(page);
d7365e78 2492 struct mem_cgroup *memcg;
d7365e78 2493 int ret;
1da177e4 2494
6de22619 2495 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2496 if (mapping) {
91018134
TH
2497 struct inode *inode = mapping->host;
2498 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2499 unsigned long flags;
2500
19fd6231 2501 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2502 ret = TestSetPageWriteback(page);
69cb51d1 2503 if (!ret) {
1da177e4
LT
2504 radix_tree_tag_set(&mapping->page_tree,
2505 page_index(page),
2506 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2507 if (bdi_cap_account_writeback(bdi))
91018134 2508 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2509 }
1da177e4
LT
2510 if (!PageDirty(page))
2511 radix_tree_tag_clear(&mapping->page_tree,
2512 page_index(page),
2513 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2514 if (!keep_write)
2515 radix_tree_tag_clear(&mapping->page_tree,
2516 page_index(page),
2517 PAGECACHE_TAG_TOWRITE);
19fd6231 2518 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2519 } else {
2520 ret = TestSetPageWriteback(page);
2521 }
3a3c02ec 2522 if (!ret) {
d7365e78 2523 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2524 inc_zone_page_state(page, NR_WRITEBACK);
2525 }
6de22619 2526 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2527 return ret;
2528
2529}
1c8349a1 2530EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2531
2532/*
00128188 2533 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2534 * passed tag.
2535 */
2536int mapping_tagged(struct address_space *mapping, int tag)
2537{
72c47832 2538 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2539}
2540EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2541
2542/**
2543 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2544 * @page: The page to wait on.
2545 *
2546 * This function determines if the given page is related to a backing device
2547 * that requires page contents to be held stable during writeback. If so, then
2548 * it will wait for any pending writeback to complete.
2549 */
2550void wait_for_stable_page(struct page *page)
2551{
de1414a6
CH
2552 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2553 wait_on_page_writeback(page);
1d1d1a76
DW
2554}
2555EXPORT_SYMBOL_GPL(wait_for_stable_page);