mm: exclude reserved pages from dirtyable memory
[linux-block.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
ffd1f609
WF
39/*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42#define MAX_PAUSE max(HZ/5, 1)
43
e98be2d5
WF
44/*
45 * Estimate write bandwidth at 200ms intervals.
46 */
47#define BANDWIDTH_INTERVAL max(HZ/5, 1)
48
6c14ae1e
WF
49#define RATELIMIT_CALC_SHIFT 10
50
1da177e4
LT
51/*
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
54 */
55static long ratelimit_pages = 32;
56
1da177e4
LT
57/* The following parameters are exported via /proc/sys/vm */
58
59/*
5b0830cb 60 * Start background writeback (via writeback threads) at this percentage
1da177e4 61 */
1b5e62b4 62int dirty_background_ratio = 10;
1da177e4 63
2da02997
DR
64/*
65 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66 * dirty_background_ratio * the amount of dirtyable memory
67 */
68unsigned long dirty_background_bytes;
69
195cf453
BG
70/*
71 * free highmem will not be subtracted from the total free memory
72 * for calculating free ratios if vm_highmem_is_dirtyable is true
73 */
74int vm_highmem_is_dirtyable;
75
1da177e4
LT
76/*
77 * The generator of dirty data starts writeback at this percentage
78 */
1b5e62b4 79int vm_dirty_ratio = 20;
1da177e4 80
2da02997
DR
81/*
82 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83 * vm_dirty_ratio * the amount of dirtyable memory
84 */
85unsigned long vm_dirty_bytes;
86
1da177e4 87/*
704503d8 88 * The interval between `kupdate'-style writebacks
1da177e4 89 */
22ef37ee 90unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
91
92/*
704503d8 93 * The longest time for which data is allowed to remain dirty
1da177e4 94 */
22ef37ee 95unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
96
97/*
98 * Flag that makes the machine dump writes/reads and block dirtyings.
99 */
100int block_dump;
101
102/*
ed5b43f1
BS
103 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
105 */
106int laptop_mode;
107
108EXPORT_SYMBOL(laptop_mode);
109
110/* End of sysctl-exported parameters */
111
c42843f2 112unsigned long global_dirty_limit;
1da177e4 113
04fbfdc1
PZ
114/*
115 * Scale the writeback cache size proportional to the relative writeout speeds.
116 *
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
120 * share.
121 *
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
124 *
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
128 *
129 */
130static struct prop_descriptor vm_completions;
131
1edf2234
JW
132/*
133 * Work out the current dirty-memory clamping and background writeout
134 * thresholds.
135 *
136 * The main aim here is to lower them aggressively if there is a lot of mapped
137 * memory around. To avoid stressing page reclaim with lots of unreclaimable
138 * pages. It is better to clamp down on writers than to start swapping, and
139 * performing lots of scanning.
140 *
141 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
142 *
143 * We don't permit the clamping level to fall below 5% - that is getting rather
144 * excessive.
145 *
146 * We make sure that the background writeout level is below the adjusted
147 * clamping level.
148 */
149static unsigned long highmem_dirtyable_memory(unsigned long total)
150{
151#ifdef CONFIG_HIGHMEM
152 int node;
153 unsigned long x = 0;
154
155 for_each_node_state(node, N_HIGH_MEMORY) {
156 struct zone *z =
157 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
158
159 x += zone_page_state(z, NR_FREE_PAGES) +
ab8fabd4 160 zone_reclaimable_pages(z) - z->dirty_balance_reserve;
1edf2234
JW
161 }
162 /*
163 * Make sure that the number of highmem pages is never larger
164 * than the number of the total dirtyable memory. This can only
165 * occur in very strange VM situations but we want to make sure
166 * that this does not occur.
167 */
168 return min(x, total);
169#else
170 return 0;
171#endif
172}
173
174/**
175 * determine_dirtyable_memory - amount of memory that may be used
176 *
177 * Returns the numebr of pages that can currently be freed and used
178 * by the kernel for direct mappings.
179 */
180static unsigned long determine_dirtyable_memory(void)
181{
182 unsigned long x;
183
ab8fabd4
JW
184 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
185 dirty_balance_reserve;
1edf2234
JW
186
187 if (!vm_highmem_is_dirtyable)
188 x -= highmem_dirtyable_memory(x);
189
190 return x + 1; /* Ensure that we never return 0 */
191}
192
04fbfdc1
PZ
193/*
194 * couple the period to the dirty_ratio:
195 *
196 * period/2 ~ roundup_pow_of_two(dirty limit)
197 */
198static int calc_period_shift(void)
199{
200 unsigned long dirty_total;
201
2da02997
DR
202 if (vm_dirty_bytes)
203 dirty_total = vm_dirty_bytes / PAGE_SIZE;
204 else
205 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
206 100;
04fbfdc1
PZ
207 return 2 + ilog2(dirty_total - 1);
208}
209
210/*
2da02997 211 * update the period when the dirty threshold changes.
04fbfdc1 212 */
2da02997
DR
213static void update_completion_period(void)
214{
215 int shift = calc_period_shift();
216 prop_change_shift(&vm_completions, shift);
9d823e8f
WF
217
218 writeback_set_ratelimit();
2da02997
DR
219}
220
221int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 222 void __user *buffer, size_t *lenp,
2da02997
DR
223 loff_t *ppos)
224{
225 int ret;
226
8d65af78 227 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
228 if (ret == 0 && write)
229 dirty_background_bytes = 0;
230 return ret;
231}
232
233int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 234 void __user *buffer, size_t *lenp,
2da02997
DR
235 loff_t *ppos)
236{
237 int ret;
238
8d65af78 239 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
240 if (ret == 0 && write)
241 dirty_background_ratio = 0;
242 return ret;
243}
244
04fbfdc1 245int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 246 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
247 loff_t *ppos)
248{
249 int old_ratio = vm_dirty_ratio;
2da02997
DR
250 int ret;
251
8d65af78 252 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 253 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
254 update_completion_period();
255 vm_dirty_bytes = 0;
256 }
257 return ret;
258}
259
2da02997 260int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 261 void __user *buffer, size_t *lenp,
2da02997
DR
262 loff_t *ppos)
263{
fc3501d4 264 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
265 int ret;
266
8d65af78 267 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
268 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
269 update_completion_period();
270 vm_dirty_ratio = 0;
04fbfdc1
PZ
271 }
272 return ret;
273}
274
275/*
276 * Increment the BDI's writeout completion count and the global writeout
277 * completion count. Called from test_clear_page_writeback().
278 */
279static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
280{
f7d2b1ec 281 __inc_bdi_stat(bdi, BDI_WRITTEN);
a42dde04
PZ
282 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
283 bdi->max_prop_frac);
04fbfdc1
PZ
284}
285
dd5656e5
MS
286void bdi_writeout_inc(struct backing_dev_info *bdi)
287{
288 unsigned long flags;
289
290 local_irq_save(flags);
291 __bdi_writeout_inc(bdi);
292 local_irq_restore(flags);
293}
294EXPORT_SYMBOL_GPL(bdi_writeout_inc);
295
04fbfdc1
PZ
296/*
297 * Obtain an accurate fraction of the BDI's portion.
298 */
299static void bdi_writeout_fraction(struct backing_dev_info *bdi,
300 long *numerator, long *denominator)
301{
3efaf0fa 302 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 303 numerator, denominator);
04fbfdc1
PZ
304}
305
189d3c4a 306/*
d08c429b
JW
307 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
308 * registered backing devices, which, for obvious reasons, can not
309 * exceed 100%.
189d3c4a 310 */
189d3c4a
PZ
311static unsigned int bdi_min_ratio;
312
313int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
314{
315 int ret = 0;
189d3c4a 316
cfc4ba53 317 spin_lock_bh(&bdi_lock);
a42dde04 318 if (min_ratio > bdi->max_ratio) {
189d3c4a 319 ret = -EINVAL;
a42dde04
PZ
320 } else {
321 min_ratio -= bdi->min_ratio;
322 if (bdi_min_ratio + min_ratio < 100) {
323 bdi_min_ratio += min_ratio;
324 bdi->min_ratio += min_ratio;
325 } else {
326 ret = -EINVAL;
327 }
328 }
cfc4ba53 329 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
330
331 return ret;
332}
333
334int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
335{
a42dde04
PZ
336 int ret = 0;
337
338 if (max_ratio > 100)
339 return -EINVAL;
340
cfc4ba53 341 spin_lock_bh(&bdi_lock);
a42dde04
PZ
342 if (bdi->min_ratio > max_ratio) {
343 ret = -EINVAL;
344 } else {
345 bdi->max_ratio = max_ratio;
346 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
347 }
cfc4ba53 348 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
349
350 return ret;
351}
a42dde04 352EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 353
6c14ae1e
WF
354static unsigned long dirty_freerun_ceiling(unsigned long thresh,
355 unsigned long bg_thresh)
356{
357 return (thresh + bg_thresh) / 2;
358}
359
ffd1f609
WF
360static unsigned long hard_dirty_limit(unsigned long thresh)
361{
362 return max(thresh, global_dirty_limit);
363}
364
03ab450f 365/*
1babe183
WF
366 * global_dirty_limits - background-writeback and dirty-throttling thresholds
367 *
368 * Calculate the dirty thresholds based on sysctl parameters
369 * - vm.dirty_background_ratio or vm.dirty_background_bytes
370 * - vm.dirty_ratio or vm.dirty_bytes
371 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 372 * real-time tasks.
1babe183 373 */
16c4042f 374void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 375{
364aeb28
DR
376 unsigned long background;
377 unsigned long dirty;
240c879f 378 unsigned long uninitialized_var(available_memory);
1da177e4
LT
379 struct task_struct *tsk;
380
240c879f
MK
381 if (!vm_dirty_bytes || !dirty_background_bytes)
382 available_memory = determine_dirtyable_memory();
383
2da02997
DR
384 if (vm_dirty_bytes)
385 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
386 else
387 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 388
2da02997
DR
389 if (dirty_background_bytes)
390 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
391 else
392 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 393
2da02997
DR
394 if (background >= dirty)
395 background = dirty / 2;
1da177e4
LT
396 tsk = current;
397 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
398 background += background / 4;
399 dirty += dirty / 4;
400 }
401 *pbackground = background;
402 *pdirty = dirty;
e1cbe236 403 trace_global_dirty_state(background, dirty);
16c4042f 404}
04fbfdc1 405
6f718656 406/**
1babe183 407 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
408 * @bdi: the backing_dev_info to query
409 * @dirty: global dirty limit in pages
1babe183 410 *
6f718656
WF
411 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
412 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
413 *
414 * Note that balance_dirty_pages() will only seriously take it as a hard limit
415 * when sleeping max_pause per page is not enough to keep the dirty pages under
416 * control. For example, when the device is completely stalled due to some error
417 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
418 * In the other normal situations, it acts more gently by throttling the tasks
419 * more (rather than completely block them) when the bdi dirty pages go high.
1babe183 420 *
6f718656 421 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
422 * - starving fast devices
423 * - piling up dirty pages (that will take long time to sync) on slow devices
424 *
425 * The bdi's share of dirty limit will be adapting to its throughput and
426 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
427 */
428unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
429{
430 u64 bdi_dirty;
431 long numerator, denominator;
04fbfdc1 432
16c4042f
WF
433 /*
434 * Calculate this BDI's share of the dirty ratio.
435 */
436 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 437
16c4042f
WF
438 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
439 bdi_dirty *= numerator;
440 do_div(bdi_dirty, denominator);
04fbfdc1 441
16c4042f
WF
442 bdi_dirty += (dirty * bdi->min_ratio) / 100;
443 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
444 bdi_dirty = dirty * bdi->max_ratio / 100;
445
446 return bdi_dirty;
1da177e4
LT
447}
448
6c14ae1e
WF
449/*
450 * Dirty position control.
451 *
452 * (o) global/bdi setpoints
453 *
454 * We want the dirty pages be balanced around the global/bdi setpoints.
455 * When the number of dirty pages is higher/lower than the setpoint, the
456 * dirty position control ratio (and hence task dirty ratelimit) will be
457 * decreased/increased to bring the dirty pages back to the setpoint.
458 *
459 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
460 *
461 * if (dirty < setpoint) scale up pos_ratio
462 * if (dirty > setpoint) scale down pos_ratio
463 *
464 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
465 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
466 *
467 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
468 *
469 * (o) global control line
470 *
471 * ^ pos_ratio
472 * |
473 * | |<===== global dirty control scope ======>|
474 * 2.0 .............*
475 * | .*
476 * | . *
477 * | . *
478 * | . *
479 * | . *
480 * | . *
481 * 1.0 ................................*
482 * | . . *
483 * | . . *
484 * | . . *
485 * | . . *
486 * | . . *
487 * 0 +------------.------------------.----------------------*------------->
488 * freerun^ setpoint^ limit^ dirty pages
489 *
490 * (o) bdi control line
491 *
492 * ^ pos_ratio
493 * |
494 * | *
495 * | *
496 * | *
497 * | *
498 * | * |<=========== span ============>|
499 * 1.0 .......................*
500 * | . *
501 * | . *
502 * | . *
503 * | . *
504 * | . *
505 * | . *
506 * | . *
507 * | . *
508 * | . *
509 * | . *
510 * | . *
511 * 1/4 ...............................................* * * * * * * * * * * *
512 * | . .
513 * | . .
514 * | . .
515 * 0 +----------------------.-------------------------------.------------->
516 * bdi_setpoint^ x_intercept^
517 *
518 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
519 * be smoothly throttled down to normal if it starts high in situations like
520 * - start writing to a slow SD card and a fast disk at the same time. The SD
521 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
522 * - the bdi dirty thresh drops quickly due to change of JBOD workload
523 */
524static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
525 unsigned long thresh,
526 unsigned long bg_thresh,
527 unsigned long dirty,
528 unsigned long bdi_thresh,
529 unsigned long bdi_dirty)
530{
531 unsigned long write_bw = bdi->avg_write_bandwidth;
532 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
533 unsigned long limit = hard_dirty_limit(thresh);
534 unsigned long x_intercept;
535 unsigned long setpoint; /* dirty pages' target balance point */
536 unsigned long bdi_setpoint;
537 unsigned long span;
538 long long pos_ratio; /* for scaling up/down the rate limit */
539 long x;
540
541 if (unlikely(dirty >= limit))
542 return 0;
543
544 /*
545 * global setpoint
546 *
547 * setpoint - dirty 3
548 * f(dirty) := 1.0 + (----------------)
549 * limit - setpoint
550 *
551 * it's a 3rd order polynomial that subjects to
552 *
553 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
554 * (2) f(setpoint) = 1.0 => the balance point
555 * (3) f(limit) = 0 => the hard limit
556 * (4) df/dx <= 0 => negative feedback control
557 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
558 * => fast response on large errors; small oscillation near setpoint
559 */
560 setpoint = (freerun + limit) / 2;
561 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
562 limit - setpoint + 1);
563 pos_ratio = x;
564 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
565 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
566 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
567
568 /*
569 * We have computed basic pos_ratio above based on global situation. If
570 * the bdi is over/under its share of dirty pages, we want to scale
571 * pos_ratio further down/up. That is done by the following mechanism.
572 */
573
574 /*
575 * bdi setpoint
576 *
577 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
578 *
579 * x_intercept - bdi_dirty
580 * := --------------------------
581 * x_intercept - bdi_setpoint
582 *
583 * The main bdi control line is a linear function that subjects to
584 *
585 * (1) f(bdi_setpoint) = 1.0
586 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
587 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
588 *
589 * For single bdi case, the dirty pages are observed to fluctuate
590 * regularly within range
591 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
592 * for various filesystems, where (2) can yield in a reasonable 12.5%
593 * fluctuation range for pos_ratio.
594 *
595 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
596 * own size, so move the slope over accordingly and choose a slope that
597 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
598 */
599 if (unlikely(bdi_thresh > thresh))
600 bdi_thresh = thresh;
aed21ad2
WF
601 /*
602 * It's very possible that bdi_thresh is close to 0 not because the
603 * device is slow, but that it has remained inactive for long time.
604 * Honour such devices a reasonable good (hopefully IO efficient)
605 * threshold, so that the occasional writes won't be blocked and active
606 * writes can rampup the threshold quickly.
607 */
8927f66c 608 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
6c14ae1e
WF
609 /*
610 * scale global setpoint to bdi's:
611 * bdi_setpoint = setpoint * bdi_thresh / thresh
612 */
613 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
614 bdi_setpoint = setpoint * (u64)x >> 16;
615 /*
616 * Use span=(8*write_bw) in single bdi case as indicated by
617 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
618 *
619 * bdi_thresh thresh - bdi_thresh
620 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
621 * thresh thresh
622 */
623 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
624 x_intercept = bdi_setpoint + span;
625
626 if (bdi_dirty < x_intercept - span / 4) {
50657fc4
WF
627 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
628 x_intercept - bdi_setpoint + 1);
6c14ae1e
WF
629 } else
630 pos_ratio /= 4;
631
8927f66c
WF
632 /*
633 * bdi reserve area, safeguard against dirty pool underrun and disk idle
634 * It may push the desired control point of global dirty pages higher
635 * than setpoint.
636 */
637 x_intercept = bdi_thresh / 2;
638 if (bdi_dirty < x_intercept) {
50657fc4
WF
639 if (bdi_dirty > x_intercept / 8)
640 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
641 else
8927f66c
WF
642 pos_ratio *= 8;
643 }
644
6c14ae1e
WF
645 return pos_ratio;
646}
647
e98be2d5
WF
648static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
649 unsigned long elapsed,
650 unsigned long written)
651{
652 const unsigned long period = roundup_pow_of_two(3 * HZ);
653 unsigned long avg = bdi->avg_write_bandwidth;
654 unsigned long old = bdi->write_bandwidth;
655 u64 bw;
656
657 /*
658 * bw = written * HZ / elapsed
659 *
660 * bw * elapsed + write_bandwidth * (period - elapsed)
661 * write_bandwidth = ---------------------------------------------------
662 * period
663 */
664 bw = written - bdi->written_stamp;
665 bw *= HZ;
666 if (unlikely(elapsed > period)) {
667 do_div(bw, elapsed);
668 avg = bw;
669 goto out;
670 }
671 bw += (u64)bdi->write_bandwidth * (period - elapsed);
672 bw >>= ilog2(period);
673
674 /*
675 * one more level of smoothing, for filtering out sudden spikes
676 */
677 if (avg > old && old >= (unsigned long)bw)
678 avg -= (avg - old) >> 3;
679
680 if (avg < old && old <= (unsigned long)bw)
681 avg += (old - avg) >> 3;
682
683out:
684 bdi->write_bandwidth = bw;
685 bdi->avg_write_bandwidth = avg;
686}
687
c42843f2
WF
688/*
689 * The global dirtyable memory and dirty threshold could be suddenly knocked
690 * down by a large amount (eg. on the startup of KVM in a swapless system).
691 * This may throw the system into deep dirty exceeded state and throttle
692 * heavy/light dirtiers alike. To retain good responsiveness, maintain
693 * global_dirty_limit for tracking slowly down to the knocked down dirty
694 * threshold.
695 */
696static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
697{
698 unsigned long limit = global_dirty_limit;
699
700 /*
701 * Follow up in one step.
702 */
703 if (limit < thresh) {
704 limit = thresh;
705 goto update;
706 }
707
708 /*
709 * Follow down slowly. Use the higher one as the target, because thresh
710 * may drop below dirty. This is exactly the reason to introduce
711 * global_dirty_limit which is guaranteed to lie above the dirty pages.
712 */
713 thresh = max(thresh, dirty);
714 if (limit > thresh) {
715 limit -= (limit - thresh) >> 5;
716 goto update;
717 }
718 return;
719update:
720 global_dirty_limit = limit;
721}
722
723static void global_update_bandwidth(unsigned long thresh,
724 unsigned long dirty,
725 unsigned long now)
726{
727 static DEFINE_SPINLOCK(dirty_lock);
728 static unsigned long update_time;
729
730 /*
731 * check locklessly first to optimize away locking for the most time
732 */
733 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
734 return;
735
736 spin_lock(&dirty_lock);
737 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
738 update_dirty_limit(thresh, dirty);
739 update_time = now;
740 }
741 spin_unlock(&dirty_lock);
742}
743
be3ffa27
WF
744/*
745 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
746 *
747 * Normal bdi tasks will be curbed at or below it in long term.
748 * Obviously it should be around (write_bw / N) when there are N dd tasks.
749 */
750static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
751 unsigned long thresh,
752 unsigned long bg_thresh,
753 unsigned long dirty,
754 unsigned long bdi_thresh,
755 unsigned long bdi_dirty,
756 unsigned long dirtied,
757 unsigned long elapsed)
758{
7381131c
WF
759 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
760 unsigned long limit = hard_dirty_limit(thresh);
761 unsigned long setpoint = (freerun + limit) / 2;
be3ffa27
WF
762 unsigned long write_bw = bdi->avg_write_bandwidth;
763 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
764 unsigned long dirty_rate;
765 unsigned long task_ratelimit;
766 unsigned long balanced_dirty_ratelimit;
767 unsigned long pos_ratio;
7381131c
WF
768 unsigned long step;
769 unsigned long x;
be3ffa27
WF
770
771 /*
772 * The dirty rate will match the writeout rate in long term, except
773 * when dirty pages are truncated by userspace or re-dirtied by FS.
774 */
775 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
776
777 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
778 bdi_thresh, bdi_dirty);
779 /*
780 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
781 */
782 task_ratelimit = (u64)dirty_ratelimit *
783 pos_ratio >> RATELIMIT_CALC_SHIFT;
784 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
785
786 /*
787 * A linear estimation of the "balanced" throttle rate. The theory is,
788 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
789 * dirty_rate will be measured to be (N * task_ratelimit). So the below
790 * formula will yield the balanced rate limit (write_bw / N).
791 *
792 * Note that the expanded form is not a pure rate feedback:
793 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
794 * but also takes pos_ratio into account:
795 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
796 *
797 * (1) is not realistic because pos_ratio also takes part in balancing
798 * the dirty rate. Consider the state
799 * pos_ratio = 0.5 (3)
800 * rate = 2 * (write_bw / N) (4)
801 * If (1) is used, it will stuck in that state! Because each dd will
802 * be throttled at
803 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
804 * yielding
805 * dirty_rate = N * task_ratelimit = write_bw (6)
806 * put (6) into (1) we get
807 * rate_(i+1) = rate_(i) (7)
808 *
809 * So we end up using (2) to always keep
810 * rate_(i+1) ~= (write_bw / N) (8)
811 * regardless of the value of pos_ratio. As long as (8) is satisfied,
812 * pos_ratio is able to drive itself to 1.0, which is not only where
813 * the dirty count meet the setpoint, but also where the slope of
814 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
815 */
816 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
817 dirty_rate | 1);
818
7381131c
WF
819 /*
820 * We could safely do this and return immediately:
821 *
822 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
823 *
824 * However to get a more stable dirty_ratelimit, the below elaborated
825 * code makes use of task_ratelimit to filter out sigular points and
826 * limit the step size.
827 *
828 * The below code essentially only uses the relative value of
829 *
830 * task_ratelimit - dirty_ratelimit
831 * = (pos_ratio - 1) * dirty_ratelimit
832 *
833 * which reflects the direction and size of dirty position error.
834 */
835
836 /*
837 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
838 * task_ratelimit is on the same side of dirty_ratelimit, too.
839 * For example, when
840 * - dirty_ratelimit > balanced_dirty_ratelimit
841 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
842 * lowering dirty_ratelimit will help meet both the position and rate
843 * control targets. Otherwise, don't update dirty_ratelimit if it will
844 * only help meet the rate target. After all, what the users ultimately
845 * feel and care are stable dirty rate and small position error.
846 *
847 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
848 * and filter out the sigular points of balanced_dirty_ratelimit. Which
849 * keeps jumping around randomly and can even leap far away at times
850 * due to the small 200ms estimation period of dirty_rate (we want to
851 * keep that period small to reduce time lags).
852 */
853 step = 0;
854 if (dirty < setpoint) {
855 x = min(bdi->balanced_dirty_ratelimit,
856 min(balanced_dirty_ratelimit, task_ratelimit));
857 if (dirty_ratelimit < x)
858 step = x - dirty_ratelimit;
859 } else {
860 x = max(bdi->balanced_dirty_ratelimit,
861 max(balanced_dirty_ratelimit, task_ratelimit));
862 if (dirty_ratelimit > x)
863 step = dirty_ratelimit - x;
864 }
865
866 /*
867 * Don't pursue 100% rate matching. It's impossible since the balanced
868 * rate itself is constantly fluctuating. So decrease the track speed
869 * when it gets close to the target. Helps eliminate pointless tremors.
870 */
871 step >>= dirty_ratelimit / (2 * step + 1);
872 /*
873 * Limit the tracking speed to avoid overshooting.
874 */
875 step = (step + 7) / 8;
876
877 if (dirty_ratelimit < balanced_dirty_ratelimit)
878 dirty_ratelimit += step;
879 else
880 dirty_ratelimit -= step;
881
882 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
883 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d
WF
884
885 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
886}
887
e98be2d5 888void __bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2 889 unsigned long thresh,
af6a3113 890 unsigned long bg_thresh,
c42843f2
WF
891 unsigned long dirty,
892 unsigned long bdi_thresh,
893 unsigned long bdi_dirty,
e98be2d5
WF
894 unsigned long start_time)
895{
896 unsigned long now = jiffies;
897 unsigned long elapsed = now - bdi->bw_time_stamp;
be3ffa27 898 unsigned long dirtied;
e98be2d5
WF
899 unsigned long written;
900
901 /*
902 * rate-limit, only update once every 200ms.
903 */
904 if (elapsed < BANDWIDTH_INTERVAL)
905 return;
906
be3ffa27 907 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
e98be2d5
WF
908 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
909
910 /*
911 * Skip quiet periods when disk bandwidth is under-utilized.
912 * (at least 1s idle time between two flusher runs)
913 */
914 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
915 goto snapshot;
916
be3ffa27 917 if (thresh) {
c42843f2 918 global_update_bandwidth(thresh, dirty, now);
be3ffa27
WF
919 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
920 bdi_thresh, bdi_dirty,
921 dirtied, elapsed);
922 }
e98be2d5
WF
923 bdi_update_write_bandwidth(bdi, elapsed, written);
924
925snapshot:
be3ffa27 926 bdi->dirtied_stamp = dirtied;
e98be2d5
WF
927 bdi->written_stamp = written;
928 bdi->bw_time_stamp = now;
929}
930
931static void bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2 932 unsigned long thresh,
af6a3113 933 unsigned long bg_thresh,
c42843f2
WF
934 unsigned long dirty,
935 unsigned long bdi_thresh,
936 unsigned long bdi_dirty,
e98be2d5
WF
937 unsigned long start_time)
938{
939 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
940 return;
941 spin_lock(&bdi->wb.list_lock);
af6a3113
WF
942 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
943 bdi_thresh, bdi_dirty, start_time);
e98be2d5
WF
944 spin_unlock(&bdi->wb.list_lock);
945}
946
9d823e8f
WF
947/*
948 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
949 * will look to see if it needs to start dirty throttling.
950 *
951 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
952 * global_page_state() too often. So scale it near-sqrt to the safety margin
953 * (the number of pages we may dirty without exceeding the dirty limits).
954 */
955static unsigned long dirty_poll_interval(unsigned long dirty,
956 unsigned long thresh)
957{
958 if (thresh > dirty)
959 return 1UL << (ilog2(thresh - dirty) >> 1);
960
961 return 1;
962}
963
c8462cc9
WF
964static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
965 unsigned long bdi_dirty)
966{
967 unsigned long bw = bdi->avg_write_bandwidth;
968 unsigned long hi = ilog2(bw);
969 unsigned long lo = ilog2(bdi->dirty_ratelimit);
970 unsigned long t;
971
972 /* target for 20ms max pause on 1-dd case */
973 t = HZ / 50;
974
975 /*
976 * Scale up pause time for concurrent dirtiers in order to reduce CPU
977 * overheads.
978 *
979 * (N * 20ms) on 2^N concurrent tasks.
980 */
981 if (hi > lo)
982 t += (hi - lo) * (20 * HZ) / 1024;
983
984 /*
985 * Limit pause time for small memory systems. If sleeping for too long
986 * time, a small pool of dirty/writeback pages may go empty and disk go
987 * idle.
988 *
989 * 8 serves as the safety ratio.
990 */
82e230a0 991 t = min(t, bdi_dirty * HZ / (8 * bw + 1));
c8462cc9
WF
992
993 /*
994 * The pause time will be settled within range (max_pause/4, max_pause).
995 * Apply a minimal value of 4 to get a non-zero max_pause/4.
996 */
997 return clamp_val(t, 4, MAX_PAUSE);
998}
999
1da177e4
LT
1000/*
1001 * balance_dirty_pages() must be called by processes which are generating dirty
1002 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1003 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1004 * If we're over `background_thresh' then the writeback threads are woken to
1005 * perform some writeout.
1da177e4 1006 */
3a2e9a5a 1007static void balance_dirty_pages(struct address_space *mapping,
143dfe86 1008 unsigned long pages_dirtied)
1da177e4 1009{
143dfe86
WF
1010 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1011 unsigned long bdi_reclaimable;
7762741e
WF
1012 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1013 unsigned long bdi_dirty;
6c14ae1e 1014 unsigned long freerun;
364aeb28
DR
1015 unsigned long background_thresh;
1016 unsigned long dirty_thresh;
1017 unsigned long bdi_thresh;
143dfe86 1018 long pause = 0;
50657fc4 1019 long uninitialized_var(max_pause);
e50e3720 1020 bool dirty_exceeded = false;
143dfe86 1021 unsigned long task_ratelimit;
50657fc4 1022 unsigned long uninitialized_var(dirty_ratelimit);
143dfe86 1023 unsigned long pos_ratio;
1da177e4 1024 struct backing_dev_info *bdi = mapping->backing_dev_info;
e98be2d5 1025 unsigned long start_time = jiffies;
1da177e4
LT
1026
1027 for (;;) {
143dfe86
WF
1028 /*
1029 * Unstable writes are a feature of certain networked
1030 * filesystems (i.e. NFS) in which data may have been
1031 * written to the server's write cache, but has not yet
1032 * been flushed to permanent storage.
1033 */
5fce25a9
PZ
1034 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1035 global_page_state(NR_UNSTABLE_NFS);
7762741e 1036 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1037
16c4042f
WF
1038 global_dirty_limits(&background_thresh, &dirty_thresh);
1039
1040 /*
1041 * Throttle it only when the background writeback cannot
1042 * catch-up. This avoids (excessively) small writeouts
1043 * when the bdi limits are ramping up.
1044 */
6c14ae1e
WF
1045 freerun = dirty_freerun_ceiling(dirty_thresh,
1046 background_thresh);
1047 if (nr_dirty <= freerun)
16c4042f
WF
1048 break;
1049
143dfe86
WF
1050 if (unlikely(!writeback_in_progress(bdi)))
1051 bdi_start_background_writeback(bdi);
1052
1053 /*
1054 * bdi_thresh is not treated as some limiting factor as
1055 * dirty_thresh, due to reasons
1056 * - in JBOD setup, bdi_thresh can fluctuate a lot
1057 * - in a system with HDD and USB key, the USB key may somehow
1058 * go into state (bdi_dirty >> bdi_thresh) either because
1059 * bdi_dirty starts high, or because bdi_thresh drops low.
1060 * In this case we don't want to hard throttle the USB key
1061 * dirtiers for 100 seconds until bdi_dirty drops under
1062 * bdi_thresh. Instead the auxiliary bdi control line in
1063 * bdi_position_ratio() will let the dirtier task progress
1064 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1065 */
16c4042f 1066 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
16c4042f 1067
e50e3720
WF
1068 /*
1069 * In order to avoid the stacked BDI deadlock we need
1070 * to ensure we accurately count the 'dirty' pages when
1071 * the threshold is low.
1072 *
1073 * Otherwise it would be possible to get thresh+n pages
1074 * reported dirty, even though there are thresh-m pages
1075 * actually dirty; with m+n sitting in the percpu
1076 * deltas.
1077 */
143dfe86
WF
1078 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1079 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1080 bdi_dirty = bdi_reclaimable +
7762741e 1081 bdi_stat_sum(bdi, BDI_WRITEBACK);
e50e3720 1082 } else {
143dfe86
WF
1083 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1084 bdi_dirty = bdi_reclaimable +
7762741e 1085 bdi_stat(bdi, BDI_WRITEBACK);
e50e3720 1086 }
5fce25a9 1087
143dfe86 1088 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
7762741e 1089 (nr_dirty > dirty_thresh);
143dfe86 1090 if (dirty_exceeded && !bdi->dirty_exceeded)
04fbfdc1 1091 bdi->dirty_exceeded = 1;
1da177e4 1092
af6a3113
WF
1093 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1094 nr_dirty, bdi_thresh, bdi_dirty,
1095 start_time);
e98be2d5 1096
c8462cc9
WF
1097 max_pause = bdi_max_pause(bdi, bdi_dirty);
1098
143dfe86
WF
1099 dirty_ratelimit = bdi->dirty_ratelimit;
1100 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1101 background_thresh, nr_dirty,
1102 bdi_thresh, bdi_dirty);
3a73dbbc
WF
1103 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1104 RATELIMIT_CALC_SHIFT;
1105 if (unlikely(task_ratelimit == 0)) {
c8462cc9 1106 pause = max_pause;
143dfe86 1107 goto pause;
04fbfdc1 1108 }
3a73dbbc 1109 pause = HZ * pages_dirtied / task_ratelimit;
57fc978c 1110 if (unlikely(pause <= 0)) {
ece13ac3
WF
1111 trace_balance_dirty_pages(bdi,
1112 dirty_thresh,
1113 background_thresh,
1114 nr_dirty,
1115 bdi_thresh,
1116 bdi_dirty,
1117 dirty_ratelimit,
1118 task_ratelimit,
1119 pages_dirtied,
1120 pause,
1121 start_time);
57fc978c
WF
1122 pause = 1; /* avoid resetting nr_dirtied_pause below */
1123 break;
04fbfdc1 1124 }
c8462cc9 1125 pause = min(pause, max_pause);
143dfe86
WF
1126
1127pause:
ece13ac3
WF
1128 trace_balance_dirty_pages(bdi,
1129 dirty_thresh,
1130 background_thresh,
1131 nr_dirty,
1132 bdi_thresh,
1133 bdi_dirty,
1134 dirty_ratelimit,
1135 task_ratelimit,
1136 pages_dirtied,
1137 pause,
1138 start_time);
499d05ec 1139 __set_current_state(TASK_KILLABLE);
d25105e8 1140 io_schedule_timeout(pause);
87c6a9b2 1141
ffd1f609 1142 /*
1df64719
WF
1143 * This is typically equal to (nr_dirty < dirty_thresh) and can
1144 * also keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1145 */
1df64719 1146 if (task_ratelimit)
ffd1f609 1147 break;
499d05ec 1148
c5c6343c
WF
1149 /*
1150 * In the case of an unresponding NFS server and the NFS dirty
1151 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1152 * to go through, so that tasks on them still remain responsive.
1153 *
1154 * In theory 1 page is enough to keep the comsumer-producer
1155 * pipe going: the flusher cleans 1 page => the task dirties 1
1156 * more page. However bdi_dirty has accounting errors. So use
1157 * the larger and more IO friendly bdi_stat_error.
1158 */
1159 if (bdi_dirty <= bdi_stat_error(bdi))
1160 break;
1161
499d05ec
JK
1162 if (fatal_signal_pending(current))
1163 break;
1da177e4
LT
1164 }
1165
143dfe86 1166 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 1167 bdi->dirty_exceeded = 0;
1da177e4 1168
9d823e8f 1169 current->nr_dirtied = 0;
57fc978c
WF
1170 if (pause == 0) { /* in freerun area */
1171 current->nr_dirtied_pause =
1172 dirty_poll_interval(nr_dirty, dirty_thresh);
1173 } else if (pause <= max_pause / 4 &&
1174 pages_dirtied >= current->nr_dirtied_pause) {
1175 current->nr_dirtied_pause = clamp_val(
1176 dirty_ratelimit * (max_pause / 2) / HZ,
1177 pages_dirtied + pages_dirtied / 8,
1178 pages_dirtied * 4);
1179 } else if (pause >= max_pause) {
1180 current->nr_dirtied_pause = 1 | clamp_val(
1181 dirty_ratelimit * (max_pause / 2) / HZ,
1182 pages_dirtied / 4,
1183 pages_dirtied - pages_dirtied / 8);
1184 }
9d823e8f 1185
1da177e4 1186 if (writeback_in_progress(bdi))
5b0830cb 1187 return;
1da177e4
LT
1188
1189 /*
1190 * In laptop mode, we wait until hitting the higher threshold before
1191 * starting background writeout, and then write out all the way down
1192 * to the lower threshold. So slow writers cause minimal disk activity.
1193 *
1194 * In normal mode, we start background writeout at the lower
1195 * background_thresh, to keep the amount of dirty memory low.
1196 */
143dfe86
WF
1197 if (laptop_mode)
1198 return;
1199
1200 if (nr_reclaimable > background_thresh)
c5444198 1201 bdi_start_background_writeback(bdi);
1da177e4
LT
1202}
1203
a200ee18 1204void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 1205{
a200ee18 1206 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
1207 struct address_space *mapping = page_mapping(page);
1208
1209 if (mapping)
1210 balance_dirty_pages_ratelimited(mapping);
1211 }
1212}
1213
9d823e8f 1214static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1215
1da177e4 1216/**
fa5a734e 1217 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 1218 * @mapping: address_space which was dirtied
a580290c 1219 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
1220 *
1221 * Processes which are dirtying memory should call in here once for each page
1222 * which was newly dirtied. The function will periodically check the system's
1223 * dirty state and will initiate writeback if needed.
1224 *
1225 * On really big machines, get_writeback_state is expensive, so try to avoid
1226 * calling it too often (ratelimiting). But once we're over the dirty memory
1227 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1228 * from overshooting the limit by (ratelimit_pages) each.
1229 */
fa5a734e
AM
1230void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1231 unsigned long nr_pages_dirtied)
1da177e4 1232{
36715cef 1233 struct backing_dev_info *bdi = mapping->backing_dev_info;
9d823e8f
WF
1234 int ratelimit;
1235 int *p;
1da177e4 1236
36715cef
WF
1237 if (!bdi_cap_account_dirty(bdi))
1238 return;
1239
9d823e8f
WF
1240 ratelimit = current->nr_dirtied_pause;
1241 if (bdi->dirty_exceeded)
1242 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1243
1244 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1245
9d823e8f 1246 preempt_disable();
1da177e4 1247 /*
9d823e8f
WF
1248 * This prevents one CPU to accumulate too many dirtied pages without
1249 * calling into balance_dirty_pages(), which can happen when there are
1250 * 1000+ tasks, all of them start dirtying pages at exactly the same
1251 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1252 */
245b2e70 1253 p = &__get_cpu_var(bdp_ratelimits);
9d823e8f 1254 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1255 *p = 0;
9d823e8f
WF
1256 else {
1257 *p += nr_pages_dirtied;
1258 if (unlikely(*p >= ratelimit_pages)) {
1259 *p = 0;
1260 ratelimit = 0;
1261 }
1da177e4 1262 }
fa5a734e 1263 preempt_enable();
9d823e8f
WF
1264
1265 if (unlikely(current->nr_dirtied >= ratelimit))
1266 balance_dirty_pages(mapping, current->nr_dirtied);
1da177e4 1267}
fa5a734e 1268EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 1269
232ea4d6 1270void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1271{
364aeb28
DR
1272 unsigned long background_thresh;
1273 unsigned long dirty_thresh;
1da177e4
LT
1274
1275 for ( ; ; ) {
16c4042f 1276 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
1277
1278 /*
1279 * Boost the allowable dirty threshold a bit for page
1280 * allocators so they don't get DoS'ed by heavy writers
1281 */
1282 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1283
c24f21bd
CL
1284 if (global_page_state(NR_UNSTABLE_NFS) +
1285 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1286 break;
8aa7e847 1287 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1288
1289 /*
1290 * The caller might hold locks which can prevent IO completion
1291 * or progress in the filesystem. So we cannot just sit here
1292 * waiting for IO to complete.
1293 */
1294 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1295 break;
1da177e4
LT
1296 }
1297}
1298
1da177e4
LT
1299/*
1300 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1301 */
1302int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 1303 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1304{
8d65af78 1305 proc_dointvec(table, write, buffer, length, ppos);
6423104b 1306 bdi_arm_supers_timer();
1da177e4
LT
1307 return 0;
1308}
1309
c2c4986e 1310#ifdef CONFIG_BLOCK
31373d09 1311void laptop_mode_timer_fn(unsigned long data)
1da177e4 1312{
31373d09
MG
1313 struct request_queue *q = (struct request_queue *)data;
1314 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1315 global_page_state(NR_UNSTABLE_NFS);
1da177e4 1316
31373d09
MG
1317 /*
1318 * We want to write everything out, not just down to the dirty
1319 * threshold
1320 */
31373d09 1321 if (bdi_has_dirty_io(&q->backing_dev_info))
0e175a18
CW
1322 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1323 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1324}
1325
1326/*
1327 * We've spun up the disk and we're in laptop mode: schedule writeback
1328 * of all dirty data a few seconds from now. If the flush is already scheduled
1329 * then push it back - the user is still using the disk.
1330 */
31373d09 1331void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1332{
31373d09 1333 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1334}
1335
1336/*
1337 * We're in laptop mode and we've just synced. The sync's writes will have
1338 * caused another writeback to be scheduled by laptop_io_completion.
1339 * Nothing needs to be written back anymore, so we unschedule the writeback.
1340 */
1341void laptop_sync_completion(void)
1342{
31373d09
MG
1343 struct backing_dev_info *bdi;
1344
1345 rcu_read_lock();
1346
1347 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1348 del_timer(&bdi->laptop_mode_wb_timer);
1349
1350 rcu_read_unlock();
1da177e4 1351}
c2c4986e 1352#endif
1da177e4
LT
1353
1354/*
1355 * If ratelimit_pages is too high then we can get into dirty-data overload
1356 * if a large number of processes all perform writes at the same time.
1357 * If it is too low then SMP machines will call the (expensive)
1358 * get_writeback_state too often.
1359 *
1360 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1361 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1362 * thresholds.
1da177e4
LT
1363 */
1364
2d1d43f6 1365void writeback_set_ratelimit(void)
1da177e4 1366{
9d823e8f
WF
1367 unsigned long background_thresh;
1368 unsigned long dirty_thresh;
1369 global_dirty_limits(&background_thresh, &dirty_thresh);
1370 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1371 if (ratelimit_pages < 16)
1372 ratelimit_pages = 16;
1da177e4
LT
1373}
1374
26c2143b 1375static int __cpuinit
1da177e4
LT
1376ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1377{
2d1d43f6 1378 writeback_set_ratelimit();
aa0f0303 1379 return NOTIFY_DONE;
1da177e4
LT
1380}
1381
74b85f37 1382static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
1383 .notifier_call = ratelimit_handler,
1384 .next = NULL,
1385};
1386
1387/*
dc6e29da
LT
1388 * Called early on to tune the page writeback dirty limits.
1389 *
1390 * We used to scale dirty pages according to how total memory
1391 * related to pages that could be allocated for buffers (by
1392 * comparing nr_free_buffer_pages() to vm_total_pages.
1393 *
1394 * However, that was when we used "dirty_ratio" to scale with
1395 * all memory, and we don't do that any more. "dirty_ratio"
1396 * is now applied to total non-HIGHPAGE memory (by subtracting
1397 * totalhigh_pages from vm_total_pages), and as such we can't
1398 * get into the old insane situation any more where we had
1399 * large amounts of dirty pages compared to a small amount of
1400 * non-HIGHMEM memory.
1401 *
1402 * But we might still want to scale the dirty_ratio by how
1403 * much memory the box has..
1da177e4
LT
1404 */
1405void __init page_writeback_init(void)
1406{
04fbfdc1
PZ
1407 int shift;
1408
2d1d43f6 1409 writeback_set_ratelimit();
1da177e4 1410 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
1411
1412 shift = calc_period_shift();
1413 prop_descriptor_init(&vm_completions, shift);
1da177e4
LT
1414}
1415
f446daae
JK
1416/**
1417 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1418 * @mapping: address space structure to write
1419 * @start: starting page index
1420 * @end: ending page index (inclusive)
1421 *
1422 * This function scans the page range from @start to @end (inclusive) and tags
1423 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1424 * that write_cache_pages (or whoever calls this function) will then use
1425 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1426 * used to avoid livelocking of writeback by a process steadily creating new
1427 * dirty pages in the file (thus it is important for this function to be quick
1428 * so that it can tag pages faster than a dirtying process can create them).
1429 */
1430/*
1431 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1432 */
f446daae
JK
1433void tag_pages_for_writeback(struct address_space *mapping,
1434 pgoff_t start, pgoff_t end)
1435{
3c111a07 1436#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1437 unsigned long tagged;
1438
1439 do {
1440 spin_lock_irq(&mapping->tree_lock);
1441 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1442 &start, end, WRITEBACK_TAG_BATCH,
1443 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1444 spin_unlock_irq(&mapping->tree_lock);
1445 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1446 cond_resched();
d5ed3a4a
JK
1447 /* We check 'start' to handle wrapping when end == ~0UL */
1448 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1449}
1450EXPORT_SYMBOL(tag_pages_for_writeback);
1451
811d736f 1452/**
0ea97180 1453 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1454 * @mapping: address space structure to write
1455 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1456 * @writepage: function called for each page
1457 * @data: data passed to writepage function
811d736f 1458 *
0ea97180 1459 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1460 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1461 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1462 * and msync() need to guarantee that all the data which was dirty at the time
1463 * the call was made get new I/O started against them. If wbc->sync_mode is
1464 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1465 * existing IO to complete.
f446daae
JK
1466 *
1467 * To avoid livelocks (when other process dirties new pages), we first tag
1468 * pages which should be written back with TOWRITE tag and only then start
1469 * writing them. For data-integrity sync we have to be careful so that we do
1470 * not miss some pages (e.g., because some other process has cleared TOWRITE
1471 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1472 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1473 */
0ea97180
MS
1474int write_cache_pages(struct address_space *mapping,
1475 struct writeback_control *wbc, writepage_t writepage,
1476 void *data)
811d736f 1477{
811d736f
DH
1478 int ret = 0;
1479 int done = 0;
811d736f
DH
1480 struct pagevec pvec;
1481 int nr_pages;
31a12666 1482 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1483 pgoff_t index;
1484 pgoff_t end; /* Inclusive */
bd19e012 1485 pgoff_t done_index;
31a12666 1486 int cycled;
811d736f 1487 int range_whole = 0;
f446daae 1488 int tag;
811d736f 1489
811d736f
DH
1490 pagevec_init(&pvec, 0);
1491 if (wbc->range_cyclic) {
31a12666
NP
1492 writeback_index = mapping->writeback_index; /* prev offset */
1493 index = writeback_index;
1494 if (index == 0)
1495 cycled = 1;
1496 else
1497 cycled = 0;
811d736f
DH
1498 end = -1;
1499 } else {
1500 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1501 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1502 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1503 range_whole = 1;
31a12666 1504 cycled = 1; /* ignore range_cyclic tests */
811d736f 1505 }
6e6938b6 1506 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1507 tag = PAGECACHE_TAG_TOWRITE;
1508 else
1509 tag = PAGECACHE_TAG_DIRTY;
811d736f 1510retry:
6e6938b6 1511 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1512 tag_pages_for_writeback(mapping, index, end);
bd19e012 1513 done_index = index;
5a3d5c98
NP
1514 while (!done && (index <= end)) {
1515 int i;
1516
f446daae 1517 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1518 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1519 if (nr_pages == 0)
1520 break;
811d736f 1521
811d736f
DH
1522 for (i = 0; i < nr_pages; i++) {
1523 struct page *page = pvec.pages[i];
1524
1525 /*
d5482cdf
NP
1526 * At this point, the page may be truncated or
1527 * invalidated (changing page->mapping to NULL), or
1528 * even swizzled back from swapper_space to tmpfs file
1529 * mapping. However, page->index will not change
1530 * because we have a reference on the page.
811d736f 1531 */
d5482cdf
NP
1532 if (page->index > end) {
1533 /*
1534 * can't be range_cyclic (1st pass) because
1535 * end == -1 in that case.
1536 */
1537 done = 1;
1538 break;
1539 }
1540
cf15b07c 1541 done_index = page->index;
d5482cdf 1542
811d736f
DH
1543 lock_page(page);
1544
5a3d5c98
NP
1545 /*
1546 * Page truncated or invalidated. We can freely skip it
1547 * then, even for data integrity operations: the page
1548 * has disappeared concurrently, so there could be no
1549 * real expectation of this data interity operation
1550 * even if there is now a new, dirty page at the same
1551 * pagecache address.
1552 */
811d736f 1553 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1554continue_unlock:
811d736f
DH
1555 unlock_page(page);
1556 continue;
1557 }
1558
515f4a03
NP
1559 if (!PageDirty(page)) {
1560 /* someone wrote it for us */
1561 goto continue_unlock;
1562 }
1563
1564 if (PageWriteback(page)) {
1565 if (wbc->sync_mode != WB_SYNC_NONE)
1566 wait_on_page_writeback(page);
1567 else
1568 goto continue_unlock;
1569 }
811d736f 1570
515f4a03
NP
1571 BUG_ON(PageWriteback(page));
1572 if (!clear_page_dirty_for_io(page))
5a3d5c98 1573 goto continue_unlock;
811d736f 1574
9e094383 1575 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 1576 ret = (*writepage)(page, wbc, data);
00266770
NP
1577 if (unlikely(ret)) {
1578 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1579 unlock_page(page);
1580 ret = 0;
1581 } else {
1582 /*
1583 * done_index is set past this page,
1584 * so media errors will not choke
1585 * background writeout for the entire
1586 * file. This has consequences for
1587 * range_cyclic semantics (ie. it may
1588 * not be suitable for data integrity
1589 * writeout).
1590 */
cf15b07c 1591 done_index = page->index + 1;
00266770
NP
1592 done = 1;
1593 break;
1594 }
0b564927 1595 }
00266770 1596
546a1924
DC
1597 /*
1598 * We stop writing back only if we are not doing
1599 * integrity sync. In case of integrity sync we have to
1600 * keep going until we have written all the pages
1601 * we tagged for writeback prior to entering this loop.
1602 */
1603 if (--wbc->nr_to_write <= 0 &&
1604 wbc->sync_mode == WB_SYNC_NONE) {
1605 done = 1;
1606 break;
05fe478d 1607 }
811d736f
DH
1608 }
1609 pagevec_release(&pvec);
1610 cond_resched();
1611 }
3a4c6800 1612 if (!cycled && !done) {
811d736f 1613 /*
31a12666 1614 * range_cyclic:
811d736f
DH
1615 * We hit the last page and there is more work to be done: wrap
1616 * back to the start of the file
1617 */
31a12666 1618 cycled = 1;
811d736f 1619 index = 0;
31a12666 1620 end = writeback_index - 1;
811d736f
DH
1621 goto retry;
1622 }
0b564927
DC
1623 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1624 mapping->writeback_index = done_index;
06d6cf69 1625
811d736f
DH
1626 return ret;
1627}
0ea97180
MS
1628EXPORT_SYMBOL(write_cache_pages);
1629
1630/*
1631 * Function used by generic_writepages to call the real writepage
1632 * function and set the mapping flags on error
1633 */
1634static int __writepage(struct page *page, struct writeback_control *wbc,
1635 void *data)
1636{
1637 struct address_space *mapping = data;
1638 int ret = mapping->a_ops->writepage(page, wbc);
1639 mapping_set_error(mapping, ret);
1640 return ret;
1641}
1642
1643/**
1644 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1645 * @mapping: address space structure to write
1646 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1647 *
1648 * This is a library function, which implements the writepages()
1649 * address_space_operation.
1650 */
1651int generic_writepages(struct address_space *mapping,
1652 struct writeback_control *wbc)
1653{
9b6096a6
SL
1654 struct blk_plug plug;
1655 int ret;
1656
0ea97180
MS
1657 /* deal with chardevs and other special file */
1658 if (!mapping->a_ops->writepage)
1659 return 0;
1660
9b6096a6
SL
1661 blk_start_plug(&plug);
1662 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1663 blk_finish_plug(&plug);
1664 return ret;
0ea97180 1665}
811d736f
DH
1666
1667EXPORT_SYMBOL(generic_writepages);
1668
1da177e4
LT
1669int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1670{
22905f77
AM
1671 int ret;
1672
1da177e4
LT
1673 if (wbc->nr_to_write <= 0)
1674 return 0;
1675 if (mapping->a_ops->writepages)
d08b3851 1676 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1677 else
1678 ret = generic_writepages(mapping, wbc);
22905f77 1679 return ret;
1da177e4
LT
1680}
1681
1682/**
1683 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1684 * @page: the page to write
1685 * @wait: if true, wait on writeout
1da177e4
LT
1686 *
1687 * The page must be locked by the caller and will be unlocked upon return.
1688 *
1689 * write_one_page() returns a negative error code if I/O failed.
1690 */
1691int write_one_page(struct page *page, int wait)
1692{
1693 struct address_space *mapping = page->mapping;
1694 int ret = 0;
1695 struct writeback_control wbc = {
1696 .sync_mode = WB_SYNC_ALL,
1697 .nr_to_write = 1,
1698 };
1699
1700 BUG_ON(!PageLocked(page));
1701
1702 if (wait)
1703 wait_on_page_writeback(page);
1704
1705 if (clear_page_dirty_for_io(page)) {
1706 page_cache_get(page);
1707 ret = mapping->a_ops->writepage(page, &wbc);
1708 if (ret == 0 && wait) {
1709 wait_on_page_writeback(page);
1710 if (PageError(page))
1711 ret = -EIO;
1712 }
1713 page_cache_release(page);
1714 } else {
1715 unlock_page(page);
1716 }
1717 return ret;
1718}
1719EXPORT_SYMBOL(write_one_page);
1720
76719325
KC
1721/*
1722 * For address_spaces which do not use buffers nor write back.
1723 */
1724int __set_page_dirty_no_writeback(struct page *page)
1725{
1726 if (!PageDirty(page))
c3f0da63 1727 return !TestSetPageDirty(page);
76719325
KC
1728 return 0;
1729}
1730
e3a7cca1
ES
1731/*
1732 * Helper function for set_page_dirty family.
1733 * NOTE: This relies on being atomic wrt interrupts.
1734 */
1735void account_page_dirtied(struct page *page, struct address_space *mapping)
1736{
1737 if (mapping_cap_account_dirty(mapping)) {
1738 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1739 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1 1740 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
c8e28ce0 1741 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
e3a7cca1
ES
1742 task_io_account_write(PAGE_CACHE_SIZE);
1743 }
1744}
679ceace 1745EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1746
f629d1c9
MR
1747/*
1748 * Helper function for set_page_writeback family.
1749 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1750 * wrt interrupts.
1751 */
1752void account_page_writeback(struct page *page)
1753{
1754 inc_zone_page_state(page, NR_WRITEBACK);
1755}
1756EXPORT_SYMBOL(account_page_writeback);
1757
1da177e4
LT
1758/*
1759 * For address_spaces which do not use buffers. Just tag the page as dirty in
1760 * its radix tree.
1761 *
1762 * This is also used when a single buffer is being dirtied: we want to set the
1763 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1764 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1765 *
1766 * Most callers have locked the page, which pins the address_space in memory.
1767 * But zap_pte_range() does not lock the page, however in that case the
1768 * mapping is pinned by the vma's ->vm_file reference.
1769 *
1770 * We take care to handle the case where the page was truncated from the
183ff22b 1771 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1772 */
1773int __set_page_dirty_nobuffers(struct page *page)
1774{
1da177e4
LT
1775 if (!TestSetPageDirty(page)) {
1776 struct address_space *mapping = page_mapping(page);
1777 struct address_space *mapping2;
1778
8c08540f
AM
1779 if (!mapping)
1780 return 1;
1781
19fd6231 1782 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1783 mapping2 = page_mapping(page);
1784 if (mapping2) { /* Race with truncate? */
1785 BUG_ON(mapping2 != mapping);
787d2214 1786 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1787 account_page_dirtied(page, mapping);
8c08540f
AM
1788 radix_tree_tag_set(&mapping->page_tree,
1789 page_index(page), PAGECACHE_TAG_DIRTY);
1790 }
19fd6231 1791 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1792 if (mapping->host) {
1793 /* !PageAnon && !swapper_space */
1794 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1795 }
4741c9fd 1796 return 1;
1da177e4 1797 }
4741c9fd 1798 return 0;
1da177e4
LT
1799}
1800EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1801
1802/*
1803 * When a writepage implementation decides that it doesn't want to write this
1804 * page for some reason, it should redirty the locked page via
1805 * redirty_page_for_writepage() and it should then unlock the page and return 0
1806 */
1807int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1808{
1809 wbc->pages_skipped++;
1810 return __set_page_dirty_nobuffers(page);
1811}
1812EXPORT_SYMBOL(redirty_page_for_writepage);
1813
1814/*
6746aff7
WF
1815 * Dirty a page.
1816 *
1817 * For pages with a mapping this should be done under the page lock
1818 * for the benefit of asynchronous memory errors who prefer a consistent
1819 * dirty state. This rule can be broken in some special cases,
1820 * but should be better not to.
1821 *
1da177e4
LT
1822 * If the mapping doesn't provide a set_page_dirty a_op, then
1823 * just fall through and assume that it wants buffer_heads.
1824 */
1cf6e7d8 1825int set_page_dirty(struct page *page)
1da177e4
LT
1826{
1827 struct address_space *mapping = page_mapping(page);
1828
1829 if (likely(mapping)) {
1830 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1831 /*
1832 * readahead/lru_deactivate_page could remain
1833 * PG_readahead/PG_reclaim due to race with end_page_writeback
1834 * About readahead, if the page is written, the flags would be
1835 * reset. So no problem.
1836 * About lru_deactivate_page, if the page is redirty, the flag
1837 * will be reset. So no problem. but if the page is used by readahead
1838 * it will confuse readahead and make it restart the size rampup
1839 * process. But it's a trivial problem.
1840 */
1841 ClearPageReclaim(page);
9361401e
DH
1842#ifdef CONFIG_BLOCK
1843 if (!spd)
1844 spd = __set_page_dirty_buffers;
1845#endif
1846 return (*spd)(page);
1da177e4 1847 }
4741c9fd
AM
1848 if (!PageDirty(page)) {
1849 if (!TestSetPageDirty(page))
1850 return 1;
1851 }
1da177e4
LT
1852 return 0;
1853}
1854EXPORT_SYMBOL(set_page_dirty);
1855
1856/*
1857 * set_page_dirty() is racy if the caller has no reference against
1858 * page->mapping->host, and if the page is unlocked. This is because another
1859 * CPU could truncate the page off the mapping and then free the mapping.
1860 *
1861 * Usually, the page _is_ locked, or the caller is a user-space process which
1862 * holds a reference on the inode by having an open file.
1863 *
1864 * In other cases, the page should be locked before running set_page_dirty().
1865 */
1866int set_page_dirty_lock(struct page *page)
1867{
1868 int ret;
1869
7eaceacc 1870 lock_page(page);
1da177e4
LT
1871 ret = set_page_dirty(page);
1872 unlock_page(page);
1873 return ret;
1874}
1875EXPORT_SYMBOL(set_page_dirty_lock);
1876
1da177e4
LT
1877/*
1878 * Clear a page's dirty flag, while caring for dirty memory accounting.
1879 * Returns true if the page was previously dirty.
1880 *
1881 * This is for preparing to put the page under writeout. We leave the page
1882 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1883 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1884 * implementation will run either set_page_writeback() or set_page_dirty(),
1885 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1886 * back into sync.
1887 *
1888 * This incoherency between the page's dirty flag and radix-tree tag is
1889 * unfortunate, but it only exists while the page is locked.
1890 */
1891int clear_page_dirty_for_io(struct page *page)
1892{
1893 struct address_space *mapping = page_mapping(page);
1894
79352894
NP
1895 BUG_ON(!PageLocked(page));
1896
7658cc28
LT
1897 if (mapping && mapping_cap_account_dirty(mapping)) {
1898 /*
1899 * Yes, Virginia, this is indeed insane.
1900 *
1901 * We use this sequence to make sure that
1902 * (a) we account for dirty stats properly
1903 * (b) we tell the low-level filesystem to
1904 * mark the whole page dirty if it was
1905 * dirty in a pagetable. Only to then
1906 * (c) clean the page again and return 1 to
1907 * cause the writeback.
1908 *
1909 * This way we avoid all nasty races with the
1910 * dirty bit in multiple places and clearing
1911 * them concurrently from different threads.
1912 *
1913 * Note! Normally the "set_page_dirty(page)"
1914 * has no effect on the actual dirty bit - since
1915 * that will already usually be set. But we
1916 * need the side effects, and it can help us
1917 * avoid races.
1918 *
1919 * We basically use the page "master dirty bit"
1920 * as a serialization point for all the different
1921 * threads doing their things.
7658cc28
LT
1922 */
1923 if (page_mkclean(page))
1924 set_page_dirty(page);
79352894
NP
1925 /*
1926 * We carefully synchronise fault handlers against
1927 * installing a dirty pte and marking the page dirty
1928 * at this point. We do this by having them hold the
1929 * page lock at some point after installing their
1930 * pte, but before marking the page dirty.
1931 * Pages are always locked coming in here, so we get
1932 * the desired exclusion. See mm/memory.c:do_wp_page()
1933 * for more comments.
1934 */
7658cc28 1935 if (TestClearPageDirty(page)) {
8c08540f 1936 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1937 dec_bdi_stat(mapping->backing_dev_info,
1938 BDI_RECLAIMABLE);
7658cc28 1939 return 1;
1da177e4 1940 }
7658cc28 1941 return 0;
1da177e4 1942 }
7658cc28 1943 return TestClearPageDirty(page);
1da177e4 1944}
58bb01a9 1945EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1946
1947int test_clear_page_writeback(struct page *page)
1948{
1949 struct address_space *mapping = page_mapping(page);
1950 int ret;
1951
1952 if (mapping) {
69cb51d1 1953 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1954 unsigned long flags;
1955
19fd6231 1956 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1957 ret = TestClearPageWriteback(page);
69cb51d1 1958 if (ret) {
1da177e4
LT
1959 radix_tree_tag_clear(&mapping->page_tree,
1960 page_index(page),
1961 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1962 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1963 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1964 __bdi_writeout_inc(bdi);
1965 }
69cb51d1 1966 }
19fd6231 1967 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1968 } else {
1969 ret = TestClearPageWriteback(page);
1970 }
99b12e3d 1971 if (ret) {
d688abf5 1972 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
1973 inc_zone_page_state(page, NR_WRITTEN);
1974 }
1da177e4
LT
1975 return ret;
1976}
1977
1978int test_set_page_writeback(struct page *page)
1979{
1980 struct address_space *mapping = page_mapping(page);
1981 int ret;
1982
1983 if (mapping) {
69cb51d1 1984 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1985 unsigned long flags;
1986
19fd6231 1987 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1988 ret = TestSetPageWriteback(page);
69cb51d1 1989 if (!ret) {
1da177e4
LT
1990 radix_tree_tag_set(&mapping->page_tree,
1991 page_index(page),
1992 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1993 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1994 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1995 }
1da177e4
LT
1996 if (!PageDirty(page))
1997 radix_tree_tag_clear(&mapping->page_tree,
1998 page_index(page),
1999 PAGECACHE_TAG_DIRTY);
f446daae
JK
2000 radix_tree_tag_clear(&mapping->page_tree,
2001 page_index(page),
2002 PAGECACHE_TAG_TOWRITE);
19fd6231 2003 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2004 } else {
2005 ret = TestSetPageWriteback(page);
2006 }
d688abf5 2007 if (!ret)
f629d1c9 2008 account_page_writeback(page);
1da177e4
LT
2009 return ret;
2010
2011}
2012EXPORT_SYMBOL(test_set_page_writeback);
2013
2014/*
00128188 2015 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2016 * passed tag.
2017 */
2018int mapping_tagged(struct address_space *mapping, int tag)
2019{
72c47832 2020 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2021}
2022EXPORT_SYMBOL(mapping_tagged);