mm: Move updates of dirty_exceeded into one place
[linux-block.git] / mm / page-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
f30c2269 3 * mm/page-writeback.c
1da177e4
LT
4 *
5 * Copyright (C) 2002, Linus Torvalds.
90eec103 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Initial version
13 */
14
15#include <linux/kernel.h>
b95f1b31 16#include <linux/export.h>
1da177e4
LT
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/writeback.h>
24#include <linux/init.h>
25#include <linux/backing-dev.h>
55e829af 26#include <linux/task_io_accounting_ops.h>
1da177e4
LT
27#include <linux/blkdev.h>
28#include <linux/mpage.h>
d08b3851 29#include <linux/rmap.h>
1da177e4 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
811d736f 35#include <linux/pagevec.h>
eb608e3a 36#include <linux/timer.h>
8bd75c77 37#include <linux/sched/rt.h>
f361bf4a 38#include <linux/sched/signal.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
aa779e51 73static int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
aa779e51 79static unsigned long dirty_background_bytes;
2da02997 80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
aa779e51 85static int vm_highmem_is_dirtyable;
195cf453 86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
aa779e51 90static int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
aa779e51 96static unsigned long vm_dirty_bytes;
2da02997 97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4 109
1da177e4 110/*
ed5b43f1
BS
111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
113 */
114int laptop_mode;
115
116EXPORT_SYMBOL(laptop_mode);
117
118/* End of sysctl-exported parameters */
119
dcc25ae7 120struct wb_domain global_wb_domain;
1da177e4 121
2bc00aef
TH
122/* consolidated parameters for balance_dirty_pages() and its subroutines */
123struct dirty_throttle_control {
e9f07dfd
TH
124#ifdef CONFIG_CGROUP_WRITEBACK
125 struct wb_domain *dom;
9fc3a43e 126 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 127#endif
2bc00aef 128 struct bdi_writeback *wb;
e9770b34 129 struct fprop_local_percpu *wb_completions;
eb608e3a 130
9fc3a43e 131 unsigned long avail; /* dirtyable */
2bc00aef
TH
132 unsigned long dirty; /* file_dirty + write + nfs */
133 unsigned long thresh; /* dirty threshold */
134 unsigned long bg_thresh; /* dirty background threshold */
135
136 unsigned long wb_dirty; /* per-wb counterparts */
137 unsigned long wb_thresh;
970fb01a 138 unsigned long wb_bg_thresh;
daddfa3c
TH
139
140 unsigned long pos_ratio;
2bc00aef
TH
141};
142
eb608e3a
JK
143/*
144 * Length of period for aging writeout fractions of bdis. This is an
145 * arbitrarily chosen number. The longer the period, the slower fractions will
146 * reflect changes in current writeout rate.
147 */
148#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 149
693108a8
TH
150#ifdef CONFIG_CGROUP_WRITEBACK
151
d60d1bdd
TH
152#define GDTC_INIT(__wb) .wb = (__wb), \
153 .dom = &global_wb_domain, \
154 .wb_completions = &(__wb)->completions
155
9fc3a43e 156#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
157
158#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
159 .dom = mem_cgroup_wb_domain(__wb), \
160 .wb_completions = &(__wb)->memcg_completions, \
161 .gdtc = __gdtc
c2aa723a
TH
162
163static bool mdtc_valid(struct dirty_throttle_control *dtc)
164{
165 return dtc->dom;
166}
e9f07dfd
TH
167
168static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
169{
170 return dtc->dom;
171}
172
9fc3a43e
TH
173static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
174{
175 return mdtc->gdtc;
176}
177
841710aa
TH
178static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
179{
180 return &wb->memcg_completions;
181}
182
693108a8
TH
183static void wb_min_max_ratio(struct bdi_writeback *wb,
184 unsigned long *minp, unsigned long *maxp)
185{
20792ebf 186 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
693108a8
TH
187 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
188 unsigned long long min = wb->bdi->min_ratio;
189 unsigned long long max = wb->bdi->max_ratio;
190
191 /*
192 * @wb may already be clean by the time control reaches here and
193 * the total may not include its bw.
194 */
195 if (this_bw < tot_bw) {
196 if (min) {
197 min *= this_bw;
6d9e8c65 198 min = div64_ul(min, tot_bw);
693108a8
TH
199 }
200 if (max < 100) {
201 max *= this_bw;
6d9e8c65 202 max = div64_ul(max, tot_bw);
693108a8
TH
203 }
204 }
205
206 *minp = min;
207 *maxp = max;
208}
209
210#else /* CONFIG_CGROUP_WRITEBACK */
211
d60d1bdd
TH
212#define GDTC_INIT(__wb) .wb = (__wb), \
213 .wb_completions = &(__wb)->completions
9fc3a43e 214#define GDTC_INIT_NO_WB
c2aa723a
TH
215#define MDTC_INIT(__wb, __gdtc)
216
217static bool mdtc_valid(struct dirty_throttle_control *dtc)
218{
219 return false;
220}
e9f07dfd
TH
221
222static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
223{
224 return &global_wb_domain;
225}
226
9fc3a43e
TH
227static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
228{
229 return NULL;
230}
231
841710aa
TH
232static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
233{
234 return NULL;
235}
236
693108a8
TH
237static void wb_min_max_ratio(struct bdi_writeback *wb,
238 unsigned long *minp, unsigned long *maxp)
239{
240 *minp = wb->bdi->min_ratio;
241 *maxp = wb->bdi->max_ratio;
242}
243
244#endif /* CONFIG_CGROUP_WRITEBACK */
245
a756cf59
JW
246/*
247 * In a memory zone, there is a certain amount of pages we consider
248 * available for the page cache, which is essentially the number of
249 * free and reclaimable pages, minus some zone reserves to protect
250 * lowmem and the ability to uphold the zone's watermarks without
251 * requiring writeback.
252 *
253 * This number of dirtyable pages is the base value of which the
e0857cf5 254 * user-configurable dirty ratio is the effective number of pages that
a756cf59
JW
255 * are allowed to be actually dirtied. Per individual zone, or
256 * globally by using the sum of dirtyable pages over all zones.
257 *
258 * Because the user is allowed to specify the dirty limit globally as
259 * absolute number of bytes, calculating the per-zone dirty limit can
260 * require translating the configured limit into a percentage of
261 * global dirtyable memory first.
262 */
263
a804552b 264/**
281e3726
MG
265 * node_dirtyable_memory - number of dirtyable pages in a node
266 * @pgdat: the node
a804552b 267 *
a862f68a 268 * Return: the node's number of pages potentially available for dirty
281e3726 269 * page cache. This is the base value for the per-node dirty limits.
a804552b 270 */
281e3726 271static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 272{
281e3726
MG
273 unsigned long nr_pages = 0;
274 int z;
275
276 for (z = 0; z < MAX_NR_ZONES; z++) {
277 struct zone *zone = pgdat->node_zones + z;
278
279 if (!populated_zone(zone))
280 continue;
281
282 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
283 }
a804552b 284
a8d01437
JW
285 /*
286 * Pages reserved for the kernel should not be considered
287 * dirtyable, to prevent a situation where reclaim has to
288 * clean pages in order to balance the zones.
289 */
281e3726 290 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 291
281e3726
MG
292 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
293 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
294
295 return nr_pages;
296}
297
1edf2234
JW
298static unsigned long highmem_dirtyable_memory(unsigned long total)
299{
300#ifdef CONFIG_HIGHMEM
301 int node;
bb4cc2be 302 unsigned long x = 0;
09b4ab3c 303 int i;
1edf2234
JW
304
305 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
306 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
307 struct zone *z;
9cb937e2 308 unsigned long nr_pages;
281e3726
MG
309
310 if (!is_highmem_idx(i))
311 continue;
312
313 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
314 if (!populated_zone(z))
315 continue;
1edf2234 316
9cb937e2 317 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 318 /* watch for underflows */
9cb937e2 319 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
320 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
321 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
322 x += nr_pages;
09b4ab3c 323 }
1edf2234 324 }
281e3726 325
1edf2234
JW
326 /*
327 * Make sure that the number of highmem pages is never larger
328 * than the number of the total dirtyable memory. This can only
329 * occur in very strange VM situations but we want to make sure
330 * that this does not occur.
331 */
332 return min(x, total);
333#else
334 return 0;
335#endif
336}
337
338/**
ccafa287 339 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 340 *
a862f68a 341 * Return: the global number of pages potentially available for dirty
ccafa287 342 * page cache. This is the base value for the global dirty limits.
1edf2234 343 */
18cf8cf8 344static unsigned long global_dirtyable_memory(void)
1edf2234
JW
345{
346 unsigned long x;
347
c41f012a 348 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
349 /*
350 * Pages reserved for the kernel should not be considered
351 * dirtyable, to prevent a situation where reclaim has to
352 * clean pages in order to balance the zones.
353 */
354 x -= min(x, totalreserve_pages);
1edf2234 355
599d0c95
MG
356 x += global_node_page_state(NR_INACTIVE_FILE);
357 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 358
1edf2234
JW
359 if (!vm_highmem_is_dirtyable)
360 x -= highmem_dirtyable_memory(x);
361
362 return x + 1; /* Ensure that we never return 0 */
363}
364
9fc3a43e
TH
365/**
366 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
367 * @dtc: dirty_throttle_control of interest
ccafa287 368 *
9fc3a43e
TH
369 * Calculate @dtc->thresh and ->bg_thresh considering
370 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
371 * must ensure that @dtc->avail is set before calling this function. The
a37b0715 372 * dirty limits will be lifted by 1/4 for real-time tasks.
ccafa287 373 */
9fc3a43e 374static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 375{
9fc3a43e
TH
376 const unsigned long available_memory = dtc->avail;
377 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
378 unsigned long bytes = vm_dirty_bytes;
379 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
380 /* convert ratios to per-PAGE_SIZE for higher precision */
381 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
382 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
383 unsigned long thresh;
384 unsigned long bg_thresh;
ccafa287
JW
385 struct task_struct *tsk;
386
9fc3a43e
TH
387 /* gdtc is !NULL iff @dtc is for memcg domain */
388 if (gdtc) {
389 unsigned long global_avail = gdtc->avail;
390
391 /*
392 * The byte settings can't be applied directly to memcg
393 * domains. Convert them to ratios by scaling against
62a584fe
TH
394 * globally available memory. As the ratios are in
395 * per-PAGE_SIZE, they can be obtained by dividing bytes by
396 * number of pages.
9fc3a43e
TH
397 */
398 if (bytes)
62a584fe
TH
399 ratio = min(DIV_ROUND_UP(bytes, global_avail),
400 PAGE_SIZE);
9fc3a43e 401 if (bg_bytes)
62a584fe
TH
402 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
403 PAGE_SIZE);
9fc3a43e
TH
404 bytes = bg_bytes = 0;
405 }
406
407 if (bytes)
408 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 409 else
62a584fe 410 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 411
9fc3a43e
TH
412 if (bg_bytes)
413 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 414 else
62a584fe 415 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 416
90daf306 417 if (bg_thresh >= thresh)
9fc3a43e 418 bg_thresh = thresh / 2;
ccafa287 419 tsk = current;
a37b0715 420 if (rt_task(tsk)) {
a53eaff8
N
421 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
422 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 423 }
9fc3a43e
TH
424 dtc->thresh = thresh;
425 dtc->bg_thresh = bg_thresh;
426
427 /* we should eventually report the domain in the TP */
428 if (!gdtc)
429 trace_global_dirty_state(bg_thresh, thresh);
430}
431
432/**
433 * global_dirty_limits - background-writeback and dirty-throttling thresholds
434 * @pbackground: out parameter for bg_thresh
435 * @pdirty: out parameter for thresh
436 *
437 * Calculate bg_thresh and thresh for global_wb_domain. See
438 * domain_dirty_limits() for details.
439 */
440void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
441{
442 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
443
444 gdtc.avail = global_dirtyable_memory();
445 domain_dirty_limits(&gdtc);
446
447 *pbackground = gdtc.bg_thresh;
448 *pdirty = gdtc.thresh;
ccafa287
JW
449}
450
a756cf59 451/**
281e3726
MG
452 * node_dirty_limit - maximum number of dirty pages allowed in a node
453 * @pgdat: the node
a756cf59 454 *
a862f68a 455 * Return: the maximum number of dirty pages allowed in a node, based
281e3726 456 * on the node's dirtyable memory.
a756cf59 457 */
281e3726 458static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 459{
281e3726 460 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
461 struct task_struct *tsk = current;
462 unsigned long dirty;
463
464 if (vm_dirty_bytes)
465 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 466 node_memory / global_dirtyable_memory();
a756cf59 467 else
281e3726 468 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59 469
a37b0715 470 if (rt_task(tsk))
a756cf59
JW
471 dirty += dirty / 4;
472
473 return dirty;
474}
475
476/**
281e3726
MG
477 * node_dirty_ok - tells whether a node is within its dirty limits
478 * @pgdat: the node to check
a756cf59 479 *
a862f68a 480 * Return: %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
481 * dirty limit, %false if the limit is exceeded.
482 */
281e3726 483bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 484{
281e3726
MG
485 unsigned long limit = node_dirty_limit(pgdat);
486 unsigned long nr_pages = 0;
487
11fb9989 488 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
11fb9989 489 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 490
281e3726 491 return nr_pages <= limit;
a756cf59
JW
492}
493
aa779e51 494#ifdef CONFIG_SYSCTL
495static int dirty_background_ratio_handler(struct ctl_table *table, int write,
32927393 496 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
497{
498 int ret;
499
8d65af78 500 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
501 if (ret == 0 && write)
502 dirty_background_bytes = 0;
503 return ret;
504}
505
aa779e51 506static int dirty_background_bytes_handler(struct ctl_table *table, int write,
32927393 507 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
508{
509 int ret;
510
8d65af78 511 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
512 if (ret == 0 && write)
513 dirty_background_ratio = 0;
514 return ret;
515}
516
aa779e51 517static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
32927393 518 size_t *lenp, loff_t *ppos)
04fbfdc1
PZ
519{
520 int old_ratio = vm_dirty_ratio;
2da02997
DR
521 int ret;
522
8d65af78 523 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 524 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 525 writeback_set_ratelimit();
2da02997
DR
526 vm_dirty_bytes = 0;
527 }
528 return ret;
529}
530
aa779e51 531static int dirty_bytes_handler(struct ctl_table *table, int write,
32927393 532 void *buffer, size_t *lenp, loff_t *ppos)
2da02997 533{
fc3501d4 534 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
535 int ret;
536
8d65af78 537 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 538 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 539 writeback_set_ratelimit();
2da02997 540 vm_dirty_ratio = 0;
04fbfdc1
PZ
541 }
542 return ret;
543}
aa779e51 544#endif
04fbfdc1 545
eb608e3a
JK
546static unsigned long wp_next_time(unsigned long cur_time)
547{
548 cur_time += VM_COMPLETIONS_PERIOD_LEN;
549 /* 0 has a special meaning... */
550 if (!cur_time)
551 return 1;
552 return cur_time;
553}
554
cc24df4c 555static void wb_domain_writeout_add(struct wb_domain *dom,
c7981433 556 struct fprop_local_percpu *completions,
cc24df4c 557 unsigned int max_prop_frac, long nr)
04fbfdc1 558{
be5f1797 559 __fprop_add_percpu_max(&dom->completions, completions,
cc24df4c 560 max_prop_frac, nr);
eb608e3a 561 /* First event after period switching was turned off? */
517663ed 562 if (unlikely(!dom->period_time)) {
eb608e3a
JK
563 /*
564 * We can race with other __bdi_writeout_inc calls here but
565 * it does not cause any harm since the resulting time when
566 * timer will fire and what is in writeout_period_time will be
567 * roughly the same.
568 */
380c27ca
TH
569 dom->period_time = wp_next_time(jiffies);
570 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 571 }
04fbfdc1
PZ
572}
573
c7981433
TH
574/*
575 * Increment @wb's writeout completion count and the global writeout
269ccca3 576 * completion count. Called from __folio_end_writeback().
c7981433 577 */
cc24df4c 578static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
dd5656e5 579{
841710aa 580 struct wb_domain *cgdom;
dd5656e5 581
cc24df4c
MWO
582 wb_stat_mod(wb, WB_WRITTEN, nr);
583 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
584 wb->bdi->max_prop_frac, nr);
841710aa
TH
585
586 cgdom = mem_cgroup_wb_domain(wb);
587 if (cgdom)
cc24df4c
MWO
588 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
589 wb->bdi->max_prop_frac, nr);
dd5656e5 590}
dd5656e5 591
93f78d88 592void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 593{
dd5656e5
MS
594 unsigned long flags;
595
596 local_irq_save(flags);
cc24df4c 597 __wb_writeout_add(wb, 1);
dd5656e5 598 local_irq_restore(flags);
04fbfdc1 599}
93f78d88 600EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 601
eb608e3a
JK
602/*
603 * On idle system, we can be called long after we scheduled because we use
604 * deferred timers so count with missed periods.
605 */
9823e51b 606static void writeout_period(struct timer_list *t)
eb608e3a 607{
9823e51b 608 struct wb_domain *dom = from_timer(dom, t, period_timer);
380c27ca 609 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
610 VM_COMPLETIONS_PERIOD_LEN;
611
380c27ca
TH
612 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
613 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 614 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 615 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
616 } else {
617 /*
618 * Aging has zeroed all fractions. Stop wasting CPU on period
619 * updates.
620 */
380c27ca 621 dom->period_time = 0;
eb608e3a
JK
622 }
623}
624
380c27ca
TH
625int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
626{
627 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
628
629 spin_lock_init(&dom->lock);
630
9823e51b 631 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
dcc25ae7
TH
632
633 dom->dirty_limit_tstamp = jiffies;
634
380c27ca
TH
635 return fprop_global_init(&dom->completions, gfp);
636}
637
841710aa
TH
638#ifdef CONFIG_CGROUP_WRITEBACK
639void wb_domain_exit(struct wb_domain *dom)
640{
641 del_timer_sync(&dom->period_timer);
642 fprop_global_destroy(&dom->completions);
643}
644#endif
645
189d3c4a 646/*
d08c429b
JW
647 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
648 * registered backing devices, which, for obvious reasons, can not
649 * exceed 100%.
189d3c4a 650 */
189d3c4a
PZ
651static unsigned int bdi_min_ratio;
652
653int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
654{
21f0dd88 655 unsigned int delta;
189d3c4a 656 int ret = 0;
189d3c4a 657
cfc4ba53 658 spin_lock_bh(&bdi_lock);
a42dde04 659 if (min_ratio > bdi->max_ratio) {
189d3c4a 660 ret = -EINVAL;
a42dde04 661 } else {
21f0dd88
CW
662 if (min_ratio < bdi->min_ratio) {
663 delta = bdi->min_ratio - min_ratio;
664 bdi_min_ratio -= delta;
665 bdi->min_ratio = min_ratio;
a42dde04 666 } else {
21f0dd88
CW
667 delta = min_ratio - bdi->min_ratio;
668 if (bdi_min_ratio + delta < 100) {
669 bdi_min_ratio += delta;
670 bdi->min_ratio = min_ratio;
671 } else {
672 ret = -EINVAL;
673 }
a42dde04
PZ
674 }
675 }
cfc4ba53 676 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
677
678 return ret;
679}
680
681int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
682{
a42dde04
PZ
683 int ret = 0;
684
685 if (max_ratio > 100)
686 return -EINVAL;
687
cfc4ba53 688 spin_lock_bh(&bdi_lock);
a42dde04
PZ
689 if (bdi->min_ratio > max_ratio) {
690 ret = -EINVAL;
691 } else {
692 bdi->max_ratio = max_ratio;
eb608e3a 693 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 694 }
cfc4ba53 695 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
696
697 return ret;
698}
a42dde04 699EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 700
6c14ae1e
WF
701static unsigned long dirty_freerun_ceiling(unsigned long thresh,
702 unsigned long bg_thresh)
703{
704 return (thresh + bg_thresh) / 2;
705}
706
c7981433
TH
707static unsigned long hard_dirty_limit(struct wb_domain *dom,
708 unsigned long thresh)
ffd1f609 709{
dcc25ae7 710 return max(thresh, dom->dirty_limit);
ffd1f609
WF
711}
712
c5edf9cd
TH
713/*
714 * Memory which can be further allocated to a memcg domain is capped by
715 * system-wide clean memory excluding the amount being used in the domain.
716 */
717static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
718 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
719{
720 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
721 unsigned long clean = filepages - min(filepages, mdtc->dirty);
722 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
723 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 724
c5edf9cd 725 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
726}
727
6f718656 728/**
b1cbc6d4
TH
729 * __wb_calc_thresh - @wb's share of dirty throttling threshold
730 * @dtc: dirty_throttle_context of interest
1babe183 731 *
aed21ad2
WF
732 * Note that balance_dirty_pages() will only seriously take it as a hard limit
733 * when sleeping max_pause per page is not enough to keep the dirty pages under
734 * control. For example, when the device is completely stalled due to some error
735 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
736 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 737 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 738 *
6f718656 739 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
740 * - starving fast devices
741 * - piling up dirty pages (that will take long time to sync) on slow devices
742 *
a88a341a 743 * The wb's share of dirty limit will be adapting to its throughput and
1babe183 744 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
a862f68a
MR
745 *
746 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
8d92890b 747 * dirty balancing includes all PG_dirty and PG_writeback pages.
1babe183 748 */
b1cbc6d4 749static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 750{
e9f07dfd 751 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 752 unsigned long thresh = dtc->thresh;
0d960a38 753 u64 wb_thresh;
d3ac946e 754 unsigned long numerator, denominator;
693108a8 755 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 756
16c4042f 757 /*
0d960a38 758 * Calculate this BDI's share of the thresh ratio.
16c4042f 759 */
e9770b34 760 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 761 &numerator, &denominator);
04fbfdc1 762
0d960a38
TH
763 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
764 wb_thresh *= numerator;
d3ac946e 765 wb_thresh = div64_ul(wb_thresh, denominator);
04fbfdc1 766
b1cbc6d4 767 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 768
0d960a38
TH
769 wb_thresh += (thresh * wb_min_ratio) / 100;
770 if (wb_thresh > (thresh * wb_max_ratio) / 100)
771 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 772
0d960a38 773 return wb_thresh;
1da177e4
LT
774}
775
b1cbc6d4
TH
776unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
777{
778 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
779 .thresh = thresh };
780 return __wb_calc_thresh(&gdtc);
1da177e4
LT
781}
782
5a537485
MP
783/*
784 * setpoint - dirty 3
785 * f(dirty) := 1.0 + (----------------)
786 * limit - setpoint
787 *
788 * it's a 3rd order polynomial that subjects to
789 *
790 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
791 * (2) f(setpoint) = 1.0 => the balance point
792 * (3) f(limit) = 0 => the hard limit
793 * (4) df/dx <= 0 => negative feedback control
794 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
795 * => fast response on large errors; small oscillation near setpoint
796 */
d5c9fde3 797static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
798 unsigned long dirty,
799 unsigned long limit)
800{
801 long long pos_ratio;
802 long x;
803
d5c9fde3 804 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 805 (limit - setpoint) | 1);
5a537485
MP
806 pos_ratio = x;
807 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
808 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
809 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
810
811 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
812}
813
6c14ae1e
WF
814/*
815 * Dirty position control.
816 *
817 * (o) global/bdi setpoints
818 *
de1fff37 819 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
820 * When the number of dirty pages is higher/lower than the setpoint, the
821 * dirty position control ratio (and hence task dirty ratelimit) will be
822 * decreased/increased to bring the dirty pages back to the setpoint.
823 *
824 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
825 *
826 * if (dirty < setpoint) scale up pos_ratio
827 * if (dirty > setpoint) scale down pos_ratio
828 *
de1fff37
TH
829 * if (wb_dirty < wb_setpoint) scale up pos_ratio
830 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
831 *
832 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
833 *
834 * (o) global control line
835 *
836 * ^ pos_ratio
837 * |
838 * | |<===== global dirty control scope ======>|
03231554 839 * 2.0 * * * * * * *
6c14ae1e
WF
840 * | .*
841 * | . *
842 * | . *
843 * | . *
844 * | . *
845 * | . *
846 * 1.0 ................................*
847 * | . . *
848 * | . . *
849 * | . . *
850 * | . . *
851 * | . . *
852 * 0 +------------.------------------.----------------------*------------->
853 * freerun^ setpoint^ limit^ dirty pages
854 *
de1fff37 855 * (o) wb control line
6c14ae1e
WF
856 *
857 * ^ pos_ratio
858 * |
859 * | *
860 * | *
861 * | *
862 * | *
863 * | * |<=========== span ============>|
864 * 1.0 .......................*
865 * | . *
866 * | . *
867 * | . *
868 * | . *
869 * | . *
870 * | . *
871 * | . *
872 * | . *
873 * | . *
874 * | . *
875 * | . *
876 * 1/4 ...............................................* * * * * * * * * * * *
877 * | . .
878 * | . .
879 * | . .
880 * 0 +----------------------.-------------------------------.------------->
de1fff37 881 * wb_setpoint^ x_intercept^
6c14ae1e 882 *
de1fff37 883 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
884 * be smoothly throttled down to normal if it starts high in situations like
885 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
886 * card's wb_dirty may rush to many times higher than wb_setpoint.
887 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 888 */
daddfa3c 889static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 890{
2bc00aef 891 struct bdi_writeback *wb = dtc->wb;
20792ebf 892 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
2bc00aef 893 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 894 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 895 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
896 unsigned long x_intercept;
897 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 898 unsigned long wb_setpoint;
6c14ae1e
WF
899 unsigned long span;
900 long long pos_ratio; /* for scaling up/down the rate limit */
901 long x;
902
daddfa3c
TH
903 dtc->pos_ratio = 0;
904
2bc00aef 905 if (unlikely(dtc->dirty >= limit))
daddfa3c 906 return;
6c14ae1e
WF
907
908 /*
909 * global setpoint
910 *
5a537485
MP
911 * See comment for pos_ratio_polynom().
912 */
913 setpoint = (freerun + limit) / 2;
2bc00aef 914 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
915
916 /*
917 * The strictlimit feature is a tool preventing mistrusted filesystems
918 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
919 * such filesystems balance_dirty_pages always checks wb counters
920 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
921 * This is especially important for fuse which sets bdi->max_ratio to
922 * 1% by default. Without strictlimit feature, fuse writeback may
923 * consume arbitrary amount of RAM because it is accounted in
924 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 925 *
a88a341a 926 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 927 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
928 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
929 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 930 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 931 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 932 * about ~6K pages (as the average of background and throttle wb
5a537485 933 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 934 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 935 *
5a537485 936 * Note, that we cannot use global counters in these calculations
de1fff37 937 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
938 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
939 * in the example above).
6c14ae1e 940 */
a88a341a 941 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 942 long long wb_pos_ratio;
5a537485 943
daddfa3c
TH
944 if (dtc->wb_dirty < 8) {
945 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
946 2 << RATELIMIT_CALC_SHIFT);
947 return;
948 }
5a537485 949
2bc00aef 950 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 951 return;
5a537485 952
970fb01a
TH
953 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
954 dtc->wb_bg_thresh);
5a537485 955
de1fff37 956 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 957 return;
5a537485 958
2bc00aef 959 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 960 wb_thresh);
5a537485
MP
961
962 /*
de1fff37
TH
963 * Typically, for strictlimit case, wb_setpoint << setpoint
964 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 965 * state ("dirty") is not limiting factor and we have to
de1fff37 966 * make decision based on wb counters. But there is an
5a537485
MP
967 * important case when global pos_ratio should get precedence:
968 * global limits are exceeded (e.g. due to activities on other
de1fff37 969 * wb's) while given strictlimit wb is below limit.
5a537485 970 *
de1fff37 971 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 972 * but it would look too non-natural for the case of all
de1fff37 973 * activity in the system coming from a single strictlimit wb
5a537485
MP
974 * with bdi->max_ratio == 100%.
975 *
976 * Note that min() below somewhat changes the dynamics of the
977 * control system. Normally, pos_ratio value can be well over 3
de1fff37 978 * (when globally we are at freerun and wb is well below wb
5a537485
MP
979 * setpoint). Now the maximum pos_ratio in the same situation
980 * is 2. We might want to tweak this if we observe the control
981 * system is too slow to adapt.
982 */
daddfa3c
TH
983 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
984 return;
5a537485 985 }
6c14ae1e
WF
986
987 /*
988 * We have computed basic pos_ratio above based on global situation. If
de1fff37 989 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
990 * pos_ratio further down/up. That is done by the following mechanism.
991 */
992
993 /*
de1fff37 994 * wb setpoint
6c14ae1e 995 *
de1fff37 996 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 997 *
de1fff37 998 * x_intercept - wb_dirty
6c14ae1e 999 * := --------------------------
de1fff37 1000 * x_intercept - wb_setpoint
6c14ae1e 1001 *
de1fff37 1002 * The main wb control line is a linear function that subjects to
6c14ae1e 1003 *
de1fff37
TH
1004 * (1) f(wb_setpoint) = 1.0
1005 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1006 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1007 *
de1fff37 1008 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1009 * regularly within range
de1fff37 1010 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1011 * for various filesystems, where (2) can yield in a reasonable 12.5%
1012 * fluctuation range for pos_ratio.
1013 *
de1fff37 1014 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1015 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1016 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1017 */
2bc00aef
TH
1018 if (unlikely(wb_thresh > dtc->thresh))
1019 wb_thresh = dtc->thresh;
aed21ad2 1020 /*
de1fff37 1021 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1022 * device is slow, but that it has remained inactive for long time.
1023 * Honour such devices a reasonable good (hopefully IO efficient)
1024 * threshold, so that the occasional writes won't be blocked and active
1025 * writes can rampup the threshold quickly.
1026 */
2bc00aef 1027 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1028 /*
de1fff37
TH
1029 * scale global setpoint to wb's:
1030 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1031 */
e4bc13ad 1032 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1033 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1034 /*
de1fff37
TH
1035 * Use span=(8*write_bw) in single wb case as indicated by
1036 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1037 *
de1fff37
TH
1038 * wb_thresh thresh - wb_thresh
1039 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1040 * thresh thresh
6c14ae1e 1041 */
2bc00aef 1042 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1043 x_intercept = wb_setpoint + span;
6c14ae1e 1044
2bc00aef
TH
1045 if (dtc->wb_dirty < x_intercept - span / 4) {
1046 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1047 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1048 } else
1049 pos_ratio /= 4;
1050
8927f66c 1051 /*
de1fff37 1052 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1053 * It may push the desired control point of global dirty pages higher
1054 * than setpoint.
1055 */
de1fff37 1056 x_intercept = wb_thresh / 2;
2bc00aef
TH
1057 if (dtc->wb_dirty < x_intercept) {
1058 if (dtc->wb_dirty > x_intercept / 8)
1059 pos_ratio = div_u64(pos_ratio * x_intercept,
1060 dtc->wb_dirty);
50657fc4 1061 else
8927f66c
WF
1062 pos_ratio *= 8;
1063 }
1064
daddfa3c 1065 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1066}
1067
a88a341a
TH
1068static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1069 unsigned long elapsed,
1070 unsigned long written)
e98be2d5
WF
1071{
1072 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1073 unsigned long avg = wb->avg_write_bandwidth;
1074 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1075 u64 bw;
1076
1077 /*
1078 * bw = written * HZ / elapsed
1079 *
1080 * bw * elapsed + write_bandwidth * (period - elapsed)
1081 * write_bandwidth = ---------------------------------------------------
1082 * period
c72efb65 1083 *
25ff8b15 1084 * @written may have decreased due to folio_account_redirty().
c72efb65 1085 * Avoid underflowing @bw calculation.
e98be2d5 1086 */
a88a341a 1087 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1088 bw *= HZ;
1089 if (unlikely(elapsed > period)) {
0a5d1a7f 1090 bw = div64_ul(bw, elapsed);
e98be2d5
WF
1091 avg = bw;
1092 goto out;
1093 }
a88a341a 1094 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1095 bw >>= ilog2(period);
1096
1097 /*
1098 * one more level of smoothing, for filtering out sudden spikes
1099 */
1100 if (avg > old && old >= (unsigned long)bw)
1101 avg -= (avg - old) >> 3;
1102
1103 if (avg < old && old <= (unsigned long)bw)
1104 avg += (old - avg) >> 3;
1105
1106out:
95a46c65
TH
1107 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1108 avg = max(avg, 1LU);
1109 if (wb_has_dirty_io(wb)) {
1110 long delta = avg - wb->avg_write_bandwidth;
1111 WARN_ON_ONCE(atomic_long_add_return(delta,
1112 &wb->bdi->tot_write_bandwidth) <= 0);
1113 }
a88a341a 1114 wb->write_bandwidth = bw;
20792ebf 1115 WRITE_ONCE(wb->avg_write_bandwidth, avg);
e98be2d5
WF
1116}
1117
2bc00aef 1118static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1119{
e9f07dfd 1120 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1121 unsigned long thresh = dtc->thresh;
dcc25ae7 1122 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1123
1124 /*
1125 * Follow up in one step.
1126 */
1127 if (limit < thresh) {
1128 limit = thresh;
1129 goto update;
1130 }
1131
1132 /*
1133 * Follow down slowly. Use the higher one as the target, because thresh
1134 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1135 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1136 */
2bc00aef 1137 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1138 if (limit > thresh) {
1139 limit -= (limit - thresh) >> 5;
1140 goto update;
1141 }
1142 return;
1143update:
dcc25ae7 1144 dom->dirty_limit = limit;
c42843f2
WF
1145}
1146
42dd235c
JK
1147static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1148 unsigned long now)
c42843f2 1149{
e9f07dfd 1150 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1151
1152 /*
1153 * check locklessly first to optimize away locking for the most time
1154 */
dcc25ae7 1155 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1156 return;
1157
dcc25ae7
TH
1158 spin_lock(&dom->lock);
1159 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1160 update_dirty_limit(dtc);
dcc25ae7 1161 dom->dirty_limit_tstamp = now;
c42843f2 1162 }
dcc25ae7 1163 spin_unlock(&dom->lock);
c42843f2
WF
1164}
1165
be3ffa27 1166/*
de1fff37 1167 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1168 *
de1fff37 1169 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1170 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1171 */
2bc00aef 1172static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1173 unsigned long dirtied,
1174 unsigned long elapsed)
be3ffa27 1175{
2bc00aef
TH
1176 struct bdi_writeback *wb = dtc->wb;
1177 unsigned long dirty = dtc->dirty;
1178 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1179 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1180 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1181 unsigned long write_bw = wb->avg_write_bandwidth;
1182 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1183 unsigned long dirty_rate;
1184 unsigned long task_ratelimit;
1185 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1186 unsigned long step;
1187 unsigned long x;
d59b1087 1188 unsigned long shift;
be3ffa27
WF
1189
1190 /*
1191 * The dirty rate will match the writeout rate in long term, except
1192 * when dirty pages are truncated by userspace or re-dirtied by FS.
1193 */
a88a341a 1194 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1195
be3ffa27
WF
1196 /*
1197 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1198 */
1199 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1200 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1201 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1202
1203 /*
1204 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1205 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1206 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1207 * formula will yield the balanced rate limit (write_bw / N).
1208 *
1209 * Note that the expanded form is not a pure rate feedback:
1210 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1211 * but also takes pos_ratio into account:
1212 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1213 *
1214 * (1) is not realistic because pos_ratio also takes part in balancing
1215 * the dirty rate. Consider the state
1216 * pos_ratio = 0.5 (3)
1217 * rate = 2 * (write_bw / N) (4)
1218 * If (1) is used, it will stuck in that state! Because each dd will
1219 * be throttled at
1220 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1221 * yielding
1222 * dirty_rate = N * task_ratelimit = write_bw (6)
1223 * put (6) into (1) we get
1224 * rate_(i+1) = rate_(i) (7)
1225 *
1226 * So we end up using (2) to always keep
1227 * rate_(i+1) ~= (write_bw / N) (8)
1228 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1229 * pos_ratio is able to drive itself to 1.0, which is not only where
1230 * the dirty count meet the setpoint, but also where the slope of
1231 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1232 */
1233 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1234 dirty_rate | 1);
bdaac490
WF
1235 /*
1236 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1237 */
1238 if (unlikely(balanced_dirty_ratelimit > write_bw))
1239 balanced_dirty_ratelimit = write_bw;
be3ffa27 1240
7381131c
WF
1241 /*
1242 * We could safely do this and return immediately:
1243 *
de1fff37 1244 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1245 *
1246 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1247 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1248 * limit the step size.
1249 *
1250 * The below code essentially only uses the relative value of
1251 *
1252 * task_ratelimit - dirty_ratelimit
1253 * = (pos_ratio - 1) * dirty_ratelimit
1254 *
1255 * which reflects the direction and size of dirty position error.
1256 */
1257
1258 /*
1259 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1260 * task_ratelimit is on the same side of dirty_ratelimit, too.
1261 * For example, when
1262 * - dirty_ratelimit > balanced_dirty_ratelimit
1263 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1264 * lowering dirty_ratelimit will help meet both the position and rate
1265 * control targets. Otherwise, don't update dirty_ratelimit if it will
1266 * only help meet the rate target. After all, what the users ultimately
1267 * feel and care are stable dirty rate and small position error.
1268 *
1269 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1270 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1271 * keeps jumping around randomly and can even leap far away at times
1272 * due to the small 200ms estimation period of dirty_rate (we want to
1273 * keep that period small to reduce time lags).
1274 */
1275 step = 0;
5a537485
MP
1276
1277 /*
de1fff37 1278 * For strictlimit case, calculations above were based on wb counters
a88a341a 1279 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1280 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1281 * Hence, to calculate "step" properly, we have to use wb_dirty as
1282 * "dirty" and wb_setpoint as "setpoint".
5a537485 1283 *
de1fff37
TH
1284 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1285 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1286 * of backing device.
5a537485 1287 */
a88a341a 1288 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1289 dirty = dtc->wb_dirty;
1290 if (dtc->wb_dirty < 8)
1291 setpoint = dtc->wb_dirty + 1;
5a537485 1292 else
970fb01a 1293 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1294 }
1295
7381131c 1296 if (dirty < setpoint) {
a88a341a 1297 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1298 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1299 if (dirty_ratelimit < x)
1300 step = x - dirty_ratelimit;
1301 } else {
a88a341a 1302 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1303 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1304 if (dirty_ratelimit > x)
1305 step = dirty_ratelimit - x;
1306 }
1307
1308 /*
1309 * Don't pursue 100% rate matching. It's impossible since the balanced
1310 * rate itself is constantly fluctuating. So decrease the track speed
1311 * when it gets close to the target. Helps eliminate pointless tremors.
1312 */
d59b1087
AR
1313 shift = dirty_ratelimit / (2 * step + 1);
1314 if (shift < BITS_PER_LONG)
1315 step = DIV_ROUND_UP(step >> shift, 8);
1316 else
1317 step = 0;
7381131c
WF
1318
1319 if (dirty_ratelimit < balanced_dirty_ratelimit)
1320 dirty_ratelimit += step;
1321 else
1322 dirty_ratelimit -= step;
1323
20792ebf 1324 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
a88a341a 1325 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1326
5634cc2a 1327 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1328}
1329
c2aa723a
TH
1330static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1331 struct dirty_throttle_control *mdtc,
8a731799 1332 bool update_ratelimit)
e98be2d5 1333{
c2aa723a 1334 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1335 unsigned long now = jiffies;
45a2966f 1336 unsigned long elapsed;
be3ffa27 1337 unsigned long dirtied;
e98be2d5
WF
1338 unsigned long written;
1339
45a2966f 1340 spin_lock(&wb->list_lock);
8a731799 1341
e98be2d5 1342 /*
45a2966f
JK
1343 * Lockless checks for elapsed time are racy and delayed update after
1344 * IO completion doesn't do it at all (to make sure written pages are
1345 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1346 * division errors.
e98be2d5 1347 */
45a2966f 1348 elapsed = max(now - wb->bw_time_stamp, 1UL);
a88a341a
TH
1349 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1350 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5 1351
8a731799 1352 if (update_ratelimit) {
42dd235c 1353 domain_update_dirty_limit(gdtc, now);
c2aa723a
TH
1354 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1355
1356 /*
1357 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1358 * compiler has no way to figure that out. Help it.
1359 */
1360 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
42dd235c 1361 domain_update_dirty_limit(mdtc, now);
c2aa723a
TH
1362 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1363 }
be3ffa27 1364 }
a88a341a 1365 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5 1366
a88a341a
TH
1367 wb->dirtied_stamp = dirtied;
1368 wb->written_stamp = written;
20792ebf 1369 WRITE_ONCE(wb->bw_time_stamp, now);
45a2966f 1370 spin_unlock(&wb->list_lock);
e98be2d5
WF
1371}
1372
45a2966f 1373void wb_update_bandwidth(struct bdi_writeback *wb)
e98be2d5 1374{
2bc00aef
TH
1375 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1376
fee468fd 1377 __wb_update_bandwidth(&gdtc, NULL, false);
fee468fd
JK
1378}
1379
1380/* Interval after which we consider wb idle and don't estimate bandwidth */
1381#define WB_BANDWIDTH_IDLE_JIF (HZ)
1382
1383static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1384{
1385 unsigned long now = jiffies;
1386 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1387
1388 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1389 !atomic_read(&wb->writeback_inodes)) {
1390 spin_lock(&wb->list_lock);
1391 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1392 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
20792ebf 1393 WRITE_ONCE(wb->bw_time_stamp, now);
fee468fd
JK
1394 spin_unlock(&wb->list_lock);
1395 }
e98be2d5
WF
1396}
1397
9d823e8f 1398/*
d0e1d66b 1399 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1400 * will look to see if it needs to start dirty throttling.
1401 *
1402 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1403 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1404 * (the number of pages we may dirty without exceeding the dirty limits).
1405 */
1406static unsigned long dirty_poll_interval(unsigned long dirty,
1407 unsigned long thresh)
1408{
1409 if (thresh > dirty)
1410 return 1UL << (ilog2(thresh - dirty) >> 1);
1411
1412 return 1;
1413}
1414
a88a341a 1415static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1416 unsigned long wb_dirty)
c8462cc9 1417{
20792ebf 1418 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
e3b6c655 1419 unsigned long t;
c8462cc9 1420
7ccb9ad5
WF
1421 /*
1422 * Limit pause time for small memory systems. If sleeping for too long
1423 * time, a small pool of dirty/writeback pages may go empty and disk go
1424 * idle.
1425 *
1426 * 8 serves as the safety ratio.
1427 */
de1fff37 1428 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1429 t++;
1430
e3b6c655 1431 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1432}
1433
a88a341a
TH
1434static long wb_min_pause(struct bdi_writeback *wb,
1435 long max_pause,
1436 unsigned long task_ratelimit,
1437 unsigned long dirty_ratelimit,
1438 int *nr_dirtied_pause)
c8462cc9 1439{
20792ebf
JK
1440 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1441 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
7ccb9ad5
WF
1442 long t; /* target pause */
1443 long pause; /* estimated next pause */
1444 int pages; /* target nr_dirtied_pause */
c8462cc9 1445
7ccb9ad5
WF
1446 /* target for 10ms pause on 1-dd case */
1447 t = max(1, HZ / 100);
c8462cc9
WF
1448
1449 /*
1450 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1451 * overheads.
1452 *
7ccb9ad5 1453 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1454 */
1455 if (hi > lo)
7ccb9ad5 1456 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1457
1458 /*
7ccb9ad5
WF
1459 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1460 * on the much more stable dirty_ratelimit. However the next pause time
1461 * will be computed based on task_ratelimit and the two rate limits may
1462 * depart considerably at some time. Especially if task_ratelimit goes
1463 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1464 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1465 * result task_ratelimit won't be executed faithfully, which could
1466 * eventually bring down dirty_ratelimit.
c8462cc9 1467 *
7ccb9ad5
WF
1468 * We apply two rules to fix it up:
1469 * 1) try to estimate the next pause time and if necessary, use a lower
1470 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1471 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1472 * 2) limit the target pause time to max_pause/2, so that the normal
1473 * small fluctuations of task_ratelimit won't trigger rule (1) and
1474 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1475 */
7ccb9ad5
WF
1476 t = min(t, 1 + max_pause / 2);
1477 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1478
1479 /*
5b9b3574
WF
1480 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1481 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1482 * When the 16 consecutive reads are often interrupted by some dirty
1483 * throttling pause during the async writes, cfq will go into idles
1484 * (deadline is fine). So push nr_dirtied_pause as high as possible
1485 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1486 */
5b9b3574
WF
1487 if (pages < DIRTY_POLL_THRESH) {
1488 t = max_pause;
1489 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1490 if (pages > DIRTY_POLL_THRESH) {
1491 pages = DIRTY_POLL_THRESH;
1492 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1493 }
1494 }
1495
7ccb9ad5
WF
1496 pause = HZ * pages / (task_ratelimit + 1);
1497 if (pause > max_pause) {
1498 t = max_pause;
1499 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1500 }
c8462cc9 1501
7ccb9ad5 1502 *nr_dirtied_pause = pages;
c8462cc9 1503 /*
7ccb9ad5 1504 * The minimal pause time will normally be half the target pause time.
c8462cc9 1505 */
5b9b3574 1506 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1507}
1508
970fb01a 1509static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1510{
2bc00aef 1511 struct bdi_writeback *wb = dtc->wb;
93f78d88 1512 unsigned long wb_reclaimable;
5a537485
MP
1513
1514 /*
de1fff37 1515 * wb_thresh is not treated as some limiting factor as
5a537485 1516 * dirty_thresh, due to reasons
de1fff37 1517 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1518 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1519 * go into state (wb_dirty >> wb_thresh) either because
1520 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1521 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1522 * dirtiers for 100 seconds until wb_dirty drops under
1523 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1524 * wb_position_ratio() will let the dirtier task progress
de1fff37 1525 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1526 */
b1cbc6d4 1527 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1528 dtc->wb_bg_thresh = dtc->thresh ?
1529 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1530
1531 /*
1532 * In order to avoid the stacked BDI deadlock we need
1533 * to ensure we accurately count the 'dirty' pages when
1534 * the threshold is low.
1535 *
1536 * Otherwise it would be possible to get thresh+n pages
1537 * reported dirty, even though there are thresh-m pages
1538 * actually dirty; with m+n sitting in the percpu
1539 * deltas.
1540 */
2bce774e 1541 if (dtc->wb_thresh < 2 * wb_stat_error()) {
93f78d88 1542 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1543 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1544 } else {
93f78d88 1545 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1546 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1547 }
1548}
1549
1da177e4
LT
1550/*
1551 * balance_dirty_pages() must be called by processes which are generating dirty
1552 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1553 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1554 * If we're over `background_thresh' then the writeback threads are woken to
1555 * perform some writeout.
1da177e4 1556 */
4c578dce 1557static void balance_dirty_pages(struct bdi_writeback *wb,
143dfe86 1558 unsigned long pages_dirtied)
1da177e4 1559{
2bc00aef 1560 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1561 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1562 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1563 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1564 &mdtc_stor : NULL;
1565 struct dirty_throttle_control *sdtc;
8d92890b 1566 unsigned long nr_reclaimable; /* = file_dirty */
83712358 1567 long period;
7ccb9ad5
WF
1568 long pause;
1569 long max_pause;
1570 long min_pause;
1571 int nr_dirtied_pause;
e50e3720 1572 bool dirty_exceeded = false;
143dfe86 1573 unsigned long task_ratelimit;
7ccb9ad5 1574 unsigned long dirty_ratelimit;
dfb8ae56 1575 struct backing_dev_info *bdi = wb->bdi;
5a537485 1576 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1577 unsigned long start_time = jiffies;
1da177e4
LT
1578
1579 for (;;) {
83712358 1580 unsigned long now = jiffies;
2bc00aef 1581 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1582 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1583 unsigned long m_thresh = 0;
1584 unsigned long m_bg_thresh = 0;
83712358 1585
8d92890b 1586 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
9fc3a43e 1587 gdtc->avail = global_dirtyable_memory();
11fb9989 1588 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1589
9fc3a43e 1590 domain_dirty_limits(gdtc);
16c4042f 1591
5a537485 1592 if (unlikely(strictlimit)) {
970fb01a 1593 wb_dirty_limits(gdtc);
5a537485 1594
2bc00aef
TH
1595 dirty = gdtc->wb_dirty;
1596 thresh = gdtc->wb_thresh;
970fb01a 1597 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1598 } else {
2bc00aef
TH
1599 dirty = gdtc->dirty;
1600 thresh = gdtc->thresh;
1601 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1602 }
1603
c2aa723a 1604 if (mdtc) {
c5edf9cd 1605 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1606
1607 /*
1608 * If @wb belongs to !root memcg, repeat the same
1609 * basic calculations for the memcg domain.
1610 */
c5edf9cd
TH
1611 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1612 &mdtc->dirty, &writeback);
c2aa723a 1613 mdtc->dirty += writeback;
c5edf9cd 1614 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1615
1616 domain_dirty_limits(mdtc);
1617
1618 if (unlikely(strictlimit)) {
1619 wb_dirty_limits(mdtc);
1620 m_dirty = mdtc->wb_dirty;
1621 m_thresh = mdtc->wb_thresh;
1622 m_bg_thresh = mdtc->wb_bg_thresh;
1623 } else {
1624 m_dirty = mdtc->dirty;
1625 m_thresh = mdtc->thresh;
1626 m_bg_thresh = mdtc->bg_thresh;
1627 }
5a537485
MP
1628 }
1629
ea6813be
JK
1630 /*
1631 * In laptop mode, we wait until hitting the higher threshold
1632 * before starting background writeout, and then write out all
1633 * the way down to the lower threshold. So slow writers cause
1634 * minimal disk activity.
1635 *
1636 * In normal mode, we start background writeout at the lower
1637 * background_thresh, to keep the amount of dirty memory low.
1638 */
1639 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1640 !writeback_in_progress(wb))
1641 wb_start_background_writeback(wb);
1642
16c4042f
WF
1643 /*
1644 * Throttle it only when the background writeback cannot
1645 * catch-up. This avoids (excessively) small writeouts
de1fff37 1646 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1647 *
de1fff37
TH
1648 * In strictlimit case make decision based on the wb counters
1649 * and limits. Small writeouts when the wb limits are ramping
5a537485 1650 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1651 *
1652 * If memcg domain is in effect, @dirty should be under
1653 * both global and memcg freerun ceilings.
16c4042f 1654 */
c2aa723a
TH
1655 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1656 (!mdtc ||
1657 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
a37b0715
N
1658 unsigned long intv;
1659 unsigned long m_intv;
1660
1661free_running:
1662 intv = dirty_poll_interval(dirty, thresh);
1663 m_intv = ULONG_MAX;
c2aa723a 1664
83712358
WF
1665 current->dirty_paused_when = now;
1666 current->nr_dirtied = 0;
c2aa723a
TH
1667 if (mdtc)
1668 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1669 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1670 break;
83712358 1671 }
16c4042f 1672
ea6813be 1673 /* Start writeback even when in laptop mode */
bc05873d 1674 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1675 wb_start_background_writeback(wb);
143dfe86 1676
97b27821
TH
1677 mem_cgroup_flush_foreign(wb);
1678
c2aa723a
TH
1679 /*
1680 * Calculate global domain's pos_ratio and select the
1681 * global dtc by default.
1682 */
a37b0715 1683 if (!strictlimit) {
970fb01a 1684 wb_dirty_limits(gdtc);
5fce25a9 1685
a37b0715
N
1686 if ((current->flags & PF_LOCAL_THROTTLE) &&
1687 gdtc->wb_dirty <
1688 dirty_freerun_ceiling(gdtc->wb_thresh,
1689 gdtc->wb_bg_thresh))
1690 /*
1691 * LOCAL_THROTTLE tasks must not be throttled
1692 * when below the per-wb freerun ceiling.
1693 */
1694 goto free_running;
1695 }
1696
2bc00aef
TH
1697 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1698 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1699
1700 wb_position_ratio(gdtc);
c2aa723a
TH
1701 sdtc = gdtc;
1702
1703 if (mdtc) {
1704 /*
1705 * If memcg domain is in effect, calculate its
1706 * pos_ratio. @wb should satisfy constraints from
1707 * both global and memcg domains. Choose the one
1708 * w/ lower pos_ratio.
1709 */
a37b0715 1710 if (!strictlimit) {
c2aa723a
TH
1711 wb_dirty_limits(mdtc);
1712
a37b0715
N
1713 if ((current->flags & PF_LOCAL_THROTTLE) &&
1714 mdtc->wb_dirty <
1715 dirty_freerun_ceiling(mdtc->wb_thresh,
1716 mdtc->wb_bg_thresh))
1717 /*
1718 * LOCAL_THROTTLE tasks must not be
1719 * throttled when below the per-wb
1720 * freerun ceiling.
1721 */
1722 goto free_running;
1723 }
c2aa723a
TH
1724 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1725 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1726
1727 wb_position_ratio(mdtc);
1728 if (mdtc->pos_ratio < gdtc->pos_ratio)
1729 sdtc = mdtc;
1730 }
daddfa3c 1731
e92eebbb
JK
1732 if (dirty_exceeded != wb->dirty_exceeded)
1733 wb->dirty_exceeded = dirty_exceeded;
1da177e4 1734
20792ebf 1735 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
45a2966f 1736 BANDWIDTH_INTERVAL))
fee468fd 1737 __wb_update_bandwidth(gdtc, mdtc, true);
e98be2d5 1738
c2aa723a 1739 /* throttle according to the chosen dtc */
20792ebf 1740 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
c2aa723a 1741 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1742 RATELIMIT_CALC_SHIFT;
c2aa723a 1743 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1744 min_pause = wb_min_pause(wb, max_pause,
1745 task_ratelimit, dirty_ratelimit,
1746 &nr_dirtied_pause);
7ccb9ad5 1747
3a73dbbc 1748 if (unlikely(task_ratelimit == 0)) {
83712358 1749 period = max_pause;
c8462cc9 1750 pause = max_pause;
143dfe86 1751 goto pause;
04fbfdc1 1752 }
83712358
WF
1753 period = HZ * pages_dirtied / task_ratelimit;
1754 pause = period;
1755 if (current->dirty_paused_when)
1756 pause -= now - current->dirty_paused_when;
1757 /*
1758 * For less than 1s think time (ext3/4 may block the dirtier
1759 * for up to 800ms from time to time on 1-HDD; so does xfs,
1760 * however at much less frequency), try to compensate it in
1761 * future periods by updating the virtual time; otherwise just
1762 * do a reset, as it may be a light dirtier.
1763 */
7ccb9ad5 1764 if (pause < min_pause) {
5634cc2a 1765 trace_balance_dirty_pages(wb,
c2aa723a
TH
1766 sdtc->thresh,
1767 sdtc->bg_thresh,
1768 sdtc->dirty,
1769 sdtc->wb_thresh,
1770 sdtc->wb_dirty,
ece13ac3
WF
1771 dirty_ratelimit,
1772 task_ratelimit,
1773 pages_dirtied,
83712358 1774 period,
7ccb9ad5 1775 min(pause, 0L),
ece13ac3 1776 start_time);
83712358
WF
1777 if (pause < -HZ) {
1778 current->dirty_paused_when = now;
1779 current->nr_dirtied = 0;
1780 } else if (period) {
1781 current->dirty_paused_when += period;
1782 current->nr_dirtied = 0;
7ccb9ad5
WF
1783 } else if (current->nr_dirtied_pause <= pages_dirtied)
1784 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1785 break;
04fbfdc1 1786 }
7ccb9ad5
WF
1787 if (unlikely(pause > max_pause)) {
1788 /* for occasional dropped task_ratelimit */
1789 now += min(pause - max_pause, max_pause);
1790 pause = max_pause;
1791 }
143dfe86
WF
1792
1793pause:
5634cc2a 1794 trace_balance_dirty_pages(wb,
c2aa723a
TH
1795 sdtc->thresh,
1796 sdtc->bg_thresh,
1797 sdtc->dirty,
1798 sdtc->wb_thresh,
1799 sdtc->wb_dirty,
ece13ac3
WF
1800 dirty_ratelimit,
1801 task_ratelimit,
1802 pages_dirtied,
83712358 1803 period,
ece13ac3
WF
1804 pause,
1805 start_time);
499d05ec 1806 __set_current_state(TASK_KILLABLE);
b57d74af 1807 wb->dirty_sleep = now;
d25105e8 1808 io_schedule_timeout(pause);
87c6a9b2 1809
83712358
WF
1810 current->dirty_paused_when = now + pause;
1811 current->nr_dirtied = 0;
7ccb9ad5 1812 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1813
ffd1f609 1814 /*
2bc00aef
TH
1815 * This is typically equal to (dirty < thresh) and can also
1816 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1817 */
1df64719 1818 if (task_ratelimit)
ffd1f609 1819 break;
499d05ec 1820
c5c6343c 1821 /*
f0953a1b 1822 * In the case of an unresponsive NFS server and the NFS dirty
de1fff37 1823 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1824 * to go through, so that tasks on them still remain responsive.
1825 *
3f8b6fb7 1826 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1827 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1828 * more page. However wb_dirty has accounting errors. So use
93f78d88 1829 * the larger and more IO friendly wb_stat_error.
c5c6343c 1830 */
2bce774e 1831 if (sdtc->wb_dirty <= wb_stat_error())
c5c6343c
WF
1832 break;
1833
499d05ec
JK
1834 if (fatal_signal_pending(current))
1835 break;
1da177e4 1836 }
1da177e4
LT
1837}
1838
9d823e8f 1839static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1840
54848d73
WF
1841/*
1842 * Normal tasks are throttled by
1843 * loop {
1844 * dirty tsk->nr_dirtied_pause pages;
1845 * take a snap in balance_dirty_pages();
1846 * }
1847 * However there is a worst case. If every task exit immediately when dirtied
1848 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1849 * called to throttle the page dirties. The solution is to save the not yet
1850 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1851 * randomly into the running tasks. This works well for the above worst case,
1852 * as the new task will pick up and accumulate the old task's leaked dirty
1853 * count and eventually get throttled.
1854 */
1855DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1856
1da177e4 1857/**
d0e1d66b 1858 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1859 * @mapping: address_space which was dirtied
1da177e4
LT
1860 *
1861 * Processes which are dirtying memory should call in here once for each page
1862 * which was newly dirtied. The function will periodically check the system's
1863 * dirty state and will initiate writeback if needed.
1864 *
5defd497
KW
1865 * Once we're over the dirty memory limit we decrease the ratelimiting
1866 * by a lot, to prevent individual processes from overshooting the limit
1867 * by (ratelimit_pages) each.
1da177e4 1868 */
d0e1d66b 1869void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1870{
dfb8ae56
TH
1871 struct inode *inode = mapping->host;
1872 struct backing_dev_info *bdi = inode_to_bdi(inode);
1873 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1874 int ratelimit;
1875 int *p;
1da177e4 1876
f56753ac 1877 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
36715cef
WF
1878 return;
1879
dfb8ae56
TH
1880 if (inode_cgwb_enabled(inode))
1881 wb = wb_get_create_current(bdi, GFP_KERNEL);
1882 if (!wb)
1883 wb = &bdi->wb;
1884
9d823e8f 1885 ratelimit = current->nr_dirtied_pause;
a88a341a 1886 if (wb->dirty_exceeded)
9d823e8f
WF
1887 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1888
9d823e8f 1889 preempt_disable();
1da177e4 1890 /*
9d823e8f
WF
1891 * This prevents one CPU to accumulate too many dirtied pages without
1892 * calling into balance_dirty_pages(), which can happen when there are
1893 * 1000+ tasks, all of them start dirtying pages at exactly the same
1894 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1895 */
7c8e0181 1896 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1897 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1898 *p = 0;
d3bc1fef
WF
1899 else if (unlikely(*p >= ratelimit_pages)) {
1900 *p = 0;
1901 ratelimit = 0;
1da177e4 1902 }
54848d73
WF
1903 /*
1904 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1905 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1906 * the dirty throttling and livelock other long-run dirtiers.
1907 */
7c8e0181 1908 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1909 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1910 unsigned long nr_pages_dirtied;
54848d73
WF
1911 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1912 *p -= nr_pages_dirtied;
1913 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1914 }
fa5a734e 1915 preempt_enable();
9d823e8f
WF
1916
1917 if (unlikely(current->nr_dirtied >= ratelimit))
4c578dce 1918 balance_dirty_pages(wb, current->nr_dirtied);
dfb8ae56
TH
1919
1920 wb_put(wb);
1da177e4 1921}
d0e1d66b 1922EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1923
aa661bbe
TH
1924/**
1925 * wb_over_bg_thresh - does @wb need to be written back?
1926 * @wb: bdi_writeback of interest
1927 *
1928 * Determines whether background writeback should keep writing @wb or it's
a862f68a
MR
1929 * clean enough.
1930 *
1931 * Return: %true if writeback should continue.
aa661bbe
TH
1932 */
1933bool wb_over_bg_thresh(struct bdi_writeback *wb)
1934{
947e9762 1935 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1936 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1937 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1938 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1939 &mdtc_stor : NULL;
ab19939a
CW
1940 unsigned long reclaimable;
1941 unsigned long thresh;
aa661bbe 1942
947e9762
TH
1943 /*
1944 * Similar to balance_dirty_pages() but ignores pages being written
1945 * as we're trying to decide whether to put more under writeback.
1946 */
1947 gdtc->avail = global_dirtyable_memory();
8d92890b 1948 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
947e9762 1949 domain_dirty_limits(gdtc);
aa661bbe 1950
947e9762 1951 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1952 return true;
1953
ab19939a
CW
1954 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1955 if (thresh < 2 * wb_stat_error())
1956 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1957 else
1958 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1959
1960 if (reclaimable > thresh)
aa661bbe
TH
1961 return true;
1962
c2aa723a 1963 if (mdtc) {
c5edf9cd 1964 unsigned long filepages, headroom, writeback;
c2aa723a 1965
c5edf9cd
TH
1966 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1967 &writeback);
1968 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1969 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1970
1971 if (mdtc->dirty > mdtc->bg_thresh)
1972 return true;
1973
ab19939a
CW
1974 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1975 if (thresh < 2 * wb_stat_error())
1976 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1977 else
1978 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1979
1980 if (reclaimable > thresh)
c2aa723a
TH
1981 return true;
1982 }
1983
aa661bbe
TH
1984 return false;
1985}
1986
aa779e51 1987#ifdef CONFIG_SYSCTL
1da177e4
LT
1988/*
1989 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1990 */
aa779e51 1991static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
32927393 1992 void *buffer, size_t *length, loff_t *ppos)
1da177e4 1993{
94af5846
YS
1994 unsigned int old_interval = dirty_writeback_interval;
1995 int ret;
1996
1997 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
1998
1999 /*
2000 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2001 * and a different non-zero value will wakeup the writeback threads.
2002 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2003 * iterate over all bdis and wbs.
2004 * The reason we do this is to make the change take effect immediately.
2005 */
2006 if (!ret && write && dirty_writeback_interval &&
2007 dirty_writeback_interval != old_interval)
94af5846
YS
2008 wakeup_flusher_threads(WB_REASON_PERIODIC);
2009
2010 return ret;
1da177e4 2011}
aa779e51 2012#endif
1da177e4 2013
bca237a5 2014void laptop_mode_timer_fn(struct timer_list *t)
1da177e4 2015{
bca237a5
KC
2016 struct backing_dev_info *backing_dev_info =
2017 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1da177e4 2018
bca237a5 2019 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
2020}
2021
2022/*
2023 * We've spun up the disk and we're in laptop mode: schedule writeback
2024 * of all dirty data a few seconds from now. If the flush is already scheduled
2025 * then push it back - the user is still using the disk.
2026 */
31373d09 2027void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2028{
31373d09 2029 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2030}
2031
2032/*
2033 * We're in laptop mode and we've just synced. The sync's writes will have
2034 * caused another writeback to be scheduled by laptop_io_completion.
2035 * Nothing needs to be written back anymore, so we unschedule the writeback.
2036 */
2037void laptop_sync_completion(void)
2038{
31373d09
MG
2039 struct backing_dev_info *bdi;
2040
2041 rcu_read_lock();
2042
2043 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2044 del_timer(&bdi->laptop_mode_wb_timer);
2045
2046 rcu_read_unlock();
1da177e4
LT
2047}
2048
2049/*
2050 * If ratelimit_pages is too high then we can get into dirty-data overload
2051 * if a large number of processes all perform writes at the same time.
1da177e4
LT
2052 *
2053 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2054 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2055 * thresholds.
1da177e4
LT
2056 */
2057
2d1d43f6 2058void writeback_set_ratelimit(void)
1da177e4 2059{
dcc25ae7 2060 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2061 unsigned long background_thresh;
2062 unsigned long dirty_thresh;
dcc25ae7 2063
9d823e8f 2064 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2065 dom->dirty_limit = dirty_thresh;
9d823e8f 2066 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2067 if (ratelimit_pages < 16)
2068 ratelimit_pages = 16;
1da177e4
LT
2069}
2070
1d7ac6ae 2071static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2072{
1d7ac6ae
SAS
2073 writeback_set_ratelimit();
2074 return 0;
1da177e4
LT
2075}
2076
aa779e51 2077#ifdef CONFIG_SYSCTL
3c6a4cba
LC
2078
2079/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2080static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2081
aa779e51 2082static struct ctl_table vm_page_writeback_sysctls[] = {
2083 {
2084 .procname = "dirty_background_ratio",
2085 .data = &dirty_background_ratio,
2086 .maxlen = sizeof(dirty_background_ratio),
2087 .mode = 0644,
2088 .proc_handler = dirty_background_ratio_handler,
2089 .extra1 = SYSCTL_ZERO,
2090 .extra2 = SYSCTL_ONE_HUNDRED,
2091 },
2092 {
2093 .procname = "dirty_background_bytes",
2094 .data = &dirty_background_bytes,
2095 .maxlen = sizeof(dirty_background_bytes),
2096 .mode = 0644,
2097 .proc_handler = dirty_background_bytes_handler,
2098 .extra1 = SYSCTL_LONG_ONE,
2099 },
2100 {
2101 .procname = "dirty_ratio",
2102 .data = &vm_dirty_ratio,
2103 .maxlen = sizeof(vm_dirty_ratio),
2104 .mode = 0644,
2105 .proc_handler = dirty_ratio_handler,
2106 .extra1 = SYSCTL_ZERO,
2107 .extra2 = SYSCTL_ONE_HUNDRED,
2108 },
2109 {
2110 .procname = "dirty_bytes",
2111 .data = &vm_dirty_bytes,
2112 .maxlen = sizeof(vm_dirty_bytes),
2113 .mode = 0644,
2114 .proc_handler = dirty_bytes_handler,
2115 .extra1 = (void *)&dirty_bytes_min,
2116 },
2117 {
2118 .procname = "dirty_writeback_centisecs",
2119 .data = &dirty_writeback_interval,
2120 .maxlen = sizeof(dirty_writeback_interval),
2121 .mode = 0644,
2122 .proc_handler = dirty_writeback_centisecs_handler,
2123 },
2124 {
2125 .procname = "dirty_expire_centisecs",
2126 .data = &dirty_expire_interval,
2127 .maxlen = sizeof(dirty_expire_interval),
2128 .mode = 0644,
2129 .proc_handler = proc_dointvec_minmax,
2130 .extra1 = SYSCTL_ZERO,
2131 },
2132#ifdef CONFIG_HIGHMEM
2133 {
2134 .procname = "highmem_is_dirtyable",
2135 .data = &vm_highmem_is_dirtyable,
2136 .maxlen = sizeof(vm_highmem_is_dirtyable),
2137 .mode = 0644,
2138 .proc_handler = proc_dointvec_minmax,
2139 .extra1 = SYSCTL_ZERO,
2140 .extra2 = SYSCTL_ONE,
2141 },
2142#endif
2143 {
2144 .procname = "laptop_mode",
2145 .data = &laptop_mode,
2146 .maxlen = sizeof(laptop_mode),
2147 .mode = 0644,
2148 .proc_handler = proc_dointvec_jiffies,
2149 },
2150 {}
2151};
2152#endif
2153
1da177e4 2154/*
dc6e29da
LT
2155 * Called early on to tune the page writeback dirty limits.
2156 *
2157 * We used to scale dirty pages according to how total memory
0a18e607 2158 * related to pages that could be allocated for buffers.
dc6e29da
LT
2159 *
2160 * However, that was when we used "dirty_ratio" to scale with
2161 * all memory, and we don't do that any more. "dirty_ratio"
0a18e607 2162 * is now applied to total non-HIGHPAGE memory, and as such we can't
dc6e29da
LT
2163 * get into the old insane situation any more where we had
2164 * large amounts of dirty pages compared to a small amount of
2165 * non-HIGHMEM memory.
2166 *
2167 * But we might still want to scale the dirty_ratio by how
2168 * much memory the box has..
1da177e4
LT
2169 */
2170void __init page_writeback_init(void)
2171{
a50fcb51
RV
2172 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2173
1d7ac6ae
SAS
2174 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2175 page_writeback_cpu_online, NULL);
2176 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2177 page_writeback_cpu_online);
aa779e51 2178#ifdef CONFIG_SYSCTL
2179 register_sysctl_init("vm", vm_page_writeback_sysctls);
2180#endif
1da177e4
LT
2181}
2182
f446daae
JK
2183/**
2184 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2185 * @mapping: address space structure to write
2186 * @start: starting page index
2187 * @end: ending page index (inclusive)
2188 *
2189 * This function scans the page range from @start to @end (inclusive) and tags
2190 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2191 * that write_cache_pages (or whoever calls this function) will then use
2192 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2193 * used to avoid livelocking of writeback by a process steadily creating new
2194 * dirty pages in the file (thus it is important for this function to be quick
2195 * so that it can tag pages faster than a dirtying process can create them).
2196 */
f446daae
JK
2197void tag_pages_for_writeback(struct address_space *mapping,
2198 pgoff_t start, pgoff_t end)
2199{
ff9c745b
MW
2200 XA_STATE(xas, &mapping->i_pages, start);
2201 unsigned int tagged = 0;
2202 void *page;
268f42de 2203
ff9c745b
MW
2204 xas_lock_irq(&xas);
2205 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2206 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2207 if (++tagged % XA_CHECK_SCHED)
268f42de 2208 continue;
ff9c745b
MW
2209
2210 xas_pause(&xas);
2211 xas_unlock_irq(&xas);
f446daae 2212 cond_resched();
ff9c745b 2213 xas_lock_irq(&xas);
268f42de 2214 }
ff9c745b 2215 xas_unlock_irq(&xas);
f446daae
JK
2216}
2217EXPORT_SYMBOL(tag_pages_for_writeback);
2218
811d736f 2219/**
0ea97180 2220 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2221 * @mapping: address space structure to write
2222 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2223 * @writepage: function called for each page
2224 * @data: data passed to writepage function
811d736f 2225 *
0ea97180 2226 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2227 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2228 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2229 * and msync() need to guarantee that all the data which was dirty at the time
2230 * the call was made get new I/O started against them. If wbc->sync_mode is
2231 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2232 * existing IO to complete.
f446daae
JK
2233 *
2234 * To avoid livelocks (when other process dirties new pages), we first tag
2235 * pages which should be written back with TOWRITE tag and only then start
2236 * writing them. For data-integrity sync we have to be careful so that we do
2237 * not miss some pages (e.g., because some other process has cleared TOWRITE
2238 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2239 * by the process clearing the DIRTY tag (and submitting the page for IO).
64081362
DC
2240 *
2241 * To avoid deadlocks between range_cyclic writeback and callers that hold
2242 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2243 * we do not loop back to the start of the file. Doing so causes a page
2244 * lock/page writeback access order inversion - we should only ever lock
2245 * multiple pages in ascending page->index order, and looping back to the start
2246 * of the file violates that rule and causes deadlocks.
a862f68a
MR
2247 *
2248 * Return: %0 on success, negative error code otherwise
811d736f 2249 */
0ea97180
MS
2250int write_cache_pages(struct address_space *mapping,
2251 struct writeback_control *wbc, writepage_t writepage,
2252 void *data)
811d736f 2253{
811d736f
DH
2254 int ret = 0;
2255 int done = 0;
3fa750dc 2256 int error;
811d736f
DH
2257 struct pagevec pvec;
2258 int nr_pages;
2259 pgoff_t index;
2260 pgoff_t end; /* Inclusive */
bd19e012 2261 pgoff_t done_index;
811d736f 2262 int range_whole = 0;
ff9c745b 2263 xa_mark_t tag;
811d736f 2264
86679820 2265 pagevec_init(&pvec);
811d736f 2266 if (wbc->range_cyclic) {
28659cc8 2267 index = mapping->writeback_index; /* prev offset */
811d736f
DH
2268 end = -1;
2269 } else {
09cbfeaf
KS
2270 index = wbc->range_start >> PAGE_SHIFT;
2271 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2272 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2273 range_whole = 1;
811d736f 2274 }
cc7b8f62
MFO
2275 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2276 tag_pages_for_writeback(mapping, index, end);
f446daae 2277 tag = PAGECACHE_TAG_TOWRITE;
cc7b8f62 2278 } else {
f446daae 2279 tag = PAGECACHE_TAG_DIRTY;
cc7b8f62 2280 }
bd19e012 2281 done_index = index;
5a3d5c98
NP
2282 while (!done && (index <= end)) {
2283 int i;
2284
2b9775ae 2285 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2286 tag);
5a3d5c98
NP
2287 if (nr_pages == 0)
2288 break;
811d736f 2289
811d736f
DH
2290 for (i = 0; i < nr_pages; i++) {
2291 struct page *page = pvec.pages[i];
2292
cf15b07c 2293 done_index = page->index;
d5482cdf 2294
811d736f
DH
2295 lock_page(page);
2296
5a3d5c98
NP
2297 /*
2298 * Page truncated or invalidated. We can freely skip it
2299 * then, even for data integrity operations: the page
2300 * has disappeared concurrently, so there could be no
f0953a1b 2301 * real expectation of this data integrity operation
5a3d5c98
NP
2302 * even if there is now a new, dirty page at the same
2303 * pagecache address.
2304 */
811d736f 2305 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2306continue_unlock:
811d736f
DH
2307 unlock_page(page);
2308 continue;
2309 }
2310
515f4a03
NP
2311 if (!PageDirty(page)) {
2312 /* someone wrote it for us */
2313 goto continue_unlock;
2314 }
2315
2316 if (PageWriteback(page)) {
2317 if (wbc->sync_mode != WB_SYNC_NONE)
2318 wait_on_page_writeback(page);
2319 else
2320 goto continue_unlock;
2321 }
811d736f 2322
515f4a03
NP
2323 BUG_ON(PageWriteback(page));
2324 if (!clear_page_dirty_for_io(page))
5a3d5c98 2325 goto continue_unlock;
811d736f 2326
de1414a6 2327 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
3fa750dc
BF
2328 error = (*writepage)(page, wbc, data);
2329 if (unlikely(error)) {
2330 /*
2331 * Handle errors according to the type of
2332 * writeback. There's no need to continue for
2333 * background writeback. Just push done_index
2334 * past this page so media errors won't choke
2335 * writeout for the entire file. For integrity
2336 * writeback, we must process the entire dirty
2337 * set regardless of errors because the fs may
2338 * still have state to clear for each page. In
2339 * that case we continue processing and return
2340 * the first error.
2341 */
2342 if (error == AOP_WRITEPAGE_ACTIVATE) {
00266770 2343 unlock_page(page);
3fa750dc
BF
2344 error = 0;
2345 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2346 ret = error;
cf15b07c 2347 done_index = page->index + 1;
00266770
NP
2348 done = 1;
2349 break;
2350 }
3fa750dc
BF
2351 if (!ret)
2352 ret = error;
0b564927 2353 }
00266770 2354
546a1924
DC
2355 /*
2356 * We stop writing back only if we are not doing
2357 * integrity sync. In case of integrity sync we have to
2358 * keep going until we have written all the pages
2359 * we tagged for writeback prior to entering this loop.
2360 */
2361 if (--wbc->nr_to_write <= 0 &&
2362 wbc->sync_mode == WB_SYNC_NONE) {
2363 done = 1;
2364 break;
05fe478d 2365 }
811d736f
DH
2366 }
2367 pagevec_release(&pvec);
2368 cond_resched();
2369 }
64081362
DC
2370
2371 /*
2372 * If we hit the last page and there is more work to be done: wrap
2373 * back the index back to the start of the file for the next
2374 * time we are called.
2375 */
2376 if (wbc->range_cyclic && !done)
2377 done_index = 0;
0b564927
DC
2378 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2379 mapping->writeback_index = done_index;
06d6cf69 2380
811d736f
DH
2381 return ret;
2382}
0ea97180
MS
2383EXPORT_SYMBOL(write_cache_pages);
2384
2385/*
2386 * Function used by generic_writepages to call the real writepage
2387 * function and set the mapping flags on error
2388 */
2389static int __writepage(struct page *page, struct writeback_control *wbc,
2390 void *data)
2391{
2392 struct address_space *mapping = data;
2393 int ret = mapping->a_ops->writepage(page, wbc);
2394 mapping_set_error(mapping, ret);
2395 return ret;
2396}
2397
2398/**
2399 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2400 * @mapping: address space structure to write
2401 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2402 *
2403 * This is a library function, which implements the writepages()
2404 * address_space_operation.
a862f68a
MR
2405 *
2406 * Return: %0 on success, negative error code otherwise
0ea97180
MS
2407 */
2408int generic_writepages(struct address_space *mapping,
2409 struct writeback_control *wbc)
2410{
9b6096a6
SL
2411 struct blk_plug plug;
2412 int ret;
2413
0ea97180
MS
2414 /* deal with chardevs and other special file */
2415 if (!mapping->a_ops->writepage)
2416 return 0;
2417
9b6096a6
SL
2418 blk_start_plug(&plug);
2419 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2420 blk_finish_plug(&plug);
2421 return ret;
0ea97180 2422}
811d736f
DH
2423
2424EXPORT_SYMBOL(generic_writepages);
2425
1da177e4
LT
2426int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2427{
22905f77 2428 int ret;
fee468fd 2429 struct bdi_writeback *wb;
22905f77 2430
1da177e4
LT
2431 if (wbc->nr_to_write <= 0)
2432 return 0;
fee468fd
JK
2433 wb = inode_to_wb_wbc(mapping->host, wbc);
2434 wb_bandwidth_estimate_start(wb);
80a2ea9f
TT
2435 while (1) {
2436 if (mapping->a_ops->writepages)
2437 ret = mapping->a_ops->writepages(mapping, wbc);
2438 else
2439 ret = generic_writepages(mapping, wbc);
2440 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2441 break;
8d58802f
MG
2442
2443 /*
2444 * Lacking an allocation context or the locality or writeback
2445 * state of any of the inode's pages, throttle based on
2446 * writeback activity on the local node. It's as good a
2447 * guess as any.
2448 */
2449 reclaim_throttle(NODE_DATA(numa_node_id()),
c3f4a9a2 2450 VMSCAN_THROTTLE_WRITEBACK);
80a2ea9f 2451 }
45a2966f
JK
2452 /*
2453 * Usually few pages are written by now from those we've just submitted
2454 * but if there's constant writeback being submitted, this makes sure
2455 * writeback bandwidth is updated once in a while.
2456 */
20792ebf
JK
2457 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2458 BANDWIDTH_INTERVAL))
45a2966f 2459 wb_update_bandwidth(wb);
22905f77 2460 return ret;
1da177e4
LT
2461}
2462
2463/**
121703c1
MWO
2464 * folio_write_one - write out a single folio and wait on I/O.
2465 * @folio: The folio to write.
1da177e4 2466 *
121703c1 2467 * The folio must be locked by the caller and will be unlocked upon return.
1da177e4 2468 *
37e51a76
JL
2469 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2470 * function returns.
a862f68a
MR
2471 *
2472 * Return: %0 on success, negative error code otherwise
1da177e4 2473 */
121703c1 2474int folio_write_one(struct folio *folio)
1da177e4 2475{
121703c1 2476 struct address_space *mapping = folio->mapping;
1da177e4
LT
2477 int ret = 0;
2478 struct writeback_control wbc = {
2479 .sync_mode = WB_SYNC_ALL,
121703c1 2480 .nr_to_write = folio_nr_pages(folio),
1da177e4
LT
2481 };
2482
121703c1 2483 BUG_ON(!folio_test_locked(folio));
1da177e4 2484
121703c1 2485 folio_wait_writeback(folio);
1da177e4 2486
121703c1
MWO
2487 if (folio_clear_dirty_for_io(folio)) {
2488 folio_get(folio);
2489 ret = mapping->a_ops->writepage(&folio->page, &wbc);
37e51a76 2490 if (ret == 0)
121703c1
MWO
2491 folio_wait_writeback(folio);
2492 folio_put(folio);
1da177e4 2493 } else {
121703c1 2494 folio_unlock(folio);
1da177e4 2495 }
37e51a76
JL
2496
2497 if (!ret)
2498 ret = filemap_check_errors(mapping);
1da177e4
LT
2499 return ret;
2500}
121703c1 2501EXPORT_SYMBOL(folio_write_one);
1da177e4 2502
76719325
KC
2503/*
2504 * For address_spaces which do not use buffers nor write back.
2505 */
46de8b97 2506bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
76719325 2507{
46de8b97
MWO
2508 if (!folio_test_dirty(folio))
2509 return !folio_test_set_dirty(folio);
2510 return false;
76719325 2511}
46de8b97 2512EXPORT_SYMBOL(noop_dirty_folio);
76719325 2513
e3a7cca1
ES
2514/*
2515 * Helper function for set_page_dirty family.
c4843a75 2516 *
81f8c3a4 2517 * Caller must hold lock_page_memcg().
c4843a75 2518 *
e3a7cca1
ES
2519 * NOTE: This relies on being atomic wrt interrupts.
2520 */
203a3151 2521static void folio_account_dirtied(struct folio *folio,
6e1cae88 2522 struct address_space *mapping)
e3a7cca1 2523{
52ebea74
TH
2524 struct inode *inode = mapping->host;
2525
b9b0ff61 2526 trace_writeback_dirty_folio(folio, mapping);
9fb0a7da 2527
f56753ac 2528 if (mapping_can_writeback(mapping)) {
52ebea74 2529 struct bdi_writeback *wb;
203a3151 2530 long nr = folio_nr_pages(folio);
de1414a6 2531
203a3151 2532 inode_attach_wb(inode, &folio->page);
52ebea74 2533 wb = inode_to_wb(inode);
de1414a6 2534
203a3151
MWO
2535 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2536 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2537 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2538 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2539 wb_stat_mod(wb, WB_DIRTIED, nr);
2540 task_io_account_write(nr * PAGE_SIZE);
2541 current->nr_dirtied += nr;
2542 __this_cpu_add(bdp_ratelimits, nr);
97b27821 2543
203a3151 2544 mem_cgroup_track_foreign_dirty(folio, wb);
e3a7cca1
ES
2545 }
2546}
2547
b9ea2515
KK
2548/*
2549 * Helper function for deaccounting dirty page without writeback.
2550 *
81f8c3a4 2551 * Caller must hold lock_page_memcg().
b9ea2515 2552 */
566d3362 2553void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
b9ea2515 2554{
566d3362
HD
2555 long nr = folio_nr_pages(folio);
2556
2557 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2558 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2559 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2560 task_io_account_cancelled_write(nr * PAGE_SIZE);
b9ea2515 2561}
b9ea2515 2562
6e1cae88 2563/*
203a3151
MWO
2564 * Mark the folio dirty, and set it dirty in the page cache, and mark
2565 * the inode dirty.
6e1cae88 2566 *
203a3151 2567 * If warn is true, then emit a warning if the folio is not uptodate and has
6e1cae88
MWO
2568 * not been truncated.
2569 *
a229a4f0
MWO
2570 * The caller must hold lock_page_memcg(). Most callers have the folio
2571 * locked. A few have the folio blocked from truncation through other
2572 * means (eg zap_page_range() has it mapped and is holding the page table
2573 * lock). This can also be called from mark_buffer_dirty(), which I
2574 * cannot prove is always protected against truncate.
6e1cae88 2575 */
203a3151 2576void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
6e1cae88
MWO
2577 int warn)
2578{
2579 unsigned long flags;
2580
2581 xa_lock_irqsave(&mapping->i_pages, flags);
203a3151
MWO
2582 if (folio->mapping) { /* Race with truncate? */
2583 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2584 folio_account_dirtied(folio, mapping);
2585 __xa_set_mark(&mapping->i_pages, folio_index(folio),
6e1cae88
MWO
2586 PAGECACHE_TAG_DIRTY);
2587 }
2588 xa_unlock_irqrestore(&mapping->i_pages, flags);
2589}
2590
85d4d2eb
MWO
2591/**
2592 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2593 * @mapping: Address space this folio belongs to.
2594 * @folio: Folio to be marked as dirty.
1da177e4 2595 *
85d4d2eb
MWO
2596 * Filesystems which do not use buffer heads should call this function
2597 * from their set_page_dirty address space operation. It ignores the
2598 * contents of folio_get_private(), so if the filesystem marks individual
2599 * blocks as dirty, the filesystem should handle that itself.
1da177e4 2600 *
85d4d2eb
MWO
2601 * This is also sometimes used by filesystems which use buffer_heads when
2602 * a single buffer is being dirtied: we want to set the folio dirty in
2603 * that case, but not all the buffers. This is a "bottom-up" dirtying,
e621900a 2604 * whereas block_dirty_folio() is a "top-down" dirtying.
85d4d2eb
MWO
2605 *
2606 * The caller must ensure this doesn't race with truncation. Most will
2607 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2608 * folio mapped and the pte lock held, which also locks out truncation.
1da177e4 2609 */
85d4d2eb 2610bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
1da177e4 2611{
85d4d2eb
MWO
2612 folio_memcg_lock(folio);
2613 if (folio_test_set_dirty(folio)) {
2614 folio_memcg_unlock(folio);
2615 return false;
2616 }
1da177e4 2617
85d4d2eb
MWO
2618 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2619 folio_memcg_unlock(folio);
c4843a75 2620
85d4d2eb
MWO
2621 if (mapping->host) {
2622 /* !PageAnon && !swapper_space */
2623 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2624 }
85d4d2eb 2625 return true;
1da177e4 2626}
85d4d2eb 2627EXPORT_SYMBOL(filemap_dirty_folio);
1da177e4 2628
25ff8b15
MWO
2629/**
2630 * folio_account_redirty - Manually account for redirtying a page.
2631 * @folio: The folio which is being redirtied.
2632 *
2633 * Most filesystems should call folio_redirty_for_writepage() instead
2634 * of this fuction. If your filesystem is doing writeback outside the
2635 * context of a writeback_control(), it can call this when redirtying
2636 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2637 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2638 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2639 * in balanced_dirty_ratelimit and the dirty pages position control.
2f800fbd 2640 */
25ff8b15 2641void folio_account_redirty(struct folio *folio)
2f800fbd 2642{
25ff8b15 2643 struct address_space *mapping = folio->mapping;
91018134 2644
f56753ac 2645 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2646 struct inode *inode = mapping->host;
2647 struct bdi_writeback *wb;
2e898e4c 2648 struct wb_lock_cookie cookie = {};
25ff8b15 2649 long nr = folio_nr_pages(folio);
91018134 2650
2e898e4c 2651 wb = unlocked_inode_to_wb_begin(inode, &cookie);
25ff8b15
MWO
2652 current->nr_dirtied -= nr;
2653 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2654 wb_stat_mod(wb, WB_DIRTIED, -nr);
2e898e4c 2655 unlocked_inode_to_wb_end(inode, &cookie);
2f800fbd
WF
2656 }
2657}
25ff8b15 2658EXPORT_SYMBOL(folio_account_redirty);
2f800fbd 2659
cd78ab11
MWO
2660/**
2661 * folio_redirty_for_writepage - Decline to write a dirty folio.
2662 * @wbc: The writeback control.
2663 * @folio: The folio.
2664 *
2665 * When a writepage implementation decides that it doesn't want to write
2666 * @folio for some reason, it should call this function, unlock @folio and
2667 * return 0.
2668 *
2669 * Return: True if we redirtied the folio. False if someone else dirtied
2670 * it first.
1da177e4 2671 */
cd78ab11
MWO
2672bool folio_redirty_for_writepage(struct writeback_control *wbc,
2673 struct folio *folio)
1da177e4 2674{
cd78ab11
MWO
2675 bool ret;
2676 long nr = folio_nr_pages(folio);
2677
2678 wbc->pages_skipped += nr;
2679 ret = filemap_dirty_folio(folio->mapping, folio);
2680 folio_account_redirty(folio);
8d38633c 2681
8d38633c 2682 return ret;
1da177e4 2683}
cd78ab11 2684EXPORT_SYMBOL(folio_redirty_for_writepage);
1da177e4 2685
b5e84594
MWO
2686/**
2687 * folio_mark_dirty - Mark a folio as being modified.
2688 * @folio: The folio.
6746aff7 2689 *
2ca456c2
MWO
2690 * The folio may not be truncated while this function is running.
2691 * Holding the folio lock is sufficient to prevent truncation, but some
2692 * callers cannot acquire a sleeping lock. These callers instead hold
2693 * the page table lock for a page table which contains at least one page
2694 * in this folio. Truncation will block on the page table lock as it
2695 * unmaps pages before removing the folio from its mapping.
b5e84594
MWO
2696 *
2697 * Return: True if the folio was newly dirtied, false if it was already dirty.
1da177e4 2698 */
b5e84594 2699bool folio_mark_dirty(struct folio *folio)
1da177e4 2700{
b5e84594 2701 struct address_space *mapping = folio_mapping(folio);
1da177e4
LT
2702
2703 if (likely(mapping)) {
278df9f4
MK
2704 /*
2705 * readahead/lru_deactivate_page could remain
6f31a5a2
MWO
2706 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2707 * About readahead, if the folio is written, the flags would be
278df9f4 2708 * reset. So no problem.
6f31a5a2
MWO
2709 * About lru_deactivate_page, if the folio is redirtied,
2710 * the flag will be reset. So no problem. but if the
2711 * folio is used by readahead it will confuse readahead
2712 * and make it restart the size rampup process. But it's
2713 * a trivial problem.
278df9f4 2714 */
b5e84594
MWO
2715 if (folio_test_reclaim(folio))
2716 folio_clear_reclaim(folio);
3a3bae50 2717 return mapping->a_ops->dirty_folio(mapping, folio);
4741c9fd 2718 }
3a3bae50
MWO
2719
2720 return noop_dirty_folio(mapping, folio);
1da177e4 2721}
b5e84594 2722EXPORT_SYMBOL(folio_mark_dirty);
1da177e4
LT
2723
2724/*
2725 * set_page_dirty() is racy if the caller has no reference against
2726 * page->mapping->host, and if the page is unlocked. This is because another
2727 * CPU could truncate the page off the mapping and then free the mapping.
2728 *
2729 * Usually, the page _is_ locked, or the caller is a user-space process which
2730 * holds a reference on the inode by having an open file.
2731 *
2732 * In other cases, the page should be locked before running set_page_dirty().
2733 */
2734int set_page_dirty_lock(struct page *page)
2735{
2736 int ret;
2737
7eaceacc 2738 lock_page(page);
1da177e4
LT
2739 ret = set_page_dirty(page);
2740 unlock_page(page);
2741 return ret;
2742}
2743EXPORT_SYMBOL(set_page_dirty_lock);
2744
11f81bec
TH
2745/*
2746 * This cancels just the dirty bit on the kernel page itself, it does NOT
2747 * actually remove dirty bits on any mmap's that may be around. It also
2748 * leaves the page tagged dirty, so any sync activity will still find it on
2749 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2750 * look at the dirty bits in the VM.
2751 *
2752 * Doing this should *normally* only ever be done when a page is truncated,
2753 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2754 * this when it notices that somebody has cleaned out all the buffers on a
2755 * page without actually doing it through the VM. Can you say "ext3 is
2756 * horribly ugly"? Thought you could.
2757 */
fdaf532a 2758void __folio_cancel_dirty(struct folio *folio)
11f81bec 2759{
fdaf532a 2760 struct address_space *mapping = folio_mapping(folio);
c4843a75 2761
f56753ac 2762 if (mapping_can_writeback(mapping)) {
682aa8e1
TH
2763 struct inode *inode = mapping->host;
2764 struct bdi_writeback *wb;
2e898e4c 2765 struct wb_lock_cookie cookie = {};
c4843a75 2766
fdaf532a 2767 folio_memcg_lock(folio);
2e898e4c 2768 wb = unlocked_inode_to_wb_begin(inode, &cookie);
c4843a75 2769
fdaf532a 2770 if (folio_test_clear_dirty(folio))
566d3362 2771 folio_account_cleaned(folio, wb);
c4843a75 2772
2e898e4c 2773 unlocked_inode_to_wb_end(inode, &cookie);
fdaf532a 2774 folio_memcg_unlock(folio);
c4843a75 2775 } else {
fdaf532a 2776 folio_clear_dirty(folio);
c4843a75 2777 }
11f81bec 2778}
fdaf532a 2779EXPORT_SYMBOL(__folio_cancel_dirty);
11f81bec 2780
1da177e4 2781/*
9350f20a
MWO
2782 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2783 * Returns true if the folio was previously dirty.
1da177e4 2784 *
9350f20a
MWO
2785 * This is for preparing to put the folio under writeout. We leave
2786 * the folio tagged as dirty in the xarray so that a concurrent
2787 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2788 * The ->writepage implementation will run either folio_start_writeback()
2789 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2790 * and xarray dirty tag back into sync.
1da177e4 2791 *
9350f20a
MWO
2792 * This incoherency between the folio's dirty flag and xarray tag is
2793 * unfortunate, but it only exists while the folio is locked.
1da177e4 2794 */
9350f20a 2795bool folio_clear_dirty_for_io(struct folio *folio)
1da177e4 2796{
9350f20a
MWO
2797 struct address_space *mapping = folio_mapping(folio);
2798 bool ret = false;
1da177e4 2799
9350f20a 2800 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
79352894 2801
f56753ac 2802 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2803 struct inode *inode = mapping->host;
2804 struct bdi_writeback *wb;
2e898e4c 2805 struct wb_lock_cookie cookie = {};
682aa8e1 2806
7658cc28
LT
2807 /*
2808 * Yes, Virginia, this is indeed insane.
2809 *
2810 * We use this sequence to make sure that
2811 * (a) we account for dirty stats properly
2812 * (b) we tell the low-level filesystem to
9350f20a 2813 * mark the whole folio dirty if it was
7658cc28 2814 * dirty in a pagetable. Only to then
9350f20a 2815 * (c) clean the folio again and return 1 to
7658cc28
LT
2816 * cause the writeback.
2817 *
2818 * This way we avoid all nasty races with the
2819 * dirty bit in multiple places and clearing
2820 * them concurrently from different threads.
2821 *
9350f20a 2822 * Note! Normally the "folio_mark_dirty(folio)"
7658cc28
LT
2823 * has no effect on the actual dirty bit - since
2824 * that will already usually be set. But we
2825 * need the side effects, and it can help us
2826 * avoid races.
2827 *
9350f20a 2828 * We basically use the folio "master dirty bit"
7658cc28
LT
2829 * as a serialization point for all the different
2830 * threads doing their things.
7658cc28 2831 */
9350f20a
MWO
2832 if (folio_mkclean(folio))
2833 folio_mark_dirty(folio);
79352894
NP
2834 /*
2835 * We carefully synchronise fault handlers against
9350f20a 2836 * installing a dirty pte and marking the folio dirty
2d6d7f98 2837 * at this point. We do this by having them hold the
9350f20a 2838 * page lock while dirtying the folio, and folios are
2d6d7f98
JW
2839 * always locked coming in here, so we get the desired
2840 * exclusion.
79352894 2841 */
2e898e4c 2842 wb = unlocked_inode_to_wb_begin(inode, &cookie);
9350f20a
MWO
2843 if (folio_test_clear_dirty(folio)) {
2844 long nr = folio_nr_pages(folio);
2845 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2846 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2847 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2848 ret = true;
1da177e4 2849 }
2e898e4c 2850 unlocked_inode_to_wb_end(inode, &cookie);
c4843a75 2851 return ret;
1da177e4 2852 }
9350f20a 2853 return folio_test_clear_dirty(folio);
1da177e4 2854}
9350f20a 2855EXPORT_SYMBOL(folio_clear_dirty_for_io);
1da177e4 2856
633a2abb
JK
2857static void wb_inode_writeback_start(struct bdi_writeback *wb)
2858{
2859 atomic_inc(&wb->writeback_inodes);
2860}
2861
2862static void wb_inode_writeback_end(struct bdi_writeback *wb)
2863{
2864 atomic_dec(&wb->writeback_inodes);
45a2966f
JK
2865 /*
2866 * Make sure estimate of writeback throughput gets updated after
2867 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2868 * (which is the interval other bandwidth updates use for batching) so
2869 * that if multiple inodes end writeback at a similar time, they get
2870 * batched into one bandwidth update.
2871 */
2872 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
633a2abb
JK
2873}
2874
269ccca3 2875bool __folio_end_writeback(struct folio *folio)
1da177e4 2876{
269ccca3
MWO
2877 long nr = folio_nr_pages(folio);
2878 struct address_space *mapping = folio_mapping(folio);
2879 bool ret;
1da177e4 2880
269ccca3 2881 folio_memcg_lock(folio);
371a096e 2882 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2883 struct inode *inode = mapping->host;
2884 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2885 unsigned long flags;
2886
b93b0163 2887 xa_lock_irqsave(&mapping->i_pages, flags);
269ccca3 2888 ret = folio_test_clear_writeback(folio);
69cb51d1 2889 if (ret) {
269ccca3 2890 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
1da177e4 2891 PAGECACHE_TAG_WRITEBACK);
823423ef 2892 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
91018134
TH
2893 struct bdi_writeback *wb = inode_to_wb(inode);
2894
269ccca3
MWO
2895 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2896 __wb_writeout_add(wb, nr);
633a2abb
JK
2897 if (!mapping_tagged(mapping,
2898 PAGECACHE_TAG_WRITEBACK))
2899 wb_inode_writeback_end(wb);
04fbfdc1 2900 }
69cb51d1 2901 }
6c60d2b5
DC
2902
2903 if (mapping->host && !mapping_tagged(mapping,
2904 PAGECACHE_TAG_WRITEBACK))
2905 sb_clear_inode_writeback(mapping->host);
2906
b93b0163 2907 xa_unlock_irqrestore(&mapping->i_pages, flags);
1da177e4 2908 } else {
269ccca3 2909 ret = folio_test_clear_writeback(folio);
1da177e4 2910 }
99b12e3d 2911 if (ret) {
269ccca3
MWO
2912 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
2913 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2914 node_stat_mod_folio(folio, NR_WRITTEN, nr);
99b12e3d 2915 }
269ccca3 2916 folio_memcg_unlock(folio);
1da177e4
LT
2917 return ret;
2918}
2919
f143f1ea 2920bool __folio_start_writeback(struct folio *folio, bool keep_write)
1da177e4 2921{
f143f1ea
MWO
2922 long nr = folio_nr_pages(folio);
2923 struct address_space *mapping = folio_mapping(folio);
2924 bool ret;
2925 int access_ret;
1da177e4 2926
f143f1ea 2927 folio_memcg_lock(folio);
371a096e 2928 if (mapping && mapping_use_writeback_tags(mapping)) {
f143f1ea 2929 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
91018134
TH
2930 struct inode *inode = mapping->host;
2931 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2932 unsigned long flags;
2933
ff9c745b
MW
2934 xas_lock_irqsave(&xas, flags);
2935 xas_load(&xas);
f143f1ea 2936 ret = folio_test_set_writeback(folio);
69cb51d1 2937 if (!ret) {
6c60d2b5
DC
2938 bool on_wblist;
2939
2940 on_wblist = mapping_tagged(mapping,
2941 PAGECACHE_TAG_WRITEBACK);
2942
ff9c745b 2943 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
633a2abb
JK
2944 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2945 struct bdi_writeback *wb = inode_to_wb(inode);
2946
f143f1ea 2947 wb_stat_mod(wb, WB_WRITEBACK, nr);
633a2abb
JK
2948 if (!on_wblist)
2949 wb_inode_writeback_start(wb);
2950 }
6c60d2b5
DC
2951
2952 /*
f143f1ea
MWO
2953 * We can come through here when swapping
2954 * anonymous folios, so we don't necessarily
2955 * have an inode to track for sync.
6c60d2b5
DC
2956 */
2957 if (mapping->host && !on_wblist)
2958 sb_mark_inode_writeback(mapping->host);
69cb51d1 2959 }
f143f1ea 2960 if (!folio_test_dirty(folio))
ff9c745b 2961 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1c8349a1 2962 if (!keep_write)
ff9c745b
MW
2963 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2964 xas_unlock_irqrestore(&xas, flags);
1da177e4 2965 } else {
f143f1ea 2966 ret = folio_test_set_writeback(folio);
1da177e4 2967 }
3a3c02ec 2968 if (!ret) {
f143f1ea
MWO
2969 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
2970 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3a3c02ec 2971 }
f143f1ea
MWO
2972 folio_memcg_unlock(folio);
2973 access_ret = arch_make_folio_accessible(folio);
f28d4363
CI
2974 /*
2975 * If writeback has been triggered on a page that cannot be made
2976 * accessible, it is too late to recover here.
2977 */
f143f1ea 2978 VM_BUG_ON_FOLIO(access_ret != 0, folio);
f28d4363 2979
1da177e4 2980 return ret;
1da177e4 2981}
f143f1ea 2982EXPORT_SYMBOL(__folio_start_writeback);
1da177e4 2983
490e016f
MWO
2984/**
2985 * folio_wait_writeback - Wait for a folio to finish writeback.
2986 * @folio: The folio to wait for.
2987 *
2988 * If the folio is currently being written back to storage, wait for the
2989 * I/O to complete.
2990 *
2991 * Context: Sleeps. Must be called in process context and with
2992 * no spinlocks held. Caller should hold a reference on the folio.
2993 * If the folio is not locked, writeback may start again after writeback
2994 * has finished.
19343b5b 2995 */
490e016f 2996void folio_wait_writeback(struct folio *folio)
19343b5b 2997{
490e016f 2998 while (folio_test_writeback(folio)) {
b9b0ff61 2999 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 3000 folio_wait_bit(folio, PG_writeback);
19343b5b
YS
3001 }
3002}
490e016f 3003EXPORT_SYMBOL_GPL(folio_wait_writeback);
19343b5b 3004
490e016f
MWO
3005/**
3006 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3007 * @folio: The folio to wait for.
3008 *
3009 * If the folio is currently being written back to storage, wait for the
3010 * I/O to complete or a fatal signal to arrive.
3011 *
3012 * Context: Sleeps. Must be called in process context and with
3013 * no spinlocks held. Caller should hold a reference on the folio.
3014 * If the folio is not locked, writeback may start again after writeback
3015 * has finished.
3016 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
e5dbd332 3017 */
490e016f 3018int folio_wait_writeback_killable(struct folio *folio)
e5dbd332 3019{
490e016f 3020 while (folio_test_writeback(folio)) {
b9b0ff61 3021 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 3022 if (folio_wait_bit_killable(folio, PG_writeback))
e5dbd332
MWO
3023 return -EINTR;
3024 }
3025
3026 return 0;
3027}
490e016f 3028EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
e5dbd332 3029
1d1d1a76 3030/**
a49d0c50
MWO
3031 * folio_wait_stable() - wait for writeback to finish, if necessary.
3032 * @folio: The folio to wait on.
1d1d1a76 3033 *
a49d0c50
MWO
3034 * This function determines if the given folio is related to a backing
3035 * device that requires folio contents to be held stable during writeback.
3036 * If so, then it will wait for any pending writeback to complete.
3037 *
3038 * Context: Sleeps. Must be called in process context and with
3039 * no spinlocks held. Caller should hold a reference on the folio.
3040 * If the folio is not locked, writeback may start again after writeback
3041 * has finished.
1d1d1a76 3042 */
a49d0c50 3043void folio_wait_stable(struct folio *folio)
1d1d1a76 3044{
452c472e 3045 if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
a49d0c50 3046 folio_wait_writeback(folio);
1d1d1a76 3047}
a49d0c50 3048EXPORT_SYMBOL_GPL(folio_wait_stable);