mm: document /sys/class/bdi/<bdi>/min_bytes knob
[linux-block.git] / mm / page-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
f30c2269 3 * mm/page-writeback.c
1da177e4
LT
4 *
5 * Copyright (C) 2002, Linus Torvalds.
90eec103 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Initial version
13 */
14
15#include <linux/kernel.h>
1bf27e98 16#include <linux/math64.h>
b95f1b31 17#include <linux/export.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/slab.h>
23#include <linux/pagemap.h>
24#include <linux/writeback.h>
25#include <linux/init.h>
26#include <linux/backing-dev.h>
55e829af 27#include <linux/task_io_accounting_ops.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/mpage.h>
d08b3851 30#include <linux/rmap.h>
1da177e4 31#include <linux/percpu.h>
1da177e4
LT
32#include <linux/smp.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
f361bf4a 39#include <linux/sched/signal.h>
6e543d57 40#include <linux/mm_inline.h>
028c2dd1 41#include <trace/events/writeback.h>
1da177e4 42
6e543d57
LD
43#include "internal.h"
44
ffd1f609
WF
45/*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48#define MAX_PAUSE max(HZ/5, 1)
49
5b9b3574
WF
50/*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
e98be2d5
WF
56/*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59#define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
6c14ae1e
WF
61#define RATELIMIT_CALC_SHIFT 10
62
1da177e4
LT
63/*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67static long ratelimit_pages = 32;
68
1da177e4
LT
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
5b0830cb 72 * Start background writeback (via writeback threads) at this percentage
1da177e4 73 */
aa779e51 74static int dirty_background_ratio = 10;
1da177e4 75
2da02997
DR
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
aa779e51 80static unsigned long dirty_background_bytes;
2da02997 81
195cf453
BG
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
aa779e51 86static int vm_highmem_is_dirtyable;
195cf453 87
1da177e4
LT
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
aa779e51 91static int vm_dirty_ratio = 20;
1da177e4 92
2da02997
DR
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
aa779e51 97static unsigned long vm_dirty_bytes;
2da02997 98
1da177e4 99/*
704503d8 100 * The interval between `kupdate'-style writebacks
1da177e4 101 */
22ef37ee 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 103
91913a29
AB
104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
1da177e4 106/*
704503d8 107 * The longest time for which data is allowed to remain dirty
1da177e4 108 */
22ef37ee 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4 110
1da177e4 111/*
ed5b43f1
BS
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
114 */
115int laptop_mode;
116
117EXPORT_SYMBOL(laptop_mode);
118
119/* End of sysctl-exported parameters */
120
dcc25ae7 121struct wb_domain global_wb_domain;
1da177e4 122
2bc00aef
TH
123/* consolidated parameters for balance_dirty_pages() and its subroutines */
124struct dirty_throttle_control {
e9f07dfd
TH
125#ifdef CONFIG_CGROUP_WRITEBACK
126 struct wb_domain *dom;
9fc3a43e 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 128#endif
2bc00aef 129 struct bdi_writeback *wb;
e9770b34 130 struct fprop_local_percpu *wb_completions;
eb608e3a 131
9fc3a43e 132 unsigned long avail; /* dirtyable */
2bc00aef
TH
133 unsigned long dirty; /* file_dirty + write + nfs */
134 unsigned long thresh; /* dirty threshold */
135 unsigned long bg_thresh; /* dirty background threshold */
136
137 unsigned long wb_dirty; /* per-wb counterparts */
138 unsigned long wb_thresh;
970fb01a 139 unsigned long wb_bg_thresh;
daddfa3c
TH
140
141 unsigned long pos_ratio;
2bc00aef
TH
142};
143
eb608e3a
JK
144/*
145 * Length of period for aging writeout fractions of bdis. This is an
146 * arbitrarily chosen number. The longer the period, the slower fractions will
147 * reflect changes in current writeout rate.
148 */
149#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 150
693108a8
TH
151#ifdef CONFIG_CGROUP_WRITEBACK
152
d60d1bdd
TH
153#define GDTC_INIT(__wb) .wb = (__wb), \
154 .dom = &global_wb_domain, \
155 .wb_completions = &(__wb)->completions
156
9fc3a43e 157#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
158
159#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
160 .dom = mem_cgroup_wb_domain(__wb), \
161 .wb_completions = &(__wb)->memcg_completions, \
162 .gdtc = __gdtc
c2aa723a
TH
163
164static bool mdtc_valid(struct dirty_throttle_control *dtc)
165{
166 return dtc->dom;
167}
e9f07dfd
TH
168
169static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170{
171 return dtc->dom;
172}
173
9fc3a43e
TH
174static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175{
176 return mdtc->gdtc;
177}
178
841710aa
TH
179static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180{
181 return &wb->memcg_completions;
182}
183
693108a8
TH
184static void wb_min_max_ratio(struct bdi_writeback *wb,
185 unsigned long *minp, unsigned long *maxp)
186{
20792ebf 187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
693108a8
TH
188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 unsigned long long min = wb->bdi->min_ratio;
190 unsigned long long max = wb->bdi->max_ratio;
191
192 /*
193 * @wb may already be clean by the time control reaches here and
194 * the total may not include its bw.
195 */
196 if (this_bw < tot_bw) {
197 if (min) {
198 min *= this_bw;
6d9e8c65 199 min = div64_ul(min, tot_bw);
693108a8 200 }
ae82291e 201 if (max < 100 * BDI_RATIO_SCALE) {
693108a8 202 max *= this_bw;
6d9e8c65 203 max = div64_ul(max, tot_bw);
693108a8
TH
204 }
205 }
206
207 *minp = min;
208 *maxp = max;
209}
210
211#else /* CONFIG_CGROUP_WRITEBACK */
212
d60d1bdd
TH
213#define GDTC_INIT(__wb) .wb = (__wb), \
214 .wb_completions = &(__wb)->completions
9fc3a43e 215#define GDTC_INIT_NO_WB
c2aa723a
TH
216#define MDTC_INIT(__wb, __gdtc)
217
218static bool mdtc_valid(struct dirty_throttle_control *dtc)
219{
220 return false;
221}
e9f07dfd
TH
222
223static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224{
225 return &global_wb_domain;
226}
227
9fc3a43e
TH
228static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229{
230 return NULL;
231}
232
841710aa
TH
233static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234{
235 return NULL;
236}
237
693108a8
TH
238static void wb_min_max_ratio(struct bdi_writeback *wb,
239 unsigned long *minp, unsigned long *maxp)
240{
241 *minp = wb->bdi->min_ratio;
242 *maxp = wb->bdi->max_ratio;
243}
244
245#endif /* CONFIG_CGROUP_WRITEBACK */
246
a756cf59
JW
247/*
248 * In a memory zone, there is a certain amount of pages we consider
249 * available for the page cache, which is essentially the number of
250 * free and reclaimable pages, minus some zone reserves to protect
251 * lowmem and the ability to uphold the zone's watermarks without
252 * requiring writeback.
253 *
254 * This number of dirtyable pages is the base value of which the
e0857cf5 255 * user-configurable dirty ratio is the effective number of pages that
a756cf59
JW
256 * are allowed to be actually dirtied. Per individual zone, or
257 * globally by using the sum of dirtyable pages over all zones.
258 *
259 * Because the user is allowed to specify the dirty limit globally as
260 * absolute number of bytes, calculating the per-zone dirty limit can
261 * require translating the configured limit into a percentage of
262 * global dirtyable memory first.
263 */
264
a804552b 265/**
281e3726
MG
266 * node_dirtyable_memory - number of dirtyable pages in a node
267 * @pgdat: the node
a804552b 268 *
a862f68a 269 * Return: the node's number of pages potentially available for dirty
281e3726 270 * page cache. This is the base value for the per-node dirty limits.
a804552b 271 */
281e3726 272static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 273{
281e3726
MG
274 unsigned long nr_pages = 0;
275 int z;
276
277 for (z = 0; z < MAX_NR_ZONES; z++) {
278 struct zone *zone = pgdat->node_zones + z;
279
280 if (!populated_zone(zone))
281 continue;
282
283 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284 }
a804552b 285
a8d01437
JW
286 /*
287 * Pages reserved for the kernel should not be considered
288 * dirtyable, to prevent a situation where reclaim has to
289 * clean pages in order to balance the zones.
290 */
281e3726 291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 292
281e3726
MG
293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
295
296 return nr_pages;
297}
298
1edf2234
JW
299static unsigned long highmem_dirtyable_memory(unsigned long total)
300{
301#ifdef CONFIG_HIGHMEM
302 int node;
bb4cc2be 303 unsigned long x = 0;
09b4ab3c 304 int i;
1edf2234
JW
305
306 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308 struct zone *z;
9cb937e2 309 unsigned long nr_pages;
281e3726
MG
310
311 if (!is_highmem_idx(i))
312 continue;
313
314 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
315 if (!populated_zone(z))
316 continue;
1edf2234 317
9cb937e2 318 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 319 /* watch for underflows */
9cb937e2 320 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323 x += nr_pages;
09b4ab3c 324 }
1edf2234 325 }
281e3726 326
1edf2234
JW
327 /*
328 * Make sure that the number of highmem pages is never larger
329 * than the number of the total dirtyable memory. This can only
330 * occur in very strange VM situations but we want to make sure
331 * that this does not occur.
332 */
333 return min(x, total);
334#else
335 return 0;
336#endif
337}
338
339/**
ccafa287 340 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 341 *
a862f68a 342 * Return: the global number of pages potentially available for dirty
ccafa287 343 * page cache. This is the base value for the global dirty limits.
1edf2234 344 */
18cf8cf8 345static unsigned long global_dirtyable_memory(void)
1edf2234
JW
346{
347 unsigned long x;
348
c41f012a 349 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
350 /*
351 * Pages reserved for the kernel should not be considered
352 * dirtyable, to prevent a situation where reclaim has to
353 * clean pages in order to balance the zones.
354 */
355 x -= min(x, totalreserve_pages);
1edf2234 356
599d0c95
MG
357 x += global_node_page_state(NR_INACTIVE_FILE);
358 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 359
1edf2234
JW
360 if (!vm_highmem_is_dirtyable)
361 x -= highmem_dirtyable_memory(x);
362
363 return x + 1; /* Ensure that we never return 0 */
364}
365
9fc3a43e
TH
366/**
367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368 * @dtc: dirty_throttle_control of interest
ccafa287 369 *
9fc3a43e
TH
370 * Calculate @dtc->thresh and ->bg_thresh considering
371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
372 * must ensure that @dtc->avail is set before calling this function. The
a37b0715 373 * dirty limits will be lifted by 1/4 for real-time tasks.
ccafa287 374 */
9fc3a43e 375static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 376{
9fc3a43e
TH
377 const unsigned long available_memory = dtc->avail;
378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379 unsigned long bytes = vm_dirty_bytes;
380 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
381 /* convert ratios to per-PAGE_SIZE for higher precision */
382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
384 unsigned long thresh;
385 unsigned long bg_thresh;
ccafa287
JW
386 struct task_struct *tsk;
387
9fc3a43e
TH
388 /* gdtc is !NULL iff @dtc is for memcg domain */
389 if (gdtc) {
390 unsigned long global_avail = gdtc->avail;
391
392 /*
393 * The byte settings can't be applied directly to memcg
394 * domains. Convert them to ratios by scaling against
62a584fe
TH
395 * globally available memory. As the ratios are in
396 * per-PAGE_SIZE, they can be obtained by dividing bytes by
397 * number of pages.
9fc3a43e
TH
398 */
399 if (bytes)
62a584fe
TH
400 ratio = min(DIV_ROUND_UP(bytes, global_avail),
401 PAGE_SIZE);
9fc3a43e 402 if (bg_bytes)
62a584fe
TH
403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404 PAGE_SIZE);
9fc3a43e
TH
405 bytes = bg_bytes = 0;
406 }
407
408 if (bytes)
409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 410 else
62a584fe 411 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 412
9fc3a43e
TH
413 if (bg_bytes)
414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 415 else
62a584fe 416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 417
90daf306 418 if (bg_thresh >= thresh)
9fc3a43e 419 bg_thresh = thresh / 2;
ccafa287 420 tsk = current;
a37b0715 421 if (rt_task(tsk)) {
a53eaff8
N
422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 424 }
9fc3a43e
TH
425 dtc->thresh = thresh;
426 dtc->bg_thresh = bg_thresh;
427
428 /* we should eventually report the domain in the TP */
429 if (!gdtc)
430 trace_global_dirty_state(bg_thresh, thresh);
431}
432
433/**
434 * global_dirty_limits - background-writeback and dirty-throttling thresholds
435 * @pbackground: out parameter for bg_thresh
436 * @pdirty: out parameter for thresh
437 *
438 * Calculate bg_thresh and thresh for global_wb_domain. See
439 * domain_dirty_limits() for details.
440 */
441void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
442{
443 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
444
445 gdtc.avail = global_dirtyable_memory();
446 domain_dirty_limits(&gdtc);
447
448 *pbackground = gdtc.bg_thresh;
449 *pdirty = gdtc.thresh;
ccafa287
JW
450}
451
a756cf59 452/**
281e3726
MG
453 * node_dirty_limit - maximum number of dirty pages allowed in a node
454 * @pgdat: the node
a756cf59 455 *
a862f68a 456 * Return: the maximum number of dirty pages allowed in a node, based
281e3726 457 * on the node's dirtyable memory.
a756cf59 458 */
281e3726 459static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 460{
281e3726 461 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
462 struct task_struct *tsk = current;
463 unsigned long dirty;
464
465 if (vm_dirty_bytes)
466 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 467 node_memory / global_dirtyable_memory();
a756cf59 468 else
281e3726 469 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59 470
a37b0715 471 if (rt_task(tsk))
a756cf59
JW
472 dirty += dirty / 4;
473
474 return dirty;
475}
476
477/**
281e3726
MG
478 * node_dirty_ok - tells whether a node is within its dirty limits
479 * @pgdat: the node to check
a756cf59 480 *
a862f68a 481 * Return: %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
482 * dirty limit, %false if the limit is exceeded.
483 */
281e3726 484bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 485{
281e3726
MG
486 unsigned long limit = node_dirty_limit(pgdat);
487 unsigned long nr_pages = 0;
488
11fb9989 489 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
11fb9989 490 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 491
281e3726 492 return nr_pages <= limit;
a756cf59
JW
493}
494
aa779e51 495#ifdef CONFIG_SYSCTL
496static int dirty_background_ratio_handler(struct ctl_table *table, int write,
32927393 497 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
498{
499 int ret;
500
8d65af78 501 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
502 if (ret == 0 && write)
503 dirty_background_bytes = 0;
504 return ret;
505}
506
aa779e51 507static int dirty_background_bytes_handler(struct ctl_table *table, int write,
32927393 508 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
509{
510 int ret;
511
8d65af78 512 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
513 if (ret == 0 && write)
514 dirty_background_ratio = 0;
515 return ret;
516}
517
aa779e51 518static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
32927393 519 size_t *lenp, loff_t *ppos)
04fbfdc1
PZ
520{
521 int old_ratio = vm_dirty_ratio;
2da02997
DR
522 int ret;
523
8d65af78 524 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 525 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 526 writeback_set_ratelimit();
2da02997
DR
527 vm_dirty_bytes = 0;
528 }
529 return ret;
530}
531
aa779e51 532static int dirty_bytes_handler(struct ctl_table *table, int write,
32927393 533 void *buffer, size_t *lenp, loff_t *ppos)
2da02997 534{
fc3501d4 535 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
536 int ret;
537
8d65af78 538 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 539 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 540 writeback_set_ratelimit();
2da02997 541 vm_dirty_ratio = 0;
04fbfdc1
PZ
542 }
543 return ret;
544}
aa779e51 545#endif
04fbfdc1 546
eb608e3a
JK
547static unsigned long wp_next_time(unsigned long cur_time)
548{
549 cur_time += VM_COMPLETIONS_PERIOD_LEN;
550 /* 0 has a special meaning... */
551 if (!cur_time)
552 return 1;
553 return cur_time;
554}
555
cc24df4c 556static void wb_domain_writeout_add(struct wb_domain *dom,
c7981433 557 struct fprop_local_percpu *completions,
cc24df4c 558 unsigned int max_prop_frac, long nr)
04fbfdc1 559{
be5f1797 560 __fprop_add_percpu_max(&dom->completions, completions,
cc24df4c 561 max_prop_frac, nr);
eb608e3a 562 /* First event after period switching was turned off? */
517663ed 563 if (unlikely(!dom->period_time)) {
eb608e3a
JK
564 /*
565 * We can race with other __bdi_writeout_inc calls here but
566 * it does not cause any harm since the resulting time when
567 * timer will fire and what is in writeout_period_time will be
568 * roughly the same.
569 */
380c27ca
TH
570 dom->period_time = wp_next_time(jiffies);
571 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 572 }
04fbfdc1
PZ
573}
574
c7981433
TH
575/*
576 * Increment @wb's writeout completion count and the global writeout
269ccca3 577 * completion count. Called from __folio_end_writeback().
c7981433 578 */
cc24df4c 579static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
dd5656e5 580{
841710aa 581 struct wb_domain *cgdom;
dd5656e5 582
cc24df4c
MWO
583 wb_stat_mod(wb, WB_WRITTEN, nr);
584 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
585 wb->bdi->max_prop_frac, nr);
841710aa
TH
586
587 cgdom = mem_cgroup_wb_domain(wb);
588 if (cgdom)
cc24df4c
MWO
589 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
590 wb->bdi->max_prop_frac, nr);
dd5656e5 591}
dd5656e5 592
93f78d88 593void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 594{
dd5656e5
MS
595 unsigned long flags;
596
597 local_irq_save(flags);
cc24df4c 598 __wb_writeout_add(wb, 1);
dd5656e5 599 local_irq_restore(flags);
04fbfdc1 600}
93f78d88 601EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 602
eb608e3a
JK
603/*
604 * On idle system, we can be called long after we scheduled because we use
605 * deferred timers so count with missed periods.
606 */
9823e51b 607static void writeout_period(struct timer_list *t)
eb608e3a 608{
9823e51b 609 struct wb_domain *dom = from_timer(dom, t, period_timer);
380c27ca 610 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
611 VM_COMPLETIONS_PERIOD_LEN;
612
380c27ca
TH
613 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
614 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 615 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 616 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
617 } else {
618 /*
619 * Aging has zeroed all fractions. Stop wasting CPU on period
620 * updates.
621 */
380c27ca 622 dom->period_time = 0;
eb608e3a
JK
623 }
624}
625
380c27ca
TH
626int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
627{
628 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
629
630 spin_lock_init(&dom->lock);
631
9823e51b 632 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
dcc25ae7
TH
633
634 dom->dirty_limit_tstamp = jiffies;
635
380c27ca
TH
636 return fprop_global_init(&dom->completions, gfp);
637}
638
841710aa
TH
639#ifdef CONFIG_CGROUP_WRITEBACK
640void wb_domain_exit(struct wb_domain *dom)
641{
642 del_timer_sync(&dom->period_timer);
643 fprop_global_destroy(&dom->completions);
644}
645#endif
646
189d3c4a 647/*
d08c429b
JW
648 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
649 * registered backing devices, which, for obvious reasons, can not
650 * exceed 100%.
189d3c4a 651 */
189d3c4a
PZ
652static unsigned int bdi_min_ratio;
653
1bf27e98
SR
654static int bdi_check_pages_limit(unsigned long pages)
655{
656 unsigned long max_dirty_pages = global_dirtyable_memory();
657
658 if (pages > max_dirty_pages)
659 return -EINVAL;
660
661 return 0;
662}
663
664static unsigned long bdi_ratio_from_pages(unsigned long pages)
665{
666 unsigned long background_thresh;
667 unsigned long dirty_thresh;
668 unsigned long ratio;
669
670 global_dirty_limits(&background_thresh, &dirty_thresh);
671 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
672
673 return ratio;
674}
675
00df7d51
SR
676static u64 bdi_get_bytes(unsigned int ratio)
677{
678 unsigned long background_thresh;
679 unsigned long dirty_thresh;
680 u64 bytes;
681
682 global_dirty_limits(&background_thresh, &dirty_thresh);
683 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
684
685 return bytes;
686}
687
8021fb32 688static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
189d3c4a 689{
21f0dd88 690 unsigned int delta;
189d3c4a 691 int ret = 0;
189d3c4a 692
ae82291e
SR
693 min_ratio *= BDI_RATIO_SCALE;
694
cfc4ba53 695 spin_lock_bh(&bdi_lock);
a42dde04 696 if (min_ratio > bdi->max_ratio) {
189d3c4a 697 ret = -EINVAL;
a42dde04 698 } else {
21f0dd88
CW
699 if (min_ratio < bdi->min_ratio) {
700 delta = bdi->min_ratio - min_ratio;
701 bdi_min_ratio -= delta;
702 bdi->min_ratio = min_ratio;
a42dde04 703 } else {
21f0dd88 704 delta = min_ratio - bdi->min_ratio;
ae82291e 705 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
21f0dd88
CW
706 bdi_min_ratio += delta;
707 bdi->min_ratio = min_ratio;
708 } else {
709 ret = -EINVAL;
710 }
a42dde04
PZ
711 }
712 }
cfc4ba53 713 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
714
715 return ret;
716}
717
efc3e6ad 718static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
a42dde04 719{
a42dde04
PZ
720 int ret = 0;
721
cfc4ba53 722 spin_lock_bh(&bdi_lock);
a42dde04
PZ
723 if (bdi->min_ratio > max_ratio) {
724 ret = -EINVAL;
725 } else {
726 bdi->max_ratio = max_ratio;
eb608e3a 727 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 728 }
cfc4ba53 729 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
730
731 return ret;
732}
efc3e6ad 733
8021fb32
SR
734int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
735{
736 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
737}
738
efc3e6ad
SR
739int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
740{
741 if (max_ratio > 100)
742 return -EINVAL;
743
744 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
745}
a42dde04 746EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 747
712c00d6
SR
748u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
749{
750 return bdi_get_bytes(bdi->min_ratio);
751}
752
803c9805
SR
753int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
754{
755 int ret;
756 unsigned long pages = min_bytes >> PAGE_SHIFT;
757 unsigned long min_ratio;
758
759 ret = bdi_check_pages_limit(pages);
760 if (ret)
761 return ret;
762
763 min_ratio = bdi_ratio_from_pages(pages);
764 return __bdi_set_min_ratio(bdi, min_ratio);
765}
766
00df7d51
SR
767u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
768{
769 return bdi_get_bytes(bdi->max_ratio);
770}
771
1bf27e98
SR
772int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
773{
774 int ret;
775 unsigned long pages = max_bytes >> PAGE_SHIFT;
776 unsigned long max_ratio;
777
778 ret = bdi_check_pages_limit(pages);
779 if (ret)
780 return ret;
781
782 max_ratio = bdi_ratio_from_pages(pages);
783 return __bdi_set_max_ratio(bdi, max_ratio);
784}
785
8e9d5ead
SR
786int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
787{
788 if (strict_limit > 1)
789 return -EINVAL;
790
791 spin_lock_bh(&bdi_lock);
792 if (strict_limit)
793 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
794 else
795 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
796 spin_unlock_bh(&bdi_lock);
797
798 return 0;
799}
800
6c14ae1e
WF
801static unsigned long dirty_freerun_ceiling(unsigned long thresh,
802 unsigned long bg_thresh)
803{
804 return (thresh + bg_thresh) / 2;
805}
806
c7981433
TH
807static unsigned long hard_dirty_limit(struct wb_domain *dom,
808 unsigned long thresh)
ffd1f609 809{
dcc25ae7 810 return max(thresh, dom->dirty_limit);
ffd1f609
WF
811}
812
c5edf9cd
TH
813/*
814 * Memory which can be further allocated to a memcg domain is capped by
815 * system-wide clean memory excluding the amount being used in the domain.
816 */
817static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
818 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
819{
820 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
821 unsigned long clean = filepages - min(filepages, mdtc->dirty);
822 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
823 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 824
c5edf9cd 825 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
826}
827
6f718656 828/**
b1cbc6d4
TH
829 * __wb_calc_thresh - @wb's share of dirty throttling threshold
830 * @dtc: dirty_throttle_context of interest
1babe183 831 *
aed21ad2
WF
832 * Note that balance_dirty_pages() will only seriously take it as a hard limit
833 * when sleeping max_pause per page is not enough to keep the dirty pages under
834 * control. For example, when the device is completely stalled due to some error
835 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
836 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 837 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 838 *
6f718656 839 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
840 * - starving fast devices
841 * - piling up dirty pages (that will take long time to sync) on slow devices
842 *
a88a341a 843 * The wb's share of dirty limit will be adapting to its throughput and
1babe183 844 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
a862f68a
MR
845 *
846 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
8d92890b 847 * dirty balancing includes all PG_dirty and PG_writeback pages.
1babe183 848 */
b1cbc6d4 849static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 850{
e9f07dfd 851 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 852 unsigned long thresh = dtc->thresh;
0d960a38 853 u64 wb_thresh;
d3ac946e 854 unsigned long numerator, denominator;
693108a8 855 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 856
16c4042f 857 /*
0d960a38 858 * Calculate this BDI's share of the thresh ratio.
16c4042f 859 */
e9770b34 860 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 861 &numerator, &denominator);
04fbfdc1 862
ae82291e 863 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
0d960a38 864 wb_thresh *= numerator;
d3ac946e 865 wb_thresh = div64_ul(wb_thresh, denominator);
04fbfdc1 866
b1cbc6d4 867 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 868
ae82291e
SR
869 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
870 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
871 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
16c4042f 872
0d960a38 873 return wb_thresh;
1da177e4
LT
874}
875
b1cbc6d4
TH
876unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
877{
878 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
879 .thresh = thresh };
880 return __wb_calc_thresh(&gdtc);
1da177e4
LT
881}
882
5a537485
MP
883/*
884 * setpoint - dirty 3
885 * f(dirty) := 1.0 + (----------------)
886 * limit - setpoint
887 *
888 * it's a 3rd order polynomial that subjects to
889 *
890 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
891 * (2) f(setpoint) = 1.0 => the balance point
892 * (3) f(limit) = 0 => the hard limit
893 * (4) df/dx <= 0 => negative feedback control
894 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
895 * => fast response on large errors; small oscillation near setpoint
896 */
d5c9fde3 897static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
898 unsigned long dirty,
899 unsigned long limit)
900{
901 long long pos_ratio;
902 long x;
903
d5c9fde3 904 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 905 (limit - setpoint) | 1);
5a537485
MP
906 pos_ratio = x;
907 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
908 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
909 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
910
911 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
912}
913
6c14ae1e
WF
914/*
915 * Dirty position control.
916 *
917 * (o) global/bdi setpoints
918 *
de1fff37 919 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
920 * When the number of dirty pages is higher/lower than the setpoint, the
921 * dirty position control ratio (and hence task dirty ratelimit) will be
922 * decreased/increased to bring the dirty pages back to the setpoint.
923 *
924 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
925 *
926 * if (dirty < setpoint) scale up pos_ratio
927 * if (dirty > setpoint) scale down pos_ratio
928 *
de1fff37
TH
929 * if (wb_dirty < wb_setpoint) scale up pos_ratio
930 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
931 *
932 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
933 *
934 * (o) global control line
935 *
936 * ^ pos_ratio
937 * |
938 * | |<===== global dirty control scope ======>|
03231554 939 * 2.0 * * * * * * *
6c14ae1e
WF
940 * | .*
941 * | . *
942 * | . *
943 * | . *
944 * | . *
945 * | . *
946 * 1.0 ................................*
947 * | . . *
948 * | . . *
949 * | . . *
950 * | . . *
951 * | . . *
952 * 0 +------------.------------------.----------------------*------------->
953 * freerun^ setpoint^ limit^ dirty pages
954 *
de1fff37 955 * (o) wb control line
6c14ae1e
WF
956 *
957 * ^ pos_ratio
958 * |
959 * | *
960 * | *
961 * | *
962 * | *
963 * | * |<=========== span ============>|
964 * 1.0 .......................*
965 * | . *
966 * | . *
967 * | . *
968 * | . *
969 * | . *
970 * | . *
971 * | . *
972 * | . *
973 * | . *
974 * | . *
975 * | . *
976 * 1/4 ...............................................* * * * * * * * * * * *
977 * | . .
978 * | . .
979 * | . .
980 * 0 +----------------------.-------------------------------.------------->
de1fff37 981 * wb_setpoint^ x_intercept^
6c14ae1e 982 *
de1fff37 983 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
984 * be smoothly throttled down to normal if it starts high in situations like
985 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
986 * card's wb_dirty may rush to many times higher than wb_setpoint.
987 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 988 */
daddfa3c 989static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 990{
2bc00aef 991 struct bdi_writeback *wb = dtc->wb;
20792ebf 992 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
2bc00aef 993 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 994 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 995 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
996 unsigned long x_intercept;
997 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 998 unsigned long wb_setpoint;
6c14ae1e
WF
999 unsigned long span;
1000 long long pos_ratio; /* for scaling up/down the rate limit */
1001 long x;
1002
daddfa3c
TH
1003 dtc->pos_ratio = 0;
1004
2bc00aef 1005 if (unlikely(dtc->dirty >= limit))
daddfa3c 1006 return;
6c14ae1e
WF
1007
1008 /*
1009 * global setpoint
1010 *
5a537485
MP
1011 * See comment for pos_ratio_polynom().
1012 */
1013 setpoint = (freerun + limit) / 2;
2bc00aef 1014 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
1015
1016 /*
1017 * The strictlimit feature is a tool preventing mistrusted filesystems
1018 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
1019 * such filesystems balance_dirty_pages always checks wb counters
1020 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
1021 * This is especially important for fuse which sets bdi->max_ratio to
1022 * 1% by default. Without strictlimit feature, fuse writeback may
1023 * consume arbitrary amount of RAM because it is accounted in
1024 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 1025 *
a88a341a 1026 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 1027 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
1028 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1029 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 1030 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 1031 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 1032 * about ~6K pages (as the average of background and throttle wb
5a537485 1033 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 1034 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 1035 *
5a537485 1036 * Note, that we cannot use global counters in these calculations
de1fff37 1037 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
1038 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1039 * in the example above).
6c14ae1e 1040 */
a88a341a 1041 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 1042 long long wb_pos_ratio;
5a537485 1043
daddfa3c
TH
1044 if (dtc->wb_dirty < 8) {
1045 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1046 2 << RATELIMIT_CALC_SHIFT);
1047 return;
1048 }
5a537485 1049
2bc00aef 1050 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 1051 return;
5a537485 1052
970fb01a
TH
1053 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1054 dtc->wb_bg_thresh);
5a537485 1055
de1fff37 1056 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 1057 return;
5a537485 1058
2bc00aef 1059 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 1060 wb_thresh);
5a537485
MP
1061
1062 /*
de1fff37
TH
1063 * Typically, for strictlimit case, wb_setpoint << setpoint
1064 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 1065 * state ("dirty") is not limiting factor and we have to
de1fff37 1066 * make decision based on wb counters. But there is an
5a537485
MP
1067 * important case when global pos_ratio should get precedence:
1068 * global limits are exceeded (e.g. due to activities on other
de1fff37 1069 * wb's) while given strictlimit wb is below limit.
5a537485 1070 *
de1fff37 1071 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 1072 * but it would look too non-natural for the case of all
de1fff37 1073 * activity in the system coming from a single strictlimit wb
5a537485
MP
1074 * with bdi->max_ratio == 100%.
1075 *
1076 * Note that min() below somewhat changes the dynamics of the
1077 * control system. Normally, pos_ratio value can be well over 3
de1fff37 1078 * (when globally we are at freerun and wb is well below wb
5a537485
MP
1079 * setpoint). Now the maximum pos_ratio in the same situation
1080 * is 2. We might want to tweak this if we observe the control
1081 * system is too slow to adapt.
1082 */
daddfa3c
TH
1083 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1084 return;
5a537485 1085 }
6c14ae1e
WF
1086
1087 /*
1088 * We have computed basic pos_ratio above based on global situation. If
de1fff37 1089 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
1090 * pos_ratio further down/up. That is done by the following mechanism.
1091 */
1092
1093 /*
de1fff37 1094 * wb setpoint
6c14ae1e 1095 *
de1fff37 1096 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1097 *
de1fff37 1098 * x_intercept - wb_dirty
6c14ae1e 1099 * := --------------------------
de1fff37 1100 * x_intercept - wb_setpoint
6c14ae1e 1101 *
de1fff37 1102 * The main wb control line is a linear function that subjects to
6c14ae1e 1103 *
de1fff37
TH
1104 * (1) f(wb_setpoint) = 1.0
1105 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1106 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1107 *
de1fff37 1108 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1109 * regularly within range
de1fff37 1110 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1111 * for various filesystems, where (2) can yield in a reasonable 12.5%
1112 * fluctuation range for pos_ratio.
1113 *
de1fff37 1114 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1115 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1116 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1117 */
2bc00aef
TH
1118 if (unlikely(wb_thresh > dtc->thresh))
1119 wb_thresh = dtc->thresh;
aed21ad2 1120 /*
de1fff37 1121 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1122 * device is slow, but that it has remained inactive for long time.
1123 * Honour such devices a reasonable good (hopefully IO efficient)
1124 * threshold, so that the occasional writes won't be blocked and active
1125 * writes can rampup the threshold quickly.
1126 */
2bc00aef 1127 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1128 /*
de1fff37
TH
1129 * scale global setpoint to wb's:
1130 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1131 */
e4bc13ad 1132 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1133 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1134 /*
de1fff37
TH
1135 * Use span=(8*write_bw) in single wb case as indicated by
1136 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1137 *
de1fff37
TH
1138 * wb_thresh thresh - wb_thresh
1139 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1140 * thresh thresh
6c14ae1e 1141 */
2bc00aef 1142 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1143 x_intercept = wb_setpoint + span;
6c14ae1e 1144
2bc00aef
TH
1145 if (dtc->wb_dirty < x_intercept - span / 4) {
1146 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1147 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1148 } else
1149 pos_ratio /= 4;
1150
8927f66c 1151 /*
de1fff37 1152 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1153 * It may push the desired control point of global dirty pages higher
1154 * than setpoint.
1155 */
de1fff37 1156 x_intercept = wb_thresh / 2;
2bc00aef
TH
1157 if (dtc->wb_dirty < x_intercept) {
1158 if (dtc->wb_dirty > x_intercept / 8)
1159 pos_ratio = div_u64(pos_ratio * x_intercept,
1160 dtc->wb_dirty);
50657fc4 1161 else
8927f66c
WF
1162 pos_ratio *= 8;
1163 }
1164
daddfa3c 1165 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1166}
1167
a88a341a
TH
1168static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1169 unsigned long elapsed,
1170 unsigned long written)
e98be2d5
WF
1171{
1172 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1173 unsigned long avg = wb->avg_write_bandwidth;
1174 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1175 u64 bw;
1176
1177 /*
1178 * bw = written * HZ / elapsed
1179 *
1180 * bw * elapsed + write_bandwidth * (period - elapsed)
1181 * write_bandwidth = ---------------------------------------------------
1182 * period
c72efb65 1183 *
25ff8b15 1184 * @written may have decreased due to folio_account_redirty().
c72efb65 1185 * Avoid underflowing @bw calculation.
e98be2d5 1186 */
a88a341a 1187 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1188 bw *= HZ;
1189 if (unlikely(elapsed > period)) {
0a5d1a7f 1190 bw = div64_ul(bw, elapsed);
e98be2d5
WF
1191 avg = bw;
1192 goto out;
1193 }
a88a341a 1194 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1195 bw >>= ilog2(period);
1196
1197 /*
1198 * one more level of smoothing, for filtering out sudden spikes
1199 */
1200 if (avg > old && old >= (unsigned long)bw)
1201 avg -= (avg - old) >> 3;
1202
1203 if (avg < old && old <= (unsigned long)bw)
1204 avg += (old - avg) >> 3;
1205
1206out:
95a46c65
TH
1207 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1208 avg = max(avg, 1LU);
1209 if (wb_has_dirty_io(wb)) {
1210 long delta = avg - wb->avg_write_bandwidth;
1211 WARN_ON_ONCE(atomic_long_add_return(delta,
1212 &wb->bdi->tot_write_bandwidth) <= 0);
1213 }
a88a341a 1214 wb->write_bandwidth = bw;
20792ebf 1215 WRITE_ONCE(wb->avg_write_bandwidth, avg);
e98be2d5
WF
1216}
1217
2bc00aef 1218static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1219{
e9f07dfd 1220 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1221 unsigned long thresh = dtc->thresh;
dcc25ae7 1222 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1223
1224 /*
1225 * Follow up in one step.
1226 */
1227 if (limit < thresh) {
1228 limit = thresh;
1229 goto update;
1230 }
1231
1232 /*
1233 * Follow down slowly. Use the higher one as the target, because thresh
1234 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1235 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1236 */
2bc00aef 1237 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1238 if (limit > thresh) {
1239 limit -= (limit - thresh) >> 5;
1240 goto update;
1241 }
1242 return;
1243update:
dcc25ae7 1244 dom->dirty_limit = limit;
c42843f2
WF
1245}
1246
42dd235c
JK
1247static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1248 unsigned long now)
c42843f2 1249{
e9f07dfd 1250 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1251
1252 /*
1253 * check locklessly first to optimize away locking for the most time
1254 */
dcc25ae7 1255 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1256 return;
1257
dcc25ae7
TH
1258 spin_lock(&dom->lock);
1259 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1260 update_dirty_limit(dtc);
dcc25ae7 1261 dom->dirty_limit_tstamp = now;
c42843f2 1262 }
dcc25ae7 1263 spin_unlock(&dom->lock);
c42843f2
WF
1264}
1265
be3ffa27 1266/*
de1fff37 1267 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1268 *
de1fff37 1269 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1270 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1271 */
2bc00aef 1272static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1273 unsigned long dirtied,
1274 unsigned long elapsed)
be3ffa27 1275{
2bc00aef
TH
1276 struct bdi_writeback *wb = dtc->wb;
1277 unsigned long dirty = dtc->dirty;
1278 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1279 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1280 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1281 unsigned long write_bw = wb->avg_write_bandwidth;
1282 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1283 unsigned long dirty_rate;
1284 unsigned long task_ratelimit;
1285 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1286 unsigned long step;
1287 unsigned long x;
d59b1087 1288 unsigned long shift;
be3ffa27
WF
1289
1290 /*
1291 * The dirty rate will match the writeout rate in long term, except
1292 * when dirty pages are truncated by userspace or re-dirtied by FS.
1293 */
a88a341a 1294 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1295
be3ffa27
WF
1296 /*
1297 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1298 */
1299 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1300 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1301 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1302
1303 /*
1304 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1305 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1306 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1307 * formula will yield the balanced rate limit (write_bw / N).
1308 *
1309 * Note that the expanded form is not a pure rate feedback:
1310 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1311 * but also takes pos_ratio into account:
1312 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1313 *
1314 * (1) is not realistic because pos_ratio also takes part in balancing
1315 * the dirty rate. Consider the state
1316 * pos_ratio = 0.5 (3)
1317 * rate = 2 * (write_bw / N) (4)
1318 * If (1) is used, it will stuck in that state! Because each dd will
1319 * be throttled at
1320 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1321 * yielding
1322 * dirty_rate = N * task_ratelimit = write_bw (6)
1323 * put (6) into (1) we get
1324 * rate_(i+1) = rate_(i) (7)
1325 *
1326 * So we end up using (2) to always keep
1327 * rate_(i+1) ~= (write_bw / N) (8)
1328 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1329 * pos_ratio is able to drive itself to 1.0, which is not only where
1330 * the dirty count meet the setpoint, but also where the slope of
1331 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1332 */
1333 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1334 dirty_rate | 1);
bdaac490
WF
1335 /*
1336 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1337 */
1338 if (unlikely(balanced_dirty_ratelimit > write_bw))
1339 balanced_dirty_ratelimit = write_bw;
be3ffa27 1340
7381131c
WF
1341 /*
1342 * We could safely do this and return immediately:
1343 *
de1fff37 1344 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1345 *
1346 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1347 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1348 * limit the step size.
1349 *
1350 * The below code essentially only uses the relative value of
1351 *
1352 * task_ratelimit - dirty_ratelimit
1353 * = (pos_ratio - 1) * dirty_ratelimit
1354 *
1355 * which reflects the direction and size of dirty position error.
1356 */
1357
1358 /*
1359 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1360 * task_ratelimit is on the same side of dirty_ratelimit, too.
1361 * For example, when
1362 * - dirty_ratelimit > balanced_dirty_ratelimit
1363 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1364 * lowering dirty_ratelimit will help meet both the position and rate
1365 * control targets. Otherwise, don't update dirty_ratelimit if it will
1366 * only help meet the rate target. After all, what the users ultimately
1367 * feel and care are stable dirty rate and small position error.
1368 *
1369 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1370 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1371 * keeps jumping around randomly and can even leap far away at times
1372 * due to the small 200ms estimation period of dirty_rate (we want to
1373 * keep that period small to reduce time lags).
1374 */
1375 step = 0;
5a537485
MP
1376
1377 /*
de1fff37 1378 * For strictlimit case, calculations above were based on wb counters
a88a341a 1379 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1380 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1381 * Hence, to calculate "step" properly, we have to use wb_dirty as
1382 * "dirty" and wb_setpoint as "setpoint".
5a537485 1383 *
de1fff37
TH
1384 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1385 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1386 * of backing device.
5a537485 1387 */
a88a341a 1388 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1389 dirty = dtc->wb_dirty;
1390 if (dtc->wb_dirty < 8)
1391 setpoint = dtc->wb_dirty + 1;
5a537485 1392 else
970fb01a 1393 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1394 }
1395
7381131c 1396 if (dirty < setpoint) {
a88a341a 1397 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1398 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1399 if (dirty_ratelimit < x)
1400 step = x - dirty_ratelimit;
1401 } else {
a88a341a 1402 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1403 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1404 if (dirty_ratelimit > x)
1405 step = dirty_ratelimit - x;
1406 }
1407
1408 /*
1409 * Don't pursue 100% rate matching. It's impossible since the balanced
1410 * rate itself is constantly fluctuating. So decrease the track speed
1411 * when it gets close to the target. Helps eliminate pointless tremors.
1412 */
d59b1087
AR
1413 shift = dirty_ratelimit / (2 * step + 1);
1414 if (shift < BITS_PER_LONG)
1415 step = DIV_ROUND_UP(step >> shift, 8);
1416 else
1417 step = 0;
7381131c
WF
1418
1419 if (dirty_ratelimit < balanced_dirty_ratelimit)
1420 dirty_ratelimit += step;
1421 else
1422 dirty_ratelimit -= step;
1423
20792ebf 1424 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
a88a341a 1425 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1426
5634cc2a 1427 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1428}
1429
c2aa723a
TH
1430static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1431 struct dirty_throttle_control *mdtc,
8a731799 1432 bool update_ratelimit)
e98be2d5 1433{
c2aa723a 1434 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1435 unsigned long now = jiffies;
45a2966f 1436 unsigned long elapsed;
be3ffa27 1437 unsigned long dirtied;
e98be2d5
WF
1438 unsigned long written;
1439
45a2966f 1440 spin_lock(&wb->list_lock);
8a731799 1441
e98be2d5 1442 /*
45a2966f
JK
1443 * Lockless checks for elapsed time are racy and delayed update after
1444 * IO completion doesn't do it at all (to make sure written pages are
1445 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1446 * division errors.
e98be2d5 1447 */
45a2966f 1448 elapsed = max(now - wb->bw_time_stamp, 1UL);
a88a341a
TH
1449 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1450 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5 1451
8a731799 1452 if (update_ratelimit) {
42dd235c 1453 domain_update_dirty_limit(gdtc, now);
c2aa723a
TH
1454 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1455
1456 /*
1457 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1458 * compiler has no way to figure that out. Help it.
1459 */
1460 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
42dd235c 1461 domain_update_dirty_limit(mdtc, now);
c2aa723a
TH
1462 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1463 }
be3ffa27 1464 }
a88a341a 1465 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5 1466
a88a341a
TH
1467 wb->dirtied_stamp = dirtied;
1468 wb->written_stamp = written;
20792ebf 1469 WRITE_ONCE(wb->bw_time_stamp, now);
45a2966f 1470 spin_unlock(&wb->list_lock);
e98be2d5
WF
1471}
1472
45a2966f 1473void wb_update_bandwidth(struct bdi_writeback *wb)
e98be2d5 1474{
2bc00aef
TH
1475 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1476
fee468fd 1477 __wb_update_bandwidth(&gdtc, NULL, false);
fee468fd
JK
1478}
1479
1480/* Interval after which we consider wb idle and don't estimate bandwidth */
1481#define WB_BANDWIDTH_IDLE_JIF (HZ)
1482
1483static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1484{
1485 unsigned long now = jiffies;
1486 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1487
1488 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1489 !atomic_read(&wb->writeback_inodes)) {
1490 spin_lock(&wb->list_lock);
1491 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1492 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
20792ebf 1493 WRITE_ONCE(wb->bw_time_stamp, now);
fee468fd
JK
1494 spin_unlock(&wb->list_lock);
1495 }
e98be2d5
WF
1496}
1497
9d823e8f 1498/*
d0e1d66b 1499 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1500 * will look to see if it needs to start dirty throttling.
1501 *
1502 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1503 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1504 * (the number of pages we may dirty without exceeding the dirty limits).
1505 */
1506static unsigned long dirty_poll_interval(unsigned long dirty,
1507 unsigned long thresh)
1508{
1509 if (thresh > dirty)
1510 return 1UL << (ilog2(thresh - dirty) >> 1);
1511
1512 return 1;
1513}
1514
a88a341a 1515static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1516 unsigned long wb_dirty)
c8462cc9 1517{
20792ebf 1518 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
e3b6c655 1519 unsigned long t;
c8462cc9 1520
7ccb9ad5
WF
1521 /*
1522 * Limit pause time for small memory systems. If sleeping for too long
1523 * time, a small pool of dirty/writeback pages may go empty and disk go
1524 * idle.
1525 *
1526 * 8 serves as the safety ratio.
1527 */
de1fff37 1528 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1529 t++;
1530
e3b6c655 1531 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1532}
1533
a88a341a
TH
1534static long wb_min_pause(struct bdi_writeback *wb,
1535 long max_pause,
1536 unsigned long task_ratelimit,
1537 unsigned long dirty_ratelimit,
1538 int *nr_dirtied_pause)
c8462cc9 1539{
20792ebf
JK
1540 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1541 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
7ccb9ad5
WF
1542 long t; /* target pause */
1543 long pause; /* estimated next pause */
1544 int pages; /* target nr_dirtied_pause */
c8462cc9 1545
7ccb9ad5
WF
1546 /* target for 10ms pause on 1-dd case */
1547 t = max(1, HZ / 100);
c8462cc9
WF
1548
1549 /*
1550 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1551 * overheads.
1552 *
7ccb9ad5 1553 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1554 */
1555 if (hi > lo)
7ccb9ad5 1556 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1557
1558 /*
7ccb9ad5
WF
1559 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1560 * on the much more stable dirty_ratelimit. However the next pause time
1561 * will be computed based on task_ratelimit and the two rate limits may
1562 * depart considerably at some time. Especially if task_ratelimit goes
1563 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1564 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1565 * result task_ratelimit won't be executed faithfully, which could
1566 * eventually bring down dirty_ratelimit.
c8462cc9 1567 *
7ccb9ad5
WF
1568 * We apply two rules to fix it up:
1569 * 1) try to estimate the next pause time and if necessary, use a lower
1570 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1571 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1572 * 2) limit the target pause time to max_pause/2, so that the normal
1573 * small fluctuations of task_ratelimit won't trigger rule (1) and
1574 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1575 */
7ccb9ad5
WF
1576 t = min(t, 1 + max_pause / 2);
1577 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1578
1579 /*
5b9b3574
WF
1580 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1581 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1582 * When the 16 consecutive reads are often interrupted by some dirty
1583 * throttling pause during the async writes, cfq will go into idles
1584 * (deadline is fine). So push nr_dirtied_pause as high as possible
1585 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1586 */
5b9b3574
WF
1587 if (pages < DIRTY_POLL_THRESH) {
1588 t = max_pause;
1589 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1590 if (pages > DIRTY_POLL_THRESH) {
1591 pages = DIRTY_POLL_THRESH;
1592 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1593 }
1594 }
1595
7ccb9ad5
WF
1596 pause = HZ * pages / (task_ratelimit + 1);
1597 if (pause > max_pause) {
1598 t = max_pause;
1599 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1600 }
c8462cc9 1601
7ccb9ad5 1602 *nr_dirtied_pause = pages;
c8462cc9 1603 /*
7ccb9ad5 1604 * The minimal pause time will normally be half the target pause time.
c8462cc9 1605 */
5b9b3574 1606 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1607}
1608
970fb01a 1609static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1610{
2bc00aef 1611 struct bdi_writeback *wb = dtc->wb;
93f78d88 1612 unsigned long wb_reclaimable;
5a537485
MP
1613
1614 /*
de1fff37 1615 * wb_thresh is not treated as some limiting factor as
5a537485 1616 * dirty_thresh, due to reasons
de1fff37 1617 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1618 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1619 * go into state (wb_dirty >> wb_thresh) either because
1620 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1621 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1622 * dirtiers for 100 seconds until wb_dirty drops under
1623 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1624 * wb_position_ratio() will let the dirtier task progress
de1fff37 1625 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1626 */
b1cbc6d4 1627 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1628 dtc->wb_bg_thresh = dtc->thresh ?
1629 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1630
1631 /*
1632 * In order to avoid the stacked BDI deadlock we need
1633 * to ensure we accurately count the 'dirty' pages when
1634 * the threshold is low.
1635 *
1636 * Otherwise it would be possible to get thresh+n pages
1637 * reported dirty, even though there are thresh-m pages
1638 * actually dirty; with m+n sitting in the percpu
1639 * deltas.
1640 */
2bce774e 1641 if (dtc->wb_thresh < 2 * wb_stat_error()) {
93f78d88 1642 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1643 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1644 } else {
93f78d88 1645 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1646 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1647 }
1648}
1649
1da177e4
LT
1650/*
1651 * balance_dirty_pages() must be called by processes which are generating dirty
1652 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1653 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1654 * If we're over `background_thresh' then the writeback threads are woken to
1655 * perform some writeout.
1da177e4 1656 */
fe6c9c6e
JK
1657static int balance_dirty_pages(struct bdi_writeback *wb,
1658 unsigned long pages_dirtied, unsigned int flags)
1da177e4 1659{
2bc00aef 1660 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1661 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1662 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1663 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1664 &mdtc_stor : NULL;
1665 struct dirty_throttle_control *sdtc;
8d92890b 1666 unsigned long nr_reclaimable; /* = file_dirty */
83712358 1667 long period;
7ccb9ad5
WF
1668 long pause;
1669 long max_pause;
1670 long min_pause;
1671 int nr_dirtied_pause;
e50e3720 1672 bool dirty_exceeded = false;
143dfe86 1673 unsigned long task_ratelimit;
7ccb9ad5 1674 unsigned long dirty_ratelimit;
dfb8ae56 1675 struct backing_dev_info *bdi = wb->bdi;
5a537485 1676 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1677 unsigned long start_time = jiffies;
fe6c9c6e 1678 int ret = 0;
1da177e4
LT
1679
1680 for (;;) {
83712358 1681 unsigned long now = jiffies;
2bc00aef 1682 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1683 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1684 unsigned long m_thresh = 0;
1685 unsigned long m_bg_thresh = 0;
83712358 1686
8d92890b 1687 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
9fc3a43e 1688 gdtc->avail = global_dirtyable_memory();
11fb9989 1689 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1690
9fc3a43e 1691 domain_dirty_limits(gdtc);
16c4042f 1692
5a537485 1693 if (unlikely(strictlimit)) {
970fb01a 1694 wb_dirty_limits(gdtc);
5a537485 1695
2bc00aef
TH
1696 dirty = gdtc->wb_dirty;
1697 thresh = gdtc->wb_thresh;
970fb01a 1698 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1699 } else {
2bc00aef
TH
1700 dirty = gdtc->dirty;
1701 thresh = gdtc->thresh;
1702 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1703 }
1704
c2aa723a 1705 if (mdtc) {
c5edf9cd 1706 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1707
1708 /*
1709 * If @wb belongs to !root memcg, repeat the same
1710 * basic calculations for the memcg domain.
1711 */
c5edf9cd
TH
1712 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1713 &mdtc->dirty, &writeback);
c2aa723a 1714 mdtc->dirty += writeback;
c5edf9cd 1715 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1716
1717 domain_dirty_limits(mdtc);
1718
1719 if (unlikely(strictlimit)) {
1720 wb_dirty_limits(mdtc);
1721 m_dirty = mdtc->wb_dirty;
1722 m_thresh = mdtc->wb_thresh;
1723 m_bg_thresh = mdtc->wb_bg_thresh;
1724 } else {
1725 m_dirty = mdtc->dirty;
1726 m_thresh = mdtc->thresh;
1727 m_bg_thresh = mdtc->bg_thresh;
1728 }
5a537485
MP
1729 }
1730
ea6813be
JK
1731 /*
1732 * In laptop mode, we wait until hitting the higher threshold
1733 * before starting background writeout, and then write out all
1734 * the way down to the lower threshold. So slow writers cause
1735 * minimal disk activity.
1736 *
1737 * In normal mode, we start background writeout at the lower
1738 * background_thresh, to keep the amount of dirty memory low.
1739 */
1740 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1741 !writeback_in_progress(wb))
1742 wb_start_background_writeback(wb);
1743
16c4042f
WF
1744 /*
1745 * Throttle it only when the background writeback cannot
1746 * catch-up. This avoids (excessively) small writeouts
de1fff37 1747 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1748 *
de1fff37
TH
1749 * In strictlimit case make decision based on the wb counters
1750 * and limits. Small writeouts when the wb limits are ramping
5a537485 1751 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1752 *
1753 * If memcg domain is in effect, @dirty should be under
1754 * both global and memcg freerun ceilings.
16c4042f 1755 */
c2aa723a
TH
1756 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1757 (!mdtc ||
1758 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
a37b0715
N
1759 unsigned long intv;
1760 unsigned long m_intv;
1761
1762free_running:
1763 intv = dirty_poll_interval(dirty, thresh);
1764 m_intv = ULONG_MAX;
c2aa723a 1765
83712358
WF
1766 current->dirty_paused_when = now;
1767 current->nr_dirtied = 0;
c2aa723a
TH
1768 if (mdtc)
1769 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1770 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1771 break;
83712358 1772 }
16c4042f 1773
ea6813be 1774 /* Start writeback even when in laptop mode */
bc05873d 1775 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1776 wb_start_background_writeback(wb);
143dfe86 1777
97b27821
TH
1778 mem_cgroup_flush_foreign(wb);
1779
c2aa723a
TH
1780 /*
1781 * Calculate global domain's pos_ratio and select the
1782 * global dtc by default.
1783 */
a37b0715 1784 if (!strictlimit) {
970fb01a 1785 wb_dirty_limits(gdtc);
5fce25a9 1786
a37b0715
N
1787 if ((current->flags & PF_LOCAL_THROTTLE) &&
1788 gdtc->wb_dirty <
1789 dirty_freerun_ceiling(gdtc->wb_thresh,
1790 gdtc->wb_bg_thresh))
1791 /*
1792 * LOCAL_THROTTLE tasks must not be throttled
1793 * when below the per-wb freerun ceiling.
1794 */
1795 goto free_running;
1796 }
1797
2bc00aef
TH
1798 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1799 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1800
1801 wb_position_ratio(gdtc);
c2aa723a
TH
1802 sdtc = gdtc;
1803
1804 if (mdtc) {
1805 /*
1806 * If memcg domain is in effect, calculate its
1807 * pos_ratio. @wb should satisfy constraints from
1808 * both global and memcg domains. Choose the one
1809 * w/ lower pos_ratio.
1810 */
a37b0715 1811 if (!strictlimit) {
c2aa723a
TH
1812 wb_dirty_limits(mdtc);
1813
a37b0715
N
1814 if ((current->flags & PF_LOCAL_THROTTLE) &&
1815 mdtc->wb_dirty <
1816 dirty_freerun_ceiling(mdtc->wb_thresh,
1817 mdtc->wb_bg_thresh))
1818 /*
1819 * LOCAL_THROTTLE tasks must not be
1820 * throttled when below the per-wb
1821 * freerun ceiling.
1822 */
1823 goto free_running;
1824 }
c2aa723a
TH
1825 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1826 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1827
1828 wb_position_ratio(mdtc);
1829 if (mdtc->pos_ratio < gdtc->pos_ratio)
1830 sdtc = mdtc;
1831 }
daddfa3c 1832
e92eebbb
JK
1833 if (dirty_exceeded != wb->dirty_exceeded)
1834 wb->dirty_exceeded = dirty_exceeded;
1da177e4 1835
20792ebf 1836 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
45a2966f 1837 BANDWIDTH_INTERVAL))
fee468fd 1838 __wb_update_bandwidth(gdtc, mdtc, true);
e98be2d5 1839
c2aa723a 1840 /* throttle according to the chosen dtc */
20792ebf 1841 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
c2aa723a 1842 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1843 RATELIMIT_CALC_SHIFT;
c2aa723a 1844 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1845 min_pause = wb_min_pause(wb, max_pause,
1846 task_ratelimit, dirty_ratelimit,
1847 &nr_dirtied_pause);
7ccb9ad5 1848
3a73dbbc 1849 if (unlikely(task_ratelimit == 0)) {
83712358 1850 period = max_pause;
c8462cc9 1851 pause = max_pause;
143dfe86 1852 goto pause;
04fbfdc1 1853 }
83712358
WF
1854 period = HZ * pages_dirtied / task_ratelimit;
1855 pause = period;
1856 if (current->dirty_paused_when)
1857 pause -= now - current->dirty_paused_when;
1858 /*
1859 * For less than 1s think time (ext3/4 may block the dirtier
1860 * for up to 800ms from time to time on 1-HDD; so does xfs,
1861 * however at much less frequency), try to compensate it in
1862 * future periods by updating the virtual time; otherwise just
1863 * do a reset, as it may be a light dirtier.
1864 */
7ccb9ad5 1865 if (pause < min_pause) {
5634cc2a 1866 trace_balance_dirty_pages(wb,
c2aa723a
TH
1867 sdtc->thresh,
1868 sdtc->bg_thresh,
1869 sdtc->dirty,
1870 sdtc->wb_thresh,
1871 sdtc->wb_dirty,
ece13ac3
WF
1872 dirty_ratelimit,
1873 task_ratelimit,
1874 pages_dirtied,
83712358 1875 period,
7ccb9ad5 1876 min(pause, 0L),
ece13ac3 1877 start_time);
83712358
WF
1878 if (pause < -HZ) {
1879 current->dirty_paused_when = now;
1880 current->nr_dirtied = 0;
1881 } else if (period) {
1882 current->dirty_paused_when += period;
1883 current->nr_dirtied = 0;
7ccb9ad5
WF
1884 } else if (current->nr_dirtied_pause <= pages_dirtied)
1885 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1886 break;
04fbfdc1 1887 }
7ccb9ad5
WF
1888 if (unlikely(pause > max_pause)) {
1889 /* for occasional dropped task_ratelimit */
1890 now += min(pause - max_pause, max_pause);
1891 pause = max_pause;
1892 }
143dfe86
WF
1893
1894pause:
5634cc2a 1895 trace_balance_dirty_pages(wb,
c2aa723a
TH
1896 sdtc->thresh,
1897 sdtc->bg_thresh,
1898 sdtc->dirty,
1899 sdtc->wb_thresh,
1900 sdtc->wb_dirty,
ece13ac3
WF
1901 dirty_ratelimit,
1902 task_ratelimit,
1903 pages_dirtied,
83712358 1904 period,
ece13ac3
WF
1905 pause,
1906 start_time);
fe6c9c6e
JK
1907 if (flags & BDP_ASYNC) {
1908 ret = -EAGAIN;
1909 break;
1910 }
499d05ec 1911 __set_current_state(TASK_KILLABLE);
b57d74af 1912 wb->dirty_sleep = now;
d25105e8 1913 io_schedule_timeout(pause);
87c6a9b2 1914
83712358
WF
1915 current->dirty_paused_when = now + pause;
1916 current->nr_dirtied = 0;
7ccb9ad5 1917 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1918
ffd1f609 1919 /*
2bc00aef
TH
1920 * This is typically equal to (dirty < thresh) and can also
1921 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1922 */
1df64719 1923 if (task_ratelimit)
ffd1f609 1924 break;
499d05ec 1925
c5c6343c 1926 /*
f0953a1b 1927 * In the case of an unresponsive NFS server and the NFS dirty
de1fff37 1928 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1929 * to go through, so that tasks on them still remain responsive.
1930 *
3f8b6fb7 1931 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1932 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1933 * more page. However wb_dirty has accounting errors. So use
93f78d88 1934 * the larger and more IO friendly wb_stat_error.
c5c6343c 1935 */
2bce774e 1936 if (sdtc->wb_dirty <= wb_stat_error())
c5c6343c
WF
1937 break;
1938
499d05ec
JK
1939 if (fatal_signal_pending(current))
1940 break;
1da177e4 1941 }
fe6c9c6e 1942 return ret;
1da177e4
LT
1943}
1944
9d823e8f 1945static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1946
54848d73
WF
1947/*
1948 * Normal tasks are throttled by
1949 * loop {
1950 * dirty tsk->nr_dirtied_pause pages;
1951 * take a snap in balance_dirty_pages();
1952 * }
1953 * However there is a worst case. If every task exit immediately when dirtied
1954 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1955 * called to throttle the page dirties. The solution is to save the not yet
1956 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1957 * randomly into the running tasks. This works well for the above worst case,
1958 * as the new task will pick up and accumulate the old task's leaked dirty
1959 * count and eventually get throttled.
1960 */
1961DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1962
1da177e4 1963/**
fe6c9c6e
JK
1964 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1965 * @mapping: address_space which was dirtied.
1966 * @flags: BDP flags.
1da177e4
LT
1967 *
1968 * Processes which are dirtying memory should call in here once for each page
1969 * which was newly dirtied. The function will periodically check the system's
1970 * dirty state and will initiate writeback if needed.
1971 *
fe6c9c6e
JK
1972 * See balance_dirty_pages_ratelimited() for details.
1973 *
1974 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1975 * indicate that memory is out of balance and the caller must wait
1976 * for I/O to complete. Otherwise, it will return 0 to indicate
1977 * that either memory was already in balance, or it was able to sleep
1978 * until the amount of dirty memory returned to balance.
1da177e4 1979 */
fe6c9c6e
JK
1980int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1981 unsigned int flags)
1da177e4 1982{
dfb8ae56
TH
1983 struct inode *inode = mapping->host;
1984 struct backing_dev_info *bdi = inode_to_bdi(inode);
1985 struct bdi_writeback *wb = NULL;
9d823e8f 1986 int ratelimit;
fe6c9c6e 1987 int ret = 0;
9d823e8f 1988 int *p;
1da177e4 1989
f56753ac 1990 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
fe6c9c6e 1991 return ret;
36715cef 1992
dfb8ae56
TH
1993 if (inode_cgwb_enabled(inode))
1994 wb = wb_get_create_current(bdi, GFP_KERNEL);
1995 if (!wb)
1996 wb = &bdi->wb;
1997
9d823e8f 1998 ratelimit = current->nr_dirtied_pause;
a88a341a 1999 if (wb->dirty_exceeded)
9d823e8f
WF
2000 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2001
9d823e8f 2002 preempt_disable();
1da177e4 2003 /*
9d823e8f
WF
2004 * This prevents one CPU to accumulate too many dirtied pages without
2005 * calling into balance_dirty_pages(), which can happen when there are
2006 * 1000+ tasks, all of them start dirtying pages at exactly the same
2007 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 2008 */
7c8e0181 2009 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 2010 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 2011 *p = 0;
d3bc1fef
WF
2012 else if (unlikely(*p >= ratelimit_pages)) {
2013 *p = 0;
2014 ratelimit = 0;
1da177e4 2015 }
54848d73
WF
2016 /*
2017 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2018 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2019 * the dirty throttling and livelock other long-run dirtiers.
2020 */
7c8e0181 2021 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 2022 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 2023 unsigned long nr_pages_dirtied;
54848d73
WF
2024 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2025 *p -= nr_pages_dirtied;
2026 current->nr_dirtied += nr_pages_dirtied;
1da177e4 2027 }
fa5a734e 2028 preempt_enable();
9d823e8f
WF
2029
2030 if (unlikely(current->nr_dirtied >= ratelimit))
fe6c9c6e 2031 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
dfb8ae56
TH
2032
2033 wb_put(wb);
fe6c9c6e
JK
2034 return ret;
2035}
611df5d6 2036EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
fe6c9c6e
JK
2037
2038/**
2039 * balance_dirty_pages_ratelimited - balance dirty memory state.
2040 * @mapping: address_space which was dirtied.
2041 *
2042 * Processes which are dirtying memory should call in here once for each page
2043 * which was newly dirtied. The function will periodically check the system's
2044 * dirty state and will initiate writeback if needed.
2045 *
2046 * Once we're over the dirty memory limit we decrease the ratelimiting
2047 * by a lot, to prevent individual processes from overshooting the limit
2048 * by (ratelimit_pages) each.
2049 */
2050void balance_dirty_pages_ratelimited(struct address_space *mapping)
2051{
2052 balance_dirty_pages_ratelimited_flags(mapping, 0);
1da177e4 2053}
d0e1d66b 2054EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 2055
aa661bbe
TH
2056/**
2057 * wb_over_bg_thresh - does @wb need to be written back?
2058 * @wb: bdi_writeback of interest
2059 *
2060 * Determines whether background writeback should keep writing @wb or it's
a862f68a
MR
2061 * clean enough.
2062 *
2063 * Return: %true if writeback should continue.
aa661bbe
TH
2064 */
2065bool wb_over_bg_thresh(struct bdi_writeback *wb)
2066{
947e9762 2067 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 2068 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 2069 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
2070 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2071 &mdtc_stor : NULL;
ab19939a
CW
2072 unsigned long reclaimable;
2073 unsigned long thresh;
aa661bbe 2074
947e9762
TH
2075 /*
2076 * Similar to balance_dirty_pages() but ignores pages being written
2077 * as we're trying to decide whether to put more under writeback.
2078 */
2079 gdtc->avail = global_dirtyable_memory();
8d92890b 2080 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
947e9762 2081 domain_dirty_limits(gdtc);
aa661bbe 2082
947e9762 2083 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
2084 return true;
2085
ab19939a
CW
2086 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2087 if (thresh < 2 * wb_stat_error())
2088 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2089 else
2090 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2091
2092 if (reclaimable > thresh)
aa661bbe
TH
2093 return true;
2094
c2aa723a 2095 if (mdtc) {
c5edf9cd 2096 unsigned long filepages, headroom, writeback;
c2aa723a 2097
c5edf9cd
TH
2098 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2099 &writeback);
2100 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
2101 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
2102
2103 if (mdtc->dirty > mdtc->bg_thresh)
2104 return true;
2105
ab19939a
CW
2106 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2107 if (thresh < 2 * wb_stat_error())
2108 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2109 else
2110 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2111
2112 if (reclaimable > thresh)
c2aa723a
TH
2113 return true;
2114 }
2115
aa661bbe
TH
2116 return false;
2117}
2118
aa779e51 2119#ifdef CONFIG_SYSCTL
1da177e4
LT
2120/*
2121 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2122 */
aa779e51 2123static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
32927393 2124 void *buffer, size_t *length, loff_t *ppos)
1da177e4 2125{
94af5846
YS
2126 unsigned int old_interval = dirty_writeback_interval;
2127 int ret;
2128
2129 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
2130
2131 /*
2132 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2133 * and a different non-zero value will wakeup the writeback threads.
2134 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2135 * iterate over all bdis and wbs.
2136 * The reason we do this is to make the change take effect immediately.
2137 */
2138 if (!ret && write && dirty_writeback_interval &&
2139 dirty_writeback_interval != old_interval)
94af5846
YS
2140 wakeup_flusher_threads(WB_REASON_PERIODIC);
2141
2142 return ret;
1da177e4 2143}
aa779e51 2144#endif
1da177e4 2145
bca237a5 2146void laptop_mode_timer_fn(struct timer_list *t)
1da177e4 2147{
bca237a5
KC
2148 struct backing_dev_info *backing_dev_info =
2149 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1da177e4 2150
bca237a5 2151 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
2152}
2153
2154/*
2155 * We've spun up the disk and we're in laptop mode: schedule writeback
2156 * of all dirty data a few seconds from now. If the flush is already scheduled
2157 * then push it back - the user is still using the disk.
2158 */
31373d09 2159void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2160{
31373d09 2161 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2162}
2163
2164/*
2165 * We're in laptop mode and we've just synced. The sync's writes will have
2166 * caused another writeback to be scheduled by laptop_io_completion.
2167 * Nothing needs to be written back anymore, so we unschedule the writeback.
2168 */
2169void laptop_sync_completion(void)
2170{
31373d09
MG
2171 struct backing_dev_info *bdi;
2172
2173 rcu_read_lock();
2174
2175 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2176 del_timer(&bdi->laptop_mode_wb_timer);
2177
2178 rcu_read_unlock();
1da177e4
LT
2179}
2180
2181/*
2182 * If ratelimit_pages is too high then we can get into dirty-data overload
2183 * if a large number of processes all perform writes at the same time.
1da177e4
LT
2184 *
2185 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2186 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2187 * thresholds.
1da177e4
LT
2188 */
2189
2d1d43f6 2190void writeback_set_ratelimit(void)
1da177e4 2191{
dcc25ae7 2192 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2193 unsigned long background_thresh;
2194 unsigned long dirty_thresh;
dcc25ae7 2195
9d823e8f 2196 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2197 dom->dirty_limit = dirty_thresh;
9d823e8f 2198 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2199 if (ratelimit_pages < 16)
2200 ratelimit_pages = 16;
1da177e4
LT
2201}
2202
1d7ac6ae 2203static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2204{
1d7ac6ae
SAS
2205 writeback_set_ratelimit();
2206 return 0;
1da177e4
LT
2207}
2208
aa779e51 2209#ifdef CONFIG_SYSCTL
3c6a4cba
LC
2210
2211/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2212static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2213
aa779e51 2214static struct ctl_table vm_page_writeback_sysctls[] = {
2215 {
2216 .procname = "dirty_background_ratio",
2217 .data = &dirty_background_ratio,
2218 .maxlen = sizeof(dirty_background_ratio),
2219 .mode = 0644,
2220 .proc_handler = dirty_background_ratio_handler,
2221 .extra1 = SYSCTL_ZERO,
2222 .extra2 = SYSCTL_ONE_HUNDRED,
2223 },
2224 {
2225 .procname = "dirty_background_bytes",
2226 .data = &dirty_background_bytes,
2227 .maxlen = sizeof(dirty_background_bytes),
2228 .mode = 0644,
2229 .proc_handler = dirty_background_bytes_handler,
2230 .extra1 = SYSCTL_LONG_ONE,
2231 },
2232 {
2233 .procname = "dirty_ratio",
2234 .data = &vm_dirty_ratio,
2235 .maxlen = sizeof(vm_dirty_ratio),
2236 .mode = 0644,
2237 .proc_handler = dirty_ratio_handler,
2238 .extra1 = SYSCTL_ZERO,
2239 .extra2 = SYSCTL_ONE_HUNDRED,
2240 },
2241 {
2242 .procname = "dirty_bytes",
2243 .data = &vm_dirty_bytes,
2244 .maxlen = sizeof(vm_dirty_bytes),
2245 .mode = 0644,
2246 .proc_handler = dirty_bytes_handler,
2247 .extra1 = (void *)&dirty_bytes_min,
2248 },
2249 {
2250 .procname = "dirty_writeback_centisecs",
2251 .data = &dirty_writeback_interval,
2252 .maxlen = sizeof(dirty_writeback_interval),
2253 .mode = 0644,
2254 .proc_handler = dirty_writeback_centisecs_handler,
2255 },
2256 {
2257 .procname = "dirty_expire_centisecs",
2258 .data = &dirty_expire_interval,
2259 .maxlen = sizeof(dirty_expire_interval),
2260 .mode = 0644,
2261 .proc_handler = proc_dointvec_minmax,
2262 .extra1 = SYSCTL_ZERO,
2263 },
2264#ifdef CONFIG_HIGHMEM
2265 {
2266 .procname = "highmem_is_dirtyable",
2267 .data = &vm_highmem_is_dirtyable,
2268 .maxlen = sizeof(vm_highmem_is_dirtyable),
2269 .mode = 0644,
2270 .proc_handler = proc_dointvec_minmax,
2271 .extra1 = SYSCTL_ZERO,
2272 .extra2 = SYSCTL_ONE,
2273 },
2274#endif
2275 {
2276 .procname = "laptop_mode",
2277 .data = &laptop_mode,
2278 .maxlen = sizeof(laptop_mode),
2279 .mode = 0644,
2280 .proc_handler = proc_dointvec_jiffies,
2281 },
2282 {}
2283};
2284#endif
2285
1da177e4 2286/*
dc6e29da
LT
2287 * Called early on to tune the page writeback dirty limits.
2288 *
2289 * We used to scale dirty pages according to how total memory
0a18e607 2290 * related to pages that could be allocated for buffers.
dc6e29da
LT
2291 *
2292 * However, that was when we used "dirty_ratio" to scale with
2293 * all memory, and we don't do that any more. "dirty_ratio"
0a18e607 2294 * is now applied to total non-HIGHPAGE memory, and as such we can't
dc6e29da
LT
2295 * get into the old insane situation any more where we had
2296 * large amounts of dirty pages compared to a small amount of
2297 * non-HIGHMEM memory.
2298 *
2299 * But we might still want to scale the dirty_ratio by how
2300 * much memory the box has..
1da177e4
LT
2301 */
2302void __init page_writeback_init(void)
2303{
a50fcb51
RV
2304 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2305
1d7ac6ae
SAS
2306 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2307 page_writeback_cpu_online, NULL);
2308 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2309 page_writeback_cpu_online);
aa779e51 2310#ifdef CONFIG_SYSCTL
2311 register_sysctl_init("vm", vm_page_writeback_sysctls);
2312#endif
1da177e4
LT
2313}
2314
f446daae
JK
2315/**
2316 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2317 * @mapping: address space structure to write
2318 * @start: starting page index
2319 * @end: ending page index (inclusive)
2320 *
2321 * This function scans the page range from @start to @end (inclusive) and tags
2322 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2323 * that write_cache_pages (or whoever calls this function) will then use
2324 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2325 * used to avoid livelocking of writeback by a process steadily creating new
2326 * dirty pages in the file (thus it is important for this function to be quick
2327 * so that it can tag pages faster than a dirtying process can create them).
2328 */
f446daae
JK
2329void tag_pages_for_writeback(struct address_space *mapping,
2330 pgoff_t start, pgoff_t end)
2331{
ff9c745b
MW
2332 XA_STATE(xas, &mapping->i_pages, start);
2333 unsigned int tagged = 0;
2334 void *page;
268f42de 2335
ff9c745b
MW
2336 xas_lock_irq(&xas);
2337 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2338 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2339 if (++tagged % XA_CHECK_SCHED)
268f42de 2340 continue;
ff9c745b
MW
2341
2342 xas_pause(&xas);
2343 xas_unlock_irq(&xas);
f446daae 2344 cond_resched();
ff9c745b 2345 xas_lock_irq(&xas);
268f42de 2346 }
ff9c745b 2347 xas_unlock_irq(&xas);
f446daae
JK
2348}
2349EXPORT_SYMBOL(tag_pages_for_writeback);
2350
811d736f 2351/**
0ea97180 2352 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2353 * @mapping: address space structure to write
2354 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2355 * @writepage: function called for each page
2356 * @data: data passed to writepage function
811d736f 2357 *
0ea97180 2358 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2359 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2360 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2361 * and msync() need to guarantee that all the data which was dirty at the time
2362 * the call was made get new I/O started against them. If wbc->sync_mode is
2363 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2364 * existing IO to complete.
f446daae
JK
2365 *
2366 * To avoid livelocks (when other process dirties new pages), we first tag
2367 * pages which should be written back with TOWRITE tag and only then start
2368 * writing them. For data-integrity sync we have to be careful so that we do
2369 * not miss some pages (e.g., because some other process has cleared TOWRITE
2370 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2371 * by the process clearing the DIRTY tag (and submitting the page for IO).
64081362
DC
2372 *
2373 * To avoid deadlocks between range_cyclic writeback and callers that hold
2374 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2375 * we do not loop back to the start of the file. Doing so causes a page
2376 * lock/page writeback access order inversion - we should only ever lock
2377 * multiple pages in ascending page->index order, and looping back to the start
2378 * of the file violates that rule and causes deadlocks.
a862f68a
MR
2379 *
2380 * Return: %0 on success, negative error code otherwise
811d736f 2381 */
0ea97180
MS
2382int write_cache_pages(struct address_space *mapping,
2383 struct writeback_control *wbc, writepage_t writepage,
2384 void *data)
811d736f 2385{
811d736f
DH
2386 int ret = 0;
2387 int done = 0;
3fa750dc 2388 int error;
811d736f
DH
2389 struct pagevec pvec;
2390 int nr_pages;
2391 pgoff_t index;
2392 pgoff_t end; /* Inclusive */
bd19e012 2393 pgoff_t done_index;
811d736f 2394 int range_whole = 0;
ff9c745b 2395 xa_mark_t tag;
811d736f 2396
86679820 2397 pagevec_init(&pvec);
811d736f 2398 if (wbc->range_cyclic) {
28659cc8 2399 index = mapping->writeback_index; /* prev offset */
811d736f
DH
2400 end = -1;
2401 } else {
09cbfeaf
KS
2402 index = wbc->range_start >> PAGE_SHIFT;
2403 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2404 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2405 range_whole = 1;
811d736f 2406 }
cc7b8f62
MFO
2407 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2408 tag_pages_for_writeback(mapping, index, end);
f446daae 2409 tag = PAGECACHE_TAG_TOWRITE;
cc7b8f62 2410 } else {
f446daae 2411 tag = PAGECACHE_TAG_DIRTY;
cc7b8f62 2412 }
bd19e012 2413 done_index = index;
5a3d5c98
NP
2414 while (!done && (index <= end)) {
2415 int i;
2416
2b9775ae 2417 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2418 tag);
5a3d5c98
NP
2419 if (nr_pages == 0)
2420 break;
811d736f 2421
811d736f
DH
2422 for (i = 0; i < nr_pages; i++) {
2423 struct page *page = pvec.pages[i];
2424
cf15b07c 2425 done_index = page->index;
d5482cdf 2426
811d736f
DH
2427 lock_page(page);
2428
5a3d5c98
NP
2429 /*
2430 * Page truncated or invalidated. We can freely skip it
2431 * then, even for data integrity operations: the page
2432 * has disappeared concurrently, so there could be no
f0953a1b 2433 * real expectation of this data integrity operation
5a3d5c98
NP
2434 * even if there is now a new, dirty page at the same
2435 * pagecache address.
2436 */
811d736f 2437 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2438continue_unlock:
811d736f
DH
2439 unlock_page(page);
2440 continue;
2441 }
2442
515f4a03
NP
2443 if (!PageDirty(page)) {
2444 /* someone wrote it for us */
2445 goto continue_unlock;
2446 }
2447
2448 if (PageWriteback(page)) {
2449 if (wbc->sync_mode != WB_SYNC_NONE)
2450 wait_on_page_writeback(page);
2451 else
2452 goto continue_unlock;
2453 }
811d736f 2454
515f4a03
NP
2455 BUG_ON(PageWriteback(page));
2456 if (!clear_page_dirty_for_io(page))
5a3d5c98 2457 goto continue_unlock;
811d736f 2458
de1414a6 2459 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
3fa750dc
BF
2460 error = (*writepage)(page, wbc, data);
2461 if (unlikely(error)) {
2462 /*
2463 * Handle errors according to the type of
2464 * writeback. There's no need to continue for
2465 * background writeback. Just push done_index
2466 * past this page so media errors won't choke
2467 * writeout for the entire file. For integrity
2468 * writeback, we must process the entire dirty
2469 * set regardless of errors because the fs may
2470 * still have state to clear for each page. In
2471 * that case we continue processing and return
2472 * the first error.
2473 */
2474 if (error == AOP_WRITEPAGE_ACTIVATE) {
00266770 2475 unlock_page(page);
3fa750dc
BF
2476 error = 0;
2477 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2478 ret = error;
cf15b07c 2479 done_index = page->index + 1;
00266770
NP
2480 done = 1;
2481 break;
2482 }
3fa750dc
BF
2483 if (!ret)
2484 ret = error;
0b564927 2485 }
00266770 2486
546a1924
DC
2487 /*
2488 * We stop writing back only if we are not doing
2489 * integrity sync. In case of integrity sync we have to
2490 * keep going until we have written all the pages
2491 * we tagged for writeback prior to entering this loop.
2492 */
2493 if (--wbc->nr_to_write <= 0 &&
2494 wbc->sync_mode == WB_SYNC_NONE) {
2495 done = 1;
2496 break;
05fe478d 2497 }
811d736f
DH
2498 }
2499 pagevec_release(&pvec);
2500 cond_resched();
2501 }
64081362
DC
2502
2503 /*
2504 * If we hit the last page and there is more work to be done: wrap
2505 * back the index back to the start of the file for the next
2506 * time we are called.
2507 */
2508 if (wbc->range_cyclic && !done)
2509 done_index = 0;
0b564927
DC
2510 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2511 mapping->writeback_index = done_index;
06d6cf69 2512
811d736f
DH
2513 return ret;
2514}
0ea97180
MS
2515EXPORT_SYMBOL(write_cache_pages);
2516
2517/*
2518 * Function used by generic_writepages to call the real writepage
2519 * function and set the mapping flags on error
2520 */
2521static int __writepage(struct page *page, struct writeback_control *wbc,
2522 void *data)
2523{
2524 struct address_space *mapping = data;
2525 int ret = mapping->a_ops->writepage(page, wbc);
2526 mapping_set_error(mapping, ret);
2527 return ret;
2528}
2529
2530/**
2531 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2532 * @mapping: address space structure to write
2533 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2534 *
2535 * This is a library function, which implements the writepages()
2536 * address_space_operation.
a862f68a
MR
2537 *
2538 * Return: %0 on success, negative error code otherwise
0ea97180
MS
2539 */
2540int generic_writepages(struct address_space *mapping,
2541 struct writeback_control *wbc)
2542{
9b6096a6
SL
2543 struct blk_plug plug;
2544 int ret;
2545
0ea97180
MS
2546 /* deal with chardevs and other special file */
2547 if (!mapping->a_ops->writepage)
2548 return 0;
2549
9b6096a6
SL
2550 blk_start_plug(&plug);
2551 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2552 blk_finish_plug(&plug);
2553 return ret;
0ea97180 2554}
811d736f
DH
2555
2556EXPORT_SYMBOL(generic_writepages);
2557
1da177e4
LT
2558int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2559{
22905f77 2560 int ret;
fee468fd 2561 struct bdi_writeback *wb;
22905f77 2562
1da177e4
LT
2563 if (wbc->nr_to_write <= 0)
2564 return 0;
fee468fd
JK
2565 wb = inode_to_wb_wbc(mapping->host, wbc);
2566 wb_bandwidth_estimate_start(wb);
80a2ea9f
TT
2567 while (1) {
2568 if (mapping->a_ops->writepages)
2569 ret = mapping->a_ops->writepages(mapping, wbc);
2570 else
2571 ret = generic_writepages(mapping, wbc);
2572 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2573 break;
8d58802f
MG
2574
2575 /*
2576 * Lacking an allocation context or the locality or writeback
2577 * state of any of the inode's pages, throttle based on
2578 * writeback activity on the local node. It's as good a
2579 * guess as any.
2580 */
2581 reclaim_throttle(NODE_DATA(numa_node_id()),
c3f4a9a2 2582 VMSCAN_THROTTLE_WRITEBACK);
80a2ea9f 2583 }
45a2966f
JK
2584 /*
2585 * Usually few pages are written by now from those we've just submitted
2586 * but if there's constant writeback being submitted, this makes sure
2587 * writeback bandwidth is updated once in a while.
2588 */
20792ebf
JK
2589 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2590 BANDWIDTH_INTERVAL))
45a2966f 2591 wb_update_bandwidth(wb);
22905f77 2592 return ret;
1da177e4
LT
2593}
2594
2595/**
121703c1
MWO
2596 * folio_write_one - write out a single folio and wait on I/O.
2597 * @folio: The folio to write.
1da177e4 2598 *
121703c1 2599 * The folio must be locked by the caller and will be unlocked upon return.
1da177e4 2600 *
37e51a76
JL
2601 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2602 * function returns.
a862f68a
MR
2603 *
2604 * Return: %0 on success, negative error code otherwise
1da177e4 2605 */
121703c1 2606int folio_write_one(struct folio *folio)
1da177e4 2607{
121703c1 2608 struct address_space *mapping = folio->mapping;
1da177e4
LT
2609 int ret = 0;
2610 struct writeback_control wbc = {
2611 .sync_mode = WB_SYNC_ALL,
121703c1 2612 .nr_to_write = folio_nr_pages(folio),
1da177e4
LT
2613 };
2614
121703c1 2615 BUG_ON(!folio_test_locked(folio));
1da177e4 2616
121703c1 2617 folio_wait_writeback(folio);
1da177e4 2618
121703c1
MWO
2619 if (folio_clear_dirty_for_io(folio)) {
2620 folio_get(folio);
2621 ret = mapping->a_ops->writepage(&folio->page, &wbc);
37e51a76 2622 if (ret == 0)
121703c1
MWO
2623 folio_wait_writeback(folio);
2624 folio_put(folio);
1da177e4 2625 } else {
121703c1 2626 folio_unlock(folio);
1da177e4 2627 }
37e51a76
JL
2628
2629 if (!ret)
2630 ret = filemap_check_errors(mapping);
1da177e4
LT
2631 return ret;
2632}
121703c1 2633EXPORT_SYMBOL(folio_write_one);
1da177e4 2634
76719325
KC
2635/*
2636 * For address_spaces which do not use buffers nor write back.
2637 */
46de8b97 2638bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
76719325 2639{
46de8b97
MWO
2640 if (!folio_test_dirty(folio))
2641 return !folio_test_set_dirty(folio);
2642 return false;
76719325 2643}
46de8b97 2644EXPORT_SYMBOL(noop_dirty_folio);
76719325 2645
e3a7cca1
ES
2646/*
2647 * Helper function for set_page_dirty family.
c4843a75 2648 *
81f8c3a4 2649 * Caller must hold lock_page_memcg().
c4843a75 2650 *
e3a7cca1
ES
2651 * NOTE: This relies on being atomic wrt interrupts.
2652 */
203a3151 2653static void folio_account_dirtied(struct folio *folio,
6e1cae88 2654 struct address_space *mapping)
e3a7cca1 2655{
52ebea74
TH
2656 struct inode *inode = mapping->host;
2657
b9b0ff61 2658 trace_writeback_dirty_folio(folio, mapping);
9fb0a7da 2659
f56753ac 2660 if (mapping_can_writeback(mapping)) {
52ebea74 2661 struct bdi_writeback *wb;
203a3151 2662 long nr = folio_nr_pages(folio);
de1414a6 2663
203a3151 2664 inode_attach_wb(inode, &folio->page);
52ebea74 2665 wb = inode_to_wb(inode);
de1414a6 2666
203a3151
MWO
2667 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2668 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2669 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2670 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2671 wb_stat_mod(wb, WB_DIRTIED, nr);
2672 task_io_account_write(nr * PAGE_SIZE);
2673 current->nr_dirtied += nr;
2674 __this_cpu_add(bdp_ratelimits, nr);
97b27821 2675
203a3151 2676 mem_cgroup_track_foreign_dirty(folio, wb);
e3a7cca1
ES
2677 }
2678}
2679
b9ea2515
KK
2680/*
2681 * Helper function for deaccounting dirty page without writeback.
2682 *
81f8c3a4 2683 * Caller must hold lock_page_memcg().
b9ea2515 2684 */
566d3362 2685void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
b9ea2515 2686{
566d3362
HD
2687 long nr = folio_nr_pages(folio);
2688
2689 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2690 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2691 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2692 task_io_account_cancelled_write(nr * PAGE_SIZE);
b9ea2515 2693}
b9ea2515 2694
6e1cae88 2695/*
203a3151
MWO
2696 * Mark the folio dirty, and set it dirty in the page cache, and mark
2697 * the inode dirty.
6e1cae88 2698 *
203a3151 2699 * If warn is true, then emit a warning if the folio is not uptodate and has
6e1cae88
MWO
2700 * not been truncated.
2701 *
a229a4f0
MWO
2702 * The caller must hold lock_page_memcg(). Most callers have the folio
2703 * locked. A few have the folio blocked from truncation through other
2704 * means (eg zap_page_range() has it mapped and is holding the page table
2705 * lock). This can also be called from mark_buffer_dirty(), which I
2706 * cannot prove is always protected against truncate.
6e1cae88 2707 */
203a3151 2708void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
6e1cae88
MWO
2709 int warn)
2710{
2711 unsigned long flags;
2712
2713 xa_lock_irqsave(&mapping->i_pages, flags);
203a3151
MWO
2714 if (folio->mapping) { /* Race with truncate? */
2715 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2716 folio_account_dirtied(folio, mapping);
2717 __xa_set_mark(&mapping->i_pages, folio_index(folio),
6e1cae88
MWO
2718 PAGECACHE_TAG_DIRTY);
2719 }
2720 xa_unlock_irqrestore(&mapping->i_pages, flags);
2721}
2722
85d4d2eb
MWO
2723/**
2724 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2725 * @mapping: Address space this folio belongs to.
2726 * @folio: Folio to be marked as dirty.
1da177e4 2727 *
85d4d2eb
MWO
2728 * Filesystems which do not use buffer heads should call this function
2729 * from their set_page_dirty address space operation. It ignores the
2730 * contents of folio_get_private(), so if the filesystem marks individual
2731 * blocks as dirty, the filesystem should handle that itself.
1da177e4 2732 *
85d4d2eb
MWO
2733 * This is also sometimes used by filesystems which use buffer_heads when
2734 * a single buffer is being dirtied: we want to set the folio dirty in
2735 * that case, but not all the buffers. This is a "bottom-up" dirtying,
e621900a 2736 * whereas block_dirty_folio() is a "top-down" dirtying.
85d4d2eb
MWO
2737 *
2738 * The caller must ensure this doesn't race with truncation. Most will
2739 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2740 * folio mapped and the pte lock held, which also locks out truncation.
1da177e4 2741 */
85d4d2eb 2742bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
1da177e4 2743{
85d4d2eb
MWO
2744 folio_memcg_lock(folio);
2745 if (folio_test_set_dirty(folio)) {
2746 folio_memcg_unlock(folio);
2747 return false;
2748 }
1da177e4 2749
85d4d2eb
MWO
2750 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2751 folio_memcg_unlock(folio);
c4843a75 2752
85d4d2eb
MWO
2753 if (mapping->host) {
2754 /* !PageAnon && !swapper_space */
2755 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2756 }
85d4d2eb 2757 return true;
1da177e4 2758}
85d4d2eb 2759EXPORT_SYMBOL(filemap_dirty_folio);
1da177e4 2760
25ff8b15
MWO
2761/**
2762 * folio_account_redirty - Manually account for redirtying a page.
2763 * @folio: The folio which is being redirtied.
2764 *
2765 * Most filesystems should call folio_redirty_for_writepage() instead
2766 * of this fuction. If your filesystem is doing writeback outside the
2767 * context of a writeback_control(), it can call this when redirtying
2768 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2769 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2770 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2771 * in balanced_dirty_ratelimit and the dirty pages position control.
2f800fbd 2772 */
25ff8b15 2773void folio_account_redirty(struct folio *folio)
2f800fbd 2774{
25ff8b15 2775 struct address_space *mapping = folio->mapping;
91018134 2776
f56753ac 2777 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2778 struct inode *inode = mapping->host;
2779 struct bdi_writeback *wb;
2e898e4c 2780 struct wb_lock_cookie cookie = {};
25ff8b15 2781 long nr = folio_nr_pages(folio);
91018134 2782
2e898e4c 2783 wb = unlocked_inode_to_wb_begin(inode, &cookie);
25ff8b15
MWO
2784 current->nr_dirtied -= nr;
2785 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2786 wb_stat_mod(wb, WB_DIRTIED, -nr);
2e898e4c 2787 unlocked_inode_to_wb_end(inode, &cookie);
2f800fbd
WF
2788 }
2789}
25ff8b15 2790EXPORT_SYMBOL(folio_account_redirty);
2f800fbd 2791
cd78ab11
MWO
2792/**
2793 * folio_redirty_for_writepage - Decline to write a dirty folio.
2794 * @wbc: The writeback control.
2795 * @folio: The folio.
2796 *
2797 * When a writepage implementation decides that it doesn't want to write
2798 * @folio for some reason, it should call this function, unlock @folio and
2799 * return 0.
2800 *
2801 * Return: True if we redirtied the folio. False if someone else dirtied
2802 * it first.
1da177e4 2803 */
cd78ab11
MWO
2804bool folio_redirty_for_writepage(struct writeback_control *wbc,
2805 struct folio *folio)
1da177e4 2806{
cd78ab11
MWO
2807 bool ret;
2808 long nr = folio_nr_pages(folio);
2809
2810 wbc->pages_skipped += nr;
2811 ret = filemap_dirty_folio(folio->mapping, folio);
2812 folio_account_redirty(folio);
8d38633c 2813
8d38633c 2814 return ret;
1da177e4 2815}
cd78ab11 2816EXPORT_SYMBOL(folio_redirty_for_writepage);
1da177e4 2817
b5e84594
MWO
2818/**
2819 * folio_mark_dirty - Mark a folio as being modified.
2820 * @folio: The folio.
6746aff7 2821 *
2ca456c2
MWO
2822 * The folio may not be truncated while this function is running.
2823 * Holding the folio lock is sufficient to prevent truncation, but some
2824 * callers cannot acquire a sleeping lock. These callers instead hold
2825 * the page table lock for a page table which contains at least one page
2826 * in this folio. Truncation will block on the page table lock as it
2827 * unmaps pages before removing the folio from its mapping.
b5e84594
MWO
2828 *
2829 * Return: True if the folio was newly dirtied, false if it was already dirty.
1da177e4 2830 */
b5e84594 2831bool folio_mark_dirty(struct folio *folio)
1da177e4 2832{
b5e84594 2833 struct address_space *mapping = folio_mapping(folio);
1da177e4
LT
2834
2835 if (likely(mapping)) {
278df9f4
MK
2836 /*
2837 * readahead/lru_deactivate_page could remain
6f31a5a2
MWO
2838 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2839 * About readahead, if the folio is written, the flags would be
278df9f4 2840 * reset. So no problem.
6f31a5a2
MWO
2841 * About lru_deactivate_page, if the folio is redirtied,
2842 * the flag will be reset. So no problem. but if the
2843 * folio is used by readahead it will confuse readahead
2844 * and make it restart the size rampup process. But it's
2845 * a trivial problem.
278df9f4 2846 */
b5e84594
MWO
2847 if (folio_test_reclaim(folio))
2848 folio_clear_reclaim(folio);
3a3bae50 2849 return mapping->a_ops->dirty_folio(mapping, folio);
4741c9fd 2850 }
3a3bae50
MWO
2851
2852 return noop_dirty_folio(mapping, folio);
1da177e4 2853}
b5e84594 2854EXPORT_SYMBOL(folio_mark_dirty);
1da177e4
LT
2855
2856/*
2857 * set_page_dirty() is racy if the caller has no reference against
2858 * page->mapping->host, and if the page is unlocked. This is because another
2859 * CPU could truncate the page off the mapping and then free the mapping.
2860 *
2861 * Usually, the page _is_ locked, or the caller is a user-space process which
2862 * holds a reference on the inode by having an open file.
2863 *
2864 * In other cases, the page should be locked before running set_page_dirty().
2865 */
2866int set_page_dirty_lock(struct page *page)
2867{
2868 int ret;
2869
7eaceacc 2870 lock_page(page);
1da177e4
LT
2871 ret = set_page_dirty(page);
2872 unlock_page(page);
2873 return ret;
2874}
2875EXPORT_SYMBOL(set_page_dirty_lock);
2876
11f81bec
TH
2877/*
2878 * This cancels just the dirty bit on the kernel page itself, it does NOT
2879 * actually remove dirty bits on any mmap's that may be around. It also
2880 * leaves the page tagged dirty, so any sync activity will still find it on
2881 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2882 * look at the dirty bits in the VM.
2883 *
2884 * Doing this should *normally* only ever be done when a page is truncated,
2885 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2886 * this when it notices that somebody has cleaned out all the buffers on a
2887 * page without actually doing it through the VM. Can you say "ext3 is
2888 * horribly ugly"? Thought you could.
2889 */
fdaf532a 2890void __folio_cancel_dirty(struct folio *folio)
11f81bec 2891{
fdaf532a 2892 struct address_space *mapping = folio_mapping(folio);
c4843a75 2893
f56753ac 2894 if (mapping_can_writeback(mapping)) {
682aa8e1
TH
2895 struct inode *inode = mapping->host;
2896 struct bdi_writeback *wb;
2e898e4c 2897 struct wb_lock_cookie cookie = {};
c4843a75 2898
fdaf532a 2899 folio_memcg_lock(folio);
2e898e4c 2900 wb = unlocked_inode_to_wb_begin(inode, &cookie);
c4843a75 2901
fdaf532a 2902 if (folio_test_clear_dirty(folio))
566d3362 2903 folio_account_cleaned(folio, wb);
c4843a75 2904
2e898e4c 2905 unlocked_inode_to_wb_end(inode, &cookie);
fdaf532a 2906 folio_memcg_unlock(folio);
c4843a75 2907 } else {
fdaf532a 2908 folio_clear_dirty(folio);
c4843a75 2909 }
11f81bec 2910}
fdaf532a 2911EXPORT_SYMBOL(__folio_cancel_dirty);
11f81bec 2912
1da177e4 2913/*
9350f20a
MWO
2914 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2915 * Returns true if the folio was previously dirty.
1da177e4 2916 *
9350f20a
MWO
2917 * This is for preparing to put the folio under writeout. We leave
2918 * the folio tagged as dirty in the xarray so that a concurrent
2919 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2920 * The ->writepage implementation will run either folio_start_writeback()
2921 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2922 * and xarray dirty tag back into sync.
1da177e4 2923 *
9350f20a
MWO
2924 * This incoherency between the folio's dirty flag and xarray tag is
2925 * unfortunate, but it only exists while the folio is locked.
1da177e4 2926 */
9350f20a 2927bool folio_clear_dirty_for_io(struct folio *folio)
1da177e4 2928{
9350f20a
MWO
2929 struct address_space *mapping = folio_mapping(folio);
2930 bool ret = false;
1da177e4 2931
9350f20a 2932 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
79352894 2933
f56753ac 2934 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2935 struct inode *inode = mapping->host;
2936 struct bdi_writeback *wb;
2e898e4c 2937 struct wb_lock_cookie cookie = {};
682aa8e1 2938
7658cc28
LT
2939 /*
2940 * Yes, Virginia, this is indeed insane.
2941 *
2942 * We use this sequence to make sure that
2943 * (a) we account for dirty stats properly
2944 * (b) we tell the low-level filesystem to
9350f20a 2945 * mark the whole folio dirty if it was
7658cc28 2946 * dirty in a pagetable. Only to then
9350f20a 2947 * (c) clean the folio again and return 1 to
7658cc28
LT
2948 * cause the writeback.
2949 *
2950 * This way we avoid all nasty races with the
2951 * dirty bit in multiple places and clearing
2952 * them concurrently from different threads.
2953 *
9350f20a 2954 * Note! Normally the "folio_mark_dirty(folio)"
7658cc28
LT
2955 * has no effect on the actual dirty bit - since
2956 * that will already usually be set. But we
2957 * need the side effects, and it can help us
2958 * avoid races.
2959 *
9350f20a 2960 * We basically use the folio "master dirty bit"
7658cc28
LT
2961 * as a serialization point for all the different
2962 * threads doing their things.
7658cc28 2963 */
9350f20a
MWO
2964 if (folio_mkclean(folio))
2965 folio_mark_dirty(folio);
79352894
NP
2966 /*
2967 * We carefully synchronise fault handlers against
9350f20a 2968 * installing a dirty pte and marking the folio dirty
2d6d7f98 2969 * at this point. We do this by having them hold the
9350f20a 2970 * page lock while dirtying the folio, and folios are
2d6d7f98
JW
2971 * always locked coming in here, so we get the desired
2972 * exclusion.
79352894 2973 */
2e898e4c 2974 wb = unlocked_inode_to_wb_begin(inode, &cookie);
9350f20a
MWO
2975 if (folio_test_clear_dirty(folio)) {
2976 long nr = folio_nr_pages(folio);
2977 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2978 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2979 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2980 ret = true;
1da177e4 2981 }
2e898e4c 2982 unlocked_inode_to_wb_end(inode, &cookie);
c4843a75 2983 return ret;
1da177e4 2984 }
9350f20a 2985 return folio_test_clear_dirty(folio);
1da177e4 2986}
9350f20a 2987EXPORT_SYMBOL(folio_clear_dirty_for_io);
1da177e4 2988
633a2abb
JK
2989static void wb_inode_writeback_start(struct bdi_writeback *wb)
2990{
2991 atomic_inc(&wb->writeback_inodes);
2992}
2993
2994static void wb_inode_writeback_end(struct bdi_writeback *wb)
2995{
f87904c0 2996 unsigned long flags;
633a2abb 2997 atomic_dec(&wb->writeback_inodes);
45a2966f
JK
2998 /*
2999 * Make sure estimate of writeback throughput gets updated after
3000 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3001 * (which is the interval other bandwidth updates use for batching) so
3002 * that if multiple inodes end writeback at a similar time, they get
3003 * batched into one bandwidth update.
3004 */
f87904c0
KK
3005 spin_lock_irqsave(&wb->work_lock, flags);
3006 if (test_bit(WB_registered, &wb->state))
3007 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3008 spin_unlock_irqrestore(&wb->work_lock, flags);
633a2abb
JK
3009}
3010
269ccca3 3011bool __folio_end_writeback(struct folio *folio)
1da177e4 3012{
269ccca3
MWO
3013 long nr = folio_nr_pages(folio);
3014 struct address_space *mapping = folio_mapping(folio);
3015 bool ret;
1da177e4 3016
269ccca3 3017 folio_memcg_lock(folio);
371a096e 3018 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
3019 struct inode *inode = mapping->host;
3020 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
3021 unsigned long flags;
3022
b93b0163 3023 xa_lock_irqsave(&mapping->i_pages, flags);
269ccca3 3024 ret = folio_test_clear_writeback(folio);
69cb51d1 3025 if (ret) {
269ccca3 3026 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
1da177e4 3027 PAGECACHE_TAG_WRITEBACK);
823423ef 3028 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
91018134
TH
3029 struct bdi_writeback *wb = inode_to_wb(inode);
3030
269ccca3
MWO
3031 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3032 __wb_writeout_add(wb, nr);
633a2abb
JK
3033 if (!mapping_tagged(mapping,
3034 PAGECACHE_TAG_WRITEBACK))
3035 wb_inode_writeback_end(wb);
04fbfdc1 3036 }
69cb51d1 3037 }
6c60d2b5
DC
3038
3039 if (mapping->host && !mapping_tagged(mapping,
3040 PAGECACHE_TAG_WRITEBACK))
3041 sb_clear_inode_writeback(mapping->host);
3042
b93b0163 3043 xa_unlock_irqrestore(&mapping->i_pages, flags);
1da177e4 3044 } else {
269ccca3 3045 ret = folio_test_clear_writeback(folio);
1da177e4 3046 }
99b12e3d 3047 if (ret) {
269ccca3
MWO
3048 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3049 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3050 node_stat_mod_folio(folio, NR_WRITTEN, nr);
99b12e3d 3051 }
269ccca3 3052 folio_memcg_unlock(folio);
1da177e4
LT
3053 return ret;
3054}
3055
f143f1ea 3056bool __folio_start_writeback(struct folio *folio, bool keep_write)
1da177e4 3057{
f143f1ea
MWO
3058 long nr = folio_nr_pages(folio);
3059 struct address_space *mapping = folio_mapping(folio);
3060 bool ret;
3061 int access_ret;
1da177e4 3062
f143f1ea 3063 folio_memcg_lock(folio);
371a096e 3064 if (mapping && mapping_use_writeback_tags(mapping)) {
f143f1ea 3065 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
91018134
TH
3066 struct inode *inode = mapping->host;
3067 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
3068 unsigned long flags;
3069
ff9c745b
MW
3070 xas_lock_irqsave(&xas, flags);
3071 xas_load(&xas);
f143f1ea 3072 ret = folio_test_set_writeback(folio);
69cb51d1 3073 if (!ret) {
6c60d2b5
DC
3074 bool on_wblist;
3075
3076 on_wblist = mapping_tagged(mapping,
3077 PAGECACHE_TAG_WRITEBACK);
3078
ff9c745b 3079 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
633a2abb
JK
3080 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3081 struct bdi_writeback *wb = inode_to_wb(inode);
3082
f143f1ea 3083 wb_stat_mod(wb, WB_WRITEBACK, nr);
633a2abb
JK
3084 if (!on_wblist)
3085 wb_inode_writeback_start(wb);
3086 }
6c60d2b5
DC
3087
3088 /*
f143f1ea
MWO
3089 * We can come through here when swapping
3090 * anonymous folios, so we don't necessarily
3091 * have an inode to track for sync.
6c60d2b5
DC
3092 */
3093 if (mapping->host && !on_wblist)
3094 sb_mark_inode_writeback(mapping->host);
69cb51d1 3095 }
f143f1ea 3096 if (!folio_test_dirty(folio))
ff9c745b 3097 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1c8349a1 3098 if (!keep_write)
ff9c745b
MW
3099 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3100 xas_unlock_irqrestore(&xas, flags);
1da177e4 3101 } else {
f143f1ea 3102 ret = folio_test_set_writeback(folio);
1da177e4 3103 }
3a3c02ec 3104 if (!ret) {
f143f1ea
MWO
3105 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3106 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3a3c02ec 3107 }
f143f1ea
MWO
3108 folio_memcg_unlock(folio);
3109 access_ret = arch_make_folio_accessible(folio);
f28d4363
CI
3110 /*
3111 * If writeback has been triggered on a page that cannot be made
3112 * accessible, it is too late to recover here.
3113 */
f143f1ea 3114 VM_BUG_ON_FOLIO(access_ret != 0, folio);
f28d4363 3115
1da177e4 3116 return ret;
1da177e4 3117}
f143f1ea 3118EXPORT_SYMBOL(__folio_start_writeback);
1da177e4 3119
490e016f
MWO
3120/**
3121 * folio_wait_writeback - Wait for a folio to finish writeback.
3122 * @folio: The folio to wait for.
3123 *
3124 * If the folio is currently being written back to storage, wait for the
3125 * I/O to complete.
3126 *
3127 * Context: Sleeps. Must be called in process context and with
3128 * no spinlocks held. Caller should hold a reference on the folio.
3129 * If the folio is not locked, writeback may start again after writeback
3130 * has finished.
19343b5b 3131 */
490e016f 3132void folio_wait_writeback(struct folio *folio)
19343b5b 3133{
490e016f 3134 while (folio_test_writeback(folio)) {
b9b0ff61 3135 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 3136 folio_wait_bit(folio, PG_writeback);
19343b5b
YS
3137 }
3138}
490e016f 3139EXPORT_SYMBOL_GPL(folio_wait_writeback);
19343b5b 3140
490e016f
MWO
3141/**
3142 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3143 * @folio: The folio to wait for.
3144 *
3145 * If the folio is currently being written back to storage, wait for the
3146 * I/O to complete or a fatal signal to arrive.
3147 *
3148 * Context: Sleeps. Must be called in process context and with
3149 * no spinlocks held. Caller should hold a reference on the folio.
3150 * If the folio is not locked, writeback may start again after writeback
3151 * has finished.
3152 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
e5dbd332 3153 */
490e016f 3154int folio_wait_writeback_killable(struct folio *folio)
e5dbd332 3155{
490e016f 3156 while (folio_test_writeback(folio)) {
b9b0ff61 3157 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 3158 if (folio_wait_bit_killable(folio, PG_writeback))
e5dbd332
MWO
3159 return -EINTR;
3160 }
3161
3162 return 0;
3163}
490e016f 3164EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
e5dbd332 3165
1d1d1a76 3166/**
a49d0c50
MWO
3167 * folio_wait_stable() - wait for writeback to finish, if necessary.
3168 * @folio: The folio to wait on.
1d1d1a76 3169 *
a49d0c50
MWO
3170 * This function determines if the given folio is related to a backing
3171 * device that requires folio contents to be held stable during writeback.
3172 * If so, then it will wait for any pending writeback to complete.
3173 *
3174 * Context: Sleeps. Must be called in process context and with
3175 * no spinlocks held. Caller should hold a reference on the folio.
3176 * If the folio is not locked, writeback may start again after writeback
3177 * has finished.
1d1d1a76 3178 */
a49d0c50 3179void folio_wait_stable(struct folio *folio)
1d1d1a76 3180{
452c472e 3181 if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
a49d0c50 3182 folio_wait_writeback(folio);
1d1d1a76 3183}
a49d0c50 3184EXPORT_SYMBOL_GPL(folio_wait_stable);