tools/vm/page_owner_sort.c: avoid repeated judgments
[linux-block.git] / mm / page-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
f30c2269 3 * mm/page-writeback.c
1da177e4
LT
4 *
5 * Copyright (C) 2002, Linus Torvalds.
90eec103 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Initial version
13 */
14
15#include <linux/kernel.h>
b95f1b31 16#include <linux/export.h>
1da177e4
LT
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/writeback.h>
24#include <linux/init.h>
25#include <linux/backing-dev.h>
55e829af 26#include <linux/task_io_accounting_ops.h>
1da177e4
LT
27#include <linux/blkdev.h>
28#include <linux/mpage.h>
d08b3851 29#include <linux/rmap.h>
1da177e4 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
811d736f 35#include <linux/pagevec.h>
eb608e3a 36#include <linux/timer.h>
8bd75c77 37#include <linux/sched/rt.h>
f361bf4a 38#include <linux/sched/signal.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4 109
1da177e4 110/*
ed5b43f1
BS
111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
113 */
114int laptop_mode;
115
116EXPORT_SYMBOL(laptop_mode);
117
118/* End of sysctl-exported parameters */
119
dcc25ae7 120struct wb_domain global_wb_domain;
1da177e4 121
2bc00aef
TH
122/* consolidated parameters for balance_dirty_pages() and its subroutines */
123struct dirty_throttle_control {
e9f07dfd
TH
124#ifdef CONFIG_CGROUP_WRITEBACK
125 struct wb_domain *dom;
9fc3a43e 126 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 127#endif
2bc00aef 128 struct bdi_writeback *wb;
e9770b34 129 struct fprop_local_percpu *wb_completions;
eb608e3a 130
9fc3a43e 131 unsigned long avail; /* dirtyable */
2bc00aef
TH
132 unsigned long dirty; /* file_dirty + write + nfs */
133 unsigned long thresh; /* dirty threshold */
134 unsigned long bg_thresh; /* dirty background threshold */
135
136 unsigned long wb_dirty; /* per-wb counterparts */
137 unsigned long wb_thresh;
970fb01a 138 unsigned long wb_bg_thresh;
daddfa3c
TH
139
140 unsigned long pos_ratio;
2bc00aef
TH
141};
142
eb608e3a
JK
143/*
144 * Length of period for aging writeout fractions of bdis. This is an
145 * arbitrarily chosen number. The longer the period, the slower fractions will
146 * reflect changes in current writeout rate.
147 */
148#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 149
693108a8
TH
150#ifdef CONFIG_CGROUP_WRITEBACK
151
d60d1bdd
TH
152#define GDTC_INIT(__wb) .wb = (__wb), \
153 .dom = &global_wb_domain, \
154 .wb_completions = &(__wb)->completions
155
9fc3a43e 156#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
157
158#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
159 .dom = mem_cgroup_wb_domain(__wb), \
160 .wb_completions = &(__wb)->memcg_completions, \
161 .gdtc = __gdtc
c2aa723a
TH
162
163static bool mdtc_valid(struct dirty_throttle_control *dtc)
164{
165 return dtc->dom;
166}
e9f07dfd
TH
167
168static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
169{
170 return dtc->dom;
171}
172
9fc3a43e
TH
173static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
174{
175 return mdtc->gdtc;
176}
177
841710aa
TH
178static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
179{
180 return &wb->memcg_completions;
181}
182
693108a8
TH
183static void wb_min_max_ratio(struct bdi_writeback *wb,
184 unsigned long *minp, unsigned long *maxp)
185{
20792ebf 186 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
693108a8
TH
187 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
188 unsigned long long min = wb->bdi->min_ratio;
189 unsigned long long max = wb->bdi->max_ratio;
190
191 /*
192 * @wb may already be clean by the time control reaches here and
193 * the total may not include its bw.
194 */
195 if (this_bw < tot_bw) {
196 if (min) {
197 min *= this_bw;
6d9e8c65 198 min = div64_ul(min, tot_bw);
693108a8
TH
199 }
200 if (max < 100) {
201 max *= this_bw;
6d9e8c65 202 max = div64_ul(max, tot_bw);
693108a8
TH
203 }
204 }
205
206 *minp = min;
207 *maxp = max;
208}
209
210#else /* CONFIG_CGROUP_WRITEBACK */
211
d60d1bdd
TH
212#define GDTC_INIT(__wb) .wb = (__wb), \
213 .wb_completions = &(__wb)->completions
9fc3a43e 214#define GDTC_INIT_NO_WB
c2aa723a
TH
215#define MDTC_INIT(__wb, __gdtc)
216
217static bool mdtc_valid(struct dirty_throttle_control *dtc)
218{
219 return false;
220}
e9f07dfd
TH
221
222static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
223{
224 return &global_wb_domain;
225}
226
9fc3a43e
TH
227static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
228{
229 return NULL;
230}
231
841710aa
TH
232static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
233{
234 return NULL;
235}
236
693108a8
TH
237static void wb_min_max_ratio(struct bdi_writeback *wb,
238 unsigned long *minp, unsigned long *maxp)
239{
240 *minp = wb->bdi->min_ratio;
241 *maxp = wb->bdi->max_ratio;
242}
243
244#endif /* CONFIG_CGROUP_WRITEBACK */
245
a756cf59
JW
246/*
247 * In a memory zone, there is a certain amount of pages we consider
248 * available for the page cache, which is essentially the number of
249 * free and reclaimable pages, minus some zone reserves to protect
250 * lowmem and the ability to uphold the zone's watermarks without
251 * requiring writeback.
252 *
253 * This number of dirtyable pages is the base value of which the
e0857cf5 254 * user-configurable dirty ratio is the effective number of pages that
a756cf59
JW
255 * are allowed to be actually dirtied. Per individual zone, or
256 * globally by using the sum of dirtyable pages over all zones.
257 *
258 * Because the user is allowed to specify the dirty limit globally as
259 * absolute number of bytes, calculating the per-zone dirty limit can
260 * require translating the configured limit into a percentage of
261 * global dirtyable memory first.
262 */
263
a804552b 264/**
281e3726
MG
265 * node_dirtyable_memory - number of dirtyable pages in a node
266 * @pgdat: the node
a804552b 267 *
a862f68a 268 * Return: the node's number of pages potentially available for dirty
281e3726 269 * page cache. This is the base value for the per-node dirty limits.
a804552b 270 */
281e3726 271static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 272{
281e3726
MG
273 unsigned long nr_pages = 0;
274 int z;
275
276 for (z = 0; z < MAX_NR_ZONES; z++) {
277 struct zone *zone = pgdat->node_zones + z;
278
279 if (!populated_zone(zone))
280 continue;
281
282 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
283 }
a804552b 284
a8d01437
JW
285 /*
286 * Pages reserved for the kernel should not be considered
287 * dirtyable, to prevent a situation where reclaim has to
288 * clean pages in order to balance the zones.
289 */
281e3726 290 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 291
281e3726
MG
292 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
293 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
294
295 return nr_pages;
296}
297
1edf2234
JW
298static unsigned long highmem_dirtyable_memory(unsigned long total)
299{
300#ifdef CONFIG_HIGHMEM
301 int node;
bb4cc2be 302 unsigned long x = 0;
09b4ab3c 303 int i;
1edf2234
JW
304
305 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
306 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
307 struct zone *z;
9cb937e2 308 unsigned long nr_pages;
281e3726
MG
309
310 if (!is_highmem_idx(i))
311 continue;
312
313 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
314 if (!populated_zone(z))
315 continue;
1edf2234 316
9cb937e2 317 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 318 /* watch for underflows */
9cb937e2 319 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
320 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
321 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
322 x += nr_pages;
09b4ab3c 323 }
1edf2234 324 }
281e3726 325
1edf2234
JW
326 /*
327 * Make sure that the number of highmem pages is never larger
328 * than the number of the total dirtyable memory. This can only
329 * occur in very strange VM situations but we want to make sure
330 * that this does not occur.
331 */
332 return min(x, total);
333#else
334 return 0;
335#endif
336}
337
338/**
ccafa287 339 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 340 *
a862f68a 341 * Return: the global number of pages potentially available for dirty
ccafa287 342 * page cache. This is the base value for the global dirty limits.
1edf2234 343 */
18cf8cf8 344static unsigned long global_dirtyable_memory(void)
1edf2234
JW
345{
346 unsigned long x;
347
c41f012a 348 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
349 /*
350 * Pages reserved for the kernel should not be considered
351 * dirtyable, to prevent a situation where reclaim has to
352 * clean pages in order to balance the zones.
353 */
354 x -= min(x, totalreserve_pages);
1edf2234 355
599d0c95
MG
356 x += global_node_page_state(NR_INACTIVE_FILE);
357 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 358
1edf2234
JW
359 if (!vm_highmem_is_dirtyable)
360 x -= highmem_dirtyable_memory(x);
361
362 return x + 1; /* Ensure that we never return 0 */
363}
364
9fc3a43e
TH
365/**
366 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
367 * @dtc: dirty_throttle_control of interest
ccafa287 368 *
9fc3a43e
TH
369 * Calculate @dtc->thresh and ->bg_thresh considering
370 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
371 * must ensure that @dtc->avail is set before calling this function. The
a37b0715 372 * dirty limits will be lifted by 1/4 for real-time tasks.
ccafa287 373 */
9fc3a43e 374static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 375{
9fc3a43e
TH
376 const unsigned long available_memory = dtc->avail;
377 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
378 unsigned long bytes = vm_dirty_bytes;
379 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
380 /* convert ratios to per-PAGE_SIZE for higher precision */
381 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
382 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
383 unsigned long thresh;
384 unsigned long bg_thresh;
ccafa287
JW
385 struct task_struct *tsk;
386
9fc3a43e
TH
387 /* gdtc is !NULL iff @dtc is for memcg domain */
388 if (gdtc) {
389 unsigned long global_avail = gdtc->avail;
390
391 /*
392 * The byte settings can't be applied directly to memcg
393 * domains. Convert them to ratios by scaling against
62a584fe
TH
394 * globally available memory. As the ratios are in
395 * per-PAGE_SIZE, they can be obtained by dividing bytes by
396 * number of pages.
9fc3a43e
TH
397 */
398 if (bytes)
62a584fe
TH
399 ratio = min(DIV_ROUND_UP(bytes, global_avail),
400 PAGE_SIZE);
9fc3a43e 401 if (bg_bytes)
62a584fe
TH
402 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
403 PAGE_SIZE);
9fc3a43e
TH
404 bytes = bg_bytes = 0;
405 }
406
407 if (bytes)
408 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 409 else
62a584fe 410 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 411
9fc3a43e
TH
412 if (bg_bytes)
413 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 414 else
62a584fe 415 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 416
90daf306 417 if (bg_thresh >= thresh)
9fc3a43e 418 bg_thresh = thresh / 2;
ccafa287 419 tsk = current;
a37b0715 420 if (rt_task(tsk)) {
a53eaff8
N
421 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
422 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 423 }
9fc3a43e
TH
424 dtc->thresh = thresh;
425 dtc->bg_thresh = bg_thresh;
426
427 /* we should eventually report the domain in the TP */
428 if (!gdtc)
429 trace_global_dirty_state(bg_thresh, thresh);
430}
431
432/**
433 * global_dirty_limits - background-writeback and dirty-throttling thresholds
434 * @pbackground: out parameter for bg_thresh
435 * @pdirty: out parameter for thresh
436 *
437 * Calculate bg_thresh and thresh for global_wb_domain. See
438 * domain_dirty_limits() for details.
439 */
440void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
441{
442 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
443
444 gdtc.avail = global_dirtyable_memory();
445 domain_dirty_limits(&gdtc);
446
447 *pbackground = gdtc.bg_thresh;
448 *pdirty = gdtc.thresh;
ccafa287
JW
449}
450
a756cf59 451/**
281e3726
MG
452 * node_dirty_limit - maximum number of dirty pages allowed in a node
453 * @pgdat: the node
a756cf59 454 *
a862f68a 455 * Return: the maximum number of dirty pages allowed in a node, based
281e3726 456 * on the node's dirtyable memory.
a756cf59 457 */
281e3726 458static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 459{
281e3726 460 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
461 struct task_struct *tsk = current;
462 unsigned long dirty;
463
464 if (vm_dirty_bytes)
465 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 466 node_memory / global_dirtyable_memory();
a756cf59 467 else
281e3726 468 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59 469
a37b0715 470 if (rt_task(tsk))
a756cf59
JW
471 dirty += dirty / 4;
472
473 return dirty;
474}
475
476/**
281e3726
MG
477 * node_dirty_ok - tells whether a node is within its dirty limits
478 * @pgdat: the node to check
a756cf59 479 *
a862f68a 480 * Return: %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
481 * dirty limit, %false if the limit is exceeded.
482 */
281e3726 483bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 484{
281e3726
MG
485 unsigned long limit = node_dirty_limit(pgdat);
486 unsigned long nr_pages = 0;
487
11fb9989 488 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
11fb9989 489 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 490
281e3726 491 return nr_pages <= limit;
a756cf59
JW
492}
493
2da02997 494int dirty_background_ratio_handler(struct ctl_table *table, int write,
32927393 495 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
496{
497 int ret;
498
8d65af78 499 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
500 if (ret == 0 && write)
501 dirty_background_bytes = 0;
502 return ret;
503}
504
505int dirty_background_bytes_handler(struct ctl_table *table, int write,
32927393 506 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
507{
508 int ret;
509
8d65af78 510 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
511 if (ret == 0 && write)
512 dirty_background_ratio = 0;
513 return ret;
514}
515
32927393
CH
516int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
517 size_t *lenp, loff_t *ppos)
04fbfdc1
PZ
518{
519 int old_ratio = vm_dirty_ratio;
2da02997
DR
520 int ret;
521
8d65af78 522 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 523 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 524 writeback_set_ratelimit();
2da02997
DR
525 vm_dirty_bytes = 0;
526 }
527 return ret;
528}
529
2da02997 530int dirty_bytes_handler(struct ctl_table *table, int write,
32927393 531 void *buffer, size_t *lenp, loff_t *ppos)
2da02997 532{
fc3501d4 533 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
534 int ret;
535
8d65af78 536 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 537 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 538 writeback_set_ratelimit();
2da02997 539 vm_dirty_ratio = 0;
04fbfdc1
PZ
540 }
541 return ret;
542}
543
eb608e3a
JK
544static unsigned long wp_next_time(unsigned long cur_time)
545{
546 cur_time += VM_COMPLETIONS_PERIOD_LEN;
547 /* 0 has a special meaning... */
548 if (!cur_time)
549 return 1;
550 return cur_time;
551}
552
cc24df4c 553static void wb_domain_writeout_add(struct wb_domain *dom,
c7981433 554 struct fprop_local_percpu *completions,
cc24df4c 555 unsigned int max_prop_frac, long nr)
04fbfdc1 556{
be5f1797 557 __fprop_add_percpu_max(&dom->completions, completions,
cc24df4c 558 max_prop_frac, nr);
eb608e3a 559 /* First event after period switching was turned off? */
517663ed 560 if (unlikely(!dom->period_time)) {
eb608e3a
JK
561 /*
562 * We can race with other __bdi_writeout_inc calls here but
563 * it does not cause any harm since the resulting time when
564 * timer will fire and what is in writeout_period_time will be
565 * roughly the same.
566 */
380c27ca
TH
567 dom->period_time = wp_next_time(jiffies);
568 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 569 }
04fbfdc1
PZ
570}
571
c7981433
TH
572/*
573 * Increment @wb's writeout completion count and the global writeout
269ccca3 574 * completion count. Called from __folio_end_writeback().
c7981433 575 */
cc24df4c 576static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
dd5656e5 577{
841710aa 578 struct wb_domain *cgdom;
dd5656e5 579
cc24df4c
MWO
580 wb_stat_mod(wb, WB_WRITTEN, nr);
581 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
582 wb->bdi->max_prop_frac, nr);
841710aa
TH
583
584 cgdom = mem_cgroup_wb_domain(wb);
585 if (cgdom)
cc24df4c
MWO
586 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
587 wb->bdi->max_prop_frac, nr);
dd5656e5 588}
dd5656e5 589
93f78d88 590void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 591{
dd5656e5
MS
592 unsigned long flags;
593
594 local_irq_save(flags);
cc24df4c 595 __wb_writeout_add(wb, 1);
dd5656e5 596 local_irq_restore(flags);
04fbfdc1 597}
93f78d88 598EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 599
eb608e3a
JK
600/*
601 * On idle system, we can be called long after we scheduled because we use
602 * deferred timers so count with missed periods.
603 */
9823e51b 604static void writeout_period(struct timer_list *t)
eb608e3a 605{
9823e51b 606 struct wb_domain *dom = from_timer(dom, t, period_timer);
380c27ca 607 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
608 VM_COMPLETIONS_PERIOD_LEN;
609
380c27ca
TH
610 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
611 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 612 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 613 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
614 } else {
615 /*
616 * Aging has zeroed all fractions. Stop wasting CPU on period
617 * updates.
618 */
380c27ca 619 dom->period_time = 0;
eb608e3a
JK
620 }
621}
622
380c27ca
TH
623int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
624{
625 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
626
627 spin_lock_init(&dom->lock);
628
9823e51b 629 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
dcc25ae7
TH
630
631 dom->dirty_limit_tstamp = jiffies;
632
380c27ca
TH
633 return fprop_global_init(&dom->completions, gfp);
634}
635
841710aa
TH
636#ifdef CONFIG_CGROUP_WRITEBACK
637void wb_domain_exit(struct wb_domain *dom)
638{
639 del_timer_sync(&dom->period_timer);
640 fprop_global_destroy(&dom->completions);
641}
642#endif
643
189d3c4a 644/*
d08c429b
JW
645 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
646 * registered backing devices, which, for obvious reasons, can not
647 * exceed 100%.
189d3c4a 648 */
189d3c4a
PZ
649static unsigned int bdi_min_ratio;
650
651int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
652{
653 int ret = 0;
189d3c4a 654
cfc4ba53 655 spin_lock_bh(&bdi_lock);
a42dde04 656 if (min_ratio > bdi->max_ratio) {
189d3c4a 657 ret = -EINVAL;
a42dde04
PZ
658 } else {
659 min_ratio -= bdi->min_ratio;
660 if (bdi_min_ratio + min_ratio < 100) {
661 bdi_min_ratio += min_ratio;
662 bdi->min_ratio += min_ratio;
663 } else {
664 ret = -EINVAL;
665 }
666 }
cfc4ba53 667 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
668
669 return ret;
670}
671
672int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
673{
a42dde04
PZ
674 int ret = 0;
675
676 if (max_ratio > 100)
677 return -EINVAL;
678
cfc4ba53 679 spin_lock_bh(&bdi_lock);
a42dde04
PZ
680 if (bdi->min_ratio > max_ratio) {
681 ret = -EINVAL;
682 } else {
683 bdi->max_ratio = max_ratio;
eb608e3a 684 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 685 }
cfc4ba53 686 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
687
688 return ret;
689}
a42dde04 690EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 691
6c14ae1e
WF
692static unsigned long dirty_freerun_ceiling(unsigned long thresh,
693 unsigned long bg_thresh)
694{
695 return (thresh + bg_thresh) / 2;
696}
697
c7981433
TH
698static unsigned long hard_dirty_limit(struct wb_domain *dom,
699 unsigned long thresh)
ffd1f609 700{
dcc25ae7 701 return max(thresh, dom->dirty_limit);
ffd1f609
WF
702}
703
c5edf9cd
TH
704/*
705 * Memory which can be further allocated to a memcg domain is capped by
706 * system-wide clean memory excluding the amount being used in the domain.
707 */
708static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
709 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
710{
711 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
712 unsigned long clean = filepages - min(filepages, mdtc->dirty);
713 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
714 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 715
c5edf9cd 716 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
717}
718
6f718656 719/**
b1cbc6d4
TH
720 * __wb_calc_thresh - @wb's share of dirty throttling threshold
721 * @dtc: dirty_throttle_context of interest
1babe183 722 *
aed21ad2
WF
723 * Note that balance_dirty_pages() will only seriously take it as a hard limit
724 * when sleeping max_pause per page is not enough to keep the dirty pages under
725 * control. For example, when the device is completely stalled due to some error
726 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
727 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 728 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 729 *
6f718656 730 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
731 * - starving fast devices
732 * - piling up dirty pages (that will take long time to sync) on slow devices
733 *
a88a341a 734 * The wb's share of dirty limit will be adapting to its throughput and
1babe183 735 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
a862f68a
MR
736 *
737 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
8d92890b 738 * dirty balancing includes all PG_dirty and PG_writeback pages.
1babe183 739 */
b1cbc6d4 740static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 741{
e9f07dfd 742 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 743 unsigned long thresh = dtc->thresh;
0d960a38 744 u64 wb_thresh;
d3ac946e 745 unsigned long numerator, denominator;
693108a8 746 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 747
16c4042f 748 /*
0d960a38 749 * Calculate this BDI's share of the thresh ratio.
16c4042f 750 */
e9770b34 751 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 752 &numerator, &denominator);
04fbfdc1 753
0d960a38
TH
754 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
755 wb_thresh *= numerator;
d3ac946e 756 wb_thresh = div64_ul(wb_thresh, denominator);
04fbfdc1 757
b1cbc6d4 758 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 759
0d960a38
TH
760 wb_thresh += (thresh * wb_min_ratio) / 100;
761 if (wb_thresh > (thresh * wb_max_ratio) / 100)
762 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 763
0d960a38 764 return wb_thresh;
1da177e4
LT
765}
766
b1cbc6d4
TH
767unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
768{
769 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
770 .thresh = thresh };
771 return __wb_calc_thresh(&gdtc);
1da177e4
LT
772}
773
5a537485
MP
774/*
775 * setpoint - dirty 3
776 * f(dirty) := 1.0 + (----------------)
777 * limit - setpoint
778 *
779 * it's a 3rd order polynomial that subjects to
780 *
781 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
782 * (2) f(setpoint) = 1.0 => the balance point
783 * (3) f(limit) = 0 => the hard limit
784 * (4) df/dx <= 0 => negative feedback control
785 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
786 * => fast response on large errors; small oscillation near setpoint
787 */
d5c9fde3 788static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
789 unsigned long dirty,
790 unsigned long limit)
791{
792 long long pos_ratio;
793 long x;
794
d5c9fde3 795 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 796 (limit - setpoint) | 1);
5a537485
MP
797 pos_ratio = x;
798 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
799 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
800 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
801
802 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
803}
804
6c14ae1e
WF
805/*
806 * Dirty position control.
807 *
808 * (o) global/bdi setpoints
809 *
de1fff37 810 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
811 * When the number of dirty pages is higher/lower than the setpoint, the
812 * dirty position control ratio (and hence task dirty ratelimit) will be
813 * decreased/increased to bring the dirty pages back to the setpoint.
814 *
815 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
816 *
817 * if (dirty < setpoint) scale up pos_ratio
818 * if (dirty > setpoint) scale down pos_ratio
819 *
de1fff37
TH
820 * if (wb_dirty < wb_setpoint) scale up pos_ratio
821 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
822 *
823 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
824 *
825 * (o) global control line
826 *
827 * ^ pos_ratio
828 * |
829 * | |<===== global dirty control scope ======>|
03231554 830 * 2.0 * * * * * * *
6c14ae1e
WF
831 * | .*
832 * | . *
833 * | . *
834 * | . *
835 * | . *
836 * | . *
837 * 1.0 ................................*
838 * | . . *
839 * | . . *
840 * | . . *
841 * | . . *
842 * | . . *
843 * 0 +------------.------------------.----------------------*------------->
844 * freerun^ setpoint^ limit^ dirty pages
845 *
de1fff37 846 * (o) wb control line
6c14ae1e
WF
847 *
848 * ^ pos_ratio
849 * |
850 * | *
851 * | *
852 * | *
853 * | *
854 * | * |<=========== span ============>|
855 * 1.0 .......................*
856 * | . *
857 * | . *
858 * | . *
859 * | . *
860 * | . *
861 * | . *
862 * | . *
863 * | . *
864 * | . *
865 * | . *
866 * | . *
867 * 1/4 ...............................................* * * * * * * * * * * *
868 * | . .
869 * | . .
870 * | . .
871 * 0 +----------------------.-------------------------------.------------->
de1fff37 872 * wb_setpoint^ x_intercept^
6c14ae1e 873 *
de1fff37 874 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
875 * be smoothly throttled down to normal if it starts high in situations like
876 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
877 * card's wb_dirty may rush to many times higher than wb_setpoint.
878 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 879 */
daddfa3c 880static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 881{
2bc00aef 882 struct bdi_writeback *wb = dtc->wb;
20792ebf 883 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
2bc00aef 884 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 885 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 886 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
887 unsigned long x_intercept;
888 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 889 unsigned long wb_setpoint;
6c14ae1e
WF
890 unsigned long span;
891 long long pos_ratio; /* for scaling up/down the rate limit */
892 long x;
893
daddfa3c
TH
894 dtc->pos_ratio = 0;
895
2bc00aef 896 if (unlikely(dtc->dirty >= limit))
daddfa3c 897 return;
6c14ae1e
WF
898
899 /*
900 * global setpoint
901 *
5a537485
MP
902 * See comment for pos_ratio_polynom().
903 */
904 setpoint = (freerun + limit) / 2;
2bc00aef 905 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
906
907 /*
908 * The strictlimit feature is a tool preventing mistrusted filesystems
909 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
910 * such filesystems balance_dirty_pages always checks wb counters
911 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
912 * This is especially important for fuse which sets bdi->max_ratio to
913 * 1% by default. Without strictlimit feature, fuse writeback may
914 * consume arbitrary amount of RAM because it is accounted in
915 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 916 *
a88a341a 917 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 918 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
919 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
920 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 921 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 922 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 923 * about ~6K pages (as the average of background and throttle wb
5a537485 924 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 925 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 926 *
5a537485 927 * Note, that we cannot use global counters in these calculations
de1fff37 928 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
929 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
930 * in the example above).
6c14ae1e 931 */
a88a341a 932 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 933 long long wb_pos_ratio;
5a537485 934
daddfa3c
TH
935 if (dtc->wb_dirty < 8) {
936 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
937 2 << RATELIMIT_CALC_SHIFT);
938 return;
939 }
5a537485 940
2bc00aef 941 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 942 return;
5a537485 943
970fb01a
TH
944 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
945 dtc->wb_bg_thresh);
5a537485 946
de1fff37 947 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 948 return;
5a537485 949
2bc00aef 950 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 951 wb_thresh);
5a537485
MP
952
953 /*
de1fff37
TH
954 * Typically, for strictlimit case, wb_setpoint << setpoint
955 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 956 * state ("dirty") is not limiting factor and we have to
de1fff37 957 * make decision based on wb counters. But there is an
5a537485
MP
958 * important case when global pos_ratio should get precedence:
959 * global limits are exceeded (e.g. due to activities on other
de1fff37 960 * wb's) while given strictlimit wb is below limit.
5a537485 961 *
de1fff37 962 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 963 * but it would look too non-natural for the case of all
de1fff37 964 * activity in the system coming from a single strictlimit wb
5a537485
MP
965 * with bdi->max_ratio == 100%.
966 *
967 * Note that min() below somewhat changes the dynamics of the
968 * control system. Normally, pos_ratio value can be well over 3
de1fff37 969 * (when globally we are at freerun and wb is well below wb
5a537485
MP
970 * setpoint). Now the maximum pos_ratio in the same situation
971 * is 2. We might want to tweak this if we observe the control
972 * system is too slow to adapt.
973 */
daddfa3c
TH
974 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
975 return;
5a537485 976 }
6c14ae1e
WF
977
978 /*
979 * We have computed basic pos_ratio above based on global situation. If
de1fff37 980 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
981 * pos_ratio further down/up. That is done by the following mechanism.
982 */
983
984 /*
de1fff37 985 * wb setpoint
6c14ae1e 986 *
de1fff37 987 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 988 *
de1fff37 989 * x_intercept - wb_dirty
6c14ae1e 990 * := --------------------------
de1fff37 991 * x_intercept - wb_setpoint
6c14ae1e 992 *
de1fff37 993 * The main wb control line is a linear function that subjects to
6c14ae1e 994 *
de1fff37
TH
995 * (1) f(wb_setpoint) = 1.0
996 * (2) k = - 1 / (8 * write_bw) (in single wb case)
997 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 998 *
de1fff37 999 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1000 * regularly within range
de1fff37 1001 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1002 * for various filesystems, where (2) can yield in a reasonable 12.5%
1003 * fluctuation range for pos_ratio.
1004 *
de1fff37 1005 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1006 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1007 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1008 */
2bc00aef
TH
1009 if (unlikely(wb_thresh > dtc->thresh))
1010 wb_thresh = dtc->thresh;
aed21ad2 1011 /*
de1fff37 1012 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1013 * device is slow, but that it has remained inactive for long time.
1014 * Honour such devices a reasonable good (hopefully IO efficient)
1015 * threshold, so that the occasional writes won't be blocked and active
1016 * writes can rampup the threshold quickly.
1017 */
2bc00aef 1018 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1019 /*
de1fff37
TH
1020 * scale global setpoint to wb's:
1021 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1022 */
e4bc13ad 1023 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1024 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1025 /*
de1fff37
TH
1026 * Use span=(8*write_bw) in single wb case as indicated by
1027 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1028 *
de1fff37
TH
1029 * wb_thresh thresh - wb_thresh
1030 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1031 * thresh thresh
6c14ae1e 1032 */
2bc00aef 1033 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1034 x_intercept = wb_setpoint + span;
6c14ae1e 1035
2bc00aef
TH
1036 if (dtc->wb_dirty < x_intercept - span / 4) {
1037 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1038 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1039 } else
1040 pos_ratio /= 4;
1041
8927f66c 1042 /*
de1fff37 1043 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1044 * It may push the desired control point of global dirty pages higher
1045 * than setpoint.
1046 */
de1fff37 1047 x_intercept = wb_thresh / 2;
2bc00aef
TH
1048 if (dtc->wb_dirty < x_intercept) {
1049 if (dtc->wb_dirty > x_intercept / 8)
1050 pos_ratio = div_u64(pos_ratio * x_intercept,
1051 dtc->wb_dirty);
50657fc4 1052 else
8927f66c
WF
1053 pos_ratio *= 8;
1054 }
1055
daddfa3c 1056 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1057}
1058
a88a341a
TH
1059static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1060 unsigned long elapsed,
1061 unsigned long written)
e98be2d5
WF
1062{
1063 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1064 unsigned long avg = wb->avg_write_bandwidth;
1065 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1066 u64 bw;
1067
1068 /*
1069 * bw = written * HZ / elapsed
1070 *
1071 * bw * elapsed + write_bandwidth * (period - elapsed)
1072 * write_bandwidth = ---------------------------------------------------
1073 * period
c72efb65 1074 *
25ff8b15 1075 * @written may have decreased due to folio_account_redirty().
c72efb65 1076 * Avoid underflowing @bw calculation.
e98be2d5 1077 */
a88a341a 1078 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1079 bw *= HZ;
1080 if (unlikely(elapsed > period)) {
0a5d1a7f 1081 bw = div64_ul(bw, elapsed);
e98be2d5
WF
1082 avg = bw;
1083 goto out;
1084 }
a88a341a 1085 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1086 bw >>= ilog2(period);
1087
1088 /*
1089 * one more level of smoothing, for filtering out sudden spikes
1090 */
1091 if (avg > old && old >= (unsigned long)bw)
1092 avg -= (avg - old) >> 3;
1093
1094 if (avg < old && old <= (unsigned long)bw)
1095 avg += (old - avg) >> 3;
1096
1097out:
95a46c65
TH
1098 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1099 avg = max(avg, 1LU);
1100 if (wb_has_dirty_io(wb)) {
1101 long delta = avg - wb->avg_write_bandwidth;
1102 WARN_ON_ONCE(atomic_long_add_return(delta,
1103 &wb->bdi->tot_write_bandwidth) <= 0);
1104 }
a88a341a 1105 wb->write_bandwidth = bw;
20792ebf 1106 WRITE_ONCE(wb->avg_write_bandwidth, avg);
e98be2d5
WF
1107}
1108
2bc00aef 1109static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1110{
e9f07dfd 1111 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1112 unsigned long thresh = dtc->thresh;
dcc25ae7 1113 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1114
1115 /*
1116 * Follow up in one step.
1117 */
1118 if (limit < thresh) {
1119 limit = thresh;
1120 goto update;
1121 }
1122
1123 /*
1124 * Follow down slowly. Use the higher one as the target, because thresh
1125 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1126 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1127 */
2bc00aef 1128 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1129 if (limit > thresh) {
1130 limit -= (limit - thresh) >> 5;
1131 goto update;
1132 }
1133 return;
1134update:
dcc25ae7 1135 dom->dirty_limit = limit;
c42843f2
WF
1136}
1137
42dd235c
JK
1138static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1139 unsigned long now)
c42843f2 1140{
e9f07dfd 1141 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1142
1143 /*
1144 * check locklessly first to optimize away locking for the most time
1145 */
dcc25ae7 1146 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1147 return;
1148
dcc25ae7
TH
1149 spin_lock(&dom->lock);
1150 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1151 update_dirty_limit(dtc);
dcc25ae7 1152 dom->dirty_limit_tstamp = now;
c42843f2 1153 }
dcc25ae7 1154 spin_unlock(&dom->lock);
c42843f2
WF
1155}
1156
be3ffa27 1157/*
de1fff37 1158 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1159 *
de1fff37 1160 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1161 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1162 */
2bc00aef 1163static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1164 unsigned long dirtied,
1165 unsigned long elapsed)
be3ffa27 1166{
2bc00aef
TH
1167 struct bdi_writeback *wb = dtc->wb;
1168 unsigned long dirty = dtc->dirty;
1169 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1170 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1171 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1172 unsigned long write_bw = wb->avg_write_bandwidth;
1173 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1174 unsigned long dirty_rate;
1175 unsigned long task_ratelimit;
1176 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1177 unsigned long step;
1178 unsigned long x;
d59b1087 1179 unsigned long shift;
be3ffa27
WF
1180
1181 /*
1182 * The dirty rate will match the writeout rate in long term, except
1183 * when dirty pages are truncated by userspace or re-dirtied by FS.
1184 */
a88a341a 1185 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1186
be3ffa27
WF
1187 /*
1188 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1189 */
1190 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1191 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1192 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1193
1194 /*
1195 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1196 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1197 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1198 * formula will yield the balanced rate limit (write_bw / N).
1199 *
1200 * Note that the expanded form is not a pure rate feedback:
1201 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1202 * but also takes pos_ratio into account:
1203 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1204 *
1205 * (1) is not realistic because pos_ratio also takes part in balancing
1206 * the dirty rate. Consider the state
1207 * pos_ratio = 0.5 (3)
1208 * rate = 2 * (write_bw / N) (4)
1209 * If (1) is used, it will stuck in that state! Because each dd will
1210 * be throttled at
1211 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1212 * yielding
1213 * dirty_rate = N * task_ratelimit = write_bw (6)
1214 * put (6) into (1) we get
1215 * rate_(i+1) = rate_(i) (7)
1216 *
1217 * So we end up using (2) to always keep
1218 * rate_(i+1) ~= (write_bw / N) (8)
1219 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1220 * pos_ratio is able to drive itself to 1.0, which is not only where
1221 * the dirty count meet the setpoint, but also where the slope of
1222 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1223 */
1224 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1225 dirty_rate | 1);
bdaac490
WF
1226 /*
1227 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1228 */
1229 if (unlikely(balanced_dirty_ratelimit > write_bw))
1230 balanced_dirty_ratelimit = write_bw;
be3ffa27 1231
7381131c
WF
1232 /*
1233 * We could safely do this and return immediately:
1234 *
de1fff37 1235 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1236 *
1237 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1238 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1239 * limit the step size.
1240 *
1241 * The below code essentially only uses the relative value of
1242 *
1243 * task_ratelimit - dirty_ratelimit
1244 * = (pos_ratio - 1) * dirty_ratelimit
1245 *
1246 * which reflects the direction and size of dirty position error.
1247 */
1248
1249 /*
1250 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1251 * task_ratelimit is on the same side of dirty_ratelimit, too.
1252 * For example, when
1253 * - dirty_ratelimit > balanced_dirty_ratelimit
1254 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1255 * lowering dirty_ratelimit will help meet both the position and rate
1256 * control targets. Otherwise, don't update dirty_ratelimit if it will
1257 * only help meet the rate target. After all, what the users ultimately
1258 * feel and care are stable dirty rate and small position error.
1259 *
1260 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1261 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1262 * keeps jumping around randomly and can even leap far away at times
1263 * due to the small 200ms estimation period of dirty_rate (we want to
1264 * keep that period small to reduce time lags).
1265 */
1266 step = 0;
5a537485
MP
1267
1268 /*
de1fff37 1269 * For strictlimit case, calculations above were based on wb counters
a88a341a 1270 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1271 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1272 * Hence, to calculate "step" properly, we have to use wb_dirty as
1273 * "dirty" and wb_setpoint as "setpoint".
5a537485 1274 *
de1fff37
TH
1275 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1276 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1277 * of backing device.
5a537485 1278 */
a88a341a 1279 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1280 dirty = dtc->wb_dirty;
1281 if (dtc->wb_dirty < 8)
1282 setpoint = dtc->wb_dirty + 1;
5a537485 1283 else
970fb01a 1284 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1285 }
1286
7381131c 1287 if (dirty < setpoint) {
a88a341a 1288 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1289 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1290 if (dirty_ratelimit < x)
1291 step = x - dirty_ratelimit;
1292 } else {
a88a341a 1293 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1294 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1295 if (dirty_ratelimit > x)
1296 step = dirty_ratelimit - x;
1297 }
1298
1299 /*
1300 * Don't pursue 100% rate matching. It's impossible since the balanced
1301 * rate itself is constantly fluctuating. So decrease the track speed
1302 * when it gets close to the target. Helps eliminate pointless tremors.
1303 */
d59b1087
AR
1304 shift = dirty_ratelimit / (2 * step + 1);
1305 if (shift < BITS_PER_LONG)
1306 step = DIV_ROUND_UP(step >> shift, 8);
1307 else
1308 step = 0;
7381131c
WF
1309
1310 if (dirty_ratelimit < balanced_dirty_ratelimit)
1311 dirty_ratelimit += step;
1312 else
1313 dirty_ratelimit -= step;
1314
20792ebf 1315 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
a88a341a 1316 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1317
5634cc2a 1318 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1319}
1320
c2aa723a
TH
1321static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1322 struct dirty_throttle_control *mdtc,
8a731799 1323 bool update_ratelimit)
e98be2d5 1324{
c2aa723a 1325 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1326 unsigned long now = jiffies;
45a2966f 1327 unsigned long elapsed;
be3ffa27 1328 unsigned long dirtied;
e98be2d5
WF
1329 unsigned long written;
1330
45a2966f 1331 spin_lock(&wb->list_lock);
8a731799 1332
e98be2d5 1333 /*
45a2966f
JK
1334 * Lockless checks for elapsed time are racy and delayed update after
1335 * IO completion doesn't do it at all (to make sure written pages are
1336 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1337 * division errors.
e98be2d5 1338 */
45a2966f 1339 elapsed = max(now - wb->bw_time_stamp, 1UL);
a88a341a
TH
1340 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1341 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5 1342
8a731799 1343 if (update_ratelimit) {
42dd235c 1344 domain_update_dirty_limit(gdtc, now);
c2aa723a
TH
1345 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1346
1347 /*
1348 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1349 * compiler has no way to figure that out. Help it.
1350 */
1351 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
42dd235c 1352 domain_update_dirty_limit(mdtc, now);
c2aa723a
TH
1353 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1354 }
be3ffa27 1355 }
a88a341a 1356 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5 1357
a88a341a
TH
1358 wb->dirtied_stamp = dirtied;
1359 wb->written_stamp = written;
20792ebf 1360 WRITE_ONCE(wb->bw_time_stamp, now);
45a2966f 1361 spin_unlock(&wb->list_lock);
e98be2d5
WF
1362}
1363
45a2966f 1364void wb_update_bandwidth(struct bdi_writeback *wb)
e98be2d5 1365{
2bc00aef
TH
1366 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1367
fee468fd 1368 __wb_update_bandwidth(&gdtc, NULL, false);
fee468fd
JK
1369}
1370
1371/* Interval after which we consider wb idle and don't estimate bandwidth */
1372#define WB_BANDWIDTH_IDLE_JIF (HZ)
1373
1374static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1375{
1376 unsigned long now = jiffies;
1377 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1378
1379 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1380 !atomic_read(&wb->writeback_inodes)) {
1381 spin_lock(&wb->list_lock);
1382 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1383 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
20792ebf 1384 WRITE_ONCE(wb->bw_time_stamp, now);
fee468fd
JK
1385 spin_unlock(&wb->list_lock);
1386 }
e98be2d5
WF
1387}
1388
9d823e8f 1389/*
d0e1d66b 1390 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1391 * will look to see if it needs to start dirty throttling.
1392 *
1393 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1394 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1395 * (the number of pages we may dirty without exceeding the dirty limits).
1396 */
1397static unsigned long dirty_poll_interval(unsigned long dirty,
1398 unsigned long thresh)
1399{
1400 if (thresh > dirty)
1401 return 1UL << (ilog2(thresh - dirty) >> 1);
1402
1403 return 1;
1404}
1405
a88a341a 1406static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1407 unsigned long wb_dirty)
c8462cc9 1408{
20792ebf 1409 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
e3b6c655 1410 unsigned long t;
c8462cc9 1411
7ccb9ad5
WF
1412 /*
1413 * Limit pause time for small memory systems. If sleeping for too long
1414 * time, a small pool of dirty/writeback pages may go empty and disk go
1415 * idle.
1416 *
1417 * 8 serves as the safety ratio.
1418 */
de1fff37 1419 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1420 t++;
1421
e3b6c655 1422 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1423}
1424
a88a341a
TH
1425static long wb_min_pause(struct bdi_writeback *wb,
1426 long max_pause,
1427 unsigned long task_ratelimit,
1428 unsigned long dirty_ratelimit,
1429 int *nr_dirtied_pause)
c8462cc9 1430{
20792ebf
JK
1431 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1432 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
7ccb9ad5
WF
1433 long t; /* target pause */
1434 long pause; /* estimated next pause */
1435 int pages; /* target nr_dirtied_pause */
c8462cc9 1436
7ccb9ad5
WF
1437 /* target for 10ms pause on 1-dd case */
1438 t = max(1, HZ / 100);
c8462cc9
WF
1439
1440 /*
1441 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1442 * overheads.
1443 *
7ccb9ad5 1444 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1445 */
1446 if (hi > lo)
7ccb9ad5 1447 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1448
1449 /*
7ccb9ad5
WF
1450 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1451 * on the much more stable dirty_ratelimit. However the next pause time
1452 * will be computed based on task_ratelimit and the two rate limits may
1453 * depart considerably at some time. Especially if task_ratelimit goes
1454 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1455 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1456 * result task_ratelimit won't be executed faithfully, which could
1457 * eventually bring down dirty_ratelimit.
c8462cc9 1458 *
7ccb9ad5
WF
1459 * We apply two rules to fix it up:
1460 * 1) try to estimate the next pause time and if necessary, use a lower
1461 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1462 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1463 * 2) limit the target pause time to max_pause/2, so that the normal
1464 * small fluctuations of task_ratelimit won't trigger rule (1) and
1465 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1466 */
7ccb9ad5
WF
1467 t = min(t, 1 + max_pause / 2);
1468 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1469
1470 /*
5b9b3574
WF
1471 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1472 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1473 * When the 16 consecutive reads are often interrupted by some dirty
1474 * throttling pause during the async writes, cfq will go into idles
1475 * (deadline is fine). So push nr_dirtied_pause as high as possible
1476 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1477 */
5b9b3574
WF
1478 if (pages < DIRTY_POLL_THRESH) {
1479 t = max_pause;
1480 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1481 if (pages > DIRTY_POLL_THRESH) {
1482 pages = DIRTY_POLL_THRESH;
1483 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1484 }
1485 }
1486
7ccb9ad5
WF
1487 pause = HZ * pages / (task_ratelimit + 1);
1488 if (pause > max_pause) {
1489 t = max_pause;
1490 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1491 }
c8462cc9 1492
7ccb9ad5 1493 *nr_dirtied_pause = pages;
c8462cc9 1494 /*
7ccb9ad5 1495 * The minimal pause time will normally be half the target pause time.
c8462cc9 1496 */
5b9b3574 1497 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1498}
1499
970fb01a 1500static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1501{
2bc00aef 1502 struct bdi_writeback *wb = dtc->wb;
93f78d88 1503 unsigned long wb_reclaimable;
5a537485
MP
1504
1505 /*
de1fff37 1506 * wb_thresh is not treated as some limiting factor as
5a537485 1507 * dirty_thresh, due to reasons
de1fff37 1508 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1509 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1510 * go into state (wb_dirty >> wb_thresh) either because
1511 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1512 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1513 * dirtiers for 100 seconds until wb_dirty drops under
1514 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1515 * wb_position_ratio() will let the dirtier task progress
de1fff37 1516 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1517 */
b1cbc6d4 1518 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1519 dtc->wb_bg_thresh = dtc->thresh ?
1520 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1521
1522 /*
1523 * In order to avoid the stacked BDI deadlock we need
1524 * to ensure we accurately count the 'dirty' pages when
1525 * the threshold is low.
1526 *
1527 * Otherwise it would be possible to get thresh+n pages
1528 * reported dirty, even though there are thresh-m pages
1529 * actually dirty; with m+n sitting in the percpu
1530 * deltas.
1531 */
2bce774e 1532 if (dtc->wb_thresh < 2 * wb_stat_error()) {
93f78d88 1533 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1534 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1535 } else {
93f78d88 1536 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1537 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1538 }
1539}
1540
1da177e4
LT
1541/*
1542 * balance_dirty_pages() must be called by processes which are generating dirty
1543 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1544 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1545 * If we're over `background_thresh' then the writeback threads are woken to
1546 * perform some writeout.
1da177e4 1547 */
4c578dce 1548static void balance_dirty_pages(struct bdi_writeback *wb,
143dfe86 1549 unsigned long pages_dirtied)
1da177e4 1550{
2bc00aef 1551 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1552 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1553 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1554 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1555 &mdtc_stor : NULL;
1556 struct dirty_throttle_control *sdtc;
8d92890b 1557 unsigned long nr_reclaimable; /* = file_dirty */
83712358 1558 long period;
7ccb9ad5
WF
1559 long pause;
1560 long max_pause;
1561 long min_pause;
1562 int nr_dirtied_pause;
e50e3720 1563 bool dirty_exceeded = false;
143dfe86 1564 unsigned long task_ratelimit;
7ccb9ad5 1565 unsigned long dirty_ratelimit;
dfb8ae56 1566 struct backing_dev_info *bdi = wb->bdi;
5a537485 1567 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1568 unsigned long start_time = jiffies;
1da177e4
LT
1569
1570 for (;;) {
83712358 1571 unsigned long now = jiffies;
2bc00aef 1572 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1573 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1574 unsigned long m_thresh = 0;
1575 unsigned long m_bg_thresh = 0;
83712358 1576
8d92890b 1577 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
9fc3a43e 1578 gdtc->avail = global_dirtyable_memory();
11fb9989 1579 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1580
9fc3a43e 1581 domain_dirty_limits(gdtc);
16c4042f 1582
5a537485 1583 if (unlikely(strictlimit)) {
970fb01a 1584 wb_dirty_limits(gdtc);
5a537485 1585
2bc00aef
TH
1586 dirty = gdtc->wb_dirty;
1587 thresh = gdtc->wb_thresh;
970fb01a 1588 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1589 } else {
2bc00aef
TH
1590 dirty = gdtc->dirty;
1591 thresh = gdtc->thresh;
1592 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1593 }
1594
c2aa723a 1595 if (mdtc) {
c5edf9cd 1596 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1597
1598 /*
1599 * If @wb belongs to !root memcg, repeat the same
1600 * basic calculations for the memcg domain.
1601 */
c5edf9cd
TH
1602 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1603 &mdtc->dirty, &writeback);
c2aa723a 1604 mdtc->dirty += writeback;
c5edf9cd 1605 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1606
1607 domain_dirty_limits(mdtc);
1608
1609 if (unlikely(strictlimit)) {
1610 wb_dirty_limits(mdtc);
1611 m_dirty = mdtc->wb_dirty;
1612 m_thresh = mdtc->wb_thresh;
1613 m_bg_thresh = mdtc->wb_bg_thresh;
1614 } else {
1615 m_dirty = mdtc->dirty;
1616 m_thresh = mdtc->thresh;
1617 m_bg_thresh = mdtc->bg_thresh;
1618 }
5a537485
MP
1619 }
1620
16c4042f
WF
1621 /*
1622 * Throttle it only when the background writeback cannot
1623 * catch-up. This avoids (excessively) small writeouts
de1fff37 1624 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1625 *
de1fff37
TH
1626 * In strictlimit case make decision based on the wb counters
1627 * and limits. Small writeouts when the wb limits are ramping
5a537485 1628 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1629 *
1630 * If memcg domain is in effect, @dirty should be under
1631 * both global and memcg freerun ceilings.
16c4042f 1632 */
c2aa723a
TH
1633 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1634 (!mdtc ||
1635 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
a37b0715
N
1636 unsigned long intv;
1637 unsigned long m_intv;
1638
1639free_running:
1640 intv = dirty_poll_interval(dirty, thresh);
1641 m_intv = ULONG_MAX;
c2aa723a 1642
83712358
WF
1643 current->dirty_paused_when = now;
1644 current->nr_dirtied = 0;
c2aa723a
TH
1645 if (mdtc)
1646 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1647 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1648 break;
83712358 1649 }
16c4042f 1650
bc05873d 1651 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1652 wb_start_background_writeback(wb);
143dfe86 1653
97b27821
TH
1654 mem_cgroup_flush_foreign(wb);
1655
c2aa723a
TH
1656 /*
1657 * Calculate global domain's pos_ratio and select the
1658 * global dtc by default.
1659 */
a37b0715 1660 if (!strictlimit) {
970fb01a 1661 wb_dirty_limits(gdtc);
5fce25a9 1662
a37b0715
N
1663 if ((current->flags & PF_LOCAL_THROTTLE) &&
1664 gdtc->wb_dirty <
1665 dirty_freerun_ceiling(gdtc->wb_thresh,
1666 gdtc->wb_bg_thresh))
1667 /*
1668 * LOCAL_THROTTLE tasks must not be throttled
1669 * when below the per-wb freerun ceiling.
1670 */
1671 goto free_running;
1672 }
1673
2bc00aef
TH
1674 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1675 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1676
1677 wb_position_ratio(gdtc);
c2aa723a
TH
1678 sdtc = gdtc;
1679
1680 if (mdtc) {
1681 /*
1682 * If memcg domain is in effect, calculate its
1683 * pos_ratio. @wb should satisfy constraints from
1684 * both global and memcg domains. Choose the one
1685 * w/ lower pos_ratio.
1686 */
a37b0715 1687 if (!strictlimit) {
c2aa723a
TH
1688 wb_dirty_limits(mdtc);
1689
a37b0715
N
1690 if ((current->flags & PF_LOCAL_THROTTLE) &&
1691 mdtc->wb_dirty <
1692 dirty_freerun_ceiling(mdtc->wb_thresh,
1693 mdtc->wb_bg_thresh))
1694 /*
1695 * LOCAL_THROTTLE tasks must not be
1696 * throttled when below the per-wb
1697 * freerun ceiling.
1698 */
1699 goto free_running;
1700 }
c2aa723a
TH
1701 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1702 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1703
1704 wb_position_ratio(mdtc);
1705 if (mdtc->pos_ratio < gdtc->pos_ratio)
1706 sdtc = mdtc;
1707 }
daddfa3c 1708
a88a341a
TH
1709 if (dirty_exceeded && !wb->dirty_exceeded)
1710 wb->dirty_exceeded = 1;
1da177e4 1711
20792ebf 1712 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
45a2966f 1713 BANDWIDTH_INTERVAL))
fee468fd 1714 __wb_update_bandwidth(gdtc, mdtc, true);
e98be2d5 1715
c2aa723a 1716 /* throttle according to the chosen dtc */
20792ebf 1717 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
c2aa723a 1718 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1719 RATELIMIT_CALC_SHIFT;
c2aa723a 1720 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1721 min_pause = wb_min_pause(wb, max_pause,
1722 task_ratelimit, dirty_ratelimit,
1723 &nr_dirtied_pause);
7ccb9ad5 1724
3a73dbbc 1725 if (unlikely(task_ratelimit == 0)) {
83712358 1726 period = max_pause;
c8462cc9 1727 pause = max_pause;
143dfe86 1728 goto pause;
04fbfdc1 1729 }
83712358
WF
1730 period = HZ * pages_dirtied / task_ratelimit;
1731 pause = period;
1732 if (current->dirty_paused_when)
1733 pause -= now - current->dirty_paused_when;
1734 /*
1735 * For less than 1s think time (ext3/4 may block the dirtier
1736 * for up to 800ms from time to time on 1-HDD; so does xfs,
1737 * however at much less frequency), try to compensate it in
1738 * future periods by updating the virtual time; otherwise just
1739 * do a reset, as it may be a light dirtier.
1740 */
7ccb9ad5 1741 if (pause < min_pause) {
5634cc2a 1742 trace_balance_dirty_pages(wb,
c2aa723a
TH
1743 sdtc->thresh,
1744 sdtc->bg_thresh,
1745 sdtc->dirty,
1746 sdtc->wb_thresh,
1747 sdtc->wb_dirty,
ece13ac3
WF
1748 dirty_ratelimit,
1749 task_ratelimit,
1750 pages_dirtied,
83712358 1751 period,
7ccb9ad5 1752 min(pause, 0L),
ece13ac3 1753 start_time);
83712358
WF
1754 if (pause < -HZ) {
1755 current->dirty_paused_when = now;
1756 current->nr_dirtied = 0;
1757 } else if (period) {
1758 current->dirty_paused_when += period;
1759 current->nr_dirtied = 0;
7ccb9ad5
WF
1760 } else if (current->nr_dirtied_pause <= pages_dirtied)
1761 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1762 break;
04fbfdc1 1763 }
7ccb9ad5
WF
1764 if (unlikely(pause > max_pause)) {
1765 /* for occasional dropped task_ratelimit */
1766 now += min(pause - max_pause, max_pause);
1767 pause = max_pause;
1768 }
143dfe86
WF
1769
1770pause:
5634cc2a 1771 trace_balance_dirty_pages(wb,
c2aa723a
TH
1772 sdtc->thresh,
1773 sdtc->bg_thresh,
1774 sdtc->dirty,
1775 sdtc->wb_thresh,
1776 sdtc->wb_dirty,
ece13ac3
WF
1777 dirty_ratelimit,
1778 task_ratelimit,
1779 pages_dirtied,
83712358 1780 period,
ece13ac3
WF
1781 pause,
1782 start_time);
499d05ec 1783 __set_current_state(TASK_KILLABLE);
b57d74af 1784 wb->dirty_sleep = now;
d25105e8 1785 io_schedule_timeout(pause);
87c6a9b2 1786
83712358
WF
1787 current->dirty_paused_when = now + pause;
1788 current->nr_dirtied = 0;
7ccb9ad5 1789 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1790
ffd1f609 1791 /*
2bc00aef
TH
1792 * This is typically equal to (dirty < thresh) and can also
1793 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1794 */
1df64719 1795 if (task_ratelimit)
ffd1f609 1796 break;
499d05ec 1797
c5c6343c 1798 /*
f0953a1b 1799 * In the case of an unresponsive NFS server and the NFS dirty
de1fff37 1800 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1801 * to go through, so that tasks on them still remain responsive.
1802 *
3f8b6fb7 1803 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1804 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1805 * more page. However wb_dirty has accounting errors. So use
93f78d88 1806 * the larger and more IO friendly wb_stat_error.
c5c6343c 1807 */
2bce774e 1808 if (sdtc->wb_dirty <= wb_stat_error())
c5c6343c
WF
1809 break;
1810
499d05ec
JK
1811 if (fatal_signal_pending(current))
1812 break;
1da177e4
LT
1813 }
1814
a88a341a
TH
1815 if (!dirty_exceeded && wb->dirty_exceeded)
1816 wb->dirty_exceeded = 0;
1da177e4 1817
bc05873d 1818 if (writeback_in_progress(wb))
5b0830cb 1819 return;
1da177e4
LT
1820
1821 /*
1822 * In laptop mode, we wait until hitting the higher threshold before
1823 * starting background writeout, and then write out all the way down
1824 * to the lower threshold. So slow writers cause minimal disk activity.
1825 *
1826 * In normal mode, we start background writeout at the lower
1827 * background_thresh, to keep the amount of dirty memory low.
1828 */
143dfe86
WF
1829 if (laptop_mode)
1830 return;
1831
2bc00aef 1832 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1833 wb_start_background_writeback(wb);
1da177e4
LT
1834}
1835
9d823e8f 1836static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1837
54848d73
WF
1838/*
1839 * Normal tasks are throttled by
1840 * loop {
1841 * dirty tsk->nr_dirtied_pause pages;
1842 * take a snap in balance_dirty_pages();
1843 * }
1844 * However there is a worst case. If every task exit immediately when dirtied
1845 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1846 * called to throttle the page dirties. The solution is to save the not yet
1847 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1848 * randomly into the running tasks. This works well for the above worst case,
1849 * as the new task will pick up and accumulate the old task's leaked dirty
1850 * count and eventually get throttled.
1851 */
1852DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1853
1da177e4 1854/**
d0e1d66b 1855 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1856 * @mapping: address_space which was dirtied
1da177e4
LT
1857 *
1858 * Processes which are dirtying memory should call in here once for each page
1859 * which was newly dirtied. The function will periodically check the system's
1860 * dirty state and will initiate writeback if needed.
1861 *
5defd497
KW
1862 * Once we're over the dirty memory limit we decrease the ratelimiting
1863 * by a lot, to prevent individual processes from overshooting the limit
1864 * by (ratelimit_pages) each.
1da177e4 1865 */
d0e1d66b 1866void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1867{
dfb8ae56
TH
1868 struct inode *inode = mapping->host;
1869 struct backing_dev_info *bdi = inode_to_bdi(inode);
1870 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1871 int ratelimit;
1872 int *p;
1da177e4 1873
f56753ac 1874 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
36715cef
WF
1875 return;
1876
dfb8ae56
TH
1877 if (inode_cgwb_enabled(inode))
1878 wb = wb_get_create_current(bdi, GFP_KERNEL);
1879 if (!wb)
1880 wb = &bdi->wb;
1881
9d823e8f 1882 ratelimit = current->nr_dirtied_pause;
a88a341a 1883 if (wb->dirty_exceeded)
9d823e8f
WF
1884 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1885
9d823e8f 1886 preempt_disable();
1da177e4 1887 /*
9d823e8f
WF
1888 * This prevents one CPU to accumulate too many dirtied pages without
1889 * calling into balance_dirty_pages(), which can happen when there are
1890 * 1000+ tasks, all of them start dirtying pages at exactly the same
1891 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1892 */
7c8e0181 1893 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1894 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1895 *p = 0;
d3bc1fef
WF
1896 else if (unlikely(*p >= ratelimit_pages)) {
1897 *p = 0;
1898 ratelimit = 0;
1da177e4 1899 }
54848d73
WF
1900 /*
1901 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1902 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1903 * the dirty throttling and livelock other long-run dirtiers.
1904 */
7c8e0181 1905 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1906 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1907 unsigned long nr_pages_dirtied;
54848d73
WF
1908 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1909 *p -= nr_pages_dirtied;
1910 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1911 }
fa5a734e 1912 preempt_enable();
9d823e8f
WF
1913
1914 if (unlikely(current->nr_dirtied >= ratelimit))
4c578dce 1915 balance_dirty_pages(wb, current->nr_dirtied);
dfb8ae56
TH
1916
1917 wb_put(wb);
1da177e4 1918}
d0e1d66b 1919EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1920
aa661bbe
TH
1921/**
1922 * wb_over_bg_thresh - does @wb need to be written back?
1923 * @wb: bdi_writeback of interest
1924 *
1925 * Determines whether background writeback should keep writing @wb or it's
a862f68a
MR
1926 * clean enough.
1927 *
1928 * Return: %true if writeback should continue.
aa661bbe
TH
1929 */
1930bool wb_over_bg_thresh(struct bdi_writeback *wb)
1931{
947e9762 1932 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1933 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1934 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1935 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1936 &mdtc_stor : NULL;
ab19939a
CW
1937 unsigned long reclaimable;
1938 unsigned long thresh;
aa661bbe 1939
947e9762
TH
1940 /*
1941 * Similar to balance_dirty_pages() but ignores pages being written
1942 * as we're trying to decide whether to put more under writeback.
1943 */
1944 gdtc->avail = global_dirtyable_memory();
8d92890b 1945 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
947e9762 1946 domain_dirty_limits(gdtc);
aa661bbe 1947
947e9762 1948 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1949 return true;
1950
ab19939a
CW
1951 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1952 if (thresh < 2 * wb_stat_error())
1953 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1954 else
1955 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1956
1957 if (reclaimable > thresh)
aa661bbe
TH
1958 return true;
1959
c2aa723a 1960 if (mdtc) {
c5edf9cd 1961 unsigned long filepages, headroom, writeback;
c2aa723a 1962
c5edf9cd
TH
1963 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1964 &writeback);
1965 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1966 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1967
1968 if (mdtc->dirty > mdtc->bg_thresh)
1969 return true;
1970
ab19939a
CW
1971 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1972 if (thresh < 2 * wb_stat_error())
1973 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1974 else
1975 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1976
1977 if (reclaimable > thresh)
c2aa723a
TH
1978 return true;
1979 }
1980
aa661bbe
TH
1981 return false;
1982}
1983
1da177e4
LT
1984/*
1985 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1986 */
cccad5b9 1987int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
32927393 1988 void *buffer, size_t *length, loff_t *ppos)
1da177e4 1989{
94af5846
YS
1990 unsigned int old_interval = dirty_writeback_interval;
1991 int ret;
1992
1993 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
1994
1995 /*
1996 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1997 * and a different non-zero value will wakeup the writeback threads.
1998 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1999 * iterate over all bdis and wbs.
2000 * The reason we do this is to make the change take effect immediately.
2001 */
2002 if (!ret && write && dirty_writeback_interval &&
2003 dirty_writeback_interval != old_interval)
94af5846
YS
2004 wakeup_flusher_threads(WB_REASON_PERIODIC);
2005
2006 return ret;
1da177e4
LT
2007}
2008
bca237a5 2009void laptop_mode_timer_fn(struct timer_list *t)
1da177e4 2010{
bca237a5
KC
2011 struct backing_dev_info *backing_dev_info =
2012 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1da177e4 2013
bca237a5 2014 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
2015}
2016
2017/*
2018 * We've spun up the disk and we're in laptop mode: schedule writeback
2019 * of all dirty data a few seconds from now. If the flush is already scheduled
2020 * then push it back - the user is still using the disk.
2021 */
31373d09 2022void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2023{
31373d09 2024 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2025}
2026
2027/*
2028 * We're in laptop mode and we've just synced. The sync's writes will have
2029 * caused another writeback to be scheduled by laptop_io_completion.
2030 * Nothing needs to be written back anymore, so we unschedule the writeback.
2031 */
2032void laptop_sync_completion(void)
2033{
31373d09
MG
2034 struct backing_dev_info *bdi;
2035
2036 rcu_read_lock();
2037
2038 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2039 del_timer(&bdi->laptop_mode_wb_timer);
2040
2041 rcu_read_unlock();
1da177e4
LT
2042}
2043
2044/*
2045 * If ratelimit_pages is too high then we can get into dirty-data overload
2046 * if a large number of processes all perform writes at the same time.
1da177e4
LT
2047 *
2048 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2049 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2050 * thresholds.
1da177e4
LT
2051 */
2052
2d1d43f6 2053void writeback_set_ratelimit(void)
1da177e4 2054{
dcc25ae7 2055 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2056 unsigned long background_thresh;
2057 unsigned long dirty_thresh;
dcc25ae7 2058
9d823e8f 2059 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2060 dom->dirty_limit = dirty_thresh;
9d823e8f 2061 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2062 if (ratelimit_pages < 16)
2063 ratelimit_pages = 16;
1da177e4
LT
2064}
2065
1d7ac6ae 2066static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2067{
1d7ac6ae
SAS
2068 writeback_set_ratelimit();
2069 return 0;
1da177e4
LT
2070}
2071
1da177e4 2072/*
dc6e29da
LT
2073 * Called early on to tune the page writeback dirty limits.
2074 *
2075 * We used to scale dirty pages according to how total memory
0a18e607 2076 * related to pages that could be allocated for buffers.
dc6e29da
LT
2077 *
2078 * However, that was when we used "dirty_ratio" to scale with
2079 * all memory, and we don't do that any more. "dirty_ratio"
0a18e607 2080 * is now applied to total non-HIGHPAGE memory, and as such we can't
dc6e29da
LT
2081 * get into the old insane situation any more where we had
2082 * large amounts of dirty pages compared to a small amount of
2083 * non-HIGHMEM memory.
2084 *
2085 * But we might still want to scale the dirty_ratio by how
2086 * much memory the box has..
1da177e4
LT
2087 */
2088void __init page_writeback_init(void)
2089{
a50fcb51
RV
2090 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2091
1d7ac6ae
SAS
2092 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2093 page_writeback_cpu_online, NULL);
2094 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2095 page_writeback_cpu_online);
1da177e4
LT
2096}
2097
f446daae
JK
2098/**
2099 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2100 * @mapping: address space structure to write
2101 * @start: starting page index
2102 * @end: ending page index (inclusive)
2103 *
2104 * This function scans the page range from @start to @end (inclusive) and tags
2105 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2106 * that write_cache_pages (or whoever calls this function) will then use
2107 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2108 * used to avoid livelocking of writeback by a process steadily creating new
2109 * dirty pages in the file (thus it is important for this function to be quick
2110 * so that it can tag pages faster than a dirtying process can create them).
2111 */
f446daae
JK
2112void tag_pages_for_writeback(struct address_space *mapping,
2113 pgoff_t start, pgoff_t end)
2114{
ff9c745b
MW
2115 XA_STATE(xas, &mapping->i_pages, start);
2116 unsigned int tagged = 0;
2117 void *page;
268f42de 2118
ff9c745b
MW
2119 xas_lock_irq(&xas);
2120 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2121 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2122 if (++tagged % XA_CHECK_SCHED)
268f42de 2123 continue;
ff9c745b
MW
2124
2125 xas_pause(&xas);
2126 xas_unlock_irq(&xas);
f446daae 2127 cond_resched();
ff9c745b 2128 xas_lock_irq(&xas);
268f42de 2129 }
ff9c745b 2130 xas_unlock_irq(&xas);
f446daae
JK
2131}
2132EXPORT_SYMBOL(tag_pages_for_writeback);
2133
811d736f 2134/**
0ea97180 2135 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2136 * @mapping: address space structure to write
2137 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2138 * @writepage: function called for each page
2139 * @data: data passed to writepage function
811d736f 2140 *
0ea97180 2141 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2142 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2143 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2144 * and msync() need to guarantee that all the data which was dirty at the time
2145 * the call was made get new I/O started against them. If wbc->sync_mode is
2146 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2147 * existing IO to complete.
f446daae
JK
2148 *
2149 * To avoid livelocks (when other process dirties new pages), we first tag
2150 * pages which should be written back with TOWRITE tag and only then start
2151 * writing them. For data-integrity sync we have to be careful so that we do
2152 * not miss some pages (e.g., because some other process has cleared TOWRITE
2153 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2154 * by the process clearing the DIRTY tag (and submitting the page for IO).
64081362
DC
2155 *
2156 * To avoid deadlocks between range_cyclic writeback and callers that hold
2157 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2158 * we do not loop back to the start of the file. Doing so causes a page
2159 * lock/page writeback access order inversion - we should only ever lock
2160 * multiple pages in ascending page->index order, and looping back to the start
2161 * of the file violates that rule and causes deadlocks.
a862f68a
MR
2162 *
2163 * Return: %0 on success, negative error code otherwise
811d736f 2164 */
0ea97180
MS
2165int write_cache_pages(struct address_space *mapping,
2166 struct writeback_control *wbc, writepage_t writepage,
2167 void *data)
811d736f 2168{
811d736f
DH
2169 int ret = 0;
2170 int done = 0;
3fa750dc 2171 int error;
811d736f
DH
2172 struct pagevec pvec;
2173 int nr_pages;
2174 pgoff_t index;
2175 pgoff_t end; /* Inclusive */
bd19e012 2176 pgoff_t done_index;
811d736f 2177 int range_whole = 0;
ff9c745b 2178 xa_mark_t tag;
811d736f 2179
86679820 2180 pagevec_init(&pvec);
811d736f 2181 if (wbc->range_cyclic) {
28659cc8 2182 index = mapping->writeback_index; /* prev offset */
811d736f
DH
2183 end = -1;
2184 } else {
09cbfeaf
KS
2185 index = wbc->range_start >> PAGE_SHIFT;
2186 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2187 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2188 range_whole = 1;
811d736f 2189 }
cc7b8f62
MFO
2190 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2191 tag_pages_for_writeback(mapping, index, end);
f446daae 2192 tag = PAGECACHE_TAG_TOWRITE;
cc7b8f62 2193 } else {
f446daae 2194 tag = PAGECACHE_TAG_DIRTY;
cc7b8f62 2195 }
bd19e012 2196 done_index = index;
5a3d5c98
NP
2197 while (!done && (index <= end)) {
2198 int i;
2199
2b9775ae 2200 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2201 tag);
5a3d5c98
NP
2202 if (nr_pages == 0)
2203 break;
811d736f 2204
811d736f
DH
2205 for (i = 0; i < nr_pages; i++) {
2206 struct page *page = pvec.pages[i];
2207
cf15b07c 2208 done_index = page->index;
d5482cdf 2209
811d736f
DH
2210 lock_page(page);
2211
5a3d5c98
NP
2212 /*
2213 * Page truncated or invalidated. We can freely skip it
2214 * then, even for data integrity operations: the page
2215 * has disappeared concurrently, so there could be no
f0953a1b 2216 * real expectation of this data integrity operation
5a3d5c98
NP
2217 * even if there is now a new, dirty page at the same
2218 * pagecache address.
2219 */
811d736f 2220 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2221continue_unlock:
811d736f
DH
2222 unlock_page(page);
2223 continue;
2224 }
2225
515f4a03
NP
2226 if (!PageDirty(page)) {
2227 /* someone wrote it for us */
2228 goto continue_unlock;
2229 }
2230
2231 if (PageWriteback(page)) {
2232 if (wbc->sync_mode != WB_SYNC_NONE)
2233 wait_on_page_writeback(page);
2234 else
2235 goto continue_unlock;
2236 }
811d736f 2237
515f4a03
NP
2238 BUG_ON(PageWriteback(page));
2239 if (!clear_page_dirty_for_io(page))
5a3d5c98 2240 goto continue_unlock;
811d736f 2241
de1414a6 2242 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
3fa750dc
BF
2243 error = (*writepage)(page, wbc, data);
2244 if (unlikely(error)) {
2245 /*
2246 * Handle errors according to the type of
2247 * writeback. There's no need to continue for
2248 * background writeback. Just push done_index
2249 * past this page so media errors won't choke
2250 * writeout for the entire file. For integrity
2251 * writeback, we must process the entire dirty
2252 * set regardless of errors because the fs may
2253 * still have state to clear for each page. In
2254 * that case we continue processing and return
2255 * the first error.
2256 */
2257 if (error == AOP_WRITEPAGE_ACTIVATE) {
00266770 2258 unlock_page(page);
3fa750dc
BF
2259 error = 0;
2260 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2261 ret = error;
cf15b07c 2262 done_index = page->index + 1;
00266770
NP
2263 done = 1;
2264 break;
2265 }
3fa750dc
BF
2266 if (!ret)
2267 ret = error;
0b564927 2268 }
00266770 2269
546a1924
DC
2270 /*
2271 * We stop writing back only if we are not doing
2272 * integrity sync. In case of integrity sync we have to
2273 * keep going until we have written all the pages
2274 * we tagged for writeback prior to entering this loop.
2275 */
2276 if (--wbc->nr_to_write <= 0 &&
2277 wbc->sync_mode == WB_SYNC_NONE) {
2278 done = 1;
2279 break;
05fe478d 2280 }
811d736f
DH
2281 }
2282 pagevec_release(&pvec);
2283 cond_resched();
2284 }
64081362
DC
2285
2286 /*
2287 * If we hit the last page and there is more work to be done: wrap
2288 * back the index back to the start of the file for the next
2289 * time we are called.
2290 */
2291 if (wbc->range_cyclic && !done)
2292 done_index = 0;
0b564927
DC
2293 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2294 mapping->writeback_index = done_index;
06d6cf69 2295
811d736f
DH
2296 return ret;
2297}
0ea97180
MS
2298EXPORT_SYMBOL(write_cache_pages);
2299
2300/*
2301 * Function used by generic_writepages to call the real writepage
2302 * function and set the mapping flags on error
2303 */
2304static int __writepage(struct page *page, struct writeback_control *wbc,
2305 void *data)
2306{
2307 struct address_space *mapping = data;
2308 int ret = mapping->a_ops->writepage(page, wbc);
2309 mapping_set_error(mapping, ret);
2310 return ret;
2311}
2312
2313/**
2314 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2315 * @mapping: address space structure to write
2316 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2317 *
2318 * This is a library function, which implements the writepages()
2319 * address_space_operation.
a862f68a
MR
2320 *
2321 * Return: %0 on success, negative error code otherwise
0ea97180
MS
2322 */
2323int generic_writepages(struct address_space *mapping,
2324 struct writeback_control *wbc)
2325{
9b6096a6
SL
2326 struct blk_plug plug;
2327 int ret;
2328
0ea97180
MS
2329 /* deal with chardevs and other special file */
2330 if (!mapping->a_ops->writepage)
2331 return 0;
2332
9b6096a6
SL
2333 blk_start_plug(&plug);
2334 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2335 blk_finish_plug(&plug);
2336 return ret;
0ea97180 2337}
811d736f
DH
2338
2339EXPORT_SYMBOL(generic_writepages);
2340
1da177e4
LT
2341int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2342{
22905f77 2343 int ret;
fee468fd 2344 struct bdi_writeback *wb;
22905f77 2345
1da177e4
LT
2346 if (wbc->nr_to_write <= 0)
2347 return 0;
fee468fd
JK
2348 wb = inode_to_wb_wbc(mapping->host, wbc);
2349 wb_bandwidth_estimate_start(wb);
80a2ea9f
TT
2350 while (1) {
2351 if (mapping->a_ops->writepages)
2352 ret = mapping->a_ops->writepages(mapping, wbc);
2353 else
2354 ret = generic_writepages(mapping, wbc);
2355 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2356 break;
8d58802f
MG
2357
2358 /*
2359 * Lacking an allocation context or the locality or writeback
2360 * state of any of the inode's pages, throttle based on
2361 * writeback activity on the local node. It's as good a
2362 * guess as any.
2363 */
2364 reclaim_throttle(NODE_DATA(numa_node_id()),
c3f4a9a2 2365 VMSCAN_THROTTLE_WRITEBACK);
80a2ea9f 2366 }
45a2966f
JK
2367 /*
2368 * Usually few pages are written by now from those we've just submitted
2369 * but if there's constant writeback being submitted, this makes sure
2370 * writeback bandwidth is updated once in a while.
2371 */
20792ebf
JK
2372 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2373 BANDWIDTH_INTERVAL))
45a2966f 2374 wb_update_bandwidth(wb);
22905f77 2375 return ret;
1da177e4
LT
2376}
2377
2378/**
121703c1
MWO
2379 * folio_write_one - write out a single folio and wait on I/O.
2380 * @folio: The folio to write.
1da177e4 2381 *
121703c1 2382 * The folio must be locked by the caller and will be unlocked upon return.
1da177e4 2383 *
37e51a76
JL
2384 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2385 * function returns.
a862f68a
MR
2386 *
2387 * Return: %0 on success, negative error code otherwise
1da177e4 2388 */
121703c1 2389int folio_write_one(struct folio *folio)
1da177e4 2390{
121703c1 2391 struct address_space *mapping = folio->mapping;
1da177e4
LT
2392 int ret = 0;
2393 struct writeback_control wbc = {
2394 .sync_mode = WB_SYNC_ALL,
121703c1 2395 .nr_to_write = folio_nr_pages(folio),
1da177e4
LT
2396 };
2397
121703c1 2398 BUG_ON(!folio_test_locked(folio));
1da177e4 2399
121703c1 2400 folio_wait_writeback(folio);
1da177e4 2401
121703c1
MWO
2402 if (folio_clear_dirty_for_io(folio)) {
2403 folio_get(folio);
2404 ret = mapping->a_ops->writepage(&folio->page, &wbc);
37e51a76 2405 if (ret == 0)
121703c1
MWO
2406 folio_wait_writeback(folio);
2407 folio_put(folio);
1da177e4 2408 } else {
121703c1 2409 folio_unlock(folio);
1da177e4 2410 }
37e51a76
JL
2411
2412 if (!ret)
2413 ret = filemap_check_errors(mapping);
1da177e4
LT
2414 return ret;
2415}
121703c1 2416EXPORT_SYMBOL(folio_write_one);
1da177e4 2417
76719325
KC
2418/*
2419 * For address_spaces which do not use buffers nor write back.
2420 */
46de8b97 2421bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
76719325 2422{
46de8b97
MWO
2423 if (!folio_test_dirty(folio))
2424 return !folio_test_set_dirty(folio);
2425 return false;
76719325 2426}
46de8b97 2427EXPORT_SYMBOL(noop_dirty_folio);
76719325 2428
e3a7cca1
ES
2429/*
2430 * Helper function for set_page_dirty family.
c4843a75 2431 *
81f8c3a4 2432 * Caller must hold lock_page_memcg().
c4843a75 2433 *
e3a7cca1
ES
2434 * NOTE: This relies on being atomic wrt interrupts.
2435 */
203a3151 2436static void folio_account_dirtied(struct folio *folio,
6e1cae88 2437 struct address_space *mapping)
e3a7cca1 2438{
52ebea74
TH
2439 struct inode *inode = mapping->host;
2440
b9b0ff61 2441 trace_writeback_dirty_folio(folio, mapping);
9fb0a7da 2442
f56753ac 2443 if (mapping_can_writeback(mapping)) {
52ebea74 2444 struct bdi_writeback *wb;
203a3151 2445 long nr = folio_nr_pages(folio);
de1414a6 2446
203a3151 2447 inode_attach_wb(inode, &folio->page);
52ebea74 2448 wb = inode_to_wb(inode);
de1414a6 2449
203a3151
MWO
2450 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2451 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2452 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2453 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2454 wb_stat_mod(wb, WB_DIRTIED, nr);
2455 task_io_account_write(nr * PAGE_SIZE);
2456 current->nr_dirtied += nr;
2457 __this_cpu_add(bdp_ratelimits, nr);
97b27821 2458
203a3151 2459 mem_cgroup_track_foreign_dirty(folio, wb);
e3a7cca1
ES
2460 }
2461}
2462
b9ea2515
KK
2463/*
2464 * Helper function for deaccounting dirty page without writeback.
2465 *
81f8c3a4 2466 * Caller must hold lock_page_memcg().
b9ea2515 2467 */
566d3362 2468void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
b9ea2515 2469{
566d3362
HD
2470 long nr = folio_nr_pages(folio);
2471
2472 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2473 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2474 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2475 task_io_account_cancelled_write(nr * PAGE_SIZE);
b9ea2515 2476}
b9ea2515 2477
6e1cae88 2478/*
203a3151
MWO
2479 * Mark the folio dirty, and set it dirty in the page cache, and mark
2480 * the inode dirty.
6e1cae88 2481 *
203a3151 2482 * If warn is true, then emit a warning if the folio is not uptodate and has
6e1cae88
MWO
2483 * not been truncated.
2484 *
a229a4f0
MWO
2485 * The caller must hold lock_page_memcg(). Most callers have the folio
2486 * locked. A few have the folio blocked from truncation through other
2487 * means (eg zap_page_range() has it mapped and is holding the page table
2488 * lock). This can also be called from mark_buffer_dirty(), which I
2489 * cannot prove is always protected against truncate.
6e1cae88 2490 */
203a3151 2491void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
6e1cae88
MWO
2492 int warn)
2493{
2494 unsigned long flags;
2495
2496 xa_lock_irqsave(&mapping->i_pages, flags);
203a3151
MWO
2497 if (folio->mapping) { /* Race with truncate? */
2498 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2499 folio_account_dirtied(folio, mapping);
2500 __xa_set_mark(&mapping->i_pages, folio_index(folio),
6e1cae88
MWO
2501 PAGECACHE_TAG_DIRTY);
2502 }
2503 xa_unlock_irqrestore(&mapping->i_pages, flags);
2504}
2505
85d4d2eb
MWO
2506/**
2507 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2508 * @mapping: Address space this folio belongs to.
2509 * @folio: Folio to be marked as dirty.
1da177e4 2510 *
85d4d2eb
MWO
2511 * Filesystems which do not use buffer heads should call this function
2512 * from their set_page_dirty address space operation. It ignores the
2513 * contents of folio_get_private(), so if the filesystem marks individual
2514 * blocks as dirty, the filesystem should handle that itself.
1da177e4 2515 *
85d4d2eb
MWO
2516 * This is also sometimes used by filesystems which use buffer_heads when
2517 * a single buffer is being dirtied: we want to set the folio dirty in
2518 * that case, but not all the buffers. This is a "bottom-up" dirtying,
e621900a 2519 * whereas block_dirty_folio() is a "top-down" dirtying.
85d4d2eb
MWO
2520 *
2521 * The caller must ensure this doesn't race with truncation. Most will
2522 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2523 * folio mapped and the pte lock held, which also locks out truncation.
1da177e4 2524 */
85d4d2eb 2525bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
1da177e4 2526{
85d4d2eb
MWO
2527 folio_memcg_lock(folio);
2528 if (folio_test_set_dirty(folio)) {
2529 folio_memcg_unlock(folio);
2530 return false;
2531 }
1da177e4 2532
85d4d2eb
MWO
2533 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2534 folio_memcg_unlock(folio);
c4843a75 2535
85d4d2eb
MWO
2536 if (mapping->host) {
2537 /* !PageAnon && !swapper_space */
2538 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2539 }
85d4d2eb 2540 return true;
1da177e4 2541}
85d4d2eb 2542EXPORT_SYMBOL(filemap_dirty_folio);
1da177e4 2543
25ff8b15
MWO
2544/**
2545 * folio_account_redirty - Manually account for redirtying a page.
2546 * @folio: The folio which is being redirtied.
2547 *
2548 * Most filesystems should call folio_redirty_for_writepage() instead
2549 * of this fuction. If your filesystem is doing writeback outside the
2550 * context of a writeback_control(), it can call this when redirtying
2551 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2552 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2553 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2554 * in balanced_dirty_ratelimit and the dirty pages position control.
2f800fbd 2555 */
25ff8b15 2556void folio_account_redirty(struct folio *folio)
2f800fbd 2557{
25ff8b15 2558 struct address_space *mapping = folio->mapping;
91018134 2559
f56753ac 2560 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2561 struct inode *inode = mapping->host;
2562 struct bdi_writeback *wb;
2e898e4c 2563 struct wb_lock_cookie cookie = {};
25ff8b15 2564 long nr = folio_nr_pages(folio);
91018134 2565
2e898e4c 2566 wb = unlocked_inode_to_wb_begin(inode, &cookie);
25ff8b15
MWO
2567 current->nr_dirtied -= nr;
2568 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2569 wb_stat_mod(wb, WB_DIRTIED, -nr);
2e898e4c 2570 unlocked_inode_to_wb_end(inode, &cookie);
2f800fbd
WF
2571 }
2572}
25ff8b15 2573EXPORT_SYMBOL(folio_account_redirty);
2f800fbd 2574
cd78ab11
MWO
2575/**
2576 * folio_redirty_for_writepage - Decline to write a dirty folio.
2577 * @wbc: The writeback control.
2578 * @folio: The folio.
2579 *
2580 * When a writepage implementation decides that it doesn't want to write
2581 * @folio for some reason, it should call this function, unlock @folio and
2582 * return 0.
2583 *
2584 * Return: True if we redirtied the folio. False if someone else dirtied
2585 * it first.
1da177e4 2586 */
cd78ab11
MWO
2587bool folio_redirty_for_writepage(struct writeback_control *wbc,
2588 struct folio *folio)
1da177e4 2589{
cd78ab11
MWO
2590 bool ret;
2591 long nr = folio_nr_pages(folio);
2592
2593 wbc->pages_skipped += nr;
2594 ret = filemap_dirty_folio(folio->mapping, folio);
2595 folio_account_redirty(folio);
8d38633c 2596
8d38633c 2597 return ret;
1da177e4 2598}
cd78ab11 2599EXPORT_SYMBOL(folio_redirty_for_writepage);
1da177e4 2600
b5e84594
MWO
2601/**
2602 * folio_mark_dirty - Mark a folio as being modified.
2603 * @folio: The folio.
6746aff7 2604 *
6f31a5a2 2605 * For folios with a mapping this should be done with the folio lock held
b5e84594
MWO
2606 * for the benefit of asynchronous memory errors who prefer a consistent
2607 * dirty state. This rule can be broken in some special cases,
2608 * but should be better not to.
2609 *
2610 * Return: True if the folio was newly dirtied, false if it was already dirty.
1da177e4 2611 */
b5e84594 2612bool folio_mark_dirty(struct folio *folio)
1da177e4 2613{
b5e84594 2614 struct address_space *mapping = folio_mapping(folio);
1da177e4
LT
2615
2616 if (likely(mapping)) {
278df9f4
MK
2617 /*
2618 * readahead/lru_deactivate_page could remain
6f31a5a2
MWO
2619 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2620 * About readahead, if the folio is written, the flags would be
278df9f4 2621 * reset. So no problem.
6f31a5a2
MWO
2622 * About lru_deactivate_page, if the folio is redirtied,
2623 * the flag will be reset. So no problem. but if the
2624 * folio is used by readahead it will confuse readahead
2625 * and make it restart the size rampup process. But it's
2626 * a trivial problem.
278df9f4 2627 */
b5e84594
MWO
2628 if (folio_test_reclaim(folio))
2629 folio_clear_reclaim(folio);
3a3bae50 2630 return mapping->a_ops->dirty_folio(mapping, folio);
4741c9fd 2631 }
3a3bae50
MWO
2632
2633 return noop_dirty_folio(mapping, folio);
1da177e4 2634}
b5e84594 2635EXPORT_SYMBOL(folio_mark_dirty);
1da177e4
LT
2636
2637/*
2638 * set_page_dirty() is racy if the caller has no reference against
2639 * page->mapping->host, and if the page is unlocked. This is because another
2640 * CPU could truncate the page off the mapping and then free the mapping.
2641 *
2642 * Usually, the page _is_ locked, or the caller is a user-space process which
2643 * holds a reference on the inode by having an open file.
2644 *
2645 * In other cases, the page should be locked before running set_page_dirty().
2646 */
2647int set_page_dirty_lock(struct page *page)
2648{
2649 int ret;
2650
7eaceacc 2651 lock_page(page);
1da177e4
LT
2652 ret = set_page_dirty(page);
2653 unlock_page(page);
2654 return ret;
2655}
2656EXPORT_SYMBOL(set_page_dirty_lock);
2657
11f81bec
TH
2658/*
2659 * This cancels just the dirty bit on the kernel page itself, it does NOT
2660 * actually remove dirty bits on any mmap's that may be around. It also
2661 * leaves the page tagged dirty, so any sync activity will still find it on
2662 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2663 * look at the dirty bits in the VM.
2664 *
2665 * Doing this should *normally* only ever be done when a page is truncated,
2666 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2667 * this when it notices that somebody has cleaned out all the buffers on a
2668 * page without actually doing it through the VM. Can you say "ext3 is
2669 * horribly ugly"? Thought you could.
2670 */
fdaf532a 2671void __folio_cancel_dirty(struct folio *folio)
11f81bec 2672{
fdaf532a 2673 struct address_space *mapping = folio_mapping(folio);
c4843a75 2674
f56753ac 2675 if (mapping_can_writeback(mapping)) {
682aa8e1
TH
2676 struct inode *inode = mapping->host;
2677 struct bdi_writeback *wb;
2e898e4c 2678 struct wb_lock_cookie cookie = {};
c4843a75 2679
fdaf532a 2680 folio_memcg_lock(folio);
2e898e4c 2681 wb = unlocked_inode_to_wb_begin(inode, &cookie);
c4843a75 2682
fdaf532a 2683 if (folio_test_clear_dirty(folio))
566d3362 2684 folio_account_cleaned(folio, wb);
c4843a75 2685
2e898e4c 2686 unlocked_inode_to_wb_end(inode, &cookie);
fdaf532a 2687 folio_memcg_unlock(folio);
c4843a75 2688 } else {
fdaf532a 2689 folio_clear_dirty(folio);
c4843a75 2690 }
11f81bec 2691}
fdaf532a 2692EXPORT_SYMBOL(__folio_cancel_dirty);
11f81bec 2693
1da177e4 2694/*
9350f20a
MWO
2695 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2696 * Returns true if the folio was previously dirty.
1da177e4 2697 *
9350f20a
MWO
2698 * This is for preparing to put the folio under writeout. We leave
2699 * the folio tagged as dirty in the xarray so that a concurrent
2700 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2701 * The ->writepage implementation will run either folio_start_writeback()
2702 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2703 * and xarray dirty tag back into sync.
1da177e4 2704 *
9350f20a
MWO
2705 * This incoherency between the folio's dirty flag and xarray tag is
2706 * unfortunate, but it only exists while the folio is locked.
1da177e4 2707 */
9350f20a 2708bool folio_clear_dirty_for_io(struct folio *folio)
1da177e4 2709{
9350f20a
MWO
2710 struct address_space *mapping = folio_mapping(folio);
2711 bool ret = false;
1da177e4 2712
9350f20a 2713 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
79352894 2714
f56753ac 2715 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2716 struct inode *inode = mapping->host;
2717 struct bdi_writeback *wb;
2e898e4c 2718 struct wb_lock_cookie cookie = {};
682aa8e1 2719
7658cc28
LT
2720 /*
2721 * Yes, Virginia, this is indeed insane.
2722 *
2723 * We use this sequence to make sure that
2724 * (a) we account for dirty stats properly
2725 * (b) we tell the low-level filesystem to
9350f20a 2726 * mark the whole folio dirty if it was
7658cc28 2727 * dirty in a pagetable. Only to then
9350f20a 2728 * (c) clean the folio again and return 1 to
7658cc28
LT
2729 * cause the writeback.
2730 *
2731 * This way we avoid all nasty races with the
2732 * dirty bit in multiple places and clearing
2733 * them concurrently from different threads.
2734 *
9350f20a 2735 * Note! Normally the "folio_mark_dirty(folio)"
7658cc28
LT
2736 * has no effect on the actual dirty bit - since
2737 * that will already usually be set. But we
2738 * need the side effects, and it can help us
2739 * avoid races.
2740 *
9350f20a 2741 * We basically use the folio "master dirty bit"
7658cc28
LT
2742 * as a serialization point for all the different
2743 * threads doing their things.
7658cc28 2744 */
9350f20a
MWO
2745 if (folio_mkclean(folio))
2746 folio_mark_dirty(folio);
79352894
NP
2747 /*
2748 * We carefully synchronise fault handlers against
9350f20a 2749 * installing a dirty pte and marking the folio dirty
2d6d7f98 2750 * at this point. We do this by having them hold the
9350f20a 2751 * page lock while dirtying the folio, and folios are
2d6d7f98
JW
2752 * always locked coming in here, so we get the desired
2753 * exclusion.
79352894 2754 */
2e898e4c 2755 wb = unlocked_inode_to_wb_begin(inode, &cookie);
9350f20a
MWO
2756 if (folio_test_clear_dirty(folio)) {
2757 long nr = folio_nr_pages(folio);
2758 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2759 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2760 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2761 ret = true;
1da177e4 2762 }
2e898e4c 2763 unlocked_inode_to_wb_end(inode, &cookie);
c4843a75 2764 return ret;
1da177e4 2765 }
9350f20a 2766 return folio_test_clear_dirty(folio);
1da177e4 2767}
9350f20a 2768EXPORT_SYMBOL(folio_clear_dirty_for_io);
1da177e4 2769
633a2abb
JK
2770static void wb_inode_writeback_start(struct bdi_writeback *wb)
2771{
2772 atomic_inc(&wb->writeback_inodes);
2773}
2774
2775static void wb_inode_writeback_end(struct bdi_writeback *wb)
2776{
2777 atomic_dec(&wb->writeback_inodes);
45a2966f
JK
2778 /*
2779 * Make sure estimate of writeback throughput gets updated after
2780 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2781 * (which is the interval other bandwidth updates use for batching) so
2782 * that if multiple inodes end writeback at a similar time, they get
2783 * batched into one bandwidth update.
2784 */
2785 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
633a2abb
JK
2786}
2787
269ccca3 2788bool __folio_end_writeback(struct folio *folio)
1da177e4 2789{
269ccca3
MWO
2790 long nr = folio_nr_pages(folio);
2791 struct address_space *mapping = folio_mapping(folio);
2792 bool ret;
1da177e4 2793
269ccca3 2794 folio_memcg_lock(folio);
371a096e 2795 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2796 struct inode *inode = mapping->host;
2797 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2798 unsigned long flags;
2799
b93b0163 2800 xa_lock_irqsave(&mapping->i_pages, flags);
269ccca3 2801 ret = folio_test_clear_writeback(folio);
69cb51d1 2802 if (ret) {
269ccca3 2803 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
1da177e4 2804 PAGECACHE_TAG_WRITEBACK);
823423ef 2805 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
91018134
TH
2806 struct bdi_writeback *wb = inode_to_wb(inode);
2807
269ccca3
MWO
2808 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2809 __wb_writeout_add(wb, nr);
633a2abb
JK
2810 if (!mapping_tagged(mapping,
2811 PAGECACHE_TAG_WRITEBACK))
2812 wb_inode_writeback_end(wb);
04fbfdc1 2813 }
69cb51d1 2814 }
6c60d2b5
DC
2815
2816 if (mapping->host && !mapping_tagged(mapping,
2817 PAGECACHE_TAG_WRITEBACK))
2818 sb_clear_inode_writeback(mapping->host);
2819
b93b0163 2820 xa_unlock_irqrestore(&mapping->i_pages, flags);
1da177e4 2821 } else {
269ccca3 2822 ret = folio_test_clear_writeback(folio);
1da177e4 2823 }
99b12e3d 2824 if (ret) {
269ccca3
MWO
2825 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
2826 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2827 node_stat_mod_folio(folio, NR_WRITTEN, nr);
99b12e3d 2828 }
269ccca3 2829 folio_memcg_unlock(folio);
1da177e4
LT
2830 return ret;
2831}
2832
f143f1ea 2833bool __folio_start_writeback(struct folio *folio, bool keep_write)
1da177e4 2834{
f143f1ea
MWO
2835 long nr = folio_nr_pages(folio);
2836 struct address_space *mapping = folio_mapping(folio);
2837 bool ret;
2838 int access_ret;
1da177e4 2839
f143f1ea 2840 folio_memcg_lock(folio);
371a096e 2841 if (mapping && mapping_use_writeback_tags(mapping)) {
f143f1ea 2842 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
91018134
TH
2843 struct inode *inode = mapping->host;
2844 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2845 unsigned long flags;
2846
ff9c745b
MW
2847 xas_lock_irqsave(&xas, flags);
2848 xas_load(&xas);
f143f1ea 2849 ret = folio_test_set_writeback(folio);
69cb51d1 2850 if (!ret) {
6c60d2b5
DC
2851 bool on_wblist;
2852
2853 on_wblist = mapping_tagged(mapping,
2854 PAGECACHE_TAG_WRITEBACK);
2855
ff9c745b 2856 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
633a2abb
JK
2857 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2858 struct bdi_writeback *wb = inode_to_wb(inode);
2859
f143f1ea 2860 wb_stat_mod(wb, WB_WRITEBACK, nr);
633a2abb
JK
2861 if (!on_wblist)
2862 wb_inode_writeback_start(wb);
2863 }
6c60d2b5
DC
2864
2865 /*
f143f1ea
MWO
2866 * We can come through here when swapping
2867 * anonymous folios, so we don't necessarily
2868 * have an inode to track for sync.
6c60d2b5
DC
2869 */
2870 if (mapping->host && !on_wblist)
2871 sb_mark_inode_writeback(mapping->host);
69cb51d1 2872 }
f143f1ea 2873 if (!folio_test_dirty(folio))
ff9c745b 2874 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1c8349a1 2875 if (!keep_write)
ff9c745b
MW
2876 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2877 xas_unlock_irqrestore(&xas, flags);
1da177e4 2878 } else {
f143f1ea 2879 ret = folio_test_set_writeback(folio);
1da177e4 2880 }
3a3c02ec 2881 if (!ret) {
f143f1ea
MWO
2882 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
2883 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3a3c02ec 2884 }
f143f1ea
MWO
2885 folio_memcg_unlock(folio);
2886 access_ret = arch_make_folio_accessible(folio);
f28d4363
CI
2887 /*
2888 * If writeback has been triggered on a page that cannot be made
2889 * accessible, it is too late to recover here.
2890 */
f143f1ea 2891 VM_BUG_ON_FOLIO(access_ret != 0, folio);
f28d4363 2892
1da177e4 2893 return ret;
1da177e4 2894}
f143f1ea 2895EXPORT_SYMBOL(__folio_start_writeback);
1da177e4 2896
490e016f
MWO
2897/**
2898 * folio_wait_writeback - Wait for a folio to finish writeback.
2899 * @folio: The folio to wait for.
2900 *
2901 * If the folio is currently being written back to storage, wait for the
2902 * I/O to complete.
2903 *
2904 * Context: Sleeps. Must be called in process context and with
2905 * no spinlocks held. Caller should hold a reference on the folio.
2906 * If the folio is not locked, writeback may start again after writeback
2907 * has finished.
19343b5b 2908 */
490e016f 2909void folio_wait_writeback(struct folio *folio)
19343b5b 2910{
490e016f 2911 while (folio_test_writeback(folio)) {
b9b0ff61 2912 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 2913 folio_wait_bit(folio, PG_writeback);
19343b5b
YS
2914 }
2915}
490e016f 2916EXPORT_SYMBOL_GPL(folio_wait_writeback);
19343b5b 2917
490e016f
MWO
2918/**
2919 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
2920 * @folio: The folio to wait for.
2921 *
2922 * If the folio is currently being written back to storage, wait for the
2923 * I/O to complete or a fatal signal to arrive.
2924 *
2925 * Context: Sleeps. Must be called in process context and with
2926 * no spinlocks held. Caller should hold a reference on the folio.
2927 * If the folio is not locked, writeback may start again after writeback
2928 * has finished.
2929 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
e5dbd332 2930 */
490e016f 2931int folio_wait_writeback_killable(struct folio *folio)
e5dbd332 2932{
490e016f 2933 while (folio_test_writeback(folio)) {
b9b0ff61 2934 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 2935 if (folio_wait_bit_killable(folio, PG_writeback))
e5dbd332
MWO
2936 return -EINTR;
2937 }
2938
2939 return 0;
2940}
490e016f 2941EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
e5dbd332 2942
1d1d1a76 2943/**
a49d0c50
MWO
2944 * folio_wait_stable() - wait for writeback to finish, if necessary.
2945 * @folio: The folio to wait on.
1d1d1a76 2946 *
a49d0c50
MWO
2947 * This function determines if the given folio is related to a backing
2948 * device that requires folio contents to be held stable during writeback.
2949 * If so, then it will wait for any pending writeback to complete.
2950 *
2951 * Context: Sleeps. Must be called in process context and with
2952 * no spinlocks held. Caller should hold a reference on the folio.
2953 * If the folio is not locked, writeback may start again after writeback
2954 * has finished.
1d1d1a76 2955 */
a49d0c50 2956void folio_wait_stable(struct folio *folio)
1d1d1a76 2957{
452c472e 2958 if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
a49d0c50 2959 folio_wait_writeback(folio);
1d1d1a76 2960}
a49d0c50 2961EXPORT_SYMBOL_GPL(folio_wait_stable);