writeback: make writeback_control.nr_to_write straight
[linux-block.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
1da177e4
LT
39/*
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
42 */
43static long ratelimit_pages = 32;
44
1da177e4
LT
45/*
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 48 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
49 * large amounts of I/O are submitted.
50 */
3a2e9a5a 51static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 52{
3a2e9a5a
WF
53 if (dirtied < ratelimit_pages)
54 dirtied = ratelimit_pages;
55
56 return dirtied + dirtied / 2;
1da177e4
LT
57}
58
59/* The following parameters are exported via /proc/sys/vm */
60
61/*
5b0830cb 62 * Start background writeback (via writeback threads) at this percentage
1da177e4 63 */
1b5e62b4 64int dirty_background_ratio = 10;
1da177e4 65
2da02997
DR
66/*
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
69 */
70unsigned long dirty_background_bytes;
71
195cf453
BG
72/*
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
75 */
76int vm_highmem_is_dirtyable;
77
1da177e4
LT
78/*
79 * The generator of dirty data starts writeback at this percentage
80 */
1b5e62b4 81int vm_dirty_ratio = 20;
1da177e4 82
2da02997
DR
83/*
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
86 */
87unsigned long vm_dirty_bytes;
88
1da177e4 89/*
704503d8 90 * The interval between `kupdate'-style writebacks
1da177e4 91 */
22ef37ee 92unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
93
94/*
704503d8 95 * The longest time for which data is allowed to remain dirty
1da177e4 96 */
22ef37ee 97unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
98
99/*
100 * Flag that makes the machine dump writes/reads and block dirtyings.
101 */
102int block_dump;
103
104/*
ed5b43f1
BS
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
107 */
108int laptop_mode;
109
110EXPORT_SYMBOL(laptop_mode);
111
112/* End of sysctl-exported parameters */
113
114
04fbfdc1
PZ
115/*
116 * Scale the writeback cache size proportional to the relative writeout speeds.
117 *
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
121 * share.
122 *
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
125 *
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
129 *
130 */
131static struct prop_descriptor vm_completions;
3e26c149 132static struct prop_descriptor vm_dirties;
04fbfdc1 133
04fbfdc1
PZ
134/*
135 * couple the period to the dirty_ratio:
136 *
137 * period/2 ~ roundup_pow_of_two(dirty limit)
138 */
139static int calc_period_shift(void)
140{
141 unsigned long dirty_total;
142
2da02997
DR
143 if (vm_dirty_bytes)
144 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 else
146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 100;
04fbfdc1
PZ
148 return 2 + ilog2(dirty_total - 1);
149}
150
151/*
2da02997 152 * update the period when the dirty threshold changes.
04fbfdc1 153 */
2da02997
DR
154static void update_completion_period(void)
155{
156 int shift = calc_period_shift();
157 prop_change_shift(&vm_completions, shift);
158 prop_change_shift(&vm_dirties, shift);
159}
160
161int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 162 void __user *buffer, size_t *lenp,
2da02997
DR
163 loff_t *ppos)
164{
165 int ret;
166
8d65af78 167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
168 if (ret == 0 && write)
169 dirty_background_bytes = 0;
170 return ret;
171}
172
173int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 174 void __user *buffer, size_t *lenp,
2da02997
DR
175 loff_t *ppos)
176{
177 int ret;
178
8d65af78 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
180 if (ret == 0 && write)
181 dirty_background_ratio = 0;
182 return ret;
183}
184
04fbfdc1 185int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 186 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
187 loff_t *ppos)
188{
189 int old_ratio = vm_dirty_ratio;
2da02997
DR
190 int ret;
191
8d65af78 192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
194 update_completion_period();
195 vm_dirty_bytes = 0;
196 }
197 return ret;
198}
199
200
201int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 202 void __user *buffer, size_t *lenp,
2da02997
DR
203 loff_t *ppos)
204{
fc3501d4 205 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
206 int ret;
207
8d65af78 208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 update_completion_period();
211 vm_dirty_ratio = 0;
04fbfdc1
PZ
212 }
213 return ret;
214}
215
216/*
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
219 */
220static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221{
a42dde04
PZ
222 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 bdi->max_prop_frac);
04fbfdc1
PZ
224}
225
dd5656e5
MS
226void bdi_writeout_inc(struct backing_dev_info *bdi)
227{
228 unsigned long flags;
229
230 local_irq_save(flags);
231 __bdi_writeout_inc(bdi);
232 local_irq_restore(flags);
233}
234EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
1cf6e7d8 236void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
237{
238 prop_inc_single(&vm_dirties, &tsk->dirties);
239}
240
04fbfdc1
PZ
241/*
242 * Obtain an accurate fraction of the BDI's portion.
243 */
244static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 long *numerator, long *denominator)
246{
3efaf0fa 247 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 248 numerator, denominator);
04fbfdc1
PZ
249}
250
3e26c149
PZ
251static inline void task_dirties_fraction(struct task_struct *tsk,
252 long *numerator, long *denominator)
253{
254 prop_fraction_single(&vm_dirties, &tsk->dirties,
255 numerator, denominator);
256}
257
258/*
1babe183 259 * task_dirty_limit - scale down dirty throttling threshold for one task
3e26c149
PZ
260 *
261 * task specific dirty limit:
262 *
263 * dirty -= (dirty/8) * p_{t}
1babe183
WF
264 *
265 * To protect light/slow dirtying tasks from heavier/fast ones, we start
266 * throttling individual tasks before reaching the bdi dirty limit.
267 * Relatively low thresholds will be allocated to heavy dirtiers. So when
268 * dirty pages grow large, heavy dirtiers will be throttled first, which will
269 * effectively curb the growth of dirty pages. Light dirtiers with high enough
270 * dirty threshold may never get throttled.
3e26c149 271 */
16c4042f
WF
272static unsigned long task_dirty_limit(struct task_struct *tsk,
273 unsigned long bdi_dirty)
3e26c149
PZ
274{
275 long numerator, denominator;
16c4042f 276 unsigned long dirty = bdi_dirty;
3e26c149
PZ
277 u64 inv = dirty >> 3;
278
279 task_dirties_fraction(tsk, &numerator, &denominator);
280 inv *= numerator;
281 do_div(inv, denominator);
282
283 dirty -= inv;
3e26c149 284
16c4042f 285 return max(dirty, bdi_dirty/2);
3e26c149
PZ
286}
287
189d3c4a
PZ
288/*
289 *
290 */
189d3c4a
PZ
291static unsigned int bdi_min_ratio;
292
293int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
294{
295 int ret = 0;
189d3c4a 296
cfc4ba53 297 spin_lock_bh(&bdi_lock);
a42dde04 298 if (min_ratio > bdi->max_ratio) {
189d3c4a 299 ret = -EINVAL;
a42dde04
PZ
300 } else {
301 min_ratio -= bdi->min_ratio;
302 if (bdi_min_ratio + min_ratio < 100) {
303 bdi_min_ratio += min_ratio;
304 bdi->min_ratio += min_ratio;
305 } else {
306 ret = -EINVAL;
307 }
308 }
cfc4ba53 309 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
310
311 return ret;
312}
313
314int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
315{
a42dde04
PZ
316 int ret = 0;
317
318 if (max_ratio > 100)
319 return -EINVAL;
320
cfc4ba53 321 spin_lock_bh(&bdi_lock);
a42dde04
PZ
322 if (bdi->min_ratio > max_ratio) {
323 ret = -EINVAL;
324 } else {
325 bdi->max_ratio = max_ratio;
326 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
327 }
cfc4ba53 328 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
329
330 return ret;
331}
a42dde04 332EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 333
1da177e4
LT
334/*
335 * Work out the current dirty-memory clamping and background writeout
336 * thresholds.
337 *
338 * The main aim here is to lower them aggressively if there is a lot of mapped
339 * memory around. To avoid stressing page reclaim with lots of unreclaimable
340 * pages. It is better to clamp down on writers than to start swapping, and
341 * performing lots of scanning.
342 *
343 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
344 *
345 * We don't permit the clamping level to fall below 5% - that is getting rather
346 * excessive.
347 *
348 * We make sure that the background writeout level is below the adjusted
349 * clamping level.
350 */
1b424464
CL
351
352static unsigned long highmem_dirtyable_memory(unsigned long total)
353{
354#ifdef CONFIG_HIGHMEM
355 int node;
356 unsigned long x = 0;
357
37b07e41 358 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
359 struct zone *z =
360 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
361
adea02a1
WF
362 x += zone_page_state(z, NR_FREE_PAGES) +
363 zone_reclaimable_pages(z);
1b424464
CL
364 }
365 /*
366 * Make sure that the number of highmem pages is never larger
367 * than the number of the total dirtyable memory. This can only
368 * occur in very strange VM situations but we want to make sure
369 * that this does not occur.
370 */
371 return min(x, total);
372#else
373 return 0;
374#endif
375}
376
3eefae99
SR
377/**
378 * determine_dirtyable_memory - amount of memory that may be used
379 *
380 * Returns the numebr of pages that can currently be freed and used
381 * by the kernel for direct mappings.
382 */
383unsigned long determine_dirtyable_memory(void)
1b424464
CL
384{
385 unsigned long x;
386
adea02a1 387 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
388
389 if (!vm_highmem_is_dirtyable)
390 x -= highmem_dirtyable_memory(x);
391
1b424464
CL
392 return x + 1; /* Ensure that we never return 0 */
393}
394
03ab450f 395/*
1babe183
WF
396 * global_dirty_limits - background-writeback and dirty-throttling thresholds
397 *
398 * Calculate the dirty thresholds based on sysctl parameters
399 * - vm.dirty_background_ratio or vm.dirty_background_bytes
400 * - vm.dirty_ratio or vm.dirty_bytes
401 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 402 * real-time tasks.
1babe183 403 */
16c4042f 404void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 405{
364aeb28
DR
406 unsigned long background;
407 unsigned long dirty;
240c879f 408 unsigned long uninitialized_var(available_memory);
1da177e4
LT
409 struct task_struct *tsk;
410
240c879f
MK
411 if (!vm_dirty_bytes || !dirty_background_bytes)
412 available_memory = determine_dirtyable_memory();
413
2da02997
DR
414 if (vm_dirty_bytes)
415 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
416 else
417 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 418
2da02997
DR
419 if (dirty_background_bytes)
420 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
421 else
422 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 423
2da02997
DR
424 if (background >= dirty)
425 background = dirty / 2;
1da177e4
LT
426 tsk = current;
427 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
428 background += background / 4;
429 dirty += dirty / 4;
430 }
431 *pbackground = background;
432 *pdirty = dirty;
16c4042f 433}
04fbfdc1 434
6f718656 435/**
1babe183 436 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
437 * @bdi: the backing_dev_info to query
438 * @dirty: global dirty limit in pages
439 *
440 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
441 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
442 * And the "limit" in the name is not seriously taken as hard limit in
443 * balance_dirty_pages().
1babe183 444 *
6f718656 445 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
446 * - starving fast devices
447 * - piling up dirty pages (that will take long time to sync) on slow devices
448 *
449 * The bdi's share of dirty limit will be adapting to its throughput and
450 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
451 */
452unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
453{
454 u64 bdi_dirty;
455 long numerator, denominator;
04fbfdc1 456
16c4042f
WF
457 /*
458 * Calculate this BDI's share of the dirty ratio.
459 */
460 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 461
16c4042f
WF
462 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
463 bdi_dirty *= numerator;
464 do_div(bdi_dirty, denominator);
04fbfdc1 465
16c4042f
WF
466 bdi_dirty += (dirty * bdi->min_ratio) / 100;
467 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
468 bdi_dirty = dirty * bdi->max_ratio / 100;
469
470 return bdi_dirty;
1da177e4
LT
471}
472
473/*
474 * balance_dirty_pages() must be called by processes which are generating dirty
475 * data. It looks at the number of dirty pages in the machine and will force
476 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
477 * If we're over `background_thresh' then the writeback threads are woken to
478 * perform some writeout.
1da177e4 479 */
3a2e9a5a
WF
480static void balance_dirty_pages(struct address_space *mapping,
481 unsigned long write_chunk)
1da177e4 482{
5fce25a9
PZ
483 long nr_reclaimable, bdi_nr_reclaimable;
484 long nr_writeback, bdi_nr_writeback;
364aeb28
DR
485 unsigned long background_thresh;
486 unsigned long dirty_thresh;
487 unsigned long bdi_thresh;
1da177e4 488 unsigned long pages_written = 0;
87c6a9b2 489 unsigned long pause = 1;
e50e3720 490 bool dirty_exceeded = false;
1da177e4
LT
491 struct backing_dev_info *bdi = mapping->backing_dev_info;
492
493 for (;;) {
5fce25a9
PZ
494 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
495 global_page_state(NR_UNSTABLE_NFS);
496 nr_writeback = global_page_state(NR_WRITEBACK);
497
16c4042f
WF
498 global_dirty_limits(&background_thresh, &dirty_thresh);
499
500 /*
501 * Throttle it only when the background writeback cannot
502 * catch-up. This avoids (excessively) small writeouts
503 * when the bdi limits are ramping up.
504 */
4cbec4c8 505 if (nr_reclaimable + nr_writeback <=
16c4042f
WF
506 (background_thresh + dirty_thresh) / 2)
507 break;
508
509 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
510 bdi_thresh = task_dirty_limit(current, bdi_thresh);
511
e50e3720
WF
512 /*
513 * In order to avoid the stacked BDI deadlock we need
514 * to ensure we accurately count the 'dirty' pages when
515 * the threshold is low.
516 *
517 * Otherwise it would be possible to get thresh+n pages
518 * reported dirty, even though there are thresh-m pages
519 * actually dirty; with m+n sitting in the percpu
520 * deltas.
521 */
522 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
523 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
524 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
525 } else {
526 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
527 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
528 }
5fce25a9 529
e50e3720
WF
530 /*
531 * The bdi thresh is somehow "soft" limit derived from the
532 * global "hard" limit. The former helps to prevent heavy IO
533 * bdi or process from holding back light ones; The latter is
534 * the last resort safeguard.
535 */
536 dirty_exceeded =
4cbec4c8
WF
537 (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
538 || (nr_reclaimable + nr_writeback > dirty_thresh);
e50e3720
WF
539
540 if (!dirty_exceeded)
04fbfdc1 541 break;
1da177e4 542
04fbfdc1
PZ
543 if (!bdi->dirty_exceeded)
544 bdi->dirty_exceeded = 1;
1da177e4
LT
545
546 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
547 * Unstable writes are a feature of certain networked
548 * filesystems (i.e. NFS) in which data may have been
549 * written to the server's write cache, but has not yet
550 * been flushed to permanent storage.
d7831a0b
RK
551 * Only move pages to writeback if this bdi is over its
552 * threshold otherwise wait until the disk writes catch
553 * up.
1da177e4 554 */
d46db3d5 555 trace_balance_dirty_start(bdi);
d7831a0b 556 if (bdi_nr_reclaimable > bdi_thresh) {
d46db3d5
WF
557 pages_written += writeback_inodes_wb(&bdi->wb,
558 write_chunk);
559 trace_balance_dirty_written(bdi, pages_written);
e50e3720
WF
560 if (pages_written >= write_chunk)
561 break; /* We've done our duty */
04fbfdc1 562 }
d153ba64 563 __set_current_state(TASK_UNINTERRUPTIBLE);
d25105e8 564 io_schedule_timeout(pause);
d46db3d5 565 trace_balance_dirty_wait(bdi);
87c6a9b2
JA
566
567 /*
568 * Increase the delay for each loop, up to our previous
569 * default of taking a 100ms nap.
570 */
571 pause <<= 1;
572 if (pause > HZ / 10)
573 pause = HZ / 10;
1da177e4
LT
574 }
575
e50e3720 576 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 577 bdi->dirty_exceeded = 0;
1da177e4
LT
578
579 if (writeback_in_progress(bdi))
5b0830cb 580 return;
1da177e4
LT
581
582 /*
583 * In laptop mode, we wait until hitting the higher threshold before
584 * starting background writeout, and then write out all the way down
585 * to the lower threshold. So slow writers cause minimal disk activity.
586 *
587 * In normal mode, we start background writeout at the lower
588 * background_thresh, to keep the amount of dirty memory low.
589 */
590 if ((laptop_mode && pages_written) ||
e50e3720 591 (!laptop_mode && (nr_reclaimable > background_thresh)))
c5444198 592 bdi_start_background_writeback(bdi);
1da177e4
LT
593}
594
a200ee18 595void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 596{
a200ee18 597 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
598 struct address_space *mapping = page_mapping(page);
599
600 if (mapping)
601 balance_dirty_pages_ratelimited(mapping);
602 }
603}
604
245b2e70
TH
605static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
606
1da177e4 607/**
fa5a734e 608 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 609 * @mapping: address_space which was dirtied
a580290c 610 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
611 *
612 * Processes which are dirtying memory should call in here once for each page
613 * which was newly dirtied. The function will periodically check the system's
614 * dirty state and will initiate writeback if needed.
615 *
616 * On really big machines, get_writeback_state is expensive, so try to avoid
617 * calling it too often (ratelimiting). But once we're over the dirty memory
618 * limit we decrease the ratelimiting by a lot, to prevent individual processes
619 * from overshooting the limit by (ratelimit_pages) each.
620 */
fa5a734e
AM
621void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
622 unsigned long nr_pages_dirtied)
1da177e4 623{
36715cef 624 struct backing_dev_info *bdi = mapping->backing_dev_info;
fa5a734e
AM
625 unsigned long ratelimit;
626 unsigned long *p;
1da177e4 627
36715cef
WF
628 if (!bdi_cap_account_dirty(bdi))
629 return;
630
1da177e4 631 ratelimit = ratelimit_pages;
04fbfdc1 632 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
633 ratelimit = 8;
634
635 /*
636 * Check the rate limiting. Also, we do not want to throttle real-time
637 * tasks in balance_dirty_pages(). Period.
638 */
fa5a734e 639 preempt_disable();
245b2e70 640 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
641 *p += nr_pages_dirtied;
642 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 643 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
644 *p = 0;
645 preempt_enable();
3a2e9a5a 646 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
647 return;
648 }
fa5a734e 649 preempt_enable();
1da177e4 650}
fa5a734e 651EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 652
232ea4d6 653void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 654{
364aeb28
DR
655 unsigned long background_thresh;
656 unsigned long dirty_thresh;
1da177e4
LT
657
658 for ( ; ; ) {
16c4042f 659 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
660
661 /*
662 * Boost the allowable dirty threshold a bit for page
663 * allocators so they don't get DoS'ed by heavy writers
664 */
665 dirty_thresh += dirty_thresh / 10; /* wheeee... */
666
c24f21bd
CL
667 if (global_page_state(NR_UNSTABLE_NFS) +
668 global_page_state(NR_WRITEBACK) <= dirty_thresh)
669 break;
8aa7e847 670 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
671
672 /*
673 * The caller might hold locks which can prevent IO completion
674 * or progress in the filesystem. So we cannot just sit here
675 * waiting for IO to complete.
676 */
677 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
678 break;
1da177e4
LT
679 }
680}
681
1da177e4
LT
682/*
683 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
684 */
685int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 686 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 687{
8d65af78 688 proc_dointvec(table, write, buffer, length, ppos);
6423104b 689 bdi_arm_supers_timer();
1da177e4
LT
690 return 0;
691}
692
c2c4986e 693#ifdef CONFIG_BLOCK
31373d09 694void laptop_mode_timer_fn(unsigned long data)
1da177e4 695{
31373d09
MG
696 struct request_queue *q = (struct request_queue *)data;
697 int nr_pages = global_page_state(NR_FILE_DIRTY) +
698 global_page_state(NR_UNSTABLE_NFS);
1da177e4 699
31373d09
MG
700 /*
701 * We want to write everything out, not just down to the dirty
702 * threshold
703 */
31373d09 704 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 705 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
706}
707
708/*
709 * We've spun up the disk and we're in laptop mode: schedule writeback
710 * of all dirty data a few seconds from now. If the flush is already scheduled
711 * then push it back - the user is still using the disk.
712 */
31373d09 713void laptop_io_completion(struct backing_dev_info *info)
1da177e4 714{
31373d09 715 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
716}
717
718/*
719 * We're in laptop mode and we've just synced. The sync's writes will have
720 * caused another writeback to be scheduled by laptop_io_completion.
721 * Nothing needs to be written back anymore, so we unschedule the writeback.
722 */
723void laptop_sync_completion(void)
724{
31373d09
MG
725 struct backing_dev_info *bdi;
726
727 rcu_read_lock();
728
729 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
730 del_timer(&bdi->laptop_mode_wb_timer);
731
732 rcu_read_unlock();
1da177e4 733}
c2c4986e 734#endif
1da177e4
LT
735
736/*
737 * If ratelimit_pages is too high then we can get into dirty-data overload
738 * if a large number of processes all perform writes at the same time.
739 * If it is too low then SMP machines will call the (expensive)
740 * get_writeback_state too often.
741 *
742 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
743 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
744 * thresholds before writeback cuts in.
745 *
746 * But the limit should not be set too high. Because it also controls the
747 * amount of memory which the balance_dirty_pages() caller has to write back.
748 * If this is too large then the caller will block on the IO queue all the
749 * time. So limit it to four megabytes - the balance_dirty_pages() caller
750 * will write six megabyte chunks, max.
751 */
752
2d1d43f6 753void writeback_set_ratelimit(void)
1da177e4 754{
40c99aae 755 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
756 if (ratelimit_pages < 16)
757 ratelimit_pages = 16;
758 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
759 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
760}
761
26c2143b 762static int __cpuinit
1da177e4
LT
763ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
764{
2d1d43f6 765 writeback_set_ratelimit();
aa0f0303 766 return NOTIFY_DONE;
1da177e4
LT
767}
768
74b85f37 769static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
770 .notifier_call = ratelimit_handler,
771 .next = NULL,
772};
773
774/*
dc6e29da
LT
775 * Called early on to tune the page writeback dirty limits.
776 *
777 * We used to scale dirty pages according to how total memory
778 * related to pages that could be allocated for buffers (by
779 * comparing nr_free_buffer_pages() to vm_total_pages.
780 *
781 * However, that was when we used "dirty_ratio" to scale with
782 * all memory, and we don't do that any more. "dirty_ratio"
783 * is now applied to total non-HIGHPAGE memory (by subtracting
784 * totalhigh_pages from vm_total_pages), and as such we can't
785 * get into the old insane situation any more where we had
786 * large amounts of dirty pages compared to a small amount of
787 * non-HIGHMEM memory.
788 *
789 * But we might still want to scale the dirty_ratio by how
790 * much memory the box has..
1da177e4
LT
791 */
792void __init page_writeback_init(void)
793{
04fbfdc1
PZ
794 int shift;
795
2d1d43f6 796 writeback_set_ratelimit();
1da177e4 797 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
798
799 shift = calc_period_shift();
800 prop_descriptor_init(&vm_completions, shift);
3e26c149 801 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
802}
803
f446daae
JK
804/**
805 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
806 * @mapping: address space structure to write
807 * @start: starting page index
808 * @end: ending page index (inclusive)
809 *
810 * This function scans the page range from @start to @end (inclusive) and tags
811 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
812 * that write_cache_pages (or whoever calls this function) will then use
813 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
814 * used to avoid livelocking of writeback by a process steadily creating new
815 * dirty pages in the file (thus it is important for this function to be quick
816 * so that it can tag pages faster than a dirtying process can create them).
817 */
818/*
819 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
820 */
f446daae
JK
821void tag_pages_for_writeback(struct address_space *mapping,
822 pgoff_t start, pgoff_t end)
823{
3c111a07 824#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
825 unsigned long tagged;
826
827 do {
828 spin_lock_irq(&mapping->tree_lock);
829 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
830 &start, end, WRITEBACK_TAG_BATCH,
831 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
832 spin_unlock_irq(&mapping->tree_lock);
833 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
834 cond_resched();
d5ed3a4a
JK
835 /* We check 'start' to handle wrapping when end == ~0UL */
836 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
837}
838EXPORT_SYMBOL(tag_pages_for_writeback);
839
811d736f 840/**
0ea97180 841 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
842 * @mapping: address space structure to write
843 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
844 * @writepage: function called for each page
845 * @data: data passed to writepage function
811d736f 846 *
0ea97180 847 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
848 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
849 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
850 * and msync() need to guarantee that all the data which was dirty at the time
851 * the call was made get new I/O started against them. If wbc->sync_mode is
852 * WB_SYNC_ALL then we were called for data integrity and we must wait for
853 * existing IO to complete.
f446daae
JK
854 *
855 * To avoid livelocks (when other process dirties new pages), we first tag
856 * pages which should be written back with TOWRITE tag and only then start
857 * writing them. For data-integrity sync we have to be careful so that we do
858 * not miss some pages (e.g., because some other process has cleared TOWRITE
859 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
860 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 861 */
0ea97180
MS
862int write_cache_pages(struct address_space *mapping,
863 struct writeback_control *wbc, writepage_t writepage,
864 void *data)
811d736f 865{
811d736f
DH
866 int ret = 0;
867 int done = 0;
811d736f
DH
868 struct pagevec pvec;
869 int nr_pages;
31a12666 870 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
871 pgoff_t index;
872 pgoff_t end; /* Inclusive */
bd19e012 873 pgoff_t done_index;
31a12666 874 int cycled;
811d736f 875 int range_whole = 0;
f446daae 876 int tag;
811d736f 877
811d736f
DH
878 pagevec_init(&pvec, 0);
879 if (wbc->range_cyclic) {
31a12666
NP
880 writeback_index = mapping->writeback_index; /* prev offset */
881 index = writeback_index;
882 if (index == 0)
883 cycled = 1;
884 else
885 cycled = 0;
811d736f
DH
886 end = -1;
887 } else {
888 index = wbc->range_start >> PAGE_CACHE_SHIFT;
889 end = wbc->range_end >> PAGE_CACHE_SHIFT;
890 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
891 range_whole = 1;
31a12666 892 cycled = 1; /* ignore range_cyclic tests */
811d736f 893 }
6e6938b6 894 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
895 tag = PAGECACHE_TAG_TOWRITE;
896 else
897 tag = PAGECACHE_TAG_DIRTY;
811d736f 898retry:
6e6938b6 899 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 900 tag_pages_for_writeback(mapping, index, end);
bd19e012 901 done_index = index;
5a3d5c98
NP
902 while (!done && (index <= end)) {
903 int i;
904
f446daae 905 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
906 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
907 if (nr_pages == 0)
908 break;
811d736f 909
811d736f
DH
910 for (i = 0; i < nr_pages; i++) {
911 struct page *page = pvec.pages[i];
912
913 /*
d5482cdf
NP
914 * At this point, the page may be truncated or
915 * invalidated (changing page->mapping to NULL), or
916 * even swizzled back from swapper_space to tmpfs file
917 * mapping. However, page->index will not change
918 * because we have a reference on the page.
811d736f 919 */
d5482cdf
NP
920 if (page->index > end) {
921 /*
922 * can't be range_cyclic (1st pass) because
923 * end == -1 in that case.
924 */
925 done = 1;
926 break;
927 }
928
cf15b07c 929 done_index = page->index;
d5482cdf 930
811d736f
DH
931 lock_page(page);
932
5a3d5c98
NP
933 /*
934 * Page truncated or invalidated. We can freely skip it
935 * then, even for data integrity operations: the page
936 * has disappeared concurrently, so there could be no
937 * real expectation of this data interity operation
938 * even if there is now a new, dirty page at the same
939 * pagecache address.
940 */
811d736f 941 if (unlikely(page->mapping != mapping)) {
5a3d5c98 942continue_unlock:
811d736f
DH
943 unlock_page(page);
944 continue;
945 }
946
515f4a03
NP
947 if (!PageDirty(page)) {
948 /* someone wrote it for us */
949 goto continue_unlock;
950 }
951
952 if (PageWriteback(page)) {
953 if (wbc->sync_mode != WB_SYNC_NONE)
954 wait_on_page_writeback(page);
955 else
956 goto continue_unlock;
957 }
811d736f 958
515f4a03
NP
959 BUG_ON(PageWriteback(page));
960 if (!clear_page_dirty_for_io(page))
5a3d5c98 961 goto continue_unlock;
811d736f 962
9e094383 963 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 964 ret = (*writepage)(page, wbc, data);
00266770
NP
965 if (unlikely(ret)) {
966 if (ret == AOP_WRITEPAGE_ACTIVATE) {
967 unlock_page(page);
968 ret = 0;
969 } else {
970 /*
971 * done_index is set past this page,
972 * so media errors will not choke
973 * background writeout for the entire
974 * file. This has consequences for
975 * range_cyclic semantics (ie. it may
976 * not be suitable for data integrity
977 * writeout).
978 */
cf15b07c 979 done_index = page->index + 1;
00266770
NP
980 done = 1;
981 break;
982 }
0b564927 983 }
00266770 984
546a1924
DC
985 /*
986 * We stop writing back only if we are not doing
987 * integrity sync. In case of integrity sync we have to
988 * keep going until we have written all the pages
989 * we tagged for writeback prior to entering this loop.
990 */
991 if (--wbc->nr_to_write <= 0 &&
992 wbc->sync_mode == WB_SYNC_NONE) {
993 done = 1;
994 break;
05fe478d 995 }
811d736f
DH
996 }
997 pagevec_release(&pvec);
998 cond_resched();
999 }
3a4c6800 1000 if (!cycled && !done) {
811d736f 1001 /*
31a12666 1002 * range_cyclic:
811d736f
DH
1003 * We hit the last page and there is more work to be done: wrap
1004 * back to the start of the file
1005 */
31a12666 1006 cycled = 1;
811d736f 1007 index = 0;
31a12666 1008 end = writeback_index - 1;
811d736f
DH
1009 goto retry;
1010 }
0b564927
DC
1011 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1012 mapping->writeback_index = done_index;
06d6cf69 1013
811d736f
DH
1014 return ret;
1015}
0ea97180
MS
1016EXPORT_SYMBOL(write_cache_pages);
1017
1018/*
1019 * Function used by generic_writepages to call the real writepage
1020 * function and set the mapping flags on error
1021 */
1022static int __writepage(struct page *page, struct writeback_control *wbc,
1023 void *data)
1024{
1025 struct address_space *mapping = data;
1026 int ret = mapping->a_ops->writepage(page, wbc);
1027 mapping_set_error(mapping, ret);
1028 return ret;
1029}
1030
1031/**
1032 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1033 * @mapping: address space structure to write
1034 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1035 *
1036 * This is a library function, which implements the writepages()
1037 * address_space_operation.
1038 */
1039int generic_writepages(struct address_space *mapping,
1040 struct writeback_control *wbc)
1041{
9b6096a6
SL
1042 struct blk_plug plug;
1043 int ret;
1044
0ea97180
MS
1045 /* deal with chardevs and other special file */
1046 if (!mapping->a_ops->writepage)
1047 return 0;
1048
9b6096a6
SL
1049 blk_start_plug(&plug);
1050 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1051 blk_finish_plug(&plug);
1052 return ret;
0ea97180 1053}
811d736f
DH
1054
1055EXPORT_SYMBOL(generic_writepages);
1056
1da177e4
LT
1057int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1058{
22905f77
AM
1059 int ret;
1060
1da177e4
LT
1061 if (wbc->nr_to_write <= 0)
1062 return 0;
1063 if (mapping->a_ops->writepages)
d08b3851 1064 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1065 else
1066 ret = generic_writepages(mapping, wbc);
22905f77 1067 return ret;
1da177e4
LT
1068}
1069
1070/**
1071 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1072 * @page: the page to write
1073 * @wait: if true, wait on writeout
1da177e4
LT
1074 *
1075 * The page must be locked by the caller and will be unlocked upon return.
1076 *
1077 * write_one_page() returns a negative error code if I/O failed.
1078 */
1079int write_one_page(struct page *page, int wait)
1080{
1081 struct address_space *mapping = page->mapping;
1082 int ret = 0;
1083 struct writeback_control wbc = {
1084 .sync_mode = WB_SYNC_ALL,
1085 .nr_to_write = 1,
1086 };
1087
1088 BUG_ON(!PageLocked(page));
1089
1090 if (wait)
1091 wait_on_page_writeback(page);
1092
1093 if (clear_page_dirty_for_io(page)) {
1094 page_cache_get(page);
1095 ret = mapping->a_ops->writepage(page, &wbc);
1096 if (ret == 0 && wait) {
1097 wait_on_page_writeback(page);
1098 if (PageError(page))
1099 ret = -EIO;
1100 }
1101 page_cache_release(page);
1102 } else {
1103 unlock_page(page);
1104 }
1105 return ret;
1106}
1107EXPORT_SYMBOL(write_one_page);
1108
76719325
KC
1109/*
1110 * For address_spaces which do not use buffers nor write back.
1111 */
1112int __set_page_dirty_no_writeback(struct page *page)
1113{
1114 if (!PageDirty(page))
c3f0da63 1115 return !TestSetPageDirty(page);
76719325
KC
1116 return 0;
1117}
1118
e3a7cca1
ES
1119/*
1120 * Helper function for set_page_dirty family.
1121 * NOTE: This relies on being atomic wrt interrupts.
1122 */
1123void account_page_dirtied(struct page *page, struct address_space *mapping)
1124{
1125 if (mapping_cap_account_dirty(mapping)) {
1126 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1127 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1
ES
1128 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1129 task_dirty_inc(current);
1130 task_io_account_write(PAGE_CACHE_SIZE);
1131 }
1132}
679ceace 1133EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1134
f629d1c9
MR
1135/*
1136 * Helper function for set_page_writeback family.
1137 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1138 * wrt interrupts.
1139 */
1140void account_page_writeback(struct page *page)
1141{
1142 inc_zone_page_state(page, NR_WRITEBACK);
ea941f0e 1143 inc_zone_page_state(page, NR_WRITTEN);
f629d1c9
MR
1144}
1145EXPORT_SYMBOL(account_page_writeback);
1146
1da177e4
LT
1147/*
1148 * For address_spaces which do not use buffers. Just tag the page as dirty in
1149 * its radix tree.
1150 *
1151 * This is also used when a single buffer is being dirtied: we want to set the
1152 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1153 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1154 *
1155 * Most callers have locked the page, which pins the address_space in memory.
1156 * But zap_pte_range() does not lock the page, however in that case the
1157 * mapping is pinned by the vma's ->vm_file reference.
1158 *
1159 * We take care to handle the case where the page was truncated from the
183ff22b 1160 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1161 */
1162int __set_page_dirty_nobuffers(struct page *page)
1163{
1da177e4
LT
1164 if (!TestSetPageDirty(page)) {
1165 struct address_space *mapping = page_mapping(page);
1166 struct address_space *mapping2;
1167
8c08540f
AM
1168 if (!mapping)
1169 return 1;
1170
19fd6231 1171 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1172 mapping2 = page_mapping(page);
1173 if (mapping2) { /* Race with truncate? */
1174 BUG_ON(mapping2 != mapping);
787d2214 1175 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1176 account_page_dirtied(page, mapping);
8c08540f
AM
1177 radix_tree_tag_set(&mapping->page_tree,
1178 page_index(page), PAGECACHE_TAG_DIRTY);
1179 }
19fd6231 1180 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1181 if (mapping->host) {
1182 /* !PageAnon && !swapper_space */
1183 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1184 }
4741c9fd 1185 return 1;
1da177e4 1186 }
4741c9fd 1187 return 0;
1da177e4
LT
1188}
1189EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1190
1191/*
1192 * When a writepage implementation decides that it doesn't want to write this
1193 * page for some reason, it should redirty the locked page via
1194 * redirty_page_for_writepage() and it should then unlock the page and return 0
1195 */
1196int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1197{
1198 wbc->pages_skipped++;
1199 return __set_page_dirty_nobuffers(page);
1200}
1201EXPORT_SYMBOL(redirty_page_for_writepage);
1202
1203/*
6746aff7
WF
1204 * Dirty a page.
1205 *
1206 * For pages with a mapping this should be done under the page lock
1207 * for the benefit of asynchronous memory errors who prefer a consistent
1208 * dirty state. This rule can be broken in some special cases,
1209 * but should be better not to.
1210 *
1da177e4
LT
1211 * If the mapping doesn't provide a set_page_dirty a_op, then
1212 * just fall through and assume that it wants buffer_heads.
1213 */
1cf6e7d8 1214int set_page_dirty(struct page *page)
1da177e4
LT
1215{
1216 struct address_space *mapping = page_mapping(page);
1217
1218 if (likely(mapping)) {
1219 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1220 /*
1221 * readahead/lru_deactivate_page could remain
1222 * PG_readahead/PG_reclaim due to race with end_page_writeback
1223 * About readahead, if the page is written, the flags would be
1224 * reset. So no problem.
1225 * About lru_deactivate_page, if the page is redirty, the flag
1226 * will be reset. So no problem. but if the page is used by readahead
1227 * it will confuse readahead and make it restart the size rampup
1228 * process. But it's a trivial problem.
1229 */
1230 ClearPageReclaim(page);
9361401e
DH
1231#ifdef CONFIG_BLOCK
1232 if (!spd)
1233 spd = __set_page_dirty_buffers;
1234#endif
1235 return (*spd)(page);
1da177e4 1236 }
4741c9fd
AM
1237 if (!PageDirty(page)) {
1238 if (!TestSetPageDirty(page))
1239 return 1;
1240 }
1da177e4
LT
1241 return 0;
1242}
1243EXPORT_SYMBOL(set_page_dirty);
1244
1245/*
1246 * set_page_dirty() is racy if the caller has no reference against
1247 * page->mapping->host, and if the page is unlocked. This is because another
1248 * CPU could truncate the page off the mapping and then free the mapping.
1249 *
1250 * Usually, the page _is_ locked, or the caller is a user-space process which
1251 * holds a reference on the inode by having an open file.
1252 *
1253 * In other cases, the page should be locked before running set_page_dirty().
1254 */
1255int set_page_dirty_lock(struct page *page)
1256{
1257 int ret;
1258
7eaceacc 1259 lock_page(page);
1da177e4
LT
1260 ret = set_page_dirty(page);
1261 unlock_page(page);
1262 return ret;
1263}
1264EXPORT_SYMBOL(set_page_dirty_lock);
1265
1da177e4
LT
1266/*
1267 * Clear a page's dirty flag, while caring for dirty memory accounting.
1268 * Returns true if the page was previously dirty.
1269 *
1270 * This is for preparing to put the page under writeout. We leave the page
1271 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1272 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1273 * implementation will run either set_page_writeback() or set_page_dirty(),
1274 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1275 * back into sync.
1276 *
1277 * This incoherency between the page's dirty flag and radix-tree tag is
1278 * unfortunate, but it only exists while the page is locked.
1279 */
1280int clear_page_dirty_for_io(struct page *page)
1281{
1282 struct address_space *mapping = page_mapping(page);
1283
79352894
NP
1284 BUG_ON(!PageLocked(page));
1285
7658cc28
LT
1286 if (mapping && mapping_cap_account_dirty(mapping)) {
1287 /*
1288 * Yes, Virginia, this is indeed insane.
1289 *
1290 * We use this sequence to make sure that
1291 * (a) we account for dirty stats properly
1292 * (b) we tell the low-level filesystem to
1293 * mark the whole page dirty if it was
1294 * dirty in a pagetable. Only to then
1295 * (c) clean the page again and return 1 to
1296 * cause the writeback.
1297 *
1298 * This way we avoid all nasty races with the
1299 * dirty bit in multiple places and clearing
1300 * them concurrently from different threads.
1301 *
1302 * Note! Normally the "set_page_dirty(page)"
1303 * has no effect on the actual dirty bit - since
1304 * that will already usually be set. But we
1305 * need the side effects, and it can help us
1306 * avoid races.
1307 *
1308 * We basically use the page "master dirty bit"
1309 * as a serialization point for all the different
1310 * threads doing their things.
7658cc28
LT
1311 */
1312 if (page_mkclean(page))
1313 set_page_dirty(page);
79352894
NP
1314 /*
1315 * We carefully synchronise fault handlers against
1316 * installing a dirty pte and marking the page dirty
1317 * at this point. We do this by having them hold the
1318 * page lock at some point after installing their
1319 * pte, but before marking the page dirty.
1320 * Pages are always locked coming in here, so we get
1321 * the desired exclusion. See mm/memory.c:do_wp_page()
1322 * for more comments.
1323 */
7658cc28 1324 if (TestClearPageDirty(page)) {
8c08540f 1325 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1326 dec_bdi_stat(mapping->backing_dev_info,
1327 BDI_RECLAIMABLE);
7658cc28 1328 return 1;
1da177e4 1329 }
7658cc28 1330 return 0;
1da177e4 1331 }
7658cc28 1332 return TestClearPageDirty(page);
1da177e4 1333}
58bb01a9 1334EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1335
1336int test_clear_page_writeback(struct page *page)
1337{
1338 struct address_space *mapping = page_mapping(page);
1339 int ret;
1340
1341 if (mapping) {
69cb51d1 1342 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1343 unsigned long flags;
1344
19fd6231 1345 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1346 ret = TestClearPageWriteback(page);
69cb51d1 1347 if (ret) {
1da177e4
LT
1348 radix_tree_tag_clear(&mapping->page_tree,
1349 page_index(page),
1350 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1351 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1352 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1353 __bdi_writeout_inc(bdi);
1354 }
69cb51d1 1355 }
19fd6231 1356 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1357 } else {
1358 ret = TestClearPageWriteback(page);
1359 }
d688abf5
AM
1360 if (ret)
1361 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1362 return ret;
1363}
1364
1365int test_set_page_writeback(struct page *page)
1366{
1367 struct address_space *mapping = page_mapping(page);
1368 int ret;
1369
1370 if (mapping) {
69cb51d1 1371 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1372 unsigned long flags;
1373
19fd6231 1374 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1375 ret = TestSetPageWriteback(page);
69cb51d1 1376 if (!ret) {
1da177e4
LT
1377 radix_tree_tag_set(&mapping->page_tree,
1378 page_index(page),
1379 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1380 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1381 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1382 }
1da177e4
LT
1383 if (!PageDirty(page))
1384 radix_tree_tag_clear(&mapping->page_tree,
1385 page_index(page),
1386 PAGECACHE_TAG_DIRTY);
f446daae
JK
1387 radix_tree_tag_clear(&mapping->page_tree,
1388 page_index(page),
1389 PAGECACHE_TAG_TOWRITE);
19fd6231 1390 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1391 } else {
1392 ret = TestSetPageWriteback(page);
1393 }
d688abf5 1394 if (!ret)
f629d1c9 1395 account_page_writeback(page);
1da177e4
LT
1396 return ret;
1397
1398}
1399EXPORT_SYMBOL(test_set_page_writeback);
1400
1401/*
00128188 1402 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1403 * passed tag.
1404 */
1405int mapping_tagged(struct address_space *mapping, int tag)
1406{
1da177e4 1407 int ret;
00128188 1408 rcu_read_lock();
1da177e4 1409 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1410 rcu_read_unlock();
1da177e4
LT
1411 return ret;
1412}
1413EXPORT_SYMBOL(mapping_tagged);